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Preface

This volume contains the revised versions of accepted regular papers presented
at the 8th International Symposium on Formal Aspects of Component Soft-
ware (FACS 2011), held at the Department of Informatics, University of Oslo,
on September 14–16, 2011. It also contains contributions by the three invited
speakers at this event: José Meseguer, John Rushby, and Ketil Stølen.

FACS 2011 was the eighth event in a series founded by the International
Institute for Software Technology of the United Nations University (UNU-IIST).
The objective of FACS is to bring researchers and practitioners of component
software and formal methods together in order to foster a deeper understanding
of reliable component-based systems development and their applications, us-
ing formal methods. The component-based software development approach has
emerged as a promising paradigm to cope with the complexity of present-day
software systems by bringing sound engineering principles into software engineer-
ing. However, many challenging conceptual and technological issues still remain
in the theory and practice of component-based software development. Moreover,
the advent of service-oriented computing has brought to the fore new dimen-
sions, such as quality of service and robustness to withstand inevitable faults,
that require revisiting established component-based concepts in order to meet
the new requirements of the service-oriented paradigm.

We received 46 submissions from 26 countries, out of which the Program
Committee accepted 16 as regular papers, and, furthermore, conditionally ac-
cepted 4 additional papers. The revised versions of 18 of these papers appear
in this volume. Each submission to FACS 2011 was reviewed by at least three
referees.

Many colleagues and friends contributed to FACS 2011. First, we thank the
authors who submitted their work to FACS 2011 and who, by their contribu-
tions and participation, made this symposium a high-quality event. We thank
the Program Committee members and their sub-reviewers for their timely and
insightful reviews as well as for their involvement in the post-reviewing discus-
sions. We are also grateful to the FACS Steering Committee for its guidance,
to the invited speakers, and to Lucian Bentea for all his assistance in organiz-
ing this event. Finally, we thank Andrei Voronkov for the excellent EasyChair
conference system, and the Research Council of Norway and the Department of
Informatics at the University of Oslo for financially supporting the symposium.

April 2012 Farhad Arbab
Peter Ölveczky
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Mohammad Mahdi Jaghoori, Ólafur Hlynsson, and Marjan Sirjani

A Formal Model of Object Mobility in Resource-Restricted Deployment
Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Einar Broch Johnsen, Rudolf Schlatte, and Silvia Lizeth Tapia Tarifa



X Table of Contents

The Logic of XACML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and
Flemming Nielson

A Proof Assistant Based Formalization of MDE Components . . . . . . . . . . 223
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Taming Distributed System Complexity

through Formal Patterns�

José Meseguer

University of Illinois at Urbana-Champaign

Many current and future distributed systems are or will be:

– real-time and cyber-physical

– probabilistic in their operating environments and/or their algorithms

– safety-critical, with strong qualitative and quantitative formal requirements

– reflective and adaptive, to operate in changing and potentially hostile envi-
ronments.

Their distributed features, their adaptation needs, and their real-time and prob-
abilistic aspects make such systems quite complex and hard to design, build and
verify, yet their safety-critical nature makes their verification essential. One im-
portant source of complexity, causing many unforeseen design errors, arises from
ill-understood and hard-to-test interactions between their different distributed
components.

Methods to tame and greatly reduce system complexity are badly needed.
System complexity has many aspects, including the complexity and associated
cost of:

– designing

– verifying

– developing

– maintaining and

– evolving

such systems.
The main goal of this talk is to propose the use of formal patterns as a way

of drastically reducing all the above system complexity aspects. By a ”formal
pattern” I mean a solution to a commonly occurring problem that is:

– as generic as possible, with precise semantic requirements for its parameters

– formally specified

– executable, and

– comes with strong formal guarantees.

� Partially supported by NSF Grant CCF 09-05584, AFOSR Grant FA8750-11-2-0084,
and Boeing Grant C8088.

F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. Meseguer

This means that a formal pattern can be applied to a potentially infinite set
of concrete instances, where each such instance is correct by construction and
enjoys the formal guarantees ensured by meeting the semantic requirements of
the pattern’s parameters.

The overall vision is that distributed systems should be designed, verified,
and built by composing formal patterns that are highly generic and reusable and
come with strong formal guarantees. A large part of the verification effort is spent
in an up-front, fully generic manner, and is then amortized across a potentially
infinite number of instances. As I show through concrete examples, this can
achieve very drastic reductions in all aspects of system complexity, including the
formal verification aspect. It can lead to high-quality, highly reliable distributed
systems at a fraction of the cost required when not using such patterns.

To develop formal patterns for distributed systems with features such as those
mentioned above an appropriate semantic framework is needed, one supporting:

– concurrency
– logical reflection
– distributed reflection and adaptation
– real time and probabilities
– executability, and
– formal verification methods.

I use rewriting logic as such a semantic framework, and illustrate with several
examples its adequacy to specify and verify formal patterns of this nature.



Composing Safe Systems�

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. Failures in component-based systems are generally due to
unintended or incorrect interactions among the components. For safety-
critical systems, we may attempt to eliminate unintended interactions,
and to verify correctness of those that are intended. We describe the value
of partitioning in eliminating unintended interactions, and of assumption
synthesis in developing a robust foundation for verification. We show
how model checking of very abstract designs can provide mechanized
assistance in human-guided assumption synthesis.

1 Introduction

We build systems from components, but what makes something a system is
that its properties and behaviors are distinct from those of its components.
As engineers and designers, we wish to predict and calculate the properties
of systems from those of their interconnected components, and we are quite
successful at doing this, most of the time. For many systems and properties,
“most of the time” is good enough: we can live with it if our laptop occasionally
locks up, our car doesn’t start, or our music player seems to lose our playlists.
But we will be considerably more aggrieved if our laptop catches fire, our car
fails to stop, or our music player loses the songs that we purchased. As we move
from personal systems to those with wider impact and from properties about
normal function to those that concern safety or security, so “most of the time”
becomes inadequate: we want those properties to be true all the time.

Often, properties that we want to be true “all the time” fail to be so, and sub-
sequent investigations generally reveal some unexpected interaction among the
system’s components. Thus, attempts to reason about the properties of systems
by combining or composing the properties of their components, while generally
successful for “most of the time” properties, are less successful for “all the time”
properties. It is for this reason that regulatory bodies examine only complete
systems (e.g., the FAA certifies only airplanes and engines) and not compo-
nents: they need to consider the behaviors and possible interactions of multiple
components in the context of a specific system.

� This work was supported by National Science Foundation Grant CNS-0720908. The
content is solely the responsibility of the author and does not necessarily represent
the official views of NSF.

F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 3–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



4 J. Rushby

Now, although it is generally infeasible at present to guarantee critical “all the
time” properties by compositional (or “modular”) methods, it is a good research
topic to investigate why this is so, and how we might extend the boundaries of
what is feasible in this area. Safety, in the sense of causing no harm to the public,
is one of the most demanding properties, and so the motivation for the title of
this paper is to indicate a research agenda focused on methods that might allow
certification of safety for complex systems by compositional means.

As mentioned, system safety failures and the attendant flaws in compositional
reasoning are generally due to unanticipated interactions among components.
These interactions can be classified into those that exploit a previously unantici-
pated pathway for interaction, and those that are due to unanticipated behavior
along a known interaction pathway. One way to control the first class of unantic-
ipated interactions is to use integration frameworks that restrict the pathways
available for component interactions; in avionics, this approach is called “parti-
tioning” and it is the topic of Section 2.

There are two complementary ways to deal with the second class of unantic-
ipated interactions: one is to augment components with wrappers, monitors, or
other mechanisms that attempt to limit interactions to those that are needed to
accomplish the purpose for which the interaction pathway was established; the
other is to actually verify correctness of some interactions. Ideally, the verifica-
tion should be done compositionally: that is, we verify properties of components
considered separately, then from those properties we derive properties of their
interaction. The verification of each component has to consider the environment
in which it will operate, and that environment is composed of the other com-
ponents with which it interacts. This seems contrary to a pure conception of
component-based design, because it looks as if each component needs to con-
sider the others during its design. One way to avoid this is to calculate the
weakest environment in which a component can perform its task; this is among
the topics of Section 3, which mainly focuses on assume/guarantee and methods
for assumption synthesis. Brief conclusions are provided in Section 4.

2 Partitioning

Aircraft are safe, yet employ many interacting subsystems, so the techniques they
employ are worthy of interest. Traditionally, the various avionics functions on
board aircraft were provided by fairly independent subsystems loosely integrated
as a “federated” system. This meant that the autopilot, for example, had its own
computers, replicated for redundancy, and so did the flight management system.
The two system would communicate though the exchange of messages, but their
relative isolation provided a natural barrier to the propagation of faults: a faulty
autopilot might send bad data to the flight management system, but could not
destroy its ability to calculate or communicate.

Modern aircraft employ Integrated Modular Avionics (IMA) where many crit-
ical functions share the same computer system and communications networks,
and so there is naturally concern that a fault in one function could propagate
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to others sharing the same resources. Hence, the notion of “robust partitioning”
has developed [1]: the idea is that applications that use the shared resources
should be protected from each other as if they were not sharing and each had
their own private resources.

The primary resources that require partitioning are communication and com-
putation: i.e., networks and processors. For networks, the concern is that a faulty
or malicious component will not adhere to the protocol and will transmit over
other traffic, or will transmit constantly, thereby denying good components the
ability to communicate. The only way to provide partitioning in the face of
these threats is to employ redundancy, so that components’ access to the net-
work is mediated by additional components that limit the rate or the times at
which communication can occur. Of course, these additional components and the
mechanisms they employ may themselves be afflicted by faults (e.g., transient
hardware upsets caused by ambient radiation), and so the design and assurance
of these partitioning network technologies are very demanding [2], but they are
now reasonably well understood and available “off the shelf.”

For processors, the concerns are that faulty or malicious processes will write
into the memory of other processes, monopolize the CPUs, or corrupt the pro-
cessor’s state. Partitioning against these threats can be provided by a strong
operating system or, more credibly, by a hypervisor or virtual machine environ-
ment; minimal hypervisors specialized to the partitioning function are known
as “separation kernels” [3] and, like partitioning networks, efficient and highly
assured examples are now available “off the shelf.”

Partitioning for the basic resources of communication and computation can
be leveraged to provide partitioning for additional resources synthesized above
them, such as file systems. A collection of partitioning resources may be config-
ured to specify quite precisely what software components are allocated to each
partition and what interactions are allowed with other components (the con-
figuration for an IMA is many megabytes of data). Such configurations, which
may be portrayed as box and arrow diagrams and formalized as “policy architec-
tures” [4], eliminate undesired paths for interaction and provide direct assurance
for certain system-level properties, such as some notions of security.

sanitizer unclassifiedsecret

Fig. 1. A Partitioned System Configured to Support the System Purpose

The properties for which partitioning, on its own, provides adequate enforce-
ment and assurance are those that can be stated in terms of the absence of
information flow. As mentioned, certain security concerns are of this kind (e.g.,
“no flow from secret to unclassified”), but most properties also concern the
computations that take place in (some of) the partitions. For example, many
secure systems do allow flow from secret to unclassified provided the informa-
tion concerned is suitably “sanitized” by some function interposed in the flow,
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as portrayed by the minimal policy architecture of Figure 1. The partitioning
configuration ensures the sanitizer cannot be bypassed, but we still require as-
surance that the sanitizer does its job. More complex properties, such as most
notions of safety, cannot be ensured by individual components; instead, they
emerge from the interactions of many—but partitioning eliminates unintended
interactions and allows us to focus on correctness of the intended interactions,
which is the topic of the next section.

3 Assumption Synthesis

If we suppose that “traditional software engineering” is able to develop systems
that work “most of the time” then it might be possible to turn these into systems
that work “all the time” by simply blocking untanticipated events and interac-
tions that might lead to failure, or by controlling the propagation of any failures
that are precipitated. These topics are addressed by a variety of techniques such
as systematic exception handling [5], anomaly detection [6], safety kernels [7] and
enforceable security [8], and runtime monitoring [9]. All these techniques merely
reduce the frequency or severity of failures (e.g., by turning “malfunction” or
“unintended function” into “loss of function”) rather than eliminate them. How-
ever, they can be very valuable in systems with many layers of redundancy or
fault management, since these often cope very well with the “clean” failure of
subsystems, but less well with their misbehavior. Some aircraft systems employ
“monitored architectures,” where a very simple component monitors the system
safety property and shuts down the operational component if this is violated;
these architectures can support rather strong assessments of reliability [10].

To get from clean failures to true “all the time” systems by compositional
means, we need to be able to calculate the properties of the composed system
from those of its components; if the calculation is automated, then it can support
an iterative design loop: if the composed system does not satisfy the properties
required, then we modify some of the components and their properties and repeat
the calculation.

The established way to calculate the properties of interacting components
is by assume/guarantee reasoning [11]: we verify that component A delivers (or
guarantees) property p on the assumption that its environment delivers property
q, and we also verify that B guarantees q assuming p; then when A and B are
composed, each becoming the environment of the other, we may conclude (under
various technical conditions) that their composition A||B guarantees both p and
q. There is, however, a practical difficulty with this approach: if A and B are
intended for general use, they are presumably developed in ignorance of each
other, and it will require good fortune or unusual prescience that they should
each make just the right assumptions and guarantees that they fit together
perfectly.

Shankar proposes an alternative approach [12] that treats assumptions as
abstract components; here, we establish that p is a property of A in the context
of an ideal environment E; if we can then show that B as a refinement of E, then
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Fig. 2. A Self-Checking Pair, and Additional Components Used in Analysis

the composition of A and B also delivers p. This requires less prescience because
we do not need to know about B at the time we design A; we do, however, need
to postulate a suitable E.

One interesting idea is to design A, then calculate E as the weakest environ-
ment under which we can guarantee that A delivers p. When A is a concrete state
machine, this can be done using L∗ learning [13]. Early in the design process,
however, we are unlikely to have developed A to the point where it is available as
a fully concrete design; in this case we can often perform assumption synthesis
interactively using infinite bounded model checking (inf-BMC).

Inf-BMC performs bounded model checking on state machines defined over
the theories supported by an SMT solver (i.e., a solver for Satisfiability Mod-
ulo Theories) [14]; these theories include equality over uninterpreted functions,
possibly constrained by axioms, so it is possible to specify very abstract state
machines. An example, taken from [15], is illustrated in Figure 2. Here, the goal
is to deduce the assumptions under which a self-checking pair works correctly.

Self-checking pairs are used quite widely in safety-critical systems to provide
protection against random hardware faults: two identical processors perform the
same calculations and their results are compared; if they differ the pair shuts
down (thereby becoming a “fail-stop” processor [16]) and some higher-level fault
management activity takes over. Obviously, this does not work if both processors
become faulty and compute the same wrong result. We would like to learn if
there are any other scenarios that can cause a self-checking pair to deliver the
wrong result; we can then assess their likelihood (for example, the double fault
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scenario just described may be considered extremely improbable) and calculate
the overall reliability of this architecture.

The scenarios we wish to discover are, on one hand, the hazards to the design
and, on the other (i.e., when negated), its assumptions. At the system level,
hazard analysis is the cornerstone of safety engineering [17]; in component-based
design, assumption discovery—its dual—could play a similar rôle: it helps us
understand when it is safe for one component to become the environment for
another.

Because of its context (the environment of a self-checking pair really is the nat-
ural environment, rather than another system), this example is closer to hazard
discovery than assumption synthesis—but since these are two sides of the same
coin, it serves to illustrate the technique. The idea is that the controller and the
monitor are identical fault-prone processors that compute some uninterpreted
function f(x); a distributor provides copies of the input x to both processors
and the results are sent to a checker; if the results agree, the checker passes
one of them on as safe out, otherwise it raises a fault flag. The distributor
as well as the two processors can deliver incorrect outputs, but for simplicity of
exposition the checker is assumed to be perfect (the checker can be eliminated by
having the controller and monitor cross-check their results). An ideal proces-
sor, identical to the others but not subject to failures, serves as the correctness
oracle, and an assumptions module, which operates as a synchronous observer,
encodes the evolving assumptions. In the figure, the ideal and assumptions

modules and their associated data are shown in red to emphasize that these are
artifacts of analysis, not part of the component under design.

Initially, the assumptions are empty and we use inf-BMC to probe correctness
of the design (i.e., we attempt to verify the claim that if the fault flag is down,
then safe out equals ideal out). We obtain a counterexample that alerts us to a
missing assumption; we add this assumption and iterate. The exercise terminates
after the following assumptions are discovered.

1. When both members of the self-checking pair are faulty, their outputs should
differ (this is the case we already thought of).

2. When the members of the pair receive different inputs1 (i.e., when the dis-
tributor is faulty), their outputs should differ. There are two subcases here.

(a) Neither member of the pair is faulty. The scenario here is that instead
of sending the correct value x, the distributor sends y to one member of
the pair and z to another, but f(y) = f(z) (and f(y) �= f(x)).

(b) One or both of the pair are faulty. Here, the scenario is the distributor
sends the correct value x to the faulty member, and an incorrect value y
to the nonfaulty member, but f(y) = f ′(x), where f ′ is the computation
of the faulty member.

1 Readers may wonder how a distributor, whose implementation could be as simple as
a solder joint connecting two wires, can alter the values it delivers to the processors;
one possibility is it adds resistance and drops the voltage: one processor may see a
weak voltage as a 1, the other as a 0.
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3. When both members of the pair receive the same input, it is the correct
input (i.e., the distributor should not create a bad value and send it to both
members of the pair).

Inf-BMC can verify that the self-checking pair works, given these four assump-
tions, so our next task is to examine them.

Cases 1 and 2(b) require double faults and may be considered improbable for
that reason. Case 2(a) is interesting because it probably would not be discovered
by finite state model checking, where we do not have uninterpreted functions:
instead, the usual way to analyze an “abstract” design is to provide a very simple
“concretization,” such as replacing f(x) by x+1, which masks any opportunity
to find the fault. This case is also interesting because, once discovered, it can
be eliminated by modifying the design: simply cause each member of the pair
to pass its input as well as its output to the checker; since both processors are
nonfaulty, the inputs will be passed correctly to the checker, which will then
raise the fault flag because it sees that the inputs differ. That leaves case 3 as
the one requiring further consideration (which we do not pursue here) by those
who would use a self-checking pair.

This example has illustrated, I hope, how automated methods such as inf-
BMC can be used to help calculate the weakest assumptions required by a
component, and thereby support the design of systems in which components’
assumes and guarantees are mutually supportive, without requiring prescience.

4 Conclusions

All fields of engineering build on components, and it is natural that computer
science should do the same. However, component-based systems can be rather
more challenging in computer science than in other fields because of the com-
plexity of interaction—unintended as well as in intended—that is possible. This
complexity of interaction becomes even more vexatious when we aim to develop
safety-critical and other kinds of system that must work correctly all the time.
(Perrow [18] argues that unintended interactions and their enablers, “interactive
complexity” and “tight coupling,” are the primary causes of disasters in all en-
gineering fields; however, computer systems generally have more complexity of
these kinds, even in normal operation, than those of other fields.)

A plausible way to develop safe systems from components begins by elimi-
nating unintended interactions, then ensures that the intended interactions are
correct.

Unintended interactions can be divided into those that deliver unintended
behavior along intended pathways, and those that employ unintended pathways.
I have outlined techniques that can ameliorate these concerns. Partitioning aims
to eliminate unintended pathways for interaction in networks and processors
and higher-level resources built on these. Partitioning guarantees “preservation
of prior properties” when new components are added to an existing system; it
also seems sufficient, on its own, to guarantee certain kinds of information flow
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security properties, and to simplify the assured construction of more complex
properties of this kind [19].

With unintended pathways controlled by partitioning, we can turn to inter-
actions along known pathways; we need to ensure that unintended interactions
are eliminated and the intended ones are correct. Various techniques related
to wrapping and monitoring can be used to control faulty inputs and outputs;
suitable wrappers or monitors can often be generated automatically by formal
synthesis from component assumptions and high-level system requirements.

These techniques can eliminate, or at least reduce, the incidence of unintended
and faulty interactions, but ultimately we need to calculate the composed behav-
iors of interacting components and verify their correctness. Traditional methods
for compositional verification by assume/guarantee reasoning demand a degree
of prescience to ensure that the assumes of one component are met by the guar-
antees of another that was designed in ignorance of it. One way to lessen this
need for prescience is to derive the weakest assumptions under which a com-
ponent can deliver its guarantees, and I sketched how inf-BMC can be used to
provide automated assistance in this process (which is closely related to hazard
analysis) very early in the design cycle.

Compositional design and assurance for critical systems that must function
correctly, or at least safely, all the time, are challenging and attractive research
topics. Further systematic examination and study of the methods and directions
I described could be worthwhile, but fresh thinking would also be welcome.
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A Denotational Model for Component-Based

Risk Analysis
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Abstract. Risk analysis is an important tool for developers to establish
the appropriate protection level of a system. Unfortunately, the shifting
environment of components and component-based systems is not ade-
quately addressed by traditional risk analysis methods. This paper ad-
dresses this problem from a theoretical perspective by proposing a deno-
tational model for component-based risk analysis. In order to model the
probabilistic aspect of risk, we represent the behaviour of a component
by a probability distribution over communication histories. The over-
all goal is to provide a theoretical foundation facilitating an improved
understanding of risk in relation to components and component-based
system development.

1 Introduction

The flexibility offered by component-based development facilitates rapid develop-
ment and deployment, but causes challenges for security and safety as upgraded
sub-components may interact with a system in unforeseen ways. The difficulties
faced by Toyota in explaining what caused the problem with the sticky accel-
erators [1] illustrate this problem. Due to their lack of modularity conventional
risk analysis methods are poorly suited to address these challenges. A modular
understanding of risks is a prerequisite for robust component-based development
and for maintaining the trustworthiness of component-based systems.

There are many forms and variations of risk analysis, depending on the ap-
plication domain, such as finance, reliability and safety, or security. Within re-
liability/safety and security, which are the most relevant for component-based
development, risk analysis is concerned with protecting assets. This is the type
of risk analysis we focus upon in this paper, referred to as defensive risk analysis.
The purpose of defensive risk analysis is to gather sufficient knowledge about
vulnerabilities, threats, consequences and probabilities, in order to establish the
appropriate protection level for assets. It is important that the level of protec-
tion matches the value of the assets to be protected. A certain level of risk may
be acceptable if the risk is considered to be too costly or technically impossible
to rule out entirely. Hence, a risk is part of the behaviour of a system that is
implicitly allowed but not necessarily intended. Based on this observation we
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have defined a component model that integrates the explicit representation of
risks as part of the component behaviour and provides rules for composing com-
ponent risks. We also explain how the notion of hiding can be understood in
this component model. We define a hiding operator that allows partial hiding
of internal interactions, to ensure that interactions affecting the component risk
level are not hidden. We are not aware of other approaches where the concept
of risk is integrated in a formal component semantics.

An advantage of representing risks as part of the component behaviour, is that
the risk level of a composite component, as well as its behaviour, is obtained by
composing the representations of its sub-components. That is, the composition
of risks corresponds to ordinary component composition. The component model
provides a foundation for component-based risk analysis, by conveying how risks
manifests themselves in an underlying component implementation. By component-
based risk analysis we mean that risks are identified, analysed and documented at
the component level, and that risk analysis results are composable.

1.1 Outline of paper

The objective of Section 2 is to give an informal understanding of component-
based risk analysis. Risk is the probability that an event affects an asset with
a given consequence. In order to model component risks, we explain the con-
cept of asset, asset value and consequence in a component setting. In order to
represent the behavioural aspects of risk, such as the probability of unwanted
incidents, we make use of an asynchronous communication paradigm. The se-
lection of this paradigm is motivated as part of the informal explanation of
component-based risk analysis. We also explain the notions of observable and
unobservable behaviour in a component model with assets. The informal under-
standing introduced in Section 2 is thereafter formalised in a semantic model
that defines:

– The denotational representation of interfaces as probabilistic processes (Sec-
tion 3).

– The denotational representation of interface risks including the means to
represent risk probabilities (Section 4). Interface risks are incorporated as a
part of the interface behaviour.

– The denotational representation of a component as a collection of interfaces
or sub-components, some of which may interact with each other (Section 5).
We obtain the behaviour of a component from the probabilistic processes of
its constituent interfaces or sub-components in a basic mathematical way.

– The denotational representation of component risks (Section 6).
– The denotational representation of hiding (Section 7).

We place our work in relation to ongoing research within related areas in Sec-
tion 8. Finally we summarise our findings and discuss possibilities for future work
in Section 9. Formal proofs of all the results presented in this paper is available
in a technical report [2]1.

1 http://heim.ifi.uio.no/ ketils/kst/Reports/2011-02.UIO-IFI-363.

A-Denotational-Model-For-Component-Based-Risk-Analysis.pdf

http://heim.ifi.uio.no/~ketils/kst/Reports/2011-02.UIO-IFI-363.A-Denotational-Model-For-Component-Based-Risk-Analysis.pdf
http://heim.ifi.uio.no/~ketils/kst/Reports/2011-02.UIO-IFI-363.A-Denotational-Model-For-Component-Based-Risk-Analysis.pdf
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2 An Informal Explanation of Component-Based Risk
Analysis

In order to provide a foundation for component-based risk analysis, we first
explain informally how concepts from risk analysis can be understood at the
component level. Concepts to consider in defensive risk analysis [31,14] include:
A stakeholder refers to a person or organisation who is affected by a decision
or activity. An asset is something to which a stakeholder directly assigns value
and, hence, for which the stakeholder requires protection. An incident is an event
that reduces the value of one or more assets. A consequence is the reduction in
value caused by an incident to an asset. A vulnerability is a weakness which can
be exploited by one or more threats to harm an asset. A threat is a potential
cause of an incident. Probability is a measure of the chance of occurrence of an
event, expressed as a number between 0 and 1. A risk is the combination of the
probability of an incident and its consequence with regard to a given asset. There
may be a range of possible outcomes associated with an incident. This implies
that an incident may have consequences for several assets. Hence, an incident
may be part of several risks.

2.1 Component-Based Risk Analysis

We explain the concepts of component-based risk analysis and how they are
related to each other through a conceptual model, captured by a UML class
diagram [22] in Figure 1. The associations between the elements have cardinal-
ities specifying the number of instances of one element that can be related to
one instance of the other. The hollow diamond symbolises aggregation and the
filled composition. Elements connected with an aggregation can also be part
of other aggregations, while composite elements only exist within the specified
composition.

An interface is a contract describing both the provided operations and the
services required to provide the specified operations. To ensure modularity of
our component model we represent a stakeholder by the component interface,
and identify assets on behalf of component interfaces. Each interface has a set
of assets. A vulnerability may be understood as a property (or lack thereof) of
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Fig. 1. Conceptual model of component-based risk analysis
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an interface that makes it prone to a certain attack. It may therefore be argued
that the vulnerability concept should be associated to the interface concept.
However, from a risk perspective a vulnerability is relevant to the extent that
it can be exploited to harm a specific asset, and we have therefore chosen to
associate it with the asset concept. The concept of a threat is not part of the
conceptual model, because a threat is something that belongs to the environment
of a component. We cannot expect to have knowledge about the environment of
the component as that may change depending on the where it is deployed.

A component is a collection of interfaces some of which may interact with each
other. Interfaces interact by the transmission and consumption of messages. We
refer to the transmission and consumption of messages as events. An event that
harms an asset is an incident with regard to that asset.

2.2 Behaviour and Probability

A probabilistic understanding of component behaviour is required in order to
measure risk. We adopt an asynchronous communication model. This does not
prevent us from representing systems with synchronous communication. It is well
known that synchronous communication can be simulated in an asynchronous
communication model and the other way around [13].

An interface interacts with an environment whose behaviour it cannot control.
From the point of view of the interface the choices made by the environment are
non-deterministic. In order to resolve the external non-determinism caused by the
environment we use queues that serve as schedulers. Incoming messages to an in-
terface are stored in a queue and are consumed by the interface in the order they are
received.The idea is that, for a given sequence of incomingmessages to an interface,
we know the probabilitywith which the interface produces a certain behaviour. For
simplicity we assume that an interface does not send messages to itself.

A component is a collection of interfaces some of which may interact. For a
component consisting of two or more interfaces, a queue history not only re-
solves the external non-determinism, but also all internal non-determinism with
regard to the interactions of its sub-components. The behaviour of a component
is the set of probability distributions given all possible queue histories of the
component.

Figure 2 shows two different ways in which two interfaces n1 and n2 with
queues q1 and q2, and sets of assets a1 and a2, can be combined into a component.
We may think of the arrows as directed channels.

– In Figure 2 (1) there is no direct communication between the interfaces of
the component, that is, the queue of each interface only contains messages
from external interfaces.

– In Figure 2 (2) the interface n1 transmits to n2 which again transmits to the
environment. Moreover, only n1 consumes messages from the environment.

Initially, the queue of each interface is empty; its set of assets is fixed through-
out an execution. When initiated, an interface chooses probabilistically between
a number of different actions. An action consists of transmitting an arbitrary
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Fig. 2. Two interface compositions

number of messages in some order. The number of transmission messages may
be finite, including zero which corresponds to the behaviour of skip, or infinite.
The storing of a transmitted message in a queue is instantaneous: a transmitted
message is placed in the queue of the recipient, without time delay. There will
always be some delay between the transmission of a message and the consump-
tion of that message. After transmitting messages the interface may choose to
quit or to check its queue for messages. Messages are consumed in the order they
arrive. If the queue is empty, an attempt to consume blocks the interface from
any further action until a new message arrives. The consumption of a message
gives rise to a new probabilistic choice. Thereafter, the interface may choose to
quit without checking the queue again, and so on.

A probabilistic choice over actions never involves more than one interface. This
can always be ensured by decomposing probabilistic choices until they have the
granularity required. Suppose we have three interfaces; die, player1 and player2
involved in a game of Monopoly. The state of the game is decided by the position
of the players’ pieces on the board. The transition from one state to another is
decided by a probabilistic choice “Throw die and move piece”, involving both the
die and one of the players. We may however, split this choice into two separate
choices: “Throw die” and “Move piece”. By applying this simple strategy for all
probabilistic choices we ensure that a probabilistic choice is a local event of an
interface.

The probability distribution over a set of actions, resulting from a probabilistic
choice, may change over time during an execution. Hence, our probabilistic model
is more general than for example a Markov process [32,21], where the probability
of a future state given the present is conditionally independent of the past.
This level of generality is needed to be able to capture all types of probabilistic
behaviour relevant in a risk analysis setting, including human behaviour.

The behaviour of a component is completely determined by the behaviour of
its constituent interfaces. We obtain the behaviour of a component by starting
all the interfaces simultaneously, in their initial state.

2.3 Observable Component Behaviour

In most component-based approaches there is a clear separation between ex-
ternal and purely internal interaction. External interaction is the interaction
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Fig. 3. Hiding of unobservable behaviour

between the component and its environment; while purely internal interaction
is the interaction within the components, in our case, the interaction between
the interfaces of which the component consists. Contrary to the external, purely
internal interaction is hidden when the component is viewed as a black-box.

When we bring in the notion of risk, this distinction between what should be
externally and only internally visible is no longer clear cut. After all, if we blindly
hide all internal interaction we are in danger of hiding (without treating) risks of
relevance for assets belonging to externally observable interfaces. Hence, purely
internal interaction should be externally visible if it may affect assets belonging
to externally visible interfaces. Consider for example the component pictured in
Figure 3. In a conventional component-oriented approach, the channels i2, i3, o2
and o3 would not be externally observable from a black-box point of view. From
a risk analysis perspective it seems more natural to restrict the black-box per-
spective to the right hand side of the vertical line. The assets belonging to the
interface n1 are externally observable since the environment interacts with n1.
The assets belonging to the interfaces n2 and n3 are on the other hand hidden
since n2 and n3 are purely internal interfaces. Hence, the channels i3 and o3
are also hidden since they can only impact the assets belonging to n1 indirectly
via i2 and o2. The channels i2 and o2 are however only partly hidden since the
transmission events of i2 and the consumption events of o2 may include incidents
having an impact on the assets belonging to n1.

3 Denotational Representation of Interface Behaviour

In this section we explain the formal representation of interface behaviour in
our denotational semantics. We represent interface behaviour by sequences of
events that fulfil certain well-formedness constraints. Sequences fulfilling these
constraints are called traces. We represent probabilistic interface behaviour as
probability distributions over sets of traces.

3.1 Sets

We use standard set notation, such as union A ∪ B, intersection A ∩ B, set
difference A \ B, cardinality #A and element of e ∈ A in the definitions of
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our basic concepts and operators. We write {e1, e2, e3, . . . , en} to denote the set
consisting of n elements e1, e2, e3, . . . , en. Sometimes we also use [i..n] to denote
a totally ordered set of numbers between i and n. We introduce the special
symbol N to denote the set of natural numbers and N+ to denote the set of
strictly positive natural numbers.

3.2 Events

There are two kinds of events: transmission events tagged by ! and consumption
events tagged by ?. K denotes the set of kinds {!, ?}. An event is a pair of
a kind and a message. A message is a quadruple 〈s, tr, co, q〉 consisting of a
signal s, a transmitter tr, a consumer co and a time-stamp q, which is a rational
number. The consumer in the message of a transmission event coincides with the
addressee, that is, the party intended to eventually consume the message. The
active party in an event is the one performing the action denoted by its kind.
That is, the transmitter of the message is the active party of a transmission event
and the consumer of the message is the active party of a consumption event.

We let S denote the set of all signals, P denote the set of all parties (consumers
and transmitters), Q denote the set of all time-stamps, M denote the set of all
messages and E denote the set of all events. Formally we have that:

E def
= K ×M

M def
= S × P × P ×Q

We define the functions

k. ∈ E → K tr. , co. ∈ E → P q. ∈ E → Q

to yield the kind, transmitter, consumer and time-stamp of an event. For any
party p ∈ P , we use Ep to denote the set of all events in which p is the active
part. Formally

Ep def
= {e ∈ E | (k.e =! ∧ tr.e = p) ∨ (k.e =? ∧ co.e = p)}(1)

For a given party p, we assume that the number of signals assigned to p is a
most countable. That is, the number of signals occurring in messages consumed
by or transmitted to p is at most countable.

We use E�
p to denote the set of transmission events with p as consumer. For-

mally

E�
p

def
= {e ∈ E | k.e =! ∧ co.e = p}

3.3 Sequences

For any set of elements A, we let A ω, A∞, A ∗ and An denote the set of all
sequences, the set of all infinite sequences, the set of all finite sequences, and the
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set of all sequences of length n over A. We use 〈〉 to denote the empty sequence
of length zero and 〈1, 2, 3, 4〉 to denote the sequence of the numbers from 1 to
4. A sequence over a set of elements A can be viewed as a function mapping
positive natural numbers to elements in the set A. We define the functions

# ∈ A ω → N ∪ {∞} � ∈ A ω ×A ω → Bool(2)

to yield the length, the nth element of a sequence and the prefix ordering on
sequences2. Hence, #s yields the number of elements in s, s[n] yields s’s nth
element if n ≤ #s, and s1 � s2 evaluates to true if s1 is an initial segment of s2
or if s1 = s2.

For any 0 ≤ i ≤ #s we define s|i to denote the prefix of s of length i. Formally:

| ∈ A ω ×N→ A ω(3)

s|i def
=

{
s′ if 0 ≤ i ≤ #s, where #s′ = i ∧ s′ � s

s if i > #s

Due to the functional interpretation of sequences, we may talk about the range
of a sequence:

rng. ∈ A ω → P(A)(4)

For example if s ∈ A∞, we have that:

rng.s = {s[n] |n ∈ N+}

We define an operator for obtaining the sets of events of a set of sequences, in
terms of their ranges:

ev . ∈ P(A ω)→ P(A)(5)

ev .S
def
=

⋃
s∈S

rng.s

We also define an operator for concatenating two sequences:

� ∈ A ω ×A ω → A ω(6)

s1� s2[n]
def
=

{
s1[n] if 1 ≤ n ≤ #s1

s2[n−#s1] if #s1 < n ≤ #s1 +#s2

Concatenating two sequences implies gluing them together. Hence s1 � s2 de-
notes a sequence of length #s1+#s2 that equals s1 if s1 is infinite and is prefixed
by s1 and suffixed by s2, otherwise.

2 The operator × binds stronger than → and we therefore omit the parentheses around
the argument types in the signature definitions.
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The filtering function S© is used to filter away elements. By B S© s we denote
the sequence obtained from the sequence s by removing all elements in s that
are not in the set of elements B. For example, we have that

{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

We define the filtering operator formally as follows:

S© ∈ P(A)×A ω → A ω(7)

B S© 〈〉 def
= 〈〉

B S© (〈e〉� s)
def
=

{
〈e〉� B S© s if e ∈ B

B S© s if e �∈ B

For an infinite sequence s we need the additional constraint:

(B ∩ rng.s) = ∅ ⇒ B S© s = 〈〉

We overload S© to filtering elements from sets of sequences as follows:

S© ∈ P(A)× P(A ω)→ P(A ω)

B S©S
def
= {B S© s | s ∈ S}

We also need a projection operator Πi.s that returns the ith element of an n-
tuple s understood as a sequence of length n. We define the projection operator
formally as:

Π . ∈ {1 . . . n} ×An → A

[ ] ∈ A ω ×N+ → A

The projection operator is overloaded to sets of index values as follows.

Π . ∈ P({1 . . . n}) \ ∅ ×An →
⋃

1≤k≤n
Ak

ΠI .s
def
= s′

where ∀j ∈ I : Πj .s = Π#{i∈I | i≤j}.s′ ∧#s′ = #I

For example we have that:

Π{1,2}.〈p, q, r〉 = 〈p, q〉

For a sequence of tuples s, ΠI .s denotes the sequence of k-tuples obtained from
s, by projecting each element in s with respect to the index values in I. For
example we have that

Π{1,2}.〈〈a, r, p〉, 〈b, r, p〉〉 = 〈Π{1,2}.〈a, r, p〉〉� 〈Π{1,2}.〈b, r, p〉〉 = 〈〈a, r〉, 〈b, r〉〉
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We define the projection operator on a sequence of n-tuples formally as follows:

Π . ∈ P({1 . . . n}) \ ∅ × (An) ω →
⋃

1≤k≤n
(Ak) ω

ΠI .s
def
= s′

where

∀j ∈ {1 . . .#s} : ΠI .s[j] = s′[j] ∧#s = #s′

If we want to restrict the view of a sequence of events to only the signals of the
events, we may apply the projection operator twice, as follows:

Π1.(Π2.〈!〈a, r, p, 3〉, !〈b, r, p, 5〉〉) = 〈〈a〉, 〈b〉〉

Restricting a sequence of events, that is, pairs of kinds and messages, to the sec-
ond elements of the events yields a sequence of messages. Applying the projection
operator a second time with the subscript 1 yields a sequence of signals.

3.4 Traces

A trace t is a sequence of events that fulfils certain well-formedness constraints
reflecting the behaviour of the informal model presented in Section 2. We use
traces to represent communication histories of components and their interfaces.
Hence, the transmitters and consumers in a trace are interfaces. We first formu-
late two constraints on the timing of events in a trace. The first makes sure that
events are ordered by time while the second is needed to avoid Zeno-behaviour.
Formally:

∀i, j ∈ [1..#t] : i < j ⇒ q.t[i] < q.t[j](8)

#t =∞⇒ ∀k ∈ Q :∃i ∈ N : q.t[i] > k(9)

For simplicity, we require that two events in a trace never have the same time-
stamp. We impose this requirement by assigning each interface a set of time-
stamps disjoint from the set of time-stamps assigned to every other interface.
Every event of an interface is assigned a unique time-stamp from the set of
time-stamps assigned to the interface in question.

The first constraint makes sure that events are totally ordered according to
when they take place. The second constraint states that time in an infinite trace
always eventually progress beyond any fixed point in time. This implies that time
never halts and Zeno-behaviour is therefore not possible. To lift the assumption
that two events never happen at the same time, we could replace the current
notion of a trace as a sequence of events, to a notion of a trace as a sequence of
sets of events where the messages in each set have the same time-stamp.

We also impose a constraint on the ordering of transmission and consumption
events in a trace t. According to the operational model a message can be trans-
mitted without being consumed, but it cannot be consumed without having been
transmitted. Furthermore, the consumption of messages transmitted to the same
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party must happen in the same order as transmission. However, since a trace
may include consumption events with external transmitters, we can constrain
only the consumption of a message from a party which is itself active in the
trace. That is, the ordering requirements on t only apply to the communication
between the internal parties. This motivates the following formalisation of the
ordering constraint:

let N = {n ∈ P | rng.t ∩ En �= ∅}(10)

in ∀n,m ∈ N :

let i = ({?} × (S × n×m×Q)) S© t

o = ({!} × (S × n×m×Q)) S© t

in Π{1,2,3}.(Π{2}.i) � Π{1,2,3}.(Π{2}.o) ∧ ∀j ∈ {1..#i} : q.o[j] < q.i[j]

The first conjunct of constraint (10) requires that the sequence of consumed
messages sent from an internal party n to another internal party m, is a prefix
of the sequence of transmitted messages from n to m, when disregarding time.
We abstract away the timing of events in a trace by applying the projection
operator twice. Thus, we ensure that messages communicated between internal
parties are consumed in the order they are transmitted. The second conjunct of
constraint (10) ensures that for any single message, transmission happens before
consumption when both the transmitter and consumer are internal. We let H
denote the set of all traces t that are well-formed with regard to constraints (8),
(9) and (10).

3.5 Probabilistic Processes

As explained in Section 2.2, we understand the behaviour of an interface as
a probabilistic process. The basic mathematical object for representing proba-
bilistic processes is a probability space [11,30]. A probability space is a triple
(Ω,F , f), where Ω is a sample space, that is, a non-empty set of possible out-
comes, F is a non-empty set of subsets of Ω, and f is a function from F to [0, 1]
that assigns a probability to each element in F .

The set F , and the function f have to fulfil the following constraints: The set
F must be a σ-field over Ω, that is, F must be not be empty, it must contain Ω
and be closed under complement3 and countable union. The function f must be a
probability measure on F , that is, a function from F to [0, 1] such that f(∅) = 0,
f(Ω) = 1, and for every sequence ω of disjoint sets in F , the following holds:

f(
⋃#ω
i=1 ω[i]) =

∑#ω
i=1 f(ω[i]) [10]. The last property is referred to as countably

additive, or σ-additive.
We represent a probabilistic execution H by a probability space with the set

of traces of H as its sample space. If the set of possible traces in an execution is
infinite, the probability of a single trace may be zero. To obtain the probability

3 Note that this is the relative complement with respect to Ω, that is if A ∈ F , then
Ω \A ∈ F .
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that a certain sequence of events occurs up to a particular point in time, we can
look at the probability of the set of all extensions of that sequence in a given
trace set. Thus, instead of talking of the probability of a single trace, we are
concerned with the probability of a set of traces with common prefix, called a
cone. By c(t,D) we denote the set of all continuations of t in D. For example we
have that

c(〈a〉, {〈a, a, b, b〉, 〈a, a, c, c〉}) = {〈a, a, b, b〉, 〈a, a, c, c〉}
c(〈a, a, b〉, {〈a, a, b, b〉, 〈a, a, c, c〉}) = {〈a, a, b, b〉}

c(〈b〉, {〈a, a, b, b〉, 〈a, a, c, c〉}) = ∅

We define the cone of a finite trace t in a trace set D formally as:

Definition 1 (Cone). Let D be a set of traces. The cone of a finite trace t,
with regard to D, is the set of all traces in D with t as a prefix:

c ∈ H× P(H)→ P(H)

c(t,D)
def
= {t′ ∈ D | t � t′}

We define the cone set with regard to a set of traces as:

Definition 2 (Cone set). The cone set of a set of traces D consists of the
cones with regard to D of each finite trace that is a prefix of a trace in D:

C ∈ P(H)→ P(P(H))

C(D)
def
= {c(t,D) |#t ∈ N ∧ ∃t′ ∈ D : t � t′}

We understand each trace in the trace set representing a probabilistic process
H as a complete history of H . We therefore want to be able to distinguish the
state where an execution stops after a given sequence and the state where an
execution may continue with different alternatives after the sequence. We say
that a finite trace t is complete with regard to a set of traces D if t ∈ D. Let D
be a set of set of traces. We define the complete extension of the cone set of D
as follows:

Definition 3 (Complete extended cone set). The complete extended cone
set of a set of traces D is the union of the cone set of D and the set of singleton
sets containing the finite traces in D:

CE ∈ P(H)→ P(P(H))

CE(D)
def
= C(D) ∪ {{t} ⊆ D |#t ∈ N}

We define a probabilistic execution H formally as:

Definition 4 (Probabilistic execution). A probabilistic execution H is a
probability space:

P(H)× P(P(H))× (P(H)→ [0, 1])
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whose elements we refer to as DH , FH and fH where DH is the set of traces
of H, FH is the σ-field generated by CE(DH), that is the intersection of all σ-
fields including CE(DH), called the cone-σ-field of DH , and fH is a probability
measure on FH .

If DH is countable then P(DH) (the power set of DH) is the largest σ-field
that can be generated from DH and it is common to define FH as P(DH).
If DH is uncountable, then, assuming the continuum hypothesis, which states
that there is no set whose cardinality is strictly between that of the integers
and that of the real numbers, the cardinality of DH equals the cardinality of
the real numbers, and hence of [0, 1]. This implies that there are subsets of
P(DH) which are not measurable, and FH is therefore usually a proper subset of
P(DH) [8]. A simple example of a process with uncountable sample space, is the
process that throws a fair coin an infinite number of times [23,9]. Each execution
of this process can be represented by an infinite sequence of zeroes and ones,
where 0 represents “head” and 1 represents “tail”. The set of infinite sequences
of zeroes and ones is uncountable, which can be shown by a diagonalisation
argument [5].

3.6 Probabilistic Interface Execution

We define the set of traces of an interface n as any well-formed trace consisting
solely of events where n is the active party. Formally:

Hn def
= H ∩ En ω

We define the behavioural representation of an interface n as a function of its
queue history. A queue history of an interface n is a well-formed trace consisting
solely of transmission events with n as consumer. That a queue history is well
formed implies that the events in the queue history are totally ordered by time.
We let Bn denote the set of queue histories of an interface n. Formally:

Bn def
= H ∩ E�

n
ω

A queue history serves as a scheduler for an interface, thereby uniquely deter-
mining its behaviour [27,6]. Hence, a queue history gives rise to a probabilistic
execution of an interface. That is, the probabilistic behaviour of an interface n
is represented by a function of complete queue histories for n. A complete queue
history for an interface n records the messages transmitted to n for the whole
execution of n, as opposed to a partial queue history that records the messages
transmitted to n until some (finite) point in time. We define a probabilistic
interface execution formally as:

Definition 5 (Probabilistic interface execution). A probabilistic execution
of an interface n is a function that for every complete queue history of n returns
a probabilistic execution:
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In ∈ Bn → P(Hn)× P(P(Hn))× (P(Hn)→ [0, 1])4

Hence, In(α) denotes the probabilistic execution of n given the complete queue
history α. We let Dn(α),Fn(α) and fn(α) denote the projections on the three
elements of the probabilistic execution of n given queue history α. I.e. In(α) =
(Dn(α),Fn(α), fN (α)).

In Section 2 we described how an interface may choose to do nothing. In the
denotational trace semantics we represent doing nothing by the empty trace.
Hence, given an interface n and a complete queue history α, Dn(α) may consist
of only the empty trace, but it may never be empty.

The queue history of an interface represents the input to it from other in-
terfaces. In Section 2.2 we described informally our assumptions about how in-
terfaces interact through queues. In particular, we emphasised that an interface
can only consume messages already in its queue, and the same message can be
consumed only once. We also assumed that an interface does not send messages
to itself. Hence, we require that any t ∈ Dn(α) fulfils the following constraints:

let i = ({?} ×M) S© t(11)

in Π{1,2}.(Π{2}.i) � Π{1,2}.(Π{2}.α) ∧ ∀j ∈ {1..#i} : q.α[j] < q.i[j]

∀j ∈ [1..#t] : k.t[j] �= co.t[j](12)

The first conjunct of constraint (11) states that the sequence of consumed mes-
sages in t is a prefix of the messages in α, when disregarding time. Thus, we
ensure that n only consumes messages it has received in its queue and that they
are consumed in the order they arrived. The second conjunct of constraint (11)
ensures that messages are only consumed from the queue after they have arrived
and with a non-zero delay. Constraint (12) ensures that an interface does not
send messages to itself.

A complete queue history of an interface uniquely determines its behaviour.
However, we are only interested in capturing time causal behaviour in the sense
that the behaviour of an interface at a given point in time should depend only
on its input up to and including that point in time and be independent of the
content of its queue at any later point.

In order to formalise this constraint, we first define an operator for truncating
a trace at a certain point in time. By t↓k we denote the timed truncation of t,
that is, the prefix of t including all events in t with a time-stamp lower than or
equal to k. For example we have that:

〈?〈c, q, r, 1〉, !〈a, r, p, 3〉, !〈b, r, p, 5〉〉↓4 =〈?〈c, q, r, 1〉, !〈a, r, p, 3〉〉
〈?〈c, q, r, 1〉, !〈a, r, p, 3〉, !〈b, r, p, 5〉〉↓8 =〈?〈c, q, r, 1〉, !〈a, r, p, 3〉, !〈b, r, p, 5〉〉
〈?〈c, q, r, 1

2 〉, !〈a, r, p,
3
2 〉, !〈b, r, p,

5
2 〉〉↓3

2
=〈?〈c, q, r, 1

2 〉, !〈a, r, p,
3
2 〉〉

4 Note that the type of In ensures that for any α ∈ Bn : rng.α ∩ ev .Dn(α) = ∅.
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The function ↓ is defined formally as follows:

↓ ∈ H ×Q → H(13)

t↓k def
=

⎧⎪⎨
⎪⎩
〈〉 if t = 〈〉 ∨ q.t[1] > k

r otherwise where r � t ∧ q.r[#r] ≤ k

∧ (#r < #t⇒ q.t[#r + 1] > k)

We overload the timed truncation operator to sets of traces as follows:

↓ ∈ P(H)×Q → P(H)

S↓k def
= {t↓k | t ∈ S}

We may then formalise the time causality as follows:

∀α, β ∈ Bn : ∀q ∈ Q :α↓q = β↓q ⇒ (Dn(α)↓q = Dn(β)↓q)∧
((∀t1 ∈ Dn(α) : ∀t2 ∈ Dn(β)) : t1↓q = t2↓q)⇒

(fn(α)(c(t1↓q, Dn(α))) = fn(β)(c(t2↓q, Dn(β))))

The first conjunct states that for all queue histories α, β of an interface n, and
for all points in time q, if α and β are equal until time q, then the trace sets
Dn(α) and Dn(β) are also equal until time q. The second conjunct states that
if α and β are equal until time q, and we have two traces in Dn(α) and Dn(β)
that are equal until time q, then the likelihoods of the cones of the two traces
truncated at time q in their respective trace sets are equal. Thus, the constraint
ensures that the behaviour of an interface at a given point in time depends on
its queue history up to and including that point in time, and is independent of
the content of its queue history at any later point.

4 Denotational Representation of an Interface with a
Notion of Risk

Having introduced the underlying semantic model, the next step is to extend it
with concepts from risk analysis according to the conceptual model in Figure 1.
As already explained, the purpose of extending the semantic model with risk
analysis concepts is to represent risks as an integrated part of interface and
component behaviour.

4.1 Assets

An asset is a physical or conceptual entity which is of value for a stakeholder,
that is, for an interface (see Section 2.1) and which the stakeholder wants to
protect. We let A denote the set of all assets and An denote the set of assets of
interface n. Note that An may be empty. We require:

∀n, n′ ∈ P :n �= n′ ⇒ An ∩An′ = ∅(14)

Hence, assets are not shared between interfaces.
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4.2 Incidents and Consequences

As explained in Section 2.1 an incident is an event that reduces the value of one
or more assets. This is a general notion of incident, and of course, an asset may
be harmed in different ways, depending on the type of asset. Some examples are
reception of corrupted data, transmission of classified data to an unauthorised
user, or slow response to a request. We provide a formal model for representing
events that harm assets. For a discussion of how to obtain further risk analysis re-
sults for components, such as the cause of an unwanted incident, its consequence
and probability we refer to [3].

In order to represent incidents formally we need a way to measure harm
inflicted upon an asset by an event. We represent the consequence of an incident
by a positive integer indicating its level of seriousness with regard to the asset
in question. For example, if the reception of corrupted data is considered to
be more serious for a given asset than the transmission of classified data to an
unauthorised user, the former has a greater consequence than the latter with
regard to this asset. We introduce a function

cvn ∈ En ×An → N(15)

that for an event e and asset a of an interface n, yields the consequence of e to
a if e is an incident, and 0 otherwise. Hence, an event with consequence larger
than zero for a given asset is an incident with regard to that asset. Note that the
same event may be an incident with respect to more than one asset; moreover,
an event that is not an incident with respect to one asset, may be an incident
with respect to another.

4.3 Incident Probability

The probability that an incident e occurs during an execution corresponds to the
probability of the set of traces in which e occurs. Since the events in each trace
are totally ordered by time, and all events include a time-stamp, each event in a
trace is unique. This means that a given incident occurs only once in each trace.

We can express the set describing the occurrence of an incident e, in a prob-
abilistic execution H , as occ(e,DH) where the function occ is formally defined
as:

occ ∈ E × P(H)→ P(H)(16)

occ(e,D)
def
= {t ∈ D | e ∈ rng.t}

(rng.t yields the range of the trace t, i.e., the set of events occurring in t). The
set occ(e,DH) corresponds to the union of all cones c(t,DH) where e occurs
in t (see Section 3.5). Any union of cones can be described as a disjoint set of
cones [26]. As described in Section 3, we assume that an interface is assigned at
most a countable number of signals and we assume that time-stamps are rational
numbers. Hence, it follows that an interface has a countable number of events.
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Since the set of finite sequences formed from a countable set is countable [18],
the union of cones where e occurs in t is countable. Since by definition, the cone-
σ-field of an execution H , is closed under countable union, the occurrence of an
incident can be represented as a countable union of disjoint cones, that is, it is
an element in the cone-σ-field of H and thereby has a measure.

4.4 Risk Function

The risk function of an interface n takes a consequence, a probability and an
asset as arguments and yields a risk value represented by a positive integer.
Formally:

rfn ∈ N× [0, 1]×An → N(17)

The risk value associated with an incident e in an execution H , with regard to
an asset a, depends on the probability of e in H and its consequence value. We
require that

rfn(c, p, a) = 0⇔ c = 0 ∨ p = 0

Hence, only incidents have a positive risk value, and any incident has a positive
risk value.

4.5 Interface with a Notion of Risk

Putting everything together we end up with the following representation of an
interface:

Definition 6 (Semantics of an interface). An interface n is represented by
a quadruple

(In,An, cvn , rfn)

consisting of its probabilistic interface execution, assets, consequence function
and risk function as explained above.

Given such a quadruple we have the necessary means to calculate the risks
associated with an interface for a given queue history. A risk is a pair of an
incident and its risk value. Hence, for the queue history α ∈ Bn and asset a ∈ An
the associated risks are

{rv | rv = rfn(cv(e, a), fn(occ(e,Dn(α))), a) ∧ rv > 0 ∧ e ∈ En}

5 Denotational Representation of Component Behaviour

A component is a collection of interfaces, some of which may interact. We may
view a single interface as a basic component. A composite component is a com-
ponent containing at least two interfaces (or basic components). In this section
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we lift the notion of probabilistic execution from interfaces to components. Fur-
thermore, we explain how we obtain the behaviour of a component from the
behaviours of its sub-components. In this section we do not consider the issue
of hiding; this is the topic of Section 7.

In Section 5.1 we introduce the notion of conditional probability measure,
conditional probabilistic execution and probabilistic component execution. In
Section 5.2 we characterise how to obtain the trace set of a composite component
from the trace sets of its sub-components. The cone-σ-field of a probabilistic
component execution is generated straightforwardly from that. In Section 5.3
we explain how to define the conditional probability measure for the cone-σ-
field of a composite component from the conditional probability measures of
its sub-components. Finally, in Section 5.4, we define a probabilistic component
execution of a composite component in terms of the probabilistic component
executions of its sub-components. We sketch the proof strategies for the lemmas
and theorems in this section and refer to Brændeland et al. [2] for the full proofs.

5.1 Probabilistic Component Execution

The behaviour of a component is completely determined by the set of interfaces
it consists of. We identify a component by the set of names of its interfaces.
Hence, the behaviour of the component {n} consisting of only one interface n,
is identical to the behaviour of the interface n. For any set of interfaces N we
define:

EN def
=

⋃
n∈N

En(18)

E�
N

def
=

⋃
n∈N

E�
n(19)

HN def
= H ∩ EN ω(20)

BN def
= H ∩ E�

N
ω(21)

Just as for interfaces, we define the behavioural representation of a component
N as a function of its queue history. For a single interface a queue history
α resolves the external nondeterminism caused by the environment. Since we
assume that an interface does not send messages to itself there is no internal
non-determinism to resolve. The function representing an interface returns a
probabilistic execution which is a probability space. Given an interface n it
follows from the definition of a probabilistic execution, that for any queue history
α ∈ Bn, we have fn(α)(Dn(α)) = 1.

For a component N consisting of two or more sub-components, a queue his-
tory α must resolve both external and internal non-determinism. For a given
queue history α the behaviour of N , is obtained from the behaviours of the sub-
components of N that are possible with regard to α. That is, all internal choices
concerning interactions between the sub-components of N are fixed by α. This
means that the probability of the set of traces of N given a queue history α may
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be lower than 1, violating the requirement of a probability measure. In order
to formally represent the behaviour of a component we therefore introduce the
notion of a conditional probability measure.

Definition 7 (Conditional probability measure). Let D be a non-empty
set and F be a σ-field over D. A conditional probability measure f on F is a
function that assigns a value in [0, 1] to each element of F such that; either
f(A) = 0 for all A in F , or there exists a constant c ∈ 〈0, 1]5 such that the
function f ′ defined by f ′(A) = f(A)/c is a probability measure on F .
We define a conditional probabilistic execution H formally as:

Definition 8 (Conditional probabilistic execution). A conditional proba-
bilistic execution H is a measure space [11]:

P(H)× P(P(H))× (P(H)→ [0, 1])

whose elements we refer to as DH , FH and fH where DH is the set of traces of
H, FH is the cone-σ-field of DH , and fH is a conditional probability measure
on FH .
We define a probabilistic component execution formally as:

Definition 9 (Probabilistic component execution). A probabilistic execu-
tion of a component N is a function IN that for every complete queue history of
N returns a conditional probabilistic execution:

IN ∈ BN → P(HN )× P(P(HN ))× (P(HN )→ [0, 1])

Hence, IN (α) denotes the probabilistic execution of N given the complete queue
history α. We let DN (α),FN (α) and fN (α) denote the canonical projections of
the probabilistic component execution on its elements.

5.2 Trace Sets of a Composite Component

For a given queue history α, the combined trace sets DN1(E�
N1

S©α) and

DN2(E�
N2

S©α) such that all the transmission events from N1 to N2 are in α
and the other way around, constitute the legal set of traces of the composition
of N1 and N2. Given two probabilistic component executions IN1 and IN2 such
that N1 ∩ N2 = ∅, for each α ∈ BN1∪N2 we define their composite trace set
formally as:

DN1⊗DN2 ∈ BN1∪N2 → P(HN1∪N2)(22)

DN1⊗DN2(α)
def
=

{t ∈ HN1∪N2 |EN1
S© t ∈ DN1(E�

N1
S©α) ∧ EN2

S© t ∈ DN2(E�
N2

S©α)∧
({!} × S ×N2 ×N1 ×Q) S© t � ({!} × S ×N2 ×N1 ×Q) S©α∧
({!} × S ×N1 ×N2 ×Q) S© t � ({!} × S ×N1 ×N2 ×Q) S©α}

5 We use 〈a, b〉 to denote the open interval {x | a < x < b}.
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The definition ensures that the messages from N2 consumed by N1 are in the
queue history of N1 and vice versa. The operator ⊗ is obviously commutative
and also associative since the sets of interfaces of each component are disjoint.

For each α ∈ BN1∪N2 the cone-σ-field is generated as before. Hence, we define
the cone-σ-field of a composite component as follows:

FN1 ⊗FN2(α)
def
= σ(CE(DN1 ⊗DN2(α)))(23)

where σ(D) denotes the σ-field generated by the set D. We refer to CE(DN1 ⊗
DN2(α)) as the composite extended cone set of N1 ∪N2.

5.3 Conditional Probability Measure of a Composite Component

Consider two components C and O such that C ∩ O = ∅. As described in Sec-
tion 2, it is possible to decompose a probabilistic choice over actions in such a
way that it never involves more than one interface. We may therefore assume that
for a given queue history α ∈ BC∪O the behaviour represented by DC(E�

C
S©α)

is independent of the behaviour represented by DO(E�
O

S©α). Given this assump-
tion the probability of a certain behaviour of the composed component equals
the product of the probabilities of the corresponding behaviours of C and O, by
the law of statistical independence. As explained in Section 3.5, to obtain the
probability that a certain sequence of events t occurs up to a particular point
in time in a set of traces D, we can look at the cone of t in D. For a given cone
c ∈ CE(DC ⊗ DO(α)) we obtain the corresponding behaviours of C and O by
filtering c on the events of C and O, respectively.

The above observation with regard to cones does not necessarily hold for all
elements of FC⊗FO(α). The following simple example illustrates that the prob-
ability of an element in FC ⊗FO(α), which is not a cone, is not necessarily the
product of the corresponding elements in FC(E�

C
S©α) and FO(E�

O
S©α). Assume

that the component C tosses a fair coin and that the component O tosses an
Othello piece (a disk with a light and a dark face). We assign the singleton time-
stamp set {1} to C and the singleton time-stamp set {2} to O. Hence, the traces
of each may only contain one event. For the purpose of readability we represent
in the following the events by their signals. The assigned time-stamps ensure
that the coin toss represented by the events {h, t} comes before the Othello
piece toss. We have:

DC(〈〉) = {〈h〉, 〈t〉}
FC(〈〉) = {∅, {〈h〉}, {〈t〉}, {〈h〉, 〈t〉}}

fC(〈〉)({〈h〉}) = 0.5

fC(〈〉)({〈t〉}) = 0.5

and

DO(〈〉) = {〈b〉, 〈w〉}
FO(〈〉) = {∅, {〈b〉}, {〈w〉}, {〈b〉, 〈w〉}}

fO(〈〉)({〈b〉}) = 0.5

fO(〈〉)({〈w〉}) = 0.5
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Let DCO = DC ⊗DO. The components interacts only with the environment,
not with each other. We have:

DCO(〈〉) = {〈h, b〉, 〈h,w〉, 〈t, b〉, 〈t, w〉}

We assume that each element in the sample space (trace set) of the composite
component has the same probability. Since the sample space is finite, the proba-
bilities are given by discrete uniform distribution, that is each trace in DCO(〈〉)
has a probability of 0.25. Since the traces are mutually exclusive, it follows by
the laws of probability that the probability of {〈h, b〉} ∪ {〈t, w〉} is the sum of
the probabilities of {〈h, b〉} and {〈t, w〉}, that is 0.5. But this is not the same as
fC(〈〉)({〈h〉, 〈t〉}) · fO(〈〉)({〈b〉, 〈w〉})6, which is 1.

Since there is no internal communication between C and O, there is no internal
non-determinism to be resolved. If we replace the component O with the compo-
nent R, which simply consumes whatever C transmits, a complete queue history
of the composite component reflects only one possible interaction between C and
R. Let DCR = DC ⊗DR. To make visible the compatibility between the trace
set and the queue history we include the whole events in the trace sets of the
composite component. We have:

DCR(〈!〈h,C,R, 1〉〉) ={〈!〈h,C,R, 1〉, ?〈h,C,R, 2〉〉}
DCR(〈!〈t, C,R, 1〉〉) ={〈!〈t, C,R, 1〉, ?〈t, C,R, 2〉〉}

For a given queue history α, the set EC S©DCR(α) is a subset of the trace set
DC(E�

C
S©α) that is possible with regard to α (that EC S©DCR(α) is a subset of

DC(E�
C

S©α) is shown in [2]). We call the set of traces of C that are possible with
regard to a given queue history α and component R for CTC−R(α), which is
short for conditional traces.

Given two components N1 and N2 and a complete queue history α ∈ BN1∪N2 ,
we define the set of conditional traces of N1 with regard to α and N2 formally
as:

CTN1−N2(α)
def
=

{
t ∈ DN1(E�

N1
S©α) | ({!} × S ×N1 ×N2 ×Q) S© t �(24)

({!} × S ×N1 ×N2 ×Q) S©α
}

Lemma 1. Let IN1 and IN2 be two probabilistic component executions such
that N1 ∩N2 = ∅ and let α be a queue history in BN1∪N2 . Then

CTN1−N2(α) ∈ FN1(E�
N1

S©α) ∧ CTN2−N1(α) ∈ FN2(E�
N2

S©α)

Proof sketch: The set CTN1−N2(α) includes all traces in DN1(E�
N1

S©α) that
are compatible with α, i.e., traces that are prefixes of α when filtered on the
transmission events from N1 to N2. The key is to show that this set can be
constructed as an element in FN1(E�

N1
S©α). If α is infinite, this set corresponds

6 We use · to denote normal multiplication.



A Denotational Model for Component-Based Risk Analysis 33

to (1) the union of all finite traces in DN1(E�
N1

S©α) that are compatible with
α and (2) the set obtained by constructing countable unions of cones of traces
that are compatible with finite prefixes of α|i for all i ∈ N (where α|i denotes
the prefix of α of length i) and then construct the countable intersection of all
such countable unions of cones. If α is finite the proof is simpler, and we do
not got into the details here. The same procedure may be followed to show that
CTN2−N1(α) ∈ FN2(E�

N2
S©α).

As illustrated by the example above, we cannot obtain a measure on a com-
posite cone-σ-field in the same manner as for a composite extended cone set. In
order to define a conditional probability measure on a composite cone-σ-field, we
first define a measure on the composite extended cone set it is generated from.
We then show that this measure can be uniquely extended to a conditional
probability measure on the generated cone-σ-field. Given two probabilistic com-
ponent executions IN1 and IN2 such that N1 ∩N2 = ∅, for each α ∈ BN1∪N2 we
define a measure μN1 ⊗ μN2(α) on CE(DN1 ⊗DN2(α)) formally as follows:

μN1 ⊗ μN2 ∈ BN1∪N2 → (CE(DN1 ⊗DN2(α))→ [0, 1])(25)

μN1 ⊗ μN2(α)(c)
def
= fN1(E�

N1
S©α)(EN1

S© c) · fN2(E�
N2

S©α)(EN2
S© c)

Theorem 1. The function μN1 ⊗ μN2(α) is well defined.

Proof sketch: For any c ∈ CE(DN1⊗DN2(α)) we must show that (EN1
S© c) ∈

FN1(E�
N1

S©α) and (EN2
S© c) ∈ FN2(E�

N2
S©α). If c is a singleton (containing ex-

actly one trace) the proof follows from the fact that (1): if (D,F , f) is a con-
ditional probabilistic execution and t is a trace in D, then {t} ∈ F [23], and
(2): that we can show EN1

S© t ∈ DN1(E�
N1

S©α) ∧ EN2
S© t ∈ DN2(E�

N2
S©α) from

Definition 3 and definition (22).
If c is a cone c(t,DN1 ⊗ DN2(α)) in C(DN1 ⊗ DN2(α)), we show that

CTN1−N2(α), intersected with c(EN1
S© t,DN1(E�

N1
S©α)) and the traces in

DN1(E�
N1

S©α) that are compatible with t with regard to the timing of events, is

an element of FN1(E�
N1

S©α) that equals (EN1
S© c). We follow the same procedure

to show that (EN2
S© c) ∈ FN2(E�

N2
S©α).

Lemma 2. Let IN1 and IN2 be two probabilistic component executions such
that N1 ∩ N2 = ∅ and let μN1 ⊗ μN2 be a measure on the extended cones
set of DN1 ⊗DN2 as defined by (25). Then, for all complete queue histories
α ∈ BN1∪N2

1. μN1 ⊗ μN2(α)(∅) = 0
2. μN1 ⊗ μN2(α) is σ-additive
3. μN1 ⊗ μN2(α)(DN1 ⊗DN2(α)) ≤ 1

Proof sketch: We sketch the proof strategy for point 2 of Lemma 2. The
proofs of point 1 and 3 are simpler, and we do not go into the details here.
Assume φ is a sequence of disjoint sets in CE(DN1 ⊗DN2(α)). We construct a
sequence ψ of length #φ such that ∀i ∈ [1..#φ] :ψ[i] = {(EN1

S© t, EN2
S© t) | t ∈
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φ[i]} and show that
⋃#ψ
i=1 ψ[i] = EN1

S©
⋃#φ
i=1 φ[i] × EN2

S©
⋃#φ
i=1 φ[i]. It follows

by Theorem 1 that (EN1
S©
⋃#φ
i=1 φ[i]) × (EN2

S©
⋃#φ
i=1 φ[i]) is a measurable rect-

angle [11] in FN1(E�
N1

S©α) × FN2(E�
N2

S©α). From the above, and the prod-

uct measure theorem [11] it can be shown that fN1(E�
N1

S©α)(EN1
S©
⋃#φ
i=1 φ[i]) ·

fN2(E�
N2

S©α)(EN2
S©
⋃#φ
i=1 φ[i]) =

∑#φ
i=1 fN1(E�

N1
S©α)(EN1

S©φ[i]) ·
fN2(E�

N2
S©α)(EN2

S©φ[i]).

Theorem 2. There exists a unique extension of μN1⊗μN2(α) to the cone-σ-field
FN1 ⊗FN2(α).

Proof sketch: We extend CE(DN1 ⊗DN2(α)) in a stepwise manner to a set
obtained by first adding all complements of the elements in CE(DN1 ⊗DN2(α)),
then adding the finite intersections of the new elements and finally adding finite
unions of disjoint elements. For each step we extend μN1 ⊗ μN2(α) and show
that the extension is σ-additive. We end up with a finite measure on the field
generated by CE(DN1 ⊗DN2(α)). By the extension theorem [11] it follows that
this measure can be uniquely extended to a measure on FN1 ⊗FN2(α).

Corollary 1. Let fN1 ⊗ fN2(α) be the unique extension of μN1 ⊗ μN2(α) to
the cone-σ-field FN1 ⊗ FN2(α). Then fN1 ⊗ fN2(α) is a conditional probability
measure on FN1 ⊗FN2(α).

Proof sketch: We first show that ∀α ∈ BN1∪N2 : fN1⊗fN2(α)(DN1⊗DN2(α)) ≤
1. When fN1⊗fN2(α) is a measure on FN1⊗FN2(α) such that fN1⊗fN2(α)(DN1⊗
DN2(α)) ≤ 1 we can show that fN1⊗fN2(α) is a conditional probability measure
on FN1 ⊗FN2(α).

5.4 Composition of Probabilistic Component Executions

We may now lift the ⊗-operator to probabilistic component executions. Let IN1

and IN2 be probabilistic component executions such that N1 ∩N2 = ∅. For any
α ∈ BN1∪N2 we define:

IN1 ⊗ IN2(α)
def
= (DN1 ⊗DN2(α),FN1 ⊗FN2(α), fN1 ⊗ fN2(α))(26)

where fN1 ⊗ fN2(α) is defined to be the unique extension of μN1 ⊗ μN2(α) to
FN1 ⊗FN2(α).

Theorem 3. IN1 ⊗ IN2 is a probabilistic component execution of N1 ∪N2.

Proof sketch: This can be shown fromdefinitions (22) and (23) andCorollary 1.

6 Denotational Representation of a Component with a
Notion of Risk

For any disjoint set of interfaces N we define:
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AN
def
=

⋃
n∈N

An

cvN
def
=

⋃
n∈N

cvn

rfN
def
=

⋃
n∈N

rfn

The reason why we can take the union of functions with disjoint domains is that
we understand a function as a set of maplets. A maplet is a pair of two elements
corresponding to the argument and the result of a function. For example the
following set of three maplets

{(e1 �→ f(e1)), (e2 �→ f(e2)), (e2 �→ f(e2))}

characterises the function f ∈ {e1, e2, e3} → S uniquely. The arrow �→ indicates
that the function yields the element to the right when applied to the element to
the left [4].

We define the semantic representation of a component analogous to that of
an interface, except that we now have a set of interfaces N , instead of a single
interface n:

Definition 10 (Semantics of a component). A component is represented by
a quadruple

(IN , AN , cvN , rfN )

consisting of its probabilistic component execution, its assets, consequence func-
tion and risk function, as explained above.

We define composition of components formally as:

Definition 11 (Composition of components). Given two components N1

and N2 such that N1 ∩N2 = ∅. We define their composition N1 ⊗N2 by

(IN1 ⊗ IN2 , AN1 ∪ AN2 , cvN1 ∪ cvN2 , rfN1 ∪ rfN2 )

7 Hiding

In this section we explain how to formally represent hiding in a denotational
semantics with risk. As explained in Section 2.3 we must take care not to hide
incidents that affect assets belonging to externally observable interfaces, when
we hide internal interactions. An interface is externally observable if it interacts
with interfaces in the environment. We define operators for hiding assets and
interface names from a component name and from the semantic representation
of a component. The operators are defined in such a way that partial hiding of
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internal interaction is allowed. Thus internal events that affect assets belonging
to externally observable interfaces may remain observable after hiding. Note that
hiding of assets and interface names is optional. The operators defined below
simply makes it possible to hide e.g. all assets belonging to a certain interface
n, as well as all events in an execution where n is the active party. We sketch
the proof strategies for the lemmas and theorems in this section and refer to
Brændeland et al. [2] for the full proofs.

Until now we have identified a component by the set of names of its interfaces.
This has been possible because an interface is uniquely determined by its name,
and the operator for composition is both associative and commutative. Hence,
until now it has not mattered in which order the interfaces and resulting com-
ponents have been composed. When we in the following introduce two hiding
operators this becomes however an issue. For example, consider a component

identified by N
def
= {c1, c2, c3}. Then we need to distinguish the component

δc2 :N , obtained from N by hiding interface c2, from the component {c1, c3}. To
do that we build the hiding information into the name of a component obtained
with the use of hiding operators. A component name is from now one either:

(a) a set of interface names,

(b) of the form δn :N where N is a component name and n is an interface name,

(c) of the form σa :N where N is a component name and a is an asset, or

(d) of the form N1 ++N2 where N1 and N2 are component names and at least
one of N1 or N2 contains a hiding operator.

Since we now allow hiding operators in component names we need to take this
into consideration when combining them. We define a new operator for combining
two component names N1 and N2 as follows:

N1 �N2
def
=

{
N1 ∪N2 if neither N1 nor N2 contain hiding operators

N1 ++N2 otherwise
(27)

By in(N) we denote the set of all hidden and not hidden interface names oc-
curring in the component name N . We generalise definitions (18) to (21) to
component names with hidden assets and interface names as follows:

Eσa :N
def
= EN Eδn :N

def
= Ein(N)\{n}(28)

E�
σa :N

def
= E�

N E�
δn :N

def
= E�

in(N)\{n}(29)

Hσa :N
def
= H ∩ Eσa :N ω Hδn :N

def
= H ∩ Eδn :N

ω(30)

Bσa :N
def
= BN Bδn :N

def
= ((Ein(N) \ E

�
n) ∪ Ein(N)) S©BN(31)

Definition 12 (Hiding of interface in a probabilistic component execu-
tion). Given an interface name n and a probabilistic component execution IN
we define:
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δn : IN (α)
def
= (Dδn :N (α),Fδn :N (α), fδn :N (α))

where Dδn :N (α)
def
= {Eδn :N S© t | t ∈ DN(δn :α)}

Fδn :N (α)
def
= σ(CE(Dδn :N (α))) i.e., the cone-σ-field of Dδn :N (α)

fδn :N (α)(c)
def
= fN (δn :α)

(
{t ∈ DN(δn :α) | Eδn :N S© t ∈ c}

)
δn :α

def
=

(
(E

in(N)
\ E�

n) ∪ Ein(N)

)
S©α

When hiding an interface name n from a queue history α, as defined in the
last line of Definition 12, we filter away the external input to n but keep all
internal transmissions, including those sent to n. This is because we still need
the information about the internal interactions involving the hidden interface to
compute the probability of interactions it is involved in, after the interface is
hidden from the outside.

Lemma 3. If IN is a probabilistic component execution and n is an interface
name, then δn : IN is a probabilistic component execution.

Proof sketch: We must show that: (1) Dδn :N (α) is a set of well-formed traces;
(2) Fδn:N (α) is the cone-σ-field of Dδn :N (α); and (3) fδn :N (α) is a conditional
probability measure on Fδn :N (α). (1) If a trace is well-formed it remains well-
formed after filtering away events with the hiding operator, since hiding interface
names in a trace does not affect the ordering of events. The proof of (2) follows
straightforwardly from Definition 12.

In order to show (3), we first show that fδn :N (α) is a measure on Fδn :N (α). In
order to show this, we first show that the function fδn :N is well defined. I.e., for
any c ∈ Fδn :N (α) we show that

{
t ∈ DN(δn :α) | Eδn :N S© t ∈ c

}
∈ FN (δn :α).

We then show that fN(δn :α)(∅) = 0 and that fN (δn :α) is σ-additive. Sec-
ondly, we show that fδn :N (α)(Dδn :N (α)) ≤ 1. When fδn :N (α) is a measure on
Fδn :N (α) such that fδn :N (α)(Dδn :N (α)) ≤ 1 we can show that fδn :N (α) is a
conditional probability measure on Fδn :N (α).

Definition 13 (Hiding of component asset). Given an asset a and a com-
ponent (IN , AN , cvN , rfN ) we define:

σa :(IN , AN , cvN , rfN )
def
= (IN , σa :AN , σa : cvN , σa : rfN )

where σa :AN
def
= AN \ {a}

σa : cvN
def
= cvN \ {(e, a) �→ c | e ∈ E ∧ c ∈ N}

σa : rfN
def
= rfN \ {(c, p, a) �→ r | c, r ∈ N ∧ p ∈ [0, 1]}

As explained in Section 6 we see a function as a set of maplets. Hence, the
consequence and risk function of a component with asset a hidden is the set-
difference between the original functions and the set of maplets that has a as
one of the parameters of its first element.
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Theorem 4. If N is a component and a is an asset, then σa :N is a component.

Proof sketch: This can be shown from Definition 13 and Definition 10.
We generalise the operators for hiding interface names and assets to the hiding

of sets of interface names and sets of assets in the obvious manner.

Definition 14 (Hiding of component interface). Given an interface name
n and a component (IN , AN , cvN , rfN ) we define:

δn :(IN , AN , cvN , rfN )
def
= (δn : IN , σAn :AN , σAn : cvN , σAn : rfN )

Theorem 5. If N is a component and n is an interface name, then δn :N is a
component.

Proof sketch: This can be show from Lemma 3 and Theorem 4.
Since, as we have shown above, components are closed under hiding of assets

and interface names, the operators for composition of components, defined in
Section 5, are not affected by the introduction of hiding operators. We impose
the restriction that two components can only be composed by ⊗ if their sets of
interface names are disjoint, independent of whether they are hidden or not.

8 Related Work

There are a number of proposals to integrate security requirements into the
requirements specification, such as SecureUML and UMLsec. SecureUML [20] is
a method for modelling access control policies and their integration into model-
driven software development. SecureUML is based on role-based access control
and specifies security requirements for well-behaved applications in predictable
environments. UMLsec [15] is an extension to UML that enables the modelling
of security-related features such as confidentiality and access control. Neither of
these two approaches have particular focus on component-oriented specification.
Khan and Han [17] characterise security properties of composite systems, based
on a security characterisation framework for basic components [16]. They define
a compositional security contract CsC for two components, which is based on
the compatibility between their required and ensured security properties. This
approach has been designed to capture security properties, while our focus is on
integrating risks into the semantic representation of components.

Our idea to use queue histories to resolve the external nondeterminism of
probabilistic components is inspired by the use of schedulers, also known as ad-
versaries, which is a common way to resolve external nondeterminism in reactive
systems [7,27,6]. Segala and Lynch [27,26] use a randomised scheduler to model
input from an external environment and resolve the nondeterminism of a prob-
abilistic I/O automaton. They define a probability space for each probabilistic
execution of an automaton, given a scheduler. Seidel uses a similar approach in
an extension of CSP with probabilities [28], where a process is represented by a
conditional probability measure that, given a trace produced by the environment,
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returns a probability distribution over traces. Sere and Troubitsyna [29] handle
external nondeterminism by treating the assignment of probabilities of alterna-
tive choices as a refinement step. Alfaro et al. [6] present a probabilistic model
for variable-based systems with trace semantics similar to that of Segala and
Lynch. Unlike the model of Segala and Lynch, theirs allows multiple schedulers
to resolve the nondeterminism of each component. This is done to achieve deep
compositionality, where the semantics of a composite system can be obtained
from the semantics of its constituents.

Our decision to use a cone-based probability space to represent probabilis-
tic systems is inspired by Segala [26] and Refsdal et al. [24,23]. Segala uses
probability spaces whose σ-fields are cone-σ-fields to represent fully probabilis-
tic automata, that is, automata with probabilistic choice but without non-
determinism. In pSTAIRS [23] the ideas of Segala is applied to the trace-based
semantics of STAIRS [12,25]. A probabilistic system is represented as a proba-
bility space where the σ-field is generated from a set of cones of traces describing
component interactions. In pSTAIRS all choices are global. The different types
of choices may only be specified for closed systems, and there is no nondeter-
minism stemming from external input. Since we wish to represent the behaviour
of a component independently of its environment we cannot use global choice
operators of the type used in pSTAIRS.

9 Conclusion

We have presented a component model that integrates component risks as part
of the component behaviour. The component model is meant to serve as a formal
basis for component-based risk analysis. To ensure modularity of our component
model we represent a stakeholder by the component interface, and identify assets
on behalf of component interfaces. Thus we avoid referring to concepts that are
external to a component in the component model

In order to model the probabilistic aspect of risk, we represent the behaviour
of a component by a probability distribution over traces. We use queue histo-
ries to resolve both internal and external non-determinism. The semantics of a
component is the set of probability spaces given all possible queue histories of
the component. We define composition in a fully compositional manner: The se-
mantics of a composite component is completely determined by the semantics of
its constituents. Since we integrate the notion of risk into component behaviour,
we obtain the risks of a composite component by composing the behavioural
representations of its sub-components.

The component model provides a foundation for component-based risk anal-
ysis, by conveying how risks manifests themselves in an underlying component
implementation. By component-based risk analysis we mean that risks are iden-
tified, analysed and documented at the component level, and that risk analysis
results are composable. Our semantic model is not tied to any specific syntax or
specification technique. At this point we have no compliance operator to check
whether a given component implementation complies with a component speci-
fication. In order to be able to check that a component implementation fulfils
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a requirement to protection specification we would like to define a compliance
relation between specifications in STAIRS, or another suitable specification lan-
guage, and components represented in our semantic model.

We believe that a method for component-based risk analysis will facilitate
the integration of risk analysis into component-based development, and thereby
make it easier to predict the effects on component risks caused by upgrading or
substituting sub-parts.
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Abstract. In automated synthesis, given a specification, we automatically cre-
ate a system that is guaranteed to satisfy the specification. In the classical tem-
poral synthesis algorithms, one usually creates a “flat” system “from scratch”.
However, real-life software and hardware systems are usually created using pre-
existing libraries of reusable components, and are not “flat” since repeated sub-
systems are described only once.

In this work we describe an algorithm for the synthesis of a hierarchical sys-
tem from a library of hierarchical components, which follows the “bottom-up”
approach to system design. Our algorithm works by synthesizing in many rounds,
when at each round the system designer provides the specification of the currently
desired module, which is then automatically synthesized using the initial library
and the previously constructed modules. To ensure that the synthesized module
actually takes advantage of the available high-level modules, we guide the algo-
rithm by enforcing certain modularity criteria.

We show that the synthesis of a hierarchical system from a library of hierarchi-
cal components is EXPTIME-complete for µ-calculus, and 2EXPTIME-complete
for LTL, both in the cases of complete and incomplete information. Thus, in all
cases, it is not harder than the classical synthesis problem (of synthesizing flat
systems “from scratch”), even though the synthesized hierarchical system may
be exponentially smaller than a flat one.

1 Introduction

Synthesis is the automated construction of a system from its specification. The ba-
sic idea is simple and appealing: instead of developing a system and verifying that it
is correct w.r.t. its specification, we use instead an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [7]; the modern approach to this problem was initiated
by Pnueli and Rosner who introduced linear temporal logic (LTL) synthesis [23], later
extended to handle branching-time specifications, such as µ-calculus [10].

The Pnueli and Rosner idea can be summarized as follows. Given sets ΣI and ΣO

of inputs and outputs, respectively (usually, ΣI = 2I and ΣO = 2O, where I is a set of
input signals and O is a set of output signals), we can view a system as a strategy
P : Σ∗I → ΣO that maps a finite sequence of sets of input signals into a set of output
signals. When P interacts with an environment that generates infinite input sequences,
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it associates with each input sequence an infinite computation over ΣI ∪ΣO. Though
the system P is deterministic, it induces a computation tree. The branches of the tree
correspond to external nondeterminism, caused by different possible inputs. Thus, the
tree has a fixed branching degree |ΣI |, and it embodies all the possible inputs (and
hence also computations) of P. When we synthesize P from an LTL specification ϕ, we
require ϕ to hold in all the paths of P’s computation tree. However, in order to impose
possibility requirements on P, we have to use a branching-time logic like µ-calculus.
Given a branching specification ϕ over ΣI ∪ ΣO, realizability of ϕ is the problem of
determining whether there exists a system P whose computation tree satisfies ϕ. Correct
synthesis of ϕ then amounts to constructing such a P.

In spite of the rich theory developed for system synthesis in the last two decades, little
of this theory has been reduced to practice. In fact, the main approaches to tackle synthe-
sis in practice are either to use heuristics (e.g., [13]) or to restrict to simple specifications
(e.g., [22]). Some people argue that this is because the synthesis problem is very expen-
sive compared to model-checking [16]. There is, however, something misleading in this
perception: while the complexity of synthesis is given with respect to the specification
only, the complexity of model-checking is given also with respect to a program, which
can be very large. A common thread in almost all of the works concerning synthesis is the
assumption that the system is to be built “from scratch”. Obviously, real-world systems
are rarely constructed this way, but rather by utilizing many preexisting reusable compo-
nents, i.e., a library. Using standard preexisting components is sometimes unavoidable
(for example, access to hardware resources is usually under the control of the operating
system, which must be “reused”), and many times has other benefits (apart from saving
time and effort, which may seem to be less of a problem in a setting of automatic - as op-
posed to manual - synthesis), such as maintaining a common code base, and abstracting
away low level details that are already handled by the preexisting components. Another
reason that may also account, at least partially, for the limited use of synthesis in practice,
is the fact that synthesized systems are usually monolithic and look very unnatural from
the system designer’s point of view. Indeed, in classical temporal synthesis algorithms,
one usually creates a “flat” system, i.e., a system in which sub-systems may be repeated
many times. On the contrary, real-life software and hardware systems are hierarchical
(or even recursive) and repeated sub-systems (such as sub-routines) are described only
once. While hierarchical systems may be exponentially more succinct than flat ones, it
has been shown that the cost of solving questions about them (like model-checking) are
in many cases not exponentially higher [5,6,12]. Hierarchical systems can also be seen
as a special case of recursive systems [2,3], where the nesting of calls to sub-systems is
bounded. However, having no bound on the nesting of calls gives rise to infinite-state
systems, and this results in a higher complexity.

In this work we provide a uniform algorithm, for different temporal logics, for the syn-
thesis of hierarchical systems (or, equivalently, transducers) from a library of hierarchi-
cal systems, which mimics the “bottom-up” approach to system design, where one builds
a system by iteratively constructing new modules based on previously constructed ones1.
More specifically, we start the synthesis process by providing the algorithm with an initial

1 While for systems built from scratch, a top-down approach may be argued to be more suitable,
we find the bottom-up approach to be more natural when synthesizing from a library.
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library L0 of available hierarchical components (as well as atomic ones). We then proceed
by synthesizing in rounds. At each round i, the system designer provides a specification
formula ϕi of the currently desired hierarchical component, which is then automatically
synthesized using the currently available components as possible sub-components. Once
a new component is synthesized, it is added to the library to be used by subsequent it-
erations. We show that while hierarchical systems may be exponentially smaller than
flat ones, the problem of synthesizing a hierarchical system from a library of existing
hierarchical systems is EXPTIME-complete for µ-calculus, and 2EXPTIME-complete for
LTL. Thus, this problem is not harder than the classical synthesis problem of flat sys-
tems “from scratch”. Furthermore, we show that this is true also in the case where the
synthesized system has incomplete information about the environment’s input.

Observe that it is easily conceivable that if the initial library L0 contains enough
atomic components then the synthesis algorithm may use them exclusively, essentially
producing a flat system. We thus have to direct the single-round synthesis algorithm in
such a way that it produces modular and not flat results. The question of what makes
a design more or less modular is very difficult to answer, and has received many (and
often widely different) answers throughout the years (see [21], for a survey). We claim
that some very natural modularity criteria are regular, and show how any criterion that
can be checked by a parity tree automaton can be easily incorporated into our automata
based synthesis algorithm.

Related Work. The issues of specification and correctness of modularly designed
systems have received a fair attention in the formal verification literature. Examples of
important work on this subject are [8,17,26,27]. design” [8]. On the other hand, the
problem of automatic synthesis from reusable components, which we study here, has
received much less attention. The closest to our work is Lustig and Vardi’s work on
LTL synthesis from libraries of (flat) transducers [18]. The technically most difficult
part of our work is an algorithm for performing the synthesis step of a single round
of the multiple-rounds algorithm. To this end, we use an automata-theoretic approach.
However, unlike the classical approach of [23], we build an automaton whose input is
not a computation tree, but rather a system description in the form of a connectivity tree
(inspired by the “control-flow” trees of [18]), which describes how to connect library
components in a way that satisfies the specification formula. Taken by itself, our single-
round algorithm extends the “control-flow” synthesis work from [18] in four directions.
(i) We consider not only LTL specifications but also the modal µ-calculus. Hence, un-
like [18], where co-Büchi tree automata were used, we have to use the more expressive
parity tree automata. Unfortunately, this is not simply a matter of changing the accep-
tance condition. Indeed, in order to obtain an optimal upper bound, a widely different
approach, which makes use of the machinery developed in [6] is needed. (ii) We need
to be able to handle libraries of hierarchical transducers, whereas in [18] only libraries
of flat transducers are considered. (iii) A synthesized transducer has no top-level exits
(since it must be able to run on all possible input words), and thus, its ability to serve
as a sub-transducer of another transducer (in future iterations of the multiple-rounds
algorithm) is severely limited (it is like a function that never returns to its caller). We
therefore need to address the problem of synthesizing exits for such transducers. (iv) As
discussed above, we incorporate into the algorithm the enforcing of modularity criteria.
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Recently, an extension of [18] appeared in [19], where the problem of Nested-Words
Temporal Logic (NWTL) synthesis from recursive component libraries has been inves-
tigated. NWTL extends LTL with special operators that allow one to handle “call and
return” computations [1] and it is used in [19] to describe how the components have
to be connected in the synthesis problem. We recall that in our framework the logic
does not drive (at least not explicitly) the way the components have to be connected.
Moreover, the approach used in [19] cannot be applied directly to the branching frame-
work we consider in this paper, as we recall that already the satisfiability problem for
µ-calculus with “call and return” is undecidable even for very restricted cases [4].

Due to lack of space some proofs are omitted and reported in a full version found at
the authors’ web page.

2 Alternating Tree Automata

Let D be a set. A D-tree is a prefix-closed subset T ⊆D∗ such that if x · c ∈ T , where
x ∈ D∗ and c ∈ D, then also x ∈ T . The complete D-tree is the tree D∗. The elements
of T are called nodes, and the empty word ε is the root of T . Given a word x = y · d,
with y ∈D∗ and d ∈D, we define last(x) to be d. For x ∈ T , the nodes x ·d ∈ T , where
d ∈ D, are the sons of x. A leaf is a node with no sons. A path of T is a set π ⊆ T
such that ε ∈ T and, for every x ∈ π, either x is a leaf or there is a unique d ∈ D such
that x ·d ∈ π. For an alphabet Σ, a Σ-labeled D-tree is a pair 〈T,V 〉 where T ⊆D∗ is a
D-tree and V : T → Σ maps each node of T to a letter in Σ.

Alternating tree automata are a generalization of nondeterministic tree automata [20]
(see [16], for more details). Intuitively, while a nondeterministic tree automaton that
visits a node of the input tree sends exactly one copy of itself to each of the sons of the
node, an alternating automaton can send several copies of itself to the same son.

An (asymmetric) Alternating Parity Tree Automaton (APT) is a tuple A = 〈Σ,D,Q,
q0,δ,F〉, where Σ, D, and Q are non-empty finite sets of input letters, directions, and
states, respectively; q0 ∈ Q is an initial state, F is a parity acceptance condition to be
defined later, and δ : Q×Σ �→ B+(D×Q) is an alternating transition function, which
maps a state and an input letter to a positive boolean combination of elements in D×Q.
Given a set S ⊆D×Q and a formula θ∈B+(D×Q), we say that S satisfies θ (denoted
by S |= θ) if assigning true to elements in S and false to elements in (D×Q)\S , makes
θ true. A run of an APT A on a Σ-labeled D-tree T = 〈T,V 〉 is a (T×Q)-labeled IN-tree
〈Tr,r〉, where IN is the set of non-negative integers, such that (i) r(ε) = (ε,q0) and (ii) for
all y∈ Tr, with r(y) = (x,q), there exists a set S ⊆D×Q, such that S |= δ(q,V (x)), and
there is one son y′ of y, with r(y′) = (x ·d,q′), for every (d,q′) ∈ S . Given a node x of a
run 〈Tr,r〉, with r(x) = (z,q)∈ T×Q, we define last(r(y)) = (last(z),q). An alternating
parity automaton A is nondeterministic (denoted NPT), iff when its transition relation
is rewritten in disjunctive normal form each disjunct contains at most one element of
{d}×Q, for every d ∈D. An automaton is universal (denoted UPT) if all the formulas
that appear in its transition relation are conjunctions of atoms in D×Q.

A symmetric alternating parity tree automaton with ε-moves (SAPT) [14] does not
distinguish between the different sons of a node, and can send copies of itself only in
a universal or an existential manner. Formally, an SAPT is a tuple A = 〈Σ,Q,q0,δ,F〉,
where Σ is a finite input alphabet; Q is a finite set of states, partitioned into universal
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(Q∧), existential (Q∨), ε-and (Q(ε,∧)), and ε-or (Q(ε,∨)) states (we also write Q∨,∧ =
Q∨ ∪Q∧, and Qε = Q(ε,∨) ∪Q(ε,∧)); q0 ∈ Q is an initial state; δ : Q×Σ → (Q∪ 2Q)
is a transition function such that for all σ ∈ Σ, we have that δ(q,σ) ∈ Q for q ∈ Q∨,∧,
and δ(q,σ) ∈ 2Q for q ∈ Qε; and F is a parity acceptance condition, to be defined later.
We assume that Q contains in addition two special states f f and tt, called rejecting
sink and accepting sink, respectively, such that ∀a∈ Σ : δ(tt,a) = tt,δ( f f ,a) = f f . The
classification of f f and tt is arbitrary. Transitions from states in Qε launch copies of A
that stay on the same input node as before the transition, while transitions from states
in Q∨,∧ launch copies that advance to sons of the current node (note that for an SAPT
the set D of directions of the input trees plays no role in the definition of a run). When
a symmetric alternating tree automaton A runs on an input tree it starts with a copy in
state q0 whose reading head points to the root of the tree. It then follows δ in order to
send further copies. For example, if a copy of A that is in state q ∈ Q(ε,∨) is reading a
node x labeled σ, and δ(q,σ) = {q1,q2}, then this copy proceeds either to state q1 or to
state q2, and its reading head stays in x. As another example, if q∈Q∧ and δ(q,σ) = q1,
then A sends a copy in state q1 to every son of x. Note that different copies of A may
have their reading head pointing to the same node of the input tree. Formally, a run of
A on a Σ-labeled D-tree 〈T,V 〉 is a (T ×Q)-labeled IN-tree 〈Tr,r〉. A node in Tr labeled
by (x,q) describes a copy of A in state q that reads the node x of T . A run has to satisfy
r(ε) = (ε,q0) and, for all y ∈ Tr with r(y) = (x,q), the following hold:

– If q ∈ Q∧ (resp. q ∈ Q∨) and δ(q,V (x)) = p, then for each son (resp. for exactly
one son) x ·d of x, there is a node y · i ∈ Tr with r(y · i) = (x ·d, p).

– If q ∈ Q(ε,∧) (resp. q ∈ Q(ε,∨)) and δ(q,V (x)) = {p0,..., pk}, then for all i ∈ {0..k}
(resp. for one i ∈ {0..k}) the node y · i ∈ Tr, and r(y · i) = (x, pi);

A parity condition is given by means of a coloring function on the set of states. For-
mally, a parity condition is a function F : Q→ C, where C = {Cmin,...,Cmax} ⊂ IN is
a set of colors. The size |C| of C is called the index of the automaton. For an SAPT,
we also assume that the special state tt is given an even color, and f f is given an odd
color. For an infinite path π⊆ Tr of a run 〈Tr,r〉, let maxC(π) be the maximal color that
appears infinitely often along π. Similarly, for a finite path π, we define maxC(π) to be
the maximal color that appears at least once in π. An infinite path π ⊆ Tr satisfies the
acceptance condition F iff maxC(π) is even. A run 〈Tr,r〉 is accepting iff all its infinite
paths satisfy F . The automaton A accepts an input tree 〈T,V 〉 if there is an accepting
run of A on 〈T,V 〉. The language of A , denoted L(A), is the set of Σ-labeled D-trees
accepted by A . We say that an automaton A is nonempty iff L(A) �= /0.

A wide range of branching-time temporal logics can be translated to alternating tree
automata (details can be found in [16]). In particular:

Theorem 1. [11,16] Given a temporal-logic formula ϕ, it is possible to construct a
SAPT Aϕ such that L(Aϕ) is exactly the set of trees satisfying ϕ. Moreover, (i) if ϕ is a
µ-calculus formula, then Aϕ is an alternating parity automaton with O(|ϕ|) states and
index O(|ϕ|); and (ii) if ϕ is an LTL formula, then Aϕ is a universal parity automaton
with 2O(|ϕ|) states, and index 2.
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3 Hierarchical Transducers

In this section, we introduce hierarchical transducers (alternatively, hierarchical Moore
machines), which are a generalization of classical transducers in which repeated sub-
structures (technically, sub-transducers) are specified only once. Technically, some of
the states in a hierarchical transducer are boxes, in which inner hierarchical transducers
are nested. Formally, a hierarchical transducer is a tuple K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉,
where ΣI and ΣO are respectively non-empty sets of input and output letters, and for
every 1 ≤ i ≤ n, the sub-transducer Ki = 〈Wi,Bi, ini,Exiti,τi,δi,Λi〉 has the following
elements.

– Wi is a finite set of states. ini ∈Wi is an initial state2, and Exiti ⊆Wi is a set of
exit-states. States in Wi \Exiti are called internal states.

– A finite set Bi of boxes. We assume that W1,...,Wn,B1,...,Bn are pairwise disjoint.
– An indexing function τi : Bi → {i+ 1,...,n} that maps each box of the i-th sub-

transducer to a sub-transducer with an index greater than i. If τi(b) = j we say that
b refers to K j.

– A transition function δi : (
⋃

b∈Bi
({b}× Exitτi(b))∪ (Wi \ Exiti))× ΣI → Wi ∪Bi.

Thus, when the transducer is at an internal state u ∈ (Wi \Exiti), or at an exit e of
a box b, and it reads an input letter σ ∈ ΣI , it moves either to a state s ∈Wi, or to
a box b′ ∈ Bi. A move to a box b′ implicitly leads to the unique initial state of the
sub-transducer that b′ refers to.

– A labeling function Λi : Wi → ΣO that maps states to output letters.

The sub-transducer K1 is called the top-level sub-transducer of K . Thus, for example,
the top-level boxes of K are the elements of B1, etc. We also call in1 the initial state of
K , and Exit1 the exits of K . For technical convenience we sometimes refer to functions
(like the transitions and labeling functions) as relations, and in particular, we consider
/0 to be a function with an empty domain. Note that the fact that boxes can refer only to
sub-transducers of a greater index implies that the nesting depth of transducers is finite.
In contrast, in the recursive setting such a restriction does not exist. Also note that moves
from an exit e ∈ Exiti of a sub-transducer Ki are not specified by the transition function
δi of Ki, but rather by the transition functions of the sub-transducers that contain boxes
that refer to Ki. The exits of K allow us to use it as a sub-transducer of another hierar-
chical transducer. When we say that a hierarchical transducer K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉
is a sub-transducer of another hierarchical transducer K ′ = 〈ΣI ,ΣO,〈K ′

1 ,...,K
′

n′ 〉〉, we
mean that {K1,...,Kn} ⊆ {K ′

2,...,K
′

n′ }. The size |Ki| of a sub-transducer Ki is the sum
|Wi|+ |Bi|+ |δi|. The size |K | of K is the sum of the sizes of its sub-transducers. We
sometimes abuse notation and refer to the hierarchical transducer Ki which is formally
the hierarchical transducer 〈ΣI ,ΣO,〈Ki,Ki+1,...,Kn〉〉 obtained by taking Ki to be the
top-level sub-transducer.

Flat Transducers. A sub-transducer without boxes is flat. A hierarchical transducer
K = 〈ΣI ,ΣO,〈W, /0, in,Exit, /0,δ,Λ〉〉 with a single (hence flat) sub-transducer is flat, and

2 We assume a single entry for each sub-transducer. Multiple entries can be handled by dupli-
cating sub-transducers.
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we denote it using the shorter notation K = 〈ΣI ,ΣO,〈W, in,Exit,δ,Λ〉〉. Each hierarchi-
cal transducer K can be transformed into an equivalent flat transducer K f = 〈ΣI ,ΣO,
〈W f, in1,Exit1,δf,Λf〉〉 (called its flat expansion) by recursively substituting each box
by a copy of the sub-transducer it refers to. Since different boxes can refer to the same
sub-transducer, states may appear in different contexts. In order to obtain unique names
for states in the flat expansion, we prefix each copy of a sub-transducer’s state by the
sequence of boxes through which it is reached. Thus, a state (b0,...,bk,w) of K f is a
vector whose last component w is a state in ∪n

i=1Wi, and the remaining components
(b0,...,bk) are boxes that describe its context. The labeling of a state (b0,...,bk,w) is de-
termined by its last component w. For simplicity, we refer to vectors of length one
as elements (that is, w, rather than (w)).3 Formally, given a hierarchical transducer
K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉, for each sub-transducer Ki = 〈Wi,Bi, ini,Exiti,τi,δi,Λi〉 we
inductively define its flat expansion K f

i = 〈W f
i , ini,Exiti,δf

i ,Λf
i〉 as follows.

– The set of states Wi
f ⊆Wi ∪ (Bi× (

⋃n
j=i+1Wj

f)) is defined as follows: (i) if w is a
state of Wi then w belongs to Wi

f; and (ii) if b is a box of Ki with τi(b)= j, and the
tuple (u1,...,uh) is a state in W f

j , then (b,u1,...,uh) belongs to Wi
f.

– The transition function δf
i is defined as follows: (i) If δi(u,σ) = v, where u ∈Wi, or

u = (b,e) with b∈Bi and e ∈ Exitτi(b), then if v is a state, we have that δf
i(u,σ) = v;

and if v is a box, we have that δf
i(u,σ) = (v, inτi(v)). Note that (v, inτi(v)) is indeed

a state of W f
i by the second item in the definition of states above; and (ii) if b is

a box of Ki, and δf
τi(b)

((u1,...,uh),σ) = (v1,...,vh′) is a transition of K f
τi(b)

, then

δf
i((b,u1,...,uh),σ) = (b,v1,...,vh′) is a transition of K f

i .
– Finally, if u∈Wi then Λf

i(u) =Λi(u); and if u∈Wi
f is of the form u = (b,u1,...,uh),

where b ∈ Bi, then Λi(u) = Λf
τi(b)

(u1,...,uh).

The transducer 〈ΣI ,ΣO,〈K f
1 〉〉 is the required flat expansion K f of K . An atomic trans-

ducer is a flat transducer made up of a single node that serves as both an entry and an
exit. For each letter ς ∈ ΣO there is an atomic transducer Kς = 〈{p}, p,{p}, /0,{(p,ς)}〉
whose single state p is labeled by ς.

Run of a Hierarchical Transducer. Consider a hierarchical transducer K with
Exit1 = /0 that interacts with its environment. At point j in time, the environment pro-
vides K with an input σ j ∈ ΣI , and in response K moves to a new state, according to
its transition relation, and outputs the label of that state. The result of this infinite inter-
action is a computation of K , called the trace of the run of K on the word σ1 ·σ2 · · · .
In the case that Exit1 �= /0, the interaction comes to a halt whenever K reaches an exit
e ∈ Exit1, since top-level exits have no outgoing transitions. Formally, a run of a hi-
erarchical transducer K is defined by means of its flat expansion K f. Given a finite
input word v = σ1 · · ·σm ∈ Σ∗I , a run (computation) of K on v is a sequence of states
r = r0 · · ·rm ∈ (W f)∗ such that r0 = in1, and r j = δf(r j−1,σ j), for all 0 < j ≤ m. Note
that since K is deterministic it has at most one run on every word, and that if Exit1 �= /0
then K may not have a run on some words. The trace of the run of K on v is the word of

3 A helpful way to think about this is using a stack — the boxes b0,...,bk are pushed into the
stack whenever a sub-transducer is called, and are popped in the corresponding exit.
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inputs and outputs trc(K ,v) = (Λf(r1),σ1) · · · (Λf(rm),σm) ∈ (ΣO×ΣI)
∗. The notions

of traces and runs are extended to infinite words in the natural way.
The computations of K can be described by a computation tree whose branches cor-

respond to the runs of K on all possible inputs, and whose labeling gives the traces
of these runs. Note that the root of the tree corresponds to the empty word ε, and its
labeling is not part of any trace. However, if we look at the computation tree of K as
a sub-tree of a computation tree of a transducer K ′ of which K is a sub-transducer,
then the labeling of the root of the computation tree of K is meaningful, and it corre-
sponds to the last element in the trace of the run of K ′ leading to the initial state of
K . Formally, given σ ∈ ΣI , the computation tree TK ,σ = 〈TK ,σ,VK ,σ〉, is a (ΣO×ΣI)-
labeled (W f × ΣI)-tree, where: (i) the root ε is labeled by (Λf(in1),σ); (ii) a node
y = (r1,σ1) · · · (rm,σm) ∈ (W f × ΣI)

+ is in TK ,σ iff in1 · r1 · · ·rm is the run of K on
v = σ1 · · ·σm, and its label is VK ,σ(y) = (Λf(rm),σm). Thus, for a node y, the labels of
the nodes on the path from the root (excluding the root) to y are exactly trc(K ,v). Ob-
serve that the leaves of TK ,σ correspond to pairs (e,σ′), where e ∈ Exit1 and σ′ ∈ ΣI .
However, if Exit1 = /0, then the tree has no leaves, and it represents the runs of K over
all words in Σ∗I . We sometimes consider a leaner computation tree TK = 〈TK ,VK 〉 that
is a ΣO-labeled ΣI-tree, where a node y ∈ Σ+

I is in TK iff there is a run r of K on y. The
label of such a node is VK (y) =Λf(last(r))) and the label of the root is Λf(in1). Observe
that for every σ ∈ ΣI , the tree TK can be obtained from TK ,σ by simply deleting the first
component of the directions of TK ,σ, and the second component of the labels of TK ,σ.

Recall that the labeling of the root of a computation tree of K is not part of any trace
(when it is not a sub-tree of another tree). Hence, in the definition below, we arbitrarily
fix some letter ρ ∈ ΣI . Given a temporal logic formula ϕ, over the atomic propositions
AP where 2AP = ΣO×ΣI , we have the following:

Definition 1. A hierarchical transducer K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉, with Exit1 = /0, sat-
isfies a formula ϕ (written K |= ϕ), iff the tree TK ,ρ satisfies ϕ.

Observe that given ϕ, finding a flat transducer K such that K |=ϕ is the classic synthesis
problem studied (for LTL formulas) in [23].

A library L is a finite set of hierarchical transducers with the same input and output
alphabets. Formally, L = {K 1,...,K λ}, and for every 1 ≤ i ≤ λ, we have that K i =
〈ΣI ,ΣO,〈K i

1,...,K
i
ni
〉〉. Note that a transducer in the library can be a sub-transducer of

another one, or share common sub-transducers with it. The set of transducers in L that
have no top-level exits is denoted by L= /0 = {K i ∈ L : Exiti1 = /0}, and its complement
is L �= /0 = L \L= /0.

4 Hierarchical Synthesis

In this section, we describe our synthesis algorithm. We start by providing the algorithm
with an initial library L0 of hierarchical transducers. A good starting point is to include
in L0 all the atomic transducers, as well as any other relevant hierarchical transducers,
for example from a standard library. We then proceed by synthesizing in rounds. At each
round i ≥ 0, the system designer provides a specification formula ϕi of the currently
desired hierarchical transducer K i, which is then automatically synthesized using the
transducers in Li−1 as possible sub-transducers. Once a new transducer is synthesized
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it is added to the library, for use in subsequent rounds. Technically, the hierarchical
transducer synthesized in the last round as the output of the algorithm.

Input: An initial library L0, and a list of specification formulas ϕ1,...,ϕm

Output: A hierarchical transducer satisfying ϕm

for i = 1 to m do
synthesize K i satisfying ϕi using the transducers in Li−1 as sub-transducers
Li ← Li−1 ∪{K i}

end
return K m

Algorithm 1. Hierarchical Synthesis Algorithm

The main challenge in implementing the above hierarchical synthesis algorithm is
of course coming up with an algorithm for performing the synthesis step of a single
round. As noted in Section 1, a transducer that was synthesized in a previous round
has no top-level exits, which severely limits its ability to serve as a sub-transducer of
another transducer. Our single-round algorithm must therefore address the problem of
synthesizing exits for such transducers. In Section 4.1, we give our core algorithm for
single-round synthesis of a hierarchical transducer from a given library of hierarchical
transducers. In Section 4.2, we address the problem of enforcing modularity, and add
some more information regarding the synthesis of exits. Finally, in Section 4.3, we
address the problem of synthesis with imperfect information.

4.1 Hierarchical Synthesis from a Library

We now formally present the problem of hierarchical synthesis from a library (that
may have transducers without top-level exits) of a single temporal logic formula. Given
a transducer K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉 ∈ L= /0, where K1 = 〈W1,B1, in1, /0,τ1,δ1,Λ1〉,
and a set E ⊆W1, the transducer K E is obtained from K by setting E to be the set of
top-level exits, and removing all the outgoing edges from states in E . Formally, K E =
〈ΣI ,ΣO,〈〈W1,B1, in1,E,τ1,δ′1,Λ1〉,K2,...,Kn〉〉, where the transition relation δ′1 is the
restriction of δ1 to sources in W1 \E . For convenience, given a transducer K ∈ L �= /0 we
sometimes refer to it as K Exit1 . For every K ∈L , we assume some fixed ordering on the
top-level states of K , and given a set E ⊆W1, and a state e ∈ E , we denote by idx(e,E)
the relative position of e in E , according to this ordering. Given a library L , and an upper
bound el ∈ IN on the number of allowed top-level exits, we let Lel = L �= /0∪{K E : K ∈
L= /0 ∧ |E| ≤ el}. The higher the number el, the more exits the synthesis algorithm is
allowed to synthesize, and the longer it may take to run. As we show later, el should be
at most polynomial4 in the size of ϕ. In general, we assume that el is never smaller than
the number of exits in any sub-transducer of any hierarchical transducer in L . Hence,
for every K E ∈ Lel and every e ∈ E , we have that 1≤ idx(e,E)≤ el.

Definition 2. Given a library L and a bound el ∈ IN, we say that:

4 In practical terms, the exits of a sub-module represent its set of possible return values. Since
finite state modules are usually not expected to have return values over large domains (such as
the set of integers), we believe that our polynomial bound for el is not too restrictive.
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– A hierarchical transducer K = 〈ΣI ,ΣO,〈K1,...Kn〉〉 is 〈L,el〉-composed if (i) for
every 2 ≤ i ≤ n, we have that Ki ∈ Lel ; (ii) if w ∈W1 is a top-level state, then the
atomic transducer KΛ1(w) is in L .

– A formula ϕ is 〈L,el〉-realizable iff there is an 〈L,el〉-composed hierarchical trans-
ducer K that satisfies ϕ. The 〈L,el〉-synthesis problem is to find such a K .

Intuitively, an 〈L,el〉-composed hierarchical transducer K is built by synthesizing its
top-level sub-transducer K1, which specifies how to connect boxes that refer to trans-
ducers from Lel . To eliminate an unnecessary level of indirection, boxes that refer to
atomic transducers are replaced by regular states. Note that this also solves the technical
problem that, by definition, the initial state in1 cannot be a box. This is also the reason
why we assume from now on that every library has at least one atomic transducer. Note
that for each transducer K ′ ∈ L= /0 we can have as many as Ω(|K ′|)el copies of K ′

in Lel , each with a different set of exit states. In Section 4.2 we show how, when we
synthesize K , we can limit the number of such copies that K uses to any desired value
(usually one per K ′).

Connectivity Trees. In the classical automata-theoretic approach to synthesis [23],
synthesis is reduced to finding a regular tree that is a witness to the non-emptiness of a
suitable tree automaton. Here, we also reduce synthesis to the non-emptiness problem of
a tree automaton. However, unlike the classical approach, we build an automaton whose
input is not a computation tree, but rather a system description in the form of a connec-
tivity tree (inspired by the “control-flow” trees of [18]), which describes how to connect
library components in a way that satisfies the specification formula. Specifically, given a
library L = {K 1,...,K λ} and a bound el ∈ IN, connectivity trees represent hierarchical
transducers that are 〈L,el〉-composed, in the sense that every regular 〈L,el〉-composed
hierarchical transducer induces a connectivity tree, and vice versa. Formally, a connec-
tivity tree T = 〈T,V 〉 for L and el, is an Lel-labeled complete ({1,...,el}×ΣI)-tree,
where the root is labeled by an atomic transducer.

Intuitively, a node x with V (x) =K E represents a top-level state q if K E is an atomic
transducer, and otherwise it represents a top-level box b that refers to K E . The label of
a son x · (idx(e,E),σ) specifies the destination of the transition from the exit e of b (or
from a state q, if K E is atomic — in which case it has a single exit) when reading σ.
Sons x · (i,e), for which i > |E|, are ignored. Thus, a path π = (i0,σ0) · (i1,σ1) · · · in a
connectivity tree T is called meaningful, iff for every j > 0, we have that i j is not larger
than the number of top-level exits of V (i j−1,σ j−1).

A connectivity tree T = 〈T,V 〉 is regular if there is a flat transducer M = 〈{1,...,el}
×ΣI,Lel ,〈M,m0, /0,δT ,ΛT 〉〉, such that T is equal to the (lean) computation tree TM . A
regular connectivity tree induces an 〈L,el〉-composed hierarchical transducer K , whose
top-level sub-transducer K1 is basically a replica of M (see the full version at the au-
thors’ web page for the reverse transformation). Every node m ∈ M becomes a state
of K1 if ΛT (m) is an atomic-transducer and, otherwise, it becomes a box of K1 which
refers to the top-level sub-transducer of ΛT (m). The destination of a transition from
an exit e of a box m, with ΛT (m) = K E , when reading a letter σ ∈ ΣI , is given by
δT (m,(idx(e,E),σ)). If m is a state, then ΛT (m) is an atomic transducer with a sin-
gle exit and thus, the destination of a transition from m when reading a letter σ ∈ ΣI ,
is given by δT (m,(1,σ)). For a box b of K1, let ΛT (b) = 〈ΣI ,ΣO,〈K(b,1),...K(b,nb)〉〉,
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and denote by sub(b) = {K(b,1),...K(b,nb)} the set of sub-transducers of ΛT (b), and by

E(b) the set of top-level exits of ΛT (b). Formally, K = 〈ΣI ,ΣO,〈K1,...,Kn〉〉, where
K1 = 〈W1,B1,m0,τ1,δ1,Λ1〉, and:

– W1 = {w∈M : ∃ς∈ ΣO s.t. ΛT (w) = Kς}. Note that since the root of a connectivity
tree is labeled by an atomic transducer then m0 ∈W1.

– B1 = M \W1.
– The sub-transducers {K2,...,Kn}=

⋃
{b∈B1} sub(b).

– For b ∈ B1, we have that τ1(b) = i, where i is such that Ki = K(b,1).

– For w ∈W1, and σ ∈ ΣI , we have that δ1(w,σ) = δT (w,(1,σ)).
– For b∈B1, we have that δ1((b,e),σ) = δT (b,(idx(e,E(b)),σ)), for every e∈ E(b)

and σ ∈ ΣI .
– Finally, for w ∈W1 we have that Λ1(w) = ς, where ς is such that ΛT (w) = Kς.

From Synthesis to Automata Emptiness. Given a library L = {K 1,...,K λ}, a bound
el ∈ IN, and a temporal logic formula ϕ, our aim is to build an APT AT

ϕ such that AT
ϕ

accepts a regular connectivity tree T = 〈T,V 〉 iff it induces a hierarchical transducer
K such that K |= ϕ. Recall that by Definition 1 and Theorem 1, K |= ϕ iff TK ,ρ is
accepted by the SAPT Aϕ. The basic idea is thus to have AT

ϕ simulate all possible runs

of Aϕ on TK ,ρ. Unfortunately, since AT
ϕ has as its input not TK ,ρ, but the connectivity

tree T , this is not a trivial task. In order to see how we can solve this problem, we first
have to make the following observation.

Let T = 〈T,V 〉 be a regular connectivity tree, and let K be the hierarchical transducer
that it induces. Consider a node u∈ TK ,ρ with last(u)= ((b, inτ1(b)),σ), where b is some
top-level box, or state5, of K that refers to some transducer K E (note that the root of
TK ,ρ is such a node). Observe that the sub-tree T u, rooted at u, represents the traces of
computations of K that start from the initial state of K E , in the context of the box b.
The sub-tree prune(T u), obtained by pruning every path in T u at the first node û, with
last(û) = ((b,e), σ̂) for some e ∈ E and σ̂ ∈ ΣI , represents the portions of these traces
that stay inside K E . Note that prune(T u) is essentially independent of the context b
in which K E appears, and is isomorphic to the tree TK E ,σ (the isomorphism being to
simply drop the component b from every letter in the name of every node in prune(T u)).
Moreover, every son v (in TK ,ρ), of such a leaf û of prune(T u), is of the same form as u.
I.e., last(v) = ((b′, inτ1(b′)),σ

′), where b′ = δ1((b,e),σ′) is a top-level box (or state) of
K . It follows that TK ,ρ is isomorphic to a concatenation of sub-trees of the form TK E ,σ,
where the transition from a leaf of one such sub-tree to the root of another is specified
by the transition relation δ1, and is thus given explicitly by the connectivity tree T .

The last observation is the key to how AT
ϕ can simulate, while reading T , all the

possible runs of Aϕ on TK ,ρ. The general idea is as follows. Consider a node u of TK ,ρ
such that prune(T u) is isomorphic to TK E ,σ. A copy of AT

ϕ that reads a node y of T
labeled by K E can easily simulate, without consuming any input, all the portions of
the runs of any copy of Aϕ that start by reading u and remain inside prune(T u). This
simulation can be done by simply constructing TK E ,σ on the fly and running Aϕ on it.

5 Here we think of top-level states of K as boxes that refer to atomic transducers.
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For every simulated copy of Aϕ that reaches a leaf û of prune(T u), (recall that last(û)
is of the form ((b,e), σ̂)), the automaton AT

ϕ sends copies of itself to the sons of y
in the connectivity tree, in order to continue the simulation on the different sub-trees
rooted at sons of û in TK ,ρ. The simulation of a copy of Aϕ that proceeds to a son
v = û ·((b′, inτ1(b′)),σ

′), where b′ is a top-level box (or state) of K , is handled by a copy

of AT
ϕ that is sent to the son z = y · (idx(e,E),σ′).

Our construction of AT
ϕ implements the above idea, with one main modification. In

order to obtain optimal complexity in successive rounds of Algorithm 1, it is important
to keep the size of AT

ϕ independent of the size of the transducers in the library. Unfor-
tunately, simulating the runs of Aϕ on TK E ,σ on the fly would require an embedding of

K E inside AT
ϕ . Recall, however, that no input is consumed by AT

ϕ while running such
a simulation. Hence, we can perform these simulations offline instead, in the process of
building the transition relation of AT

ϕ . Obviously, this requires a way of summarizing
the possibly infinite number of runs of Aϕ on TK E ,σ, which we do by employing the
concept of summary functions from [6].

First, we define an ordering � on colors by letting c � c′ when c is better, from the
point of view of acceptance by Aϕ, than c′. Formally, c � c′ if the following holds:
if c′ is even then c is even and c ≥ c′; and if c′ is odd then either c is even, or c is
also odd and c ≤ c′. We denote by min� the operation of taking the minimal color,
according to �, of a finite set of colors. Let Aϕ = 〈ΣO×ΣI ,Qϕ,q0

ϕ,δϕ,Fϕ〉, let Aq
ϕ be

the automaton Aϕ using q ∈ Q as an initial state, and let C be the set of colors used
in the acceptance condition Fϕ. Consider a run 〈Tr,r〉 of Aq

ϕ on TK E ,σ. Note that if

z ∈ Tr is a leaf, then last(r(z)) = ((e,σ′),q), where q ∈ Q∨,∧ϕ (i.e., q is not an ε-state),
and e ∈ E . We define a function gr : E ×ΣI ×Q∨,∧ϕ → C ∪ {�}, called the summary
function of 〈Tr,r〉, which summarizes this run. Given h ∈ E × ΣI ×Q∨,∧ϕ , if there is
no leaf z ∈ Tr, such that last(r(z)) = h, then gr(h) =�; otherwise, gr(h) = c, where
c is the maximal color encountered by the copy of Aϕ which made the least progress
towards satisfying the acceptance condition, among all copies that reach a leaf z ∈ Tr

with last(r(z)) = h. Formally, let paths(r,h) be the set of all the paths in 〈Tr,r〉 that end
in a leaf z ∈ Tr, with last(r(z)) = h. Then, gr(h) =� if paths(r,h) = /0 and, otherwise,
gr(h) = min�{maxC(π) : π ∈ paths(r,h)}.

Let Sf (K E ,σ,q) be the set of summary functions of the runs of Aq
ϕ on TK E ,σ. If

TK E ,σ has no leaves, then Sf (K E ,σ,q) contains only the empty summary function ε.

For g∈ Sf (K E ,σ,q), let g �=�= {h∈ E×ΣI×Q∨,∧ϕ : g(h) �=�}. Based on the ordering�
we defined for colors, we can define a partial order� on Sf (K E ,σ,q), by letting g� g′

if for every h ∈ (E×ΣI ×Q∨,∧ϕ ) the following holds: g(h) =�, or g(h) �=��= g′(h) and
g(h) � g′(h). Observe that if r and r′ are two non-rejecting runs, and gr  gr′ , then
extending r to an accepting run on a tree that extends TK E ,σ is always not harder than
extending r′ - either because Aϕ has less copies at the leaves of r, or because these
copies encountered better maximal colors. Given a summary function g, we say that a
run 〈Tr,r〉 achieves g if gr � g; we say that g is feasible if there is a run 〈Tr,r〉 that
achieves it; and we say that g is relevant if it can be achieved by a memoryless6 run

6 A run of an automaton A is memoryless if two copies of A that are in the same state, and read
the same input node, behave in the same way on the rest of the input.
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that is not rejecting (i.e., by a run that has no infinite path that does not satisfy the
acceptance condition of Aϕ). We denote by Rel(K E ,σ,q) ⊆ Sf (K E ,σ,q) the set of
relevant summary functions.

We are now ready to give a formal definition of the automaton AT
ϕ . Given a library

L = {K 1,...,K λ}, a bound el ∈ IN, and a temporal-logic formula ϕ, let Aϕ = 〈ΣO×
ΣI ,Qϕ,q0

ϕ,δϕ,Fϕ〉, let C = {Cmin,...,Cmax} be the colors in the acceptance condition of
Aϕ, and for K E ∈ Lel , let ΛE be the labeling function of the top-level sub-transducer of
K E . The automaton AT

ϕ = 〈Lel ,({1,...,el}×ΣI),(ΣI ×Q∨,∧ϕ ×C)∪{q0},q0,δ,α〉, has
the following elements:

– For every K E ∈ Lel we have that δ(q0,K E) = δ((ρ,q0
ϕ,Cmin),K E) if K E is an

atomic transducer and, otherwise, δ(q0,K E) = false.
– For every (σ,q,c) ∈ ΣI ×Q∨,∧ϕ ×C, and every K E ∈ Lel, we have δ((σ,q,c),K E) =∨

g∈Rel(K E,σ,q)
∧

(e,σ̂,q̂)∈g �=�
⊕

σ′∈ΣI
((idx(e,E),σ′),(σ′,δϕ(q̂,(ΛE(e), σ̂)),g(e, σ̂, q̂))),

where
⊕

=
∧

if q̂ ∈ Q∧ϕ , and
⊕

=
∨

if q̂ ∈ Q∨ϕ .
– α(q0) =Cmin; and α((σ,q,c)) = c, for every (σ,q,c) ∈ ΣI ×Q∨,∧ϕ ×C.

The construction above implies the following lemma:

Lemma 1. AT
ϕ accepts a regular connectivity tree T = 〈T,V 〉 iff T induces a hierar-

chical transducer K , such that TK ,ρ is accepted by Aϕ.

Proof (sketch). Intuitively, AT
ϕ first checks that the root of its input tree T is labeled by

an atomic proposition (and is thus a connectivity tree), and then proceeds to simulate
all the runs of Aϕ on TK ,ρ. A copy of AT

ϕ at a state (σ,q,c), that reads a node y of T
labeled by K E , considers all the non-rejecting runs of Aq

ϕ on TK E ,σ, by looking at the

set Rel(K E ,σ,q) of summary functions for these runs. It then sends copies of AT
ϕ to

the sons of y to continue the simulation of copies of Aϕ that reach the leaves of TK E ,σ.
The logic behind the definition of δ((σ,q,c),K E) is as follows. Since every summary

function g ∈ Rel(K E ,σ,q) summarizes at least one non-rejecting run, and it is enough
that one such run can be extended to an accepting run of Aϕ on the remainder of TK ,ρ,
we have a disjunction on all g ∈ Rel(K E ,σ,q). Every (e, σ̂, q̂) ∈ g �=� represents one or
more copies of Aϕ at state q̂ that are reading a leaf û of TK E ,σ with last(û) = (e, σ̂), and
all these copies must accept their remainders of TK ,ρ. Hence, we have a conjunction
over all (e, σ̂, q̂) ∈ g �=�.

A copy of Aϕ that starts at the root of TK E ,σ may give rise to many copies that reach a
leaf û of TK E ,σ with last(û) = (e, σ̂), but we only need to consider the copy which made
the least progress towards satisfying the acceptance condition, as captured by g(e, σ̂, q̂).
To continue the simulation of such a copy on its remainder of TK ,ρ, we send to a son
y · (idx(e,E),σ′) of y in the connectivity tree, whose label specifies where K should
go to from the exit e when reading σ′, a copy of AT

ϕ as follows. Recall that the leaf û
corresponds to a node u of TK ,ρ such that last(u) = ((b,e), σ̂) and b is a top-level box
of K that refers to K E . Also recall that every node in TK ,ρ has one son for every letter
σ′ ∈ ΣI . Hence, a copy of Aϕ that is at state q̂ and is reading u, sends one copy in state
q′ = δϕ(q̂,(ΛE(e), σ̂)) to each son of u, if q̂ ∈ Q∧ϕ ; and only one such copy, to one of
the sons of u, if q̂ ∈ Q∨ϕ . This explains why

⊕
is a conjunction in the first case, and is a
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disjunction in the second. Finally, a copy of AT
ϕ that is sent to direction (idx(e,E),σ′)

carries with it the color g(e, σ̂, q̂), which is needed in order to define the acceptance
condition. The color assigned to q0 is of course arbitrary.

The core of the proof uses a game based approach. Recall that the game-based ap-
proach to model checking a flat system S with respect to a branching-time temporal
logic specification ϕ, reduces the model-checking problem to solving a game (called
the membership game of S and Aϕ) obtained by taking the product of S with the al-
ternating tree automaton Aϕ [16]. In [6], this approach was extended to hierarchical
structures, and it was shown there that given a hierarchical structure S and an SAPT A ,
one can construct a hierarchical membership game GS ,A such that Player 0 wins GS ,A
iff the tree obtained by unwinding S is accepted by A . In particular, when A accepts
exactly all the tree models of a branching-time formula ϕ, the above holds iff S satisfies
ϕ. Furthermore, it is shown in [6] that one can simplify the hierarchical membership
game GS ,A , by replacing boxes of the top-level arena with gadgets that are built using
Player 0 summary functions, and obtain an equivalent flat game G s

S ,A .
Given a regular connectivity tree T = 〈T,V 〉, that induces a hierarchical system K ,

we prove Lemma 1 by showing that the flat membership game G s
S ,Aϕ

, where S is a

hierarchical structure whose unwinding is the computation tree TK ,ρ, is equivalent to
the flat membership game GKT ,AT

ϕ
, of AT

ϕ and a Kripke structure KT whose unwinding

is T . Thus, Aϕ accepts TK ,ρ iff AT
ϕ accepts T . The equivalence of these two games

follows from the fact that they have isomorphic arenas and winning conditions. Conse-
quently, our proof of Lemma 1 is mainly syntactic in nature, and amounts to little more
then constructing the structures S and KT , constructing the game GS ,Aϕ , simplifying it
to get G s

S ,Aϕ
, and constructing the membership game GKT ,AT

ϕ
. The remaining technical

details can be found in the full version on the authors’ web page !"
We now state our main theorem.

Theorem 2. The 〈L,el〉-synthesis problem is EXPTIME-complete for a µ-calculus for-
mula ϕ, and is 2EXPTIME-complete for an LTL formula (for el that is at most polyno-
mial in |ϕ| for µ-calculus, or at most exponential in |ϕ| for LTL).

Proof. The lower bounds follow from the same bounds for the classical synthesis prob-
lem of flat systems [15,25], and the fact that it is immediately reducible to our problem
if L contains all the atomic transducers. For the upper bounds, since an APT accepts
some tree iff it accepts some regular tree (and AT

ϕ obviously only accepts trees which
are connectivity trees), by Lemma 1 and Theorem 1, we get that an LTL or a µ-calculus
formula ϕ is 〈L,el〉-realizable iff L(AT

ϕ ) �= /0. Checking the emptiness of AT
ϕ can be

done either directly, or by first translating it to an equivalent NPT A ′T
ϕ . For reasons that

will become apparent in subsection 4.2, we choose the latter. Note that the known algo-
rithms for checking the emptiness of an NPT are such that if L(AT

ϕ ) �= /0, then one can

extract a regular tree in L(AT
ϕ ) from the emptiness checking algorithm [24]. The upper

bounds follow from the analysis given below of the time required to construct AT
ϕ and

check for its non-emptiness.
By Theorem 1, the number of states |Qϕ| and the index k of Aϕ is |Qϕ| = 2O(|ϕ|),

k = 2 for LTL, and |Qϕ|= O(|ϕ|), k = O(|ϕ|) for µ-calculus. The most time consuming
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part in the construction of AT
ϕ is calculating for every (K E ,σ,q) ∈ (Lel ×ΣI ×Qϕ),

the set Rel(K E ,σ,q). Calculating Rel(K E ,σ,q) can be done by checking for every
summary function g ∈ Sf (K E ,σ,q) if it is relevant. Our proof of Lemma 1 also yields
that, by [6], the latter can be done in time O((|K| · |Qϕ|)k · (k+1)|E|·|Qϕ|·k). Observe that
the set Sf (K E ,σ,q) is of size (k+ 1)|E|, and that the number of transducers in Lel is
O(λ ·mel), where m is the maximal size of any K ∈ L . It follows that for an LTL (resp.
µ-calculus) formula ϕ, the automaton AT

ϕ can be built in time at most polynomial in the
size of the library, exponential in el, and double exponential (resp. exponential) in |ϕ|.

We now analyze the time it takes to check for the non-emptiness of AT
ϕ . Recall that

for every η ∈ (Lel ×ΣI ×Qϕ), the set Rel(η) is of size at most (k+ 1)el , and thus, the
size of the transition relation of AT

ϕ is polynomial in |L| and |ϕ|, and exponential in el.

Checking the emptiness of AT
ϕ is done by first translating it to an equivalent NPT A ′T

ϕ .
By [20], given an APT with |Q| states and index k, running on Σ-labeled D∗-trees, one
can build (in time polynomial in the descriptions of its input and output automata) an
equivalent NPT with (|Q| · k)O(|Q|·k) states, an index O(|Q| · k), and a transition relation
of size |Σ| · (|Q| · k)O(|D|·|Q|·k). It is worth noting that this blow-up in the size of the
automaton is independent from the size of the transition relation of AT

ϕ . By [16,28], the

emptiness of A ′T
ϕ can be checked in time |Σ| · (|Q| ·k)O(|D|·|Q|2 ·k2) (and if it is not empty,

a witness is returned). Recall that |Σ| = |Lel | = O(λ ·mel), and that |D| = el · |ΣI |. By
substituting the values calculated above for |Q| and k, the theorem follows. !"

Note that in Algorithm 1, it is conceivable that the transducer K i synthesized at iteration
i will be exponential (or even double-exponential for LTL) in the size of the specification
formula ϕi. At this point it is probably best to stop the process, refine the specifications,
and try again. However, it is important to note that even if the process is continued, and
K i is added to the library, the time complexity of the succeeding iterations does not
deteriorate since the single-round 〈L,el〉-synthesis algorithm is only polynomial in the
maximal size m of any transducer in the library.

4.2 Enforcing Modularity

In this section, we address two main issues that may hinder the efforts of our single-
round 〈L,el〉-synthesis algorithm to synthesize a succinct hierarchical transducer K .
The first issue is that of ensuring that, when possible, K indeed makes use of the
more complex transducers in the library (especially transducers synthesized in previous
rounds) and does not rely too heavily on the less complex, or atomic, transducers. An
obvious and most effective solution to this problem is to simply not have some (or all)
of the atomic transducers present in the library. The second issue is making sure that K
does not have too many sub-transducers, which can happen if it uses too many copies of
the same transducer K ′ ∈ L= /0, each with a different set of exits. We also discuss some
other points of interest regarding the synthesis of exits. We address the above issues by
constructing, for each constraint we want to enforce on the synthesized transducer K ,
an APT A , called the constraint monitor, such that A accepts only connectivity trees that
satisfy the constraint. We then synthesize K by checking the non-emptiness not of AT

ϕ ,

but of the product of AT
ϕ with all the constraints monitors. Note that a nondeterministic
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monitor (i.e., an NPT) of exponential size can also be used, without adversely affecting
the time-complexity, if the product with it is taken after we translate the product of AT

ϕ
and the other (polynomial) APT monitors, to an equivalent NPT.

A simple and effective way to enforce modularity in Algorithm 1 is that once a trans-
ducer K i is synthesized in round i, one incorporates in subsequent rounds a monitor that
rejects any connectivity tree containing a node labeled by some key sub-transducers of
K i. This effectively enforces any transducer synthesized using a formula that refers to
atomic propositions present only in K i (and its disallowed sub-transducers) to use K i,
and not try to build its functionality from scratch. As to other ways to enforce mod-
ularity, the question of whether one system is more modular than another, or how to
construct a modular system, has received many, and often widely different, answers.
Here we only discuss how certain simple modularity criteria can be easily implemented
on top of our algorithm. For example, some people would argue that a function that has
more than, say, 10 consecutive lines of code in which no other function is called, is not
modular enough. A monitor that checks that in no path in a connectivity tree there are
more than 10 consecutive nodes labeled with an atomic transducer, can easily enforce
such a criterion. We can even divide the transducers in the library into groups, based on
how “high level” they are, and enforce lower counts on lower level groups. Essentially,
every modularity criterion that can be checked by a polynomial APT, or an exponential
NPT, can be used. Enforcing one context-free property can also be done, albeit with an
increase in the time complexity. Other non-regular criteria may be enforced by directly
modifying the non-emptiness checking algorithm instead of by using a monitor, and we
reserve this for future work.

As for the issue of synthesized exits, recall that for each transducer K ′ ∈L= /0, we can
have as many as Ω(|K ′|)el copies of K ′ in Lel , each with a different set of exit states.
Obviously, we would not like the synthesized transducer K to use so many copies
as sub-transducers. It is not hard to see that one can, for example, build an NPT of
size O(|Lel |) that guesses for every K ′ ∈ L= /0 a single set of exits E , and accepts a
connectivity tree iff the labels of all the nodes in the tree agree with the guessed exits.
Note that after the end of the current round of synthesis, we may choose to add K ′E to
the library (in addition, or instead of K ′).

Another point to note about the synthesis of exits is that while a transducer K surely
satisfies the formula ϕi it was synthesized for, K E may not. Consider for example a
transducer K which is simply a single state, labeled with p, with a self loop. If we
remove the loop and turn this state into an exit, it will no longer satisfy ϕi = p∧X p
or ϕi = Gp. Now, depending on one’s point of view, this may be either an advantage
(more flexibility) or a disadvantage (loss of original intent). We believe that this is
mostly an advantage, however, in case it is considered a disadvantage, a few possible
solutions come to mind. First, for example if ϕi = Gp, one may wish for K to remain
without exits and enforce E = /0. Another option, for example if ϕi = p∧X p, is to
synthesize in round i a modified formula like ϕ′i = p∧¬exit ∧ X(p∧ exit), with the
thought of exits in mind. Yet another option is to add, at iterations after i, a monitor that
checks that if KE is the label of a node in the connectivity tree then ϕi is satisfied. The
monitor can check that ϕi is satisfied inside KE , in which case the monitor is a single
state automaton, that only accepts if E is such that KE |= ϕi (possibly using semantics
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over truncated paths [9]); alternatively, the monitor can check that ϕi is satisfied in the
currently synthesized connectivity tree, starting from the node labeled by KE , in which
case the monitor is based on AT

ϕi
.

4.3 Incomplete Information

A natural setting that was considered in the synthesis literature is that of incomplete in-
formation [15]. In this setting, in addition to the set of input signals I that the system can
read, the environment also has internal signals H that the system cannot read, and one
should synthesize a system whose behavior depends only on the readable signals, but
satisfies a specification which refers also to the unreadable signals. Thus, the specifica-
tion is given with respect to the alphabet ΣI = 2I∪H , but the behavior of the system must
be the same when reading two letters that differ only in their H components. The main
source of difficulty is that a finite automaton cannot decide whether or not a computa-
tion tree is of a system that behaves in a way which is consistent with its partial view
of the input signals. However, since the automaton at the heart of our algorithm does
not run on computation trees, but rather on connectivity trees, handling of incomplete
information comes at no cost at all. All we have to do is to define the connectivity trees
to be Lel-labeled complete ({1,...,el}×2I)-trees, instead of ({1,...,el}×2I∪H)-trees to
ensure that the synthesized transducer behaves in the same way on input letters that dif-
fer only in their hidden components (this of course implies that the expression

⊕
σ′∈ΣI

in the transition function of AT
ϕ becomes

⊕
σ′∈2I ). Thus, our algorithm solves, with the

same complexity, also the hierarchical synthesis problem with incomplete information.

5 Discussion

We presented an algorithm for the synthesis of hierarchical systems which takes as input
a library of hierarchical transducers and a sequence of specification formulas. Each for-
mula drives the synthesis of a new hierarchical transducer based on the current library,
which contains all the transducers synthesized in previous iterations together with the
starting library. The main challenge in this approach is to come up with a single-round
synthesis algorithm that is able to efficiently synthesize the required transducer at each
round. We have provided such an algorithm that works efficiently (i.e., not worst than
the corresponding one for flat systems) and uniform (i.e., it can handle different tem-
poral logic specifications, including the modal µ-calculus). In order to ensure that the
single-round algorithm makes real use of previously synthesized transducers we have
suggested the use of auxiliary automata to enforce modularity criteria. We believe that
by decoupling the process of enforcing modularity from the core algorithm for single-
round synthesis we gain flexibility that allows one to apply different approaches to
enforcing modularity, as well as future optimizations to the core synthesis algorithm.
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Abstract. Modal specification is a well-known formalism used as an abstrac-
tion theory for transition systems. Modal specifications are transition systems
equipped with two types of transitions: must-transitions that are mandatory to any
implementation, and may-transitions that are optional. The duality of transitions
allows to develop a unique approach for both logical and structural compositions,
and eases the step-wise refinement process for building implementations.

We propose Modal Specifications with Data (MSD), the first modal specifica-
tion theory with explicit representation of data. Our new theory includes all the
essential ingredients of a specification theory. As MSD are by nature potentially
infinite-state systems, we propose symbolic representations based on effective
predicates. Our theory serves as a new abstraction-based formalism for transition
systems with data.

1 Introduction

Modern IT systems are often large and consist of complex assemblies of numerous re-
active and interacting components. The components are often designed by independent
teams, working under a common agreement on what the interface of each component
should be. Consequently, the search for mathematical foundations which support com-
positional reasoning on interfaces is a major research goal. A framework should sup-
port inferring properties of the global implementation, designing and advisedly reusing
components.

Interfaces are specifications and components that implement an interface are under-
stood as models, or implementations. Specification theories should support various fea-
tures including (1) refinement, which allows to compare specifications as well as to
replace a specification by another one in a larger design, (2) structural composition,
which allows to combine specifications of different components, (3) logical conjunc-
tion, expressing the intersection of the set of requirements expressed by two or more
specifications for the same component, and last (4) a quotient operator that is dual to
structural composition and allows synthesizing a component from a set of assumptions.
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Among existing specification theories, one finds modal specifications [1], which are
labeled transition systems equipped with two types of transitions: must-transitions that
are mandatory for any implementation, and may-transitions which are optional for an
implementation. Modal specifications are known to achieve a more flexible and easy-to-
use compositional development methodology for CCS [2], which includes a consider-
able simplification of the step-wise refinement process proposed by Milner and Larsen.
While being very close to logics (conjunction), the formalism takes advantage of a be-
havioral semantics allowing for easy composition with respect to process construction
(structural composition) and synthesis (quotient). However, despite the many advan-
tages, only a few implementations have been considered so far. One major problem is
that contrary to other formalisms based on transition systems, there exists no theory of
modal specification equipped with rich information such as data variables.

In this paper, we add a new stone to the cathedral of results on modal specifica-
tions [3, 4], that is we propose the first such theory equipped with rich data values.
Our first contribution is to design a semantical version of modal specifications whose
states are split into locations and valuations for possibly infinite-domain variables. For
every component, we distinguish between local variables, that are locally controlled by
the component, and uncontrolled variables that are controlled by other components and
can be accessed, but not modified. Combining variables with sets of actions labeling
transitions offers a powerful set of communication primitives that cannot be captured
by most existing specification theories. We also propose a symbolic predicate-based
representation of our formalism. We consider effective predicates that are closed un-
der conjunction, union, and membership—classical assumptions in existing symbolic
theories (e.g. [5]). While the semantic level is possibly infinite-state, the syntactical
level permits us to reason on specifications just like one would with the original modal
specifications, but with the additional power of rich data.

Continuing our quest, we study modal refinement between specifications. Refine-
ment, which resembles simulation between transition systems, permits to compare sets
of implementations in a syntactic manner. Modal refinement is defined at the semantic
level, but can also be checked at the symbolic level. We propose a predicate abstrac-
tion approach that simplifies the practical complexity of the operation by reducing the
number of states and simplifying the predicates. This approach is in line with the work
of Godefroid et al. [6], but is applied to specification-based verification rather than to
model checking.

We then propose definitions for both logical and structural composition, on the level
of symbolic representations of specifications. These definitions are clearly not direct
extensions of the ones defined on modal specifications as behaviors of both controlled
and uncontrolled variables have to be taken into account. As usual, structural compo-
sition offers the property of independent implementability, hence allowing for elegant
step-wise refinement. In logical composition, two specifications which disagree on their
requirements can be reconciled by synthesizing a new component where conflicts have
been removed. This can be done with a symbolic pruning of bad states, which termi-
nates if the system is finite-state, or if the structure of the transition system induced by
the specification relies, for instance, on a well-quasi order [7]. Finally, we also propose
a quotient operation, that is the dual operation of structural composition, which works
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for a subclass of systems, and we discuss its limitation. This operator, absent from most
existing behavioral and logical specification theories, allows synthesizing a component
from a set of assumptions.

In Sect. 2 we introduce modal specifications with data and their finite symbolic rep-
resentations, refinement, an implementation relation and consistency. In Sect. 3 we de-
fine the essential operators of every specification theory, that is parallel composition,
conjunction and quotient. For verification of refinement between infinite-state specifica-
tions we propose in Sect. 4 an approach based on predicate abstraction techniques. We
summarize related works in Sect. 5 and conclude in Sect. 6.

2 Modal Specifications with Data

We will first introduce specifications which are finite symbolic representations of modal
specifications with data. We will then propose modal refinement and derive an imple-
mentation relation and a consistency notion.

In the following, P(M) denotes the powerset of M , P≥1(M) = P(M)\{∅}, and
the union of two disjoint sets is denoted by M �N , which is M ∪N with M ∩N = ∅.

We assume that variables range over a fixed domain D. For a given set V of vari-
ables, a data state s over V is a mapping s : V → D. If V = {x1, x2, . . . , xn} and
d1, d2, . . . , dn ∈ D, we write [x1 �→ d1, x2 �→ d2, . . . , xn �→ dn] for the data state
s which maps every xi to di, for 1 ≤ i ≤ n. We write �V � for the set of all possible
data states over V . For disjoint sets of variables V1 and V2 and data states s1 ∈ �V1�
and s2 ∈ �V2�, the operation (s1 · s2) composes the data states resulting in a new state
s = (s1 · s2) ∈ �V1 � V2�, such that s(x) = s1(x) for all x ∈ V1 and s(x) = s2(x) for
all x ∈ V2. This is naturally lifted to sets of states: if S1 ⊆ �V1� and S2 ⊆ �V2� then
(S1 · S2) = {(s1 · s2) | s1 ∈ S1, s2 ∈ S2} ⊆ �V1 � V2�.

Like in the work of de Alfaro et al. [8] we define specifications with respect to an
assertion language allowing suitable predicate representation. Given a set V of vari-
ables, we denote by Pred(V ) the set of first-order predicates with free variables in V ;
we assume that these predicates are written in some specified first-order language with
existential (∃) and universal (∀) quantifiers and with interpreted function symbols and
predicates; in our examples, the language contains the usual arithmetic operators and
boolean connectives (∨,∧,¬,⇒). Given a set of variables V we denote by (V )′ an
isomorphic set of ’primed’ variables from V : so if x ∈ V then (x)′ ∈ (V )′. We use
this construction to represent pre- and post-values of variables. A variable (x)′ ∈ (V )′

represents the next state value of the variable x ∈ V . Given a formula ϕ ∈ Pred(V )
and a data state s ∈ �V �, we write ϕ(s) if the predicate formula ϕ is true when its free
variables are interpreted as specified by s. Given a formula ψ ∈ Pred(V1 � (V2)

′) and
states s1 ∈ �V1�, s2 ∈ �V2�, we often write ψ(s1, s2) for ψ(s1 · t2) where t2 ∈ �(V2)

′�
such that t2((x)′) = s2(x) for all x ∈ V2. Given a predicate ϕ ∈ Pred(V ), we write
(ϕ)′ ∈ Pred((V )′) for the predicate obtained by substituting x with (x)′ in ϕ, for all
x ∈ V ; similarly, for ϕ ∈ Pred((V )′) we write ϕ↓ ∈ Pred(V ) for the predicate ob-
tained by substituting every (x)′ ∈ (V )′ with its unprimed version. We write �ϕ� for
the set {s ∈ �V � | ϕ(s)} which consists of all states satisfying ϕ ∈ Pred(V ) (for pred-
icates with primed and unprimed variables), and ϕ is consistent if �ϕ� �= ∅. We write
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∃V ϕ meaning existential quantification of ϕ over all variables in the set V , and similar
for universal quantification. Finally, for a predicate ψ ∈ Pred(V1 � (V2)

′), we write ◦ψ
for ∃(V2)

′ψ, and ψ◦ for ∃V1ψ.
Our theory enriches modal automata with variables. Specifications not only express

constraints on the allowed sequences of actions, but also their dependence and effect
on the values of variables. Like in the loose approach of modal specifications [1] which
allows under-specification using may and must modalities on transitions, we allow loose
specification of the effects of actions on the data state. From a given location and a given
data state, a transition to another location is allowed to lead to several next data states.
Unlike in modal specifications, variables are observable in our framework, allowing for
modeling shared variable communication.

A signature Sig = (Σ, V L, V G) determines the alphabet of actions Σ and the set
of variables V = V L � V G of an interface. The variables in V L are local (controlled)
variables, owned by the interface and visible to any other component. V G contains the
uncontrolled variables owned by the environment, which are read-only for the interface.

Specifications are finite modal transition systems where transitions are equipped with
predicates. A transition predicate ψ ∈ Pred(V � (V L)′) relates a previous state, deter-
mined by all controlled and uncontrolled data states, with the next possible controlled
data state.

Definition 1. A specification is a tuple A = (Sig ,Loc, �0, ϕ0, E♦, E�) where Sig =
(Σ, V L, V G) is a signature, Loc is a finite set of locations, �0 ∈ Loc is the initial
location, ϕ0 ∈ Pred(V L) is a predicate on the initial local state, and E♦, E� are finite
may- and must-transition relations respectively:

E♦, E� ⊆ Loc ×Σ × Pred(V � (V L)′)× Loc.

Given a specification A, locations �, �′ ∈ Loc, and action a ∈ Σ, we refer to the set of
transition predicates on may-transitions by Maya(�, �′) = {ψ | (�, a, ψ, �′)∈E♦} and
on must-transitions by Musta(�, �′) = {ψ | (�, a, ψ, �′)∈E�}.

Example 1. Consider a specification of a print server, shown in Fig. 1. Must-transitions
are drawn with solid arrows and may-transitions with dashed ones. Every solid arrow
representing a must-transition has an implicit may-transition shadowing it which is not
shown. Every transition is equipped with a transition predicate over unprimed variables,
referring to the pre-state, and primed variables, referring to the poststate. The print
server receives new print jobs (newPrintJob), stores them and assigns them either
a low or high priority; the numbers of low and high priority jobs are modeled by con-
trolled variables l and h, respectively; l and h are natural numbers. A job with low
priority can also be reclassified to high priority (incPriority). The printer server can
send (send) a job to a printer, and then wait for the acknowledgment (ack). In state �1,
if there is a job with high priority and the uncontrolled boolean variable priorityMode
is true, then there must be a send transition. The specification is loose in the sense that
if a second print job is received in state �1, then the behavior is left unspecified.

We now define the kind of transition systems which will be used for formalizing the
semantics of specifications. A specification is interpreted as a variant of modal transition
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[l + h = 0]
�0 �1 �2

�3

newPrintJob
[(l)′ + (h)′ = 1]

incPriority
[l = 1 ∧ (l)′ = 0 ∧ (h)′ = 1]

send [l + h = 1 ∧ (l)′ + (h)′ = 0]

send
[h = 1 ∧ priorityMode ∧ (h)′ = 0]

ack [(l)′ = 0 ∧ (h)′ = 0]

newPrintJob
send
newPrintJob
incPriority
ack

Fig. 1. Abstract specification P of a print server.

systems where the state space is formed by the cartesian product Loc × �V L�, i.e. a
state is a pair (�, s) where � ∈ Loc is a location and s ∈ �V L� is a valuation of the
controlled variables. To motivate the choice of the transition relations in the semantics
of specifications, we first describe the intended meaning of may- and must-transitions.

A may-transition (�, a, ψ, �′) ∈ E♦ in the specification expresses that in any imple-
mentation, in any state (�, s) and for any guard g ∈ �V G� (that is a valuation of uncon-
trolled variables V G) the implementation is allowed to have a transition with guard g
and action a to a next state (�′, s′) such that ψ(s · g, s′). The interpretation of a must-
transition (�, a, ψ, �′)∈E� is a bit more involved: Any implementation, in state (�, s),
and for any guard g ∈ �V G�, if there is a valuation s′ ∈ �V L� such that ψ(s · g, s′),
then the implementation is required to have a transition from state (�, s) with guard g
and action a to at least some state t′ such that ψ(s · g, t′). The requirement expressed
by must-transitions cannot be formalized by standard modal transition systems, but for-
tunately, a generalization called disjunctive modal transition systems introduced in [9]
can precisely capture these requirements. May-transitions target (as usual) only one
state, but must-transitions branch to several possible next states (thus must-transitions
are hypertransitions), with an existential interpretation: there must exist at least one
transition with some target state which is an element from the set of target states of the
hypertransition.

Definition 2. A modal specification with data (MSD) is a tuple

S = (Sig ,Loc, �0, S0,−−→♦,−−→�)

where Sig , Loc, �0 are like in Def. 1, S0 ⊆ �V L� is a set of initial data states, and
−−→♦,−−→� ⊆ Loc × �V L�× �V G�×Σ × (Loc ×P≥1(�V L�)) are the may- (♦) and
must- (�) transition relations such that every may-transition targets a single state: if
(�, s, g, a, (�′, S′)) ∈ −−→♦ then |S′| = 1.

A state (�, s) ∈ Loc× �V L� is called syntactically consistent iff targets reachable by
must-transitions are also reachable by may-transitions: if (�, s, g, a, (�′, S′)) ∈−−→�
then (�, s, g, a, (�′, {s′})) ∈−−→♦ for all s′ ∈ S′. S is syntactically consistent iff all
states are syntactically consistent, and the set of initial data states is nonempty, i.e.
S0 �= ∅.

May-transitions (�, s, g, a, (�′, S′)) ∈ −−→♦ are often written (�, s)
g a−−→♦ (�′, S′), and

similarly for must-transitions.
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(�0, [l 	→ 0, h 	→ 0])

(�1, [l 	→ 1, h 	→ 0])

(�1, [l 	→ 0, h 	→ 1])

. . .

. . .

[prio
rityM

ode 	→ true
]

new
Print

Job

[priorityMode 	→ false]newPrintJob

Fig. 2. Excerpt of the semantics of the abstract print server specification

We can now define formally how a specification translates to its semantics in terms
of an MSD. As already described above, the semantics of a may-transition of the speci-
fication is given by the set of may-transitions pointing to single admissible target states,
and a must-transition gives rise to (must-)hypertransitions targeting all the admissible
poststates.

Definition 3. The semantics of a specification A = (Sig ,Loc, �0, ϕ0, E♦, E�) is given
by the MSD 〈A〉sem = (Sig ,Loc, �0, S0,−−→♦,−−→�) where S0 = �ϕ0� and the tran-
sition relations are defined as follows. For each �, �′ ∈ Loc, s, s′ ∈ �V L�, g ∈ �V G�,
and a ∈ Σ:

i. If (�, a, ψ, �′)∈E♦ and ψ(s · g, s′) then (�, s)
g a−−→♦ (�′, {s′}),

ii. If (�, a, ψ, �′)∈E� and ψ(s · g, s′) then (�, s)
g a−−→� (�′, {t′ ∈ �V L� | ψ(s · g, t′)}).

A specification A is called syntactically consistent iff its semantics 〈A〉sem is syntacti-
cally consistent. In the following we will always assume that specifications and MSD
are syntactically consistent.

Example 2. An excerpt of the semantics of our abstract specification of the print server
(see Fig. 1) can be seen Fig. 2. As before, we draw must-transitions with a solid arrow,
and has an implicit set of may-transitions shadowing it which are not shown, i.e. for
each target (�, S′) of a must-transition and each s ∈ S′ there is a may-transition with
the same source state and with target state (�, {s}).

The first must-transition (�0,newPrintJob, (l)′ + (h)′ = 1, �1)∈E� of the print
server specification gives rise to the transitions shown in Fig. 2. Any new print job must
be stored in either l or h but which one is not yet fixed by the specification. Thus in
the semantics this is expressed as a disjunctive must-transition to the unique location �1
and the next possible data states [l �→ 1, h �→ 0] and [l �→ 0, h �→ 1].

A refinement relation allows to relate a concrete specification with an abstract specifi-
cation. Refinement should satisfy the following substitutability property: If A refines
B then replacing B with A in a context C[·] gives a specification C[A] refining C[B].
Refinement will be a precongruence, i.e. it is compatible with the structural and logical
operators on specifications in the above sense.

Our definition of refinement is based on modal refinement [10, 9] for (disjunctive)
modal transition systems, where the may-transitions determine which actions are per-
mitted in a refinement while the must-transitions specify which actions must be present
in a refinement and hence in any implementation. We adapt it with respect to data states.
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(�′′0 , s0) (�′′1 , s1)

g1 a

g3 c

R

(�′0, s0) (�′1, s1)

(�′1, s2)
S g1

a
g4 d

g3 c

(�0, s0)

(�0, s1)

(�1, s1)

(�1, s2)

T g1
a

g2 b

g4 d

g3 c

Fig. 3. Successive refinement of an MSD T

Example 3. We motivate our adaption of modal refinement to take into account data
states with the help of a small example shown in Fig. 3. We draw may-transitions with
a dashed arrow, and must-transitions with a solid arrow. Every must-transition has an
implicit set of may-transitions shadowing it which are not shown. The MSD T (to the
right) has two initial states, both having �0 as the initial location. The must-transition
starting from (�0, s0) expresses that in any implementation there must be a transition
leading to at least one of the states (�1, s1) and (�1, s2). The MSD T can be refined
to the MSD S (by dropping one may-transition and turning one may-transition to a
must-transition), and then S is refined by the MSD R, by refining the must-transition
(�′0, s0, g1, a, (�

′
1, {s1, s2})) in S to the must-transition (�′′0 , s0, g1, a, (�

′′
1 , {s1})) in R,

and by strengthening the transition with guard g3 and action c to a must-transition.

Definition 4. Let T1 = (Sig ,Loc1, �
0
1, S

0
1 ,−−→♦,1,−−→�,1) and T2 = (Sig ,Loc2, �

0
2,

S0
2 ,−−→♦,2,−−→�,2) be MSD over the same signature Sig = (Σ, V L, V G). A relation

R ⊆ Loc1 × Loc2 × �V L� is a refinement relation iff for all (�1, �2, s) ∈ R:

i. Whenever (�1, s)
g a−−→♦,1 (�′1, {s′}) then there exists (�2, s)

g a−−→♦,2 (�′2, {t′}) such
that s′ = t′ and (�′1, �

′
2, s

′) ∈ R.
ii. Whenever (�2, s)

g a−−→�,2 (�′2, S
′
2) then there exists (�1, s)

g a−−→�,1 (�′1, S
′
1) such that

S′
1 ⊆ S′

2 and (�′1, �′2, s′) ∈ R for all s′ ∈ S′
1.

We say that T1 refines T2, written T1 ≤sem T2, iff S0
1 ⊆ S0

2 and there exists a re-
finement relation R such that for any s ∈ S0

1 also (�01, �
0
2, s) ∈ R. A specification A1

refines another specification A2, written A1 ≤ A2, iff 〈A1〉sem ≤sem 〈A2〉sem.

The refinement relation is a preorder on the class of all specifications. Refinement can
be checked in polynomial time in the size of the state space of the MSD (for variables
with finite domains). In general the domain may be infinite, or prohibitively large, so in
Sect. 4 we revisit the question of refinement checking using abstraction techniques.

Example 4. The semantics of our abstract print server specification, shown in Fig. 2,
can be refined as shown in Fig. 4. Now, both must-transitions point to the location �1
with the data state [l �→ 1, h �→ 0] which means that any new incoming print job is
assigned a low priority, independent of the uncontrolled variable priorityMode .

An MSD for which the conditions (1) −−→♦ = −−→� and (2) |S0| = 1 are satisfied, can
be interpreted as (an abstraction of) an implementation: there are no design choices left
open as (1) all may-transitions are covered by must-transitions and (2) there is only one
initial data state possible. Any MSD for which the conditions (1) and (2) are satisfied,
is called transition system with data (TSD) in the following. Note that TSD cannot be
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(�1, [l 	→ 1, h 	→ 0])
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. . .

[priorit
yMode 	→ true ]

newPrintJo
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[priorit
yMode 	→ false]

newPrintJo
b

Fig. 4. Refinement of the MSD shown in Fig. 2

strictly refined, i.e. for any TSD I and any MSD S with the same signature, S ≤sem I
implies I ≤sem S.

An implementation relation connects specifications to implementations (given as
TSD) satisfying them. We can simply use refinement as the implementation relation.
Given a specification A and some TSD I, we write I |= A for I ≤sem 〈A〉sem, so
our implementation I is seen as the model which satisfies the property expressed by the
specification A. Now the set of implementations of a specification is the set of all its
refining TSD: given a specification A, we define Impl (A) = {I | I |= A}.

Our implementation relation |= immediately leads to the classical notion of consis-
tency as existence of models. A specification A is consistent iff Impl(A) is non-empty.
Consequently, as modal refinement is reflexive, any specification A for which 〈A〉sem
is a TSD, is consistent.

By transitivity, modal refinement entails implementation set inclusion: for specifi-
cations A and B, if A ≤ B then Impl(A) ⊆ Impl(B). The relation Impl(A) ⊆
Impl(B) is sometimes called thorough refinement [11]. Just like for modal transition
systems, thorough refinement does not imply modal refinement in general [12]. To es-
tablish equivalence we follow [13] by imposing a restriction on B, namely that it is
deterministic. An MSD is deterministic if it is satisfied that

(1) if (�, s, g, a, (�′, S′)), (�, s, g, a, (�′′, S′′)) ∈−−→� then �′ = �′′ and S′ = S′′,
(2) if (�, s, g, a, (�′, {s′})), (�, s, g, a, (�′′, {s′′})) ∈−−→♦ then �′ = �′′.

A specification B is deterministic, if the MSD 〈B〉sem is deterministic. Note that for
may-transitions, determinism only requires that for the same source state, guard and
action, the transition leads to a unique next location. The reason why this is sufficient is
that modal refinement explicitely distinguishes states by their data state part: two states
(�′, s′) and (�′′, s′′) can only be related if their data state parts s′, s′′ coincide.

Now, turning back to the relationship of modal refinement and inclusion of imple-
mentation sets (thorough refinement), we can prove the following theorem. Under the
restriction of determinism of the refined (abstract) specification we can prove complete-
ness of refinement. This theorem effectively means that modal refinement, as defined
for MSD, is characterized by set inclusion of admitted implementations.

Theorem 1. Let A and B be two specifications with the same signature such that B is
deterministic. Then A ≤ B if and only if Impl(A) ⊆ Impl(B).
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3 Compositional Reasoning

In this section we propose all the essential operators on specifications a good specifica-
tion theory should provide. We will distinguish between structural and logical compo-
sition. Structural composition mimics the classical composition of transition systems at
the specification level. Logical composition allows to compute the intersection of sets
of models and hence can be used to represent the conjunction of requirements made on
an implementation. Furthermore we will introduce a quotient operator which is the dual
operator to structural composition.

From now on, we assume that for any two specifications with the signatures Sig1 =
(Σ1, V

L
1 , V G

1 ) and Sig2 = (Σ2, V
L
2 , V G

2 ), respectively, we can assume that Σ1 = Σ2

and V L
1 � V G

1 = V L
2 � V G

2 . This is not a limitation, as one can apply the constructions
of [4] to equalize alphabets of actions and sets of variables.

Parallel composition. Two specifications A1 and A2 with Sig1 = (Σ, V L
1 , V G

1 ) and
Sig2 = (Σ, V L

2 , V G
2 ), respectively, are composable iff V L

1 ∩ V L
2 = ∅. Then their

signatures can be composed in a straightforward manner to the signature

Sig1 × Sig2 =def (Σ, V L
1 � V L

2 , (V G
1 ∪ V G

2 ) \ (V L
1 � V L

2 ))

in which the set of controlled variables is the disjoint union of the sets of controlled
variables of A1 and A2, and the set of uncontrolled variables consists of all those un-
controlled variables of A1 and A2 which are controlled neither by A1 nor by A2.

Definition 5. Let A1 and A2 be two composable specifications. The parallel composi-
tion of A1 and A2 is defined as the specification

A1 ‖ A2 = (Sig1 × Sig2,Loc1 × Loc2, (�
0
1, �

0
2), ϕ

0
1 ∧ ϕ0

2, E♦, E�)

where the transition relations E♦ and E� are the smallest relations satisfying the rules:

1. if (�1, a, ψ1, �
′
1)∈E♦,1 and (�2, a, ψ2, �

′
2)∈E♦,2 then

((�1, �2), a, ψ1 ∧ ψ2, (�
′
1, �

′
2))∈E♦ ,

2. if (�1, a, ψ1, �
′
1)∈E�,1 and (�2, a, ψ2, �

′
2)∈E�,2 then

((�1, �2), a, ψ1 ∧ ψ2, (�
′
1, �

′
2))∈E�.

Composition of specifications, similar to the classical notion of modal composition for
modal transition systems [10], synchronizes on matching shared actions and only yields
a must-transition if there exist corresponding matching must-transitions in the original
specifications. Composition is commutative (up to isomorphism) and associative. Our
theory supports independent implementability of specifications, which is a crucial re-
quirement for any compositional specification framework [14].

Theorem 2. Let A1,A2,B1,B2 be specifications such that A2 and B2 are compos-
able. If A1 ≤ A2 and B1 ≤ B2, then A1 ‖ B1 ≤ A2 ‖ B2.

The analog of parallel composition on the level of specifications is parallel compo-
sition ‖sem on the level of MSD which is a straightforward translation of the above
symbolic rules. In fact one can prove that both parallel compositions ‖ and ‖sem are
equivalent, i.e. that 〈A1 ‖ A2〉sem = 〈A1〉sem ‖sem 〈A2〉sem for any two composable
specifications A1,A2.
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Remark 1. Interface theories based on transition systems labeled with input/output ac-
tions usually involve a notion of compatibility, which is a relation between interfaces
determining whether two components can work properly together. Since the present
theory does not have a notion of input/output it is enough to require that two com-
ponents are composable, i.e. that their local variables do not overlap. A pessimistic
input/output compatibility notion has been proposed in our previous work [15]. Opti-
mistic input/output compatibility based on a game semantics allows computing all the
environments in which two components can work together. Following our recent works
in [16, 4], one can enrich labels of transitions in the present theory with input and output
and apply the same game-based semantics in order to achieve an optimistic composi-
tion.

Syntactical consistency. Our next two specification operators, conjunction and quotient,
may yield specifications which are syntactically inconsistent, i.e. either there is no legal
initial data state or there are states with a must-transition but without corresponding
may-transition.

In general, given a specification A, syntactic consistency implies consistency, i.e.
Impl(A) �= ∅, but in general, the reverse does not hold. However, every consistent
specification can be “pruned” to a syntactically consistent one, by pruning backwards
from all syntactically inconsistent states, removing states which have to reach some of
the “bad” states. Pruning will be shown to preserve the set of implementations.

For a specification A = (Sig ,Loc, �0, ϕ0, E♦, E�), the pruning (or reduction) of
A, denoted by ρ(A), is done as follows. Let B : Loc → Pred(V L) be a mapping
of locations to predicates over the local variables. We define a predecessor operation,
iteratively computing all states that are forced to reach a “bad” state. Define a weakest
precondition predicate, for ψ ∈ Pred(V � (V L)′), ϕ ∈ Pred(V L), by

wpψ[ϕ] =def ∃V G.◦ψ ∧ (∀(V L)′.ψ ⇒ (ϕ)′)

which computes the largest set of local states such that there exists an uncontrolled state
g ∈ �V G� such that ψ maps to at least one next state, and all next states satisfy ϕ. Then

predec(B)(�) =def B(�) ∨
∨
a∈Σ,
′∈Loc,ψ∈Musta(
,
′) wpψ[B(�′)]

and predec0(B) =def B, predecj+1(B) =def predec(predecj(B)) for j ≥ 0, and
predec∗(B) =def

⋃
j≥0 predec

j(B). Define bad : Loc → Pred(V L), for � ∈ Loc, by

bad(�) =def

∨
a∈Σ,
′∈Loc,ψ∈Musta(
,
′)

∃V G.◦ψ ∧

⎛
⎝∀(V L)′.ψ ⇒

∧
ψ′∈Maya(
,
′)

¬ψ′

⎞
⎠

and thus bad(�) is satisfied by a valuation s ∈ �V L� iff there is a must-transition for
which no choice of the next data state is permitted by the may-transitions.

In general, for infinite-domain variables, the computation of predec∗(bad) may not
terminate. In [7], it was shown that reachability and related properties in well-structured
transition systems with data values, that are monotonic transition systems with a well-
quasi ordering on the set of data values, is decidable. This result can be used for spec-
ifications with infinite-domain variables to show that under these assumptions, there is
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some j ≥ 0 such that for all � ∈ Loc, �predecj(bad)(�)� = �predecj+1(bad)(�)�. In the
following, for the specification operators conjunction and quotient (which may result in
a syntactically inconsistent specification and hence need to be pruned) we assume that
such a j ≥ 0 exists.

The pruning ρ(A) of A is defined if ϕ0∧¬predecj(bad)(�0) is consistent; and in this
case, ρ(A) is the specification (Sig ,Loc, �0, ϕ0 ∧ ¬predecj(bad)(�0), Eρ

♦, E
ρ
�) where,

for χbad = predecj(bad),

Eρ
♦ =

{
(�1, a,¬χbad(�1) ∧ ψ ∧ ¬(χbad(�2))

′, �2) | (�1, a, ψ, �2)∈E♦
}
,

Eρ
� =

{
(�1, a,¬χbad(�1) ∧ ψ ∧ ¬(χbad(�2))

′, �2) | (�1, a, ψ, �2)∈E�
}
.

Crucially the pruning operator has the expected properties:

Theorem 3. Let A be a deterministic, possibly syntactically inconsistent specification.
Then ρ(A) is defined if and only if A is consistent. And if ρ(A) is defined, then

1. ρ(A) is a syntactically consistent specification,
2. ρ(A) ≤ A,
3. Impl(A) = Impl(ρ(A)), and
4. for any syntactically consistent specification B, if B ≤ A, then B ≤ ρ(A).

Logical composition. Conjunction of two specifications yields the greatest lower bound
with respect to modal refinement. Syntactic inconsistencies arise if one specification
requires a behavior disallowed by the other.

Definition 6. Let A1 and A2 be two specifications with the same signature Sig =
(Σ, V L, V G). The conjunction of A1 and A2 is defined as the possibly syntactically
inconsistent specification

A1 ∧A2 = (Sig ,Loc1 × Loc2, (�
0
1, �

0
2), ϕ

0
1 ∧ ϕ0

2, E♦, E�)

where the transition relations E♦, E� are the smallest relations satisfying the rules, for
any �1, �

′
1 ∈ Loc1, �2, �′2 ∈ Loc2, a ∈ Σ,

1. If (�1, a, ψ1, �
′
1)∈E♦,1, (�2, a, ψ2, �

′
2)∈E♦,2, then

((�1, �2), a, ψ1 ∧ ψ2, (�
′
1, �

′
2))∈E♦ ,

2. If (�1, a, ψ1, �
′
1)∈E�,1, then

((�1, �2), a, ψ1 ∧ (
∨
ψ2∈Maya

2 (
2,
′2)
ψ2), (�

′
1, �

′
2))∈E�,

3. If (�2, a, ψ2, �
′
2)∈E�,2, then

((�1, �2), a, ψ2 ∧ (
∨
ψ1∈Maya

1 (
1,
′1)
ψ1), (�

′
1, �

′
2))∈E�,

4. If (�1, a, ψ1, �
′
1)∈E�,1 then

((�1, �2), a,
◦ψ1 ∧

(
∀(V L)′.ψ1 ⇒

∧
ψ2∈M ¬ψ2

)
, (�1, �2))∈E�,

where M =
⋃

′2∈Loc2

Maya2 (�2, �
′
2),

5. If (�2, a, ψ2, �
′
2)∈E�,2 then

((�1, �2), a,
◦ψ2 ∧

(
∀(V L)′.ψ2 ⇒

∧
ψ1∈M ¬ψ1

)
, (�1, �2))∈E�,

where M =
⋃

′1∈Loc1

Maya1 (�1, �
′
1).
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The first rule composes may-transitions (with the same action) by conjoining their pred-
icates. Rule (2) and (3) express that any required behavior of A1 (A2 resp.), as long as
it is allowed by A2 (A1 resp.), is also a required behavior in A1 ∧A2. Rules (4) and
(5) capture the case when a required behavior of A1 is not allowed by A2. Conjunction
is commutative and associative.

Refinement is a precongruence with respect to conjunction for deterministic specifi-
cations. Moreover, under the assumption of determinism, the conjunction construction
yields the greatest lower bound with respect to modal refinement:

Theorem 4. Let A, B, C be specifications with the same signature and let A and B
be deterministic. If A ∧B is consistent then

1. ρ(A ∧B) ≤ A and ρ(A ∧B) ≤ B,
2. C ≤ A and C ≤ B implies C ≤ ρ(A ∧B),
3. Impl(ρ(A ∧B)) = Impl(A) ∩ Impl (B).

Quotient as the dual operator to structural composition. The quotient operator allows
factoring out behaviors from larger specifications. Given two specifications A and B
the quotient ofB by A, in the following denotedB�A, is the most general specification
that can be composed with A and still refines B.

In the following, we assume for the signatures SigA = (Σ, V L
A , V G

A ) and SigB =
(Σ, V L

B , V G
B ) that V L

A ⊆ V L
B . The signature of the quotient B � A is then SigB�A =

(Σ, V L
B�A, V G

B�A) with V L
B�A = V L

B \ V L
A and V G

B�A = V G
B � V L

A . Note that, as said

before, we restrict ourselves to the case where V L
A � V G

A = V L
B � V G

B .
It is unknown if in our general model of specifications a finite quotient exists. For

specifications involving variables with finite domains only, a semantic quotient opera-
tion can be defined, which works on the (finite) semantics of A and B. As already no-
ticed in previous works, e.g. [17], non-determinism is problematic for quotienting, and
thus specifications are assumed to be deterministic. In our case, even when assuming de-
terministic specifications, the non-determinism with respect to the next local data state
is still there: thus the quotient B� A, when performing a transition, does not know the
next data state of A. However, due to our semantics, in which transitions are guarded by
uncontrolled states, the quotient can always observe the current data state of A. This ex-
tension of the usual quotient can be shown that it satisfies the following soundness and
maximality property: Given MSD S and T such that S is deterministic and T�sem S is
consistent, and assume a semantic pruning operator ρsem which is the straightforward
translation of pruning ρ to the semantic level. Then X ≤sem ρsem(T �sem S) if and
only if S ‖sem X ≤sem T for any MSD X.

Now our goal is to compute the quotient at the symbolic level of specifications. We
do this for a restricted subclass of specifications in which each occurring transition
predicate ψ is separable, meaning that ψ is equivalent to ◦ψ ∧ ψ◦. Although this might
seem as a serious restriction, we can often transform transition systems with transition
predicates of the form (x)′ = x + 1 to transition systems with separable transition
predicates while keeping the same set of implementations. For instance, if we know
that there are only finitely many possible values v1, . . . , vn for x in the current state,
we can “unfold” the specification and replace the transition predicates (x)′ = x+ 1 by
(x)′ = vi, for 1 ≤ i ≤ n.
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The symbolic quotient introduces two new locations, the universal state (univ) and
an error state (⊥). In the universal state the quotient can show arbitrary behavior and
is needed to obtain maximality, and the error state is a syntactically inconsistent state
used to encode conflicting requirements. The state space of the quotient is given by
LocB×LocA×Pred(V L

A ), so every state stores not only the current location of B and
A (like in [17]) but includes a predicate about the current possible data states of A. For
notational convenience, for ϕ ∈ Pred(V1 � V2) and ϕ1 ∈ Pred(V1), we write ϕ � ϕ1

for (∀V1.ϕ1 ⇒ ϕ) ∈ Pred(V2).

Definition 7. Let A and B be two specifications such that V L
A ⊆ V L

B . The quotient
of B by A is defined as the possibly syntactically inconsistent specification B�A =
(SigB�A, (LocB×LocA× Pred(V L

A )) ∪ {univ,⊥}, (�0B, �0A, ϕ0
A), ϕ0

B � ϕ0
A, E♦, E�)

where the transition relations are given by, for all a ∈ Σ and all ξA ∈ Pred(V L
A ),

1. if (�B, a, ψB, �′B)∈E♦,B and (�A, a, ψA, �′A)∈E♦,A, then
((�B, �A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦

B � ψ◦
A), (�′B, �′A, ψ◦

A↓))∈E♦,
2. if (�B, a, ψB, �′B)∈E�,B and (�A, a, ψA, �′A)∈E�,A, then

((�B, �A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ (ψ◦
B � ψ◦

A), (�′B, �′A, ψ◦
A↓))∈E�,

3. if (�B, a, ψB, �′B)∈E�,B and (�A, a, ψA, �′A)∈E�,A, then
((�B, �A, ξA), a, ξA ∧ ◦ψB ∧ ◦ψA ∧ ¬(ψ◦

B � ψ◦
A),⊥)∈E�,

4. if (�B, a, ψB, �′B)∈E�,B, then
((�B, �A, ξA), a, ξA ∧ ◦ψB ∧

∧
ψA∈M ¬◦ψA,⊥)∈E�

where M =
⋃

′A∈LocA

MustaA(�A, �′A),

5. ((�B, �A, ξA), a,¬ξA, univ)∈E♦,
6. ((�B, �A, ξA), a, ξA ∧

∧
ψA∈M ¬◦ψA, univ)∈E♦

where M =
⋃

′A∈LocA

MayaA(�A, �′A),

7. (univ, a, true, univ)∈E♦,
8. (⊥, a, true,⊥)∈E�.

Rules (1) and (2) capture the cases when both A and B can perform a may- and must-
transition, respectively. Rules (3) and (4) capture any inconsistencies which can arise if
for a must-transition in B there is no way to obtain a must-transition by composition
of the quotient with A. In order to obtain maximality, we add a universal state univ in
which the behavior of the quotient is not restricted (rules (5)–(7)). Finally, the rule (8)
makes the error state syntactically inconsistent.

Since we only have finitely many transition predicates ψA in A, and they are all
separable, the set of locations (LocB×LocA×({ψ◦

A↓ | ψA occurring in A}∪{ϕ0
A}))∪

{univ,⊥} of B�A is also finite. Thus we can construct the symbolic quotient in a finite
number of steps, starting in the initial state (�0B, �0A, ϕ0

A), and iteratively constructing
the transitions. Soundness and maximality of the quotient follows from the following
theorem.

Theorem 5. Let A and B be specifications such that V L
A ⊆ V L

B , all transition pred-
icates of A and B are separable, A is deterministic and B � A is consistent. Then
for any specification C such that SigC = SigB�A, C ≤ ρ(B � A) if and only if
A ‖ C ≤ B.
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[l + h = 0]
�′0 �′1

newPrintJob
[(l)′ = l + 1 ∧ (h)′ = h]

incPriority
[l > 0

∧ (l)′ = l − 1
∧ (h)′ = h+ 1]

ack [(l)′ = l ∧ (h)′ = h]

send
[l + h > 0
∧ (priorityMode ∧ h > 0 =⇒ (h)′ = h− 1 ∧ (l)′ = l)
∧ (¬(priorityMode ∧ h > 0) =⇒ ((h)′ = h− 1 ∧ (l)′ = l)

∨ ((l)′ = l − 1 ∧ (h)′ = h))]

Fig. 5. Refined print server specification Q

4 Predicate Abstraction for Verification of Refinement

We now switch our focus to the problem of deciding whether a specification A refines
another specification B (which reduces to checking 〈A〉sem ≤sem 〈B〉sem). As soon
as domains of variables are infinite, 〈A〉sem and 〈B〉sem may be MSD with infinitely
many states and transitions. In this case, this problem is known to be undecidable in
general. Thus we propose to resort to predicate abstraction techniques [18]. Given two
specifications A and B we derive over- and under-approximations Ao and Bu which
are guaranteed to be finite MSD. Then, we show that Ao ≤sem Bu implies A ≤ B.

Example 5. Fig. 5 shows a print server specification Q which we will show is a re-
finement of the abstract specification P in Fig. 1. The behavior of the print server is
now fixed for any number of print jobs. Moreover, the send transition has been refined
such that depending on the priority mode (provided by the environment of the print
server) a job with high priority (in case priorityMode is true) or a job with low priority
(otherwise) is chosen next.

Given a specification A = (Sig ,Loc, �0, ϕ0,−−→♦,−−→�) with Sig = (Σ, V L,
V G), we partition the local state space and the uncontrolled state space using finitely
many predicates φ1, φ2, . . . , φN ∈ Pred(V L) and χ1, χ2, . . . , χM ∈ Pred(V G). We
fix these predicates in the following to simplify the presentation. The signature of the
abstraction is then given by Sigabstr = (Σ, V L

abstr , V
G
abstr ), where V L

abstr = {x1, x2,
. . . , xN} and V G

abstr = {y1, y2, . . . , yM}. All variables xi, yj have Boolean domain. A
variable xi (yj) encodes whether the predicate φi (χj) holds or not.

Any abstract state ν ∈ �V L
abstr � is a conjunction of predicates

∧N
i=1 φ

ν(xi)
i , where

φ
ν(xi)
i =φi if ν(xi)=1, else φ

ν(xi)
i =¬φi. Further, a set of abstract states N⊆�V L

abstr �
corresponds to

∨
ν∈N ν. Similarly for any ω∈�V G

abstr � and for M⊆�V G
abstr �.

The transition relation of the over-approximation expands the allowed behaviors
and limits the required behaviors. Dually, the under-approximation will further re-
strict the allowed behavior and add more required transitions. In other words, over-
approximation is an existential abstraction on may-transitions and universal abstraction
on must-transitions; dually for the under-approximation.

Formally, the over-approximation Ao of A is defined by the finite MSD (Sigabstr ,
Loc, �0, S0

abstr ,−−→♦,abstr ,−−→�,abstr ), where the initial abstract state S0
abstr contains

all partitions containing some concrete initial state, i.e. the initial abstract state is
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defined by S0
abstr = {ν ∈ �V L

abstr � | ∃V L.ν ∧ ϕ0}, and the abstract transition rela-
tions are derived as follows. For all �, �′ ∈ Loc, a ∈ Act, ν, ν̇ ∈ �V L

abstr �, ω ∈ �V G
abstr �,

i. If ∃V.∃(V L)′.ν ∧ ω ∧ (
∨
ψ∈Maya(
,
′) ψ) ∧ (ν̇)′, then (�, ν)

ω a−−→♦,abstr (�′, {ν̇}),
so there is a may-transition between partitions in the abstraction if there was a
may-transition between any states in these partitions in the concrete system.

ii. Whenever, for some N ⊆ �V L
abstr �, the predicate

∀V.ν ∧ ω ⇒
∨
ψ∈Musta(
,
′)

◦ψ ∧ (∀(V L)′.ψ ⇒ (N)′)

is true and N is minimal with respect to this property, then (�, ν)
ω a−−→�,abstr

(�′, N).

For the under-approximationBu of B, we assume that every transition predicate ψ on a
must-transition must be separable (see page 72). Moreover, in order to soundly capture
must-transitions, we must be able to exactly describe the target set of (concrete) local
states by a union of abstract states; so for any (�, a, ψ, �′) ∈ E�,B, there exists a set
N ⊆ �V L

abstr � such that ∀(V L)′. ψ◦⇔ (N)′. The under-approximation Bu is the finite
MSD (Sigabstr ,Loc, �

0, S0
abstr ,−−→♦,abstr, −−→�,abstr ), where S0

abstr = {ν ∈ �V L
abstr � |

∀V L.ν ⇒ ϕ0}, and for all �, �′∈Loc, a∈Act, ν, ν̇∈�V L
abstr �, ω ∈ �V G

abstr �,

i. If ∀V.∀(V L)′.ν ∧ ω ∧ (ν̇)′ ⇒
∨
ψ∈Maya(
,
′) ψ then (�, ν)

ω a−−→♦,abstr (�′, {ν̇}),
ii. For every (�, a, ψ, �′)∈E�, , if ∃V.ν∧ω∧◦ψ, then (�, ν)

ω a−−→�,abstr (�′, N) where
N ⊆ �V L

abstr � such that ∀(V L)′.ψ◦ ⇔ (N)′.

Correctness of the abstraction follows from the following theorem.

Theorem 6. Ao ≤sem Bu implies A ≤ B.

Example 6. Fig. 6 and Fig. 7 are over- and under-approximations of Q and P, respec-
tively. The MSD represent abstractions w.r.t. the predicates φ0,0 =def h = l = 0,
φ0,1 =def l = 0 ∧ h = 1, φ1,0 =def l = 1 ∧ h = 0, and φ>1 =def h + l > 1 for
the controlled variables l and h, and ω1 =def priorityMode , ω2 =def ¬priorityMode
for the uncontrolled variable priorityMode . Note that all transition predicates in P are
separable, and all possible (concrete) poststates can be precisely captured by the pred-
icates φ0,0, φ0,1, φ1,0, φ>1. For better readability we have omitted most of the guards
ω1, ω2, i.e. every transition without guard stands for two transitions with the same ac-
tion, source and target state(s), and with ω1 and ω2 as guard, respectively. Moreover,
the state (�3, φ0,0 ∨ φ0,1 ∨ φ1,0 ∨ φ>1) is a simplified notation which represents all the
states (�3, φ) with φ ∈ {φ0,0, φ0,1, φ1,0, φ>1} and all may-transitions leading to it lead
to each of the states, and the may-loop stands for all the transitions between each of the
states. Obviously, Qo ≤sem Pu, and from Thm. 6 it follows that Q ≤ P.

Even though this abstraction technique requires separability of predicates, it is appli-
cable to a larger set of specifications. Sometimes, as already described in the previ-
ous section, transitions with non-separable predicates can be replaced by finite sets of
transitions to achieve separability, without changing the semantics of the specification.
Automatic procedures for generation of predicates are subject of future work. Finally,
our abstraction also supports compositional reasoning about parallel composition in the
following sense:
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(�′0, φ0,0)

(�′0, φ0,1)

(�′0, φ1,0)
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Fig. 6. Over-approximation Qo
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Fig. 7. Under-approximation Pu

Theorem 7. Let A and B be two composable specifications, and V G
A‖B=(V G

A ∪V G
B )�

(V L
A � V L

B ). Let EA ⊆ Pred(V L
A ), EA ⊆ Pred(V L

B ), and F ⊆ Pred(V G
A‖B) be sets of

predicates partitioning the respective data states.
A is approximated w.r.t. EA for V L

A , and EB ∪ F for V G
A = V G

A‖B � V L
B and

similarly, B is approximated w.r.t. EB and EA ∪ F . Finally, A ‖ B is approximated
w.r.t. EA∪EB for V L

A‖B = V L
A �V L

B , and F for V G
A‖B. We assume that each predicate,

in any abstraction of A, B, or A ‖ B, is encoded with the same variable.
Then (A ‖B)o ≤sem Ao ‖sem Bo, and Au ‖sem Bu ≤sem (A ‖B)u.

This result allows reusing abstractions of individual components in a continued devel-
opment and verification process. For instance, if we want to verify A ‖ B ≤ C then we
can compute (or reuse) the less complex abstractions Ao and Bo. Thm. 7 implies then
that from Ao ‖sem Bo ≤sem Cu we can infer A ‖ B ≤ C.

5 Related Work

The main difference to related approaches based on modal process algebra taking data
states into account, e.g. [19], is that they cannot naturally express logical and structural
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composition in the same formalism. A comparison between modal specifications and
other theories such as interface automata [20] and process algebra [2] can be found
in [3]. In [8], the authors introduced sociable interfaces, that is a model of I/O au-
tomata [21] equipped with data and a game-based semantics. While their communi-
cation primitives are richer, sociable interfaces do not encompass any notion of logical
composition and quotient, and their refinement is based on an alternating simulation.

Transition systems enriched with predicates are used, for instance, in the approach
of [22, 23] where they use symbolic transition systems (STS), but STS do not support
modalities and loose data specifications as they focus more on model checking than on
the (top down) development of concurrent systems by refinement.

In [15] modal I/O automata has been extended by pre- and postconditions viewed as
contracts, however, only semantics in terms of sets of implementations have been de-
fined (implementations with only input actions correspond to our TSD). Modal refine-
ment as defined in [15] is coarser than in this paper, and moreover, neither conjunction
nor a quotient operation are defined.

6 Conclusion

We have proposed a specification theory for reasoning about components with rich data
state. Our formalism, based on modal transition systems, supports: refinement checking,
consistency checking with pruning of inconsistent states, structural and logical compo-
sition, and a quotient operator. The specification operators are defined on the symbolic
representation which allows for automatic analysis of specifications. We have also pre-
sented a predicate abstraction technique for the verification of modal refinement. We
believe that this work is a significant step towards practical use of specification theories
based on modal transition systems. The ability to reason about data domains permits
the modeling of industrial case studies.

In the future, we intend to develop larger case studies. Furthermore, we would like
to extend the formalism with more complex communication patterns and to investigate
in which cases we can still obtain all the operators on specifications, in particular the
quotient operator. We are also planning to implement the theory in the MIO Workbench
[24, 25], a verification tool for modal input/output interfaces.

Acknowledgment. We would like to thank Rolf Hennicker for valuable comments on
a draft of the paper.
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Abstract. Rule-based programming has been shown to be very success-
ful in many application areas. Two prominent examples are the specifica-
tion of model transformations in model driven development approaches
and the definition of structured operational semantics of formal lan-
guages. General rewriting frameworks such as Maude are flexible enough
to allow the programmer to adopt and mix various rule styles. The choice
between styles can be biased by the programmer’s background. For in-
stance, experts in visual formalisms might prefer graph-rewriting styles,
while experts in semantics might prefer structurally inductive rules. This
paper evaluates the performance of different rule styles on a significant
benchmark taken from the literature on model transformation. Depend-
ing on the actual transformation being carried out, our results show that
different rule styles can offer drastically different performances. We point
out the situations from which each rule style benefits to offer a valuable
set of hints for choosing one style over the other.

1 Introduction

Many engineering activities are devoted to manipulate software artifacts to en-
hance or customize them, or to define their possible ordinary evolutions and
exceptional reconfigurations. The concept of model as unifying software artifact
representation has been promoted as a means to facilitate the specification of
such activities in a generic way. Many dynamic aspects can be conceived as
model transformations : e.g. architectural reconfigurations, component adapta-
tions, software refactorings, and language translations. Rule-based specifications
have been widely adopted as a declarative approach to enact model-driven trans-
formations, thanks to the intuitive meaning and solid foundations offered by
rule-based machineries like term [1] and graph rewriting [2].

Recently we have investigated the possibility to exploit the structure of mod-
els to enhance software description and to facilitate model transformations [3,4].
Indeed, many domains exhibit an inherently hierarchical structure that can
be exploited conveniently to guarantee scalability. We mention, among others,
nested components in software architectures and reflective object-oriented sys-
tems, nested sessions and transactions in business processes, nested membranes
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in computational biology, composition associations in UML-like modeling frame-
works, semi-structured data in XML-like formats, and so on. Very often such
layering is represented in a plain manner by overlapping the intra- and the
inter-layered structure. For instance, models are usually formalised as flat ob-
ject configurations (e.g. graphs) and their manipulation is studied with tools and
techniques based on rewriting theories that do not fully exploit the hierarchical
structure. On the other hand, an explicit treatment of the hierarchical structure
for specifying and transforming model-based software artifacts is possible. As a
matter of fact, some layering structures (like composition relations in UML-like
languages) can be conveniently represented by an explicit hierarchical structure
enabling then hierarchical manipulations of the resulting models.

We have investigated such issues in previous work [3] proposing an approach
analogous to the russian dolls of [5,6], where objects can be nested within other
objects. In this view, structured models are represented by terms that can be ma-
nipulated by means of term-rewrite techniques like conditional term rewriting [1].
In [3] we compared the flat representation against the nested one, showing that
they are essentially equivalent in the sense that one can bijectively pass from one
to the other. Each representation naturally calls for different rule styles and the
comparison in [3] mainly addressed methodological aspects, leaving one prag-
matical issue open: how to decide in advance which approach is more efficient
for actually executing a model transformation?

We offer an answer to this question in this paper. We have selected two
prominent approaches to model transformation. The first one is archetypal of
the graph-transformation based model-driven community and follows the style
of [7]. The second one is quite common in process calculi and goes along the
tradition of Plotkin’s structural operational semantics, as outlined in [3]. Both
approaches can be adopted in flexible rule-based languages like Maude [8] (the
rewriting logic based language and framework we have chosen). In order to ob-
tain significant results we have implemented three test cases widely used in the
literature: the reconfiguration of components that migrate from one location to
another one, the transformation of class diagrams into relational schemas, and
the refactoring of class diagrams by pulling up attributes. As a byproduct we
offer a novel implementation of these three classical transformations based on
conditional rules. Indeed, such style of programming model transformations has
not been proposed by other authors, as far as we know.

Our experimental results stress the importance of choosing the right transfor-
mation style carefully to obtain the best possible performance. We point out some
features of the examples that impact on the performance of each rule format,
thus providing the programmer with a set of valuable guidelines for programming
model transformations in expressive rule-based frameworks like Maude.

Synopsis. § 2 presents a graph-based algebraic representation of models as nested
object collections and describes rewrite rule styles for implementing model trans-
formations in Maude. § 3 presents some enhancements that can be applied to the
transformation styles. § 4 describes our benchmark. § 5 presents the experimental
results. § 6 concludes the paper.
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2 Preliminaries

In this section we illustrate the two key model transformation paradigms and
the Maude notation we shall exploit in the rest of the paper over a basic example
of transformation, namely from trees to list. A classical approach would provide
ad-hoc data structures for trees and lists and an ad-hoc algorithm for implement-
ing the transformation. Model driven approaches, instead, consider a common
representation formalism for both data structures and a generic transformation
procedure that acts on such formalism. In our setting, the representation for-
malism for models are collections of attributed objects and the transformation
procedure is based on rewrite rules.

The Maude language already provides some machinery for this purpose, called
object-based configurations [8], which we tend to follow with slight modifications
aimed to ease the presentation. More precisely we represent models as nested
object collections [3] (following an idea originally proposed in [5] and initially
sketched in [6]), which can be understood as a particular class of attributed,
hierarchical graphs. We then implement transformations as sets of rewrite rules.

Rewriting Logic and Maude. Maude modules describe theories of rewriting
logic [1], which are tuples 〈Σ,E,R〉 where Σ is a signature, specifying the basic
syntax (function symbols) and type machinery (sorts, kinds and subsorting) for
terms, e.g. model descriptions; E is a set of (possibly conditional) equations,
which induce equivalence classes of terms, and (possibly conditional) member-
ship predicates, which refine the typing information; R is a set of (possibly
conditional) rules, e.g. model transformations.

The signature Σ and the equations E of a rewrite theory form a member-
ship equational theory 〈Σ,E〉, whose initial algebra is denoted by TΣ/E. Indeed,
TΣ/E is the state space of a rewrite theory, i.e. states (e.g. models) are equiv-
alence classes of Σ-terms modulo the least congruence induced by the axioms
in E (denoted by [t]E or t for short). Sort declarations takes the form sort S

and subsorting (i.e. subtyping) is written subsort S < T. For instance, the sort
of objects (sort Obj) is a subsort of configurations (sort Configuration) as
declared by subsort Obj < Configuration.

Operators are declared in Maude notation as op f : TL -> T [As] where
f is the operator symbol (possibly with mixfix notation where underscores
stand for argument placeholders), TL is a (possibly empty, blank separated) list
of domain sorts, T is the sort of the co-domain, and As is a set of equational at-
tributes (e.g. associativity, commutativity). For example, object configurations
(sort Configuration) are constructed with operators for the empty configura-
tion (op none: -> Configuration), single objects (via subsorting) or the union
of configurations (juxtaposition op : Configuration Configuration ->

Configuration [assoc comm id:none]), declared to be associative, commu-
tative and to have none as its identity operator (i.e. they are multisets).

Each object represents an entity and its properties. Technically, an object is
defined by its identifier (of sort Oid), its class (of sort Cid) and its attributes (of
sort AttSet). Objects are built with an operation op < : | >: Oid Cid
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AttSet -> Obj. Following Maude conventions, we shall use quoted identifiers
like ’a as object identifiers, while class identifiers will be defined by ad-hoc
constructors. In our running example we use the constants Node and Item of
sort Cid to denote the classes of tree nodes and list items, respectively.

The attributes of an object define its properties and relations to other ob-
jects. They are basically of two kinds: datatype attributes and association ends.
Datatype attributes take the form n: v, where n is the attribute name and v

is the attribute value. For instance, in our running example we shall consider a
natural attribute value (sort Nat), representing the value of a node or item. A
node with identifier ’a and value 5 is denoted by < ’a : Node | value: 5 >.

Relations between objects can be represented in different ways. One typical
approach is to use a pair of references (called association ends in UML termi-
nology) for each relation. So if an object o1 is in relation R with object o2 then
o1 is equipped with a reference to o2 and vice versa. In our case this is achieved
with attributes of the form R: O2 and opp(R): O1 where R indicates the relation
name and O1, O2 are sets of object identifiers (sort OidSet). Association ends
of the same relation within one object are grouped together (hence the use of
identifier sets as domain of association attributes). In our example we have two
relations left and right between a node and its left and right children, and
one relation next between an item of the list and the next one. Clearly, the op-
posite relations of left, right and next are the parent and previous relations.
As an example of a pair of references consider a node < ’a : Node | value: 5

, left: ’b > and its son < ’b : Node | value: 3 , opp(left): ’a >. Of
course an object can be equipped with any number of attributes. Actually, the
attributes of an object form a set built out of singleton attributes, the empty set
(none) and union set (denoted with , ).

The following simple configuration represents a tree with three nodes.

< ’a : Node | value: 5 , left: ’b , right: ’c >

< ’b : Node | value: 3 , opp(left): ’a >

< ’c : Node | value: 7 , opp(right): ’a >

Operation << >> : Configuration -> Model wraps a configuration into a
model.

Functions (and equations that cannot be declared as equational attributes)
are defined by a set of confluent and terminating conditional equations of the
form ceq t = t’ if c, where where t, t’ are Σ-terms, and c is an application
condition. When the application condition is vacuous, the simpler syntax eq

t = t’ can be used. For example, an operator op size : Configuration

-> Nat for measuring the number of objects in a configuration is inductively
defined by equations eq size(none) = 0 and eq size(O C) = 1 + size(C)

(with O, C being variables of sort Obj, Configuration, respectively). Roughly,
an equational rule can be applied to a term t’’ if we find a match m (i.e. a
variable substitution) for t at some place in t’’ such that m(c) holds (i.e.
c after the application of the substitution m evaluates to true). The effect is
that of substituting the matched part with m(t’). For example, calculating the
size of the above tree is done by reducing size(< ’a : Node | value: 5 ,
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left: ’b , right: ’c > < ’b : Node | value: 3 , opp(left): ’a > <

’c : Node | value: 7 , opp(right): ’a >) to 1 + size(< ’b : Node |

value: 3 , opp(left): ’a > < ’c : Node | value: 7 ,opp(right): ’a

>), then to 2 + size(< ’c : Node | value: 7 , opp(right): ’a >) and
finally to 3.

Structured models. A nested object collection allows objects to have container
attributes, i.e. configuration domain attributes. While in a plain object collec-
tion a containment relation r between two objects o1 and o2 is represented by
exploiting a pair of association end attributes r and opp(r), now o2 is embed-
ded into o1 by means of the container attribute r. For instance, the above tree
becomes

< ’a : Node | value: 5 ,

left: < ’b : Node | value: 3 > ,

right: < ’c : Node | value: 7 > >

The hierarchical structure of models forms a tree. The two approaches that we
have described differ essentially in the way we represent such a tree. Indeed,
flat and nested representations are in bijective correspondence, i.e. for each flat
object collection we can obtain a unique nested collection and vice versa as shown
in [3], so that we can pass from one to the other as we find more convenient for
specific applications or analyses.

Transformations as sets of rewrite rules. Transformations can be defined by
means of rewrite rules, which take the form crl t => t’ if c, where t, t’ are
Σ-terms, and c is an application condition (a predicate on the terms involved in
the rewrite, further rewrites whose result can be reused, membership predicates,
etc.). When the application condition is vacuous, the simpler syntax rl t => t’

can be used. Matching and rule application are similar to the case of equations
with the main difference being that rules are not required to be confluent and ter-
minating (as they represent possibly non-deterministic concurrent actions rather
than functions). Equational simplification has precedence over rule application
in order to simulate rule application modulo equational equivalence.

SPO transformations. The need for visual modelling languages and the graph-
based nature of models have contributed to the success of graph transformation
approaches to model transformations. In such approaches, transformations are
programmed in a declarative way by means of a set of graph rewrite rules.
The transformation style that we consider here is based on the algebraic graph
transformation approach [2]. The main idea is that each rule has a left-hand
side and a right-hand side pattern. Each pattern is composed by a set of objects
(nodes) possibly interrelated by means of association ends (edges). A rule can
be applied to a model whenever the left-hand side can be matched with part of
the model, i.e. each object in the left-hand side is (injectively) identified with an
object and idem for the association ends. The application of a rule removes the
matched part of the model that does not have a counterpart in the right-hand
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side and, vice versa, adds to the model a fresh copy of the right-hand side part
that is not present in the left-hand side. Items in common between the left-hand
side and the right-hand side are preserved during the application of the rule.
Very often, rules are equipped with additional application conditions, including
those typical of graph transformation systems (e.g. to avoid dangling edges) and
its extensions like Negative Application Conditions (NACs).

In our setting, this means that rules have in general the following format:

crl << lhs conf1 >> => << rhs conf1 >> if applicable(lhs conf1) .

where lhs and rhs stand for the rule’s left- and right-hand side configurations,
conf1 as the context in which the rule will be applied, and applicable is the
boolean function implementing the application condition. Simpler forms are pos-
sible, e.g. in absence of application conditions the context is not necessary and
rules take the form: rl lhs => rhs .

In our running example the transformation rules basically take a node x and its
children y and z and puts them in some sequence, with x before y and z. This
rule might introduce branches in the sequence that are solved by appropriate
rules. A couple of rules are needed to handle some special cases, like x being the
root or a node that has already been put in the list (in the middle, tail or head).
Let us show one of the basic rules (the rest of the rules are very similar):

rl [nodeToItem]

<< < x : Node | value: vx , left: y , right: z , next: u , Ax >

< y : Node | value: vy , op(left): x, Ay >

< z : Node | value: vz , op(right): x, Az >

< u : Node | value: vu , op(next): x, Au >

conf1 >> =>

<< < x : Item | value: vx , next: y , Ax>

< y : Node | value: vy , op(next): x, next: z , Ay >

< z : Node | value: vz , op(next): y, next: u , Az >

< u : Node | value: vu , op(next): z, Au >

conf1 >> .

SOS transformations. We now describe transformation rules in the style of Struc-
tural Operational Semantics [9] (SOS). The basic idea is to define a model trans-
formation by structural induction, which in our setting basically amounts to
exploiting set union and (possibly) nesting.

We recall that SOS rules make use of labels to coordinate rule applications.
We first present the implementation style of SOS semantics in rewriting logic as
described in [10] and then present our own encoding of SOS which provides a
more efficient implementation, though circumscribed to some special cases.

The approach of [10] requires to enrich the signatures with sorts for rule labels
(Lab), label-prefixed configurations LabConfiguration, and a constructor { }
: Lab Configuration => LabConfiguration for label-prefixed configurations.
In addition, rule application is allowed at the top-level of terms only (via Maude’s
frozen attribute [11]) so that sub-terms are rewritten only when required in the
premise of a rule (as required by the semantics of SOS rules). With this notation
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a term {lab1}conf1 represents that a configuration conf1 has been obtained
after application of a lab1-labelled rule.

One typical rule format in our case allows us to conclude a transformation
lab3 for a configuration made of two parts conf1 and conf2 provided that each
part can respectively perform some transformation lab1, lab2:

crl conf1 conf2 => {lab3} conf3 conf4

if conf1 => {lab1} conf3

/\ conf2 => {lab2} conf4 .

Typically, the combination of labels will follow some classical form. For instance,
with Milner-like synchronisation, lab1, lab2 can be complementary actions, in
which case lab3 would be a silent action label. Instead, Hoare-like synchronisa-
tion would require lab1, lab2 and lab3 to be equal.

Consider now a hierarchical representation of models based on nested object
collections. In this situation we need rules for dealing with nesting. Typically,
the needed rule format is the one that defines the transformation lab1 of an
object oid1 conditional to some transformation lab2 of one of its contents c:

crl < oid1 : cid1 | c: conf1 , attSet1 > =>

{lab1} < oid1 : cid1 | c: conf2 , f(attSet1) >

if conf1 => {lab2} conf2 .

Such rules might affect the attributes of the container object (denoted with
function f) but will typically not change the object’s identifier or class. More
elaborated versions of the above rule are also possible, for instance involving
more than one object or not requiring any rewrite of contained objects.

In our running example we have the following rule that transforms a tree
provided that its subtrees can be transformed into lists

crl [root] : < x : Node | value: vx , left: leftTree , right: rightTree >

=> {toList}

list1

< tail : Item | value: vt , opp(next): y , next: x >

< x : Item | value: vx , opp(next): tail , next: head >

< head : Item | value: vh, opp(next): x , next: z >

list2

if leftTree => {toList} list1 < tail : Item | value: vt , opp(next): y >

/\ rightTree => {toList} < head : Item | value: vh , next: z > list2 .

Note that head and tail of the transformed sublists are identified by the lack of
next and opp(next) attributes. Rules are also needed to handle leafs:

rl [leaf] : < x : Node | value: vx > => {toList} < x : Node | value: vx > .

Finally, rules are needed to close the transformations at the level of models.
Such rules have the following format:

crl << conf1 >> => << conf2 >> if conf1 => {lab1} conf2 .

In our example the rule would be

crl << conf1 >> => << conf2 >> if conf1 => {toList} conf2 .
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3 Enhanced SOS Implementation

While performing our preliminary experiments we discovered a more efficient
way to encode SOS rules in rewriting logic that we call SOS*.

The most significant improvement applies to those cases in which the labels
of the sub-configurations are known in advance. As a matter of fact this was
the case of all test cases we consider in the next section. The idea is to put the
labels on the left-hand side of rules as a sort of context requiring the firing of
transformations with such label. In other words, we pass from post- to pre-rule
applicability checks.

As a more general example the above rule scheme becomes now:

crl {lab3} conf1 conf2 => conf3 conf4

if {lab1} conf1 => conf3

/\ {lab2} conf2 => conf4 .

The main difference is that now lab1 and lab2 are known in advance and not
obtained as a result of the conditional rewrites. A notable example where this
alternative encoding cannot be immediately applied are the semantics of process
calculi where synchronisation rules do not know in advance which signals are
ready to perform their subprocesses.

Another slight improvement is the object-by-object decomposition of object
collections instead of the one based on a pair of subsets presented above. For
example the above rule scheme becomes:

crl {lab3} obj1 conf2 => obj3 conf4

if {lab1} obj1 => obj3

/\ {lab2} conf2 => conf4 .

A more significant improvement is that in some cases we allow to contextualise
rules at any place of a term. We recall that in a SOS derivation this is typically
achieved by rules that lift up silent (e.g. τ -labelled) actions. Technically this is
essentially achieved by declaring as frozen the labelling operator { } only. This
allows to apply rules to transform a sub-configuration at any level of the nesting
hierarchy. That is, SOS rules like the ones for lifting silent actions across the
nesting hierarchy like

crl < oid1 : cid1 | c: conf1 , attSet1 > =>

{tau} < oid1 : cid1 | c: conf2 , attSet1 >

if conf1 => {tau} conf2 .

or rules to lift silent actions among object configurations at the same level of the
hierarchy like

crl obj1 conf2 => {tau} obj3 conf2

if obj1 => {tau} obj3 .

are not necessary in the SOS* style.
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Fig. 1. An instance of the model reconfiguration test case

Fig. 2. An SPO rule (left) and a SOS rule (right) for architectural reconfiguration

4 Benchmark

Our benchmark consists of three test cases selected from the literature as archety-
pal examples of model reconfigurations, transformations and refactorings. In the
following we describe the main features of each test case, emphasizing the most
relevant details.

Architectural reconfiguration. The first test case we consider is the typical re-
configuration scenario in which some components must be migrated from one
compromised location to another one. Many instances of this situation arise in
practice (e.g. clients or jobs that must be migrated from one server to another
one). Some instances of this scenario can be found e.g. in [7,12]. In what follows
we consider a scenario in which components can be nested within each other.
Components within an unsafe component x must be migrated into an uncle
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Fig. 3. An instance of the model translation test case

component y with the additional requirement of changing their status according
to the status of their new container y. Figure 1 depicts one possible instance of
the scenario.1

The most significant SPO rule2 is depicted on the left of Fig. 2. It takes an
unsafe component and a safe component that are neighbours (they have a com-
mon container) and moves the component inside the compromised component
one to the safe one while changing its status. More rules are needed (for instance
for considering top-level rooms without containers) and some of them have ap-
plication conditions. As a consequence, the applicability of those rule requires to
check the whole model and there is no predefined order on which rules to apply
first. The safe system (the system without components in need of evacuation) is
reached when no more transformation rules are applicable. For instance, Fig. 1
shows a possible match for the SPO rule. The effect of applying the SPO rule
will be to move the normal component under the unsafe one to its new location
(under the safe component) while changing its status into safe.

On the right of Fig. 2 instead we the see the main SOS rule: all the compo-
nents c1 contained in a unsafe component are evacuated into a safe neighbor
component, while changing their status inductively (via to(s1)-labelled rules).
Figure 1 shows a possible instance of the SOS rule. The effect of the SOS rule
will be to migrate the two normal components contained in the unsafe compo-
nent to the safe component while changing their status (in addition the unsafe
component is removed).

Model translation. Our second test case is the classical translation of class dia-
grams into relational database schemes (a description can be found in [13]). The

1 The figures in the paper follow an intuitive UML-like notation, with boxes for objects
and arrows for references. We prefer to use this intuitive notation to sketch the
scenarios.

2 The big encircled arrow separates the rule’s left- and right-hand side. Object iden-
tifiers are dropped for the sake of clarity and are to be identified by their spatial
location.
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Fig. 4. An SPO rule (left) and a SOS rule (right) for model translation

Fig. 5. An instance of the model refactoring test case

main idea is that classes are transformed into tables and their attributes into
columns of the tables. Associations between classes are transformed into aux-
iliary tables with foreign keys from the tables corresponding to the associated
classes. Figure 3 depicts one possible instance of the scenario.

Figure 4 sketches two illustrative transformation rules. The SPO rule trans-
forms a class (belonging to a package) into a table (within the corresponding
schema). It also creates a primary key and the corresponding column for the
table. A negative application condition forbids the application of the rule in
case the table already exists. The, let us say, corresponding rule in SOS format
transforms a class into a table provided that its attributes are transformed into
columns and its association ends are properly collected. An auxiliary object is
used as a container where to put association ends of the same relation in the
same context so that they can be transformed properly by another rule.

Refactoring. The example of model refactoring we consider is the classical at-
tribute pull-up as described in [14]. The main idea is very simple: if all the
subclasses of a class c declare the same attribute, then the attribute should be
declared at c only. This preserves the semantics of the diagram (as the sub-
classes will inherit the attribute) while removing redundancies. Figure 5 depicts
one possible instance of the scenario.
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Fig. 6. An SPO rule (left) and a SOS rule (right) for model refactoring

Figure 6 depicts two illustrative transformation rules. The SPO rule pulls an
attribute up provided that it is not annotated as missing by another class (a set
of rules takes care of creating such annotations). The SOS rule instead pulls the
attribute up provided that all sibling sub-classes agree to pull it up.

5 Experiments

This section presents our experimental results. Experiments were run on an
Ubuntu Linux server equipped with Intel Xeon 2.67GHz processors and 24GB of
RAM. Each experiment consists on the transformation of instances of a test case
using the discussed representation and transformation styles. Instances are au-
tomatically generated with the help of parameterizable instance generators that
allow us, for instance, to scale up the instances to check scalability of the various
approaches. For each experiment we have recorded the number of rewrites and
the running time (not always proportional), put in the y-axis of separate plots.
Each experiment is performed for an increased size factor that typically makes
the model grow exponentially. The x-axis corresponds to the size of the instance
in terms of overall number of objects. The timeout for the experiments is of an
hour. We do not present results for instances larger than those where at least
one of the techniques already times out (which is denoted by the interruption of
the plot).

The goal of the experiments is to collect evidence of performance differences,
draw hypotheses about the causes of those differences and validate our hypothe-
ses with further experiments. Our benchmark consists of the three test cases
presented in Section 4.

5.1 SOS vs SOS*

1st experiment. We start testing the impact of our improved encoding of SOS
(SOS*) with a basic set of instance generators. The generator for the reconfig-
uration test cases has a single parameter which is the depth of the component
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Fig. 7. SOS vs SOS* in reconfiguration (top), translation (middle), pullup (bottom)

containment tree, i.e. for a given natural number n, it generates a binary tree of
depth n. The grandfathers of leafs have exactly one unsafe component and one
safe component as children. All other components are normal. Figure 1 sketches
one such instance. The parameter of the instance generator for the model trans-
formation case is the branching factor of the containment tree, i.e. for a given
natural number n, it generates a UML domain with n packages, each containing
2n classes, each containing n attributes and n associations. The i-th association
of class c with c even (resp. odd) has as opposite the i-th association of class c+1
(resp. c− 1). So-built domains have n packages, 2n2 classes and n3 association
pairs (cf. Fig. 3).

The instance generator for the refactoring test case produces binary trees of
class hierarchies. Hence, each class has two sub-classes. In addition each sub-class
has one local attribute (that will not be pulled up) and one (non-local) attribute
inherited from its parent. The topmost class has only one local attribute and
one (non-local) attribute (cf. Fig. 5).
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Fig. 8. SOS vs SOS*: effect of disabling new attempts

The results of Fig. 7 show a clear superiority of SOS* in most cases. The only
exception is the model translation test case. We argue that there are two reasons.
First, SOS* allows to contextualise some reconfigurations at an arbitrary level of
the nesting hierarchy while SOS has to derive the reconfiguration at the top level
by lifting up silent rewrite steps. The second reason is that SOS* performs less
transformation attempts as it does not try rules that have unnecessary labels.

The reconfiguration test case is a perfect example for both issues. First, regard-
ing the free contextualisation of top SOS* rules we observe that in the considered
instances the rule can be applied at the bottom of the term, while the SOS rules
require in addition to lift the application of such rule up to the root. In addition,
determining whether a transformation can be carried out can be determined by
the non-applicability of rules in the SOS* case, while in the SOS case requires to
perform many unsuccessful transformation attempts. In the model translation
both styles are essentially equivalent as the top rule must necessarily apply at
the top of the term representing the model and after transformation the rules
are deactivated as the necessary patterns disappear.

2nd experiment. In order to validate the first hypothesis we have performed
experiments where safe components do not accept reconfigurations. In addition
a component whose sub-components are safe becomes safe. This does not only
disable reconfigurations after a migration but also prevents reconfiguration at-
tempts. The results are depicted in Fig. 8 where it can be seen that now SOS
scales better than in the previous experiment (still SOS* outperforms it) since
the number of rewrite attempts for silent transitions is reduced (safe components
and their containment are not checked for reconfiguration).

3rd experiment. Another improvement of SOS* regards the top-down imposition
of labels in rewrite conditions. In order to validate the effect of top-down enact-
ing of transformations we have conducted further experiments with the model
reconfiguration test case with a different instance generator: now the root is a
normal component, the two sons of the root are an unsafe and a safe component
that contain a fixed number components, each able to change into safe plus any
status of a set of size n, the parameter of the generator. So, for n = 0, the com-
ponents to be migrated are able to change into safe, for n = 1 they are ready to
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Fig. 9. SOS vs SOS*: effect of increasing the number of enabled actions

change into safe and another status, and so on. The results of such experiment
are depicted in Fig. 9.

As expected the SOS* transformation is not affected as n increases. Indeed,
the SOS* transformation rules will call for a transformation into safe, while in
the SOS transformation all possible status changes will be attempted. As a result
the computational effort of SOS transformations blows up with the increase of n.

5.2 SPO vs SOS*

In this set of experiments we compare the SPO approach against the SOS* one.

1st experiment. We start with the first set of instance generators used in §5.1.
The results of Fig. 10 show that SOS* is superior in the reconfiguration test

case only. The situation can be roughly explained as follows: matching the mi-
gration rule consists on finding a subtree whose root is a component having two
subtrees: one having a unsafe component as root and one having a safe one as
root. In the SPO case the tree is not parsed: indeed we are given a graph and
have to check all possible subsets of nodes to see if they constitute indeed a tree.
Instead in the SOS* case the tree is already parsed (the parsing is a term of the
hierarchical representation) which enormously facilitates rule matching (recall
that matching amounts to subgraph isomorphism which is NP-complete). As a
consequence, the SPO transformation involves more unsuccessful rule attempts
and this is the main reason of the drastic difference in running time (and not in
number of effective rewrites).

In the rest of the test cases SPO performs better. This is particularly evident in
the refactoring test case where the performance of SOS* degenerates mainly due
to the lack of a smart transformation strategy. Indeed it can happen that a pull
up has to be attempted at some class every time one of the terms corresponding
to one of the subclasses changes. Clearly applying rules bottom up would result
in better results but this would require a cumbersome implementation.

We focus now on the transformation test case were we see that SPO performs
only slightly better. There are various reasons. First, the structure of the model
is rather flat. Indeed the hierarchy is limited to a fixed depth as packages contain
classes, classes contain only attributes and associations. So containment trees are
of depth 3. In addition, association pairs have to be lifted to the top level in the
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Fig. 10. SPO vs SOS* in reconfiguration (top), translation (middle), pullup (bottom)
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SOS* transformation since the transformation rule that translates them needs
them to be in a common context. This involves an overhead that makes SOS*
exhibit a worse performance.
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2nd experiment. In order to check the impact of such overhead we have per-
formed an additional experiment in which the instances have no associations at
all. Figure 11 shows the results where we see how SOS* offers the best perfor-
mance this time confirming our hypothesis.

6 Conclusion

We have presented an empirical evaluation of the performance of two transfor-
mation styles that are very popular in rule-based programming and specification.
For instance, in the process algebra community they essentially correspond to
the rule formats used for specifying reduction and transition label semantics.

We have focused on model transformations and as a result of our experience
we have obtained a set of hints that could be useful for future development of
model transformations (or other kind of rule-based specifications) in Maude or
to enhance the existing ones (e.g. [15]). We think that it might be worth to
investigate to which extent our experience can be exported to other rule-based
frameworks like CafeOBJ [16], Stratego [17] or XSLT [18] with a particular
attention to model transformation frameworks such as MOMENT2-MT [15],
ATL [19], Stratego/XT [20], and SiTra [21]. To this aim one should also clar-
ify the influence of Maude’s matching and rewriting strategies in the obtained
performances. The study could also be enlarged to other rule styles or alterna-
tive implementations of SOS in Maude (e.g. [22,23,24]). Particularly interesting
is [24] which includes a performance evaluation of operational semantics styles.
Another interesting aspect to be investigated is to understand if and how strat-
egy languages (c.f. [22]) or heuristics (c.f. [25]) can be exploited to appropriately
guide the model transformation process in the most convenient way.

It is worth to remark that the aim of the paper is not to compare the perfor-
mance of transformation tools as done in various works and competitions [26,27].
Rather we assume the point of view of a transformation programmer, which is
given a fixed rule-based tool and can only obtain performance gains by adopting
the appropriate programming style.

Even if we have focused fundamentally on deterministic transformations many
cases (e.g. reconfigurations) are inherently non-deterministic. This gives rise to
a state space of possible configurations, whose complexity and required compu-
tational effort is clearly influenced by the chosen rule style (evidenced as well by
experiments not presented here).
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Abstract. Consider an object-oriented model with a class diagram, and a set of
object sequence diagrams, each representing the design of object interactions for
a use case. This article discusses how such an OO design model can be automat-
ically transformed into a component-based model for the purpose of reusability,
maintenance, and more importantly, distributed and independent deployment. We
present the design and implementation of a tool that transforms an object-oriented
model to a component-based model, which are both formally defined in the rCOS
method of model driven design of component-based software, in an interactive,
stepwise manner. The transformation is designed using QVT Relations and im-
plemented as part of the rCOS CASE tool.

Keywords: Model-driven development, OO design model, sequence diagram,
component model, model transformation, QVT.

1 Introduction

In the rCOS [3, 12] model-driven design of component-based software, the model of
the requirements is represented in a component-based architecture. Each use case is
modeled as a component in the requirements model. The interface of the component
provides methods through which the actors of the use case interact with the compo-
nent. The functionality of each method m() of the interface is specified by pre- and
post-conditions m(){pre % post}, and the order of the interactions (called the use-case
protocol) between the actors and the component as a set of traces of method invocations,
graphically represented by a UML sequence diagram. One component may have a re-
quired interface through which it uses the provided methods of other components. The
linkages (dependency) between components forms a static component-based structure
modeled as a component diagram. The types of the variables of the components, i.e. its
objects and data, are modeled by a UML class diagram, that has a textual counterpart
specification in rCOS. Therefore the model of the component-based architecture of the
requirements consists of a model of the component-based static structure (graphically
represented as a UML component diagram), a class model (graphically a class dia-
gram), an interaction protocol (graphically a sequence diagram for each component),
and a specification of the data functionality of the interface methods.
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In the design, the functionality specification of the interface methods of each com-
ponent is then refined by decomposition and assignment of responsibilities to objects
of the component, obtaining an OO model of object interactions represented by an ob-
ject sequence diagram. This object sequence diagram refines the sequence diagram of
the component (use case). For the purpose of reusability, maintenance, and more im-
portantly, distributed and independent deployment (third party composition) [19], the
OO model is abstracted to a model of interactions of components, that is graphically
represented as a component sequence diagram defined in the UML profile for rCOS.

This paper presents the design and implementation of a tool for the transformation of
a model of object interaction to a model of component interaction. The tool requires user
interactions. In each step of interaction, the users decide which objects will be turned
into a component, then the tool automatically performs the model transformation. How-
ever, we need to define the criteria for the selection of objects to form a component as the
validity conditions of the selection. The tool automatically checks the validity, and the
transformation of the sequence diagram is carried out if selection passes the check. The
transformation also automatically and consistently transform the static structure and re-
active behavior (state machine diagram), obtaining a model of component-based design
architecture, that correctly refines the component-based architecture of the requirements.

Through a finite number of transformation steps with valid selection on the OO
model of each component in the model of requirements, the object sequence diagram
is transformed to a component sequence diagram in which the lifelines represent only
components. Also, a complete component diagram is generated with the interface proto-
cols as sets of traces and the reactive behavior modeled by state machine diagrams of the
components. The transformations of the OO design of all components thus, one by one,
obtain a correct refinement of the model of requirements architecture to a component-
based design architecture in which each component in the requirements is a composition
of a number of components.

The semantic correctness of the transformation and consistency among the different
resulting views (diagrams) can be reasoned about within the rCOS framework. The tool
is not only applicable in a top-down design process. If object-interaction models can be
obtained from packages (modules) of OO programs, the tool can be used to transform
OO programs to components, at least on the modeling level. An extension would be
required to transform existing source code within a transformation step.

The paper is organized as follows. We start in Section 2 to discuss the concepts of
rCOS model to facilitate the definition of the transformation. We present the major
principles of the transformation in Section 3, and describe the implementation of the
transformation tool. Section 4 shows how the transformation be applied to a case study.
Our conclusions and the related work of this paper are discussed in Section 5.

2 UML Profile of rCOS Models

rCOS provides a notation and an integrated semantic theory to support separation of
concerns and allows us to factor a system model into models of different viewpoints [3,
12]. The formal semantics and refinement calculus developed based on it are needed for
the development and use of tools for model verification and transformations. The aim of
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the development of rCOS tools is to support a component-based software development
process that is driven by automatic model transformations. The model transformations
implement semantic correctness preserving refinement relations between models at dif-
ferent level of abstraction. It is often the case that the models before and/or after a
transformation need to be verified or analyzed, and in that case verification and analysis
tools are invoked. The rCOS project focuses on tool development for model transfor-
mations, and this paper in particular is about the transformation from object-oriented
design models to component-based design models.

UML Profile [15] is a mechanism to support extending and customizing standard
UML. This mechanism is carried out by defining stereotypes, tagged values and ad-
ditional constraints. Through such a UML profile, rCOS models can be supported by
standard UML infrastructure and CASE tools, minimizing the effort to develop a new
tool, and meeting the requirements for standardization and interoperability.

The rCOS development process involves the following models:

1. The requirements model includes a component diagram, a conceptual class dia-
gram in which classes do not have methods, and a set of sequence diagrams. They
all have their formal rCOS textual counter parts. Also, each method of the provided
interface has a pre- and post-condition specification. The sequence diagrams are
component sequence diagrams in which the lifelines are components, and interac-
tions are inter-component interactions.

2. Each component in the requirements model go through an OO design phase and its
sequence diagram is refined into an object sequence diagram in which each lifeline
is an object, and interactions are intra-object interactions within the component.
The conceptual class diagram in the requirements model is also refined into a de-
sign class diagram in which methods for the intra-object interactions of the object
sequence diagrams are assigned to the classes.

3. Then each OO sequence diagram of a component in the previous stage is abstracted
to a component sequence diagram; thus the component is decomposed into a com-
position of a number of components. After the abstraction transformation is done
for all components of the requirements model, the component-diagram of the re-
quirements is refined to another component diagram with more hierarchical com-
ponents being introduced.

Note that the transformation described here is not limited to rCOS models—rather,
rCOS just prescribes the wellformedness of the input models, and the semantics of the
communication model that will be preserved through the transformation. We refer to
our publications [3,12] for detailed discussions. The rCOS class model is rather a UML
standard class model. In the rest of this section, we define the metamodels of rCOS
components and sequence diagrams.

2.1 The Metamodel of rCOS Components

The component model is an essential part of rCOS. Its metamodel is defined by a UML
profile diagram shown in Fig. 1, in where an element in the light yellow box represents a
stereotype of rCOS, and the ones in the dark yellow boxes are standard UML metamodel
elements. In the metamodel, an rCOS component model consists of:
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Fig. 1. The metamodel of rCOS component model

– ContractInterface: Extended from UML Interface, a contract interface provides an
interaction point for a component, and defines the static portion of a rCOS interface
contract. DesignOperations specify the static functionality of an operation. It is
defined as an rCOS design in the form of pre % post . An rCOS Field, which is
not shown in the figure explicitly, is implemented as a UML Property of a contract
interface. (For ease of layout of the diagram, the same ContractInterface element
appears twice in Fig. 1.)

– Protocol: A contract interface has a Protocol that specifies the traces of invocations
to the Operations of the Interface of the contract interface. A protocol contains a
StateMachine, a Collaboration and a set of CallEvents. A call event is an invocation
of an operation of the contract interface, resulting in the execution of the called
operation. Especially, here a Collaboration owns a UML Interaction defined as a
RCOSSequenceDiagram, whose metamodel is given in the next subsection.

– RCOSComponent: There are two kinds of components in rCOS, ServiceCom-
ponents and ProcessComponents. A service component, for short a component
here, provides services to the environments through its provided interfaces, and re-
quires services from other components through it required interfaces. rCOS defines
separate contracts for the provided interface and required interface of a compo-
nent. Thus, the metamodel defines one provided contract interface, and optionally
a required contract interface.

– We realize the connection between a component and its provided interface using
a UML InterfaceRealization. A UML Usage, a specialized Dependency relation-
ship, is used to link a required interface to its owner component. In addition, we
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Fig. 2. Metamodel of rCOS sequence diagram

define a stereotype Composition, which is also an extension of UML dependency,
to plug a provided interface of a component to a required interface of another com-
ponent (here, rCOS component operations do not translate naturally to UML com-
ponent composition). Furthermore, a component may be realized by a set of classes
through ComponentRealizations.

2.2 Metamodel of rCOS Sequence Diagrams

Fig. 2 shows the metamodel of rCOS sequence diagrams. It conforms to the interaction
metamodel provided by OMG [15]. In the metamodel, a UML Interaction contains a
number of Lifelines, and a set of Messages.

A message specifies a communication from a sender lifeline to a receiver lifeline.
It has a sendEvent and receiveEvent which express the MessageOccurrences along the
lifelines, appearing in pairs. A message occurrence represents the synchronous invoca-
tion of an operation. The BehaviorExecution (green segment of a lifeline in the later
diagrams) represents the duration of an operation, and plays no role in our models (yet
it is an artefact from the graphical editor).

rCOS has two kinds of sequence diagrams, object sequence diagrams and compo-
nent sequence diagrams. A lifeline may represent an actor, an object (of a particular
class), or a component. When a lifeline represents an object or a component, we call it
object lifeline or component lifeline. A CombinedFragment represents a nested block
that covers lifelines and their messages to express flow of control, such as an alternative
block (alt) or an iteration block (loop), with their attached boolean guard conditions.
Sequence diagrams here do not express recursion.

The two kinds of sequence diagrams are needed to combine both OO design and
component-based design in rCOS. The abstract stereotype RCOSSequenceDiagram
has subtypes of ObjectSequenceDiagram and ComponentSequenceDiagram, that
satisfy the following well-formed conditions, respectively.
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1. ObjectSequenceDiagram:
– There is one lifeline representing an Actor, and all other lifelines represent

objects or components.
– Messages are synchronous calls to an operation provided by the type of the

target lifeline, or a constructor/create messages.
– A message flow starts with a message from the actor to a single component,

from components to components or objects, or from objects to objects, but
never from objects to components.

Therefore, and object-sequence diagram can contain both component and object
lifelines, and thus also serves as an intermediate data structure for the transforma-
tions, until all objects have been transformed.

2. ComponentSequenceDiagram:
– One lifeline represents an Actor, and all other lifelines represent components.
– All receive events occur on the lifelines representing components.
– Each message is a method call to an operation defined in the provided interfaces

of the component represented by the target lifeline.
– There should be a composition relation between two component if there is a

message between them in a sequence diagram.
– No create messages exists in the diagram.

The static semantics, i.e. well-formedness of the rCOS sequence diagrams, including
the above conditions, is defined by a set of OCL rules in the rCOS CASE tool. These
rules are used to automatically check the well-formedness conditions and the structural
consistency of the UML model: for example, the object creation event on a lifeline must
precede all other events on the lifeline, and a fragment must include both the sender and
the receiver of any event occurring in the fragment.

rCOS also has a dynamic model represented by state diagrams. The metamodel of
state diagrams is largely the same as the labelled transition systems provided by stan-
dard UML state diagrams, where guarded transitions are again linked to interface meth-
ods. We leave the metamodel definition out of this paper.

3 Transformation from Object- to Component Sequence Diagrams

We now describe the interactive transformations from an object sequence diagram to a
component sequence diagram. The transformations start with an object sequence dia-
gram and a design class diagram. Through a number of steps of interactions between the
user and the tool, they generate a component diagram, a component sequence diagram,
and the protocols of the provided interface and required interface of each component in
the component diagram. In each step, the user selects a set of object lifelines that she
intends to make into a component. The tool will check the validity conditions for this
set to form a component. If the selection passes the check, the tool combines the se-
lected object lifelines into a component lifeline, adding a component to the component
diagram, and generates the protocols for the component. We describe the principles of
the selection and the validity of selection, as well as the generation of a component from
the selected lifelines below. As the UML metamodel especially for sequence diagrams
is quite verbose as shown in the previous section, we use an alternate, more concise
representation here (at the cost of not having established the formal correspondence
between the two levels).
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3.1 Selection of Object Lifelines

First, one object lifeline is designated as the controller object of the selection by the
user. The principles for picking such a control object not only depend on checkable
conditions of the object but also on design considerations of reusability, maintainabil-
ity, and organization of the system being modeled. The major checkable condition is
that this object should be a permanent object in the sequence diagram. This means it
should have existed before the start of the execution of the sequence diagram (speci-
fied by the precondition of the first message), and it will not be destroyed during the
execution (rCOS does not have destructor methods). This also includes software ob-
jects representing the control of physical devices, such as barcode readers, controllers
of printers, lights, and operating system objects, such as the system clock.

Then the selection of further objects should be made by the user with consideration
of the following conditions and principles:

1. any object lifeline that is a receive end of a creation event from a lifeline that is
already included in the selection must be selected,

2. the objects in the selection must be strongly connected, i.e. for any lifeline � in the
selection there is at least one message path from the controller object to �,

3. consider low coupling and high cohesion principle that the selected lifelines have
more intensive interaction with each other than with lifelines outside the selection.

4. lifelines that represent objects which will be deployed on different nodes of a dis-
tributed system should not be included in the same selection.

The first two conditions are must condition and can be easily checked, as discussed in
the next sub-section. The third condition is a desirable principle, and the fourth is a
platform dependent condition. The latter two can never lead to an inconsistent model,
but to a model that does not capture the intentions correctly, and a detailed discussion
of them is out the scope of the paper.

3.2 Validating the Lifeline Selection

Given an object sequence diagram D, we define some notations for the describing
the validation of a selection. We use D.lines to denote the set of all lifelines of D,
D.messages the set of messages, and a message is represented by m[�i, �j ] as an invo-
cation of m of �j from �i. Create-messages indicate constructor invocations.

Let D.selection ⊆ D.lines be a selection, and �c the designated controller object, and
define D.rest = D.lines−D.selection. Further, we define

IntraM = {m[�i, �j] : �i, �j ∈ D.selection} Messages among
the selected lifelines

InM = {m[�i, �j] : �i ∈ D.rest ∧ �j ∈ D.selection} Incoming messages
to selected lifelines

OutM = {m[�i, �j] : �i ∈ D.selection ∧ �j ∈ D.rest} Outgoing messages
from selected lifelines

OutsideM = {m[�i, �j] : �i, �j ∈ D.rest} Messages outside
the selected lifelines
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A lifeline � in sequence diagram D can be either an object lifeline, denoted by type(�) =
Class, or a component lifeline, denoted by type(�) = Component. Now we define the
conditions below for checking the validity of a selection.

1. All lifelines selected must be object lifelines

∀� ∈ D.selection · type(�) = Class

2. The controller object �c must be a permanent object. This is done by checking it is
not on the receive end of an object creation message.

∀� ∈ D.lines · (create[�, �c] �∈ D.messages)

3. The transformation starts with those lifelines that directly interact with the ac-
tor, then those directly receiving message from the lifelines that have been made
into component lifelines. Therefore any incoming message to the current selection
should be from either the actor or a component lifeline

∀m[�i, �j ] ∈ InM · (type(�i) = Actor ∨ type(�i) = Component)

4. Creation messages can only be sent between lifelines inside the selection or be-
tween objects outside the selection

∀�i, �j ∈ D.lines · (create[�i, �j] ∈ IntraM ∨ create[�i, �j] ∈ OutsideM)

5. Any incoming message to the selection is received either by the controller object
or by a lifeline which has a direct path of message from the controller object

∀m[�i, �j ] ∈ InM · (�j = �c ∨ ∃m[�c, �j ] ∈ IntraM)

6. The lifelines of the selection must be strongly connected, meaning that for any
selected lifeline �, there must be a path of messages from the controller object

m[�c, �1],m1[�1, �2], . . . ,mi[�i, �]

Notice that Conditions 4&6 are closure properties required of the section, and that the
initial object-sequence diagram of a use case in rCOS always has a use case controller
object that satisfies Conditions 2,3&5. Using induction on the number of lifelines, these
conditions all together ensures existence of a valid selection for any well-formed se-
quence diagram that contains object lifelines. Every OO sequence diagram can be trans-
lated into the trivial component sequence diagram which internalises all object lifelines
into the controller.

3.3 Generating a Component from Selected Lifelines

If the selection passes the validity checking, the transformation will be executed to
generate the target models, otherwise an error message is fed back to the tool user. The
transformation is specified in the QVT relational notation (see Section 3.4). For the
understandability to the formal specification community, we describe the specification
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in terms of the relation between the source model and the target model, similar to the
pre- and postcondition specification of a program.

Given a source sequence diagram D, that is an object sequence diagram, and a valid
selection D.selection, let D’ denote the target sequence diagram after one step of the
transformation. For a lifeline � in D (or D’), we use type(�, D) to denote the type of
the lifeline � in D (respectively type(�, D’) in D’). For a component lifeline � in D (or
D’), pIF denotes the provided interface of the component that � represents, and rIF the
required interface. We now describe the relation between D and D’ as the conjunction
of the following predicates.

1. The controller object �c in D is changed to a component lifeline in D’

�c ∈ D.selection ∧ type(�c, D) = Class
∧ �c ∈ D′.lines ∧ type(�c, D′) = Component

2. An incoming message to the selection in D becomes an invocation to the interface
methods of �c in D’

∀m[�i, �j ] ∈ InM · (m[�i, �c] ∈ D’.messages ∧m ∈ pIF(�c))

Notice that the order of the messages and fragments are not to be changed.
3. All the intra-object interactions in the selection in D are collapsed, more precisely

hidden inside the component �c

∀m[�i, �j ] ∈ IntraM · (�i, �j �∈ D’.lines ∧m[�i, �j ] �∈ D’.messages)

4. All the outgoing messages from the selection become sending messages from the
component that �c represents in D′, with the order and fragments preserved, and
they become the required methods of the component

∀m[�i, �j ] ∈ OutM · (m[�c, �j] ∈ D’.messages ∧m ∈ rIF(�c))

5. No lifelines and messages outside the selection are changed

∀m[�i, �j ] ∈ OutsideM · (m[�i, �j ] ∈ D’.messages)

From the definition of the resulting sequence diagram D’, its static counterparts, the
components can be defined. The change for the component diagram can be specified in
a similar way. The protocols of the provided interface pIF(�c) and the required interface
rIF(�c) of the newly constructed component �c in D’ will be generated.

Next, we give an intuition into how the relations defined above can be directly put to
use through QVT-Relations.

3.4 Implementation of the Transformation

The object sequence diagram to component sequence diagram transformation is imple-
mented through the QVT Relations language using the QVTR-XSLT tool we recently
developed [10]. The MOF 2.0 Query/View/Transformation (QVT) [14] is a model trans-
formation standard proposed by OMG. QVT has a hybrid declarative/imperative nature.
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<<Relation>>
ObjToComLifeline

{when=LifelineToCom(lfl,com);}

<<Domain>>
seq : Interaction

com : Component

name = "propnm"
xmi:id = "propid"

 : Property

name = "propnm"
xmi:id = "propid"

 : Property

<<Domain>>
tseq : Interaction

name = "lflnm"
xmi:id = "lflid"

 : Lifeline

name = "lflnm"
xmi:id = "lflid"

lfl : Lifeline

lifeline

ownedAttribute

represents

represents

lifeline

type

Fig. 3. An example of a QVTR relation

In its declarative language, called QVT Relations (QVT-R), a transformation is defined
as a set of relations between the elements of source metamodels and target metamodels.
QVT-R has both textual and graphical notations, and the graphical notation provides a
concise, intuitive way to specify transformations.

The QVTR-XSLT tool supports the graphical notation of QVT-R. It provides a graph-
ical editor in which a transformation can be specified using the graphical syntax, and
a code generator that automatically generates executable XSLT [21] programs for the
transformation. The tool supports in-place transformations so we can focus on defining
rules only for the parts of a model we want to change. Multiple input and output models
are also supported in the tool.

In the graphical notation, a relation defines how two object diagrams, called domain
patterns, relate to each other. Fig. 3 illustrates an example QVT relation in graphical
notation which specifies the generation of a component lifeline from an object lifeline.
Starting from the root object seq tagged with label &Domain', the source domain
pattern (left part) of the relation consists of a Lifeline lfl with its representing Property
under the seq. The target domain pattern (right part) has a similar structure. The patterns
are used for structural matching in the source- and target model, respectively.

When the relation is executed, the source domain pattern is searched in the source
model. If a match is found, the lifeline and the property are bound to instances of source
model elements. The target domain pattern of the relation acts as a template to create
objects and links in the target model. In this example, the target domain pattern creates a
lifeline object and a property object. Both objects own a name and an xmi:id attributes.
These two attributes get values from the corresponding model instances bound by the
source domain pattern. Moreover, the property object of the target model has now the
association type set to the component com, which is bound (and possible created) by
invoking relation LifelineToCom in the when clause. These clauses specify additional
matching conditions and can either refer to other relations, or OCL expressions.
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At the implementation level, a complete model consists of a UML model and a
DI (diagram interchange) [13] model. The former contains the abstract syntax infor-
mation that is described in Section 2, and it is stored in Eclipse Modeling Frame-
work (EMF) XMI format, which is supported by many UML CASE tools. The latter
contains the layout information in the form of UML 2.0 Diagram Interchange stan-
dard [13]. In fact, these two models are technically separate models and saved in differ-
ent XML files. When the UML model is modified by the transformation, the DI model
must be synchronously updated in order to correctly display the corresponding dia-
grams. The changes to the DI model are also specified using QVT-R, and transformed
by the QVTR-XSLT tool. The resulting diagrams for the case study are the result of
those transformations after minimal visual cleanup. The transformation is specified by
three transformation models. In total, they contain 105 relations, and 45 functions and
queries. About 6300 lines of XSLT code are generated for the implementation of the
transformation.

To support the rCOS methodology, we have developed a CASE tool [4] with graph-
ical interfaces for designing use cases, classes, component-, sequence- and state dia-
grams, and the syntactic consistency among these views can be checked. The tool is
implemented as an Eclipse-plugin on top of the Eclipse Graphical Modelling Frame-
work and TOPCASED [16]. We have integrated the XSLT programs of the transfor-
mation into the user interface of the tool. A user can select a group of lifelines from
the interface, and then the XSLT transformation programs are invoked by the tool with
these lifelines as parameters. If these lifelines are allowed to become a component,
the transformation is executed and the user interface will be automatically refreshed to
show the transformation results.

4 Case Study

The Common Component Modelling Example (CoCoME) [3, 17] describes a trading
system that is typically used in supermarkets. This case study deals with the various
business processes, including processing sales at a cash desk, handling payments, and
updating the inventory. The system maintains a catalog of product items, as well as the
amount of each item available. It also keeps the historical records of sales; each of them
consists of a number of line items, determined by the product item and the amount sold.

At the end of the object-oriented design stage, we get a design model which contains
a set of design class diagrams and object sequence diagrams. Fig. 4 shows a simpli-
fied version of the design class diagram for the CoCoME example, where the class
CashDesk is the control class. Fig. 5 depicts the object sequence diagram of use case
process sale, which describes the check out process: a customer takes the products she
wants to buy to a cash desk, the cashier records each product item, and finally the
customer makes the payment. Applying the transformations discussed in the previous
sections, we transform the object sequence diagram into an rCOS component sequence
diagram in a stepwise, incremental manner. Meanwhile the object model automatically
evolves to a component-based model.
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Fig. 4. The design class model of CoCoME

Fig. 5. The object sequence diagram of usecase process sale

The object sequence diagram of Fig. 5 consists of seven lifelines. The leftmost life-
line is the Actor, and followed by lifelines L CashDesk, L Sale, L LineItem, L Store,
L Item and L Pay, representing objects of class CashDesk, Sale, LineItem, Store, Item
and Payment, respectively. Based on our interpretation of the case study, we decide to
apply the transformation three times.
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Fig. 6. Select lifelines Fig. 7. Validation error message

The first step deals with the lifeline L CashDesk, which is directly interacting with
the actor. Since lifeline L Sale is created by L CashDesk, and L LineItem is created by
L Sale, they have to be in the same component. As shown in Fig. 6, we select these three
lifelines from the sequence diagram, set L CashDesk as the controller object (main life-
line in the figure), and transform them into a service component COM L CashDesk. The
component has a provided interface ConInter L CashDesk and a required interface RIn-
ter L CashDesk. The resulting sequence diagram is shown in Fig. 8, in which lifeline
L CashDesk now represents the new component, and lifelines L Sale and L LineItem,
along with their internal messages, are removed from the diagram.

As we mentioned before, the tool will check whether the selected lifelines can be
transformed to a component, and provides an error message if the selection is not valid.
For instance, if we choose lifelines L Sale, L Store and L Item to become a component,
the tool will display an error message, as shown in Fig. 7.

Fig. 8. The sequence diagram after the first transformation
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For the second transformation, we select the lifelines L Store and L Item from the
sequence diagram of Fig. 8, and indicate L Store as the controller object. Since class
Store is composed with class Item, the transformation is allowed, and the two lifelines
are transformed into a service component COM L Store.

As the result of the second transformation, the lifeline L Store now represents the
component COM L Store. Accordingly, the component diagram is changed, where the
provided interface ConInter L Store is plugged to the required interface RInter L Cash
Desk (we only show the final resulting component diagram later in Fig. 11).

For each generated component, we also generate an rCOS protocol, which consists
of a sequence diagram and a state diagram, for its provided interface. The protocol
for component COM L Store is shown in Figs. 9 & 10. The left part of the sequence
diagram in Fig. 9 specifies the interactions of the component with its environment (rep-
resented by a fresh actor), and the right part defines the interactions between the com-
ponent and its internal objects. We notice that a message originally sent from a non-
selected lifeline and received by another selected lifeline, such as the getPrice message
in Fig. 5, now becomes two messages. The first getPrice message is received by the
component COM L Store, and then delegated to the original receiving lifeline L Item
using the second getPrice message.

Fig. 9. Sequence diagram of COM L Store Fig. 10. State diagram of COM L Store

In the third transformation, we turn L Pay, the only object lifeline left, into compo-
nent COM L Pay. Thus we get the final component diagram shown in Fig. 11, which
depicts the relationships among the three components of the model. We obtain the final
component sequence diagram, in which all lifelines represent components, except the
one representing the actor (see Fig. 12), fulfilling the structural well-formedness rules
of component sequence models as discussed in Section 2.

Through applying the object sequence diagram to component sequence diagram
transformation three times, we have successfully developed the design model of Co-
CoME into a component model. The component model includes component sequence
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Fig. 11. Final component diagram of the CoCoME example

Fig. 12. Final rCOS component sequence diagram for usecase process sale

diagrams and component diagrams to define the relationship of components. Each com-
ponent has its provided/required interfaces, as well as a protocol, that consists of a se-
quence diagram and a state diagram, to define the behaviors of the component.

5 Conclusion

A major research objective of the rCOS method is to improve the scalability of seman-
tic correctness preserving refinement between models in model-driven software engi-
neering. The rCOS method promotes the idea that component-based software design
is driven by model transformations in the front end, and verification and analysis are
integrated through model transformations.

As nearly all existing component-based technologies are realized in object-oriented
technologies, most design processes start with an OO development process and then at
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the end of the process an OO design is directly implemented by using a component-
based technology, such .COM or .NET. It is often the case that an OO program is devel-
oped first and then it is transformed into component software. Our approach improve
this practice by allowing a component-based model of the requirements, and a seamless
combination of OO design and component-based design for each components in the re-
quirements. The combination is supported by the interactive transformations from OO
design to component-based design presented in this paper, in a stepwise and composi-
tional manner. This allows the object-oriented and component-based design patterns to
be used in the OO design and captured in the specification of the transformation.

In the tool implementation, the transformation is specified in a subset of the graphical
QVT Relations notation. The correct implementation of the interactive transformation
requires the definition of a UML profile of the abstract syntax of the rCOS model that
is presented in the paper. The QVT specification of the transformation is automatically
transformed to an executable XSLT program, that can be run through an Eclipse-plugin.
The presented technique and tool can be combined with reverse engineering techniques
for transformation of OO programs into component-based programs.

5.1 Related Work

As a natural step of model driven development, object-oriented models are further
evolved to component-based models to get the benefits of reusability, maintenance,
as well as distributed and independent deployment. Surveys of approaches and tech-
niques for identification reusable components from object-oriented models can be found
in [2,20]. Based on the principle of “high cohesion and low coupling”, researchers try to
cluster classes into components. The basic ideas are: calculate the strength of semantics
dependencies between classes and transform them into the form of weighted directional
graph, then cluster the graph using graph clustering or matrix analysis techniques [20].
Using clustering analysis, components with high cohesion and low coupling are ex-
pected to be obtained in order to reduce composition cost.

Particularly, since use cases are applied to describe the functionality of the system,
the work of [18] focuses on applying various clustering methods to cluster use cases
into several components. In [6], the static and dynamic relationships between classes
are used for clustering related classes in components, where static relationship mea-
sures the relationship strength, and dynamic relationship measures the frequency of
message exchange at runtime. COMO [9] proposed a method which measures inter-
class relationships in terms of create, retrieve, update and delete (CRUD) operations
of model elements. It uses dynamic coupling metric between objects to measure the
potential number of messages exchanged. All above approaches are based on clustering
algorithms, which makes them much different from our approach, where transforma-
tions are applied at the design stage by a human.

Identifying reusable components from object-oriented models was considered to be
one of the most difficult tasks in the software development process [6]. Most exist-
ing approaches just provide general guidelines for component identification. They lack
more precise criteria and methods [5]. Because of the complexity of source information
and the component model itself, it is not advisable for component designers to man-
ually develop component-based models from object-oriented models [20]. Alas, there
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are almost no (semi)-automatic tools to help designers in the development process [18].
The work of the paper makes a useful attempt to address this problem, and provide a
tool supporting.

Sequence diagrams have of course already been used informally in UML-based mod-
eling since their conception. Recently, [7] presents a rigorously defined variant called
“Life Sequence Charts” with tool support to use them for system design. The focus
there is however not on component modeling, but giving a formal semantics to sequence
charts for synthesis.

In [3], we have studied this top-down development process, carried out by hand,
for the CoCoME case study. Our process is motivated by an industrial CASE tool,
MASTERCRAFT [11]. There, the focus is on the design and refinement of the relational
method specifications using the rCOS language [8, 22].

5.2 Future Work

There are still many challenges in the automation of model transformations, especially
on the level of method specifications, such as applying the expert pattern in the object-
oriented design stage. It is not enough to only provide a library of transformations, but
more importantly, the tool should provide guiding information on which rule is to be
used [12]. Since our methodology (unsurprisingly) coincides with textbook-approaches
to design of OO- and component software, we hope that the tool can also become a
foundation for education in software engineering. It should guide the user through the
different stages with recommendations, e.g. where detail should be added to the model,
or where refinement is necessary. Based on metrics, the tool could also propose concrete
transformation parameters. It is also difficult to support consistent and correct reuse of
existing components when designing a new component. We will continue working in
this direction to overcome these challenges.

The rCOS Modeler that implements the transformations discussed here can be
downloaded together with examples from http://rcos.iist.unu.edu.
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Abstract. Dynamic reconfigurations increase the availability and the
reliability of component-based systems by allowing their architectures to
evolve at runtime. Recently we have proposed a temporal pattern logic,
called FTPL, to characterize the correct reconfigurations of component-
based systems under some temporal and architectural constraints.

As component-based architectures evolve at runtime, there is a need
to check these FTPL constraints on the fly, even if only a partial in-
formation is expected. Firstly, given a generic component-based model,
we review FTPL from a runtime verification point of view. To this end
we introduce a new four-valued logic, called RV-FTPL (Runtime Verifi-
cation for FTPL), characterizing the “potential” (un)satisfiability of the
architectural constraints in addition to the basic FTPL semantics. Po-
tential true and potential false values are chosen whenever an observed
behaviour has not yet lead to a violation or satisfiability of the prop-
erty under consideration. Secondly, we present a prototype developed to
check at runtime the satisfiability of RV-FTPL formulas when reconfig-
uring a Fractal component-based system. The feasability of a runtime
property enforcement is also shown. It consists in supervising on the
fly the reconfiguration execution against desired RV-FTPL properties.
The main contributions are illustrated on the example of a HTTP server
architecture.

1 Introduction

This paper deals with the formal specification and verification of dynamic recon-
figurations of component-based systems at runtime. Dynamic reconfigurations
increase the availability and the reliability of those systems by allowing their
architectures to evolve at runtime.

Dynamic reconfiguration of distributed applications is an active research
topic [1,2,21] motivated by practical distributed applications like, e.g., those
in Fractal [10] or OSGi1. In many recent works, the idea of using temporal logics
to manage applications at runtime has been explored [6,18,8,14].

1 http://www.osgi.org
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In [14], we have proposed a temporal pattern logic, called FTPL, to char-
acterize the correct reconfigurations of component-based systems under some
temporal and architectural constraints (1). We have also explained in [19], how
to reuse a generic formal model to check the component-based model consistency
through reconfigurations, and to ensure that dynamic reconfigurations satisfy ar-
chitectural and integrity constraints, invariants, and also temporal constraints
over (re)configuration sequences (2).
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As component-based architectures evolve at runtime, there is a need to eval-
uate the FTPL constraints on the fly, even if only a partial information can
be expected. Indeed, an FTPL property often cannot be evaluated to true or
false during the system execution. In addition, the reconfigurations change the
validity of FTPL constraints by modifying the component architecture. In this
paper, given a generic component-based model, we review FTPL from a runtime
verification point of view (3). To this end we introduce a new four-valued logic,
called RV-FTPL (Runtime Verification for FTPL), characterizing the “poten-
tial” (un)satisfiability of the architectural constraints in addition to the basic
FTPL semantics. Like in RV-LTL [8], potential true and potential false values
are chosen whenever an observed behaviour has not yet lead to a violation or
acceptance of the property under consideration.

We then integrate the runtime verification of temporal patterns into the Frac-
tal component model [10]. More precisely, we describe a prototype developed
to check at runtime—by reusing the FPath and FScript [12] tool supports—the
satisfiability of RV-FTPL formulas. This verification is performed when recon-
figurating a component-based system (4). More, the feasability of a runtime
property enforcement is also shown. It consists in supervising at runtime the re-
configuration execution in order to ensure that the RV-FTPL property of interest
is fulfilled (5): our 4-valued logic can help in guiding the reconfiguration process,
namely in choosing the next reconfiguration operations to be applied. The main
contributions are illustrated on the example of a HTTP server architecture.



Runtime Verification of Temporal Patterns 117

The remainder of the paper is organised as follows. After introducing a moti-
vating example in Sect. 2, we briefly recall, in Sects. 3 and 4, the considered archi-
tectural (re-)configuration model and the FTPL syntax and semantics. We then
define in Sect. 5 the runtime verification of FTPL (RV-FTPL) refining FTPL
semantics with potential true and potential false values. Section 6 describes a
prototype implementing the RV-FTPL verification, and its integration into the
Fractal framework. Section 7 explains how to enforce, at runtime, Fractal com-
ponent system reconfigurations against desired RV-FTPL properties. Finally,
Section 8 concludes before discussing related work.

2 Motivating Example

To motivate and to illustrate our approach, let us consider an example of an
HTTP server from [11]. The architecture of this server is displayed in Fig. 2.

The RequestReceiver component reads HTTP requests from the network
and transmits them to the RequestHandler component. In order to keep the
response time as short as possible, RequestHandler can either use a cache (with
the component CacheHandler) or directly transmit the request to the Request-
Dispatcher component. The number of requests (load) and the percentage of
similar requests (deviation) are two parameters defined for the RequestHandler
component:

– The CacheHandler component is used only if the number of similar HTTP
requests is high.

– The memorySize for the CacheHandler component must depend on the over-
all load of the server.

– The validityDuration of data in the cache must also depend on the overall
load of the server.

– The number of used file servers (like the FileServer1 and FileServer2 compo-
nents) used by RequestDispatcher depends on the overall load of the server.

HttpServer

httpRequest

RequestReceiver

request getHandler

RequestHandler
(deviation, load)

handler getDispatcher

getCache RequestDispatcher

dispatcher getServer

CacheHandler
(validityDuration,

memorySize)

cache

FileServer1

server1

FileServer2

server2

Fig. 2. HTTP Server architecture

We consider that the HTTP server can be reconfigured during the execution
by the following reconfiguration operations:
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1. AddCacheHandler and RemoveCacheHandler which are respectively used to
add and remove the CacheHandler component when the deviation value
increased/decreased around 50;

2. AddFileServer and removeFileServer which are respectively used to add and
remove the FileServer2 component;

3. MemorySizeUp and MemorySizeDown which are respectively used to increase
and to decrease the MemorySize value;

4. DurationValidityUp and DurationValidityDown to respectively increase and de-
crease the ValidityDuration value.

As an illustration, we specify the AddCacheHandler reconfiguration expressed in
the FScript language [12]. When the deviation value exceeds 50, the reconfigura-
tion consists in instantiating a CacheHandler component. Then, the component
is integrated into the architecture, and the binding with the required interface of
RequestHandler is established. Finally, the component CacheHandler is started.

1 action AddCacheHandler(root)
2 newCache = new("CacheHandler");
3 add($root , $newCache);
4 bind($root/child:: RequestHandler/interface::getcache , $newCache/

interface::cache);
5 start($newCache);

3 Architectural (Re-)Configuration Model

This section recalls the generic model for component-based architectures given
in [14] and inspired by the model in [20,21] for Fractal. Both models are graphs
allowing one to represent component-based architectures and reconfiguration
operations and to reason about them.

Component-based models must provide mechanisms for systems to be dynam-
ically adapted—through their reconfigurations—to their environments during
their lifetime. These dynamic reconfigurations may happen because of architec-
tural modifications specified in primitive operations. Notice that reconfigurations
are not the only manner to make an architecture evolve. The normal running
of different components also changes the architecture by modifying parameter
values or stopping components, for instance.

3.1 Component-Based Architectures

In general, the system configuration is the specific definition of the elements
that define or prescribe what a system is composed of. The architectural ele-
ments we consider (components, interfaces and parameters) are the core entities
of a component-based system and relations over them to express various links
between these basic architectural elements. We consider a graph-based represen-
tation illustrated by Fig. 3.
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stopped

started

Fig. 3. Architectural elements and relations between them

In our model, a configuration c is a tuple 〈Elem, Rel〉 where Elem is a set of
architectural elements, and Rel ⊆ Elem × Elem is a relation over architectural
elements.

The architectural elements of Elem are the core entities of a component-based
system:

– Components is a non-empty set of the core entities, i.e components;
– RequiredInterfaces and ProvidedInterfaces are defined to be subsets of

Interfaces. Their union is disjunctive;
– Parameters is a set of component parameters.

The architectural relation Rel then expresses various links between the previ-
ously mentioned architectural elements.

– InterfaceType is a total function that associates a type with each required
and provided interface;

– Provider is a total surjective function which gives the component having at
least a provided interface, whereas Requirer is only a total function;

– Contingency is a total function which indicates for each required interface
if it is mandatory or optional;

– Definer is a total function which gives the component of a considered pa-
rameter;

– Parent is a partial function linking sub-components to the corresponding
composite component. Composite components have no parameter, and a
sub-component must not be a composite including its parent component,
and so on;

– Binding is a partial function which connects together a provided interface
and a required one: a provided interface can be linked to only one required
interface, whereas a required interface can be the target of more than one
provided interface. Moreover, two linked interfaces do not belong to the
same component, but their corresponding instantiated components are sub-
components of the same composite component. The considered interfaces
must have the same interface type, and they have not yet been involved in
a delegation;
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– Delegate expresses delegation links. It is a partial bijection which associates
a provided (resp. required) interface of a sub-component with a provided
(resp. required) interface of its parent. Both interfaces must have the same
type, and they have not yet been involved in a binding;

– State is a total function which associates a value from {started, stopped}
with each instantiated component: a component can be started only if all
its mandatory required interfaces are bound or delegated;

– Last, V alue is a total function which gives the current value of a considered
parameter.

Complete and formal definitions can be found in [19].

Example 1. Figure 4 gives a graph-based representation of the example from
Sect. 2. In this figure, the architectural elements are depicted as boxes and
circles, whereas architectural relations are represented by arrows.

RequiredInterfaces

ProvidedInterfaces
Components

Parameters

PTypes

DelegateHttpServer

RequestReceiver

RequestHandler

FileServer1

FileServer2
load

deviation

CacheHandler

Integer
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validityDuration

ParamType

Server2

Server1

dispatcher

cache

handler

request

httpRequest

Provider

getServer

getDispatcher

getCache

getHandler

Interfaces

Requirer
RequestDispatcher

Binding

Definer

mandatory

optional Contingency

Parent

Fig. 4. Graph-based representation of the HTTP Server example

3.2 Dynamicity of Component Architectures

To support system evolution, some component models provide mechanisms to dy-
namically reconfigure the component-based architecture, during their execution.
These dynamic reconfigurations are then based on architectural modifications,
among the following primitive operations:

– instantiation/destruction of components;
– addition/removal of components;
– binding/unbinding of component interfaces;
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– starting/stopping components;
– setting parameter values of components;

or combinations of them. A component architecture may also evolve by modifying
parameter values or stopping components, like in the example.

Considering the component-based architecture model recalled in Sect. 3.1, a
reconfiguration action is modelled by a graph transformation operation adding
or removing nodes and/or arcs in the graph of the configuration. An evolu-
tion operation op transforms a configuration c = 〈Elem, Rel〉 into another
one c′ = 〈Elem′, Rel′〉. It is represented by a transition from c to c′, noticed
c

op→ c′. Among the evolution operations (running operations and reconfigura-
tions), we particularly focus on the reconfiguration ones, which are either the
above-mentioned primitive architectural operations or their compositions. The
remaining running operations are all represented by a generic operation, called
the run operation; it is also the case for sequences of running operations.

The evolution of a component architecture is defined by the transition system
〈C,Rrun,→〉 where:

– C = {c, c1, c2, . . .} is a set of configurations;
– Rrun = R∪ {run} is a finite set of evolution operations;
– → ⊆ C ×Rrun × C is the reconfiguration relation.

Given the model M = 〈C,Rrun,→〉, an evolution path (or a path for short)
σ of M is a (possibly infinite) sequence of configurations c0, c1, c2, . . . such that
∀i ≥ 0.∃ri ∈ Rrun.ci

ri→ ci+1 ∈→)).
We use σ(i) to denote the i-th configuration of a path σ. The notation σi

denotes the suffix path σ(i), σ(i + 1), . . ., and σj
i denotes the segment path

σ(i), σ(i + 1), σ(i + 2), ..., σ(j − 1), σ(j). The segment path is infinite in length
when the last state of the segment is repeated infinitely often. We write Σ to
denote the set of evolution paths, and Σf (⊆ Σ) for the set of finite paths.

run

c0 c1 c1' c2 c3 c3' c4 c5
Remove
CacheHandler

Add
CacheHandler

Memory
SizeUp run

Add
FileServer

Duration
ValidityUp

Fig. 5. Part of an evolution path of the HTTP server example

Example 2. A possible evolution path of the HTTP server is given in Fig. 5. In
this path,

– c0 is a configuration of the HTTP server without the CacheHandler nor
FileServer2 components;

– c1 is obtained from c0: the load value was changed following the running of
the RequestHandler component;

– c′1 is the same configuration as c1: Without the CacheHandler component,
the RemoveCacheHandler reconfiguration cannot terminate, it is then roll-
backed without any modification;
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– c2 is obtained from the configuration c1 by adding CacheHandler, following
the AddCacheHandler reconfiguration operation;

– c3 is the configuration c2 in which the memorySize value was increased;
– c′3 is the same configuration as c3: The result of the running is not observable;
– c4 is obtained from c3 by adding the FileServer2 component;
– c5 is like the configuration c6 but the durationValidity value was increased.

4 FTPL

In this section, we recall the syntax of the linear temporal logic for dynamic re-
configurations introduced in [14] and called FTPL. It allows characterizing the
correct behaviour of reconfiguration-based systems by using architectural invari-
ants and linear temporal logic patterns. FTPL has been inspired by proposals
in [15], and their temporal extensions for JML [24,9,17].

Let us first recall the FTPL syntax as presented in [14]. A configuration prop-
erty, denoted with conf , is a first order logic formula over sets and relational
operations on the primitive sets and over relations defined in Sect. 3.1. A trace
property, denoted with trace, is a temporal constraint on (a part of) the ex-
ecution of the dynamic reconfiguration model. Further, for a reconfiguration
operation ope, its ending is considered as an event.
event ::= ope terminates

| ope exceptional
| ope normal

trace ::= always conf
| eventually conf
| trace1 ∧ trace2
| trace1 ∨ trace2

temp ::= after event temp
| before event trace
| trace until event

The trace properties specify the constraints to ensure
on a sequence of reconfigurations. We mainly spec-
ify the always and eventually constraints which
respectively describe that a property has to be sat-
isfied by every configuration of the sequence for the
former, or by at least one configuration of the se-
quence for the latter.

Every temporal property concerns a part of the execution trace on which the
property should hold: it is specified with special keywords, like e.g., after, before
or until a particular event has happened.

The set of FTPL formulae is denoted with FTPL. The complete and detailed
semantics can be found in [14].

Example 3. Let us now illustrate the FTPL language on the example of the
HTTP server from Sect. 2. Notice that the reconfiguration AddCacheHandler
(resp. RemoveCacheHandler) adds (resp. removes) CacheHandler when the devi-
ation value is greater (resp. less) than 50:

Property 1 :
after RemoveCacheHandler terminates
(eventually deviation>50
until AddCacheHandler terminates)

The previous property specifies that the deviation value eventually becomes
greater than 50 between the two considered reconfigurations.
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5 Runtime Verification for FTPL: RV-FTPL

As component-based architectures evolve at runtime, there is a need to check
the FTPL constraints on the fly, even if only a partial information is expected.
Indeed, an FTPL property often cannot be evaluated to true or false during the
system execution, as only the history of the system is available and no specifica-
tion of its future evolution exists. In addition, as architectural reconfigurations
change the component architecture, they also change the values of FTPL con-
straints.

In this paper we review the FTPL semantics from a runtime verification point
of view. To this end we introduce a new four-valued logic, called RV-FTPL (Run-
time Verification for FTPL), characterizing the “potential” (un)satisfiability of
the architectural constraints in addition to the basic FTPL semantics. Intuitively,
potential true and potential false values are chosen whenever an observed be-
haviour has not yet lead to a violation or acceptance of the property under
consideration.

Let S be a set and R a relation over S×S. R is a pre-ordering iff it is reflexive
and transitive, and a partial ordering iff it is anti-symmetric in addition. For a
partial ordering R, the pair (S, R) is called a partially ordered set; it is sometimes
denoted S when the ordering is clear. A lattice is a partially ordered set (S, R)
where for each x, y ∈ S, there exists (i) a unique greatest lower bound, and (ii) a
unique least upper bound. A lattice is finite iff S is finite. Every finite lattice has
a well-defined unique least element, often called the minimum, and a well-defined
greatest element, often called the maximum.

More specifically, let B4 = {⊥,⊥p,�p,�} be a set where ⊥,� stand resp. for
false and true values where as ⊥p,�p stand resp. for potential false and potential
true values. We consider B4 together with the truth non-strict ordering relation
 satisfying ⊥  ⊥p  �p  �. On B4 we define the unary operation ¬ as
¬⊥ = �, ¬� = ⊥, ¬⊥p = �p, and ¬�p = ⊥p, and we define two binary
operations � and � as the minimum, respectively the maximum, interpreted
with respect to . Thus, (B4,) is a finite de Morgan lattice but not a Boolean
lattice.

Before defining the RV-FTPL semantics, let us recall that a configuration
property conf ∈ FTPL is valid on a configuration c = 〈Elem, Rel〉 when the
evaluation of conf on the configuration c = 〈Elem, Rel〉 is true, written [c |=
conf ] = �; otherwise, the property conf is not valid on c, written [c |= conf ] =
⊥.

Definition 1 (RV-FTPL Semantics). Let σn
0 ∈ Σf be a finite execution path

of the length n + 1. Given an FTPL property, its value on σn
0 is given by the

interpretation function [_ |= _]rv : Σf × FTPL → B4 defined as follows:

1. For the configuration properties and events:
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[σn
0 (i) |= conf ]rv =

{� if [σn
0 (i) |= conf ] = �

⊥ otherwise

[σn
0 (i) |= ope normal]rv =

⎧⎨
⎩

� if 0 < i � n ∧ σn
0 (i − 1) �= σn

0 (i)

∧ σn
0 (i − 1)

ope→ σn
0 (i) ∈→

⊥ otherwise

[σn
0 (i) |= ope exceptional]rv =

⎧⎨
⎩

� if 0 < i � n ∧ σn
0 (i − 1) = σn

0 (i)

∧ σn
0 (i − 1)

ope→ σn
0 (i) ∈→

⊥ otherwise

[σn
0 (i) |= ope terminates]rv =

{� if ope normal ∨ ope exceptional
⊥ otherwise

2. For the trace properties:

[σn
0 |= always conf ]rv =

{⊥ if ∃i.(0 � i � n ∧ [σn
0 (i) |= conf ]rv = ⊥)

�p otherwise

[σn
0 |= eventually conf ]rv =

{� if ∃i.(0 � i � n ∧ [σn
0 (i) |= conf ]rv = �)

⊥p otherwise
[σn

0 |= trace1 ∧ trace2]rv = [σn
0 |= trace1]rv 
 [σn

0 |= trace2]rv

[σn
0 |= trace1 ∨ trace2]rv = [σn

0 |= trace1]rv � [σn
0 |= trace2]rv

3. For the temporal properties:

[σn
0 |= after event temp]rv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�p if ∀i.(0 � i � n ∧ [σn
0 (i) |= event]rv = �

⇒ [σn
i |= temp]rv = �) ∨ ∀i.(0 < i � n

⇒ [σn
0 (i) |= event]rv = ⊥)

⊥ if ∃i.(0 � i � n ∧ [σn
0 (i) |= event]rv = �

∧ [σn
i |= temp]rv = ⊥)

⊥p if ∃i.(0 � i � n ∧ [σn
0 (i) |= event]rv = �

∧ [σn
i |= temp]rv = ⊥p)

[σn
0 |= before event trace]rv =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�p if ∀i.(0 < i � n ∧ [σn
0 (i) |= event]rv = �

⇒ [σi−1
0 |= trace]rv ∈ {�,�p}) ∨

∀i.(0 < i � n ⇒ [σn
0 (i) |= event]rv = ⊥)

⊥ if ∃i.(0 < i � n ∧ [σn
0 (i) |= event]rv = �

∧ [σi−1
0 |= trace]rv ∈ {⊥,⊥p})

[σn
0 |= trace until event]rv =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�p if ∀i.(0 < i � n ∧ [σn
0 (i) |= event]rv = �

⇒ [σi−1
0 |= trace]rv ∈ {�,�p})

⊥ if ([σn
0 |= trace]rv = ⊥) ∨

(∃i.(0 < i � n ∧ [σn
0 (i) |= event]rv = �

∧ [σi−1
0 |= trace]rv = ⊥p)

⊥p if ∀i.(0 < i � n ⇒ [σn
0 (i) |= event]rv = ⊥

Let us now comment and illustrate the above definition. The goal of our
work is to be able to detect when the FTPL properties become false. So, for
configuration properties and events, the interpretation does only depend on the
fact that considered configurations actually belong to the path σn

0 . For events,
the basic FTPL semantics is reflected in the interpretation function.

For trace properties the intuition is as follows.

– The always conf property is not satisfied on σn
0 if there is a configuration

of σn
0 which does not satisfy conf . For the other cases, the property is eval-

uated to be ”potentially true”. Indeed, if the execution terminated in σn
0 , the

property would be satisfied.
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– The eventually conf property is satisfied on σn
0 if at least one configuration

of σn
0 satisfies conf . In the other cases, the property is evaluated to be

”potentially false”. Indeed, if the execution terminated in σn
0 , the property

would be violated.

Example 4. Figure 6 displays an evolution path of the HTTP example. The next
array illustrates the evaluation of two trace properties on each configuration,
depending on the chosen either FTPL or RV-FTPL semantics:

...
c0 c1 c2 c3 c4 c5 c6 c7

Add
CacheHandler

Remove
CacheHandler

... ... ... ...

deviation
< 50

deviation
< 50

deviation
< 50

deviation
< 50

deviation
< 50

deviation
> 50

deviation
> 50

deviation
> 50

Fig. 6. Part of an evolution path of the HTTP server example

c0 c1 c2 c3 c4 c5 c6 c7 . . .

always deviation < 50
FTPL ? ? ? ? ? ⊥ ⊥ ⊥ ⊥
RV-FTPL �p �p �p �p �p ⊥ ⊥ ⊥ ⊥

eventually deviation > 50
FTPL ? ? ? ? ? � � � �
RV-FTPL ⊥p ⊥p ⊥p ⊥p ⊥p � � � �

Considering the FTPL semantics, we cannot conclude about the interpretation
of the considered properties, until we reach the configuration c5. On the contrary,
in RV-FTPL we say at the beginning that the always property is expected to
be true in the future, until we reach c5 where it is false.

The intuition of the definition of temporal properties is as follows:

– The value of the after event temp property is potentially true either if the
event event does not occur in all considered configurations, or if the occur-
rence of the event event on a configuration implies that the temp temporal
property is evaluated to true on the suffix of the path starting at this con-
figuration. The after event temp property is evaluated to false if there is a
configuration σn

0 (i) of σn
0 where the event event happens and temp is eval-

uated to false on the suffix σn
i . The after event temp property is evaluated

to potentially false if there is a configuration σn
0 (i) of σn

0 where the event
event occurs, and temp is evaluated to potentially false on the suffix σn

i .
– The value of the before event trace property is potentially true if either

the event event does not occur in all considered configurations, or if trace
is evaluated either to true or to potentially true on the prefix of the path
where the event event occurs. The before event trace property is evaluated
to false if there is a configuration σn

0 (i) of σn
0 where event happens, and

trace is evaluated either to false or to potentially false on the path ending
at σn

0 (i), non including this configuration.
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– The value of the trace until event property is potentially true if the trace
property is evaluated either to true or to potentially true on the prefix of
the path where there is a configuration satisfying event, the prefix being
without that configuration. The trace until event property is evaluated to
false either if there is a configuration σn

0 (i) of σn
0 where event happens, and

if trace is either false or potentially false on the path ending at σn
0 (i) but

non-including it; or if σn
0 does not satisfy the trace property when event

does not happen on σn
0 . The property is potentially false if the event event

does not occur in all considered configurations.

Example 5. Let us again consider the path in Fig. 6 and the FTPL property 1

after RemoveCacheHandler terminates
(eventually deviation>50
until AddCacheHandler terminates)

explained in Example 3. The following array displays the value of the considered
property interpreted respectively in FTPL and in RV-FTPL:

c0 c1 c2 c3 c4 c5 c6 c7 . . .

Property 1 FTPL ? ? ? ? ? ? � � �
RV-FTPL �p �p ⊥p ⊥p ⊥p ⊥p �p �p �p

From the FTPL semantics point of view, we cannot conclude about the validity
of the property until we reach the configuration c6. Using the RV-FTPL se-
mantics, the property interpretation is potential true before the reconfiguration
RemoveCacheHandler is executed. Then, the property value becomes potential
false until the deviation becomes greater than 50 on c5; as a consequence the
property value becomes potentially true because of partial information.

6 Using RV-FTPL Properties to Check Reconfigurations

The proposals of the paper have been applied to the Fractal component model.
Thsi section presents the prototype we have been developing to check at runtime
the satisfiability of RV-FTPL formulas on Fractal component-based systems. To
this end, it exploits and adapts the FPath and FScript [12] tool supports for
Fractal to evaluate the desired RV-FTPL formulas after each reconfiguration
operation.

6.1 Overview of Fractal, FPath and FScript

The Fractal model is a hierarchical and reflective component model intended
to implement, deploy and manage software systems [10]. A Fractal component
is both a design and a runtime entity that consists of a unit of encapsulation,
composition and configuration. A component is wrapped in a membrane which
can show and control a casually connected representation of its encapsulated
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content. This content is either directly an implementation in case of a primitive
component, or sub-components for composite components.

In order to control the internal structure of a component at runtime, the
Fractal model also defines standard interfaces named controllers. In addition,
the Fractal model can be extended thanks to new controllers which allow the
user to integrate new features.

FPath [12] is a domain-specific language inspired by the XPath language that
provides a notation and introspection mechanisms to navigate inside Fractal
architectures. FPath expressions use the properties of components (e.g. the value
of a component attribute or the state of a component) or architectural relations
between components (e.g. the subcomponents of a composite component) to
express queries about Fractal architectures.

FScript [12] is a language that allows the definition of reconfigurations of
Fractal architectures. FScript integrates FPath seamlessly in its syntax, FPath
queries being used to select the elements to reconfigure. To ensure the reliability
of its reconfigurations, FScript considers them as transactions and integrates a
back-end that implements this semantics on top of the Fractal model.

6.2 Integrating RV-FTPL Property Verification into Fractal

To check RV-FTPL properties at runtime, we have implemented two Fractal
controllers which observe the Fractal component model: our first controller,
called the reconfiguration controller, permits capturing reconfiguration invoca-
tions, whereas the second controller, called the RV-FTPL controller, handles
RV-FTPL formulas.

c0 c1
r0

c1
r2

c2
r1FTPL

properties

Fractal Architecture

Properties
fulfilled?

(1)

(2)

(3)

(4)

FScript 
Reconfigurations

(5)

reconfiguration 
controller

RV-FTPL 
controller

Fig. 7. RV-FTPL runtime verification principle

Figure 7 explains how both controllers are used to evaluate properties of
interest. When a reconfiguration is invoked (1), the reconfiguration controller
executes the reconfiguration (2)—specified in a FScript file—on the considered
component-based architecture. It then invokes the RV-FTPL controller (3) to
evaluate the RV-FTPL properties from a file (4) where those properties are
specified. The RV-FTPL controller uses the instantiated component model (5)
and executes queries over it: to post up the property evaluation result to the
user, the RV-FTPL controller parses the property of interest and uses a visitor
to evaluate it on the current configuration using FPath. In the case of the future
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patterns containing the after keyword, the visitor waits for the reconfiguration
event before evaluating the temporal part of the property. On the contrary, for
the past patterns, i.e., the RV-FTPL properties without the after keyword, the
trace part of the property is evaluated before the reconfiguration event appears.
This avoids us from saving all the previous configurations needed to evaluate the
property once the event appears.

Fig. 8. Running prototype

The above verification procedure has been integrated into the EVA4Fractal
tool previously described in [13]. Figure 8 shows our prototype in action: a
Fractal implementation of the HTTP server example is running and the FTPL
property

after RemoveCacheHandler terminates
(eventually deviation>50
until AddCacheHandler terminates)

is evaluated at runtime after each reconfiguration execution. The reader can
notice that after the execution of the reconfiguration RemoveCacheHandler, the
value of the property is potential false. If the value of deviation raises above
50, when the reconfiguration AddCacheHandler is applied, the property value
becomes true.

7 Using RV-FTPL Properties to Enforce Reconfigurations

As explained in Sect. 1, one of the main motivations of the present work is to use
the RV-FTPL property evaluation to control the execution of reconfigurations.
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Actually, for some kind of systems like critical systems or embedded systems, the
behaviour where the property evaluation becomes false might be not acceptable.
To this end, we can use potential true or potential false values to enforce the
reconfigurations.

c0 c1
r0

c1
r2

c2
r1FTPL

properties

Fractal Architecture
FScript 

Reconfigurations

Reconfiguration
choice

Runtime 
verification

(1)

(2)

(3)

Fig. 9. RV-FTPL runtime enforcement principle

In this section, we show the capability of our monitor to enforce the
component-based system reconfigurations by using the interpretation of desired
properties. The principle is illustrated in Fig. 9. While interpreting RV-FTPL
properties (1), the potential true or potential false values can be used to guide
the choice of the next reconfiguration operation (2) which will be applied to the
component architecture (3). Let us give an intuition about our approach:

1. Let us consider the RV-FTPL property 3 valued ⊥p on the current architec-
tural configuration c5 from the path given in Fig. 6;

2. We are looking for enabling the reconfiguration operations that make the
component-architecture evolve to a new architectural configuration where
the RV-FTPL property will be enforced;

3. The reconfiguration manager chooses the reconfiguration AddCacheHandler
to be applied;

4. The property will be enforced: it is valued to �p on the new configuration c6.

In Fractal an obvious manner to implement the reconfiguration choice procedure
is to reuse the transaction mechanism of FScript [12], allowing the system to
rollback to a consistent state when a reconfiguration operation failed. We propose
to exploit this mechanism to evaluate the RV-FTPL property on the possible
target configurations, until a reconfiguration operation where the system benefits
enforcement in the best possible way, is found.

We display in Fig. 10 the execution scenario using this mechanism. For each
FScript reconfiguration, a transaction is started and the considered reconfigu-
ration operation is executed. Then, the RV-FTPL property is evaluated on the
reached configuration. If the interpretation value is true, there is no need to
consider remaining reconfiguration operations, so the transaction is committed
and the execution goes on. For other interpretation values, the transaction is
rollbacked and the results of the reconfiguration valuation are recorded. When
all the enable reconfigurations are explored, the recorded results are used to
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Begin
Transaction

Execute FScript
Reconfiguration

Verify RV-FTPL 
property 

Rollback
Transaction

Save Results

Otherwise

Commit
Transaction

True

Choose one 
configuration 
among results

Execute FScript 
Reconfiguration

For each FScript configuration

Fig. 10. Enforcement scenario

choose the most appropriate reconfiguration operation which is then applied to
the system. To help this choice, adaptation policies [13,11] defined by the user, or
distributed controllers [18] for knowledge-based priority properties, or runtime
enforcement monitors [16] built automatically for several enforcable properties,
can be used.

If for every reconfiguration operation the property of interest is violated, the
execution should be either stopped or continued with special recovery operations,
and the user should be informed. This reaction clearly depends on the system
features (safety critical systems, embedded systems, etc.). Again, adaptation
policies can be used to handle events associated with the property violation on
the one hand, and to specify special recovery reconfiguration operations, on the
other hand.

8 Conclusion

As component-based architectures evolve at runtime, this paper pays particu-
lar attention to checking—on the fly—temporal and architectural constraints
expressed with a linear time temporal logic over (re)configuration sequences,
FTPL [14]. Unfortunately, an FTPL property often cannot be evaluated to true
or false during the system execution. Indeed, only a partial information about the
system evolution is available: only a (finite) history of the system state is known,
and no specification about its future evolutions exists. To remedy this problem,
we have reviewed the FTPL semantics from a runtime verification point of view.
Inspired by proposals in [8], we have introduced a new four-valued logic, called
RV-FTPL, characterizing the “potential” (un)satisfiability of the architectural
FTPL constraints in addition to the basic FTPL semantics.

The paper has also reported on the prototype we have been developing to
verify and enforce RV-FTPL properties. Given a Fractal component-based sys-
tem [10] and some desired temporal and archtectural FTPL contraints, to make
it possible the system to reconfigure, the prototype interprets RV-FTPL formu-
las at runtime. The feasability of a runtime property enforcement has also been
discussed: the proposed 4-valued logic not only captures information absence,
but also helps the monitor in guiding the reconfiguration process, namely in
choosing the next reconfiguration operations to be applied.
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Related Work.
In the context of dynamic reconfigurations, ArchJava [3] gives means to recon-
figure Java architectures, and the ArchJava language guarantees communication
integrity at runtime. Barringer and al. give a temporal logic based framework to
reason about the evolution of systems [5]. In [4], a temporal logic is proposed to
specify and verify properties on graph transformation systems.

In the Fractal-based framework, the work in [21] has defined integrity con-
straints on a graph-based representation of Fractal, to specify the reliabil-
ity of component-based systems. Unlike [21], our model lays down only gen-
eral architectural constraints, thus providing an operational semantics to other
component-based systems, to their refinements and property preservation issues.
On the integrity constraints side, the FTPL logic allows specifying architectural
constraints more complex than architectural invariants in [12]. Let us remark
that architectural invariants as presented in [12] can be handled within the FTPL
framework by using always cp, where cp represents the considered architectural
invariant.

Among other applications, our proposals aim at a monitoring of component-
based systems. In [6], Basin and al. have shown the feasibility of monitoring tem-
poral safety properties (and, more recently, security properties) using a runtime
monitoring approach for metric First-order temporal logic (MFOTL). In [23,22],
monitors are used to check some policies at runtime, and to enforce the pro-
gram to evolve correctly by applying reconfigurations. A similar approach based
on a three-valued variant of LTL has been proposed in [7]. Contrary to those
works, we focus on temporal and architectural constraints to make it possible
component-based systems to reconfigure at runtime.

In [8], a three-valued and a four-valued LTL are studied from a logic point
of view. In [16], the authors have studied the class of enforceable properties
from the point of view of the well-known temporal property hierarchies. The
automatic monitor generation for enforceable properties has also been proposed.
In this direction, it would be interesting and important to characterize the FTPL
temporal patterns wrt. the class of enforceable properties. For non-enforceable
temporal patterns, we intend to exploit event-based adaptation policies to make
the system behave and reconfigure according to a given recovery policy when
the desired property is violated.
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Abstract. Orchestrations are systems deployed on the Internet where
there is a central component (called orchestrator) coordinating other
components (called Web services), pre-existing to the orchestration de-
sign phase. Web services are made available through repositories on the
Internet to orchestration designers. Service discovery refers to the activ-
ity of identifying Web services offered by third parties. We propose an
approach to discover Web services by taking into account the intended
behaviors of Web services as they can be inferred from the orchestrator
specifications. Web services are tested with respect to those behaviors to
decide whether or not they can be selected. Specifications of orchestra-
tors are Timed Input/Output Symbolic Transition Systems. Web service
intended behaviors are elicited by means of symbolic execution and pro-
jection techniques. Those behaviors can be used as test purposes for our
timed symbolic conformance testing algorithm.

Keywords: Web service discovery, orchestrations, conformance testing,
timed testing, symbolic execution.

1 Introduction

As explained in [18], the World Wide Web has now evolved from a place where
we share and find data to a place where we share and find dedicated functionali-
ties. Such functionalities, called Web services, can be assembled to build systems
whose particularity is that basic functional units (i.e. Web services) are devel-
oped and offered by different parties and are physically stored in different places
on the Internet. The process of building systems by combining Web services is
known as Web service composition. Composing Web services may be achieved
by means of several architectural approaches. Here we focus on orchestration
architectures [14,19]. An orchestration is a Web service system containing a con-
troller component, called an orchestrator which serves as an interface for users
and is responsible for coordinating Web services invocations accordingly to the
user needs. In order to build orchestrations, the first step is to find required Web
services: this activity is often referenced as (Web) Service Discovery [20]. Web
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services must be published and accessible on some known repositories, and must
be associated with descriptions allowing the designer to select them. Those de-
scriptions contain usually only functional aspects (what are the offered function-
alities), and pieces of information may be syntactic (e.g. what is the interface of
a service in terms of offered methods for example). As discussed in [20], such de-
scriptions ground discovery procedures by matching orchestration requirements
with descriptions of candidate Web services.

In this paper we aim at completing those existing matching procedures mainly
based on static analysis by techniques exploiting Web service executions. Pro-
vided that the system designer produces a behavioral description of the or-
chestrator before the Web service selection phase, we aim at taking benefits of
the knowledge of the orchestrator to select Web services. Since the orchestrator
is responsible for Web service invocations, orchestrator executions mainly con-
tain sequences of Web service invocations conditioned by Web service reactions.
Therefore an orchestrator greatly constrains the set of acceptable behaviors (i.e.
sequences of emissions/receptions that are called traces) of Web services to be
selected. Our proposal is to use that set of acceptable traces to guide a selection
procedure based on testing techniques.

Technically, orchestrators are specified by means of Timed Input/Output
Symbolic Transition Systems (TIOSTS), that we define as an extension of In-
put/Output Symbolic Transition Systems [8, 12] to deal with timing issues. Re-
gardless of symbolic representations of data, TIOSTS can be seen as a sub class
of Timed Automata [1] with one clock per transition. Taking time into account
in our work is mandatory because defining timers and reasoning about them is
very common in orchestrator descriptions. Typically, one of the most well known
ways to describe orchestrators is the WS-BPEL specification language [9]. Oper-
ations that can be made on clocks in TIOSTS reflect the common usage of timers
in WS-BPEL, which are used to guard orchestrator reactions, typically in situ-
ations when some Web service does not react to stimuli of the orchestrator. [3]
provides a systematic and detailed translation of the WS-BPEL language to-
wards a particular family of TIOSTS. Advantages of using TIOSTS are twofold:
first, we can take benefits of the formal testing framework that we previously
defined [8, 10, 13] by extending it to timing issues. Secondly, we use symbolic
execution techniques to analyze the orchestrator description: from a tree-like
structure symbolically representing all possible executions of the orchestrator
and by means of projection and mirroring techniques, we transform those be-
haviors into intended Web service behaviors. From those behaviors we extract
test purposes to be used in a testing algorithm. A Web service conforming to
the test purpose extracted from the orchestrator becomes a good candidate to
be integrated in the orchestration. The testing algorithm is a timed extension
of the one we defined in [13] and further adapted to the test of orchestrators in
context in [8].

Using formal techniques to evaluate the compatibilty of Web services (in par-
ticular relatively to timing aspects) in Web service systems has been addressed
several times, but very often ( [6, 7, 15, 16]) based on verification techniques



Timed Conformance Testing for Orchestrated Service Discovery 135

applied on (parts of) system models (including Web service models or communi-
cation protocol models). On the contrary, we use testing techniques to discover
Web services for which no model is supposed to be available (we only have
knowledge of their interface to send them inputs and receive their outputs). Our
proposal is close to the one given in [2] where the goal is to evaluate confor-
mance of Web services to orchestrators thanks to testing techniques. While they
use model-checking algorithms applied to testing without considering timing is-
sues, we use symbolic execution techniques within a timed setting.

2 Timed Input Output Symbolic Transition Systems

2.1 Syntax

TIOSTS are symbolic communicating automata introducing constraints over
execution delays of transitions. We represent data by means of classical typed
equational logic. A data type signature is a couple Ω = (S, Op) where S is a
set of types and Op is a set of operations, each one provided with a profile
s1 · · · sn−1 → sn (for i ≤ n, si ∈ S). A set of S-typed variables is a set
V of the form

∐
s∈S

Vs. The set of Ω-terms with variables in V is denoted as

TΩ(V ) =
⋃
s∈S

TΩ(V )s and is inductively defined as usual over Op and V . TΩ(∅)

is simply denoted TΩ. A Ω-substitution is a function σ : V → TΩ(V ) preserving
types. In the following, we note TΩ(V )V the set of all Ω-substitutions of the
variables in V . Any substitution σ may be canonically extended to terms. The
identity Ω-substitution over the variables in V , IdV , is defined as IdV (v) = v
for all v ∈ V . The set SenΩ(V ) of all typed equational Ω-formulas contains the
truth values true, false and all formulas built using the equality predicates t = t′

for t, t′ ∈ TΩ(V )s, and the usual connectives ¬,∨,∧. In the sequel, we suppose
that a signature Ω = (S, Op) is given. S necessarily contains a distinguished
type name time, provided with constant symbols in the so-called set of delays
D ⊆ R+

∗ (the set of strictly positive real numbers) and also provided with:
the constant symbols 0 and ∞ :→ time representing the first non countable
ordinal, and with the usual arithmetic operators as +, −, <, ≤ . . .. Moreover D
is supposed to be stable under addition, i.e. for any d, d′ ∈ D we have d+d′ ∈ D
and under subtraction, i.e. for any d, d′ ∈ D with d < d′, then d′ − d ∈ D.

TIOSTS are then defined over so-called TIOSTS signatures. A TIOSTS sig-
nature Σ is a tuple (V , C), where V is a set of data variables, and C is a set of
communication channels. A transition of a TIOSTS is a tuple composed of: a
source state, a minimal and a maximal delay for the transition firing, a formula
called a guard over variables defining a constraint on variable interpretations for
the transition firing, a communication action, an affectation on data variables
to update variable assignments, and a target state. Communication actions are
receptions (inputs, denoted by ?) or emissions (outputs, denoted by !) through
channels of C, or the unobservable communication action (denoted τ). The set
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of communication actions over Σ is defined as Act(Σ) = I(Σ) ∪ O(Σ) ∪ {τ},
where: I(Σ) = {c?x | x ∈ V , c ∈ C} and O(Σ) = {c!t | t ∈ TΩ(V), c ∈ C}.

Definition 1 (TIOSTS). Let Σ = (V , C) be a TIOSTS signature. A TIOSTS
over Σ is G = (Q, init, T r) where: Q is a set of state names, init ∈ Q is the
initial state and Tr ⊆ Q×(D∪{0})×(D∪{∞})×SenΩ(V)×Act(Σ)×TΩ(V)V×Q
is a set of transitions.

In the sequel, for any TIOSTS G = (Q, init, T r) over Σ, we note QG , initG , TrG ,
and LG respectively for Q, init, Tr, and Act(Σ). For any transition tr ∈ TrG
of the form (q, δmin, δmax, ψ, act, ρ, q′), δmin is intuitively the minimum delay to
wait before the transition can be fired, and δmax is the maximum delay beyond
which the transition can not be fired anymore. If δmax is ∞, there is no upper
delay for the transition firing. The class of constraints that can be expressed
concerning time in TIOSTS is a sub class of those that can be expressed in timed
automata: constraints characterizing an interval of possible delays before an
action occurrence. Reasoning with that simplified class of constraints simplify the
rules defining the algorithm given in Section 4. We use the notations source(tr),
δmin(tr), δmax(tr), guard(tr), act(tr), sub(tr), and target(tr) in order to refer
respectively to, q, δmin, δmax, ψ , act, ρ, and q′.

In the sequel, as in [11, 23], we only consider so-called strongly responsive
TIOSTS that do not contain an infinite sequence of transitions whose actions
are in O(Σ) ∪ {τ}.

q0q1

q2

q3

q4

u?dates
u?price

conf := true

conf = true
w!dates
w!price

conf = false
u!′not reserved′

δmin = 0
δmax = 60
w?rstat

w?rdates
w?rpriceδmin = 60

δmax = 120
u!′timeout′

β

α

rstat = reserved
u!′reserved′

u?conf

α

w → B

rstat = ′noRooms′

∨(rstat = ′option′

∧rdates 	= dates)
u!′not reserved′

w → L

rstat = ′noRooms′

∨(rstat = ′option′

∧rprice 	= price)
u!′not reserved′

β

w → B

rstat = ′option′

∧rdates = dates
u!rprice

price := rprice

w → L

rstat = ′option′

∧rprice = price
u!rdates

dates := rdates

Fig. 1. O: TIOSTS for the Business (B) and Low Cost (L) Hotel Reservation examples

Example 1. Figure 1 depicts the Business (B) and Low Cost (L) Hotel Reserva-
tion examples. They consist of two simplified versions of an orchestration used
to reserve a room in a hotel for some given prices and dates, giving priority
to dates while varying the price for the Business version, and giving priority
to the price while varying the dates for the Low Cost version. Since they are
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very similar, we abusively represent them in the same figure. The only differ-
ence consists in transitions labeled with α and β, for which we provide the
guards, communication actions and affectations in the table. Data variables V are
{dates, price, conf, rstat, rdates, rprice}. Communication channels C are {u, w}
(u to communicate with the user, and w with the Hotel Web service). In both
cases, the orchestrator (O) receives the desired dates and price from the user
(transition1 q0 → q1) and tries to find a room by using the Hotel Web service
(transition q1 → q2). The answer from the Hotel Web service must arrive before
60 seconds, else a timeout error message is sent to the user (transition q2 → q0).
This answer can be: (1) ′reserved′, if a room was found and reserved for those
dates and price, (2) ′option′, if a room was found with a date and/or price close
to the ones given as input, and (3) ′noRooms′, indicating that there are no
available rooms at all. According to the answer from the Hotel Web service, the
orchestrator may in turn: (1) confirm the reservation; (2) notify the user that
it is not possible to find a room: it may be due to the answer ′noRoom′ from
the Hotel Web service or it is ′option′ and, (2.1) for the Business version (see
α in the figure for w → B), the dates of the optional reservation are not the
ones given by the user; (2.2) for the Low Cost version (see α in the figure for
w → L), the price of the optional reservation is not the one given by the user;
(3) if the answer is ′option′ and: (3.1) for the Business version (see β in the
figure for w → B), the dates are the ones desired by the user but the price is
different (usually higher), then the user is asked to confirm the new price before
trying again to make the reservation (transitions q3 → q4 → q1); (3.2) for the
Low Cost version (see β in the figure for w → L), the price is the one desired by
the user but the dates are different, then the user is asked to confirm the new
dates (transitions q3 → q4 → q1).

2.2 Semantics

In order to associate semantics to TIOSTS, we begin by interpreting data occur-
ring in Ω: an Ω-model is a set M whose elements are associated with a type in
S, and we note Ms ⊆ M the subset of M whose elements are associated with s.
Moreover for each op : s1 · · · sn−1 → sn in Op, M is associated with a function
op : Ms1 × · · · × Msn−1 → Msn . We define Ω-interpretations as applications ν
from V to M preserving types and extended to terms in TΩ(V ). MV is the set
of all Ω-interpretations of V in M . A model M satisfies a formula ϕ, denoted
by M |= ϕ, if and only if, for all interpretations ν, M |=ν ϕ, where M |=ν t = t′

is defined by ν(t) = ν(t′), and where the truth values and the connectives are
handled as usual. Given a model M and a formula ϕ, ϕ is said satisfiable in
M if there exists an interpretation ν such that M |=ν ϕ. In the sequel, we sup-
pose that an Ω-model M is given, in which all operations of the time sort are
interpreted as expected.
1 For concision purpose, several inputs (resp. outputs) can be grouped together in a

single transition. Such a feature is practical to model orchestrators and does not
raise technical difficulties in our framework, where they can be seen as inputs or
outputs of structured pieces of data.
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TIOSTS are associated with automata where messages and delays between
them are interpreted in M . Such automata are called Timed Input Output La-
beled Transition Systems (TIOLTS) [5, 17, 21], and are simply automata whose
transitions are labeled either by actions (inputs, outputs, or the internal action
τ) or by delays.

Definition 2 (TIOLTS). Let L = (Li, Lo) such that Li∩Lo = ∅ and such that
(Li ∪Lo)∩ ({τ}∪R∗

+) = ∅. A TIOLTS over L is a tuple G = (Q, init, T r) where
Q is a set of states, init ∈ Q is the initial state and Tr ⊆ Q× (L∪{τ}∪D)×Q
is a set of transitions.

Elements of Li and Lo are actions that are respectively called inputs and outputs.
In the sequel, we will often assimilate L with Li ∪ Lo: for example, l ∈ L will
mean l ∈ Li ∪ Lo and so on. Only transitions carrying elements of D represent
delays: other transitions are instantaneously triggered. For any tr = (q, a, q′) of
Tr, source(tr), act(tr) and target(tr) stand respectively for q, a and q′. As for
TIOSTS, for any TIOLTS G = (Q, init, T r) over L, we note QG, initG, TrG,
and LG respectively for Q, init, Tr, and L.

For any TIOSTS signature Σ, elements of I(Σ) and O(Σ) can be interpreted
as actions in the sense of Definition 2: for any ν ∈ MV , we note ν(c?x) for
c?ν(x), and ν(c!t) for c!ν(t). We note LΣ

i = {ν(i)|i ∈ I(Σ) ∧ ν ∈ MV}, we note
LΣ

o = {ν(o)|o ∈ O(Σ) ∧ ν ∈ MV}, and we note LΣ = (LΣ
i , LΣ

o ).
Any TIOSTS over Σ can then be associated with a TIOLTS over LΣ , by

building TIOLTS-transitions reflecting all possible triggerings of all symbolic
transitions: roughly, for any transition tr we identify all the possible couples de-
lay/interpreted action and for each of them, we build two consecutive transitions,
the first one labeled by the delay and the second one labeled by the action.

Definition 3 (Runs of transitions). For any TIOSTS G, let QM
G stands

for QG × D × MV . For any transition tr ∈ TrG, the run of transition tr
is defined as Run(tr) ⊆ (QM

G × D × QM
G ).(QM

G × (LΣ ∪ {τ}) × QM
G ), where

((qi, ti, ν
i), d, (qi, td, ν

i)).((qi, td, ν
i), l, (qf , td, ν

f )) ∈ Run(tr) iff qi = source(tr),
qf = target(tr), νi |= guard(tr), td = ti + d, δmin(tr) ≤ d ≤ δmax(tr) and:

– if act(tr) is of the form c!t (resp. τ), then νf = νi ◦sub(tr), and l = νi(c!(t))
(resp. τ);

– if act(tr) is of the form c?x, then there exists νa such that νa(z) = νi(z) for
every z �= x, νf = νa ◦ sub(tr), and l = νa(c?x).

The set of transitions of the TIOLTS associated to a TIOSTS contains all those
occurring in all runs of all TIOSTS transitions. Moreover we add initialization
transitions and transitions denoting that whenever no reactions (delays or out-
puts) are specified from a given state the time may elapse. That TIOLTS is
defined as follows.

Definition 4 (TIOSTS unfolding). The unfolding of the TIOSTS G is the
TIOLTS G = ({init}∪QM

G , init, T r) over LΣ, where init is a(n arbitrary) state
satisfying init /∈ QM

G and Tr ⊆ ({init}∪QM
G )× (LΣ ∪{τ}∪D)× ({init}∪QM

G )
is defined as follows:
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Initialization transitions: for any ν ∈ MV , (init, τ, (initG, 0, ν)) ∈ Tr,
Run transitions: for any tr ∈ TrG, for any (Q1, d, Q2).(Q2, l, Q3) ∈ Run(tr),

we have (Q1, d, Q2) ∈ Tr and (Q2, l, Q3) ∈ Tr,
Time elapsing transitions: for any Q ∈ {init}∪QM

G s.t. for all tr ∈ Tr with
source(tr) = Q, act(tr) ∈ LΣ

i , then for any d ∈ D we have (Q, d, Q) ∈ Tr.

The semantics of G is the set of all sequences of actions and delays that can
be associated to G. Such sequences, called timed traces, are defined from the
set of paths of2 G, denoted Path(G) ⊆ TrG

∗, containing the empty sequence
ε and all sequences of the form tr1 . . . trn such that source(tr1) = initG, and
such that for all i < n, target(tri) = source(tri+1). Let p be a path of G,
the trace of p is the sequence tr(p) = ε if p = ε, and tr(p) = tr(p′).act(t)
(resp. tr(p) = tr(p′)) if p is of the form p′.t and act(t) �= τ (resp. act(t) = τ).
Traces(G) is the set of traces of all paths of Path(G). For a trace � of the form
�′.d.�′′ and for a decomposition d = d1 + d2, the trace �′.d1.d2.�

′′ is called a
decomposition of �. The decomposition operation can be reiterated for all delays
occurring in the trace. Similarly, the reverse operation, called the composition
operation, consists in transforming the trace �′.d1.d2.�

′′ into the trace �.d.�′.
The set of all traces that can be obtained by applying both decomposition and
composition operations on � as many times as desired is denoted T imed(�), and
more generally, for a set T of traces, we note T imed(T ) =

⋃
�∈T T imed(�). We

note TTraces(G) = T imed(Traces(G)).
Finally, we define the semantics of G as Sem(G) = TTraces(G).

3 Web Service Discovery: Testing Framework

Regarding the question of testing Web services from timed behaviors of orches-
trators, we now present our technical results using preferentially TIOLTS than
TIOSTS. Indeed it is commonly accepted that implementations are modeled as
TIOLTS since black-box testing induces an observational point of view that leads
the tester to perceive the implementation directly as a set of traces. Moreover
any TIOSTS can be associated with its unfolding (see Definition 4).

3.1 Timed Conformance Relation

Implementations are considered to be TIOLTS which accept any input at any
moment [22] and in such a way that time is correctly modeled from an observa-
tional point of view (mainly, time is elapsing if no message occurs).

Definition 5 (Implementation). An implementation over L is a strongly re-
sponsive TIOLTS (Q, init, T r) over L satisfying the following properties:

Input enableness: ∀q ∈ Q, ∀a ∈ Li, ∃q′ ∈ Q such that (q, a, q′) ∈ Tr

2 A∗ denotes the set of words where letters are in A, ε denotes the empty word and
w1.w2 represents the concatenation of the words w1 and w2.
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Time additivity: ∀q1, q2, q3 ∈ Q, ∀d1, d2 ∈ D,
((q1, d1, q2) ∈ Tr ∧ (q2, d2, q3) ∈ Tr) ⇒ (q1, d1 + d2, q3) ∈ Tr

Time decomposition: ∀q1, q2 ∈ Q, ∀d1, d2 ∈ D,
(q1, d1 + d2, q2) ∈ Tr ⇒ ∃q ∈ Q, ((q1, d1, q) ∈ Tr ∧ (q, d2, q2) ∈ Tr)

τ closure: ∀q1, q2, q3 ∈ Q, ∀d ∈ D, ((a1, a2) = (τ, d) ∨ (a1, a2) = (d, τ)) ⇒
( ( (q1, a1, q2) ∈ Tr ∧ (q2, a2, q3) ∈ Tr) ⇒ (q1, d, q3) ∈ Tr)

Time elapsing: ∀q ∈ Q, ∃(a, q′) ∈ (Lo ∪{τ}∪D)×Q such that (q, a, q′) ∈ Tr.

Property 1. Let I be an implementation over L. Then Traces(I) = TTraces(I).

The well-known so-called ioco conformance relation ( [22]) defined for IOLTS
without time has already been extended to take time into account. Our definition
is similar3 to the ones of [4, 5, 17, 21] which basically include any time delays in
the set of observable outputs.

Definition 6 (tioco). Let G be a TIOLTS over L and let I be an implementation
over L. I conforms to G, denoted I tioco G, if and only if:

∀� ∈ TTraces(G), ∀a ∈ D ∪ Lo, �.a ∈ Traces(I) ⇒ �.a ∈ TTraces(G)

Other variants of timed conformance relations have been proposed (see [21] for
a detailed presentation).

3.2 Testing Web Service from Orchestrator Behaviours

We first introduce technical operations (projection, mirror and composition) that
we will perform on orchestrators to elicit expected behaviors for Web services.

Definition 7 (Projection). Let G = (Q, init, T r) be a TIOLTS over L. Let
L′ = (L′

i, L
′
o), with L′

i ∩ L′
o = ∅, L′

i ⊆ L, and L′
o ⊆ L. The projection of

G on L’ is the TIOLTS over L′ defined as G↓L′ = (Q, init, T r↓L′), such that
Tr↓L′ = {(q, a, q′)↓L′ | (q, a, q′) ∈ Tr} with (q, a, q′)↓L′ = (q, a, q′) if a ∈ L′ ∪ D,
and (q, a, q′)↓L′ = (q, τ, q′) otherwise.

In particular, by only considering labels of L′, we consider that transitions carry-
ing labels of L \L′ are performed, but are no more observable: this explains why
these labels are simply translated as τ in G↓L′. This operation corresponds to
the hiding operation [10, 23] encapsulating some designated pieces of interface.
The projection .↓L′ can canonically be extended to paths and traces. The mirror
operation changes the status (input or output) of actions: it simply depends on
the construction of L′ = (L′

i, L
′
o).

Definition 8 (Mirror). Let G be a TIOLTS over L. The mirror of G, M(G),
is the TIOLTS G over LM(G) = M(L), with M(L) = (Lo, Li).

3 The slight technical differences are essentially inherited from symbolic executions
involved in the test case generation algorithm.
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The mirror operation can be applied to all elements (transitions, paths, traces)
issued from TIOLTS by simply exchanging the role of input and output actions.
The mirror operation is often used to design a system interacting with a targeted
system: test cases are typically such reactive systems which may be defined by
using the mirror operation on the reference model G. Roughly speaking, as test
cases send messages expected by G and wait for emissions specified in G, inputs
and outputs are reversed both in the traces of G and the test case, until a verdict
is computed.

Systems can be composed by taking into account communications between
them. As usual, input and output actions will be synchronized when they share
the same name. The passing of time will also be synchronized by requiring that
any global elapsed time result from the synchronization of subsystem transi-
tions carrying the same delay value. Thus, the global system shares with its
components exactly the same perception of time. This means that our system
composition corresponds to locally deployed component-based systems. Particu-
larly in the case of an orchestrator communicating with Web services, this means
that the modeling of a Web service is composed of a remote Web service and of
message transmissions on the Internet: all the sending and receptions of messages
will be stamped with the same clock than the orchestrator clock.

Definition 9 (Composition). Let G1 and G2 be two TIOLTS respectively
over LG1 and LG2 such that LG1

i ∩ LG2
i = LG1

o ∩ LG2
o = ∅. G1 ⊗ G2 is the

TIOLTS (Q, init, T r) over LG1⊗G2 , such that LG1⊗G2
o = LG1

o ∪LG2
o , and such that

LG1⊗G2
i = (LG1 ∪LG2)\ (LG1

o ∪LG2
o ), Q = QG1 ×QG2 and init = (initG1 , initG2).

Tr is defined as follows:

Handshake: if (q1, a, q′1) ∈ TrG1 and (q2, a, q′2) ∈ TrG2 with a ∈ LG1⊗G2 ∪ D,
then ((q1, q2), a, (q′1, q′2)) ∈ Tr.

Asynchronous execution: for any (q1, a, q′1) ∈ TrG1 where a /∈ LG2 ∪D, then
for any q2 ∈ QG2 we have ((q1, q2), a, (q′1, q2)) ∈ Tr (a similar definition
holds by reversing the roles of G1 and G2).

Property 2. For p ∈ Path(G1 ⊗ G2) with � = tr(p), for i ∈ {1, 2} we define pGi

and �Gi as paths and traces over4 LGi :

– if p = ε then pGi = ε and �Gi = ε,
– if p = p′.((q1, q2), a, (q′1, q

′
2)) with �′ = tr(p′) where the last transition is an

handshake transition, then pGi = p′
Gi

.(qi, a, q′i) and �Gi = �′
Gi

.a.
– if p = p′.((q1, q2), a, (q′1, q2)) with �′ = tr(p′) where the last transition is

an asynchronous execution with a �∈ LG2 ∪ D, then pG1 = p′
G1

.(q1, a, q′1),
�G1 = �′

G1
.a, pG2 = p′

G2
and �G2 = �′

G2
. A symmetric reasoning holds for an

asynchronous transition with a �∈ LG1 ∪ D.

Then by construction, for i = 1, 2, pGi ∈ Path(Gi) and �Gi ∈ Traces(Gi).
Moreover, we have �Gi = tr(p)Gi = tr(pGi ) = tr(p)↓LGi = tr(p↓LGi ).

4 Let us remark that labels of LG1
i ∩ LG2

o change of status between G1 ⊗ G2 and pG1

and �G1 .
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Property 3. Let L1,2 = (L1
i ∩ L2

o, L
1
o ∩ L2

i ) and L2,1 = M(L1,2).
Let p1 ∈ Path(G1) and p2 ∈ Path(G2) such that tr(p1↓L1,2

) = tr(p2↓L2,1
).

Then there exists a path p of G1 ⊗G2 such that pG1 = p1 and pG2 = p2.

An orchestrator interacts on one hand with the end-user and on the other hand
with Web services. Orchestrator actions will be split accordingly5.

Definition 10 (Orchestrator). An orchestrator is defined as a TIOLTS over
L, O = (Q, init, T r), with a distinguished set LW = (LW

i , LW
o ), with LW

i ⊆ Li

and LW
o ⊆ Lo of so called Web service actions, and satisfying the so-called

“consistent Web service invocation" property:
There do not exist a ∈ LW

i ∪D and a trace � on LW issued from two distinct
paths p1, p2 of O, that is tr(p1)↓LW = tr(p2)↓LW = �, such that:

– there exists a path of O of the form p1.p
′
1 with tr(p1.p

′
1)↓LW = �.a

– for all paths of O of the form p2.p
′
2, we have tr(p2.p

′
2)↓LW �= �.a.

In the sequel, we also call Orchestrator a TIOSTS O over (V , C) with a distin-
guished set CW ⊆ C such that if we note O the unfolding of O and LW the set
of all numeric actions built on CW then O is an orchestrator.

The “consistent Web service invocation" property simply expresses that if
there are two distinct contexts (paths p1 and p2) from the orchestrator point
of view that are perceived as similar from the Web service (p1 and p2 have
a common projected trace � on LW ), then the orchestrator should anticipate
exactly the same set of reactions from the Web service. It means that designing
an orchestrator should take into account that the set of possible Web service
reactions depends only on the observational context as perceived by the Web
service: only traces projected on LW are relevant to define observational contexts.

Definition 11 (RequireO(W)). Let O be an orchestrator over L with a dis-
tinguished subset LW . Let W be an implementation over6 LW = M(LW ). W
satisfies requirements issued from O, noted as RequireO(W), if:

For all paths p of the system O ⊗ W such that the set of traces of the form
{tr(pO).a | a ∈ LW

i ∪ D, pO.(q, a, q′) ∈ Path(O)} is not empty, there exists at
least a path p.p′ of O⊗W such that tr(p.p′) = tr(p).a′, with a′ ∈ LW

i ∪ D.

The property RequireO(W) means that at any reachable state (target state of p)
in the resulting system O⊗W, W meets the expectations of O if W provides at
least one of the behaviors specified by O at this point: the behaviors are either a
possible input coming from W or a delay synchronizing behaviors of O and W. In
other words, to satisfy the RequireO(W) property, W cannot cause a deadlock7

a in the system O ⊗W: the path p.p′ is precisely an extension in O ⊗W of the
path p according to a reaction (a′ ∈ LW

i ∪ D) of W expected by O.
5 For simplicity purpose, we will consider that orchestrators interact only with one

Web service.
6 In practice, W can be specified over any set L′ containing at least M(LW ).
7 Another interesting but stronger condition would consist in requiring that the Web

service should be able to provide all a in LW
i ∪ D that extend paths in O.
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Theorem 1. Let O be an orchestrator over L with LW ⊆ L and let W be an
implementation over M(LW ).

W tioco M(O↓LW ) ⇒ RequireO(W)

By Theorem 1, in order to know whether or not a Web service implementa-
tion W is suitable to be integrated with a given orchestration (i.e. satisfies the
RequireO(W) property), it suffices to test it accordingly to the tioco confor-
mance relation and with respect to the behavior deductible from O model using
the mirror and projection operations along LW .

Proof. Let us suppose that W tioco M(O↓LW ) and let us show that RequireO(W)
holds. Let us consider a path p of O⊗W such that there exists a path pO.(q, a, q′)
of O with tr(pO.(q, a, q′)) = tr(pO).a with a ∈ LW

i ∪ D.
It exists a′ ∈ LW

o ∪ D and p′ such that pW.p′ is a path of W whose trace is
tr(pW).a′. Indeed, the time elapsing property allows one to extend paths with
transitions carrying actions in LW

o ∪ {τ} ∪ D. If the considered action would be
τ , then we we can reapply the property until getting an action different from τ .
W is strongly responsive: it cannot contain an infinite sequence of τ action.

As W conforms to M(O↓LW ), since tr(pW) is a trace of both M(O↓LW ) and
W, this means that tr(pW).a′ with a′ ∈ LW

o ∪ D is also a trace of M(O↓LW ).
Thanks to the “consistent Web service invocation" property, pO can be extended
as a path pO.p′′ with tr(pO.p′′) = tr(pO).a′.

Paths p′ of W and p′′ of O share the same projection on LW , the common
part of LO and LW. By Prop.3, they can be synchronized in O⊗W: there exists
a path p.ρ s.t. ρW = p′, ρO = p′′ and tr(p.ρ) = tr(pO).a′ with a′ ∈ LW

i ∪ D.

4 Symbolic Timed Testing

As in our previous works ( [8, 13]), our testing algorithm is based on symbolic
execution techniques, with the novelty here that timed behaviors are also taken
into account.

4.1 Symbolic Execution

Symbolically executing a TIOSTS comes to represent its possible executions as
a tree structure. Any path of the tree represents in a symbolic way a set of
traces associated to a path of the TIOSTS. In the sequel we consider that a set
F =

⋃
s∈S

Fs (disjoint of any set of variables introduced in TIOSTS signatures)

is given. We also consider a set FD of time variables (typed on D). We note
Sen(FD) the set of all conjunctions of formulas x ≤ d or d′ ≤ x with x ∈ FD,
d ∈ D∪{∞} and d′ ∈ D∪{0}. In order to store pieces of information concerning
the possible traces of a path we use symbolic states. Those pieces of information
are: the last state of the path, the symbolic values assigned to variables, and the
constraints on those symbolic values as well as on delays between communication
actions occurring in the path. So, a symbolic state η is a tuple of the form
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(q, σ, π, ϑ), where q ∈ Q, σ ∈ TΩ(F )V , π ∈ SenΩ(F ), and ϑ ∈ Sen(FD). In
the sequel we note S the set of all such symbolic states. For any η ∈ S of the
form (q, σ, π, ϑ), we use the notations state(η), sub(η), π(η) and ϑ(η) to refer
respectively to q, σ, π, and ϑ. η is said satisfiable if and only if there exists
ν ∈ MF and ν′ ∈ DFD such that ν |= π and ν′ |= ϑ. Ssat is the set of all
satisfiable symbolic states.

Definition 12 (Symbolic execution of a transition). Let G be a TIOSTS
over Σ = (V , C). Let ΣF stand for (F, C). For any tr ∈ TrG and η ∈ S, such
that source(tr) = state(η), a symbolic execution of tr from η is a triple of the
form (η, sd.sa, η′) ∈ S × (FD.Act(ΣF )) × S, such that sd is a fresh variable,
state(η′) = target(tr), ϑ(η′) = ϑ(η) ∧ (δmin(tr) ≤ sd) ∧ (sd ≤ δmax(tr)), and:

– if act(tr) = c!t (resp. τ), then sa = c!z (resp. sa = τ), where z is a variable
of F , sub(η′) = sub(η) ◦ sub(tr), and the path condition of the target state is
π(η′) = π(η) ∧ sub(η)(guard(tr)) ∧ z = sub(η)(t),

– if act(tr) = c?x, then there exists a substitution σ ∈ TΩ(F )V such that it
satisfies y �= x ⇒ σ(y) = sub(η)(y), and σ(x) is a variable of F such that
sa = c?σ(x), sub(η′) = σ ◦ sub(tr), and π(η′) = π(η) ∧ sub(η)(guard(tr)).

In the following, str denotes a triple (η, sd.sa, η′), and notations source(str),
act(str), and target(str) refer to, respectively, η, sd.sa, and η′.

Definition 13 (Symbolic execution of a TIOSTS). A symbolic execution
of G, denoted SE(G), is a couple (init,Rsat), where init = (initG , σ0, true, true)
is a symbolic state such that ∀x ∈ V, σ0(x) ∈ F and σ0 is injective, and such
that Rsat ⊆ Ssat × (FD.Act(ΣF ))×Ssat is the restriction to Ssat of the relation
R ⊆ S × (FD.Act(ΣF )) × S where for all η ∈ S and for any tr ∈ Tr with
source(tr) = state(η), there exists exactly one symbolic execution of tr from
η in R. Moreover, for any (η1, sd1.c�z, η′

1) and (η2, sd2.d�w, η′
2) in R with

� ∈ {!, ?}, we have sd1 �= sd2 and z �= w.

Note that the symbolic execution is unique, up to the choice of the involved
fresh variables. The symbolic execution of a TIOSTS can be associated with
a set of traces that is exactly the one associated to the TIOLTS denoting its
unfolding. Traces of a path p = (init, sd1.sa1, η1) · · · (ηn−1, sdn.san, ηn) are the
traces of the form ν′(sd1).ν(sa1) · · · ν′(sdn).ν(san) with8 ν ∈ MF and ν′ ∈ DFD

two interpretations such that ν |= π(ηn) and ν′ |= ϑ(ηn).

4.2 Algorithm

In order to assess tioco-conformance of an implementation I, the key point is that
delays appearing in I may be formulated differently than they appear in traces
of SE(G): the way they are observed depends on the periodicity of observation
in the testing architecture. Therefore our algorithm has to compare traces of I
to timed traces of SE(G) defined up to delay composition and decomposition.
8 We apply the convention that ν(τ ) is the empty word.
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Test Purpose: Our algorithm takes behaviors to be tested as inputs in order to
pilot the testing process. Such behaviors are called test purposes. Those behaviors
are characterized as finite paths of so-called symbolic execution trees which are
couples ST = (init,R) where init ∈ Ssat and R ⊆ Ssat × Fd.Act(ΣF ) × Ssat.
Typical examples of symbolic execution trees are symbolic execution trees of
TIOSTS but we use other structures in Section 5 for Web service elicitation.
Test purposes are finite subtrees of ST whose last transition of each path is not
labeled by an input.

Definition 14. Let ST = (init,R) be a symbolic execution tree. A ST -test
purpose is TP = (init,RTP ), where RTP ⊆ R is a finite set such that for any
str ∈ RTP then either source(str) = init or there exists str1 · · · strj for some
j ≥ 1 such that:

– for all i ≤ j, stri ∈ RTP , source(str1) = init, target(strj) = source(str),
– for all i ≤ j − 1, target(stri) = source(stri+1),
– if there is no transition str′ ∈ RTP such that source(str′) = target(str),

then act(str) /∈ FD.I(ΣF ).

We introduce some technical notations related to test purpose:

– Accept(TP ) ⊆ Ssat is the set of all η satisfying:
(∃str ∈ RTP , η = target(str)) ∧ (∀str ∈ RTP , η �= source(str)).

– The set Reach(η, TP ) is the set of all symbolic states reachable from η in
TP . It contains η and all η′ such that there exists a sequence
(η, act1, η1)(η1, act2, η2) · · · (ηn−1, actn, η′) of transitions of RTP .

– We note Accept(η, TP ) = Reach(η, TP ) ∩ Accept(TP ) the set of all states
of Accept(TP ) which are reachable from η.

– targetCond(η) is the condition
∨

η′∈Accept(η,TP )(π(η′) ∧ ϑ(η′))

We write η ∈ TP to signify that η occurs in some transition of RTP .

Rule Based Algorithm: Before giving the rules of our algorithm, we introduce
the notion of context (η, fd, ft, θ). While interacting with I, we build testing
traces. We have to identify paths of ST that admit them as traces. A context
denotes the target state of such a path. Moreover it also contains pieces of
information to identify symbolic values with concrete ones (those occurring in the
testing trace). It is composed of a symbolic state η ∈ Ssat and of two formulae: fd

expresses constraints induced by the sequence of data exchanged with I while ft

expresses constraints on delays. Finally, in order to identify when the observation
occurred, we introduce a duration θ ∈ D. The meaning of the context can be
intuitively understood as follow:

The trace observed until now can be seen as a trace of the form �.θ, where
� is a trace of the path leading to η. Interpretations of variables that occur in
communication actions of the path have to satisfy fd in order to be consistent
with values observed in �. In the same way, interpretations of symbolic delays of
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the path have to satisfy ft to be consistent with concretely observed delays in �.
Thus, η may have been reached θ units of time ago.

As there may be many contexts compatible with a testing trace, we use sets
of contexts generically noted SC (for Set of Contexts). Sequences of stimuli and
observations built from the interaction between the algorithm and I are modeled
as elements of Traces(I). Practically, an observation, noted obs(r), is given by
r ∈ D ∪ LΣ

o . A stimulus, noted stim(i), is given by i ∈ LΣ
i .

We define several technical notations to denote evolutions of sets of contexts:

– NextT rigger(a, SC), where a ∈ LΣ ∪ {τ}, is the set of all contexts that can
be reached by triggering a transition of ST consistently with the action a.
(η′, f ′

d, f
′
t, θ

′) ∈ NextT rigger(a, SC) if and only if θ′ = 0 and, if a is of the
form C�Z with � ∈ {?, !} (resp. τ) then there exists (η, fd, ft, θ) ∈ SC, and
(η, sd.C�U, η′) ∈ R (resp. (η, sd.τ, η′) ∈ R), s.t. f ′

d is fd ∧ (T = U) (resp.
fd), f ′

t is ft ∧ θ = sd, and both f ′
d ∧ π(η′) and f ′

t ∧ ϑ(η′) are satisfiable.
– Wait(d, SC), where d ∈ D, is the set of contexts obtained by waiting while

progressing to a situation where a transition can be triggered.
(η′, f ′

d, f
′
t, θ

′) ∈ Wait(d, SC) iff there exists d′ > d, a ∈ LΣ ∪ {τ} and
C = (η, fd, ft, θ) ∈ SC s.t. NextT rigger(a, {(η, fd, ft, θ + d′)}) �= ∅, η′ = η,
f ′

d = fd, f ′
t = ft and θ′ = θ + d.

– Δ(d, SC), where d ∈ D, is the set of contexts obtained by observing a qui-
escence situation.
(η′, f ′

d, f
′
t, θ

′) ∈ Δ(d, SC) if and only if there exists (η, fd, ft, θ) ∈ SC such
that η′ = η , f ′

t = ft, θ′ = θ + d and if we note react(η) the set of all transi-
tions of R whose action is not of the form sd.i with i ∈ I(Σ), δ(η) the formula
reduced to true if react(η) = ∅ and equal to

∧
str∈react(η) ¬π(target(str))

otherwise, then f ′
d is fd ∧ δ(η) and f ′

d is satisfiable.
– T imeElaps(d, SC) = Wait(d, SC)∪Δ(d, SC) represents the set of contexts

reachable from SC after having waited d time units.

For any set of contexts SC, we note:
Skip(SC) = {(η, fd, ft, θ)| (η, fd, ft, θ) ∈ SC, η ∈ TP,

(targetCond(η) ∧ fd ∧ ft) is satisfiable }
Pass(SC) = {(η, fd, ft, θ) ∈ Skip(SC), η ∈ Accept(TP )}

We use Skip and Pass for shortcuts to Skip(SC) and Pass(SC) when the
context is clear. Each verdict is described by means of inference rules holding
on sets of contexts. Those rules are of the form: SC

Result cond(ev), where SC is
a set of contexts, Result is either a set of contexts or a verdict, and cond(ev)
is a set of conditions on events including the observation obs(r) or the stimulus
stim(i). Such rules express that, given the current set of contexts SC, if cond(ev)
is verified then the algorithm may achieve a step with ev as elementary action.

As in [13], our algorithm provides four verdicts: FAIL, when the behavior
belongs neither to TP nor to ST (Rule 3); INCONC, (for inconclusive) when
the behavior belongs to ST and not to TP (Rule 2), PASS when the behavior
belongs to a path of TP ending by an accept state and not to any other path
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of ST (Rule 5); and WeakPASS, when the behavior belongs to a path of TP
ending by an accept state and to at least one other path of ST (Rule 4).
Rule 0: Initialization

{(init, true, true, 0)}

Rule 1: No observed outputs for a delay d, consistently with reaching an accept state.
SC

T imeElaps(d,SC)
obs(d), Skip �= ∅, Pass = ∅

Rule 1 (bis): Observation of an output o, consistently with reaching an accept state.
SC

NextTrigger(o,SC)
obs(o), Skip �= ∅, Pass = ∅

Rule 2: The set of reached contexts is outside the test purpose.
SC

INCONC
SC �= ∅, Skip = ∅

Rule 3: The set of reached contexts is empty.
SC

FAIL
SC = ∅

Rule 4: One accept state is reached but not all reached states are accept ones.
SC

WeakPASS
Pass �= ∅, SC �= Pass

Rule 5: All reached states are accept ones.
SC

PASS
Pass �= ∅, SC = Pass

Rule 6: The tester stimulates by sending an input i.
SC

NextTrigger(i,SC)
stim(i), SC �= ∅, Skip(NextTrigger(i,SC)) �= ∅

Regarding to our contribution in [8, 13], a real novelty here is Rule 1 which
computes the impact of time passing on the set of current contexts with respect
to the test purpose. Note that Rule 6 is the only one that can be applied non
deterministically with respect to others. An application strategy defines a test
case generation algorithm. The goal of the generic algorithm is similar to the one
of the algorithm described in [4]. The two main differences are that we handle
data symbolically and our test purposes are defined as symbolic trees instead of
properties given as automata. As we will automatically elicit intended behaviors
for Web services as symbolic trees from orchestrator specifications, our testing
approach is suitable for service discovery.

5 Elicitation of Web Service Test Purposes

For any (TIOSTS) orchestrator O we identify the interface corresponding to the
Web service to be elicited: it is a subset CW of the set of channels C of O. We
note SE(O) = (init,Rsat), and (init,RP ) the couple reflecting the projection
on channels of CW in SE(O). Formally, for any str ∈ Rsat, if we note act(str)
as δ.a then we have: if a is of the form cΔu with c ∈ CW and Δ ∈ {?, !} then
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Variable assignments
σ3 : dates ← dates1, price ← rprice1, conf ← conf0

rstat ← rstat1, rdates ← rdates1, rprice ← rprice1

Variables path conditions
πB
2 : rstat1 = ′option′ ∧ rdates1 = dates1

πL
2 : rstat1 = ′option′ ∧ rprice1 = price1

Clocks path conditions
ϑ3 : ϑ2 ∧ (0 ≤ sd2) ∧ (sd2 ≤ 60)
ϑ5 : ϑ3 ∧ true

init : (q0, σ0, π0, ϑ0)

η1 : (q1, σ1, π0, ϑ1)

η2 : (q2, σ1, π1, ϑ2)

η3 : (q3, σ2, π1, ϑ3)

η5 : (q4, σ3, π
[B,L]
2 , ϑ5)

η8 : (q1, σ4, π
[B,L]
2 , ϑ8)

sd7.τ

sd4.τ

η6 : (q0, σ2, π3, ϑ6)

sd5.τ

η7 : (q0, σ2, π4, ϑ7)

sd6.τ

sd2.w!rstat1
sd2.w!rdates1
sd2.w!rprice1

η4 : (q0, σ1, π1, ϑ4)

sd3.τ

sd1.w?dates1
sd1.w?price1

sd0.τ

Fig. 2. Elicited behaviors for the Hotel Web service

str ∈ RP , else (source(str), δ.τ, target(str)) ∈ RP . We then apply a mirror
operation: we consider the couple (init,RW ) such that for any str ∈ RP , if
we note act(str) as δ.a we have: if a is τ then str ∈ RW ; if a is of the form
c?u then (source(str), δ.c!u, target(str)) ∈ RW ; if a is of the form c!u then
(source(str), δ.c?u, target(str)) ∈ RW . (init,RW ) forms a symbolic tree that is
a symbolic counterpart to the TIOLTS M(O↓LW ) (where O is the unfolding of
O), and we use it to extract test purposes for testing some candidate Web service
W in order to evaluate the validity of RequireO(W) thanks to Theorem 1.

Example 2. Figure 2 shows the elicited behaviors for the Hotel Web service par-
ticipating in both versions of the Hotel Reservation example9 (Business B and
Low Cost L).

The only difference between the elicited behaviors from the Business and Low
Cost versions is in the path condition π2, where for the former version the dates
are kept unchanged, while for the other one the price is kept unchanged.

Let us suppose that we want to test an implementation of a Hotel Web service
that is to be used in the Business version. Even if a given implementation of the
Web service could be used in both versions, we want to find an implementation
of the Web service that does not modify the dates. Moreover, we would expect
that a room is found in the first iteration or at least in the second one. Thus, we
define the symbolic state η3 as the only accept state, and if we reach it we also
check the path condition π2 (either the answer is ′reserved′ or it is ′option′ with
the dates kept unchanged) in order to determine if the Web service behaves as
expected. Then, we can know if it fulfills the expectations of the orchestrator.
Even if the Hotel Web service answers with different dates, or if no room is
found, no FAIL verdict would be emitted. However, those are not the behaviors
that we expect. Thus, this example shows that, in order to use a Web service
within an orchestration so that it can precisely provide behaviors expected by
the orchestrator, it has to be tested against test purposes covering these tar-
9 In the figure, we only show the information related to η3 since it is the accept state.
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geted behaviors. Obviously, the choice of behaviors that should be primarily
ensured by Web services to be integrated depends on the subjective analysis of
the orchestration designer. This methodological subjectivity is similar to the one
guiding the choice of appropriate test purposes in a testing activity.

6 Conclusion

In this paper we have shown how to elicit, from an orchestrator specification,
intended behaviors of Web services likely to interact with it, and we have shown
how to use them as test purposes at the Web service discovery phase. Orches-
trator specifications are given in a symbolic way and include timing constraints.
We have identified a property reflecting the absence of deadlock in an orches-
tration by relating the orchestrator and Web services of the orchestration. This
property serves as reference to select candidate Web service. Technically our
testing approach comes to test the conformance of Web services to symbolic
behaviors obtained by symbolically executing the orchestrator specification and
by applying projection and mirroring techniques.
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Realizability of Choreographies for Services

Interacting Asynchronously
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Abstract. Choreography specification languages describe from a global
point of view interactions among a set of services in a system to be
designed. Given a choreography specification, the goal is to obtain a
distributed implementation of the choreography as a system of commu-
nicating peers. These peers can be given as input (e.g., obtained using
discovery techniques) or automatically generated by projection from the
choreography. Checking whether some set of peers implements a chore-
ography specification is called realizability. This check is in general un-
decidable if asynchronous communication is considered, that is, services
interact through message buffers. In this paper, we consider conversation
protocols as a choreography specification language, and leverage a recent
decidability result to check automatically the realizability of these spec-
ifications by a set of peers under an asynchronous communication model
with a priori unbounded buffers.

1 Introduction

Specification and analysis of interactions among distributed components play an
important role in service-oriented applications. A choreography is a specification
of interactions, from a global point of view, among a set of services participating
in a composite service to be designed. One important problem in choreography
analysis is figuring out whether a choreography specification can be implemented
by a set of distributed peers which communicate using message passing. Even
if these peers are obtained by projection [17,22] from the choreography speci-
fication, this does not ensure that they precisely implement the corresponding
choreography. This problem is known as realizability.

Most of the work dedicated to realizability assumes a synchronous commu-
nication model, see for instance [22,7,6,20]. Only a few works focused on the
study of this problem considering an asynchronous communication model, that
is communication using message queues or buffers. Fu et al. [11] proposed three
conditions that guarantee a realizable conversation protocol. Bultan and Fu [5]
also recently defined some sufficient conditions to test realizability of choreogra-
phies specified with collaboration diagrams. But defining such conditions is quite
restrictive because if they are not satisfied, nothing can be concluded about the
system (choreography and peers) being analysed. In [23], the authors refine and
extend this former work with an automatic check for bounded asynchronous
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communication. The realizability of bounded MSC graphs has also been studied
and some decidability results presented in [3]. Su et al. state in [24] that “it
remains an open problem whether the realizability problem is decidable”.

More recently, [9] proved the quasi-static scheduling problem of scheduling a
set of non-deterministic communicating processes so as to ensure boundedness
of buffers, to be undecidable in general, and identified a decidable subclass.

In this paper, we consider conversation protocols [11,12] (CPs) as choreogra-
phy specification language, and propose an approach to check automatically the
realizability of these specifications by a set of peers interacting over an asyn-
chronous communication model (Fig. 1). We do not require the model to be
existentially bounded, that is, the proposed approach decides realizability even
if it is not known a priori whether the specification can be realized with finite
buffers, and if it can, for what buffer sizes. We present here a solution that
makes this check decidable if the system is well-formed, i.e., (1) in each state
a peer can either send one message to a buffer (which we will call a channel),
read a message from one channel, or non-deterministically choose between one
or more internal actions; and (2) the system is activated by a request from the
environment, and a new request is not emitted unless the previous action is com-
pleted. Both conditions allow for a class of realistic systems, e.g., peers including
a choice among several emissions or receptions, while excluding the class of un-
decidable systems. We will show how to model such behaviours in Section 3.
Condition (1) means that non-deterministic choice is made explicit and excludes
race conditions. Condition (2) typically corresponds to service-based systems in
which a client (the environment) submits a request and a set of services interact
together until returning a response to this request.

Our approach consists of two main steps. First, we explore a sub-behavior
— called the canonical schedule — of the possibly infinite state space of the
peers interacting via channels. As the canonical schedule may be infinite, only a
finite part of it is explored to decide whether in spite of (uncontrollable) internal
choices there exists a bounded execution. This check relies on [9], and verifies
whether the canonical schedule computed from the set of peers given as input is
finite. If such a finite execution does not exist, the choreography is not realizable.
Otherwise, in a second step, we check realizability by comparing the behaviors
of the choreography specification with the previously constructed finite sub-
behavior of the peers.

The rest of this paper is organized as follows: Section 2 introduces peers,
conversation protocols and our running example. Section 3 presents our approach
to checking realizability. Section 4 compares our proposal to related work, and
Section 5 ends the paper with some concluding remarks.

2 Peers and Conversation Protocols

In this section, we present the notations we use in the rest of this paper to specify
choreographies and peers.
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Fig. 1. Overview of the realizability check

Peers are described using Labelled Transition Systems (LTSs). Peers interact
by message passing through point-to-point channels. In this paper, we consider
asynchronous communication where each peer is equipped with one channel for
each type of message the peer can receive from a given sending peer. In the peer
transition systems, write and read actions to and from a channel ch are written
ch! and ch?, respectively.

Definition 1 (Peer). A peer is a Labelled Transition System (LTS) P =
(S, s0, Σ, T ) where S is a finite set of states, s0 ∈ S is the initial state,
Σ = Σ! � Σ? � Σint is a finite alphabet partitioned into a set of sending, re-
ceiving, and choice actions (internal actions), and T ⊆ S×Σ×S is a transition
relation.

A peer can either send on a channel ch with action ch! ∈ Σ!, read from a channel
ch with ch? ∈ Σ?, or choose among one or more internal actions a ∈ Σint.
Final states are not made explicit and correspond to states without outgoing
transitions.

A conversation protocol is an LTS specifying the desired set of conversations
from a global point of view. Each transition specifies an interaction between two
peers Ps, Pr on a specific channel ch. A conversation protocol makes explicit the
application order of interactions. Sequence, choice, and loop are modeled using
a sequence of transitions, several transitions going out from a same state, and a
cycle in the LTS, respectively.

Definition 2 (Conversation protocol). A conversation protocol CP for a set
of peers Pi, i ∈ {1, .., n} is an LTS CP = (S, s0, L, T ) where a label l ∈ L is a
tuple (j, k, ch) where Pj and Pk are the sending peer and receiving peer, respec-
tively, Pj �= Pk, and ch is a channel on which those peers interact. We require
that each channel has a unique sender and receiver: ∀(i, j, ch), (i′, j′, ch′) ∈ L :
ch = ch′ =⇒ i = i′ ∧ j = j′.

Running Example. In this paper, for illustration purposes, we use a bug
report repository involving four peers: a client or environment (env), a bug report
repository interface (int), a database (db), and a counter (c). We give successively
a conversation protocol (Fig. 2) describing the requirements, that is what the
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designer expects from the composition-to-be, and four candidate peers (Fig. 3).
The conversation protocol starts with a login interaction between environment
and interface, followed by the submission of a bug. Then, interface sends the
bug to database to store it, and interacts with counter which stores the number
of submitted bugs. Finally, database sends a bug identifier which is forwarded
by interface to environment. Interactions in Figure 2 are written using exponent
notation, e.g., submitenv,int stands for (env, int, submit).

Fig. 2. Running example: conversation protocol

Figure 3 shows four peers that are candidate to a distributed implementa-
tion of our conversation protocol example. For instance, interface receives lo-
gin information (login?) and a bug (submit?) from environment, sends the bug
to database (store!), interacts with counter (count!), receives the identifier from
database (ident?), and finally sends the acknowledgement to environment (ack!).

Fig. 3. Running example: peers (A) environment, (B) database, (C) interface, (D)
counter

Although these peers seem to implement the conversation protocol, it is hard
by visual analysis only to claim whether this is the case or not, even for such
a simple example. Moreover, since we assume an asynchronous communication
model, deciding whether the conversation protocol can be implemented by the
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peers communicating through bounded buffers, is in general non-trivial. In the
rest of this paper we propose an automated technique to check whether a con-
versation protocol is bounded-realizable by a system of interacting peers.

3 Checking Bounded Realizability

In this section, we present the different steps of our method to check whether
a set of peers interacting asynchronously implements a (centralized) conversa-
tion protocol. It works in two successive steps. First, we analyse the canonical
schedule generated from the peer composition using results presented in [9]. If
the schedule is finite, we check realizability by comparing the behaviors of the
conversation protocol with the schedule. Otherwise, the conversation protocol is
not bounded-realizable by the system of communicating peers.

Definition 3 (Asynchronous product). The asynchronous product of a set
of peers Pi = (Si, s

0
i , Σi, Ti) is the peer P1‖...‖Pn = (S, s0, Σ, T ) where S =

S1 × ...× Sn, s0 = (s01, ..., s
0
n), Σ =

⋃
iΣi, and

T =
{(

(s1, ..., sn), a, (s
′
1, ..., s

′
n)
)
| ∃i : (si, a, s′i) ∈ Ti ∧ ∀j �= i : s′j = sj

}
A composite is a set of peers communicating through emissions and receptions
over a set of point-to-point channels.

Definition 4 (Composite). A composite is a tuple (P,Ch) of a set P = {Pi |
i = 1, ..., n} of peers Pi = (Si, s

0
i , Σi, Ti) equipped with a set of channels Ch =

{chi}. We require that Σ!
i ∩ Σ!

j �= ∅ =⇒ i = j and Σ?
i ∩ Σ?

j �= ∅ =⇒ i = j,
that is, each channel has a unique reader and writer. Furthermore, we assume
that Σ!

i ∩Σ?
i = ∅ for all i, that is, each channel links two different peers.

From a conversation protocol CP we can compute a composite where each peer
is obtained by making abstraction from all other peers in CP , and keeping the
same channels as in CP :

Definition 5 (Projection). The composite obtained by translation of a con-
versation protocol CP = (S, s0, L, T ) over channels Ch is a tuple π(CP ) =
({Pi}, Ch) where Pi = (Si, s

0
i , Σi, Ti) is the LTS obtained by replacing in CP

each action label (p, q, ch) ∈ L with ch! if p = i; with ch? if q = i; and with τ
(internal action) otherwise, and finally removing the τ-transitions by applying
the standard determinization algorithms [15].

By Definition 2 it can be shown that π(CP ) satisfies the requirements of Defini-
tion 4 that each channel has a unique reader and writer, and both are different.

Example 1. We show in Figure 4 the peer database obtained by projection from
the conversation protocol presented in Section 2. The final peer (right-hand side)
is obtained by determinization and minimization of the left-hand side peer.
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Fig. 4. Peer database generated by projection: (left) before and (right) after deter-
minization and minimization

A configuration of a set of channels Ch = {ch1, ..., chn} is a vector in Nn≥0

of non-negative integers associating with each channel the number of buffered
messages. Let 0 denote the tuple of n empty channels.

Definition 6 (Semantics of a composite). The semantics of a composite
C = ({Pi}, Ch) with ‖Pi = (S, s0, Σ, T ) is the LTS sem(C) = (Q, q0, Σ,→)

where Q = S × N
|Ch|
≥0 , q0 = (s0,0), and → ⊆ Q × Σ ×Q is the least transition

relation satisfying the following rules:

(s, chk!, s
′) ∈ T(

s, (c1, ..., ck, ..., cn)
) chk!→

(
s′, (c1, ..., ck + 1, ..., cn)

) (SND)

(s, chk?, s
′) ∈ T ck ≥ 1(

s, (c1, ..., ck, ..., cn)
) chk?→

(
s′, (c1, ..., ck − 1, ..., cn)

) (RCV )

(s, a, s′) ∈ T a ∈ Σint

(s, c)
a→ (s′, c)

(INT )

For a tuple b = (bi)chi∈Ch of channel bounds, let sem(C)/b = (Q′, q0, Σ,→′)
with

Q′ = {
(
s, (c1, ..., cn)

)
∈ Q | ∀i = 1, ..., n : ci ≤ bi}

and →′ = {(q, a, q′) ∈ → | q, q′ ∈ Q′} be the sub-graph of sem(C) restricted to
the states satisfying the buffer bounds.

For a state q ∈ Q, let enabled(q) be the set of actions a ∈ Σ such that q
a→ q′

for some q′.

We now define when a composite implements a conversation protocol. The
composite can be obtained by projection of the conversation protocol, or by
assembling existing (off-the-shelf) peers.

Definition 7 (Implements, |=b). Given a conversation protocol CP =
(S, s0, L, T ) over peers 1, ..., n and a set of channels Ch, a composite C = ({Pi |
i = 1, ...,m}, Ch′) with m ≥ n and P = ‖{Pi | i = 1, ...,m} over alphabets Σi,
and G = (Q, q0, Σ,→) a sub-graph of sem(C), let ( ⊆ Q × S be the greatest
relation ≺ such that if q ≺ s then:
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1. If (s, (i, j, ch), s′) ∈ T then ∃k ≥ 0 ∃q1, ..., qk ∈ Q ∃a1, ..., ak ∈ ΣC\CP :

q
a1→ q1

a2→ ...
ak→ qk

ch!→ q′

with ch! ∈ Σi and ∀i = 1, ..., k : qi ≺ s and q′ ≺ s′ (communication in CP );

2. If q
ch!→ q′ with ch! ∈ Σi and ch ∈ Ch then ∃s′ : (s, (i, j, ch), s′) ∈ T and

q′ ≺ s′ (send in C);

3. If q
a→ q′ with a ∈ ΣC\CP then q′ ≺ s (unobservable transition of C)

where ΣC\CP = {ch! ∈ Σ | ch /∈ Ch} ∪Σ? ∪Σint.
G refines CP , written G ( CP , if q0 ( s0.
Given a tuple b = (bi)chi∈Ch of channel bounds, C implements CP under b,

written C |=b CP , if sem(C)/b ( CP .

Intuitively, the conversation protocol and the composite must be bisimilar with
respect to the communication over channels in Ch. The composite may encom-
pass additional peers and use auxiliary channels that are not part of the conver-
sation protocol, and execute internal actions. Other notions of implementation
could have been chosen such as weaker notions [17] or notions taken receptions
into account as well [21].

Remark 1. π(CP ) �|= CP , in general, as π(CP ) may have more behaviors than
CP . Some solutions exist that either propose well-formedness rules to enforce
the choreography specification to be realizable [7], or extend the choreography
language with new constructs (named dominated choice and loop) that make the
peers obtained by projection respect the choreography specification [22]. How-
ever, these approaches focus on synchronous communication and do not provide
any solution to the boundedness issue inherent to asynchronous communication.

Example 2. If we compare, using Definition 7, the execution traces that can be
produced from the conversation protocol given in Figure 2 with those executed by
the composite consisting of the peers presented in Figure 3, this check says that
the composite does not implement the conversation protocol because the trace
login!, login?, submit!, submit?, store!, store?, ident! belongs to the composite but
is not a valid trace for the conversation protocol. Indeed, the latter specifies that
the interaction between interface and counter (countint,c in Figure 2) must occur
before database sends its response to interface. However, this cannot be imposed
according to the different peers we reuse for implementation purposes. To work
this out, the designer has two possible choices: (i) to relax the choreography
specification constraints by making explicit that countint,c and identdb,int can be
executed in any order (this would be specified using a diamond of interleaved
transitions in the conversation protocol), or (ii) to use extra synchronizations
such as those proposed in [23] to enforce peers to respect the ordering constraints
specified in the conversation protocol.

Definition 8 (Bounded-realizable). A conversation protocol CP is bounded-
realizable by a composite C = ({Pi}, Ch) if there exists a tuple of bounds b =
(bi)chi∈Ch on the channels such that C |=b CP .
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For a given composite, the existence of a non-blocking quasi-static scheduler that
ensures boundedness of the channels in spite of uncontrollable non-determinism
of the peers, has shown to be undecidable in general [9]. The goal of the remainder
of this section is to define a decidable subclass of composites and effectively
decide, for a system of this class, whether a conversation protocol is bounded-
realizable by a set of peers. In order to tackle this question we need some more
definitions.

Definition 9 (Data-branching [9]). A peer P = (S, s0, Σ, T ) is data-
branching if for any s ∈ S, one of the following is true:

– All outgoing transitions are choice transitions, and there is at least one such
transition (and s is called choice state).

– s has exactly one outgoing transition (s, a, s′) and a ∈ Σ! (and s is a sending
state).

– s has at most one outgoing transition (s, a, s′) and a ∈ Σ? (and s is a polling
state).

In particular, a state without any outgoing transition is a polling state.
Intuitively, the data-branching assumption ensures that non-determinism in

the global behavior only comes from internal choice and not from race condi-
tions caused by simultaneous listening on several channels, or non-deterministic
emission to several channels. The transitions issued from choice states can be
seen as the non-deterministic choice obtained from conditional branching after
making abstraction from data. Ruling out concurrently enabled emissions is not
a restriction, due to the asynchronous model of communication. Figure 5 shows
how a choice state can be used to encode non-deterministic emissions: each emis-
sion is preceded by a choice transition (this pattern corresponds to an internal
choice in process algebra, see CSP [14] for instance).

Fig. 5. Modeling non-deterministic emissions

Next we define round-separation of a composite, ensuring that a new request
is not emitted unless the previous execution of the composite is completed.

Definition 10 (Round-separated). A composite C = ({Pi}, Ch) of peers
Pi = (Si, s

0
i , Σi, Ti) with sem(C) = (Q, q0, Σ,→) is round-separated if

1. there exists some peer Pk and action init ∈ Σ!
k such that enabled(q0) =

{init};
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2. ∀q =
(
(s1, ..., sn), c

)
∈ Q : init ∈ enabled(q) =⇒ ∀j �= k : sj is a polling

state and c = 0; and
3. from any reachable state of C, final(C) = {q = (s, c) | enabled(q) ⊆ {init}∧

c = 0} is reachable.

In a round-separated composite the only action enabled in q0 — call it init — is
enabled only in states q = (s, c) ∈ Q where all other peers are polling in states
and all channels are empty. The set final(C) is the set of final states where at
most init is enabled, all other peers are in polling states, and all channels are
empty.

Example 3. The composite consisting of the peers presented in Figure 3 is round-
separated: there is some init action (login!) initiating the interaction process
(condition 1 in Definition 10), this action is never reached again (therefore con-
dition 2 does not need to be verified), and from any reachable state in the com-
posite state, a final state with empty channels is reachable where all peers are
in polling states (condition 3 in Definition 10), see the shaded states in Figure 6.

Fig. 6. Running example: final state of the composite

As the requirement of Definition 10 is expressed on the semantics of C, we have
two ways to effectively check it: by using some syntactic check that is a sufficient
but not necessary condition, or on-the-fly during the state-space exploration. In
the approach presented here we choose the second option.

Definition 11 (Well-formed). A composite is well-formed if it is round-
separated and its peers are data-branching.

The condition of well-formedness allows us to leverage the results of [9] to ef-
fectively decide whether a conversation protocol is bounded-realizable. For the
sake of a self-contained presentation we cite the following definitions, slightly
adapted from [9] to match our framework.
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Definition 12 (P q
poll, P q

choice, P q
send−min). Given a composite C = ({Pi}, Ch)

of data-branching peers and a state q = (s, c) with s = (s1, ..., sn) and c =
(c1, ..., cn) of sem(C), let P q

poll, P q
choice, and P q

send be the sets of indices of the
peers that are in a polling state, a choice state, and a sending state, respectively.
Let P q

send−min ⊆ P q
send be the set of indices i such that chk! ∈ Σ!

i ∩ enabled(q)
with ck = min{cj} be the subset of peers ready to send a message to a channel
holding a minimal number of messages.

The basic idea of a canonical schedule is to constrain the execution of a composite
by giving priority to read and choice actions over write actions. In the case where
only write actions are enabled, one of those writing to a channel containing a
minimal number of messages is chosen.

Definition 13 (Canonical schedule). Given a composite C = ({Pi}, Ch)
with Pi = (Si, s

0
i , Σi, Ti) and ‖Pi = (S, s0, Σ, T ), the canonical schedule of C

is the least sub-graph CS(C) = (Qca, q
0, Σ,→ca) of sem(C) = (Q, q0, Σ,→)

such that q0 ∈ Qca and for any q = (s, c) ∈ Qca with s = (s1, ..., sn):

– If P q
poll ∪ P q

choice �= ∅ and q
a→ q′ with q′ = (s′, c′), s′ = (s′1, ..., s

′
n), and

a ∈ Σ?
k ∪Σint

k where k = minP q
poll ∪ P q

choice, then q
a→ca q′.

– Otherwise, if q
a→ q′ with a ∈ Σ!

k where k = minP q
send−min, q′ = (s′, c′),

s′ = (s′1, ..., s
′
n), and (sk, a, s

′
k) ∈ Tk, then q

a→ca q′.

As the canonical schedule may be infinite, an order between prefixes is defined
next that will be used to explore only a finite part.

Given an LTS (S, s0, Σ,→), states q, q′ ∈ S, and a sequence σ = a1a2 · · ·an ∈
Σ∗, we write q1

σ→ qn if there are states q1, ..., qn−1 ∈ S such that q
a1→ q1

a2→
...

an→ q′.

Definition 14 (≺ca). Let σ, σ′ ∈ Σ∗ with q0
σ→ (s, c) and q0

σ′
→ (s′, c′). Define

≺ca such that σ ≺ca σ′ if all of the following conditions hold:

1. σ is a prefix of σ′

2. s = s′ and ∀ch ∈ Ch, c(ch) ≤ c′(ch)
3. there exists some ch ∈ Ch such that

– σ = σ1ch! for some σ1 ∈ Σ∗ with max(σ1) < max(σ); and
– σ′ = σ2ch! for some σ2 ∈ Σ∗ with max(σ2) < max(σ′)

where

max(σ) = max
{
max{c1, ..., cn | q0 σ′

→
(
s, (c1, ..., cn)

)
} | σ′ is a prefix of σ

}
Algorithm 1 (Decision procedure). Given a composite C = ({Pi}, Ch) with
‖Pi = (S, s0, Σ, T ) and sem(C) = (Q, q0, Σ,→), we construct a finite coverabil-
ity tree [9] Tr(C) ⊆ Σ∗ as follows. First, ε ∈ Tr(C). For any σ ∈ Tr(C) and

a ∈ Σ with q0
σ→ qσ and qσ

a→ca q′ = (s, c):
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– If init ∈ enabled(q′) and either |enabled(q′)| ≥ 2 or c �= 0 then C is not
round-separated; stop.

– Otherwise, if there exists σ′ ∈ Tr(C) such that σ′ ≺ca σa then C is un-
bounded or final(C) is unreachable; stop.

– Otherwise, if there is no σ′ ∈ Tr(C) such that q0
σ′
→ qσ then add σa to

Tr(C).

It can be shown that Algorithm 1 terminates, since either the canonical schedule
is finite and all states have been explored, or there are two prefixes σ, σ′ such
that σ ≺ca σ′ [9].

Example 4. We give in Figure 7, the canonical schedule generated from the com-
posite given in Figure 3 by application of Definition 13 (peers are ordered wrt.
their alphabetical identifiers A, B, C, D). One can see that the choice made by the
environment is present in the canonical schedule and three possible behaviours
are derived.

Fig. 7. Running example: behavior of the canonical schedule (top) where tr is the
transition sequence shown on bottom; the (infinite) state space of the buffers is not
shown

The canonical schedule is unbounded: if the environment decides to submit
several bugs without consuming acknowledgements (submit branch in the peer
environment), then by applying Algorithm 1, we can generate traces from the
canonical schedule where the channel size increases (in particular, the size of
the channel in the peer environment storing acknowledgements), and case 2 of
this algorithm detects this unboundedness case. A solution to this issue is to use
a peer environment’ which systematically consumes acknowledgements sent by
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the peer interface, as in Figure 8. If we use this new peer environment’ and the
other peers presented in Figure 3, the corresponding canonical schedule (given
in Figure 9) is bounded because each channel is read immediately after being
written.

Fig. 8. A candidate peer environment’ avoiding the unboundedness issue

Fig. 9. Example: behavior of the canonical schedule (buffer states are omitted) ob-
tained with the peer environment’ given in Figure 8

Theorem 1 (Bounded schedule). Consider a conversation protocol CP and
a composite C composed of data-branching peers.

1. If C is round-separated then Algorithm 1 does not terminate with a negative
round-separation result.

2. Otherwise, if Algorithm 1 terminates with a negative boundedness or reach-
ability result, then CP is not bounded-realizable by C.

3. If Algorithm 1 terminates without a negative result (round-separation, bound-
edness, or reachability), then C is well-formed and CS(C) is finite.

Proof. 1. The claim follows directly from Definition 10.
2. If Algorithm 1 terminates with a negative boundedness or reachability result,

then the non-boundedness of C or unreachability of final(C) follows from
Proposition 8 of [9]. The only difference in our setting is that we explicitly
model resets in the form of init transitions. As by hypothesis of this item,
C is round-separated, final(C) is reachable by Definition 10. Therefore, C
is unbounded, and the claim follows.
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3. Round-separation under the canonical schedule is ensured by the normal
termination of the algorithm. Round-separation on arbitrary runs is ob-
tained by a reordering argument similar to that used in [9]. Well-formedness
then follows directly from the hypothesis of data-branching peers and round-
separation.

Example 5. If we consider the peer environment’ given in Figure 8 and the three
other peers presented in Figure 3, Algorithm 1 terminates with a positive result,
meaning that the composite is well-formed and the canonical schedule is finite
(see Figure 9).

Notice that even if the canonical schedule CS(C) of a composite C is finite, the
semantic graph sem(C) may still be infinite. However, if C is well-formed and
CS(C) is finite, then bounded-realizability of a conversation protocol CP by C
can be effectively verified.

Theorem 2 (Bounded-realizability). Given a conversation protocol CP and
a well-formed composite C, CP is bounded-realizable by C if and only if the
canonical schedule CS(C) = (Q, q0, Σ,→) is finite and C |=b CP , where b =
(bi)chi∈Ch with ∀i, bi = max

{
ci | ∃s ∃c = (c1, ..., cn) : q0 →∗ (s, c)

}
, and →∗

denotes the reflexive and transitive closure of →.

That is, CP is bounded-realizable by C if and only if it is bounded-realizable
for channel bounds used by the canonical schedule.

Proof. (sketch) “If”: if C |=b CP then clearly, CP is bounded-realizable by C.
“Only if”: suppose that CP is bounded-realizable by C, say C |=b′ CP for

some tuple b′ of buffer bounds. Then b′ ≥ b by construction of the canonical
schedule. In particular, CS(C) is finite. Moreover, sem(C)/b is a sub-graph of
sem(C)/b′. Therefore, it can be shown by structural induction that items 2.
and 3. of Definition 7 still hold for sem(C)/b. Moreover, as C is well-formed
and thus round-separated, final(C) is reachable from any reachable state of
sem(C). This ensures that all pending write actions will eventually be executed,
such that item 1. of Definition 7 is still satisfied. It follows that C |=b CP .

Example 6. Although the canonical schedule generated from the peer environ-
ment’ given in Figure 8 and the peers database, interface, and counter presented
in Figure 3 is finite, the corresponding semantic graph is infinite because the
counter has no obligation to read. To check bounded-realizability, the required
channel size is one for all channels since each channel can be read immediately af-
ter being written. If we consider an extension of the conversation protocol given
in Figure 2 where countint,c and returndb,int can be interleaved — as discussed
in Example 2 —, then this conversation protocol is bounded-realizable by the
composite.

4 Related Work

The realizability results we present in this paper rely on [9] where the authors
identify a decidable class of systems consisting of non-deterministic communicat-
ing processes that can be scheduled while ensuring boundedness of buffers. There
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has been quite some work on the analysis of infinite communication buffers in
concurrent systems. Abdulla et al. [1] proposed some verification methods for
Communicating Finite State Machines. They showed the decidability and pro-
vided algorithms for verification (safety and some forms of liveness properties) of
lossy channel systems. A sufficient condition for the unboundedness of communi-
cation channel was proposed in [16]. In [18,19], the authors present an incomplete
boundedness test for communication channels in Promela and UML RT models.
They also provide a method to derive upper bound estimates for the maximal
occupancy of each individual message buffer. More recently, [10] proposed a
causal chain analysis to determine upper bounds on buffer sizes for multi-party
sessions with asynchronous communication. Our goal here is to compute the
minimal buffer sizes which make the interacting peers realize the choreography,
but this does not mean that a bound exists for each buffer. Therefore, the results
presented in [18,19,10] would not help to solve the problem we tackle here.

Most of the work dedicated to the realizability issue assumes a synchronous
communication model, see for instance [6,20,7,22]. In [6,20], the authors define
models for choreography and orchestration, and formalise a conformance rela-
tion between both models. The results presented in [7,22] formalise some well-
formedness rules to enforce the specification to be realizable. More precisely,
in [7], the authors identify three principles for global description under which
they define a sound and complete end-point projection, that is the generation
of distributed processes from the choreography description. In [22], the authors
propose a choreography language with new constructs (named dominated choice
and loop) in order to implement unrealizable choreographies. During the projec-
tion of these new operators, some communications are added in order to make
peers respect the choreography specification. However, these solutions prevent
the designer from specifying what (s)he wants to, and it also complicates the
design by obliging the designer to make explicit extra-constraints in the chore-
ography specification, e.g., by associating dominant roles to certain peers.

Only a few works focused on the realizability problem assuming an asyn-
chronous communication model, that is communication using message buffers.
Fu et al. [11] proposed three sufficient conditions (lossless join, synchronous com-
patible, autonomous) that guarantee a realizable conversation protocol. More
recently, Sasu and Bultan proposed to check conformance using synchronizabil-
ity [4]: A set of peers is synchronizable if systems produced on one hand with
synchronous communication, and on the other with 1-bounded asynchronous
communication, are equivalent. If a set of peers is synchronizable, one can check
whether it is conformant to a choreography using existing finite state verifica-
tion tools. However, if one of the conditions in [11] or synchronizability is not
satisfied, nothing can be concluded. Our approach works for systems that are
not synchronizable.

Bultan and Fu [5] defined some sufficient conditions to test realizability of
choreographies specified with collaboration diagrams (CDs). In [23], the authors
refine and extend this former work with some techniques to enforce realizabil-
ity (by adding additional synchronization messages among peers), and a tool-
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supported approach to automatically check the realizability of CDs for bounded
asynchronous communication. Branching and cyclic behaviours are not well sup-
ported by CDs (e.g., only loops on a same message), and this is a restriction to
specify more expressive choreographies. The realizability problem for Message
Sequence Charts (MSCs) has also been studied (see for instance [2,26,3]). For
example, [3] presents some decidability results on bounded MSC graphs, that
are basically graphs obtained from MSCs using bounded buffers.

Lohmann and Wolf [21] show how realizability of choreography automaton
can be verified by using existing techniques for the controllability problem, which
checks whether a service has compatible partner processes. Their approach works
for peers interacting via arbitrary bounded buffers, and only consider finite con-
versations, whereas we can handle infinite state space systems.

Genest et al. [13] establish equivalence of existentially bounded communicat-
ing automata with globally cooperative compositional message sequence graphs
and monadic second-order logic.

In [8] on quasi-static scheduling of free-choice Petri nets, a coverability cri-
terion is defined whose function, similar to the relation ≺ca, is to explore only
a finite part of a potentially infinite state space. The authors conjecture com-
pleteness of the criterion. Based on [8], [25] uses discrete controller synthesis
to automatically construct converters between peers so as to ensure bounded
buffering and deadlock freedom.

Compared to all these works, our approach provides a check for realizabil-
ity under asynchronous communication, and goes beyond most results which
assume arbitrary bounded buffers, this check being undecidable for unbounded
buffers. Here, we rely on a boundedness analysis of the peer composition, and
provide a decidable technique for well-formed systems of communicating peers.
We also extend existing results for conversation protocol realizability by con-
sidering peer composition (e.g., those which are not synchronizable) for which
existing solutions [11,4] cannot conclude anything.

5 Concluding Remarks

In this paper, we have presented an approach for checking whether a conver-
sation protocol can be implemented by a set of distributed peers interacting
asynchronously. The realizability check relies on the boundedness of the canon-
ical schedule computed from the candidate peers. If this schedule is infinite, the
conversation protocol cannot be realized with bounded buffers by the peers. If
this schedule is finite, we compare the LTS obtained from the conversation pro-
tocol with the LTS generated from the peer composition to check whether these
peers implement the choreography specification.

An interesting direction of future work we intend to study is the general-
ization of our framework to multi-session protocols. This will require several
generalizations to our results, in particular extending the modeling formalism
and refinement relation, and relaxing the round-separation requirement.
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Abstract. We present an automata theoretic framework for modular
schedulability analysis of networks of real-time asynchronous actors. In
this paper, we use the coordination language Reo to structure the net-
work of actors and as such provide an exogenous form of scheduling
between actors to complement their internal scheduling. We explain how
to avoid extra communication buffers during analysis in some common
Reo connectors. We then consider communication delays between actors
and analyze its effect on schedulability of the system. Furthermore, in
order to have a uniform analysis platform, we show how to use Uppaal to
combine Constraint Automata, the semantic model of Reo, with Timed
Automata models of the actors. We can derive end-to-end deadlines, i.e.,
the deadline on a message from when it is sent until a reply is received.

1 Introduction

Schedulability analysis in a real-time system amounts to checking whether all
tasks can be accomplished within the required deadlines. In a client-server per-
spective on distributed systems, tasks are created on a client, sent to the server
(e.g., as a message), and then finally performed on the server. A deadline given
by the client for a task covers three parts: the network delay until the message
reaches the server, the queuing time until the task starts executing, and the exe-
cution time. In case a reply is sent back to the client, an end-to-end deadline also
includes the network delay until the reply reaches the client and is processed.

In previous work [10,15–17], we employed automata theory to provide a mod-
ular approach to the schedulability analysis of real-time actor models, assuming
direct and immediate communication between actors, i.e., zero communication
delays. An actor [1,13] (à la Rebeca [26]) is an autonomous entity with a single
thread of execution. Actors communicate by asynchronous message passing, i.e.,
incoming messages are buffered and the code for handling each message is defined
in a corresponding method. We model each method as a timed automaton [3]
where a method can send messages while computation is abstracted in passage
of time. In our framework, an actor can define a local scheduler and thus reduce
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the nondeterminism; a proper choice of a scheduling strategy is indeed necessary
to make the actor schedulable.

Section 2 explains a modular way to analyze a system of actors. To be able to
do so, the expected usage of each actor is specified in a separate timed automa-
ton, called its behavioral interface; this is a contract between the actor and its
environment [23], which among other things, includes the schedulability require-
ments for the actor in terms of deadlines. Every actor is checked individually
for schedulability with regard to its behavioral interface. We showed in [16] that
schedulable actors need finite buffers; the upper-bound on buffer size can be com-
puted statically. When composing a number of individually schedulable actors,
the global schedulability of the system can be concluded from the compatibility
of the actors [17]. Being subject to state-space explosion, we gave a technique
in [17] to test compatibility.

The contribution of this paper is twofold. First in Section 3, we extend the
above framework with Reo [4] to enable exogenous coordination of the actors.
This provides a separation of concerns between computation and coordination.
Reo can be used as a “glue code” language for compositionally building con-
nectors that orchestrate the cooperation between components or services in a
component-based system or a service-oriented application. An important fea-
ture of Reo is that it allows for anonymous communication, i.e., the sender of
a message does not need to know the recipient; instead the Reo connector will
forward the message to the proper receiver.

With Reo, individually schedulable actors can be used as off-the-shelf modules
in a wider variety of network structures. This requires a new compatibility check
for our analysis that incorporates the Reo connectors. Our extension preserves
the asynchronous nature of the actors, therefore the Reo connectors must have a
buffer at every input/output node, which may lead to state-space explosion. To
avoid this problem, we provide techniques to optimize the analysis by reusing
internal actor buffers in the Reo connectors that are single-input and/or single-
output. We show that in this approach the upper-bound on the size of the buffers
of the schedulable actors need not be increased. In Section 5, we give examples
of other Reo connectors that can take advantage of the same optimization tech-
nique. In any case, we assume coordination and data flow by Reo happens in
zero time.

As our second contribution, we analyze in Section 4 the effect of communi-
cation delays on the schedulability of a distributed system. For simplicity in
presentation, we assume no coordination with Reo in this section. The commu-
nication medium between every pair of actors is modeled abstractly by a fixed
delay value, called their distance. We first describe how to implement the effect of
delay on messages in an efficient manner with respect to schedulability analysis.
Secondly we extend the compatibility check to take message delays into account.
The latter is non-trivial because sending and receiving messages do not happen
at the same time any more. Nevertheless, this complication can be hidden from
the end user by implementing it in an automatic test-case generation algorithm.
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We argue in Section 5 that coordination with Reo and communication delays
are orthogonal and can be combined.

As a running example, we consider a client/server composition of two actors.
Assuming that the client is faster, the overall system would not be schedulable
because the server would not be able to respond in time. This situation can
be remedied by using Reo to connect the client to multiple server instances in
order to compensate for their slowness. Nonetheless, the client still thinks it is
communicating with one server, i.e., coordination is transparent to the client
and the server actors. In other words, modularity of the analysis is preserved.

1.1 Related Work

Schedulability has usually been analyzed for a whole system running on a single
processor, whether at modeling [2, 11] or programming level [7, 19]. We address
distributed systems modeled as a network of actors (connected by Reo circuits)
where each actor has a dedicated processor and scheduling policy.

The work in [12] is also applicable to distributed systems but is limited to
rate monotonic analysis. Our analysis being based on automata can handle non-
uniformly recurring tasks as in Task Automata [11]. In Task automata, however,
a task is purely specified as computation times and cannot create sub-tasks.

In our approach, behavioral interfaces are key to modularity. A behavioral
interface models the most general message arrival pattern for an actor. The
behavioral interface can be viewed as a contract, as in ‘design by contract’ [23],
or as a most general assumption in modular model checking [21] (based on
assume-guarantee reasoning). Schedulability is guaranteed if the real use of the
actor satisfies this assumption.

RT-Synchronizers [24] also provide some sort of coordination among actors,
however, they are designed for declarative specification of timing constraints
over groups of untimed actors. Therefore, they do not speak of schedulability of
the actors themselves; in fact, a deadline associated to a message is for the time
before it is executed and therefore cannot deal with the execution time of the
task itself or sub-task generation.

In [9, 15], our approach is extended to accommodate synchronization state-
ments and replies of the Creol language [18]. Asynchronous message passing
in Creol is augmented with explicit return values and message synchronization.
Therefore, Creol has the natural means to model end-to-end deadlines, however
the work in [9,15] does not support network delays. In present work, an end-to-
end deadline including network delays can be computed manually by adding up
the deadlines of the message and its corresponding reply message.

There are several coordination languages that can be used to coordinate ac-
tors, two of which are worth mentioning. First there is the ARC model [25],
which aims at coordinating resource usage and QoS goals, and is based on state
transition systems. Secondly there is the PBRD model [22], which aims at logical
communication behavior, and is based on rewriting logic. Apart from modeling
capabilities, unlike the two above, Reo has automata based semantics which
allows us to connect naturally to our automata-theoretic framework in [16].
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invoke[reply][srv][self]!
deadline = XD

invoke[request][self][srv]?

invoke[reply][self][clnt]?

invoke[request][clnt][self]!
deadline = MD

Fig. 1. The behavioral interfaces of Client (left) and Server (right) are symmetric

Several semantic models have been suggested for Reo in order to handle data-
transfer delays, e.g. [20]. None of these models are yet able to consider the delay
in setting up a connection in a distributed way. Therefore in this work, we re-
strict to centralized Reo connectors and we assume that coordination happens
in negligible time. This assumption is reasonable when Reo connectors are de-
ployed local to actors. In this paper, we provide no real-time extensions of Reo;
although we propose an algorithm to translate some Reo connectors into Timed
Automata.

2 Preliminaries: Real-Time Actors

We use automata theory for modular schedulability analysis of actor-based sys-
tems [16,17]. An actor consists of a set of methods which are specified in Timed
Automata (TA) [3]. This enables us to use existing tools, for exampleUppaal [6],
to perform analysis. Each actor should provide a behavioral interface that speci-
fies at a high level, and in the most general terms, how this actor may be used. As
explained later in this section, behavioral interfaces are key to modular analysis
of actors. Actors specify local scheduling strategies, e.g., based on fixed priori-
ties, earliest deadline first, or a combination of such policies. Real-time actors
may need certain customized scheduling strategies in order to meet their QoS
requirements. We describe in this section how to model and analyze actors.

Modeling behavioral interfaces. A behavioral interface consists of the messages
an actor may receive and send; thus it provides an abstract overview of the actor
behavior in a single automaton. A behavioral interface abstracts from specific
method implementations, the message buffer in the actor and the scheduling
strategy.

To formally define a behavioral interface, we assume a finite global set M
for method names. A behavioral interface B providing a set of method names
MB ⊆ M is a deterministic timed automaton over alphabet ActB such that
ActB is partitioned into two sets of actions:

– outputs: ActBO = {m?|m ∈M∧m �∈MB}
– inputs: ActBI = {m(d)!|m ∈MB ∧ d ∈ N}

Notice the unusual use of ! and ? signs; this is to simplify the analysis as will be
explained later. The integer d associated to input actions represents a deadline.
A correct implementation of the actor should be able to finish method m before
d time units.
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c<=1

finish[self]!

c == 1invoke[next][self][self]!
deadline = MD

start[initial][self]?
c:=0 c<=3

invoke[next][self][self]!
deadline = XD

c == 3

invoke[request][self][other]!
deadline = MD

finish[self]!

start[next][self]?
c := 0 c <= 1

c == 1

finish[self]!

start[reply][self]?
c := 0

Client: initial Client: next Client: reply

c<=1

finish[self]!

c == 1

start[initial][self]?
c:=0

c <= 4
invoke[reply][self][other]!
deadline = XD

finish[self]! start[request][self]?
c := 0

Server: initial Server: request

Fig. 2. Method implementations for client and server actors

Example. Fig. 1 depicts the Uppaal models for behavioral interfaces of two ac-
tors that can communicate in a client-server fashion by sending request and reply
messages. In Uppaal, messages are sent along the invoke channel and deadlines
are passed using the global variable deadline . To uniquely identify messages
between different actors, every message in M is represented in Uppaal with
three parameters of invoke[msg][snd][rcv] showing the message name, sender
and receiver, respectively.

Modeling classes. One can define a class as a set of methods implementing a
specific behavioral interface. A class R implementing the behavioral interface B
is a set {(m1, A1), . . . , (mn, An)} of methods, where

– MR = {m1, . . . ,mn} ⊆M is a set of method names such that MB ⊆MR;
– for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing method mi with

the alphabet Acti = {m!|m ∈MR} ∪ {m(d)! | m ∈ M∧ d ∈ N};

Method automata only send messages while computations are abstracted into
time delays by using a clock c. Receiving and buffering messages is handled by
the scheduler automata (explained below). Sending a message m ∈MR is called
a self call. A self call with no explicit deadline inherits the (remaining) deadline
of the task that triggers it (called delegation); in this case the delegate channel
must be used.

Classes have an initial method which is implicitly called upon initialization
and is used for the system startup. Execution of a method begins after receiving
a signal on the start channel and terminates by sending a signal on the finish
channel; this way the scheduler can control execution of the methods. Fig. 2
shows an implementation of the methods of our example.

Modeling schedulers. The scheduler for each actor, containing also its message
buffer, is modeled separately as a timed automaton (see Fig. 3). The buffer is
modeled using arrays in Uppaal and thus it can be modeled compactly, i.e.,
without different locations for different buffer states. The scheduler automaton
begins with putting an initial message in the buffer via the initialize function.
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Error

Runninginitialize()

tail == 1
finish[self]?

shift()

start[q[run]][self]!
sender[self] = s[run]

i : int[0,MAX-1]
scheduling policy
finish[self]?
run := i, shift()

msg : int[0,MSG]
delegate[msg][self]?
insertDelegate(msg)

i : int[0,MAX-1]
counter[i] > 0 &&
clk[i] > deadline[i]

msg : int[0,MSG],
sender : int [0,OBJ-1]
invoke[msg][self][sender]?
insertInvoke(msg, sender)

Fig. 3. A general scheduler automaton

The scheduler is input-enabled, i.e., it allows receiving any message from any
sender on the invoke channel. The buffer stores along each message its sender
and deadline. A free clock is assigned to each message and reset to zero upon
insertion in the buffer. These are in the insertInvoke function. By reusing this
clock, a new message may inherit the remaining deadline of another message;
this is captured in the insertDelegate function. If a clock assigned to a message
(counter[i] > 0) passes its deadline, the scheduler moves to an Error location.

When there are multiple messages in the buffer, the scheduler decides the
order of their execution. The next method to be executed (via a signal on the
start channel) should be chosen based on a specific scheduling strategy. If the
index 0 of the buffer is always selected during context switch, the automaton
serves as a First Come First Served (FCFS) scheduler. The remaining deadline
of each message i can be used in the scheduling policy (e.g., Earliest Deadline
First) as deadline [i]− clk [i]. When a method is finished (via synchronization on
the finish channel), it is taken out of the buffer by shifting.

For more details on modeling actors and schedulers, please refer to our previ-
ous work [14].

2.1 Modular Schedulability Analysis

An actor is an instance of a class together with a scheduler. A closed system
of actors is schedulable if and only if all tasks finish within their deadlines. We
have shown in [16] that schedulable actors do not put more than *dmax/bmin+
messages in the buffer, where dmax is the longest deadline for the messages
and bmin is the shortest termination time of its method automata. One can
calculate the best case runtime for timed automata as shown by Courcoubetis
and Yannakakis [8]. Formally, schedulability is defined as follows.

Definition 1 (System Schedulability). A closed system of actors is schedu-
lable if and only if none of the scheduler automata can reach the Error location
or exceeds the buffer limit of *dmax/bmin+.

Thus, schedulability analysis can be reduced to reachability analysis in a tool like
Uppaal. The intrinsic asynchrony of actors and their message buffers practically
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lead to state-space explosion. Our approach to modular analysis of the actors
(as in [16]) combines model checking and testing techniques to overcome this
problem. This is done in the two steps described below.

Individual Actor Analysis. The methods of an actor can in theory be called
in infinitely many ways, which makes their analysis impossible. However, it is
reasonable to restrict only to the incoming method calls specified in its behav-
ioral interface. Input actions in the behavioral interface correspond to incoming
messages. Incoming messages are buffered in the actor; this can be interpreted as
creating a new task for handling that message. The behavioral interface doesn’t
capture internal tasks triggered by self calls. Therefore, one needs to consider
both the internal tasks and the tasks triggered by the behavioral interface, which
abstractly models the acceptable environments. We can analyze all possible be-
haviors of an actor in Uppaal by model checking the network of timed automata
consisting of its method automata, behavioral interface automaton B and a
scheduler automaton. Inputs of B written m! match inputs in the scheduler
written m?, and outputs of B written m? match outputs of method automata
written m!. An actor is schedulable w.r.t. its behavioral interface iff the scheduler
cannot reach the Error location and does not exceed its buffer limit.

Compatibility Check. Once an actor is verified to be schedulable with respect
to its behavioral interface, it can be used as an off-the-shelf component. In this
section, we assume that actors communicate directly with no communication
delays. As in modular verification [21], which is based on assume-guarantee rea-
soning, individually schedulable actors can be used in systems compatible with
their behavioral interfaces. Schedulability of such systems is then guaranteed. In-
tuitively, the product of the behavioral interfaces, called B, shows the acceptable
sequences of messages that may be communicated between actors.

Definition 2 (Compatibility). Compatibility is defined as the inclusion of
the visible traces of the system in the traces of B [17], where visible actions
correspond to messages communicated between actors.

Checking compatibility is prone to state-space explosion due to the size of the
system; we avoid this by means of testing techniques. A naive approach could
take a trace from the system S as a test case and check whether it exists also
in B. This test case generation method is not efficient due to the great deal of
nondeterminism in S. As proposed in [17], we generate test-cases from B. A test-
case, first of all, drives the system along a trace taken from B and thus restricts
system behavior. Secondly, it monitors the system along this trace checking for
any action that is forbidden in B (as a possible witness for incompatibility).
To do the monitoring, every communication between different actors has to be
intervened by the test-case automaton. Receiving and forwarding these messages
in the test-case are separated by a ‘committed’ location so that Uppaal executes
them with no interruption.
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FAIL
PASSinvoke[request][C][T]?

invoke[reply][T][C]!invoke[reply][S][T]?invoke[request][T][S]!invoke[request][C][T]?

Fig. 4. In this test case, C, S and T represent Client, Server and Test-case, respectively

Example. Fig. 4 shows a test-case that proves the Server and Client implementa-
tions in Fig. 2 to be incompatible. This test-case considers one round of expected
request-reply scenario. This scenario is captured in the main line of the test-case
(leading to PASS verdict). For the sake of simplicity, we only monitor for one
forbidden behavior in this test-case which leads to the FAIL verdict: a lack of a
timely reply is captured as sending two requests without an intermediate reply.
When executing this test-case, the FAIL location is indeed reachable because the
client in Fig. 2 (i.e., its ‘next’ method) is faster than the server (i.e., its ‘request’
method). We show in Section 3 how Reo can bring flexibility in composing ac-
tors such that we can remedy this problem; specifically by allowing us to use
two servers with one client.

3 Using Reo for Coordination

Reo can help us coordinate the actors to avoid unexpected message-passing
scenarios. That is, we can impose a strict communication pattern on the com-
ponents, e.g., replicating requests and merging replies or ordering the messages.
This can be seen as an exogenous scheduler that might be crucial in schedulability
of a composed system. An advantage of Reo for us is its automata-theoretic se-
mantic model, namely Constraint Automata (CA). The idea is that CA models
of Reo networks have a high potential to be used in combination with Timed
Automata models of actors and thus allow us to analyze our models in Uppaal.

Complex Reo connectors can be composed out of a basic set of channels. Each
channel has exactly two ends that have their own unique identities. A channel end
can be a source or a sink. Data enters at the source end and leaves the channel
through the sink. To build complex connectors, channels are connected by means
of nodes (also called ports). A node is like a pumping station that takes the data
on one of the incoming ‘sink’ ends and replicates the data onto all of its outgoing
‘source’ ends. Therefore, channels can be connected by: sequential composition
where the data flows from one channel to the next one; a non-deterministic choice
of data from multiple channels merging to one; or, replication of data from one
channel to many. All this happens in one synchronous step.

Table 1 illustrates a set of primitive channels. The synchronous channel ac-
cepts data at the source and dispenses data through the sink as soon as both
source and sink are ready. The lossy synchronous channel can always accept data
at the source. The data flows from the source to the sink if the sink can accept
data at that instance; otherwise, it is lost. The synchronous drain has two source
ends; it takes the data on its sources if and only if they are both ready. It acts
like a channel synchronizer and does not transfer any data. The FIFO1 channel
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Table 1. Basic Channels and their constraint automata

{A,B}
data(A) = data(B)

{A}
d = data(A)

{B}
data(B) = d

Synchronous channel FIFO1 channel with variable d

{A,B}
data(A) = data(B){A}

{A,B}

Lossy synchronous channel Synchronous drain

transfers data from the source to the sink in two transitions, thereby acting like
a one-place data storage. A FIFO channel can also be unbounded.

Transitions of constraint automata are labeled with a set of port names and
a data constraint. A transition is taken when all of the ports on its label are
ready. In that case, the data constraint determines the data flow in a declarative
fashion, e.g., when a synchronous channel fires the data at both ends will be the
same. Direction of data flow is understood from the types of channel ends. As
in FIFO1, a CA can have variables to temporarily store data values. The initial
state of the CA for FIFO1 depends on whether it is initially full or empty.

When channels are composed into a connector, the behavior of the connector
is derived compositionally as the product of the CA of its constituent channels.
Furthermore, the hiding operator can be applied to create a simple and intuitive
CA that accurately describes how the connector works, without exposing the
internal ports. Please refer to [5] for a formal definition of product and hiding.

3.1 Integrating Real-Time Actors with Reo

Integrating actors with Reo is complicated by the asynchronous nature of actors:
Actors can send messages whenever they have to; therefore, a Reo connector
may not block them exogenously. A natural way of solving this issue is to add a
FIFO channel as a message buffer at every input port of a Reo connector. The
problem is that for model checking, a suitable bound for these FIFOs is necessary.
Furthermore, the number of buffers needed quickly blows up the state-space. As a
workaround, we suggest using the buffers that already exist in the actors for this
purpose. Nevertheless, the upper bound for these buffers need not be increased
as discussed below. This approach can be thought of as a low-level optimization
of the schedulability check, where we produce a behavior which at a high-level
is indistinguishable from adding buffers to the input ports of the connectors.
Before explaining the details, we need to restrict the allowable Reo connectors.

A Reo connector may not lose a message. In fact when a message is lost, it can
never meet its deadline, and the system will not be schedulable. If we were to
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allow lossy connectors, one may argue that lost messages can be seen as having
met their deadlines; this can be justified by assuming that the Reo connector
is in charge and has rightfully decided to lose the message. But this causes a
problem if the connector has a buffer to store messages before they are lost
(which is the case as explained above). Since we assume that a Reo connector
operates in zero time, it may lose any arbitrary number of messages in zero time
and therefore, we cannot statically compute a bound on the size of this buffer
for a schedulable system. This restriction, however, does not greatly reduce the
expressiveness of Reo as witnessed by the examples provided in this section and
in Section 5. Notice that drain and lossy synchronous channels can still be used.

Another restriction is that only bounded FIFO channels may be used. There-
fore, the CA for these connectors is finite-state. Now we explain how to optimize
analysis for two patterns of Reo connectors:

– Single-input, multiple-output (e.g. Fig. 5.a): Since the output ports are
directly connected to a message buffer in an actor, they are always enabled.
Therefore, as soon as there is a message on the input port of this connector,
it can decide the destination of the message. Since the connector does not
lose the message, it may directly go to an actor or it is stored in a FIFO
channel. In either case, we do not need an extra buffer at the input port.

– Multiple-input, single-output (e.g. Fig. 5.b): In this case, the destina-
tion of all messages is the same, namely the actor connected to the output
node. Therefore, we can reuse the buffer of this actor to hold also the mes-
sages pending at the input ports. To distinguish these messages from the
ones actually in the actor’s buffer, these pending messages are flagged so
that the actor scheduler cannot select them. This flag will be removed from
a message whenever the Reo connector decides that this message can actually
be delivered to the recipient actor.

As a consequence, the Reo models do not need to include extra buffers at the
input, and rather focus on the coordination logic (cf. Fig. 5). Compared to a nor-
mal buffer (as in Section 2, disabling a message only delays its execution, whereas
its deadline counts since it is generated. Therefore, as before, a queue with more
than *dmax/bmin+ messages is not schedulable. Subsection 3.2 describes how
we can implement the above solutions in Uppaal. Section 5 introduces more
patterns in which such optimizations are possible.

Client-Server connectors. In our example of client-server we have one client and
two servers. The requests and replies between the client and the servers are
routed through the connectors shown in Fig. 5. The request sequencer accepts
messages from the client through the input port I and routes them to the servers
through the output ports O1 and O2 in a strict sequence. The reply sequencer
accepts messages through input ports I1 and I2 and routes them back to the
client through output port O, in the order in which they were sent. In both
connectors we have a circular configuration of FIFO1 channels, this is to produce
an alternating behavior of port selection. For the request sequencing we see that
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start

{I, x0, x1, x2, f1, O1}

{I, x0, x3, x2, f1, O2}
start

{I1, x1, f1, O}

{I1, x2, f2, O}

Fig. 5. Request and Reply sequencing

one FIFO11 channel is initially full, this causes ports {I, x0, x1, x2, f1, O1} to
become enabled when a message is put on input port I and the request flows
through output port 1 O1. Now the FIFO12 channel is full, so for the next
request the ports {I, x0, x3, x2, f1, O2} are enabled for the next message, causing
the data to flow through output port O2. Similarly, for the request sequencing
we have that FIFO11 channel is initially full, which forces a strict sequencing
on the order in which the replies are put into the buffer of the client. To avoid
blocking the input ports I1 or I2, in principle we need to add extra buffers on
the input ports; this extra buffer is avoided by reusing the buffer of Client as we
explained above. In the next section, we show how to implement this in Uppaal.
In the sequel, we hide internal ports {x0, x1, x2, x3, f1, f2} in the CA models.

3.2 Analysis in Uppaal

To be able to perform analysis in Uppaal, we need to give a representation of
CA in terms of Uppaal timed automata. We work with the CA representing
each connector, i.e., after the product of the CA of the constituent channels has
been computed. Furthermore, all internal ports should be hidden. Therefore, we
are not concerned with composing two translated CA.

The idea is that synchronization on port names can be translated to channel
synchronization in Uppaal. We can reuse the invoke channel for this purpose.
Recall from Section 2 that invoke is used for sending messages. An action on
an input (resp. output) port is translated to a ‘receive’ (resp. ‘emit’) on the
channel. Variables in CA can be directly translated to variables in Uppaal,
therefore, data constraints can be simply translated to assignments in Uppaal.

The main challenge is that transitions in CA may require synchronization
on multiple ports, whereas in Uppaal channels provide binary synchroniza-
tion. To solve this, whenever multiple ports should synchronize, they are put
on consecutive transitions separated by committed locations. This produces an
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invoke[request][self][O1]!

invoke[request][I][self]?invoke[request][self][O2]!

invoke[request][I][self]?

(a) request sequencing

invoke[reply][s][C]!
constraint = false

srv : int[1,2]
invoke[reply][srv][self]?

s=srv

coordinate[reply][I2][O]?

coordinate[reply][I1][O]? i : int[0,MAX-1]
i<tail && !enable[i]
coordinate[q[i]][s[i]][self]
enable[i] = true

(b) forwarding the reply (c) sequencing the reply by manipulating the queue

Fig. 6. Integrating Constraint Auomata into Uppaal

equivalent behavior as these transitions are all taken in zero time and without
being interleaved with other automata instances. In the following, we show how
to implement the optimizations for the two Reo patterns mentioned previously.

– Single-input, multiple-output: In this case (e.g., the request sequencer),
the message can immediately be processed and the sender will never be
blocked. Therefore, the above translation from CA to timed automata is
enough and the CA can directly intermediate between the sender and re-
ceiver actors. For example in Fig. 6.(a), the synchronous step on I and O1

is modeled by first reading a request message on I and then writing the
message on O1. Similarly, I and O2 are synchronized at the next step.

– Multiple-input, single output: As explained in previous subsection, actor
buffers need to be extended such that every message has a boolean flag
called ‘enabled’. As long as this flag is false, the message will be not be
selected by the scheduler. The extended insertInvoke function (cf. Section
2) assigns variable ‘constraint’ to the ‘enabled’ field corresponding to every
incoming message. The variable ‘constraint’ is always set to true, except
when a message is sent via a “multiple-input, single-output” connector (cf.
Fig. 6.(b)). Via this connector, all messages are directly passed on to the
buffer of the single receiver with their ‘enabled’ flag set to false.
Another automaton, shown in Fig. 6.(c), captures the coordination logic, i.e.,
it has the exact form of the constraint automata for the Reo connector. The
second automaton in Fig. 6.(c) is an extension to the scheduler automata
which follows the coordination logic to enable messages in the queue. There-
fore, these messages are enabled at the moment that is allowed by the CA.
In this figure q[ i ] shows a message at index i of the queue which was sent
by s [ i ]. Note that this automaton selects only disabled messages, i.e., it
does not consider a message twice. However, as shown in this figure, it does
not distinguish between different instances of the same message. Since every
message already has a clock assigned to it which keeps track of how long it
has been in the queue, we can use that clock to select the oldest message
instance. To do so, we need to extend the guard like this:
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invoke[reply][srv][self]!
deadline = XD

invoke[request][self][srv]?

invoke[reply][srv][self]!
deadline = XD

invoke[request][self][srv]?

FAIL

PASS

invoke[request][T][S2]! invoke[request][C][T]?

invoke[request][C][T]?

invoke[reply][T][C]!invoke[reply][S1][T]?

invoke[request][T][S1]!invoke[request][C][T]?

Fig. 7. A client that can send two requests in a row and a corresponding test-case

i < tail && ! enable[i] &&

forall (m : int[0,MAX -1]) (

enable[m] || m>= tail ||

q[i] != q[m] || s[i] != s[m] ||

clk[ca[i]]-clk[ca[m]]>=0

)

where clk [ca[ i ]] shows the clock assigned to the message at q[ i ] .

Compatibility Check. To check the compatibility of actors coordinated us-
ing Reo connectors, we need to compose the behavioral interfaces of the actors
with the Constraint Automata models of the Reo connectors. This composed
automaton will serve as the basis for test case generation. In this composition,
we will use the transformed version of the constraint automata into Uppaal
format. However, the coordinate channels need to be converted back to invoke
channel so that the behavioral interfaces can communicate with them. Note that
converting Constraint Automata to Timed Automata can ideally be automated
such that these conversions would be safe from human error.

Fig. 7 shows a new behavioral interface for the client that accommodates
a late reply by incorporating the possibility of sending two requests in a row.
On the right side, a (simplified) test case is shown that is generated from the
composition of behavioral interfaces of one client and two servers connected with
the sequencer Reo connectors. Compared to the test case in Section 2, this test
case can identify two servers S1 and S2. This test case cannot reach the FAIL
verdict. This is because before the client wants to send a third request, the
servers will provide the replies.

4 Actors with Communication Delays

In this section, we show how to extend the modeling framework of Section 2
and the corresponding schedulability analysis to take account of communication
delays between actors. We assume here that actors communicate directly, i.e.,
there is no Reo connector.

We assume a fixed delay for communications between every pair of actors,
called their distance. This is a reasonable assumption if the communication
medium between the actors is fixed for all messages. Therefore, the delays in
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the whole network can be modeled as a matrix; this matrix will be symmetric if
we assume the uplink and downlink connections have the same properties. For
example, for the client-server example, we assume the distance 1 between the
client and the server (see Fig. 8). The distance of an actor to itself is then zero.

(C S

C 0 1
S 1 0

)

Fig. 8. The distance
matrix

Extension of the actor framework with network delays
must properly address the following concerns:

1. The time difference since a message is sent and is
executed (at receiver) cannot be smaller than the
distance between the sender and the receiver.

2. The deadline associated to each message (specified
by the sender) should also include the network delay.

3. The modularity of the analysis techniques should be
preserved.

A naive solution to handle network delays is to introduce
network buffers, e.g., by adding an extra actor. This actor should delay each
message exactly as intended and reduce its remaining deadline correspondingly.
This, however, introduces a great overhead in the size of the model: there will
be at least a buffer (and its corresponding clocks) between every pair of actors
in each direction, i.e., an exponential number of buffers and clocks. Additionally,
finding a reasonable upper bound on the size of these buffers is not trivial.

To avoid introducing this overhead, we place the messages directly into the
buffer of the receiving actors. To model the distances, the messages in the buffer
should be disabled as long as the network delay has not passed (concern 1). As
explained in Section 2, clk[msg] is reset to zero when msg is added to the buffer.
With the distance matrix available, we can use this guard:

distance[sender][receiver] < clk[msg]

as the enabling condition for each message. Recall that scheduling policies are
implemented as guards in the scheduler automata in Uppaal, which model the
selection condition of every message. The above enabling condition can therefore
be hard coded into this guard. Thus we avoid extra variables in the buffer repre-
sentation to capture the enabling conditions of messages, which leads to a very
efficient implementation. Additionally, using clk[msg] together with the original
deadline of the message satisfies the second concern in a straightforward way.

This approach brings about two new concerns:

4. In this approach, the order of messages in a buffer are based on their sending
time rather than their arrival time, i.e., when they become enabled.

5. While preserving schedulability, the buffer of every actor needs to be big
enough to contain all messages, including disabled messages.

Since messages may arrive from different actors with different distances, multi-
plexing them into the same buffer should preserve their order of arrival rather
than their order of sending. This is important in scheduling strategies that de-
pend on the arrival order of the messages, e.g., FIFO. To address this issue, we
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invoke[reply][T][C]! invoke[reply][S][T]?

invoke[request][T][S]!invoke[reques][C][T]?

PASS

FAIL

check[reply][S][C]?

check[request][C][S]?

check[request][C][S]? i : int[0,MAX-1]
i<tail && 
x[ca[i]] == distance[s[i]][self]
check[q[i]][s[i]][self]!

(a) Test-driver (b) Monitor (c) Scheduler extension

Fig. 9. Checking compatibility while considering network delays

need to re-implement such schedulers based on the waiting time of messages after
they become enabled, which is equal to clk[msg] − distance[sender][receiver];
this value should be used when it is not negative.

Finally, we show that the size of buffer for schedulable actors does not need
to be increased in presence of network delays. As argued in previous section,
disabling a message may only delay its execution, whereas the deadline associated
to all messages (disabled or enabled) is still in effect and approaching. Therefore,
if there are n > *dmax/bmin+ messages in the buffer, one of them inevitably
misses its deadline. This means that individually schedulable actors can still
be used provided that the compatibility check is adapted, i.e., modularity is
preserved.

4.1 Compatibility Check

Definition 2 defines compatibility as the inclusion of visible traces of the system
S in the traces of B, where B is the composition of the behavioral interfaces. The
actions in these traces are instantaneous communication of messages; however,
in presence of network delays, communication is not instantaneous any more.
The main challenge here is to bridge the time gap between the traces in S which
capture the sending times and the traces in B which reflect the arrival times.

Definition 3 (Compatibility with delay). For every trace from S, say σ =
(m1, t1) . . . (mi, ti) . . ., which captures the sending time of each message, there
should exist a corresponding trace σ′ = (m1, t1 + x1) . . . (mi, ti + xi) . . . in B,
where xi is the distance between the sender and receiver of mi (cf. Fig. 8).

Furthermore, a deadline on the server side (in the behavioral interface) only
includes the buffer time and the execution time, whereas a deadline on the
client side (in a method) includes also the network delay. In other words, the
compatibility check must ensure that the client side deadline is not smaller than
the deadline on the server side plus the distance between the actors.

To check compatibility, as explained in Section 2, we generate test cases from
the more abstract side, i.e., the composition of the behavioral interfaces B. A
test-case in the original framework [17] both drives the system under test and
monitors it for unexpected behavior. These tasks must be separated now: a test-
driver automaton communicates with the system based on the send times (cf.
Fig. 9.(a)); a monitor automaton checks whether the arrival time of messages
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Fig. 10. Graphical illustration of the client-server example

matches the expectations in B (cf. Fig. 9.(b)). The latter is not trivial as the
arrival time of a message is when it become enabled. Therefore, the scheduler
automata must send a signal on a new channel, check, at the actual arrival time
of the message, i.e., clk[msg] reaches distance[sender][receiver] (cf. Fig. 9.(c)).

A test-driver is a linear timed automaton generated from a trace taken from
B. To be able to drive the system under test, the arrival times must be changed
to sending times. As a result, we may need to reorder the transitions of the
original trace so that the messages are sent in the correct chronological order.

The monitor automaton is obtained in the same way as in Section 2 when no
delays are present. However, it does not drive the system behavior any more.
Instead it uses the check channel to see if an actor in the system could receive
a message outside the expected time as specified in its behavioral interface.
Fig. 9.(b) considers the client/server model in Section 2 where two consecutive
request messages are disallowed.

5 Discussion and Future Work

We extended our previous work on schedulability analysis of real-time actors to
consider complex networks of actors. On one hand, the coordination language
Reo is applied. Reo can be used to take better advantage of off-the-shelf com-
ponents, where in our case components are modeled as actors. We showed with
our simple example that with the help of Reo we can combine actors in such a
way that their combination becomes schedulable; in addition, more complicated
systems can be built. On the other hand, we showed how to consider communi-
cation delays between actors. This is especially important when actors are to be
deployed on remote machines.

In an ideal situation, Reo connectors can carry timing information and as
such also include the network delays. However, as already mentioned, there is
currently no fully satisfactory real-time extension of Reo. As a result, we con-
tinue with the assumption that the coordination in Reo connectors happens in
negligible time (as in Section 3). Furthermore, we assume that Reo connectors
are local to actors. Therefore, the use of a distance matrix as introduced in Sec-
tion 4 is orthogonal to using Reo. This means that one can directly combine
the techniques in the previous two sections to analyze coordinated networks of
actors in presence of delays.

In Fig. 10 we illustrate this implementation graphically for our running exam-
ple. The request and reply sequencing connectors are local to the Client actor.
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The real delay happens in the network cloud (formally modeled in the distance
matrix). By assuming a fixed delay between every pair of actors, we can essen-
tially look at the network as a black-box, i.e. we don’t need to know any details
about the network, only how long it takes to send messages through the network.

For checking compatibility, we need to generate the separate test-driver and
monitor automata because of the delay in the network. Nevertheless, the test
cases should be generated from the composition of the behavioral interfaces and
the constraint automata models of the Reo connectors, as depicted in Section 3.

Reo Patterns. In this paper, we considered only two patterns of Reo connectors,
i.e., single input or single output. Although this may seem a strict restriction on
use of Reo, many useful connectors can still be used. Another example of such
connectors is shown in Fig. 11.(a). In this example, the client actor requires two
services m1 and m2 (say ‘BookFlight’ and ‘BookHotel’) but there is no server
actor that can provide both. The connectors in this figure can be used to connect
such a client to two servers each providing one of these services. In this connector
filter channels are used which may pass the incoming data only if it matches the
pattern provided and thus e.g. distinguishing m1 and m2. The replies from the
two servers can be simply merged using a merger as shown in Fig. 11.(b).

m1

m2

(a) (b) (c)

Fig. 11. More Reo connectors

Although applying a multiple in-
put multiple output connector may
in general require an extra buffer at
its input, this can be avoided again
in several kinds of connectors, which
need to be considered individually.
Another example where we can opti-
mize the implementation is a barrier
synchronizer, shown in Fig. 11.(c). A barrier synchronizer delays the messages
from the fast client actors until all inputs are ready and only then forwards
them to their destinations. In this connector, the destination actor for each in-
put port is statically known; therefore, the buffer of that actor can be used to
store messages on the respective input port.
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Abstract. Software today is often developed for deployment on differ-
ent architectures, ranging from sequential machines via multicore and
distributed architectures to the cloud. In order to apply formal methods,
models of such systems must be able to capture different deployment
scenarios. For this purpose, it is desirable to express aspects of low-level
deployment at the abstraction level of the modeling language. This paper
considers formal executable models of concurrent objects executing with
user-defined cost models. Their execution is restricted by deployment
components which reflect the execution capacity of groups of objects be-
tween observable points in time. We model strategies for object reloca-
tion between components. A running example demonstrates how activity
on deployment components causes congestion and how object relocation
can alleviate this congestion. We analyze the average behavior of models
which vary in the execution capacity of deployment components and in
object relocation strategies by means of Monte Carlo simulations.

1 Introduction

Software is increasingly often developed as a range of systems. Different versions
of a software may provide different functionality and advanced features, depend-
ing on target users. In addition to such functional variability, software systems
need to adapt to different deployment scenarios. For example, operating systems
adapt to specific hardware and even to different numbers of available cores; vir-
tualized applications are deployed on a varying number of (virtual) servers; and
services on the cloud may need to adapt dynamically to the underlying cloud in-
frastructure. This kind of adaptability raises new challenges for the modeling and
analysis of component-based applications [33]. To apply formal methods to such
applications, it is interesting to lift aspects of low-level deployment concerns to
the abstraction level of the modeling language. In this paper we propose abstract
performance analysis for formal object-oriented models, in which objects may
migrate between deployment components that are parametric in the amount of
concurrent processing resources they provide to their objects.

The work presented in this paper is based on ABS [20], a modeling language
for distributed concurrent objects which communicate by asynchronous method
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calls. ABS is an executable language, but still allows abstractions (i.e., functions
and abstract data types can be used to specify internal, sequential computa-
tions). ABS is a successor of Creol [21], simplifying that language by removing
some features such as class inheritance and internal non-deterministic choice,
but retaining a concurrent object model similar to Actors [1] and Erlang pro-
cesses [5]: objects are inherently concurrent, with at most one process active
per object. Concurrent objects and actors have attracted attention as an al-
ternative to multi-thread concurrency in object-orientation (e.g., [9]), and been
integrated with, e.g., Java [30, 32] and Scala [15]. ABS uses Creol’s cooperative
scheduling of processes inside concurrent objects, which eliminates some common
programming errors (specifically, race conditions are much harder to introduce
inadvertently) and enables compositional verification of models [2, 12].

In order to capture deployment scenarios for ABS models, previous work
by the authors proposes an extension of the ABS language with deployment
components which are parametric in the amount of concurrent activity they
allow within a time interval [23]. This allows us to analyze how the amount of
concurrent execution resources allocated to a deployment component influences
the performance of objects deployed on the component. For this purpose, we work
with a notion of timed concurrent objects [8], extended to capture parametric
concurrent activities between observable points in time. To validate and compare
the concurrent behavior of models under restricted concurrency assumptions, the
timed operational semantics of our ABS extension, defined in an SOS style [29],
is expressed in rewriting logic [26], which enables the use of Maude [11] as a
simulation and analysis tool for ABS models.

The contribution of this paper goes in three directions, compared to our pre-
vious work. First, we propose a formalization of object mobility in resource-
restricted deployment scenarios. This allows models to capture dynamic object
deployment, which was not expressible in our previous work. We show how ob-
ject mobility naturally integrates in ABS in an elegant and simple way, and how
it allows dynamic deployment scenarios such as load balancing strategies to be
expressed and executed in parallel with the functional parts of the model. This
technical contribution complements the work presented in [22], which formalizes
load balancing by resource reallocation. Second, user-defined cost models for re-
source usage are introduced. Where our previous work used fixed cost models for
processing capacity, user-defined cost models are given by functional expressions
at the abstraction level of the modeling language and introduced in the mod-
els in the form of annotations, providing a separation of concerns between the
functional aspect of the model and its resource consumption. Third, we extend
our simulation tool to support Monte Carlo simulations; i.e., non-determinism
in the semantics is resolved in the simulation tool by means of a sequence of
pseudo-random numbers which is controlled by a seed when starting a simu-
lation. In principle, this allows the possible execution paths of a model to be
systematically inspected up to a given time, and allows us to analyze average
behavior for models with user-defined cost. We demonstrate the use of Monte
Carlo simulations to analyze the resource usage of distributed system models
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type Pixels = Int;

interface Agent {Session getsession(); Unit free(Session session);}
interface Session {Bool thumbnailImage(Pixels size);}

class SessionImp(Agent agent) implements Session {
Time start = now;

Bool thumbnailImage(Pixels size) {
Int cost = size / 150;
Int deadline = size / 2400;
start = now;
while (cost > 0){[Cost: 1] cost = cost - 1; }
agent.free(this);
return (now-start) ≤ deadline);

}
}

class AgentImp implements Agent {
Set<Session> sessions = EmptySet;
Unit free(Session session) {sessions = Insert(sessions, session);}
Session getsession() {Session session;

if (emptySet(sessions)) {session = new SessionImp(this);}
else {session = select(sessions);

sessions = remove(sessions,session);}
return session;

}
}
{// Main block
DC server = new DeploymentComponent(30);
Agent a = new AgentImp() in server;}

Fig. 1. A web application model in ABS

in ABS in order to compare the behavior of models ranging over resources and
load-balancing strategies. This enables designers to anticipate the behavior of
distributed systems at an early stage in the design process.

Paper Overview. Section 2 introduces the load balancing problem developed
in the running example of the paper. Section 3 presents timed resource-restricted
ABS and our associated simulation tool. Section 4 shows how we can use our
interpreter to simulate the behavior of our example ranging over deployment
scenarios. Section 5 talks about load balancing strategies, Section 6 discusses
related work, and Section 7 concludes the paper.

2 Motivating Example

Let us consider a service which produces thumbnail images for images of different
sizes by scaling the images to a unique reduced-size; e.g., 150 pixels. The ABS
model of such a service is given in Fig. 1 (Sec. 3 contains a detailed explanation
of the language syntax). In our example, clients use the thumbnail service by
first calling the getSession method of an Agent object. An Agent hands
out Session objects from a dynamically growing pool. Clients then call the
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thumbnailImage method of their Session instance, which has as an actual
parameter the size of the image. After completing the service, the session object
is returned to the agent’s pool. Our model defines a user-datatype Pixels as
the unit to measure the size of an image.

Let the thumbnailImage method of a session have a certain computation
cost and deadline calculated in terms of the parameter size; a service re-
quest is successful if it can be handled within the deadline. Let us assume that
our service reduces the size of any given image to 150 pixels, and that we are ex-
pecting to process an average of 2400 pixels per time interval; then we calculated
the cost as size/150 and the deadline as size/2400. For simplicity, we
abstract from the specific functionality of our service. The cost annotation in
the while-loop expresses the granularity of resource consumption. In our model,
the actual cost cost is decomposed into a number of cumulative steps. In con-
trast, an annotation with the full cost would express that the computation must
happen within one time interval; e.g., [Cost: cost] skip.

In the Agent class, the attribute sessions stores a set of Session objects.
(ABS has a datatype for sets, with operations emptySet to check for the empty
set, denoted EmptySet, select to select an element of a non-empty set, and
the usual remove and Insert operators). When a client requests a Session,
the Agent takes a session from the available sessions if possible, otherwise it
creates a new session. The method free inserts the session in the available
sessions of the Agent, and is called by the session itself upon completion of a
thumbnail service request. This model captures the architecture and control flow
of a service oriented application, while abstracting from many functionality and
implementation details (such as thread pools, data models, sessions spanning
multiple requests, etc.) which can be added to the model if needed.

The main block of the model specifies the initial state for model execution as
a deployment scenario in which an Agent object is deployed on a deployment
component server (of the predefined type DC), which will also contain the
Session objects. The parameter to the server specifies its execution capacity
in terms of abstract concurrent resources, which reflect the amount of potential
abstract execution cycles available to the objects deployed on the server between
observable points in time. The agent creates concurrently executing Session
objects on the same server as needed. It is easy to see that heavy client traffic may
lead to congestion on the server, which may in turn cause a lot of unsuccessful
requests to the service.

3 Models of Deployed Concurrent Objects in ABS

ABS is an abstract behavioral specification language for distributed concurrent
objects [20]. Concurrent objects are, like Actors [1] and Erlang [5] processes,
dynamically created and inherently concurrent. ABS is an object-oriented lan-
guage, so objects are dynamically created instances of classes, with attributes
initialized to default type-correct values. An optional init method may be used
to redefine attributes. Objects are typed by interface and communicate by asyn-
chronous method calls, spawning concurrent activities in the called object. Active
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behavior, specified by an optional run method, is interleaved with passive be-
havior, triggered by such asynchronous method calls. Thus, an object has a set
of processes to be executed, which stem from method activations. Among these,
at most one process is active. The others are suspended on a queue. Process
scheduling is by default non-deterministic, but controlled by processor release
points in a cooperative way. ABS is strongly typed: for well-typed programs,
invoked methods are supported by the called object (when not null), and formal
and actual parameters match. We assume that programs are well-typed.

Deployment components were proposed in [23] to restrict the inherent con-
currency of objects in ABS by mapping the logical concurrency to a model of
physical computing resources. Deployment components abstract from the num-
ber and speed of the available physical processors by a notion of concurrent
processing resource, reflecting the processing capacity of a component. Concur-
rent processing resources can be consumed in parallel or in sequential order,
which reflects the number of processors and their speeds relative to the intervals
between observable points in time. A simple time model suffices to define the
points in time when the executing system is observable. How an object consumes
resources depends on a cost model, which reflects the processing costs of different
activities in the objects. In [23], we worked with a simplistic cost model which
assigned a fixed cost to skip and to statements with write-access to memory.
In [22], we introduced reflection into this component model, such that an object
could inspect the load of its deployment component, and reallocate resources
between deployment components. However, objects were statically deployed on
a deployment component when they were created, and the same simplistic cost
model was used.

In ABS, objects are deployed on deployment components with given amounts
of resources. Objects deployed on a component may consume resources within a
time interval until the component runs out of resources or the objects are other-
wise blocked. This way, the logical concurrency model of a group of concurrent
objects is controlled by their associated deployment component. A deployment
component is parametric in the computational resources it offers to a group
of dynamically created objects, which makes it easy to configure deployment
scenarios varying in their concurrent resources.

In this paper, we generalize our previous approach by allowing a user-defined
cost model in which the processing costs of a statement are given in terms of
a cost expression e which depends on the current state of the object and the
local variables of the active process. The expression is introduced into the ABS
syntax as an optional annotation [Cost: e]s to statements s; thus, we obtain
a separation of concerns between the cost and functional behavior of models.
Statements without annotations are given a default cost and models without
annotations are valid models in the resource-restricted extension to ABS. Fur-
thermore, the statement goto(e) is introduced to the language. This statement
expresses object mobility such that an object may relocate to a target deploy-
ment component e. This way, deployment scenarios may be modeled in which
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Syntactic categories.
C, I,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr
r in Resource

Definitions.
IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x; ] M}
Sg ::= I m ([I x])

M ::= Sg {[I x; ] s }
g ::= b | x? | g ∧ g
s ::= s; s | [Cost : e] s | skip | x = rhs

| suspend | await g | while b { s } | goto(e)
| if b then { s } [ else { s }] | return e

e ::= x | b | r | this | thiscomp | now | total
| load(e) | random(e)

rhs ::= e | cm | new C (e) [in e] | component (e)
cm ::= [e]!m(e) | [e.]m(e) | x.get

Fig. 2. ABS syntax. Terms such as e and x denote lists over the corresponding syntactic
categories, square brackets [ ] denote optional elements.

objects dynamically change deployment components. For readability, we present
the syntax of the full language with the proposed extensions below.

Figure 2 gives the syntax of timed ABS with deployment components. A pro-
gram consists of interface and class definitions and a main block to configure
the initial state. IF defines an interface with name I and method signatures Sg .
A class implements a set I of interfaces, which specify types for its instances.
CL defines a class with name C, interfaces I, class parameters and state vari-
ables x (of type I), and methods M . (The attributes of the class are both its
parameters and declared fields.) A method signature Sg declares the return type
I of a method with name m and formal parameters x of types I. M defines a
method with signature Sg, a list of local variable declarations x of types I, and
a statement s.

Statements. Assignment x = rhs, sequential composition s1; s2, skip, if,
while, and return e are standard. The statement goto(e) moves the object
to deployment component e. The statement suspend unconditionally releases
the processor by suspending the active process. The guard g controls proces-
sor release in statements await g, and consists of Boolean expressions b over
attributes and return tests x? (see below). If g evaluates to false, the current pro-
cess is suspended. In this case, any enabled process from the pool of suspended
processes may be activated. The scheduling of processes is cooperative in the
sense that processes explicitly yield control and execution in one process may
enable the further execution in another. The annotated statement [Cost:e] s
expresses that the cost of executing s will be e resources, where e is evaluated
in the current state of the object.

Expressions rhs include pure expressions e, communications cm , and the cre-
ation of deployment components and objects. The expression component (e)
creates a component with e concurrent resources. Resources are modeled by
a type Resource which extends the natural numbers with an “unlimited re-
source” ω. The set of concurrent objects deployed on a component, representing
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cn ::= ε | obj | msg | fut | cn cn
obj ::= o(σ, p, q)

p ::= {σ|s} | idle

Fig. 3. The syntax for timed runtime configurations

the logically concurrent activities, may grow dynamically. Object creation new
C(e) has an optional clause in e to specify the targeted deployment component:
here the C object is to be deployed on component e. (If the target component is
omitted, the new object will be deployed on the same component as its parent.
The behavior of ABS models without deployment restrictions on their functional
behavior is captured by a main deployment component with ω resources.)

Pure expressions e are variables x, Boolean expressions b, resources r, this
(the object’s identifier) and thiscomp (the object’s current deployment com-
ponent), and now, which returns the current time. Timed ABS uses an implicit
time model [8], comparable to a system clock which updates every n millisec-
onds (representing a time interval). Time values are totally ordered by the less-
than operator; comparing two time values results in a Boolean value suitable
for guards in await statements. From an object’s local perspective, the passage
of time is indirectly observable via await statements. Time advances when no
other activity may occur. This model of time is used to handle the amount of
concurrent activity allowed within a time interval in order to model resource
constraints for different deployment scenarios. The total number of resources
allocated to objects on the current deployment component are given by total,
and the average load on the component for the last e time intervals by load(e).
The expression random(e) returns some integer value between 0 and the value
of e. (The full language includes a functional expression language with standard
operators for data types such as strings, integers, lists, sets, maps, and tuples.
These are omitted here, and explained when used in the examples.)

Communications cm are based on asynchronous method calls. After making
an asynchronous call x = e!m(e), the caller may proceed without waiting for
the method reply. Here x is a future variable, which refers to a return value
which may still need to be computed. Two operations on future variables control
synchronization in ABS [20]. First, the guard await x? suspends the active
process until a return to the call associated with x has arrived. This suspends
execution of the process, but allows other processes to run. Second, the return
value is retrieved by the expression x.get, which blocks all execution in the
object until the return value is available. Two commonly used communication
patterns are now explained; the statement sequence x = e!m(e); y = x.get
encodes a blocking call, conveniently abbreviated y = e.m(e) (often referred to as
a synchronous call), whereas the statement sequence x = e!m(e); await x?; y =
x.get encodes a non-blocking, preemptable call.
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(RestrictedExec)

thiscomp(o) = dc [[e]]tσ◦l = c c ≤ n
o(σ, {l|s}, q) cl(t) cn → o(σ′, p′, q′) cl(t) cn′

o(σ, {l|[cost:e]s}, q) dc(n, u, h) cl(t) cn

→ o(σ′, p′, q′) dc(n − c, u + c, h) cl(t) cn′

(RunToCompletion)

cn cl(t)
!→ cn′ cl(t) cn′ !→τ cn′′

{cn cl(t)} →r {cn′′ cl(t + 1)}

(Reset)

u > 0

dc(n, u, h) →τ dc(n + u, 0, (h; u))

Fig. 4. A reduction semantics for timed resource-restricted execution

3.1 Operational Semantics

The operational semantics of ABS is given as an SOS [29] style reduction system.
We briefly outline the semantics here in order to explain the extension with
user-defined cost annotations (the full details may be found in[20]). The runtime
syntax is given in Fig. 3. A configuration cn consists of objects obj , messages
msg, and futures fut . An object o(σ, p, q) has an identity o, a state σ, and active
process p, and a queue of pending processes q. The active process consists of
a list of statements s to be executed in the context of local variable bindings
σ, unless the active process is idle (in which case a pending process from q is
scheduled for execution). Messages represent method calls and futures represent
method returns.

Given a reduction relation →, a run is in general a possibly non-terminating
sequence of terms t0, t1, . . . such that ti → ti+1. Let t

!→ t′ denote that t′ is the
final term of a terminating run from the initial term t; i.e., there is no term t′′

such that t′ → t′′. We shall denote by → the reduction relation of ABS, which is
defined inductively over the legal configurations cn. For an object o(σ, {l|s}, q),
there are in particular rules which reduce the head of the statement list s, defined
by cases for the statements of ABS. In addition, there is a rule for binding a
message msg to a method activation p, which is put into the object queue q,
and for scheduling a suspended process from q when the active process is idle.
(Observe that many processes may be schedulable at the same time, which leads
to non-determinism in the semantics.) ABS objects are asynchronous in the sense
that no reduction rules have two objects on the left hand side.

The runtime syntax of timed runtime configurations with deployment compo-
nents is given by the following extension of the syntax of Figure 3:

tcn ::= { cl(t) cn } cn ::= dc(n, u, h) | . . .

A timed configuration consists of a configuration cn and a clock cl(t) (where t
is the current global time). Extended configurations cn may contain deployment
components dc(n, u, h), where dc is the identity of the component, n is the num-
ber of available processing resources, u the used resources, and h the (possibly
empty) sequence of resource usage over time. Observe that the standard ABS
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reduction relation → is not defined for active processes in which the head of
the statement list is annotated. Figure 4 defines the extension to → for such
annotated statement lists, a reduction relation →τ which expresses the effect of
advancing time, and the timed resource-restricted reduction relation →r.

The rule RestrictedExec extends the relation → to capture the reduction of
an object o in which the head of the statement list in the active process has an
annotation of cost e. This can be done according to the standard rules for → if the
current deployment component of o has enough resources to do a reduction step.
In this rule, we use thiscomp(o) to denote the current deployment component
of o, [[e]]tσ to denote the evaluation of an expression e in the substitution σ at
time t. Observe that the resources required to do the reduction are subtracted
from the available resources of the deployment component and added to its used
resources. Rule Reset expresses the effect of time advance on a deployment
component; the available resources n are reset to amount of resources allocated
to the component, and the history of resource consumption is extended with the
the used resources u of the previous time interval.

The rule RunToCompletion captures the timed resource-restricted reduction
relation →r between timed configurations. Time advances from a timed configu-
ration {cn cl(t)} by the reduction relation →r if cn can be reduced to a normal
form cn′ by application of →, after which all deployment components in cn′ have
been reset by rule →τ . A run of a timed, resource-restricted ABS model is a (pos-
sibly non-terminating) sequence of configurations tcn0, tcn1, tcn2, . . . such that
tcni →r tcni+1, which represent the configurations at the observable points in
time during the execution of the timed resource-restricted ABS model. Observe
that a non-terminating run by the ABS reduction relation → corresponds to an
infinitely fast execution in timed, resource-restricted ABS; there is no observable
successor state.

3.2 ABS Analysis Tool

The SOS semantics of timed, resource-restricted ABS has previously been trans-
lated to rewriting logic [26] and implemented in Maude [11], to provide an in-
terpreter for ABS models for the fixed cost model of our previous work. The
details of this rewriting logic semantics for ABS are reported in [22]. As a tech-
nical contribution of this paper, we have extended this interpreter to accomo-
date user-defined cost models, as defined above, and the goto-statement and
random-expression proposed in this paper. Whereas the implementation of the
goto-statement translates into an assignment of the thiscomp field of an ob-
ject, the random-expression is implemented such that it depends on a sequence
of pseudo-random numbers, controlled by a seed provided as an argument to the
execution of the model. The sequence of pseudo-random numbers is also used
to make scheduling decisions in the simulator of the ABS semantics; i.e., if an
object has a list of n schedulable processes in its queue, the interpreter will select
for execution the random(n)’th process from this list. This interpreter for the
semantics of timed resource-restricted ABS is used as a basis for Monte Carlo
simulations. Whereas our previous work on deployment components could only
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...
interface Client { }

class AsyncClientImp (Int cycles, Int frequency, Pixels size, Agent a)
implements Client {
Unit run() {

Time t = now;
Fut<Session> f = a!getsession(); await f?; Session s = f.get;
s!thumbnailImage(size*(random(3)+1));
cycles = cycles-1;
if (cycles > 0) {
Int jitter = 3-(random(4)+1);
await duration(frequency+jitter, frequency+jitter);
this!run(); }

}
}
{// Main block
...
new AsyncClientImp(15,4,5000,a);
new AsyncClientImp(15,3,4000,a);
new AsyncClientImp(15,3,3000,a);
new AsyncClientImp(15,4,2000,a); }

Fig. 5. A configurable asynchronous client which provides the workload scenario

simulate one arbitrary run of the model, this extension allows us to simulate
n runs with different sequences of pseudo-random numbers, which in principle
allows us to exhaust the full state space of executions. The individual runs of
the Monte Carlo simulations use the ABS interpreter, a query language allows
us to extract information from the runtime states of these simulations, and to
combine this information from the different runs of a deployment scenario. The
use of this analysis tool is shown in the following sections.

4 Comparing Resource-Restricted Behaviors

In order to investigate the effects of specific deployment scenarios on the timing
behavior of timed software models, we use the analysis tool to simulate and test
ABS models. The test purpose for these scenarios using Monte Carlo simulations
is to reach a conclusion on whether redeployment on a different configuration
leads to an observable difference in timing behavior. We compare the behavior of
ABS models with the same functional behavior and workload when the models
are deployed on components with different amounts of resources.

We extend the example given in Section 2 with a workload scenario. Fig-
ure 5 shows the implementation of a configurable asynchronous client. The run
method of an AsyncClientImp object has as actual parameters the number of
images to process represented by the parameter cycles; the frequency of re-
quests to the thumbnail service, represented by the parameter frequency and a
random jitter value in the interval [-2,+2] ; and a varying image size given by the
parameter size which varies the sizes of the images in the interval [size,4·size].
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Fig. 6. Single-server simulation results: number of successful, i.e., non-timeout re-
sponses for 60 requests, with server capacity varying between 10 and 55. The numbers
show mean and standard deviation of 100 runs for each server capacity.

Objects of the AsyncClientImp class are used to model the expected usage
scenario and run with unlimited resources.

Figure 6 shows simulations results using four asynchronous clients running
concurrently and making a total of 60 thumbnail request with a frequency rang-
ing between [1,6] and image‘s size ranging over [2 000, 20 000] pixels. As we
can see from Fig. 6, the server is basically unresponsive up to 35 resources, at
45 resources it can successfully handle approximately 50% of the requests, and
above 50 resources it can successfully handle more than 75% of the requests.

5 Load Balancing Strategies

ABS models may be augmented with load balancing strategies with the aim of
decreasing congestion and thus improving the overall quality of service compared
to models with static deployment scenarios. Load balancing strategies may be
expressed in ABS using the resource-related language constructs total, load,
and goto.

We illustrate how ABS models may be augmented with load balancing strate-
gies using the running example of the thumbnail image service, and compare
the results of load balancing to the results for basic deployment scenarios pre-
sented in Section 4. In this section we model and explore two different load bal-
ancing strategies; (1) a load-balancing agent which moves sessions to a backup
server when the load on the main server is above a given threshold, and (2)
self-monitoring sessions which move themselves to the backup server if the pro-
cessing of their requests takes more than a given time limit. Both of these dy-
namic deployment scenarios are analyzed using the same workload scenario as
in Section 4. Other, more elaborate load-balancing strategies may be modeled
in the same style.
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interface Agent {Session getsession(); Unit free(Session session);}
interface Session {Bool thumbnailImage(Pixels size);

Unit moveto(DC server);}

class SessionImp(Agent agent) implements Session {
Time start = now;
Bool thumbnailImage(Pixels size){ . . . } // As before
Unit moveto(DC server){if (thiscomp != server){

[Cost: 1] goto(server);[Cost: 1] skip;}}}

class AgentImp(DC origserver, DC backupserver) implements Agent {
Set<Session> sessions = EmptySet;
Unit free(Session session){ . . . // As before

session!moveTo(origserver);}

Session getsession() { Session session;
if (emptySet(sessions)){session = new SessionImp(this);}
else {session = select(sessions);
sessions = remove(session,sessions);}

if ((total - load(4)) < total/3)){ // Move session to backup server
session!moveto(backupserver);}

return session;}}

Fig. 7. An agent which performs load-balancing for the thumbnail image service

Figure 7 shows the ABS model of a load-balancing agent which moves sessions
to a backup server when the load on the main server increases beyond 2/3 of
the total resources allocated to the main server. This is a simple load balancing
strategy which tries to minimize the amount of work done on the backup server,
while maintaining an acceptable quality of service. The cost annotation of the
goto statement expresses the cost of moving the object; i.e., the marshaling of
the object. The cost annotation of the succeeding skip statement expresses the
corresponding cost of demarshaling, which take place on server. For simplicity,
we have here set both cost values to 1. Figure 8 shows an ABS model of self-
monitoring session objects which move themselves to the backup server if the
execution of the current request takes more than a given amount of time (the
limit). Here, the active method run serves as a monitor. Once the session has
moved, the monitor sets timeToMove to infinite time ∞ to ensure that it will
not be applied again to the same request. The next request resets timeToMove
to the limit again, which reenables the monitor.

Simulations of Load-Balancing Deployment Scenarios. For the simulations of the
running example augmented with load balancing strategies, we added a second
deployment component to the initial configurations of Section 4, and let both
deployment components have the same capacity. Figure 9 summarizes all three
scenarios (single server, smart agent, and self-balancing sessions) with deploy-
ment component capacities ranging from 10 to 55. It can be seen that the load
balancing strategies outperform the single server in all cases (as they should,
since these scenarios have twice the total number of resources). The simulations
show that under constrained scenarios, the monitor strategy outperforms the
smart agent for our example model and usage scenario.
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interface Agent { Session getsession(); Unit free(Session session);}
interface Session { Bool thumbnailImage(Pixel size); }

class SessionImp(Agent agent, Time limit, DC backupserver)
implements Session {
Time start = now; Bool active = False;
Time timeToMove = limit; DC origserver = thiscomp;

Bool thumbnailImage(Pixels size) { // With monitor
Int cost = size/150; Int deadline = size/2400;
start = now; active = True; timeToMove= now+limit;
while (cost > 0) {[Cost: 1] cost = cost - 1; suspend;}
active = False; agent!free(this);
Bool success = (now-start) <= deadline;
if (thiscomp != origserver){[Cost: 1] goto(server);[Cost: 1] skip;}
return (success);}

Unit run() { // The monitor
await (active ∧ now > timeToMove);
[Cost: 1] goto(backupserver); [Cost: 1] skip;
timeToMove = ∞;
this!run();}

}

class AgentImp(Time limit, DC backupserver) implements Agent {
// Same as in Fig. 1 but creating Session objects
// with a parameter backupserver

}

Fig. 8. Self-monitoring session objects for a thumbnail image service

Our simulation tool can also record behavior of models over time. Figure 10
shows the time progression of the average load (of 100 simulation runs) on the
two deployment components under both balancing strategies, with main and
backup deployment component both running with 35 resources. The simulation
runs vary quite a bit, with standard deviation around 15 for all servers, except
for the main server under the monitor strategy, which exhibits a standard devia-
tion of approximately 10 throughout the run. It can also be seen that the server
utilization under the monitor strategy is more stable, with the main server load
around 30 (of 35) on average, and less work being transferred to the backup
server. In summary, our simulation tools can be used both for quantitative in-
sights into aggregated model behavior, and for understanding of timed behavior
of models.

6 Related Work

Asynchronously communicating software units, known from Actors and Erlang,
are interesting due to their inherent compositionality. Concurrent objects with
asynchronous method calls and futures combine asynchronous communication
with object orientation [2, 9, 30, 32]. In these models, each software unit is
also a unit of concurrency. There is a vast literature on formal models of mo-
bility, based on, e.g., agents, ambient calculi, and process algebras, which is
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Fig. 9. Simulation results of single server, smart agent and monitoring load balancing
strategies: number of successful, i.e., non-timeout responses for 60 requests, with server
capacity varying between 10 and 55. The numbers show mean and standard deviation
of 100 runs for each server capacity for each scenario.

typically concerned with maintaining correct interactions between the moving
entities with respect to, e.g., security, link failure, or location failure. For non-
functional properties, access to shared resources have been studied through type
and effect systems (e.g., [17, 18]), QoS-aware processes proposed for negotiating
contracts [27], and space control achieved by typing for space-aware processes
[7]. Closer to our work, timed synchronous CCS-style processes can be compared
for speed using faster-than bisimulation [25], albeit without notions of mobility
or location. We are not aware of other formal models connecting execution ca-
pacities to locations as in the deployment components studied in our paper.

This paper is part of ongoing work on resource-restricted execution contexts
for concurrent objects [4, 22, 23]. Whereas [4] considers memory usage, deploy-
ment components with parametric concurrent resources were introduced in [23],
extending work on a timed rewriting logic semantics for Creol [8]. A follow-up
paper considers resources as first-class citizens of the language, formalizing the
semantics of ABS with resource reallocation in rewriting logic [22]. In contrast,
the present paper considers object mobility using a goto statement to allow
an object to move to another deployment component, formalized in a more ab-
stract SOS semantics. Relocation is possible due to the inherent compositionality
of concurrent objects [12]: processes are encapsulated inside objects and the state
of other objects can only be accessed through asynchronous method calls. This
way the object is in control of its own location, which fits with the encapsulation
of both state and control in the concurrent object model. Resource realloca-
tion and object mobility are in a sense complementary means to achieve load
balancing: both have applications where they seem most natural.
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Fig. 10. Main and backup server with 35 resources, using the monitoring (top) and
smart agent (bottom) load-balancing strategies. Mean value of 100 runs plotted, stan-
dard deviation was around 15 resources (not plotted) throughout, with different runs
exhibiting load spikes at different points in time.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement or modeling. Measurement-based ap-
proaches apply to existing implementations, using dedicated profiling or tracing
tools like, e.g., JMeter or LoadRunner. Model-based approaches allow abstrac-
tion from specific system details, but depend on parameters provided by domain
experts [13]. A survey of model-based performance analysis techniques is given
in [6]. Formal approaches using Petri Nets, game theory, and timed automata
(e.g., [10, 14, 24]) have been applied in the embedded software domain, but also
to the schedulability of tasks in concurrent objects [19]. That work complements
ours as it does not consider resource restrictions on the concurrency model, but
associates deadlines with method calls.

Work on object-oriented models with resource constraints is more scarce.
Based on a UML profile for schedulability, performance and time, the infor-
mally defined Core Scenario Model (CSM) [28] targets questions in performance
model building. CSM has a notion of resource context, which reflects the set of
resources used by an operation. CSM aims to bridge the gap between UML spec-
ifications and techniques to generate performance models [6]. UML models with
stochastic annotations for performance prediction have been proposed for com-
ponents [16]. Closer to our work is a VDM++ extension to simulate embedded
real-time systems [31], in which architectures are explicitly modeled using CPUs
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and buses, and resources statically bound to the CPUs. However, their work
does not address relocation and load balancing strategies.

7 Discussion and Future Work

As software is increasingly developed to be deployed on a variety of architec-
tures, it is important to be able to analyze the behavior of a model under dif-
ferent resource assumptions. ABS uses deployment components with parametric
resources to express deployment scenarios for high-level executable models. This
paper proposes a primitive for relocating concurrent objects between deploy-
ment components, expressed at the abstraction level of ABS, which integrates
with the formal framework of deployment components in an elegant and simple
way. Furthermore, we consider the problem of modeling systems with different
load balancing strategies by allowing objects to move between deployment com-
ponents, depending on the work load of their component. We demonstrate how
a simple language extension is sufficient to naturally express dynamic object re-
location strategies in this setting; our example shows how traffic on deployment
components may cause congestion in the model, resulting in performance degra-
dation for given deployment scenarios, and how load balancing strategies can
be used to dynamically alleviate the congestion and thus to improve the overall
performance of the model in a given deployment scenario. For the analysis of
the deployment scenarios, we have extended ABS with a random expression and
our simulation tool to do Monte Carlo simulations, which allows us to observe
average behavior for the deployment scenarios.

As a technical contribution of this paper, we have extended ABS with support
for user-defined cost models in terms of annotations, which provide a much more
flexible framework for expressing processing cost than in our previous work. For
example, the cost of an assignment may depend on the cost of evaluating a
function on the right hand side of the assignment, which again may depend on
the size of the input to the function. While this is expressible by user annotations
as proposed in this paper, it leaves significant responsibility with the modeler.
In future work, we will consider how the modeler may be assisted in this task by
means of tools. In particular, static analysis techniques may in many cases be
applicable to approximate the actual cost of a statement in terms of worst-case
upper bounds (e.g., following [3]). In a recent paper [4], we have shown how
static analysis may be combined with simulation for the memory analysis of
untimed ABS models. However, it remains to combine this approach with user-
defined cost models and time, and to integrate the tools. In a more long term
perspective, we are interested in how to combine different user-defined resources
in the same model.
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Abstract. We study the international standard XACML 3.0 for describing se-
curity access control policy in a compositional way. Our main contribution is to
derive a logic that precisely captures the idea behind the standard and to formally
define the semantics of the policy combining algorithms of XACML. To guard
against modelling artefacts we provide an alternative way of characterizing the
policy combining algorithms and we formally prove the equivalence of these ap-
proaches. This allows us to pinpoint the shortcoming of previous approaches to
formalization based either on Belnap logic or on D-algebra.

1 Introduction

XACML (eXtensible Access Control Markup Language) is an approved OASIS 1 Stand-
ard access control language [1,14]. XACML describes both an access control policy lan-
guage and a request/response language. The policy language is used to express access
control policies (who can do what when) while the request/response language expresses
queries about whether a particular access should be allowed (requests) and describes
answers to those queries (responses).

In order to manage modularity in access control, XACML constructs policies into
several components, namely PolicySet, Policy and Rule. A PolicySet is a collection of
other PolicySets or Policies whereas a Policy consists of one or more Rules. A Rule is
the smallest component of XACML policy and each Rule only either grants or denies
an access. As an illustration, suppose we have access control policies used within a
National Health Care System. The system is composed of several access control policies
of local hospitals. Each local hospital has its own policies such as patient policy, doctor
policy, administration policy, etc. Each policy contains one or more particular rules, for
example, in the patient policy there is a rule that only the designated patient can read
his or her record. In this illustration, both the National Health Care System and local
hospital policies are PolicySets. However the patient policy is a Policy and one of its
rules is the patient record policy. Every policy is only applicable to a certain target and a
policy is applicable when a request matches to its target, otherwise, it is not applicable.
The evaluation of composing policies is based on a particular combining algorithm –
the procedure for combining decisions from multiple policies. There are four standard

1 OASIS (Organization for the Advancement of Structured Information Standard) is a non-for-
profit, global consortium that drives the development, convergence, and adoption of e-business
standards. Information about OASIS can be found at http://www.oasis-open.org.

F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 205–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.oasis-open.org
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combining algorithms in XACML i.e., (i) permit-overrides, (ii) deny-overrides, (iii)
first-applicable and (iv) only-one-applicable.

The syntax of XACML is based on XML format [2], while its standard semantics is
described normatively using natural language in [12,14]. Using English paragraphs in
standardization leads to misinterpretation and ambiguity. In order to avoid this draw-
back, we define an abstract syntax of XACML 3.0 and a formal XACML components
evaluation based on XACML 3.0 specification in Section 2. Furthermore, the evaluation
of the XACML combining algorithms is explained in Section 3.

Recently there are some approaches to formalizing the semantics of XACML. In [8],
Halpern and Weissman show XACML formalization using First Order Logic (FOL).
However, their formalization does not capture whole XACML specification. It is too
expensive to express XACML combining algorithms in FOL. Kolovski et al. in [10,11]
maps a large fragment of XACML to Description Logic (DL) – a subset of FOL –
but they leave out the formalization of only-one-applicable combining algorithm. An-
other approach is to represent XACML policies in term of Answer Set Programming
(ASP). Although Ahn et al. in [3] show a complete XACML formalization in ASP,
their formalization is based on XACML 2.0 (see [12]), which is out-of-date nowadays.
More particular, the combining algorithms evaluation in XACML 2.0 is simpler than
XACML 3.0. Our XACML 3.0 formalization is closer to multi-valued logic approach
such as Belnap logic [4] and D-algebra [13]. Bruns et al. in [5,6] and Ni et al. in [13]
define a logic for XACML using Belnap logic and D-algebra, respectively. In some
cases, both works show different results from the XACML standard specification. We
discuss the shortcoming of formalization based either on Belnap logic or on D-algebra
in Section 4 and we conclude in Section 5.

2 XACML Components

The syntax of XACML is described verbosely in XACML format (see XACML 3.0
specification in [14]). For our analysis purpose, first of all we do abstracting XACML
components. From the XACML abstraction, we show how XACML evaluates policies.
For illustration we give an example at the end of this section.

2.1 Abstracting XACML Components

There are three main policy components in XACML, namely PolicySet, Policy and
Rule2. PolicySet is the root of all XACML policies. A PolicySet contains of a sequence
of other PolicySets or Policies. The sequence of PolicySets (or Policies ) is combined
with a combining algorithm function that has been defined already in XACML. A Poli-
cySet is applicable if its Target matches with the Request.

A Policy contains a sequence of Rules. It is the same case like PolicySet, the se-
quence of Rules is combined with a combining algorithm function. A Policy is applic-
able if its Target matches with the Request.

2 We use uppercase for Rule, Policy and PolicySet to denote XACML entities. Lowercase ”rule”
and ”policy” are used as common English terminologies
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Rule is the smallest policy entity in XACML that defines an individual rule in the
policy. A Rule only has one effect, i.e., either deny or permit an access. When Rule’s
Target matches with the Request, the applicability of the Rule is refined by Rule’s
Condition.

A Request contains a set of attributes information about access request. There are
four attributes categories used in XACML, namely subject attributes, action attributes,
resource attributes and environment attributes. A Request also contains additional in-
formation about external state, e.g. the current time, the temperature, etc. A Request
contains error message when there is an error during attribute evaluation.

We present in Table 1 a succinct syntax of XACML 3.0 that is faithful to the more
verbose syntax used in the standard [14].

Table 1. Abstraction of XACML 3.0 Components

XACML Policy Components
PolicySet ::= 〈Target, 〈PolicySet1, . . . , PolicySetm〉,CombID〉

| 〈Target, 〈Policy1, . . . , Policym〉,CombID〉 where m ≥ 0
Policy ::= 〈Target, 〈Rule1, . . . ,Rulem〉,CombID〉 where m ≥ 1
Rule ::= 〈Effect,Target,Condition〉
Condition ::= propositional formulae
Target ::= Null

| AnyOf1 ∧ . . . ∧ AnyOfm where m ≥ 1
AnyOf ::= AllOf1 ∨ . . . ∧ AllOfm where m ≥ 1
AllOf ::= Match1 ∧ . . . ∧ Matchm where m ≥ 1
Match ::= att(val)
CombID ::= po | do | fa | ooa
Effect ::= d | p
att ::= subject | action | resource | enviroment
val ::= attribute value

XACML Request Component
Request ::= {A1, . . . , Am } where m ≥ 1
A ::= att(val) | error | external state

2.2 XACML Evaluation

The evaluation of XACML components starts from Match evaluation and it is continued
iteratively until PolicySet evaluation. The Match, AllOf, AnyOf, and Target values are
either match, not match or indeterminate. Indeterminate value takes place if there is an
error during the evaluation so that the decision cannot be made at that moment. The
Rule evaluation depends on Target evaluation and Condition evaluation. The Condition
component is a set of propositional formulae which each formula is evaluated to either
true, false or indeterminate. An empty Condition is always evaluated to true. The result
of Rule is either applicable, not applicable or indeterminate. An applicable Rule has
effect either deny or permit. Finally, the evaluation of Policy and PolicySet are based
on a combining algorithm of which the result can be either applicable (with its effect
either deny or permit), not applicable or indeterminate.
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2.2.1 Three-Valued Lattice

We modelling the XACML evaluation using lattice theory. We define L3 = 〈V3,≤〉 be
three-valued lattice where V3 is the set { ,, I,⊥ } and ⊥ ≤ I ≤ ,. Given a subset S
of V3, we denote the greatest lower bound (glb) and the least upper bound (lub) at S
(w.r.t. L3) by

�
S and

⊔
S, respectively. Recall that

�
∅ = , and

⊔
∅ = ⊥.

We use �.� notation to map XACML elements into their evaluation values. The eval-
uation of XACML components to values in V3 is summarized in Table 2.

Table 2. Mapping V3 into XACML Evaluation Values

V3 Match and Target value Condition value Rule, Policy and PolicySet value
 match true applicable (either deny or permit)
⊥ not match false not applicable
I indeterminate indeterminate indeterminate

2.2.2 Match Evaluation

A Match element M is an attribute value that a request should fulfil. Given a Request
componentQ, the evaluation of Match element is as follows:

�M�(Q) =
⎧⎪⎨
⎪⎩
, M ∈ Q and error /∈ Q
⊥ M �∈ Q and error /∈ Q
I error ∈ Q

(1)

2.2.3 Target Evaluation

Let M be a Match, A = M1 ∧ . . . ∧ Mm be an AllOf, E = A1 ∨ . . . ∨ An be an
AnyOf, T = E1 ∧ . . . ∧ Eo be a Target and Q be a Request. Then, the evaluations of
AllOf, AnyOf, and Target are as follows:

�A�(Q) =
m�
i=1

�Mi�(Q) (2)

�E�(Q) =
n⊔
i=1

�Ai�(Q) (3)

�T �(Q) =
o�
i=1

�Ei�(Q) (4)

In summary, we can simplify the Target evaluation as follows:

�T �(Q) = �⊔��M�(Q) (5)

An empty Target – indicated by Null – is always evaluated to ,.
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2.2.4 Condition Evaluation

We define the conditional evaluation function eval as an arbitrary function to evaluate
Condition to value in V3 given a Request componentQ. The evaluation of Condition is
defined as follows:

�C�(Q) = eval(C,Q) (6)

2.2.5 Extended Values

In order to distinguish an applicable policy that deny an access (i.e., has value d) from
applicable policy that permit an access (i.e., has value p), we extend , in V3 to ,d

and ,p, respectively. The same case also applies to indeterminate value. The extended
indeterminate value contains potential effect value(s) that could have been returned had
there been no error during evaluation. The possible extended indeterminate values are
[14]:

– Indeterminate Deny (Id): an indeterminate from a policy which could have evalu-
ated to deny but not permit, e.g., a Rule which evaluates to indeterminate and its
effect is deny.

– Indeterminate Permit (Ip): an indeterminate from a policy which could have eval-
uated to permit but not deny, e.g., a Rule which evaluates to indeterminate and its
effect is permit.

– Indeterminate Deny Permit (Idp): an indeterminate from a policy which could have
effect either deny or permit.

We extend the set V3 to V6 = { ,d,,p, Id, Ip, Idp,⊥ } and we use V6 for XACML
policies evaluations.

2.2.6 Rule Evaluation

Let R = 〈∗, T , C〉 be a Rule and Q be a Request. Then, the evaluation of Rule is
determined as follows:

�R�(Q) =
⎧⎪⎨
⎪⎩
,∗ �T �(Q) = , and �C�(Q) = ,
⊥

(�T �(Q) = , and �C�(Q) = ⊥) or �T �(Q) = ⊥
I∗ otherwise

(7)

Let F and G be two values in V3. We define a new operator �: V3 × V3 → V3 as
follows:

F � G =

{
G F = ,
F otherwise

(8)

We define a function σ : V3 × { d,p } → V6 that maps a value in V3 into a value in V6

given a particular Rule’s grant as follows:

σ(X, ∗) =
{
X X = ⊥
X∗ otherwise

(9)
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Proposition 1. Let R = 〈∗, T , C〉 be a Rule and Q be a Request. Then, the following
equation holds

�R�(Q) = σ (�T �(Q) � �C�(Q), ∗) (10)

2.2.7 Policy Evaluation

The standard evaluation of Policy element taken from [14] is as follows

Target value Rule value Policy Value
match At least one Rule value is applicable Specified by the combining algorithm
match All Rule values are not applicable not applicable
match At least one Rule value is indeterminate Specified by the combining algorithm

not match Don’t care not applicable
indeterminate Don’t care indeterminate

LetP = 〈T ,R, CombID〉 be a Policy where R = 〈R1, . . . ,Rn〉 is a sequence of Rules.
Let Q be a Request and R′ = 〈�R1�(Q), . . . , �Rn�(Q)〉. The evaluation of Policy is
defined as follows:

�P�(Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I∗ �T �(Q) = I and
⊕

CombID(R
′) ∈ { ,∗, I∗ }

⊥ �T �(Q) = ⊥ or

�T �(Q) = , and ∀Ri : �Ri�(Q) = ⊥⊕
CombID(R

′) otherwise

(11)

Note 1. The combining algorithms denoted by
⊕

is explained in Section 3.

2.2.8 PolicySet Evaluation

The evaluation of PolicySet is similar to Policy evaluation. However, the input of the
combining algorithm is a sequence of either PolicySets or Policies.

Let PS = 〈T ,P, CombID〉 be a PolicySet where P = 〈P1, . . . ,Pn〉 is a sequence of
PolicySets (or Policies). Let Q be a Request and P′ = 〈�P1�(Q), . . . , �Pn�(Q)〉. The
evaluation of PolicySet is defined as follows:

�PS�(Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I∗ �T �(Q) = I and
⊕

CombID(P
′) ∈ { ,∗, I∗ }

⊥ �T �(Q) = ⊥ or

�T �(Q) = , and ∀Pi : �Pi�(Q) = ⊥⊕
CombID(P

′) otherwise

(12)

2.3 Example

The following example simulates briefly how a policy is built using the abstraction. The
example is motivated by [7,9] which presents a health information system for a small
nursing home in New South Wales, Australia.
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Example 1 (Patient Policy). The general policy in the hospital in particular:

1. Patient Record Policy
RP1: only designated patient can read his or her patient record except that if the

patient is less than 18 years old, the patient’s guardian is permitted also read
the patient’s record,

RP2: patients may only write patient surveys into their own records
RP3: both doctors and nurses are permitted to read any patient records,

2. Medical Record Policy
RM1: doctors may only write medical records for their own patients and
RM2: may not write any other patient records,

The encoding of this example using our abstraction is shown below. The topmost policy
in this example is the Patient PolicySet that contains two policies, namely the Patient
Record Policy and the Medical Record Policy. The access is granted if either one of the
Patient Record Policy or the Medical Record Policy gives a permit access. Thus in this
case, we use permit-overrides combining algorithm to combine those two policies. In
order to restrict the access, each policy denies an access if there is a rule denies it. Thus,
we use deny-overrides combining algorithms to combine the rules.

PS_patient = <Null , <P_patient_record , P_medical_record>, po>
P_patient_record = <Null , <RP1 , RP2 , RP3>, do>
P_medical_record = <Null , <RM1 , RM2>, do>

RP1a =
< p ,

subject (patient ) ∧ action (read ) ∧ resource (patient_record ) ,
patient (id , X ) ∧ patient_record (id , X ) >

RP1b =
< p ,

subject (guardian ) ∧ action (read ) ∧ resource (patient_record ) ,
guardian (id , X ) ∧ patient_record (id , Y ) ∧ guardian_patient (X , Y ) ∧ (age (Y ) > 18) >

RP2 =
< p ,

subject (patient ) ∧ action (write ) ∧ resource (patient_survey ) ,
patient (id , X ) ∧ patient_survey (id , X)>

RP3=
< p ,

(subject (doctor ) ∨ subject (nurse ) ) ∧ action (read ) ∧ resource (patient_record ) ,
true>

RM1 =
< p ,

subject (doctor ) ∧ action (write ) ∧ resource (medical_record ) ,
doctor (id ,X ) ∧ patient (id , Y ) ∧ medical_record (id , Y ) ∧ doctor_patient (X , Y)>

RM2 =
< d ,

subject (doctor ) ∧ action (write ) ∧ resource (medical_record ) ,
doctor (id ,X ) , patient (id ,Y ) , medical_record (id , Y ) , not doctor_patient (X , Y)>

The XACML Policy for Patient Policy

Suppose now there is an emergency situation and a doctor D asks permission to read
patient record P . The Request is as follows:
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{ subject (doctor ) , action (read ) , resource (patient_record ) ,
doctor (id ,D ) , patient (id ,P ) , patient_record (id ,P )}

Only Target RP3 matches for this request and the effect of RP3 is permit. Thus, the
final result is doctor D is allowed to read patient record P . Now, suppose that after
doing some treatment, the doctor wants to update the medical record. A request is sent

{ subject (doctor ) , action (write ) , resource (medical_record ) ,
doctor (id ,D ) , patient (id ,P ) , medical_record (id ,P )}

The Target RM1 and the Target RM2 match for this request, however because doctor
D is not registered as patient P ’s doctor thus Condition RM1 is evaluated to false while
Condition RM2 is evaluated to true. In consequence, Rule RM1 is not applicable while
Rule RM2 is applicable with effect deny.

3 Combining Algorithms

Currently, there are four basic combining algorithms in XACML, namely (i) permit-
overrides (po), (ii) deny-overrides (do), (iii) first-applicable (fa), and (iv) only-one-
applicable (ooa). The input of a combining algorithm is a sequence of Rule, Policy or
PolicySet values. In this section we give formalizations of the XACML 3.0 combining
algorithms based on [14]. To guard against modelling artefacts we provide an alternat-
ive way of characterizing the policy combining algorithms and we formally prove the
equivalence of these approaches.3

3.1 Pairwise Policy Values

In V6 we define the truth values of XACML components by extending, to ,p and,d

and I to Id, Ip and Idp. This approach shows straightforwardly the status of XACML
component. However, in general, numerical encoding is more helpful for computing
policy compositions. Thus, we encode all the values returned by algorithms as pairs of
natural numbers.

In this numerical encoding, the value 1 represents an applicable value (either deny
or permit), 1

2 represents indeterminate value and 0 means there is no applicable value.
In each tuple, the first element represents the deny value (,d) and the later represents
permit value (,p). We can say [0, 0] for not applicable (⊥) because neither deny nor
permit is applicable, [1, 0] for applicable with deny effect (,d) because only deny value
is applicable, [ 12 , 0] for Id because the deny part is indeterminate, [ 12 ,

1
2 ] for Idp because

both deny and permit have indeterminate values. The conversion applies also for permit.
A set of pairwise policy values is P =

{
[0, 0], [ 12 , 0], [0,

1
2 ], [1, 0], [

1
2 ,

1
2 ], [0, 1]

}
.

Let [D,P ] be an element on P. We denote d([D,P ]) = D and p([D,P ]) = P for the
function that returns the deny value and permit value, respectively.

3 An extended version of this paper with all the proofs is available at
http://www2.imm.dtu.dk/˜cdpu/Papers/
the logic of XACML-extended.pdf

http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf
http://www2.imm.dtu.dk/~cdpu/Papers/the_logic_of_XACML-extended.pdf
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We define δ : V6 → P as a mapping function that maps V6 into P as follows:

δ(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, 0] X = ⊥
[1, 0] X = ,d

[0, 1] X = ,p

[ 12 , 0] X = Id

[0, 1
2 ] X = Ip

[ 12 ,
1
2 ] X = Idp

(13)

We define δ over a sequence S as δ(S) = 〈δ(s)|s ∈ S〉.
We use pairwise comparison for the order of P. We define an order �P for P as

follows [D1, P1] �P [D2, P2] iff D1 ≤ D2 and P1 ≤ P2 with 0 ≤ 1
2 ≤ 1. We write

PP for the partial ordered set (poset) (P,�P) illustrated in Figure 1.

[0, 0] = ⊥

[ 1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = d [ 1
2
, 1
2
] = Idp [0, 1] = p

Fig. 1. The Partial Ordered Set PP for Pairwise Policy Values

Let max : 2R → R be a function that returns the maximum value of a set of rational
numbers and let min : 2R → R be a function that returns the minimum value of a
set of rational numbers. We define Max�P : 2P → P as a function that returns the
maximum pairwise policy value which is defined as follows:

Max�P(S) = [max ({ d(X) | X ∈ S }),max ({ p(X) | X ∈ S })] (14)

and Min�P : 2P → P as a function that return the minimum pairwise policy value
which is defined as follows:

Min�P(S) = [min({ d(X) | X ∈ S }),min({ p(X) | X ∈ S })] (15)

3.2 Permit-Overrides Combining Algorithm

The permit-overrides combining algorithm is intended for those cases where a permit
decision should have priority over a deny decision. This algorithm (taken from [14])
has the following behaviour:
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Fig. 2. The Lattice Lpo for The Permit-Overrides Combining Algorithm (left), The Lattice Ldo

for The Deny-Overrides Combining Algorithm (middle) and The Lattice Looa for The Only-One-
Applicable Combining Algorithm (right)

1. If any decision is ,p then the result is ,p,
2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Ip and another decision is Id or ,d, then the result is

Idp,
4. otherwise, if any decision is Ip then the result is Ip,
5. otherwise, if decision is ,d then the result is ,d,
6. otherwise, if any decision is Id then the result is Id,
7. otherwise, the result is ⊥.

We callLpo = (V6,�po) for the lattice using the permit-overrides combining algorithm
where�po is the ordering depicted in Figure 2. The least upper bound operator for Lpo
is denoted by

⊔
po.

Definition 1. The permit-overrides combining algorithm
⊕V6

po is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the permit-overrides combining algorithm under V6 as follows:

V6⊕
po

(S) =
⊔
po

S′ (16)

We are going to show how to express the permit-overrides combining algorithm under
P. The idea is that we inspect the maximum value of deny and permit in the set of pair-
wise policy values. We conclude that the decision is permit if the permit is applicable
(i.e. it has value 1). If the permit is indeterminate (i.e. it has value 1

2 ) then the decision
is Idp when the deny is either indeterminate (i.e. it has value 1

2 ) or applicable (i.e. it
has value 1). Otherwise we take the maximum value of deny and permit from the set of
pairwise policy values as the result of permit-overrides combining algorithm.

Definition 2. The permit-overrides combining algorithm
⊕P

po is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
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Let S = 〈s1, . . . , sn〉 be a sequence of pairwise policy values and S′ = { s1, . . . , sn }.
We define the permit-overrides combining algorithm under P as follows:

P⊕
po

(S) =

⎧⎪⎨
⎪⎩
[0, 1] Max�P(S

′) = [ , 1]

[ 12 ,
1
2 ] Max�P(S

′) = [D, 1
2 ], D ≥ 1

2

Max�P(S
′) otherwise

(17)

Proposition 2. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
po

(S)) =

P⊕
po

(δ(S))

3.3 Deny-Overrides Combining Algorithm

The deny-overrides combining algorithm is intended for those cases where a deny de-
cision should have priority over a permit decision. This algorithm (taken from [14]) has
the following behaviour:

1. If any decision is ,d then the result is ,d,
2. otherwise, if any decision is Idp then the result is Idp,
3. otherwise, if any decision is Id and another decision is Ip or ,p, then the result is

Idp,
4. otherwise, if any decision is Id then the result is Id,
5. otherwise, if decision is ,p then the result is ,p,
6. otherwise, if any decision is Ip then the result is Ip,
7. otherwise, the result is ⊥.

We call Ldo = (V6,�do) for the lattice using the deny-overrides combining algorithm
where�do is the ordering depicted in Figure 2. The least upper bound operator for Ldo
is denoted by

⊔
do.

Definition 3. The deny-overrides combining algorithm
⊕V6

do is a mapping function
from a sequence of V6 elements into an element in V6 as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under V6 as follows:

V6⊕
do

(S) =
⊔
do

S′ (18)

The deny-overrides combining algorithm can be expressed under P using the same idea
as permit-overrides combining algorithm by symmetry.

Definition 4. The deny-overrides combining algorithm
⊕P

do is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ = { s1, . . . , sn }. We
define the deny-overrides combining algorithm under P as follows:

P⊕
do

(S) =

⎧⎪⎨
⎪⎩
[1, 0] Max�P(S

′) = [1, ]

[ 12 ,
1
2 ] Max�P(S

′) = [ 12 , P ], P ≥ 1
2

Max�P(S
′) otherwise

(19)
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Proposition 3. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
do

(S)) =
P⊕
do

(δ(S))

3.4 First-Applicable Combining Algorithm

The result of first-applicable algorithm is the first Rule, Policy or PolicySet element
in the sequence whose Target and Condition is applicable. The pseudo-code of the
first-applicable combining algorithm in XACML 3.0 [14] shows that the result of this
algorithm is the first Rule, Policy or PolicySet that is not ”not applicable”. The idea is
that there is a possibility an indeterminate policy could return to be an applicable policy.
The first-applicable combining algorithm under V6 and P are defined below.

Definition 5 (First-Applicable Combining Algorithm). The first-applicable combin-
ing algorithm

⊕V6

fa is a mapping function from a sequence of V6 elements into an ele-
ment in V6 as the result of composing policies. Let S = 〈s1, . . . , sn〉 be a sequence
of policy values in V6. We define the first-applicable combining algorithm under V6 as
follows:

V6⊕
fa

(S) =

{
si ∃i : si �= ⊥ and ∀j < i : sj = ⊥
⊥ otherwise

(20)

Definition 6. The first-applicable combining algorithm
⊕P

fa is a mapping function
from a sequence of P elements into an element in P as the result of composing policies.
Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P. We define the first applicable
combining algorithm under P as follows:

P⊕
fa

(S) =

{
si ∃i : si �= [0, 0] and ∀j < i : sj = [0, 0]

[0, 0] otherwise
(21)

Proposition 4. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
fa

(S)) =

P⊕
fa

(δ(S))

3.5 Only-One-Applicable Combining Algorithm

The result of the only-one-applicable combining algorithm ensures that one and only
one policy is applicable by virtue of their Target. If no policy applies, then the result is
not applicable, but if more than one policy is applicable, then the result is indeterminate.
When exactly one policy is applicable, the result of the combining algorithm is the result
of evaluating the single applicable policy.

We call Looa = (V6,�ooa) for the lattice using the only-one-applicable combin-
ing algorithm where �ooa is the ordering depicted in Figure 2. The least upper bound
operator for Looa is denoted by

⊔
ooa.
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Definition 7. The only-one-applicable combining algorithm
⊕V6

ooa is a mapping func-
tion from a sequence of V6 elements into an element in V6 as the result of compos-
ing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in V6 and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under V6 as follows

V6⊕
ooa

(S) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Id ∃i, j : i �= j, si = sj = ,d and

∀k : sk �= ,d → sk = ⊥
Ip ∃i, j : i �= j, si = sj = ,p and

∀k : sk �= ,p → sk = ⊥⊔
ooa S′ otherwise

(22)

We are going to show how to express the only-one-applicable combining algorithm
under P. The idea is that we inspect the maximum value of deny and permit returned
from the given set of pairwise policy values. By inspecting the maximum value for
each element, we know exactly the combination of pairwise policy values i.e., if we
find that both deny and permit are not 0, it means that the deny value and the permit
value are either applicable (i.e. it has value 1) or indeterminate (i.e. it has value 1

2 ).
Thus, the result of this algorithm is Idp (based on the XACML 3.0 Specification [14]).
However if only one element is not 0 then there is a possibility that many policies have
the same applicable (or indeterminate) values. If there are at least two policies with the
deny (or permit) are either applicable or indeterminate value, then the result is Id (or
Ip). Otherwise we take the maximum value of deny and permit from the given set of
pairwise policy values as the result of only-one-applicable combining algorithm.

Definition 8. The only-one-applicable combining algorithm
⊕P

ooa is a mapping func-
tion from a sequence of P elements into an element in P as the result of compos-
ing policies. Let S = 〈s1, . . . , sn〉 be a sequence of policy values in P and S′ =
{ s1, . . . , sn }. We define only-one-applicable combining algorithm under P as follows

P⊕
ooa

(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 12 ,
1
2 ] Max�P(S

′) = [D,P ], D, P ≥ 1
2

[ 12 , 0] Max�P(S
′) = [D, 0], D ≥ 1

2 and

∃i, j : i �= j, d(si), d(sj) ≥ 1
2

[0, 1
2 ] Max�P(S

′) = [0, P ], P ≥ 1
2 and

∃i, j : i �= j, p(si), p(sj) ≥ 1
2

Max�P(S
′) otherwise

(23)

Proposition 5. Let S be a sequence of policy values in V6. Then

δ(

V6⊕
ooa

(S)) =
P⊕
ooa

(δ(S))

4 Related Work

We will focus the discussion on the formalization of XACML using Belnap logic [4]
and D-Algebra [13] – those two have a similar approach to the pairwise policy values
approach explained in Section 3. We show the shortcoming of the formalization on
Bruns et al. work in [6] and Ni et al. work in [13].
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4.1 XACML Semantics under Belnap Four-Valued Logic

Belnap in his paper [4] defines a four-valued logic over four = { ,,, tt, ff ,⊥⊥ }.
There are two orderings in Belnap logic, i.e., the knowledge ordering (≤k) and the truth
ordering (≤t) (see Figure 3).

⊥⊥

tt ff



ff

 ⊥⊥

tt

≤k ≤t

glb = ⊗B

lub = ⊕B

glb = ∧
lub = ∨

knowledge ordering truth ordering

Fig. 3. Bi-lattice of Belnap Four-Valued Logic

Bruns et al. in PBel [5,6] and also Hankin et al. in AspectKB [9] use Belnap four-
valued logic to represent the composition of access control policies. The responses of
an access control system are tt when the policy is granted or access permitted, ff when
the policy is not granted or access is denied, ⊥⊥ when there is no applicable policy
and ,, when conflict arises, i.e., an access is both permitted and denied. Additional
operators are added as follows [6]:

– overwriting operator [y �→ z] with y, z ∈ four. Expression x[y �→ z] yields x if
x �= y, and z otherwise.

– priority operator x > y; it is a syntactic sugar of x[⊥⊥ �→ y].

Bruns et al. defined XACML combining algorithms using Belnap four-valued logic as
follows [6]:

– permit-overrides: (p⊕B q)[,, �→ ff ]
– first-applicable: p > q
– only-one-applicable: (p⊕B q)⊕B ((p⊕B ¬p)⊗B (q ⊕B ¬q))

Bruns et al. suggested that the indeterminate value is treated as ,,. However, with
indeterminate as,,, the permit-overrides combining algorithm is not defined correctly.
Suppose we have two policies: p and q where p is permit and q is indeterminate. The
result of the permit-overrides combining algorithm is as follows (p⊕B q)[,, �→ ff ] =
(tt ⊕B ,,)[,, �→ ff ] = ,,[,, �→ ff ] = ff . Based on the XACML 2.0 [12] and the
XACML 3.0 [14], the result of permit-overrides combining algorithm should be permit
(tt). However, based on Belnap four-valued logic, the result is deny (ff ).

Bruns et al. tried to define indeterminate value as a conflict by formalizing it as
,,. However, their formulation of permit-overrides combining algorithm is inconsist-
ent based on the standard XACML specification. Moreover, they said that sometimes
indeterminate should be treated as ⊥⊥ and sometimes as ,, [5], but there is no ex-
planation about under which circumstances that indeterminate is treated as ,, or as
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⊥⊥. The treatment of indeterminate as,, is too strong because indeterminate does not
always contains information about deny and permit in the same time. Only Idp con-
tains information both deny and permit. However, Id and Ip only contain information
only about deny and permit, respectively. Even so, the value ⊥⊥ for indeterminate is
too weak because indeterminate is treated as not applicable despite that there is inform-
ation contained inside indeterminate value. The Belnap four-valued logic has no expli-
cit definition of indeterminate. In contrast, the Belnap four-valued has a conflict value
(i.e. ,,).

4.2 XACML Semantics under D-Algebra

Ni et al. in [13] define D-algebra as a decision set together with some operations on it.

Definition 9 (D-algebra [13]). Let D be a nonempty set of elements, 0 be a constant
element of D, ¬ be a unary operation on elements in D, and ⊕D,⊗D be binary op-
erations on elements in D. A D-algebra is an algebraic structure 〈D,¬,⊕D,⊗D, 0〉
closed on ¬,⊕D,⊗D and satisfying the following axioms:

1. x⊕D y = y ⊕D x
2. (x⊕D y)⊕D z = x⊕D (y ⊕D z)
3. x⊕D 0 = x
4. ¬¬x = x
5. x⊕D ¬0 = ¬0
6. ¬(¬x ⊕D y)⊕D y = ¬(¬y ⊕D x)⊕D x

7. x⊗D y =

{
¬0 : x = y

0 : x �= y

In order to write formulae in a compact form, for x, y ∈ D, x .D y = ¬(¬x ⊕D ¬y)
and x/D y = x.D ¬y.

Ni et al. [13] show that XACML decisions contain three different value, i.e. permit
({p}), deny ({d}) and not applicable ({na}). Those decision are deterministic decisions.
The non-deterministic decisions such as Id, Ip and Idp are denoted by

{
d, n

a

}
,{

p, n
a

}
, and

{
d,p, n

a

}
, respectively. The interpretation of a D-algebra on XACML

decisions is as follows [13]:

– D is represented by P(
{
p,d, n

a

}
)

– 0 is represented by ∅
– ¬x is represented by

{
p,d, n

a

}
− x where x ∈ D

– x⊕D y is represented by x ∪ y where x, y ∈ D
– ⊗D is defined by axiom 7

There are two values which are not in XACML, i.e. ∅ and { p,d }. Simply we say ∅ for
empty policy (or there is no policy) and { p,d } for a conflict.

The composition function of permit-overrides using D-Algebra is as follows:

fpo(x, y) = (x ⊕D y)
/D(((x⊗D { p })⊕D (y ⊗D { p })).D {

d, n
a

}
)

/D(¬((x .D y)⊗D {
n
a

}
).D {

n
a

}
.D ¬((x ⊗D ∅)⊕D (y ⊗D ∅)))
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The composition function that Ni et al. proposed is inconsistent with neither the
XACML 3.0 [14] nor the XACML 2.0 [12] as they claimed in [13]. Below we show
an example that compares all of the results of permit-overrides combining algorithm
under the logics discussed in this paper.

Example 2. Given two policies P1 and P2 where P1 is Indeterminate Permit and P2

is Deny. Let us use the permit-overrides combining algorithm to compose those two
policies. Table 3 shows the result of combining polices under Belnap logic, D-algebra,
V6 and P.

Table 3. Result of Permit-Overrides Combining Algorithm for Composing Two Policies P1 (In-
determinate Permit) and P2 (Deny) Under Various Approaches

Logic P1 P2 Permit-Overrides Function Result
Belnap logic  ff (⊕B ff)[ 	→ ff ] ff
D-algebra

{
p, n

a

} { d } fpo(
{
p, n

a

}
, { d }) { p,d }

V6 Ip d

⊕V6
po (〈Ip,d〉) Idp

P [0, 1
2
] [1, 0]

⊕P
po(〈[0, 1

2
], [1, 0]〉) [ 1

2
, 1
2
]

The result of permit-overrides combining algorithm under Belnap logic is ff and un-
der D-algebra is { p,d }. Under Bruns et al. approach using Belnap logic, the access
is denied while under Ni et al. approach using D-algebra, a conflict occurs. Both Bruns
et al. and Ni et al. claim that their approaches fit with XACML 2.0 [12]. Moreover
D-algebra claims that it fits with XACML 3.0 [14]. However based on XACML 2.0
the result should be Indeterminate and based on XACML 3.0 the result should be In-
determinate Deny Permit and neither Belnap logic norD-algebra fits the specifications.
We have illustrated that Belnap logic and D-algebra in some cases give different result
with the XACML specification. Conversely, our approach gives consistent result based
on the XACML 3.0 [14] and on the XACML 2.0 [12].

5 Conclusion

We have shown the formalization of XACML 3.0 step by step. We believe that with
our approach, the reader can understand better about how XACML works especially in
the behaviour of combining algorithms. We show two approaches to formalizing stand-
ard XACML combining algorithms, i.e., using V6 and P. To guard against modelling
artifacts, we formally prove the equivalence of these approaches.

The pairwise policy values approach is useful in defining new combining algorithms.
For example, suppose we have a new combining algorithm ”all permit”, i.e., the result
of composing policies is permit if all policies give permit values, otherwise it is deny.
Using pairwise policy values approach the result of composing a set of policies values
S is permit ([0,1]) if Min�P(S) = [0, 1] = Max�P(S), otherwise, it is deny ([1,0]).

Ni et al. proposes a D-algebra over a set of decisions for XACML combining al-
gorithms in [13]. However, there are some mismatches between their results and the
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XACML specifications. Their formulations are inconsistent based both on the XACML
2.0 [12] and on the XACML 3.0 [14].4

Both Belnap four-valued logic andD-Algebra have a conflict value. In XACML, the
conflict will never occur because the combining algorithms do not allow that. Conflict
value might be a good indication that the policies are not well design. We propose an
extended P which captures a conflict value in Appendix A.
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A Extended Pairwise Policy Values

We add three values into P, i.e. deny with indeterminate permit ([1, 1
2 ]), permit with

indeterminate deny ([ 12 , 1]) and conflict ([1, 1]) and we call the extended pairwise policy
values P9 = P ∪

{
[1, 1

2 ], [
1
2 , 1], [1, 1]

}
. The extended pairwise policy values shows

all possible combination of pairwise policy values. The ordering of P9 is illustrated in
Figure 4.

[0, 0] = ⊥

[ 1
2
, 0] = Id [0, 1

2
] = Ip

[1, 0] = d [ 1
2
, 1
2
] = Idp [0, 1] = p

[ 1
2
, 1] = Idp[1, 1

2
] = dIp

[1, 1] = dp

Fig. 4. Nine-Valued Lattice

We can see that P9 forms a lattice (we call this L9) where the top element is [1, 1]
and the bottom element is [0, 0]. The ordering of this lattice is the same as �P where
the greatest lower bound and the least upper bound for S ⊆ P9 are defined as follows:

�
L9

S = Max�P(S) and
⊔
L9

S = Min�P(S)
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Abstract. Model driven engineering (MDE) now plays a key role in the
development of safety critical systems through the use of early valida-
tion and verification of models, and the automatic generation of software
and hardware artifacts from the validated and verified models. In order
to ease the integration of formal specification and verification technolo-
gies, various formalizations of the MDE technologies were proposed by
different authors using term or graph rewriting, proof assistants, logical
frameworks, etc.

The use of components is also mandatory to improve the efficiency
of system development. Invasive Software Composition (ISC) has been
proposed by Aßman in [1] to add a generic component structure to ex-
isting Domain Specific Modeling Languages in MDE. This approach is
the basis of the ReuseWare toolset.

We present in this paper an extension of a formal embedding of some
key aspects of MDE in set theory in order to formalize ISC and prove
the correctness of the proposed approach with respect to the confor-
mance relation with the base metamodel. The formal embedding we rely
on was developed by some of the authors, presented in [25] and then
implemented using the Calculus of Inductive Construction and the Coq
proof-assistant. This work1 is a first step in the formalization of compos-
able verification technologies in order to ease its integration for DSML
extended with component features using ISC.

1 Introduction

Model driven engineering now plays a key role in the development of safety
critical systems through the use of model early validation and verification, and
the automatic generation of software or hardware artefacts from the validated
and verified models. This approach usually relies on many different Domain
Specific Modeling Languages (DSML) either explicitly or through UML and its
extensions that provides many different cooperating languages through diagrams
(in fact, OMG is currently studying the possibility for the future next major

1 This work was funded by the European Union and the french DGCIS through the
ARTEMIS Joint Undertaking inside the CESAR project.

F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 223–240, 2012.
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version of UML to define it as a collection of cooperating DSML) and profiles.
Each DSML is defined as a specific metamodel or as an extension through profiles
of a part of a huge metamodel in UML.

The use of components is also mandatory to improve the efficiency of system
development. Common DSML do not usually integrate components natively,
either because it was not an initial requirement, or to avoid a too complex def-
inition of the language. Invasive Software Composition (ISC) was proposed by
Aßman [1] in order to add a generic component structure to any existing DSML.
This approach is the basis of ReuseWare2 that provides ISC based tools inside
the Eclipse Modeling Framework3. It allows to define the composition concern
relying on elements in the metamodel and then to extract components from ex-
isting models with defined composition interface (called fragment boxes), and
to compose fragments to produce new fragments or models. All the provided
tools are generic and parametrized by the composition concern. The framework
allows to adapt and extend an existing language by adding composition facil-
ities at some points called Hook. This extension relies on a metamodel level
transformation applied on the language definition based on the specification of
the composition concern. The Hook are the variation points introduced in the
models whose value can change and thus allows to build components. The main
advantage of the ISC technology is that it is generic and can be applied to any
language defined by a metamodel. This framework ensures that the result of the
composition of fragments extracted from models conforming to a given meta-
model is also conforming to the same metamodel. This common conformance
is the kind of standard structural properties available in all the MDE frame-
works that is verified in this paper. The long term purpose of our work is also
to handle behavioral properties and thus tackle the formalization of all kind of
compositional verification technologies.

In order to ease the integration of formal specification and verification tech-
nologies, some of the authors proposed in [25] a formal embedding of some
key aspects of Model Driven Engineering in Set Theory. This embedding was
then implemented using the Calculus of Inductive Construction and the Coq4

proof-assistant. This first version focused on the notions of models, metamod-
els, conformance and promotion. It was later extended to express constraints on
metamodels using the Object Constraint Language (OCL). The purpose of this
framework called Coq4MDE is to provide sound mathematical foundations for
the study and the validation of MDE technologies. The choice of constructive
logic and type theory as formal specification language allows to extract proto-
type tools from the executable specification that can be used to validate the
specification itself with respect to external tools implementing the model driven
engineering (for example, in the Eclipse Modeling Project).

This paper contributions are the specification of the composition operators
provided by the ISC method [1] using an extension of Coq4MDE and the proof

2 http://www.reuseware.org
3 http://www.eclipse.org/modeling/emf
4 http://coq.inria.fr

http://www.reuseware.org
http://www.eclipse.org/modeling/emf
http://coq.inria.fr
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Model (M) MetaModel (MM)

conformsTo(m:M) : Bool

conformsTo  ►

0..*

Fig. 1. Model & MetaModel Definition using the UML Class Diagram Notation

of the well-foundedness and termination of these operators. This specification
allows to express the models expected properties and the verification technolo-
gies for composite models and then provide support for compositional verifica-
tion. This first contribution focuses on the metamodel structural conformance
relation. It relies on the Model and MetaModel concepts from Coq4MDE that
is extended to represent fragments as proposed by ISC. The various concepts
provided by ReuseWare are formalized leading to the proof that composition
preserves metamodel conformity.

First, Section 2 introduces from Coq4MDE the Model and MetaModel no-
tions. Then, the ReuseWare approach for extending DSML with components is
presented in Section 3. The Coq4MDE framework is then extended to support
the definition of component interface and the composition operators in Section
4. After that, the validation of a composition function is presented in Section 5.
Also, a background of related work is given in Section 6. Finally, conclusion and
perspectives are presented in Section 7.

2 Model and MetaModel

This section gives the main insight of our MDE framework Coq4MDE, derived
from [25]. We first define the notions of model and metamodel. Then, we describe
conformity using the conformsTo predicate.

Our approach separates the type level from the instance level, and describes
them with different structures hence different types. AModel (M) is the instance
level and a MetaModel (MM) is a modeling language used to define models
(Figure 1). A MM also specifies the semantic properties of its models. For
instance, in UML, a multiplicity is defined on relations to specify the allowed
number of objects that have to be linked. Moreover, OCL is used to define
more complex structural constraints which may not have any specific graphical
notation.

Into our framework, the concept of MetaModel is not a specialization of
Model. They are formally defined in the following way. Let us consider two
sets: Classes, respectively References, represents the set of all possible class,
respectively reference, labels. We also consider instances of such classes, the set
Objects of object labels. References includes a specific inh label used to specify
the inheritance relation. In the following text, we will withdraw the word label
and directly talk about classes, references and objects.
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Definition 1 (Model). Let C ⊆ Classes be a set of classes.
Let R ⊆ {〈c1, r, c2〉 | c1, c2 ∈ C , r ∈ References} be the set of references among
classes such that ∀c1 ∈ C , ∀r ∈ References, card{c2 | 〈c1, r, c2〉 ∈ R} ≤ 1.

A model over C and R, written 〈MV,ME〉 ∈ Model(C ,R) is a multigraph
built over a finite set MV of typed object nodes and a finite set ME of reference
edges such that:

MV ⊆ {〈o, c〉 | o ∈ Objects, c ∈ C }
ME ⊆

{
〈〈o1, c1〉, r, 〈o2, c2〉〉 〈o1, c1〉, 〈o2, c2〉 ∈MV, 〈c1, r, c2〉 ∈ R

}
Note that, in case of inheritance, the same object label will be used several time
in the same model graph, associated to different classes to build different nodes.
This label reuse is related to inheritance polymorphism a key aspect of most
OO languages. Inheritance is represented with a special reference called inh 5

(usually defined in the metamodeling languages such as MOF [19]).
Accordingly, we first define an auxiliary predicate stating that an object o of

type c1 has a downcast duplicate of type c2.

hasSub(o ∈ Objects, c1, c2 ∈ Classes, 〈MV,ME〉) �
c1 = c2 ∨ ∃c3 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c3〉〉 ∈ME
∧hasSub(o, c1, c3, 〈MV,ME〉)

Then, we define the notion of standard inheritance. The first part of the con-
junction states that the inheritance relation only conveys duplicate objects. The
second part states that every set of duplicates has a common base element (a
common inherited class).

standardInheritance(〈MV,ME〉) �
∀〈〈o1, c1〉, inh, 〈o2, c2〉〉 ∈ME, o1 = o2
∧∀〈o1, c1〉, 〈o2, c2〉 ∈MV, o1 = o2 ⇒ ∃c ∈ Classes,

hasSub(o1, c1, c, 〈MV,ME〉)
∧hasSub(o2, c2, c, 〈MV,ME〉)

Finally, the following property states that c2 is a direct subclass of c1.

subClass(c1, c2 ∈ Classes, 〈MV,ME〉) �
∀〈o, c〉 ∈MV, c = c2 ⇒ 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ME

Consequently, Abstract Classes, that are specified in the metamodel using the
isAbstract attribute, serve as parent classes and child classes are derived from
them. They are not themselves suitable for instantiation. Abstract classes are
often used to represent abstract concepts or entities. Features of an abstract class
are then shared by a group of sibling sub-classes which may add new properties.

Therefore, a model does not conform to a metamodel if it contains objects
that are instances of abstract classes without having instances of concrete derived
classes as duplicates.

isAsbstract(c1 ∈ Classes, 〈MV,ME〉) �
∀〈o, c〉 ∈MV, c = c1 ⇒ ∃c2 ∈ Classes, 〈〈o, c2〉, inh, 〈o, c1〉〉 ∈ME

5 inh must not be used in a model or metamodel as a simple reference.
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Definition 2 (MetaModel). A MetaModel is a multigraph representing classes
and references as well as semantic properties over instantiation of classes and
references. It is represented as a pair composed of a multigraph (MMV,MME)
built over a finite set MMV of class nodes and a finite set MME of edges
tagged with references, and of a predicate over models representing the semantic
properties.

A metamodel as a pair 〈(MMV,MME), conformsTo〉 ∈ MetaModel such
that:

MMV ⊆ Classes

MME ⊆ {〈c1, r, c2〉 | c1, c2 ∈MMV, r ∈ References}
conformsTo : Model(MMV,MME)→ Bool

such that ∀c1 ∈MMV, ∀r ∈ References, card{c2 | 〈c1, r, c2〉 ∈MME} ≤ 1

Given one model M and one metamodel MM , we can check conformance. The
conformsTo predicate embedded in MM achieves this goal. It identifies the set
of valid models with respect to a metamodel.

In our framework, the conformance checks on the model M that:

1. every object o in M is the instance of a class C in MM .
2. every link between two objects is such that there exists, in MM , a reference

between the two classes typing the two elements. In the following we will say
that these links are instances of the reference between classes in MM .

3. finally, every semantic property defined in MM is satisfied in M . For in-
stance, the multiplicity defined on references between concepts denotes a
range of possible links between objects of these classes (i.e. concepts). More-
over, structural properties expressed on the metamodel as OCL constraints
and behavioural properties will be taken into account in future work as
conformsTo predicates.

This notion of conformity can be found in the framework depicted in Figure 1
by a dependency between a M and a MM it conforms to. In fact, the semantic
properties associated to the metamodel are encoded into the conformsTo pred-
icate. These semantic properties are not to be given a syntax. Instead, in order
to express our properties, we assume an underlying logic that should encompass
OCL in terms of expressive power.

In the rest of this paper, we extend the previous MDE framework to formal-
ize compositional technologies. Our final target outside the scope of this paper
is to formalize compositional verification activities. Coq4MDE is extended to
support the introduction of components in DSML defined by their metamodels.
This extension allows to express fragment boxes (models with defined interface)
composition based on concepts from the ISC method.

In the scope of this paper, we take into account a simplified version of the
conformsTo predicate (cf. Section 5) called instanceOf which is restricted to 1
and 2. We demonstrate that the verification of this instanceOf property is com-
positional relying on the ISC operators (the property of components is preserved
in case of composition using the ISC basic operators).
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3 ISC and ReuseWare approach

ISC [1] is a generic technology for extending a DSML with model composition
facilities. Its first version was defined to compose Java programs and was im-
plemented in the COMPOST system6. A universal extension called U-ISC was
proposed in [13], this technique deals with textual components that can be de-
scribed using context-free grammars and then the fragments are represented as
trees. The method as presented considers tree merging for the composition. Re-
cently, in order to deal with graphical languages the method was extended to
support typed graphs in [15], this method was implemented in the ReuseWare
framework. This last implementation is consistent with the description of models
as graphs in our Coq4MDE framework.

ISC introduces the fragment box structure to group model or source code
fragments. The fragment box defines its composition interface and then provides
tools and concepts allowing the composition. The composition interface for a
fragment box consists of a set of addressable points. Two types of addressable
points are defined, the variation points which are elements inside the fragment
box that can be used as a receptor for other elements and reference points which
are used to address some parts inside a fragment box so they can be used in
composition. We formalize thereafter one type of correspondence (variation/ref-
erence) points which is the pair (hook/prototype). As described in [12] a hook is
a variation point that constitutes a place-holder to contain a fragment referenced
by a prototype reference point.

We propose in the following section to extend the Coq4MDE framework to
support ISC concepts and then to define a sound basis to ensure the correctness
by construction for this composition style. This enables to describe and to verify
structural properties. We plan in future work to extend the formalization to
support other kind of properties and especially behavioural properties.

4 Formalizing Model Component Extraction and
Composition

4.1 Extended MetaModel with Model Component

We must be able to extend any metamodel to support the definition of fragment
boxes. This extension adds the definition of a fragment interface constituted
from a set of addressable points. We note the extended metamodel for some
metamodel MM as MMExt. We note ROV the abstract class representing the
addressable points, the Hook variation point and the Prototype reference points
are subclasses of ROV . In MMExt, every node in the graph representing MM
can be referenced by an addressable point. For this purpose, an abstract class
called AbsC is added as a super class for all the classes of MM . This class
is linked by the reference bind with ROV . The three classes ROV , Hook and

6 http://www.the-compost-system.org
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Fig. 2. MetaModel extension

Prototype are also automatically imported to the metamodel with appropriate
inheritance relations between them 7.

The following definition represents the extension function implemented in
Coq as a graph transformation which is not in the scope of this paper.

Definition 3. Let MM = 〈〈MMV,MME〉, conformsTo〉 be a metamodel.
Let ROV,Hook, Prototype, AbsC ∈ Classes, bind ∈ References.
MMExt is defined as 〈〈MMV Ext,MMEExt〉, conformsToExt〉 such that:

MMV Ext = MMV ∪ {ROV,Hook, Prototype, AbsC}
MMEExt = MME ∪ {〈ROV, bind,AbsC〉}
conformsToExt(〈MV,ME〉) � conformsTo(〈MV,ME〉)
∧ isAbstract(ROV )
∧ subClass(Hook,ROV )
∧ subClass(Prototype,ROV )
∧ isAbstract(AbsC)
∧ ∀c ∈MMV, subClass(c, AbsC)

The figure 2 shows the example of the extension of the MetaModel MM .

4.2 Component Interface Extraction

The goal of the function FragmentExtraction is to construct a fragment box
from a model by defining its composition interface. This function takes as pa-
rameters: a model, the object referenced in that model and the kind of the
addressable point associated to this object.

7 The metamodel extension used in [15] is defined at the third modeling level
(metametamodel level) which may use the promotion notion to be defined in the
Coq4MDE framework. The extension defined thereafter uses only the second mod-
eling level (metamodel level) which seems to be sufficient.
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FragmentExtraction : Model× Objects× Classes→Model is defined as8:

FragmentExtraction(〈MV,ME〉, o,HP ) = 〈MV Ext,MEExt〉
where HP ∈ {Hook, Prototype} and ∃c ∈ Classes, 〈o, c〉 ∈MV
such that :
MV Ext = MV ∪ {〈h,HP 〉, 〈h,ROV 〉, 〈o,AbsC〉}
MEExt = ME ∪ {〈〈o, c〉, inh, 〈o,AbsC〉〉,
〈〈h,ROV 〉, bind, 〈o,AbsC〉〉,
〈〈h,HP 〉, inh, 〈h,ROV 〉〉}

ElimInterface eliminates the fragment box interface (all variation and reference
points) of a fragment box, it is the inverse function of FragmentExtraction in
case of only one addressable point in the fragment box. This is implemented in
[15] using the remove operator which is automatically applied after composition
execution to make the component understandable by tools where addressable
points semantics is not defined.
ElimInterface : Model→Model, such as:

ElimInterface 〈MV Ext,MEExt〉 = 〈MV,ME〉
such that :
MV = {〈o, c〉 ∈MV Ext|c /∈ {Hook, Prototype, V OR,AbsC}}
ME = {〈〈o, c〉, r, 〈o′, c′〉〉 ∈MEExt|c, c′ /∈ {Hook, Prototype,ROV,AbsC}}

The definition of these two functions requires some proofs on multigraphs. First,
the proof that the extension of the multigraph representing the model is also a
multigraph 9, this is done by proving that adding vertexes to a multigraph gen-
erates a multigraph and also adding edges in some conditions to a multigraph is
also a multigraph. Second, the proof that deleting some elements from a multi-
graph representing the fragment box is also a multigraph 10, this is done using
a filter function defined on multigraphs. So, Coq4MDE can now support the
definition of components with composition interface in any DSML. We describe
in the following section the formalization of ISC basics composition operators in
Coq4MDE.

4.3 Components Composition

In this section, we present the implementation in our framework of the two basic
operators of ISC (bind and extend) presented in [1] [15] . The difference between
these operators is that ”the bind applied to the hook replaces the hook (i.e., it
removes the hook from its containing fragment) while extend applied on a hook
does not modify the hook itself but uses it as a position for extension (i.e., the
hook remains in its containing fragment) ”.

8 Another version can be implemented by specifying a set of pairs (o,HP ) to add
several points at the same time.

9 http://www.irit.fr/~Mounira.Kezadri/FISC/MMext.html
10 http://www.irit.fr/~Mounira.Kezadri/FISC/IntElim.html#elimInterface

http://www.irit.fr/~Mounira.Kezadri/FISC/MMext.html
http://www.irit.fr/~Mounira.Kezadri/FISC/IntElim.html#elimInterface
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Bind The bind operator replaces an object o1 referenced by a hook variation
point by an object o2 referenced by a prototype reference point. The links to
(resp. from) the object o1 are replaced with links to (resp. from) the object o2.
The composed model is obtained by substituting the object o1 by o2 in both
objects and links sets. bind : Model × Model × (Objects × Classes)
× (Objects × Classes)→Model is defined as:

bind(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉) = 〈MV 3,ME3〉
where 〈b, B〉 ∈MV 1 and 〈b′, B′〉 ∈MV 2, we have :
∃h, p ∈ Objects, 〈〈h,Hook〉, inh, 〈h,ROV 〉〉 ∈ME1
∧〈〈h,ROV 〉, bind, 〈b, AbsC〉〉 ∈ME1
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ME1
∧〈〈p, Prototype〉, inh, 〈p,ROV 〉〉 ∈ME2
∧〈〈p,ROV 〉, bind, 〈b′, AbsC〉〉 ∈ME2
∧〈〈b′, B′〉, inh, 〈b′, AbsC〉〉 ∈ME2
and finally :
MV 3 = substV (〈b, B〉, 〈b′, B′〉,MV 1)
ME3 = substE(〈b, B〉, 〈b′, B′〉,ME1)

such that substV (〈b, B〉, 〈b′, B′〉,MV ) (resp. substE(〈b, B〉, 〈b′, B′〉,ME)) is the
function that replaces 〈b, B〉 by 〈b′, B′〉 in every element in MV (resp. relation in
ME). The condition of the composition is: B = B′.

The construction of this function in Coq requires the proof that substituting
an object by another in some multigraph is also a multigraph 11. The proof is
done by induction, it is automatic for the empty graph. In case of a graph built
from adding an edge (a reference) to the graph, one reference is presented as
〈src, dst, a〉, suppose that the substitution replaces o1 by o2, we must consider
all cases of equality between src, dst, o1 and o2. Last, in case of a graph built
by adding a vertex to a graph which considers also cases of equality between the
added vertex, o1 and o2. The current implementation can be largely improved by
the definition of some graph operations like the map function, which is currently
partially done and will be presented in future work. A recursive call for the
previous function using a list of correspondence (Variation/Reference) points
allows to replaces several objects at the same time.

Extend. This operator allows to extend a model 〈MV 1,ME1〉 (the extension
point is an object o1 addressed as a hook variation point inside the model) by a
model 〈MV 2,ME2〉 at an object o2 addressed as a prototype reference point.

This function is parametrized by a metamodel (to insure the type safety) and
a name for the added link between o1 and o2. The composed model consists of a
multigraph built over the union of all objects of 〈MV 1,ME1〉 and 〈MV 2,ME2〉,
all links of the two models in addition to a link between the objects o1 and o2.

extend : Model ×Model× (Objects × Classes)× (Objects × Classes)
×MetaModel×References→Model is defined as:

11 http://www.irit.fr/~Mounira.Kezadri/FISC/CompBind.html#GraphSubst

http://www.irit.fr/~Mounira.Kezadri/FISC/CompBind.html#GraphSubst
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extend(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV,MME〉, conformsTo), LinkName) = 〈MV 3,ME3〉
where ∃ 〈b, B〉 ∈MV 1 and 〈b′, B′〉 ∈MV 2, we have :
extensible(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV,MME〉, conformsTo), LinkName) such that :
MV 3 = MV 1 ∪MV 2
ME3 = ME1 ∪ME2 ∪ {〈〈b, B〉, LinkName, 〈b′, B′〉〉}

The predicate extensible checks that a model 〈MV 1,ME1〉 whose interface
is 〈b, B〉 regarding some metamodel (〈MMV,MME〉, conformsTo) can be ex-
tended by another model 〈MV 2,ME2〉 whose interface is 〈b′, B′〉.

extensible(〈MV 1,ME1〉, 〈MV 2,ME2〉, 〈b, B〉, 〈b′, B′〉,
(〈MMV,MME〉, conformsTo), LinkName) �
isExtendedH(〈MV 1,ME1〉, 〈b, B〉)
∧isExtendedP (〈MV 1,ME1〉), 〈b′, B′〉)
∧(B,LinkName,B′) ∈ MME

The predicate isExtendedH verifies that 〈b, B〉 is a hook in 〈MV 1,ME1〉.

isExtendedH〈MV 1,ME1〉〈b, B〉 �
∃h ∈ Objects, 〈〈h,Hook〉, inh, 〈h,ROV 〉〉 ∈ME1
∧〈〈h,ROV 〉, bind, 〈b, AbsC〉〉 ∈ME1
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ME1

The predicate isExtendedP verifies that 〈b, B〉 is a prototype in the model.

isExtendedP 〈MV 2,ME2〉〈b, B〉 �
∃p, 〈〈p, Prototype〉, inh, 〈p,ROV 〉〉 ∈ME2
∧〈〈p,ROV 〉, bind, 〈b, AbsC〉〉 ∈ME2
∧〈〈b, B〉, inh, 〈b, AbsC〉〉 ∈ME2

The construction of this function in Coq requires the proof that the multigraph
built by extending another multigraph as described in the function extend is
also a multigraph 12.

Here we defined only one type of correspondence variation and reference point
(hook/prototype), the method as presented in [15] considers also another type of
correspondence (slot/anchor). The second type requires to consider the contain-
ment property of an edge. The difference as explained in [15] is that contrarily
to hook and prototype the slot variation point and the anchor reference point
keeps their containments in case of composition. The first type of correspondence
allows to express quite complicated composition functions like described in the
following example and is consistent with the current models graph representa-
tion. The second type of correspondence can be considered in future work. The
operators like described here are applied to the two models, a generalization to

12 http://www.irit.fr/~Mounira.Kezadri/FISC/CompBind.html#compositionExtend

http://www.irit.fr/~Mounira.Kezadri/FISC/CompBind.html#compositionExtend
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an application on several models at the same time is allowed in ReuseWare and
can be implemented in our framework as an iterative application of the operators
by composing the models one by one or by defining more general operators that
can be applied on several models.

4.4 Detailed Example

We describe in this section the use of the previously defined basic operators to
elaborate a model composition. M1 is a state machine modeling a door with a
lock. The door provides the operations: open, close, pass, lock and unlock. We
would like to add the possibility of simple and double locking the door, these
two states are described in the model M2. M1 and M2 are described in Fig. 3.

Fig. 3. M1 and M2 models

The first step is to define the interface for each model. This is done with the
FragmentExtraction function, the function applied to the model M1 defines
Locked as a hook and applied to M2 defines Simple lock as a prototype like
described in Fig. 4.

Fig. 4. Variation and reference point for the models M1 and M2

The application of the function bind on the two fragments as described in Fig.
4 followed by the elimination of the interface produces the model Mbind shown
in Fig. 5.

Fig. 5. Model after execution of the bind function
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Then, Simple lock is defined in Mbind as a prototype reference point and
Double lock is defined in M2 fp elim as a hook variation point as shown in Fig. 6.

Fig. 6. Fragment boxes extraction

The execution of the function extend on the two models in Fig. 6 after the
interface elimination generates the model presented in Fig. 7. The model is the
state machine for a door with a double lock option.

Fig. 7. Model after execution of the extend and ElimInterface functions

The original contribution of this paper is not the definition of composition
operators which is inspired from ISC but their implementation in the Coq proof
assistant, their integration in the Coq4MDE framework and the proof that the
verification of the instanceOf property is compositional with respect to these
operators.

5 Composition Validation

The bind and extend operators are defined in order to enforce the well typedness
properties. These two operators like all the concepts presented in this paper are
encoded in the Coq proof assistant. The aim of this formalization is to check
some properties on the composite models and then provide the basis for the
specification and proof of correctness of compositional verification technologies.
The first property considered is the well typedness property. This property is
related to the conformance defined in Section2. It checks that every object in
M is the instance of a class in MM and every link in M is an instance of a
relation in MM . To prove that this verification is compositional, we need to
prove that the composition of two models instances of the same metamodel is
also an instance of the same metamodel.

We define the first validity criteria for any composition function. This criteria
is defined as a higher order predicate that checks the well typedness for some
function. The function InstanceOf is used in that purpose, it checks that all
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objects and links of a Model are instances of classes and references in a meta-
model.

InstanceOf(〈〈MV,ME〉, 〈〈MMV,MME, conformsTo〉〉〉) �
∀〈o, c〉 ∈MV, c ∈MMV ∧
∀〈〈o, c〉, r, 〈o′, c′〉〉 ∈ME ∧ 〈c, r, c′〉 ∈MME

Then, the predicate ValidCompositionFunctionMM reflects this criteria. It ver-
ifies that using two components instance of MM , the component resulting from
the application of a composition function f is also instance of MM .

V alidCompositionFunction(MM ∈MetaModel, f) �
∀ M1 M2 ∈Model,
InstanceOf (M1,MM) ∧ InstanceOf (M2,MM)
→ InstanceOf ((f M1 M2),MM)

We use this predicate to verify the type safety for the composition operator bind
described in Section 4.3. This is described in the theorem ValidBind.

Theorem V alidBind : ∀ MM ∈MetaModel,
V alidCompositionFunction(MM, bind)

The Coq proof is done for this theorem. It uses intermediate lemmas that prove
the preservation of the well typedness by the elementary operations implied in
the composition. Among these lemmas, conformsAddO ensures that the result of
adding an object instance of a class in the metamodel to a component instance
of this metamodel is a component instance of the same metamodel.

Theorem conformsAddO :
∀〈MV,ME〉 ∈Model, 〈(MMV,MME), conformsTo〉 ∈MetaModel.
∀o ∈ Objects, c ∈ Classes.
InstanceOf(〈MV,ME〉, 〈(MMV,MME), conformsTo〉) ∧ c ∈MMV
→ InstanceOf(〈MV ∪ {〈o, c〉},ME〉, 〈(MMV,MME), conformsTo〉)

Another Coq proof was done to demonstrate the type safety for the composition
operator extend described also in Section 4.3. This is encoded in the theorem
ValidExtend.

Theorem V alidExtend : ∀ MM ∈MetaModel,
V alidCompositionFunction(MM, extend)

Also, similar correction properties should hold for the fragment extraction func-
tion and the elimination function.

Theorem V alidFragmentExtraction :
∀〈MV,ME〉 ∈Model, 〈(MMV,MME), conformsTo〉 ∈MetaModel.
∀o ∈ Objects, HP ∈ {Hook, Prototype}.
InstanceOf(〈MV,ME〉, 〈(MMV,MME), conformsTo〉)
→ InstanceOf(FragmentExtraction(〈MV,ME〉, o,HP ),
〈(MMV Ext,MMEExt), conformsToExt〉)
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Theorem V alidInterfaceElimination :
∀〈MV,ME〉 ∈Model, 〈(MMV,MME), conformsTo〉 ∈MetaModel.
InstanceOf(〈MV,ME〉, 〈(MMV Ext,MMEExt), conformsToExt〉)
→ InstanceOf(InterfaceElimination(〈MV,ME〉),
〈(MMV,MME), conformsTo〉)

So, starting from the Coq4MDE framework and from the ISC composition
method, we defined a framework for model composition. The definitions of model
and metamodel were extended to support the definition of model composition
interface, the constituted fragment box is also a model conforms to an extended
metamodel. The basic composition operators was described like all elements in
this paper using theCoq proof assistant. The source code is about 6400 lines, it is
accessible at http://www.irit.fr/~Mounira.Kezadri/FISC/index.html. The
formalization in Coq ensures the termination13 of the composition operators,
elaborates a compositional verification property and also will enable to describe
and prove more richer properties in future work.

6 Related Work

6.1 Composition Approaches

Models are aspects of the system that must be composed to build the final sys-
tem, similarly to aspects in AOP [16]. Tools and approaches have been proposed
aiming to automate the composition task. This problem concerns a wide vari-
ety of modeling domains and includes several techniques. We are looking for an
approach that supports component extraction from models and model composi-
tion from components. The ISC approach supports these two characteristics, it
enables to extend arbitrary language to provide reusable components using the
fragment box concept. In this method components can be invasively composed,
this can be done by adapting or extending the component at some variation
points (fragments or positions, which are subject to change) by transformation.
Several composition methods were collected in[14]. most of these methods are
interested in implementing the merge operator by using some mappings between
the models like Rational Software Architect14 , Bernstein et al. data model [5],
Atlas Model Weaver 15 [10], Epsilon 16, Theme/UML [7] and EMF Facet17.
Merge operators as presented in these works can be implemented in our frame-
work and constitute one of the directions for future work.

13 We can’t write any function in Coq if the proof of termination is not given or
deduced by Coq.

14 http://www-306.ibm.com/software/awdtools/architect/swarchitect/
15 http://www.eclipse.org/gmt/amw/
16 http://www.eclipse.org/gmt/epsilon/
17 www.eclipse.org/proposals/emf-facet/

http://www.irit.fr/~Mounira.Kezadri/FISC/index.html
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6.2 Formalization of Model Driven Engineering

MoMENT (MOdel manageMENT) [6] is a model management framework based
on experiments in formal model transformation and data migration, it provides
a set of generic operators to manipulate models. MoMENT relies on algebraic
formalisms using the Maude language [8]. In this framework, the metamodels
are represented as algebraic specifications and the operators are defined inde-
pendently of the metamodel. To be used, the operators must be specified in a
module called signature that specify the constructs of the metamodel. The ap-
proach was implemented in a tool 18 that gives also an automatic translation
from an EMF metamodel to a signature model.

A. Vallecillo et al. have designed and implemented previously a different em-
bedding of metamodels, models ([24]) and model transformations ([26]) using
MAUDE. This embedding is shallow, it relies strongly on the object structure
proposed by MAUDE in order to define model elements as objects, and relies on
the object rewriting semantics in order to implement model transformations.

I. Poernomo has proposed an encoding of metamodels and models using type
theory ([21]) in order to allow correct by construction development of model
transformation using proof assistant like Coq ([22]). Some simple experiments
have been conducted using Coq mainly on tree-shaped models ([23]) using in-
ductive types. General graph model structure can be encoded using co-inductive
types. However, as shown in [20] by C. Picard and R. Matthes, the encoding is
quite complex as Coq enforces structural constraints when combining inductive
and co-inductive types that forbid the use of the most natural encodings pro-
posed by Poernomo et al. M. Giorgino et al. rely in [11] on a spanning tree of
the graph combined with additional links to overcome that constraint using the
Isabelle proof assistant. This allows to develop a model transformation rely-
ing on slightly adapted inductive proofs and then extract classical imperative
implementations. These embeddings are all shallow: they rely on sophisticated
similar data structure to represent model elements and metamodels (e.g. Coq
(co-)inductive data types for model elements and object and (co-)inductive types
for metamodel elements).

The work described in this paper is a deep embedding, each concept from mod-
els and metamodels are encoded using elementary constructs instead of relying
on similar elements in MAUDE, Coq or Isabelle. The purpose of this contri-
bution is not to implement model transformation using correct-by-construction
tools but to give a kind of denotational semantics for model driven engineer-
ing concepts that should provide a deeper understanding and allow the formal
validation of the various implemented technologies.

6.3 Formalization of Models Composition

We have presented a formalization of the ISC concepts that is expressed using the
Coq proof assistant. This formalization focuses on structural properties of the

18 http://moment.dsic.upv.es/
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components and extends a previous formalization of MOF MDE metamodeling
framework. The composition semantics of ISC is a simple substitution mecha-
nism and do not relies on middleware services providing a sophisticated Model
of Computation. Thus, our work is neither based on the previous formalization
of ISC that uses Frame Logic (F-Logic [17]) [2] nor on Turing-complete calculus
that can formally describe the execution of components such as the form-based
composition [18] and the compositional aggregation for the behaviour graph
of parallel processes [9]. The advantages of this formalization are the proof of
termination for the composition functions and the possibility of extracting the
validated executable code after some modifications on functions that are written
now for validation purpose.

6.4 Compositional Verification

In order to develop safety critical systems, methods are now needed that allows
not only the reuse of components but also of their properties for inferring the
global properties of the composite system from properties of its constituent com-
ponents. Nguyen, T.H. proposes in [4] a compositional verification approach to
check safety properties of component-based systems. The systems are described
in the BIP (Behavior - Interaction - Priority) language [3]. Another approach
allowing to verify systems by composition from verified components was pro-
posed in [27], this approach reduces the complexity of verifying component-based
systems by utilizing their compositional structures. In this approach, temporal
properties of a software component are specified, verified, and packaged with the
component. The selection of a component for reuse considers also its temporal
properties. The Ptolemy19 project proposes a compositional theory for concur-
rent, real-time, embedded systems. It uses well defined models of computation
and defines an unified mathematical framework to relate heterogeneous models
of computation. In this paper, regarding the previous cited methods, we adopted
a generic composition technology where the interactions and temporal properties
are not yet integrated. This is planned for future work.

7 Conclusion

Starting from Coq4MDE our formal framework for model and metamodel def-
inition, we have tackled the problem of model composition. Taking inspiration
from the ISC generic method for model composition and also from the Reuse-
Ware toolbox, we proposed first a metamodel extension, and associated model
operators for expressing component extraction and composition. This yielded a
formalization of model components, model extraction and model composition.
All these notions are also currently being reflected in the Coq proof assistant,
following the line of thought of our previous work around model and metamodel
formalization. This embedding provides us correct-by-construction pieces of ex-
ecutable code for the different model operations related to composition. For

19 http://ptolemy.eecs.berkeley.edu/
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instance model extraction and model composition are both proved to be termi-
nating, the latter operation being in addition correct, as advocated by the main
theorem. As we target a general purpose MDE-oriented framework, our work ap-
plies to any model, modeling language, application and is not restricted to some
more-or-less implicit language context.

Yet, for the ease of experimentation, we have in a first step somehow restricted
the possibilities of our composition framework. For instance, the notion of con-
formity, a notion at the heart of our formal description, has been temporarily
weakened to take into account only instantiation constraints, disregarding any
other model property (multiplicity, etc).

As future work, all these constraints should be enforced to achieve a fully-
fledged formal model composition framework.

Furthermore, the interplay between model composition (where objects are
replaced by others, assuming they have the same type) and sub-typing (where
a single object may exhibit many types, due to duplication) needs to be clearly
worked out in our framework.

This proposal is a preliminary mandatory step in the formalization of compo-
sitional formal verification technologies. We have tackled the formal composition
of models from model fragments independently of the properties satisfied by the
model fragments and the expected properties for the composite model. The next
step in our work is to formalize the notion of model verification relying on sev-
eral use case from simple static constraints such as typing or verification of OCL
constraints satisfaction, to more dynamic properties such as deadlock freedom as
proposed in the BIP framework. The expected result of our work is a framework
to define compositional verification technologies and to prove the correctness of
the associated verification tools.
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Abstract. This paper formalizes a data-flow component model specif-
ically designed for building real-time interactive scientific visualization
applications. The advantages sought in this model are performance, co-
herence and application design assistance. The core of the article deals
with the interpretation of a property and constraint based user specifica-
tion to generate a concrete assembly based on our component model. To
fulfill one or many coherence constraints simultaneously, the application
graph is processed, particularly to find the optimal locations of filtering
objects called regulators. The automatic selection and inter-connection of
connectors in order to maintain the requested coherences and the highest
performance possible is also part of the process.

Keywords: Composition, Coherence, Coordination, Synchronization.

1 Introduction

Assisted or semi-automated composition is a recurrent feature in component-
based frameworks [6], particularly when the end users are not computer scien-
tists. The aim is to provide an abstraction layer that makes composition more
intuitive, descriptive and, ideally, close to the natural language. Research in this
area addresses the underlying reasoning approaches that would map the user’s
specification to the concrete assembly of the model’s elements. Apart from hiding
the technicalities of the model, the purpose of allowing a coarse grained specifi-
cation is to alleviate the complexity of tuning a whole system, a complexity that
grows exponentially with the size of this system.

Automation can take place in two aspects of dataflow composition: consistency
and coordination. The former consists in ensuring the compatibility of the data
exchanged by the components and is an inescapable feature for scientific workflow
designers [2, 13]. The latter deals with the execution order of the components.
In models where connection patterns are mainly blocking, i.e. synchronous, the
execution of the components is sequential. Solutions have then to be provided
to allow users to put loops or branching in their workflows so that they can
accurately set up their processing scenarios. While some approaches [4, 7, 11, 14]
propose ready-to use control constructs, others [3] suggest composition languages
to build advanced coordination patterns out of simpler ones.
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The level of abstraction of the application’s specification that the different
approaches propose closely depends on the targeted audience and application
areas. The component approach has, for example, been widely used in scientific
computing. A variety of Scientific Workflow Management Systems (SWMSs) [18]
exist to design, generate, deploy and execute scientific applications. The targeted
applications usually consist in carrying out an overall process over a dataset
through a sequence of finite steps. Despite the name “workflow”, the current
state of the art of SWMS is divided into frameworks adopting either a workflow
paradigm [5] or a dataflow paradigm [7, 11, 14]. Because they are less dependent
on the components’ implementations -no function calls between components,
only data is exchanged-, dataflow-oriented frameworks promote code reuse bet-
ter. In SWMSs, the trend is to bring the specification to an always higher level. In
[12], the authors suggest to refine the results of a workflow execution with intents
and goals expressed at specification. In SWMSs also, the processing pipeline that
produced a result is referred to as the provenance of this result [15] and is a cru-
cial information for scientists. Provenance is usually recorded and displayed at
the end of an execution for analysis [1, 11] or for failure diagnosis [17]. However,
because it is itself seen as part of the result set, the SWMSs do not provide
any interface for a priori controlling or parameterizing provenance. This would
though help ensure the accuracy of a result depending on the coherence of its
different sources.

In [10], we introduced a component model specifically designed for high per-
formance interactive scientific applications. In that model, components can en-
capsulate different kinds of tasks: computing, display, user control management,
data conversion, etc. They, by definition, run iteratively and their composition
is the loosest possible to promote performance. It was presented along with a
coarse grained coordination specification system. Coupling is usually loose in
such applications so branching control is not necessary and coordination rather
defines the degree of synchronicity between components. Nevertheless, spatial
and temporal provenance remain important. That is why, in our model’s speci-
fication system, we introduced the possibility of imposing tight coherence con-
straints which consisted in allowing the user to request an exact synchronicity
between message flows reaching the same component. This property is, to sci-
entists, among the relevant information [16] when evaluating their results. Our
contribution was then to automatically adapt the user’s initial graph to fulfill
this type of constraints. In the current paper, we intend to enrich the definition of
coherence and the component model to allow looser user provenance constraints.

This paper is organized as follows: Section 2 introduces our component model.
Section 3 details our methodology to automatically build a coherent dataflow out
of a user specification. In Section 4, we evaluate our method and give the axes
of our future work.

2 Component Model

In [10], we have defined a component model for Real-time interactive (RTI) ap-
plications including a component of iterative nature and five inter-component
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connection patterns. We also described how this model and our connection pat-
terns can be used to construct an application guaranteeing a tight coherence of
the data consumed by a component. In this section, we briefly give a reminder
of our model and add to it a new object called the regulator.

2.1 Components

A component works iteratively. It is defined as a quadruple C = (n, I, O, f) where
n is the name of the component and I and O two sets of user defined input and
output ports. I and O respectively include s (for start) and e (for end), two
default triggering input and output ports. f is a boolean to indicate that the
component must run freely and that its iteration cycle can not be blocked by
other components. The iteration cycle of the component consists in

1. receiving new messages on all its connected input ports, including s,
2. when all its input ports are fed, beginning a new iteration,
3. at the end of the iteration, producing new data on all its output ports and

an ending signal on e that can be connected to the s port of another object
to trigger it.

Each component numbers its iterations. input and output ports are identified
by a name and data circulating between ports are called messages. Along with
the data it transports, a message m also contains stamps. A stamp is a small
information associated to a message and generated by the sender. Each message
contains at least one stamp, denoted it(m), that is the iteration number of the
component that produced it. The components of our model can also handle
empty messages, i.e. containing no data, allowing it to go out of the waiting
state as soon as all of its input ports are supplied. For a component C, name(C)
denotes its name and I(C) and O(C) respectively its sets of input and output
ports. A port of a component C is denoted C.i with i ∈ I(C) or C.o with
o ∈ O(C).

2.2 Connectors

Connectors must be set between two components to determine the communica-
tion policy between them, i.e. the type of synchronization and the possibility to
lose messages or not. A connector c is a quadruple c = (n, {s, i}, {o}, t) where t is
its type and i is an input port and o an output port. n and s are similar to their
homonyms in the component. We use the same notations name(c) and type(c) as
for components. c can store several messages. When the sender writes a message
on an output port, it simply adds this message to the connector and when the
receiver reads its input ports, the connector delivers one of its messages.

Because the components might run at different rates, the connectors need to
avoid the overflow of messages when the receiver is slower than the sender. On
the other hand, the sender might also slow the receiver down if its iteration rate
is lower. To tackle these problems, we propose five connection patterns besides
the plain FIFO, summarized in Figure 1. These connectors needed to be carefully
designed in order to express fine inter-components synchronization policies.
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Fig. 1. The five connectors of our framework

– The sFIFO connector is a plain FIFO connection where, to prevent over-
flows, the sender waits for a triggering signal on its s port usually sent by
the receiver.

– The bBuffer and nbBuffer keep their incoming messages until the reception
of a triggering signal and then dispatches the oldest message. These buffered
FIFO connections can be useful to absorb overflows when one of the two
components has an irregular iteration rate. The n(on)b(locking)Buffer
connector dispatches empty messages when its buffer is empty whereas the
b(locking)Buffer blocks the receiver until fresh messages arrive.

– A greedy connector keeps only the last message provided by the sender and
sends it upon the receiver’s request. It is usually used to avoid overflows when
it is not required that all the messages are processed. The bGreedy and the
nbGreedy are, respectively, the blocking and the non-blocking variants of
this pattern.

2.3 Regulators

Regulators are special multi-channel connectors that coordinate the message
flows of several communication channels. Their policy is expressed by user-
defined coherence rules to filter the message flows on the different channels.
These rules are linear formulae over message iteration numbers. Formally, a reg-
ulator, illustrated in Figure 2, is a quintuple r = (n, I, O, F, b) where n is its
name, I and O its sets of input and output ports. I contains a triggering port s.
F is a set of formula, also denoted F (r). A formulae has the form ini◦α× inj+δ
with ini, inj ∈ I \ {s}, ◦ ∈ {≤,=,≈} and α, δ ∈ N. The operator ≈, used with
δ > 0, denotes an absolute gap tolerance of δ between the two operands ini
and inj . b is a boolean that denotes the blocking behaviour of the regulator.
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Moreover there is a one to one correspondence between the ports of I \ {s} and
those of O. These two sets thus contain the same number of ports.

Let M = {m1, . . . ,mn} be a set of messages contained in each buffer of
messages received by r on its n input ports. We say that M validates f =
ini ◦α× inj+ δ of F (r) if it(mi)◦α× it(mj)+ δ. M validates F (r) if it validates
all the formulae of F (r).

The behaviour of a regulator is the following:

1. it buffers the messages received on its input ports,
2. each time it receives a signal on its port s, it analyzes the iteration numbers

of the messages available in its input buffers,
3. (a) if a set of messages that validates F (r) can be found in the buffers, the

regulator moves them to the corresponding output ports and flushes the
older messages in the buffers. Besides, if, in an input buffer, more than
one messages fulfills the rules, the oldest one is selected.

(b) otherwise, the regulator dispatches empty messages from all of its output
ports if b is set to false and does nothing if not.

Thanks to blocking connectors or to the synchronization mechanisms described
in Section 3, the coherence established by a regulator can be maintained through-
out the application.

Fig. 2. Schema of the regulator

2.4 Links

Links connect components, connectors and regulators together via their ports.
They are denoted by (x.p, y.q) with x, y components, connectors or regulators,
p ∈ O(x) and q ∈ I(y). There are two types of links:

– A data link transmits data messages. For a data link (x.p, y.q), we impose
that p �= e, q �= s and at least x or y is a connector or a regulator. Indeed,
as a connector or a regulator is always required to define a communication
policy, a data link cannot be directly set between two components.

– A triggering link transmits triggering signals. For such a link (x.p, y.q),
we impose that x is a component, p = e and q = s. Please note that, to
avoid deadlocks, neither components nor connectors nor regulators wait for
a triggering signal before their very first iteration.
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2.5 Application Graph

With these elements, an application is represented by a graph called the appli-
cation graph. The vertices of this graph are the components, the connectors and
the regulators. The edges represent the links.

Definition 1. Let C be a set of components, L a set of connectors, R a set of
regulators, D a set of data links, T a set of triggering links. The graph G =
(C ∪L∪R,D∪T ) defines an application graph. In the remainder of this article,
we call a data path of G an acyclic path in the graph (C ∪ L ∪ R,D).

With G an application graph, let us also consider the following additional defi-
nitions:

– We call the source src(p) the starting vertex of a data path p of G and
destination dest(p) its ending vertex,

– A message m arriving at dest(p) is called a result of p and the message from
the source that originates this result is denoted by ori(m),

– A data path whose source and destination are components is called a pipeline,
– rankp(x) denotes the rank of element x along pipeline p. rankp(src(p)) =

1, rankp(dest(p)) = length(p) with length(p) the number of elements of p.

Figure 3 illustrates a sample application graph.

3 Provenance-Based Coherence

This section describes a composition method to build an application that can be
deployed on a distributed architecture. We aim to propose an automatic process
in a few steps to transform a specification graph defined by a scientist into an
application graph respecting all the coherence constraints and allowing the best
performance possible.

3.1 Specification Graph

Application specification helps the user focus on the expected properties of the
communications in the application, sparing him technicalities. It is done through
a directed graph called the specification graph. The vertices of this graph are the
components of the application and its edges indicate which component ports are
connected together. Its vertices are the components defined in Section 2.1. The
edges, directed from the sender to the receiver, are labelled with the output and
input ports and with constraints on the communications. These constraints are
of two types

– the message policy, i.e. can this communication drop messages or not,
– the synchronization policy, i.e. should the receiver of the message be blocked

when no new messages are available.
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Fig. 3. An application graph

These communication constraints are used to construct a preliminary application
graph where connectors are automatically chosen to implement the synchroniza-
tion policy with the best performance possible but without any guarantee on
coherence. Besides the graph itself, a set of constraints K defines the coherence
constraints on the input ports of the components. Provenance-based coherence
is a fine type of coherence based on the tolerated -positive, null or negative-
iteration gap between two messages m1 and m2 issued by two output ports,
and originating the messages that arrive simultaneously to two input ports of a
component at each iteration of it. While in [10] we introduced a tight coherence
imposing equalities between message iterations and a common component as
message source, this new coherence type aims at allowing more flexible synchro-
nization policies when the application needs not to manipulate data generated
exactly at the same iteration by the same component. More formally provenance-
based coherence is defined as follows:

Definition 2. Let C1, C2 and D be three components such that C1 �= D,C2 �=
D, oi ∈ O(C1), oj ∈ O(C2) and {ik, il} ⊂ I(D). The coherence constraint κ
defined by Dik,il : C1.oi ◦ α × C2.oj + δ with ◦ ∈ {≤,=,≈} and {α, δ} ∈ N is
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satisfied if, for each pair of pipelines p1 and p2 starting respectively at C1.oi and
C2.oj and reaching respectively D.ik and D.il, we ensure that it(ori(m1)) ◦ α×
it(ori(m2)) + δ where m1 and m2 are results of respectively p1 and p2 read at
the same iteration of D. Such a pair of pipelines p1 and p2 are called sibling
pipelines with respect to coherence κ. sibκ(p) denotes the set of sibling pipelines
of pipeline p with respect to coherence κ.

Figure 4 gives an example of specification graph to which we add the following
provenance coherence constraints:

– κ1 = Jin1,in2 : A.out ≈ B.out + 10, which means that, at each iteration of
component J , we do not allow the pair of messages read on in1 and in2 of
J to reflect an absolute iteration difference between A and B that is greater
than 10 iterations.

– κ2 = Kin1,in2 : E.out ≈ C.out + 5, which has the same meaning as the
previous constraint.

Fig. 4. A specification graph

3.2 Preliminary Application Graph

The first step of the process consists in building a preliminary application graph
by replacing each edge of the specification graph with a connector following the
rules of Table 1. As in many cases several connectors fit the same combination,
this table was created following the rule: The generated application has to be,
first of all, as overflow-safe as possible and then, as fast as possible.

The application graph of Figure 3 derives from the specification graph of
Figure 4. Of course, if no provenance coherence is requested, the application
graph can be finalized just after this step.
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Table 1. The communication pattern selection

Blocking policy Non-blocking
or

Free receiver

Msg loss bGreedy nbGreedy

Free sender Sender not free

No msg loss bBuffer sFIFO nbBuffer

3.3 Coherence Subgraphs

The next steps of the process deal with the solving of the coherence constraints.
The first step of the transformation consists in looking, in the application graph,
for pipelines that must be coherent. They are collected into coherence subgraphs.

Definition 3. Given an application graph G and C1, C2 and D three distinct
components of G such that oi ∈ O(C1), oj ∈ O(C2) and {ik, il} ⊂ I(D) and
given a coherence constraint κ = Dik,il : C1.oi ◦ α × C2.oj + δ, the coherence
subgraph gκ of κ is the subgraph of G that contains all the sibling pipelines
between the source ports C1.oi and C2.oj and the destination ports respectively
D.ik and D.il.

The coherence subgraphs of κ1 and κ2 are in respectively a dashed and a dotted
frame in Figure 3. As they intersect, they are merged into one single subgraph
to avoid backtrackings in the remaining of the process.

In a subgraph, we can decompose each path into a set of independent syn-
chronous segments according to the following definition.

Definition 4. A pipeline (C1, c1, . . . , Cn−1, cn−1, Cn) where Ci (1 ≤ i ≤ n) is
a component and ci (1 ≤ i ≤ n − 1) is either a sFIFO or bBuffer connector is
called a synchronous segment.

The message flow is preserved inside a synchronous segment i.e. no messages are
lost and no empty messages are produced by the connectors. As a consequence,
all the components of the segment perform the same number of iterations.

Property 1. Let s = (C1, c1, . . . , Cn−1, cn−1, Cn) be a synchronous segment and
mn a message produced by Cn, it(mn) = it(oris(mn)).

The property is obvious since no message is lost inside a synchronous segment.
Cn generates as many messages as C1.

Definition 5. The connector between two successive synchronous segments is
called a junction and is either a bGreedy, an nbGreedy or an nbBuffer connector.
A junction makes two successive synchronous segments independent as they can
run at different iteration rates. Predicate lossy(j) is true if junction j is lossy.

The next step of our automatic construction consists in the equalization of the
number of junctions between all the sibling pipelines of a coherence subgraph.
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This is needed to fulfill the coherence constraints. Indeed, controlling the mes-
sages entering a synchronous segment allows to control the messages at the end
of the segment. To summarize, our method tends to preserve as many junctions
as possible in order to preserve as many independent segments as possible from
the initial graph. It also ensures that the number of independent segments is
the same in all the pipelines from a source port to a destination port of the
coherence. Coherence control can then be operated piecewise along them. After
path segmentation, junctions of the same level will be grouped inside plateaus.

Definition 6. Let G be an application graph, p1 and p2 two sibling pipelines of
a constraint κ in G starting at components C1 and C2 respectively and reaching
component D. Due to the segmentation step, p1 = (S1

1 , j
1
1 , . . . , j

n
1 , D) and p2 =

(S1
2 , j

1
2 , . . . , j

n
2 , D) are composed of the same number n of synchronous segments

where S1
1 (respectively S1

2) starts at C1 (respectively C2) and are separated by n−1
junctions (ji1)1≤i≤n−1 for p1 and (ji2)1≤i≤n−1 for p2. We say that the junctions
ji1 and ji2 are of the same level, which is denoted ji1 ↔ ji2. The reflexive-transitive
closure of ↔ is denoted ↔∗. A plateau is the set of the junctions of the same
equivalence class of ↔∗.

A plateau is the entry point of several synchronous segments involved in the
same constraint -or in interdependent constraints. They are the points where
messages circulating in different pipelines will be controlled by regulators and
by input or output synchronizations as explained further in Section 3.5. Further
in the process, a plateau will either :

1. be replaced by the primary regulator of the coherence, the role of which is
to establish the coherence as expressed in the formulae of the constraint,

2. or be a synchronization point, maintaining the coherence of the pipelines
thanks to input and output synchronization mechanisms.

The equalization of the number of junctions -and thus, of synchronous segments-
between multiple pipelines is obtained by allowing the system to switch some con-
nectors from {sFIFO or bBuffer} to nbBuffer, or from {bGreedy or nbGreedy}
to {sFIFO, bBuffer or nbBuffer}. It is allowed, for the sake of coherence, to re-
lax blocking, non-blocking or lossy constraints of the connection specification.
However, non-lossy constraints are never relaxed. In addition, no blocking con-
nectors can be put before a free component either. The path segmentation is
solved on the whole application graph. We use a linear system where each vari-
able is associated to a connector. The domain of the variables is {0, 1}. 0 means
that the connector is either a sFIFO or a bBuffer, and 1 any of the three other
patterns -and a potential regulator location. Since these three other patterns
define junctions, it is sufficient to impose that the sums of the variables of each
sibling pipeline be equal to ensure that they have the same number of segments.
Additional constraints are also added to the problem to avoid misleading solu-
tions. For each connector c of G, according to the properties of the corresponding
connection in the specification graph and those of the sender and the receiver,
we determine the set of compatible patterns. If this set contains only elements
of {nbBuffer, bGreedy, nbGreedy}, we add vc = 1 to the linear system EqG .
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In this process, it is also crucial to anticipate the placing of the regulators as
they will replace plateaus. One regulator is sufficient for a coherence constraint
and it will be crossed by all the sibling pipelines so that it can compare their
message iterations and adjust their flows. This regulator is called the primary
regulator of the coherence in contrast with other regulators the pipelines might
come across and that may be set to control another coherence.

Definition 7. Let κ be a coherence constraint, gκ = {p1 . . . pz} its subgraph and
Π = {J1 . . . Jn} the set of plateaus of gκ such that J i = {ji1 . . . jiz}. i ∈ [1, n]
denotes the level of the plateau J i along the pipelines of gκ. J i is a location
candidate for the primary regulator of κ if ∃jik ∈ J i and ∃pk ∈ gκ such that
lossy(jik) = true and jik ∈ pk and ∀pl ∈ sibκ(pk), �C ∈ pl ∩ pk such that C is a
component and rankpk(C) < rankpk(j

i
k). Then, J i ∈ Π is the primary regulator

location for κ if �Jj ∈ Π a primary regulator candidate for κ such that j < i.

Fig. 5. Simple illutration of the regulator setup policy

The definition of the regulator given in Section 2.3 requires the junctions the
primary regulator replaces to be lossy. Consequently, the highest junctions in a
coherence subgraph before setting the regulator have to be lossy. In addition, to
respect a coherence constraint, data must not be lost before the primary regu-
lator. Otherwise it(m1) �= it(ori(m1)) for a message m1 reaching the regulator
and it would not be possible to express a constraint on it(ori(m1)) in the pri-
mary regulator anymore. Thus, there must not be other junctions above the first
lossy ones on the pipelines. For that, the system forces all the connectors pre-
ceding the highest lossy junctions to form a synchronous segment by enforcing
vc = 0 for each of them. The primary regulator has also to be set before any
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intersection between two sibling pipelines. Otherwise, the iteration number of
the messages produced by the common component would not allow to distinct
the message iterations from the two sources of the sibling pipelines anymore.
Figure 5 shows a sample application in which we consider coherence between
the two input ports of component G is requested with respect to the outputs
of A and B. The regulator has three possible locations represented by plateaus
1, 2 and 3. Obviously, plateau 3 is not convenient as part of the flows from A
and B merge at F and become indistinguishable. To guarantee performance, the
primary regulator has also to be set as close as possible to the sources of the
involved pipelines in order to release the synchronicity as soon as possible. For
example, if the primary regulator is set at plateau 2 in Figure 5, the junctions of
plateau 1 will necessarily be removed and replaced by synchronous connections.
Consequently, the primary regulator will rather be set by the system at plateau
1 so that the desynchronization plateau 2 can be kept.

At this step, if a pipeline appears not to have any lossy connector at all, it
will prevent the establishment of the provenance coherence. A warning that a
tight coherence [10] can be ensured instead is then raised. The set of additional
equations in the linear system is denoted FixG . Most of the time, the system
has many solutions that are not equivalent from a performance point of view.
We then give priority to those that maximize the application’s performance, i.e.
that preserve at best the initial junctions. This is expressed by the objective
function Maximize(Sum(JG)) where JG is the set of junctions initially set in
G and Sum(JG) = Σc∈JG (vc). So the linear problem we want to solve is EqG ∪
FixG ∪Maximize(Sum(JG)).

After the numbers of junctions in the pipelines were made the same, it becomes
possible to definitively set the type of each junction. First, plateaus are formed
according to Definition 6. Plateaus belonging to different coherences are grouped
if they have at least one connector in common. Then, as demonstrated in [10],
the connectors of a given plateau must be of the same type to effectively maintain
the coherences all the way down to the destination input ports. When a plateau
contains connectors of different types, we set all its connectors to nbBuffer if it
contains at least one nbBuffer pattern and, otherwise, to nbGreedy if it contains
at least one connector of this type.

3.4 Regulator Setup

This step sets the necessary regulators to cover all the coherence constraints. The
system iterates over the provenance coherence constraints, setting their primary
regulators one by one. If the selected plateau is of type nbGreedy, the regulator
will adopt a non-blocking policy on all its output ports, and that for a matter of
coherence between them. Otherwise, it will be blocking on all its output ports.

The filtering rules inscribed inside a regulator are adapted to the location of
the regulator along the pipelines. Therefore, for each input port of the regulator,
the source output port of the pipeline is sought and a rule with respect to sibling
pipelines is added. Here, because of merged plateaus, a regulator of a coherence
may intersect pipelines of other coherences but without being their primary
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regulator. It then automatically adds equality rules between all the pipelines
which are siblings with respect to other coherences in order to maintain them.
In Figure 7, not only does regulator R2 ensure κ1 but it also maintains κ2

established by R1. More formally, let r be the primary regulator of a coherence
constraint κ = Di1,i2 : C1.oi ◦ α× C2.oj + δ. F (r) consists in the set of filtering
rules fpk,pl where pk ⊂ Pk and pl ⊂ Pl such that Pk and Pl are two sibling
pipelines and pk, pl reach respectively ports ink and inl of r. fpk,pl = ink ◦f
αf × inl + δf , where ◦f = ◦, αf = α and δf = δ if Pk and Pl are sibling with
respect to κ and ◦f = “ = “, αf = 1, δf = 0 otherwise.

3.5 Coherence Preservation

The coherence between sibling pipelines established by the regulators has to be
maintained until the final input ports. This is achieved by setting up, in the
remaining plateaus, the tight coherence mechanisms introduced in [10].

Definition 8. We denote by M a series of messages, by |M | its length and
mi denotes its ith message. A set of series of messages {M1, . . . ,Mn} is called
synchronized if |M1| = · · · = |Mn| and ∀i ∈ [1, |M1|], it(mi

1) = · · · = it(mi
n).

The synchronicity mechanisms consist in input and output synchronization pat-
terns. While the ouput synchronization mechanism remains as defined in [10],
we slightly enrich the input synchronization pattern so that it can also begin
with a regulator instead of two junctions.

Definition 9. In an application graph, an input synchronization is a compo-
sition pattern that consists of two synchronous segments p1, p2 of respectively
k and l components and ended by respectively the components Ck

1 and Cl
2 not

necessarily distinct and

– either two junctions j1, j2 of the same type and not necessarily distinct,
triggered by their receivers C1

1 and C1
2 and a backward cross-triggering con-

sisting of (C1
1 .e, j2.s) and (C1

2 .e, j1.s).
– or a regulator r triggered by C1

1 and C1
2 and a backward cross-triggering

consisting of (C1
1 .e, r.s) and (C1

2 .e, r.s).

This pattern is denoted J ∗ (p1, p2).

The input synchronization ensures that the junctions j1, j2 belonging to a
plateau P of junctions select their messages at the same time and that no new
messages are accepted by the first components before all the components of the
segments are ready for a new iteration. If P is a regulator, it may alter the mes-
sage flows such that the messages entering p1 and p2 are coherent with respect to
the rules inscribed in it. The simultaneous triggering preserves the synchronicity
of the pipelines and of the dispatched messages. If P is non-blocking and does
not contain a pair of messages for p1 and p2 when it is triggered, it issues a
couple of empty messages instead. Figure 6 shows the different input synchro-
nization cases that can be met according to the degree of merging of p1 and p2.



254 S. Limet, S. Robert, and A. Turki

In Figure 6(a), p1 and p2 begin with the same component so only two triggering
links are needed. In Figure 6(b), p1 and p2 have two distinct sources. In case
there is a regulator instead of the junctions as in Figure 6(c), it is triggered by
the components that are its direct receivers. In Figure 6(d), the pipelines are
merged before they reach the junction. Their synchronization is then implicit.

Fig. 6. There are five different input synchronization cases

Definition 10. In an application graph, an output synchronization is a com-
position pattern involving

– two synchronous segments p1 and p2 not necessarily distinct of respectively
k and l components and ended by respectively components Ck

1 and Cl
2,

– two bBuffer connectors bB1 and bB2 following respectively p1 and p2,
– a forward cross-triggering consisting of (Ck

1 .e, bB2.s) and (Cl
2.e, bB1.s).

This pattern is denoted (p1, p2) ∗ bB.

This composition pattern ensures that the delay between the synchronous seg-
ments to produce messages is absorbed. As the bBuffer connectors select their
messages at the same time when all the last components of the synchronous
segments are done, the messages are also delivered at the same time. Note that
this property is maintained when the two bBuffer connectors are triggered by
a same additional set of signals. If Ck

1 = Cl
2, no additional bBuffers or forward

cross-triggering is needed as p1 and p2 are naturally synchronized by this com-
mon destination component. Moreover, no output synchronization is needed if
p1 and p2 precede a regulator as the regulator itself buffers incoming messages
and outputs and guarantees the simultaneity of these outputs.

In what follows we demonstrate that the different steps of our construction
generate an application graph which respects the coherence constraints.

Definition 11. In an application graph G, the composition J∗(s1, s2)∗bB where
s1 and s2 are two synchronous segments is called a pair of coherent segments.
[J ∗ (s1, s2) ∗ bB]q denotes the composition of q coherent segments J1 ∗ (s11, s12) ∗
bB1 ∗ · · · ∗ Jq ∗ (sq1, s

q
2) ∗ bBq.

Theorem 1. Let G be an application graph and (S1, S2) = [J ∗ (s1, s2) ∗ bB]q

two segments in G. If the series of messages M1 and M2 stored in the junctions
j11 and j12 of the first coherent segments are synchronized, then the set of mes-
sages m1 and m2 stored respectively in the bBuffer connectors bBq

1 and bBq
2 of

the last coherent segments are such that it(m1) = it(m2) and it(oriS1(m1)) =
it(oriS2(m2)) when the bBuffers are triggered.
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This theorem comes from [10] where no regulators existed. This result can be
easily extended to the case where some junctions (jk1 , j

k
2 ) (1 ≤ k ≤ q) are replaced

by a regulator with two input ports ink1 and ink2 and that imposes ink1 = ink2 .
Such a constraint plays, indeed, the same role as an input synchronization.

Theorem 2. Let P1 and P2 be two sibling pipelines of a coherence constraint
κ = Di1,i2 : C1.oi ◦ α × C2.oj + δ. Let m1 and m2 two messages read by D at
the same iteration on respectively i1 and i2 ports. Then m1 and m2 verify that
it(oriP1(m1)) ◦ α× it(oriP2 (m2)) + δ.

Proof. Since P1 and P2 are two sibling pipelines of the constraint κ, we can
decompose them into n + 1 pairs of coherent segments as follows. (P1, P2) =
(p1, p2) ∗ J ∗ (C′

1P
′
1, C

′
2P

′
2) with

– (p1, p2) two synchronous segments such that the first edge of p1 is connected
to C1.oi and the first edge of p2 is connected to C2.oj ,

– J is in the plateau that is the primary regulator r of κ where p1 is connected
to port in1 and p2 to port in2 of r,

– C′
1P

′
1 and C′

2P
′
2 are composed of synchronous segments, begin with compo-

nents C′
1 and C′

2 respectively and end at respectively i1 and i2 of D.

Let m1 and m2 be two messages read at the same iteration of D on respectively
ports i1 and i2. Since J is the primary regulator of κ, all the other regulators
crossed by P ′

1 and P ′
2 impose equality on the ports that concerns P ′

1 and P ′
2.

Therefore, from Theorem 1, it(oriP ′
1
(m1)) = it(oriP ′

2
(m2)).

Since r is the primary regulator of κ, the rule fP1,P2 = in1 ◦ α × in2 + δ is
in F (r). Therefore, the messages oriP ′

1
(m1) and oriP ′

2
(m2) belong to a set of

messages that validates F (r). This means that we have it(oriC′
1P

′
1
(m1)) ◦ α ×

it(oriC′
2P

′
2
(m2)) + δ.

Since p1 and p2 are two synchronous segments, we know that for any messages
m′

1 and m′
2 reaching ports in1 and in2 of J , we have it(orip1 (m

′
1)) = it(m′

1) and
it(orip2(m

′
2)) = it(m′

2). From that, we can conclude that it(oriP1(m1)) ◦ α ×
it(oriP2(m2)) + δ.

This theorem proves that the coherence κ is respected in the application graph
automatically constructed.

Figure 7 gives the final application graph under two coherence constraints κ1

and κ2 of the application specified in Figure 4. To put coherence preservation
in practice, the system first adds the backward cross-triggerings to the junc-
tions. Since a plateau may involve more than two segments, our construction
generalizes Definition 9. For a plateau j1 . . . jn and the segments p1 . . . pn ending
with components C1 . . . Cn, we add the set of edges {(Ci.e, Jj.s)|i �= j}. On the
example, regulator R1 is synchronized by D and E and regulator R2 is syn-
chronized by G, H and I. Then, to implement the output synchronization, we
add one bBuffer connector just after each Ci (i ∈ [1, n]) and add the edges for
the forward cross-triggerings. Output synchronization mechanisms can be no-
ticed before plateaus {c9, c10} and {c11, c12}. These plateaus are also subjected
to input synchronization from respectively components J and K.
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Fig. 7. The final application graph of our example

4 Discussion and Future Work

The great emphasis on performance in the communication between the compo-
nents of our model targets the building of real-time interactive scientific visu-
alization applications, a particular type of scientific applications to which, to
our knowledge, no specific component model is dedicated yet. The intended in-
teractivity in these applications is not limited to a passive manipulation of the
graphical output. It is rather active and its effects are propagated throughout
the whole running application.

In our approach, we associated to the commonly known spatial provenance its
temporal dimension and used it to ensure coherence in a loosly connected system.
Provenance-based coherence expands the definition of the tight coherence intro-
duced in [10] allowing the specifications of finer rules. We presented a method
to automatically set regulators and connectors to fulfill coherence constraints.
As explained, our method sets the regulators as high as possible in the graph to
allow the greatest number of desynchronized segments in the pipelines and thus,
promote performance. This can however cause one regulator to be primary for
multiple coherence constraints having the same sources. The potential drawback
of this situation is having conflicting coherence rules inside the same regulator.
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Fortunately, unless the conflicting rules are equality+offset rules, the regulator
will always output messages, reflecting their lowest common denominator. It is
also assumed that a buffer, whether inside a connector or a regulator, has an in-
finite capacity. At implementation, we are considering the use of a performance
model to obtain runtime adaptive buffer sizes. This would, in addition, make
non-lossy channels possible in regulators. To prevent overflows, it can also be
noticed that our construction method sets, as a priority, sFIFOs and Greedies
before Buffers.

The implementation of the complete application generator is ongoing. Mean-
while, representing components, connectors, regulators and small applications as
Petri nets [19] serves as a temporary and light model checking means. Our objec-
tive is to provide a SWMS specifically designed for real-time interactivity. The
current paper addresses the application composition phase and not component
programming. Solutions for the latter, focused on code reuse, were presented
in [9]. The main solution consists in a high level API to transform C, C++ or
Fortran code into FlowVR [8] iterative components. FlowVR is a middleware to
develop and run high-performance interactive applications.

In the future, we plan to extend our coherence constraints to data properties
other than the iteration number. For example, a module may use the results of
two different simulations that generate messages at different rates but stamped
with simulation time. In this case the user may impose constraints on these
time stamps to get coherent results. Another extension consists in expanding
our component definition to supporting not only, regular message streaming but
also event-based message emission.
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Abstract. Software integration needs to face signature and behaviour
incompatibilities that unavoidably arise when composing services devel-
oped by different parties. While many of such incompatibilities can be
solved by applying existing software adaptation techniques, these are
computationally expensive and require to know beforehand the behaviour
of the services to be integrated. In this paper we present a lightweight
approach to dynamic service adaptation which does not require any pre-
vious knowledge on the behaviour of the services to be integrated. The
approach itself is adaptive in the sense that an initial (possibly the most
liberal) adaptor behaviour is progressively refined by learning from fail-
ures that possibly occur during service interaction.

1 Introduction

The wide adoption of Web service standards has considerably contributed to
simplifying the integration of heterogeneous applications both within and across
enterprise boundaries. The languages to describe messaging (SOAP), functional-
ities (WSDL) and orchestration of services (WS-BPEL) have been standardised,
but the actual signatures and interaction protocols of services have not. For
this very reason, service adaptation [2,13,17] remains one of the core issues for
application integration in a variety of situations. Overcoming various types of
mismatches among services developed by different parties, customising existing
services to different types of clients, adapting legacy systems to meet new busi-
ness demands, or ensuring backward compatibility of new service versions are
typical examples of such situations.

Various approaches have been proposed to adapt service signatures [6], process
behaviour [3], quality of service [7], security [12] or service level agreements [15].
In this paper we focus on signature and behaviour incompatibilities, whose oc-
currence can impede the very interoperability of services. Many signature and

� This work has been partially supported by the project TIN2008-05932 funded by
the Spanish Ministry of Education and Science (MEC), FEDER, by project P07-
TIC-03131 funded by the Andalusian local Government and by EU-funded project
FP7-256980 NESSOS.
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behaviour incompatibilities can be solved by applying existing (semi-)automated
adaptation techniques. However such techniques present two limitations: i) they
require signature and behaviour of both parties to be known before service in-
teraction starts, and ii) they are computationally expensive since they explore
the whole interaction space in order to devise adaptors capable of solving any
possible behaviour mismatch.

In this paper we focus on the problem of dynamic adaptation in applications
running on limited capacity devices, as in typical pervasive computing scenarios
where (unanticipated) connections and disconnections of peers continuously oc-
cur. Unfortunately, the limited computing, storage, and energy resources of such
devices inhibit the applicability of most existing adaptation approaches.

We present a lightweight adaptive approach to the adaptation of services
that is capable of overcoming signature and behaviour mismatches that would
otherwise impede service interoperation. The approach is lightweight in the sense
that it requires low computing and storage capabilities to run.

The adaptation is governed by adaptation contracts that specify in a declara-
tive way the set of interaction traces to be allowed. While adaptation contracts
specify how signature incompatibilities may be solved, they do not require be-
havioural information (e.g., the partial order with which service operations are
offered or requested) to be known a priori. Actually, as we will see, the behaviour
of the services to be adapted can even change during the lifespan of an adaptor.

The adaptation process is itself adaptive in the sense that an initial (possibly
the most liberal) adaptor behaviour is progressively refined at run-time by learn-
ing the behaviour of the services from failures that may occur during service
interactions. Roughly speaking, the adaptor initially allows all the interactions
that satisfy the current adaptation contract. If an interaction session between
the services fails w.r.t. the contract, the adaptor memorises the interaction trace
that led to the failure in order to inhibit it in following sessions. Intuitively
speaking, the adaptor refines its behaviour based on previous failures so as to
converge to allow only deadlock-free interactions among the services.

Learning and inhibiting erroneous traces tackle permanent failures such as
a behavioural incompatibility which leads the system to a deadlock situation
or a hardware malfunction (e.g., due to low battery) which disables part of
the functionality. In addition, communications in pervasive computing can be
unstable due to changes in the environment. For instance, shadow fading [10],
where messages might be lost due to the presence of possibly moving obstacles,
has deep impact on the reliability of communication channels. We propose several
learning policies which tackle these sporadic errors. Inhibited traces learned by
the adaptor are eventually forgotten so that the adaptor can re-adapt itself to
drastic changes in service functionality, temporal changes in the environment or
sporadic communication failures.

As one may expect, the results of the refinement performed by this adap-
tive adaptation approach are particularly interesting when the process starts
with a non-empty adaptation contract. However, the approach can overcome
message ordering mismatches [11] also in the extreme situation in which no such
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adaptation contract is available. When compared with the few other existing pro-
posals of lightweight behaviour adaptation of services, such as [5] for instance,
our approach features the important advantage of requiring just an adaptation
contract based on the services signatures, it does not require to know the in-
teraction behaviour of the services that need adaptation. In other words, the
adaptor is not synthesised at design time, instead, it is directly deployed with no
other information than an adaptation contract and it will successively learn the
behaviour of the services and how to solve their behavioural incompatibilities.

As regards the complexity in time and space of learning adaptors, these only
depend on the size and structure of the adaptation contract.

The structure of the paper is the following. We introduce behavioural adap-
tation in Sect. 2. The lightweight adaptive approach to dynamic service adapta-
tion is formally presented in Sect. 3 and we describe several learning policies in
Sect. 4. Then we proceed to evaluate the implementation with an example based
on two real-world data-diffusion protocols for sensor networks (Sect. 5). Some
related work is discussed in Sect. 6 and we finally conclude with Sect. 7.

2 Behavioural Adaptation

The deployment of suitable “adaptors-in-the-middle” has proven to be an effec-
tive way to overcome signature and behaviour incompatibilities between services
[3]. Intuitively speaking, such adaptors intercept, collect, and modify the mes-
sages exchanged by two parties so as to overcome their incompatibilities. The
adaptor behaviour is specified by an adaptation contract defining a set of corre-
spondence rules between actions and (optionally) some constraints on the use of
such rules.

Definition 1. An adaptation contract c is a finite state machine (FSM, for
short)

〈
Σc, Sc, sc0, F

c, T c
〉
where Σc is a set of correspondence rules, Sc is a set

of states, sc0 ∈ Sc is the initial state, F c ⊆ Sc is the set of final states, and
T c ⊆ (Sc ×Σc × Sc) is a set of labelled transitions. Correspondence rules in Σc

have the form a ♦ b where:

– a and b are input or output communication actions,
– one side of the rule can be empty (viz., a ♦ or ♦ b),
– if both a and b are present, then one is an input action and the other is an

output action.

Adaptors act as mediators between two sides. Any communication between those
sides must be intercepted and handled by the adaptor. An action on a side of
a correspondence rule denotes the complementary action that the adaptor will
perform towards the service on that side. For instance, a correspondence rule
such as !msg ♦ ?msg′ (where msg and msg′ are operation names followed by
symbolic parameters) states that if the adaptor receives message msg from the
service on the left-hand side then it will have to (eventually) send message msg′

to the service on the right-hand side. Every message received by the adaptor is
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matched against a correspondence rule, and such matching possibly updates the
state of stored parameters maintained by the adaptor. Once correspondence rule
!msg ♦ ?msg′ is triggered, message msg′ is instantiated and inserted in a queue
of messages to be eventually sent. If the target service is ready to receive, then
the first matching message in the queue can be delivered.

The transition relation T c can impose restrictions on the order in which cor-
respondence rules can be triggered. In this way, T c permits to enforce high level
policies on the communication such as “do not perform more than three requests”
or “after every request there must be an acknowledgment”.

Example 1. Our running example is based on a simplified meteorology system.
We have three incompatible services with complementary functionality: a) a tem-
perature sensor service, this service could be deployed in a sink of a temperature
sensor network; b) a monitoring service which registers the information, this
could be located in a laptop; and c) a humidity service which might be deployed
in the same infrastructure as the temperature sensor network or otherwise.

The signatures of the services (i.e., their operation names and arguments) are
known. The temperature service (service a) has output operations !user(usr)
and !pass(psw) to authenticate with its user name (argument usr) and password
(psw); an operation to notify of the current temperature, i.e., !upload(temp); two
input operations for the upload to be either ?denied() or answered with a new
interval of time prior the next notification (?delay(time)); and finally, an output
operation to notify that it finishes it current session, !end(). Intuitively speaking,
input actions (e.g., ?denied()) represent the availability of service operations
while output actions represent service requests (e.g., !upload(temp)), both with
the types of their arguments between parentheses.

The monitoring service (service b) might be a new version or come from a
different vendor so that it has operations with similar functionalities but incom-
patible signature. Instead of operations ?user(usr) and ?pass(psw) expected
by service a, it has a single authentication operation ?login(usr, psw). The au-
thentication can be !rejected() or !connected(). It receives the temperature no-
tifications with an operation ?register(temp) and it sends the answer always
through !answer(time). This service can receive a ?quit() request and it noti-
fies of the finished session with !end(). The monitoring service requires humidity
information (typed humid) before deciding how long to wait for the next tem-
perature update. For this reason, it requests the humidity information to the
humidity service (service c) through the request and response !getHumid() and
?getHumid(humid). The latter is understood by service c but, instead of the
former, service c needs the temperature information to do some calibration via
?getHumid(temp) and it finally ends its session with !finish().

Figure 1 illustrates a possible adaptation contract for these services. Rule vu
enables the adaptor to receive action user and refers to its argument as U . Rule
vl first receives the password (in P ) with action pass and, as a consequence,
it eventually sends a login message with both the user U and password P pre-
viously received. The rest of the correspondence rules behave accordingly. The
automaton of the contract states that the goal of the system is that, if service
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Σc = { !user(U) ♦ (vu), !pass(P ) ♦ ?login(U,P ) (vl),

♦ !connected() (vc), !upload(D) ♦ (vp),

♦ ?register(D) (vr), ?getHumid(D) ♦ !getHumid() (vg),

?delay(T ) ♦ !answer(T ) (va), !getHumid(H) ♦ ?getHumid(H) (vt),

?denied() ♦ !rejected() (vd), ♦ ?quit() (vq),

!end() ♦ (ve), !finish() ♦ (ve′),

♦ !end() (ve′′ )}
(a) Correspondence rules

{ve} {ve}

Σc \ {va, ve, ve′ , ve′′} Σc \ {ve, ve′ , ve′′}

{ve′′}

Σc \ {vc, ve, ve′ , ve′′}
{va}

{ve′}

{vc}

(b) Contract FSM

Fig. 1. An adaptation contract. Underlined letters will serve to abbreviate operation
names

c sends connected (vc), then the temperature update must be eventually replied
with an answer and sent as a delay message to service a through correspondence
rule va. In addition, the automaton states that the session should finish (through
ve, ve′ and ve′′ ) either at this point or before connecting (i.e., before vc).

As we have seen in the example, services can employ different alphabets of ac-
tions (different names of actions as well as different names, number or order
of parameters). The synchronisation rules of the contract (Σc) specifies how to
solve these signature incompatibilities. In addition, services might also lock due
to behavioural incompatibilities between them. These incompatibilities arise be-
cause one service offers and requests operations in a different order than the one
expected by another.

The intentional semantics of the contract specifies the desired interactions
between the services to be adapted, without assuming that their behaviour is
known. In order to adapt behavioural incompatibilities without knowing the
actual behaviour of the services (which might even change drastically due hard-
ware problems or low battery, for instance) the runtime adaptors presented in
this paper must learn to be compliant with the given adaptation contract (i.e.,
to respect the intentional semantics of its contract) and to avoid the deadlocks
that might occur due to incompatibilities between the unknown behaviour of the
services.



264 J.A. Mart́ın, A. Brogi, and E. Pimentel

2.1 Intensional Semantics of Adaptation Contracts

The intensional semantics of an adaptation contract provides the interactions
between the services and the adaptor allowed by the contract. Formally, the in-
tentional semantics of an adaptation contract c is defined by a labelled transition

system
x→c over configurations of the form 〈s,Δ〉 where s is the current state of

the contract and Δ is a multiset of pending actions that the adaptor will have

to eventually perform. A transition 〈s,Δ〉 x→c 〈s′, Δ′〉 indicates that an adaptor
could, by contract c, execute action x in state s with pending actions Δ. The

transition system
x→c is defined by the following inference rules:

(I1)
(s, a ♦ b, s′) ∈ T c

〈s,Δ〉 |a→c 〈s′,Δ ∪ {b|}〉
(I2)

(s, a ♦ b, s′) ∈ T c

〈s,Δ〉 b|→c 〈s′,Δ ∪ {|a}〉
(I3)

〈s,Δ ∪ {x}〉 x→c 〈s,Δ〉

where the complementary action of a non-internal action a is denoted by a (e.g.,
if a = !do() then a = ?do(), and vice-versa).

Note that the labels denoting the actions of the adaptor are annotated with
a left-hand or right-hand bar to explicitly represent whether they are commu-
nication actions performed by the adaptor towards the service on the left-hand
side (|a) or towards the service on the right-hand side (b|), respectively. Note
also that an ordered semantics of pending actions is assumed, that is, in rule I3
we assume that if there is more than one x in the multiset Δ, then the emitted
x is the oldest in Δ. Finally, since in a correspondence rule a ♦ b of an adapta-

tion contract either a or b may be absent, the definition of
x→c includes also the

following rules:

(I4)
(s, a ♦ , s′) ∈ T c

〈s,Δ〉 |a→c 〈s′,Δ〉
(I5)

(s, ♦ b, s′) ∈ T c

〈s,Δ〉 b|→c 〈s′,Δ〉
It is worth noting that the intensional semantics defined by rules I1 to I5
may force eager choices. Such eager choices may occur, for instance, when an
adaptation contract contains more than one correspondence rule for an action a.
Consider the simple contract c = 〈Σc, Sc, sc0, F

c, T c〉 where Σc = {a ♦ b, a ♦ c},
Sc = {s0, s1}, sc0 = s0, F c = {s1}, and T c = {(s0, a ♦ b, s1), (s0, a ♦ c, s1)}.
Then, two of the transitions that may fire in the initial state, namely 〈s0, ∅〉 |a→c

〈s1, {b|}〉 and 〈s0, ∅〉 |a→c 〈s1, {c|}〉, would force an eager choice of the adaptor,
which should pick one of them when executing a. Intuitively, such an unnecessary
eager choice may lead the adaptor to fail adapting some interactions. We could
enforce contracts to be deterministic but, instead, we allow such flexibility by
providing a lazy choice alternative which results in deterministic adaptors. Lazy
choice is modelled by lifting transition system

x→c so as to deal with sets of pairs
〈s,Δ〉:

(L)
A′ = {〈s′, Δ′〉 | ∃〈s,Δ〉 ∈ A . 〈s,Δ〉 x→c 〈s′, Δ′〉} �= ∅

A
x
↪→c A′

Not every execution order among the correspondence rules in the contract
avoids deadlocks since deadlocks depend on the actual behaviour of the services,
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which is unknown. For instance, consider the actual behaviour of the services of
our running example were the FSMs depicted in Fig. 2. Internal choices (e.g.,
if-then-else or switch conditionals) are modelled by τ actions as usual, while
external choices (e.g., WS-BPEL pick) are modelled by input-action-labelled
transitions leaving from the same state. Now, assuming that service b internally
decides to connect (right-hand side τ), then the intensional semantics of the con-
tract in Fig. 1 allows the sequence of rules vu :vl :vc :vp :vq (which, among others,
corresponds to trace |?u : |?s : !l| : ?c| : |?p : ?q| where actions are represented by
their underlined characters and ‘:’ is the append operator). This sequence would
lead the system to a deadlock because, in that point, service b cannot participate
in the rules needed for service a to reach a final state (i.e., vd and va, at least).
Because of these deadlock situations, the intensional semantics of adaptation
contracts is refined into a concrete adaptor behaviour capable of controlling the
services and leading them to successful states while avoiding locks. This refine-
ment is the key concept of traditional adaptor synthesis proposals [1,3,11,13].
These related works, however, are focused on design time and they require to
know in advance the behaviour of the services. Unlike those related works, the
goal of the learning process presented in this paper is to do this adaptation at
run time without knowing the behaviour of the services.

Example 2. Assuming that the unknown behaviour of the services were the
FSMs shown in Fig. 2, the most general adaptor compliant with the contract
in Fig. 1 would be the one depicted in Fig. 3. Because of space limitations, ac-
tions in Fig. 3 have been reduced to their underlined letters in the contract and
have been prefixed with the identification of the communicating service. Such an
adaptor could be generated using traditional approaches, being given the con-
tract and the behaviour of the services. The learning adaptors presented in this
work do not need to know the behaviour of the services. A learning adaptor for
our running example dynamically learns to synchronise with the services in the
same way that the adaptor in Fig. 3 does. When the learning adaptor converges,
each of its transitions is either one in Fig. 3 or it is offered but never used by the
services. In addition, the behaviour of the adaptor does not need to be stored
since every transition is generated on-demand.

3 Learning Adaptors

Our proposal is to directly deploy an adaptor with no other information than the
adaptation contract, and then the adaptor will dynamically learn the behaviour
and incompatibilities of the services. The approach is to initially support ev-
ery communication allowed by the adaptation contract without any guarantee
about the successful termination of the current session. The adaptor learns which
sessions ended correctly and, on failures, it will forbid the last communication
which led to the failure. The goal is to make this process converge to the most
general adaptor which complies with the adaptation contract and the given ser-
vices. However, depending on the contract and the services (they might not be
controllable due to their internal choices) it is possible that no such an adaptor
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 !user(usr) 

 !pass(psw) 

 !upload(temp) 

 ?denied()  ?delay(time) 

 !end()

(a) Service a, tem-
perature sensor

 !end()

 ?login(usr,psw) 

 !rejected() 

 !connected() 

 ?quit()

 !end()

 ?quit()

 ?register(temp) 

 !getHumid() 

 ?getHumid(humid) 

 !answer(time)

(b) Service b, monitoring station

 !finish()

 ?getHumid(temp)  !getHumid(humid) 

(c) Service c, humidity sen-
sor

Fig. 2. The (unknown) behaviour of the services of our running example. Underlined
letters will serve to abbreviate the operations, hence a?u represents the reception from
service a of action !user(usr).

exists. In this case, the process will converge to an empty adaptor (single initial
state with no transitions) where no communication is allowed.

The following transition system
x�−→ models the way in which an adaptor

wraps the service it adapts and interacts with the rest of the environment. An
adaptor wrapping a service according to an adaptation contract c is denoted in
the transition system

x�−→ by a term of the form: 〈A, I, t〉c [P ] where A is a set of
pairs 〈s,Δ〉 (s is a state of the contract and Δ the multiset of pending actions
that it should eventually perform), I is a sequence of inhibited traces that have
previously led to unsuccessful interactions according to what the adaptor has
learned so far, t is the trace of actions executed so far by the adaptor during the
current interaction session, c is the adaptation contract and P is the current state
of the service being adapted (which is not known by the adaptor). An adaptor
at the beginning of a session is denoted by 〈A0, I, λ〉c [P ] where A0 = {〈sc0, ∅〉}
and λ is the empty trace. If the adaptor has not learned anything yet, then I is
empty.
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a?u

a?s

b!l

a?p

a?p

b?c

b?j

b!l b?c

b?j

b!r

a!d

b?c

b?j

a?p

b?g

c!g

c?g
b!g

b?a
a!v

b?q

b?q

a!v

a?e

b?e
c?f

a?p

Fig. 3. Static most-general adaptor compliant with the contract and services shown in
Fig. 1 and Fig. 2, respectively

In general, I can be modelled as a set, a sequence or a tree. Independently
of its implementation, we will write I % t to denote that trace t is inhibited by
I. For the sake of simplicity, in this article we will consider I as a sequence of
inhibited traces. Each of these traces is a sequence of communication actions
ranging over A∗ (where A represents a global set of communicating actions).

We will denote by t : a the sequence obtained by appending element a to
sequence t, by a.t the sequence obtained by prefixing element a to sequence t,
and by t::t′ the sequence obtained by concatenating sequences t and t′. We will
also say that sequence t is a prefix of t::t′, where both t and t′ can be empty,
λ being the empty sequence. A natural way to define the inhibition of traces is
given by I % t iff ∃I1, I2 . I = (I1 : t)::I2.

Rules Ext and Int describe the steps that the adaptor can make by offering a
communication to the external environment and by interacting with the service
it wraps, respectively.

(Ext)
A

|a
↪→c A′ ∧ I �% t : |a

〈A, I, t〉c [P ]
a�−→ 〈A′, I, t : |a〉c [P ]

(Int)
A

b|
↪→c A′ ∧ P

b�−→ P ′ ∧ I �% t :b|
〈A, I, t〉c [P ]

τ�−→ 〈A′, I, t :b|〉c [P ′]

Note that the communications offered by the adaptor only depend on the current
state of the adaptor, not on the other services. Rule Int models synchronisations
between the adaptor and the service to be adapted as silent actions τ as such
interactions are not visible by the external environment. Also the internal steps
independently made by the wrapped service are modelled as silent actions (Tau).
Rules Syn and Par model (commutative) parallel composition between services
and adaptors with synchronous communications in the standard way:

(Tau)
P

τ�−→ P ′

A[P ]
τ�−→ A[P ′]

(Syn)
P

a�−→ P ′ ∧ Q
a�−→ Q′

P |Q τ�−→ P ′|Q′ (Par)
P

a�−→ P ′

P |Q a�−→ P ′|Q
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By rule Ok, an adaptor can consider an interaction session successfully termi-
nated when it is in a final state of the adaptation contract and there are no more
pending communications to perform. Let OKc = {〈s, ∅〉 | s ∈ F c}.

(Ok)
A ∩OKc �= ∅ ∧ A0 = {〈sc0, ∅〉}

〈A, I, t〉c [P ]
ok(t)�−−−−→ 〈A0, I, λ〉c [P ]

Rule Learn describes how an adaptor can autonomously decide, after a timed
wait, to inhibit the trace corresponding to an interaction session that has not
(yet) successfully terminated.

(Learn)
A ∩OKc = ∅ ∧ A0 = {〈sc0, ∅〉}

〈A, I, t〉c [P ]
add(t,I)�−−−−−−→ 〈A0, add(t, I), λ〉c [P ]

Note that rule Learn does not constrain the way in which timed waits will
be actually realised in the underlying implementation. From the viewpoint of
the external environment, a learning step made by the adaptor is an internal
action of the latter which may take place at virtually any moment. In Sect. 4
we will show different definitions of add(t, I) that can be employed to define
different learning policies for rule Learn. The simplest definition of add consists
of appending the new trace to the sequence of previously learned traces, i.e.,
add0(t, I) = I : t.

Note also that rules Ok and Learn specify that the adaptor will be restarted
(to its initial state A0) when it detects the successful termination of an interaction
session or when it performs a learning step1.

A natural assumption on the services deployed in limited capacity devices is
that they their behaviour is bounded in length. This does not necessarily mean
that the services will expire but, instead, it means that interactions consist of
finite sessions that can be run over and over again. In the sequel we assume
bounded services whose behaviour consists of a finite set of finite length traces.

Due to the fact that the operational semantics of adaptors are trees and the
executed traces are incrementally built by rules Ext and Int, the adaptor will
never allow traces prefixed by any of the inhibited traces. Therefore, if we have
two traces t and t′ = t::ts and I % t we know that the adaptor will never reach t′

even though, formally, I �% t′. In other words, the adaptor will forbid both traces
t explicitly inhibited by I (I % t) and all the traces t′ prefixed by inhibited traces
(t′ = t::ts ∧ I % t). We will formalise how I can change to forbid more traces
using monotonic learning functions.

Informally, we say that a learning function add is monotonic if add(t, I) forbids
(when used in rules Ext and Int) all the traces forbidden by I. In order to

1 Rules Ok and Learn do not enforce an immediate restart of the wrapped service
P and of the service Q interacting with P through the adaptor in a configuration
Q| 〈A, I, t〉c [P ]. The restart of P and Q can be autonomously performed by P and
Q (with a timeout, for instance). Alternatively, it can be triggered by the adaptation
contract itself, which can include explicit restart messages.
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formalize this monotonicity notion, we introduce the set of traces prefixed by a
sequence I as follows:

prefixed(I) = {u ∈ A∗ | ∃t, t′ ∈ A∗ . I % t and u = t::t′}

Function prefixed(I) is equal to all the possible traces forbidden by an adaptor
using I.

Definition 2. A learning function add is monotonic if add(t, I) is a monotonic
extension of I and t ∈ prefixed(add(t, I)), for each t and I. We say that add(t, I)
is a monotonic extension of I (I � add(t, I)) if

prefixed(I) ⊆ prefixed(add(t, I)).
We say that add(t, I) is a proper monotonic extension of I (I � add(t, I)) if

prefixed(I) ⊂ prefixed(add(t, I)).

Obviously, the � relationship defined on sequences of traces is a pre-order.
We now establish that the adaptation process converges if a monotonic learn-

ing function add is employed in rule Learn to adapt bounded services.

Proposition 1 (Convergence). Let S and P be two bounded services, A0 be
an adaptor for contract c in its initial state A0 = {〈sc0, ∅〉}, and I0 be a (possibly
empty) sequence of inhibited traces. If the adaptor employs a monotonic learning
function, then there exists a sequence I0, I1, . . . , In, with a finite n ≥ 0, such that:

1. ∀j ∈ [0, n) ∃S′, P ′ . S|〈A0, Ij , λ〉c[P ]
τ�−→

∗ Ij+1�−−−−→ S′|〈A0, Ij+1, λ〉c[P ′]
with Ij � Ij+1, and

2. � ∃S′, P ′, In+1 . S|〈A0, In, λ〉c[P ]
τ�−→

∗ In+1�−−−−→ S′|〈A0, In+1, λ〉c[P ′]
with In � In+1.

Proof. The proof immediately descends from the boundedness of S and P and
from the monotonicity of the add function.

The previous proposition shows that the training process with bounded services
is finite and it always converges to a sequence of inhibited traces In. We call
such a sequence a complete sequence of inhibited traces for S and P .

Now, to establish the correctness of our proposal, we prove that an adaptor
with a complete sequence of inhibited traces In always leads the interacting
services to successful states of the contract (OKc) while avoiding locks.

Proposition 2 (Correctness). Let S and P be two bounded services, A0 be an
adaptor for contract c in its initial state A0 = {〈sc0, ∅〉}. If the adaptor employs
a monotonic learning function, and I is a complete sequence of inhibited traces,
then for every S′, A′, t′ and P ′ such that

S | 〈A0, I, λ〉c [P ]
τ�−→

∗
S′ | 〈A′, I, t′〉c [P ′]

where A′ �= A0, there exists a sequence of τ transitions

S′ | 〈A′, I, t′〉c [P ′] τ�−→
∗
S′′ | 〈A′′, I, t′′〉c [P ′′]

such that A′′ ∩OK c �= ∅.
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Proof sketch. This result is proved by reductio ad absurdum. For any sequence of
τ transitions as in the proposition it must happen that t′ �= λ. Therefore, at least
one of the rules Ext or Int have been applied. For any continuing sequence of τ
transitions which ends in a non-final state in the adaptor (i.e., A′′∩OK c = ∅) we
could apply rule Learn combined with Par, and therefore the adaptor should
proceed with a new I ′ = add(t′′, I). However, since I was already a complete
sequence of inhibited traces, one of the prefixes of t′′ is inhibited by I, and
therefore it is not possible to reach trace t′′ because the conditions of rules Ext
and Int forbid further synchronisations, which is a contradiction.

Notice that Prop. 2 excludes the particular case of the empty adaptor (since
A′ �= A0) for two reasons: i) the adaptor cannot guide the system if it does not
participate in its communications; and ii) if it does not exist a correct adaptor for
the current services then the learning adaptor converges to the empty adaptor.

Proposition 2 is particularly interesting in those cases where the adaptation
contract guarantees that the services have successfully terminated, i.e., those in
which S′′ and P ′′ are also final states of their respective services. This happens
in our running example because the contract automaton (Fig. 1(b)) is aware of
the ending of the services due to correspondence rules ve, ve′ and ve′′ .

It is worth noting that the sequence {Ii}i∈{0,...,n} of inhibited traces derived
from Prop. 1 could be different for each run-time session. In this way, different
learning iterations may lead to different complete sequence of inhibited traces.
Thus, we need to establish that the learning process is well defined, in the sense
that the learning process does not depend on the execution. The following propo-
sition illustrates this result.

Proposition 3 (Well-definedness). Let S and P be the initial states of two
bounded services. Let us consider an adaptation contract c which corresponds
to an adaptor with an initial state A0 and a monotonic learning function. If I
and I ′ are complete sequence of inhibited traces resulting from a learning process
starting in S | 〈A0, I0, λ〉c [P ], then I � I ′ and I ′ � I.

Proof sketch. Because of the symmetry of the proposition, it is enough to prove
that for every t satisfying I % t, there exists t′, prefix of t, satisfying I ′ % t′. If
we suppose that this prefix t′ does not exist, we could reproduce trace t in an
adaptor using I ′ and then, by rule Learn, that adaptor would include t in I ′,
which is not possible because I ′ is a complete sequence of inhibited traces.

4 Learning Policies

We now show how different definitions of add(t, I) can be employed to define
different learning policies for rule Learn.

Bounded Learning. An upper bound to the number of traces that are inhibited
by an adaptor at any given time may be set for different reasons. The most
common is memory capacity, which may limit the size of learned information
that can be kept in memory. To respect such a limit, adaptors may need to forget
some previously inhibited traces when learning a new trace to be inhibited. A
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simple bounded learning policy is to forget (if needed) the oldest learned trace
when learning a new one:

add1(t, I) =

{
J : t if outOfBound(I : t, β) and I = u.J
I : t otherwise

where outOfBound(I : t, β) holds if the size of I : t exceeds the maximum allowed
size β2. Other types of bounded learning policies can be implemented by defining
different outOfBound boundedness conditions (e.g., on the number of traces —
rather than on their size) and/or by choosing differently which trace(s) to forget
(e.g., one of the longest traces —rather than the oldest one). For instance:

add′1(t, I) =
{
del({u}, I) : t if outOfBound(I : t, β) and u ∈ longest(I)
I : t otherwise

where longest(I) = {u ∈ A∗ | I � u and � ∃t ∈ A∗ . I � t and |t| > |u|} and del is
recursively defined as follows:

del(D, I) =

⎧⎨
⎩

del(D, J) if I = u.J and u ∈ D
u.del(D, J) if I = u.J and u �∈ D
λ if I = λ

Prefix-Driven Absorption. The way in which adaptors forget inhibited traces
affects the overall performance of learning adaptors as much as the way in which
they learn them. While bounded learning policies indirectly define a (bounded-
ness determined) forget policy, trace prefixing can be exploited to intentionally
define a forget policy to shrink the size of learned information. Intuitively speak-
ing, the inhibition of a trace t which is a prefix of a previously inhibited trace t :: u
subsumes (by rules Ext and Int) the inhibition of the latter, which hence does
not need to be explicitly stored among the inhibited traces anymore. A learning
policy based on prefix-driven absorption can be easily specified by defining the
add function as:

add2(t, I) = del(prefixedBy(t, I), I) : t

where prefixedBy(t, I) = {u ∈ A∗ | I � u and ∃v ∈ A∗ . u = t::v} is the set of traces
in I that are prefixed by t. It is worth observing that different learning policies
can be combined together. For instance, prefix-driven absorption and bounded
learning policies can be naturally combined into a single policy as follows.

add2+1(t, I) =

{
J if outOfBound(I ′, β) and I ′ = u.J
I ′ otherwise

where I ′ = add2(t, I).

2 Since boundedness conditions are often application- and device-dependent, bounded
learning policies are parameterised w.r.t the maximum allowed size β.
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It is also worth observing that prefix-driven absorption can also be exploited
to identify temporary failures not due to service protocol incompatibilities. To
do that we must distinguish “simple” prefixes from “non-simple” prefixes. We
say that t is a simple prefix of t :: u if u contains only one element. The normal
learning process of an adaptor may inhibit a simple prefix t of a previously
inhibited trace t : a whenever the adaptor realises that there is no alternative
extension of t. On the other hand, the inhibition of a trace t which is a non-simple
prefix of a previously inhibited trace t :: u might be caused by some temporary
failure that intervened (e.g., physical communication problems —such as shadow
fading or increased physical distance). The detection of temporary failures can
be exploited to define refined prefix-driven absorption policies that maintain the
set IT of traces learned from temporary failures separate from the set IP of traces
learned from (supposedly) permanent failures3, such as the following definition
of add. Let oneprefixedBy (t, I) = {t :α | I � t :α} be the set of traces t :α in I which
are prefixed by t and which are only one element longer than t. Then:

add3(t, 〈IP , IT 〉) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈del(J, IP ) : t, del(J, IT )〉 if onePrefixedBy(t, IP ) �= ∅ and
J = prefixedBy(t, IP :: IT )

〈del(K, IP ), del(K, IT ) : t〉 if onePrefixedBy(t, IP ) = ∅ and
prefixedBy(t, IP :: IT ) = K and
K �= ∅

〈IP : t, IT 〉 otherwise

Combined policies whose bounded learning and/or time-to-forget components
prioritarily forget traces corresponding to temporary failures can be easily de-
fined. For instance, let 〈I ′P , I ′T 〉 = add3(t, 〈IP , IT 〉), then:

add3+1(t, 〈IP , IT 〉) =
⎧⎨
⎩

〈I ′P , JT 〉 if outOfBound(I ′P ::I
′
T , β) and I ′T = u.JT

〈JP , ∅〉 if outOfBound(I ′P ::I
′
T , β) and I ′T = ∅ and I ′P = u.JP

〈I ′P , I ′T 〉 otherwise

Reset on Empty Adaptors. The aforementioned learning policies aim at re-
ducing the memory requirements (add1 and add2) and mitigate sporadic errors
(add3). In particular, the main problem of the basic learning policy (add0) with
sporadic errors (unforeseen failures in the synchronisations due to instabilities in
the communication channels) is that it tends to converge to the empty adaptor.
This happens because add0 does not forget the inhibited traces due to this spo-
radic errors and, as a result, the adaptor behaviour is constantly reduced every
time one of these errors occurs. A straightforward solution to this issue, is to
recognise when the process has converged to the empty adaptor and then reset
the inhibited traces so that the adaptor can converge to better solutions. This
is formalised with the following function.

add4(t, I) =

{
λ if t = λ

I : t otherwise

3 Rules Ext and Int trivially extend to the case in which I is modelled as a pair
〈IP , IT 〉, viz., by turning I �� t into (IP :: IT ) �� t.
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Intuitively, add4 behaves as add0 when the adaptor is not empty. If it becomes
empty, and this is not considered valid by the given contract, then the only rule
that can be triggered is the rule Learn inhibiting the empty trace (t = λ) as far
as no synchronisation is possible with the empty adaptor. When this happens,
function add4 clears the inhibited traces so that the adaptor can synchronise
again. As usual, add4 can be combined with other learning policies, e.g.:

add4+2+1(t, I) =

{
λ if t = λ

add2+1(t, I) otherwise

It is easy to prove that addi, i ∈ {0, 2, 3} (and their combinations) are monotonic
by Definition 2 whereas add1, add4 are not (deliberately). We will see in Sect. 5
that, although non-monotonic learning policies do not necessarily converge, they
have the advantage of overcoming sporadic errors with high success rates.

5 Evaluation and Tool Support: ITACA

Learning adaptors have been implemented and included in the Integrated Tool-
box for Automatic Composition and Adaptation (ITACA4 [4]). We have evaluated
our approach with two real-world data-diffusion protocols for sensor networks:
TinyDiffusion [14] and SPIN [8]. In this experiment, a TinyDiffusion node was
adapted to participate in the communication between two SPIN nodes. We gath-
ered various statistics simulating this real-world example. In these simulations,
random traces are simulated one by one, the traces which are stuck in non-final
adaptor states (those not in OK c) trigger rule Learn and the gathered data
is analysed after a certain interval of traces. These simulations are repeated 10
times in order to plot their arithmetic mean and the sample standard deviation.

Different learning policies are compared in Fig. 4, where the number of sim-
ulated traces is shown on the horizontal axis. Line reg corresponds to a regular
adaptor using add2. Line dthr represents an adaptor using add4+2+1 with a dy-
namic threshold β ∈ N, initially set to 0, which is incremented each time rule
Ok is applied, and decremented whenever rule Learn is used. The adaptive
adaptor, athr, also uses add4+2+1 with a dynamic threshold β′ ∈ N but, in this
case, β′ is always set to be equal to the number of transitions in the adaptor.
Finally, noi represents an adaptor which does not learn, i.e., I is always empty.
The latter is used as a comparative baseline for the other approaches.

The vertical axis of Fig. 4(a) represents the cardinality of the list of inhibited
traces. The running example can be solved with 55 inhibited traces (correspond-
ing to 7123 adaptor transitions which do not need to be stored in memory) and
it allows a maximum of 5466 successful traces. Other solutions are possible with
lower and higher number of inhibited traces, however, these imply a lower variety
of successful traces. We can see in Fig. 4(a) that both reg and athr approximate
that amount of inhibited traces (55) before 4000 simulated traces. The dthr
adaptor, due to the high success rate in spite of behavioural incompatibilities
(∼ 55%), it always maintains the list of inhibited traces close to empty.

4 http://itaca.gisum.uma.es/

http://itaca.gisum.uma.es/
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Fig. 4. Statistics gathered from the simulation with different adaptors. Figure 4(b) and
Fig. 4(c) have a TER equal to 0 between (0, 4000]; 10−4 between (4000, 6000]; 10−3 in
(6000, 10000]; 0.01 in (10000, 12000]; 0.1 in (12000, 14000]; then, it decreases to 10−3 in
(14000, 16000]; 10−4 in (16000, 18000]; and it finally becomes 0 in (18000, 20000]

Figure 4(b) shows the success rate, i.e., the percentage of simulated traces
which were successful in the current interval. In Fig. 4(b) and Fig. 4(c), we use a
transition error rate parameter (TER ∈ [0, 1]) which represents the probability
of a synchronisation to forcibly fail due to sporadic errors. It can be seen that
noi remains close to a success rate of 55%, which is reduced proportionally to
the TER. Adaptor dthr performs slightly better, but not significantly due to its
low threshold β. The other adaptors take advantage of the learning process and
achieve success rates close to 100%. However, when sporadic errors start to occur
(iteration 4000), adaptor reg, which is not able to forget inhibited traces, quickly
converges to the empty adaptor and remains so for the rest of the simulation.
Finally, athr is also affected by high values of TER but it is able to recover when
sporadic errors cease to occur, achieving success rates close to 100%.
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A detail of the athr adaptor is depicted in Fig. 4(c). It shows the amount of:
inhibited traces (I), sporadic errors (E) and the total number of failed traces
(F ≥ E). The number of inhibited traces initially approximates the desired value
of 55. However, when sporadic errors appear (4000), new inhibited traces reduce
the size of the adaptor (i.e., number of transitions), this reduces threshold β′

which finally reduces the number of inhibited traces. Intuitively, this means that
the adaptor reduces its knowledge because it cannot trust it. This phenomenon
reappears when TER is increased in subsequent iterations (6000, 8000, 10000
and 12000). The final range (14000, 20000] is more interesting. We can see that,
although athr succeeds in recovering from sporadic errors, achieving success rates
close to 100%, it does so at the cost of obtaining a suboptimal, but correct, solu-
tion. In other words, depending on where the sporadic errors occurred, adaptor
athr might prune bigger parts of the behaviour than needed.

Interestingly, adaptor reg enhanced with reset capabilities as dthr (i.e.,
reg+reset using add4+2) was able to match athr5. This means that it is not
the dynamic threshold what matters but to be able to notice the convergence to
empty adaptor, and thus reset the inhibited traces. Therefore, the most promis-
ing adaptor is reg+reset (add4+2) thanks to its simplicity and effectiveness.

Regarding the computational complexity, every synchronisation with the adap-
tor requires a transition in the adaptor behaviour and the possible inclusion of a
new inhibited trace. Assuming hash sets and hash maps with constant complex-
ity for membership queries and insertions, the time complexity is O(|Sc||Σc|l)
where |Sc| is the number of states in the contract automaton, |Σc| is the number
of correspondence rules in the contract and l is the maximum length of a trace.
The spatial complexity of our approach with addi, i ∈ {0, 2, 3, 4} is given by the
combined size of: the inhibited traces, the adaptor state and the adaptation con-
tract. The space required by inhibited traces can be reduced either by storing
them as a tree or using any learning policy based on add1 (where the size of
the inhibited traces is bounded by β). Both approaches result in a spatial com-
plexity of O(|Sc||Σc|l). Let us remember that l is bounded and it can be further
restricted using acyclic adaptation contracts. In this case, the time and spatial
complexity are exponential with regard to the size of the contract but they do
not depend on the number or size of the services to adapt. In addition, both
complexities are greatly reduced if the adaptation contract is deterministic in
the sense that it does not require the lazy-choice represented by rule L. In this
case, at any given adaptor state 〈A, I, t〉c it happens that A contains a single el-
ement 〈s,Δ〉. This simplification results in a time complexity of O(max(|Σc|, l))
and a spatial complexity of O(|Sc||Σc|+ |Σc|l).

6 Related Work

The behaviour of an adaptor can be synthesised at design time following other
approaches covered in related work [1,4,11,13]. However, adaptor synthesis is
exponential with regard to the number and size of the services involved and it

5 The statistics characterising reg+reset are indistiguishable from those of athr.
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requires to know in advance the behaviour of these services. This is not feasi-
ble in the current setting of nodes with restricted capabilities where the actual
behaviour of the services is unknown. For instance, the correspondence rules
presented in this work are similar to the adaptation operators presented in [6]
and to the mismatch patterns introduced in [11], but their approaches are fo-
cussed on design-time. There are few related work which aim at addressing both
runtime and lightweight behavioural adaptation at the same time.

One of them is [5], where an ontology is required to generate a mapping be-
tween the operation of the services. Some properties (expressed in a temporal
logic) are dynamically verified by performing forward-search analyses on the be-
haviour of services. While similar properties can be encoded with our adaptation
contract automata, differently from us, [5] requires the behaviour of services to
be known and it has to bear with the cost of the forward-search analysis.

Wang et al. [16] propose the dynamic application of adaptation rules. These
rules are triggered by the input actions received by the adaptor and then an out-
put action is generated. Our approach is similar to theirs in the sense that we
also apply the adaptation contract dynamically without generating the whole
adaptor. However, their rules must specify how to solve both signature and
behavioural incompatibilities, hence requiring to know the behaviour of the ser-
vices beforehand. Our contracts, instead, only specify how to solve signature in-
compatibilities and an optional description of the adaptation goal. Behavioural
incompatibilities are dynamically learned and avoided by our adaptors.

Another related work, [9], discussed the problem of controlling services with
unknown behaviour. Our approach shares the idea of progressively refining an
over-approximated controller when failures occur. The authors of [9] perform
such refinement by exploiting (bounded) model checking, whose overhead is not
bearable in applications running on limited capacity devices.

7 Conclusion

We have presented a new lightweight approach to behavioural runtime adapta-
tion. Our approach requires an adaptation contract based on the signatures of
the services (the collection of operations they require and offer), but no previous
knowledge on the behaviour of the services is needed since it will be dynamically
learned. We have shown how adaptors can incrementally learn from interaction
failures at run time so as to eventually converge to the same behaviour that
could be a priori synthesised by means of (computationally expensive) design-
time analyses on the behaviour of the services.

Learning adaptors can be applied to perform zero-knowledge adaptation, i.e.,
adaptors without adaptation contract. In this case, there is an implicit contract
which assumes that every source and destination service share the same alphabet
of actions, therefore presenting a trivial set of one-to-one correspondence rules.
Having such a zero-knowledge contract, which is dynamically inferred, the adap-
tor does not perform any adaptation at signature level (it simply forwards mes-
sages), but it does learn from possible behavioural incompatibilities between the
services (such as messages expected in different order). Therefore, zero-knowledge
contracts avoid deadlocks that would be present without adaptation.
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Abstract. We show how to ensure correctness and fault-tolerance of
distributed components by behavioural specification. We specify a sys-
tem combining a simple distributed component application and a fault-
tolerance mechanism. We choose to encode the most general and the
most demanding kind of faults, byzantine failures, but only for some of
the components of our system. With Byzantine failures a faulty process
can have any behaviour, thus replication is the only convenient classi-
cal solution; this greatly increases the size of the system, and makes
model-checking a challenge. Despite the simplicity of our application,
full study of the overall behaviour of the combined system requires us
putting together the specification for many features required by either
the distributed application or the fault-tolerant protocol: our system en-
codes hierarchical component structure, asynchronous communication
with futures, replication, group communication, an agreement protocol,
and faulty components. The system we obtain is huge and we have proved
its correctness by using at the same time data abstraction, compositional
minimization, and distributed model-checking.

1 Introduction

Safety in distributed systems is a wide research area which needs to be tackled
at several levels: from the safety of the execution platform, to the correctness of
the communication protocols and to correctness of the distributed applications.
This article aims at evaluating the adequacy of formal method techniques for
the verification of real-size distributed applications. The objective tackled by
this article is really challenging because the application we consider features
several non-functional concerns which contribute to the explosion of the number
of states that can be reached by the application. Indeed we choose to provide a
model and prove properties for a distributed application featuring fault-tolerance
similar to Byzantine fault tolerance (BFT).

Our work is placed in the context of component oriented programming. In-
deed from a programming model point of view, components provide well-defined
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F. Arbab and P.C. Ölveczky (Eds.): FACS 2011, LNCS 7253, pp. 278–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Verifying Safety of Fault-Tolerant Distributed Components 279

modularity, and easiness to compose large applications from the composition of
basic blocks. Also components require the precise definition of interfaces through
which the basic blocks cooperate, which is crucial for a precise design of an ap-
plication, but also strongly helps the formal specification of the application.
Our components also allow a hierarchical and modular design, better specifying
the structure of the application. We choose GCM[2] as our component model
because it is naturally adapted to distribution, hierarchy, and one-to-many com-
munication, but also it provides reconfiguration capabilities which we want to
consider in future works. GCM is an extension of the Fractal component mod-
els with support for deployment, scalability, autonomic behaviour, and asyn-
chronous communication; it also shares a lot of similarities with SCA [3]. In
the VerCors [8] platform, we provide tools for verifying the behaviour of such
distributed component applications.

This paper shows how to specify the behaviour and to verify properties of dis-
tributed component applications with request queues, future proxies and group
proxies, and one-to-many interfaces. To illustrate our approach, we choose a sim-
ple distributed application featuring fault-tolerance by replication. Though the
fault-tolerance properties we address are not outstanding, we think this applica-
tion is a good opportunity to investigate on the use of model-checking to ensure
safety of fault-tolerant applications. This article has the following objectives:

– Promote the use of formal methods to ensure safety of distributed systems.
– Provide a model for one-to-many communication.
– Study the modelling of faulty processes, and investigate the use of model-

checking for verifying fault-tolerance from an application point of view. In-
deed, most of the existing studies on this domain focus on the proof of cor-
rectness of the protocols only, not on the whole distributed application [14].

– Investigate the adequacy of distributed model-checking for verifying a dis-
tributed and asynchronous application that generates a huge state-space.

We do not model reconfiguration and adaptation, but we design our specification
in such a way that those aspects can be added to the model in the future.

In the following, Section 2 presents the related works, with a particular focus
on BFT and GCM components. Then, we describe our fault-tolerant application
and its modelling in Section 3. Finally, Section 4 describes the distributed model
checking phase and the properties we verify.

2 Background and Related Works

2.1 Formal Methods for Component Models

As the formal methods matured, they have been integrated into environments
that support the development of component-based systems. They ensure the
correct behaviour of the assembly of complex applications in all the stages of
the development lifecycle (from specification to execution). However, although
those frameworks share the same basic concepts, they substantially differ in the
range of application domains and supported features. For instance, some of them
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are dedicated to embedded systems verification [10,4] while the others are dedi-
cated to software engineering. We focus below on related works for behavioural
specification and verification of distributed components.

Creol [19] is a programming model featuring active objects, requests and fu-
tures, similarly to our approach. A framework provides component modelling
for Creol; it provides a formal language [13] that supports compositional rea-
soning and makes automatic testing and verification possible. This language is
defined over communication labels, and specifies components in terms of traces
of observable behaviour at the interfaces.

Cadena [16] is an environment for modelling and verifying CCM component-
based systems. The framework offers a rigorous type-based language [20] for
describing component connectors, and the interaction between them. The com-
positional analysis is based on the assume-guarantee reasoning. However, the
component model does not support hierarchical structure.

SOFA [24] is a framework for developing distributed systems. It supports
component-based development as well as formal verification. The SOFA 2 com-
ponent model is hierarchical and supports reconfiguration, making it quite close
to ProActive/GCM even though one-to-many communication and asynchrony
with futures are not offered by default in SOFA. SOFA uses “behaviour proto-
cols” for specifying possible interactions between components and checking the
correctness of the assembly, making the verification process in SOFA quite dif-
ferent from ours, but our approach could also be applied to SOFA components.

This article relies on the pNets [1] formalism for describing the behaviour
of parametrized networks of LTSs. We showed in [1] how to build models for
GCM components, asynchronous communication, and futures. [7] describes how
to specify group communication in pNets. Additionally to faulty components,
this article extends the preceding semantics by specifying one-to-many commu-
nication at the GCM level, and the management of proxy instances.

The CADP toolset [11] is one of the prominent platforms for the specifica-
tion, verification, and testing of distributed systems in the academic landscape.
It handles several input formalisms, and provides an extensible API. The toolset
includes engines for building hierarchically the state-space of systems, building
and manipulating LTSs on distributed infrastructures, minimizing LTSs along
several behavioural equivalences, model-checking properties, checking equiva-
lences between systems, building test suites, evaluating performances, etc.

2.2 Verifying Byzantine Fault-Tolerant Systems

Byzantine fault tolerance (BFT) has a long history [22,26]; results in this research
area are very difficult to obtain and to prove. Indeed, BFT supposes that a
faulty process can have any behaviour. The name BFT comes from the original
problem raised by Lamport relying on Byzantine generals that must all take
the same decision (attack or retreat), knowing that some of the generals are
traitors. Traitors can say anything to the others, but the others must all act
identically. In computer science, this situation represents either a faulty process
behaving “randomly” or a malicious entity. BFT has gain new interests since
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the apparition of a new form of large scale distributed computations relying on
entities that, by nature, cannot be trusted. Typically a P2P storage application
cannot make any assumption on the kind of misbehaviour the peers can have.

The purpose of this paper is not to prove that a BFT protocol is correct but
to understand whether it is possible to represent all the aspects of a complete
component application communicating by request-replies, and at the same time
reason about the fault-tolerance of this entire application. We focus on a specific
application similar to [21] but simplify it: our application consists of a Master
component replicating data to be stored on several workers. The master updates
the worker value, and gathers replies from workers to retrieve the stored value.
If enough non-faulty workers are instantiated, and enough identical replies are
returned to the master, the stored value can be retrieved. The objective of this
paper is not to study the implementation of the component model, this is why we
make the assumption that communications are performed safely. More precisely,
we suppose that the middleware ensures that messages systematically follow
the bindings, and that a component can only reply to the requests it received.
For example, a faulty component cannot communicate to any component of the
application, and a faulty components cannot reply instead of a non-faulty one.

Note that the master is supposed to be non-faulty; Protocols for dealing with
a faulty master exist and have been heavily studied and implemented. For ex-
ample, recently [21] implemented a BFT storage in the same settings as our
application. Here we simplify the problem and focus on the correct handling of
faulty workers, similarly to the case studied in Section 4.2 in [26]. If f is the
number of tolerated faults, 2f + 1 slaves are sufficient for reaching a consen-
sus. However, as it is generally required in BFT, i.e. when the master can be
faulty, we instantiate 3f + 1 slaves. Section 4 will show that specifying a whole
application with those simplifying hypotheses already requires the full power of
distributed model-checking over a cloud-like architecture.

Our approach for encoding Byzantine faults is the following: faulty slaves can
feature any behaviour, upon verification the model-checker will then explore all
the possible behaviours, including the malicious ones. We then specify a simple
agreement procedure where the Master component waits until enough slaves
answered correctly. In order to count them, our architecture description is aware
of which slave is faulty, but the business code does not use this information.

2.3 Distributed Components and Their Semantics

This section recalls the component structure and semantics of GCM, a complete
definition can be found in [17].

Component Structure. The structure of GCM components is inherited from
Fractal: A GCM component can be either composite (i.e. composed of subcom-
ponents), or primitive (a basic element encapsulating the business code). A com-
ponent comprises a content (providing the functional code) and a membrane (a
container managing non-functional operations). The interfaces are the only ac-
cess points to components. Each interface is either client (emitting invocations)
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or server (receiving invocations). We distinguish functional interfaces address-
ing the business of the application from non-functional ones invoked to manage,
monitor, and introspect the application. A binding connects a client interface
to a server interface (Fig. 2); a message emitted by a client interface is trans-
mitted to the server interface bound to it. In composite components, interfaces
are either internal – exposed to the subcomponents – or external – exposed to
other components. The interface cardinality indicates how many bindings can be
made from or to this interface. In this paper, we only use two interface cardinal-
ities: singleton (one-to-one binding) and multicast (one-to-many binding). The
different parts of a GCM component are shown in Fig. 1, whereas Fig. 2 shows
an assembly of components bound together, on the left there is a composite
composed of two primitives; the figure also illustrates different bindings.

Communication. The basic communication paradigm in GCM is asynchronous
message sending: communication consists in synchronously dropping a message
in a request queue at the receiver side, and creating a future to represent the
result of the invocation. A future is an empty object representing the result of
a computation performed in parallel. Once the future is created, the execution
continues immediately on the sender side. When the request treatment is fin-
ished, the result is automatically returned to replace all the references to the
corresponding future. When a component accesses a future, it is blocked until
the result is returned. However, future references can safely be passed between
components, inside invocation parameters, or inside a request result. To pre-
vent shared memory between components, parameters and results are copied;
no object is passed by reference.

A multicast interface is a client interface that transforms a single invocation
into a list of invocations, sent in parallel to a set of connected interfaces. The
result of an invocation on a multicast interface is a list of results. Invocation
parameters can be distributed according to a distribution policy that can be
customized. Typical distribution policies include broadcast that sends the same
parameter to each connected component, and scatter that splits the parameter.

Component Behaviour. Primitive components encapsulate the business code,
their behaviour is highly dependent on the application; it is provided by the
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application programmer. The only constraints they must respect are: they serve
requests of the request queue, they emit new requests on their client interfaces,
and can receive a result for the futures they hold. We consider here only mono-
threaded primitive components: a single request is served at a time.

By contrast, composite components have a predefined behaviour: they serve
requests in the reception order, and delegate the requests to sub-components,
according to the bindings. For example, when a composite component receives a
request from the outside, it delegates its service to one of the sub-components.

3 Our Fault-Tolerant Application and Its Specification

This section describes informally our application, and then presents its be-
havioural model. We present the architecture using the pNets model [1], a for-
malism to encode labeled transition systems with value passing, parametrized
topologies of processes, and different types of communication. We describe then
the primitive component internal behaviour, and the semantic-level process gen-
erated from the GCM architecture. We focus on the parts of the specification
that are directly related to one-to-many communications and fault-tolerance,
details of the other processes are given in [6].

3.1 Distributed Component for Fault-Tolerant Storage

Fig. 3 shows the architecture of our application. It consists of a main composite
component BFT-Composite. The white part of the composite is the functional
content made of a Master component and several slaves. Some of those slaves are
called good slaves, i.e. non-faulty, the bad ones are faulty and behave randomly.
In practice one never knows which of the slaves is good or bad but it is necessary
that the verification process knows this information to be able to count the
number of good and bad slaves.

Properties of Interest. From a high-level point of view, we are interested
in the storage properties of our application: the stored value can be retrieved
unchanged, even if some of the slaves are faulty. Of course, some additional
properties are crucial like: the master always finally answers to the requests it



284 R. Ameur-Boulifa et al.

Write

Commit

Read

Body

Proxy
_Read[c]

_Commit[c]
Proxy

Proxy
_Write[c]

Slave[k]

Queue

CO

CO

CO

Body

Queue

Read

AC_f

Call_*R_*

Group Manager

Proxy Manager

Activate_*

BC

BC

BC

Master

Write

Q Write(fid,b)

Q Read(fid)

R Write(fid)

R Read(fid,b)

Serve *

Q commit(?)

R ACGet(f)

R ACSet
ACSet(f)

ACGet

Q Read()

Q Write(b)

Fig. 4. pNet Architecture for the whole system

receives. Also, the master must rely on the slaves for storing the value, and does
not distinguish good slaves from bad slaves, for example, for writing data the
master must broadcast a write request to all the slaves.

3.2 Architecture

We describe here the architecture of the semantic model of our use-case. The
overall architecture of the system is shown in Fig. 4. It is composed of:

– An indexed family of slaves receiving invocations from the master. Each of
them has a queue1 storing the requests not treated yet, a body part describ-
ing how to treat the incoming requests and delegate them to the behavioural
specification of methods Write, Commit, and Read. Each requests can reply
to the master by updating a future (represented by the arrows between the
Write box and the CO element). The system is instantiated with 3 good
slaves and 1 bad slave.

– A Master component receiving requests from a client and forwarding them
to the slaves (that are bound to it). It also has a request queue and a body
delegating the treatment of requests to sub-parts of the master. Treatment
of read and write methods will be detailed below.

– The connections that are one-to-one bindings, except for BC (broadcast)
that dispatches a request from the master to all the slaves it is bound to,
and CO (collect) that carries a reply from one of the slaves to the appropriate
proxy. Those 2 bindings will be detailed in Section 3.3.

To optimize the size of the model, the composite has no request queue and calls
are directly issued to the Master component. This has no consequence because

1 We generate the behaviour of each request queue as an individual process able to
store a finite number of requests with their parameters
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the requests are directly delegated to the Master component, and the request
queue of the Master is sufficient for dealing with asynchrony.

3.3 The Master Body and Its Methods

Let us first describe the communication patterns and name conventions that we
use in this paper. All local methods are triggered by a first outgoing commu-
nication of the form !Method, then the response is received as parameter of a
?R Method incoming communication. For example, in Fig. 6 !Get Write Proxy

requires a new group proxy for invoking the Write method on the slaves. The
proxy is returned and stored into p1 by the reply: ?R Get Write Proxy(p1). On
the other side, method invocation towards remote components are of the form
!Call Method, those method invocations enqueue a request in the remote request
queue, and pass a proxy reference as one of the parameters of the invocation.
The remote method will, upon termination, fill the proxy with the calculated
value; for this, the !R Method transition synchronizes at the same time with the
invoker that receives the value and with the body of the component containing
the method, so that next request can be served.

The Master Body. The body is encoded in generic way: it serves sequentially
functional and non-functional requests. In this work, we only use the service of
each functional request (on method Read, Write, or SetF). This service calls the
adequate method (e.g., !Call Read), and waits until the method terminates,
signaled by R events (e.g., ?R Read); R Read synchronizes both with the com-
ponent that triggered the request and with the body. As requests are served one
after the other, this encodes a mono-threaded behaviour for the master.

agreed_bit:=true

!R_CollateReplies(nb_ones)
else

agreed_bit:=false

!R_CollateReplies(nb_zeros) fi

if ind<MAX−SLAVES−1 then ind:=ind+1; to S1 fi

if nb_ones>nb_zeros then

to S0

if Rep[ind]=False then nb_zeros:=nb_zeros+1 fi

if Rep[ind]=True then nb_ones:=nb_ones+1 fi 

?CollateReplies(wRep)
ind:=0;nb_ones:=0;nb_zeros:=0

S0 S2

S1

!R_GetBit(agreed_bit)

?GetBit

MethodCollateReplies

Fig. 5. Behaviour of the method: MasterCollateReplies
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The Attribute Controller. In Fractal, the attribute controller provides read
and write access to the attributes of the components; the only attribute of the
Master component is f – the number of faults that can be handled. The behaviour
of the attribute controller is very simple: it simply provides a setter (ACSet) and
a getter (ACGet) method for storing and retrieving the value of f.

The Collate Method. Based on the vector of replies received by the proxy, this
method computes a consensus in order to know whether enough slaves returned
a correct answer. It is used by the methods Read and Write described below.
Fig. 5 represents the behaviour of Collate in a format similar to Statecharts
[15]: starting from initial state S0, Collate is always used by first triggering
a ?CollateReplies sending it a vector of replies currently known; then from
state S1, a complex transition counts the number of True and False in the
vector. It stores in agreed bit the reply the most frequent and returns (by
!R CollateReplies) the number of replies that agreed on this value. Then, the
agreed value can be retrieved by a ?GetBit, that returns the agreed bit value.

!Get_Write_Proxy

?R_Get_Write_Proxy(p1)

?R_WaitN_Write(p1,wRep)

!CollateReplies(wRep)

?R_CollateReplies(nb_w_agree)

?R_Get_Commit_Proxy(p2)

!Call_Proxy_Write(p1,b)

!Call_Proxy_Commit(p2,b)

!WaitN_Commit(p2,nbWait)

?R_WaitN_Commit(cRep)

!CollateReplies(cRep)

?R_CollateReplies(nb_c_agree)

!WaitN_Write(p1,nbWait)

[nb_c_agree<agree

& nbWait<nb_Slave]

nbWait ++

!WaitN_Commit(p2, nbWait)

[nb_w_agree<agree

nbWait ++

!WaitN_Write(p1, nbWait)

Error

[nb_w_agree<agree

 & nbWait=nb_Slave]

& nbWait<nb_Slave]

!Error(not BFT)

[nb_w_agree>=agree]
nbWait:=agree

[nb_c_agree<agree

& nbWait=nb_slave]

!Error(not BFT)

!Get_Commit_Proxy

?Call_Write(b)

nb_Slave:=3*f+1

agree:=2*f+1

!Call_GetF

nbWait:=agree

?R_GetF(f)MethodWrite

[nb_c_agree>=agree]

!R_Write

Fig. 6. Behaviour of the Write method



Verifying Safety of Fault-Tolerant Distributed Components 287

BC:

Q_Read(p)

Q_Commit(p)

BC:

BC:

Q_Write(...) !Slave[i].Q_Write(p,b)!Q_Write(g,p,b)

?R_WaitN_Write

!Call_Proxy_Write(p,b)

!WaitN_Write CO:

R_Write(p)

?R_Write(p)

Proxy_Write[p]

!Call_Proxy_Read(p)

CO:

?R_Read(p,val)

!Call_Proxy_Commit(p,b)

CO:

?R_Commit(p)

Proxy Manager

?R_Get_*_Proxy (p)

!Get_*_Proxy

?Q_Unbind

?Q_Bind

Proxy_Read[p]

Proxy_Commit[p]

Activate_Write(p,g) i ∈ g

i ∈ g
cf figure 9

Fig. 7. Focus on the elements for managing the group

The Write Method. The write method is the most complex method of our
example, it is shown in Fig. 6. It first gets the current value of f, read from the
attribute controller, and initializes the variables agree, awaited, and nb Slave.
It consists of two phases; first, a write request is sent to all the slaves, then
the master waits until enough slaves agree on the reply, agree is the number
of necessary identical replies, and awaited is the number of awaited replies. If
necessary, additional replies are awaited, and awaited is incremented. It is not
possible to wait for more replies than the number of slaves; if such a situation
occurs, it means that the BFT hypothesis is not verified, more exactly, more than
f slaves are faulty and an error is raised. When enough identical replies have
been received, the write method enters a commit phase that behaves similarly
to the write phase. At the end the method returns to the initial phase, emitting
a !R Write that also indicates the end of the method.

The Read Method. The behaviour of the Read method is very similar to
the Write method above. The main difference is that, after triggering remote
invocations and waiting for enough identical replies, it inputs the agreed bit
found by the collate method and returns this value to the client.

The Master Proxies

Managing Groups of Slaves. We first focus on the management of groups of
slaves, i.e. groups to which the write, read and commit requests will be addressed.
The part of the pNets that deal with this aspect is shown in Fig. 7. It includes a
proxy manager (Fig. 8) that returns an available proxy through its Get * Proxy

invocations. If reconfiguration was enabled, it would receive bind and unbind
requests for adding or removing slaves.When a new proxy is requested, one proxy
is activated (among the families of Proxy write, Proxy Read, or Proxy Commit
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[WPool[p].free=True]

?Get_Write_Proxy
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RPool:...

?Get_XXX_Proxy
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!R_Get_Write_Proxy(p)

WPool[p].free:=False
?Activate_Write(p, group)
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!Error(NoMoreProxy)
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Fig. 8. Behaviour of the Proxy Manager
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Fig. 9. Behaviour of the Write request proxy (Proxy for Read and Commit are similar)

proxies), and given the group g on which next invocation will be performed. A
reference to this proxy is returned, and can be used to remotely invoke Write,
Read, or Commit on the slaves. The group g passed upon activation is used later
inside the broadcast communication: the circle BC: Q Write(...) performs a
synchronization involving the proxy and all the slaves of g sending them the
same invocation, !Slave[i].Q Write(p,b), where p is the proxy identifier. The
symmetric communication is performed by the CO: R Write(p) that collects
replies from all the slaves of g and returns them to the Proxy Write pNet: each
member of g can send a reply to the master. Note that g can be modified inside
the manager and a copy of the group is passed upon activation of a proxy. This
guarantees that the CO operation will be performed on the same group as the
invocation, even if, in the manager, the group is changed in the meantime.
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Fig. 10. The Write method of the (Good and Bad) slaves

The Write Proxy. (see Fig. 9) Upon activation, the write proxy waits for an
invocation from the master write method. It then initializes the WRep array of
received replies as well as len – the number of replies currently received. Its
two main behaviours are then (1) to receive a reply from an element of the
group, which updates the Wrep array, and the len value; and (2) to fulfill a
WaitN Write invocation from the master write, which returns the current array
of received replies once the number of awaited replies is reached. Proxies for read
and commit method are similar to the write request proxy.

3.4 The Slave Components and Their Methods

The behaviour of the slaves is much simpler than the one of the master. We
encode two kinds of slaves: good slaves behave as expected, whether bad slaves
behave randomly and encode the byzantine faulty processes. We instantiate as
many faulty processes as the number of faults we can tolerate. The fact that the
system description distinguishes between faulty and non-faulty processes has no
influence here because the functional parts of the components never use this
knowledge: the code of the Master component never distinguishes between the
communications towards the faulty slaves, and towards the non-faulty ones.

The slave body serves successively the requests (Commit, Read and Write)
arriving at the slave queue much similarly to the master body. The bad slaves
and the good slaves have the same body, they all serve the request in a FIFO
order, and no two requests are served at the same time: the slaves are mono-
threaded. The slaves have three methods: Write, Read and Commit; we show
the method Write for the good and bad slaves in Fig. 10, the behaviour of a
good slave consists in storing the bit value b received thanks to a call to !SetBit

that sets a local attribute of the slave. There is a method !GetBit for reading
this value, it is called by the Read request. The bad slave as shown in Fig. 10
replies randomly to each individual request. The commit phase is here to show
how a commit phase would be implemented, but it is not used by our slaves: it
would be useful if the master could also have a faulty behaviour.

According to the BFT hypothesis, a bad slave can behave arbitrarily. However,
we have to restrict a little this behaviour so that it can be encoded and verified
by finite model-checking techniques. Here are the hypotheses we make and the
reasons why it is safe to make them:
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– Bad slaves do not steal the identity of another entity: we suppose here that
the underlying middleware guarantees the identity of the components send-
ing requests or replies. It is the classical “oral messages” assumption of [22].

– Bad slaves only reply to required requests. We suppose again that the mid-
dleware verifies this to guarantee the integrity of the program execution.

– Bad slaves only reply to requests in the order required. This assumption is
stronger but we can show that it has no influence on the final result. First, the
master is single threaded, waits for enough replies before requiring another
computation, and does not access the future afterward; thus late replies
would have no influence on the computation. In principle, a bad slave could
serve the request in the wrong order and use this information to behave in a
malicious manner; but the exhaustive exploration of all the possible replies
is even more general than the scenarios using out of order service of requests.

4 Building the Model, and Running the Verification
Tools

In this section we describe the methods and tools used to build the behavioural
model of our application and to check its properties, and we discuss the combi-
nation of advanced techniques we have used to master the model complexity.

We build the behavioural model of our case-study in three steps (Fig. 11).
From the specification of the component architecture and behaviour, our tool
ADL2N [8] builds a hierarchical and parametrized pNets model, including the
data types, the behaviour, and the architecture of the system. Then abstractions
are applied on the data domains, yielding a finitary model. Finally the model is
encoded using a combination of several input formalisms from the CADP toolset
[11]: the Fiacre language [5] provides syntax for data types and expressions,
definition of LTS, and a form of composition of processes by synchronization on
channels; the EXP and SVL languages [11] support the hierarchical encoding of
our pNets, and the scripting of the various verification tasks.

Then we run a combination of CADP tools, the most important ones are:
ceasar.open for generating transition systems from Fiacre programs, either on
a single machine, or on parallel infrastructures when used in combination with
distributor; exp.open to build product of transition systems described in EXP
format; and Evaluator4, the new version of the model-checker that deals with
the MCL (Model Checking Language) logics [23], which is an extension of the
alternation-free regular μ-calculus with facilities for manipulating data.

The Vercors2 tool platform should assist the programmer in the encoding and
verification of his application. It includes the Vercors editors, the ADL2N, ABS
and N2F tools; it is currently under development. For this paper, we already
have been able to generate approximately 50% of the Fiacre and EXP code.

One goal of this work is to experiment with various methods for mastering
the state explosion inherent to large models, such methods consist of:

2 http://www-sop.inria.fr/oasis/index.php?page=vercors
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Fig. 11. Tool chain and corresponding processing steps

1. data abstraction
2. hierarchical hiding and minimization
3. use of contextual environment information
4. distributed state-space generation

We have used 1) in several ways. First, all data variables have been given abstract
types with (very small) finite domains, in fact we choose the smallest abstract
domain that preserves the formulas to be proven. Secondly, the topology pa-
rameters of the system (the number of slaves and number of proxy instances)
have been reduced to a minimum number, though significant for our scenario;
proving properties that would be valid for any values of such parameters is out
of the scope of model-checking. Finally, the request queues raises another issue:
their explicit representation has a size exponential in the number of values that
the queue cells admit. Our approach is to encode a (small) finite model of the
queue, including events denoting an error when this finite queue is out-of-bounds.
Then we check by model-checking whether this event is reachable, or the chosen
size is sufficient. The soundness of these approaches is worth discussing; for the
domains of value-passing parameters, we can define finite abstractions that pre-
serve safety and liveness properties [9]; for the length of queues, we are building
an under-approximation, and we check explicitly its validity. But for topology
parameters, we have no such general result and we only prove properties for a
given instantiation, that is already very helpful as a “debugging tool”. Proving
more general properties is not in the scope of this paper.

Method 2) is now quite classical when using bisimulation-based tools. Let
us remark that to be optimal, we have to generate models specifically for each
formula to prove. Method 3) has been proposed and advocated by the CADP
developers, and is indeed very important when combined with 2). The problem
arises when you build subsystems hierarchically without taking into account the
specific way in which other pieces of the system interact with a given subsystem.
The context information can be built automatically by the CADP tools from
the behaviour of the other subsystems (in which case it is guaranteed to be
sound), or can be specified manually (that may lead to under-approximations).
We chose the second option, and we used the context behaviour to reduce further
the possible values of input data of some methods, by symmetry arguments.
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Method 4) is a hot research topic. We are using a local Cloud platform, pro-
viding large computing resources (>1300 cores and 3 Tbytes of RAM), where
we can submit jobs in the form of task workflows. In our case, tasks consist
of compilation of input formalisms, generation of transition systems for subsys-
tems, minimization and product of systems, and model-checking. Tasks can be
parallel, but for the current version of CADP, only LTS generation can run in a
distributed way [12]. We were able to build systems with more than 109 states
explicitly stored in distributed memory [18], but then the bottleneck is the merg-
ing of this structure before minimization or model-checking on a single machine.
In practice, the good strategy is to decompose the system in such a way that
subsystems are of reasonable size, or can be strongly constrained by contextual
information, and to run concurrently the tasks computing the behaviour of each
subsystem. Then minimization, product, and model-checking tasks are run as
soon as their inputs are available, in a coarse-grain concurrent workflow.

Parameter Domains and System Sizes. We ran the use-case with 3 good
slaves and 1 bad slave, allowing for 1 failure. We also generated the model in
two different configurations, with the length Q of the Master Queue respectively
2 (for OutOfBounds detection) and 1 (for optimization).

As we do not have yet enough tool support at the level of the formalism
compilers, we had to do a significant part of the Fiacre/Exp/SVL programming
by hand, so we chose to build one single model with enough events visible to prove
our formulas of interest. The intermediate code consists in 43 Fiacre processes
for a total of 2900 lines of code, and of 330 lines of synchronization vectors in
EXP format encoding 240 pNet structures.

Then the system is divided in 12 subsystems (9 for the Master itself); each
part is encoded in a Fiacre source file, and its state space computed using dis-
tributor. So we have at this level 12 independent tasks in our workflow, running
on 2 to 10 cloud nodes each. Each resulting automaton is reduced by branch-
ing bisimulation (with as much local actions hidden as possible), before being
composed in a hierarchical way, using 4 synchronization products. The final
product is minimized again, before running Evaluator4 for checking our proper-
ties. Decomposing the system in an efficiently manner currently requires human
operation: the choice of subsystems is a compromise between: identifying pro-
cesses that may be reused easily (through relabeling); defining subsystems that
are big enough to take advantage of a distributed generation; choosing pieces
which environment behaviour is well-specified.

The system sizes (states/transitions, after minimization) and computation
times are summarized in the following table:

Q. size Queue Intermediate Master GoodSlave Global Total time
Q=1 21/229 542/3107 2M/45M 744/6550 22K/110K 10’
Q=2 237/3189 542/3107 5.8M/103M 5936/61K 34K/164K 59’

The middle columns in the table give reduced sizes for the most interesting sub-
systems: the Master queue, the biggest intermediate subsystem in our decompo-
sition of the Master, the whole Master component, the (good) Slave component,
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and finally the global system, comprising the Master, 4 Slaves, and a Client. The
last column gives the global computation time.

Correctness Properties. Once the behavioural model generated, we verified
several properties, written using the MCL logics; they express various facets
of the system correctness. Some properties express global correctness of the
application, seen from the (external) client point of view. Others require the
visibility of some internal events of the system, and reveal the feasibility of
several scenarios, or the impossibility of some errors.

Let us start with simple reachability properties: all requests (Write or Read)
sent to the system can terminate and return successfully. The first formula means
that for each possible value of fid (the identifier of a client request), the action
R Read denoting the return of the corresponding Read request is reachable with
some returned value val. This property is True, meaning that the Read request
can terminate (this holds also for Write requests).

forall fid:nat among {0...2}. exists b:bool.

<true* . {R_Read !fid !b}> true

Next formula checks the reachability of the BFT Error events. This property is
False, meaning that we instantiated enough good slaves.

< true* . ’Error (NotBFT)’> true

We then ensure that the Master’s queue cannot receive too many requests. Its
validity depends on the system client(s). Here we have proved that a queue depth
of 1 is sufficient to prove all of our correctness properties, if we have a single
client, and if this client waits for replies before sending the next request.

< true* . ’Error (Master-OutOfBounds)’> true

Also, we have proved Inevitability properties like the following one. It ensures
that it is (fairly) inevitable that after a Write request, either the system sends
the corresponding Write response or raises an error. Here fairness means ”fair
reachability of predicates” in the sense of Queille and Sifakis [25]:

[ true* . ({Q_Write ?fid:nat ?bit:bool})

. (not (’Error.*’ or {R_Write !fid}))* ]

< (not (’Error.*’ or {R_Write !fid}))*

. (’Error.*’ or {R_Write !fid}) > true

Similarily, we have shown that it is fairly inevitable that Read requests are
replied, and also that the system is functionally correct: after a Write request
(and before the next one), a Read request will answer with the correct value.

To summarise, we proved by model-checking that our application consisting of
1 master and 4 slaves (3 good ones and bad one) behaves correctly: 1) it answers
to Read and Write requests, 2) the answers are correct in the sense that the read
value is the value that has been written, 3) for this it relies on the slaves for
storing the data (the master only performs a consensus), and 4) enough good
slaves have been instantiated and the NotBFT error cannot be raised.
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5 Conclusion

This paper shows the modelisation and verification by model-checking of a system
that features: one-to-many communication, asynchronous communication with
futures, byzantine faults, replication, and consensus.We showed here the possibil-
ity to encode and verify the correct behaviour of a whole distributed application
that tolerates some faulty processes. Handling byzantine faults is a difficult task,
because no assumption can be made on the behaviour of the faulty processes. Such
a random behaviour makes automatic verification of the correction of a whole ap-
plication even more difficult because a lot of possible states must be considered.

A next step could be to integrate the generation of faulty process, replication
management, and consensus methods to our specification environment: the user
would identify the possibly faulty components and the environment would gener-
ate BFT-like behaviour and replication for those components, but also broadcast
and consensus operations. The new system could then be model-checked to de-
cide whether the whole application is fault-tolerant.

Another lesson drawn here is that the behaviour of the whole application is
huge, we used all the power of the distributed version of CADP on a cloud-like
environment to verify the application. This shows that application-level fault-
tolerance can be verified by a model-checker, but also that adding any other
feature to the system (e.g. reconfiguration for changing the number of replicates
at runtime) may be very difficult. To master such complexity we should use
semantic properties of the programming model and of the middleware to get
better and smaller abstractions at the level of the generated behaviour.
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Abstract. Software product line engineering is a paradigm to develop
software applications using platforms and mass customization. Compo-
nent based approaches play an important role in development of product
lines: Components represent features, and different component combina-
tions lead to different products. The number of combinations is expo-
nential in the number of features, which makes the cost of product line
model checking high. In this paper, we propose two techniques to reduce
the number of component combinations that have to be verified. The
first technique is using the static slicing approach to eliminate the fea-
tures that do not affect the property. The second technique is analyzing
the property and extracting sufficient conditions of property satisfac-
tion/violation, to identify products that satisfy or violate the property
without model checking. We apply these techniques on a vending machine
case study to show the applicability and effectiveness of our approach.
The results show that the number of generated states and time of model
checking is reduced significantly using the proposed reduction techniques.

1 Introduction

Software product line engineering is a paradigm to develop software applications
using platforms and mass customization. To this end, the commonalities and
differences of the applications should be modeled explicitly [1]. Feature models
are widely used to model the variability of software product lines. A feature
model is a tree of features, containing mandatory and optional features as well as
a number of constraints among them. A product is then defined by a combination
of features, and product family is the set containing all of the valid feature
combinations [2]. A configuration vector can be used to keep track of inclusion
or exclusion of features.

The Vending Machine Example: Feature Model. Throughout this paper,
we use a product family of vending machines as a running example. A vending
machine may serve coffee and/or tea. It also may add milk to the coffee. Figure
1 shows the feature model of the family of vending machines.
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Fig. 1. The feature model of the vending machine example

Software product line engineering enables proactive reuse by developing a fam-
ily of related products. One of the main approaches to develop software product
lines is the compositional approach, in which features are implemented as dis-
tinct code units [3]. These code units are reused when the corresponding units
are composed to generate each product. Component technology [4] is suitable
in this approach as reusability is an important characteristic of software compo-
nents. In component-based development of product lines, each feature is imple-
mented using a component. Some of the features can be implemented within the
components in a fine-grained manner as well, using annotative techniques [5].
Consequently, the behavior of a component may change according to inclusion
or exclusion of the features. Software product line engineering is used in the de-
velopment of embedded and critical systems [6]. Therefore formal modeling and
verification of software product lines is essential.

Model checking [7] is a promising technique for developing more reliable sys-
tems. Recently, several approaches have been developed for formal modeling of
product lines [8,9,10,11,12,13]. These approaches capture the behavior of the
entire product family in a single model by including the variability informa-
tion in it. In other words, it is specified in the model how the behavior changes
when a feature is included or excluded. Model checking of product lines is dis-
cussed in [10,12,13]. In these approaches, the model checker investigates all of
the possible feature combinations when verifying the model of a product fam-
ily against a property, and the result of model checking is the set of products
that satisfy the given property. The focus of these works is on adapting model
checking algorithms to verify product families, and they do not address the state
space explosion issue. However, the main problem of model checking is its high
computational and memory costs which may lead to state space explosion. This
problem limits the applicability of model checking technique to verify product
lines, as in product families the number of products can be exponential in the
number of features. In [14,15], two incremental approaches are proposed for prod-
uct line verification. In [14], only sequential composition of features is discussed
which is a considerable limitation as the approach is not applicable to concur-
rent systems. The focus of [15] is on reducing the effort of applying deductive
verification techniques (not model checking) on product lines. The main idea of
our approach is to use static slicing and static analysis techniques to tackle the
state space explosion problem in model checking of component-based software
product lines.
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We use Rebeca to model product families in a component-based manner, as
a basis to explain our approach. However, the approach is not limited to Re-
beca models, and it is applicable to any modeling language with slicing analysis
support. In our approach, each feature is modeled using one component that
captures its corresponding behavior, or using an alternative behavior within a
component that changes the behavior of the component based on the presence
or absence of the feature accordingly. Each product contains the components
associated to the features that are included in the product, and the behavior
of each of its components is determined according to the features that are in-
cluded/excluded in that product. The model checker considers all of the possible
combinations of components and alternative behaviors, to verify the product
family. The focus of this paper is on reducing the number of combinations that
should be investigated in model checking. We propose two techniques for this
purpose.

The first technique uses the static slicing approach. Static slicing [16] is an anal-
ysis technique that extracts the statements from a program that are relevant to a
particular computation. This technique has been used as a reduction technique in
model checking of Promela [17], CSP [18], Petri-nets [19], and Rebeca [20,21] mod-
els. In [22], an evaluation of applying static slicing formodel reduction is presented.
The result shows significant reductions that are orthogonal to a number of other
reduction techniques, and applying slicing is always recommended because of its
automation and low computational costs. One of the main approaches for slicing
is using reachability analysis on program dependence graph. The nodes of a pro-
gramdependence graph are the statements of the program, and its edges represent
data and control dependencies among the statements. In this paper, we adapt the
program dependence graph and the reachability algorithm, to use static slicing to
identify the features that do not affect the correctness of the property. By discard-
ing these features, the model checker investigates fewer feature combinationswhen
model checking the product family.

In the second technique, we analyze the property statically to extract sufficient
conditions of its satisfaction or violation. These conditions are used along with
reachability conditions for variables to conclude satisfaction or violation of the
given property for certain products, without verification. The model checker does
not verify these products, therefore the number of feature combinations that
should be verified is reduced. It should be noted that the proposed techniques
(slicing, extracting conditions from property, and investigating reachability of
variables) can be applied automatically.

This paper is structured as follows. Section 2 explains how product families are
modeled and model checked. In Section 3 we describe the slicing technique that is
used to identify the features that do not affect a property. Section 4 describes our
approach for extracting sufficient conditions of property satisfaction/violation,
and identifying products that satisfy or violate the property, without model
checking. In Section 5 we present the results of using the two proposed techniques
for reducing the feature combinations of a vending machine case study. Finally,
we conclude our work in Section 6.
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2 Modeling and Model Checking Product Families

This section introduces the Rebeca modeling language [23], and explains how
a product family can be modeled and model checked using Rebeca. We select
Rebeca as a basis to describe our approach, because it is suitable for modeling
concurrent systems, it is supported by the Modere model checking tool [24], it
supports components [25], and the slicing technique is adapted to be applicable
on Rebeca models [20,21]. However, our proposed approach is not limited to
Rebeca models, and can be applied to other modeling languages with similar
facilities as well.

2.1 Rebeca

Rebeca is an actor-based language for modeling concurrent and distributed sys-
tems as a set of reactive objects which communicate via asynchronous message
passing. A Rebeca model consists of a set of reactive classes. Each reactive class
contains a set of state variables and a set of message servers. Message servers ex-
ecute atomically, and process the receiving messages. The initial message server
is used for initialization of state variables. A Rebeca model has a main part,
where a fixed number of objects are instantiated from the reactive classes and
execute concurrently. We refer to these objects as rebecs. The rebecs have no
shared variable, and each rebec has a single thread of execution that is trig-
gered by reading messages from an unbounded message queue. When a message
is taken from the queue, its corresponding message server is invoked. In [25],
components are added to the Rebeca language to encapsulate tightly coupled
reactive objects. In other words, a component is a set of one or more reactive
objects.

2.2 Product Family Model

To model product families, we should model optional components (which may
be included in some of the products, and excluded in other products), and alter-
native behaviors of components. Different combinations of optional components
and alternative behaviors lead to different products. To this end, we use a spe-
cial tag @AC before a statement to specify the application condition of the
statement. An application condition is a propositional logic formula in terms of
features. This tag indicates that the statement will be executed only in those
products that AC holds. When a feature F corresponds to a component, we
use @F tag before all the message server calls to that component. Subsequently,
message servers of a component are invoked only if its associated feature is in-
cluded in a product. If the feature is excluded in a product, no message is sent
to its corresponding component, and the component will be excluded. Moreover,
these tags can be used to indicate the change of the behavior within components
according to presence and absence of features.
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The Vending Machine Example: Rebeca Model. Figure 2 shows the Re-
beca code for the product family of vending machines. In this model, there is a
controller component that manages coffee and tea requests and sends messages
to the coffee maker and tea maker components accordingly. The nextRequest
message server (line 12”) is responsible for handling the requests. When there
is request for coffee (req = 1), the serveCoffee message is put in the queue of
coffeeMaker, if the machine is capable of serving coffee (line 15”). If the machine
does not have the coffee option, the coffee request is ignored and the machine
processes the next request (line 17”). The tea request (req = 2) is handled in a
similar way. Consequently, if the coffee or tea feature is excluded in a product, no
message is sent to the corresponding component, and the component will be also
excluded. In the coffee maker component, the behavior changes according to the
existence of the milk feature. If the milk feature is included in a product, milk is
added to coffee (line 15). One of the linear temporal logic (LTL) [26] properties
that can be considered for this model is P : �(¬(addingCoffee ∧ addingTea)),
where � stands for globally. This property describes that the machine should
not add both coffee and tea to a drink at the same time.

1 reactiveclass CoffeeMaker { 1’ reactiveclass TeaMaker { 1” reactiveclass Controller{
2 knownrebecs { 2’ knownrebecs { 2” knownrebecs {
3 Controller ctrl; 3’ Controller ctrl; 3” CoffeeMaker cm;
4 } 4’ } 4” TeaMaker tm;

5” }
5 statevars { 5’ statevars {
6 boolean addingCoffee; 6’ boolean addingTea; 6” statevars {
7 boolean addingMilk; 7’ } 7” int req;
8 } 8” }

8’ msgsrv initial() {
9 msgsrv initial() { 9’ addingTea = false; 9” msgsrv initial() {
10 addingCoffee = false; 10’ } 10” self.nextRequest();
11 addingMilk = false; 11” }
12 } 11’ msgsrv serveTea() {

12’ addingTea = true; 12” msgsrv nextRequest() {
13 msgsrv serveCoffee() { 13’ self.serveComplete(); 13” req = ?(1,2);
14 addingCoffee = true; 14’ } 14” if(req == 1)
15 @Milk addingMilk = true; 15” @Coffee
16 self.serveComplete(); 15’ msgsrv serveComplete() { cm.serveCoffee();
17 } 16’ addingTea = false; 16” if(req == 1)

17’ ctrl.nextRequest(); 17” @!Coffee
18 msgsrv serveComplete() { 18’ } self.nextRequest();
19 addingCoffee = false; 19’ } 18” if(req == 2)
20 addingMilk = false; 19” @Tea
21 ctrl.nextRequest(); tm.serveTea();
22 } 20” if(req == 2)
23 } 21” @!Tea

self.nextRequest();
22” }
23” }

Fig. 2. The Rebeca code of the product family of vending machines
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2.3 Model Checking the Product Family

For a product line with n features (where each feature corresponds to a com-
ponent or an alternative behavior of a component), potentially there exist 2n

products in its corresponding product family. To model check the product fam-
ily, a configuration vector C ∈ 〈I, E, ?〉n (I: Included, E: Excluded, ?: not de-
cided) is used to keep track of inclusion and exclusion decisions that are made for
each feature [10]. The validity of configuration vector with respect to the feature
model can be checked during model checking by transforming the feature model
to a propositional logic formula [27] and using a SAT-solver (like [28]) to inves-
tigate its satisfiability. The result of model checking a product family against a
property is the set of products (represented through configuration vectors) that
satisfy the given property.

The Vending Machine Example: Model Checking. We assume the first,
second, and third elements of configuration vector correspond to Coffee, Tea,
and Milk features, respectively. The result of model checking the product family
of vending machines against the property P is:

R = {〈E, I, E〉, 〈I, E,E〉, 〈I, I, E〉, 〈I, E, I〉, 〈I, I, I〉}
Note that the configurations 〈E,E,E〉, 〈E,E, I〉, and 〈E, I, I〉 do not appear in
R as they do not represent valid products, according to the feature model.

3 Slicing the Model of a Product Family

The main purpose of slicing is to extract the statements of a program that are
relevant to a particular computation. A backward program slice consists of the
statements that potentially affect the values computed by some statement of
interest (referred to as a slicing criterion). A common approach for program
slicing is applying a graph reachability algorithm on the program dependence
graph. In this section, we first describe the program dependence graph of Rebeca
models that capture the behavior of a product family, and then present the
slicing algorithm that computes the slice of the product family model, followed
by a short discussion on model checking the computed slice.

3.1 Program Dependence Graph

A program dependence graph models the data and control dependencies that
exist among the statements of a program. In such a graph, the nodes represent
the statements of a program, and the edges are dependencies among them. A data
dependence edge exists between two statements if one statement assigns a value
to a variable and the other statement may read the value of that variable before it
is changed by another statement. A control dependence edge exists between two
statements if one statement determines whether the other statement is executed.

A special dependence graph named Rebeca Dependence Graph (RDG), is in-
troduced for Rebeca in [20]. In this graph, there is a class node for each reactive
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class, and member dependence edges connect the class nodes to their message
servers. Each message server is modeled by an entry node, a set of nodes rep-
resenting its statements, and data dependence and control dependence edges
modeling dependencies within the body of the message server. Sending a mes-
sage is represented through an activation node. In addition, an activation edge
is used to connect the activation node to the entry node of the corresponding
message server. Finally, intra-rebec dependence edge represents the dependency
between a statement that writes on a state variable in a message server, and a
statement which reads the value of that variable in another message server. To
adapt the dependence graph for product families, we add a tag to the nodes to
specify their application conditions.

Fig. 3. The RDG of the vending machine example

The Vending Machine Example: RDG. Figure 3 shows the RDG of the
vending machine. In this graph the nodes 15, 15”, 17”, 19”, and 21”, are tagged
with a feature as their corresponding statements in the Rebeca model are tagged
with these features.

3.2 Slicing Algorithm

After constructing the program dependence graph, the slice with respect to a
property can be computed using a graph reachability algorithm. The slicing
criterion consists of the statements that assign values to the variables that appear
in the given property. Figure 4 shows the static slicing algorithm that is adapted
to extract the features affecting the property as well. To this end, the algorithm
traverses the graph backwards (starting from the slicing criterion nodes), and
adds the traversed nodes to the slice, and their corresponding features to the
relevant features set. In this algorithm, we assume that Features(v) gives the set
of features that appear in the application condition of node v. The features in
the set F are the components and the alternative behaviors that their presence
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Input: The set of slicing criterions (C) and RDG (Rebeca Dependence Graph)
Output: Slice S, Relevant features set F

S={}; /*initialize the slice*/
F={}; /*initialize the relevant features set*/
for each(ci∈C){ /*for each slicing criterion*/

W={ci}; /*add the slicing criterion node to the work list*/
S=S∪{ci}; /*add the slicing criterion node to the slice*/
while(W �=∅){ /*while the work list is not empty*/

W=W\{w}; /*remove one element (w) from the work list*/
for each(v⇀w){ /*for each node v on which w depends*/

if(v �∈S){ /*if the node is not included in the slice*/
W=W∪{v}; /*add it to the work list and the slice*/
S=S∪{v};
F=F∪Features(v); /*add the corresponding features to the relevant feature set*/

}
}

}
}

Fig. 4. Static slicing algorithm adapted to extract relevant features

or absence affects the correctness of the property. Therefore, the model checker
should investigate their different combinations.

The Vending Machine Example: Slicing. The slicing criterion nodes for the
property P : �(¬(addingCoffee ∧ addingTea)), are indicated by gray nodes in
Figure 3. The slice computed by the slicing algorithm contains all of the nodes
except 11, 15, 20, and the feature set is F = {Coffee,Tea}.

3.3 Model Checking the Slice

The features that do not exist in the set F represent the components and alter-
native behaviors that do not affect the property. Therefore, the combinations of
these features can be ignored when model checking the slice of a product family.
Having a feature model with n features, there will be at most 2n feature combi-
nations (products), in the product family. By excluding m features that do not
affect the property, the number of products to verify is reduced to 2(n−m). The
configuration vector is C ∈ 〈I, E, ?〉(n−m), as practically, the value of an element
that its associated feature is removed always remains as “?”.

The result of model checking the slice of product family against a property is
the set R containing the configurations that satisfy the given property. However,
these configurations are based on the combinations of n − m features and do
not describe identifiable products. As the other m features do not affect the
property, we can combine the configurations in R with inclusion and exclusion
of each of these features, taking constraints of the feature model into account,
to achieve the final result. If we have r configurations such as C ∈ 〈I, E〉(n−m)

in R, The ultimate result R′ would contain (r × 2m) − u configurations in the
form C ∈ 〈I, E〉n, where u is the number of feature combinations that are not
valid according the feature model.
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The Vending Machine Example: Model Checking the Slice. The Milk
feature does not affect the property P , and does not appear in the slice. This
reduces the number of products in the product family from 23 to 22. The result
of model checking the slice against P is:

R = {〈E, I〉, 〈I, E〉, 〈I, I〉}
In the next step, the milk feature should be combined with each of the above
configurations. So it should be included and be excluded in these configurations
(that leads to two new configurations per each configuration). The final result is
R′ that consists of (3× 21)− 1 configurations (〈E, I, I〉 is invalid):

R′ = {〈E, I, E〉, 〈I, E,E〉, 〈I, E, I〉, 〈I, I, E〉, 〈I, I, I〉}

4 Static Analysis of Property Satisfaction/Violation in
Products

In this section, we describe how satisfaction/violation of a property can be in-
ferred for some of the products without model checking. For this purpose, we
extract sufficient conditions for property satisfaction/violation in terms of initial
values of atomic propositions and the possibility of their change in the model.
We assume that a property is described using boolean variables where each vari-
able corresponds to an atomic proposition. Therefore, we can evaluate sufficient
conditions using the initial values of the variables and the possibility of their
change in different products. The latter is achieved by analyzing the reachability
of statements to obtain a condition in terms of presence and absence of features,
which describes in which products the value of a variable may change. Using the
result of evaluating sufficient conditions, we determine a subset of products that
satisfy/violate the property without model checking. In other words, we indicate
in which components and in which of their alternative behaviors the value of a
variable does not change, and consequently the property is satisfied/violated.

It should be mentioned that this analysis only makes sense for models of
product families that capture the behavior of all products. In traditional model
checking, the value of a variable changes when the model is executed, and almost
always it is not possible to infer satisfaction/violation of a property without
model checking.

4.1 Condition Extraction from the Property

In this work, we consider properties expressed in linear temporal logic (LTL) [26].
An LTL formula over the set of AP of atomic propositions is formed according
the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦ϕ | ϕ1Uϕ2

In the above grammar, p ∈ AP , and �,♦, and U stand for globally, finally, and
until operators respectively.
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A transition system TS is a tuple (S,Act ,→, I,AP , L) where S is a set of
states, Act is a set of actions, →⊆ S × Act × S is a transition relation, I ⊆ S
is a set of initial states, AP is a set of atomic propositions, and L : S → 2AP is
a labeling function. For simplicity, in this paper we assume a single initial state
s0 for a transition system. A state s is reachable from the initial state, s0 →∗ s,
if there exists a set of actions αi ∈ Act such that s0

α1→ s1
α2→ ...

αn→ s.
Figure 5 shows the proposed rules for extracting sufficient conditions of prop-

erty satisfaction/violation. These conditions are statically inferable from the ini-
tial values of atomic propositions, and also the atomic propositions that do not
vary in TS. The notation VTS (ϕ) means that the LTL formula ϕ does not vary
in TS, because some of the atomic propositions in ϕ do not change in TS.

Rules 1-8 are trivial. We can infer TS � �ϕ from TS � ϕ (Rule 9) if ϕ does not
vary in TS (VTS (ϕ)). From TS � ϕ we can conclude that TS � �ϕ, as ϕ should
hold in all states and otherwise �ϕ is violated (Rule 10). Similar justifications
can be made for the other rules.

Using these rules, we extract sufficient conditions for property satisfaction or
violation. These conditions are propositional logic formulas in terms of initial
values of atomic propositions (p ∈ L(s0)) and their variability (VTS (p)).

The Vending Machine Example: Extracting Satisfaction/Violation
Conditions. For the property P : �(¬(addingCoffee ∧ addingTea)) we can
extract sufficient conditions for satisfaction/violation by applying the rules in
Figure 5 in the following order (it is assumed that p is (addingCoffee = true),
and q is (addingTea = true)):

TS � (�(¬(p ∧ q))) if (TS � (¬(p ∧ q))) ∧ VTS(¬(p ∧ q)) Rule(9)

TS � (¬(p ∧ q)) if TS � (p ∧ q) Rule(3)

TS � (p ∧ q) if (TS � p) ∨ (TS � q) Rule(8)

TS � p if p /∈ L(s0) Rule(2)

TS � q if q /∈ L(s0) Rule(2)

VTS (¬(p ∧ q)) if VTS (p ∧ q) Rule(18)

VTS (p ∧ q) if VTS (p) ∧ VTS (q) Rule(22)

VTS (p ∧ q) if (TS � p) ∧ VTS (p) Rule(23)

VTS (p ∧ q) if (TS � q) ∧ VTS (q) Rule(24)

This way, the three extracted sufficient conditions of property satisfaction would
be:

TS � P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (VTS (p) ∧ VTS (q))

TS � P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (p /∈ L(s0) ∧ VTS(p))

TS � P if (p /∈ L(s0) ∨ q /∈ L(s0)) ∧ (q /∈ L(s0) ∧ VTS (q))
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TS � p if p ∈ L(s0) Rule(1)

TS � p if p /∈ L(s0) Rule(2)

TS � ¬ϕ if TS � ϕ Rule(3)

TS � ¬ϕ if TS � ϕ Rule(4)

TS � (ϕ1 ∨ ϕ2) if (TS � ϕ1) ∨ (TS � ϕ2) Rule(5)

TS � (ϕ1 ∨ ϕ2) if (TS � ϕ1) ∧ (TS � ϕ2) Rule(6)

TS � (ϕ1 ∧ ϕ2) if (TS � ϕ1) ∧ (TS � ϕ2) Rule(7)

TS � (ϕ1 ∧ ϕ2) if (TS � ϕ1) ∨ (TS � ϕ2) Rule(8)

TS � �ϕ if (TS � ϕ) ∧ VTS (ϕ) Rule(9)

TS � �ϕ if TS � ϕ Rule(10)

TS � ♦ϕ if TS � ϕ Rule(11)

TS � ♦ϕ if (TS � ϕ) ∧ VTS (ϕ) Rule(12)

TS � (ϕ1Uϕ2) if TS � ϕ2 Rule(13)

TS � (ϕ1Uϕ2) if (TS � ϕ1) ∧ (TS � ϕ2) Rule(14)

TS � (ϕ1Uϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(15)

VTS (p) if �s | (s0 →∗ s) ∧ [(p ∈ L(s0)) ∧ (p /∈ L(s))] Rule(16)

VTS (p) if �s | (s0 →∗ s) ∧ [(p /∈ L(s0)) ∧ (p ∈ L(s))] Rule(17)

VTS (¬ϕ) if VTS (ϕ) Rule(18)

VTS (ϕ1 ∨ ϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(19)

VTS (ϕ1 ∨ ϕ2) if (TS � ϕ1) ∧ VTS (ϕ1) Rule(20)

VTS (ϕ1 ∨ ϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(21)

VTS (ϕ1 ∧ ϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(22)

VTS (ϕ1 ∧ ϕ2) if (TS � ϕ1) ∧ VTS (ϕ1) Rule(23)

VTS (ϕ1 ∧ ϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(24)

VTS (�ϕ) if VTS (ϕ) Rule(25)

VTS (♦ϕ) if VTS (ϕ) Rule(26)

VTS (ϕ1Uϕ2) if VTS (ϕ1) ∧ VTS (ϕ2) Rule(27)

VTS (ϕ1Uϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(28)

VTS (ϕ1Uϕ2) if (TS � ϕ2) ∧ VTS (ϕ2) Rule(29)

Fig. 5. Rules for extracting sufficient conditions of property satisfaction/violation,
based on initial values of atomic propositions, and the atomic propositions that do
not vary in TS
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A sufficient condition of property violation for P can be extracted in a similar
way:

TS � P if p ∈ L(s0) ∧ q ∈ L(s0)

4.2 Evaluation of the Extracted Conditions

The initial values of atomic propositions (p ∈ L(s0) or p /∈ L(s0)) are computed
based on initialization statements. For simplicity, we assume that the property
is described using boolean variables only. It should be mentioned that we can
always rewrite a property such as �(x = y + z) in the form �(v = true), where
v is boolean variable representing x = y + z. This assumption implies that each
atomic proposition is a boolean variable in the Rebeca model, and the value that
is assigned to the variable in the initialize message server, determines if p ∈ L(s0)
or p /∈ L(s0).

The next step is to investigate if the value of the atomic proposition p may
vary (VTS (p)). The value of variable v (where v corresponds to p) changes in
a product if the product has a reachable statement s that assigns a value to
v. According to our model for product families, a tagged statement is executed
when its application condition holds in a product. Other statements are executed
normally. We assume that F(s) gives the application condition that is associated
to a tagged statement s, and for other ones returns true. A statement s is reach-
able in a product if its associated application condition holds in the product, as
well as at least one of the application conditions assigned to those statements on
which s is control/activation dependent (possibly indirectly). We compute the
reachability condition of the statement s recursively as:

RC (s) =
∨

r⇀c,as

(F(s) ∧ RC (r))

In the above computation, r ⇀c,a s is the set of statements on which s is control
or activation dependent. To avoid recursion, we mark each statement r when its
condition is extracted, and in r ⇀c,a s we only consider the unmarked state-
ments. Note that when a behavioral model is inconsistent (e.g. RC (s) contains
the conjunction of a feature and its negation), the statement s is not reachable
in any of the products.

We assume Def (v) is the set of statements that assign value to the variable
v, except the initialization statement which is the one assigning value to v in
the initial message server of the Rebeca model. The value of v may change in a
product, if at least one of the statements s ∈Def (v) are reachable in that product.
The atomic proposition p which corresponds to v may vary in transition system
TS if:

VTS (p) =
∨

s∈Def (v)

RC (s)
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Consequently:

VTS(p) = ¬(
∨

s∈Def (v)

RC (s))

The possibility of variation for p is thus described using application conditions,
where each application condition is a propositional logic formula in terms of
features itself. Substituting the initial values of atomic propositions and their
possibility of variation (VTS(p)) in sufficient conditions of property satisfac-
tion/violation, leads to a number of propositional logic formulas. These formu-
las describe products that we can conclude satisfaction/violation of the given
property in them statically. A product satisfies or violates a property if at least
one of the sufficient conditions of property satisfaction or violation holds for it,
because of the components and alternative behaviors that it includes. The model
checker only verifies the products that their satisfaction or violation cannot be
concluded from sufficient conditions.

The Vending Machine Example: Evaluation of the Extracted Condi-
tions. We assume that atomic propositions p and q correspond to addingCoffee
and addingTea variables, respectively. According to the initializations in the Re-
beca model, we can conclude that p /∈ L(s0) and q /∈ L(s0). The statements
10 and 14 assign value to addingCoffee which means that Def (addingCoffee) =
{s14, s19}. Therefore:

VTS (p) = ¬(RC (s14) ∨ RC (s19)) = ¬Coffee

Because:

RC (s14) = RC (s13) = RC (s15”) = Coffee ∧ RC (s14”) = Coffee ∧ RC (s12”) =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ RC (s10”)︸ ︷︷ ︸∨RC (s21)] =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ RC (s9”)︸ ︷︷ ︸∨RC (s21)] =

Coffee ∧ [RC (s17′) ∨ RC (s17”) ∨ RC (s21”) ∨ true ∨RC (s21)] = Coffee

and:

RC (s19) = RC (s18) = RC (s16) = RC (s13) = Coffee

Similarly, we can compute VTS(q) = ¬Tea. By substitution of VTS(p) and
VTS(q) with ¬Coffee and ¬Tea respectively, the following conditions are achieved
which describe the products for which satisfaction/violation of P is inferable
without model checking:

TS � P if (¬Coffee ∧ ¬Tea)
TS � P if ¬Coffee
TS � P if ¬Tea
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Fig. 6. The feature model of the vending machine case study

According to the above conditions, the products that do not have the Coffee
feature, and the products that do not have the Tea feature, satisfy P , and there
is no need to verify them. This way, the number of the products that should be
model check is reduced to 22− 3, as we can tell that the products 〈I, E〉, 〈E, I〉,
and 〈E,E〉 satisfy P (although 〈E,E〉 is not a valid product).

5 Results

We applied our proposed approach to a vending machine case study that is much
more complex than the running example 1. The machine includes a controller
that handles the requests. Figure 6 shows the feature model of the vending ma-
chine. The coffee maker, tea maker, and soda server components are responsible
for serving the associated drinks. There is also a milk adder component which
adds milk to coffee. There are two coffee container components and two tea con-
tainer components, containing black coffee, coffee with cream, black tea, and
green tea, respectively. The coffee maker and the tea maker components use the
proper container to serve the requested drink. They add water through the water
component. The water component can be filled using two different mechanisms
which are handled by the filler 1 and filler 2 components. Finally, there are two
different payment methods for a vending machine: paying by coin, or paying by
card. We defined the following six LTL properties to be verified.

– P1 = �[¬(ServingCoffee ∧ ServingTea ∧ ServingSoda)]
– P2 = �(¬empty)
– P3 = �(¬overFlow )
– P4 = �[¬(addingBlackCoffee ∧ addingCreamCoffee)]
– P5 = �[¬(addingBlackTea ∧ addingGreenTea)]
– P6 = �♦(ServingSoda)

The first property describes that the vending machine should not be serving
three drinks at the same time. The second and third properties check that the
water container should not get empty, or overflow. The forth property describes

1 The source code is available at http://ece.ut.ac.ir/rkhosravi/sourcecode
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Table 1. Number of states and time of verification (in seconds) before applying the
techniques (first column), after applying the slicing technique (second column), and
after identifying products that satisfy/violate the property without model checking
(third column), for the vending machine case study

Complete Model Static Slicing Slicing and Static Analysis

states time(sec) states time(sec) states time(sec)

P1 - - 49,307,358 24,574 25,590,940 13,849

P2 - - 39,169,329 17,156 39,126,321 17,138

P3 - - 39,182,632 18,019 19,571,384 9,119

P4 - - 43,484,712 19,623 16,037,384 7,517

P5 - - 47,317,992 24,084 14,696,264 6,951

P6 - - 114,547,805 142,081 63,357,123 75,356

that the machine should not add black coffee together with coffee and cream to
a drink. This fact should be also checked for the tea drink (the fifth property).
The last property states that the machine should serve soda infinitely often.

Table 1 shows the number of states and the time of verification (in seconds)
for model checking the product family of vending machine case study. The time
of applying slicing technique and computing sufficient conditions are negligible
comparing to model checking time and are ignored. The complete model can
not be model checked against the properties because of state space explosion
(first column). After applying the slicing technique and eliminating irrelevant
features, the sliced model can be checked against the properties (second column).
However, the number of states and time of verification can be reduced even
more by extracting sufficient conditions of property satisfaction/violation, and
identifying products that satisfy/violate the property without model checking.

6 Conclusion

In this paper we presented two techniques to reduce the number of products of a
product line that are model checked against a property. This way, the number of
generated states and the required time for verifying product families are reduced.
The first technique was to apply static slicing to eliminate the features that do
not affect the property. The second technique was to analyze the property and
reachability of its variables in different products statically to identify products
that satisfy/violate the property without model checking. The results of using
these techniques in model checking the vending machine case study show the
effectiveness of our approach as the number of generated states and time of
verification reduced significantly after applying these techniques. The slicing and
static analysis technique are completely automatic, and their cost is negligible
comparing to the verification cost which makes using our approach for model
checking product families practical.
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(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 436–447. Springer, Heidelberg (2008)

20. Sabouri, H., Sirjani, M.: Actor-based slicing techniques for efficient reduction of
Rebeca models. Sci. Comput. Program. 75(10), 811–827 (2010)

21. Sabouri, H., Sirjani, M.: Slicing-based reductions for Rebeca. Electron. Notes
Theor. Comput. Sci. 260, 209–224 (2010)

22. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V., Wallentine, T.: Evaluating
the Effectiveness of Slicing for Model Reduction of Concurrent Object-Oriented
Programs. In: Hermanns, H., Wallentine, T., Palsberg, J. (eds.) TACAS 2006.
LNCS, vol. 3920, pp. 73–89. Springer, Heidelberg (2006)

23. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385–410 (2004)

24. Jaghoori, M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. In: ACM Symposium on Applied Computing - Software Verification Track,
pp. 1810–1815 (2006)

25. Sirjani, M., de Boer, F., Movaghar, A.: Modular verification of a component-based
actor language. Journal of Universal Computer Science 11(10), 1695–1717 (2005)

26. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, pp. 995–1072 (1990)

27. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001, pp. 530–535. ACM (2001)



Bigraphical Modelling of Architectural Patterns

Alejandro Sanchez1,2, Luís Soares. Barbosa2, and Daniel Riesco1

1 Departamento de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, D5700HHW San Luis, Argentina

{asanchez,driesco}@unsl.edu.ar
2 HASLab INESC TEC & Universidade do Minho,

Campus de Gualtar, 4710-057 Braga, Portugal
lsb@di.uminho.pt

Abstract. Archery is a language for behavioural modelling of architec-
tural patterns, supporting hierarchical composition and a type discipline.
This paper extends Archery to cope with the patterns’ structural dimen-
sion through a set of (re-)configuration combinators and constraints that
all instances of a pattern must obey. Both types and instances of ar-
chitectural patterns are semantically represented as bigraphical reactive
systems and operations upon them as reaction rules. Such a bigraphical
semantics provides a rigorous model for Archery patterns and reduces
constraint verification in architectures to a type-checking problem.

1 Introduction

In a number of contexts the term architectural pattern is used as an architectural
abstraction. The expression is taken in the usual sense – a known solution to a
recurring design problem. In [4] it is characterised as a description of element
and configuration types, and a set of constraints on how to use them. Available
catalogs such as [8] provide a vocabulary for their use at a high abstraction
level. However, the lack of formality in their pattern documentation prevents
their usage for developing precise architectural specifications on top of them,
and in consequence, any tool-supported analysis and verification.

Such is the motivation behind Archery, a language to describe the behaviour of
pattern elements, a subset of which was recently presented in [13]. Its semantics is
given by translation to mCRL2 [10]. A pattern specification in Archery comprises
a set of architectural elements (connectors and components) and their associated
behaviours. An architecture describes a particular configuration that instances
of a pattern’s elements assume. This configuration has an emergent behaviour
and constitutes an instance of the pattern. Then, both patterns and elements
define the types of behaviour expected from instances. The language supports
hierarchical composition of architectures.

This paper, extends Archery to the so-called structural dimension of archi-
tectural patterns. This comprises the usage of typed variables to contain and
identify instances, a set of scripting operations to build architectural configu-
rations, and a set of primitives to specify constrains over such configurations.
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© Springer-Verlag Berlin Heidelberg 2012
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Constraints restrict the class of valid configurations that architectures, instances
of a particular pattern, may adopt. Therefore, reconfigurations are only enabled
when respecting the pattern constraints. For instance, a reconfiguration script
that connects two clients in a Client-Server architecture violates the intended
use of the pattern and should be prevented.

A second contribution of this paper is a semantics for the structural dimen-
sion of Archery on top of Bigraphical Reactive Systems (BRS) [11]. The theory
of BRSs was developed to study systems in which locality and linking of com-
putational agents varies independently, and to provide a general unifying theory
in which existing calculi for concurrency and mobility can be represented. The
two main constituents of a BRS are a bigraph and a set of parametric reaction
rules. The former specifies the BRS structure as two orthogonal graphs upon the
same set of nodes, one modelling locality, and another the linking scheme. Rules
model its dynamics, i.e., how the structure is reconfigured through reaction.

The theory of BRSs has a precise definition. A bigraph, expressed as a tuple
of functions, is an arrow in a category. A more restrictive category can be defined
for bigraphs by including in their definition a mechanism, called sorting, that
constrains the configurations they can adopt. This setting allows the formal
treatment of the encoded system. In particular, if some conditions are met [11],
it allows to automatically derive a labelled transition system (LTS) from a BRS,
in which behavioural equivalence is a congruence.

The choice of BRS as a semantical framework for Archery was motivated by
the need to cope with the independent modification of both placing and linking
of pattern instances. At a more fundamental level, the structural dimension of
patterns and architectures is encoded as arrows in a suitable category1. Finally,
the use of bigraphs reduces the problem of verifying whether an architectural
constraint holds, to a certain kind of type-checking. Actually, once a structural
constraint is encoded as a sorting, to check if it is verified by an architecture
amounts to translating the latter to a bigraph and prove that such a bigraph
belongs to the category defined by the sorting.

The bigraphical encoding presented here is also the basis for, following the
approach in [5], exploring the automatic derivation of LTS whose states stand for
the different configurations the corresponding architecture can adopt [12] . This
makes possible to resort to behavioural equivalence to compare the application
of different patterns in reconfiguring systems.

The following sections illustrate how Archery can be endowed with a bigraph-
ical semantics. For such purposes we limit ourselves to a subset of the scripting
operations. Constraints are just illustrated by an example. The full version of
the language can be found in [12]. The rest of the paper is organised as follows:
section 2 introduces Archery. Section 3 briefly recalls the basic theory of BRS
and section 4 develops a formal semantics for the structural dimension of this
language. Finally, section 5 concludes and discusses future work.

1 Archery designation comes from a comment in Steve Awodey’s book [3] in category
theory: “ ...the subject might better have been called abstract function theory, or
perhaps even better: archery.”
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2 The Archery Language

Archery is structured as a core language and two extensions, referred to as
Archery-Core, Archery-Script, and Archery-Structural-Constraint, respectively. the
basic language, Archery-Core, was originally introduced in [13]. Archery-Script
adds operations to build configurations, whereas Archery-Structural-Constraint
offers primitives for defining structural constraints. While both behavioural and
structural semantics are defined for Archery-Core, only structural semantics is
given to Archery-Script and Archery-Structural-Constraint. Both Archery-Core and
its extensions are endowed with a structural semantics by translation to BRS.
However, the codomain of each translation differs. In particular, the Archery-
Structural-Constraint extension requires a careful consideration.

2.1 Archery-Core

A specification in Archery-Core comprises one or more patterns and a main ar-
chitecture. The first rule of the grammar, shown in Figure 1, indicates this by
equating the Spec non-terminal to one or more Pat and a Var non-terminals.
Note that several non-terminal are undefined; the grammar leaves out the defi-
nition of whatever is not relevant to the structural dimension.
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Fig. 1. A grammar fragment for Archery-Core

A pattern is specified according to the rule expanding the Pat non-terminal.
Its definition contains a TYPEID token that represents its identifier, an optional
list of formal parameters, and one or more architectural elements specified ac-
cording to the Elem non-terminal. For instance, the specification in Listing 1
includes two patterns: ClientServer and PipeFilter.
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Each architectural element in a pattern is specified by a TYPEID token as its
identifier, an optional list of formal parameters, a description Behaviour of its
behaviour, and a description ElemInterface of its interface. Behaviour is defined
in a dialect of mCRL2 restricted to sequential processes. Its description must
contain one ore more process expressions, as the one shown in line 5 of Listing
1, and a list of action definitions, as in line 4. The first process characterises
the initial behaviour of the instance and may call other processes defined within
the element. The interface contains one or more ports Port. A port is defined
by a direction indicator, either in or out, and an ID token that has to match
an action name in the list of action definitions. For instance, the interface of
Server defines two ports in line 6. We adopt a water flow metaphor inspired
in [2] for ports: an in port receives input from any port connected to it, and an
out port sends output to all ports connected to it. Communication in a port is
assumed to be synchronous; if needed a suitable process algebra expression can
be used to emulate any other port behaviour.

Listing 1. Example patterns and architectures

1 pattern ClientServer()
2 elements
3 element Server()
4 act rreq, sres, cres;
5 proc Server() = rreq.cres.sres.Server();
6 interface in rreq; out sres;
7 element Client()
8 act prcs, sreq, rres;
9 proc Client() = prcs.sreq.rres.Client();

10 interface in rres; out sreq;
11 end
12 pattern PipeFilter()
13 elements
14 element Pipe()
15 act accept, forward;
16 proc Pipe() = accept.forward.Pipe();
17 interface in accept; out forward;
18 element Filter()
19 act rec, trans, send;
20 proc Filter() = rec.trans.send.Filter();
21 interface in rec; out send;
22 end
23 cs : ClientServer = architecture ClientServer()
24 instances
25 s1 : Server = architecture PipeFilter()
26 instances
27 f1:Filter=Filter(); f2:Filter=Filter();
28 p1:Pipe=Pipe();
29 attachments
30 from f1.send to p1.accept;
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31 from p1.forward to f2.rec;
32 interface
33 f1.rec as rreq;
34 f2.send as sres;
35 end
36 c1 : Client = Client(); c2 : Client = Client();
37 attachments
38 from c1.sreq to s1.rreq; from c2.sreq to s1.rreq;
39 from s1.sres to c1.rres; from s1.sres to c2.rres;
40 end

A variable and its value is defined according to Var. The variable has an
ID token as its identifier, followed by a TYPEID token that must match an
element or pattern name. The value can be either a pattern PatInst or an element
ElemInst instance. Note that the variable that follows the pattern definitions,
as indicated in the first grammar rule, and as shown in line 23 of the example,
must refer to an architecture (the main one).

An architecture defines a set of variables and describes the configuration
adopted by their instances. It contains: a TYPEID token that must match a
pattern name, an optional list of actual arguments, a set of variables Var, an
optional set of attachments Att, and an optional interface ArchInterface. Each
variable in the set must have as type an element defined in the pattern the ar-
chitecture is instance of. If the variable refers to an element instance ElemInst, it
is defined by a TYPEID and a list of actual parameters. If it refers to a pattern
instance instead, as in lines 25 to 35 of the example, a nested architecture is
defined. Each attachment Att includes a port reference PortRef to an out port,
and another one to an in port. A port reference is an ordered pair of ID tokens,
with the first one matching a variable identifier, and the second a port of the
variable’s instance. Then, an attachment indicates that the out port communi-
cates with the in port. Such is the case of f1.send with p1.accept in line 30.
The architecture interface is a set of one or more port renamings Ren. Each port
renaming contains a port reference and an ID token referring to the external
name for the port. Ports not included in this set are not visible from the outside.
Including the same port in an attachment and in the interface is incorrect. An
example interface with two renamings is shown in lines 33 and 34.

2.2 Archery-Script

Archery-Script is used to specify scripts for creating architectures or for reconfi-
guring existing ones. It assumes the existence of a process that triggers a script
under some conditions. Its combinators are informally described in Table 1 and
their use illustrated through the example in Listing 2. An essential feature is that
their definition is independent of any pattern. The design principles of patterns
are enforced through constraints, as shown in Section 2.3. This independence,
and the fact that a variable may contain an instance whose type may not nec-
essarily match the variable’s type, allows the reuse of a script in an open family
of patterns (related by some refinement relation).
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Table 1. Combinators for Archery-Script

Name Format Description
Import import(s) Receives as a parameter a reference s to an Archery

specification and imports it to the environment of the
executing script (e.g., line 2 in Listing 2)

Create
Variable

v:type Creates a variable with name v and type type (line
3)

Create
Instance

v=type() Creates a new instance of type type and assigns it
to a variable v (line 4)

Add
Instance

addInst(a,v) Adds a variable v and the instance it refers to to the
architecture in variable a (line 5)

Attach attach(f.o,
t.i)

Attaches the port o of the instance in variable f to
the port i of the instance in variable t (line 8)

Deattach deattach(f.o,
t.i)

Removes the attachment between the port o of the
instance in variable f and the port i of the instance
in variable t (line 6)

Add
Rename

addRen(v.p,q) Renames port p in variable v to q (line 15)

Remove
Rename

remRen(v.q) Removes rename q in the architecture in variable v
(line 14)

Move move(s,t) Whatever is referred by variable s becomes referred
by variable t (line 16); the reference to the contents of
t is lost, but its attachments and renamings remain

The example in Listing 2 is divided in three parts and assumes the exis-
tence of an initial configuration denoted by csinitial. The configuration is sim-
ilar to the one in Listing 1, but for the fact that the nested architecture (be-
tween lines 25 and 35) is now replaced by a Server instance (in a single line
s1:Server=Server();). The first part of the example reconfigures csinitial

by adding and connecting a second server. It starts with an import operation
that leaves the configuration in variable cs. Operations in lines 3 and 4 cre-
ate a new variable s2 and assign a fresh instance of Server to it. Upon that
s2 is included in the architecture in cs. Then the operations in the next two
lines remove the attachments of instances referred to by variables cs.c2 and
cs.s1. Subsequently, new attachments are created between the instance in vari-
able cs.c2 with the instance in variable cs.s2. The resulting configuration is
referred in the sequel as csfirst.

Listing 2. Example script

1 script
2 import("initial"); // first part
3 s2 : Server;
4 s2 = Server();
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5 addInst(cs, s2);
6 deattach(cs.c2.sreq, cs.s1.rreq);
7 deattach(cs.s1.sres, cs.c2.rres);
8 attach(cs.c2.sreq, cs.s2.rreq);
9 attach(cs.s2.sres, cs.c2.rres);

10 import("pf"); // second part
11 f3 : Filter = new Filter();
12 addInst(pf, f3);
13 attach(pf.p1.forward, pf.f3.rec);
14 remRen(pf.sres);
15 addRen(pf.f3.send, sres);
16 move(pf, cs.s2);
17 c3 : Client = Client(); // third part
18 addInst(cs, c3);
19 deattach(cs.c2.sreq, cs.s2.rreq);
20 deattach(cs.s2.sres, cs.c2.rres);
21 attach(cs.c2.sreq, cs.c3.rres);
22 attach(cs.c3.sreq, cs.c2.rres);
23 end

The second part of the example starts in line 10 and shows how the interface
of an architecture is modified and a server is replaced. It assumes the existence
of a configuration pf , similar to the one described between lines 25 and 35 in
Listing 1, stored in a variable pf of type PipeFilter. The script imports such
a configuration, creates a new instance of Filter in variable f3 and includes
it in pf. Line 14 removes renaming sres from pf. This has a similar effect to
deleting line 34 from Listing 1. Then, a new renaming is included in the interface,
but now for port send in variable pf.f3. Subsequently, the instance in pf is
moved to variable cs.s2. The instance referred to by variable cs.s2 is now
the architecture of type PipeFilter, but the attachments and renamings of
the previous instance remain.

The third part begins in line 17. It creates a new client and connects it in
an incorrect way. A new variable c3 is created and a new instance of the type
Client is assigned to it. Next, the fresh variable is included in the architec-
ture in cs. Subsequently, the attachments between the instances in variables
cs.c2 and cs.s2 are removed. Then, the script creates two attachments be-
tween instances in variables cs.c3 and cs.c2. The resulting configuration vio-
lates the design principle underlying a Client-Server architecture by connecting
two clients. It will be referred to as cswrong in the sequel.

2.3 Archery-Structural-Constraint

Ruling out incorrect configurations, such as cswrong above, entails the need for
mechanisms to constrain what may count as valid instances of a pattern. Since
the variable cs in the script of Listing 2 is of type ClientServer, we could
add to the pattern specification a constraint ϕ to express that clients can only
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connect to servers and vice versa. We define ϕ for all attachments att in an
architecture of type ClientServer as follows:

client(from(att)) ⇔ server(to(att)) ∧ client(to(att)) ⇔ server(from(att))

where from (respectively, to) is a function that returns the variable with out (re-
spectively, in) port in att, and where client (respectively, server) is a predicate
valid whenever its argument is of type Client (respectively, Server).

By constraining patterns in this way, one can prevent the inclusion in a script
of operations which may generate an invalid configuration. Clearly, cswrong does
not satisfy the constraint above. In contrast, configuration csfirst does. Given a
configuration c and a constraint ϕ, the satisfaction problem can be formulated as
c |= ϕ, which boils down to a type checking assertion in the bigraphical semantics
for Archery. Such is the topic of the following sections.

3 Bigraphical Reactive Systems

A Bigraphical Reactive System (BRS) is an inhabitant of a particular category
upon which an algebra of bigraphs is defined. In the next sections we briefly
describe bigraphs, the corresponding algebra, and the (parametric) reaction rules
that make them dynamic. The reader is referred to [11] for a detailed account.

3.1 Bigraphs

A bigraph contains a set of nodes related vertically, through a parent-child rela-
tionship, and horizontally through a linking relationship graphically represented
by edges. The former gives rise to a forest structure called the place graph, in
which the roots of the trees are the nodes without parents. The latter defines a
hypergraph, called the link graph, where nodes are related by an edge, if each of
them has a port linked to an end of the edge. A bigraph is said to be concrete if
its nodes and edges have an identity, and abstract if they do not. Figure 2 shows
the structure of bigraphs following the anatomy style used in [11]. The abstract
bigraph depicted there has a forest with two trees and a hypergraph with two
edges.

Every node has an associated control (from a set K) which characterises the
kind of contribution it makes to the system’s encoding. The control also estab-
lishes the number of ports the node has through an arity function ar : K → N.
The tuple (K, ar) forms the bigraph basic signature. For the example depicted
in Figure 2 one has K = {L : 2, M : 3}.

New bigraphs can be built from existing ones by plugging. The interface of
a bigraph defines both which sort of bigraphs it may contain – the inner face
— and its own form that any potential containers must accept – the outer face.
Suppose we divide a bigraph into two parts. A division in a tree leaves a site
in one part, and a new root on the other. A division in an edge generates two
open links: one called the inner name and another called the outer name. Roots
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Fig. 2. Anatomy of bigraphs

and outer names form the outer face, while sites and inner names constitute the
bigraph inner face. Figure 2 shows the graphic conventions used to depict them.

The category in which a bigraph lives depends on whether it is abstract or
concrete as well as on the signature K over which it is defined. An abstract
bigraph becomes an arrow F : I → J in a category Bg(K). Its domain is a
tuple I = 〈n, X〉, in which n is a set of ordinals {0, 1, ..., n− 1} acting as indexes
for its sites, and X is the set of inner names. Similarly, the codomain is a tuple
J = 〈m, Y 〉 with m to index its roots, and Y the set of outer names. If the bigraph
is concrete, the space is only a precategory �Bg(K), because composition is not
always defined when nodes and edges have an explicit identity.

Undesired arrangements of controls can be ruled out by defining a sorting
Σ = (Θ,K, Φ). Controls in K are classified with respect to a set of sorts Θ =
{θ0, ..., θn}. Valid combinations of sorts are distinguished through rule Φ. Sorts
can be assigned to controls – place sorting, or to links according to the ports in
controls – link sorting. Abstract (respectively, concrete) bigraphs over a sorting
Σ inhabit a category Bg(Σ) (respectively, precategory �Bg(Σ)).

3.2 An Algebra of Bigraphs

All bigraphs can be built from elementary ones by applying three basic opera-
tions: composition, product and identities. The composition G ◦ F : I → K, of
two bigraphs F : I → J and G : J → K, yields a new bigraph by plugging F into
G. This operation is only defined when the inner face of G matches the outer
face of F . The set |F | of node and edge identifiers in F needs to be disjoint to |G|
if bigraphs are concrete. When G◦F is defined, we say that G is a context for F .
The product of two bigraphs Fi : 〈mi, Xi〉 → 〈ni, Yi〉 (i = 0, 1), is a new bigraph
F0⊗F1 : 〈m0 +m1, X0	X1〉 → 〈n0+n1, Y0	Y1〉, (with 	 standing for the union



322 A. Sanchez, L.S. Barbosa, and D. Riesco

of disjoint sets) in which F0 and F1 are placed side by side. |F0| ∩ |F1| = ∅ also
needs to hold for concrete bigraphs. The identity bigraph (arrow) of an interface
(object) I = 〈m, X〉 is the tuple 〈idm, idX〉.

Elementary bigraphs are divided into those which have only roots and sites
– placings (φ), and those which have only (outer and inner) names – linkings
(λ). Placings can be generated from three elementary forms: a root with no sites
1 : 0 → 1; a symmetry γ1,1 : 2 → 2 that exchanges the indexes of roots with
those of sites; and a join combinator join : 2 → 1 of two sites into one root. A
merge bigraph can be derived as mergen+1 = join ◦ (id1 ⊗ mergen). Similarly,
linkings can be generated from two elementary forms: the substitution y/X of
a set of names X with one name y; and the closure /x of a link x. The only
elementary bigraph that introduces nodes is K #»x : 1 → 〈1, { #»x}〉. Defined for each
control K : n (with n ports), it gives rise to a bigraph with a single node whose
n ports are bijectively linked to n names in #»x .

It is usual to resort to the following abbreviations: F ◦ G standing for (F ⊗
idI) ◦ G when there is no ambiguity; λ ◦ G standing for (idm ⊗ λ) ◦ (G ⊗ X ′)
when m and X are clear from the context, and assuming a linking λ : Y → Z
and a bigraph G : I → 〈m, X〉 with Y = X 	 X ′.

In practice, three derived operations defined on top of the basic ones and ele-
mentary bigraphs, are actually used: parallel product, nesting and merge prod-
uct. The parallel product of two bigraphs Fi : 〈mi, Xi〉 → 〈ni, Yi〉 (i = 0, 1) is
defined as F0 ‖ F1 : 〈m0 + m1, X0 ∪ X1〉 → 〈n0 + n1, Y0 ∪ Y1〉, a tensor product
with the peculiarity that that the link map may allow name sharing. The result
of nesting two bigraphs F : I → 〈m, X〉 and G : m → 〈n, Y 〉 that may share
names is a bigraph G.F : I → 〈n, X ∪ Y 〉 defined by (idX ‖ G) ◦ F . The merge
product of two bigraphs Gi (i = 0, 1), on the other hand, is merge ◦ (G0 ‖ G1),
i.e., the merge of their parallel product. Common abbreviations are as follows:
using y/X ◦ G instead of (y/X ‖ idI) ◦ G with I = 〈n, Z〉, when G has outer face
〈n, X 	Z〉; A for the bigraph A.1 when the control A has no children. In Figure
2 the bigraph depicted is also described by an expression in this algebra.

3.3 Reaction Rules

A parametric reaction rule is a tuple 〈R : m → J, R′ : m′ → J ′, η〉, where R and
R′ are bigraphs, called redex and reactum, respectively, and η is an instantiation
map. Map η assigns to each ordinal in m′ = {0, 1, .., i, .., m′ − 1} an ordinal
m = {0, 1, .., j, .., m − 1}. When the redex of a rule is matched by a bigraph F
this is replaced by the corresponding reactum. Sites in F are placed in the sites
of the reactum according to η. If bigraphs in F are named according to the sites
m in the redex in which they are placed, we obtain a sequence d0, d1, .., dj , .., dm.
Then, expression η(i) = j specifies that dj will be placed in the ith site of the
reactum.

Bigraphs with an associated set of reaction rules are defined over a dynamic
signature. This differs from the basic one in that to each control is assigned
one of the following values: atomic – for controls of nodes without children
(barren), active – for non-atomic controls that allow reactions to occur among
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their internal nodes, passive – for non-atomic and non-active controls. A reaction
only takes place if the bigraph matching the redex is in an active context, i.e.,
in a root, or in an active node with all ancestors active as well.

The abstract (respectively, concrete) BRS with sorting Σ and parametric
reaction rules R (�R) lives in a category (pre-category) Bg(Σ, R) (�Bg(Σ,�R)).

4 Bigraphical Modelling of Archery Specifications

This section introduces a bigraphical semantics for Archery through a translation
of Archery-Core and Archery-Script specifications into bigraphs in the categories
Bg(ΣArch−Core, RArch−Core) and Bg(ΣArch−Script, RArch−Script), respectively.
Since each constraint in Archery-Structural-Constraint generates a different cate-
gory, we limit ourselves to define Bg(Σϕ,RArch−Core) for the example constraint
ϕ given in Section 2.3. The general method is discussed in [12].

4.1 Archery-Core

Function T below translates an Archery-Core specification into a bigraph in
Bg(ΣArch−Core, RArch−Core). Its output is the parallel product of all bigraphs
corresponding to the translation of each pattern Pat, and the variable V ar con-
taining the main architecture. Table 2 lists the controls in ΣArch−Core and the
sort assignment to their ports; table 3 enumerates the rules in RArch−Core.

T (Spec) =
�

Pat+

T (Pat) ‖ T (V ar) (1)

T (Pat) = PatTY PEID.(
∣∣∣

Elem+

T (Elem)) (2)

T (Elem) = ElemTY PEID.(
∣∣∣

Port+

T (Port)) (3)

T (in ID) = NewInID, T (out ID) = NewOutID (4)
T (V ar) = T (V ar, 1) (5)
T (V ar, B) = NewVarID,TY PEID.(T (Inst, ID, B))
T (ElemInst, idV ar, B) = NewInstTY PEID,idV ar.(B) (6)
T (PatInst, idV ar, B) = NewInstTY PEID,idV ar.(

T (idV ar, V ar+, Att∗, Ren∗, B))
T (idV ar, V ar V ar∗, Att∗, Ren∗, B) = (7)

T (V ar, AddVaridV ar,ID.(T (idV ar, V ar∗, Att∗, Ren∗, B)))
T (idV ar, [ ], Att∗, Ren∗, B) = T (Att∗, Ren∗, B)
T (idIF idPF idIT idPT Att∗, Ren∗, B) = (8)

NewAtt idIF, idPF, idIT, idPT, uniqueId().(T (Att∗, Ren∗, B))
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T ([ ], Ren∗, B) = T (Ren∗, B)
T (idInst idPrt idNew Ren∗, B) = (9)

NewRenidInst, idPrt, idNew, uniqueid().(T (Ren∗, B))
T ([ ], B) = B

Table 2. Sorting for Archery-Core

Ctrl Arity Activeness Sorts Represented Item
Pat 1 passive u pattern
Elem 1 passive u element
NewIn 1 passive u in port within an element definition

In 1 atomic i in port within an instance
NewOut 1 passive u out port within an element definition

Out 1 atomic o out port within an instance
NewInst 2 passive uu instance creation and assignment

Inst 1 active u instance
NewVar 2 passive uu variable creation

Var 2 active uu variable
AddVar 2 passive uu transference of one variable into another
NewAtt 5 passive uuuuu attachment creation
From 2 atomic fu attachment end for out port
To 2 atomic tu attachment end for in port

NewRen 4 passive uuuu renaming creation
Int 2 passive rr renaming end for internal variable
Ext 2 passive rr renaming end for external instance

The result of applying function T to the ClientServer pattern in Listing
1 is captured in expression (10) and depicted in Figure 3a. A Pat node with
ClientServer as outer name together with the nesting of the merge product of
what results from applying clause (3) to each element. In the case of element
Client, clause (3) creates an Elem node with the element identifier as outer
name and the nesting of the merge product of respectively calling first and second
functions in clause (4) with both the in and out port of the element. The former
creates a NewIn node with rres as outer name, and the latter a node NewOut
with sreq as outer name.

PatClientServer .( ElemClient.( NewInrres | NewOutsreq ) |
ElemServer.( NewInrreq | NewOutsres )) (10)

The result of applying function T to the architecture between lines 25 and 35
is shown in Figure 3b and expression (11). The translation involves the rules
in Table 3 triggered by intermediate bigraphs generated by applying clauses
(5) to (9) of function T . The architecture is translated by clause (5) which,
in combination with (6) and Rules 1 and 3, creates a Var node with a nested
Inst. The former has s1, Server and the later PipeFilter, as outer names. This
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Table 3. Parametric reaction rules for Archery-Core

1 New variable NewVaryx.d0 � Varyx.1 ‖ d0

2 Create element
instance

Elemx.d0 ‖ Vary−.1 ‖ NewInstyx.d1 �

Elemx.d0 ‖ Vary−.(Instx.d0) ‖ d1

3 Create pattern
instance

Patx.d0 ‖ Vary−.1 ‖ NewInstyx .d1 �

Patx.d0 ‖ Vary−.Instx.1 ‖ d1

4 Create in port Var−−.(Inst−.(NewIny | d0) | d1) �

/y Var−−.(Inst−.(Iny | d0) | d1)

5 Create out port Var−−.(Inst−.(NewOuty | d0) | d1) �

/y Var−−.(Inst−.(Outy | d0) | d1)

6 Add instance Varx−.(Inst−.d0 | d1) ‖ Vary−.d2 ‖ AddVarxy.d3 �

Varx−.(Inst−.(Vary−.d2 | d0) | d1) ‖ d3

7 Add attachment Varf−.(Inst−.(Outo | d0) | d1) ‖
Vart−.(Inst−.(Ini | d2) | d3) ‖ NewAttfotia.d4 �

Varf−.(Inst−.(Outo | d0) | Fromoa | d1) ‖
Vart.(Inst−.(Ini | d2) | Toia | d3) ‖ d4

8 Add renaming out Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | d1) | d2) | d3) ‖
NewRenvpqr .d4 �

/q Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | Intpr | d1) |
Extqr | Outq | d2) | d3 ‖ d4

9 Add renaming in Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | d1) | d2) | d3) ‖
NewRenvpqr .d4 �

/q Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | Intpr | d1) |
Extqr | Outq | d2) | d3 ‖ d4

node nesting is used to represent variable-instance pairs in general. In this case
it corresponds to variable s1 of type Server containing a pattern instance of
type PipeFilter. In turn, the latter nests the merge product of the encoding
of each of the three variable-instance pairs of the architecture, obtained after
successive applications of clauses (5), (6) and (7) and rules 1, 2, and 6.

/rreq /sres Vars1,Server .( InstPipeFilter .(
/rec /send Varf1,F ilter .( InstFilter .( Inrec | Outsend ) |

Fromsend,att1 | Intrec,ren1) |
/accept /forward Varp1,P ipe.( InstPipe.( Inaccept | Outforward ) |

Toaccept,att1 | Fromforward,att2) |
/rec /send Varf2,F ilter .( InstFilter .( Inrec | Outsend ) |

Torec,att2 | Intsend,ren2) |
Inrreq | Extrreq,ren1 | Outsres | Extsres,ren2 ) ) (11)

For instance, the encoding of f1 has closures for outer names rec and send,
and a Var with a nested Inst, that in turn nests one In and one Out node, with,
respectively, rec and send names. The encoding of attachments is generated by
clause (8) and rule 7. In the case of the one between f1.send and p1.accept,
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Fig. 3. Bigraphs for the Client-Server example

it respectively includes in each Var, a From and a To node. The created nodes
share as outer name a unique identifier att1 that establishes a link between them.
Renamings are translated by clause (9) and rules 8 and 9. The encoding for the
renaming of f1.rec as rreq of s1 respectively includes an Int and an Ext
nodes inside their Var nodes representing f1 and s1. An In node is also created
inside the latter. These three nodes share outer names: Int and Ext have a unique
identifier ren1. Similarly, rec is the identifier of Int and (internal) In; rreq plays
the same role for Ext and (external) In.

The link sorts Θ = {o, f, t, i, r, u} and the formation rule Φ ensure valid con-
figurations representing attachments: they can only connect ports with opposite
polarity. Rule Φ restricts the structure as follows: a link with a point o (port or
inner name with sort o) can only have other points f or r; a link with a point i can
only have other points t or r; a link with a point u has sort u and no constraints.
The sorting assignment in Table 2 combined with Φ excludes the possibility of
a bigraph representing attachments between two ports with the same direction.
Figure 3b shows two edges (with respective sort assignments) satisfying Φ.
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4.2 Archery-Script

Let us consider now the translation of a script into a bigraph in Bg(ΣArch−Script,
RArch−Script). Both the sorting and the parametric reaction rules extend the
ones defined for Archery-Core. ΣArch−Script includes three more controls and
RArch−Script adds the parametric reaction rules in Table 4.

Table 4. Parametric reaction rules for Archery-Script

10 Remove
attachment

Varf−.(Inst−.(Outo | d0) | Fromoa | d1) ‖
Vart,−.(Inst−.(Ini | d2) | Toia | d3) ‖ RemAtta.d4 �

Varf−.(Inst−.(Outo | d0) | d1) ‖
Vart−.(Inst−.(Ini | d2) | d3) ‖ d4

11 Remove
renaming out

/q Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | Intpr | d1) |
Extqr | Outq | d2) | d3) ‖ RemRenr.d4 �

Var−−.(Inst−.(/p Varv−.(Inst−.(Outp | d0) | d1) | d2) | d3) ‖ d4

12 Remove
renaming in

/q Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | Intpr | d1) |
Extqr | Inq | d2) | d3) ‖ RemRenr.d4 �

Var−−.(Inst−.(/p Varv−.(Inst−.(Inp | d0) | d1) | d2) | d3) ‖ d4

13 Move
instance

Vard−.d0 ‖ Varo.(Inst−.(d1) | d2) ‖ MoveInstod .d3 �

Vard−.Inst−.(d1) ‖ Varo−.(d2) ‖ d3

Function T S below carries out the translation of a script t = [t1 t2 ... tn] by
processing the first operation and returning a combination of the result and a
recursive call applied to the remaining of the script sequence. Each operation ti
has as type one of the listed in Table 1. Clause (12) in T S definition translates
an import operation into the parallel product of the application of T to the
imported specification and then recurs over the rest of the script. Clauses (13)
to (19) translate t by nesting the translation of the tail of t in a node that results
from translating t1. The created node partially triggers one of the reaction rules
in RArch−Script.

We introduce now the (passive) controls and rules related to clauses (17), (18)
and (19) since they are not present in ΣArch−Core and RArch−Core. The first
clause creates a RemAtt node that represents a remove attachment operation
and has one port of sort u. The outer name of the port is a unique identifier
that matches the nodes involved in the encoding of the attachment. RemAtt par-
tially triggers rule 10, that removes such nodes, making the edge representing
the attachment to disappear. It also places the contents of RemAtt, matching pa-
rameter d4, in a parallel root. Clause (18) creates a RemRen node that represents
a remove renaming operation and has one port of sort u. In a similar way, the
outer name is a unique id that matches the nodes involved in the representation
of the renaming. RemRen triggers either rule 11 or 12, depending on whether the
renaming is respectively over a out or a in port. Both rules have the same effect:
to remove all nodes encoding the renaming and to place the contents of RemRen
in a parallel root. Finally, clause (19) creates a node MoveInst which represents
an instance transference operation. The control has two ports with sort u: one
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identifier vo representing the original container for the instance, and another
vd for the container to where it is moved. The node partially matches the re-
dex of rule 11. The reaction nests the contents of Varvo, −, matching Inst−.(d1),
into Varvd, −. The former contents of the destination is lost. The original vari-
able keeps the contents matching d2 (outside the instance), and the contents
matching d3 is placed in a parallel root.

T S([import(Spec); t]) = T (Spec) ‖ T S(t) (12)
T S([v : type; t]) = NewVarv, type.T S(t) (13)
T S([v = type(); t]) = NewInstv, type.T S(t) (14)
T S([addInst(a, v); t]) = AddVara, v.T S(t) (15)
T S([attach(vf.pf, vt.pt); t]) = NewAttvf, pf, vt, pt, uniqueId().T S(t) (16)
T S([deattach(vf.pf, vt.pt); t]) = RemAttid(vf, pf, vt, pt).T S(t) (17)
T S([remRen(v.q); t]) = RemRenid(v, q).T S(t) (18)
T S([move(vo, vd); t]) = MoveInstvo,vd.T S(t) (19)
T S([ ]) = 1 (20)

4.3 Archery-Structural-Constraint

The way constraints are dealt within the bigraphical framework discussed in
this paper is now illustrated through an example. Let us consider constraint ϕ
formulated in Section 2.3 to derive from it a place sorting Σϕ. Note that, in
general, this derivation can be automated [12]. Then, a specification that fulfils
ϕ is translated into a bigraph in Bg(Σϕ, RArch−Core). For this example, we
define Θ as {cli, ser, att, oth} and Φ. The sort of a Var−, type node depends on
type: cli if it is Client, and ser if it is Server. From and To nodes have sort
att, and other nodes have sort oth. Φ is as follows: a node att immediately in a
node cli can only have an edge to an att immediately in a node ser. Given two
nodes w and w′, w is in w′ if the former has w′ as ancestor in the parent-child
relationship.

It can now be verified whether a specification V ar of a ClientServer in-
stance preserves constraint ϕ, by checking if the type of bigraph T (V ar) is
Bg(Σϕ, RArch−Core). In Section 2.2 we described csfirst and cswrong as two con-
figurations. Figure 4 partially depicts the bigraphs which encode them, showing
only sorts att, cli and ser, as well as the nodes which participate in attachments.
Figure 4a contains a bigraph that partially encodes csfirst. It can be observed
that all four nodes att in cli (respectively, ser) have only edges to nodes att in
nodes ser (respectively, cli). Then, the bigraph is Bg(Σϕ, RArch−Core) and con-
figuration csfirst satisfies ϕ. In contrast, the encoding of cswrong shown in Figure
4b, does not fulfil formation rule Φ: the nodes att in node cli with outer name
c1, have edges with nodes att in another node cli. Therefore, the bigraph is not
an inhabitant of Bg(Σϕ, RArch−Core).
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Fig. 4. Bigraphs for two example configurations

5 Conclusions

This paper introduced Archery, a modelling language for software architectural
patterns rooted in the process algebra [10]. The language allows for the specifica-
tion of both the structural and behavioural dimensions of architectures, scripts
to (re)configure them, and constraints to ensure that concrete architectures con-
form to the design principles of the pattern they are instance of.

A second contribution of the paper was the development of a bigraphical
semantics for Archery. Due to space limitations, this was fully presented only for
Archery-Core, partially so for the scripting component and illustrated through
an example for constraints. Note that the biographical semantics makes possible
to reduce the verification of constraint satisfaction to a type checking problem.

We can distinguish two approaches in the design of languages that provide
support for both behavioural and structural dimensions in architectural design.
One is to extend a structure-based language with a behavioural model [6], and
the other is to build the architectural language on top of the behavioural model
[1], upgrading it with architectural constructs. Our work follows the latter ap-
proach but resorting to BRS as a foundation for the structural dimension. Ben-
efits of using the bigraphical theory include its solid categorical framework, its
independent treatment of locality and linking of computational agents, and its
role as a unifying theory for concurrency and mobile calculi. The work in [9]
also provides a bigraphical semantics to an architectural description language.
While our encoding uses a single signature to encode any pattern, theirs requires
different signatures for different patterns. There are also two main approaches
to the reconfiguration of pattern instances: one is to define a generic set of oper-
ations and encode patterns’ design principles in constraints that prevent illegal
configurations. Another one is to design a pattern-specific set of operations that
allows the correct (re)configuration of its instances [7]. Our work is aligned with
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the former. Future work includes the derivation process for sortings that encode
constraints. The process must ensure that the resulting sorting does not pre-
vent the automatic derivation of a LTS for a BRS. Research on decidability and
complexity of this sort of type-checking will also be pursued.
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Abstract. Early design and validation of service-oriented applications
is hardly feasible due to their distributed, dynamic, and heterogeneous
nature. In order to support the engineering of such applications and dis-
cover faults early, foundational theories, modeling notations and analysis
techniques for component-based development should be revisited. This
paper presents a formal framework for coordinated execution of service-
oriented applications based on the OSOA open standard Service Compo-
nent Architecture (SCA) for heterogeneous service assembly and on the
formal method Abstract State Machines (ASMs) for modeling notions of
service behavior, interactions, and orchestration in an abstract but exe-
cutable way. The proposed framework is exemplified through a Robotics
Task Coordination case study of the EU project BRICS.

1 Introduction

Service-oriented applications are playing so far an important role in several ap-
plication domains (e.g., information technology, health care, robotics, defense
and aerospace, to name a few) since they offer complex and flexible functionali-
ties in widely distributed environments by composing, possibly dynamically “on
demand”, different types of services. Web Services is the most notable example of
technology for implementing such components. On top of these service-oriented
components, business processes and workflows can be (re-)implemented as com-
position of services – service orchestration or service coordination1. Examples of
composition languages are WS-BPEL2 and XLANG3.

This emerging paradigm raises a bundle of problems, which did not exist in
traditional component-based design, where abstraction, encapsulation, and mod-
ularity were the main concerns. Early designing, prototyping, and testing of the
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functionality of such assembled service-oriented applications is hardly feasible
since services are discoverable, loosely-coupled, and heterogeneous (i.e. they dif-
fer in their implementation/middleware technology) components that can only
interact with others on compatible interfaces. Concurrency and coordination
aspects [4] that are already difficult to address in component-based system de-
sign (though extensively studied), are even more exacerbated in service-oriented
system design. Components encapsulate and hide to the rest of the system how
computations are ordered in sequential threads and how and when computations
alter the system state. The consequence of improper management of the order
and containment relationships or the total absence of an explicit coordination
model in a complex, concurrent system leads to deadlock and starvation [17].

In order to support the engineering of service-oriented applications, to dis-
cover faults early, and to improve the service quality (such as efficiency and
reliability), foundational theories and high-level formal notations and analysis
techniques traditionally used for component-based systems should be revisited
and integrated with emerging service development technologies. In the Robotics
context, in particular, as the Internet is leveraged to connect humans to robots
and robots to the physical world, there is a strong requirement to investigate
service-oriented engineering approaches and knowledge representations to effec-
tively distribute the capabilities offered by robots: service-oriented robots [9].

This paper proposes a formal framework for coordinated execution of hetero-
geneous service-oriented applications. It relies on the SCA-ASM language [30]
that combines the OSOA open standard model Service Component Architecture
(SCA) [28] for heterogeneous service assembly in a technology agnostic way,
with the formal method Abstract State Machines (ASMs) [12] able to model no-
tions of service behavior, interactions, and orchestration [11,7,10] in an abstract
but executable way. A designer may use the proposed framework to provide
abstract implementations in SCA-ASM of (i) mock components (possibly not
yet implemented in code or available as off-the-shelf) or of (ii) core components
containing the main service composition or process that coordinates the exe-
cution of other components (possibly implemented using different technologies)
providing the real computation. He/she can then validate the behavior of the
overall assembled application, by configuring these SCA-ASM models in place
within an SCA-compliant runtime platform as implementation of (mock or core)
components, and then execute them together with the other (local or remote)
components implementations according to the chosen SCA assembly.

We, in particular, show the usage of our framework through a Robotics Task
Coordination scenario from a case study [26] of the EU project BRICS [13]. In
Robotics, service-oriented components embed the control logic of the application.
They cooperate with each other locally or remotely through a communication
network to achieve a common goal and compete for the use of shared resources,
such as a robot sensors and actuators, the robot functionality, and the processing
and communication resources. Cooperation and competition are forms of inter-
actions among concurrent activities. So, in this domain, applications are very
workflow-oriented and require developing coordination models explicitly [15].
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ASMs provide a general method to combine specifications on any desired level
of abstraction, ground modeling (requirements capture) techniques and stepwise
refinement to executable code providing the basis for experimental validation
and mathematical verification [12]. ASM rigorousness, expressiveness, and ex-
ecutability allow for the definition and analysis of complex structured services
interaction protocols in a formal way but without overkill. Moreover, the ASM
design method is supported by several tools [21,5], useful for validation and
verification of ASM-based models of services.

This paper is organized as follows. Section 2 provides background on SCA and
ASMs. Section 3 presents the Robotics Task Coordination case study that will
be used throughout the paper. Section 4 describes the proposed framework for
coordinated execution of service-oriented applications. Section 5 describes some
related works, while Section 6 reports our lesson learned in developing the case
study. Finally, Section 7 concludes the paper and sketches some future work.

2 Background on SCA and ASMs

Service Component Architecture. SCA is an XML-based metadata model
that describes the relationships and the deployment of services independently
from SOA platforms and middleware programming APIs (as Java, C++, Spring,
PHP, BPEL, Web services, etc.). SCA is supported by a graphical notation (a
metamodel-based language developed with the Eclipse-EMF) and runtime en-
vironments (like Apache Tuscany and FRAscaTI) that enable to create service
components, assemble them into a composite application, provide an implemen-
tation for them, and then run/debug the resulting composite application.

Fig. 1 shows an SCA composite (or SCA assembly) as a collection of SCA
components. Following the principles of SOA, loosely coupled service components
are used as atomic units or building blocks to build an application.

An SCA component is a piece of software that has been configured to provide
its business functions (operations) for interaction with the outside world. This
interaction is accomplished through: services that are externally visible functions
provided by the component; references (functions required by the component)

Fig. 1. An SCA composite (adapted from the SCA Assembly Model V1.00 spec)
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wired to services provided by other components; properties allowing for the con-
figuration of a component implementation with externally set data values; and
bindings that specify access mechanisms used by services and references accord-
ing to some technology/protocol (e.g. WSDL binding to consume/expose web
services, JMS binding to receive/send Java Message Service, etc.). Services and
references are typed by interfaces. An interface describes a set of related oper-
ations (or business functions) which as a whole make up the service offered or
required by a component. The provider may respond to the requester client of
an operation invocation with zero or more messages. These messages may be
returned synchronously or asynchronously.

Assemblies of service components deployed together are composite compo-
nents consisting of: properties, services, sub-components, required services as
references, and wires connecting sub-components.

Abstract State Machines. ASMs are an extension of FSMs [12] where un-
structured control states are replaced by states comprising arbitrary complex
data. The states of an ASM are multi-sorted first-order structures, i.e. domains
of objects with functions and predicates (boolean functions) defined on them.
The transition relation is specified by rules describing how functions change
from one state to the next. There is a limited but powerful set of ASM rule
constructors, but the basic transition rule has the form of guarded update “if
Condition then Updates” where Updates is a set of function updates of the
form f(t1, . . . , tn) := t which are simultaneously executed4 when Condition is
true.

Dynamic functions are those changing as a consequence of agent actions (or
updates). They are classified as: monitored (only read, as events provided by the
environment), controlled (read and write), shared (read and write by an agent
and by the environment or by another agent) and out (only write) functions.

Distributed computation can be modeled by means of multi-agent ASMs :
multiple agents interact in parallel in a synchronous/asynchronous way. Each
agent’s behavior is specified by a basic ASM. The predefined variable (or 0-ary
function) self can occur in the model and is interpreted by each agent as itself.

Besides ASMs comes with a rigorous mathematical foundation [12], ASMs
can be read as pseudocode on arbitrary data structures, and can be defined as
the tuple (header, body, main rule, initialization): header contains the signature5

(i.e. domain, function and predicate declarations); body consists of domain and
function definitions, state invariants declarations, and transition rules; main rule
represents the starting point of the machine program (i.e. it calls all the other
ASM transition rules defined in the body); initialization defines initial values for
domains and functions declared in the signature.

4 f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To fire this
rule in a state Si, i ≥ 0, evaluate all terms t1, . . . , tn, t at Si and update the function
f to t on parameters t1, . . . , tn. This produces another state Si+1 which differs from
Si only in the new interpretation of the function f .

5 Import and export clauses can be also specified for modularization.
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Executing an ASM M means executing its main rule starting from a specified
initial state. A computation M is a finite or infinite sequence S0, S1, . . . , Sn, . . .
of states of M , where S0 is an initial state and each Sn+1 is obtained from Sn
by firing simultaneously all of the transition rules which are enabled in Sn.

A lightweight notion of module is also supported. An ASM module is an ASM
(header, body) without a main rule, without a characterization of the set of initial
states, and the body may have no rule declarations.

An open framework, the ASMETA tool set [5], based on the Eclipse/EMF
platform and developed around the ASM Metamodel, is also available for editing,
exchanging, simulating, testing, and model checking models. AsmetaL is the
textual notation to write ASM models within the ASMETA tool-set.

The SCA-ASM modeling language. By adopting a suitable subset of the
SCA standard for modeling service-oriented components assemblies and exploit-
ing the notion of distributed multi-agent ASMs, the SCA-ASM modeling lan-
guage [30] complements the SCA component model with the ASM model of
computation to provide ASM-based formal and executable description of the
services internal behavior, services orchestration and interactions. According to
this implementation type, a service-oriented component is an ASM endowed
with (at least) one agent (a business partner or role instance) able to be engaged
in conversational interactions with other agents by providing and requiring ser-
vices to/from other service-oriented components’ agents. The service behaviors
encapsulated in an SCA-ASM component are captured by ASM transition rules.

The ASM rule constructors and predefined ASM rules (i.e. named ASM rules
made available as model library) used as basic SCA-ASM behavioral primitives
are recalled in Table 1 by separating them according to the separation of con-
cerns computation, communication and coordination. In particular, communica-
tion primitives provide both synchronous and asynchronous interaction styles
(corresponding, respectively, to the request-response and one-way interaction
patterns of the SCA standard). Communication relies on a dynamic domainMes-
sage that represents message instances managed by an abstract message-passing
mechanism: components communicate over wires according to the semantics of
the communication commands reported above and a message encapsulates in-
formation about the partner link and the referenced service name and data
transferred. We abstract, therefore, from the SCA notion of binding6.

Fault/compensation handling is also supported (see [30]), but their SCA-ASM
constructs are not reported here since they are not used in the case study.

3 Running Case Study: A Robotics Tasks Coordination

We propose a simple scenario where a laser scanner offers its scan service to
different clients, which compete for the use of this shared resource. The scenario
is defined by three participants:

6 Indeed, we adopt the default SCA binding (binding.sca) for message delivering, i.e.
the SOAP/HTTP or the Java method invocations (via a Java proxy) depending if
the invoked services are remote or local, respectively.
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Table 1. SCA-ASM rule constructors for computation, coordination, communication

computation and coordination

Skip rule skip do nothing

Update rule f(t1, . . . , tn) := t update the value of f at t1, . . . , tn to t

Call rule R[x1, . . . , xn] call rule R with parameters x1, . . . , xn

Let rule let x = t in R assign the value of t to x and then execute
R

Conditional it φ then R1 else R2 if φ is true, then execute rule R1,
rule endif otherwise R2

Iterate rule while φ do R execute rule R until φ is true

Seq rule seq R1 . . . Rn endseq rules R1 . . .Rn are executed in sequence
without exposing intermediate updates

Parallel rule par R1 . . . Rn endpar rules R1 . . .Rn are executed in parallel

Forall rule forall x with φ do R(x) forall x satisfying φ execute R

Choose rule choose x with φ do R(x) choose an x satisfying φ and then execute
R

Split rule forall n ∈ N do R(n) split N times the execution of R

Spawn rule spawn child with R create a child agent with program R

communication

Send rule wsend[lnk,R,snd ] send data snd to lnk in reference to rule R
(no blocking, no acknowledgment)

Receive rule wreceive[lnk,R,rcv ] receive data rcv from lnk in reference to
R (blocks until data are received, no ack)

SendReceive wsendreceive send data snd to lnk in reference to R
rule [lnk,R,snd,rcv ] waits for data rcv to be sent back (no ack)

Reply rule wreplay[lnk,R,snd ] returns data snd to lnk, as response of R
request received from lnk (no ack)

– A Laser Scanner, which executes scans of the environment on demand and
writes the acquired values on a data buffer. A scan is a sequence of measures
executed in a single task (for example 360 values, one for each degree). The Laser
Scanner allows its client to request a scan from an initial angle (start) to a finale
one (end) defined as the number of steps between start and end.
– A 3D Perception application, which requests the measures to the Laser Scanner
in order to generate a set of meshes that describe the surface of the objects
present in the environment.
– An Obstacle Avoidance application, which requests the measures to the Laser
Scanner in order to detect the obstacles along the robot path.

The proposed scenario is subjected to the following requirements:
1. The laser scan activity requires a certain amount of time to be completed.
This time is not fixed, and depends on the number of measures requested by
the client. During this time the client could have the need of executing other
activities and so it does not have to wait for the scan termination.
2. A client could request a single scan or multiple scans (for example 4 scans
composed each one by 20 measures).
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3. While the Laser Scanner is executing a scan requested by a client A, a client
B could require another scan. These requests have to be managed according to
one of the following policies:

– Policy 1: Discard the scan request.
– Policy 2: Queue the scan request.

Moreover, it is assumed that different clients could simultaneously access to the
services offered by the Laser Scanner and that client requests are asynchronous,
i.e. a client requests a scan to the Laser Scanner and then it continues to execute
its work. In this case the interactions between the clients and the Laser Scanner
have to be managed by a third entity: a coordinator. This coordinator, Sensor
Coordinator, is in charge of forwarding the clients requests to the Laser Scanner
and so it has to manage the concurrent access of the clients.

High-level Solution. In order to keep the example simple to expose, we assume
in this paper7 to address only the request management policy 1, i.e. if a request
is received while the laser is already scanning the new request will be discarded.
With this assumption, the Sensor Coordinator behavior can be captured, as first
high-level model, by the finite state machine shown in Fig. 2.

Essentially, the Sensor Coordina-

Fig. 2. Sensor Coordinator FSM

tor receives a request of one or n scans
from a client. According to the fol-
lowed policy (see above) the new re-
quest could be discarded, or queued
or forwarded (the normal case) to the
Laser Scanner. When the request is
forwarded, the Laser Scanner starts
the scanning work and sends a noti-
fication (Ack) to the Sensor Coordi-
nator in order to inform it that the

scan has started. Depending on the number of scan requested, the Sensor Co-
ordinator will forward to the Laser Scanner one or more single scans. In case of
multiple scans, the Sensor Coordinator will forward n single scan requests to the
Laser Scanner (to this purpose, the count variable remScans, initially set to n,
is used and decremented at each forward). The Laser Scanner then writes each
measure on the Measures Buffer until the final angle is reached, and it finally
sends a notification (Done) to the Sensor Coordinator in order to inform it that
the scan is finished. At this point, if there are not remaining scans to execute
(remScans is equal to 0) it sends a notification to the client in order to inform
it that the new measures are available on the Buffer. The client then can access
the Measures Buffer to read the measures.

SCA Modeling. The application is heterogeneous: by the icons attached to
components, the Sensor Coordinator is implemented in ASM, while the other
two components in Java. The clients are considered external entities interacting

7 Details on different variants of this scenario can be found in [26].
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with the Sensor Coordinator and with the Measures Buffer through the services
offered (promoted) by the composite. More precisely, a client could request a
scan by means of the service SensorCoordinating and could access the Measures
Buffer by means of the service MeasuresBufferReading.

Fig. 3. The Sensor Composite

The definition of the service interfaces is reported in the listing 1.1 using the
Java interface construct as IDL (Interface Definition Language). Note that, the
interface EventObserving is implemented by the Sensor Coordinator to manage
the notification received from the Laser Scanner8.

The ASM (abstract) implementation of the SCA Sensor coordinator’s behav-
ior will be provided later in Sect. 4.1. For the sake of space, the Java implemen-
tation code of the other components is not reported.

Listing 1.1. Service interfaces definition in Java

public interface MeasuresBufferReading { public LaserScan getScan(); }
public interface MeasuresBufferWriting { public void writeMeasure(LaserMeasure measure); }
public interface LaserScanning {

/∗∗@param from: point from which the laser starts the scan
∗ @param numOfSteps: number of steps of the scan ∗/
@OneWay public void scan(int from, int numOfSteps); }

public interface SensorCoordinating {
/∗∗@param from: point from which the laser starts the scan
∗ @param numOfSteps: number of steps of the scan
∗ @param numOfScans: number of scans required ∗/
@OneWay public void request(int from, int numOfSteps, int numOfScans); }

public interface EventObserving {
/∗∗@param event: it describe the type of event.
∗ For the laser scanner valid values are Ack and Done ∗/
public void update(String event); }

8 So far it is used as a service to resemble a callback (not yet supported in SCA-ASM).
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4 Coordinated Execution Framework

The proposed framework relies on the SCA-ASM language originally presented
in [30] as a formal and abstract component implementation type to cover com-
putation, communication, and coordination aspects during early execution (or
simulation) of an SCA assembly of an heterogeneous service-oriented applica-
tion. ASMs can be adopted to provide abstract implementations (or prototypes)
of mock components, or to implement “core” components that contain the main
service composition or coordination process that guides the application’s execu-
tion. The framework relies also on other SCA component implementation types
(such as Java, Spring, C++, etc., see [28]) to include components providing the
real computation services used by the core component(s) and these components
can themselves require services provided by other local or remote components.

The framework was developed by integrating the Eclipse-based SCA Compos-
ite Designer, the SCA runtime platform Tuscany [33], and the simulator AsmetaS
of the ASM toolset ASMETA [5]. This environment9 allows us to graphically
model, compose, analyze, deploy, and execute heterogeneous service-oriented ap-
plications in a technologically agnostic way. As described and exemplified below,
an heterogeneous SCA assembly (or composition) of service-oriented components
(implemented in ASM or in another implementation language) can be graphi-
cally produced using the SCA Composite Designer and also stored or exchanged
in terms of an XML-based configuration file. This last file is then used by the
SCA runtime to instantiate and execute the system by instrumenting AsmetaS
and other execution infrastructures in an unique environment (see Fig. 5).

4.1 Service Component Implementation and Configuration

Through the considered case study, we here show the use of the ASM implemen-
tation type (i.e. of the SCA-ASM language) for SCA components.

Service Component Implementation. The following listings report the ASM
(abstract) implementation of the Sensor Coordinator component (request man-
agement policy 1). To this purpose, the AsmetaL textual notation to write ASM
models within the ASMETA tool-set is used. Two grammatical conventions must
be recalled: a variable identifier starts with $; a rule identifier begins with “r ”.

Listing 1.2 shows the header of the ASM. The import clauses include the ASM
modules of the provided service interfaces (SensorCoordinating and EventOb-
serving) and required interfaces (the LaserScanning interface) of the component,
annotated, respectively, with @Provided and @Required. The @MainService

annotation on the import clause for the SensorCoordinating interface denotes the
main service (read: main component’s agent) that is responsible for initializing
the component’s state (in the predefined r init rule). The signature of the
machine contains declarations for: references (shared functions annotated with
@Reference) as abstract access endpoints to services, back references to requester

9 https://asmeta.svn.sourceforge.net/svnroot/asmeta/code/experimental/SCAASM
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agents (shared functions annotated with @Backref ), and declarations of ASM
domains and functions used by the component for internal computation only.
In particular, the variable (a controlled 0-ary function) ctl state stores the
current control state of the ASM.

Listing 1.2. ASM header of the Sensor Coordinator component

module SensorCoordinator
import STDL/StandardLibrary
import STDL/CommonBehavior
//@MainService
import SensorCoordinating
//@Provided
import EventObserving
//@Required
import LaserScanning
export ∗
signature:
//@Reference
shared laserScanning : Agent −> LaserScanning
//@Backref
shared clientSensorCoordinating : Agent −> Agent
//@Backref
shared clientEventObserving : Agent −> Agent
enum domain State = {IDLE | BUSY | SCANNING}
//Internal properties
controlled ctl state : Agent −> State //stores the current control state
controlled paramScan : Agent −> Prod(Integer,Integer,Integer) //arguments of an scan request
controlled from : Agent −> Integer //stores the start position of an scan request
controlled steps : Agent −> Integer //stores the number of measures of an scan request
controlled remScans : Agent −> Integer //stores the number of scans requested by a client
controlled event : Agent −> String //stores the argument of an update request.

The body of the ASM (see Listing 1.3) includes definitions of the services
(transition rules annotated with @Service) r request and r update, the main
transition rule r SensorCoordinator (that takes by convention the same name
of the component), the transition rule with the predefined name r init that is
invoked to initially set up the internal component state (i.e. values of controlled
functions), and another utility rule named r acceptRequest.

The service r request is in charge of requesting a scan to the laser scanner.
When the rule is called, it executes in parallel the following actions: sets the
state of the ASM to BUSY, stores the arguments of the requested scan, invokes
(by a send action) the service scan provided by the service Laser Scanning.

The service r update is in charge of receiving the notification from the laser
scanner and updating the control state by resembling the FSM shown in Fig. 2.

The rule r acceptRequest advances the control state of the machine properly
according to the incoming service request (the input parameter $r). In case of
a new scan request (r request), this is removed from the requests queue (by
invoking r wreceive) and the input is stored in the variable paramScan. A
direct invocation of the service r request then follows if the input is defined. In
case, instead, of a notification (r update) from the laser scanner, the request is
removed from the requests queue (by r wreceive) and in case the input (stored
in the variable event) is defined the service r update is invoked. Note that all
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the scan requests received while the scanner is already scanning are discarded
(what the policy 1 defines).

The rule r SensorCoordinator is the program of the main component’s agent
and is invoked when a client requests a service offered by the Sensor Coordinator.
The rule r acceptRequest is then invoked to handle the request depending on
the specific service required.

Listing 1.3. ASM body of the Sensor Coordinator component

definitions:
//State invariant: Number of scans required by a client must be non negative
invariant inv neverNeg over remScans(): not(remScans < 0)
//@Service
rule r request($a in Agent,$from in Integer,$steps in Integer, $nScans in Integer)=

par
ctl state($a) := BUSY
from($a) := $from
steps($a) := $steps
remScans($a) := $nScans − 1
r wsend[laserScanning($a),”r scan(Agent,Integer,Integer)”,($from,$steps)]

endpar

//@Service
rule r update($a in Agent, $event in String) =
if (ctl state($a)=BUSY and $event=”Ack”) then ctl state($a) := SCANNING
else if (ctl state($a)=SCANNING and $event=”Done” and remScans($a)>0)

then par //continue with next scan
ctl state($a) := BUSY
remScans($a) := remScans($a)−1
r wsend[laserScanning($a),”r scan(Agent,Integer,Integer)”,(from($a),steps($a))] endpar

else if (ctl state($a)=SCANNING and $event=”Done” and remScans($a)=0)
then ctl state($a) := IDLE endif endif endif

rule r acceptRequest ($a in Agent, $r in String) =
if (ctl state($a)=IDLE and $r=”r request(Agent,Integer,Integer,Integer)”)
then seq //first scan

r wreceive[clientSensorCoordinating($a),”r request(Agent,Integer,Integer,Integer)”,paramScan
($a)]

if (isDef(paramScan($a))) then
r request[$a,first(paramScan($a)),second(paramScan($a)),third(paramScan($a))] endif

endseq
else if (not ctl state($a)=IDLE and $r=”r update(Agent,String)”)

then seq
r wreceive[clientEventObserving($a),”r update(Agent,String)”,event($a)]
if (isDef(event($a))) then r update[self,event($a)] endif

endseq endif endif

//Main agent’s program
rule r SensorCoordinator =

let($r = nextRequest(self)) //Select the next request(if any)
in if isDef($r) then r acceptRequest[self,$r] endif endlet //Handle the request $r

rule r init($a in SensorCoordinating) = //for the startup of the component
par

status($a) := READY
ctl state($a) := IDLE
from($a) := 0
steps($a) := 0
remScans($a) := 0

endpar
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Finally, the rule r init is called during initialization of the component’s state.
This rule simply sets the status of the agent to READY, the control state to
IDLE and the scan parameters to 0.

The ASM definitions of the sensor coordinator’s provided interfaces are re-
ported in the listing 1.4 using the AsmetaL notation. They are ASM modules
containing only declarations of business agent types (subdomains of the prede-
fined ASM domain Agent), and of business functions (ASM out functions).

Service Component Configuration. Component metadata, describing which
services are required and provided by a component, and information that allow
the SCA runtime to locate (locally or remotely) the component implementation,
must be provided in the SCA XML composite file. Listing 1.5 shows a fragment
of the SCA XML composite file regarding the metadata of the component Sensor
Coordinator that is implemented (by the tag implementation.asm) in ASM.

Listing 1.4. ASM definition of the Sensor Coordinating interface

//@Remotable
module SensorCoordinating
import STDL/StandardLibrary
import STDL/CommonBehavior
export ∗
signature:
// the domain defines the type of this agent
domain SensorCoordinating subsetof Agent
// out is a function that implements the provided service
out request: Prod(Agent,Integer,Integer,Integer) −> Rule
definitions:
//@Remotable
module EventObserving
import STDL/StandardLibrary
import STDL/CommonBehavior
export ∗
signature:
domain EventObserving subsetof Agent
out update: Prod(Agent,String) −> Rule
definitions:

Listing 1.5. XML configuration file

<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<sca:composite xmlns:sca=”http://www.osoa.org/xmlns/sca/1.0” xmlns:asm=”http://asm”
name=”Sensor” targetNamespace=”http://eclipse.org/CaseStudy/src/Sensor”>

...
<sca:component name=”SensorCoordinator”>
<asm:implementation.asm location=”SensorCoordinator.asm”/>
<sca:reference name=”laserScanning”/>
<sca:service name=”SensorCoordinating”>
<asm:interface.asm location=”SensorCoordinating.asm”/>

</sca:service>
</sca:component>
...

</sca:composite>
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4.2 In-place Simulation of SCA-ASM Models

SCA-ASM components use annotations to denote services, references, properties,
etc. With this information, as better described below, an SCA runtime platform
(Tuscany in our case) can create a composition (an application) by tracking ser-
vice references (i.e. required services) at runtime and injecting required services
into a component when they become available.

Fig. 4. Instantiating and invoking ASM implementation instances within Tuscany

In-place ASM Simulation Mechanism. Fig. 4 illustrates how the ASM im-
plementation provider10 sets up the environment (the container) within Tus-
cany for instantiating and handle incoming/outgoing service requests to/from
an ASM component implementation instance (like component A in the figure)
by instrumenting the ASM simulator AsmetaS. Currently, the implementation
scope of an SCA-ASM component is composite, i.e. a single component instance
– a single main ASM instance (see the main ASM for component A in Fig. 4)
– is created within AsmetaS for all service calls of the component11. This main
ASM is automatically created during the setting up of the connections and it is
responsible for instantiating the component agent and related resources, and for
listening for service requests incoming from the protocol layer and forward them
to the component’agent instance (see component A in Fig. 4). Executing an ASM
component implementation means executing its main ASM. For each reference,
another entity (i.e. another ASM module) is automatically created (and instan-
tiated as ASM agent within the main ASM of the component) as “proxy” for a
remote component (see the ASM proxy for component B in Fig. 4) for making
an outbound service call from the component. Using a terminology adopted in
the Java Remote Method Invocation (RMI) API, this proxy ASM plays the role

10 The Tuscany core delegates the start/stop of component implementation instances
and related resources, and the service/reference invocations, to specific implementa-
tion providers that typically respond to these life-cycle events.

11 We postpone as future work the implementation of the other two SCA implementa-
tion scopes, stateless (to create a new component instance on each service call) and
conversation (to create a component instance for each conversation).
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of stub to forward a service invocation (and their associated arguments) to an
external component’s agent, and to send back (through the ASM rule r replay)
the result (if any) to the invoker component’s agent (the agent of the component
A in Fig. 4). The main ASM, instead, plays the role of skeleton, i.e. a proxy
for a remote entity that runs on the provider and forwards (through the ASM
rule r sendreceive) client’s remote service requests (and their associated ar-
guments) to the appropriate component’s agent (usually the main agent of the
component), and then the result (if any) of the invoked service is returned to the
client component’agent (via stubs). For the sake of space, the ASM implemen-
tation of the stub and skeleton (as generated by the runtime) for the component
Sensor Coordinator is not reported.

When an ASM implementation component is instantiated, the Tuscany run-
time also creates a value for each (if any) externally settable property (i.e. ASM
monitored functions, or shared functions when promoted as a composite prop-
erty, annotated with @Property). Such values or proxies are then injected into
the component implementation instance. A data binding mechanism also guar-
antees a matching between ASM data types and Java data types, including
structured data, since we assume the Java interface as IDL for SCA interfaces.

Fig. 5 shows a simulation snapshot of the considered case study where the
Sensor Coordinator changes state from IDLE to BUSY (see also the rule r request

in the Listing 1.3) after receiving a first scan request from a client.

Fig. 5. Simulation of the Sensor Composite application

Other ASM Execution Features. Useful features are currently supported
by the AsmetaS simulator when running within the SCA Tuscany platform.
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State invariant checker : AsmetaS implements an invariant checker, which at
the end of each transition execution checks if the invariants (if any) expressed
over the state of the currently executed SCA-ASM component are satisfied or
not. If an invariant is not satisfied, AsmetaS throws an InvalidInvariant-

Exception, which keeps track of the violated invariant. Listing 1.3 shows an
example of state invariant (inv neverNeg) for the Sensor Coordinator. It states
that the number of scans required by a client must be non negative.

Consistent Updates checking: The simulator also includes a checker for reveal-
ing inconsistent updates. In case of inconsistent updates an UpdateClashExcep-

tion is thrown by reporting the location which is being inconsistently updated
and the two different values which are assigned to that location. The user, ana-
lyzing this error, can detect the fault in the ASM component implementation.

Logging: The user can inspect how AsmetaS performs some tasks (e.g. terms
evaluation, building of updates set, variables substitution) by a log4j12 file.

Other ASM Functional Analysis Features. In addition to simulation, the
ASMETA toolset [5] supports other model validation techniques useful for SCA-
ASM models. These validation techniques include: scenario-based validation by
the ASM validator AsmetaV, when the user builds scenarios describing the be-
havior of a system by looking at the observable interactions between the system
and its environment in specific situations; model-based testing by the ASMETA
ATGT tool, when the specification is used as oracle to compute test cases for
a given critical behavior of the system at the same level of the specification.
Executable test cases must be then derived from the abstract ones and executed
at code level to guarantee conformance between model and code. Another tech-
nique for model validation is model inspection and review by the AsmetaMA
tool, which is able to identify defects early in the system development, by de-
termining if a model satisfies some quality properties (called meta-properties).
Property verification is also supported by the AsmetaSMV tool, a model checker
for ASM. Formal verification should be performed later, once one has a sufficient
confidence about model correctness, and it has to be intended as the mathemat-
ical proof of system properties, which can be performed by hand or by the aid
of model checkers (which are usable when the variable ranges are finite) or of
theorem provers (which require strong user skills to drive the proof).

5 Related Work

Some works devoted to provide software developers with formal methods and
techniques tailored to the service domain exist (see, e.g., the survey in [8] for the
service composition problem), mostly developed within the EU projects SEN-
SORIA [31] and S-Cube [27]. Several process calculi for the specification of SOA
systems have been designed (see, e.g., [22,24,16]). They provide linguistic primi-
tives supported by mathematical semantics, and verification techniques for qual-
itative and quantitative properties [31]. Still within the SENSORIA project, a
declarative modeling language for service-oriented systems, named SRML [32],

12 http://logging.apache.org/
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has been developed. SRML supports qualitative and quantitative analysis tech-
niques using the UMC model checker[1] and the PEPA stochastic analyzer13.

Compared to the formal notations mentioned above, the ASM method has
the advantage of being executable. On the formalization of the SCA assembly
model, some previous works, like [18,19] to name a few, exist. However, they
do not rely on a practical and executable formal method like ASMs. In [25], an
analysis tool,Wombat, for SCA applications is presented; this approach is similar
to our as the tool is used for simulation and verification tasks by transforming
SCA modules into composed Petri nets. There is not proven evidence, however,
that this methodology scales effectively to large systems.

An abstract service-oriented component model, named Kmelia, is formally
defined in [6,3] and is supported by a prototype tool (COSTO). In the Kmelia
model, services are used as composition units and service behavior is modeled
by a labeled transition system. Our proposal is similar to the Kmelia approach;
however, we have the advantage of having integrated our SCA-ASM component
model and the ASM-related tools with an SCA runtime platform for a more
practical use and an easier adoption by developers.

Within the ASM community, the ASM method has been used for the purpose
of formalizing business process notations and middleware technologies related
to web services, such as [10,11,20,2] to name a few. Some of these previous
formalization efforts, as explained in [30], are at the basis of our work.

Concerning the Robotics domain, in [23] a new approach for coordinating the
behavior of Orocos RTT (Open Robot Control Software Real Time Toolkit) [29]
components is proposed. Orocos RTT is a C++ framework that allows the design
and the deployment of component-based robotics control systems. The proposed
approach defines the behavior of single components and of entire systems by
means of a variant of the UML hierarchical state-charts, which is called reduced
FSM (rFSM). The main advantages of the rFSM are their hierarchical com-
posability and their applicability in hard-real time applications. Furthermore,
despite they are currently used only with Orocos, rFSM are totally framework
independent. The main differences between ASMs and rFSMs are that rFSMs do
not allow the execution of parallel agent actions and parallel states; moreover,
they do not have the universality and broad application of ASMs, and do not
offer the same flexibility and tools provided by ASMs.

6 Lesson Learned

We have shown how formal high-level ASM models of service-oriented compo-
nents can be assembled together with real components through the SCA frame-
work and how we manage the coordination of the overall resulting application
by means of the ASM formalism for prototyping and simulation purposes. We
experienced that the use of two different frameworks for modeling two different
concerns (SCA and its various implementation types for computation, and ASM
for coordination) improves the level of flexibility and reusability.

13 http://www.dcs.ed.ac.uk/pepa/
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We have shown this by means of a use case in the Robotics field, where flex-
ibility and reusability are very challenging issues [13,14,15]. In general, robotic
software applications require and provide a number of different functionalities,
which are typically encapsulated in components that cooperate and compete in
order to control the behavior of a robot. Cooperation and competition are forms
of interaction among concurrent activities and so they have to be coordinated.
In order to achieve a good level of reusability and flexibility the coordination and
the computation (how the component provides the service) need to be managed
separately. So by our experience, the service paradigm seems promising also in
the Robotics domain. In particular, we appreciated the possibility to change
the coordination policies (see [26]) without modifying the implementation of
the services provided by components merely dedicated to computation (such as
sophisticated algorithms), thus improving the level of flexibility and reusability.

7 Conclusion and Future Directions

We presented a practical framework for early service design and prototyping
that combines the standard SCA and the ASM formal support to assemble
service-oriented components as well as intra- and inter- service behavior. The
framework is supported by a tool based on the SCA runtime Tuscany and the
toolset ASMETA for model execution and functional analysis. The effectiveness
of our framework was experimented through various case studies of different
complexity and heterogeneity. These include examples taken from the SCA Tus-
cany distribution, the case study of the EU project BRICS [13] presented here,
and also a scenario of the Finance case study of the EU project SENSORIA [31].

We plan to support more useful SCA concepts, such as the SCA callback in-
terface for bidirectional services and an event-based style of interaction. We want
also to enrich the SCA-ASM language with interaction and workflow patterns
based on the BPMN specification. We also plan to support pre/post-conditions
defined on services for contract correctness checking in component assemblies.

On the functional analysis side, we want to integrate further ASMETA anal-
ysis techniques with the SCA runtime Tuscany.
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Abstract. This paper presents a semi-automated method that helps iteratively
write use-cases in natural language and verify consistency of behavior encoded
within them. In particular, this is beneficial when the use-cases are created si-
multaneously by multiple developers. The proposed method allows verifying the
consistency of textual use-case specification by employing annotations in use-
case steps that are transformed into temporal logic formulae and verified within
a formal behavior model. A supporting tool for plain English use-case analysis
is currently being enhanced by integrating the verification algorithm proposed in
the paper.
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1 Introduction

In typical software development practice, majority of the requirement documents cre-
ated in the early phase of a project, are written in natural language [10]. Such a speci-
fication is therefore inherently imprecise, ambiguous, and a potential source of contra-
dictions. An important issue is that in a large software project, the specification phase
involves collaboration among a number of team members1 who express their personal
views in natural language. In such an environment, there is a high chance of conflicts
among individual parts of the specification.

Use-cases are traditionally used in requirement specification because they can easily
capture the behavior of a system under discussion (SuD) from the perspective of differ-
ent actors. Usually, SuD may be equalled to a component where a use-case describes a
part of the interaction between the component and its environment.

1 For example, the Agile software development methodology proposes teams of 5-9 people.
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Since the inclusion of use-cases into the UML standard [14], their use has been
greatly extended, making them a mandatory requirement for any object-oriented soft-
ware development project. As stressed by Cockburn [3] and Larman [9], the main asset
of use-cases is that behavior is encoded in natural language and thus accessible to a
wide range of stakeholders of a project.

Although an isolated use-case can clearly describe a simple scenario, the overall
behavior of combined use-cases may become quite blurry. In particular, the problem
can easily appear in specifications where use-cases are composed using include and
precede relationships [3].

The intended behavior expressed by use-cases contains implicit temporal dependen-
cies that are likely violated during the iterative development. Because late detection of
such errors leads to significantly higher costs of a project [2], writers of the specifica-
tion greatly benefit from tools that help them keep the textual specification consistent
and that warn them about potential violations immediately during writing.

Fig. 1. Example use-cases with aborts (textual form)

Motivation example: Figure 1 shows a pair of the dependent use-cases U1 and U2

specified as a sequence of English sentences (U1 includes U2). The final text of these
use-cases was created in 3 iterations. In the first iteration, an initial version was created
with just a simple success scenario. In the second iteration, the use-case U2 was refined
by introducing an optional branch (variation) aborting U2. However, such specification
is not consistent: U1 does not consider a possible abort in U2. In more detail, there is a
possible trace leading to usage of an unavailable item when U2 has been aborted.

Problem statement. Such an inconsistency may be detected only when both use-
cases are put into context of one another using the include relationship. This makes
such inconsistencies difficult to notice, especially when specification is large with many
use-cases and include relationships.
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So it would be desirable to propose a method that, in an automatized way, detects
such an inconsistency and issues a warning. In the example, as a reaction to such a
warning, U1 could be manually extended by adding an abort-handling branch to affect
the set of traces that involve branching transitions. Verification would now succeed
because the traces involving the abort step in U2 would be limited to the abort-handling
branch.

Goal. Thus, the goal of this paper is to present a method that allows an early de-
tection of violation of temporal dependencies of use-case steps. The proposed method
(Use-Case Temporal Verification – UCTV) allows automated derivation of a formal be-
havior model (LTS) from use-cases in plain English. Moreover, by adding annotations
to use-case steps, it is possible to verify temporal properties in an automatized way in
order to identify inconsistencies within the original specification. The detected errors
are presented to the user as erroneous traces. For automated transformation of the use-
cases into the formal model and verification of temporal dependencies, we designed a
software tool (REPROTOOL), which stems from the PROCASOR tool [12,4,15] de-
signed earlier in our group.

Other approaches exist that aim at extracting behavior models from text, for example
authors of [18] describe how to generate UML Activity Diagrams from use-cases. The
method uses restriction rules [19] imposed on the use-case step sentences. In [7], a
method for deriving message sequence charts from textual scenarios is described.

Several languages and formalisms for behavior modeling of software systems have
been proposed. They range from very generic ones (e.g., process algebras [6,13]), to
those specific to components (e.g., Darwin [11], Interface automata [1], or Threaded
Behavior Protocols [8]).

To achieve the goal, the paper is structured as follows: In Section 2 we overview
the main concepts in UML use-cases as the terminology base used further in the paper.
Section 3 describes how users interact with an application that implements our method.
In Section 4 we explain the algorithm in detail, while Section 6 concludes the paper.

2 Use-Cases in Natural Language and UML

The prevalent practice of capturing use-cases is to use textual notation and natural
language. Futher, UML Use-Case Diagrams provide means for establishing relations
among use-cases.

Although there are different styles of writing use-cases, for our purposes we consider
the format depicted in Figure 1 and 4. This format is taken from the book [3] as it is
widely accepted.

With regard to the structure of a use-case, the main success scenario of a use-case
consists of several steps that contribute to achieving the use-case goal. Alternative sce-
narios can be expressed using variations and extensions. The difference between exten-
sions and variations is that a variation replaces the step to which it is attached, while
an extension provides optional branching from its parent step. For illustration, consider
the use-case U1 in Figure 4. There is a variation 2a attached to the step 2 which means
that 2 and 2a are mutually exclusive branches. On the other hand, the use-case U2 con-
tains an extension 1b which means that the step 1 is always executed before the optional
1b branch.
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2.1 Actions in Use-Case Steps

It has been advised by practitioners, e.g. in [3], to use simple sentences when writ-
ing use-cases. A sentence should encode a single action, which is either (a) interaction
between an actor and SuD, (b) internal action within SuD, or (c) special action (see
below). As to the structure of a sentence, in English it should conform to the SVDPI
pattern (Subject, Verb, Direct-Object, Preposition, and Indirect-Object); this is very im-
portant for an automated processing. The following special actions are introduced in
the UCTV method:

Goto action: The trace advances by another step (indicated by this action) within the
same use-case. This action is typically used to express looping. Example: Goto step
1. (See Figure 4 use-case U2 step 2a2).

Include action: Similar to calling a procedure, the trace advances in the included use-
case, when it is finished, the include action is concluded. Example: Include use-case
“Generate city” (e.g. use-case U2, step 1 in Figure 4).

Abort action: The use-case execution is aborted. However, if the aborted use-case U3

was included into another use-case U2, the trace immediately advances in U2. Ex-
ample: Use-case aborts (e.g. use-case U3, step 2a1 in Figure 4).

2.2 Relations in the UML Use-Case Diagrams

UML provides means for expressing dependencies among use-cases using stereotyped
relations in the UML Use-Case Diagrams. The UCTV method takes into account the
«includes» (via the include special action) and «precedes» UML relationships:

U1 «includes» U2: The include relationship allows inserting the behavior from one
use-case into another. It minimizes duplication and improves comprehension of
the whole specification when used carefully. The use of include means that at the
given point in use-case A, the trace advances over the steps in B and when B is
finished, it returns back to A [9].

U1 «precedes» U2: Rosenberg and Stephens in the book [16] define the precedence
relationship as: The use-case U1 must take place in its entirety before another use-
case U2 even begins, i.e. there is temporal precedence in which U1 must occur
before U2. For example a Login use-case must be completed before Checkout is
begun.
We use the Prec precedence relation formed by the pairs of use-cases, in which
first use-case precedes the second one.

3 User’s Perspective

Before we present UCTV in a formal way, let us describe use-case design from the
user’s perspective. Figure 2 contains a screenshot from our application REPROTOOL
that the user employs when writing a use-case specification2.

2 REPROTOOL is based on Eclipse and uses Eclipse Modeling Framework (EMF) as a tool for
data representation. The application is still under development and not yet completely finished,
see http://code.google.com/a/eclipselabs.org/p/reprotool/

http://code.google.com/a/eclipselabs.org/p/reprotool/
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Fig. 2. Screenshot from the REPROTOOL application

In the first phase, the user creates several use-cases with steps written as sentences
in plain English. Each sentence (step) is automatically parsed and transformed into
a linguistic parse tree. Depending on the sentence structure, the type of the action is
derived automatically or set manually by the user. This way, REPROTOOL derives
LTS from the use-cases and renders a graphical representation of the LTS as depicted
in Figure 2.

In the next phase, the user can assign annotations to individual steps to define prece-
dence relations determining temporal dependencies among use-cases and their steps.
These will be verified in the next phase.

When looking at the motivation example, the temporal dependency between U1 and
U2 can be captured using a pair of annotations – use:item and create:item (for illustra-
tion see Figure 3 providing annotated use-cases and capturing their creation in itera-
tions). The semantics of them is that in each trace containing a step with the use:item
annotation, any other step with a create:item annotation has to precede the former (pair-
wise).

At some point, during the iterative process of writing use-cases, the user initiates the
verification procedure performed within the REPROTOOL application.

If a verification error is detected, the model-checker shows a trace that violates the
temporal properties determined by annotations. After the verification is finished, the
user can adjust the textual specification to fix the reported error by:

– Adding precedence relationships among use-cases, which fix the missing create
annotation that the preceded use-case might have provided.

– Adding an abort-handling branch as seen in the motivation example (Fig. 3).
– Adjusting annotations of steps or rewriting/reorganizing them.

In the motivation example, after introducing the abort branch (variation 2a of U2), the
model-checker detected an error trace (Figure 3, Iteration #2). The user fixed the error
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Fig. 3. Verification of dependent use-cases with aborts using temporal annotations

by adding an extension 1a into U1 (Figure 3, Iteration #3 and Figure 1, "Necessary
correction").

In addition to the create-use annotation pair, we have also described the open-close
annotation pair in the text below. These annotations cover the majority of dependencies
among use-cases that we encountered in our survey [17]. However, since the UCTV
method internally uses LTL formulae to capture desired temporal properties, our ap-
proach is also applicable for other annotations, the semantics of which can be described
by LTL or other temporal logic formlae.

4 Verification of Use-Cases

In this section, we describe all the annotations and the REPROTOOL verification algo-
rithm in detail.

4.1 Annotations in Use-case Steps

There are two types of annotations: (a) annotations expressing temporal dependencies
(technically translated to LTL), and (b) annotations constraining the set of traces to be
inspected by the model-checker.

(a) Annotations expressing temporal dependencies (“temporal annotations”) :
The create-use annotation pair: In all traces it must hold that for any step annotated
by use:x there must previously appear a step annotated by create:x (as above, x is a
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user-chosen identifier). That is, if x is used, it must be created before. Next, it must hold
that for each step annotated by create:x, there must be a trace reaching this step and
then eventually reaching another step annotated by use:x. In other words, if x is created
then it must be somewhere used in the future 3. An example is shown in Figure 4.
The open-close annotation pair: For any trace that with a step annotated by open:x,
there must eventually appear a step annotated by close:x. Obviously, another open:x
step is not allowed in between. In a similar vein, close:x cannot appear without a pre-
ceding open:x.

(b) Annotations constraining traces :
The trace-on annotation pair: These annotations serve to control application of use-
case variations.

Technically, the trace:x annotation marks with a flag x all the traces going through
the step where this annotation appears. This flag may be later tested and used as a guard
in branching via the annotation on:x. That is, a trace that goes through a step marked
with trace:x annotation and reaches this branching state must continue using the step
marked with an on:x annotation and a trace that does not go through a step marked with
a trace:x annotation and reaches this branching state must continue using any other step
going from this state.

Typically, this annotation pair is used when detecting unhandled aborts in use-cases.
Figures 3 and 4 show examples.

4.2 The Verification Strategy

Verification of textual use-cases is done in two phases. First the precedences and in-
cludes are statically checked for presence of cyclic dependencies. Second, a dedicated
type of LTS (use-case automaton) is built from the textual use-cases and further model-
checking is employed to verify temporal dependencies expressed by annotations.

Before the actual verification starts, the textual use-cases are parsed using the method
described in [4] into an internal form where the sequence of steps, variations and exten-
sions of steps, actions in use-case steps, and annotations of use-case steps are specifi-
cally represented. After the internal form has been created, the verification proceeds as
described below.

Static Check of Precedences and Includes. In this phase, precedence and include
use-case relationships are checked statically. The cyclic dependencies among use-cases
represented in the internal form are detected by creating an oriented precedence and
include graphs.

Model-Checking of Temporal Dependencies. In this phase, the internal form is used
to build LTS-like structure (based on use-case automata). The annotations expressing
temporal dependencies are converted into an LTL formula. Finally, a modified LTL

3 Strictly speaking, creating something without its usage is not an error. Nevertheless, since it is
not a good practice, we consider such a trace to be erroneous.
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model-checking algorithm (Use Case Model Checking – UCMC)4 is applied to verify
the LTL properties. This phase comprises three steps:

Fig. 4. Fragment of a use-case specification of a web portal providing information about restau-
rants. For clarity reasons, the annotations (prefixed by the "#" character) are visible only in the
textual specification and hidden in the corresponding label transition system (use-case automaton
with includes).

– A use-case automaton with includes (UCAI) is built for each use-case. Basically,
UCAI is an LTS with transitions corresponding to steps of a use-case. Specifically,
it contains include transitions, which correspond to include steps in the use-case.
Figure 4 shows an example of three textual use-cases and the corresponding UCAIs.

– By creating resolved use-case automata (RUCAs), includes in UCAIs are inlined.
RUCA is obtained from UCAI by replacing each of the include transitions by in-
lining the reference automaton. See Figure 5a for an example of resolution of the
automaton U2 from Figure 4.
Moreover the annotations constraining the traces are converted into guards (con-
trolled by dedicated variables) on the automata transitions (Figure 5c shows an
automaton with guards).

– The annotations expressing temporal dependencies are converted to LTL for-
mulae5. Figure 5b shows the automaton with annotations on transitions.

4 The model-checking algorithm cannot be used in its standard form since we consider also
finite traces and LTS with guards – discussed in detail in Section 5.5

5 In this paper, we only consider LTL formulae corresponding to the create-use and open-close
annotation pairs.
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– A set of automata which captures overall behavior of the system (OB) is cre-
ated. Because the precedes relations define only a partial ordering of use-case ap-
plications, the overall behavior OB is determined by a set of all possible sequences
of the use-case applications.
Technically, each such a sequence is represented by a RUCA created by a con-
catenations of the RUCAs representing the individual members of the sequence.
Figure 5d shows an example of concatenation of the use-case automata U1 and U2

from Figure 4.
– In the final step, the UCMC algorithm is used to verify each RUCA in OB against

the extracted LTL formulae.

Fig. 5. Visual representation of the construction of the verifying LTS: (a) Included LTS is inlined
to the base LTS, (b)+(c) annotations are initialized either as LTL variables or control variables
with guards, (d) all final states of the preceded LTS are connected to the initial state of the base
LTS. Note: These LTS automata correspond to use-cases from the Figure 4

5 Theoretical Background

In this section, we provide a formal definition of the key abstraction used by the UCTV
method, specifically this includes UCAI, RUCA and a proof of the correctness of the
UCMC algorithm.

5.1 Use-case Automaton with Includes

We define use-case automaton with includes (UCAI) and the way it corresponds to a
textual use-case. The correspondence is straightforward – steps of a textual use-case
correspond to transitions of a use-case automaton with includes.

Definition 1 (Use-case automaton with includes–UCAI).
A use-case automaton with includes (UCAI) P = 〈VP , V init

P , V abort
P , V succ

P , AP , τP 〉
consists of the following elements:
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– VP is a set of states.
– V init

P ⊆ VP is a set of initial states. We require that V init
P contains at most one

state. If V init
P = ∅, then P is called empty.

– V abort
P ⊆ VP is a set of abort states.

– V succ
P ⊆ VP is a set of succeeded states. We require that V succ

P contains at most
one state.

– AP = AIP ∪AincludeP ∪{ε} is a set of all actions. AIP , AincludeP are mutually disjoint
sets of internal and include actions, ε is the empty action.

– τP ⊆ VP ×AP × VP is a set of transitions.

Definition 2 (Annotation function). Let AP be a set of actions of UCAI P and N a
set of annotations. Annotation function Af : τP �→ 2N maps a transition of P to a set
of annotations.

Note that that two instances of an annotation with an identical name – i.e. two on : x
annotations annotating different steps of use-case – are not considered as equal. Hence,
there is no annotation that annotates two different steps.

Definition 3 (Correspondence of a use-case to UCAI). Let U be a use-case, let P =
〈VP , V init

P , V abort
P , V succ

P , AP , τP 〉 be UCAI. We say that P corresponds to U if for
each step sti of U there is the corresponding transition ti = (si, ai, s

′
i) ∈ τP , si, s

′
i ∈

VP , ai ∈ AP of P such that:
If sti is:

– an include step then ai ∈ AincludeP , if sti is an abort or a goto step ai = ε, otherwise
ai ∈ AIP .

VP , V init
P , V abort

P , V succ
P , and τP are defined as:

– is a transition such that there exists another transition stj �= sti with the same
target state, then either stj or sti is a goto step, the last step of a variation, or the
last step of an extension,

– not the first step of the main success scenario, the first step of a variation, or the
first step of an extension, let sti−1 ∈ U be a step preceding the step sti and
(si−1, ai−1, s

′
i−1) ∈ τP a corresponding transition of P . It holds that s′i−1 = si,

– the first step of the main success scenario of U then si ∈ V init
P ,

– the last step of the main success scenario of U then s′i ∈ V succ
P ,

– the first step of a variation of the step stj ∈ U and let (sj , aj , s′j) ∈ τP be the
transition of P corresponding to the step stj , then it holds that si = sj ,

– the first step of an extension of the step stj ∈ U and let (sj , aj , s′j) ∈ τP be the
transition of P corresponding to the step stj and stj+1 ∈ U be the step following
the step stj and (sj+1, aj+1, s

′
j+1) ∈ τP corresponding transition, it holds that

si = s′j ,
– the last step of a variation or an extension and it is an abort step, then ai = ε and

s′i ∈ V abort,
– the last step of a variation or an extension and it is not an abort or goto step,

then let stj be the step that sti extends or variates and (sj , aj, s
′
j) ∈ τP be the

corresponding transition, it holds that s′i = s′j ,
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– a goto step and stj ∈ U is the target step and let (sj , aj , s′j) be the transition of P
corresponding to the step stj , it holds that s′i = sj .

The annotation function Af is defined as: if sti is annotated by a set of annotations N ,
then Af(ti) = N .

Example 1. Figure 4 shows three textual use-cases U1, U2, and U3 and the correspond-
ing UCAIs.

5.2 Resolution of the Include Relationship

We define the operation of resolution of includes – a transformation of UCAI to RUCA.
This operation replaces include transitions with transitions of the included automata.

Definition 4 (Resolved use-case automaton–RUCA). Resolved use-case automaton
(RUCA) is UCAI that does not contain any include action.

Definition 5 (Resolution of includes). Let P be UCAI. Let I be the set of
use-case automata included in automaton P . The operation of resolution of in-
cludes (Res) transforms P = 〈VP , V init

P , V abort
P , V succ

P , AP , τP 〉 to RUCA Q =
〈VQ, V init

Q , V abort
Q , V succ

Q , AQ, τQ〉 in the following way:

– VQ = VP
⋃
U∈I VRes(U),

– V init
Q = V init

P ,
– V abort

Q = V abort
P ,

– V succ
Q = V succ

P ,
– AQ = AP \AincludeP

⋃
U∈I ARes(U),

– τQ = τP ∪ τA \ {τI}, τI = (s, inc, s′) ∈ τP , inc ∈ AincP , s, s′ ∈ VP .

τA is defined as follows. Let ti = (si, inc, s
′
i) ∈ τP , si, s

′
i ∈ VP be a transition of

the automaton P that contains an include action, let Qinc be UCAI associated with
the include action inc and R = Res(Qinc) be the corresponding resolved use-case
automaton. For every such a transition ti, τA contains:

– (si, ε, s0), s0 ∈ V init
R

– (sfinal, ε, s
′
i) sfinal ∈ V succ

R ∪ V abort
R

Example 2. Figure 5a shows an example of UCAI U2 from Figure 4 after the operation
of resolution of includes.

5.3 Resolution of Annotations

In textual use-cases, additional behavioral restrictions and consistence constraints are
captured using annotations. Additional behavioral restrictions are captured using trace-
on annotation pair and additional consistency properties are captured by create-use and
open-close annotation pairs. We describe how these annotations define valuation of
variables in transitions of the automaton, guard functions, and LTL formulae. Guard
functions restrict sequences of transitions that the automaton captures and LTL formu-
lae describe consistency requirements on the automaton.



Verifying Temporal Properties of Use-Cases in Natural Language 361

Definition 6 (Valuation of states of RUCA). Let P be RUCA and X a set of variables.
Valuation of transitions of P over the set of variables X is a function ValP : τP �→ 2X

that maps each transition of P to a set of variables. We denote each variable v ∈
ValP (s) as satisfied in a transition s ∈ VP .

The set of variables XP is called variables of P if ∀x ∈ XP : ∃v ∈ VP such that
x ∈ ValP (v). By Xs

P = XP \Val(s) we denote the set of variables that are not satisfied
in the transition s.

Definition 7 (Guard functions). Let P be RUCA and XP a set of variables of P .
Guard functions Guard+ : τp �→ (2XP ) and Guard− : τp �→ (2XP ) map each transi-
tion of P to a set of variables.

The concept of guard functions is important for defining enabled transitions (Defini-
tion 13); how a guard function is constructed expresses the Definition 8.

Definition 8 (Correspondence of annotations to valuation of a use-case automa-
ton). Let P be a RUCA, N the set of all annotations of the transitions of P . We define
Val (valuation function), Guard+ and Guard− (guard functions) as follows:

If the annotation an ∈ N attached to a transition t = {si, a, sj} is of the form:

– trace:id, there is a variable cid such that cid ∈ Val(t),
– on:id, there is a variable cid ∈ Guard+(t) and for all transitions tu =

(si, ak, sn), sn �= sj , it holds that cid ∈ Guard−(tu),
– create:id, there is a variable crid such that crid ∈ Val(t),
– use:id, there is a variable uid such that uid ∈ Val(t),
– open:id, there is a variable oid such that oid ∈ Val(t),
– close:id, there is a variable clid such that clid ∈ Val(t).

Consequently, for ti ∈ τp is Guard+(ti) ∩Guard−(ti) = ∅.

Example 3. Figure 5b shows RUCA with annotated transitions and Figure 5c shows
this RUCA with valuations of transitions and guards. The transition 1a is annotated
by a set of annotations {on : abort1} and the other transition i1 from the input state
of the transition 1a has no on : id annotation. Hence, values of guard functions on
these transitions are defined as follows: Guard+(1a) = {cabort1}, Guard−(1a) = {},
Guard+(i1) = {}, and Guard−(i1) = {cabort1}.

Definition 9 (Consistency properties). Let P be RUCA, N the set of all annotations of
the states of P . The set of consistency properties LTLP associated with the automaton
P is defined as follows:

If N contains:

– open:id or close:id then LTLP contains the LTL formulae depicted in Figure 6a,
– create:id or open:id then LTLP contains the LTL formulae depicted in Figure 6b.

Example 4. For RUCA P in Figure 5c we define the following LTL formulae: LTLP =
{G(crcity → X(G(¬crcity))),¬ucityUcrcity ,¬G(crcity → G(¬ucity)), G(crzoom →
X(G(¬crzoom))),¬uzoom U crzoom,¬G(crzoom → G(¬uzoom))}.
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Fig. 6. LTL formulae generated from temporal annotations

5.4 Resolution of Precedence Relationship

Now, we define how automata capturing behavior of individual use-cases are serialized
according to the precedence relationship.

Definition 10 (Concatenated RUCA). Let s = (R1, R2, ..., Rk) be an sequence of
RUCAs. Concatenated RUCA Q corresponding to s is defined as follows:

– VQ =
⋃
R∈s VR

– V init
Q = V init

R1

– V abort
Q = V abort

Rk

– V succ
Q = V succ

Rk

– AQ =
⋃
R∈sAR

– τQ =
⋃
R∈s τR ∪ τA

τA is defined as follows. Let (Ri, Ri+1) be a pair of subsequent resolved use-case au-
tomata in the sequence s. Let initi+1 be the initial state of the automaton Ri+1. For
every such a pair and every final state finali ∈ V succ

i ∪ V abort
i of the automaton Ri,

there are transitions (succi, ε, initi+1) and (finali, ε, f inali) ∈ τA.

Obviously, this definition stems from classical automata concatenation; the key en-
hancement here is the introduction of the transitions of the form (finali, ε, f inali),
which corresponds to the semantics of Prec. That is, Ui must occur before Ui+1, hence
all traces that reach Ui+1 must go through Ui. However, it is not required that Ui+1

is executed after Ui. There exist infinite traces that go through Ui and loop using the
transition (finali, ε, f inali) thus never reaching Ui+1.

Example 5. Figure 5d shows an example of concatenation of RUCA U1 from Figure 4
and Res(U2) from Figure 5a. The initial state of the resulting automaton is the initial
state of U1, abort and succeeded states of the resulting automaton are the same as abort
and succeeded states of the automaton Res(U2). The two automata are connected using
transitions p1 and p2 going from the final states of the automaton U1 to the initial state
of the automaton Res(U2). Then, there are looping transitions s1 and s2 going from
each final state of U1 back to this state. All these transitions contain the ε action.
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Definition 11 (Precedence Relation). Precedence relation defined on a set of RUCA
U Prec : U × U is an antisymmetric and irreflexive relation, whose transitive clo-
sure Prec� is antisymmetric and irreflexive as well. We say that UR

i precedes UR
j if

(UR
i , UR

j ) ∈ Prec. We say that UR
k must be executed before UR

l if (UR
k , UR

l ) ∈ Prec�.

Definition 12 (Overall-behavior–OB). Let U be a set of RUCAs, let Prec be a prece-
dence relation, and let S be the set of all permutations of RUCAs from U ordered ac-
cording to Prec. The overall-behavior OB set with respect to U and Prec is the set of
concatenated RUCAs corresponding to members of S.

Example 6. There are two permutations of use-cases in use-case specification in Fig-
ure 4 ordered according to specified precedences. That is, (U1, U2, U3) and (U1, U3, U2).
Hence, the set OB for this specification consists of two automata.

It should be noted that our approach does not tackle the problem of parallel execution of
use-case steps. Instead, it focuses on verification of temporal properties of all use-case
sequences which could be defined by the precede relation (these sequences are captured
in the OB set).

5.5 Verification Algorithm

In this section, we define the verification algorithm and related concepts.

Definition 13 (Enabled transition). Let P be RUCA. Let tr = v0, a0, v1, a1, ..., vn
be an alternating sequence of states and actions such that ti = (vi, ai, vi+1) ∈ τP .
The transition ti is enabled on tr if all the transitions tj , j < i are enabled, for all
v+ ∈ Guard+(ti) there exists tk, k ≤ i such that v+ ∈ Val(tk), and there is no
tl, l ≤ i such that for some v− ∈ Guard−(ti) it holds v− ∈ Val(tl). If the transition is
not enabled on tr, we say that it is disabled on tr.

Example 7. Consider the use-case automaton in Figure 5d and the sequence of transi-
tions (p1, i1, 1′, 2a′, 2a1′, f2, 1b, 1b1). For the transition p1 both guard functions return
the empty set and this transition is trivially enabled on sq1. Next, Guard+(i1) = {}
and Guard−(i1) = {cabort1} and there is no predecessor tj of a transition i1 in the
sequence sq1 such that cabort1 ∈ Val(tj). Hence, the transition i1 is enabled on sq1.
Values of guard functions on transition 1′ are the same and therefore this transition is
also enabled on sq1. Transitions 2a′, 2a1′, and f2 are trivially enabled on sq1. Tran-
sition 1b is enabled on sq1 because Guard+(1b) = {cabort2} and Guard−(1b) = {}
and for the transition 2a1′ it holds Val(2a1′) = {cabort2}.

Now, consider a sequence of transitions (p1, 1a, 1a1). Similar to the previous exam-
ple, the transition p1 is trivially enabled on sq2. Guard+(1a) = {cabort1} and there is
no predecessor sj of the transition 1a in the sequence sq2 for that cabort1 ∈ Val(sj).
Hence, a transition 1a is disabled on sq2. Both guard functions for a transition 1a1 re-
turn the empty set, however, because a transition 1a, which precedes the transition 1a1,
is disabled on sq2; the transition 1a1 is also disabled on sq2.

Definition 14 (Execution fragment). An execution fragment of RUCA P is an alter-
nating sequence of states and actions v0, a0, v1, a1, ... such that all transitions in the
sequence ti = (vi, ai, vi+1) ∈ τP are enabled on P .
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Definition 15 (Execution trace). An execution trace of RUCA P is an execution frag-
ment of use-case automaton P that starts in the initial state of P and is infinite or end
in some final state vfinal ∈ V succ

C ∪ V abort
C of the automaton P .

Definition 16 (Consistent use-case). A resolved use-case automaton P is consistent if
for all execution traces of the automaton P all formulae from LTLP are satisfied.

Verification Algorithm. The verification algorithm takes a set U of use-cases (already
parsed textual use-cases encoded in an internal form). and a precedence relation Prec
describing the precedence relationship among use-cases in U as input. First, a static
check of precedences and includes is done. If a cyclic dependency is found, the algo-
rithm stops and returns not consistent.

Second, model-checking of temporal properties (using UCMC algorithm) is per-
formed: UCAI is built for each use-case in U (Definition 3); the set of RUCAs is cre-
ated by resolving all UCAIs (Definition 5), then valuation of variables, guard functions
(Definition 8), and consistency properties (Definition 9) are generated from annotations
of RUCAs, the set OB is built (Definition 12) and then each RUCA in OB is model
checked for consistency with generated LTL formulae (Definition 16). If all such au-
tomata are consistent, the algorithm returns consistent. If there is an inconsistent RUCA
in OB, there is an execution trace for which the LTL formula corresponding to a con-
sistency property of the RUCA does not hold. In this case, the algorithm returns not
consistent and provides further details comprising (1) the steps of use-cases from U
that correspond to this execution trace, and (2) the ordering of use-cases corresponding
to the inconsistent RUCA.

RUCA defines formal behavior of use-cases. We are able to model RUCA using the
SMV system and then use the SMV system to check all the generated LTL formulae. In
the future work, we consider to let a user to specify an arbitrary temporal dependencies
by defining new annotations and mapping of these annotations to valuation of variables
and LTL formulae.

Theorem 1 (Correctness of the verification algorithm). Let U be the set of textual
use-cases, Gprec be the graph describing a precedence relationship, and Gincl be the
graph describing an include relationship. Assume that Gprec and Gincl do not contain
cycles. Then, the algorithm returns consistent iff all the sequences of the use-cases
corresponding to the specification consisting of U and complying with Gprec does not
contain any incorrectly used create, use, open or close annotation.

Proof. The proof is based on the fact that the standard algorithm for checking LTL
formula in a Kripke structure returns consistent iff the Kripke structure satisfies the
given LTL formula.

Because RUCA (an element of the OB set) corresponds to a Kripke structure, it is
sufficient to show that the semantics of annotated textual specification corresponds to
semantics of the generated OB set and LTL formulae.
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This can be done in three steps proving that:

1. traces6 of transitions captured by the elements of OB (RUCAs) exactly correspond
to the sequences of steps captured by U with Gprec when the annotations are not
considered,

2. execution traces of RUCAs in OB correspond to the sequences of steps captured by
U with Gprec when the trace-on annotations are considered.

3. based on (1) and (2), from the Definition 9, it follows that LTL formulae gener-
ated from the create-use and open-close annotations correspond to semantics of
these annotations. Specifically from this fact and the step (2), it follows that the se-
quences of steps captured by U and Gprec with correctly used annotations exactly
correspond to the execution traces where all the generated LTL formulae are sat-
isfied. Since there are no cyclic include dependencies and the number of variables
is finite, the number of traces to explore is also finite and the algorithm eventually
terminates. And thus the algorithm is correct.

Let us prove now the step (1). From the Definition 3 and the Definition 5 it follows
that there is a sequence of steps that a use-case u ∈ U describes iff there is a trace
in RUCA corresponding to u. From the Definition 10 it follows that the semantics of
concatenation of RUCA corresponds to the semantics of Gprec. From the Definition 12
it follows that for each possible order of executions of the use-cases in U determined
by Gprec there is a RUCA in OB such that it consists of the RUCAs concatenated in
compliance with Gprec.

Finally, let us prove the step (2). From the Definition 3 it follows that the annotations
of steps of a use-case u ∈ U correspond to the annotations of traces of the RUCA
corresponding to u. The trace-on annotations restrict the sequences of steps captured
by the specification. From this fact and (1), it follows that for each sequence of steps
captured by U and Gprec when the trace-on annotations are considered, there is a trace
of a RUCA from OB. The trace is the execution trace if for each transition annotated
with on:id there is a transition annotated with trace:id before this transition. That is,
there is no execution fragment which would not correspond to a sequence of steps
captured by U and Gprec.

6 Summary and Future Work

We have developed means for verifying consistency of textual use-cases useful espe-
cially when use-cases are written iteratively by multiple authors. By introducing anno-
tations to use-case steps, we can capture temporal dependencies among use-cases which
is a foundation for further verification of temporal properties (based on LTL). As a key
contribution, we have defined a formal behavior model (based on LTS) and defined its
correspondence to textual use-case specification. A formal behavior model satisfying
LTL formulae inferred from user annotations corresponds to a consistent use-case spec-
ification. Even though we have considered just two annotation pairs, the create-use and

6 The term trace in this context is defined in the same way as the execution trace (see Defi-
nition 15) with the modification that all the possible transitions are considered (not just the
enabled ones).
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open-close pairs, our approach is applicable for other annotations as well, the semantics
of which can be described by LTL. This is because we internally use LTL formulae to
capture desired temporal properties. It should be noted that most of the examples in the
text were taken from case studies of real-life use-cases [5].

Currently, we continue the development of REPROTOOL which integrates the ver-
ification method with analysis of natural language. As a future work we plan to tackle
the following challenges:

– We plan to extend the palette of annotations in future and potentially to let users
define their own annotations using arbitrary LTL-formulae.

– We could also implement asynchronous events in use-case specification. As pointed
out by Larman [9] these events can be attached to multiple steps, e.g. “at any time”
or “within a range of steps”.

– Our method would work even if we did not use any tools for processing natural
language. Users could manually mark sentences as goto-, abort- or include-actions.
However, due to the restrictions of the natural language in use-case specifications
[3,9,19], we can benefit from NLP tools and thus automate this process. It should
be also possible to infer the use-case step annotations from the text automatically.
We intend to improve the currently employed NLP tools in REPROTOOL.
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