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Preface

This volume contains the proceedings of four workshops held in conjunction with
the 11th European Conference on Computer Vision:

• Workshop on Color and Reflectance in Imaging and Computer Vision
• Workshop on Media Retargeting
• Workshop on Reconstruction and Modeling of Large-Scale 3D Virtual

Environments
• Workshop on Computer Vision on GPUs

All workshops took place in Heraklion, Crete, Greece, during September 10–11,
2010.

September 2010 Kiriakos N. Kutulakos
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Martial Hebert Carnegie Mellon University
Noah Snavely Cornell University
Patrick Flynn University of Notre Dame
Philippos Mordohai Stevens Institute of Technology
Shinsaku Hiura Osaka University
Sudipta Sinha Microsoft Research
Suresh Lodha University of California, Santa Cruz
Svetlana Lazebnik University of North Carolina, Chapel Hill
Ulrich Neumann University of Southern California
Voicu Popescu Purdue University
Wolfgang Förstner University of Bonn
Yiorgos Chrysanthou University of Cyprus
Zhigang Zhu City University of New York



Workshop on Computer Vision on GPUs

(CVGPU 2010)

Organizing Committee

Jan-Michael Frahm University of North Carolina, Chapel Hill
Marc Pollefeys ETH Zürich
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Estimating Shadows with the Bright

Channel Cue

Alexandros Panagopoulos1, Chaohui Wang2,3, Dimitris Samaras1,
and Nikos Paragios2,3

1 Image Analysis Lab, Computer Science Dept., Stony Brook University, NY, USA
2 Laboratoire MAS, École Centrale Paris, Châtenay-Malabry, France

3 Equipe GALEN, INRIA Saclay - Île-de-France, Orsay, France

Abstract. In this paper, we introduce a simple but efficient cue for the
extraction of shadows from a single color image, the bright channel cue.
We discuss its limitations and offer two methods to refine the bright
channel: by computing confidence values for the cast shadows, based on
a shadow-dependent feature, such as hue; and by combining the bright
channel with illumination invariant representations of the original image
in a flexible way using an MRF model. We present qualitative and quan-
titative results for shadow detection, as well as results in illumination
estimation from shadows. Our results show that our method achieves
satisfying results despite the simplicity of the approach.

1 Introduction

Shadows are an important visual cue in natural images. In many applications
they pose an additional challenge, complicating tasks such as object recognition.
On the other hand, they provide information about the size and shape of the
objects, their relative positions, as well as about the light sources in the scene.
It is however difficult to take advantage of the information provided by shad-
ows in natural images, since it is hard to differentiate between shadows, albedo
variations and other effects.

The detection of cast shadows in the general case is not straightforward.
Shadow detection, in the absence of illumination estimation or knowledge of 3D
geometry is a well studied problem. [1] uses invariant color features to segment
cast shadows in still or moving images. [2] suggests a method to detect and
remove shadows based on the properties of shadow boundaries in the image. In
[3,4], a set of illumination invariant features is proposed to detect and remove
shadows from a single image. This method is suited to images with relatively
sharp shadows and makes some assumptions about the lights and the camera.
Camera calibration is necessary; if this is not possible, an entropy minimization
method is proposed to recover the most probable illumination invariant image.
In [5], a method for high-quality shadow detection and removal is discussed. The
method, however, needs some very limited user input. Recently, [6] proposed a
method to detect shadows in the case of monochromatic images, based on a
series of features that capture statistical properties of the shadows.

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 A. Panagopoulos et al.

Fig. 1. Bright channel: a. original image (from [3]); b. bright channel; c. hue histogram;
d. confidence map; e. refined bright channel; f. confidence computation: for a border
pixel i of segment s, we compare the two patches oriented along the image gradient

In this paper, we discuss the estimation of cast shadows in a scene from a
single color image.

We first propose a simple but effective image cue for the extraction of shadows,
the bright channel, inspired from the dark channel prior [7]. Such a cue exploits
the assumption that the value of each color channel of a pixel is limited by the
incoming radiance, but there are pixels in an arbitrary image patch with values
close to the upper limit for at least one color channel.

Then we describe a method to compute confidence values for the cast shad-
ows in an image, in order to alleviate some inherent limitations of the bright
channel prior. We process the bright channel in multiple scales and combine the
results. We also present an alternative approach for refining the bright channel
values, utilizing a Markov Random Field (MRF) model. The MRF model com-
bines the initial bright channel values with a number of illumination-invariant
representations to generate a labeling of shadow pixels in the image.

We evaluate our method on the dataset described in [6] and measure the
accuracy of pixel classification. We also provide results for qualitative evaluation
on other images, and demonstrate an example use of our results to perform
illumination estimation with a very simple voting procedure.

This paper is organized as follows: Sec. 2 introduces the bright channel cue;
Sec. 3 presents a way to compute confidences for cast shadows and refine the
bright channel; Sec. 4 describes an MRF model to combine the bright channel
with illumination-invariant cues for shadow estimation, followed by experimental
results in Sec. 5. Sec. 6 concludes the paper.

2 Bright Channel Cue Concept

To define the bright channel cue, we consider the following observations:

– The value of each of the color channels of the image has an upper limit which
depends on the incoming radiance. This means that, if little light arrives at
the 3D point corresponding to a given pixel, then all color channels will have
low values.

– In most images, if we examine an arbitrary image patch, the albedo for at
least some of the pixels in the patch will probably have a high value in at
least one of the color channels.
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From the above observations we expect that, given an image patch, the maximum
value of the r, g, b color channels should be roughly proportional to the incoming
radiance. Therefore, we define the bright channel, Ibright for image I in a way
similar to the definition of the dark channel [7]:

Ibright(i) = maxc∈{r,g,b}
(
maxj∈Ω(i)(I

c(j))
)

(1)

where Ic(j) is the value of color channel c for pixel j and Ω(i) is a rectangular
patch centered at pixel i. We form the bright channel image of I by computing
Ibright(i) for every pixel i.

2.1 Interpretation

Let us assume that a scene is illuminated by a finite discrete set L of distant light
sources. Each light source j (j ∈ L) is described by its direction dj and intensity
αj . We assume that the surfaces in the scene exhibit Lambertian reflectance. Let
G be the 3D geometry of the scene and p be a 3D point imaged at pixel i. We
can express the intensity I(i) of pixel i as the sum of the contributions of the
light sources that are not occluded at point p:

I(i) = ρ(p)η(p), (2)

η(p) =
∑
j∈L

αj [1− cp(dj)]max{−dj · n(p), 0}, (3)

where ρ(p) is the reflectance (albedo) at p, n(p) is the normal vector at p and
cp(dj) is the occlusion factor for direction dj at p:

cp(dj) =

{
1, if ray from a light to p along dj intersects G
0, otherwise

(4)

Here we are interested in the illumination component η(p). One should note,
though, that it cannot be calculated directly since the reflectance ρ(p) above
is unknown. The definition of the bright channel, Ibright(i) produces a natural
lower bound for η(p):

I(i) ≤ Ibright(i) ≤ η(p). (5)

Eq. 5, combined with our observations above, means that the bright channel
Ibright(i) can provide an adequate approximation to the illumination component
η(p).

An example of the bright channel of an image is shown in Fig. 1.

2.2 Post-processing

Assuming that at least one pixel in a patch Ω(i) is fully illuminated, one would
observe high values in at least one color channel. However, due to low reflectance
or exposure, only in few cases this maximum value is actually the full intensity
(1.0). As a result, the values of Ibright appear slightly darker than our expectation
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for η. Thus it is natural to assume that, for any image I, at least β % of the pixels
are fully illuminated, and their correct values in the bright channel should be
1.0. This assumption can be easily encoded through sorting the values Ibright(i)

of pixels in descending order, and choosing the value lying at β %, Iβbright, as the
white point. Then, we can adjust the bright channel values as:

İbright(i) = min

{
Ibright(i)

Iβbright
, 1.0

}
(6)

The second concern of the bright channel is that the dark regions in the bright
channel image appear shrunk by κ/2 pixels, where κ× κ is the size of the rect-
angular patches Ω(i). This can be explained if the max operation in Eq. 1 is
seen as a dilation operation. We correct this by expanding the dark regions in
the bright channel image by κ/2 pixels, using an erosion morphological operator
[8]. An example of the adjusted bright channel is shown in Fig. 1.b.

3 Robust Bright Channel Estimation

The value of the bright channel cue heavily depends on the scale of the corre-
sponding patch and does not always provide a good approximation of η(p) at
scene point p. For example, a surface with a material of dark color, which is
larger in the image than the patch size used to compute the bright channel cue,
will appear dark in the bright channel, even if it is fully illuminated. On the other
hand, shadows that are smaller than half the patch size will not appear in the
bright channel. We present a method to remedy these problems by computing
the bright channel cue in multiple scales, and by computing a confidence value
for each dark area in the bright channel image.

3.1 Computing Confidence Values

Since surfaces with dark colors can appear as dark areas in the bright channel,
even if they are fully illuminated, we seek a way to compute a confidence that
each dark area is indeed dark because of illumination effects. In this paper we
are particularly interested in cast shadows.

We first obtain a segmentation Υ of the bright channel image, and we seek
to compute a confidence value for each segment. This computation is based on
the following intuition: Let Ω1 and Ω2 be two m × n patches in the original
image, lying on the two sides of a border caused by illumination conditions
(Fig. 1.f). If we compute the values of some feature fI , which characterizes
cast shadows, for both patches and compare them, we expect to find that the
difference Δf = fI(Ω1)− fI(Ω2) is consistent for all such pairs of patches taken
across shadow borders in the scene. On the other hand, the difference Δf will
be inconsistent across borders that can be attributed to texture or other factors.

The use of a simple feature like hue is enough to effectively compute a set of
confidence values for each segment of the segmentation Υ of the bright channel.
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Let Δfhue
I (Ω1, Ω2) be the difference in hue between neighboring patches Ω1

and Ω2, where Ω1 lies inside a cast shadow while Ω2 lies outside. We expect
Δfhue

I (Ω1, Ω2) to be consistent for all pairs of patches Ω1 and Ω2 on the border
of that shadow.

If patches Ω1 and Ω2 are chosen to lie on the two sides of the border of a
shadow, then all Δfhue

I (Ω1, Ω2) along this border will lie close to a value μk

that depends on the hue of the light sources that are involved in the formation
of this shadow border. If we model the deviations from this value μk due to
changes in albedo, image noise, etc., with a normal distribution N (0, σk), the
hue differences Δfhue

I (Ω1, Ω2) will follow a normal distribution:

Δfhue
I (Ω1, Ω2) ∼ N (μk, σk) (7)

The distribution of all Δfhue
I (Ω1, Ω2) across all segment borders in segmenta-

tion Υ is modeled by a mixture of normal distributions. The parameters of this
mixture model are, for each component k, the mean μk, the variance σk and the
mixing factor πk. We use an Expectation-Maximization algorithm to compute
these parameters, while the number of distributions in the mixture is selected
by minimizing a quasi-Akaike Information Criterion (QAIC). The confidence for
segment s ∈ Υ is then defined as:

p(s) =
1

|Bs| max
k

∑
i∈Bs

Pk

(
Δfhue

I (Ω1(i), Ω2(i))
)
, (8)

where Bs is the set of all border pixels of segment s, k identifies the mixture
components, and, for patches Ω1(i) and Ω2(i) on the two sides of border pixel
i, Pk

(
Δfhue

I (Ω1(i), Ω2(i))
)
is the probability density corresponding to Gaussian

component k (weighed by the mixture factor πk).
We take advantage of one more cue to improve the estimation of p(s): we

expect that, for every neighboring pair Ω1, Ω2, with Ω1 lying inside the shadow
and Ω2 outside, the value of each of the three color channels will be decreasing
to the direction of Ω1:

1

|Ω1|
∑
i∈Ω1

Ic(i)− 1

|Ω2|
∑
i∈Ω2

Ic(i) < 0, ∀c ∈ {r, g, b} (9)

If the percentage of patch pairs that violate this assumption for segment s is
bigger than θdec, we set p(s) to 0.

3.2 Multi-scale Computation

We mentioned earlier the trade-off associated with the patch size κ used to
compute the bright channel cue. One can overcome this limitation through com-
putating the bright channel in multiple scales and combining the results. The
term “scale” refers here to the patch size κ× κ.

For each scale j of a total Ns scales, a confidence value is computed for each
pixel. We combine the confidences from all scales in a final confidence map, by
setting the final confidence of each pixel i to
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ps(i) =

⎛⎝Ns∏
j=0

p(j)s (i)

⎞⎠
1

Ns

, (10)

where p
(j)
s (i) is the confidence of segment s at scale j, and s is the segment to

which pixel i belongs at scale j. Notice that the segmentation is different at each
scale, since it is performed on the bright channel values, which depends on κ.
We set the bright channel value of any pixel i with confidence ps(i) < ξ to 1.0.
For the rest of the pixels, the final bright channel value is the value computed
with the smallest patch size κj .

Fig. 1 shows that the use of confidence values significantly improves the re-
sults of the bright channel. While the unfiltered bright channel included every
dark surface in the image, the result after computing the confidence values in-
cludes mainly values related to shadows. These measurements will be used for a
global formulation that involves optimal cast shadows detection and illumination
estimation in the next section.

4 An MRF Model for Shadow Detection

In this section we present an alternative method to refine the bright channel val-
ues, by combining them with well-known illumination-invariant representations
of the input image. Graphical models can efficiently fuse different cues within
a unified probabilistic framework. Here we describe an MRF model which fuses
a number of different shadow cues to achieve higher quality shadow estimation.
In this model, the per-pixel shadow values are associated on one hand with the
recovered bright channel values, and on the other with a number of illumination
invariant representations of the original image.

4.1 Illumination Invariants

Separating shadows from texture is a difficult problem. In our case, we want to
reason about gradients in the original image and attribute them to either changes
in shadow or to texture variations. For this purpose, we use three illumination-
invariant image representations. Ideally, an illumination-invariant representa-
tion of the original image will not contain any information related to shadows.
Having such a representation, we can compare gradients in the original image
with gradients in the illumination-invariant representation to attribute the gra-
dient to either shadows/shading or texture. Having identified shadow borders
this way, we can produce a set of labels identifying shadows in the original
image.

Illumination-invariant image cues are not sufficient in the general case, how-
ever, and more complicated reasoning is necessary for more accurate shadow
detection. An example of this can be seen in Fig.2, which shows the illumina-
tion invariant features we use for an example image. Edges due to illumination,
although dimmer, are still noticeable, while some texture edges are not visible.
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Fig. 2. Illumination invariant images: a) original image, b) normalized rgb, c) c1c2c3,
d) the 1d illumination invariant image obtained using the approach in [4]. Notice that
in all three illumination invariant images, the shadow is much less visible than in the
original.

4.2 Illumination-Invariant Cues

Photometric color invariants are functions which describe each image point, while
disregarding shading and shadows. These functions are demonstrated to be in-
variant to a change in the imaging conditions, such as viewing direction, object’s
surface orientation and illumination conditions. Some examples of photometric
invariant color features are normalized RGB, hue, saturation, c1c2c3 and l1l2l3
[9]. A more complicated illumination invariant representation specifically tar-
geted to shadows is described in [4]. Other interesting invariants that could
be exploited are described in [10], [11], [12]. In this work, three illumination-
invariant representations are integrated into our model: normalized rgb, c1c2c3
and the representation proposed in [4] (displayed in Fig. 2). It is however very
easy to add or substitute more illumination invariant representations.

The c1c2c3 invariant color features are defined as:

ck(x, y) = arctan
ρk(x, y)

max{ρ(k+1)mod3(x, y), ρ(k+2)mod3(x, y)} (11)

where ρk(x, y) is the k-th RGB color component for pixel (x, y).
We only use the 1d illumination invariant representation proposed in [4]. For

this representation, a vector of illuminant variation e is estimated. The illumi-
nation invariant features are defined as the projection of the log-chromaticity
vector x′ of the pixel color with respect to color channel p to a vector e⊥

orthogonal to e:

I ′ = x′T e⊥ (12)

x′j =
ρk
ρp
, k ∈ 1, 2, 3, k �= p, j = 1, 2 (13)

and ρk represents the k-th RGB component.
These illumination invariant features assume narrow-band camera sensors,

Planckian illuminants and a known sensor response, which requires calibration.
We circumvent the known sensor response requirement by using the entropy-
minimization procedure proposed in [3] to calculate the illuminant variation
direction e. Futhermore, it has been shown that the features extracted this way
are sufficiently illumination-invariant, even if the other two assumptions above
are not met ([4]).
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4.3 The MRF Model

In this section we describe an MRF model that models the relationship of a
brightness cue such as the bright channel with the illumination invariant cues,
in order to obtain a shadow label for each pixel. Intuitively, through this MRF
model we seek to obtain labelings that correspond to shadow edges where there
is a transition in the bright channel value, but no significant transition/edge
appears at the same site of an illumination-invariant representation of the image.

The proposed MRF has the topology of a 2D lattice and consists of one node
for each image pixel i ∈ P . The 4-neighborhood system [13] composes the edge
set E between pixels. The energy of our MRF model has the following form:

E(x) =
∑
i∈P

φi(xi) +
∑

(i,j)∈E
ψi,j(xi, xj), (14)

where φi(xi) is the singleton potential for pixel nodes and ψi,j(xi, xj) is the
pairwise potential defined on a pair of neighbor pixels. The singleton potential
has the following form:

φi(xi) =
(
xi − İbright(i)

)2

, (15)

where İbright(i) is the value of the bright channel for pixel i. The pairwise po-
tential has the form:

ψi,j(xi, xj) = (xi − xj)
2
(
mink{I(k)invar(i)− I

(k)
invar(j)}

)2

, (16)

where I
(k)
invar(i) is the value of the k-th illumination invariant representation of

the image at pixel i. Note that our MRF model is modular with respect to the
illumination invariants used. Other cues can easily be integrated.

The latent variable xi for pixel node i ∈ P represents the quantized shadow
intensity at pixel i. We can perform cast shadows detection through a minimiza-
tion over the MRF’s energy defined in Eq. 14:

xopt = argmin
x
E(x) (17)

To minimize the energy of this MRF model we can use existing MRF inference
methods such as TRW-S [14], the QPBO algorithm [15,16] with the fusion move
[17], etc. The latter was used for the experimental results presented in the next
section.

5 Experimental Validation

In this section we present qualitative and quantitative results with the bright
channel, and we show further results in an example application in illumination
estimation from shadows.
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Fig. 3. Results with images from the dataset by [6]. From left to right: the original
image; the (unrefined) bright channel; the bright channel refined using confidence es-
timation; the bright channel refined using the MRF model; the ground truth. These
examples show advantages and weaknesses of the two refinement methods.

5.1 Quantitative Evaluation

We evaluated our approach on the dataset provided by [6], which contains 356
images and the corresponding ground truth for the shadow labels. In order to
convert the bright channel values to a 0-1 shadow labeling, we used simple thresh-
olding. The pixel classification rates are presented in table 1. Example results
can be found in Fig. 3. Fig. 5 shows a case where our algorithm fails, due to very
large uniformly dark surfaces.

Table 1. Pixel classification results for the unrefined bright channel (using a single
patch size κ = 6 pixels); the bright channel refined using confidence values and 4
scales; our MRF model with the bright channel (using a single patch size κ = 6 pixels);
and our MRF model with pixel brightness in the LAB color space instead of the bright
channel for the singleton potentials.

method classification rate (%) false positives (%) false negatives (%)

bright channel 83.52 13.16 3.31

bright channel + confidence 84.61 11.21 4.17

bright channel + MRF 85.88 8.83 5.28

brightness + MRF 52.53 46.31 1.15

5.2 Simple Illumination Estimation

We can use the bright channel image to perform illumination estimation from
shadows. As a proof of concept, we describe a very simple voting method in
Algorithm 1, which is in most cases able to recover an illumination estimate
given simple 3D geometry of the scene.

The idea is that, shadow pixels that are not explained from the discovered
light sources vote for the occluded light directions. The pixels that are not in
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Algorithm 1. Voting to initialize illumination estimate

Lights Set: L ← ∅

Direction Set: D ← all the nodes of a unit geodesic sphere
Pixel Set: P ← all the pixels in the observed image
loop

votes[d] ← 0, ∀d ∈ D
for all pixel i ∈ P do

for all direction d ∈ D \ L do
if Ibright(i) < θS and ∀d′ ∈ L, ci(d′) = 0 then

if ci(d) = 1 then votes[d]← votes[d] + 1
else

if ci(d) = 0 then votes[d]← votes[d] + 1
d∗ ← argmaxd(votes[d])
Pd∗ ← {i|ci(d∗) = 1 and ∀d �= d∗, ci(d) = 0}
αd∗ ← median

{
1−Ibright(i)

max{−n(p(i))·d∗,0}

}
i∈Pd∗

if αd∗ < εα then
stop the loop

L ← L ∪ (d∗, αd∗ )

shadow vote for the directions that are not occluded. After discovering a new
light source direction, we estimate the associated intensity using the median of
the bright channel values of pixels in the shadow of this new light source. The
process of discovering new lights stops when the current discovered light does
not have a significant contribution to the shadows in the scene. To ensure even
sampling of the illumination environment, we choose the nodes of a geodesic
sphere of unit radius as the set of potential light directions [18]. The results of
the voting algorithm are used to initialize the MRF both in terms of topology
and search space leading to more efficient use of discrete optimization. When
available, the number of light sources can also be set manually.

Fig. 4. Results with images of cars collected from Flickr. Top row: the original image
and a synthetic sun dial rendered with the estimated illumination; Bottom row: the
refined bright channel. The geometry consists of the ground plane and a single bounding
box for the car.
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Fig. 5. A failure case: from left to right, the original image, the bright channel, and
the refined bright channel. The uniformly dark road surface is identified as a shadow.

We present results on illumination estimation on images of cars collected
from Flickr (Fig. 4). The geometry used in this case was a 3D bounding box
representing the car in each image, and a plane representing the ground. The
camera parameters were matched by hand so that the 3D model’s projection
would roughly coincide with the car in the image.

6 Conclusions

In this paper, we presented a simple but effective image cue for the extraction
of shadows from a single image, the bright channel cue. We discussed the lim-
itations of this cue, and presented a way to deal with them, by examining the
bright channel values at multiple scales and computing confidence values for
each dark region using a shadow-dependent feature, such as hue. We further
described an MRF model as an alternative way to refine the bright channel cue
by combining it with a number of illumination-invariant representations. In the
results, we computed the classification accuracy for shadow pixels on a publicly
available dataset, we showed examples of the resulting shadow estimates, and
we discussed one potential application of the bright channel cue in illumination
estimation from shadows. In this application, the low false-negative rate and the
relatively accurate shadow estimate we can get from this simple cue makes it
possible to tackle a hard problem such illumination estimation with rough ge-
ometry information in natural images using simple algorithms such as the voting
algorithm we described. In the future, we are interested in incorporating this cue
in a more complex shadow detection framework.

Acknowledgments. This work was partially supported by NIH grants
5R01EB7530-2, 1R01DA020949-01 and NSF grants CNS-0627645, IIS-0916286,
CNS-0721701.
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Abstract. We propose a technique to embed information in the color of
a printed surface. One or more reference surfaces are used to help com-
pensate for the color changes due to varying illuminants. Seven different
techniques, some of which are novel, are considered for color compen-
sation. Experiments using different performance metrics are presented,
providing a comparative assessment of the various algorithms and high-
lighting the importance of the correct choice of reference surfaces.

1 Introduction

There is a growing interest in technology to embed information in printed mat-
ter, in such a way that can be easily accessed by mobile devices such as cell
phones. For example, 1-D and 2-D barcodes are often placed in advertisements
for products or events, providing a means for anyone with a cell phone equipped
with a camera, suitable software, and Internet access, to retrieve more informa-
tion about the specific product or event. The density of information that can
be embedded with this type of markers is limited by the camera resolution and
viewing conditions. For example, low illumination requires large exposure time
(resulting in motion blur) or high camera gain (resulting in noise). Also, limited
depth of field requires precise focusing on the marker, which is sometime prob-
lematic with cell phone cameras (for those cell phones that indeed have focusing
capabilities).

A simple strategy for adding more information to a marker of a given size
is through the use of color. For example, Microsoft’s High Capacity Color Bar-
code (HCCB) technology [1] uses 2-D barcodes enhanced with 4 different colors,
resulting in a tremendous increase in the amount of information that can be
embedded. By embedding information in a surface’s reflectance signature, the
spatial density of bars in a marker can be reduced, resulting in better readability
from a distance, especially with mobile devices.

Unfortunately, cameras do not take direct reflectance measurements. The color
measured by a camera is a function of the reflectance characteristics of the surface
as well as of the spectra of the illuminant(s), and of the illumination and viewing
geometry. One may partly reduce the influence of these variables by printing
markers on Lambertian (opaque) surfaces, but the dependence of the measured
color on the illuminant spectrum remains a major impediment to using a large
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Reference

surfaces

Fig. 1. Left: An example of application of the proposed technique. A marker with 9
color patches (two of which are used for reference) is taken by a cell phone camera. Each
color patch contains 7 bits of information. Right: crop-outs from images of the same
marker under different illuminants exemplify the dramatic color variations undergone
by the patches.

number of colors, as two distinct surfaces may have the same color when lit by
different illuminants.

Color constancy is a well known problem, and many partial solutions have
been proposed. Our considered application, though, is different from most ex-
isting work: rather than normalizing for the unknown illuminant in a general,
unconstrained scene, we design the marker so as to simplify color constancy.
In particular, we add one or more reference surfaces next to the unknown,
information-carrying surfaces. The color characteristics of the reference surfaces
under different illuminants are assumed to be well known (by means of training
samples). The idea is that the color of the reference surfaces should give enough
information about the illuminant to enable color-constant measurement of the
unknown surfaces.

The use of reference surfaces is not new: it is a standard practice in remote sens-
ing, and even regular cameras implement white balancing based on the color of a
white surface. Normally, colors are compensated after observation of the reference
surface using a diagonal transformation.Although this may be suitable for narrow-
band channels in multispectral systems, diagonal color compensation is known to
be suboptimal for the color matching functions of typical cameras. This is a prob-
lem for the quantitative analysis of colors. Thus, in this work we consider several
other color compensation algorithm besides the diagonal transformation.

Identifying the unknown, information-carrying surface can be formally ex-
pressed as either an indexing or a regression problem. In the first case, the goal
is to determine which among a set of possible surface types best represents the
surface in the image. In the second case, we attempt to undo the effect of the
specific illuminant, by “rendering” the color of the surface as if seen under a
canonical illuminant. In summary, our problem can be expressed as follows:
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Problem: Consider an image with R reference surfaces placed coplanar with
and close to the “unknown” surface under analysis. All surfaces are Lambertian,
and receive light from the same illuminant.
(1) Find the index of the unknown surface within a set of possible surfaces.
(2) Estimate the color of the unknown surface as seen under the canonical
illuminant.

We note that the second formulation (regression) is more general in that it
addresses the possibility of embedding information via surfaces that are not
part of a known data set.

In this contribution, we consider a number of algorithms (some of which are
well known, while some are novel) to solve this problem, and present comparative
experimental results measuring the accuracy and error using a number R of
reference surfaces from 1 to 3.

2 Previous Work

We denote the color of a surface s under illuminant i by I
(i)
(s) = [I

(i)
(s),1, I

(i)
(s),2, I

(i)
(s),3]

T ,

where I
(i)
(s),k represents the k-th color channel. A popular model to represent the

dependence of the color of the surface to the illuminant is based on the as-
sumption that the spectra of all possible illuminants and of all possible surface
reflectances form finite dimensional spaces (of dimension Mi and Ms respec-
tively). For Lambertian (opaque) surfaces, this results in the following bilinear
form:

I
(i)
(s),k = α(i)TQkβ(s) (1)

where Qk is an Mi ×Ms matrix with positive entries that only depends on the
camera; α(i) only depends on the illuminant and the incidence angle; and β(s)
only depends on the surface. In particular α(i) and β(s) are independent of the
color channel k. Let us define

Φ(s) =
[
Q1β(s)|Q2β(s)|Q3β(s)

]
(2)

Ψ (i) =
[
QT

1 α
(i)|QT

2 α
(i)|QT

3 α
(i)
]

Note that knowledge of Φ(s) enables rendering of the color of the surface s under
any illuminant. Tsin et al. [2] showed that the matrices Φ(s) can be estimated
using SVD from a collection of images of surfaces under multiple illuminants. A
similar idea was presented by Sunkavalli et al. [3].

Of special interest are rendering models that use color vectors directly, rather
than resorting to an intermediate representation (e.g., the matrices Φ(s) above).

It is well known [4] that ifMs = 3, then I
(i2)
(s) = A(i1)→(i2)I

(i1)
(s) , whereA(i1)→(i2) =

((Ψ (i1))−1Ψ i2)T , and we assumed that Ψ (i1) is full-rank. For a given pair of
illuminants, the 3 × 3 matrix A(i1)→(i2) can be estimated by observation of at
least three different surface patches under both illuminants. If the dimension of
the reflectance spectra space is further restricted toMs = 2, then it can be shown
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that the color transformation matrix A(i1)→(i2) can be obtained by measuring
the color change of at least two different surfaces.

Finlayson et al. [4] showed that, if Mi = 3 and Ms = 2 (the so–called 3–2
case), only one surface, seen under two different illuminants, is actually needed
to estimate A(i1)→(i2). The idea is to perform a suitable change of basis (spectral

sharpening) in color space: Î
(i)
(s) = TI

(i)
(s) where T is an invertible 3×3 matrix. The

columns of T can be chosen as the eigenvectors of the matrix ((Φ(s1))
−1Φs2)

T ,
where s1 and s2 represent any two different surfaces. It is shown in [4] that in
the 3–2 case, the following rendering model applies:

Î
(i2)
(s) = D(i1)→(i2)Î

(i1)
(s) (3)

whereD(i1)→(i2) is diagonal. Following [4], we will call this a generalized diagonal

model. Given any two transformed colors Î
(i1)
(s) and Î

(i2)
(s) of the same surface

observed under two different illuminants, the k–th diagonal entry of Di1→I2 can

be computed as Î
(i2)
(s),k/Î

(i1)
(s),k.

A simpler version of the previous rendering model, the diagonal model, as-
sumes that (3) holds even without the basis change induced by T .

I
(i2)
(s) = D(i1)→(i2)I

(i1)
(s) (4)

It is not difficult to show that this assumption holds true only if each matrix Qk

has only one non–null column.
A different, fully data-driven approach to color constancy was proposed by

Miller and Tieu [5]. This algorithm is based on the observation of joint color
changes in images due to variation in lighting and other non-geometric camera
parameters.

Our stated goal to index surfaces in a marker based on the measured color
is reminiscent of other color-based indexing techniques (e.g., [6,7]). In contrast
with these previous approaches, which focus on the general problem of object
recognition in unconstrained environments, our work considers a very precise
domain, with contextual information available in the form of reference surfaces.

3 Algorithms

In general, an algorithm to solve the problem stated in the Introduction has
three components:

Illuminant estimation: Using the reference surfaces, a representation of the illu-
minant is obtained.

Surface estimation: A representation of the unknown surface is obtained. This
step typically uses the representation of the illuminant found in the previous
step.

Rendering/Indexing: The color of the unknown surface is rendered under the
canonical illuminant, and the index of the unknown surface in the training data
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set is found. Indexing is only feasible when the unknown surface is assumed to
belong to the training data set.

Below we summarize the algorithms tested in our experiments. The original
contributions of this work are marked by the letters [O.C.].

The unknown illuminant (under which the surface is seen) and the canonical
illuminant will be denoted by superscripts ‘u’ and ‘c’ respectively, while the
unknown surface will be denoted by subscript ‘u’. Thus, the color of the unknown

surface in the image (under unknown illuminant) is I
(u)
(u) , while its color rendered

under the canonical illuminant is I
(c)
(u). We assume that images of a training set

of Ns surfaces (which include the references surfaces as well as the unknown
surface) under a number Ni of different illuminants (which include the canonical
illuminant) have been captured off-line. The color values of the training data set
are collected in the following matrices:

J(s) =
[
I
(1)
(s) |I(2)(s) | . . . |I(Ni)

(s)

]T
, 1 ≤ s ≤ Ns (5)

Y (i) =
[
I
(i)
(1)|I(i)(2)| . . . |I(i)(Ns)

]T
, 1 ≤ i ≤ Ni

J =
[
J(1)|J(2)| . . . |J(Ns)

]
, Y =

[
Y (1)|Y (2)| . . . |Y (Ni)

]
We also define:

Φ =
[
Φ(1)|Φ(2)| . . . |Φ(Ns)

]
, Ψ =

[
Ψ (1)|Ψ (2)| . . . |Ψ (Ni)

]
(6)

A = [α(1)|α(2)| . . . |α(Ni)]T , B = [β(1)|β(2)| . . . |β(Ns)]
T (7)

where the matrices Φ(s) and Ψ (i) were defined in (2). The bilinear model (1)
implies that:

J(s) = AΦ(s) , Y
(i) = BΨ (i) , J = AΦ , Y = BΨ (8)

Without loss of generality, we assume that the reference surfaces have indices
in [1, 2, . . . , R], and therefore their colors under the unknown illuminant are

I
(u)
(1) , I

(u)
(2) , . . . , I

(u)
(R).

Algorithm 1: Diagonal Model

Illuminant estimation: The illuminant is characterized by the diagonal rendering
matrix D(u)→(c). To find this matrix, we solve the three least-squares problems:

D
(u)→(c)
[k] = argmin

a

R∑
s=1

(
I
(c)
(s),k − aI

(u)
(s),k

)2

(9)

where D
(u)→(c)
[k] is the (k, k) entry of the matrix.
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Rendering/Indexing: I
(c)
(u) = D(u)→(c)I

(u)
(u) . Then indexing is accomplished by find-

ing the surface with the closest color to I
(c)
(u)among the training surface seen under

the canonical illuminant:

su = argmin
1≤s≤Ns

‖I(c)(u) − I
(c)
(s)‖2 (10)

Note that this algorithm does not require the “surface estimation” step.

Algorithm 2: Generalized Diagonal Model

This algorithm is identical to Algorithm 1, except that the color vectors are
pre-multiplied by a “spectral sharpening” matrix T .
[O.C.] We propose a novel approach to derive a suitable “spectral sharpening”
matrix T . We begin by observing that a good matrix T is such that TY (c)

is well approximated by D(i)→(c)Y (i) for all illuminants i in the training data
set, where D(i)→(c) are suitable diagonal matrices. It is easily seen that this is
identical to the problem of approximating Y (c)Y (i)† (where Y (i)† is the pseudo-
inverse of Y (i)) with T−1D(i)→(c)T . Thus, the problem is one of finding the
matrix T that produces the best approximate joint diagonalization of the 3 ×
3 matrices Y (c)Y (i)† . In our experiments, we solved the joint diagonalization
problem using the publicly available Matlab function rjd.m, developed by Jean-
Francois Cardoso, which is based on a Jacobi-like iterative technique [8].

Algorithm 3: Surface-to-Surface Diagonal Model [O.C.]

This algorithm is based on the simple observation that, under the same hypothe-
sis in which the diagonal model (4) holds true, the following diagonal relationship
holds between the colors of two surfaces s1, s2 seen under the same illuminant:

I
(i)
(s2)

= D(s1)→(s2)I
(i)
(s1)

(11)

where D(s1)→(s2) is independent of the illuminant. The proof is trivial, and relies
on the fact that diagonal matrices commute.

Surface estimation: The unknown surface is represented by the set of R di-

agonal matrices D(s)→(u) mapping the colors I
(u)
(s) to I

(u)
(u) , where D(s)→(u),k =

I
(u)
(u),k/I

(u)
(s),k. These matrices represent the relationship between the unknown sur-

face and the reference surfaces in the training data set when seen under the same
illuminant.

Rendering/Indexing: The matrices D(s)→(u) are used to map the color of each

reference surface I
(c)
(s) in the training data set, seen under the canonical illumi-

nant, to a prediction of the color of the unknown surface under the canonical
illuminant. These predictions are then averaged together. In formulas:

I
(c)
(u) =

R∑
s=1

D(s)→(u)I
(c)
(s)/R (12)
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Indexing is accomplished as by (10). Note that this algorithm does not require
the “illuminant estimation” step.

Algorithm 4: Surface-to-Surface Multiple Diagonal Model [O.C.]

Illuminant estimation: Rather than considering just the canonical illuminant, as
in Algorithms 1 and 2, we look at all illuminants i in the training data set and
compute all diagonal matrices D(i)→(u) mapping the color of any surface under
illuminant i to the color of the same surface under the unknown illuminant:

D
(i)→(u)
[k] = argmin

a

R∑
s=1

(
I
(u)
(s),k − aI

(i)
(s),k

)2

(13)

Surface estimation: We first render the colors of all surfaces in the data set, as
seen under the unknown illuminant:

I
(u)
(s) =

Ni∑
i=1

D(i)→(u)I
(i)
(s)/Ni (14)

As in Algorithm 3, the unknown surface is represented by the set of all di-

agonal matrices D(s)→(u) mapping the colors I
(u)
(s) to I

(u)
(u) , where D(s)→(u),k =

I
(u)
(u),k/I

(u)
(s),k. However, with respect to Algorithm 3, now there are Ns such diag-

onal matrices.

Rendering/Indexing: This part is identical to Algorithm 3, except that the aver-

age prediction I
(c)
(u) is computed using all Ns images in the data set.

Algorithm 5: Bilinear Model

Let us define γ(u) = (A†)Tα(u) and δ(u) = (B†)Tβ(u), where A, B were de-

fined in (6) and α(u), β(u) were defined in (1). Then one easily sees that, as

long as rank(J) ≥ Mi and rank(Y ) ≥ Ms: I
(u)
(s) = JT

(s)γ
(u) , I

(i)
(u) = Y (i)T δ(u).

This formulation allows us to express a surface color as a linear function of the
training data.

Illuminant estimation: Define Jref =
[
J(1)|J(2)| . . . |J(R)

]
. The unknown illumi-

nant is represented by the vector γ(u), where γ(u) =
([
I
(u)T
(1) |I(u)T(2) | . . . |I(u)T(R)

]
J†
ref

)T

.

Surface estimation: First render all surfaces in the data set, as seen by the
unknown illuminant:

Y (u) = [JT
(1)γ

(u)|JT
(2)γ

(u)| . . . |JT
(Ns)

γ(u)]T (15)

The unknown surface is represented by the vector δ(u), computed as follows:

δ(u) =
(
I
(u)T
(u) Y (u)†

)T

.

Rendering/Indexing: I
(c)
(u) = Y (c)T δ(u). Indexing is accomplished as by (10).
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Algorithm 6: Bilinear Model (Compact) [O.C.]

A problem with Algorithm 5 is that it requires storage and processing of a con-
spicuous portion of the training data at run time. In fact, storage requirements
and computation would be much lighter if the matrices {Qk} in (1) were avail-
able. We introduce in the following an algorithm to estimate matrices {Q̃k} that
are algebraically similar to {Qk}. To our knowledge, this is the first time that a
direct estimation of these matrices has been proposed.

Let us define: J(s),k =
[
I
(1)
(s),k, I

(2)
(s),k, . . . , I

(Ni)
(s),k

]T
and Jk =[

J(1),k|J(2),k| . . . |J(Ns),k

]
. We observe that Jk = AQkB for 1 ≤ k ≤ 3.

Our algorithm for finding matrices {Q̃k} that are similar to {Qk} proceeds as
follows. We first compute Q̃k(1) = A†JkB† for 1 ≤ k ≤ 3. Then we iterate the
following two steps:

Step 1: For 1 ≤ s ≤ Ns, 1 ≤ i ≤ Ni, compute:

Φ̃(s)(n) =
[
Q̃1(n)β(s)|Q̃2(n)β(s)|Q̃3(n)β(s)

]
(16)

Φ̃(n) =
[
Φ̃(1)(n)|Φ̃(2)(n)| . . . |Φ̃(Ns)(n)

]
Ψ̃ (i)(n) =

[
Q̃T

1 (n)α(i)|Q̃T
2 (n)α(i)|Q̃T

3 (n)α(i)

]
Ψ̃(n) =

[
Ψ̃ (1)(n)|Ψ̃ (2)(n)| . . . |Ψ̃(Ni)(n)

]
Ã(n) = JΦ̃†(n) , B̃(n) = Y Ψ̃ †(n)

Step 2: Compute Q̃k(n+ 1) = Ã†(n)JkB̃†(n) (1 ≤ k ≤ 3).

It is easy to see that at each iteration, the Frobenius norm eF (n) of the error
matrix J − AΦ̃(n) can only decrease or remain the same. Step 1 and 2 are
iterated until the eF (n)/eF (n−1) is lower than a fixed threshold. Note that this
algorithm is performed off-line with training data. Once the matrices {Q̃k} and
{Φ̃(s)} have been computed, on-line color analysis is performed as follows.

Illuminant estimation: Define Φ̃ref =
[
Φ̃(1)|Φ̃(2)| . . . |Φ̃(R)

]
. The unknown illumi-

nant is represented by the vector α(u), computed as follows:

α(u) =
([
I
(u)T
(1) |I(u)T(2) | . . . |I(u)T(R)

]
Φ†
ref

)T

(17)

Surface estimation: The unknown surface is represented by the vector β(u), com-
puted as follows:

β(u) =

(
I
(u)T
(u)

[
Q̃T

1 α
(u)|Q̃T

2 α
(u)|Q̃T

3 α
(u)
]†)T

(18)
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Rendering/Index.: I
(c)
(u) =

[
Q̃1β(u)|Q̃2β(u)|Q̃3β(u)

]T
α(c) where α(c) is computed

off-line. Indexing is accomplished as by (10).
Note that the matrices {Q̃k} have dimensionMi×Ms. Appropriate valuesMi

and Ms can be estimated via eigenvalue analysis. In our experiments, we used
Mi = 12 and Ms = 9.

Algorithm 7: Nearest Neighbor [O.C.]

This algorithm is fully data-driven and doesn’t use a model of color formation.

Illuminant estimation: The unknown illuminant is represented by the index iu

defined by iu = argmin
1≤i≤Ni

∑R
s=1 ‖I(u)(s) − I

(i)
(s)‖2.

Surface estimation: The unknown surface is represented by the index su defined

by su = argmin
1≤s≤Ns

‖I(u)(u) − I
(iu)
(s) ‖2.

Rendering/Indexing: The color of the unknown surface is rendered as seen under

the canonical illuminant by I
(c)
(su)

. The index of the unknown surface is su.

Fig. 2. The Ns = 128 surface patches used in the experiments. The 24 patches used
for reference are shown with a thick border.

4 Experiments

In order to test our algorithms, we printed a color checkerboard with 512 colors,
uniformly sampled in (R,G,B) space. Some of the printed colors were practically
indistinguishable from each other, so we selected 128 colors by greedy iterative
exclusion from an image of the checkerboard taken by a camera. More precisely,
we selected the two patches whose colors (in the image) were most similar, and
removed one of them. This operation was repeated until only 128 colors were
left. The selected colors are shown in Fig. 2.

Images of the checkerboard were taken under 75 different illumination con-
ditions (one of which is selected as the canonical illuminant). The illumination
conditions considered included direct sunlight, diffuse natural light under dif-
ferent overcast conditions, and various types of artificial light (incandescence
lamps, neon light, etc.) Two different cameras were used. One was a low-quality
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camera from a cell phone (Sony Ericsson W580i with white balance set to a fixed
value). The other camera was a high-end Canon EOS 350D, producing images
in raw (CR2) format. In each image, the color values within a patch (typically
covering a few hundred pixels) were averaged together to reduce noise.

The reference colors are chosen from a sample of 24 colors, selected from the
128 colors using k-means. The selected colors are shown with a black border in
Fig. 2. Note that this set contains two gray patches. For a given number R, with
1 ≤ R ≤ 3, we use all combinations of these 24 colors taken R at a time as
reference surface sets. For each choice of reference patch set, all algorithms were
tested over each one of the remaining 128−R patches which thus represented the
“unknown” patch. In each test, one illuminant is selected, and each unknown
patch is analyzed based on the color of the reference patches under the same
illuminant.

We devised a cross-validation procedure with a sequence of ten rounds. In each
round, half of the illuminants were selected at random to represent the “training”
illuminants, meaning that the algorithms were trained based on the color of all
surfaces as seen under such illuminants. The algorithms were then tested with
each one of the remaining (“test”) illuminants. For each test illuminant i chosen
in each cross-validation round r, and for each choice of the reference patch set P ,

we define by prediction error rate E
(i,r,P )
p the number of unknown patches that

were incorrectly indexed by the algorithm, divided by the number of patches

considered (in our experiments, 128), and by rendering error E
(i,r,P )
r the mean

(over all considered patches) of the Euclidean error between the rendered color
of the unknown patch under canonical illuminant and its correct value. We then

compute the average prediction and rendering error (E
(P )
p,av, E

(P )
r,av), along with

the maximum prediction and rendering error (E
(P )
p,max, E

(P )
r,max), over all rounds

and all illuminants in each round. Note that these values are a function of the
choice of reference patch set P . Finally, for each metric considered, we select
the reference patch set that minimizes the corresponding error, obtaining Ep,av,
Er,av, Ep,max, or Er,max. We believe that both maximum (worst case) and average
errors are important for performance assessment. The results of our experiments
are shown in Figs. 3 and 4, along with the optimal reference patches for each
metric considered.

4.1 Discussion

When comparing the different algorithms, it is important to bear in mind both
performance and computational cost. In terms of implementation, a look-up
table could be used to store all possible colors of the reference patches and
produce the index of the unknown patch or its color under canonical illumination.
Using B bits to represent each color, this table would occupy 2RB log2Ns bits
of memory for the color indices, and 2RBB for the rendered colors. For example,
with a 8-bit camera, using Ns = 128 as in our experiments and R = 3 reference
patches, the index table can be stored in 15 Mbytes, while the rendered color
table requires 17 Mbytes. This amount of storage is durable even in a hand-held
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Algorithm 2

Algorithm 3

Algorithm 4

Algorithm 5

Algorithm 6

Algorithm 7

  PRED. ERROR  REND. ERROR

Fig. 3. Results from the experiments using the cell phone camera. For each algorithm,
we show results using a number R from 1 to 3 of reference patches. The optimal choice
of reference patches for each illuminant and each metric considered is also shown. The
left part of the plot shows Ep,max (white bars) and Ep,ave (black bars). The right part
shows Er,max (black bars) and Er,av (white bars).

1 0 7000

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Algorithm 5

Algorithm 6

Algorithm 7

  PRED. ERROR  REND. ERROR

Fig. 4. Results from the experiments using the high-end camera. See caption of Fig. 3
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device such as a cell phone. For a larger pixel depth, feasibility of a look-up table
depends on the number of reference patches being used.

If online computation is necessary, the fastest techniques are Algorithms 1, 2
and 3, which have negligible complexity. Algorithm 4 and 7 have complexity that
is linear with NsNi. The bulk of complexity of Algorithm 5 is in the computation
of the pseudoinverse of a matrix of size Ns × 3 (remember that Ns = 128 in our
experiments). Algorithm 6 requires computation of the pseudoinverse of a matrix
of size Ms × 3 where, as mentioned earlier, Ms was set to 9 in our experiments.

As expected, the tests with the high-end camera produced better accuracy.
Note that the the images with this camera had 16 bits per pixel, which explains
the higher error values recorded (since each color channels take values from 0 to
216 − 1). The finer quantization, and a presumably more linear sensor response
than the cell phone camera, are likely to account for the better performance of
this camera. Note in passing that we have not considered photometric camera
calibration, a technique that could improve the quality of the results.

Comparative analysis of the algorithms show that the Algorithms 1, 2 and
3 give similar performances. As expected, the “sharpening” technique of Algo-
rithm 2 improves on the simple diagonal model of Algorithm 1, although only by
a small amount. Note that the worst-case scenario prediction error rate Ep,max

for these algorithms is above 0.5 for both camera. This means that, even with
the best choice of reference patches, there exists an illuminant such that half of
the patches are misclassified.

The best performing technique is clearly Algorithm 4, which provides the
smallest error under all metrics. The worst case prediction error rate Ep,max is
equal to 0.16 using three reference patches for the camera cellphone case, and
0.03 for the high-end camera. The worst-case rendering error Er,max is equal to
20 for the 8-bit camera and 720 for the 16-bit camera.

The bilinear model (Algorithm 5) gives good results in terms of average er-
rors, but the worst-case prediction error rates are much higher. Its “compact”
version (Algorithm 6) gives worse results, likely due to the some inaccuracy in
the computation of the matrices {Qk}. However, note that Algorithm 6 still per-
forms better than the diagonal models algorithms 1–3, at least for the high-end
camera, and has lower complexity than the bilinear model (Algorithm 5). The
data-driven approach (Algorithm 7) gives unsatisfactory results overall.

In general, increasing the number of reference patches improves performance,
but this improvement is surprisingly small. In fact, in very few cases, adding one
more reference patch does not reduce the error at all. In Figs. 3 and 4, these
situations lead to some colors being repeated in the optimal reference patch set.

In order to highlight the dependence of the system’s performance on the choice
of a reference patch, we show in Fig. 5 the values of Er,av for Algorithm 4 for
R = 1, as a function of the chosen reference patch (all 128 possible patches
are considered here, rather than just the 24 shown in Fig. 2) and for a cho-
sen set of training illuminants. Note that the best reference patches have low
color saturation values. Indeed, the 20% best performing patches have median
saturation equal to 0.5, while the 20% worst performing patches have median
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saturation equal to 1 (where ‘saturation’ is defined according to the HSV color
space). This confirms the intuitive notion that colors with a broad spectrum are
preferable to colors with a narrow spectrum for this application. However, our
experiments also shows that white or gray are not necessarily the best reference
colors.
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Fig. 5. Values of Ep,av for Algorithm 4 with R = 1 as a function of the chosen reference
patch (images taken by the cell phone camera).

5 Conclusions

Embedding information in printed color is a promising technique, but special
care is required to solve the “color constancy” problem. We have presented ex-
perimental results comparing seven different algorithms that use one or more
reference surfaces to undo the effect of the unknown illuminant. The results, in
terms of accuracy and rendering error, are, in our opinion, encouraging. In par-
ticular, one of the original algorithms proposed here (Algorithm 4) has excellent
accuracy.

Of course, there are other issues besides color constancy that may hinder this
approach. For example, printed colors may fade with time unless specialized inks
and substrate are used. Noise is also an important factor, especially when the
color marker is seen from a distance (resulting in a small foreshortened area) or
with low illumination. Still, we believe that this technology has serious potential
as a practical means for information embedding, by itself or in conjunction with
other techniques such as barcodes.
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National Science Foundation under Grant No. IIS - 0835645.
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Bi-affinity Filter: A Bilateral Type Filter

for Color Images
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Abstract. We propose a new filter called Bi-affinity filter for color im-
ages. This filter is similar in structure to the bilateral filter. The pro-
posed filter is based on the color line model, which does not require the
explicit conversion of the RGB values to perception based spaces such as
CIELAB. The bi-affinity filter measures the affinity of a pixel to a small
neighborhood around it and weighs the filter term accordingly. We show
that this method can perform at par with standard bilateral filters for
color images. The small edges of the image are usually enhanced leading
to a very easy image enhancement filter.

Keywords: Bilateral filter, RGB color filtering, image matting, matting
Laplacian.

1 Introduction

Bilateral filter was originally proposed by Tomasi and Manduchi [1]. The princi-
ple idea behind such a filtering operation is to combine information from spatial
domain as well as feature domain. It can be represented as

h(x) =
1

k(x)

∑
y∈Ωx

fs(x, y)gr(I(x), I(y))I(y) (1)

where I and h are the input and output images respectively, x and y are pixel
locations over the image grid, Ωx is the neighborhood induced around the central
pixel x, fs(x, y) measures the spatial affinity between pixels at x and y and
gr(I(x), I(y)) denotes the feature/measurement/photometric affinity. k(x) is the
normalization term given by

k(x) =
∑
y∈Ωx

fs(x, y)gr(I(x), I(y)) (2)

The spatial and range filters (f , g respectively), are commonly set to be Gaussian
filters

fs(x, y) = exp(
−‖x− y‖22

2σ2
s

), gr(u, v) = exp(
−‖u− v‖22

2σ2
r

)
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parameterized by the variances σs, σr. The range filter penalizes distance in the
feature space and hence the filter has an inherent edge preserving property. Due
to this important property bilateral filter has been one of the most widely used
filtering techniques within computer vision community.

Bilateral filter is a non-linear filter and as such many researchers have pro-
posed techniques to decompose the non-linear filter into a sum of separable one
dimensional filters or similar cascaded representations [2]. Singular value decom-
position of the 2D kernel is one such approach which has been proposed by [3,4].
Paris et al. [5] proposed an approximation of the bilateral filter by filtering sub-
sampled copies of the image with discrete intensity kernels, and recombining the
results using linear interpolation.

Recently numerous researches have identified the run-time of the bilateral
filter as the critical bottleneck and a few techniques have been proposed which
render the filtering operation almost constant time, albeit with larger space
requirements [6,7] and behavioral approximations. The research into improving
the filter performance heavily relies on the form of the filters which are applied in
the range as well as spatial domain. Porikli’s method [6] can be entirely broken
down to an approximation of a product of a box filter for smoothing and a
polynomial or 4th order Taylor series approximation of a Gaussian kernel.

Traditionally, researchers have overlooked one of the most important shortfalls
of the bilateral filter, which is a unified handling of multi-channel color images.
This is due to the independence assumption within the color channels, such that
the filter processes each channel on its own. As a direct consequence, bilateral
filter produces color artifacts at sharp color edges. One of the remedies proposed
in the original work by Tomasi et al. [1] was to convert from RGB space to
CIELAB space. According to them, once the image is converted to the CIELAB
space the channel wise bilateral filter does not produce such artifacts. We try to
investigate further into this weakness and propose a new technique which works
at par with the transformed domain techniques which have been the standard
practices within the community so far.

2 Color Models

The deterioration of bilateral filter for RGB space seems to indicate that one
constant range filter is probably not enough to capture the edge variations in all
the channels, and hence a conversion to a suitable space such as CIELAB, which
is perceptually more uniform than RGB, is performed. Though this transforma-
tion is very fast and can be implemented in hardware, this does not preclude
the research in alleviating this necessity. This inherent shortcoming of bilateral
filter to work in the RGB space can be traced back to the idea of quantifying
the nearness of the color of two pixels within some spatial neighborhood. To
determine whether two pixels have the same real world color, the color coordi-
nates of a generic color model are used. Any generic color model assumes either
there is no color distortion in the neighborhood, or there is an identical color
distortion for all imaging conditions. In practice, when dealing with real world
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images of an unknown source, these assumptions are rarely true as scene surface
color is distorted differently in different images as well as different image regions,
depending on the scene and camera settings.

2.1 Color Line Model

The introduction of color lines has been attributed to Omer et al. [8], who
proposed the idea that the cluster of pixel colors in the RGB space appear to be
mostly tubular regions, thereby adhering to the fact that most small regions in
natural images can be decomposed into a linear combination of 2 colors. This has
the obvious potential in edge preserving filtering domain, since it brings down
the estimation problem of a valid range filter from 3 channels to 2.

When looking at the RGB histogram of real world images (Fig. 1), it can be
clearly observed that the histogram is very sparse, and it is structured. Color line
model exploits these two properties of color histograms by describing the elon-
gated color clusters. It results in an image specific color representation that has
two important properties: robustness to color distortion and a compact descrip-
tion of colors in an image. This idea has been used for image matting [9,10], Bayer
demosaicing [11] and more recently for image de-noising and de-blurring [12,13].
The matting idea can be further utilized in edge preserving filter applications
by removing the constant range filter all-together. The 2 color characteristics of
a small patch can be exploited to evaluate the best range variance for the patch
itself. This idea is the key intuition behind the new filter introduced in this work.

Fig. 1. RGB color histogram adapted from [8]

2.2 Closed Form Matting

The two-color model states that any pixel color Ii can be represented as a linear
combination of two colors P and S, where these colors are piecewise smooth and
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can be derived from local properties within a small neighborhood containing
the pixel i.

Ii = αiP + (1− αi)S, ∀i ∈ w, 0 ≤ αi ≤ 1 (3)

where w is a small patch. α is called the matting coefficient. The patch size is
a key parameter in this model, as it is true only for small neighborhoods. As
the resolution and the size of the images grow, so should the window size as
well, to capture a valid neighborhood. For color images, it was proved by Levin
et al. [10], that if the color line property is obeyed then the 4D linear model
satisfied by the matting coefficient, within a small window, at each pixel can be
written as

αi =
∑
c

acIci + b, ∀i ∈ w, c ∈ {1, 2, 3} (4)

where c is the index over the color channels. Given such a model we can formulate
the cost function for evaluating the matting coefficient α. For an image with N
pixels we define the cost as

J(α, a, b) =
∑
k∈N

(∑
i∈wk

(αi −
∑
c

ackI
c
i − bk)

2 + ε
∑
c

ack
2

)
(5)

where wk is a small window around pixel k and a = {aci}, for all i = [1, N ]. ε is
a regularization weight for uniqueness as well as smoothness of the solution.

Theorem 1. Let J(α)
.
= mina,b J(α, a, b), then J(α) = αTLα, where L is an

N ×N matrix, whose ijth element is given by∑
k|(i,j)∈wk

(δij − 1

|wk| (1 + (Ii − μk)
T Σ̃

−1

k (Ij − μk))) (6)

where δij is the Kronecker delta, μk is a 3× 1 mean vector of colors inside the
kth window with both i and j as members, Ii and Ij are the color vectors at

location i and j, Σ̃k = Σk + ε
|wk|I3, where Σk is the 3 × 3 covariance matrix,

|wk| is the cardinality of the window and I3 is the 3× 3 identity matrix.

Proof. We would like to point out that, Levin et al. [10], prove the theorem
based on an extension, from a gray scale case. We present the full 3-channel
proof which can be readily extended to more channels if necessary.

Rewriting Eq. 5 in a matrix notation, where ‖.‖ denotes the 2-norm,

J(α, a, b) =
∑
k

‖Gk.āk −αk‖ (7)

where

Gk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

IR1 IG1 IB1 1
...

...
...

...
IRwk

IGwk
IBwk

1√
ε 0 0 0
0

√
ε 0 0

0 0
√
ε 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, āk =

⎡⎢⎢⎣
aRk
aGk
aBk
b

⎤⎥⎥⎦ , αk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1

...
αwk

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)
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Note that another representation of Gk is possible where the last 3 rows are
combined to a single row of the form [

√
ε
√
ε
√
ε 0], but this form leads to an

unstable covariance matrix. For known αk, we can solve the least square problem

ā�k = argmin ‖Gk.āk −αk‖ (9)

= (GT
kGk)

−1GT
k αk (10)

Substituting this solution in Eq. 7, and denoting Lk = I|wk|+3 −
Gk(G

T
kGk)

−1GT
k , where I|wk|+3 is the identity matrix of size (|wk|+ 3), we

obtain, J(α) =
∑

k ‖Lkαk‖ =
∑

k(α
T
k L

T
kLkαk). Making the additional obser-

vation that

LT
k Lk = (I|wk|+3 −Gk(G

T
kGk)

−1GT
k )

T (I|wk|+3 −Gk(G
T
kGk)

−1GT
k )

= I|wk|+3 +Gk(G
T
kGk)

−1GT
kGk(G

T
kGk)

−1GT
k − 2Gk(G

T
kGk)

−1GT
k

= I|wk|+3 −Gk(G
T
kGk)

−1GT
k = Lk

we can write J(α) =
∑

k(α
T
kLkαk). To complete the proof we need to find the

expression for Lk|i,j .
Noting the identity E[X2] = σ2

XX + E[X ]2, denoting the individual channel
means E[R] as R, we can write

GT
k Gk = |wk|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A︷ ︸︸ ︷⎛
⎜⎝
σ2
RR +R2 + ε

|wk| σ2
RG +RG σ2

RB +RB

σ2
GR +GR σ2

GG +G2 + ε
|wk| σ2

GB +GB

σ2
BR +BR σ2

BG +BG σ2
BB +B2 + ε

|wk|

⎞
⎟⎠

D︷ ︸︸ ︷⎛
⎝R
G
B

⎞
⎠

(
R G B

)
︸ ︷︷ ︸

DT

1︸︷︷︸
C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where we have divided the matrix into 4 components. Note that D = μk for the
kth window. Inverse of the above system can now be written as ([14])

(GT
kGk)

−1 =
1

|wk|
[
P Q
R S

]
P = (A−DC−1DT )−1 = (A−DDT )−1

=

⎡⎢⎣σ
2
RR + ε

|wk| σ2
RG σ2

RB

σ2
GR σ2

GG + ε
|wk| σ2

GB

σ2
BR σ2

BG σ2
BB + ε

|wk|

⎤⎥⎦
−1

= Σ̃
−1

k

Q = −P (DC−1) = −PD = −Σ̃
−1

k μk

R = −(C−1DT )P = −DTP = −μT
k Σ̃

−1

k

S = C−1 −R(DC−1) = 1−RD = 1 + μT
k Σ̃

−1

k μk
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Putting all the terms together, we can write

(GT
kGk)

−1 = 1
|wk|

[
Σ̃

−1

k − Σ̃
−1

k μk

−μT
k Σ̃

−1

k 1 + μT
k Σ̃

−1

k μk

]
(12)

Gk(G
T
kGk)

−1 = 1
|wk|

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(I1 − μk)
T Σ̃

−1

k 1− (I1 − μk)
T Σ̃

−1

k μk

(I2 − μk)
T Σ̃

−1

k 1− (I2 − μk)
T Σ̃

−1

k μk
...

...

(Iwk
− μk)

T Σ̃
−1

k 1− (Iwk
− μk)

T Σ̃
−1

k μk√
εΣ̃

−1

k

√
εΣ̃

−1

k μk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Right multiplication by GT
k yields the final symmetric form, where we show only

the ith column for conciseness and ease of understanding

Gk(G
T
kGk)

−1GT
k [:, i] =

1

|wk|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + (I1 − μk)
T Σ̃

−1

k (Ii − μk)

1 + (I2 − μk)
T Σ̃

−1

k (Ii − μk)

1 + (I3 − μk)
T Σ̃

−1

k (Ii − μk)
...

1 + (Iwk
− μk)

T Σ̃
−1

k (Ii − μk)

εΣ̃
−1

k (Ii − μk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Subtracting from I|wk|+3 and summing over k concludes the proof. Note that
Gk has 3 extra rows, (or C extra rows for general case) for the regularization ε.
These can be neglected in the final expression since they do not explicitly effect
the other computations. �

3 Bi-affinity Filter

The laplacian matrix L, whose elements are defined in Eq. 6, is called the matting
laplacian [10]. The usual decomposition of the laplacian matrix into a diagonal
matrix and a weight matrix leads to the formulation L = D−W. Here D is
a diagonal matrix with the terms Dii = #[k|i ∈ wk] at its diagonal, which
represents the cardinality of the number of windows the pixel i is a member of.
The individual terms of the weight matrix W, called the matting affinity, are
given by

Wij =
∑

k|(i,j)∈wk

1

wk
(1 + (Ii − μk)

T (Σk +
ε

wk
I3)

−1(Ij − μk)) (14)

By definition, all the rows of a laplacian matrix sum to zero, which leads toDii =∑
jWij . At the local minima the solution α� satisfies the first order optimality
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condition LTα� = 0. So we can write the optimal condition for minimizing J(α)
as

LTα� = (D−W)Tα� =

⎛⎜⎜⎜⎜⎜⎝
D11α

�
1 −∑

jW1jα
�
j

D22α
�
2 −∑

jW2jα
�
j

...
...

Dnnα
�
n −∑

jWNjα
�
j

⎞⎟⎟⎟⎟⎟⎠
Substituting Dii =

∑
j Wij into the above system of equations and invoking the

first order optimality condition leads to⎛⎜⎜⎜⎝
∑

j(α
�
1 − α�

j )W1j∑
j(α

�
2 − α�

j )W2j

...∑
j(α

�
n − α�

j )Wnj

⎞⎟⎟⎟⎠ = 0 (15)

The effect of this equation is that the affinity Wij for two pixels with the same
color (same α�), is a positive quantity varying with the homogeneity of the local
windows containing the pixels i and j as governed by Eqn. 14. But for pixels
with different color (different α�) the affinity is zero. In essence the rows of the
laplacian matrix L work as a zero-sum filter kernel, after appropriate resizing. For
our proposed filter, we replace the range filter of traditional bilateral filter with
the appropriate row from the matting laplacian. This leads to the formulation
of the bi-affinity filter

hσ,ε(x) =

∑
y∈Ωx

fσ
s (x, y)L

ε
xyI(y)∑

y∈Ωx
fσ
s (x, y)L

ε
xy

(16)

where we denote the dependence on the user specified parameters σ, ε on the filter
output. The parameter σ controls the amount of spatial blurring and is same
as the spatial filter variance in standard bilateral filter. The parameter ε works
analogous to the range variance parameter in traditional bilateral filter. Note
that the relative weight attributed to the regularization term ε, determines the
smoothness of the α estimates, which in our work translates to the smoothness
of the filtered image. Bilateral filter has an inherent bending effect at the edges,
which can be observed in the very simple experiment shown in Fig. 2. Bi-affinity
filter does not smooth the edge, due to the affinity formulation which is zero
across the edge. This effect can be achieved by bilateral filtering only under
infinite range variance.

The calculation of the exact affinity matrix Wij as mentioned in Eqn. 14,
involves evaluation over all possible overlapping windows, which contain the
center pixel, which is O(w3), where w is the size of the window. The overall
complexity can be reduced by evaluating the affinity over a smaller set of possible
windows. In the simplest case, we can evaluate the terms ofWi,j locally, thereby
counting the contribution of only the local window centered at the current pixel
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Fig. 2. Left to right: original edge, bilateral filtering, bi-affinity filtering. Note the edge
curves slightly for the bilateral result.

(Fig. 3, right), and the complexity is equal to normal bilateral range filter, which
is O(w2). To keep the later comparisons with bilateral filter fair, we define an
approximate filter denoted by hl(x)

hl(x) =

∑
y∈Ωx

fs(x, y)L
x
xyI(y)∑

y∈Ωx
f
(
sx, y)Lx

xy

(17)

which considers only the local window centered around pixel x denoted by Lx.
Note that we have dropped the dependence on the user specified parameters σ, ε
for notational simplicity.

Fig. 3. Left: all possible 3 × 3 neighborhood windows (brown) for center pixel (red)
and neighbor (blue). Right: central window only approximation.

The operations involved in computing the terms Lij ’s as mentioned in Eqn. 6,
can be decomposed as summation of Gaussian likelihoods over window depen-
dent parameters μw,Σw. These parameters can be computed by accumulating
first and second order sufficient statistics over windows. If memory complexity
is not an issue then pre-computing 9 integral images can be an option. These
9 integral images correspond to 3 integral images for each of the channels R, G
and B, 3 for RR, GG and BB and the remaining 3 for RG, GB and RB. For 3 channel
color images, this is equivalent to storing 3 more images into the memory. For
really large images (HDTV etc.) this option might not be the most optimal due
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to the huge memory overhead. The other method is to collect sufficient statistics
for the current window and then updating the statistics for each unit move from
top to bottom and left to right, as proposed by the median filtering approach
by Huang [15] and then improved by Weiss [16]. Both these methods can now
be used to implement the bi-affinity filter.

4 Experiments

The regularization term in the affinity formulation works as an edge smoothness
term. For understanding the effect of this term we vary the amount of regular-
ization used for the process and record the PSNR with respect to the original
image. We report the results with respect to the window size in Fig. 4. The
PSNR degrades for larger window size, which further corroborates the two color
model which is valid only for small windows. The regularization term neutral-
izes the effect of window size to a certain degree as seen by the band of values
collecting near PSNR 96DB. This hints at a possible tradeoff between PSNR
and edge smoothness. For very small regularization values, the noise across the
edge can contribute to the jaggedness of the reconstruction. This effect can be
countered by increasing the amount of regularization. But this increase comes at
a cost, which is the increased smoothness of the overall image. Empirically, we
have obtained good results for larger window sizes by keeping the regularization
term relatively larger than proposed in the matting literature. The effect of reg-
ularization for fixed window size can be seen in Fig. 5. The edge reconstruction
becomes increasingly jagged as the amount of regularization is decreased.

For quantitative comparisons against traditional bilateral filter, we concen-
trate on the range filter variance of 0.1 to 1 and vary the window size to obtain

Fig. 4. PSNR with respect to ground truth. The colors depict the window size. The x
axis depicts the regularization in log scale such that ε = 10x.
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Fig. 5. Effect of regularization term ε. From left to right: ε = 0.0005, 0.005, 0.05, 0.5.
The edge becomes gradually smoother with increasing ε as can be seen at the inset
images.

the curves in Fig. 6. The PSNR values obtained for our method are within ac-
ceptable deviations from those obtained for CIELAB bilateral filter, and surpass
the performance at ε = 1 and w = 5. Also note that Fig. 6 is a zoomed in
version of Fig. 4, at x=[-1,0], approximately coinciding with the beginning of
the knot.

Fig. 6. PSNR comparisons. Left: ε = σr = 0.1, right: ε = σr = 1. σd = 5

In the next experiment, we present comparison of the approximate bi-affinity
filter with traditional bilateral filter. This results are illustrated in Fig. 7. The
response is very similar even though in our method we do not need any color
conversions. For the bilateral filter, the RGB image is converted to CIELAB
space and then the filter is applied individually to each channel.

4.1 Image Enhancement and Zooming

The original bi-affinity filter (Eqn. 16), has been derived from the matting lapla-
cian formulation, which has been shown to preserve very minute details which
is one of the requirements of matting [10]. In other words, our bi-affinity formu-
lation preserves very intricate details of the image when compared to bilateral
filter where only the dominant edges of the image are preserved. In this regard
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Fig. 7. Top: left: original image, right: RGB bilateral filter. Bottom: left: CIELAB
bilateral filter, w = 11, σd = 5, σr = 0.1, right: our method, ε = 0.1.

bi-affinity filter can be thought of as preserving all edges, whereas bilateral fil-
ter only preserves strong edges. This important feature leads us to one of the
most interesting applications of such a filter which is image enhancement and
zooming.

Image enhancement techniques try to estimate the high-resolution data from
the low-resolution data by estimating the missing information. This leads to
numerous formulations, some learning based and some interpolation based. If
the missing high-resolution data can be inferred, then it can be added to the
interpolated input (which satisfies the data fidelity constraints) to generate the
high-resolution image [17]. Given the low-resolution input in Fig. 8, we can
interpolate it to the desired high-resolution size, and then add the missing high-
resolution info to generate the final high-resolution result. The mean affinity at
each pixel, which is the row wise normalized summation of W , contains this
missing detail. This detail is shown in Fig. 8, center panel. The bi-affinity filter
places a smoothed local affinity weighted kernel at each pixel. The enhancement
effect is a byproduct of the filtering formulation and not the main aim of this
work. We realize that existing methods, more so the iterative techniques [18],
can use a formulation similar to ours to refine the estimate at each step.

Like many other passive filtering techniques, e.g. bilateral, bicubic, etc., our
method only looks at the low-resolution observation to generate the values of the
high-resolution scene. Active methods such as Markov random field (MRF) based
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Fig. 8. Image enhancement. Left: input image is enlarged by a factor 2 (bicubic inter-
polation). The mean affinity map for all pixels (center), and the final enhanced image
(right).

models, impose neighborhood continuity constraints. We proposed to investigate
the details of such a model with the bi-affinity filter as one of its components,
as a future work. Additional examples of comparisons against zooming and then
post-processing with bilateral filter compared to our technique is shown in Fig. 9.

5 Conclusion and Future Work

In this paper, we have proposed a new edge preserving filter, which works on the
principle of matting affinity. We present a full n-channel derivation of the matting
laplacian. The formulation of matting affinity allows a better representation of
the range filter term in bilateral filter class. The definition of the affinity term
can be relaxed to suit different applications. We define an approximate bi-affinity
filter whose output is shown to be very similar to the traditional bilateral filter.
Our technique has the added advantage that no color space changes are required
and hence the images can be handled in their original color space. This is a big
benefit over traditional bilateral filter, which needs a conversion to perception
based spaces, such as CIELAB to generate better results. The full bi-affinity filter
preserves very minute details of the input image, and can be simply extended to
an image enhancement application. The implementation of the filter still remains
a challenge due to the small window requirement arising from the two color model
constraint. We propose a diligent effort in this area, since it is evident that the
kernel evaluation can be optimized in more ways than one.
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Fig. 9. Image Zooming by a factor 2x. Left column: bi-cubic interpolation + bilateral
filter. Right column: our method. Notice the preservation of small details in all the
images.



40 M. Das Gupta and J. Xiao

References

1. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV
1998: Proceedings of the Sixth International Conference on Computer Vision, p.
839. IEEE Computer Society, Washington, DC (1998)

2. Wells III, W.: Efficient synthesis of gaussian filters by cascaded uniform filters.
IEEE Trans. Pattern Anal. Mach. Intell. 8 (1986)

3. Geusebroek, J., Smeulders, A., van de Weijer, J.: Fast anisotropic gauss filtering.
IEEE Transactions on Image Processing 12, 2003 (2002)

4. Lu, W.S., Wang, H.P., Antoniou, A.: Design of two-dimensional digital filters us-
ing the singular-value decomposition and balanced approximation method. IEEE
Trans. Signal Process. 39, 2253–2262 (1991)

5. Paris, S., Durand, F.: A Fast Approximation of the Bilateral Filter Using a Signal
Processing Approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3954, pp. 568–580. Springer, Heidelberg (2006)

6. Porikli, F.: Constant time o(1) bilateral filtering. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR (2008)

7. Yang, Q., Tan, K.H., Ahuja, N.: Real-time o(1) bilateral filtering. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR (2009)

8. Omer, I., Werman, M.: Color lines: Image specific color representation. In: CVPR
(2004)

9. Bando, Y., Chen, B.Y., Nishita, T.: Extracting depth and matte using a color-
filtered aperture. ACM Transactions on Graphics 27, 134:1–134:9 (2008)

10. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image mat-
ting. In: CVPR (2006)

11. Bennett, E., Uyttendaele, M., Zitnick, C., Szeliski, R., Kang, S.: Video and Image
Bayesian Demosaicing with a Two Color Image Prior. In: Leonardis, A., Bischof,
H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 508–521. Springer, Heidelberg
(2006)

12. Joshi, N., Zitnick, C., Szeliski, R., Kriegman, D.: Image deblurring and denoising
using color priors. In: CVPR (2009)

13. Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estima-
tion and removal of noise from a single image. PAMI 30, 299–314 (2008)

14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes
in C: the art of scientific computing, 2nd edn. Cambridge University Press, New
York (1992)

15. Huang, T.S.: Transforms and median filters. In: Two-Dimensional Signal Process-
ing II, pp. 209–211. Springer, Berlin (1981)

16. Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25, 519–526
(2006)

17. Fattal, R.: Image upsampling via imposed edge statistics. In: SIGGRAPH (2007)
18. Irani, M., Peleg, S.: Motion analysis for image enhancement. In: JVCIP (1993)



Photometric Color Calibration

of the Joint Monitor-Camera Response Function

Tobias Elbrandt and Jörn Ostermann

Institut für Informationsverarbeitung
Leibniz Universität Hannover

Appelstraße 9A, 30167 Hannover, Germany
{elbrandt,ostermann}@tnt.uni-hannover.de

http://www.tnt.uni-hannover.de

Abstract. When recording presentations which include visualizations
displayed on a monitor or with a video projector, the quality of the cap-
tured video suffers from color distortion and aliasing effects in the display
area. A photometric calibration for the whole image can not compensate
for these defects. In this paper, we present a per-pixel photometric cali-
bration method that solves this problem. We measure the joint monitor-
camera response function for every single camera pixel by displaying red,
green, and blue screens at all brightness levels and capture them sepa-
rately. These measurements are used to estimate the joint response func-
tion for every single pixel and all three color channels with the empirical
model of response (EMoR). We apply the estimated response functions
on subsequent captures of the display to calibrate them. Our method
achieves a mean absolute error of about 0.66 brightness levels, averaged
over all pixels of the image. The performance is also demonstrated with
a calibration of a real captured photo, which is hardly distinguishable
from the original.

1 Introduction

Recordings of presentations which are based on or make use of a computer
monitor or digital video projector often suffer from bad image quality in the
recorded presentation screen area. This is due to imperfect color reproduction,
aliasing effects and low radiance in these regions. Hence, a calibration of the
captured video signal is necessary.

The photometric calibration of cameras is the method to estimate the response
function f as the relation between the image irradiance E captured in time t
and measured as brightness B.

f(Et) = B (1)

To calibrate a measured brightness B, the corresponding integrated image irra-
diance I = Et has to be determined by

I = f−1(B) (2)

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 41–49, 2012.
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This type of camera image calibration is a vital topic, as it is a precondition for a
lot of technology like image stitching, high dynamic range, shape-from-shading,
and photometric stereo. Different approaches have been pursued to estimate the
aforementioned relation, f . In most cases, parametric models, like gamma curves
[1–3] or higher-order polynomials [4] are used. In contrast, a PCA based empirical
model which generalizes the response functions of several real-world cameras
was developed in [5]. Using a gamma function model gives an advantage, as it
is inherently invertible whereas most other approaches make numerical means
necessary to determine Eq. (2). Most of the methods only calibrate grayscale
images, while [2] differentiates between different color channels.

The calibration of the monitor itself is an important issue for photographers,
in order to make displayed photos match the captured ones. The gamma values
needed to correctly display photographs taken by a consumer DSLR camera are
determined in [6]. To provide a correctly proportional presentation of medical
softcopy images, the monitor can be calibrated using a look-up-table measured
with a luminance sensor [7].

Our goal is to compensate color distortions and Moiré effects, while capturing
images from monitors. In this work, we will focus on the calibration of joint
monitor-camera response functions, assuming that the method would be quite
similar for a digital video projector. In order to get an understanding of the
calibration procedure, we start with a concise description of the system. We
divide the estimation of the combined monitor-camera response function in a
pre-estimation of the monitor gamma, followed by an accurate estimation of the
remaining camera response function for every single pixel, using the eigenvec-
tors of the Empirical Model of Response (EMoR) database [5]. The performed
experiments show that this two-step approach has good results. Finally, we ap-
ply the estimated calibration parameters to a real photograph. The last section
concludes our paper.

2 Method for Calibrating the Joint Monitor-Camera
Response Function

Our calibration method calibrates a camera that captures images from an LCD
monitor. For this, a camera captures the monitor screen, filled with one of the
three color channels, at different brightness levels. First, we analyze the used
components, and then describe the calibration procedure.

2.1 Signal Generation and Reception

An ordinary LCD monitor provides a flat screen that can display color images
consisting of three color planes – red, green, and blue. Normally, it also features
a gamma curve, i.e. the light output is related exponentially to the displayed
intensity value. There is always some additional low amplitude noise on the
intensity. As the monitor also emits light when displaying only black pixels, the
signal is biased. Every monitor pixel is divided into three sub-pixels, one for
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each of the red, green, and blue color channels. When displaying white color,
all sub-pixels are switched on, whereas when displaying green, the red and blue
sub-pixels are blocked.

The camera maps light emitted by the monitor onto a two dimensional array
of light sensitive camera pixels. In case of a single-chip color camera, which is
commonly used, there is a color filter in front of every camera pixel, allowing
only light within a certain bandwidth of the light spectrum to pass. The so
called Bayer-pattern is the most widely-used sort of color filter arrays, with one
red, two green, and one blue color filter for each 2× 2 pixels. The passbands of
the filters overlap a bit, such that the green pixels are also sensitive to the red
and blue light spectrum. Some sources of noise between the reception of light
and the output of digital values for the camera pixels add a bias and zero-mean
noise [8]. While the signal output of every single camera element – apart from
being quantized – is proportional to the gathered light, it is often adjusted by
the camera to get better images for human eyes.

The combination of monitor and camera adds two effects that substantially
influence the signal reception: Since the quantity of light emitted by the monitor
pixels decreases with the angle of radiation, the incident light perceived by the
camera depends on the viewing angle. Another effect is the Moiré, caused by
aliasing due to the rasterization of both the LCD monitor and camera.

Figure 1 illustrates both effects in a graph showing brightness levels measured
at adjacent red, green, and blue color elements of one image column, when the
camera captured a red, green, and blue monitor screen, respectively. The aliasing
causes the waves, while the angle dependent light emission is responsible for the
respective base curve. Both influences on a real image can be observed in Fig. 4
a). It is also evident that the waves caused by the aliasing feature different
phases. The phase shifts are due to the different spatial positions of both the
monitor sub-pixels and the Bayer mosaic of the camera target elements for the
three color channels. Comparing the curves of two diagonally adjacent green
elements of the Bayer pattern (Fig. 1, right) shows that the aliasing component
is rotated about 180◦ between them.

2.2 Two-Step Calibration Procedure

Considering the analysis above, we pursue the following strategy to calibrate the
joint monitor-camera setup:

– Average several captured monitor images to minimize the influence of noise
and quantization.

– Measure the response function separately for the base color channels as they
measure overlapping bands of the light spectrum.

– Compensate the monitor’s gamma separately, as it is not explicitly modeled
by the camera response function.

– Calibrate the response function for every single pixel, as it greatly depends
on the position.
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Fig. 1. Left: Brightness levels of the red, green, and blue camera image elements in one
column when capturing a red, green, or blue screen, respectively. The Moiré effect is
visible in the low amplitude waves, while the base curve shows the general angle depen-
dent light perception. A calibrated camera would show lines with constant brightness
levels. Right: The center part of the curves of the two green elements illustrates that the
phase shift of the aliasing wave depends on the position of the camera target element.

Compensating the Monitor’s Gamma: The first step of our method is to
analyze and compensate the monitor’s gamma. Assuming that both the moni-
tor brightness fm and the camera response function fc approximately follow a
gamma curve, we can combine both gammas. In addition to the signal biases β
of the monitor and camera, this leads to the rough approximation Eq. (3) for the
joint monitor-camera response function fmc in relation to the integrated image
irradiance I.

fmc(I) = fc(fm(I)) = λc (λmI
γm)

γc = λIγ

withλ = λcλ
γc
m and γ = γcγm

fmc(I) = λIγ + β (3)

We display red, green, and blue screens with increasing intensities i, and cap-
ture them N times each, as Ĉc,i,n(x, y) ∈ [0 . . . 255], c ∈ {red, green, blue},
i = 0 . . .M -1, x = 0 . . . wc-1, y = 0 . . . hc-1. The constants wc and hc denote the
width and height of the camera target, respectively, and the perceived light in-
tensities are quantized to 256 steps. All pixels of the images taken for an intensity
are then averaged to the mean captured brightness

B̂c(i) =
1

wchcN

∑
x,y

N∑
n=1

Ĉc,i,n(x, y). (4)

Using these measurements, the parameter sets {λ, γ, β}c for all colors c are de-
termined using a power regression with offset, i.e. the values for λ, γ, and β are
estimated to minimize the error between the measurements B̂c and Eq. (3).

The monitor is now set to the three gamma values calculated. This actually
leads to an output signal of the camera, which is on average, approximately
linear.
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Estimating the Monitor-Camera Response Function: For the second
step, the display-capture procedure described above is repeated, with the camera
capturing the now gamma-calibrated monitor. Again, we measure pixel bright-
ness Ĉc,i,n(x, y) which are now averaged to:

B̂c,i(x, y) =
1

N

N∑
n=1

Ĉc,i,n(x, y). (5)

Therefore, we have measurements which describe what camera brightness B̂
was received at pixel position (x, y), when the screen displayed the color c with
intensity i. Depending on the type of the Bayer pattern of the camera, only 1 (red
or blue) or 2 (green) measurements of each 2× 2 pixels are taken into account.
For example, our camera has an RGGB pattern, so we only regard measurements
of the red images at positions where both x and y are even, and likewise, the
data of the blue raw images are only regarded at positions where both x and
y are odd. The green images are only taken into account at the two remaining
positions. Hence, only one of three vectors f̂c(x, y) = {B̂c,0, . . . , B̂c,M−1} remains
for each position.

We tested several methods to calibrate images per-pixel using the vectors
f̂c(x, y) and found that EMoR [5] outperformed the other techniques. Grossberg
and Nayar unified 201 films and cameras to 25 PCA eigenvectors hm and an
average vector f0. Using these vectors1, the measurements B̂ are approximated
for all positions (x, y) and the respective color channel c with H = [h1 . . . h25]:

a = H+

(
B̂ − b0
b1 − b0

− f0

)
(6)

B̃ = f0 +Ha (7)

Here, H+ =
(
HTH

)−1
HT is the Moore-Penrose inverse of H , and b0 = min(B̂)

and b1 = max(B̂) are normalization coefficients to map B̂ onto the interval
[0 . . . 1]. The first two coefficients a1 and a2 for the three color channels are
shown in Fig. 2 a-c). Figure 2 d) shows the average vector f0 and the two most
significant eigenvectors h1 and h2.

Both the measurements B̂ and the approximation B̃ provide camera picture
brightness B against displayed intensity I on the screen, i.e. f(I) = B. In order
to calibrate images, we have to invert this relation to f−1(B) = I. This has to
be done numerically, as no underlying invertible function is known for a linear
combination of f0 and hi. Our calibration procedure therefore finishes with re-
placing the intensity of every camera pixel with the value of the corresponding
inverted relation B̃−1

c (x, y). We also calibrated using the set of inverted EMoR

PCA vectors hinv1 , . . . , hinv25 , also provided by the authors.

1 The vector data can be downloaded under http://www.cs.columbia.edu/CAVE/

software/softlib/dorf.php

http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
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a) red b) green

c) blue d) EMoR vectors f0, h1, h2

Fig. 2. Point-clouds of the distributions of the most significant coefficients a1 and a2

for the PCA vectors a calculated with Eq. (6) of the color channels a) red, b) green,
and c) blue over all pixel positions. It can be observed that the coefficients vary greatly
between pixels and color channels. This means that the resulting EMoR approximations
diverge between different pixel positions. Fig. d) displays the EMoR average vector f0
and the most significant vectors h1 and h2.

3 Experiments

For our experiments, we captured a Samsung 910T 19” TFT monitor with a
Prosilica EC1380C FireWire camera. Both the brightness level of the monitor
and the exposure time of the camera were adjusted, such that no signal clipping
occurred.

In three loops, full-screen rectangles with increasing intensity from black to full
amplitude were displayed on the monitor for the red, green, and bluecolor chan-
nels. Each of the screens was captured N=16 times and averaged to minimize
noise effects, as well as quantization errors. For the first step, we obtained the
measurements B̂c(i). Their approximation with Eq. (3) resulted in the gamma
values 2.02, 1.965, and 1.886 for the three channels. The monitor gamma was
set to these values.

Then, we repeated the display-capture procedure to receive measurements
B̂c,i(x, y), which were then approximated to B̃c(x, y) using Eq. (6) and Eq. (7).

To get another set of test data B̂′
c,i(x, y), this procedure was repeated again.
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Fig. 3. Root mean square error of the calibration with EMoR and gamma approxi-
mation. The errors of both methods rise with increasing intensity level. Comparing
the run of the error curve of the gamma approximation with the curves of h1 and h2,
shown in Fig. 2 d), reveals a certain similarity; these small variations of the response
functions from the gamma curve are also covered by EMoR.

We started our evaluation of the calibration procedure itself with ground-truth
data. For this purpose, we took the values of the images B̂′

c,i(x, y) and calibrated

them with B̃c(x, y). A perfect calibration should have the result i. The root
mean square error (RMSE) between ground-truth i and the calibration results is
shown in Figure 3. We included the corresponding graph for a calibration made
with an approximated gamma curve; EMoR clearly outperforms the gamma
based method, even though both methods are appropriate for our purposes.
Table 1 summarizes and compares calibration errors for different techniques.
We evaluated the calibrations both with and without a pre-gamma-corrected
monitor (step one). The first line displays the results of calibration with per-
pixel estimated gamma-curve. Using the measured values B̂c,i directly as a look-
up-table, results in the errors shown in the second line; although measured with
averaged captures, they are still too noisy to be directly used. A calibration with
the inverse EMoR vectors hinv1 , . . . , hinv25 is displayed in the second to last line.
The direct inversion of the calibration with the approximated B̃c,i using the
above mentioned EMoR vectors h1, . . . , h25, outperformed the other methods.

After the calibration procedure, we want to show the outcome of our method.
For this purpose, we displayed a photograph one color plane after another on
the screen and captured it as raw images with the camera. The respective bayer
pixels were extracted from each image, e.g. only the even pixel positions of the
red capture. These were calibrated using our method, and again put together to

Table 1. Overall measurement of the errors of different calibration procedures. Dis-
played are the mean absolute error (MAE) and the root mean square error (RMSE)
in brightness levels [0 . . . 255], for calibrations without or with compensation of the
monitor’s gamma (step one).

not gamma corrected gamma corrected
method MAE RMSE MAE RMSE

gamma 2.419 3.119 1.103 1.426

look-up-table 0.928 2.213 0.740 1.012

EMoR inverse 1.107 2.558 0.679 0.913

EMoR direct 0.853 2.117 0.662 0.893
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a) captured b) calibrated

Fig. 4. Photograph a) captured from the screen; the colors are dull and aliasing ef-
fects are evident in the colored waves. In the calibrated image b), both effects are
compensated. Note that the image is still radially distorted.

a) original b) de-calibrated

Fig. 5. The screen shot a) was blurred and then de-calibrated to get an appearance b)
as if it was captured by a camera from the monitor

form a calibrated raw image, which was finally demosaiced. The result is shown
in Fig. 4. Both the aliasing and color distortions are perfectly compensated.

For the authentic synthesis of scenes including a monitor, a realistic color
distortion might be desired for the visible area of the screen. To make an image
look like if it was captured by our camera from a monitor, we took a normal
screen shot of a browser window (Fig. 5 a), added minor Gaussian blur, and
de-calibrated it directly with B̃c(x, y). The result is shown in Fig. 5 b).

4 Conclusion

We presented a method to calibrate color images from a monitor screen that
were captured by a camera. Our calibration procedure works in two steps. First,
it estimates the gamma of the monitor, and then it approximates the camera
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response curve using the EMoR model. Both estimations are performed using
camera captures of the monitor, subsequently displaying different brightness
levels. The mean absolute error achieved with our method is 0.662 intensity
levels, with a root mean squared error of 0.893. With the calibration of a real
captured photograph, we showed that undesirable effects, like Moiré and color
distortion, are completely compensated.
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Abstract. The Laplace-Beltrami operator is an extension of the Lapla-
cian from flat domains to curved manifolds. It was proven to be use-
ful for color image processing as it models a meaningful coupling
between the color channels. This coupling is naturally expressed in
the Beltrami framework in which a color image is regarded as a two
dimensional manifold embedded in a hybrid, five-dimensional, spatial-
chromatic (x, y,R,G,B) space.

The Beltrami filter defined by this framework minimizes the Polyakov
action, adopted from high-energy physics, which measures the area of the
image manifold. Minimization is usually obtained through a geometric
heat equation defined by the Laplace-Beltrami operator. Though efficient
simplifications such as the bilateral filter have been proposed for the
single channel case, so far, the coupling between the color channel posed
a non-trivial obstacle when designing fast Beltrami filters.

Here, we propose to use an augmented Lagrangian approach to design
an efficient and accurate regularization framework for color image pro-
cessing by minimizing the Polyakov action. We extend the augmented
Lagrangian framework for total variation (TV) image denoising to the
more general Polyakov action case for color images, and apply the pro-
posed framework to denoise and deblur color images.

Keywords: Laplace-Beltrami, diffusion, optimization, denoising, PDEs.

1 Introduction

Variational, nonlinear diffusion filters have been extensively used in the last two
decades for different image processing tasks. Numerical schemes implementing
them are designed with an emphasis on accuracy, stability and computational
efficiency. While a many of the works on image regularization involve greyscale
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images, only a small portion has made a coherent attempt at regularizing vector-
valued signals.

These works, several of which are inspired by [39], describe regularization
functionals which operate on vector-valued images. These include the works of
Sapiro and Ringach [27], Blomgren and Chan [4], and Sochen et. al. [30], as well
as more recent works such as ([34,14]). The Beltrami framework [30] describes
a regularizing functional, well suited for color image processing, which can be
justified by the Lambertian model of color image formation. The framework
considers the image as a 2-manifold embedded in a hybrid spatial-feature space.
Regularization of the image in this framework is expressed as minimization of
area surface. The Beltrami filter is strongly related to the bilateral filter (see
[37], [28], [33], [29], [13], [3]), as well as to the nonlocal means filter, proposed
in [1]. Minimization of the associated functional is usually done by evolving
the image according to its Euler-Lagrange equation [30]. This evolution, using
an explicit scheme, is limited in its time step, resulting in high computational
complexity. Another possibility [2] is to perform a fixed-point iteration from
the Euler-Lagrange equation. Recently, several approaches were suggested for
improving the speed of computation of minimizers for the Polyakov action [22].
Those include an approximation of the Beltrami filter kernel [31], as well as
employing vector extrapolation techniques [24], or operator splitting methods
[11]. For the case of gray-scale images, the projection-based method [8] has been
extended to the Polyakov function [5], with no suggestions made for vector-
valued images.

In [32], the augmented Lagrangian method [15,23] is used to perform TV
regularization of images. In this paper we propose to use a similar constrained
optimization for regularization of color images. Instead of discretizing the con-
tinuous optimality condition or the resulting Beltrami flow, we minimize the
discretized Polyakov action itself. The resulting method is shown to be more
efficient and accurate for image denoising and deblurring, compared to existing
methods for Beltrami regularization in image processing. In Section 2 we review
the Beltrami framework for color image regularization. In Section 3 we extend
the coupled constrained optimization approach demonstrated in [32] to regular-
ize color images by the Polyakov action. In Section 4 we display results of using
our method for deblurring color images. Section 5 concludes the paper.

2 The Beltrami Framework

We now briefly review the Beltrami framework for non-linear diffusion in com-
puter vision [18,30,38]. The basic notions used in this introduction are taken
from Riemannian geometry, and we refer the reader to [12] for further reading.

In the Beltrami framework, images are expressed as maps between two Rie-
mannian manifolds. Denote such a map by X : Σ → M , where Σ is a two-
dimensional manifold, parameterized by global coordinates (σ1, σ2), and M is
the spatial-feature manifold, embedded in R

d+2, where d is the number of im-
age channels. For example, a gray-level image can be represented as a surface



52 G. Rosman et al.

embedded in R
3. The map X in this case is X(σ1, σ2) = (σ1, σ2, I(σ1, σ2)),

where I is the image intensity. For color images, X is given by X(σ1, σ2) =
(σ1, σ2, I1(σ1, σ2), I2(σ1, σ2), I3(σ1, σ2)), where I1, I2, I3 are the color compo-
nents (for example, red, green, blue for the RGB color space).

Next, we choose a Riemannian metric on this surface. Its components are
denoted by gij . The canonical choice of coordinates in image processing uses
Cartesian coordinates σ1, σ2 = x, y. We denote the elements of the inverse of the
metric by superscripts gij , and the determinant by g = det(gij).

Once images are defined as Riemannian embeddings, we can look for a measure
on this space of embedding maps. Denote by (Σ, g) the image manifold and its
metric, and by (M,h) the space-feature manifold and its metric. The functional
S[X ] characterizes the mapping X : Σ →M , and is defined to be

S[X, gij, hab] =

∫
dmσ

√
g||dX ||2g,h, (1)

where m is the dimension of Σ, g is the determinant of the image metric, and
the range of indices is i, j = 1, 2, ..., dim(Σ) and a, b = 1, 2, ..., dim(M). The
integrand ||dX||2g,h is given by ||dX ||2g,h = (∂xiI

a)gij(∂xjI
b)hab. We use here

Einstein’s summation convention: identical indices that appear up and down
are summed over. This functional, for dim(Σ) = 2 and hab = δab, is known in
string theory as the Polyakov action [22], and extends the action functional from
classical mechanics to the relativistic case.

In the case of color images, where both the spatial and the color spaces are
assumed to be Cartesian, the metric becomes

(gij) =

(
1 + β2

∑3
a=1(I

a
x1
)2 β2

∑3
a=1 I

a
x1
Iax2

β2
∑3

a=1 I
a
x1
Iax2

1 + β2
∑3

a=1(I
a
x2
)2

)
= G,

where a subscript of Ia denotes a partial derivative and the parameter β > 0
determines the ratio between the spatial and color coordinates. The functional
becomes

S(X) =

∫ √
g dσ1 dσ2, g = det(G) = 1 + β2

3∑
a=1

‖∇Ia‖2 + β4

2

3∑
a,b=1

‖∇Ia ×∇Ib‖2,

The role of the cross product term
∑3

a,b=1 ‖∇Ia × ∇Ib‖2 in the regularization
was explored in [18],[17]. It penalizes deviations from the Lambertian model of
image formation [18], or specifically – misalignment of the gradient directions
between color channels.

The functional S is usually minimized by time evolution of the image accord-
ing to the Euler-Lagrange equations,

Iat = − 1√
g
hab

δS

δIb
=

1√
g
div (D∇Ia)︸ ︷︷ ︸

ΔgIa

, (2)
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where the matrix D =
√
gG−1. See [30] for explicit derivation. The operator

Δg generalizes the Laplacian to manifolds, and is called the Laplace-Beltrami
operator. Evolution according to these equations result in the Beltrami scale-
space.

The functional can also be generalized to the family of functionals

∫ √√√√β1 + β2

3∑
a=1

‖∇Ia‖2 + β3

3∑
a,b=1

‖∇Ia ×∇Ib‖2, (3)

for any positive β1, β2, β3. While this approach cannot be explained by the min-
imal area interpretation, it makes sense in terms of color image restoration, and
will be used in the results shown in Figure 4.

In the variational framework, the reconstructed image minimizes a cost-
functional of the form

Ψ =
α

2

3∑
a=1

‖KIa − Ia0 ‖2 + S(X),

where K is a bounded linear operator. In the denoising case, K is the identity
operator Ku = u, and in the deblurring case, Ku = k ∗ u, where k(x, y) is the
blurring kernel. The parameter α controls the smoothness of the solution. This
functional has been used for image denoising [30,2] and blind deconvolution [16],
and its relation to active contours explored in [6]. We introduce an approach for
optimizing the functional Ψ using the augmented Lagrangian method.

3 An Augmented Lagrangian Approach for Beltrami
Regularization

In recent years, several attempts have been made of optimizing total variation
functionals [26] using dual variables (we refer the reader to [9,7,8,20,35,32,36] and
references therein, as well to more references found in the technical report [25]).
These algorithms achieved great accuracy and efficiency, and are considered to
be among state-of-the-art methods for TV restoration.

Specifically, in [32], total variation regularization is obtained by decoupling
the optimization problem

min
u

∫
|∇u|+ α

2
‖Ku− f‖2 (4)

into a constrained optimization problem

min
u,q

∫
|q|+ α

2
‖Ku− f‖2 s.t. q = ∇u, (5)

where q is a auxiliary field, parallel to the gradient of u. This constraint is
then incorporated using an augmented Lagrangian penalty function of the form
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ρμ,r(u,q) = μT (∇u − q) + r
2

(‖∇u− q‖2). The penalty is used to enforce the
constraint q = ∇u, without making the problem severely ill-conditioned.

We now describe a similar construction for the Polyakov action. Again, it is
important to stress we are minimizing the functional itself, rather than discretiz-
ing the resulting minimizing PDE as in [30,16,31,2,24,11].

We deal with the case of color images, for which the regularization offered by
the Beltrami framework is more meaningful. Specifically, we replace the gradient
norm penalty used in TV regularization by the action functional of Equation 1.
This is done by replacing the first term in Equation 5 by the term

∫ √√√√1 + β2
∑

i∈{R,G,B}
‖qi‖2 + β4

2

∑
i∈{R,G,B}

∑
j 	=i

‖qi × qj‖2, (6)

where β is the spatial-intensity aspect ratio, and {qi}i∈{R,G,B} denote compo-
nents of the field q, parallel to the gradient of each of the image channels. We
then trivially extend the rest of the functional to the vectorial (per-pixel) case,
obtaining the following functional

LBEL(u,q,μ) =

∫ { √
1 + β2

∑
i∈{R,G,B} ‖qi‖2 + β4

2

∑
i∈{R,G,B}

∑
j 	=i ‖qi × qj‖2 +∑

i∈{R,G,B} μ
T
i (qi −∇ui) + α

2 ‖Ku− f‖2 + r
2

∑
i∈{R,G,B} ‖qi −∇ui‖2

}
,

which corresponds to Beltrami regularization. The expressions optimizing u and
μ are replaced by their per-channel equivalents, {ui} and {μi}, for i ∈ {R,G,B}.
The augmented Lagrangian algorithm for regularizing an image using the
Polyakov action is given as Algorithm 1. At each inner iteration k, {ui}i∈{R,G,B}
is updated in the Fourier domain, as in [32],

Algorithm 1. Augmented Lagrangian optimization of the Beltrami framework

1: µ0 ←− 0
2: for k=0,1,. . . do
3: Update {ui}k,{qi}k:({ui}k, {qi}k

)
= argmin{ui},{qi} LBEL({ui}, {qi}, {µk

i }) (7)

according to Equation 8 and Subsection 3.1.
4: Update the Lagrange multipliers according to Equation 9
5: end for

uki = F−1

{
αF{K∗}F{fi}−F{D−

x }((μ1
i )

k+r(pi)
k)−F{D−

y }((μ2
i )

k+r(qi)
k)}

αF{K∗}F{K}−rF{
}

}
, (8)
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where D−
x , D

−
y , denote the backward derivative along the x and y directions,

and the Laplacian operator, respectively, and F{·},F−1{·} denote the Fourier
transform and its inverse, respectively. We explicitly write qi = (pi, qi), i ∈
{R,G,B}, for the components of q of each color channel, approximating its x
and y derivatives, computed using backward differences.

We note that the optimization of u using the Fourier domain resembles, in
a sense, the approach taken by [21]. Since, however, it is done with respect
to the auxiliary field, iteratively, its effect is suited to the nonlinear nature of
the Beltrami flow. An update rule for the auxiliary field qi of each channel is
described in Subsection 3.1.

According to the augmented Lagrangian method, the Lagrange multipliers μi

are updated so as to approximate the optimal Lagrange multipliers,

(μi)
k = (μi)

k−1 + r
(
(qi)

k − (∇ui)k
)
. (9)

Finally, the coefficient r is updated between each outer iteration by multiplying
r with a scalar γ > 1. We note r needs not be very large, thus avoiding ill-
conditioning of the functional LBEL(u,q, μ).

3.1 Updating the Auxiliary Field q

For optimizing q, a short inner-loop of a fixed-point solver with iterative
reweighted least squares (IRLS) allows us to efficiently obtain a solution. In
numerical experiments, optimization over q takes less than half the CPU time
of the algorithm. Furthermore, since this problem is solved per pixel, it can be
easily parallelized, for example on a GPUs.

The update of qi = (pi, qi), i ∈ {R,G,B}, the components of q at each pixel,
is done by optimizing the function

√√√√1 + β2
∑
i

(p2i + q2i ) +
β4

2

∑
i

∑
j 	=i

(piqj − qipj)
2

+
r

2

∑
i

‖qi − (∇ui)‖2 +
∑

i∈{R,G,B}
(μk

i )
T (qi −∇ui),

where (∇u)i = ((ui)x, (ui)y)
T denote the components of the various image channel

gradients. Details of the update equations are given in the technical report [25].

4 Results

We now demonstrate the minimization of the Polyakov functional using the aug-
mented Lagrangian method, for various applications. More examples are shown
in the Technical report [25].

Scale-Space, Smoothing and Denoising: In Figure 1, results are shown for
smoothing an image using various values of α, which in a sense parallel samples
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along the Beltrami scale-space (defined by the flow). We used the same initial
penalty parameter r = 0.5, for which the constraints were satisfied after very
few iterations. Fixed-point iterations over q were limited to 2 inner and 2 outer
(IRLS) iterations for each cycle. The number of outer iterations, updating μ, in
Figure 1 was 150, although fewer iterations suffice.

A comparison of the results of the augmented Lagrangianmethod and splitting
schemes [11] shows that the augmented Lagrangian method converges faster, as
can be seen in Figure 2. In this experiment, α was set for optimal results for
both the augmented Lagrangian and the splitting methods. The PSNR plot also
demonstrates the more accurate discretization of the proposed method. This can
be easily seen in the preservation of edges in Figure 2. Experiments comparing
our method to the explicit scheme showed a similar behavior.

Table 1 measures the CPU-time required for several images (shown in Fig-
ure 3) for our algorithm, compared to Beltrami filtering with operator splitting
techniques. The time step used was the largest possible so as to avoid instabilities
and inaccurate operator approximation.

Since the solution obtained by discretizing the functional and by discretizing
the resulting Euler-Lagrange equation need not be the same, a different halting
condition was used. After measuring the PSNR of each algorithm with respect to
the original image, we measured the CPU time each algorithm took to gain 99%
of the maximal rise in SNR. While this cannot be done in real applications, it does
give us an objective measure of the time it takes to complete the convergence.

The speedups obtained are by at least of a factor of two compared to additive
operator splitting (AOS) [19], which is one of the fastest methods for Beltrami
regularization [11], even when the time step large enough to cause visible artifacts
in the splitting results. The augmented Lagrangianmethod clearly gave still more
accurate results in a shorter CPU time.

Deblurring: Deblurring results using the Beltrami framework are shown in Fig-
ure 4, with the blur kernel k a disc of radius 5 pixels. We compare our results
to standard deblurring algorithms available in Matlab, as well as to BM3D de-
blurring [10], and to the FTVd algorithm [35]. Where the algorithms require
a regularization parameter other than the noise level, it is empirically set to
minimize the mean squared error. For Figure 4, we have chosen to use the func-
tional shown in Equation 3. We set β1 set to a very small positive constant, and

set β2 = β2, β3 = β4

20 , in order to slightly dampen the strength of the gradient
coupling term.

The results clearly demonstrate the accurate deblurring obtained using the
regularization offered by the Beltrami framework for natural color images, with
slightly better PSNR compared to TV regularization. Beyond PSNR, careful
examination of the images show the tendency of Beltrami regularization to avoid
artifacts which do not fit the appearance of natural images, and discourage
uneven coloring artifacts. This can be seen in Figures 4,5. The same discrepancy
between PSNR reading and visual results in color image processing has already
been noted by Goldluecke and Cremers [14]. We iterate this word of caution,
and refer the reader to the images themselves.
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Fruits, noisy Denoised, α = 1.00 Denoised, α = 0.40 Denoised, α = 0.15

Fig. 1. Smoothing, under various α values, of the Fruits image, with added Gaussian
noise with σ = 20 intensity levels per channel

Original image Noisy image AOS result AL result
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Fig. 2. A comparison of the results for the AOS scheme, and the augmented Lagrangian
method, as well as the PSNR of splitting schemes and the AL method as a function of
CPU time. The arrows in the images demonstrate gradient directions at each channel.
The graph demonstrates a faster convergence of the augmented Lagrangian method,
as well as a more accurate discretization.

Table 1. Comparison of the CPU time required to complete 99% of the rise in SNR

Image CPU time, AL CPU time, splitting

Astro 1.77s 3.5s
Fruits 2.97s 7.36s
Lion 21.23s 59.66s

Monarch 3.63s 7.71s
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Fig. 3. Images used to compare the computational cost of the augmented Lagrangian
and splitting-based Beltrami regularization. Left to right: (a) Astro image. (b) Fruits
image. (c) Lion image (d) Monarch image.

Original image Blurred
image

PSNR = 16.86dB

Lucy-Richardson
Deblurring

PSNR = 20.19dB

BM3D
Deblurring

PSNR = 21.48dB

FTVd
Deblurring

PSNR = 22.04dB

Beltrami/AL
Deblurring

PSNR = 22.07dB

Fig. 4. Deblurring results with a disc blur filter of radius 5 and an Gaussian noise of
σ = 5. Left to right, top to bottom: (a) The original image. (b) The blurred image.
(c) Deblurring using the Lucy-Richardson algorithm (d) BM3D-based deblurring. (e)
Deblurring using the FTVd method. (f) Deblurring using the Beltrami / augmented
Lagrangian algorithm.
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a b c d

a b c d

Fig. 5. Each row represents two regions zoomed-in from Figure 4. (a) The original
image. (b) The corrupted image. (c) TV results. (d) Beltrami / AL restoration results.

5 Conclusions

We presented an extension of the augmented Lagrangian method for color image
processing with Beltrami regularization. Unlike existing techniques, the method
discretizes the functional itself, rather than the resulting optimality conditions
or minimizing flow. We present numerical examples demonstrating its efficiency
and accuracy compared to existing techniques for variational regularization, and
its effectiveness in image deblurring. In future work we intend to add a robust
fidelity term [36], and explore other possible applications for our framework.
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Abstract. Tracking can be seen as an online learning problem, where
the focus is on discriminating object from background. From this point
of view, features play a key role as the tracking accuracy depends on
how well the feature distinguishes object and background. Current dis-
criminative trackers use traditional features such as intensity, RGB and
full body shape features. In this paper, we propose to use color invari-
ant SURF features in the discriminative tracking. This set of invariant
features has been shown to be of increased invariance and discrimina-
tive power. The resulting tracker inherits a good discrimination between
object and background while keeping advantages of the discriminative
tracking framework. Experiments on a dataset of 80 videos covering a
wide range of tracking circumstances show that the tracker is robust
to changes in object appearance, lighting conditions and able to track
objects under cluttered scenes and partial occlusion.

Keywords: tracking, surf, color, invariant.

1 Introduction

In many visual object trackers [1–4], traditional features such as intensity, RGB
and full body shape features are used. They reflect the state of the image di-
rectly and they are fast to compute. However, to cope with varying aspects of
the object and the scene, features should be invariant to the undesired variations
in the appearance of the object such as shadows, shadings and occlusions and
discriminative enough to distinguish object from other objects and background.
These above features are of limited invariance to such changes. The SIFT/SURF
[5, 6] show increase in discriminative power [7, 8]. In particular Van de Sande
et al. [9] show that the set of color and invariant SIFT obtains the best per-
formance in the object recognition task. Moreover, the computations of SIFT
and SURF are recently made fast enough for real-time application [10]. Inspired
by these results, in this paper we aim to investigate invariant features in visual
object tracking.

At large, trackers can be divided by three main mechanisms: back-
ground models [11, 12], foreground-based trackers [3, 4] and discriminative
(foreground-background) trackers [2, 13, 14]. Many background-based trackers

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 62–75, 2012.
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and foreground-based trackers resort to assumptions that an aspect of the back-
ground or the foreground is constant (or at least predictable for the next image).
They are designed to work well when disturbing scene-related circumstances de-
velop slowly over time and place. Under that condition, the model of the back-
ground or the model of the foreground can be adapted. However, the assumption
of slow development of the lighting and scene conditions is frequently violated in
reality when there are abrupt changes in object appearance due to entering into
shadow, abrupt albedo changes due to rotation, abrupt object motion changes,
or abrupt silhouette changes due to occlusion. In many of such situations, dis-
criminative trackers are in favor over the other two as they put in the center the
distinction between foreground and background rather than modeling the fore-
ground alone or background alone. Concentrating on discriminative trackers,
invariant discriminative features are the natural ingredient to incorporate.

This paper proposes a novel tracking method using foreground/background
discrimination. Unlike the above-mentioned methods, the proposed tracker uses
color invariant SURF features for discrimination. The aim is to be robust to
changes in object appearance and lighting conditions. And, the aim is to track
objects under cluttered scenes and partial occlusions. An innovation of the re-
search is the use of a broad dataset [15] developed to test the robustness of all
sorts of tracking conditions as they occur in reality.

2 Related Work

Our work is based on two components: discriminative tracking and color invari-
ant features. We hence review these two topics in this section.

2.1 Discriminative Trackers

The discriminative trackers in [16, 17] are focused on classifier selection. A set of
weak classifiers is trained on object features and background features. Grabner
et al. [16] use online boosting to establish a strong classifier. Avidan [17] combines
the weak classifiers into a decision by AdaBoost. Although online boosting and
AdaBoost help to select best results from the weak classifiers, they disregard
the spatial relation between object features. They suffer from a large number
of free parameters to estimate, making the tracking computationally expensive
and unstable under varying conditions.

The discriminative trackers in [18, 19] are focused on feature selection. Grab-
ner et al. [18] propose a semi-supervised online learning method to select features.
Mahadevan and Vasconcelos [19] define saliency measure for features, which
ranks features how well they discriminate. Since the features are not invariant
with respect to varying tracking conditions, feature selection methods will select
best features on the fly. This method however leaves many degrees of freedom.

In [2], linear discriminant analysis is applied to discriminative tracking. An
analytical incremental solution is found for updating the classifier online. It en-
ables fast updating scheme with a small number of free parameters. The tracker
also retains a spatial relation between object features. This allows the tracker to
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overcome partial occlusions and compensate for global changes of illumination.
Due to its computational simplicity and the small number of free parameters we
follow this discrimination technique in our tracker.

2.2 Features in Object Trackers

Many trackers successfully replace grey features by color features (see an overview
in [20]) and by SIFT/SURF features. He et al. [21] propose a SURF-based tracker
where SURF-features are extracted from the object and its surrounding area us-
ing interest points. Object feature correspondence is estimated and then used to
predict the object motion. Background features are only used to detect occlu-
sions. The tracker imposes a smooth transition of the object appearance. Zhou
et al. [22] apply original SIFT features into the mean shift tracking framework.
Due to the discriminative power of SIFT, the resulting tracker outperforms the
original version at the expense of considerably more computation. Tran and
Davis [23] use SIFT in blob tracking, where objects are represented by a set of
MSER regions. Object motion is estimated from the estimations of the blobs’
motions. The tracker can track objects undergoing illumination changes due to
the use of SIFT feature. These results show the potential of using SIFT/SURF
in tracking.

The trackers in [24–26] successfully apply color features into the discrimina-
tive tracking framework. The tracker in Collins et al. [26] works on a pool of 49
linear combinations of R, G, B. For each feature, the log likelihood ratio between
foreground and background feature histograms is computed, which is then used
to rank the features. Similar mechanisms can also be found in [24] with multi-
ple color spaces and color distribution models, or in [25] with 7 types of color
histograms and gradient orientation histogram. These trackers demonstrate the
usefulness of color features in discriminative tracking.

Our tracker is different from the above trackers. We use a different set of
features in discriminative tracking. The features are the combinations of SURF
with different color spaces and color invariants. These features are of enhanced
discriminative and invariance power.

3 The Proposed Tracker

3.1 Discriminative Tracking Framework

Discriminative tracking treats tracking as a two-class instant classification prob-
lem between the object class and the background class. The object features
are densely sampled in the object region and denoted by fo

1, . . . ,f
o
n. The back-

ground features are also densely sampled in the neighbor background region and
denoted by f b

1, . . . ,f
b
m. As we aim to discriminate the object from background,

with each object feature fo
i , a classifier gi is trained to distinguish it from all

the background features. The set of classifiers {g1, . . . , gn} constitutes the dis-
crimination between the object and background. gi should be fast to train in the
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incremental mode and have few free parameters to arrive at a robust solution
on few samples. To this end, we follow [2] with the use a linear classifier:

gi(x) = 〈ai,x〉+ bi, (1)

where ai ∈ RN , bi ∈ R and 〈,〉 denotes the inner product; N is the dimension
of the used feature. The classifier gi is trained such that

gi(f
o
i ) > 0 and gi(f

b
j) < 0 for all f b

j . (2)

When a new frame comes in, denote by θ the spatial transformation between
the two frames and by I(fo

i , θ) the feature in the new frame that correspond to
feature fo

i . The search for the object in the new frame is cast into the following
maximization problem:

θ̂ = argmax
θ

n∑
i=1

gi(I(f
o
i , θ)). (3)

The maximization effectively pushes the object candidate as far away from the
known background features as possible and pulls it close to the known object
features. We notice that as gi(I(f

o
i , θ)) = 〈ai, I(f

o
i , θ)〉+bi and bi is independent

from θ, we only need to compute ai.

Learning and Updating the Classifiers: given the object features fo
1, . . . ,f

o
n

and the background features f b
1, . . . ,f

b
m, we learn the classifiers gi by solving

the following optimization problem:

min
ai,bi

⎡⎣(〈ai,f
o
i 〉+ bi − 1)2 +

m∑
j=1

αj

(〈
ai,f

b
j

〉
+ bi + 1

)2
+
λ

2
||ai||2

⎤⎦ , (4)

where αj are the weighting coefficients of the background features,
∑m

j=1 αj = 1.
The closed-form solution of (4) is given by ([2]):

ai = ci (λI +B)
−1 (

f o
i − f̄ b

)
, (5)

where B and f̄ b are the weighted covariance and mean of the background fea-
tures; I is the identity matrix:

f̄ b =
m∑
j=1

αjf
b
j , (6)

B =

m∑
j=1

αj

(
f b
j − f̄ b

) (
f b
j − f̄ b

)T
, (7)

ci =
1

1 + 0.5
(
f o
i − f̄ b

)T
(λI +B)−1 (f o

i − f̄ b
) . (8)
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Equations (6), (7) and (8) allow a fast learning step for the classifiers. We notice
that the background features are compactly represented by the weighted mean
and the weighted covariance. It is hence not necessary to keep all the background
features.

After each tracking step, we extract new object and background features.
Suppose that θ̂ is the spatial transformation found by solving the optimization
problem in Equation (3). Then I(f o

1, θ̂), . . . , I(f
o
n, θ̂) are the new object features.

In order to allow the tracker to remember the past appearance of the object,
we allow the old features to stay in the object representation with decreasing
weights:

f
o(new)
i = (1− γ)f o

i + γI(fo
i , θ̂), (9)

where γ is a predefined decay coefficient.
Suppose that f b

m+1, . . . ,f
b
m+k are the new background features. We put total

weight for the new background to be γ, while the weight of each old background
feature is downscaled (1−γ). The updated background mean and covariance are
given by:

f̄ b
(new)

= (1− γ)f̄ b + γ
1

k

m+k∑
j=m+1

f b
j , (10)

B(new) = (1− γ)B + (1− γ)f̄ bf̄ b
T − f̄ b

(new)
f̄ b

(new)T
+
γ

k

m+k∑
j=m+1

f b
jf

b
j

T
.

(11)

The set of Equations (5), (8), (9), (10) and (11) allows the tracker to update the
classifiers in the incremental mode efficiently.

3.2 Features

The use of SURF in visual tracking is rather limited in few foreground-based
trackers [21–23]. One of the reasons is due to the expensive procedure to compute
SURF descriptors at interest points. We overcome this problem by extracting
features {fo

1, . . . ,f
o
n;f

b
1, . . . ,f

b
m} densely and using the fast algorithm to com-

pute SURF descriptors recently proposed in [10].
The original intensity-based SURF features have been extended to different

color spaces and color invariant spaces. They have not yet been explored in vi-
sual tracking. Among the color spaces, we choose the opponent space as the high
decorrelation between the 3 channels. Opponent color space contains one inten-
sity channel and two chromaticity channels. As the three channels are highly
decorrelated they are likely to improve the discriminative power when used
together: ⎛⎝O1

O2

O3

⎞⎠ =

⎛⎜⎝
R−G√

2
R+G−2B√

6
R+G+B√

3

⎞⎟⎠ . (12)
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With the color invariants, Geusebroek et al. [27] show an inclusion relation-
ship: H ⊂ C ⊂ W , where H, C and W are three invariants derived from the
Kubelka-Munk photometric model under different assumptions. The inclusion
implies that H has highest invariance and essentially H flattens out all patterns
in an image. This is not a desired property for tracking since we want to keep
a certain level of discriminative power to distinguish the object from the scene
and from other objects. On the other hand, W lacks invariance. It does not wipe
out accidental changes from illumination. We did experiments with the 3 invari-
ants separately and observed consistently degraded performance of the H and
W versions over the C version (the differences are approximately 58% and 8%
respectively. Further data is not shown here). We hence will focus on C-SURF.
We also use the intensity SURF (I-SURF) as baseline.

The C invariant [27] is an object reflectance property independent of the
viewpoint, surface orientation, illumination direction and illumination intensity.
The C color space consists of one intensity channel and 2 channels {Cλ, Cλλ}
computed as follows:

Cλ = Eλ

E

Cλλ = Eλλ

E ,
(13)

where E(λ) is the energy distribution of the incident light over wavelength λ.
E,Eλ, Eλλ are estimated from an RGB image as follows:⎛⎝ E

Eλ

Eλλ

⎞⎠ =

⎛⎝0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

⎞⎠⎛⎝R
G
B

⎞⎠ . (14)

4 Dataset and Evaluation Metric

As we aim to design a tracker robust to the wide variety of tracking circum-
stances, we use the dataset in [15] covering 12 most important tracking condi-
tions: lighting condition, object albedo, object specularity, object transparency,
object shape, motion smoothness of object, motion coherence of object, clutter,
confusion, occlusion, moving camera and zooming camera (the reference gives
more detail on the selection and creation of the dataset). This dataset enables
evaluation of a tracker with respect to different tracking circumstances. The
dataset contains 80 videos covering both realistic videos and in-lab videos. The
distribution of the videos over the categories are uniform. The videos are man-
ually annotated in every 5th frame. Some example videos from the dataset are
depicted in Figures 3, 4 and 5.

To measure the trackers’ performance, [15] proposes to use a category-level
average tracking accuracy measure (CATA), which indicates how much a tracker
covers the object in each frame in average. CATA ranges from 0 to 1. The higher
CATA is, the more accurate the tracker is. A CATA value of 0.6, for example,
implies that in average in each frame where the object is present, the tracker
covers at least 60% of the object and at least 60% of the tracked box is covered
by the object.
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5 Results

We demonstrate the performance of the proposed tracker in this section. For
comparison purpose, three other state-of-the-art trackers are considered: the
foreground background tracker (FBT) in [2]; the incremental visual tracker
(IVT) in [3] and the Kalman predictive tracker (KAT) in [4]. We reimplemented
the FBT and KAT, while the IVT is publicly available online from the author
website.

5.1 Quantitative Comparison between Features

This section shows comparison of the proposed discriminative tracking frame-
work with different types of features. In [2], the intensity Gabor feature is used.
We extended it to include rudimental color information, resulting in the RGB
Gabor feature. We compute CATA values of the discriminative tracking frame-
work for 5 different types of features: intensity Gabor, RGB Gabor, I-SURF,
C-SURF and Opponent-SURF. The data is visualized in Figure 1. As can be
seen from the figure, the SURF-based versions outperform the Gabor-based ver-
sions in 11 out of 12 cases. This is attributed to the high discriminativeness of the
SURF-based features, which especially is suited for our discriminative tracking
framework. Large differences between the SURF-based versions and the Gabor-
based versions can be seen in the following categories: albedo, transparency,
clutter, confusion and occlusion.

Among the SURF-based versions, Opponent-SURF and C-SURF show better
performance than I-SURF. This is attributed to the high decorrelation between
three channels in the opponent color space, which contains one intensity channel
decorrelated from the two chromaticity channels. The discriminative power of
C-SURF regardless accidental shadows and shadings makes it well suited in
combination with the online classifier which is at the core of this tracker. C-SURF
improves the classification accuracy in our tracker especially in the confusion and
occlusion cases where the object shares similar patterns with other neighbor
objects or the object loses part of its appearance in occlusion.

Table 1. The average performance of the discriminative tracking framework with the
5 features in the whole dataset. This is computed by averaging all the CATA values of
the 12 categories.

Intensity Gabor RGB Gabor I-SURF C-SURF Opponent-SURF

Average 0.43 0.51 0.58 0.61 0.60

To conclude, SURF-based features outperform Gabor-based features. Further,
color-based features outperform intensity-based features. As can be seen in Table
1, I-SURF gains improvement of 0.15 (35%), while Opponent-SURF and C-
SURF gain even 0.17 (40%) and 0.18 (42%) respectively with respect to the
original tracker in [2].
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Fig. 1. Performance of the discriminative tracking framework with different types of
features and different tracking circumstances. The x-axis indicates the CATA measure.
The y-axis contains 12 different tracking categories in the dataset with total 80 videos.

5.2 Quantitative Comparison to Other Trackers

This section shows a quantitative comparison of the proposed tracker with the
KAT and the IVT. We have integrated RGB, SURF, C-SURF and Opponent-
SURF into the KAT and the IVT. However the SURF-based features do not
improve the two trackers. The reason is that the numbers of free parameters in
the IVT and the KAT are proportional to the feature’s dimension. The use of
the SURF-based features hence increases the number of free parameters to be
estimated in the IVT and KAT with a limited number of samples. Hence the
SURF-based features downgrade their performances. With IVT, we observe the
best performance with the RGB feature, while the intensity feature is the best
with KAT. The results of the proposed tracker with C-SURF, KAT with inten-
sity and IVT with RGB are shown in Figure 2. As can be seen from the figure,
the proposed tracker is more robust to changes in illumination conditions, object
albedo and transparency. This is explained by the invariance of SURF to light
intensity change and light intensity shift, which aids the tracker to overcome a
certain level of illumination changes. The KAT gets affected most in the trans-
parency case. The reason is that in such a case the object appearance reflects the
color of the local background behind the object. Because of the inhomogeneous
background, the object appearance changes abruptly, which violates the smooth
assumption the KAT imposes on the object features.

Figure 2 also shows that the proposed tracker is more robust to confusion
with the CATA value 63% while the scores for the IVT and the KAT are
about 40%. The discriminative and invariance power of C-SURF enables the
proposed tracker to distinguish the object from other nearby objects of similar
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Fig. 2. Quantitative comparison between the proposed tracker with the IVT and the
KAT. We select the best features: C-SURF for the proposed tracker, intensity for KAT
and RGB for IVT. The x-axis indicates the CATA measure. The y-axis contains 12
different tracking categories in the dataset.

appearance. We notice that confusion downgrades the IVT and the KAT as the
two trackers have no mechanism to isolate the object even though they keep good
representations of the object. The proposed tracker also outperforms the IVT
and the KAT in the occlusion category. We notice that the IVT is the best in
the zooming camera case. This is attributed to the scaling handling mechanism
enabling the tracker to cope with objects with changing size due to camera’s
zooming. Overall, as can be seen from Table 2, the proposed tracker gains im-
provement of 0.12 (24%) and 0.07 (13%) over the KAT and the IVT respectively.

Table 2. The average performance of each tracker in the whole dataset. This value is
computed by averaging the CATA values of the 12 categories.

IVT-RGB KAT-Intensity Proposed-CSURF

Average 0.54 0.49 0.61

5.3 Robustness to Changes of Illumination and Object Appearance

In this section we analyze the performance of the proposed tracker with changes
in illumination and object appearance. We select the best feature for each
tracker: RGB with FBT, intensity with KAT, RGB with IVT and C-SURF
with the proposed tracker.
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Frame 1 Frame 100 Frame 165 Frame 193

Frame 1 Frame 65 Frame 170 Frame 380

Fig. 3. The first row: a person undergoing foliage-like illumination. The second row: a
person undergoing large changes in illumination intensity. Results of the 4 trackers are
shown: yellow - IVT; red - FBT; blue - KAT; green - ours. Our tracker is able to track
the targets despite abrupt changes of illumination over space and time.

In Figure 3, two targets undergoing different illumination conditions are being
tracked. In the first row, the target is a person walking under dense foliage with
abrupt changes in lighting over space and time. The FBT suffers small drift
in each time step and eventually loses the object at frame 193 as the limited
discriminative power of the feature and the presence of similar patterns in fore-
ground and background. The KAT and IVT get small drifts at the end when
the object turns left and the trackers are locked at an illuminated region in the
background. The uneven illumination does not affect our tracker. Despite many
false movements of the object, the results of tracker remain accurate.

In the second row of Figure 3, the target is a person moving from a dark area
to a brighter area with the illumination intensity changing largely. The IVT gets
difficulty at the beginning of the sequence since it confuses the face with the
background. Due to lack of invariance of the features, the FBT and KAT drift
away from the object at frame 170 and 380 respectively. Our tracker successfully
tracks the object because of the invariance to light intensity changes of the SURF
feature.

Figure 4 demonstrates the performance of our tracker with changes of object
appearance. In the first row, a face undergoes translation and rotation move-
ments. At frame 50, the other 3 trackers lose the object due to the rotation
movement of the object. After that the KAT and the IVT accidentally recover
the object. But only the KAT and the proposed tracker successfully follow the
object till the end. This video shows the ability of our tracker in coping with
new patterns when the object rotates in the vertical axis. The use of highly dis-
criminative features enables the tracker to avoid the confusion of the black area
of the head with the blackboard in the background. This is the reason why the
FBT loses the object. In the second row of Figure 4, an experimental video is
shown to demonstrate our tracker’s robustness to changes in object appearance.
The target is a rotating three-color ball. At frame 50 when the pink area occurs,
the other 3 trackers drift away while our tracker still can follow the ball.
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Frame 1 Frame 50 Frame 240 Frame 300

Frame 1 Frame 50 Frame 200 Frame 300

Fig. 4. The first row: A person with translation and rotation motion. The second row:
a 3-color ball undergoing rotation. In both cases, the targets undergo large variations in
appearance. Our tracker can adapt to new appearance patterns and successfully follow
the targets.

5.4 Robustness to Confusion and Partial Occlusions

Figure 5 shows examples of tracking under clutter and confusion conditions.
In the first row, a pupil in uniform runs in front of many other classmates. We
notice that as all the pupils are in uniform, the object looks very similar to other
nearby objects. This causes KAT and FBT to fail at the beginning and IVT to
fail at frame 75. Our tracker succeeds in disregarding the confusion as the use of
the discriminative feature, which allows it to focus on very distinct pattern of the
object that discriminate it from the background patterns. A similar phenomenon
can be seen in the second row and the third row of Figure 5, where our tracker
successfully follows a person running in a marathon with similar objects in the
vicinity and Waldo moving in front of a Where’s Waldo picture.

The two videos in Figure 6 demonstrate the ability of the proposed tracker to
cope with partial occlusion. Before the object enters the occlusion area, it enters
a shadow area. As can be seen from the two videos, both IVT and KAT fail as
the shadows change the object appearance abruptly. With the red ball video in
the first row, the FBT overcomes the shadow area due to the distinct color of
the object. It however fails to follow the toy car in the second row when it is
occluded. Due the shadow invariance property of C-SURF, our tracker does not
get affected by shadow and successfully follow the objects in both situations.

5.5 Failure Analysis

We search for failure cases of the proposed tracker. Figure 7 depicts 3 situations
where the proposed tracker fails. In the first row, the target gets bigger as the
camera is zooming in. The proposed tracker does not drift away from the target.
However it cannot cope with the changing size of the object. The IVT however
precisely follow the target. The reason is that the IVT considers scaling while
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Frame 1 Frame 25 Frame 41 Frame 75

Frame 1 Frame 28 Frame 70 Frame 98

Frame 35 Frame 70 Frame 180 Frame 229

Fig. 5. Tracking under cluttered scene and confusion. The first row: a pupil running in
front of other classmates in the same uniform. The second row: a person in a marathon.
The third row: tracking Waldo. Our tracker successfully discriminates the targets from
nearby objects with similar appearance and cluttered background due to the use of
invariant feature.

Frame 1 Frame 14 Frame 18 Frame 28

Frame 1 Frame 12 Frame 15 Frame 25

Fig. 6. Tracking under partial occlusion. The targets are the red ball and the toy car
undergoing partial occlusion. Our tracker is able to follow the target accurately when
they enter shadow and partial occlusion.

searching for the object. The proposed tracker, on the other hand, uses a fixed
template window. In the second row, the target is a flock of birds. We notice that
the dynamics of the flock shape makes it very difficult for the trackers to follow
where many background patterns are present in the object region. In the third
row, the changing light color is the challenge. At frame 13, the light becomes
completely dark. We notice that the second and third rows represent two very
extreme cases in visual tracking.
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Frame 1 Frame 43 Frame 67 Frame 140

Frame 237 Frame 245 Frame 253 Frame 260

Frame 7 Frame 11 Frame 13 Frame 18

Fig. 7. Failure cases of the proposed tracker. The first row: tracking under zooming-in
condition. The second row: tracking a flock of birds. The third row: tracking under
changing light color.

6 Conclusion

We have presented a tracker that takes advantage of the discriminative tracking
framework and highly discriminative power of SURF-based features. The result-
ing tracker is capable of tracking objects under changes in lighting conditions
and object appearance and undergoing partial occlusion. The proposed tracker
is also robust against confusion and cluttered scenes where there are similar
objects in the vicinity of the tracked object.

The combination of SURF with the C invariant and the opponent color space
are shown to be the best choice for the discriminative tracking framework. The
conclusion goes along with the finding in Van de Sande et al. [9] in the object
classification task. This makes an interesting link between object classification
and discriminative tracking.

Acknowledgments. We thank Theo Gevers and Arjan Gijsenij for insightful
comments and discussions.
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Abstract. Despite the strengths and popularity of the log-chromaticity
space (LCS), there is still a significant amount of concern regarding its
narrow-band assumption (NBA). Though not always necessary, this as-
sumption is relatively common, as it leads to elegant formulations. We
present a scheme for evaluating whether a deviation from the NBA will
have an impact on the expected LCS values. We also introduce two met-
rics for measuring the divergence from the expected behavior under the
NBA in LCS. Lastly, we empirically analyze how different types of re-
flectance spectra are affected in varying degrees by this assumption. For
example, experiments with real and synthetic data show that the viola-
tion of the NBA typically has insignificant impact on bright unsaturated
colors.

1 Introduction

Many applications in computer vision, like tracking, image retrieval, and ob-
ject recognition are affected by variations in the illumination conditions. There-
fore, a considerable amount of research has been focused on the development
of illumination-invariant color spaces [1,2]. One such color space is the log-
chromaticity space (LCS). The transformation of RGB values (IR, IG, IB) to
this space is done by first computing the 2D chromaticity values {IR/IG, IB/IG}
and then taking the logarithm of these color ratios. Two important properties
are provided by this transformation: Firstly, a surface color seen under differ-
ent illuminant colors tends to lie on a straight line in this space. Secondly, for a
given camera, all these lines are parallel to each other for different surface colors.
These two characteristics of LCS make it a very promising space for color and
reflectance analysis. Hence, LCS is already quite widely used for applications like
shadow removal [3,4,5,6,7], illumination estimation [8] and illumination invariant
representations [1].

Many of these techniques make an additional assumption, the so-called narrow-
band assumption (NBA) (e.g. [9,4,5,6,7]), which states that the sensor spectral
sensitivities can be approximated by delta Dirac functions. Though this assump-
tion leads to elegant and tractable mathematical formulations, most available
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sensors exhibit non-narrow spectral sensitivities. Therefore, it is often argued
that this assumption is too restrictive and not generally applicable [10,11,12].

In order to broaden the applicability of methodologies that assume narrow-
spectral bands, sensor sharpening algorithms have been proposed [13,14,15]. Al-
though, sensor sharpening enhances color constancy performance [16], its biggest
limitation is the required camera calibration, which is can be tedious [16,5]. Fur-
thermore, sharpening can only be performed if the sensor is available. Thus, it
can not be applied on arbitrary images (like those found on the web), where the
sensor is not available for calibration.

In this paper we evaluate the error in LCS values that is introduced by the
violation of the NBA. We show that although deviations from the expected be-
havior in LCS can occur, it is often the case that for certain families of reflectivity
(albedo) the violation of the Dirac delta assumption does not affect the LCS val-
ues. Due to the image formation process, it is difficult to separate the influences
of the sensor characteristics, the illumination and the surface reflectance. In our
efforts to address this challenge, we were influenced by previous evidence that for
certain materials, like asphalt and skin, the violation of the NBA has minimal
impact [11,17]. Therefore, we chose to focus our analysis on the suitability of the
NBA for different surface reflectances. We introduce a new formulation which
explicitly describes the deviation from the NBA. We then propose two error met-
rics for quantitative evaluation of the impact of the deviation. Our experiments
on both synthetic and real data show that these error metrics can be used for
determining whether a particular material is unaffected by possible violations
of the NBA. Such an assessment can have a direct impact on broadening the
applicability of LCS methods on arbitrary images.

2 Theory of the Log-Chromaticity Space

In order to systematically assess the impact of the NBA in the LCS one needs
to first closely examine the image formation process as well as the influence of
the incident illumination.

2.1 Planckian Illuminant

Empirical measurements of daylight spectra [18] have shown that outdoor light
as well as indoor illuminants (CIE standard illuminants between 4000K and
13000K) closely fit the corresponding black body radiators. The behavior of a
black body radiator is in turn described by Planck’s law. For the visible range
exp( c2

λT ) � 0 and thus one can use Wien’s approximation for describing the
spectral distribution E(λ, T ) of such illuminants:

E(λ, T ) ≈ Ic1λ
−5 exp

(
− c2
Tλ

)
, (1)

where λ and T are the wavelength and illuminant temperature respectively,
c1 = 2πhv2 and c2 = hv/k are constants containing the Planck constant h, the
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(a) (b) (c)

Fig. 1. Image formation. (a) Surface reflectance functions. (b) Sensor sensitivities. (c)
Spectral power distributions of Planckian illuminants.

Boltzmann constant k, and the speed of light v in vacuum. As in Finlayson and
Hordley [9], the intensity constant I is introduced to model the varying intensity
power. Fig. 1(c) shows the emission spectra of different color temperatures.

2.2 Image Formation

An image captured by a typical color camera can be modeled as:

Ic(x) = g

(∫
Ω

qc(λ)S(x, λ)E(x, λ)dλ

) 1
γ

, c ∈ {R,G,B} . (2)

This equation states that at a position x the sensor response for a certain color
channel c is a combination of the sensor sensitivity qc, the illumination E and
the surface reflectance S. The integral is computed over the visible spectrum
Ω. In order to incorporate further sensor characteristics we also consider the
camera gain g and gamma γ. The image sharpening, which is also often built-in
in modern digital cameras, is not considered in this context, as the proposed
analysis is not based on spatial but rather only on color information. Fig. 1
shows the three components of image formation.

The narrow-band assumption (NBA) [9,6] directly affects the image formation
model. This assumption states that the sensor sensitivities are considered to be
Dirac delta functions, qc(λ) = kcδ(λ−λc), centered at wavelength λc. Assuming
a constant illuminant color across the scene, Eq. 2 becomes:

Ic(x) = gk
1
γ
c S(x, λc)

1
γE(λc)

1
γ . (3)

2.3 The Log-Chromaticity Color Space

Among the different chromaticity spaces, we choose to use the ratios of the red
and blue channel with respect to green (as in [9]). By combining Eq. 1 and Eq. 3
the chromaticity values become

Ic(x)

IG(x)
=

k
1
γ
c S(x,λc)

1
γ (λ−5

c exp(− c2
Tλc

))
1
γ

k
1
γ
G S(x,λG)

1
γ
(
λ−5
G exp

(
− c2

TλG

)) 1
γ

c ∈ {R,B} . (4)
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In order to remove the γ-nonlinearity and the exponential function in Wien’s
approximation, we take the natural logarithm. Furthermore, we model the sur-
face reflectance as diffuse reflectance S(x, λ) = wd(x)ρ(x, λ), which can be de-
composed to a wavelength-independent geometric factor wd(x) and a material
dependent albedo ρ(x, λ) at a certain position x. Thus, the LCS value of a diffuse
surface at a particular point x is:

rc,G = ln(
Ic
IG

) =
1

γ
ln(

ρc
ρG

) +
1

γ
ln(kck

−1
G λ−5

c λ5G) +
1

γ

1

T
(
c2
λG

− c2
λc

) . (5)

rR,G and rB,G are then the LCS values of a particular pixel x. This color space is
also known as the log-ratio space and log-chromaticity differences [9]. Please note
that for the remainder of the paper we omit writing that the log-chromaticity r,
the image value I, the geometry term wd and the albedo ρ are functions on x.

If we consider the LCS values of a pixel to be a point in the 2D vector space,
the point coordinates are given by

r =

(
rR,G

rB,G

)
=

1

γ

(
ln( ρR

ρG
)

ln(ρB

ρG
)

)
︸ ︷︷ ︸

sρ

+
1

γ

(
ln(kRk

−1
G λ−5

R λ5G)
ln(kBk

−1
G λ−5

B λ5G)

)
︸ ︷︷ ︸

b

+
1

γ

1

T

( c2
λG

− c2
λR

c2
λG

− c2
λB

)
︸ ︷︷ ︸

d

. (6)

This equation illustrates that in the LCS all the color values of an albedo seen
under different illuminants fall on a straight line. The line is defined by a point
lying on ( 1γ sρ +

1
γb) and the direction d. The position of the line is dependent

on the albedo ρ and the sensor characteristics (kR, kG, kB, λR, λG and λB) The
scaling factor 1

T denotes that depending on the illumination color (defined by
the temperature T ) the same material color ρ will fall on a different position of
the same line. Note that the slope of the line d is independent of the material. As
a consequence, different albedos will lie on different lines, as vector sρ changes.
However, all these lines are parallel, since they share the same slope. The factor
1/γ only causes a constant scaling of the vectors. Thus, the LCS exhibits two
key characteristics (see dotted lines in Fig. 2(b)): Firstly, linearity (As the illu-
minant color changes the LCS values of a surface fall on a straight line, pointing
in the so-called invariant direction [1]) and secondly, parallelism (For a given
camera, all such lines for different surface colors are parallel). Both properties
are extremely helpful for illumination invariance, as a normalized image can be
generated although the illuminant color is unknown or inhomogeneous across
the image (like shadow regions). On the other hand, the violation of the NBA
may disarrange the linearity and parallelism in LCS (see crosses in Fig. 2(b)).

3 Influence of the Narrow-Band Assumption

In order to analyze the influence of the NBA, we have to establish a scheme
for estimating the introduced error. The sensor sensitivities can be better ap-
proximated by Gaussian functions with means μ = λc and standard deviation
σ (see Fig. 1(b)). The standard deviation can be seen as the descriptor for the



80 E. Eibenberger and E. Angelopoulou

(a) (b)

Fig. 2. (a) Sample reflectances. (b) LCS values of the different color patches. The ideal
values form parallel straight lines.

narrowness of the sensitivities. Assuming for clarity of presentation g = 1, γ = 1,
kc = 1, Eq. 2 is then transformed to:

Ic(x) = wd(x)Ic1
1√
2πσ

∫
Ω

ρ(x, λ)e−
c2
Tλ e−

(λ−λc)
2

2σ2 dλ, (7)

In this formula we assume diffuse reflectance and a Planckian illuminant E(λ, T )
as in Eq. 1. As this equation shows, there are three factors influencing the de-
viation from the Dirac delta assumption: the albedo ρ(λ) of the material, the
standard deviation of the sensor sensitivities, and the color temperature T of the
illuminant. Since, for arbitrary images the illuminant is typically unknown, we
focus our error analysis on the influence of the albedo ρ(λ) and the filter width
σ. Such an analysis will then allow one to either safely use the Dirac assumption
or avoid it depending on the scene materials.

By rearranging Eq. 7, we obtain:

Ic = wdIc1

⎛⎜⎜⎜⎝ρ(λc)e− c2
Tλc︸ ︷︷ ︸

Dc

+

∫
Ω\λc

ρ(λ)e−
c2
Tλ

1√
2πσ

e−
(λ−λc)

2

2σ2 dλ︸ ︷︷ ︸
Qc

⎞⎟⎟⎟⎠ , (8)

Thus, the LCS values can then be expressed as:

rc,G = ln

(
Ic
IG

)
= ln

(
Qc +Dc

QG +DG

)
, (9)

where Dc corresponds to the ideal intensity assuming Dirac delta functions and
Qc corresponds to the error which is introduced when employing cameras with
wider sensor sensitivities. Hence, in order to have an error as minimal as possible,
the ratio inside the logarithm of Eq. 9 has to be as close as possible to the ideal
ratio Dc/DG. This is equivalent to requiring that

QBDR = QRDB or
QB

QR
=
DB

DR
, (10)
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(a) (b)

Fig. 3. Impact of the NBA. (a) The red and blue vertical lines are the sensor responses
under the Dirac delta assumption. The shaded regions denote the error due to non-
narrow sensor sensitivities. There is no impact on the LCS values if the ratio of the
shaded regions is equal to the ratio of the corresponding vertical lines. (b) The diversity
of the shape of the spectra makes the error analysis difficult.

which is obtained when (QR+DR)/(QG+DG) = DR/DG and (QB+DB)/(QG+
DG) = DB/DG . This means that the ratio of the errors in the red and blue
channel has to be equal to the ratio of the Dirac responses. Fig. 3(a) illustrates
this relation. This means that as long as the ratio in Eq. 10 is satisfied, one
can use the NBA, even though Qc �= 0. On the other hand, if the combination
of a sensor sensitivity with the spectrum of an albedo causes an inequality in
this relation, the position of the resulting values and the ideal Dirac values will
differ in LCS. It is important to note that this relation is dependent on the
temperature of the illuminant. Furthermore, the diversity of the shape of real
spectra makes this analysis difficult.

4 Experiments

Our goal is to systematically evaluate the impact of the deviation from the
NBA on the LCS. Unfortunately, the non-separability of the different factors of
image formation make the analytic estimation of Eq. 9 and Eq. 10 intractable
for arbitrary images. We can however measure for specific surface spectra ρ(λ)
and for different filter widths σ how deviations from the NBA affect the position
and orientation of the invariant lines in LCS.

We computed the product of different albedo curves with Planckian illumi-
nants and different sensor sensitivities. The resulting RGB values were trans-
formed in LCS and the resulting deviations were evaluated using three different
error measures. We analyzed spectra of both synthetic and real data. We simu-
lated different spectral sensitivities by using Gaussians of varying σ.

4.1 Data

For the evaluation of synthetic reflectance curves, 36 lines of different slopes
and intensity levels have been generated (see Fig. 6). For analysis of real re-
flectances, we used about 160 different reflectance spectra which were extracted
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from the CAVE database [19]. In order to gain insight into the influence of their
shape on the introduced error, the spectra have been categorized into 37 groups
according to their shape. Examples for shape-categories are shown in Fig. 5. Fur-
thermore, 357 skin reflectance curves (from 119 different persons) of the UOPB
Face Database [20] have been analyzed in Sec. 4.6.

As examples of sensor sensitivities we took the spectral responses from two
3CCD cameras: a Sony DXC-755P [20] (denoted as “Oulu” in our plots) and
a Sony DXC-930 [21] (denoted as “SFU”), see Fig. 1(b). There is a mismatch
of the wavelength-range between the natural reflectance curves from the CAVE
database (λ ∈ [400nm, 700nm]) and the sensor sensitivities. The sensors have a
non-zero sensitivity at λ < 400nm, while the sensitivity at λ > 700nm is zero. In
order to avoid asymmetry in the resulting log-chromaticities due to this spectral
cut off, we limited the spectral range to λ ∈ [400nm, 650nm]. For the evaluation
we selected T ∈ [4000K, 10000K] and the dominant wavelength of the dirac
Delta functions as λG = 450, λB = 530 and λR = 590 with kB = kG = kR = 1.

4.2 Error Measures

The error analysis is performed on the basis of three error measures: the angu-
lar error εang, the average distance εdist and the difference of ratios εrat. The
angular error εang ∈ [0◦, 90◦] defines the angle between the invariant line lDirac

obtained with the Dirac functions and the invariant line lsens computed using
non-Dirac sensor sensitivities. Not only the parallelism of the two lines is af-
fected, but also a shift between line lsens and lDirac can be observed. Thus, we
define a second error metric, the average distance εdist between the LCS values
of the sensor sensitivities rcG and those of the Dirac function r̂cG as:

εdist =

10000∑
T=4000

√
(rRG(T )− r̂RG(T ))2 + (rBG(T )− r̂BG(T ))2, (11)

Depending on the application εdist (clustering/segmentation in LCS) or εang
(illumination-invariant representation) is more important.

We also evaluated the deviation from Eq. 10 by computing the difference
between the two ratios. We denote this error measure as difference of ratios εrat
and compute it as:

εrat(T ) = (QB(T )/QR(T ))− (DB(T )/DR(T )) . (12)

Note that both εdist and εrat are explicitly dependent on the temperature of
the illuminant. In our analysis it turned out that the correlation of εrat and
εang was extremely high. In order to avoid redundancy we limited parts of our
presentation to εang.

4.3 Synthetic Surface Reflectances

In order to analyze the influence of a) the reflectance level and b) the general
shape of the albedo on the accuracy of the LCS values, we generated linear
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reflectance spectra with different slopes and intercepts (see Fig. 6). Several im-
portant observations can be made:

1. The slope of the line: The slope of the line influences the average error εdist.
The larger the slope of the line, the smaller εdist (see e.g. Fig. 6(i), 6(l)). In all
the analyzed curves, ascending lines lead to a smaller εdist than descending
lines (see Fig. 6(c), 6(f), 6(i), 6(l)). This observation can be explained by the
shape of the sensor sensitivities. Consider a horizontal albedo. As the blue
filter is often broader than the red one, the error in blue will be larger than
in red (QB > QR) while for the ideal values they will be equal (DB = DR).
In order to achieve a more balanced ratio of Eq. 10, the albedo needs to have
a smaller level in the blue part of the spectrum.

2. The level of the reflectance curves: In most analyzed curves it was observ-
able that the angular error εang decreases with increasing level of intensity
(see e.g. Fig. 6(c), 6(i), 6(l)). Again, let us consider two horizontal albedos
of different reflectivity levels. As the blue filter is wider, the error in the
blue channel is larger than in the red one. However, closer to the dominant
wavelength, the difference between the red and blue curves is decreasing.
Therefore, the higher the intensity level, the smaller the additional error in
the blue channel and the better the error ratio.

Furthermore, it seems that the average distance εdist is affected more by vari-
ations in the shape of the albedo curves, while the angular error εang is more
sensitive to the overall level of reflectivity.

4.4 Real Surface Reflectances

Similar trends can also be observed for real reflectance data. However, due to
the more complex structure of the albedo curves and the simultaneous variation
in shape and level, the interpretation of the results is less intuitive than for the
synthetic data.

1. Balancing of the red and blue part of the albedo: Similar to the synthetic
data, Fig. 5(c) illustrates that albedos with slightly increasing slopes result
in a low εdist, as the ratio of Eq. 10 is well balanced. This observation is also
supported by the example in Fig. 5(f). If the error in the blue band is too
high compared to the error in the red one (see Fig. 7(f)) or the other way
around (see Fig. 7(c)) both errors, εdist and εang, increase.

2. The level of the reflectance curves: Here again, it can be nicely observed
that an increased reflectivity reduces the angular error εang. This effect is
illustrated in Fig. 5(i).

3. Minimal level of reflectivity: Closely related to the previous investigation
is the observation that extremely small levels (e.g. ρ(λ) < 0.03) over some
parts of the considered wavelengths result in an increased error. For instance,
this is observable is Fig. 7(i), where the curve with the highest level in the
range of λ ∈ [400nm, 570nm] results in the lowest error.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Results of synthetic and natural albedo curves with changing narrowness of
the sensor sensitivities. Left: Surface reflectances. Middle: LCS values; the values for
σ ∈ {1, 10, 30nm} almost fall on each other. Right: Error scatter plot.

4.5 Influence of Sensor Narrowness and Image Gamma

In order to analyze the influence of the narrowness on the errors, we also modeled
sensor sensitivities as Gaussian curves with μ ∈ {450, 530, 590nm} and different
widths, σ ∈ {1, 10, 30, 50, 70nm}. Examples for results on synthetic and natural
reflectance curves are given in Fig.4. As expected decreasing bandwidth results
in decreasing errors. This tendency could be observed in all the analyzed curves,
independent of the shape of the surface spectra.

We also tested the effects of different gamma-values. A value of γ > 1 results
in a compression of the LCS values. In almost 100% of the synthetic data and
about 70% of the natural data γ = 2.2 resulted in an increased εdist and a
reduced εang. Sample plots are provided in the supplemental material.

4.6 Favorable Reflectance Spectra

Due to the observation that slightly increasing albedo curves (higher red and
lower blue component) fit well to the NBA, we performed an additional evalua-
tion on skin reflectance curves. Based on the melanin absorption, skin reflectance
curves tend to have this advantageous shape (see Fig. 8(a)).

As expected, in LCS, the skin values cluster well (see Fig. 8(b)). Still, the
performance of the more narrow SFU spectral sensitivities is better. This is
also supported by the error scatter plot in Fig. 8(c). We want to emphasize
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Results for real reflectances (different shape categories). Left: Color-coded sur-
face reflectances. Middle: LCS values. Right: Error scatter plot.

that reported errors are very good results compared to the average error of the
arbitrary albedos of the CAVE database. Tab. 1 illustrates this, by showing the
mean and standard deviation of the skin reflectance curves and the extracted
spectra of the CAVE database.

Tab. 2 lists the best and worst measured errors for the CAVE database and
Oulu sensor sensitivities. The corresponding spectra are shown in Fig. 3(b). The
table reveals, how the performance is dependent on the sensor sensitivities (e.g.
εdist for cyan). See supplemental material for further results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6. Results for synthetic reflectances (different slopes and intensity levels). Left:
surface reflectances. Middle: LCS values. Right: Error scatter plot.
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Table 1. Mean and standard deviation for the average distance εdist and the angular
errorεang computed for the CAVE database and the skin reflectances. Both analyzed
sensor sensitivities are listed separately.

Oulu SFU

εdist εang εdist εang

CAVE 0.398 ± 0.273 5.128◦ ± 3.913◦ 0.449 ± 0.310 3.718◦ ± 2.864◦

Skin 0.192 ± 0.020 3.924◦ ± 0.848◦ 0.146 ± 0.012 3.226◦ ± 0.716◦

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Results for real reflectances (different shape categories). Left: Color-coded sur-
face reflectances. Middle: LCS values. Right: Error scatter plot.
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Table 2. Spectra with the minimal and maximal errors of the CAVE database and
Oulu sensor sensitivities. The corresponding curves (see color) are shown in Fig. 3(b).

Oulu SFU

εdist εang εdist εang

CAVE min(εdist) for Oulu (cyan) 0.07 0.01◦ 0.44 1.00◦

CAVE max(εdist) for Oulu (blue) 1.71 16.37◦ 0.93 12.86◦

CAVE min(εang) for Oulu (magenta) 0.21 0.01◦ 0.37 1.67◦

CAVE max(εang) for Oulu (green) 1.03; 16.72◦ 0.59 11.38◦

(a) (b) (c)

Fig. 8. Results of skin albedo curves. Left: Skin reflectances. Middle: LCS values. Right:
Error scatter plot.

5 Conclusions

This paper addressed the influence of the violation of the NBA on the results in
LCS are addressed. The introduced error depends on the the color temperature
of the illuminant, the sensor sensitivities and the surface reflectance. Due to the
image formation process, these three factors are not separable. In our evaluation
we, therefore, concentrated on the color of the captured materials. Our theoret-
ical formulation of the NBA-deviation showed that: when the ratio of the errors
in the blue and red channels approximates the ratio of the respective Dirac delta
values, the violation of the NBA leads to insignificantly small errors. Our analysis
was based on two error metrics. These were designed so as to evaluate the suit-
ability of reflectances for two groups of applications: illumination invariance and
clustering/segmentation in LCS. In our analysis on synthetic and real surface
reflectances it turned out that especially for bright and unsaturated colors, like
skin color, the error in LCS is very small. Object colors with large errors, will
benefit from spectral sharpening. Furthermore, due to Eq.10, the band which
is less balanced with respect to the other two bands should be selected as the
normalizing channel in Eq.4.
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Is Light Blue (azzurro) Color Name Universal

in the Italian Language?
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Abstract. In the study of 1969 Berlin and Kay have argued that there
are a limited number of universal ”basic color terms” which are the
same for each culture [1]. They postulate the existence of 11 basic color
terms, including a single blue term. After Berlin and Kay’s work, several
researcher have tried to confirm or refuse this theory. Those successive
studies led to two principal theories: universalistic [2] (confirming the
Berlin and Key theory) and relativistic (refusing the Berlin and Key
hypothesis) theories [3–6]. This papers brings a new argument in favor
of the relativistic theory and provides some evidence on the existence of
a twelfth color class in the Italian language. In particular, results support
the hypothesis of the existence of an additional monoleximic color name
for the class corresponding to light blue (azzurro in Italian language).
This hypothesis is proved by using the Stroop effect, introduced in 1953
by John Ridley Stroop [7]. The Stroop effect is based on the analysis of
the reaction time in a given task. Our claim is that when the name of a
color (e.g., ”blue,” ”green,” or ”red”) is printed in a color which is not
denoted by the name (e.g., the word ”red” printed in blue ink instead of
red ink), naming the color of the word takes longer and is more prone
to errors than when the color of the ink matches the name of the color.
Accordingly, we investigated the reaction time of Italian mother language
speakers performing a Stroop task with both dark blue and light blue
color. Results show that the reaction time is statistically different when
the light blue is associated to the monoleximic color name azzurro than
to monoleximic color name blue (blu in Italian language).

Keywords: Color perception, Color categories, Italian color terms, Cul-
tural influence.

1 Introduction

When Berlin and Kay introduced basic color terms in their 1969 book ”Basic
color terms, their universality and evolution”, a new way of thinking about col-
ors and color terms had begun [1]. The predominant view of linguistic relativity
gave way to cross-cultural color universals that could be identified for all lan-
guages. Since then, many studies investigated this issue either to support the
universalistic theory [2] or to refuse it in favor of the cultural relativistic one [3–
6]. Nevertheless, no agreement has been reached so far. The cultural relativistic
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view posits that color perception is greatly shaped by cultural specific language
associations and perceptual learning. The universalist view is that panhuman
shared color processing is the basis of color naming within and across cultures.
The study of Berlin and Kay [1] rose the universal theory which claims that
every culture would categorize all the colors in 11 classes (Red, Green, Blue,
Yellow, Orange, Purple, Pink, Brown, Gray, Black and White). According to
their definition, color terms are operationally defined as basic only if monolex-
emically named and psychologically salient for all speakers, but not if restricted
to narrow classes of objects or included in the signification of other color terms.
This theory received relevant support from subsequent studies [8, 2]. At the same
time, the Berlin and Kay’s theory received considerable criticism consequently
to empirical evidence on the perceptual processing of color. This evidence in-
cludes the proof of considerable variation in color processing among individuals
in the same culture, and new results on important cross-cultural differences in
color naming and categorization [9]. Another relevant critique is the existence of
single blue term in the universal theory. Some studies support the existence of
two terms for blue in some culture. Greek, Russian and Turkish belong to this
category [10–13].

Our claim is that Italian also have this feature. Previous results [14] have
provided some evidence in support to the hypothesis that Italian subjects suffer
the absence of the Italian color name for the light blue color (named azzurro). In
this work, the subjects were constrained to use monolexemic color names from
the eleven basic color categories identified by Berlin and Kay in a color naming
task. In this way it was emphasized that for Italian subjects it is not spontaneous
to classify the light blue color inside the blue color class. To get further evidence,
another experiment based on the Stroop effect was designed and implemented,
as described in what follows. Results show that the azzurro term holds has all
the features of a basic color: it is monoleximic, it is used with high-frequency
and it is agreed upon speakers of that language[1].

The paper is organized as follows. Section 1 summarizes the background,
namely the Stroop effect. Section 2 describes the methodology and the details
of the experiments that have been performed and introduces the results of each
experiment. Section 4 derives conclusions.

2 Background

In 1935 Stroop [7] investigated color naming versus word reading, and hit upon
the idea of a compound stimulus where the word was incongruent with the color.
The two major questions were: (i) what effect each dimension of the compound
stimulus would have on trying to name the other dimension? (ii) how would
this affect the observed interference? Stroop developed two main experiments:
in the first one the effect of incompatible colors on reading words aloud was
investigate and in the second the task was switched to naming the colors aloud.
This study proved that when the name of a color (e.g., ”blue,” ”green,” or ”red”)
is printed in a color not corresponding to the name (e.g., the word ”red” printed
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in blue ink instead of red ink), naming the color of the word takes longer and
is more prone to errors than when the color of the ink matches the name of the
color. This accounts for the fact that naming colors can be slower than reading
words. Moreover, the Stroop study proved that there was no interference from
incongruent colors in reading words but there was highly significant interference
from incongruent words in naming colors [15]. After many years the Stroop effect
is still in use for different purposed, mainly in the clinical field (e.g., [16–18]).

Our claim is that in the Italian language the light blue color do not fall
inside the blue color class. Instead, it falls inside an additional universal color
class named azzurro. Naming a color takes longer if it is printed or rendered
on a monitor in association to a non congruent color word. Consequently, our
hypothesis is that naming a light blue color should take longer than naming
a dark blue color if both are associated to ”blue” color word. To demonstrate
it, five experiments were performed. Different colors, extract from the Munsell
system, were shown in both congruent and not congruent conditions (e.g. ,red
color-red color word and red color-yellow color word).

The basic idea is to prove that naming a dark blue color needs shorter time
than naming the light blue color if both are associated to the ”blue” color word
(blu). Similarly, according to our hypothesis naming a light blue color would
need shorter time if it is associated to light blue color word (azzurro) than if it
is associated to blue color word. Results support the hypothesis that two blue
colors with the same Hue but different Value belong to two different color classes.

3 Methodology and Results

Five experiment are carried out in order to prove the hypothesis of the existence
in the Italian language of an additional monoleximic color name for the class
corresponding to light blue.

In this section, the methodology and the results are presented in separate sub-
sections, one for each experiment: Experiment 1 (Control Experiment), Experi-
ment 2, Experiment 3, Experiment 4 (Control Experiment) and Experiment 5.

3.1 Experiment 1: Control Experiment

In this test the subjects were asked to name freely, without constraints, the
name of the color displayed on the screen. The color was shown as a string of
”x”. This allows to collect the names used by the subjects and thus to highlight
the spontaneous use of the term azzurro.

During this test the reaction times were collected. These can be considered as
a benchmark of naming time for simple colornaming, namely in absence of the
linguistic influence of the color word. The subjects were completely blind to the
goal of the experiment.

Methods. The experiment were implemented in Matlab by means of the CRS
toolbox (http://www.crsltd.com/catalog/vsgtoolbox/index.html). The stimuli
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were shown in a calibrated Mitsubishi Diamond Pro 320 display on a middle
gray background in a completely silent dark room. Subjects answer were recorded
using a microphone to automatically detect the onset of the speech.

The stimuli shown on the screen were of six different colors and were chosen
from the Munsell color system. Specifically, the prototype for azzurro color was
chosen at the same Hue of the dark blue color but at a different Value. The
Munsell colors were converted in the RGB system to show them in the calibrated
CRT screen. This set of colors included: red (rosso ) [Munsell system: 7.5R 5/20
], blue (blu) [Munsell system: 5PB 1/10] , yellow (giallo) [Munsell system: 5Y
9/12], purple (viola) [Munsell system: 2.5P 3/18] , pink (rosa) [Munsell system:
7.5RP 7/10] , and light blue (azzurro) [Munsell system: 5PB 6/14], in Italic the
Italian color word.

These colors were chosen for two main reasons. First, except for the light blue
color, all are universal basic colors. Second, a color was chosen for each step of
the evolutionary pattern by Berlin and Kay [1], except for the achromatic colors
which were not relevant to this experiment because of the chosen paradigm (it
is very usual seeing names of colors wrote in black).

Our hypothesis is that light blue color is in Italian language a basic color.
The idea consists in comparing different reaction times between dark and light
blue with other different basic colors and color words based on the Stroop effect.
The number of colors was bounded to six in order to limit the duration of the
experiment.

A string of ”x” was shown in one of the six different colors cited above. The
use of a string of ”x” was chosen because is perceptually similar to a string
of letters composing a color word but do not have a semantic meaning. More
in details, a string of characters composing the word ”orange” have a semantic
meaning while a string of ”x” of the same length (e.g., ”xxxxx”) does not have
any linguistic significance. A ”xxxx” control was used also in past studies (e.g
[19]). The number of characters composing the string was changed randomly at
each trial to reproduce the changes in the number of characters of the words
corresponding to Italian colors (e.g., ’xxxxx’ to simulate the length of the name
red in Italian language ”rosso”). In this way we were able to perform another
control experiment. This allowed us to check if the length of the string can
influence the reaction time of the subjects in naming the color.

Subjects were asked to name the colors loud as quickly as possible. The sub-
jects were free to use every color word. The stimulus was shown at the center of
the screen subtending 10 degrees of visual angle. Data were collected in two ses-
sions of 18 trials each. Six sessions were performed for each color. Between each
stimulus, a middle gray image was displayed with a fixation point at the center
of the screen. The rest time between the stimuli was set to 2 seconds, in order
to avoid the post visual effect or effects of linguistic influence from the previous
color or color word. Neill and Westherry ([20]) manipulated speed-accuracy in-
structions and inter-trial interval in Stroop experiment. The suppression effect
was found to persist for at least one second; after 2 sec the effect was completely
dissipated.
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In this study, every time the subject gave an answer the researcher pressed
a key on the keyboard to show the new stimulus. The answer was record by
means of microphone and the time of the stimulus presentation was recorded. An
acoustic bip at the start of the experiment was used to synchronize the two data
flows for the audio and the reaction time recording respectively (WAVEform
audio format and MAT-file). The reaction times are extract from the audio
file automatically (http://www.fon.hum.uva.nl/praat/) which permits to detect
when the subject is in silent and when the subject is speaking.

Subjects. Seventeen subjects (7 females and 10 males) aged between 21 and 31
participated in the experiment. All were blind to the goals of the experiments.
The subjects had normal or corrected to normal vision and were tested for normal
color vision (Ishihara test).

Results. The results of this experiment show that the average time required
for naming a color on a string of ”x” it is not significantly different for all the
considered colors (ANOVA p-value<0.05). Noteworthy, the subjects used the
term azzurro completely spontaneously for the light blue color. This could be an
indication of the fact that this is a monolexic name and it is salient for all the
subjects.

In figure 1 the median and the 25th and 75th percentiles of the reaction times
are reported for all the colors.

Fig. 1. The median and the 25th and 75th percentiles of the reaction times for each
color of Experiment 1 are reported. The central mark represents the median, the edges
of the box are the 25th and 75th percentiles; the whiskers extend to the most extreme
datapoints not outliers, while the outliers are plotted individually.
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3.2 Experiment 2

The second experiment was aimed at investigating whether reaction times are
shorter for correlated color and color word (e.g., red color and red color word)
than they otherwise (e.g, red color and blue color word). More specifically, the
different reaction times between dark blue and light blue color on the color word
blue (blu in Italian language) were tested.

Methods. The experimental set-up was the same as for Experiment 1 but
the stimuli were different. In particular, the strings of ”x” were replaced with
real Italian color words. Four colors names were considered: red (rosso), blue
(blu), purple (viola) and yellow (giallo), in Italic the Italian color word. The
light blue (azzurro) and the pink (rosa) color words were not included. The first
one was not included in order to avoid any influence on the subjects from the
Italian color word azzurro. The pink color was not included to investigate if the
reaction times for the light blue color could be due to consequence of the lack of
the corresponding color word. In such case, the same effect would be observed
for the pink color.

Data were collected in two sessions, totally six times for each couple of color
and color word. The data were collect in two sessions to avoid the fatigue and
practice and learning effects proved by Stroop [7]. For the same reason we pref-
ered to collect data from more subjects without putting them under stress.

Subjects. Six subjects (2 females and 4 males) aged between 25 and 27 partic-
ipated in the experiment. The same subjects were tested, first, for Experiment
1. All the subjects had normal or corrected to normal vision and were tested for
normal color vision (Ishihara test).

Results. ANOVA test revealed that for all the colors, the mean of the reaction
times are shorter when the name and the color are congruent. It could be useful
to mention that the ”corresponding” color words for the light blue and the pink
color were not used in this experiment. For both of these colors (pink and light
blue) the reaction times are not significantly different when they are associated
to red, blue, yellow or purple color word. A difference could be observed for
reaction times for both light blue and pink colors when associated to the blue
word. However, but this was not statistically significant.

ANOVA test revealed that the mean reaction time of the these two colors
(light blue and pink) when associated to all the considered color words are not
statistically different. Instead, for the color that have the corresponding color
word (e.g., red color and red color word) the difference is significant.

In figure 2 the median and the 25th and 75th percentiles of the reaction times
are reported for the dark and the light blue colors when associated to any color
words.

The t-student test showed that for each possible combination of stimuli (color
and color word):
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(a) Dark Blue Color

(b) Light Blue Color

Fig. 2. The median and the 25th and 75th percentiles of the reaction times for the
dark and the light blue colors associated to any color words we used in Experiment 2
are reported. The central mark represents the median, the edges of the box are the 25th
and 75th percentiles; the whiskers extend to the most extreme datapoints not outliers,
while the outliers are plotted individually. The dark blue color have significantly shorter
reaction time if associated to the blue color word than all the others color words (red,
yellow and purple). No statistically significant differences are recorded for the light
blue color in relating to the different colors words (red, blue, yellow and purple).
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– the color word red have significantly shorter reaction time if associated to
red color than for the other colors

– the color word blue have significantly shorter reaction time if associated to
dark blue color than all the other colors (dark blue color: 0.556 sec; red
color: 0.661 sec; yellow color: 0.669 sec; purple color: 0.745 sec; light blue
color: 0.671 sec; pink color: 0.668 sec). This means that the subjects name
more quickly the dark blue than the light blue color if both are associated
to the blue color word

– the color word yellow have significantly shorter reaction time if associated
to yellow color than all the other colors

– no statistically significant differences are recorded for the purple color word
in relating to the different colors

The point here is that the blue color word corresponds to a mean reaction time
that is shorter for dark blue color than for light blue color. The case of purple
color word will be investigated in future work.

3.3 Experiment 3

In this experiment the color words for light blue (azzurro) and pink (rosa) were
introduced. The main goal was to test the reaction times for the light blue color
associated to the blue color word (blu) and to the light blue color word (azzurro),
respectively. The same six colors and color words of the Experiment 1 were kept.

Methods. The experimental set-up was the same as for Experiment 2 except for
the addition of the light blue and pink Italian color words. Six color words used
were: red (rosso), blue (blu), purple (viola), yellow (giallo), light blue (azzurro)
and pink (rosa). The colors and the color words were show in completely random
order in two different sessions, six times for each couple (color and color word).

Subjects. The subjects that performed this experiment were näıve to the task.
This was done in order to avoid practice and learning effects. Furthermore, this
allows to avoid the biasing of the performance that could be reduced for the
awareness of the use of the color word azzurro in previous tasks. 11 subjects
aged between 21 and 31 participated in the experiment (5 females and 7 males).
The same subjects were tested first for Experiment 1. All the subjects had normal
or corrected to normal vision and were tested to prove their normal color vision
(Ishihara test).

Results. ANOVA revealed that for all the colors, the mean of the reaction time
is significantly shorter when the name and the color are congruent. Importantly,
this also applies to the light blue color associated to the azzurro color word.

In figure 3 the median and the 25th and 75th percentiles of the reaction times
are reported for the dark and the light blue color associated to all the color
words.

By a t-student test for each possible combination of stimuli (color and color
word) we found the same results as for Experiment 2 for the color word Red,
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(a) Dark Blue Color

(b) Light Blue Color

Fig. 3. The median and the 25th and 75th percentiles of the reaction times for the
dark and the light blue colors associated to any color words we used in Experiment 3
are reported. The central mark represents the median, the edges of the box are the 25th
and 75th percentiles; the whiskers extend to the most extreme datapoints not outliers,
while the outliers are plotted individually. The dark blue color have significantly shorter
reaction time if associated to the blue color word than all the others color words (red,
yellow, purple, light blue and pink). The light blue color have significantly shorter
reaction time if associated to the light blue color word than all the others color words
(red, blue, yellow, purple and pink).
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Blue, Yellow and Purple. The new results are from the light blue (azzurro) and
pink color words. In summary:

– the color word azzurro have significantly shorter reaction time if associated
to light blue color than to all the other colors (light blue color: 0.601 sec; red
color: 0.663 sec; dark blue color: 0.761; yellow color: 0.657 sec; purple color:
0.711 sec; pink color: 0.735 sec)

– the color word pink have significantly shorter reaction time if associated to
pink color than all the other colors

In conclusion, our results show that naming a dark blue color needs shorter time
than naming a light blue color if both are associated to the blue color word.
Naming a light blue color needs significantly shorter time than naming a dark
blue color if both are associated to the light blue color word (azzurro). Moreover,
naming a light blue color associated to the light blue color word needs shorter
time than associated at any other basic color word.

Fig. 4. The median and the 25th and 75th percentiles of the reaction times for each
color of Experiment 4 are reported. The central mark represents the median, the edges
of the box are the 25th and 75th percentiles; the whiskers extend to the most extreme
datapoints not outliers, while the outliers are plotted individually.

3.4 Experiment 4: Control Experiment

Experiments 4 and 5 aim at investigating if the different reaction times between
the dark blue and light blue color on the color word blue is a perceptual or a
linguistic effect. To this end the dark and the light blue colors were replaced
with dark and light green colors, respectively. Experiment 4 is a control test.
The stimuli consisted of a string of ”x”, without any linguistic influence, colored
with one of the six colors: red, dark green, yellow, purple, light green, pink.
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Methods. The experimental set-up and the stimuli, as well as the number of
trials, are the same as for Experiment 1. The only difference is in the colors. As
mentioned above, both blue colors were replaced with two green colors. Both
the blue colors have same Hue, but different Value in the Munsell color order
system [dark blue, Munsell system: 5PB 1/10; light blue, Munsell system: 5PB
6/14;]. Similarly, both the green colors have the same Hue, but different Value
[dark green, Munsell system: 10GY 1/10; light green, Munsell system: 10GY
6/14]. The difference in Value between dark and light blue colors is the same
as between dark and light green colors. The task was to name freely, without
constraints, the name of the colors on the screen.

Subjects. Six subjects (all males) aged between 21 and 29 performed the ex-
periment. All the subjects had normal or corrected to normal vision and were
tested for normal color vision (Ishihara test). As mentioned above a new group
of subjects was selected to avoid the learning effect.

Results. This experiment shows that the mean reaction time to naming a color
on a string of ”x” it is not significantly different for all colors (ANOVA at a
p-value<0.05). In this experiment both the blue colors were replaced with two
green colors.

In figure 4 the median and the 25th and 75th percentiles of the reaction times
are reported for all the colors.

3.5 Experiment 5

The objective of this experiment was to investigate if the results of previous
experiments are driven by perceptual or linguistic effects. Our claim is that if
the reaction time is the consequence of a perceptual effect then the same trend
would be observed for both the blue and the green classes. Conversely, a different
trend would support the linguistic hypothesis, since in this case the blue and the
green classes would reveal a different underling mechanism ruling reaction time.

Methods. The set-up, the stimuli and number of trials of the last experiments
were the same as for Experiment 2. The blue color word was replaced by the
green color word. The two blue colors had the same Hue on the Munsell system
but at two different Value. The green colors had the same Hue on the Munsell
system and they are at the same difference of Value of the Blue colors.

Subjects. The same subjects that participated in Experiment 4 performed this
experiment.

Results. Testing by ANOVA shows that for red, yellow and purple the reaction
times are shorter, on average, when the name and the color word are congruent.

Noteworthy, this experiment also shows that the reaction time of the dark
green and the light green are both shorter if associated to green color word
than to all the other color words. For the pink color the reaction time are not
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(a) Dark Green Color

(b) Light Green Color

Fig. 5. The median and the 25th and 75th percentiles of the reaction times for the
dark and the light blue colors associated to any color words we used in Experiment
5 are reported. The central mark represents the median, the edges of the box are the
25th and 75th percentiles; the whiskers extend to the most extreme datapoints not
outliers, while the outliers are plotted individually. The dark and the light green color
have significantly shorter reaction time if associated to the green color word than all
the others color words (red, yellow and purple).
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significantly different if associated to color word red, green, purple or yellow.
The color word pink was not included as in the Experiment 2.

In figure 5 the median and the 25th and 75th percentiles of the reaction times
are reported for the dark and the light green colors associated to all color words.

In this experiment the subjects named spontaneously both the dark and the
light green color with the color word green; only one subject used the modifiers
”light” and ”dark” with the color word green.

By a t-student test for each possible combination of stimuli (color and
color word) the same results of Experiment 2 for the color word red, yellow
and purple were obtained. The new results are from the green color word. In
summary:

– the color word green have significantly shorter reaction time if associated to
light and dark green colors than if associated to all the others colors (red
color: 0.724 sec; dark green color: 0.621 sec; yellow color: 0.71 sec; purple
color: 0.874 sec; light green color: 0.67 sec; pink color: 0.773 sec). Both the
reaction times are not significatively different if the green color word is as-
sociated to light or dark green color.

These results support the hypothesis that the different reaction times for the
dark and light blue color associated to the blue color word are the consequence
of a linguistic influence. In fact, the reaction times were statistically different
when the subjects named the dark and the light blue color associated to the
blue color word, but they were not statistically different when the subjects
were naming the dark and the light green color associated to the green color
word. Both the blue and the green couple of colors were at the same Value
distance and the subjects used freely two different colors names for dark and
light blue color while they use the same color word for dark and light green
color.

4 Conclusions

The observed reaction times show that naming a dark blue color needs statis-
tically shorter time than naming a light blue color if both are associated to a
blue color word. Moreover, this work demonstrates that the reaction times are
statistically shorter if the light blue color is associated to the azzurro color word
than to the blu color word. Differently, the reaction times in naming a dark green
and a light green color associated to the green color word are not statistically
different. Furthermore, the experiments revealed that the subjects were using
the color word azzurro spontaneously.

All this results support the hypothesis of the existence of an additional class
in the blue region in Italian language and that this could be a consequence of a
linguistic, as opposed to a perceptual, effect. Further experiments are currently
being performed in order to prove such theory.



Is Light Blue (azzurro) Color Name Universal in the Italian Language? 103

References

1. Berlin, B., Kay, P.: Basic color terms. Univ. of California Press (1969)
2. Kay, P., Regier, T.: Resolving the question of color naming universals. Proceedings

of the National Academy of Sciences of the United States of America 100, 9085
(2003)

3. Kay, P., Kempton, W.: What is the Sapir-Whorf hypothesis? American Anthro-
pologist 86, 65–79 (1984)

4. Saunders, B., Van Brakel, J.: Are there nontrivial constraints on colour categoriza-
tion? Behavioral and Brain Sciences 20, 167–179 (1997)

5. Roberson, D., Davies, I., Davidoff, J.: Color categories are not universal:
Replications and new evidence from a stone-age culture. Journal of Experimen-
tal Psychology: General 129, 369–398 (2000)

6. Roberson, D.: Color categories are culturally diverse in cognition as well as in
language. Cross-Cultural Research 39, 56 (2005)

7. Stroop, J.: Studies of interference in serial verbal reactions. Journal of Experimental
Psychology 18, 643–662 (1935)

8. Kay, P.: Color categories are not arbitrary. Cross-Cultural Research 39, 39–55
(2005)

9. Jameson, K.: Culture and cognition: What is universal about the representation of
color experience? International Journal of Clinical Monitoring and Computing 5,
293–347 (1988)

10. Paramei, G.: Singing the Russian blues: an argument for culturally basic color
terms. Cross-Cultural Research 39, 10 (2005)

11. Winawer, J., Witthoft, N., Frank, M., Wu, L., Wade, A., Boroditsky, L.: Russian
blues reveal effects of language on color discrimination. Proceedings of the National
Academy of Sciences 104, 7780 (2007)
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Abstract. This paper presents a tone compensation method between
images to make a seamless panoramic image. Different camera settings
of input images, including white-balance, exposure time, and f-stops,
affect the overall color tone of a resultant panoramic image. Although
numerous methods have been proposed to deal with such color variations
for seamless image stitching, most of them do not properly consider the
dynamic scene in which different scene contents exist in input images.
In this paper, we propose an efficient method that takes dynamic scene
contents into account for compensating color tone difference. The pro-
posed approach consists of three steps. First, we compensate the color
tone difference by using the linear color transform with robust local fea-
tures. Second, we filter out dynamic objects (i.e., dynamic scene contents)
by measuring similarity between the linear transformed image and the
reference image. Finally, we precisely correct the color variation with de-
tected consistent regions only. The qualitative evaluation shows superior
or competitive results compared to commercially available products.

Keywords: Panorama,Tone correction,Seamless image mosaic.

1 Introduction

Image stitching or panorama image mosaic has received substantial attention for
decades. Since a resultant image provides wider field of view, it is well suited for
some applications such as virtual tour guide and visual surveillance. Moreover,
recent mobile phones and compact cameras have begun to embed panorama
softwares to overcome their narrow field of view.

For the stitching, the registration of input images is essential that overlays
multiple images of the same scene from the different view points at different time.
The registration methods can be classified into two categories: direct methods
and feature-based methods. Direct methods [1][2][3] use all the pixels in the
overlapping area to register images. Although direct methods often require a
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Fig. 1. Image stitching result using images with large photometric variation

user input to determine ordering of images, these show accurate results through
minimization of the error function which is defined for entire pixels. On the
other hand, feature-based methods [4][5][6] stitch each image by identifying local
features such as blobs or corner points. Such features are robust under particular
variations which cause degenerative results. Furthermore, distinctiveness and
repetitiveness of features ensure the correct alignment of an unordered set of
input images. For that reason, feature-based approaches are recently esteemed
as a standard method in commercial products.

The feature-based image registration usually consists of feature extraction,
matching, outlier filtering, and bundle adjustment steps. However, the registra-
tion of images does not guarantee a plausible stitching result since the difference
of color tones and the presence of dynamic objects cause unnatural heterogeneity
at stitched boundary. Therefore, consequent steps such as blending and optimal
seam algorithms, performed after the image registration, focus on eliminating
these artifacts to make seamless panorama images. Blending has been widely
used for seamless image mosaic. Burt and Adelson [7] introduced the multi-
band blending method that controls the degree of blending according to image
contents. Perez el al. [8] suggested Poisson blending which is developed for so-
phisticate merging. Instead of blending visual seam along the image boundary,
an optimal seam method finds a path that passes through the overlapping area
with minimum difference. Davis [9] used Dijkstra’s algorithm with difference
of intensity. Uyttendaele et al. [10] used a vertex cover algorithm and Mills
and Dudek [11] proposed compound difference of intensities and magnitude of
gradients.

Since any blending techniques can be applied after the optimal seam selection,
the combination of two methods can handle geometric miss alignment error as
well as dynamic objects. It works fairly nice, unless color tone variation is sig-
nificant. Fig. 1 illustrates the result of applying the combination of two methods
under large color tone variation. From the geometrical point of view, input im-
ages are well aligned. However, we can see the unnatural seam owing to the
photometrical variation.
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(a) input images with dynamic objects

(b) image stitching result

Fig. 2. Degenerative result due to different scene contents when using the linear color
transform [14]

Several methods have been proposed to compensate color tones while making
different assumptions on the scene. Some methods [12][13] used a histogram
matching technique and Tian el al. [14] proposed a correction method based on
the linear color transform. However, they assumed static scenes and, therefore,
dynamic objects or scenes seriously degrade the quality of a stitching result
(see Fig. 2). To cope with dynamic objects, Mills and Dudek [11] used a linear
transform with the random sample consensus (RANSAC) technique to filter
out moving objects. However, the linear color transform used in that method
cannot handle complex color variation sufficiently. Goldman and Chen [15] tried
to estimate the camera response function (CRF) and vignette coefficients from
given correspondences, and then compensated the color tone with the calculated
CRF. However, the performance of CRF-based correction totally depends on the
given correspondence and, therefore, it requires very accurate feature matching
results across images. Furthermore, if some assumptions made on the camera
parameters (such as constant focal lengths and f-stops) are not satisfied, the
CRF-based methods do not ensure plausible color tone correction results.

To resolve the problems in variety cases, we propose a new color tone compen-
sation method. The proposed method consists of a few steps. Initially, the linear
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Fig. 3. Overall procedure of the proposed method

color transform is adopted to roughly compensate the different exposure and
white balance under physically inconsistent situations. Then, geometrically con-
sistent regions (corresponding to static scene contents) are computed by using
the color histogram intersection method. Finally, globally adoptable tone correc-
tion methods such as histogram specification and re-coloring methods generate
photometrically consistent panoramic images.

2 Proposed Color Tone Correction Method

As mentioned, the proposed algorithm consists of three main parts. The first part
is the linear color transformation with robust local features. The second part is
the color histogram based intersection to detect geometrically consistent regions.
Finally, region based tone correction methods compensate the color variations of
input images. Fig. 3 shows the overall procedure of the proposed method. Here,
we assume that the input images are already well aligned geometrically in the
preprocessing stage.

2.1 Linear Color Transform with Robust Features

The objective of this step is finding a linear color transform matrix as in [14]
which compensates different camera settings such as white balances and expo-
sures. To acquire a reliable color transform matrix, measurement data points
should be physically consistent. Since the scene is not always static in practice,
we need a methodology of finding reliable matches which correspond to the same
physical scene points. For this, we use scale invariant feature transform (SIFT)
[16] which is commonly used in many computer vision applications. SIFT fea-
tures are invariant to rotation and scale changes, and it is also invariant to illu-
mination variances. Because SIFT generates feature descriptors from the image
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gradients and normalizes the descriptor vectors, photometric variations merely
affect the feature descriptors. Therefore, SIFT-based correspondence searching
ensures physically consistent matches and it is suitable for calculating color
transformation matrix as well.

Here, the linear color transformation approach assumes that optical sensors
work fairly linear so that pixel color or luminance values are proportional to the
amount of incoming light. Base on this assumption, a diagonal model [17] might
be sufficient for the color tone correction. However, more accurate transform is
required to deal with more complex color transition having non-linearity which is
common in practice. For example, the auto white balance compensates different
color temperatures non-linearly and the analog-digital converter for digital cam-
eras does not guarantee the linearity, neither. Therefore, to solve these problems
approximately as possible, we define the transformation matrix having twelve
degrees of freedom as below,
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where the subscript r and t indicate the reference image and the target image
respectively. The reference is automatically set among overlapping images, which
has the largest contrast of brightness. After that, the matrix representing linear
transformation between the sets of pixels, can be calculated by

MIt = Ir. (2)

The matrix M can be computed in the least square sense. The linearly trans-
formed image is shown in Fig. 4. It works well when corresponding features are
obtained accurately.

2.2 Region Searching with Chromaticity Histogram Intersection

To apply region-based tone correction techniques, we first find geometrically con-
sistent regions. Since the previous step is a feature-based technique, the trans-
form uses insufficient color information from the overlapping area. The main
concern of this step is that, although the feature-based linear tone correction
has its own strengths, it does not guarantee plausible results if there are just
a few correspondences. To deal with these problems, we introduce a consistent
region searching method based on the chromaticity histogram, which examines
geometrically consistent regions inside the overlapping area. Instead of using the
direct comparison of RGB values, we transform the color space from RGB to
chromaticity as

cr =
R

(R+G+B)
, cb =

B

(R +G+B)
, (3)
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(a) input images with dynamic objects

(b) image stitching result

Fig. 4. Image stitching result with the linearly transformed image

where R,G,B represent each RGB value and (cr, cb) represents the chromaticity.
Since this conversion reduces the dimension of the color space, it reduces com-
putational complexity while increasing the reliability of color matching under
luminance changes.

Here, instead of using individual pixel values, we define the histogram and
region based similarity measure to avoid the effect of geometrical misalignment as∑

cr

∑
cb
min (h(cr, cb), g(cr, cb))∑
cr

∑
cb
h(cr, cb)

, (4)

where h and g represent the histogram of each image in the overlapping area.
The denominator is a normalizing constant which counts the number of pixels in
the overlapping area, and the numerator indicates summation of the intersected
histogram. As the similarity ratio increases, the intersected histogram preserves
an original shape of histogram. Therefore, it measures the region based similarity
based on the color histogram which is not or merely affected by the geometrical
misalignment errors.

Based on the color histogram intersection method, the proposed method finds
reliable regions with the following procedure. First, we initialize a binary mask
which represents the overlapping area and outside of the overlapping area (see
Fig. 5). Each pixel serves as a label where white indicates inliers and black de-
notes outliers. Second, we compute the similarity ratio and compare it with the
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Fig. 5. A mask and the illustrative procedure of splitting

predefined threshold (we use 95 percent). If the similarity is less than the thresh-
old, the region split into quad sub blocks as shown in Fig. 5. For each sub block,
we repeat the same procedure until the size of a split block becomes smaller than
the predefined size. The final result of the algorithm is the mask representing
inliers (geometrically consistent scene contents) and outliers (geometrically in-
consistent scene contents) as shown in Fig. 6. Based on this mask, region based
tone compensation is performed in the next step.

Fig. 6. Two input images and the result of the consistent region examination

2.3 Region Based Tone Correction

Since the inlier mask represents geometrically consistent regions, the last stage
of the proposed method is to create photometrically consistent results through
region based tone correction methods such as the histogram specification and
the re-coloring [18].

Histogram Based Tone Correction. The histogram based correction method
performs histogram specification for each RGB channel. It finds an mapping
function from the cumulative histogram H2 of the target image to the reference
histogram H1 as follow,

z = H−1
1 (H2(r)), (5)



Tone Correction with Dynamic Objects for Seamless Image Mosaic 111

where r and z are continuous random variables representing input and output
images, respectively. Although histogram specification is simple and quite con-
ventional, it shows reasonable results. However, this method has a problem in
cope with the tone correction when the cumulative histogram changes abruptly.
For example, if one particular color is dominant and the distribution is narrow,
numerous pixels are mapped to the dominant color.

Color Transfer Based Tone Correction. In this approach, we use a color
transfer method instead of histogram specification. Color transfer or re-coloring
[18] technique initially transforms the color space from RGB into �αβ, developed
by Ruderman at al. [19], and corrects the color tone using mean and standard
deviation of each image.

Since the �αβ space has been developed to reduce correlation among channels
assuming that the human visual system is ideally suitable for natural scenes.
This color space shows the least correlation between each plane especially for
natural scenes, thus, we do not need to change the value of pixel in a coherent
way. Finally, by using characteristics of the each images in the �αβ space, the
re-colored image is obtained as below,
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where σ and μ indicate standard deviation and mean, and r and t denote the
reference and the target images. Fig. 7 shows the results by using the histogram
based and re-coloring based methods, respectively.

3 Experiment

The experimental images are taken by differentiating white-balance, exposure
time, ISO, and f-stops using a Cannon 1Ds camera with a manual focus Canon
24-70mm lens. Table 1 and 2 provide the camera settings for input images in
Fig. 8 and Fig. 9. The experiment includes the results of the linear color trans-
formation, the histogram matching, and the proposed method. In addition, three
commercial products, PTGui [20], Hugin [21], and Autostitch [22], are compared
for the performance evaluation.

Fig. 8 shows the result of each approach for the static scene and the same
scene with a dynamic object. For the comparison, the second and the third rows
illustrate the results from the static scene, (a) and (b), whereas the fifth and
the sixth rows describe the results from the scene with the dynamic object, (i)
and (j). First of all, the linear transformation [14] results, (c) and (k), are hazy
because it cannot fully handle non-linear photometric variations. Moreover, (k)
is also influenced by the dynamic object. Next, histogram matching deals with
non-linearity and generates a reliable result, (d), for the static scene. However,
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(a) histogram matching result

(b) �αβ re-coloring result

Fig. 7. Results of histogram matching and �αβ re-coloring

since histogram matching does not consider dynamic objects, it is dominated by
the yellow artificial object as shown in (l). The proposed methods are shown to
be robust in both cases, (e) and (m), regardless of inconsistence scene contents.

Table 1. Different camera settings for input images in Fig. 8

- Input image 1 Input image 2

White-balance Day light Tungsten light

Exposure time 1/500 sec 1/320 sec

ISO ISO-100 ISO-200

F-stops f/3.5 f/4.5

Table 2. Different camera settings for input images in Fig. 9

- Input image 1 Input image 2 Input image 3 Input image 4 Input image 5

White-balance Day light Cloudy Day light Tungsten light Day light

Exposure time 1/200 sec 1/200 sec 1/100 sec 1/160 sec 1/320 sec

ISO ISO-200 ISO-160 ISO-500 ISO-200 ISO-100

F-stops f/8 f/6.3 f/8 f/11 f/5
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(a) input image 1-1 (b) input image 1-2

(c) linear transformation 1 (d) histogram matching 1 (e) proposed method 1

(f) PTGui 1 [20] (g) Hugin 1 [21] (h) Autostitch 1 [22]

(i) input image 2-1 (j) input image 2-2

(k) linear transformation 2 (l) histogram matching 2 (m) proposed method 2

(n) PTGui 2 [20] (o) Hugin 2 [21] (p) Autostitch 2 [22]

Fig. 8. Comparison of cropped results with other methods
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(a) a sequence of input images

(b) linear transformation

(c) histogram matching

(d) proposed method

(e) PTGui [20]

(f) Hugin [21]

(g) Autostitch [22]

Fig. 9. Comparison of results with other methods for dynamic scene contents
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(a) image stitching result for input images in Fig. 2

(b) image stitching result for input images in Fig. 4

(c) image stitching result for input images in Fig. 8

(d) image stitching result for input images in Fig. 9

Fig. 10. Results of the proposed algorithm combined with the optimal seam selection
and the multi-band blending
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In addition, commercial products are evaluated for the comparison. CRF-
based approaches, PTGui and Hugin, compute CRF based on local features,
thus, they are not influenced by dynamic objects. However, variation of un-
modeled camera parameters such as ISO and f-stops severely degrade quality of
the results, (f),(g),(n),and (o). Autostitch which uses gain compensation method
, adjusts global intensity for each channel. Thus, (h) and (p) looks better than
the original images but it also has a problem with complex color variation, plus,
(p) is dominated by the yellow artificial object.

Fig. 9 illustrates the results from a sequence of images having several dynamic
objects and different camera settings. Similar to Fig. 8, dynamic objects degrade
the results of (b), (c), and (g). Next, variation of un-modeled camera parameters
spoil the results, (e) and (f). Lastly, complex color variation causes unsatisfactory
results in (b) and (g). The proposed method can be combined the optimal seam
and multi-band blending techniques to produce more natural and realistic results
as shown in Fig. 10.

4 Conclusion

We have presented a new method which solves color tone correction problem for
seamless image stitching, especially when the scene is not static and input images
are taken with different settings. The proposed method redresses the photometric
inconsistency through the linear color transform, chromaticity histogram inter-
section, and region based compensation. The feature-based linear transform is
robust under different camera settings and the existence of moving objects. How-
ever, it is usually inadequate to solve entire color tone correction problem. To
make up this limitation, chromaticity histogram intersection is adopted to find
geometrically consistent regions. Afterwards, region based approaches compen-
sate color tone difference more accurately with the consistent regions only. The
overall procedure is designed to be used in the real environment where dynamic
scene contents exist. The experimental results show that the proposed method
is superior to the previous methods.
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Abstract. A number of computational models of visual attention have
been proposed based on the concept of saliency map. Some of them
have been validated as predictors of the visual scan-path of observers
looking at images and videos, using oculometric data. They are widely
used for Computer Graphics applications, mainly for image rendering,
in order to avoid spending too much computing time on non salient
areas, and in video coding, in order to keep a better image quality in
salient areas. However, these algorithms were not used so far with High
Dynamic Range (HDR) inputs. In this paper, we show that in the case
of HDR images, the predictions using algorithms based on Itti, Koch
and Niebur [1] are less accurate than with 8-bit images. To improve
the saliency computation for HDR inputs, we propose a new algorithm
derived from Itti and Koch [3]. From an eye tracking experiment with
a HDR scene, we show that this algorithm leads to good results for the
saliency map computation, with a better fit between the saliency map
and the ocular fixation map than Itti, Koch and Niebur’s algorithm.
These results may impact image retargeting issues, for the display of
HDR images on both LDR and HDR display devices.

Keywords: Saliency Map, High Dynamic Range, Eye Tracking.

1 Introduction

The concept of visual saliency was introduced in the Image community by the
influential paper of Itti, Koch and Niebur [1]. The purpose of these algorithms
is to compute, from an image, a Saliency Map, which models the image-driven
part of visual attention (gaze orientation), for observers looking at the image. In
the same last ten years, High Dynamic Range imaging emerged as a new field of
research in image science, including computer graphics, image acquisition and
image display [2]. Eight-bit images are not the only way to deal with digital
images, since techniques have been proposed to capture, process and display
HDR images.

In this paper, we show that a direct computation of the saliency map using
algorithms derived from [1] leads to poor results in the case of HDR images. We
propose a new algorithm derived from Itti and Koch [3], with a new definition
of the visual features (intensity, colour and orientation), which leads to better
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results in the case of HDR images. The saliency maps computed with our algo-
rithm and with [3] are compared to human Region of Interest (RoI), using an
eye tracker experiment.

Previous work on visual saliency computation are reviewed in section 2. Ev-
idence for the drawback of Itti and Koch’s model for HDR images are given in
section 3, as well as our alternative model. An eye tracker experiment is presented
in section 4, allowing to compare the two computational models.The results are
discussed in section 5.

2 Previous Work

Among theories of visual attention, the Feature Integration Theory (FIT) [4]
was made popular by [1] because it leads to an efficient computational model of
the bottom-up visual saliency. Other biologically plausible implementations of
the saliency map have been proposed, and some authors include computational
models of top-down biases (see [5] for a review).

Itti, Koch and Niebur’s model [1], further refined in [3], tries to predict the
bottom-up component of visual attention, which is the image-driven contribu-
tion to the gaze orientation selection. They implement the FIT using Koch and
Ullman’s hypothesis of a unique saliency map in the spatial attention process [6].
This model was tested against oculometric data, and proved to be better than
random at predicting ocular fixations [3].

Itti and Koch’s algorithm [3] is seen as the standard model for the computation
of the saliency map in still images. It extracts three early visual features from an
image (intensities, opponent colours and orientations), at several spatial scales.
This computation is followed by center-surround differences (implemented as
Gaussian Dyadic Pyramid) and a normalization step for each feature. Next, an
across-scales combination and a new normalization step lead to the so-called
conspicuity map for each feature. The normalizations are computed as follows: a
conspicuity map is iteratively convolved by a Difference of Gaussian (DoG) filter,
the original map is added to the result, and negative values are set to zero. Then,
a constant (small) inhibitory term is added. Finally, the three conspicuity maps
(Intensity, Colour and Orientation) are added into the saliency map (see [3]
for implementation details). Other saliency algorithms, such as [7,8] use the
same principles derived from [1]: selection of the visual features, center-surround
differences, competition across features, and fusion of the conspicuity maps into
the saliency map.

Saliency maps have been widely used in the recent years for Computer
Graphics applications, mostly in order to save computing time in render-
ing algorithms [9,10]. Video coding applications have also emerged, keep-
ing a better image quality in salient areas [11]. All these applications com-
pute saliency maps using models derived from [1], with Low Dynamic Range
(LDR) images. The present paper addresses the computation of saliency maps
for HDR images, which has implications for both LDR and HDR display
devices.
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3 Saliency Maps of HDR Images

We have extended the Saliency Toolbox for Matlab [12] available online [13] to
HDR input (float images). Alternative algorithms, such as [14] were not tested,
so that our findings are restricted to Itti’s computational strategy, which is the
most popular in computer science, and led to the more convincing oculometric
validations.

3.1 Drawback of the Standard Model

Focusing on biologically inspired algorithms derived from [1], it appears that a
direct computation of the saliency map may lead to poor results for HDR images
in terms of information: the saliency map selects the most salient item, loosing
information about other salient items.

Fig. 1. Space Needle (left), Memorial Church (middle) and Grace New (right) HDR
images. Top: LDR tone mapped images. Bottom: Saliency maps computed from the
HDR images

Fig. 1 (bottom) gives three examples of saliency maps computed with [3]
from 32-bit HDR images from Debevec’s website [15]. As HDR images cannot
be printed, they are displayed (Fig. 1, top) after being tone mapped into LDR
images [16]. These examples suggest that a direct computation of the saliency
map looses relevant information, as far as visual attention is concerned. In the
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Grace New image, only windows and light sources are selected. The saliency
map aims at predicting the visual behavior: one may doubt that observers would
only look at light sources and windows in the HDR scene. This is even worst
with the Memorial Church HDR image, where the saliency map only selects one
window in the church. From these limited examples (more examples are available
as supplementary material of the present paper), it seems that state-of-the art
saliency map algorithms tend to select the most salient items in a HDR scene,
the other salient items being either faded, or removed. These ”poor” saliency
maps of HDR images do not correspond to the actual visual behavior.

3.2 Contrast vs. Difference

A naive approach would be to compute the saliency maps after a tone mapping
preprocessing (see section 3.3), however we were looking for a unified approach,
which proved to give better result than the two-steps approach (see section 4.2).
Looking carefully at the conspicuity maps of HDR images, we found that the
color map seems to include more information than the two others. This obser-
vation suggested an hypothesis. When the feature maps are computed in [3],
the Colour feature is normalized, at every pixel, with respect to intensity I,
whereas the Intensity and Orientation features process differences (between spa-
tial scales). Knowing that biological sensors are sensitive to contrasts rather than
to absolute differences, we felt that the saliency map of HDR images would ben-
efit from a computational model in terms of contrast on all three conspicuity
maps (Intensity, Colour and Orientation). This normalization may be seen as a
gain modulation, which is the physiological mechanism of visual adaptation.

Thus, we replace the Intensity channel in [3]. Instead of computing the in-
tensity difference between scales c and s: I(c, s) = |I(c)− I(s)|, we compute an
intensity contrast:

I ′(c, s) =
|I(c)− I(s)|

I(s)
(1)

(a) (b) (c)

Fig. 2. Contour detection in (a) with (b) normalized Gabor filters (our proposal), and
(c) differences of Gabor filters at successive scales, as in [3]

Then, we propose a modification of Itti, Koch and Niebur’s definition of the
Orientation features, so that the new feature is homogeneous to a contrast. In the
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original paper, orientation detectors were computed, for each orientation angle
θ, as differences between Gabor filters at scales c and s: O(c, s, θ) = |O(c, θ) −
O(s, θ)|. This leads to orientation detectors where the borders themselves are
not detected (see Fig. 2). Instead, we see a propagation across scales of what is
actually detected: borders of borders. This observation, added to the fact that
a Gabor filter is a derivative filter, led us to a new definition of the Orientation
features:

O′(c, s, θ) =
O(c, θ)

I(s)
(2)

with a normalization over the intensity channel, as for the two other features.
Fig. 3 shows examples of saliency maps computed for HDR images with this
new operator, denoted CF (for Contrast Features) in the following, without the
strong drawback of Fig. 1.

Fig. 3. Saliency maps of the Space Needle, Memorial Church and Grace New HDR
images computed with the CF algorithm, with new definitions of the Intensity and
Orientation features

In order to check the consistency of the CF algorithm for LDR images, we
also compared the saliency map of the LDR images, computed with [3] and with
the proposed algorithm. An example is given Fig. 4 for the Lena picture, showing
that the saliency maps are close to each other for LDR inputs.

3.3 Tone Mapping Preprocessing

Usual sensors, either physical or biological, cope with the high dynamic range
of input luminance by means of a non-linear sensitivity function, allowing to
shrink the luminance dynamic into a LDR output dynamic: all sensors include
a Tone Mapping Operator (TMO). Thus, one may argue that the apparent
failure of [3] for HDR images comes from the HDR input data. One may expect
that reproducing sensors properties and mapping HDR images to LDR images
before computing a saliency map would lead to better results than without this
preprocessing step.
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(a) (b) (c)

Fig. 4. Saliency maps of Lena (a), computed with (b) [3] and with (c) theCF algorithm

A number of TMO have been proposed so far in the Computer Graphics
literature. Please note that in the following, we use TMO for a task which is
not the usual rendering task. Instead of comparing the visual appearance of
tone mapped images, we use them in order to compute accurate saliency maps.
In section 4.2, we have compared our algorithm to six such operators from the
literature, combined with a saliency map computed with [3]:

– Tumblin and Rushmeier [17] (denoted O1), based on psychophysical data,
tries to keep the apparent brightness in the images.

– Ward et al. [18] (denoted O2) uses a histogram adjustment method (we did
not consider the colour processing, nor the glare simulation of the operator),
trying to keep the contrast visibility in the images.

– Pattanaik et al. [19] (denoted O3) uses a colour appearance model (we used
the static version of the operator).

– Reinhard et al. [16] (denoted O4) uses a method inspired by photographic
art (we use the global version of the operator).

– Reinhard and Delvin [20] (denoted O5) is inspired by photobiology.
– Mantiuk et al. [21] (denoted O6) optimizes tone mapping parameters in terms

of visibility distortion, using Daly’s Visual Difference Predictor (VDP) [22].

Given that these operators may be sensitive to the parameter tuning, we have
used the default parameters as described in the cited publications.

4 Experiment

In order to test the relevance of a given saliency map computation for HDR
images, a ground truth is needed. This was done on a limited scale in a psycho-
visual experiment, with a HDR physical scene, collecting oculometric data.

In the general case, one may consider the saliency map as an input for the
top-down biases in the attention process. However, we followed [3,23,11] and did
not considered such top-down biases. Instead, we used the saliency map as a
predictor of the gaze orientation, in an experiment where the visual task was
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chosen in order to avoid strong top-down biases. Thus, the fixation map could
be compared to predictions from these saliency maps.

We have designed an eye tracking experiment to test our hypothesis about
the visual behavior looking at HDR scenes. The ocular fixations of 17 observers
looking at a physical HDR scene were recorded. Then, the scene was scanned
with a camera with various exposures, in order to build a HDR image. This
allowed to compute various saliency maps from the HDR image.

observer

Saliency map

Fixation map

comparison

sensor

HDR image

physical

scene

Fig. 5. Framework of the Saliency Map evaluation for HDR images

4.1 Material and Method

The experiment took place in a dark room (no windows, walls painted in black)
under controlled photometry. The scene (Fig. 7, right) included dark (small box,
yoghurt) and bright parts (lamps), leading to a luminance dynamic of 3,480,000:1
and very strong contrasts (the yoghurt and the open box are near the light
sources). The scene was installed in a closed box (except for the front part, see
Fig. 6).

Subjects were seated in an ergonomic automobile seat, allowing to adjust the
eye height and to minimize head movements. The scene box angular size was
20◦. Ocular fixations were recorded using a SMI X-RED distant eye tracker.
Eight LEDs around the box served for the eye-tracker calibration, together with
a central LED in the middle of the box, with a physical protection around,
avoiding that any light would make the scene visible during the calibration. A
video-projector displayed light on the back wall, avoiding possible glare due to
the lamps in the scene box, however without light reflexion inside the box.

Seventeen subjects participated to the experiment (11 men, 6 women, mean
age 29). Although some of them worked in the field of digital image, they were
naive to the purpose of the experiment. They were asked to look freely at the
scene during 30 s. We followed [23], telling them that they would be asked a very
general question at the end of the experiment. Altogether, these instructions
avoided strong task-dependent biases.
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observer

eye tracker

scene box

video-projector

Fig. 6. Experimental setup

A black curtain hid the scene during the first part of the experiment (subjects
entering the room, seating, seat adjustment in height, explanations about the
experiment). Then, the light was turned off in the room, the curtain was opened,
and the eye tracker was calibrated using the LEDs as reference fixation points.
Finally, the LEDs were powered off, the scene box was lit, and the eye tracker
record began. In the end, subjects were asked to mention the main objects they
had noticed in the scene (these data are not analyzed here).

4.2 Results

We followed Le Meur et al. [11] and computed a Regions of Interest (RoI) map
from the subject’s fixations in the first 30 s. Fixations were defined as discs of
1◦ radius, where the gaze stayed for at least 100 ms. All fixation patterns (for
the 17 subjects) were added together, providing a spatial distribution of human
fixations. The RoI map is a probability distribution of the gaze direction, so
its integral is normalized to 1. Fig. 7 (left) shows the RoI map obtained from
individual fixations. Compared to the saliency maps of Fig. 8, the RoI map is
smoother, which sets some limits to further comparisons.

Fig. 7. Left: Fixation map (RoI) recorded over the individual fixations of 17 observers,
in false colours. Right: : LDR (JPEG) photograph of the HDR scene.
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The next step was to compute saliency maps out of the experimental scene.
First, photographs were taken with various integration times (bracketing) from
the observer’s position, in order to build a HDR image [24] close to what ob-
servers actually looked at. Saliency maps were computed out of this image, using
both [3] and theCF algorithm.We also computed, for comparison, saliency maps
using [3] after preprocessing with O1 to O6 (see section 3.3). Fig. 8 shows the
resulting saliency maps in false colours.

Comparing the saliency maps suggests that some items which were missed
by [3] were found by the CF algorithm, such as the yoghurt, the black box, the
top right photograph, while the wine bottle is emphasized (see Tab. 1 for quan-
titative evidence). As expected, the direct saliency map computation with [3]
only selects the two lamps and the colour chart (the colour feature is the only
one to be normalized, see section 3.2).

An unexpected result is that some TMO fail in capturing more areas of interest
than the direct saliency map computation with [3] (see O5 for instance). Another
interesting point is the strong difference between the saliency maps, depending on
the TMO preprocessing. For instance, most TMO allow to capture the yoghurt
(bottom right of the image) which is not detected by the direct computation,
however O2 and O6 emphasize the left lamp, while O2, O4 and O6 emphasize the
wine bottle, O5 captures the top right photograph, etc.

Table 1. Error indexes e and s comparing the RoI and the saliency maps, depending
on the algorithm (rank in curly brackets)

Algo. 104 e rank s rank

[3] 6.15 {6} 0.127 {6}
CF 4.63 {1} 0.161 {1}
O1 + [3] 4.65 {2} 0.158 {3}
O2 + [3] 5.47 {5} 0.131 {5}
O3 + [3] 7.67 {8} 0.093 {8}
O4 + [3] 4.89 {3} 0.160 {2}
O5 + [3] 6.22 {7} 0.126 {7}
O6 + [3] 5.36 {4} 0.145 {4}

The RoI only contains low spatial frequencies, partly due to accuracy issues in
the eye tracking methodology. Thus, a direct quantitative comparison between
the RoI and saliency maps is meaningless, as far as high frequencies are con-
cerned. We took this limitation into account using the same 1◦ dilatation for
the saliency maps as was previously done for the RoI, before any quantitative
comparison. Then, we assumed that both the saliency maps and RoI map are
probability distributions, and thus normalized in consequence.

Two criteria were used for the comparison. The first one is the square root
e of the Mean Square Error (MSE) between the saliency and RoI distributions
(see Tab. 1). However, as the MSE is a global criterion averaging on many
pixels, we also used a finer comparison criterion based on level sets. For any
probability value t between 0 and 1, saliency and RoI binary images can be
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CF [3]

O1 + [3] O2 + [3]

O3 + [3] O4 + [3]

O5 + [3] O6 + [3]

Fig. 8. Saliency maps of the experimental HDR scene computed with the proposed
CF algorithm, and with [3] without and with preprocessing O1 −O6
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built by thresholding the saliency and RoI distributions, and then compared. To
compare two binary images, we used the Dice coefficient, which is relevant when
the relative surface of the target is small:

s =
2× TP

2× TP + FP + FN
(3)

where TP = True Positive, FP = False Positive and FN = False Negative
pixels. The higher the Dice coefficient, the more similar the binary images. This
leads to curves of the Dice coefficient s versus the threshold probability value t,
as shown in Fig. 9. If the Dice curve obtained for one algorithm is always higher
than the one obtained for another algorithm, the first one performs better.

Fig. 9. Dice coefficient for the CF Saliency Map and [3] when compared to the RoI
map, with threshold t as parameter

When comparing MSE values and mean Dice coefficients (see Tab. 1), the CF
algorithms ranks first in both cases (the rank does not change much whether we
use the MSE or the Dice). The square root of the MSE is improved by 33%
compared to [3], while the mean Dice is improved by 27%. Besides, none of the
TMO, used as preprocessing before [3], managed to perform better than the
proposed CF algorithm in the tested situation. Furthermore, the tested TMO
not always lead to a more predictive saliency maps than a direct saliency map
computation without TMO, which is a counter-intuitive result. For instance,
using O3 and O5 before [3] is worst than [3] alone.

5 Conclusion

We have focused on a drawback of the most popular computational models of
the visual saliency when applied to HDR images. This can be put in terms of
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missing information: a direct saliency maps computation is poorly predictive of
the gaze orientation. We have proposed a new algorithm, improving the saliency
map quality on HDR images, that is, leading to a better fit with oculometric
data. This CF algorithm was rated best in terms of the Dice coefficient and in
terms of MSE, compared to [3]. In addition, it gives better results than 6 TMO
from the literature (in order to compress the image dynamic) followed by [3].
This last result suggests that the drawback of Itti and Koch’s standard model for
HDR images is not due to the input image interpretation, but more probably to
the feature’s definition. Note that the standard feature definitions perform well
on LDR images, and the need for modified features is limited to HDR images.

These results may benefit to HDR video coding and HDR display, as a number
of compression and processing algorithms already use bottom-up saliency com-
putations in order to optimize the computing time and compression rate. Thus,
a more reliable computation of the bottom-up saliency of HDR input images
should improve the quality of the displayed image.

Still, a predictive model of human fixations is beyond the possibility of such
bottom-up saliency models [25]. This is emphasized by the fact that the Dice
coefficients (Tab. 1 and Fig. 9) are quite low, whatever the method. This is partly
due to the fact that visual attention is not only driven by the bottom-up visual
saliency. In search for a more predictive model, alternative approaches may also
compute the top-down component of visual attention, providing that a semantic
description of the scene is available, which is often the case in Computer Graphic
applications. For instance, in [26], the scene gist and a priori knowledge about
the current task is used in order to bias the bottom-up saliency, in [27,28], a
discriminant saliency linked to object recognition is computed.
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2 ESAT-PSI, KU Leuven, Belgium

3 Microsoft Research Ltd, Cambridge, UK
{mansfield,pgehler,vangool}@vision.ee.ethz.ch,

carrot@microsoft.com

Abstract. In this paper, we present a new, improved seam carving algo-
rithm. Seam carving efficiently removes pixels from an image to produce
a retargeted image. It has proved popular with users and has been used
as a component in many retargeting algorithms. We introduce the visi-
bility map, a new framework for pixel removing image editing methods.
This allows us to cast retargeting as a binary graph labelling problem.
We derive a general algorithm which uses seam carving operations for
efficient greedy optimization of a well defined energy, and compare this
with forward energy seam carving and shift map image editing. We test
this method with varying parameters on a large number of images, and
present an improved seam carving algorithm which can demonstrably
produce better results. We draw general conclusions about pixel remov-
ing methods for retargeting and motivate future directions of research.

1 Introduction

Image retargeting aims to generate effective visualizations of images from differ-
ent sources on different displays. Given the increasing variation of sources and
displays, from more traditional cameras and monitors to time-of-flight webcams
and smartphones, there has been great interest in this application in recent years.

Seam carving [2, 15] is one of the most popular image retargeting methods.
This simple algorithm removes a set of pixels from the input image to generate
the output. Since its introduction by Avidan and Shamir in 2007, many seam
carving implementations have become available, including in Adobe Photoshop1,
the Liquid Rescale plugin for GIMP2 and online at rsizr.com. Seam carving has
also been built on in many academic works [4, 6–8, 11, 16, 20]. However, most
of this work uses seam carving as a complete algorithm, without modification.

The goal of this paper is to analyze, extend and improve seam carving itself. To
this end we cast the problem in a new framework, the visibility map, illustrated
in Fig. 1. This map provides a natural description of methods that remove pixels
from the input image to generate the output, allowing us to describe retargeting
as a binary graph labelling problem. We define an energy over a visibility map
that can still be optimized using seam carving operations. We explore different

1 See http://www.adobe.com/products/photoshop/photoshopextended/features/
2 Available at http://liquidrescale.wikidot.com/

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 131–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The visibility map shows which pixels are visible in the output image after
an image editing operation. Visible pixels are labelled 1 (shown in white), non-visible
pixels labelled 0 (shown in black). As with all figures, best viewed in colour

versions of the visibility map energy and also optimization options that open up
due to this new viewpoint. Results for numerous parameters are generated on a
large set of images to determine an improved seam carving algorithm.

Our improved seam carving has a number of advantages. Most importantly,
it optimizes an energy defined directly between the input and output images,
unlike the commonly used forward energy seam carving of [15], as shown in
Sect. 5.1. This allows a clearer understanding of our energy and allows direct
comparison to results generated by other optimization methods. It also produces
demonstrably better results on many images, e.g. see Fig. 1.

In summary, our key contributions are: (1) The definition of retargeting as a
binary graph labelling problem. (2) An efficient optimization scheme using seam
carving operations, given energy terms from a well defined general family. (3)
An improved seam carving algorithm.

We next describe related work. In Sect. 3 we then define the visibility map,
from which we derive the general form of our improved seam carving algorithm
(Sect. 4). In Sect. 5 we compare this to related methods. In Sections 6 and 7
we describe various energy and optimization options. In Sect. 8 we show results,
and present our improved seam carving algorithm. Finally, in Sect. 9 we conclude
and discuss future directions.

2 Related Work

Scaling and cropping have been long used in image editing and retargeting.
Automatic methods have been used to guide these simple processes [16, 17].
However, these operations have fundamental limitations. Scaling keeps uninter-
esting parts of the image, while distorting structured objects such as faces and
man-made objects when the scaling is non-uniform. A good crop maintains only
the interesting parts of the image, but not all may fit within the desired output
image size.

Cropping has been generalized to more flexible pixel removal methods. These
methods may remove areas of uninteresting content while being able to re-
arrange the image to better show all of the interesting parts.
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Seam carving [2, 15] fits into this category. Using simple low level energy terms,
this algorithm iteratively removes pixels. Retargeted images at a range of sizes
can be quickly generated. Its simplicity, speed and effectiveness has led it to be
used as component of many retargeting methods including [4, 6–8, 11, 16, 20].
Most use seam carving as a complete algorithm, with the exceptions of our
previous work [11] where we extended seam carving to better protect objects
during retargeting, and [7] which redefines seams for video retargeting to achieve
improved results.

Other methods also operate by pixel removal. These include shift map image
editing [12], which optimizes a mapping from pixels in the output image to pixels
in the input image. For retargeting they add a label ordering constraint which
maintains the ordering of pixels in the input image in the output image. In this
case, the result can equivalently be generated by removing pixels.

Shift map image editing without this constraint, and other algorithms which
generate outputs in terms of input pixels, e.g. [1, 5, 13, 14], also owe much of
their effectiveness to pixel removal. However, allowing pixel re-arrangement and
duplication gives greater flexibility, which must be appropriately constrained.

These methods have a number of drawbacks. When approximating scaling
through downsampling, these methods suffer the same problem of causing non-
uniform scaling of structured objects. Also, they may lead to discontinuities in
lines and curves in the image, which can be very visually disturbing.

These issues have motivated other paradigms for retargeting. Non-linear warp-
ing/interpolation is used in [9, 10, 18, 19] among others to determine the output
image. Pixel estimation is used in [3, 17] to minimize a patch-based bidirectional
image similarity. The patch match algorithm [3] achieves interactive speeds, and
allows very effective user interaction to be used to preserve lines and structured
regions. However, these methods can be complex to implement, and usually re-
quire the optimization to be re-run from the beginning for each target size.

However, despite the drawbacks of seam carving, it is still popular in prac-
tice due to its simplicity, speed and effectiveness in a wide range of images.
This motivates our aim to better understand and improve seam carving, which
we do through the framework of the visibility map we introduce in the next
section.

3 Visibility Map

In image editing and retargeting methods such as seam carving, the output
image is created from the input image by simply removing pixels and squashing
them together. This operation can be naturally defined through a binary graph
labelling problem as follows. For each pixel (r, c) in the input image, there is
one node that can take on one of two labels Xr,c ∈ {0, 1}. If the node label is
1 the corresponding pixel is visible in the output image; if 0, it is non-visible.
In other words the output image is generated by only showing the pixels whose
nodes are labelled with a 1. We refer to this graph as the visibility map over the
image.
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Example visibility maps for cropping, downsampling, seam carving and our
improved seam carving of an image are shown in Fig. 1. Due to the simple
relationship between the input image and output image via the visibility map,
this representation provides an intuitive framework through which to view pixel-
removal methods.

Regarding notation: throughout the paper we will denote row indices with r
and column indices with c, in an image R× C in size.

4 Seam Carving Operations to Optimize a Visibility Map

The visibility map allows retargeting to be formulated as a binary labelling
problem. However, the structure of the problem does not allow for a simple
solution by standard binary labelling methods. For example, a fixed number of
pixels must be removed from each row and column to maintain a rectangular
output image. This constraint would take the form of higher order cliques in the
graph which may make its solution intractable.

Instead, we determine a seam carving based approach for optimization. An
important property of algorithms based on seam carving is their computa-
tional efficiency. At each iteration, the optimization is a dynamic program.
We want to retain this efficiency, while extending the method to optimize a
well-defined graph labelling problem. In this section, we show how this can be
achieved.

4.1 Energy

We consider a general energy over a visibility map X for retargeting that allows
for efficient optimization by seam carving operations, as described in the fol-
lowing section. Throughout, we assume that vertical seams are being removed,
without less of generality. This energy takes the form

E(X) =
∑
r,c

ψU
r,c(X) +

∑
r,cl<cr

ψH
r,cl,cr(X) +

∑
r>1,cu,cd

ψV
r,cu,cd(X) . (1)

Unary Terms. ∀r, c

ψU
r,c(Xr,c) = EU

r,c[Xr,c �= 0] , (2)

where [.] is the indicator function.

Horizontal Contact Terms. These are potential functions over higher order
cliques defined ∀r, cl < cr as

aψH
r,cl,cr(Xr,cl , . . . , Xr,cr) =

{
EH

r,cl,cr
, Xr,{cl,cr} = 1, Xr,{cl+1,...,cr−1} = 0

0, otherwise
. (3)
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Fig. 2. Contact term potentials over higher order cliques are turned on when certain
pixels come into contact. Nodes are shaded to show example configurations which turn
these potentials on.

Vertical Contact Terms. These are potential functions over higher order
cliques defined ∀r > 1, cu, cd as

ψV
r,cu,cd

(Xr−1,1, . . . , Xr−1,cu, Xr,1, . . . , Xr,cd) ={
EV

r,cu,cd
, Xr−1,cu = 1, Xr,cd = 1,

∑cu−1
c=1 Xr−1,c =

∑cd−1
c=1 Xr,c

0, otherwise
. (4)

Note that the specific terms we use for E∗
∗ are defined later in Sect. 6.

The contact terms are so named because of their special sparsity properties.
These potentials are only non-zero for configurations where certain pixels are
brought into contact, e.g. for the horizontal terms only when nodes (r, cl) and
(r, cr) are labelled 1 and all nodes in between are labelled 0. This is illustrated
in Fig. 2. Although there are a huge number of these potentials, only a small
number are “turned on” for each image configuration. This is the main reason
why seam carving operations can be applied to minimize this energy.

We also place locality constraints on the non-zero values these potential func-
tions can take. We enforce that the term EH

r,cl,cr
may not be a function of the

properties of any pixels other than those on row r, and EV
r,cu,cd

of any pixels
other than those on rows r − 1 and r.

4.2 Optimization

In this section we show how the form of energy described in the previous section
may be optimized by seam carving operations.

Let us first recap the seam carving method. Seam carving greedily removes
one seam per iteration, where a seam is defined as an 8-connected path across
the image with one pixel per row. Dynamic programming is used to efficiently
optimize for the seam with lowest energy, with order O(RC +R). This process
of optimizing for a seam to remove we refer to as a seam carving operation. We
define these operations explicitly in order to distinguish them from seam carving
algorithms, which also define the energy terms to be used.

In terms of the visibility map, seam carving can be understood as follows.
From an initial all-ones labelling, each seam ‘removed’ encodes a label switch
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Fig. 3. Energy terms for seam carving operations. Green terms relate to new pixel
contact, red terms to old pixel contact.

of nodes with label 1 to label 0. This process is iterated until the target size is
acquired.

We now explain why our energy can be optimized using seam carving oper-
ations. During the forward pass of dynamic programming, as each pixel in the
seam is chosen, the seam pixel in the row above is already known, conditioned
on the current pixel being contained in the optimal seam. With this information,
it is clearly possible to determine the correct non-zero energy terms as described
in Sect. 4.1, which are subject to locality constraints.

It is also possible to determine which pixels are newly brought into contact,
as used in [15]. Hence it is known which of the potential functions over higher
order cliques are turned on and off, as these depend only on pixel contact.

It is therefore clear that, at each iteration, seam carving operations can find
the seam to remove which results in the minimum energy visibility map. The
energy terms defined in Sect. 4.1 are used in dynamic programming over the
current image as shown in Fig. 3. The (red) old contact terms are paid negatively
at the shown locations as an equivalent but simpler alternative to paying these
terms positively everywhere except at the locations shown. This is because this
distortion would remain for seams elsewhere in the image. Note that these old
contact terms are only paid if they were previously paid as (green) new contact,
i.e. if the pixels referenced were not neighbours in the input image.

5 Relationship to Other Methods

5.1 Forward Energy Seam Carving

Our new algorithm results in the generalized energy terms for the seam carving
operations shown in Fig. 3. The terms of forward energy seam carving [15] are
similar, but with a key difference: they pay only the new contact terms, and not
the terms related to old contact. Sean carving can thus be thought of as “for-
getting” the original image and only taking into account distortion introduced
at that iteration.

This means that forward energy seam carving does not optimize for an energy
defined over a visibility map, and therefore not for an energy defined simply
between the input and output images. This can also be seen from the fact that
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a b c d

a b d

a c d

a d

pay Ebd pay Ead

pay Eadpay Eac

Fig. 4. Seam carving forward energy is dependent on the seam removal order

the energy is dependent on the order of seam removal, as illustrated in Fig. 4.
Consider the four neighbouring pixels shown and their horizontal contact terms.
Removing pixels b then c brings into contact a and c with cost Eac in the first
seam and then a and d with cost Ead in the second seam. Removing pixels c
then b incurs costs Ebd and then Ead, which are different in general.

This makes the seam carving forward energy harder to understand. An energy
defined between the input and output allows better energy modelling and also
comparison to other methods which produce visibility maps.

5.2 Shift Map Image Editing

The visibility map framework also has close connections with the shift map
framework described by Pritch et al. [12]. The shift map is a multi-label mapping
over the output image, where the label describes the shift between the pixel in
each position and its original position in the input image.

The shift map is related to the visibility map. When a label ordering constraint
is enforced, a shift map result can be represented by a visibility map. This
relationship is illustrated in Fig. 5. If the shift map is given by Mr,c, then then
this relationship can be written formally as

Xr,c =

{
1, ∃(u, v) such that ((u, v) +Mu,v) = (r, c)
0, otherwise

. (5)

Comparing the two representations, while the shift map offers a clear description
of the energy terms as shown in [12] and is not limited to maintaining pixel

1
0
0
0
1

1
1
0
1
1

2
2
2
2
2

Visibility map

Horizontal shift map

Input image Output image

Fig. 5. The shift map is closely related to the visibility map. The corresponding entries
for pixel (2,3) are highlighted.
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ordering, it yields a multi-label problem. The visibility map is an alternative
which poses a binary labelling problem with the pixel ordering being implicitly
enforced. In the context of image retargeting, or other problems where a pixel
ordering may be desirable, the use of the visibility map therefore yields a simpler
formulation than the equivalent shift map.

6 Improved Seam Carving – Energy

We have shown in Sect. 4 that seam carving operations can be used to optimize
for a well defined energy over a visibility map. This gives us the key advantage
of greater intuition into the behaviour of the algorithm, given a defined energy.
This intuition can be used in designing a good energy for the problem. With this
in mind, we now consider a number of different options for the energy terms.

For the contact energy terms, we consider the general form

EH
r,cl,cr

= DH
r,cl,cr

+ SH
r,cl,cr

EV
r,cu,cd

= DV
r,cu,cd

+ SV
r,cu,cd

. (6)

We now describe options for these terms.

6.1 Distortion Terms

These terms measure the distortion created in the output image. The following
notation is used:DH

r,cl,cr
is the horizontal distortion term, andDV

r,cu,cd
the vertical

distortion term, I is the input image, with magnitude |I|. All terms have an order
term nD. In our experiments, we consider nD ∈ {1, 2}.

Magnitude Distance

DH
r,cl,cr = ||I|r,cl − |I|r,cr |nD

DV
r,cu,cd = ||I|r−1,cu − |I|r,cd |nD . (7)

For nD = 1, this is the contact energy used in forward energy seam carving [15].

RGB Distance

DH
r,cl,cr

=
∑

x∈{R,G,B}

∣∣Ixr,cl − Ixr,cr
∣∣nD

DV
r,cu,cd

=
∑

x∈{R,G,B}

∣∣Ixr−1,cu − Ixr,cd
∣∣nD

. (8)

This energy is similar to the above, but makes use of differences in RGB colour
rather than intensity magnitude.
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Relative RGB Distance

DH
r,cl,cr

=
∑

x∈{R,G,B}

∣∣Ixr,cl − Ixr,cr−1

∣∣nD
+
∣∣Ixr,cr − Ixr,cl+1

∣∣nD

DV
r,cu,cd

=
∑

x∈{R,G,B}

∣∣Ixr−1,cu − Ixr−1,cd

∣∣nD
+
∣∣Ixr,cd − Ixr,cu

∣∣nD
. (9)

For nD = 2, this is part of the contact energy used in shift map image editing [12].

6.2 Seam Terms

We can regularize the spatial distribution of the seams and thus provide an
explicit regularization against seam ‘clumping’. Such clumping can occur when
the distortion cost of removing a single clump of seams is lower than the cost of
removing seams spread throughout the image, resulting in a visually disturbing
seam of high distortion in the output image.

We consider two different possibilities. The following notation is used: SH
r,cl,cr

is the horizontal shift control term, and SV
r,cu,cd

the vertical shift control term.

Repeat Cost for Intermediate Seams

SH
r,cl,cr = (cr − cl − 1)DH

r,cl,cr

SV
r,cu,cd = (cu − cd − 1)DV

r,cu,cd . (10)

This seam term ensures that the some cost is paid for each seam that has been
removed, with that cost given by the energy of the currently visible seam.

Average Unary Cost for Intermediate Seams

SH
r,cl,cr =

(cr − 1)− (cl + 1)

(cr − 1)− (cl + 1) + 1

cr−1∑
c=cl+1

EU
r,c

SV
r,cu,cd

= (cu − cd − 1)DV
r,cu,cd

. (11)

This seam term leads to an approximation of the forward energy seam carving
algorithm [15]. Consider removing a pixel with an already removed neighbour.
Additional distortion energy and seam term energy (ΔD + ΔS) is paid. The
additional seam term energy, using this measure, approximates the previous
distortion energy by the average unary term of the previously removed pixels
(ΔS ≈ Dold). The remaining energy is the new distortion energy (ΔD +ΔS =
Dnew − Dold + ΔS ≈ Dnew), which is what the forward energy seam carving
algorithm optimizes for.

Note that a similar approximation for the vertical term is hard to define, so
the repeating cost is again used.
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6.3 Unary Energy Terms

By inspection of the form of the contact energies, it can be seen that they alone
do not well model the problem of retargeting. Consider a retarget in which an
area of interesting texture is completely removed, leaving only a homogeneous
background. The contact energy terms will be low due to the low visible distor-
tion, but clearly this is not the best way to retarget the image. In the terminology
of [17], the contact terms provide a measure of coherence but not of completeness.

A unary term may be used to model this loss. We consider using the following
as a simple saliency-based unary term, with a variable order given by nU:

EU
r,c =

(∣∣∣∣∣
(
∂

∂x
I

)
r,c

∣∣∣∣∣+
∣∣∣∣∣
(
∂

∂y
I

)
r,c

∣∣∣∣∣
)nU

. (12)

For nU = 1, this is the unary energy used in backward energy seam carving
[2]. In our experiments, we consider nU ∈ {1, 2} and also consider not using the
unary term.

7 Improved Seam Carving – Optimization

7.1 Refinement

A key advantage of having a well defined energy over a visibility map is that we
can compare different optimization techniques and combine them to achieve a
lower energy. We consider an optimization step based on the observation that
we can not only remove seams, but also put them back in. We refer to this as
visibility map refinement. Using refinement steps may allow a lower energy to
be reached by allowing greater flexibility to explore the solution space.

At each refinement step, we run our improved seam carving algorithm in the
visibility map for pixels labelled 0 (non-visible) in the visibility map, and relabel
the pixels in the optimal seam to 1 (visible) as illustrated in Fig. 6. We run
such a refinement step at each iteration after the seam removal step. We then
run another removal step to maintain the current image size. If the energy is
decreased, we keep this new labelling proposal. We repeat this until the overall
energy is no longer decreased.

Note that by relabelling seams in the visibility map, the property of 8-
connected seam removal in the current image is not preserved. However, we
did not observe this as causing any lack of pixel consistency in our results.

Visibility map

Visibility map Output image

Input image

Find
seam

Relabel
to 1

Fig. 6. Refinement by seam carving in the non-visible pixels of the visibility map



Visibility Maps for Improving Seam Carving 141

a b c d a c d

remove b

a d

remove c

Fig. 7. Simple example of linear blending with w = 0.25

7.2 Blending

It is also possible to relax the visible/non-visible interpretation of the visibility
map. We consider instead an interpretation of a label of 0 as indicating a low
weight w in a blending operation. If pixel (r, c) is labelled 0, we use a linear
interpolation to blend it into its horizontally neighbouring pixels ∀x ∈ {R,G,B}

Ixr,c−1 = wIxr,c + (1− w) Ixr,c−1

Ixr,c+1 = wIxr,c + (1− w) Ixr,c+1 . (13)

This is illustrated in Fig. 7.
Note that this simple blending operation can be taken into account before

calculating the energy terms, and therefore can be optimized for directly. In our
experiments where we use blending, we use w = 0.25.

8 Results

We have described a framework for visibility map optimization for retargeting
using seam carving operations, and given a range of energy terms and optimiza-
tion options. We collected a set of 100 images of different kinds of scenes from
flickr.com and ran all 288 combinations of these options on them.3

We give a selection of the many results we generated in Fig. 8 to demonstrate
our findings, and show a larger selection in the supplementary material4.

To compare the results, we tried to rank them by average bidirectional simi-
larity [16, 17]. However, we found a poor alignment with human judgement.

Overall Trends. We found that the use of distortion energy terms alone, with-
out unary or seam terms, gave poor results. As can be seen from the results
in the supplementary material, such an energy favours the creation of few high
energy seams over distribution of the error over the image. This was found to be
much improved by the use of a unary term. For good results, we found the use
of seam terms to be necessary.

With regard to the different optimization options, we found that use of blend-
ing reduced the energy in 99.6% of our results, and refinement in 68.2%. Blending

3 All code is available at www.vision.ee.ethz.ch/~mansfiea/improvingsc/ under
the GNU General Public License

4 Also available at www.vision.ee.ethz.ch/~mansfiea/improvingsc/

flickr.com
www.vision.ee.ethz.ch/~mansfiea/improvingsc/
www.vision.ee.ethz.ch/~mansfiea/improvingsc/
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gave an average energy reduction of 19.3% but refinement an average energy
increase of 2.3%. This is possible because the use of refinement only guarantees
the energy is the same or lower at each iteration. This result shows that this
greediness in some cases leads to an increased energy of the end result. However,
for both of these techniques, we found that in practice their effect on the visual
appearance of the images was limited.

Improved Seam Carving. From our results we chose the following parameters.
We use the forward energy seam carving distortion energy (7) with nD = 1, unary
terms with nU = 1 and the seam carving-approximating seam term (11). Refine-
ment and blending had little visual effect on our results, so neither are used.

Representative Results. A small sample of results from our improved seam
carving are shown, with the seam carving and scaling results, in Fig. 8. In these
images, cropping would clip interesting areas out. Scaling shows the whole scene,
but may include uninteresting areas at the cost of distortion due to non-uniform
scaling (see (b)).

The results of seam carving show all the interesting areas, but may include
line discontinuities and other distortion (see (a) and (c)). Our improved seam
carving distributes seams more evenly in these areas and reduces these artefacts,
while maintaining good performance in images where seam carving does well (see
(b)). In non-structured images such as landscape seams, all methods perform well
(see (d)).

9 Conclusions

In this work we introduced the visibility map, which can be used to define
retargeting as a binary graph labelling problem. We described a general energy
that can be efficiently optimized using seam carving operations. From tests on a
large training database, we presented a new, improved seam carving algorithm.

Many works build upon seam carving as a complete algorithm. Our improved
seam carving thus may also be used to improve these methods.

However, the improvements we are able to show are relatively minor and do
not overcome the major problems of seam carving. Indeed, these problems clearly
cannot be solved by simple low level pixel removal methods. Seam carving and
related pixel removal methods fundamentally cannot retarget smooth curves
to smooth curves. Methods making use of low level information do not know
which areas of an image are structured such that non-uniform scaling would be
distorting. The limits of such methods seem now to have been reached.

Alternatives do exist, as described in Sect. 2. These have problems of their
own, typically in optimization. Nevertheless, it is clear that work using more gen-
eral image synthesis frameworks, additional images (e.g. video, image databases,
stereo cameras), intelligent use of user input and automated feature detection
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(e.g. lines, vanishing points, artificial structure) will strongly shape future meth-
ods in retargeting. Combining these sophisticated methods with the success of
existing simple methods is also a promising direction.

Acknowledgements. We would like to thank the following users of Flickr for
allowing us to use their work under the Creative Commons License: telmo32 for
Fig. 8(a), Tambako the Jaguar for (b), Amir K. for (c) and Michal Osmenda
for (d).
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Feedback Retargeting
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Abstract. Feedback retargeting combines the benefits of two previous
retargeting methods: Bidirectional similarity [1] and Shift-Map [2]. The
first method may have blurry areas due to patch averaging and the latter
can remove entire objects. Feedback retargeting has the sharpness of
shift-map and the completeness of bidirectional similarity, avoiding the
removal of salient objects.

In Shift-Map retargeting the output image is made from segments of
the input image, and this minimizes the forward direction of bidirec-
tional similarity. An iterative feedback procedure is developed to take
care of the backward direction, assuring that the input image can be
reconstructed from the output image. This is done by using Shift-Map
backwards, reconstructing the input image back from the output image.
Areas in the input image that are difficult to reconstruct from the output
image get a feedback priority score. A second Shift-Map retargeting is
then performed, adding this feedback priority to the data term. These
regions now have a higher priority to be included in the output.

After a few iterations of forward retargeting and backward feedback
the retargeted image includes all salient features from the input im-
age. Computational efficiency and image sharpness remain as high as in
ordinary Shift-Map.

1 Image Retargeting Background

Image retargeting algorithms [1–7] take an input imageA and generate an output
image B having new dimensions, mostly having a new aspect ratio (e.g. reducing
image width by two). These algorithms attempt to preserve some of the image’s
important qualities and features, that may be lost or distorted when using simple
scaling or cropping.

The most recognized method for image retargeting is seam-carving [4, 8]. In
this approach continuous seams of pixels are removed from the image in an iter-
ative greedy manner, selecting in each step a seam whose removal will minimize
the error measured by image gradients. Seam-carving methods and also methods
that apply non-homogeneous warping to the image [5, 6, 9] may induce notice-
able distortions even if objects with high gradients are unchanged. Obviously,
some texture or details in the image will have to change their aspect ratio.

Some retargeting approaches [1, 2, 10] are based on algorithms that were
used in the fields of texture synthesis and image completion (see [11–13]). Paper

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 145–155, 2012.
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[1] introduces a bidirectional similarity formulation. Every patch in the output
image B should have a similar patch in the input image A (“coherence”) and
vice versa: every patch in the input image A should have a similar patch in the
output image B (“completeness”). Shift-Map retargeting [2] has a high coherence
but does not guarantee completeness. An epitome [14] is an example for visual
summarization that imposes no coherence.

The minimization of the bidirectional dissimilarity score in [1] assumes retar-
geting with a small scale change. To obtain any significant scale change, multiple
iterations of small image scaling are performed. Feedback retargeting as proposed
in this paper can perform any scale change, with no need for repetitive small
changes.

Another bidirectional-similarity score was developed by [7]. They combine
several resizing operators (seam-carving, cropping, and scaling), and find an
optimal combination that minimizes that score. Their work was followed by the
work of [15], which use a similar technique to minimize a similarity score based
on the formulation in [1] and on dominant color descriptors.

2 Shift-Map

Following [2, 16, 17], we define the relationship between the pixels in the output
image R(u, v) to pixels in the source image I(x, y) by a shift-map M(u, v) =
(tx, ty). The pixel R(u, v) in the output image will be derived from the source
pixel I(u + tx, v + ty). The optimal shift-map is defined using graph labeling,
where the nodes are the pixels of the output image, and each output pixel is
labeled by a shift t = (tx, ty). The optimal shift-map M minimizes the following
cost function:

E(M) = α
∑
p∈R

Ed(p,M(p)) +
∑

(p,q)∈N

Es(p, q,M(p),M(q)). (1)

Es is a smoothness term defined over neighboring pixels N in section 2.1. The
data term Ed depends on whether the shift-map is forward or backward:

1. Forward direction, when retargeting the input image A to a smaller version
B. In this direction we use Ed,ret (Eq. 3 and Eq. 7). The role of α in that
case, and the value that was used will be discussed in Sec. 4.

2. Backward feedback stage, when trying to reconstruct the input image A from
the reduced image B. In this direction we use Ed,sim (Eq. 4), and an α value
of 1.

Once the graph is given, shift-map labeling is computed using the alpha-expansion
algorithm [18–20]. As in [2] a hierarchical pyramid scheme is used to speed up
the optimization.

Assignment of new locations to pixels using a similar energy minimization
scheme was done in the texture-synthesis application of [11], and formulating
image synthesis problems as a graph labeling problem was done by [2, 16, 17].
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We follow [16] in using a heuristic adaptation of the alpha-expansion algorithm
for smoothness costs where the triangle inequality is not guaranteed (Eq. 2).
Video retargeting using shift-map is described in [21].

2.1 The Smoothness Term

The smoothness term Es is identical to the one used in [2], and is based on
the formulation in [22]. The smoothness term represents discontinuities added
to the output image by discontinuities in the shift-map. The smoothness term
should reflect, for each of the two neighboring output pixels, how different the
value of its output neighbor is from the value of its input neighbor, as well as
the difference of the output-neighbor gradient from the input-neighbor gradient.
The smoothness term between two neighboring locations p and q in the output
image R, having shift-maps r =M(p) and t =M(q), is defined as follows:

Es(p, q, r, t) = ‖I(p+ r)− I(p+ t)‖2 + ‖I(q + r)− I(q + t)‖2 + (2)

βs( ‖�I(p+ r) −�I(p+ t)‖2 + ‖�I(q + r)−�I(q + t)‖2).
we used a value of βs = 2, and as in [2] the squared norm is used over RGB
values.

2.2 Image Retargeting

In horizontal image retargeting, horizontal monotonicity is often required. I.e.,
if M(u, v) = (tx, ty) and M(u + 1, v) = (t′x, t

′
y), than t′x ≥ tx. This constraint

assures that input objects are not duplicated in the output, and that the left-right
relationship between objects will be maintained. In Shift-Map [2] this constraint
is imposed through the smoothness term, giving a large penalty if t′x < tx.

The priority of input pixels to appear in the output image can be controlled
using the data term as follows:

Ed,ret((u, v), (tx, ty)) = D(u+ tx, v + ty), (3)

where D(x, y) is a value between 0 to 1 given to each input location (x, y). The
higher the value of D(x, y), the smaller are the chances to include the pixel at
input location (x, y) in the output image.

2.3 A New Shift-Map Application: Similarity Guided Composition

Shift-Map can be used for the composition of an output image R(x, y) from
segments taken from a source image I(x, y) while requiring that the resulting
image R(x, y) will be similar to a given target image T (x, y). This is done by
using the data term Ed,sim:

Ed,sim(p, t) = ‖R(p)− T (p)‖2 = ‖I(p+ t)− T (p)‖2 (4)
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This data term is defined for every output pixel location p = (u, v) and for every
candidate shift-value t = (tx, ty).

While similarity guided composition can be used to create very interesting
visual effects, these will not be addressed here. In feedback retargeting only the
following question is important: “how hard is it to reconstruct the target image T
from pieces of an image I”. The output image R itself is not used in retargeting.
The next section will describe how to extract this information from the optimal
shift-map.

3 Composition Score

After performing similarity guided composition and assigning shift-map labels
to all output pixels, values of the data term (Eq. 4) and the smoothness term
(Eq. 2) indicate how difficult it was to compose the target image T from pieces
of the source image I. This indicates features in the target image that did not
appear in the source image.

For an ordered pair of images 〈T, I〉, an optimal shift-mapM will be computed
to construct the target image T from the source image I. This will be done as
described in Sec. 2 for similarity guided composition. Once the optimal shift-
map has been computed, A composition score indicates for every image location
p ∈ T how hard it is to build its neighborhood from the source image I. This
composition score is defined as follows:

E〈T |I〉(p) = αEd(p,M(p)) + Es,mean(p,M), (5)

where Ed is the data term as defined in Eq. 4, and Es,mean(p,M) is the average
smoothness term Es (Eq. 2) between a pixel p and its neighbors:

Es,mean(p) =
1

4

∑
q∈N(p)

Es(p, q,M(p),M(q)).

The composition-energy for the entire image is defined as

E(T |I) =
∑
p∈T

E〈T |I〉(p), (6)

and is equal to the value of E(M) in Eq. 1.
It may be relevant to compare this score to the score used in [23], as both

answer the abstract question: “How difficult is it to compose a signal S1 from the
signal S2”. The two algorithmic frameworks are designed for different tasks, and
our score does not use SIFT descriptors nor an exhaustive search. In addition,
our score is flexible enough to match patches of different sizes and shapes due
to the use of similarity guided shift-map composition.

We get back to the retargeting of an input image A to a smaller output image
B, and to the issue of similarity. Terms used in previous papers are also used here:
“coherence” will indicate the ease of constructing the output B from the input
A, and will be inversely proportional to the global composition energy E(B|A).
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(a) (b) (c)
Retargeted Construction of the source from

output the output using similarity
guided composition.

Fig. 1. Iterations of feedback retargeting, reducing the width of an image by 2.
Top Row: (a) The source image A. (b) The initial output B0 using Shift-Map retar-
geting, when data term is set to zero everywhere except the left and right columns. The
fish disappeared. (c) Backward reconstruction of the input A from B0 using similarity
guided composition. The fish is poorly restored (best visible in color).
Middle Row: (a) The feedback score C1 corresponding to regions in the input A
that are poorly restored from B0. High values are given to the fish area. (b) Shift-Map
retargeting of the input A to B1, this time using an updated data-term with the feed-
back values C1. The fish returned! (c) Backward reconstruction of the input A from
B1 using similarity guided composition. This reconstruction is much better than the
first attempt.
Bottom Row: The last iteration. (a) The cumulative feedback C2 from the first two
iterations. (b) Shift-Map retargeting to B2 using the updated data-term. (c) The last
and best Backward reconstruction of the input A from the retargeted image B2.
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“Completeness” will indicate the ease of constructing the input A from the
output B, and will be inversely proportional to E(A|B) . Shift-Map retargeting
[2] creates, by definition, a “coherent” output B.

In the bidirectional similarity work of [1], coherence and completeness are
modeled slightly differently. In their work, the penalty for each rectangular patch
(in different scales) equals to the SSD with its nearest neighbor in the other
image. The global score adds up the scores of all patches. A similar formulation
to [1] was used in [24] in the field of texture transfer.

In feedback retargeting we use Shift-Map [2] to reduce either the width or
the height of the image. Shift-Map retargeting minimizes the value of E(B|A)
with respect to a constraint given by the data-term Ed,ret. In [2], the data term
included maintaining the borders and perhaps a user-given saliency. Complete-
ness, however, is not guaranteed by the original Shift-Map retargeting method.
To improve completeness, feedback retargeting uses the data-term mechanism:
input regions with lower value of D(x, y) (Eq. 3) are more likely to appear in the
output image. We propose to determine the value of D(x, y) of an input pixel
p = (x, y) from the composition score for that pixel E〈A|B〉(p).

4 Feedback Retargeting

Input regions with a high composition score E〈A|B〉 indicate that these input
regions cannot be reconstructed accurately and easily from the output image B.
If we decrease the value of D(x, y) in Eq. 3 for pixels in these input regions,
and recompute again the output B using Shift-Map, we increase the likelihood
that components from these regions will appear in the output, increasing the
completeness. The iterative feedback retargeting algorithm, creating a retargeted
image having bidirectional similarity, is as follows:

In each iteration we use Shift-Map retargeting to compute the retargeting re-
sult B from the input image A using the updated data-term. In the first iteration
D(x, y) is set to zero for all input pixels, and it is possible that important fea-
tures of the input image will disappear in the initial retargeted image. Given the
retargeted image B, the composition score E〈A|B〉 is computed using similarity
guided composition as described in sections 2.3 and 3.

The composition score computed during the similarity guided composition is
used as a feedback to improve the data term in the following way:

D(x, y) = e−C(x,y) (7)

where C(x, y) is a cumulative feedback, summing the feedback E〈A|B〉(x, y)
from all previous iterations. We do not know which weight to use when adding
E〈A|B〉(x, y) to the cumulative feedback C(x, y) in a way that will maximize
completeness. We therefore search through a decreasing sequence of weights as
follows, until we reach the first weight which reduces the global composition
energy E(A|B) therefore improves completeness.

Ctemp(x, y) = C(x, y) +
E〈A|B〉(x, y)

γ2k
. (8)
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(a) (b)

(c) (d)

Fig. 2. Reducing width by 50%: (a) Source image. (b) Initial Shift-Map retargeting. (c)
Intermediate result does not reduce the composition energy E(A|B). (d) Final result
with lower composition energy.

We use γ = 0.05, and the value of k is determined by searching k = 0, 1, 2, . . ..
Each k gives a candidate feedback Ctemp computed by Eq. 8.

As mentioned before, we increase k until we reach the first value of k which
reduces the global composition energy E(A|B) (Eq. 6). In order to compute that
value, retargeting of A to B, and reconstruction of B from A, are performed for
each step of the search. An example with intermediate results of this process is
shown in Fig. 2. Once an improved composition energy E(A|B) is obtained, we
update the value of C to this of Ctemp, and iterations continue. This is a common
way to perform gradient descent: A step in the direction of the gradient is tested;
If the value of function is decreased the step is taken, and minimization continues,
otherwise the step is not taken and a smaller step is tested.

Convergence is obtained after 2-3 iterations, once the improvement in the
composition score is smaller than a given threshold. In each iteration we start
with an initial value of k that was used in the previous iteration so we have
about 6 calls for each of the shift-map optimization routines (retargeting or
composition). The algorithm is demonstrated in Fig. 1.

To accelerate performance, the composition score E〈A|B〉 can first be com-
puted on a downscaled version of the images. Then the composition map can
be either magnified to the original resolution using bilinear interpolation, or the
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Fig. 3. Feedback retargeting without border constraints: For every test image we show
(from left to right): The input image, the result of [2] and our final output image.

hierarchical scheme of [2] can be used. Fig. 4 shows the difference between the
two schemes. The synthesis itself is fine in both schemes, as the retargeting step is
left the same, but the sensitivity to unique fine details increases. A compromise
can obviously be made between the two schemes by performing optimization
only on some of the levels of the pyramid. As for the Shift-Map retargeting step,
one or two pyramid levels were used when the images were large. Horizontal
shift-map is inherently faster due to a smaller number of allowed shifts. This
makes the total running time only a few minutes.

Even though the value of C determines the priority of input pixels, it should
not be confused with “saliency” or “importance” of the regions of the input
image A. When an important feature is not removed by Shift-Map retargeting,
it can have a low value of C.

As in the original shift-map algorithm, an infinite penalty was added if either
the left-most or right-most column were not mapped to the new border loca-
tion. Feedback retargeting works well also without this border constraint. Now
that the values of D(x, y) are not uniform, removing this constraint will not re-
sult in an under-determined problem. Practically, this means that pixels can be



Feedback Retargeting 153

(a) (b)

(c) (d) (e) (f)

(g) (h) (i)

Fig. 4. Comparing coarse and fine feedbacks.
Fish: (a) Source image. (b) Initial retargeting (i.e., result of [2]). (c) Coarse Feedback.
(d) Retargeted output using the coarse feedback (second iteration). (e) Feedback com-
puted using the hierarchical scheme of [2]. (f) Retargeted output using this feedback.
In this case a finer feedback does not improve the result.
Man and Cow: (g) Source image. (h) Final result using coarse feedback. (i) Final
result using a finer feedback. The sensitivity to fine details is increased.

removed from the boundaries of the image as long as they does not increase the
value of E(A|B). But unlike the crop operator, we do not restrict pixels from
the boundaries to be removed as entire columns. Fig. 3 shows results of this
retargeting strategy. As it can be seen, in some cases most of the pixels removed
were from the left and right boundaries, and in other cases most of the pixels
removed were from the interior of the image.

The use of a negative exponent in Eq. 7 limits the data-term value to be
between 0 and 1. This serves well our intentions, as we do not want the gradient
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Simakov et. al [1] Shift-Map[2] Feedback Retargeting

Fig. 5. Comparison of Feedback retargeting with the Image-Summarization of [1].
Input image (same as in Fig. 4.g) and result of their method were taken from their
article. Feedback retargeting does not suffer from blur caused by patch averaging.

descent technique to lead us to put too much weight on completeness. We also
do not want to sacrifice coherence for completeness, but to make sure a certain
amount of coherence will always be implied. The balance between the two can
be controlled by the value of α in Eq. 1 in the forward retargeting stage. In our
specific implementation we have used a value of α = 0.02, and it worked well for
most of our test images. But this value can be changed if the result should be
more complete or coherent.

5 Comparison and Conclusion

Feedback retargeting combines the low level qualities of shift-map retargeting
with the bidirectional similarity property [1]. As can be seen in Fig. 5, the result
of [1] suffers from blurring caused by voting techniques, and possible distortions
caused by repeated gradual resizing. Shift-Map retargeting does not capture the
entire content of the input image. Feedback retargeting benefits from the best
of both worlds, producing a good retargeting without blurring or distortions.
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Abstract. Most cell phones today can receive and display video content.
Nonetheless, we are still significantly behind the point where premium
made for mobile content is mainstream, largely available, and affordable.
Significant issues must be overcome. The small screen size is one of them.
Indeed, the direct transfer of conventional contents (i.e. not specifically
shot for mobile devices) will provide a video in which the main characters
or objects of interest may become indistinguishable from the rest of the
scene. Therefore, it is required to retarget the content. Different solutions
exist, either based on distortion of the image, on removal of redundant
areas, or cropping. The most efficient ones are based on dynamic adap-
tation of the cropping window. They significantly improve the viewing
experience by zooming in the regions of interest. Currently, there is no
common agreement on how to compare different solutions. A retargeting
metric is proposed in order to gauge its quality. Eye-tracking experi-
ments, zooming effect through coverage ratio and temporal consistency
are introduced and discussed.

1 Introduction

Due to the proliferation of new cell phones having the capacity to play video,
new video viewing experiences on small screen devices are expected. To reach
this goal, conventional contents have to be retargeted in order to guarantee an
acceptable viewing comfort. Today it is generally done manually: an operator de-
fines a cropping area with its size and its location and also controls the cropping
window location temporally. Retargeting the video content is thus expensive and
time consuming. Live events require short delays that manual operations cannot
provide. As most of video contents are not produced with small-screen viewing
in mind, the direct transfer of video contents would provide a video in which
the main characters or other objects of interest may become indistinguishable
from the rest of the image. An automated way, delivering a compromise between
the time consumption and the retargeting relevancy, would be a high economic
differentiator.

In the past, three basic video format conversion techniques have been used
to cope with such problem, e.g. anamorphic distortion, letter/pillar box and
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centered cropping. The anamorphism consists in applying a non-linear filtering
in one direction. Letter/pillar box technique adds black rows or columns to reach
the target aspect ratio. Cropping a sequence consists in extracting a subarea of
the picture. The centered cropping technique corresponds to the extraction of
a centered sub-window assuming that the interesting areas are located at the
center. All those techniques process all frames of the sequence in the same way.
The drawback of these methods lies on the fact that they are not driven by the
content. More recently, many new techniques have been published. A solution
is to focus on the most visually interesting parts of the video. As simple as
it appears, this solution brings a number of difficulties: the first concerns the
detection (in an automatic manner) of the regions where an observer would look
at (usually referred to region of interest or RoI). The principle of first studies
[6,4,12] is based on the use of a visual attention model. This kind of model
[7,9,8,2] is able to provide a map indicating the hot spots of a scene. Once the
regions of interest have been identified, a cropping window enclosing the most
visually interesting parts of the picture is computed. Rather than displaying
the whole picture, the content of the cropping window is only displayed. One
advantage of such approach is to keep the ratio of object as well as the distance
between objects in the scene. One drawback concerns the loss of the context
that can undermine the scene understanding. A different approach is the famous
seam-carving approach [1]. Seam carving is a method for content-aware resizing
that changes the size of an image according to its content. There exists a number
of variant of such approach that deals with seam-carving’s drawbacks. Indeed,
the initial version selects the seam that has the lowest energy. Such seam can
cross important contents. Since seam-carving approach removes seams having
the lowest energy, significant distortions may occur on the shapes of object. To
deal with this issue, Zhang et al. [20] added geometric constraints to preserve
the original shape of the objects.

Concerning the video, existing methods are based on an extension of still
images solutions. As there exist spatio-temporal models of visual attention indi-
cating the positions of the salient areas of a video sequence, a natural extension
of saliency-based retargeting approach has been proposed [11,19,17,5]. Those
techniques can be classified into three categories depending on the strategy used
to reframe the content: crop based, warp based or a mix. For the first category,
Tao et al. [17] compute saliency clusters which are temporally tracked to esti-
mate the position of the cropping window. Limitations are mainly due to wrong
detections of RoIs. Wolf et al. [19] warp pixels from the original frame to the
retargeted one depending on their visual importance. An extension of the seam-
carving also exist [14]. They applied a graph cut technique to connect removed
energy lines. These techniques have proved a high efficiency for some content,
but still allows visual distortion which may be annoying. It is interesting to note
that some works have mixed different techniques. Liu et al. [11] consider three
different cases dealing with different kinds of content: a static cropping win-
dow, a horizontal pan and cutting the shot into two shots. The technique favors
the original aspect ratio, but the selection is performed per shot which may be
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inadequate if scene content is changing over time. When facing a sparse content,
Deselaers et al. [5] allow the alteration of the image by enlarging the original
aspect ratio to potentially enclose more columns in the pan-scan window; one
additional strategy is to zoom out by adding black stripes/pixels when RoI is
spatially sparse. Some approaches [11,17] intentionally prefer preserving the as-
pect ratio without distortion of the original frame, although others [19,14,5] have
based their algorithm on introducing local distortion of the frame for a better
rendering of original content. How are these approaches assessed? How to gauge
their quality? Up to now, subjective approaches [11,17,15,19,13] are the most
used. Some authors [11,17] have assessed their own algorithm by giving their
visual opinion. However, most of the time, a subjective comparison is performed
between a new algorithm and a baseline algorithm (the seam-carving algorithm
is the most used as the baseline). Another approach [5] goes further in the vali-
dation by using annotated ground truth. A hand labelling was used to identify
relevant regions from unrelevant ones. The percentage of those important pixels
present in the cropping window is then computed and compared to a state-of-
the-art implementation. In the same vein, Chamaret and Le Meur [3] proposed
to assess the quality of a retargeting algorithm by using eye tracking data. The
idea was to check whether fixation points were present in the retargeted result.

In this paper, we propose a metric to assess quantitatively the quality of
a retargeting approach. Section II first dresses a list of important points that
a retargeting approach should obey. From these features, a quality metric is
proposed. Section III presents a video retargeting method. Its performance is
measured in Section IV. Finally, some conclusions are drawn.

2 What Is a Good Retargeting Algorithm and How to
Measure Its Quality?

Before describing the features that a retargeting approach should follow, it is
important to define the context in which we are. The context is the TV broadcast
for cell phones. Two solutions to retarget the video content exist. First, the
retargeting approach is performed by the cell phones. The final users can switch
from the original to the retargeted video. This is the most convenient approach
for a number of reasons. The first one is the right over video. As this is the
final user that chooses between both versions, the video content can be modified
without problem. Object’s shapes, aspect ratio and distance between objects
can be significantly different from the original sequence. Seam-carving, warped-
based approach can be used. The second solution consists in retargeting the video
sequence just before its encoding and its broadcasting over the network. In this
case, this is the responsibility of the broadcasters to provide a good quality of
retargeting.

In this context the retargeting algorithm must obey a number of constraints:

– the object’s shapes must be kept;
– the distance between objects must be kept.
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These constraints are important since they significantly influence the choice of
the retargeting algorithm. For instance, the seam-carving does not respect the
distance between objects. An example for a soccer game is given in figure 1. The
soccer game is a good example since the distance between players is fundamental
to understand the action and the game.

Fig. 1. Example of a retarget picture with the seam-carving approach. (a) Original
picture; (b) retargeted picture.

The two constraints listed above are required in a broadcasting system. How-
ever, they do not reflect at all the quality of the final result. In order to assess the
quality of a retargeted video in the context of TV broadcasting, three features
are examined:

– The preservation of the visually important areas, called pf : This first con-
straint of a retargeting algorithm is to keep in the final result the most vi-
sually important areas. This first property is obvious. However, it is difficult
to assess automatically the extent to which a retargeting algorithm succeeds
in keeping the regions of interest. In a similar vein of [3], an elegant solution
would use data coming from an eye tracking experiment. From the spatial
positions of visual fixations, it is easy to count the number of visual fixations
that falls inside the retargeted sequence. The value pf is the percent of vi-
sual fixation inside the cropping window (see figure 2). A database of video
sequence, for which eye fixations would be available1, might be proposed to
the community.

– Temporal consistency of the cropping window center, called c = (x, t)T :
The previous constraint is necessary but not sufficient to draw a conclusion
on the quality of the retargeted video sequence. Indeed, it is also required
that the cropping window moves coherently along the sequence. A second
fundamental rule would be that displacements of the cropping window should
be as smooth as possible. In practice, it is not so easy to obtain due to the

1 Such database already exist for still images (see for instance, http://www.
irisa.fr/temics/staff/lemeur/visualAttention/ and http://www-sop.inria.

fr/members/Neil.Bruce/)

http://www.irisa.fr/temics/staff/lemeur/visualAttention/
http://www.irisa.fr/temics/staff/lemeur/visualAttention/
http://www-sop.inria.fr/members/Neil.Bruce/
http://www-sop.inria.fr/members/Neil.Bruce/
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(a) (b)

Fig. 2. Pictures extracted from the Sports clip. Red points correspond to visual fixa-
tions from eye-tracking experiments. Red boxes are the cropping windows.

high number of particular cases. For instance, on a still shot, it might be
necessary to track a person walking. In other case, a close-up of a person
moving his head does not necessary imply a displacement of the cropping
window.

– Temporal consistency of the zoom, called z: In the context of this study,
the retargeting approach aims at providing a better visual experience. The
solution is to dynamically adapt the amount of zoom over the sequence.
No matter how this zooming factor is computed, what is important is to
first respect the first constraint (to keep the RoI) and to be coherent over
time. However, the more the zooming factor, the more the visual experience
might be. It does not mean that the zoom factor have to be high whatever
the visual content. The zooming factor has to be content-dependent. This
rule must be taken into account in the metric. We use the coverage ratio
(CR) to measure the zoom. This is the ratio between the pixel number of
the cropping window and the total number of pixel. A high coverage ratio
means a low zoom in. The coverage ratio may stand for the quantity of lost
data during the cropping process.

Based on these three constraints, the overall quality Q of a retargeted video
sequence can be computed. The quality score is between 0 (lowest quality) and
100 (best quality). This is given by:

Q = f

(
pf (t)× 100

100 + cohc(t)γ
× 100

100 + cohz(t)β
× 100

100 + g(z(t), zopt(t))α

)
(1)

where, N is the number of frames of the video sequence. cohc(t) =
∥∥ ∂
∂tc(t)

∥∥
is the temporal coherency of the cropping center window. cohz(t) = ∂

∂tz(t) is
the temporal coherency of the coverage factor. g() is a function that computes a
distance between the current zoom factor and the optimal coverage factor zopt(t).
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In our case, g() is the absolute value function. The optimal coverage factor zopt(t)
can be deduced from the eye tracking data or fixed to an average value. α and
β are coefficients that could be used to favor one particular dimension. They
are all set to 1, except γ. This coefficient is set to 3 in order to strengthen the
weight of the temporal consistency of the cropping window. The function f() is
used to pool all the quality scores to an unique one. The most common is the
average function. However, as it is performed to assess the quality of a video
sequence, we can use a Minkowsky pooling or a percentile-based approach. In
these last solutions, the lowest t% scores are used to compute the final score.
Our hypothesis is that a bad retargeting even on few pictures can dominate the
subjective perception.

3 Application to a Video Retargeting Algorithm

The video retargeting algorithm used in this study is an extension to the tempo-
ral dimension of the algorithm published in [10]. We briefly describe it since the
scope of this paper is to present a method to assess the quality of a retargeting
approach rather than to propose a new method. Figure 3 gives the synoptic of
the proposed algorithm. The starting point of the proposed method is based
on the computation of a saliency map. The model proposed in [8] is used. This
is a purely bottom-up model based on luminance, color and motion informa-
tion. These visual information are merged to create a final/global saliency map
per frame. This spatio-temporal saliency map is the first step of the reframing
process. Once regions of interest have been identified, a cropping window which
encloses the most important parts of the frame is deduced. This step is composed
of three sequential operations:

– Window extraction: the goal of this step is to define a bounding box that
encloses the most conspicuous parts of the picture. Based on the results
coming from the attention model, a Winner-Take-All algorithm is applied.
This algorithm allows the detection of the first N most important locations
(having the highest saliency values). When the kth maximum location is
selected and memorized, this location as well as its neighborhood is inhibited.
Due to the inhibition process, a new salience peak will dominate and will
be selected at the next iteration. The selection process is influenced by the
center of the picture. Indeed, the bias of scene center has an important role:
observers tend to fixate near the center of scenes, even if the salience is null.
This tendency is due to a number of reasons notably detailed in [18]. Finally,
it is important to underline that the value N is chosen in order to predict
most of the salience of the saliency map. However, upper and lower bounds,
called CRmax and CRmin respectively are used to control the amount of
zoom. Note that the term zoom and coverage ratio (CR) have here the same
meaning. A CR of 1 indicates that there is no zoom.

– Temporal consistency: as mentioned before, the temporal stability is likely
the most important issue of a video retargeting process. The temporal stabi-
lization acts here both on the position and the size of the bounding box. Two
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Fig. 3. General description of the proposed automatic retargeting process. Main opera-
tions are the visual attention model, the cropping window extraction and the temporal
consistency.

filters are used. A Kalman filter is first applied in order to better predict the
spatial and the size of the cropping window. However, in order to deal with
small displacement, a temporal median filter is used to lock the position as
well as the size of the cropping window;

– Aspect ratio: as the first step (window extraction) does not guarantee the
good aspect ratio, it is required to adapt the size of the window. This adap-
tation is arranged by extending the window size. The extension is either
performed on the width or the height to reach the targeted aspect ratio.

Figure 4 gives some results of the proposed algorithm.

4 Quality Assessment

4.1 Database of Eye Tracking

Sixteen subjects have participated in the experiments. All observers had nor-
mal or corrected to normal visual acuity and normal color perception. All were
inexperienced observers and naive to the experiment. Before each trial, the sub-
ject’s head was correctly positioned so that their chin pressed on the chin-rest
and their forehead lean against the head-strap. The height of the chin-rest and
head-strap system was adjusted so that the subject sat comfortable and their
eye level with the center of the presentation display.

Eye movement recording has been performed with a dual-Purkinje eye tracker
from Cambridge Research Corporation. The eye tracker is mounted on a rigid
EyeLock headrest that incorporates an infrared camera, an infrared mirror and
two infrared illumination sources. The camera recorded a close-up image of the
eye. Video was processed in real-time to extract the spatial location of the eye
position. Both Purkinje reflections are used to calculate the eye’s location. The
guaranteed sampling frequency is 50Hz and the accuracy is about 0.5 degree.

Four video sequences have been selected: Movie, Cartoon1, Cartoon2 and
Sports. The features of those clips are given in table 1.
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Fig. 4. Visual comparison of still pictures for the seam carving and dynamic reframing
schemes. Top row is the computed saliency heat maps (the reddish pixels are salient,
the blue ones are not). Second row is the original picture with the cropping window in
white. Third row is the resulting cropped picture.

Table 1. Features of the clips used during the eye-tracking experiments

Clip Number Spatial Length Type
of observers resolution (frames)

Movie 16 720× 480 1000 Trailer (action)
Cartoon1 16 720× 480 1200 Trailer (cartoon)
Cartoon2 16 720× 480 2000 Trailer (cartoon)
Sports 16 720× 480 2000 basketball, soccer, cycling...

Each sequence was presented to subjects in a free-viewing task. Experiments
were conducted in normalized conditions (ITU-R BT 500-10). The spatial reso-
lution of video sequence is 720× 480 with a frequency of 50Hz in a progressive
mode. They are displayed at a viewing distance of four times the height of the
picture (66cm). Subjects were instructed to look around the image. The objective
is to encourage a visual bottom-up behavior and to lessen the top-down effects.
Analysis of the eye movement record was carried out off-line after completion
of the experiments. The raw eye data is segmented into saccades and fixations.
The start- and end-points of each fixation were extracted as well as the spatial
coordinates of visual fixation. A visual fixation must last at least 100ms with a
maximum velocity of 25 degrees per second.

4.2 Preservation of the Visually Important Areas pf

The loss of the region of interest is to be avoided, not only for the viewing
experience but also in order to understand the content of the sequence. The idea
is to compute the ratio of visual fixations that fall into the cropping window. A
ratio of 1 would mean that all regions of interest are enclosed in the bounding
box. As mentioned before, this is necessary but not sufficient.

Figure 5 gives the percentage of the human fixation points that fall into the
cropping window for four video sequences. Two other information are given:
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the minimum percentage as well as the average value of the lowest values (10%
of the lowest values are taken into account). The former is about 20% for the
Movie and Sports clips and greater than 60% for the other clips. These relatively
low values are due to the temporal masking induced by a scene cut [8]. After a
scene cut, the spatial coordinates of the visual fixation depend on the content
displayed prior the cut. This temporal shifting is due to the inability of visual
system to instantaneously adjust to changes. Previous studies demonstrated that
the perception is reduced after a brutal changes and can last up to 100ms [16].
Therefore, just after a scene cut, the cropping window is well located whereas
the position of the human’s gaze is still locked on areas corresponding to the
content prior the cut. Then, the use of the averaged 10% lowest value is more
reliable that the raw value. Results are between 60% and 80% with an average
value greater than 90%, suggesting that most important areas are preserved and
that the accuracy of the proposed reframing solution is very high. The worst
value (60%) is obtained by the Sports clip. It is not surprising since this kind
of content contains numerous regions of interest and the consistency in visual
fixation locations is not as high as those obtained by animated sequences or
movie clips.

4.3 Temporal Consistency of the Cropping Window Center
c = (x, t)T

The third validation method deals with the temporal behavior of a reframing
solution. The best solution is to observe the evolution of the cropping window,
the more stable the position and size of the cropping window the better the
subjective quality. Figure 6 (a) depicts this evolution for the position of the
cropping window (horizontal only).

In order to highlight the role of the temporal filtering in the proposed re-
targeting scheme, the location of the cropping box center is drawn in figure 6

Fig. 5. Percentage of human fixation points in cropping window. Blue squares indi-
cate the average values over time (the standard deviation is also given). The pink
triangle and the purple diamond respectively correspond to the frame with the lowest
percentage and the average of the 10% lowest values.
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(a)

(b)

Fig. 6. Temporal evolution of the center of the cropping window (just the spatial coor-
dinate X is presented) (a) and of the coverage value (b) for the Sports clip. Concerning
the position of the cropping window, the temporal evolution is given after the cropping
window extraction, the Kalman and the median filter.

(a) considering different processing steps. The dark blue, pink and light blue
curves stand respectively for the raw data, the data after Kalman filtering and
data after the median filtering. The curves clearly show the role of each filtering.
The kalman filter attenuates the bound to the next sample and then creates
smooth trajectories between strong gaps. However, when looking at the video,
the cropping window location and size move still too much or too often com-
pared to the few changes of content even if they are changing more smoothly.
Too many changes of cropping window do not lead to a natural camera effect
such as an operator would shoot. The median filter is used to cope with this
issue. This filtering also fixes a visually disturbing problem: the backward and
forward displacement of the window. Finally, the final curve of the cropping
window location reaches the objective of both a smooth trajectory and a high
adaptability to video content.
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4.4 Temporal Consistency of the Zoom, z

The coverage ratio, called CR, is used to measure the amount of zoom. It may
stand for the quantity of lost data during the cropping process. Figure 6 (b)
depictes the coverage ratio over time for the Sports sequence. Upper and lower
bounds are used to control the amount of zoom. It is interesting to note that the
coverage value depends on the scene. For instance, a classical sky view is shot
for a cycling race at the frame 1000. The coverage ratio has a low value because
the region of interest (typically the cyclists) covers few pixels and is not spatially
spread out.

The average, minimum and maximum coverage ratios per clip are presented
in Table 2. All clips have the same tendency for average and minimum statistics.
The CR average is low (close to the minimum boundary), while the CR mini-
mum is a bit inferior to the minimum boundary. Regarding the CR maximum,
results are different: although the Sports sequence reaches a maximum of 0.88,
the Cartoon1 sequence comes up to 0.66. This difference is clearly due to the
sequence content.

Table 2. Coverage ratio data for different sequences

Clip Avg ± std Minimum Maximum

Movie 0.54 ±0.05 0.44 0.69
Cartoon1 0.54 ±0.052 0.49 0.66
Cartoon2 0.51 ±0.04 0.44 0.70
Sports 0.57 ±0.08 0.46 0.88

4.5 Final Quality

The formula 1 is used to compute the final quality score. The setting are: f() is
the average function, g() is the absolute value function. α and β are set to 1 and
γ is equal to 3. The optimal coverage is arbitrary set to 0.65 for the sequences
Cartoon1, Cartoon2 and Sports. The optimal coverage for the sequence Movie
is set to a smaller value (0.5) due to the presence of black stripes.

Table 3 gives the average quality scores over these sequences. These scores are
given after the different filters used in the proposed algorithm. Results indicate
that the quality increases when the temporal filters are used. These results are
consistent with our subjective perception. Table 4 gives the distribution of the
quality scores per quartile. The quality scores of the final retargeted sequence
are much more uniformly distributed than the two other distributions. This is
again consistent with our own perception. However, there still exist a number of
problem since the quality scores of the first quartile is dramatically weak. Several
reasons can explain it: first, the performance is strongly tied to the ability of the
computational model of visual attention to predict the RoI. Second, we did
not handle the scene cut in the computation of the quality scores. Finally, the
proposed metric does not handle a smooth and coherent displacement of the
cropping window.
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Table 3. Quality score for the sequences (average with the standard error of the mean.
A value of 100 indicates the best quality.

Clip Optimal Avg ± sem
Coverage

Original Filtered data Filtered data
data (Kalman) (Kalman+median)

Movie 0.5 50.31 ± 0.181 71.85 ± 0.157 81.7 ± 0.127
Cartoon1 0.65 59.99 ± 0.177 78.48 ± 0.139 84.64 ± 0.109
Cartoon2 0.65 50.34 ± 0.126 67.86 ± 0.102 73.25 ± 0.08
Sports 0.65 43.69 ± 0.135 73.96 ± 0.107 77.27 ± 0.101

Table 4. Distribution of the quality per quartile for the sequence Sports. The first
quartile represents the lowest quality scores.

Clip Original data Filtered data (Kalman) Filtered data (Kalman+median)

First 2.12 × 10−7 4.92 × 10−5 8.43× 10−6

Second 1.67 69.01 74.02
Third 42.32 82.95 86.16
Fourth 82.09 88.25 88.94

5 Conclusion and Future Work

This paper proposes a metric to assess the quality of a video retargeting algo-
rithm. This metric is based on four fundamental factors: the capacity to keep
the visually interesting areas in the retargeted sequence, the temporal coherence
of the cropping window, the temporal coherence of its size and the ability to be
close to an optimal zoom factor.

Such metric requires to collect the human visual fixations. At first sight, it
might seem too complex and time-consuming. However, as it was done for the
video/image quality assessment, we believe that such databases are necessary
to benchmark the different retargeting algorithms. It will be required to make
in a near future a comparison between the proposed metric and user studies.
Indeed, it will be important to check whether the proposed metric match the
user’s preferences. Moreover, the different setting used here might be learned to
reflect our perception.

In the future, we will endeavor to provide to the community such databases
and to make a benchmark between different approaches by using the proposed
quality metric.

Supplement materials are available at http://www.thlab.net/~guillotelp/.
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Abstract. We propose a 3D modelling method from multiple pairs of spherical 
stereo images. A static environment is captured as a vertical stereo pair with a 
rotating line scan camera at multiple locations and depth fields are extracted for 
each pair using spherical stereo geometry. We propose a new PDE-based stereo 
matching method which handles occlusion and over-segmentation problem in 
highly textured regions. In order to avoid cumbersome camera calibration steps, 
we extract a 3D rigid transform using feature matching between views and fuse 
all models into one complete mesh. A reliable surface selection algorithm for 
overlapped surfaces is proposed for merging multiple meshes in order to keep 
surface details while removing outliers. The performances of the proposed 
algorithms are evaluated against ground-truth from LIDAR scans.  

Keywords: Environment modelling, Spherical stereo, PDE-based disparity 
estimation, Multiple stereo reconstruction. 

1 Introduction 

In recent years generating accurate graphical models of environments has been 
addressed through computer vision techniques. Approaches to the environment 
modelling can be classified into active methods using range sensors and passive 
methods using normal camera images. Light Detection and Ranging (LIDAR) is one 
of the most popular depth ranging techniques [1]. However, there are problems with 
respect to hardware cost, materials in the environment and temporal/spatial 
consistency with an imaging sensor. Therefore active sensing methods are used as 
reference for image-based modelling [2] or manual computer graphics modelling.  

On the other hand, passive approaches require a simpler and less expensive setup. 
They are temporally and spatially consistent with images because they extract depth 
information from the captured images. There have been many researches into accurate 
outdoor scene reconstruction from multi-view images [3-5]. Strecha et al. created a 
benchmarking site for the quantitative evaluation of algorithms against ground-truth 
by LIDAR scanning [2]. However, the biggest problem of multi-view stereo is the 
fact that normal cameras provide only a partial description of the surrounding 
environment. Agarwal et al. reconstructed full 3D model of streets from 150,000 
photos on internet using grid computing with 500 cores for 24 hours [6]. This is very 



170 H. Kim and A. Hilton 

impressive work but it requires higher costs for renting parallel compute resources 
and data transfer. The second problem is calibration of multiple cameras. Strecha et 
al. provided accurate calibration data calculated using attached markers on buildings 
and LIDAR scanning for the data sets [2], but it is sometimes hard to accurately 
calibrate all cameras in advance.  

Instead of using fixed multiple cameras, structure from motion (SfM) uses video 
sequences from a moving camera [7][8]. The basic idea of the SfM is similar as the 
multi-view reconstruction but it reconstructs 3D positions and the cameras motions 
simultaneously by feature tracking. However, the limitation from narrow field of view 
(FOV) of normal cameras still remains. Pollefeys et al. used 3,000 frames to 
reconstruct one building and 170,000 frames for a small town [9].    

Another way to capture the full 3D space is to use a catadioptric omnidirectional 
camera or fisheye lens [10, 11], These approaches only use one CCD to capture the 
full 3D space so that the resolution of partial images from the full view is too low to 
recover details of the environment. Instead of using original spherical images, 
Feldman and Weinshall [12] used a cross-slits projection with a rotating fisheye 
camera to generate a high quality spherical image. Kim and Hilton extended this to 
spherical stereo for reconstructing a 3D environment from a stereo pair of high 
resolution images [13].  

There have been researches on combining active and passive sensors for outdoor 
environment modelling. Boström et al. reconstructed large urban environments using 
a wide angle laser range finder (LRF) and a calibrated colour CCD camera [14]. Asai 
et al. also reconstructed wide outdoor areas using an omnidirectional LRF and an 
omnidirectional multi-camera system which can capture high-resolution images [15]. 

In this paper, we propose a 3D environment modelling method from multiple pairs 
of spherical stereo images. We capture a static environment as a vertical stereo pair 
with a rotating line scan camera at multiple locations. Dense floating-point disparity 
fields are estimated using a novel PDE-based stereo method giving a 3D 
reconstruction of the scene for the surfaces visible from each stereo pair. A 3D rigid 
transform is calculated between views using SURF feature matching [16] and 
RANSAC algorithm to register the reconstructed models from multiple viewpoints. 
Finally a complete 3D model of the environment is generated as a single mesh by 
selecting the most reliable surfaces.    

The main contributions of this paper are:  
 
(1) We propose to use vertical stereo with a rotating line scan camera for scene 

modelling which does not require calibration steps for stereo reconstruction 
and model registration. (Section 2.1 and 3.1) 

(2) We extend an existing stereo PDE formulation to handle the occlusion problem 
in stereo and over-segmentation problem in highly textured regions. (Section 
2.2) 

(3) We propose a simple and efficient approach to merge multiple stereo 
reconstructions into a single model based on selection of the best viewpoint for 
unoccluded surface regions by considering visibility, surface normal vectors 
and distance. (Section 3.2 and 3.3) 
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(a) Spherical line-scan imaging
 

(b) Spherical stereo geometry 

Fig. 1. Spherical geometry 

(4) We evaluate the accuracy of reconstruction against ground-truth model scanned 
by a LIDAR sensor. (Section 4) 

2 Depth Reconstruction from Spherical Stereo 

2.1 Capture System and Spherical Stereo Geometry 

We use a line scan camera system which captures a full spherical view from a rotating 
lens around a vertical axis [13][17]. A spherical image is generated by mosaicing rays 
from a vertical slit at the centre of a rotating fisheye lens. The maximum resolution of 
the image is 12574x5658. The scene is captured with the camera at two different 
heights to recover depth information of the scene through stereo geometry. There are 
two advantages of using this line scan cameras for stereo imaging as well as acquiring 
high resolution images. First, the stereo matching can be simplified to a 1D search 
along the scan line if the two capture points are vertically aligned as shown in Fig. 1 
(a), while normal spherical images require complex search along conic curves or 
rectification of images. Second, calibration for depth reconstruction only requires 
knowledge of the baseline distance between the stereo image pair. Radial distortion is 
rectified using a 1D table to evenly map pixels on the vertical central line to 0 ~ 180˚ 
range. Internal lens distortion parameters are fixed so it can be calculated for the lens 
in advance.  

If we assume the angles of the projection of the point p onto the spherical image 
pair displaced along the y-axis are θt and θb, respectively, the angle disparity d of 
point p can be defined as the difference of the angles as 

bt θθ=d − , and the distances 

of the point p from the two cameras are calculated as follows from the relationship 
between two cameras in Fig. 1 (b). 
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      (a) Integer disparity            (b) Floating-point disparity 

Fig. 2. Precision in surface reconstruction 

2.2 PDE-Based Disparity Estimation 

There have been a large number of algorithms proposed to solve the stereo 
correspondence problem over the last four decades. Scharstein and Szeliski present a 
test bed for the quantitative evaluation of stereo algorithms [18]. However, most 
disparity estimation algorithms including graph-cut (GC) and belief-propagation (BP) 
methods solve the correspondence problem on a discrete domain such as integer, half- 
or quarter-pixel levels which are not sufficient to recover a smooth surface. Spherical 
stereo image pairs have relatively small variations in disparity and serious radial 
distortion because of wide FOV of the fisheye lens. Figure 2 shows the difference in 
surface reconstructions from integer and floating-point disparity fields. We can see 
that all surface details have disappeared and it shows stepwise artefact in Fig. 2 (a). 

A variational approach which theoretically works on a continuous domain can be a 
solution for accurate floating-point disparity estimation. In this approach, the disparity 
vector fields are extracted by minimizing an energy functional involving a fidelity 
term and a smoothing term such as: 

 ΩΩ
∇∇++−=+= dxIddxdxIxIdEdEdE tbtsf ),())()(()()()( 2 ψλ ,   (2) 

where Ω∈x  is an open bounded set of R2 and d is a 2D disparity vector.  The 
minimization problem can be solved by solving the associated partial differential 
equation (PDE) in Eq. (3) and (4) with Neumann boundary conditions [19][20].  
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This method produces accurate depth fields across most regions, but it has several 
limitations related to stereo occlusion around depth discontinuities and over-
segmentation in highly textured regions.  

In Eq. (4), g(•) is a regularisation function which controls the direction and amount 
of smoothing of the disparity field. Traditional image-driven functions preserve sharp 
object boundaries but results in over-segmentation in highly textured regions [13][19]. 
Zimmer et al. proposed a disparity-driven method to avoid this problem [21], but this 
method tends to blur object boundaries. Sun et al. recently proposed joint image-
/flow-driven optical flow based on steerable random fields to obtain sharp object 
boundaries without over-segmentation [22].  
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   (a) Original image     (b) Image-driven     (c) Disparity-driven   (d) proposed method 

Fig. 3. Disparity fields produced by various diffusivity functions 

In terms of the occlusion problem, Ben-Ari and Sochen proposed an iterative 
method consisting of occlusion detection, disparity estimation and anisotropic 
filtering [23]. Alvarez et al. proposed a symmetrical dense optical flow energy 
functional which includes a bi-directional disparity checking term [24]. Ince and 
Konrad also proposed similar bi-directional disparity checking method, but they put it 
into the data term [25]. 

We propose a new PDE which handles occlusions and over-segmentation while 
preserving sharp object boundaries as follows.  
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In the above equations, IKI *σσ = , Kσ denotes a Gaussian kernel with standard 

deviation σ, * is a convolution operator and H(•) is a unit step function. 
The term )(*2

TIIK σσσ ∇∇  in Eq. (5-1) works as a structure tensor for anisotropic 

diffusion filtering [20] and the first term )65.035.0ln( || de ∇−+−  in Eq. (5-2) is a 

monotonically increasing function and scales the diffusivity according to the gradient 
of the disparity field. As a result, the diffusivity function of Eq. (5-1) for 
regularisation is mainly controlled by image gradient but scaled by disparity gradient 
to avoid over-segmentation in highly textured region. This is simpler and more 
intuitive than Sun’s method [22]. Figure 3 shows a comparison of diffusivity 
functions. The scene is composed of three slanted planes and the image-driven 
method cannot regularise the fields enough due to strong textures. The disparity-
driven method produces smooth surfaces, but object boundaries are blurred because 
of diffusion of the field across discontinuities. Compared with the other two methods, 
the proposed method produces a very smooth field on each plane while keeping sharp 
object boundaries. 

For occlusion handling, we take a compromise between Ben-Ari’s work [23] and 
Ince’s work [25]. Ince used a bi-directional disparity matching as a scaling factor for 
the data term in Eq. (4), but the data term still causes blurred and distorted fields in 
occluded regions because there is no correspondence for the regions. Ben-Ari 
detected occlusions by a level-set method and performed disparity estimation only for  
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        (a) Studio          (b) Cathedral 1   (c) Cathedral 2 

Fig. 4. Reconstruction from single spherical stereo pair (Top Captured spherical image, Middle: 
Reconstructed mesh model, Bottom: Model with texture mapping 

visible regions. They filled up the occlusions by anisotropic filtering as a separate 
step. This approach produces very good results but it is inefficient to run all steps 
iteratively. Therefore, we use the bidirectional matching as a switch to turn on/off the 
data term in Eq. (5). The normal balanced diffusion equation with data term is run to 
find the optimised solution in visible regions while only pure anisotropic diffusion 
filtering is performed to propagate correct depth information from visible regions to 
occluded regions.  

Equation (5) can be solved explicitly or semi-implicitly with an iterative method by 
updating the timely discretised field [19][20]. One mathematical problem is the 
convergence of the proposed PDE. As the Ince’s method could not guarantee the 
mathematical convergence of an iterative solver with the bi-directional disparity 
matching term, the switch H(1-O(x)) in Eq. (5) can make the solver stuck and 
resonant between visible and occlusion modes. We set a maximum number of 
iterations in the solver to avoid being trapped into an eternal loop. However, we have 
not found this problem in our experiments. 

Another problem is a local minimum problem. Alvarez et al. used a scale-space 
approach [19] and Brox et al. used a warping method [26] to avoid the local minimum 
problem for large displacements. We also use a similar coarse-to-fine structure which 
starts from the lowest resolution images and recursively refines the result at higher 
levels. For expanding multi-resolution images, we utilize a pyramidal approach to 
construct the L-level hierarchical image structure, which involves low-pass filtering 
and down-sampling the image by a factor of 2. At each level, the input disparity field 
from a previous level is up-sampled and used as an initial field for calculating 
disparity field at that level. At the earliest level, initial disparity is calculated by block 
matching with a region-dividing technique [27]. This hierarchical approach has 
another merit of reducing computation time for large images. 
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3 3D Model Reconstruction 

3.1 Single-View Reconstruction 

The estimated dense disparity fields can be converted into depth information by 
camera geometry as described in Section 2.1. A mesh model of the scene is obtained 
by sampling vertices and triangulating adjacent vertices from the original texture and 
depth fields. The original images are described in spherical coordinates, so we convert 
them into the Cartesian coordinate system, and then project them to 3D space to 
generate a 3D mesh.  

Figure 4 shows examples of reconstruction from a spherical stereo image pair. The 
results show a natural-looking environment around the captured location, but changes 
in viewpoints cause distortion because of self-occlusion from a spherical image as 
seen in the circled regions in Fig. 4. There is no way to get information about 
invisible regions behind any object from a single input image. This occlusion problem 
occurs not only between objects but even on the same object due to the wide FOV of 
the fisheye lens. The faces on occluded regions can be removed by thresholding with 
angles of their normal vectors, but it can damage other parts such as the ground or 
details on the surfaces. It produces noisy surface with small isolated faces. We found 
that it looks more natural to remain them as long as they do not conflict with other 
surfaces in multi-view reconstruction.  

In order to overcome the occlusion problem, we need more information of the 
scene structure, shape and appearance from multiple viewpoints. Merging multiple 
stereo pairs into a common 3D scene structure is a possible solution. 

3.2 Registration of Multiple Stereo Reconstructions 

As listed on Strecha’s multi-view benchmarking site [2] and the Middlebury 
benchmarking site [28], a number of multi-view reconstruction algorithms have been 
developed. However, most of them are not applicable for our data sets because they 
are focused on optimising surfaces with accurate calibration parameters of normal 
cameras, while we are using spherical line scan cameras with very simple calibration.   

One way to get a complete model is to merge partial meshes into one complete 
mesh by registration. Iterative closest point (ICP) algorithm is widely used for mesh 
registration [29]. The ICP algorithm iteratively find the optimized transform matrix 
A(R,t) minimizing the energy: 
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where Nm and Nd are the number of points in the model set M and data set P, 
respectively, and wi,j are the weights for a point match. 

In order to automate the registration, we use SURF feature matching [16] between 
views on captured images and used them as 3D matching references by projecting 
them into 3D space with the estimated depth field. However, these points are not 
reliable enough to be used for references of ICP algorithms because two possibilities 
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of errors exist: one from SURF matching error between image pairs with radial 
distortion and the other from depth error (this is more serious because many features 
are extracted around depth discontinuity regions which induce stereo occlusions). 
Therefore we use a RANSAC algorithm to calculate an optimised 3D rigid transform 
between two meshes excluding outliers. If the SURF matching cannot extract enough 
features, we can still use the ICP algorithm with manual feature matches. 

3.3 Reliable Surface Extraction 

The final step is to merge registered meshes into one complete mesh structure with 
surface refinement because the registered meshes have many overlapped parts and 
false surfaces from self-occlusion. Poisson reconstruction [30] or range image 
merging algorithm [31] can be ways to produce single mesh structure from set of 
oriented points or multiple depth fields, but they may lose details on the original 
surface because the algorithms generate combined surface from overlapped surfaces. 
False surfaces from self-occlusion also induce errors in optimisation. Furukawa et al. 
proposed an optimized surface boundary extraction for self-occlusion using axis 
alignment for Manhattan-world scenes [32] but it also has limitations on keeping 
surface details. Therefore we propose a dominant surface selection algorithm to 
choose the most reliable surface among overlapped surfaces.  

 

   
         (a) Overlapped surface from 3 cameras                 (b) Confliction of visibility 

Fig. 5. Reliable surface extraction 

Figure 5 (a) shows an illustration of real surface and overlapped surfaces 
reconstructed from three camera pairs. The overlapped surfaces include false surfaces 
from self-occlusion and less reliable (secondary) surfaces. We assume that the 
reconstructed surface is more reliable when the surface normal vector and camera 
viewing direction are aligned, and the distance to the camera is closer. Our purpose is 
to choose dominant surfaces from the set of false and secondary surfaces.  

Figure 5 (b) shows notations used for evaluating reliabilities of conflicted surfaces. 
Let Vs is a vertex on a surface reconstructed from camera Ci. A projection vector cs, a 
surface normal vector ns and a facing angle θs are expressed as follows:  

sis VCc −=        (7) 
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In Eq. (8), we use an average of normal vectors of neighbouring NxN vertices to 
calculate a global normal of the vertex. First, we remove all vertices whose facing 
angle θs is larger than an angle threshold Thθ because they have high possibility to be 
a false surface. Then we search conflicted surface from the vertex Vs along the normal 
vector ns in the range of ThR. If confliction with other vertex Vt from camera Cj is 
detected, we calculate ct, nt, θt for the vertex Vt and camera Cj as Eq. (7)-(9), and also 
calculate unreliability U(V) of each vertex based on the facing angle and the distance 
as Eq. (10). Finally the vertex with higher unreliability is removed.  
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Application of the algorithm for all vertices simultaneously is time-consuming 
process and produces erroneous results with small isolated surfaces. For efficient 
computation we segment the surface into N/2xN/2 vertex patches and perform the 
merging in patches. In our experiment, we set the thresholds as: N=10, Thθ=1.48 
(85˚), dmax=30 and ThR= dmax/50. 

4 Experimental Results 

4.1 Evaluation of Disparity Estimation 

In order to evaluate the general performance of the proposed disparity estimation 
algorithm, we used the Middlebury stereo benchmarking test bed [28]. Figure 6 shows 
subjective comparison of estimated disparity maps with state-of-the-art algorithms 
which also include occlusion handling. The proposed method produces smoother 
maps with sharp object boundaries even in occlusion regions. However, the proposed 
algorithm is ranked at 47 in the Bad Pixel Percentage (BPP) test among 78 algorithms 
on the test bed, while the Cost-Aggr [33] and Semi-Global [34] algorithms are ranked 
at 27th and 33rd, respectively. The BPP test calculates only the ratio of erroneous 
pixels and ignores the magnitude of errors. PDE-based methods tend to spread errors 
into neighbouring pixels to suppress prominent errors, and it caused the low ranks in 
the BPP test despite good subjective performance. Therefore we changed measuring 
method and compared root mean square error (RMSE) to the ground truth. 

Figure 7 shows the result with two additional methods. Adapting-BP [35] is a 
improved BP method which is ranked at the top in the BPP test and Graph-cut is an 
alpha-expansion method with occlusion handling [36] which is ranked at 42nd. All 
algorithms compared in this test are ranked higher than the proposed algorithm in the 
BPP test. Comparison of RMSE shows that the proposed PDE-based method gives 
comparable to the best error rate for state-of-the-art methods.  
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(a) Cost Aggregation 

    
(b) Semi-global 

    
(c) Proposed 

Fig. 6. Estimated disparity maps (from left to right: Tsukuba, Venus, Teddy and Cones) 

 

Fig. 7. Comparison of RMSE 

However, good performance in these tests does not mean that it guarantees good 
surface reconstruction. The Semi-Global and Graph-cut algorithms produce discrete 
disparity maps which can cause stepwise artifact as discussed in section 2.2. The 
Adapting BP algorithm fits the disparity fields into segmented planes so it loses all 
surface details. The advantage of the proposed approach is to generate continuous 
depth map while preserving surface details.  

4.2 Evaluation of Model Reconstruction 

For objective evaluation of scene modelling, we chose two objects reconstructed from 
image pairs captured at three different locations and compared the models with 
ground-truth models scanned by a LIDAR sensor. Figure 8 shows the ground-truth 
models and the reconstructed models from single/multiple views by the proposed  
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(a) Gate 

 
(b) Cupola 

Fig. 8. Reconstructed models (Left: Ground-truth by LIDAR scan, Middle: Reconstruction 
from single pair, Right: Reconstruction from multiple pairs) 

 
(a) Depth from the point 2 of “Gate” 

 
(b) Depth from the point 2 of “Cupola” 

Fig. 9. Depth errors (Left: Ground-truth depth in common regions, Middle: Depth error of 
single view reconstruction, Right: Depth error of multi view reconstruction) 

algorithm. The “Gate” has width of 9m and height of 6m, and the “Cupola” has 6.2m x 
3.8m. Both objects are around 6m apart from the central capture point and stereo pairs 
are captured with a baseline of 60cm. We can see that the reconstructed model shows 
very fine structure with details of the surface relief pattern. Especially the multi-view 
reconstruction recovers self-occluded regions while keeping surface details.  

It is hard to compare the accuracy and completeness of reconstructed meshes 
because the reconstructed ranges and areas are different (even the model from the 
LIDAR scan does not have complete structure.). Therefore we produced depth maps 
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from arbitrarily chosen viewpoints and measured an average depth error of common 
regions. Table 1 shows evaluation results from two different viewpoints for each model 
and Fig. 9 shows examples of errors mapped into gray scale. In Table 1, we can see 
that the multi-view reconstructions have slightly better results than single-view 
reconstruction. It is a bit more obvious in the slanted view (Viewpoints 2) than the 
frontal view (Viewpoints 1). However, the differences are not remarkable because 
most of the errors in Table 1 are from the vertical self-occlusions as seen in Fig. 9. The 
vertical self-occlusions could not be recovered in this experiment because the test 
models were captured from horizontally scattered locations. Another point to be 
considered is the fact that this comparison was performed only for commonly 
reconstructed regions. As seen in Fig. 8 (a), the multi-view reconstruction could 
recover the third lower walls that the single-view reconstruction could not. 

Table 1. Depth error evaluation (unit: cm, a: mean, σ: standard deviation) 

 

Gate Cupola 

Point 1 (frontal) Point 2 (Fig. 9) Point 1 (frontal) Point 2 (Fig. 9) 

a σ a σ a σ a σ 

Single-view 5.68 15.29 1.83 22.24 3.84 19.65 5.64 28.85 

Multi-view 4.59 16.68 1.05 20.13 3.37 17.10 4.58 24.19 

 

Fig. 10. Full 3D scene rendering (Geometry and texture mapping) 

Figure 10 shows the reconstructed full outdoor scene of Fig. 4 (c) from three 
spherical stereo pairs and results of texture mapping from the same viewpoints. The 
results show a natural-looking geometry and textures of the environment. Three 
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hole-like regions on the ground show the capture points which could not be 
reconstructed because of the divergence of spherical stereo in Eq. (1). Free-viewpoint 
videos of the reconstructed models are included in the supplemental video file. 

5 Conclusion 

In this paper, a 3D environment modelling method using multiple pairs of spherical 
stereo images was proposed. The environment is captured by spherical cameras at 
multiple locations and 3D mesh models for each pair are reconstructed by spherical 
stereo geometry. The proposed PDE-based stereo method reconstructs continuous 
depth fields with sharp object boundaries even in occluded regions and highly 
textured regions. Instead of cumbersome camera calibration for all cameras, 3D rigid 
transforms between views are calculated by SURF feature matching. A RANSAC 
algorithm is introduced to fuse incomplete models including self-occlusions. Finally a 
complete 3D model of the environment is generated as a single mesh by selecting the 
most reliable surfaces among overlapped surfaces by considering visibility, surface 
nomals and distance. The biggest advantage of the proposed surface selection 
algorithm against other surface merging algorithms is to effectively eliminate outlier 
surfaces from occlusion. The performances of the proposed algorithms were evaluated 
against ground-truth from the stereo test bed and LIDAR scans. The final composite 
model can be rendered from any viewpoint with high quality textures.  

 
Acknowledgments. This research was executed with the financial support of the EU 
IST FP7 project i3Dpost.  
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Abstract. We present a multi-view stereo method that avoids produc-
ing hallucinated surfaces which do not correspond to real surfaces. Our
approach to 3D reconstruction is based on the minimal s-t cut of the
graph derived from the Delaunay tetrahedralization of a dense 3D point
cloud, which produces water-tight meshes. This is often a desirable prop-
erty but it hallucinates surfaces in complicated scenes with multiple ob-
jects and free open space. For example, a sequence of images obtained
from a moving vehicle often produces meshes where the sky is halluci-
nated because there are no images looking from the above to the ground
plane. We present a method for detecting and removing such surfaces.
The method is based on removing perturbation sensitive parts of the
reconstruction using multiple reconstructions of perturbed input data.
We demonstrate our method on several standard datasets often used to
benchmark multi-view stereo and show that it outperforms the state-of-
the-art techniques 1.

Keywords: multi-view stereo, stereo, 3D reconstruction.

1 Introduction

Promising approaches to Multi-View Stereo (MVS) reconstruction, which have
appeared recently [1–7], get the degree of accuracy and completeness comparable
to laser scans [8, 9]. Yet, producing complete reconstructions of outdoor and
complicated scenes is still an open problem.

In this work we extend previous work by presenting a method for hallucination-
free MVS reconstruction. By hallucinated surfaces we mean the surfaces which
are present in the reconstruction but do not correspond to real surfaces.

We build on the global approach to 3D reconstruction based on the minimal
s-t cut of the graph derived from the Delaunay tetrahedralization of a dense
3D point cloud [4, 10]. It solves the visibility task by accumulating energy in
free space between the surface and cameras, which is later used to solve the s-t
cut. The main advantages of this approach are robustness to noise in the 3D
point cloud and producing water-tight reconstructions. This approach is very
opportunistic and tends to produce complete meshes by using a strong visibility
prior to explain missing data by surfaces.

1 The authors were supported by SGS10/186/OHK3/2T/13, FP7-SPACE-241523
PRoViScout and MSM6840770038.

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 184–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(a) (b)

(c) (d)

Fig. 1. Dragon-P114 data set: (a) 3D surface before removing hallucinations, (b) 3D
surface wireframe before removing hallucinations, (c) 3D surface after removing hallu-
cinations using approach proposed in [7], (d) 3D surface after removing hallucinations
using our method.

In contrast to this, the alternative state-of-the art method [7] is focused on pro-
ducing a noise free oriented point cloud to generate 3D mesh using [11]. This ap-
proach is rather conservative and tends to reconstruct surfaces which have strong
support from the data. It leaves the space free where the support is not sufficient.

In many situations, the former method is preferable to the later one since it is
difficult to fill in the holes in 3D reconstruction in later processing stages when the
access to original images may not be available anymore. Recent work of Vu [1],
which produces the initial mesh as in [10] and later refines it by using a variational
method, demonstrates that this approach can be used to produce excellent results
for closed objects and scenes sufficiently represented by images from all directions.

In this work, we focus on removing hallucinated surfaces which are often gener-
ated by the approach [10] when reconstructing complicated scenes with multiple
objects and free open space. This happens, for instance, when reconstructing
outdoor scenes where a hallucinated surface is generated in place of the sky to
obtain a closed surface, Figures 1(a,b) and 2(a,b).
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(a) (b)

(c) (d)

Fig. 2. Castle-P30 data set: (a) 3D surface before removing hallucinations, (b) 3D
surface wireframe before removing hallucinations, (c) 3D surface after removing hallu-
cinations using approach proposed in [7], (d) 3D surface after removing hallucinations
using our method.

In [7] the problem is solved by removing large triangles, i.e. they discard the
triangles whose average edge length is greater than six times the average edge
length of the whole mesh. Here we show that there exist important situations
when the large triangles are not hallucinations and are needed to produce com-
plete meshes. Our approach can avoid discarding such triangles. On the other
hand we show that sometimes we need to discard small triangles, too.

Our method can play an important role in a large-scale city modeling system.
In such datasets top views are usually missing which, as we have mentioned
above, often leads to hallucinations.

2 Motivation

The approach by using triangle (or related tetrahedron) property like average
edge length [7], maximal edge length, triangle area, radius of circumscribed
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sphere of the related tetrahedron, and so on, can not be used to remove hal-
lucinated surfaces well in general. The reason is that it is possible (and we
demonstrate it in our experiments) that the reconstruction pipeline will produce
the mesh where one can often find two subsets of triangles of the same average
edge length of the mesh such that the first subset corresponds to a hallucina-
tion but the second one corresponds to a real surface. Therefore, it is in general
not possible to find a threshold on these dimensional parameters which would
separate hallucinated triangles, see Figure 5 .

The main idea behind our approach is motivated by the following observation.
The surfaces which have strong support from the data are mostly not affected
by small perturbations. By the strong support we mean that there are many
reconstructed points near the real surface. On the other hand the surfaces, which
are originally created due to false positive points, are usually strongly affected
by perturbations because false positives are generated randomly and usually
sparsely distributed far from true surfaces.

We assign a confidence value to each triangle based on the sensitivity to
perturbations (see Section 6). We build the s-t graph [12] from the triangulation
and the confidences and solve it by the implementation [13]. If a triangle is
labelled as sink we deem the triangle as hallucinated.

One can argue that large triangles will be mostly created from false positive
3D points. That is often true but large triangles are also created in texture-
less parts of the scene (see Figure 2) and in parts which have very oblique
viewing angles (see Figure 1). Such triangles are important because they make
the reconstruction complete. The main contribution of our method is to keep such
triangles in the reconstruction while removing the triangles that are hallucinated.

We have to point out that our method may keep unseen parts of the surface
when they are a part of the visual hull of the scene (see Figure 6 with the roof
region behind dormers is filled). We do not consider such parts as hallucinations.

3 Reconstruction Pipeline

Our MVS pipeline is similar to the pipeline proposed in [1]. First, we compute
feasible camera pairs based on the epipolar geometry as in [14]. Next, we detect
and match SIFT features [15] in the feasible camera pairs using [16]. We triangu-
late matches and create seeds. A seed is a 3D point with a set of cameras it was
triangulated from. For each camera we compute the minimal and the maximal
depth based on the related seeds. Then, we perform the plane-sweeping and fil-
tering (see Section 4) at several scales. To remove hallucinated surfaces, we run
a mesh computation k times from differently perturbed data. In each iteration
we perturb (see Section 5) the point cloud generated by plane-sweeping and use
it as the input to our implementation of the method proposed in [10]. We do not
perform mesh refinement as in [1] but do mesh smoothing as in [10]. This gives
us k meshes. We remove hallucinated surfaces from the first mesh using other
meshes (see Section 6 and 7). This gives us the resulting mesh.
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Fig. 3. Histogram of log10 of confidences for (a) Castle-P30 dataset, (b) Fountain-P11
dataset and (c) Dragon-P114 dataset with s (red) and t (green) values. (see text)

4 Plane-Sweeping and Filtering

Our plane-sweeping is slightly different from the state-of-the art [17–19]. We do
plane sweeping for each reference camera with respect to the set of α nearest
feasible target cameras (we use α = 4 in all of our experiments). For each pixel
p and for each depth d (corresponding to a plane parallel to the reference image
plane) we compute the photo-consistency f(p, d) of the depth as follows. For each
pair of the reference r and target t cameras we compute photo-consistency value
c(p, d, r, t) as the NCC between 5×5 window centred in the pixel on the reference
image and its projection to the target image. The projection is generated by the
homography inducted by the plane and consistent with the epipolar geometry
between the reference and target images. The NCC value is in the range 〈−1, 1〉,
where value −1 represents the worst photo-consistency and value 1 the best one.
The photo-consistency f(p, d) equals the maximum of c(p, d, r, t) over all target
cameras t and fixed r. The reconstructed depth γ(p) of the pixel p is chosen as the
depth d for which f(p, d) is maximal and f(p, d) > δ (we use δ = 0.8 in all of our
experiments). If there does not exist such depth, then we set γ(p) as unknown.
This plane-sweeping strategy produces a lot of true positive 3D points, but a
lot of false positive ones. Therefore, we perform a simple but fast and effective
filtering after plane-sweeping. For each 3D point we search for other 3D points
in its small neighbourhood. If there are at least β (we use β = 2 in Fountain
dataset and β = 3 in all others) 3D points from β different cameras, then we
accept the point. We consider all depths which were filtered out as unknown. We
choose this approach because we have experimentally verified that this approach
produces more true positives than for example [18, 19]. On the other hand it
still (even after filtering) produces some false positives. But this is not critical
because we are later using a strong tool [10] which can effectively deal with noise.

5 The Principle of the Removal of Hallucinated Surfaces

Method [10] tends to produce closed meshes and hence it generates false (hal-
lucinated) surfaces in places which are not well captured by any camera. The
hallucinated surfaces are often related to missing cameras which would otherwise
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lead to cleaning the space between the cameras and the real surface of the scene.
When cameras are not present, method [10] hallucinates surfaces from sparsely
distributed false positive points which are present in the point cloud. On the
other hand, surfaces, which are strongly supported by the data, i.e. where the
point cloud is dense near the real surface, or which are strongly supported by a
visibility prior, and hence do not have to be strongly supported by the data, are
not affected by the sparsely distributed false positive points. We build our ap-
proach on this observation. We introduce a small amount of false positive points
into the original point cloud several times and filter out unstable hallucinated
surfaces. We implement it by adding a small amount of noise into the depth maps
constructed by plane-sweeping in each iteration. Consider a depth map and all
the pixels with unknown depth in that map. We randomly choose γ (we use
γ = 0.1 in all of our experiments) percent of the pixels with unknown depth and
assign them depths randomly. The new depth is chosen randomly from the four
times the depth range of the camera. The values were selected experimentally
and were sufficient in all of our experiments.

6 Perturbation Based Triangle Confidence Computation

We assign a confidence value to each triangle of each of the k meshes. Let’s
assume the i − th mesh and the j − th triangle t. For each k − th mesh k �= i
we find the nearest triangle tk to the triangle t. We measure the distance of
triangles by the distance of the triangle centers (ct, ctk). Now, for each pair
(t, tk) of triangles we compute d(t, tk) = min{d(ct, tk), d(ctk , t)} over all pairs
tk, t (with fixed t) where d(ct, tk) is the distance of the point ct to the plane
defined by triangle tk. To compute the confidence of the triangle δ(t) we use
Gaussian kernel voting to cluster values d(t, tk).

7 Graph-Cut Based Hallucinations Removing

To remove triangles with high confidence, we formulate a minimum s-t cut prob-
lem [12]. We create a graph from the mesh such that the nodes correspond to
triangles. If two triangles are neighbouring, then we create the edge between
the corresponding nodes. We compute 90th percentile s of all triangle confi-
dences to find the threshold on the triangle confidence. The threshold at the
90th percentile is very conservative because majority of confidences are from
small triangles which have usually similar confidences near zero, see Figure 3.
We introduce value t = 10 s. Value s should correspond to triangles which should
be definitely in the final mesh, value t to triangles which should definitely be
removed. We assign (s− δ(t))2 value to each s-edge and (t− δ(t))2 value to each
t-edge. To each edge between nodes we assign value s + (t − s)/4. This value
is established experimentally to remove isolated triangles. We use this value in
all of our experiments. To solve the s-t cut problem we use the implementation
described in [13]. The final mesh consists of the triangles represented by the
s-nodes.
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Fig. 4. Strecha’s evaluation [9] for the Fountain-P11 (a,b) and Castle-P30 (c,d) data
sets. OUR - this paper, VU [1], SAL [20], ST4 [21], FUR [7], JAN09 [14]. (a,c) his-
tograms of the relative error with respect to nσ for all views. The σ is determined
from reference data by simulating the process of measurement and can vary across the
surface and views. (b,d) relative error cumulated histograms.

8 Performance Discussion

In this section we provide the time performance discussion of our pipeline. We
discuss how to make significant speedup, too.

The plane-sweeping was performed on the original scale and on two, three
and four times sub-sampled images. The plane-sweeping is implemented on GPU.
The computation time of one depth map varies from a few minutes on 3072×2048
resolution to a second on the smallest scale (768 × 512). The time complexity
is cubic, because the number of depths scales with the image resolution. The
computation time of the filtering step is approximately tens of seconds. We have
to point out that the plane-sweeping and filtering is performed only once for each
camera at each scale. The computation time of one perturbation iteration using
our implementation of [10] is approximately tens of minutes. The time depends
on the number of input points. In our experiments the number of points varies
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(a) (b)

Fig. 5. Dragon-P114 data set: (a) 3D surface before removing hallucinations colored
by average edge length of the triangle, blue - smallest, red - 10-times average edge
length of the whole mesh and more (using JET color model), (b) red - triangles with
average edge length smaller than 3-times or larger than 6-times average edge length
of the whole mesh, green - triangles with average edge length between 3-times and 6-
times average edge length of the whole mesh, top ellipse - real surface, bottom ellipses -
hallucination. Conclusion: average edge length does not separate real surface triangles
from the hallucinated ones.

in the range of one to six millions. The computation time of consistencies and
graph-cut based hallucinations removal is approximately minutes.

We have tested our method with k = 10. We think that k = 3 should be
enough, too. The code can be later optimized with respect to that only small
amount of 3D points are changing in each iteration. Therefore we would build
the triangulation from original points and remember it. Later we would add
perturbed points (0.1% of original points in all of our experiments) and update
the weights to the triangulation in each iteration. This optimization would cause
that the computation time of all iterations should be similar to the computation
time of one iteration.

9 Results

Based on the experiments we observed that using the criterial function based on
the triangle (or related tetrahedron) property like average edge length, maximal
edge length, triangle area and so on, can not be used to remove hallucinated
surfaces with sufficient quality. Figure 5 shows the input mesh (including hal-
lucinations) colored by the average edge lengths using JET color model. Red
color represents the triangles whose average edge lengths are greater or equal
to 10-times average edge length of the whole mesh. Blue color represents the
triangles which average edge lengths goes to zero. Areas marked by the ellipses
show two different parts of the mesh. Both of them (see the distribution of col-
ors) contain the triangles with the same average edge lengths. But, the top set



192 M. Jancosek and T. Pajdla

(a) (b)

Fig. 6. Castle-P30 data set (top view): (a) 3D surface after removing hallucinations
using approach proposed in [7], (b) 3D surface after removing hallucinations using our
method.

(a) (b)

Fig. 7. Fountain-P11 data set: (a) 3D surface removing hallucinations using approach
proposed in [7], (b) 3D surface after removing hallucinations using our method

of triangles represents real object part and the bottom ones are hallucinated.
This example demonstrates that it is impossible to find a threshold which would
separate the hallucinated part from the real one in general. We carried out sev-
eral experiments on this dataset using maximal edge length, triangle area and
maximal radius of circumscribed sphere of the related tetrahedron, and all of
them produced similar results.

To evaluate the quality of our reconstructions, we present results on data
sets from the standard Strecha’s [9] evaluation database. We show the result
for three different outdoor datasets: Fountain-P11, Castle-P30, Dragon-P114.
The first two datasets are Strecha’s datasets [9] and the last one is the data
set of a dragon’s sculpture in Kyoto. Strecha’s Fountain-P11 data set contains
11 3072 × 2048 images. Strecha’s Castle-P30 data set contains 30 3072 × 2048
images. Dragon data set contains 114 1936× 1296 images.
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(a) (b)

(c) (d)

Fig. 8. Castle-P30 data set: (a) 3D surface before removing hallucinations colored
by average edge length of the triangle, blue - smallest, red - 10-times average edge
length of the whole mesh and more (using JET color model), (b) 3D surface after re-
moving hallucinations using approach proposed in [7], (c) 3D surface before removing
hallucinations colored by the perturbation based confidence (blue - smallest confi-
dence, red - largest confidence), (d) 3D surface after removing hallucinations using our
method.

Figure 4 shows the evaluation on the Strecha’s Fountain-P11 as well as Castle-
P30 data sets. See the Strecha’s evaluation page for JAN10 results and their
comparison. The histograms shows that our reconstructions are more or less on
the same level at 2σ and 3 σ as the method [1] which uses an additional mesh
refinement step. The cumulative histograms shows that our method outperforms
all other methods in completeness. In Figure 4 (a) and (b) we are comparing our
results with four best methods [1, 7, 20, 21]. For complete results, we refer the
reader to the challenge website [22]. This experiment demonstrates that methods
based on the opportunistic approach [10] produces complete and accurate results
and outperforms the other state-of-the-art methods, and it is therefore important
to deal with its negatives which was the goal of this paper.

We made several experiments to demonstrate that our method produces better
results than the state-of-the art approach proposed in [7], which solves this
problem by removing large triangles, i.e. they discard the triangles which average
edge length is greater than six times the average edge length of the whole mesh.
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Figures 1 and 5 show the comparison of the results computed using the approach
proposed in [7] with the results computed using our method on Dragon-P114
data set. Figures 6 (a) and (c) show that our method can better deal with larger
triangles which are on the ground and which cover surfaces captured at oblique
angles. Figures 6, 8 and 2 show the comparison of the results computed using
the approach proposed in [7] with the results computed using our method on
Castle-P30 data set. Figures 6 (a) and (c) show that our method can better
preserve large triangles which are in between the windows where is a lack of the
texture but which are not hallucinated. Figure 7 shows the comparison of the
results computed using the approach proposed in [7] with the results computed
using our method on Fountain-P11 data set. It shows that our method can avoid
discarding important low-textured parts of the scene.

Figure 9 shows the detailed view of the dragon’s head before and af-
ter removing hallucinations using our method (untextured and textured). We
have used the nearest camera to texture each triangle without texture color
unification.

(a) (b)

(c) (d)

Fig. 9. Detailed view of the dragon’s head. (a) 3D surface before removing halluci-
nations untextured, (b) 3D surface before removing hallucinations textured, (c) 3D
surface after removing hallucinations using our method untextured, (d) 3D surface
after removing hallucinations using our method textured.
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10 Conclusion

In this work we proposed a hallucination-free multi-view stereo method. We
demonstrated that the quality of our reconstructions is comparable to the best
state-of-the art methods on several benchmark datasets. We have shown ex-
perimentally that our method produces more complete reconstructions while
removing falsely generated surfaces.
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from Example-Based Photometric Stereo
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Abstract. We introduce an example-based photometric stereo approach that does
not require explicit reference objects. Instead, we use a robust multi-view stereo
technique to create a partial reconstruction of the scene which serves as scene-
intrinsic reference geometry. Similar to the standard approach, we then transfer
normals from reconstructed to unreconstructed regions based on robust photo-
metric matching. In contrast to traditional reference objects, the scene-intrinsic
reference geometry is neither noise free nor does it necessarily contain all possi-
ble normal directions for given materials. We therefore propose several modifica-
tions that allow us to reconstruct high quality normal maps. During integration,
we combine both normal and positional information yielding high quality recon-
structions. We show results on several datasets including an example based on
data solely collected from the Internet.

1 Introduction

Passive large-scale geometry reconstruction of outdoor scenes has so far mostly re-
lied on (multi-view) stereo techniques. In contrast, photometric stereo approaches have
rarely been used on outdoor scenes—mostly due to the lack of control over the scene,
illumination conditions, and capture setup (see Section 2 for details). In fact, we are not
aware of any large scale photometric stereo approach. In this paper, we therefore take
a step in this direction and propose a novel photometric stereo technique generalizing
photometric stereo by example [1]. The approach is applicable to very general indoor
and outdoor scenes and demonstrates strong improvements in terms of accuracy and
completeness compared to standard multi-view stereo approaches.

Photometric stereo by example [1] is an elegant method to determine normal maps
from a set of images with fixed viewpoint and varying, distant illumination. For each
pixel, the vector of color values in all input images is matched to the closest vector
of color values of pixels on one or more reference objects with known geometry. The
corresponding normals are then transferred back yielding a complete normal map. Pho-
tometric stereo by example has two key advantages. First, lighting can be general and
unknown and does not need to be reconstructed. Second, it works for objects with a
broad range of reflectance properties as long as they are well approximated by the ref-
erence objects. Photometric stereo by example is therefore one of the most general
photometric stereo techniques known today. There is, however, one disadvantage: Cur-
rent techniques require explicit reference objects in the scene from which the normals
are transferred. Scenes without reference object cannot be reconstructed.

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 197–210, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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a) b) c) d) e)

Fig. 1. Tower model. a) images captured by a static webcam for photometric stereo, b) images
taken casually without special capturing setup for multi-view stereo, c) normal map of partially
reconstructed geometry using multi-view stereo serving as scene-intrinsic reference geometry
(SIRG), d) reconstructed normal map using photometric stereo with SIRG as reference object, e)
final model rendered from novel viewpoint.

Our key observation is that many objects’ geometry can at least be partially recon-
structed using multi-view stereo as long as additional images are available that provide
sufficient parallax (see, e.g., Figure 1). We propose to use this partial geometric scene
model after suitable processing as scene-intrinsic reference geometry (SIRG) for a stan-
dard photometric stereo by example approach. This approach works if the reconstructed
geometry (and therefore the normals) of the SIRG are sufficiently accurate and if the
range of represented normals is wide enough to cover the normal directions represented
in the scene. In addition, the reconstructed reference geometry should be a good repre-
sentation of the reflectance properties in the scene, a condition that is often met since it
is actually part of the scene.

Removing the need for explicit reference objects strongly extends the applicability of
example-based photometric stereo at a comparably small acquisition cost (just a couple
additional images for the multi-view stereo reconstruction). We demonstrate this with
two examples where we base our reconstruction partially or completely on imagery
available from Internet sources. The resulting normal maps and integrated geometry are
nevertheless of high quality.

2 Related Work

Photometric stereo was introduced by Woodham [2] who assumed known distant point
lighting and a known parametric reflectance model. Given three images of a diffuse
surface from the same viewpoint, it is possible to determine the surface normal unless
the illumination directions are coplanar. The basic theory of photometric stereo was
then developed in the 1980s (see, e.g., Horn [3] for an overview) and research focused
on generalizing it in various ways.

For example, Basri and Jacobs [4] introduced a system that simultaneously recov-
ers unknown distant lighting. Illumination is estimated using a low degree spherical
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harmonics basis suitable for approximately diffuse objects [5]. Shen and Tan [6] ex-
tended this technique to images with varying viewpoints but determine normals only
at sparse points matched between the images. They demonstrate their approach also on
images downloaded from an online image collection. Joshi et al. [7] propose a combi-
nation of multi-view and photometric stereo. They first reconstruct a rough geometry
model using multi-view stereo and refine it with a photometric stereo approach. Her-
nandez et al. [8] describe a multi-view photometric stereo approach that additionally
takes silhouette information into account. A similar approach was shown to work for
dynamic scenes by Vlasic et al. [9] using a highly controlled capture setup. Higo et al.
[10] introduce a system that simultaneously optimizes photoconsistency, normals, and
surface smoothness.

Goldman et al. [11] use known lighting directions and cluster the surface in different
materials. For each cluster, they determine the parameters of an analytic BRDF. Alldrin
et al. [12] follow a similar approach but use a data-driven reflectance model instead of
the analytic BRDF model.

2.1 Example-Based Photometric Stereo

Based on Woodham’s ideas, Silver [13] applied photometric stereo to objects with uni-
form but unknown surface reflectance. A matte white sphere serving as calibration ob-
ject is captured under three different lighting conditions. Given its known geometry, one
can construct a lookup table matching triples of intensity values with the sphere’s sur-
face gradient. For reconstruction, other matte white objects are captured under the same
lighting conditions; corresponding surface gradients are determined using the lookup
table.

Hertzmann and Seitz [1] generalized this approach using the orientation-consistency
cue: Two points with the same surface orientation reflect the same light toward the
viewer if they have the same BRDF, all light sources are distant, the camera is ortho-
graphic, and the points are not influenced by non-local lighting effects (e.g., shadows,
interreflections). Their approach is very general and operates with arbitrary distant light-
ing on a very wide class of materials while still yielding high quality results. It requires,
however, one or two reference objects in the captured scene that are used for normal
transfer.

Koppal and Narasimhan [14] also exploit orientation-consistency to find clusters of
iso-normals in a scene captured by a video camera. They do not require a reference
object, but rely on a continuous, unstructured light source path and a dense sampling in
the time domain. In an additional step, a classical photometric stereo approach can as-
sign absolute normals to the clusters or other techniques can use the clusters as starting
point for more detailed reconstructions.

In this work, we show that detailed normal maps can be reconstructed without the
need for explicit reference objects or densely sampled video. We build on the standard
photometric stereo by example approach [1] but replace the separate reference objects
by the captured scene’s own geometry which we partially and approximately recon-
struct using a robust multi-view stereo technique.
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3 Scene-Intrinsic Reference Geometry

Given a static scene, we capture multiple images IPS = {IPS
1 , . . . , IPS

n } from the same
camera position under unknown, distant, varying illumination for photometric stereo.
We make the standard assumption that the camera well approximates an orthographic
camera. We additionally capture another set of images IMVS = {IMVS

1 , . . . , IMVS
m } from

varying viewpoints for multi-view stereo. The latter images should provide sufficient
parallax and lighting suitable for multi-view stereo reconstruction. The images IMVS

and one of the images for photometric stereo, without loss of generality IPS
1 , are regis-

tered using a robust structure from motion system [15]. Since the images IPS were taken
with identical intrinsic and extrinsic camera parameters, all images are now registered
into a common coordinate system. Our goal is to first reconstruct a (partial) geometry
model that serves as scene intrinsic reference geometry. Using the reference geometry,
we then aim at creating a complete and accurate normal map. We finally reconstruct the
scene geometry by integrating the resulting normal field while taking the reconstructed
reference geometry into account.

There is a large body of existing work on multi-view stereo reconstruction (see Seitz
et al. [16] and the accompanying web page) and our proposed technique can be based
on any of them. Since we aim at handling very general input data, we selected the
method of Goesele et al. [17] (see Section 6 for a comparison with a different algorithm)
that is known to be robust and accurate even for very general input data. This method
reconstructs individual, incomplete depth maps using a region-growing approach. We
merge these depth maps into a combined triangular geometry model using volumetric
range image processing (VRIP) [18]. This approach exploits redundancy in the input
depth maps to reduce noise and remove outliers. It also assigns confidence values to
vertices which we use to remove less reliable geometry from the reference geometry.
Finally, we compute per-vertex normals for the reference geometry from surrounding
face normals using area-weighted averaging. Using a variant of Laplacian smoothing,
we iteratively smooth the computed normals according to

nk = nk−1 + λ
∑
i∈N

(
nk−1
i − nk−1

|N |

)
(1)

where N describes the neighborhood of n. The resulting normal vector is normalized.
In our standard matching, we perform 10 iterations with λ = 0.05.

4 Correspondence and Normal Transfer

In this section, we describe the details of our example-free photometric stereo by ex-
ample approach. We first introduce the basic matching as in [1], restricted to a single
reference object. In contrast to their approach, the scene intrinsic reference geometry is
not a noise-free and complete reference object. We therefore introduce an orientation-
consistency based averaging and an adapted normal transfer approach to achieve high
quality reconstructions.
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a) b) c) d)

Fig. 2. Effect of best matches averaging. a) Ground-truth normal map, b) reconstructed normal
map using only a single best match, c) average computed over 50 best matches, d) average
computed over 100 best matches. Note that normals on the scene-intrinsic reference geometry
(Figure 5b) remain unchanged.

4.1 Basic Matching

We first manually segment the target object in the images IPS from the background and
then project the reference geometry into IPS. All pixels are classified into those covered
by the scene-intrinsic reference geometry Q and those for which no reconstruction is
available P. Each pixel q ∈ Q is assigned a unique normal n(q) by projecting the ref-
erence geometry’s vertices onto q. If multiple vertices are mapped to the same pixel, we
choose the normal of the vertex with highest reconstruction confidence. We furthermore
define the observation vector for each point in P and Q which is formed by all the color
values for this particular pixel location in the image stack IPS:

Vp,c = (IPS
1,p,c, . . . , I

PS
n,p,c)

T , Vq,c = (IPS
1,q,c, . . . , I

PS
n,q,c)

T , c ∈ {R,G,B}. (2)

The core of geometry completion is the appropriate transfer of normals derived from the
scene intrinsic reference geometry to positions where reconstruction is missing. We de-
fine the following metric for the similarity between two observation vectors that models
differences of surface albedo using a per-color channel material coefficient mp,c:

Δ =
∑

c∈{R,G,B}
‖mp,cVq,c − Vp,c‖22 (3)

For a given target point p ∈ P, we first determine for each q ∈ Q optimal per-color
channel material coefficients mp,c:

mp,cVq,c = Vp,c ⇔ mp,cV
T
q,cVq,c = V T

q,cVp,c ⇔ mp,c =
V T
q,cVp,c

V T
q,cVq,c

. (4)

In order to find the best matching observation vector, we then select the q for which the
residual error Δ in Equation 3 is minimal. We apply these steps for all points p ∈ P
where reconstruction is missing.

Figure 2 (b) shows the resulting normal map for the frog example. Note that normals
show strong artifacts in filled-in regions. This could be due to several reasons: First,
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Algorithm Overview

1. Reconstruct SIRG using MVS.
2. For each pixel p in the object’s mask, i.e. P ∪ Q, do:

– Compute mp,c for all q ∈ Q.
– Select the s = 50 matches {qi} ⊂ Q that have minimal error

∑
c∈{R,G,B}

‖mp,cVq,c − Vp,c‖2
2
.

– Average normals for {qi} and transfer result to p.
3. Integrate normals.

Fig. 3. Left: Distribution of normal directions for 500 best matches of two target points p, p̃
(boundaries manually drawn for clarity). Right: Summary of proposed photometric stereo
algorithm.

some normal directions are not represented in the reference geometry (including some
individual directions but also most of the downward pointing normals on the frog’s
neck area). Second, the material coefficient mp can only model differences in albedo
but is unable to adapt the specularity by mixing multiple observation vectors (as in [1]).
Third, even if the matching according to the orientation-consistency cue is correct, the
reference geometry can still contain erroneous normal information.

4.2 Averaging Multiple Matches

If we look at a plot of the normal directions corresponding to the s best matching ob-
servation vectors for a given p (Figure 3), we notice that these are spread out over a
range of directions due to the various errors in our approximation. We can, however,
also observe that those normals are clustered around an average direction.

We therefore propose to not only use the normal corresponding to the best-matching
observation vector but to compute an average normal from the s best matches. This re-
duces the impact of wrong matches and erroneous normals and can interpolate missing
normals. Note that it will not fix the case of normal directions outside the convex hull
of normals observed in the scene intrinsic reference geometry but may at least assign a
nearby normal direction inside the convex hull. Figure 2 shows the effect of averaging
multiple matches for the frog model. Averaging the 50 best-matching normals yields a
much smoother normal field. Increasing the number to 100 leads only to a small im-
provement. We therefore use in all cases shown in this paper s = 50.

4.3 Global Matching

So far, we only transferred normals from Q to P. This assumes, however, that the
scene intrinsic reference geometry is reconstructed with high quality which is typi-
cally not the case (see, e.g., Figure 4 showing an example of a bronze bust). Even after
Laplacian smoothing, the scene-intrinsic reference geometry still contains very noisy
normals.
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a) b) c) d) e)

Fig. 4. Effect of global matching. a) Example input image, b) ground-truth normal map, c) SIRG
normal map, d) reconstructed normal map with best matches averaging only on P, e) recon-
structed normal map with global matching.

We therefore apply the orientation-consistency based averaging described in Section
4.2 not only to unreconstructed regions but also to the scene-intrinsic reference geom-
etry, thereby discarding the originally reconstructed normals. More formally, we adapt
the matching in Section 4.1 to transfer normals from Q to both P and Q. In contrast to
[1], Equation 3 is then minimized not only for p ∈ P, but for p ∈ P ∪Q with material
coefficients computed for all pairs (p, q) ∈ (P ∪Q) ×Q. This considerably improves
the resulting normal map as can be seen in Figure 4 e).

5 Normal Field Integration

Several methods have been developed to integrate normal maps to recover a 3D surface
(e.g. [19,20,21,22,23]). To constrain the possible solutions, some works propose to im-
pose consistency with sparsely given control points from a laser scanner [24], with a
visual hull [9], or with a complete depth map [25].

We follow a similar, optimization based approach as in [25] and [9]. Both operate in
a perspective setting, i.e., optimize for surface pointsR = (Z ·rx, Z ·ry, Z) determined
by their depth Z along the ray (rx, ry, 1). Instead of directly comparing the difference
of optimized normals np to reconstructed normals n̄p, they use the dot product between
the tangent to the optimized surface and the given normal as an error metric.

Nehab et al. [25] additionally propose to introduce per pixel weights for positional
and normal constraints. We use wp as geometry weight (wp = λ for Q, wp = 0 for P)
and up = vp = 1 as gradient weights respectively. The error function is then given as a
sum over all N pixels p ∈ IPS

1 :

E =
∑
p

[
u2p

∥∥∥∥n̄p · ∂Z
∂x

∥∥∥∥2 + v2p

∥∥∥∥n̄p · ∂Z
∂y

∥∥∥∥2 + w2
p

∥∥Z̄p − Zp

∥∥2] (5)

where Z̄p is the depth of a reconstructed pixel. Approximating the partial derivatives
with finite differences, the whole system can be written as a least squares problem with
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a) b) c)

d) e) f) g)

Fig. 5. Frog model. a) Example input image, b) partially reconstructed geometry using multi-
view stereo serving as scene-intrinsic reference geometry (SIRG), c) SIRG normal map, d) recon-
structed normal map using PSE with SIRG as reference object, e) final model after integration,
f) final model rendered from a novel viewpoint, g) reconstruction with Furukawa’s multi-view
stereo [26] and poisson surface reconstruction [27].

a sparse 3N ×N matrix (see [25] for details). Because our weighting scheme does not
exclude any gradients from the integration, the matrix has full rank and there exists a
unique solution to the least squares problem.

6 Results

Since it is difficult to acquire ground truth data for large-scale objects, we first present a
quantitative analysis on small objects that can be easily captured in a laboratory setting.
We then give a qualitative evaluation for two large-scale datasets, reconstructed partially
or completely from Internet images.

6.1 Lab-Based Datasets

We demonstrate results on three different datasets captured under lab conditions. The
frog is a roughly 25 cm tall clay figure with a close to diffuse surface (see Figure 5).
The scene-intrinsic reference geometry covers 34 % of the foreground region P ∪Q in
the normal maps. The bunny is a plastic figurine with shiny coating (about 20 cm tall,
47 % coverage, see Figure 6). The bronze bust (40 cm tall, 53 % coverage, see Figure 4
a)) exhibits complex surface structure and a difficult BRDF.

The datasets were all acquired using a 7 M pixel consumer camera. We captured 15-
20 IPS images from a fixed camera position while manually moving a simple light bulb
around the object. We additionally captured ≈ 50 IMVS images from various positions
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a) b) c) d) e)

Fig. 6. Bunny model. a) Example input image, b) normal map of partially reconstructed geometry
using multi-view stereo serving as scene-intrinsic reference geometry (SIRG), c) reconstructed
normal map, d) ground truth, e) final model rendered from a novel viewpoint.

facing the front side of the objects. Neither camera nor light source were calibrated.
In order to evaluate our reconstructions quantitatively, we scanned the objects using a
structured light scanner. From the merged and cleaned point model, we created ground-
truth normal maps for comparison. Note that these ground-truth normal maps show
holes in areas where scanning was difficult due to self-occlusion, e.g., the bunny’s ear
region in Figure 6.

Evaluation. Figures 5, 4, and 6 demonstrate clearly that our approach is able to re-
construct high quality normal maps without requiring special reference objects in the
scene. Even small details such as the flowers on the bunny’s dress are reconstructed.
Normals outside the convex hull of captured normal directions such as the chin area in
Figure 4 or areas with self shadowing around the bust’s nose are reconstructed plausibly
without introducing strong artifacts. The final integrated models are of high quality and
avoid large scale distortions due to the inclusion of reference geometry in the integration
routine.

Figure 7 shows for all lab datasets histograms over the deviation of reconstructed nor-
mals compared to normals computed from the scanned ground truth model. The graphs
clearly show that normals obtained from multi-view stereo techniques are improved by
our proposed normal transfer.

To demonstrate that our technique works also with more general lighting, we cap-
tured two additional datasets for the bust where we used a studio light with and with-
out diffuser for illumination. The close-ups in Figure 8 demonstrate that the recovered
normals change only marginally. Note that this is a key requirement for applying the
technique to outdoor scenes as shown in the next section.

It does not matter to our approach in which manner the scene intrinsic reference ge-
ometry is obtained. We therefore additionally applied the multi-view stereo algorithm
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a) b) c)

Fig. 7. Normal deviation in degrees against ground truth for a) frog, b) bunny, and c) bust. The
purple (green) line shows the deviation of the SIRG obtained by multi-view stereo of Goesele et
al. (Furukawa et al.) after Laplacian smoothing. The orange (blue) line demonstrates the result
of our complete pipeline on Goesele et al. (Furukawa et al.) multi-view stereo input data. Data
point 46 represents deviations greater than 45◦. Values out of scale are: a) SIRG G. 9.4%, SIRG
F. 29.5%, Rec. F. 9.8%; b) SIRG F. 15.9%, Rec. G. 7.1%, Rec. F. 7.2%; c) SIRG G. 8.9%, SIRG
F. 14.2%.

a) b) c)

Fig. 8. Reconstruction of bust for light situations a) diffuse spot, b) bright spot, and c) point light

of Furukawa and Ponce [26] to the bunny and frog datasets. The resulting point set was
then used as input to our adapted photometric stereo by example technique. Figure 7
shows the deviation of the results from groundtruth. Like for the input from Goesele
et al., we observe a significant improvement (blue lines) of the normals (green lines)
through our matching scheme. Furthermore, the figure shows that input normals from
Furukawa’s method (green lines) are farther away from the groundtruth than those re-
constructed by VRIP and Goesele’s method (purple lines). Obviously, this leads to the
differences in the resulting normal map’s quality (comparing the orange and blue lines).
We also attempted to reconstruct a triangle mesh from the point cloud created by Fu-
rukawa’s method using Poisson surface reconstruction [27] but despite several trials
with different parameter settings the Poisson reconstruction did not yield satisfying re-
sults (see Figure 5 g) for an example).
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a) b)

Fig. 9. Cathedral dataset. Left: Images captured by a static webcam used as IPS. Right: Images
downloaded from a community photo collection site used as IMVS.

a) b) c)

Fig. 10. Cathedral model. a) Normal map of partially reconstructed geometry using multi-view
stereo serving as scene-intrinsic reference geometry (SIRG), b) reconstructed normal map, c)
final model rendered from novel viewpoint.

6.2 Outdoor Datasets

We discuss the performance on outdoor scenes using two large buildings (about 60 m
and 90 m tall) with non-planar surfaces and interesting details. For each dataset, we
retrieved an image of a public webcam every 20 min over the course of 3 months. The
webcam images have VGA resolution.

We manually selected 11 suitable IPS images for the cathedral dataset (all taken
between 10 am and 5 pm) and 36 images for the tower dataset (taken between 9 am
an 7 pm) on different days, see Figures 9 a), 1 a). For the cathedral, we furthermore
downloaded 2000 IMVS images from the community photo platform Flickr (see Figure
9 b)). The multi-view stereo step automatically selected a suitable subset of those for
reconstruction of the scene intrinsic reference geometry achieving a completeness of
84 %. The SIRG for the tower was reconstructed from 324 images taken by a student
with a consumer camera (see Figure 1 b)) and covers 58 % of the foreground.
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Evaluation. Figure 10 demonstrates the results for the cathedral model. The fairly
complete reference geometry is a good basis for reconstruction. The global matching
softens the extremes in the normal map but strongly increases the available detail. Ar-
tifacts can be seen due to cast shadows on the object that violate the assumption of
distant illumination and are not modeled by our approach (e.g., lower right corner of
Figure 10 c)).

As a cylindrical object, the tower is well-suited for reconstruction. Parameterizing its
surface by height h ∈ [0, H ] and angle ϕ, a normal at (h, ϕ) can be reconstructed quite
accurately if some normal on the line ([0, H ], ϕ) is contained in the reference geometry.
This works so well that the bottom of the tower can be recovered up to fine details like
individual stones (see Figure 1 d)). Even if the roof has a different albedo and only
sparse coverage of normal directions pointing to the right, we are able to reconstruct it
quite convincingly.

7 Discussion

Being able to reconstruct sufficient geometry for the SIRG is a key requirement of
our algorithm. However for some scenes, it will most likely be impossible to recon-
struct sufficient geometry with any multi-view stereo algorithm. Such scenes need to
be treated differently. We argue, however, that this is a rare case and that the chosen
multi-view stereo algorithm [17] (or another MVS approach) will for most scenes be
able to reconstruct at least some geometry. We demonstrated that this geometry can be
used as reference geometry, bootstrapping the photometric stereo by example approach.
This yields the clear benefit that neither lighting nor scene reflectance need to be known
or even controlled.

Another critical point is the reasoning in Section 4.2 why averaging multiple matches
works. It is, e.g., clear that averaging multiple normal directions will not handle a mis-
match in reflectance between a point and the scene intrinsic reference geometry as well
as mixing the contributions of two reference objects in [1] would do. We found, how-
ever, that it is a procedure based on the available information that in practice yields
surprisingly good results.

8 Conclusion and Future Work

Reconstructing accurate normals for large-scale objects with photometric stereo meth-
ods is a non-trivial task. As we cannot put whole buildings in a laboratory, many tradi-
tional photometric stereo methods cannot be easily applied. In this paper we presented
a combination of multi-view stereo and photometric stereo that is able to cope with
outdoor imagery and has minimal capturing requirements. Like standard photometric
stereo by example, it neither requires known lighting or reflectance nor does it recon-
struct either of them explicitly. By introducing the scene-intrinsic reference geometry,
we are able to extend the applicability of photometric stereo by example to scenes for
which it is undesired or even impossible to include reference objects.

The reference geometry can be seen as a set of noisy samples of the function f from
observation vectors to normals. The current best matches averaging does not consider



Removing the Example from Example-Based Photometric Stereo 209

how close the individual matches actually are to the candidate and it does not model the
noise in the input data. This could be remedied by interpolation methods like Kriging
that estimates unknown values based on known values at nearby points. However, better
understanding of the space of observation vectors and their distribution is needed and
we will further explore this field. A starting point is already provided by Sato et al.
[28] who investigate similarity measures for observation vectors and apply a dimension
reduction technique to the space of observation vectors.

In the future, we would furthermore like to improve robustness against cast shadows
and local influences. Finally, the reconstructed 3D geometry might benefit from better
integration, e.g., by avoiding to integrate over depth discontinuities similar to Vlasic et
al. [9] or Agrawal et al. [29].

Acknowledgments. This work was partially supported by the European project 3D-
COFORM (FP7-ICT-2007.4.3-231809) and the DFG Emmy Noether fellowship GO
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Abstract. We present an interactive system to create 3D models of objects of
interest in their natural cluttered environments.

A typical setting for 3D modeling of an object of interest involves capturing
images from multiple views in a multi-camera studio with a mono-color screen
or structured lighting. This is a tedious process and cannot be applied to a vari-
ety of objects. Moreover, general scene reconstruction algorithms fail to focus on
the object of interest to the user. In this paper, we use successful ideas from the
object cut-out literature, and develop an interactive-cosegmentation-based algo-
rithm that uses scribbles from the user indicating foreground (object to be mod-
eled) and background (clutter) to extract silhouettes of the object of interest from
multiple views. Using these silhouettes, and the camera parameters obtained from
structure-from-motion, in conjunction with a shape-from-silhouette algorithm we
generate a texture-mapped 3D model of the object of interest.

1 Introduction

If there is one thing the growing popularity of immersive virtual environments (like
Second-Life® with 6.1 Million members) and gaming environments (like Project Na-
tal®) has taught us – it is that people crave personalization. For example, gamers want
to be able to “scan” and use their own gear (like skateboards) in a skateboarding game.
While there exist some tools to enable this implanting of real-world objects in virtual
environments, we believe this is an important problem, worth studying formally by
computer vision researchers. This paper takes a first step towards enabling users to cre-
ate 3D models of an object of interest, which may then be easily implanted in a virtual
environment.

One approach to achieve this, would be to haul an expensive laser scanner to get
precise depth estimates in a controlled setup, and reconstruct the object [1]. However,
this might be not be a feasible solution for average users. Another typical approach for
this problem is to capture images of the object in a controlled environment like a multi-
camera studio with mono-color screen and structured lighting, and use a shape-from-
silhouette algorithm [2–5] to render the 3D model. Although these techniques have
produced promising results in these constrained settings, this is a tedious process, and
in some cases not an option (for example, immovable objects like a statue, historically
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© Springer-Verlag Berlin Heidelberg 2012
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(a) (b) (c) (d)

Fig. 1. Overview of system: (a) Stone dataset (24 images) - subset of images given to the system
shown; (b) User interactions to indicate the object of interest (blue scribbles = object of interest,
red scribbles = background); (c) Resulting silhouettes after co-segmentation (object of interest in
cyan color) (d) Some sample novel views of the rendered 3D model (Best viewed in color)

or culturally-significant artifacts). However, in a world where we are surrounded by
cellphone-cameras, a more accessible approach is to capture images of the object in its
natural environment and directly estimate the 3D structure from these natural images.
The images captured in this case would typically have cluttered backgrounds, which is
known to be problematic for background subtraction algorithms.

Overview. In this work, we present an interactive system to create 3D models of objects
of interest in their natural cluttered environments. Our approach builds on the success
of recent works in interactive co-segmentation [6–9] that have shown that foreground
and background statistics can be shared across images to jointly segment or co-segment
the common foreground from multiple images. Our interactive algorithm, uses scrib-
bles from the user indicating foreground and background to extract silhouettes of the
object of interest from multiple views. Using these silhouettes, and camera parameters
obtained from structure-from-motion [10], in conjunction with a octree-reconstruction-
based shape-from-silhouette algorithm [2, 4] we generate a texture mapped 3D model
of the object of interest. We demonstrate the effectiveness of our algorithm on a wide
range of objects and show that this same approach extends to obtain 3D models of even
monuments.

Contributions. The main contribution of this paper is a simple interactive system for
3D modeling of an object of interest. The approach obviates the need for a complicated,
controlled studio environment and works for objects in their natural cluttered environ-
ments. To the best of our knowledge this is the first approach to use ideas from the
interactive co-segmentation literature for object of interest 3D modeling.

Organization. The rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 describes our approach to co-segment the object of interest in all images
using our interactive algorithm and then extract a 3D model of this object of interest
using these silhouettes. Section 4 presents our modeling results on a wide range of
objects. Finally, we conclude in Section 5 with discussions.

2 Related Work

Controlled Setups. Several works [11–16] use a multi-camera studio setup, with con-
trolled lighting and a mono-color screen to capture images. This allows for easy



iModel: Interactive Co-segmentation for Object of Interest 3D Modeling 213

background subtraction with chroma keying. A shape-from-silhouette algorithm can be
applied to the silhouettes obtained after background subtraction [2–5]. Levoy et al. [1]
construct Cyberware gantry, a laser scanner setup that is able to obtain extremely pre-
cise depth map of the object. Zhang et al. [17] perform spacetime analysis by sweeping
multiple color stripes across the object to obtain the shape of the object. They also pro-
pose an approach of using a structured lighting to perform spacetime stereo by matching
a pair of video streams which can help recover the shape of even dynamic objects [18].
Yezzi et al. [19] propose ‘stereoscopic segmentation’ to obtain the silhouettes of the
object, which works well in a controlled setting of an object with a lambertian surface
and constant albedo. Lee et al. [20] also propose a method to obtain silhouettes of the
foreground object with the assumption that the background is homogeneous to some
extent, and differs from foreground. We note that all these methods require a controlled
setup and are not (directly) applicable to a wide range of objects that cannot be captured
in such a controlled enviroment.

Multiview Stereo. When we move from images taken in controlled environments to
images taken outdoors in cluttered scenes, background subtraction becomes a signifi-
cantly harder task. In these cases, algorithms typically try to reconstruct the entire scene
as a whole and do not focus on any object of interest. A popular work by Snavely et
al. [21] relies on structure-from-motion to render sparse point clouds. However, this re-
sults in only a sparse reconstruction and not a complete 3D model of the object, which
is the goal of this paper. Multiview stereo algorithms [22] like patch-based multi-view
stereo introduced by Furukawa et al. [23] can generate reasonably dense models. Other
notable dense-reconstruction algorithms include Van Gool et al. [24] which offers dense
3D reconstruction from user-supplied images via a publicly available web service. Goe-
sele et al. [25] and Furukawa et al. [26] worked with internet-scale community photo
collections. They used a multi-view stereo approach to get dense reconstructions of the
geometry of objects like monuments and statues using many images. We note that our
scenario is slightly different from these works – we focus on the 3D reconstruction of
the object of interest alone and typically have access to a few consumer images (signif-
icantly fewer than community photo collections).

Interactive Algorithms. As discussed before, there have been a number of automatic
algorithms to obtain the silhouettes of the object. However, the notion of an ‘object
of interest’ clearly requires some form of user input. This is especially true when the
natural surroundings of the object being modeled make it difficult to automatically ex-
tract the object from the background (see for example, the stone dataset in Figure 2a).
Campbell et al. [27] tried to incorporate user interaction by assuming that the object of
interest is at the center of attention. Thus, they used a seed at the center of the image
to perform region growing to extract the foreground across images. This would work
when the object has a fairly uniform color but, would fail if the object had multiple
colors. Also, this approach does not allow the algorithm to recover from an incorrect
labeling. We believe that our application requires a fully interactive algorithm. This was
first explored in image segmentation by Boykov and Jolly [28] who posed interactive
segmentation as a discrete optimization problem. Li et al. [29] and Rother et al. [6]
presented simplified user interactions and other improvements to the basic framework.
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(a) (b) (c)

Fig. 2. Interactive Co-segmentation: (a) Group of images; (b) User interactions to indicate the
object of interest (blue scribbles = object of interest, red scribbles = background); (c) Resulting
silhouettes after co-segmentation (in cyan color). For this example, we only needed to scribble
on a single image, but our system allows for scribbles on multiple images. Other groups in our
dataset with more diverse appearances needed scribbles on multiple images. (Best viewed in
color)

This idea has been extended to object modeling by Sormann et al. [30]. They start with
a dense binary segmentation of one of the images using intelligent scrissors or grab-cut.
The foreground and background color model are then learnt using this segmentation and
this model is then tranfered to the other views. The problem with this approach is that
the background of the image can change very rapidly and a segmentation on one image
will not be representative of this. We use recent work by Batra et al. [9] which extends
this interactive approach to co-segmentation of groups of images. This makes for a very
simple interactive system and also allows the user to provide additional interactions if
required.

Hengel et al. [31] and Sinha et al. [32] have proposed interactive 3D model-
ing systems that produce piecewise planar approximations. Our work differs from
them, in that we make no such planar assumptions and can model even non-planar
objects.

3 Approach

We now describe our approach. We are given multiple images of the object of inter-
est taken in cluttered scenes. Our approach, involves two main parts: 1) an energy-
minimization framework for interactive co-segmentation that extracts silhouettes of the
object of interest and 2) a shape-from-silhouette approach to obtain the final texture-
mapped 3D model. An overview of the system is shown in Fig. 1.

3.1 Interactive Co-segmentation

We create a simple interface to accept interactions from the user in the form of scribbles
to indicate the object of interest (foreground) and background as shown in Fig. 2b. Our
interactive co-segmentation approach is based on the work of Batra et al. [9], which we
briefly describe here.

We cast our co-segmentation problem as a binary labeling energy-minimization
problem solved via graph-cuts. We begin by over-segmenting each image. The task
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is to label each superpixel1 in each image as foreground (object of interest) or back-
ground. For each image, we construct a graph over superpixels, where adjacent su-
perpixels are joined by an edge. Associated with each graph is an energy which is a
weighted combination of a data-term and an edge-term. We model the data-term as the
negative log-likelihood of the features extracted at superpixels given the class model.
Our features are average Luv colour features extracted over superpixels, and the class
model is a Gaussian Mixture Model, which is learnt from all labeled superpixels (in
all images). We consider a superpixel labeled if any pixel within it has been scribbled
on. Our approach allows for scribbles on single or multiple images. The edge-term is a
contrast sensitive Potts model. Finally, we use one graph-cut per image to compute the
MAP labels for all superpixels, using the implementation provided by Bagon [34] and
Boykov et al. [35, 36] and Kolmogorov [37]. This results in a co-segmentation of the
object of interest across multiple images. More details about the performance of this
co-segmentation algorithm may be found in Batra et al. [9].

3.2 Shape from Silhouette

We have now extracted the silhouettes of the object of interest from multiple views. We
use the structure-from-motion implementation by Snavely et al. [10] called ‘Bundler’
to recover camera parameters for each image. We then use a shape-from-silhouette ap-
proach to extract a volumetric 3D reconstruction of this object. Specifically, we use an
octree-reconstruction method [2, 4].

An octree is a tree-structured representation which is used to describe a set of binary-
valued data (in this case indicating the presence or absence of cubes of voxels in the
3D model). The octree is constructed by recursively subdividing a cube to eight sub-
cubes, starting with the root which represents the bounding volume in which the object
of interest lies as shown in Fig. 3. This cube representation captures the high degree
of coherence between adjacent voxels. Each sub-cube in an octree is projected onto
the silhouette images and can be one of three colors. A black node indicates that the
cube is totally occupied (i.e. it projects completely inside the silhouettes), and a white
node indicates that it is totally empty (i.e. it projects completely outside the silhou-
ettes). Both black cubes and white cubes are leaf nodes in the tree. A gray node indi-
cates that the cube lies on the boundary of the object and is only partially filled. The
gray cube is subdivided till each of the sub-cubes can be assigned a black or white
color.

We use a variant of this algorithm which is optimized for speed [2, 4]. For more
details the reader is referred to Szeliski et al. [2] and Chen et al. [4]. We note here
that our system allows users to visually examine the 3D reconstruction and give more
scribbles to improve silhouettes that would in turn lead to better 3D reconstruction.
However, we do not perform multiple iterations for our experiments.

It is worth mentioning that shape-from-silhouette algorithms have well-understood
limitations. Specifically, they are unable to model certain concavities in the struc-
ture (e.g. details on the surface of the structure). However, as we show through our

1 We use mean-shift [33] to extract these superpixels, and typically break down 350×500 images
into ∼ 400 superpixels per image.
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Fig. 3. Simple two-level octree: (a) Synthetic visualization to show octree reconstruction (Silhou-
ettes of the object shown in black in two views); (b) Corresponding tree representation of the
two-level octree (Best viewed in color)

results (Section 4), our approach might be a good first-approximation for consumer
applications. Recently, Fabbri et al. [38] developed an algorithm which allows for re-
constructing curves in the structure. Although not done here, this approach could pro-
vide cues to help tackle the problem of concavities in the structure.

4 Results and Discussions

We demonstrate the effectiveness of our algorithm on a number of datasets
ranging from a simple collection taken in a controlled setup to a commu-
nity photo collection and a video captured in cluttered scenes. In this section,
we show the rendered 3D model for each dataset, captured from novel view-
points. For all datasets except the dino dataset, we texture map the model by
back-projecting the faces of the mesh onto a single image. We observed that in outdoor
scenes texture mapping from multiple views can lead to some artifacts at the seams due
to changes in illumination.

Dino Dataset. The first dataset we use is a standard dataset from the Oxford Visual
Geometry Group2, shown in Fig. 4a. One of the images in the dataset was chosen at
random and the interactions were provided to indicate the dino as foreground and the
blue screen as the background. The resulting silhouettes are shown in Fig. 4b. The 3D
model obtained from the shape-from-silhouette algorithm. This dataset was captured
in a controlled setup which allowed us to texture map the model using multiple views
i.e. by projecting the faces onto the corresponding image where they are visible. Oc-
clusion poses a significant problem for multiview texturing, we use the approach of
Chen et al. [39] to overcome this by using the depth buffer (z-buffer) data from the
graphics card.

This result simply serves as a proof of concept under a controlled setup, and it is
encouraging to see that our approach is able to render a good reconstruction without
any prior knowledge about this setup.

2 Oxford Visual Geometry Group multiview dataset: http://www.robots.ox.ac.uk/
˜vgg/data/data-mview.html

http://www.robots.ox.ac.uk/~{}vgg/data/data-mview.html
http://www.robots.ox.ac.uk/~{}vgg/data/data-mview.html
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(a) (b) (c)

Fig. 4. Dino dataset (36 images): (a) Subset of the collection of images given to the system where
the dino was marked the object of interest; (b) Resulting silhouettes after co-segmentation (in
cyan color); (c) Some sample novel views of the 3D model (Best viewed in color)

(a) (b) (c)

Fig. 5. Cambridge unicorn dataset (14 images): (a) Subset of the collection of images given to the
system where the unicorn statue was marked as the object of interest; (b) Resulting silhouettes
after co-segmentation (in cyan color); (c) Some sample novel views of the 3D model (Best viewed
in color)

Cambridge Unicorn Dataset. We use the Cambridge unicorn dataset [40], shown in
Fig. 5a. Using interactions to indicate the unicorn as the object of interest, we obtain
the silhouettes as shown in Fig. 5b which results in the texture-mapped 3D model as
shown in Fig. 5c.

Stone Dataset. This dataset demonstrates that our algorithm performs well even when
the background becomes highly cluttered. The stone dataset is shown in Fig. 2a. Note
that the stone is visually very similar to the ground surface. The silhouettes obtained
after providing the interactions to indicate the stone as object of interest, are shown in
Fig. 2c. It is worth mentioning that the noisy (incorrectly-labeled) superpixels in the
segmentations can be removed by increasing the smoothness penalty in our energy-
minimization framework. However, these sparse incorrectly-labeled superpixels do not
affect the reconstruction, as they get filtered out in the shape-from-silhouette algorithm.
The texture-mapped 3D model obtained from the shape-from-silhouette algorithm is
shown in Fig. 1d.
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(a) (b) (c)

Fig. 6. Clock tower dataset (32 images): (a) Subset of the collection of images given to the system
where the clock tower was marked as the object of interest; (b) Resulting silhouettes after co-
segmentation (in cyan color); (c) Some sample novel views of the 3D model (Best viewed in
color).

Clock Tower Dataset. We now try to reconstruct immovable objects that cannot be
taken to a standard studio setup as shown in Fig. 6a. With interactions we obtain the
silhouettes of our object of interest (clock tower), as shown in Fig. 6b which can be
used to obtain texture mapped 3D model using the shape-from-silhouette algorithm as
shown in Fig. 6c. We note that algorithms like structure-from-motion and patch based
multi-view stereo would try to reconstruct the whole scene and result in an incomplete
reconstruction in this case.

Statue Dataset. We now demonstrate the effectiveness of our algorithm on images
where the background changes drastically as shown in Fig. 7a. The silhouettes of the
object of interest (statue) obtained using our algorithm are shown in Fig. 7b. The texture
mapped 3D model of the statue obtained using these silhouettes are shown in Fig. 7c.
Note here that a part of the head of the statue gets clipped off in the generated model.
The reason for this is a leak in the superpixels where a portion of the head became
part of the sky superpixel. We can overcome this problem by working on pixels in-
stead of superpixels i.e. set up the energy minimization over a graph of pixels instead
of superpixels. This would increase the computational complexity but result in better
silhouettes.

Video Dataset. Our work opens up the possibility of allowing users to render them-
selves as avatars in virtual worlds. We consider this scenario of reconstructing a person
in 3D. We captured a video of the person to be modeled by walking around them.
Selected frames this video are shown in Fig. 8a. With interactions, we obtain the sil-
houettes as shown in Fig. 8b which results in the texture mapped 3D model as shown
in Fig. 8c. We can see that the reconstruction is fairly complete, however we observe a
leak in the superpixel map here as well.
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(a) (b) (c)

Fig. 7. Statue dataset (38 images): (a) Subset of the collection of images given to the system where
the statue was marked as the object of interest; (b) Resulting silhouettes after co-segmentation (in
cyan color); (c) Some sample novel views of the 3D model (Best viewed in color).

(a) (b) (c)

Fig. 8. Video dataset (17 images obtained by sampling the video): (a) Subset of the collection of
images given to the system where the person was considered the object of interest; (b) Resulting
silhouettes after co-segmentation; (c) Some sample novel views of the 3D model (Best viewed in
color).

Community Photo Collection - Statue of Liberty Dataset. With millions of images
available on the internet, we consider an application geared towards internet-scale re-
construction of objects where the user searches for an object of interest, in this case the
Statue of Liberty. We start with a set of 1600 images of the Statue of Liberty collected
by Snavely et al. from Flickr®. We use all the images to estimate the camera matrices
using structure-from-motion [10]. For our algorithm, we sampled a subset of 15 images
spanning a large field of view, as shown in Fig. 9a. The silhouettes are shown in Fig. 9b
and the texture-mapped 3D model are shown in Fig. 9c. We note here that there are
a few artifacts like the blue sky above the shoulder as well as the thinned arm. Some
of these problems (like the superpixel leaks) may be corrected by working with pixels.
However, some (like the lack of detail on the face of the Statue of Liberty) are a direct
result of our reliance on a segmentation framework and may not be possible to fix. The
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(a) (b) (c)

Fig. 9. Community photo collection - Statue of Liberty dataset: (a) Subset of the collection of
images given to the system - for our co-segmentation algorithm we use a subset of 15 images
spanning a large field of view from a collection of 1600 images; (b) Resulting silhouettes after
co-segmentation (in cyan color); (c) Some sample novel views of the 3D model (Best viewed in
color).

results on this dataset have also been reported by the multi-view stereo work of Goesele
et al. [25], where they obtain a dense depth model for the statue. A comparison between
the model we generate, the point cloud model from photo-tourism [10] and multi-view
stereo model [25] is shown in Fig. 10.

It is worth mentioning that once we obtain the silhouettes of the object of interest,
we can use any known shape-from-silhouette algorithm at this stage to obtain the 3D
model (not necessarily the octree-based reconstruction approach we used here), for ex-
ample, the approach by Wong et al [41]. In addition, we can use this co-segmentation
algorithm with the popular multi-view stereo reconstruction approach, to focus the out-
put of the multi-view stereo algorithm on the object of interest. As an illustration, we
show the model generated using patch-based multi-view stereo (PMVS) 3 in Fig. 11
when constrained by the silhouettes extracted using our interactive co-segmentation al-
gorithm. We used the statue dataset in Fig. 7a for this experiment. In Fig. 11a, we show
the result of PMVS without any prior knowledge of the object of interest. In Fig. 11b
we show the 3D model obtained from PMVS using our silhouettes. As we explained
earlier, multi-view stereo algorithms would try to reconstruct the whole scene without
giving importance to the object of interest. We can see that use of silhouettes helps ob-
tain a more accurate 3D model of the object of interest. Another crucial advantage of
using the silhouettes is to speed up the multi-view stereo algorithm with geometrically
consistent reconstructions. In our experiment with PMVS, it took 3 hours to obtain the
model in Fig. 11a, as opposed to 8 minutes using the silhouettes to render Fig. 11b.
However, faster implementations may be available for PMVS.

3 We use the PMVS implementation described in [23] available athttp://grail.cs.
washington.edu/software/pmvs/pmvs-1/index.html

http://grail.cs.washington.edu/software/pmvs/pmvs-1/index.html
http://grail.cs.washington.edu/software/pmvs/pmvs-1/index.html
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(a) (b)

(c)

Fig. 10. Statue of Liberty comparison: (a) Point cloud reconstruction by photo-tourism, using
1600 images; (b) Dense reconstruction using multi-view, using 72 images (figure from [25], used
with permission). With a lot of images, multi-view stereo can give a good depth model; (c) Pleas-
ing texture mapped reconstruction rendered using our interactive co-segmentation algorithm, us-
ing 15 images. (Best viewed in color).
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(a)

(b)

Fig. 11. Patch-based multi-view stereo experiment using images in Fig. 7a where the statue is the
object of interest: (a) When the silhouettes are not available PMVS tries to reconstruct the whole
scene as shown; (b) Using the silhouettes produced by our co-segmentation algorithm, we can
use PMVS to obtain the 3D model of the statue which was the object of interest (Best viewed in
color).

5 Conclusions and Future Work

With the growing popularity of immersive virtual environments and large-scale recon-
structions in mind, we present a simple interactive algorithm which enables the user to
obtain a 3D model of an object of interest and render it as part of the reconstruction.

The interactive algorithm obviates the need for a complicated, controlled environ-
ment and works reasonably well in cluttered scenes. We demonstrate the effectiveness
of the algorithm by modeling a wide range of objects captured in cluttered environ-
ments, in the wild. We also show that the same system extends well to community photo
collections, thus taking a step towards building better large scale 3D environments.

We note that, in our work we only make use of camera parameters and not correspon-
dences or 3D positions of feature points. As a future work, we want to incorporate this
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information which should help obtain better reconstructions. Moreover, in this work,
co-segmentation and shape-from-silhouette steps were used purely in a “feedforward”
manner. A possible future direction would be to place the 3D modeling and 2D image
co-segmentation into an iterative loop where they aid each other. Geometric consis-
tency constraints between different images would help achieve better co-segmentation
and thereby help create better 3D models. In addition, improved techniques to use tex-
ture from multiple views while texture mapping objects in outdoor scenes would be
useful and can be explored in the future.
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Abstract. This paper proposes an automatic method for registering images from 
different sensors, particularly 2D optical sensors and 3D range sensors, without 
any assumption about initial alignment.   

Many existing methods try to reconstruct 3D points from 2D image 
sequences, and then match 3D primitives from both sides. The availability of 
appropriate multiple images associated with 3D range data, the well-known 
challenge of inferring 3D from 2D and the difficulty of establishing 
correspondences among 3D primitives when there is no pre-knowledge about 
initial pose estimation, lead us to a different approach based on region matching 
between optical images and depth images projected from range data.  

This paper details our interest region extraction method for optical images 
and also the efficient region matching component. Experiments using several 
cities’ aerial images and LiDAR (Light Detection and Ranging) data illustrate 
the effectiveness of the proposed approach even when facing considerably 
geometric distortions.  

Keywords: different sensors registration, 2D-3D matching, LiDAR data. 

1 Introduction 

Recent years, there has been an increasing awareness of the growing need for 
registering images from different sensors, especially the range and optical sensors. 
For example, the photorealistic modeling of urban scenes using range data from 
airborne or ground laser scanner requires the registration of those 3D range data onto 
aerial or ground 2D images for recognition and texture mapping purposes. In the 
medical image processing domain, there has a long standing concern about how to 
automatically align Computed Tomography or Magnetic Resonance images with 
optical camera images. Traditional texture-based image matching approaches such as 
[1] can not be directly adapted to above tasks, basically because unlike the optical 
sensors, range sensors capture no texture information. 

In this paper, we propose an automatic registration method based on matching of 
local interest regions extracted from 2D images and depth images of 3D range data 
for urban environment. The regions we are interested in (ROI) are typically well 
separated regions of individual buildings. Global context information is implicitly 
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used for outlier removal and matching propagation (system overview in figure 1). Our 
approach can register images from different sensors with large initial location and 
scale errors. Although today there exist systematic ways to obtain initially well 
aligned 3D and 2D data at the same time for large scale scenes, possible applications 
of our work include data fusion from different sources and sensors, and updating 
existing GIS (Geographic Information System) with new content, when data from 
different sources may have non-unified calibration or no georeference at all, e.g. 
historic photos or photos from common users. Furthermore, the ROI extraction 
component proposed in this paper is an important prerequisite to a variety of 
recognition, understanding, and rendering tasks in urban environments. 

3D Range Data 2D Image

ROI Extraction 
from Range Data

ROI Extraction
from Image

ROI
range

ROI
image

Region
 Matching

2D-3D Point-to-Point
Correspondences  

Fig. 1. Overview of the proposed 2D-3D registration system 

Our two basic assumptions are: first the dominant contours of most interest regions 
are repeatable under both optical and range sensors. A similar assumption was used 
and verified in [8]. Second, focusing on different sensor problems, in this paper we 
assume both optical and depth images have similar viewing directions (nadir view in 
our experiments) though position, zoom level and in-plan rotations of capture devices 
can be different. Our idea for the whole system is to first handle different sensor 
problems in this stage, and then register nadir, oblique and even ground images all 
from optical sensors to handle 3D view point changes by using approaches such as 
[13] and [16]. In the end, oblique and ground images can be indirectly registered. 

Intensive experiments have verified the effectiveness of the proposed approach in 
terms of scale, rotation and location invariance, significant geometric distortion and 
partially missing data due to occlusion or historic data. After the related works, 
section 3 details our interest region extraction method for optical images and section 4 
presents the region matching component.  

2 Related Works 

To register images from different sensors, many recently developed methods 
reconstruct sparse or dense 3D point clouds from image sequence, then use high level 
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features (e.g. 3D edges, intersection of perpendicular 3D lines) which are preserved 
and consistent on both 3D and 2D sides to establish correspondences.  

Zhao, et al. [2] use motion stereo to recover dense 3D point clouds from 
continuous oblique video and ICP algorithm to register recovered 3D points with 
LiDAR data with initial alignment provided by positioning hardware such as GPS 
(Global Positioning System) and IMU (Inertial Measurement Unit).  Ding, et al. 
detect 2D orthogonal corners (2DOC) and use them as primitives to match single 
oblique image with airborne LiDAR [3]. The proposed method achieves overall 61% 
accuracy and the processing time of each image is only several minutes in contrast to 
20 hours of the previous work of [4].   

Both [2] and [3] utilize positioning hardware for initial alignment. Our own 
visualization of similar datasets indicates the readings from the airplane-bonded GPS 
and IMU are accurate enough to significantly simplify the registration problem. 
However, for historic data or photos from common users, we can not assume such 
assistant hardware is always available for GIS data fusion and updating problems. 
Moreover, though accurate for large city scenes, the current accuracy of positioning 
hardware makes their application to small scenes (e.g. indoor environment and 
medical imaging settings) impractical. If initial orientation, scale and location errors 
are significant, ICP or local search of orthogonal corners could not be sufficient. 

 Multiview geometry methods are used in [2] and [6] to recover 3D point clouds 
from image sequences. The first limitation is appropriate multiple views of the 
interest object might not always be readily available. Second, as the first step of 3D 
reconstruction, correspondence among 2D images needs to be established. This is a 
challenge problem by its own especially for wide baseline cases. Simple Harris 
corners and correlation are used in [2] for continuous video frames, while in [6], SIFT 
is use. However, for non-planar 3D object and significant view point changes, even 
SIFT and its many variations can not be confidently counted for dense and stable 
correspondences. Last but not the least, even a number of perfect correspondences can 
be obtained , traditional stereo or structure from motion techniques still tend to 
produce inconsistent and noisy results. 

3 ROI Extraction from Aerial Images 

One important component of our 2D-3D registration method is ROI extraction from 
aerial images (major components in fig. 2), which can be viewed as a special case of 
general image segmentation problem. Related recent works include: Comaniciu and 
Meer’s non parametric mean shift segmentation algorithm [9] and Felzenszwalb and 
Huttenlocher’s efficient graph based segmentation methods [10]. 

The fractal geometry used in our method, originally introduced by Mandelbrot 
[11], has long been used for aerial image understanding tasks. Solka et al. use fractal 
measurement combined with classical statistical features such as the coefficient of 
variation to identify ROI for unmanned aerial vehicle imagery [12]. Recent work of 
Cao et al. [14] tries to minimize an energy function representing how well the current 
boundary contains the interest region using fractal error image and texture edge image 
generated by Discrete Cosine Transformation. 
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This section presents our ROI extraction algorithm for aerial photography. The 
proposed algorithm produces initial ROI through a region-growing process utilizing 
various image cues from low level features such as intensity and color preference to 
high level ones such as fractal errors and multiple assistant information maps (AIMs). 
The detected initial ROI could be further refined by a learning-based region 
regulation step. This component is to extract, from aerial images, buildings’ most 
external contours repeated and consistent with those extracted from 3D range data. 

Preprocessing

 AIMs Construction and Selectively Smoothing

Region Growing 

Learning-based Region Refinement

ROI
image

Input Aerial Image

 

Fig. 2. ROI extraction from aerial images 

3.1 AIMs Construction and Selectively Smoothing 

There are three kinds of assistant information maps the region growing process 
frequently refers to: vege maps, shadow maps and edge maps. The aerial image is also 
selectively smoothed during the construction of three AIMs. 

Vege-Map (Mvege): By utilizing color information in the aerial photograph, we 
identify pixels that are dominated by the green channel and possibly vegetations.  

Shadow-Map (Mshadow): For each pixel, let I represent the intensity value and (Cr, Cg, 
Cb) represent its RGB color channels. A pixel is said be to a shadow pixel if: 

1shadowTI <  and 2},,max{ shadowbgr TCCC <                        (1) 

where Tshadow1 and Tshadow2 are thresholds specifying how low the intensity and color 
channel need to be for a shadow pixel. Because vegetations typically form low 
reflection regions, the shadow-map typically have many overlaps with the vege-map. 

Edge-Map (Medge): There are two kinds of edges in our edge-map, the true edges and 
the in-region edges. Among the initial edges returned by Canny operator, most are not 
actual boundaries of ROI (true edges) but rather edge responses within those regions 
(in-region edges) due to slope or textures of the roofs, items like air conditioners on 
the building's top, or even noises from image sensors. 

The existence of in-region edges is one primary reason for over-segmentation. 
Moreover, since our ROI extraction process is a combination of region-driven and 
edge-driven, it is meaningful to distinguish those two kinds of edges from the very 
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beginning. For urban scenes with regular buildings, an edge pixel is deemed as a part 
of true edges unless neighboring horizontal or vertical non-edge pixels have similar 
hues. HSV instead of RGB color space is used because neighboring pixels of either 
true or in-region edges tend to be affected by different lighting, and hue is generally 
more robust under such circumstance. The separation of in-region edges from true 
edges serves two purposes. First, while the true edges will become strict barrier 
during the region-growing process, those in-region pixels will not. The region-
growing process is allowed to pass those in-region pixels with certain penalty to the 
confidence attribute. Second, we perform selectively smoothing based on the results 
of in-region edges. The color and intensity of each confirmed in-region edge pixel 
will be replaced by the average of its non-edge eight neighbors, helping us eliminate 
those in-region details which will otherwise compromise segmentation performance. 

3.2 Region Growing 

A uniform grid is placed on top of aerial images to determine seed locations. Each 
cell's center P is used as a tentative seed location and if it fails the seed conditions: 

vegeMP ∉  and shadowMP ∉  and 
edgeMP ∉                  (2) 

the cell is equally divided into four smaller cells and each center of those four sub-
cells is tested again. It is possible that all five tests fail and the corresponding cell has 
no marker at all (e.g., when the cell is placed on trees). 

During the region growing process, the current pixel (pcurrent) will be accepted and 
recursively expanded only if it meets the three expansion requirements: 

1) The fractal error requirement: The theory is based on the properties of nature 
features to fit a fractional Brownian motion model. The definition of fractal error in 
image domain concerns two pixel locations (pc and pr). The measurement (e.g. 
intensity) difference of those two locations should be normally distributed with a 
mean of zero and a variance proportional to the 2H power of the Euclidean distance. 

For intensity measurement, if the model fits, the average absolute intensity change 
across several pairs of pixels should follow exponential scaling: 

H
rcrc ppkpIpIE |||])()([| −=− ,                      (3) 

where E is the topological dimension (the number of independent variables) and in the 
image domain E = 2. k > 0 and 0 < H < 1 are two parameters. The parameter H is 
related to the fractal dimension D by: D = E + 1 -H. 

The above equation can be linearized by logarithm: 

|)ln(|)ln()])()([ln( rcrc ppHkpIpIE −+=− .                  (4) 

With the linear equation, we can use machine learning technique to obtain the 
estimates of H and k. To obtain training data, a window operator is placed on one 
aerial image's non-building regions. After collecting pixel distances and their 
associated intensity changes in those regions, the least-squares linear regression is 

used to compute the optimized H  and k .  
The individual fractal error for a pixel location pc is calculated as the difference 

between the actual and estimated values from one of its neighboring pixel pr: 
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H
rcrcrcerror ppkpIpIEppF ||)]()([),( −−−= .                  (5) 

Finally, the overall fractal error (OFE) for pc is computed as the root mean square 
(RMS) of these individual errors using a local window centered at pc: 

=
r

c
p

rcerrorp ppF
n

OFE ),(
1 ,                             (6) 

where n is number of pixels considered in a local window. 
A low OFE indicates that the center pixel's neighboring region is more likely to 

belong to a non-building region. Therefore, the center pixel will be excluded from the 
current growing region. A center pixel with sufficient high OFE will pass this 
expansion requirement. We never compute a fractal map for the entire aerial image 
because there are many regions in the aerial images that are never reached throughout 
the region-growing process due to one expansion requirement or another. Instead, we 
take the compute-on-demand-then-save way.  

2) Requirements from AIMs: The current pixel will fail this requirement if 
pcurrent∈Mvege or pcurrent∈Mshadow. The requirement for shadow-map can be relaxed in 
heavily urbanized scenes with long shadows overlapping buildings. If the current 
pixel belongs to an in-region edge, it will still pass this test though a penalty to this 
region's confidence needs to be taken. If the current pixel belongs to a true edge, it 
will be neither accepted nor further expanded. 

3) The dynamic intensity range: Finally the current pixel’s intensity must lie 
within the current dynamic intensity range, defined by two variables: the upper bound 
(Urange) and the lower bound (Lrange). Both are initialized as the intensity of initial seed 
point. The range is expanded simultaneously with the region growing process with a 
limit for the range's length (range_len). 

The current pixel will immediately pass the dynamic intensity range requirement 
without any update if: 

rangecurrentrange UpIL << )(                                  (7) 

Otherwise, we introduce a tolerate threshold Trange as an expansion limit. The 
threshold is softened and fluctuated based on the current area to handle the case when 
the current point falls into a small distinct region contained in a large region we are 
interested in. The current pixel will still pass this requirement and update the range if: 
when the current area is smaller than the minimum acceptable area, 
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or when the current area is larger, 

rangerangecurrentrangerange TUpITL +<<− )( ,                     (9) 

where Rangemax is the maximum adjustable range for Trange. 
Each pixel of the aerial image is associated with a 2-bit attribute called color 

preference. It is set to 1, 2 or 3 if the corresponding channel is dominant or 0 if no 
channel can obtain the dominate position. A region’s color preference is set to be the 
color preference of the seed pixel. We use a more strict Trange value if the current 
expanding pixel has a color preference different from the growing region. 
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Those pixels that pass the above three expansion requirements will form the initial 
ROI. Regions with high confidence should be those clearly distinguished from 
surrounding background and consequently have small dynamic intensity range (DIR). 
Moreover, one region will have high uncertainty if it contains a large number of in-
region edge pixels (#IREP). Therefore, we define a region R's uncertainty as: 

)(#)
_

1()( IREP
lenrange

DIR
RUCT ⋅+= .                     (10) 

A larger region has higher chance to encounter in-region edge pixels. Avoiding this, 
we compute the uncertainty per pixel (UPP) as: 

areaR

RUCT
RUPP

.

)(
)( = .                              (11) 

Initial segments with comparatively large UPP or small size / area will be discarded. 
The rest are called ROI candidates. UPP is also used in the region merging step and 
the final region matching component.  

3.3 ROI Candidate Refinement 

The actual number of buildings in the scene is typically less than half the number of 
ROI candidates because many candidates are false positives such as grounds and 
roads, and some buildings are over-segmented due to factors such as shadows. The 
candidate refinement consists of two steps handling the two problems respectively. 

First, learning-based region regulation is to prune those ROI that are too 
irregular to become building regions or a part of such regions. For each ROI contour, 
we construct x and y histograms in the roation-relative frame and compute two 
attributes measuring their peak strength. Linear Discriminant Analysis is applied to 
the 5D augmented space to decide a linear boundary, which results a quadratic 
decision boundary in the original space. Around half of the ROI candidates are pruned 
by this step. Second, region merging is used to iteratively merge those regions that 
are spatially close to each other (especially when their color preferences are 
compatible) and form additional interest regions. Only ROI candidates with higher 
confidences (lower UPP attributes) will enter the region merging step because regions 
with high UPP already contain too many.  

The outputs of our aerial image ROI extraction are interest regions (ROIaerial) and 
their contour point lists. We also develop an efficient algorithm to extract ROIrange 
from 3D LiDAR data (not covered in this paper). 

4 Region Matching under Different Sensors 

Given dominant and most-external ROI contours from both aerial images and 3D 
range data, we choose to use the shape context [15] as our contour descriptor because 
as a histogram-based approach, it is able to handle issues like pixel location error 
well. It can also tolerate various shape deformations (common situation in our case 
due to imperfect segmentation) while capturing the essence of similarity. Last, shape 
context generates one descriptor for each contour point, which enables us to establish 
point-to-point correspondences.  
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Each ROI's contour points are uniformly sampled to form a contour point list of 
fixed size (NCPL). We ordered the list in a counter-clockwise manner starting from the 
point with the smallest y coordinate. Each CPL point j on ROIi is described by its 
relative angle difference θj,k (to other points k of CPL and k≠j) and logarithm 
normalized distance rj,k using a log-polar histogram: 

}0:)(  and  )({#),( ,,, iCPLrkjkjrji NkbbinrbbinofbbH <<∈∈= θθ θ        (12) 

Scale invariance is achieved by distance normalization (we normalize distances using 
the size of ROI bounding boxes) and by placing shapes of different scales into 
histograms with a fixed number of r bins. For rotation invariance [7], tangent vectors 
are computed at each point and treated as x-axis so that the descriptors are based on a 
relative frame that automatically turns with tangent angles. 

Despite many previous efforts in our ROI extraction stage, over-segmentation and 
segmentation-leaking can still be observed among ROIa and ROIr. Therefore it is still 
important to allow partial matching (fig. 5) in the region matching stage, achieved by 
forming partial descriptors in our algorithm.  Continuous subsets of the original 
sampled contour points are used. We re-sample the partial contour and form new 
partial descriptors. Though imperfectly segmented regions will have better chance of 
matching through this, adding more descriptors will also enlarge the necessary 
searching space and raise the distinctiveness requirement. To better handle this trade-
off, only those partial contours containing larger number of corners, consequently 
generating richer and more distinctive partial descriptors will be considered. To 
further restrict the total number of ROI descriptors, we generally compute partial 
descriptors only for ROIr, which are relatively clean and more accurate than ROIa. 

 

Fig. 3. ROI partial matching 

To search for optimal correspondences, for each ROIr described as NCPL histograms 
Hr(j), all the ROIa,i (0≤i<numa) described as Ha,i(j) are sequentially scanned. We 
efficiently measure the similarity of two ROI as the minimum average histogram 
distance (matching cost) of their corresponding CPL points.  
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The searching for minimum has a constant low computational cost of O(NCPL) because 
CPL is organized as a counter-clock list of most-external contour points. Once one 
point's matching is determined, the rest points are automatically corresponded. There is 
no need to compute the solution for general bipartite matching problem.  

After the searching process, each ROIr is associated with its best and second best 
matched ROIa. Among all those tentative correspondences, typically only 10%-40% 
are correct. The final task is to detect and correct the outliers. 

We define "cost ratio" for each ROIr as the matching cost ratio of its best matching 
over the second best matching. Lower cost ratio combined with lower UPP attributes 
for ROI indicates a higher matching confidence. For example, regular rectangle 
buildings are generally ambiguous and produce higher cost ratio because many 
buildings have similar shapes, while buildings of unique shapes will produce lower 
cost ratio and higher matching confidence.  

For comparatively easy tests with a few distinguished buildings in the scene, 
correct initial matchings can be found by simply picking several ROIr with the lowest 
cost ratio. Each selected ROIr can contribute 10 uniformly sampled contour points 
providing a large set of point to point correspondences, based on which a global 
perspective transformation is estimated using least square method.  The result is 
propagated to those unselected ROIr using the recovered transformation and produces 
the final point to point correspondences across the entire scene. 

 

Fig. 4. the 1st column is ROI contours extracted from range data, the 2nd and 3rd column are the 
best and second best matching from the input aerial image. Cost ratio for each row is given. 

For challenging scenes, the correctness of initial matchings can not by solely 
decided by cost ratio. We propose a unified framework combining outlier removal 
and matching propagation together. We first construct a subset of matchings with 
relatively low cost ratio. This high-confidence subset of matchings serves as the 
foundation group of transformation estimation. For each iteration of the process, we 
randomly pick one pair of matchings from the subset and compute a global 
transformation using least square method. The remaining matchings are scanned to 
locate those consistent with the estimated transformation by comparing the point-to-
point correspondences generated by region matching with the matching propagation 
results. The transformation matrix is updated every time the size of consistent set 
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increases. We compare and evaluate the results of different iterations using two 
criteria: the number of propagated matching points that are within the spatial range of 
ROIa, and the average UPP of the consistent set.  

Throughout the process, global context is implicitly taken into consideration. The 
whole process runs iteratively until a global transformation meeting some predefined 
criteria is found, in which case matchings have already been propagated to all 
buildings across the scene, or when the list is exhausted, the system will claim that no 
correspondence could be established. 

5 Experimental Results 

The proposed registration method was tested using aerial images and LiDAR data of 
Atlanta, Baltimore, Denver and Los Angeles. Both real and synthesized data were 
tested. Though most LiDAR data we used are current and of high resolution, some 
(e.g. Los Angeles dataset) are captured years ago with very low resolution and some 
recently built buildings missing from the range data such as the two bottom left 
buildings in figure 7(c). As a local region based approach, our method can robustly 
handle such situation common for historic data.  

Most aerial images we used are captured in early years with low resolution and 
from various sources (e.g. returned from online image search engine) and no 
georeference data can be tracked at all. Others are casually cropped from satellite 
images. Some testing areas are heavily urbanized with a large number of close 
buildings while others have sparsely distributed buildings but a lot of vegetations. To 
focus on different sensors problems in this work, the sides of buildings could be 
visible but should be comparatively small (Details about how our whole 2D-3D 
registration system registers images from nadir views to oblique, e.g. [16], are not 
covered in this paper.). Other than that, we made no assumption about the initial 
alignment. The images may have any in-plane rotation, even upside down. The scale 
difference from aerial image to depth image ranges from 0.3 to 3. Perspective and 
skew distortions could be applied. Concerning location errors, the corresponding 
building might lie on the opposite corner of the image. The inputs data may originally 
have no correspondence. Our method is robust enough to handle those factors 
challenging to general matching and registration system.  

Last, the proposed method had been successfully integrated into two application 
systems for urban rendering and UAV localization respectively. 

5.1 ROI Extraction Results 

Figure 5 and 6 show the color-coded ROI extraction results from aerial and depth 
images, compared with results generated by classical segmentation algorithm [10]. 
Our ROI extraction result meets the particular need of our registration system 
considerably better than others. The returned segmented regions are more focused on 
interest buildings and can provide more accurate dominant external contours.  

For setting parameters, we choose UPP and OFE in rather conservative ways only 
to remove those ROI that are clearly false positives. T_range is dynamically related to 
the current ROI size. We found changing of range_len have no significant impact on 
the segmentation results. Those ROI distinctive from background can robustly be 
obtained unless some unreasonable values are used, while we were not able to find a 
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Fig. 5. ROI extraction results (from aerial images) 

 

Fig. 6. Segmentation comparison. (a) our ROI extraction algorithm; (b) graph-based 
segmentation. 1st row for depth image, 2nd row for aerial image. 

universal value that can possibly help all the rest ambiguous ones. An average of 
more than 80% buildings can be correctly extracted from 3D range data during our 
experiments, while the percentage for correct ROI extraction from aerial images is 
around 60%. Nonetheless, instead of asking for perfect image segmentation, which is 
still not feasible today, we also believe the important thing is “how to make the best 
use of imperfect segmentation results” [8]. In our case, how to establish correct 
matchings at least for parts of the scene and expand the partial results to the rest. 

5.2 2D-3D Registration 

First, for registration accuracy, the final average pixel registration error of our method 
is typically within 5 pixels even for propagated matchings. Methods using high-level 
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features (better suitable for handling different sensors problem) such as curves and 
regions typically don't have an accuracy as high as pixel-based methods (e.g. SIFT 
has sub-pixel level accuracy). That's primarily because of the difficulty of locating 
exact pixel locations inside high-level features due to many challenging factors, e.g. 
in our case the influence of shadows, the segmentation leaking and breaking, etc. 

Second, like other registration and matching systems, the successful registration of 
our system also relies on the existence and acquisition of proper matching primitives. 
In our case, three properly segmented ROI repeated in both 2D image and 3D range 
data sides are sufficient. This requirement could, sometimes, be difficult to meet 
either basically because the lack of such primitives in the scene, in which case even 
human found the registration difficult or impossible, or because such primitives can 
not be accurately acquired through segmentation technique although it "seems" 
obvious to human observers. 

Our test set currently consists of 918 images, averaging over 200 images for urban 
areas of each city. Roughly 60% are real images from diverse sources. Large 
synthesized geometric distortions are applied to those real images to generate the rest. 
Overall, our method achieves around 56% of success rate for the four city's dataset. To 
the best of our knowledge, there is no existing registration method that can achieve 
similar performance without support from positioning hardware. The closest one is: the 

 

Fig. 7. Registration results of our proposed approach. (a) initial correspondences (left: 
normalized depth image; right: input aerial image; middle: aerial image wrapped by the 
recovered transformation); (b) the final results after matching propagation visualized by the 
bounding boxes and centers of all interest regions’ point-to-point correspondences. (c) distorted 
and partially missing inputs due to historic data. (d) results registering oblique views. 
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Fig. 7. (continued) 

  

Fig. 8. Apply the proposed approach to urban rendering (left) and UAV localization (right) 

system proposed in [5] can directly register 5 camera images out of a test set of 22 
images to ground scanned range data. Both methods are working on 2D-3D 
registration problem without positioning hardware support. 

Concerning efficiency, regardless of offline training our entire registration process 
of one single test for a scene containing around 30 buildings takes roughly one minute 
in a P4 3.4G PC with a peak memory occupation of 35M. 
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6 Conclusion 

This paper presents our automatic 2D-3D registration method. We provide details for 
the aerial image ROI extraction component as well as the region matching. Future 
directions include the propagation of correct registrations to those aerial images that 
failed the initial registration by iteratively expansion and refinement. 
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Abstract. In this paper we consider large image collections and their or-
ganization into meaningful data structures upon which applications can
be build (e.g. navigation or reconstruction). In contrast to structures
that only reflect local relationships between pairs of images we propose
to account for the information an image brings to a collection with re-
spect to all other images. Our approach builds on abstracting from image
domains and focusing on image regions, thereby reducing the influence of
outliers and background clutter. We introduce a graph structure based
on these regions which encodes the overlap between them. The contribu-
tion of an image to a collection is then related to the amount of overlap
of its regions with the other images in the collection. We demonstrate
our graph based structure with several applications: image set reduction,
canonical view selection and image-based navigation. The data sets used
in our experiments range from small examples to large image collections
with thousands of images.

1 Introduction

Dealing with large image collections has recently become a subject of interest in
the vision community. It includes such diverse topics as 3D reconstruction [1,2],
canonical view selection [3,4], image-based navigation [5] and image retrieval [6,7]
among others. While applications in this domain can be very different, a key issue
that all must address is how to efficiently organize and handle the available and
often redundant data. In image retrieval, for instance, state-of-the-art approaches
deal with image datasets containing up to one million images [6] and even in 3D
reconstruction applications the sizes of the image sets grow rapidly, reaching up
to 150,000 images [2]. Most approaches in this field organize images with graphs
where edges relate images that share information and edge weights depend on
the application. For instance [8] uses a graph where the edge weight is based
on the covariance of the camera positions, while [4] weights the edges by the
number of inlier matches between images. The resulting data structures reveal
little on how informative an image is with respect to all other images. In this
work, we take a different strategy and propose a data structure, region graphs,
that encodes spatial relationships between an image and a collection of images.
This provides a basis upon which various applications can be build, navigation or
reconstruction for instance, where not all but only the most informative images
are of interest.

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 239–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Region graph for three images. Overlapping regions are denoted as 1, 2 and 3.

The central idea behind our approach is to use image regions and their redun-
dancies over an image set to define a global hierarchy in the set. More precisely,
we consider the overlap between images, where we consider the overlap to be the
image regions which contain the same part of the scene. This is a natural crite-
rion, based on objective evidence, that does not require any information about
the 3D structure of the scene. It also adapts to the sampling of the scene given
by the images. The overlapping regions are then used to build a graph relating
all images spatially. The graph contains two kinds of nodes, one representing
images and the other representing overlapping regions. Each region is connected
with an edge to the images it is contained in. This means that region and image
nodes are alternating on any given path through the graph. Using this graph we
can efficiently represent the spatial relationship between the regions and images
and identify redundancies over regions. This allows us to model the importance
of regions shared by many images and to identify less important regions shared
only by few or even no images. These less important regions are often small
and not very essential to the scene. They typically contain background or other
irrelevant information.

Figure 1 shows an exemplary region graph constructed from a three image
data set. There are three image nodes and three region nodes in the graph,
representing the images and the distinct overlapping regions, i.e. regions visible in
a set of images. Using the region graphs as a basis we build applications for image
set reduction, canonical view selection and image-based navigation. We tested
our method on several real data sets ranging from a few dozen to thousands of
images. The results obtained show that the data structure we propose reveals
intrinsic properties of an image set that are useful for various applications.

In the remainder of the paper we first discuss the related work in section 2.
We then proceed to describe the construction of the region graphs in section 3
and show some exemplary applications built on them in section 4. We present
results in section 5 and conclude with section 6.
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2 Related Work

In the last few years many papers dealing with the issue of large image collections
have been published. Most of them focus on specific applications, for instance
image retrieval [6,7,9] or 3D reconstruction [1,4,2]. In the 3D reconstruction lit-
erature one of the first major works on this topic was the Photo Tourism project
[1]. In that paper a large set of images taken from Internet photo collections is
used for performing a point-based 3D reconstruction of the scene. An exhaustive
pairwise matching followed by an incremental bundle adjustment phase have
been used both for the reduction of the image set and for 3D reconstruction.
Follow-up work focused on navigating through large image collections [5], sum-
marizing the scene by selecting canonical views [3] and speeding up the initial
reconstruction process by building skeletal graphs over the image set [8]. While
an image graph was used for instance in [8] it was designed for the goal of finding
a better subset of images for the initial reconstruction. Li et al. [4] presented an
application for performing reconstructing and recognition on large image sets.
They construct a so called iconic scene graph which relates canonical views of
the scene and use it for 3D reconstruction. The edge weights used are the number
of inlier matches. Recently Farenzena et al. [10] proposed a hierarchical image
organization method based on the overlap between images. The overlap is used
as an image similarity measure used to assemble the images into a dendrogramm.
The hierarchy given by the dendrogramm is then used for a hierarchical bundle
adjustment phase. In this regard that work is interesting, because it also consid-
ers a global criterion. However, it is focused on Structure from Motion and not
on defining global representations of image collections. Schaffalitzky [11] et al.
also present some work dealing with handling large unordered data sets. They
focus on the task of performing a 3D reconstruction from unordered image sets
and only briefly mention image navigation, which they base on homographies.

Contribution. Most existing work organizes images with respect to the appli-
cation, which is often 3D reconstruction. We follow a different strategy and
organize images with respect to the regions they share. This allows us to score
images according to the information they bring and without 3D reconstruction.
Subsequent applications can then easily build on the region graph structure,
even navigation as shown later in section 4. We are not aware of any attempt to
build such an intermediate structure based on 2D cues only. We think that these
structures will become a key component when dealing with large and highly
redundant image datasets.

3 Building Region Graphs

In this section we describe how to construct region graphs. The most important
construction principle is to identify overlapping regions in the images. Overlap-
ping regions are regions in different images showing the same part of the scene.
Figure 2 gives an example. For instance region 1 is an overlapping region shared
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by images A, B and E. To identify this overlapping region, the intersection of
the overlap between image A and E and the overlap between image B and E
has to be computed. Each overlapping region is represented as a region node
in the graph. The images are represented in the graph as image nodes. Each
region node is connected to the images in which it is detected. In the example
of Figure 2 this means that node 1 representing region 1 is connected to the
nodes of images A, B and E. In the following sections the graph construction
process is described in more detail. The construction process is summarized in
algorithm 1.

3.1 Identifying Overlap between Images

The first step in the graph construction is to identify the overlap between the
images. This is accomplished in a multi-step process. First we extract features
using a scale-invariant interest-point detector on all input images [12]. We then
match the features among the images. Since we are dealing with very large image
sets, performing an exhaustive pairwise matching is computationally infeasible.
Therefore we use vocabulary trees [13] to perform a preselection among the
images (in our experiments we use the implementation provided by [14]). For
every image we retrieve the k (we use k = 10 in all our experiments) most
similar images using the vocabulary tree.

This preprocessing step significantly reduces the size of the set of image pairs
which have to be matched. The matching is performed using the standard SIFT
distance ratio on the descriptors and the resulting putative matches are pruned
using epipolar constraints in a RANSAC framework. Given the feature corre-
spondences between two images we compute the convex hull spanned by the
matched features in each image. This is illustrated in Figure 3. The area en-
closed by the convex hull in each image is the overlap between the two images.

3.2 Identifying Overlapping Regions

After performing the matching, we generally obtain several different convex hulls
per image, one per matched image. In general these convex hulls will overlap with

Fig. 2. Graph construction for a synthetic example containing five images (A to E)
which create 8 different overlap regions
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each other. We want to identify each overlapping region created by the intersec-
tion of these convex hulls. In the following let CHj

i be the convex hull spanned
in image i by the features matching image j. To determine unique overlapping
regions we assign each CHj

i a label (i, j) to indicate that this region is shared by
images i and j. When two regions CHk

i and CH l
i overlap, the common region

will receive the label L = (i, k, l). After performing this labeling for all convex
hulls every intersection will have an associated label L. The image is then sub-
divided into regions sharing the same label. While it is possible to perform these
computations directly on the image by discretizing the convex hulls, we chose
to perform the computations purely geometrically by representing the convex
hulls as polygons and using CGAL to perform the intersection operations. This
has the advantage of being image resolution independent and does not require
to allocate a discretization space for every image, which would be very memory
intensive for large image data sets. Finally every identified region is merged into
a region list storing its label and the images in which it was detected.

3.3 Constructing the Region Graph

After all overlapping regions have been identified, the region list contains all the
information needed to build the region graph. It is constructed by inserting one
image node per image and one region node for every entry in the region list.
The region nodes are subsequently connected to the image nodes specified in the
region list. The weight of the edges connecting the region nodes to the image
nodes is application specific. One generic choice is to assign the normalized size
of the region, defined as the size of the overlapping region divided by the image
size, as an edge weight. This is the edge weight which is used in most of our
experiments.

4 Using Region Graphs

In this section we discuss several applications based on the proposed region
graphs. The first application is image-based navigation which allows the user to

Fig. 3. The convex hull of the set of matched features between two images defines the
regions considered during graph construction
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Algorithm 1. Graph Construction

1: Extract feature points on all images I
2: Use a vocabulary tree to select the k most similar images for each image
3: Perform robust matching
4: for each image i in I do
5: for each image j matched to i do
6: Compute the convex hull CHj

i and assign it the label (i, j)
7: end for
8: Intersect the convex hulls in image i to obtain the overlapping regions
9: Add overlapping regions into region list
10: end for
11: for each image i in I do
12: Create an image node in the graph
13: end for
14: for each region entry l in the region list do
15: Create a region node and connect it to the image nodes of the images in which

it was detected
16: Set the weight of the outgoing edges according to the application criteria, e.g.

the normalized size of the region
17: end for

traverse the image set in a spatially consistent way. The second application is
image set reduction. Its goal is to reduce the size of the data set while retaining
as much information as possible. The final application we are considering is
canonical view selection. In this application we want to find a small orthogonal
subset of images which summarizes the whole image set.

4.1 Image Set Reduction

The goal of image set reduction is to remove redundant and non-contributing
images from the data set. In [8] for instance a subset of an image set is selected for
performing a 3D reconstruction. However, the graph structure and edge-measure
were application specific and based on the covariance of the camera positions.
We would like to define a more general measure for the information content of
an image. Intuitively an image which contains many regions shared with other
images is more important for the data set than an image having little overlap
with the other images in the data set. We therefore formalize an information
criterion for an image i and its associated image node vi in the region graph as

ρ(vi) =
∑

r∈N(vi)

∑
e∈E(r)

w(e) (1)

where N(vi) is the set of neighboring region nodes of image node vi, E(r) is the
set of edges in the region graph connected to node r and w(e) is the weight of
edge e. The intuition behind this information criterion is that an image which
contains many regions which are also present in many other images is more
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Fig. 4. Removal process on the synthetic example given in Figure 2. The image with
the least score among all images is removed first (left). Leaf nodes created by the
removal of the image are removed (middle). Newly created duplicate paths are joined.
(right).

important than an image which only contains few regions shared with few other
images. The choice of which images to remove is directly related to this criterion.
At each step of the removal process the image with the smallest image score is
removed. In Figure 4 we give an example of the image removal process in the
graph. Once the image to be removed has been identified, its corresponding node
and all incident edges are removed from the graph. The resulting graph might
then contain leaf nodes (node 8 in the example) which are also removed. Due to
the removal of an image it can also happen that two previously distinct regions
collapse into one. This can be seen in the graph through the existence of several
identical paths between two image nodes (paths E → 1 → B and E → 2 → B in
Figure 4 (middle)). These paths are joined and their edge weights summed up
to obtain a region node representing the new region. All these computations can
purely be based on the graph. No recomputations are needed. This is due to the
explicit representation of regions in the graph. If only images were represented
in the graph it would have to be recomputed after every image removal.

4.2 Canonical Views

Canonical views are views which are of high importance in a given image set.
They show parts of the scene which are captured in many images (e.g. because
they are considered to be very important). We want to automatically find these
important parts of the scene and select one representative view, i.e. the canonical
view, for each of them. Some previous work on this subject was done in [3]. In
that work the criterion for selecting a canonical view was based on the visibility
of the points in the scene. A canonical view was defined to be an image which
is very different from all other canonical views in terms of the scene points it
observes. This criterion was optimized by a greedy approach. We have a similar
definition of canonical views. However, we do not assume any explicit visibility
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Fig. 5. Canonical view selection on the synthetic example given in Figure 2. The num-
bers inside the image nodes indicate the image score computed according to equation
1. The central image has a maximum score in its neighborhood and is therefore selected
as the canonical view.

information to be available. We also do not perform a greedy optimization, but
instead deduce the canonical views directly from the region graphs.

Intuitively the images having the highest amount of overlap with the image set
should be selected as canonical views. However, we would like to avoid selecting
multiple images of the same part of the scene. One natural way of including this
constraint is to find maxima over the graph. Each image node vi is assigned a
weight using the score function given in equation 1. Only the nodes which have
a score bigger than all their neighboring image nodes are selected. These nodes
then constitute the canonical views. The neighboring image nodes are defined
to be all the image nodes which are only separated by a region node, i.e. two
images are considered to be neighbors in the graph when they share a common
region. Figure 5 gives an example.

4.3 Image-Based Navigation

The goal of image-based navigation is to allow the user to traverse the image set
in a spatially consistent order. For instance the user can choose to view the image
to the right or to the left of the current image. In order to allow such a navigation
the spatial relationship among the images has to be determined. While some
prior work [5] assumes the availability of a 3D scene reconstruction we base
the navigation purely on the images. This is achieved by considering the spatial
positions of matching regions in the images. To represent this information in
the graph we augment the edges with information about the spatial relationship
of the associated nodes. In practice we assign each edge in the region graph a
three-dimensional vector (xy z)� which describes the relative position and scale
of the region within the image. The position inside the image is specified with
respect to the image center and normalized to the range [−1; 1] × [−1; 1]. The
first two components of the vector describe the horizontal and vertical position,
while the third one represents the scale. They are computed by considering the
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Fig. 6. Illustration of the image navigation. The region graph is augmented with the
computed relative positions of the regions within the image. For determining the rel-
ative motion between two images all shared regions are considered and their relative
motions are averaged. The resulting relative motions between the images are shown in
the table. Note that for clarity scale is not considered in this example.

position of the center of gravity of the convex hull in the image. Let gi = (gxi g
y
i )

�

represent the center of gravity of the region in image i and let wi and hi be the
size of the image in pixels. Then the relative position of the convex hull inside
the image is given by

pi =

(
2gx

i −wi

wi
2gy

i −hi

hi

)
(2)

To represent the scale we consider the relative area of the region with respect
to the image area. This makes us independent of the image resolution. Let Ai

be the number of pixels in the convex hull and Ii the total number of pixels in
image i. Then the scale is given by

si =
Ai

Ii
(3)

The region movement (position and scale) for a region shared by images i and j
is computed as

xi−>j = −(pxj − pxi ) (4)

yi−>j = pyj − pyi (5)

zi−>j = sj − si (6)

To navigate the user specifies a spatial movement in the image plane (two di-
mensions) and a zoom-in/zoom-out movement (one dimension). This results in
the desired movement vector. To find the next image to move to, the movement
between the current and all neighboring images is computed. Given two images
the relative movement is given by the average of the region movement of the
regions shared by the images. The image whose region movement agrees most



248 A. Ladikos et al.

54 images 42 images

30 images

Fig. 7. Image set reduction for the pozzoveggiani data set. The first row shows the full
reconstruction, while the second and third row show the results after removing 12 and
24 of the 54 images respectively.

907 images 757 images 607 images 457 images 307 images 157 images

Fig. 8. Image set reduction for the Notre Dame data set. The first image shows the full
reconstruction (907 images). Each following image shows the result after 150 images
were removed from the previous reconstruction.

with the user motion (in the sense of the dot-product) is then displayed to the
user. Figure 6 gives an example of how the relative movement between images is
computed using the shared regions. Since we explicitly represent the regions in
our graph it is also possible for the user to select a specific region of interest in-
side the image and to perform the navigation with respect to this region instead
of the whole image.

5 Experimental Results

To validate our approach we performed experiments on several data sets of dif-
ferent sizes. In the following we will first briefly describe each data set used and
then show results for the different applications we are proposing. The first two
data sets we used were provided by [10]. The pozzoveggiani data set contains
54 images of a church and the piazzaerbe data set contains 259 images of a big
town square. The other data set we used was the Notre Dame data set provided
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Fig. 9. Canonical views for the pozzoveggiani data set. One image was selected for each
side of the church.

Fig. 10. Canonical views for the pozzoveggiani data set as produced by [3]. The pa-
rameters for obtaining this result had to be manually adjusted until a reasonable result
was obtained.

by [4]. It contains 6248 images of the Notre Dame cathedral in Paris collected
from Flickr.

The first step common to all application is the construction of the region
graph. The construction times (excluding feature extraction and matching) were
1 minute for pozzoveggiani, 3 minutes for piazzaerbe and 38 minutes for Notre
Dame on a 2.66 GHz Intel QuadCore CPU (only one core was used). Most of
the time was spent on intersecting the convex hulls.

5.1 Image Set Reduction

To show the validity of the reduction we first perform a 3D reconstruction with
the full data set and then compare it to a reconstruction on the reduced data set.
Figure 7 shows the results for the pozzoveggiani data set. The first row shows
two views of the reconstruction obtained on the full data set, while the next two
rows show the results obtained after removing 12 and 24 images respectively.
While the point cloud does get sparser the whole structure is still present.

Figure 8 shows the results we obtained on the Notre Dame data set. We
computed the connected components of the region graph and used the biggest
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Fig. 11. Canonical views for the piazzaerbe data set

Fig. 12. Image-based navigation on the pozzoveggiani data set. Starting from the top
left image the user always moves to the right, thereby circling the church once.

one (907 images). The first image shows the full reconstruction. Each of the
following reconstructions was obtained by removing 150 images from the previous
one. Again the point cloud gets sparser, but the overall structure of the scene is
retained.

5.2 Canonical Views

The results of the canonical view selection on the pozzoveggiani data set are
shown in Figure 9. One view is selected for each side of the church. To compare
to previous work we implemented the canonical view selection method described
by Simon et al. [3]. The results of their method are shown in Figure 10. They
are comparable to ours. The first four canonical views are virtually identical,
while the last two are not very essential to the scene. Since Simon’s method
uses two tuning parameters, it was necessary to manually adjust them until a
reasonable result was obtained. Their method also requires the availability of
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Fig. 13. Image-based navigation on the Notre Dame data set. The user starts with
the highlighted image and then performs several navigation operations resulting in the
shown images. The images on the left show the results of a spatial navigation (left,
right, up and down) while the images on the right show the results of zooming in and
out respectively.

visibility information for each scene point, which is not always easy to obtain.
Our method on the other hand is parameter free.

The results of the canonical view selection on the piazzaerbe data set are shown
in Figure 11. The selected images are very distinct from each other. Only the
fountain and the pagoda are seen twice in the images. However, they are pictured
from approximately opposite sides and have a completely different background.

Since we initially only use a sparse set of matches (i.e. we do not match every
image to every other image), the region graph is also only sparsely connected.
This means that similar images might not be connected in the region graph.
The effect of this is that similar images might be selected as canonical views.
Therefore we apply the canonical view selection twice. Once on the initial sparse
graph and then on the obtained canonical views after performing an exhaustive
pairwise matching on them. This is generally not very computationally expen-
sive, since the number of canonical views is comparatively small compared to
the size of the original data set. Optionally a vocabulary tree could be used to
speed up the matching.

5.3 Image-Based Navigation

Figure 12 shows the results for image-based navigation obtained on the pozzoveg-
giani data set. The user starts with the top left image and then continues to
move to the right, circling the church once.

Figure 13 shows the results of an image-based navigation on the Notre Dame
data set. On the left the user starts with the highlighted image and then navigates
in the direction of the arrows (left, right, up and down). On the right the user
performs a zoom-in and a zoom-out movement respectively. Note the number of
scale levels traversed during the zoom-in and zoom-out operation.
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6 Conclusion

We presented a novel framework for organizing large spatially related image
collections. Our approach is based on the overlapping regions between multiple
images. We represent these regions and the images in a graph and use this graph
as a foundation for several different applications related to organizing large image
collections, such as image-based navigation, image set reduction and canonical
view selection. Using these applications we presented results on several image
sets of different sizes, showing the validity of our image organization approach.
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Abstract. In recent years, oblique aerial images of urban regions have
become increasingly popular for 3D city modeling, texturing, and vari-
ous cadastral applications. In contrast to images taken vertically to the
ground, they provide information on building heights, appearance of fa-
cades, and terrain elevation. Despite their widespread availability for
many cities, the processing pipeline for oblique images is not fully auto-
matic yet. Especially the process of precisely registering oblique images
with map vector data can be a tedious manual process. We address this
problem with a registration approach for oblique aerial images that is
fully automatic and robust against discrepancies between map and image
data. As input, it merely requires a cadastral map and an arbitrary num-
ber of oblique images. Besides rough initial registrations usually avail-
able from GPS/INS measurements, no further information is required, in
particular no information about the terrain elevation.

1 Introduction

Aerial images of urban regions have been in wide-spread use for various appli-
cations for more than a century, with a strong focus on images taken vertically
to the ground (i.e. nadir images). In contrast to vertical images, aerial images
taken at an oblique angle with respect to the ground have the important advan-
tage of providing information on building heights, appearance of facades, and
terrain elevation. Thus, they are not only more intuitive for untrained viewers
[1] but enable new kinds of applications like 3D city modeling [2–4], texturing
[5–7], dense stereo matching [8], or photo augmentation [9], which are not possi-
ble in this form with vertical images. In recent years oblique aerial images have
been created in large-scale projects even for medium-sized cities [1] and have
become widely available e.g. as “bird’s-eye view” in Microsoft’s internet map
service [10]. The combination of oblique images with cadastral maps is of spe-
cial interest since it not only simplifies standard cadastral applications [1] but
has the potential of strongly improving 3D city reconstruction techniques [2–4]
in terms of automation and speed. However, the established standard tools for
vertical aerial images cannot easily be applied to oblique imagery due to the
varying scale of pixels across an image caused by perspective foreshortening,
the strongly changing appearance between different views, and the inevitable
(self-)occlusion of buildings. While the registration of oblique aerial images with
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c© Springer-Verlag Berlin Heidelberg 2012
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(a) (b) (c)

Fig. 1. Problem statement: Given a set of oblique aerial images (a) and a cadastral
map (b), we compute the registration of the images with the map as shown in (c).
Besides rough initial registrations, no further information is required. In particular,
the cadastral map does not contain terrain elevation or building height information.

vertical images [11] and with LiDAR data [6, 7] has been studied before, the
precise registration with cadastral maps and the process of conflation [12] (i.e.,
the removal of misalignment between images and map vector data) is still a chal-
lenging problem for oblique aerial images that has not been automated yet [13].
This problem is amplified by the fact that, instead of a single vertical image,
at least four oblique views from different directions are required to fully cover
individual objects. Thus, there is a strong need for a fully automated processing
pipeline that includes a robust and precise geo-registration.

In this paper, we address the problem of registering oblique aerial images
(cf. Fig. 1a) with digital cadastral maps containing the footprints of buildings
(cf. Fig. 1b). The set of images is assumed to be sparse with the viewing direc-
tions being just the four cardinal directions since images of this kind are widely
available. To allow for a robust registration, neighboring images are required to
overlap by about 30-40%. While the resulting registrations (cf. Fig. 1c) can be
used for various purposes, our main target application is the reconstruction and
texturing of 3D city models.

We assume that rough initial estimates of the per-image registrations are known,
as they can usually be acquired using in-flightGPS and orientationmeasurements.
No further information is required, in particular no information about the ter-
rain elevation. In contrast to previous approaches, our system is fully automatic
without the need for user interaction. For each input image, the registration is re-
covered as parameters of a perspective projection that aligns the map with the
image. If the intrinsic calibration of the input images is not known, it is recovered
during the registration process in addition to the extrinsic calibration. While the
recovery of radial distortion parameters could seamlessly be integrated as well,
this has not been necessary for the images used in our experiments. Due to dif-
ferent creation times and measurement errors during map generation, a certain
level of discrepancy between the digital map and the input images is inevitable.
We employ robust sampling techniques to cope with such cases.
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1.1 Method Overview

The registration process performs the following steps. Similarly to [6], for each
individual image our algorithm first detects the vanishing point that corresponds
to the vertical scene direction (cf. Section 2.1). This vanishing point reduces the
degrees of freedom of the extrinsic calibration from 6 to 4, thereby effectively
simplifying the later search for camera parameters. For each image, the algorithm
then detects line segments that correspond to vertical scene edges, i.e., line
segments that pass through the respective vanishing point.

In the second step, our method estimates the extrinsic and, if not provided,
intrinsic calibration of each image (cf. Section 2.2). This process is based on
corresponding pairs of map corner vertices and image line segments detected in
the previous step. Since these correspondences are unknown, we generate a large
set of candidates and employ the RANSAC [14] approach to find a valid sub-
set. Distance measurements using the Mahalanobis distance and an integrated
approximation of the per-image terrain elevation yield a robust procedure. This
step already results in very good alignments of the oblique images with the map.

Due to the usage of vertex-to-line constraints, however, there is still an un-
known height offset between pairs of images left. Furthermore, due to slight
inaccuracies in the detected vanishing points, the offset usually is not constant
for an image but varies according to an unknown linear height function. To
compensate for both effects, in a final step, we detect horizontal (in scene space)
edges on building facades, robustly match them across pairs of images, and solve
a bundle-adjustment-like global optimization problem over all camera parame-
ters (cf. Section 2.3). This results in precise and compatible registrations of all
oblique images with the cadastral map.

The paper continues with a discussion of related work. The steps of our pro-
cessing pipeline are presented in detail in Section 2. Results are presented in
Section 3 and we conclude with a discussion of our method in Section 4. Please
see the accompanying video for an extended overview of our approach.

1.2 Related Work

Geo-registration, the alignment of overlapping images, and conflation are well-
understood problems for vertical aerial images and a variety of established tech-
niques exists [15, 16]. While these processes can often be automated for vertical
images, the same approaches cannot easily be transferred to oblique images due
to perspective foreshortening, occlusion of ground points and buildings, and the
strongly varying appearance of e.g. facades for different vantage points. Gerke
and Nyaruhuma [17] explicitly address the calibration of the extrinsic and intrin-
sic parameters of oblique aerial images. They present a method based on manu-
ally specified points, horizontal or vertical lines, and right angles, and compare
their approach to several commercial products. It was shown that for the case
of oblique images, commercially available solutions are still inferior compared to
an approach tailored to the specific properties of these images. Frueh et al. [5]
present a system that automatically registers oblique aerial images with a 3D
city model with the goal of texture generation. With the same goal, Ding et al. [6]
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and Wang and Neumann [7] register 3D LiDAR models with oblique aerial im-
ages. All three approaches are based on matching line segments between the 3D
model and the images. [5] matches lines directly, [6] and [7] combine individual
line segments to more complex descriptors for improved matching robustness.
While these methods yield very good registration results, they cannot easily
be transferred to our setting since cadastral maps do not provide a sufficient
number of edge candidates for matching. Furthermore, cadastral maps do not
provide information about building heights, roof shapes, and terrain elevation,
all of which is contained in LiDAR / 3D model data and which is crucial for
the above methods to work. The lack of this information makes the problem of
registration with cadastral maps more challenging.

Läbe and Förstner [18] have demonstrated the feasibility of a general structure-
from-motion approach for the recovery of camera parameters of oblique images.
However, since structure from motion requires a sufficiently large set of features
matched across the images, this approach only works for densely sampled image
sequences.Due to the strong appearance changes in sparse sets of oblique images as
we use them, automatic feature matching is not feasible. Sheikh et al. [11] present a
technique to register perspective oblique images to a geo-referenced orthographic
vertical image mapped onto a digital elevation model (DEM). While this works
well for images taken at high altitudes such that the DEM can be considered to
be a smooth surface, it cannot be applied to images taken at lower altitudes where
buildings result in considerable relative height differences. Mishra et al. [13] detect
inconsistencies in vector data, especially street data, by projection into oblique
images. Their approach is able to detect errors in the vector data as well as in the
calibration. It is, however, not able to correct the calibration.

An alternative to the traditional approach of geo-registration in a post-process
(i.e., off-line) is the direct geo-registration. Here the position and orientation of
the camera is measured during flight. To achieve a sufficient level of registration
precision, this approach requires specialized, expensive GPS/INS equipment and
a large manual calibration effort to compensate for the different poses of the
measurement devices and the camera. Such systems have been shown to achieve
registration precisions of below 1m for vertical [19] and for oblique aerial images
[20]. However, in the same work Grenzdörfer et al. [20] also report that the fully
automatic texturing of an existing 3D model has not been possible due to too
large registration errors of about 1-3 meters. Similarly, the texturing efforts by
Stilla et al. [21], the evaluation of oblique aerial images for cadastral applications
by Lemmens et al. [1], and the texturing approaches [6, 7] have shown that
the precision of direct geo-registration solutions is often not sufficient without
further processing. Furthermore, as discussed by Gerke and Nyaruhuma in [17],
the traditional approach of off-line determination of camera poses cannot be
replaced by direct geo-registration for several reasons: this technology is not
applicable to unmanned airborn vehicles (UAVs) with limited loading weight, it
has a high burden of precise calibration that has to be redone every time the
system is modified, and the registration information might not be available at all
depending on the source of the images. We hence believe that a combination of
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direct and automated off-line geo-referencing is the simplest, most robust, and
most effective approach.

2 Image Registration Pipeline

As outlined in the introduction, our registration approach consists of three main
steps. These steps will now be discussed in detail.

2.1 Vanishing Point and Vertical Edge Detection

Vanishing points corresponding to the scene’s vertical direction are among the
few entities that can easily be computed in oblique aerial images without further
scene knowledge. Even for images with strong occlusion caused by tall buildings,
usually a large number of vertical building edges is visible. Furthermore, although
oblique images are most often captured with long focal distances, there is still
enough variation in the orientation of projected vertical edges to allow for a
stable detection of this particular vanishing point. Following [6], we exploit these
points to fix two degrees of freedom of the extrinsic camera orientation, thereby
stabilizing the estimation of initial registrations in the next step.

The detection of vanishing points is accomplished by a very simple yet effec-
tive procedure. We compute edge-pixels using the Canny-operator [22] and then
extract straight line segments by least-squares line fitting. We then employ a
simple RANSAC-based procedure that randomly picks two line segments, com-
putes their intersection as hypothesis of the vanishing point, and evaluates its
support using the remaining segments. By exploiting a-priori knowledge about
the position of the vanishing point, this approach has proven to be extremely
robust in our experiments: Since we can safely assume that the vertical vanishing
point lies way below the image, only hypotheses with a y-coordinate of at least
two times the image height are considered for further evaluation. The winning
hypothesis is refined by an MLE procedure [23] with all inlying line segments.

The camera parameter optimizations in the second and third step are based
on correspondences between map corner vertices and image line segments that
agree with the vanishing points. While the inlying line segments of the previ-
ous step could well be used for this purpose, we found that additional segments

z

c

pvanish

R(α) Rvanishimage plane

Fig. 2. Parameterization of the extrinsic camera calibration. z denotes the scene’s
vertical direction and pvanish denotes the vanishing point in image space. R(α) rotates
around z, Rvanish aligns the vanishing direction induced by pvanish with z.
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can be detected by a slightly modified second detection pass. For each pixel, we
compute the derivative along the direction perpendicular to the line connecting
the vanishing point and the pixel’s position. Applying the Canny-operator (non-
maximum suppression and thresholding) to the directional derivatives effectively
suppresses pixels with strong but wrongly oriented gradients. A low threshold
then yields many small connected components that can easily be discarded, but
also preserves line segments distorted by noise or with smaller gradient magni-
tude. The final line segments are again obtained as ML estimates constrained to
pass through the vanishing point.

2.2 Estimation of Initial Registrations

The central goal of this step is the recovery of good estimates of the registra-
tion parameters for each individual image in the form of perspective pin-hole
projections [24] with 6 extrinsic (rotation and camera center) and 5 intrinsic
parameters, respectively. Due to the known vanishing points, we need to recover
4 extrinsic parameters only: the vertical vanishing point of an image determines
the orientation of the camera relative to the scene’s vertical direction. We there-
fore only need to recover a single orientation parameter α, yielding an extrinsic
orientation parameterized as

T (α, c) := RvanishR(α)(I| − c) ∈ R
3×4 (1)

where c is the camera center, R(α) ∈ R
3×3 is a rotation around the scene’s

vertical axis, and Rvanish ∈ R
3×3 aligns this axis with the vanishing direction

induced by the vanishing point (cf. Fig. 2). In contrast to [6] and [7], we do not
assume a fixed camera center c in this step to be able to handle cases where the
initial registrations are not provided by GPS measurements and are hence less
precise. We assume that a rough estimate of the focal distance is known at this
point and set the remaining intrinsic parameters to their canonical values (aspect
ratio 1, zero skew, principal point in the image center). A full optimization of
all intrinsic parameters is done in the last step (cf. Section 2.3).

The parameter computation is based on correspondences between line seg-
ments l in image space as detected in the previous step and corner vertices v of
the given map. For a set of corresponding lines and map verticesM := {(li,vi)},
we find the optimal projection parameters by minimizing

E(α, c) :=
∑
i

dist2(li,KT (α, c)vi)
2 (2)

with respect to α, c. Here K ∈ R
3×3 is the intrinsic calibration matrix, KTv de-

notes the perspective projection of a map corner vertex v into image space and
dist2(·, ·) denotes the Euclidean distance between a 2D point and the supporting
line of an image space line segment. The varying parameters are optimized using
the Levenberg-Marquardtmethod. Notice that, if only lines l passing through the
vanishing point are used in (2) as assumed so far, the solution would degenerate to
a state where the projections of all map vertices collapse into the vanishing point.
In other words, the recovered camera would be moved up extremely high above the
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(a) (b)

ground plane

linear height function

li

hi

Fig. 3. (a) Inlier determination with Euclidean distance to the supporting line (top)
and with Mahalanobis distance (bottom). The latter case effectively prevents false
positive inliers denoted by arrows in the top figure. (b) Illustration of a linear height
function computed for a random set of vertical lines li (shown in red) in the RANSAC
procedure that finds initial per-image registration parameters. This approach relaxes
the assumption of a horizontally flat terrain to a planar but arbitrarily oriented terrain.

map. To prevent this, we construct an additional line constraint perpendicular to
the first line. More precisely, for the first constraint (l0,v0) we add a constraint
(̃l0,v0) with l̃0 being perpendicular to l0 and passing through l0’s center.

Since it is not known which are the valid correspondences, we employ RAN-
SAC to find them. If a rough estimate of the focal distance is known, the size
of each sampling set is 3 to determine the 4 unknown extrinsic parameters, due
to the additional constraint for the first correspondence. Candidate correspon-
dences are constructed by first determining a set of visible (from the initially
provided rough camera perspective) map vertices v, projecting them into image
space, and finding all nearby line segments l. The search radius in image space
has to be chosen according to the discrepancy between the initially provided
registration and the correct solution. That is, the search space has to be large
enough such that the correct matches are contained in the set of candidate cor-
respondences, and as small as possible to speed up the RANSAC process. In our
experiments, we have found that usually a search radius of 80 to 130 pixels (i.e.,
about 12 to 20 meters in world space) is sufficient even for only rough initial
registrations. The RANSAC procedure then works in the usual way by picking
random correspondences, solving for optimal parameters by minimizing (2), and
counting all inlying correspondences.

Depending on the radius of the candidate search space, the number of false
positive inliers can become very large. Here false positives are map vertices v that
project close to the supporting line of a segment l, but do not actually belong
to the respective segment (cf. Fig. 3a). To counter this problem, the Euclidean
distance to a segment’s supporting line is replaced by an elliptical Mahalanobis
distance during inlier determination. As a consequence, by keeping the stretch
of the ellipses along the line segment directions small, it is implicitly assumed
that the underlying terrain is horizontally flat, since only line segments slightly
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Fig. 4. Result of the initial registration process. Starting from a rough estimate of the
registration parameters (left), our system automatically recovers good initial registra-
tions for each individual image (right). Vertical line constraints are shown in green.

above or below the projection of the map yield a sufficiently small Mahalanobis
distance. We relax this assumption by approximating the fraction of the terrain
visible in a single image by a plane with arbitrary slope. This is implemented
by computing a linear height field for each random set of matching candidates.
More precisely, after the optimization of (2), a height value hi is computed for
each random match (li,vi). The least-squares plane of all height values then
yields the linear height function (cf. Fig. 3b). During the determination of inly-
ing correspondences, all map vertices v are shifted up or down according to the
height function before projection into the image. In our experiments we have
found that both the Mahalanobis distance and the linear height functions intro-
duce little extra computational effort, but effectively reduce the number of false
positive inliers. Fig. 4 shows an example of the alignment before and after the
initial registration process.

2.3 Global Optimization

Up to now, we have considered the separate registration of individual images
only. Due to the additional, arbitrarily chosen height constraints (̃l0,v0) intro-
duced in the previous step, the registration is not yet globally consistent across
all images. In an ideal setting, the only step missing for a consistent registration
of all images would be a height adjustment of each image with respect to a com-
mon reference, i.e., a translation of all but one cameras along the scene’s vertical
direction. Unfortunately, as shown in Fig. 5, this is not sufficient most of the
time, since the necessary height offset to align pairs of images is not constant
but rather varies over the images.

An analysis of this problem shows that the offset variations are caused by
slight inaccuracies in the detected vanishing points: For a fixed focal distance,
the orientation of the ground plane with respect to the camera is determined
by the vanishing point only. While the vanishing points detected in Section 2.1
yield plausible alignments for each individual image, comparing the ground plane
orientations for overlapping pairs of images as done in Fig. 5 reveals slightly in-
compatible orientations. Due to limited image quality and resolution, we cannot
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Fig. 5. Visualization of height differences between pairs of images. The map is pro-
jected to compatible positions for a certain region of the map (left). Due to slightly
inaccurate vanishing points, the orientations of the cameras are slightly tilted. This
yields incompatible map projections in other map regions. The expected map position
is marked with a red line on the facade (right). We solve this problem by optimizing
the parameters of all cameras including the vanishing points in the final step of the
registration pipeline.

expect to improve the precision of the vanishing point detection to a sufficient
level. We therefore decided to integrate the vanishing points as varying param-
eters into the final global optimization and thereby recover compatible orienta-
tions of all images with respect to the ground plane.

To be able to do so, we need to define constraints that act as coupling forces be-
tween different images and that are able to capture the orientation differences we
want to remove. A viable approach is to detect horizontal (in scene space) edges
on building facades and match them across two or more images. While the sys-
tematic detection of horizontal facade edges is difficult without scene knowledge,
it becomes feasible due to the individual registrations of each image with the map:
For each image, we can now determine visible map edges, restrict the search for fa-
cade line segments to narrow vertical bands (cf. Fig. 6a), and discard facade lines
with false orientations. To match facade line segments between images, we need
to take the unknown ground plane orientation differences into account. From the
above analysis follows that the orientation difference between two images can be
compensated for by a bivariate linear height function, i.e., by a planar offset. We
thus determine an appropriate height function for each (but one) aerial image us-
ing a RANSAC procedure. The size of the sampling set is 3, the set of candidates
consists of all possible pairs of line segments on the same facade in both images
which additionally have the same gradient orientation. All pairs of facade edges
that agree with the winning hypothesis are used as constraints in the subsequent
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(a) (b) (c)

xj

hj

distz(·, ·)

l0j
l1j

Fig. 6. (a) Search area for horizontal facade edges defined by the projection of a map
edge. The height of the search area is defined by the expected height of buildings. We
use 20m above and below each edge in all our experiments. (b) Examples of matching
facade edges in two different views. (c) Construction of facade edge constraints. The
unknown height values hj are part of the optimization as varying parameters.

global optimization. Notice that for a single facade several pairs of edges can agree
with the winning hypothesis as depicted in Fig. 6b.

The global optimization is solely based on constraints measuring the distance
between projections of 3D vertices to 2D lines. We reuse the correspondences
between map corner vertices and vertical image lines and add horizontal line
constraints for facade edges visible in two or more images. Hence, in addition
to the correspondences (lki ,vi) from Section 2.2 (with an additional index k
counting images), we construct correspondences of the form (Lj ,xj) with Lj

being a set of horizontal lines in two or more images corresponding to the same
map edge, and xj being the 3D center point of this edge. See Fig. 6c for an
illustration for the case of two images. The objective function of the global
optimization over all cameras is

E({Pk}, {hj}) :=
∑

(lki ,vi)

dist2
(
lki , Pkvi

)2
+

∑
(Lj ,xj)

∑
lkj ∈Lj

distz
(
lkj , Pk(xj + hjz)

)2
.

(3)
Since the per-constraint height values hj above the map’s supporting plane are
unknown, they are part of the optimization as varying parameters. z denotes the
scene’s vertical direction. Notice that for facade edge terms we do not compute
the minimal Euclidean distance but rather the correct distance along the pro-
jection of z, denoted by distz (cf. Fig. 6c). In this procedure there is no need for
artificial height constraints anymore. To prevent the solution from collapsing, we
simply fix the first height value to h0 := 0. The parameters are again optimized
using the Levenberg-Marquardt algorithm. We now perform a full optimization
of all 6 extrinsic and, if required, also of the intrinsic parameters of all cameras
simultaneously. Please notice that the employed optimization strategy is prone
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Fig. 7. Left: Registration result for one out of 36 images (3 × 3 for each cardinal
direction) of an urban area. Right: Projection of a 3D building model into 4 images
(out of 11 in which it is visible) to verify the precision of the automatically obtained
registrations. The projections of the model are aligned with the images with only minor
deviations of at most 1-2 pixels, which translates into a maximal positional imprecision
of 15-30cm in scene space.

to converge to a local minimum if not initialized properly. Due to the good
initial per-image registrations obtained in Section 2.2, we have, however, never
encountered a case where the optimization converged to a local minimum.

3 Results

In the first experiment, we have applied our algorithm to a set of 36 oblique
images (i.e., 3×3 for each of the four cardinal directions) of an urban region. The
images, which have been downloaded from [10], have a resolution of 4008×2672.
Neighboring images of the same cardinal direction have an overlap of about 30-
40%. The per-image processing steps (detection of vanishing point and vertical
lines, computation of initial registration, detection of horizontal facade lines
and height offset estimation) take about 20 seconds for each image on an Intel
Core i7 920 CPU. The subsequent full Levenberg-Marquardt optimization of
all parameters for 36 images took 80 seconds with 7× 36 = 252 varying camera
parameters and 16,340 varying height values, as well as 9,617 vertical and 46,915
horizontal line constraints. The resulting RMSE of (3) is 0.863 pixels per 3D
vertex to 2D image line projection. Vertical vanishing points move by 150 pixels
on average during the optimization. This translates into an orientation change
of the ground plane by 0.8 degrees.

To validate the accuracy of the recovered registration, we have constructed
several 3D building models and projected them into various different views. The
footprint of the highest building in Fig. 7 has dimensions 30m×12m. Visual
inspection (due to the lack of ground truth registrations) shows a precise align-
ment of the 3D scene with the images within 1-2 pixels. This translates into an
accuracy in scene space of below 15-30cm.
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Fig. 8. Left: Result of 5 minutes of modeling with a prototype system which is based
on the automatically computed registrations and the cadastral map. Right: Application
of our approach to a sub-urban region. Even though less vertical and horizontal edges
are available in such images, our system is able to recover precise registrations.

With the registration in place, the generation of a correct terrain height map
and the adjustment of building heights both become simple one-dimensional
problems. In particular, a valid height map can be generated by means of lin-
early interpolating very few constraints. To further validate the quality of our
registrations, we have implemented a simple interactive modeling system sim-
ilar to those of [3, 4] to rapidly create 3D buildings. The precise registration
enables a modeling approach that overlays the current state of the model on
top of the aerial images, thereby allowing for the easy reconstruction of correct
building shapes and dimensions. Fig. 8(left) shows the result of just about 5
minutes of manual modeling using the automatically generated registration and
the cadastral map as a basis.

In a second experiment we have applied the automatic registration approach
to a sub-urban region, cf. Fig. 8(right). Even though much less vertical and hori-
zontal lines have been detected, our system still works as expected and generates
a precise registration. For more result please see the supplemental video.

4 Discussion

The main sources of information exploited in our work are horizontal and vertical
lines in the input images. Thus, our method only works correctly if a sufficient
number of lines is available. During this project we have found, however, that a
large number of both kinds of lines can safely be assumed to be present in images
of urban regions: Vertical edges frequently appear at the corners of buildings or
due to the different appearances of neighboring facades; horizontal edges are
induced by the rims of roofs, by balconies, or by windows. We have never en-
countered a case where the system failed due to too few available lines. For
the detection of vertical vanishing points (cf. Section 2.1), more sophisticated
methods like, e.g., [25] are available. However, we use a simpler approach that
exploits a-priori knowledge about the position of the vanishing points since it has
turned out to be extremely robust, and since perfect precision that renders the
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adjustment of the vanishing points unnecessary during the global optimization
(cf. Section 2.3) cannot be expected for any alternative method.

Our system has a few intuitive parameters that need to be specified by the
user. Foremost, a threshold is required to distinguish inliers from outliers during
the search for 3D vertex to 2D line correspondences (cf. Section 2.2) and for
matching horizontal facade lines (cf. Section 2.3). For both cases a distance
threshold of 2.0 pixels has worked well in all our experiments. In the search
for vertex-to-line correspondences to determine per-image registrations, we have
found that we usually have to deal with an inlier ratio of only 6-7%. For a
sampling set size of 3 correspondence we therefore require about 20k RANSAC
iterations for a confidence of 99% to find an inlier-only subset at least once. The
RANSAC process in Section 2.3 is less problematic since the inlier ratio usually
is larger than 13%. Thus, for 3 random correspondences in each iteration, 2.1k
iterations are sufficient.

If no information about the position and orientation of the input images is
known (as it may be the case for images from the internet), our approach enables
a simple interface to specify rough initial registrations: Due to the recovered
vanishing points, the user needs to only specify a one-dimensional orientation
α (cf. Fig. 2) and the rough translation c of the camera. Both operations can
be mapped to simple interactions in an interface that overlays the input images
with the cadastral map. After a precise estimate of the first image’s registration
parameters has been computed (cf. Section 2.2), these parameters are used as
starting values for neighboring views, thereby turning the process of providing
rough initial registrations into a matter of seconds per image.

From the constraints used in the global optimization, a rough estimate of
the terrain’s height map can be derived. Vertical line segments provide height
information by their lower endpoint, for horizontal line segments height values
hj have been explicitly computed (cf. Section 2.3). Thus, a height map can be
constructed by collecting the minimal height value for each building footprint
and by propagating height information to buildings without constraints by linear
interpolation. While this construction yields only a very rough approximation,
it is able to compensate for large-scale variations of the terrain elevation.
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Abstract. We present a new structure from motion (Sfm) technique
based on point and vanishing point (VP) matches in images. First, all
global camera rotations are computed from VP matches as well as rel-
ative rotation estimates obtained from pairwise image matches. A new
multi-staged linear technique is then used to estimate all camera trans-
lations and 3D points simultaneously. The proposed method involves
first performing pairwise reconstructions, then robustly aligning these
in pairs, and finally aligning all of them globally by simultaneously es-
timating their unknown relative scales and translations. In doing so,
measurements inconsistent in three views are efficiently removed. Unlike
sequential Sfm, the proposed method treats all images equally, is easy to
parallelize and does not require intermediate bundle adjustments. There
is also a reduction of drift and significant speedups up to two order of
magnitude over sequential Sfm. We compare our method with a standard
Sfm pipeline [1] and demonstrate that our linear estimates are accurate
on a variety of datasets, and can serve as good initializations for final
bundle adjustment. Because we exploit VPs when available, our approach
is particularly well-suited to the reconstruction of man-made scenes.

1 Introduction

The problem of simultaneously estimating scene structure and camera motion
from multiple images of a scene, referred to as structure from motion (Sfm),
has received considerable attention in the computer vision community. Recently
proposed Sfm systems [2–5] have enabled significant progress in image-based
modeling [3] and rendering [4, 5]. Most Sfm systems [2–6] are either sequential,
starting with a small reconstruction and then incrementally adding in new cam-
eras by pose estimation and 3D points by triangulation, or hierarchical [7, 8]
where smaller reconstructions are progressively merged. Both approaches re-
quire intermediate bundle adjustment [9] and multiple rounds of outlier removal
to minimize error propagation as the reconstruction grows. This can be compu-
tationally expensive for large datasets.

This paper investigates ways to compute a direct initialization (estimates for
all cameras and structure) in an efficient and robust manner, without any inter-
mediate bundle adjustment. We propose a new multi-stage linear approach for
the structure and translation problem, a variant of Sfm where camera rotations
are already known. A robust approach for first recovering all the global camera
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Fig. 1. Overview: First, all camera rotations are estimated. All structure and transla-
tion parameters are then directly estimated using a new multi-stage linear approach.

rotations based on vanishing points (VPs) and pairwise point matches is also
described. Because we exploit VPs when available, our approach is particularly
well-suited for man-made scenes, a topic that has received a lot of recent atten-
tion [5, 10–13]. When VPs are absent, the rotations can be computed from only
pairwise point matches using one of the methods described in [14–16].

Approaches for such direct initialization of cameras and structure have been
explored in the past. Factorization based approaches, such as [17], usually require
all points to be visible in all views, or do not scale to large scenes with large
amounts of missing data [18]. Linear reference-plane based techniques [11], can
handle missing data, but minimize an algebraic error. This can cause points
close to infinity to bias the reconstruction, unless the measurements are correctly
weighted, which in turn requires a good initialization.

Direct linear methods [11, 19] also cannot cope with outliers, which are more
common when matching features in unordered image datasets, as compared to
tracking features in video. Outliers are also common in architectural scenes due
to frequently repeating structures. Such outliers are caused by mismatches that
survive pairwise epipolar geometry estimation and get merged with goodmatches
in other views to form long, erroneous tracks.

Recently, the L∞ framework for solving multi-view geometry problems, where
the maximum reprojection error of the measurements is minimized rather than
the sum of squared errors, was shown to be applicable to the problem of structure
and translation estimation, where camera rotations are known apriori [16, 20–
22]. Although a global minimum can be computed using convex optimization
techniques, L∞ problems become computationally expensive for a large number
of variables [21], and are also not robust to outliers. The known outlier removal
strategies for L∞ norm, such as [20], do not scale to large problems [16, 21].

Instead of directly solving a linear system as in [11, 19], we first perform
pairwise reconstructions, and then robustly align pairs of such reconstructions,
thereby detecting matches consistent over three views. In a subsequent linear
step, these reconstructions are jointly aligned by estimating their unknown rel-
ative scales and translations. Once approximate depths are available, a direct,
linear method can be used to jointly re-estimate the camera and point locations.
A final bundle adjustment step refines all camera parameters (including rota-
tions) and structure parameters. Our proposed approach is fast, treats all images
equally, and is easy to parallelize. Our technique could also be extended to in-
corporate linear constraints for 3D lines with known directions, and coplanarity
constraints on 3D points and lines, as described in [11, 23].

For estimating rotations, we show the benefit of exploiting parallel scene lines,
which are assumed to be either vertical, or orthogonal to the vertical direction.
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facade1 facade2 statue

(75 cams, 93K pts) (38 cams, 59K pts) (111 cams, 34K pts)

Fig. 2. The proposed method generates accurate reconstructions and is significantly
faster than a standard sequential Sfm pipeline [1] (see Table 2)

This is more general than Manhattan-world assumptions and is common in a va-
riety of man-made scenes [13]. Currently, we assume known focal lengths (using
values present in exif tags) but these could also be estimated from orthogonal
VPs [24]. Our method builds upon known techniques for estimating global rota-
tions from VP matches [10, 15, 24], and pairwise relative rotation estimates [14–
16]. However, unlike [10, 15] where omni-directional images with small baselines
were used, we perform VP matching on unordered regular images, which is a
more difficult case. We show that when VPs can be accurately detected and
matched in images, the global rotation estimates can be very accurate. Figure 2
shows some accurate reconstructions obtained using our proposed method.

2 Proposed Approach

Figure 1 provides an overview of the three stages of our Sfm pipeline. First,
points, line segments, and vanishing points are extracted and matched in all
images. Next, camera rotations are estimated using vanishing points whenever
possible, but also using relative rotation estimates obtained from pairwise point
matches. Finally, all cameras and 3D points are directly estimated using a linear
method, followed by a final bundle adjustment.

Notation and Preliminaries: In our Sfm formulation, a set of 3D points Xj

are observed by a set of cameras with projection matrices Pi. The i-th camera has
focal length fi and has a center of projection Ci. We assume camera intrinsics
of the form Ki = diag(fi, fi, 1), and denote camera pose (rotation, translation)
by (Ri,ti) respectively, with Pi = Ki[Ri ti], and ti = −RiCi. The j-th point is
observed in the i-th camera at the point xij . A point at infinity in the direction
dm, is observed at a VP vim in the i-th camera.

Match and Image-pair Graphs: From pairwise point matches, we form a
pruned match graph Gm, consisting of nodes for each image and edges between
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images with good matches. We first compute a full match graph G by exhaus-
tively matching all image pairs, and using the match inlier counts as the corre-
sponding edge weights. The graph Gm is initialized to the maximum spanning
tree of G. We then iterate through the set of remaining edges, sorted by decreas-
ing edge weights, and insert edges into Gm, as long as the maximum degree of
a node in Gm does not exceed k (set to 6 by default). We also build Gr, the
edge dual graph of Gm, referred to as the image-pair graph by [6]. Every node
in Gr corresponds to an edge in Gm and represents image pairs with a sufficient
number of matches. Two nodes in Gr are connected by an edge if and only if
the corresponding image pairs share a camera and 3D points in common.

3 Feature Extraction and Matching

Interest Points: We extract point features using a state of the art feature de-
tector [25], and perform kd-tree based pairwise matching as proposed in [26] to
obtain the initial two-view matches based on photometric similarity. These are
then filtered through a standard RANSAC-based geometric verification step [27],
which robustly computes pairwise relations – a fundamental matrix F, or a ho-
mography H (in the case of pure rotation or dominant planes) between cameras.

Line Segments and Vanishing Points: We also recover 2d line segments in
the images through edge detection, followed by connected component analysis
on the edgels. A local segment growing step with successive rounds of RANSAC
then recovers connected sets of collinear edgels. Finally, orthogonal regression
is used to fit straight line segments to these. Quantized color histogram-based
two-sided descriptors [28] are computed for each segment and are used later
for appearance-based matching. Vanishing point (VP) estimation in each image
also uses RANSAC to repeatedly search for subsets of concurrent line segments.
Once a VP has been detected along with a set of supporting lines, the process is
repeated on the remaining lines. In each image, we heuristically determine which
VP (if any) corresponds to the vertical direction in the scene, by assuming that
most images were captured upright (with negligible camera roll). The line seg-
ments are labeled with the VPs they support. Although, the repeated use of
RANSAC is known to be a sub-optimal strategy for finding multiple structures,
in our case, it usually detects the dominant VPs with high accuracy.

VP and Line Segment Matching: First, VPs are matched in every image pair
represented in the pruned match graphGm for which a pairwise rotation estimate
can be computed. We allow for some errors in this estimate, and retain multiple
VP match hypotheses that are plausible under this rotation up to a conservative
threshold. We verify these hypotheses by subsequently matching line segments,
and accept a VP match that unambiguously supports enough segment matches.
Line segments are matched using appearance [28] as well as guided matching
(correct line matches typically have interest point matches nearby). Note that
VP matching has an ambiguity in polarity, as the true VP can be confused
with its antipode, especially when they are close to infinity in the image. The
orientation of line segments, matched using two-sided descriptors, is used to



A Multi-stage Linear Approach to Structure from Motion 271

resolve this ambiguity. VP matches are linked into multi-view tracks by finding
connected components, in the same way as is done for point matches, while also
ensuring that the polarity of the VP observations are in agreement. Note that
VP tracks are often disconnected, but different tracks that correspond to the
same 3D direction may subsequently get merged, as described next.

4 Computing Rotations

Given three orthogonal scene directions, d1 = [1, 0, 0]T, d2 = [0, 1, 0]T and d3

= [0, 0, 1]T, the global camera rotation in a coordinate system aligned with the
di’s, can be computed from the VPs corresponding to these directions.

vim = diag(fi, fi, 1)Ridm (1)

For each m, the mth column of Ri can be computed. In fact, two VPs are suffi-
cient, since the third column can be computed from the other two.

4.1 Rotations from VP Matches

The rotation estimation method just described assumes that the directions {dm},
are known. Our goal however, is to recover all camera rotations given M VP
tracks, each of which corresponds to an unknown 3D direction. As some of the
VPs were labeled as vertical in the images, we know which tracks to associate
with the unique up direction in the scene. Now, pairwise angles between all M
directions are computed. Every image where at least two VPs were detected
contributes a measurement. We rank the M directions with decreasing weights,
where each weight is computed by counting the number of supporting line seg-
ments over all images where a corresponding VP was detected. Next, we find
the most salient orthogonal triplet of directions such that at least one track
corresponding to the vertical direction is included.

For all images where at least two of these directions are observed, camera rota-
tions can now be computed using (1). If some of the remaining (M -3) directions
were observed in any one of these cameras, those can now be computed as well.
This step is repeated until no more cameras or directions can be added. This
produces the first camera set—a subset of cameras with known rotations, consis-
tent with a set of 3D directions. We repeat the process and obtain a partition of
the cameras into mutually exclusive camera sets, some of which may potentially
share a common direction (typically this is the up direction). A camera that sees
fewer than two matched VPs generates a set with a single element.

4.2 Global Rotations

If a single camera set is found, we are done. Otherwise, the K camera sets must
be rotationally aligned to obtain the global camera rotations. A unique solution
can be found by fixing the rotation of one of the camera sets to identity. Note that
we have an estimate of the relative rotation between camera pairs in the match
graph. Let us denote this rotation involving the i-th and j-th cameras, chosen
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from camera sets a and b respectively, by the quaternion qij . Each estimate of
qij provides a non-linear constraint relating the unknown rotations of the two
camera sets denoted by qa and qb respectively.

qa = (qa
i · qij · (qb

j)
−1)qb (2)

where qa
i and qb

i denotes the known rotations of the i-th and j-th camera in their
own camera sets. As proposed by [16], by ignoring the orthonormality constraints
on the quaternions, we linearly estimate the set {qk}. When the vertical VPs are
detected in a rotation set, the corresponding quaternion represents an unknown
1-dof rotation in the horizontal plane, as the vertical direction is assumed to be
unique. We solve the full 4-dof system (2), and snap the near vertical rotations
(within 5o degrees of each other) to be vertical. The scene directions within 5o

of each other are also snapped together, and all the rotations are re-estimated
under these additional constraints. This is useful in scenarios such as identifying
parallel lines on opposite sides of a building, which are never seen together.

In the absence of VPs, rotations can be recovered via the essential matrices
obtained from pairwise point matches for image pairs with an adequate number
of matches. In [15], relative rotations were chained over a sequence followed by
a non-linear optimization of the global rotations. We perform the chaining on a
maximum spanning tree of the match graphGm and then use its nontree edges in
the non-linear optimization step. The rotations could also have been initialized
using linear least squares (by ignoring the orthonormality constraint of rotation
matrices) [16], or by averaging on the Lie group of 3D rotations [14].

5 Linear Reconstruction

When the intrinsics Ki and rotations Ri are known, every 2D image point xij

can be normalized into a unit vector, x̂ij = (KiRi)
−1xij , which is related to the

j-th 3D point Xj (in non-homogenous coordinates) as,

x̂ij = d−1
ij (Xj −Ci), (3)

where dij is the distance from Xj to the camera center Ci. Note that (3) is
written with dij on the right side to ensure that measurements are weighted by
inverse depth. Hereafter, x̂ij is simply denoted as xij . By substituting approxi-
mate values of dij , if known, (3) can be treated as a linear equation in Xj and
Ci. All measurements together form a sparse, non-homogeneous, linear system,
which can be solved to estimate the cameras and points all at once. These can
be further refined by iteratively updating dij and solving (3). Notice that if we
multiply the above equation by the rotation and calibration matrices and divide
by zij , where zij is the distance between Xj and Ci projected along the camera
axis (the last row of Ri), we get the usual pixel matching error. Therefore, if
the focal lengths for all the cameras are similar, minimizing (3) is similar to the
usual bundle adjustment equations (when the depths are approximately known,
and ignoring any robust cost function).
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An alternative approach [11] is to eliminate dij from (3), since dijxij × (Xj −
Ci) = 0. All cameras and points can be directly computed by solving a sparse,
homogeneous system, using SVD (or a sparse eigensolver), and fixing one of
the cameras at the origin to remove the translational ambiguity. The points at
infinity must be detected and removed before this method can be used. Since
this method minimizes a purely algebraic cost function, if the linear equations
are not weighted correctly, points farther away from the camera may bias the
linear system, resulting in large reconstruction errors. Neither of these methods
can handle outliers in the 2D observations, which are inevitable in many cases.

In this paper, instead of directly solving (3) for all cameras and points at once,
we propose to independently compute two-view reconstructions for camera pairs
that share points in common. Various approaches for computing two-view re-
constructions are known and the situation is even simpler for a pair of cameras
differing by a pure translation. Next, pairs of such reconstructions, sharing a
camera and 3D points in common, are robustly aligned by estimating their rel-
ative scales and translations. This key step allows us to retain matches found to
be consistent in the three views. Finally, once a sufficient number of two-view re-
constructions have been pairwise aligned, we can linearly estimate the unknown
scale and translation of each individual reconstruction, which roughly brings all
of them into global alignment. An approximate estimate of depth dij can now
be computed and substituted into (3), and the linear system can be solved with
the outlier-free tracks obtained by merging three-view consistent observations.
We now describe these steps in more detail.

5.1 Two-View Reconstruction

A pairwise reconstruction for cameras (a,b), treated as a translating pair, is
denoted as Rab = {Cab

a ,C
ab
b , {Xab

j }} where the superscript denotes a local co-
ordinate system. Under pure translation, it is known that the epipoles in the
two images coincide, and all points in the two views xaj and xbj are collinear
with the common epipole e, also known as the focus of expansion (FOE), i.e.
xT
aj [e]×xbj = 0. The epipole e is a vector that points along the baseline for the

translating camera pair. We compute e by finding the smallest eigenvector of a
3×3 matrix produced by summing the outer product of all 2D lines l = xaj×xbj ,
and then choose Cab

a = 0 and Cab
b = ê, corresponding to a unit baseline. Each

point Xab
j is then triangulated using the linear method.

xkj × (Xab
j −Cab

k ) = 0, for k ∈ {a, b}. (4)

Finally, we remove all points reconstructed behind both cameras and the ones
with small triangulation angles (< 1◦).

5.2 Robust Alignment

Each pairwise reconstruction Rab involving cameras (a,b) differs from a global
reconstruction by 4-dofs, i.e. an unknown scale sab and translation tab, unique up
to an arbitrary global scale and translation. Suppose, Rbc and Rab share camera
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Fig. 3. The symmetric transfer error of the 3D similarity (scale and translation) trans-
formation S from Rab to Rbc is the sum of distances between the observed points xaj,
xbj , xcj and the projected points shown in grey.

b and some common 3D points. Using MLESAC [29], we robustly align Rab to
Rbc by computing a 4-dof 3D similarity Sabbc (parameterized by relative scale sabbc
and translation tabbc ). A hypothesis is generated from two 3D points common to
both reconstructions. These are chosen by randomly sampling two common 3D
points, or only one common point when the camera center of b is chosen as the
second point. Assuming exact correspondence for one of the two points in Rbc

and Rab gives a translation hypothesis t. A scale hypothesis s is computed by
minimizing the image distance between the observed and reprojected points for
the second 3D point. This can be computed in closed form as the reprojected
point traces out a 2D line in the image as the scale varies. The hypothesis (s,t)
is then scored using the total symmetric transfer error for all common 3D points
in all three images. As illustrated in Figure 3, this error for each Xj is equal to∑

k

d
(
xkj , f

ab
k (S−1Xbc

j )
)
+
∑
k

d
(
xkj , f

bc
k (SXab

j )
)

(5)

Here, function fab
k projects a 3D point into each of the two cameras of Rab where

k ∈ {a, b}, f bc
k is defined similarly for Rbc, and d robustly measures the distance

of the projected points from the original 2D observations xkj , where k ∈ {a, b, c}.

5.3 Global Scale and Translation Estimation

Once a sufficient number of transformations (sabbc , t
ab
bc ) between reconstructions

Rab andRbc are known, their absolute scale and translations, denoted by (sab,tab)
and (sbc,tbc), can be estimated using the relation,

sbcX+ tbc = sbcab(s
abX+ tab) + tbcab, (6)

where X is an arbitrary 3D point in global coordinates. Eliminating X, gives us
four equations in eight unknowns:

wbc
ab(s

bc − sbcabs
ab) = 0,

wbc
ab(s

bctbc) = wbc
ab(s

bc
abt

ab + tbcab). (7)

Here, the weight wbc
ab is set to the number of three-view consistent points found

common to Rab and Rbc. The scale of any one reconstruction is set to unity and
its translation set to zero to remove the global scale and translational ambiguity.
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The size of the linear system (7), depends on the number of edges in the
image-pair graph Gr, (defined in Section 2), whose construction is described
below. Any spanning tree of Gr will result in a linear system with an exact
solution, but a better strategy is to use the maximum spanning tree, computed
using wbc

ab as the edge weight between nodes corresponding to Rab and Rbc.
Solving an over-determined linear system using additional edges of Gr is usually
even more reliable. Note that even when the match graph Gm is fully connected,
Gr may be disconnected. This can happen if a particular pairwise reconstruction
did not share any 3D points in common with any other pair. However, to obtain
a reconstruction of all the cameras in a common coordinate system, all we need
is a connected sub-graph of Gr, which covers all the cameras. We denote this
connected subgraph by G′ and compute it as follows.

To constructGr, for each camera we first form a list of pairwise reconstructions
the camera belongs to. We sort these reconstructions in increasing order of some
accuracy measure (we use the number of reconstructed points with less than
0.6 pixel residual error). We iterate through the sorted list of reconstructions,
labeling the ones that contain fewer than τ accurately reconstructed points (τ =
20 by default), provided it is not the only reconstruction a particular camera is
part of. Next, we remove all the nodes corresponding to labeled reconstructions
from Gr, along with the edges incident on these nodes. The maximum spanning
tree of the largest connected component of Gr, denoted by G′, is then computed.
Finally, we sort the remaining edges in Gr in decreasing order of weights, and
iterate through them, adding an edge to G′, as long as the maximum vertex
degree in G′ does not exceed k′ (k′ = 10 by default). With n cameras, our pruned
match graphGm with maximum vertex degree k has at mostO(kn) edges. Hence,
Gr has O(kn) nodes as well. Every node in Gm with degree d, gives rise to

(
d
2

)
edges in Gr. Therefore, Gr has O(nk

2) edges. Thus, both the number of pairwise
reconstructions as well as the number of pairwise alignment problems are linear
in the number of cameras. Moreover, each of the pairwise reconstructions and
subsequent alignment problems can be easily solved in parallel.

6 Results

We have tested our approach on nine datasets (three sequences and six unordered
sets), many of which are representative of common man-made scenes. Radial
distortion was removed in advance using ptlens [30]. Our linear estimates had
low mean reprojection error in the range of 0.7–3.8 pixels, as shown in Column
e1 in Table 1, prior to bundle adjustment (BA) and without further optimization
of the rotations or intrinsics. A subsequent full BA on all cameras and points,
initialized with these estimates, converged in only 4–10 iterations, with mean
reprojection errors of 0.3–0.5 pixels for most of the datasets (Column e2).

The linear estimates were more accurate when VPs were used for recovering
rotations (column e1 v.s. e3 in Table 1). In some of our datasets, multiple groups
of parallel lines were present and reliable VPs could be matched in most images
(see columns v–d in Table 1). In some of these cases, up to five rotation sets
had to be aligned based on point matches, using the approach described in
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Table 1. Statistics for the six unordered sets (U) and three sequences (S) used in
our experiments. #images (I), #images with at least two VPs (V), #3D vanishing
directions (D), #2D observations, #3D points, #pairs (P) and #triplets (T) in Gr.
Columns (e1) and (e2) show the mean reprojection errors before and after bundle
adjustment for VP-based rotation estimates. Columns (e3) and (e4) show the errors
before and after bundle adjustment when using point-based rotations.

Name C I V D #2D obs. #3D pts P T e1 e2 e3 e4

Jesu-P25 U 25 25 3 118,977 49,314 75 383 0.71 0.29 0.86 0.29

CastleP30 U 30 28 3 104,496 42,045 90 445 2.22 0.32 2.34 0.32

Facade1 U 75 72 3 254,981 72,539 192 958 1.75 0.49 8.89 1.31

Facade2 U 38 34 3 148,585 59,413 114 572 1.94 0.43 11.5 0.55

Building1 S 63 60 3 201,803 77,270 186 907 2.31 0.35 2.91 0.39

Building2 U 63 63 3 185,542 52,388 173 764 1.82 0.35 1.09 0.39

Street S 64 64 3 182,208 51,750 184 855 1.24 0.34 0.52 0.34

Hallway2 S 184 181 3 140,118 27,253 435 1982 3.85 1.01 6.33 1.89

Statue U 111 0 0 137,104 34,409 350 1802 – – 3.07 0.46

herz-jesu-p25 castle-p30

Fig. 4. [herz-jesu-p25, castle-p30]: Ground truth camera pose evaluation [31] (see
text). The mean reprojection errors were 0.29 and 0.32 pixels after bundle adjustment.

Section 4.2. For the statue dataset where VPs were absent, all rotations were
computed from essential matrices. They were initialized by chaining pairwise
rotations on a spanning tree, and then refined using non-linear optimization, as
described in [15]. Incorporating the covariance of the pairwise rotations [6], or
using the method from [14] could lead to higher accuracy in the rotations, and
also our linear estimates. Nevertheless, the statue reconstruction was still quite
accurate (see Figure 2).

To test the need for robustness, during the pairwise alignment (Section 5.2) we
disabled MLESAC, and computed relative scale and translations by registering
all common 3D points shared by reconstruction pairs. This produced large errors
up to 50 pixels in the linear estimates, and with these as initialization, BA was
never able to compute an accurate reconstruction.

The reconstructions from the facade1 and facade2 unordered datasets are
shown in Figure 2. Although highly textured, these scenes also contain frequent
repeated patterns, resulting in more outliers, and some false epipolar geometries



A Multi-stage Linear Approach to Structure from Motion 277

building1 Bundler (61 cams, 74K pts) Ours (61 cams, 77K pts)

building2 Bundler (63 cams, 50K pts) Ours (63 cams, 52K pts)

Fig. 5. [building1,building2]: Our method is comparable to Bundler in terms of
accuracy, but is two orders of magnitude faster (see Table 2 for details).
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Fig. 6. Accuracy test of global rotations estimates (VP-based v.s. pure point-based)
compared to the final rotations after bundle adjustment (better seen in color).

(this is also noted by [16]). The reconstructions from our linear method showed
no drift, and were visually accurate even without BA. In comparison, the refer-
ence plane based linear method [11] only worked on small selected subsets of the
input, and failed on most of the other datasets too, mainly due to its inability
to handle points at infinity and its lack of robustness.

We evaluated our method on two ground truth datasets from Strecha et.
al. [31] – HerzJesu-P25 and Castle-P30. Our reconstructions, shown in Fig-
ure 4, are quite accurate. We compared our camera pose estimates (before and
after BA) with ground truth, using camera centers for registration and then
comparing errors in baseline lengths and angles between camera optical axes.
Figure 4 shows the average error for each camera over all possible baselines. For
HerzJesu-P25, most cameras had less than 2% errors (baseline as well as an-
gle) while the worst had 4% angle and 2% baseline error. These reduced to less
than 1% after BA. The worst two out of 30 cameras in Castle-P30 initially
had 7% error (due to small inaccuracies in rotation estimates), but the angle
and baseline error in all cameras went below 1% and 2% respectively, after BA.
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street Bundler (65 cams, 21K pts) Ours (65 cams, 61K pts)

Fig. 7. street (65 images): Using vanishing points for rotation estimation eliminates
drift in our method. The linear estimate obtained by our method is shown on the right.

Where ground truth was absent, we compared the VP-based and point-based
rotation estimates to the final bundle adjusted rotation estimates. Figure 6 shows
the mean angle error per camera for four datasets. Point-based rotation estimates
for facade1 were inaccurate due to the presence of a few false epipolar geome-
tries. The VP-based rotation estimates were consistently better and produced
higher accuracy in the linear method (columns e1 v.s e3 in Table 1).

Table 2. The #cameras, #3D points and timings (excluding feature extraction and
matching) for bundler [1] and our method. A breakup of our timings is shown– for
estimating rotations (Trots), pair reconstructions (Tpairs), triplet and global align-
ment (Ttriplets) and bundle adjustment (Tbundle). The significant differences between
bundler and our method are highlighted in bold.

dataset #imgs Bundler Ours

#cams/#pts time #cams/#pts Trots Tpairs Ttriplets Tbundle Total

Jesu-P25 25 25/11583 1m 24s 25/49314 0.7s 3.6s 6.7s 1.1s 13s

CastleP30 30 30/17274 3m 51s 30/42045 0.8s 3.7s 4.1s 1.5s 11s

Facade1 63 63/71964 31m 28s 63/72539 2.7s 6.2s 9.1s 7.6s 26s

Facade2 38 38/70098 23m 15s 38/59413 1.0s 4.4s 6.4s 3.6s 16s

Building1 61 61/74469 57m 40s 61/77270 2.6s 7.6s 9.6s 4.4s 25s

Building2 63 63/50381 39m 50s 63/52388 1.1s 4.3s 4.8s 4.3s 15s

Street 65 65/20727 8m 47s 65/51750 1.5s 4.0s 4.8s 7.3s 18s

Hallway 184 139/13381 38m 05s 184/27253 1.9s 5.2s 6.8s 12.6 28s

Statue 111 109/9588 7m 17s 111/34409 3.6s 2.6s 3.7s 6.9s 17s

For seven out of nine datasets, the accuracy of our reconstructions is compa-
rable to that of bundler [1], a standard pipeline based on sequential Sfm, as
shown in Figure 5 for the building1 and building2 sequences. However, our
approach is up to two orders of magnitude faster even when more 3D points
are present in our reconstructions (see Table 2). Our reconstructions are more
accurate on the remaining two datasets – street and hallway. The street

sequence (Figure 7) captured from a driving car with a camera facing sideways,
demonstrates the advantage of using vanishing points for rotation estimation.
Virtually no drift is present in our linear estimate, whereas Bundler [1], pro-
duced some drift at the corner as well as in the straight section of the road. The
hallway sequence is an open-loop sequence, with narrow fields of view, poorly
textured surfaces, and predominantly forward motion. Our reconstruction shown
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Bundler (139 cams, 13K pts) Ours (184 cams, 27K pts)

Fig. 8. hallway (184 images): Unlike bundler, our method reconstructs the full hall-
way. (c) The camera path from our reconstruction overlaid on the floor plan.

in Figure 8, is qualitatively accurate with no rotational drift, although some drift
in scale can be noticed with the camera path overlaid on the floor plan. In com-
parison, bundler produced an incomplete reconstruction of the hallway where
only 139 out of the 184 cameras were reconstructed.

7 Conclusions

We have developed a complete Sfm approach, which uses vanishing points when
possible, and point matches to first recover all camera rotations, and then simul-
taneously estimates all cameras positions and points using a multi-stage linear
approach. Our method is fast, easy to parallelize, treats all images equally, effi-
ciently copes with substantial outliers, and removes the need for frequent bundle
adjustments on sub-problems. Its accuracy and efficiency is demonstrated on a
variety of datasets. In the future, we plan to extend bundle adjustment to incor-
porate constraints on camera rotations based on vanishing points and 2D line
correspondences. We also plan to make our approach robust to the presence of
false epipolar geometries [16] and test it on large Internet photo collections [6].
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Abstract. In this paper we propose a novel approach to bundle adjust-
ment for large-scale camera configurations. The method does not need to
include the 3D points in the optimization as parameters. Additionally,
we model the parameters of a camera only relative to a nearby camera
to achieve a stable estimation of all cameras. This guarantees to yield
a normal equation system with a numerical condition, which practically
is independent of the number of images. Secondly, instead of using the
classical perspective relation between object point, camera and image
point, we use epipolar and trifocal constraints to implicitly establish
the relations between the cameras via the object structure. This avoids
the explicit reference to 3D points thereby handling points far from the
camera in a numerically stable fashion. We demonstrate the resulting
stability and high convergence rates using synthetic and real data.

1 Introduction

Motivation. Bundle adjustment has become the workhorse of structure from
motion estimation, triggered by the review by Triggs et al. [1] and the first public
domain software by Lourakis and Argyros [2] and more recently made fully aware
by the software bundler [3]. The generality of the concept and the optimality of
the achieved solution cause bundle adjustment to serve as a reference and to be
of broad interest.

Despite these advantages, some problems still exist: The stability of large
systems is sensitive to the arrangement of images as in classical photogrammetric
mapping applications, tend to show instabilities. These instabilities are difficult
to identify, and to date, there are still no tools for giving recommendations how
to cure the situation by deliberately taking additional images, a precondition
to make bundle adjustment usable by non-specialists. In real time applications,
identifying and resolving so-called loop closures, where after long image strips
one reaches positions visited in the past, requires careful storage management
for fast access and proper representation of the geometry taken up to that point.

This paper proposes a novel model for bundle adjustment, especially useful
for dealing with weak configurations due either to long motion sequences or
due to the existence of points far from the cameras. First of all, long image se-
quences accumulate drift leading to a random walk, which decreases the accuracy
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c© Springer-Verlag Berlin Heidelberg 2012



Relative Bundle Adjustment Based on Trifocal Constraints 283

and increases the numerical condition number. The condition number increases
super-linear with time. Secondly, points far from the cameras cause problems
when determining approximate values, especially in the case where the camera
positions are not yet determined with enough stability. This can happen for
example, when the parallactic angle between two viewing rays is too small to
reliably identify the depth of a point.

The proposed concept integrates two remedies: (1) camera parameters are
not represented w. r. t. a common world system, but relative to a well chosen
set of cameras distributed over the complete set of all cameras. This leads to
a tree type structure with kinematic chains linking the cameras with the refer-
ence cameras. This increases the numerical stability of the bundle adjustment,
increases the speed of convergence and the robustness with respect to bad initial
values. (2) The object structure is not represented explicitly but using pairs and
triplets of geometric constraints between cameras. This avoids the handling of
3D points far off the cameras, which in turn avoids any problem with determin-
ing approximate values. On the contrary, points far away from the cameras can
be used advantageously to stabilize the rotation information. The cost for using
this advantage is the slightly increased complexity of the Jacobians.

Related work. There is a lot of work on hierarchically representing large sets
of images, in order to partition the bundle estimation into smaller better con-
ditioned subsystems, for example partitioning an image sequence hierarchically
[4], applying a spectral decomposition of the connection graph [5], [6] or building
a tree based on the overlap of pairs of images [7], building a hierachical map dur-
ing simultaneous localisation and mapping [8] and performing an effcient, close
to optimal estimation. These approaches may also be coupled with our setup.
The most closely related work is the setup in [9], where camera parameters are
related to reference views which are related to a world system. However, the
individual parts are connected in a second step, which altogether does not lead
to a statistically optimal solution. Similarily, non-Euclidian object point repre-
sentation like the inverse depth representation proposed by [10] can be applied
to bundle adjustment to model points at infinity. In contrast to our proposed
method, [10] still has to include the points as parameter.

Using trifocal constraints has been proposed to avoid the explicit representa-
tion of 3D points within the estimation of an image triplet [11]. To use trifocal
constraints within bundle adjustment already has been proposed in [4], however,
only for chaining within an image sequence and deriving approximate values.
Trifocal constraints have been used within an extended Kalman filter approach
in [12]. No approach is known to the authors that (1) only uses constraints be-
tween the image observations and the cameras; (2) uses a relative representation
of the camera positions for improving the numerical condition; (3) performs a
statistically optimal estimation equivalent to classical bundle adjustment.

The paper is structured the following way: we first describe the estimation
procedure base on epipolar and trifocal constraints, give an insight into the
modelling of the relative camera poses and then demonstrate the strengths of
the approach with synthetic and real data.
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2 Model for Relative Bundle-Adjustment with Image
Triplet Constraints

This section describes the approach in more detail, first contrasting the classical
bundle adjustment model using direct observations equations with the estimation
procedure with implicit constraints, then deriving the constraints and their use
in the bundle adjustment and finally introducing the representation with relative
camera poses.

2.1 Classical Bundle Adjustment

Classical bundle adjustment simultaneously estimates the 3D structure of the
environment and the camera parameters by minimizing the reprojection error in
a weighted least square manner. The co-linearity constraint relates the parame-
ters q describing the object, usually being a set of 3D points, the parameters z
describing the 2D image observations, usually the image points, and the extrin-
sic, possibly also the intrinsic camera parameters p using an explicit observation
model z = f (p, q), often called a non-linear Gauss-Markov model. Additional
constraints h(p, q) = 0 on the object or camera parameters may be used to fix
the gauge and to enforce certain properties of the object to be recovered. Assum-
ing the image measurements have a covariance that is denoted in matrix form
as C zz, the classical approach [1] minimizes the reprojection errors or residuals
v(p, q) = f(p, q) − z weighted with the inverse covariance matrix under the
given constraints leading to the energy function

E(p, q,μ) = vT(p, q)C−1
zz v(p, q) + μTh(p, q) (1)

to be minimized, where μ are the corresponding Lagrangian parameters for the
constraints. The iterative solution typically exploits the sparsity of the structure
of the normal equation system and is optimized by a marginalization to the usu-
ally much smaller number of camera parameters p using the Schur complement.

A novel model for bundle adjustment to gain efficiency and numeric stability
by first deploying implicit constraints between the observations and the camera
parameters to eliminate the object points as estimated parameters and second,
by instead of referring the camera parameters p to a common world system
representing the camera poses by the relative poses prs between neighbouring
cameras pr and ps is presented.

2.2 Estimation with Implicit Constraints

We replace the classical reprojection model using the epipolar and trifocal con-
straints, well known from the two and three view epipolar geometry [13]. The
epiolar and trifocal constrains are implicit functions of both the camera param-
eters and the observations, and do not allow to express the observations as a
function of the parameters. Thus, instead of using the explicit observation func-
tions z = f(p, q), we use constraints g(p, z) between the camera parameters p
and the observed image observations z. Constraint optimization is known in the
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classical least square estimation technique as the Gauss-Helmert model and can
be solved by minimizing

E(p,v,λ,μ) = vTC−1
zz v + λTg(p, z + v) + μTh(p) (2)

w. r. t. the parameters p, the residuals v and the Lagrangian parameters λ and
μ. The optimal estimates p̂ for the parameters and the fitted observations ẑ
should fulfill the model constraints g(p̂, ẑ) = 0 and h(p̂) = 0. Minimizing the
energy function (2) can be iteratively achieved by determining the corrections

Δ̂p from the linear equation system[
JT
p (J

T
zCzzJz)

−1Jp H
HT 0

] [
Δp
λ

]
=

[
JT
p (J

T
z C zzJz)

−1cg
ch

]
, (3)

with
cg = −g(p̂, ẑ) + JT

z (ẑ − z) and ch = −h(p̂), (4)

starting at approximate values p̂(ν) for the estimated parameters and the fitted
observations ẑ. The matrices Jp and JT

z are the Jacobian of the constraints g with

respect to the parameter vector p and the observations z and HT is the Jacobian
of h with respect to the parameters evaluated at the approximate values. The
residuals can be determined from v(ν) = −C zzJz(JT

z C zzJz)
−1(cg − JpΔp). We

iteratively find new approximate values for the estimated parameters p̂(ν+1) =

p̂(ν) + Δp and the fitted observations ẑ(ν+1) = z + v(ν). This will be very
useful to reconstruct the structure of the environment in our approach simply
by intersecting two estimated projection rays, as the rays derived from the fitted
observations ẑ intersect and no optimization needs to be performed anymore.

Conceptionally, the explicit estimation and the implicit estimation model both
minimize the residuals v. It has been shown in [14,15], that the implicit model
is a generalization of the least square estimation framework. Our proposed im-
plicit model minimizes the backprojection errors (residuals) in a least square
manner, using the constraint that the projection rays intersect in a single point
as the explicit model does. The used epipolar and trifocal constraints can be de-
rived from the explicit reprojection model by eliminating the object point [16].
Therefore, the results of the classical formulation and our proposed formulation
are equal w.r.t the solution and its precision. Additionally, robustification can be
achieved by reweighting the residuals as used in the classical model as a standard
enhancement.

2.3 Epipolar and Trifocal Constraint Bundle

In all cases we rely on the classical partitioning of the projection xt = PtX
of a 3D point with homogeneous coordinates X into the t-th camera and the
partitioning of the projection matrix Pt into its internal part, containing the
intrinsic parameters in K and its external part, containing its motion Mt w. r. t.
to a reference system

Pt = P0tMt with P0t = [Kt | 0] and Mt =

[
Rt T t

0T 1

]
(5)
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This decomposition will be deployed in the next section for introducing the
kinematic chains.

We now propose to replace the classical projection model by using the epipolar
and trifocal constraints in order to achieve two goals: (1) avoid the provision of
approximate values for the 3D object points, which in case of bad approximate
values, may be far off the true values and hinder the estimation process to
converge and (2) to allow for points which are very far from the cameras or even
at infinity. The epipolar constraint for two cameras, r and s, can be written as

0 = gE(p, z) = xT
r K−T

r RrS(Br,s)RT
s K−1

s xs (6)

with S(·) indicating the skew matrix of the base line vector Br,s = T s − T r

between the two projection centres of camera r and s. For calibrated cameras
the observed homogeneous image coordinates x can be normalized by applying K.
Equation (6) constrains the parameters of the two cameras, which themselves will
in general depend on all relative motions which connect the two cameras indexed
with r and s. The trifocal constraint can be interpreted as the intersection of 4
planes in a single point. As for instance outlined in [17], it can be written as

0 = gT (p, z) = det [Ar,ia ,Ar,ib ,As,i,At,i] (7)

with the projection plane

Ai = PTli (8)

for the line li in camera t. The 2d line in each image has to intersect the observed
image point xi. Our method ensures this by choosing an arbitrary direction α
and computing the line by

Fig. 1. Left: Scheme of the trifocal constraint. Four planes have to intersect in a single
object point. The planes are inverse projections of 2D lines intersecting the observed
image points. Right: Chaining the trifocal constraint using consecutive images. An
epipolar constraint is introduced between the first (blue) and second image. Two tri-
focal constraints are introduced for every new image the point is observed
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li =

⎡⎣ sin(α)
− cos(α)

cos(α)yi − sin(α)xi

⎤⎦ . (9)

After introducing the basic constraints (6) and (7) used by our method we will
now detail the constraint selection for each observation of an observed image
point xi.

Assume an object point i is observed in a set of cameras t1...tk. A point ob-
served for the first time provides no constraint. A point observed in two cameras
delivers one epipolar constraint (6). The observation of a point in more than
two cameras provides two constraints based on the trifocal tensor. We introduce
two trifocal constraints in the following manner. We randomly select two lines
l1,a and l1,b, one line l2,a and two lines lk,a and lk,b (a and b are the indices of
two lines in the image), which have different directions and hence provide two
constraints through Equation 1, c. f. Figure 1.

The scheme for chaining trifocal constraints for consecutive images is out-
lined in Figure 6. When using the epipolar and trifocal constraints in the bun-
dle adjustment, we do not need 3D object point coordinates, which have to
be optimized. Instead, the object points are encoded implicitly in the trifocal
constraints. Furthermore, the trifocal constraints are accountable for the tran-
sition of the scale through the chain of images ensuring a reconstruction with a
consistent scale.

The choice of the lines for the trifocal constraint in Equation (8) directly in-
fluences the numerical stability of the system. We use this to our advantage by
determining a proper combination of five lines that leads to the smallest con-
dition of JT

z Jz for the camera triplets in concern. This enhances the numerical
stability of our bundle adjustment. The choice has five degrees of freedom, corre-
sponding to the rotations of the planes A around the projection rays. Obtaining
the best configuration is a non-trival optimization problem in itself.

For efficiency we opted for a simple random sampling strategy to obtain an
acceptable set of lines. First, we choose random line directions and then we
evaluate the condition number for our particular choice of lines. In case the con-
dition number is too high to obtain a numerically stable solution, we randomize
again. We empirically found that the space of acceptable configurations in order
to achieve numerical stability is significantly larger than the space of the weak
configurations. We leave a formal proof of this fact to future work.

2.4 Relative Camera Representation with Kinematic Chains

Modeling camera poses. One of the main problems of traditional bundle adjust-
ment is that the condition of the information matrix (normal equation matrix)
for large scale environments becomes huge leading to numerical instabilities of
the linear solvers used. This is one of the reasons why hierarchical representations
of large sets of images and the relative representation of camera positions are
used. The camera orientations are represented locally, depending on an arbitrary
local coordinate system.
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The idea of [9] we are following here is to choose some reference cameras, say
with pose Mt and model the pose of its k-th neighbour Mt+k using the relative
pose Mt,k = Mt+kM−1

t+k−1 and estimate the rotation and translation parameters
of this relative motion Mt,k. This leads to the recursive relation

Mt+k = Mt,kMt+k−1 (10)

or when modeling the complete kinematic chain from t to t+ k

Mt+k = Mt,kMt,k−1·...·Mt,1Mt. (11)

The projection matrix Pt+k thus refers to the reference camera using

Pt+k = P0,t+kMt+k = P0,t+kMt,kMt,k−1·...·Mt,1Mt (12)

In case one has a constraint between two or three cameras, one needs to identify
the path between these two via the reference cameras. Obviously, the sparse-
ness of the Jacobian Jp now depends on the length of these chains of cameras
observing the same individual object point.

Sparsity of the normal equation system. We now analyze, how our represen-
tation influences the structure of the linear solver and propose a strategy to
increase the sparseness given an image sequence containing large loops. We are
aware of the fact that this method may not always achieve optimal sparsity for
example for image collections. Here we demonstrate that the sparsification is
an important property to solve the unknown parameters more efficiently. While
there are structural differences between the classical formulation of bundle ad-
justment and our method we will demonstrate how to take advantage of the
same set of methods to improve the computational performance. We start with
an example of a simulated environment illustrated on the left hand of Figure 2
and consisting of two loops. The simulated sequence contains of 71 images and
approximately 170 object points on the planar surface. The structures of the
normal equation matrices are shown in Fig. 3. The classical structure leads to
the sparsest structure. A naive choice of the relative motions between cameras
would follow the numbering of the cameras. Here, it leads to a nearly full normal
equation matrix, as the first loop is the one from image 1 to image 41, and the
second one is the large loop, containing all images except 1 to 16, resulting in
the overlay of two square blocks. Therefore, one needs to analyze the effect of a
certain numbering onto the structure of the normal equation matrix for the new
type of representation

The matrix JT
zCzzJz is a block-diagonal matrix. Every block represents the

set of constraints involving an observed object point. The determination of
(JT

zCzzJz)
−1Jp in (3) then can be done block-wise by solving a linear equation

system, exploiting the sparsity of JT
zCzzJz. For structure from motion scenes,

where an object point is only visible in a small subset of all cameras used, this
is usually not computationally expensive. The resulting information matrix has
the size of the number of the camera parameters plus the number of constraints
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Fig. 2. Simulated example of a kinematic chain and spanning tree. The simulated
sequence contains 71 images and 170 object points on a planar surface. Left: A camera
trajectory at a birds eye view. Right: Simplified graph shown as a tree. The computed
six subtrees are colored in a different manner.

Fig. 3. Structure of the normal equation system. Left: Classical absolute representa-
tion. Middle: relative representation, naively taking all images in the order of appear-
ance. Right: relative representation using our algorithm.

for the gauge only. As we can see in our example in Figure 3 the resulting in-
formation matrix is sparse too and therefore the equation system can be solved
efficiently. The sparseness of the information matrix varies with the choice of
the reference cameras, and thus the choice of the relative representations. We
therefore need to select a representation which is optimal in some sense. This
leads to a trade off between the condition of the information matrix and the
sparseness and therefore the computational cost of the solution of the linear
solver, taking the fill-in into account. In addition an optimal solver has to resort
the information matrix to reduce the computational costs.

We have developed a scheme which aims at finding a good compromise.We can
represent the whole set of relative cameras using a connection graph. As a camera
has a unique reference system, we have to choose one of the possible spanning
trees of the graph. For example, this can be easily achieved by enumerating all
cameras in an arbitrary order. For image sequences an ordering by acquisition
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time is reasonable. We first sort the cameras in an ascending order. Then we
obtain the connection graph for all connected cameras observing a common
object point represented by an adjacency matrix. Next we search the subgraph
that connects any camera to the camera with the smallest identifier. In a final
step we merge the branches of the resulting tree to achieve a number of connected
cameras larger than a threshold (GN = 5) in each branch.

Figure 2 illustrates the simulated environment with two loops and the corre-
sponding connection graph computed by our proposed method. The computed
six sub-branches are colored differently in Figure 2. Images 1 and 6 are connected
as they observing at least one common object point. Therefore our approach con-
nects image 6 to the root node. In case a loop closing is detected, in our example
in image 35, a new branch is generated that connects it to the root node in the
graph. This can be done for all used cameras incrementally.

3 Experimental Results

After the detailed description of the algorithm and the structure of the solution,
we will verify its feasibility on synthetic and real datasets. The implementation
has been done in Matlab

TM

.

3.1 Simulation Results

We use two synthetic datasets to demonstrate the usefulness and practicality of
our novel approach. The first dataset is a long linear camera motion, for instance
acquired by an aerial vehicle or a mobile camera for urban scenes of facades.
Using this dataset we will analyze the behaviour of the condition number of the
linear solver and the demonstrate the benefit of including points at infinity. The
second dataset has already been shown in Figure 2. This dataset is used to show
the convergence behaviour and the applicability of our approach for datasets
with loop closure.

Both datasets are generated using a synthetic camera setup with an image
resolution of 800×600 pixel, a principal point in the middle of the image and
a focal length of 400 pixel. In both datasets the distance between consecutive
frames is b = 10 m and the distance of the camera centers to the plane of the
observed object points is hg = 30 m. The average number of observed object
points per image is approximately N ≈ 20.

In the first experiment we compare the the condition number of the infor-
mation matrix between the classical and the novel approach. This issue will be
noteworthy to solve the task of structure from motion in the presence of large-
scale loops. On the left hand side of Figure 4 the simulated trajectory is outlined.
We varied the length of the linear path in the experiment from 100 m to a maxi-
mal length of 1000 m. We assumed Gaussian noise of 1 pixel for the observations.
The right hand side of Figure 4 shows the computed logarithmic condition num-
bers of the information matrix for the classical bundle adjustment and the newly
proposed approach. We can observe that the condition number for the classical
approach steadily increases. This increase is proportional to the increase of the
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uncertainty of the camera parameters toward the end of the strip. Due to the
relative representation, the condition number is practically independent of the
length of the trajectory in our approach. The peak at a strip length of 200 m
is caused by a badly chosen direction to generate the trifocal constraint (see
Section 2.3). Another important evaluation is the usefulness of incorporating
points at infinity. In this experiment we added just three additional points at
infinity. In Figure 5 the expected standard deviations of the camera parameter in
the global coordinate system with and without the points at infinity are shown.
The uncertainty is computed throughout all cameras by variance propagation.
We can observe that the points at infinity have a significant influence on the
determination of the rotation as well as the translation due to the correlation
to the rotation parameters. As our approach can deal with points at infinity,

Fig. 4. Left: Long strip of consecutive cameras. The gauge is fixed to the first camera.
The scale is introduced by the known true base length to the second camera. Right:
Condition number of the linear equation system (Information-Matrix) for a long strip.
Classical bundle adjustment (red), new method (blue). Observe, that the condition
number of the experiment with a strip length of 1000 m differ by a factor of ≈ 105.

Fig. 5. Expected accuracy of the camera position (left) and rotation (right) without
(dotted) and with (solid line) 3 additional points at infinity. The shown absolute uncer-
tainty is computed by error propagation through the chain of relative representations.
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the solution of a bundle will be significantly improved if points at infinity are
available using the novel method.

Fig. 6. Left: Simulated example with two loops. The approximated values are computed
using a random walk with 3m Gaussian noise for the translation components and 0.5
degree for the rotation parameter, Right: Mean of the absolute sum of the residuals
for 11 iterations. The dashed lines are the mean residuals for the classical bundle
adjustment, the solid line for our approach.

In the last experiment using synthetic data our method is able to perform loop
closures and it is robust to corrupted approximate values and large uncertainty
of the observations. Approximate values for the exterior camera parameters are
obtained in general computing a robust estimation of the essential matrix [13].
The rotation parameter can be usually determined very accurately, however
the baseline vector can not be. Therefore, for image sequences the approximate
values are chained, which leads to a random walk. In our example presented in
Figure 6 (left), we generated approximate values chaining relative orientations
with a randomized accuracy of 3 m for the translation parameters and 0.5 degree
for the rotation parameters. On the right side of Figure 6 the mean of the
absolute sum of the residuals for 11 iterations are presented. The dashed lines
are the results using the classical model, the solid lines are the results of our
approach. For the classical model the object points were initialized at the first
projection ray with the known distance. Both simulations are run with the same
observations and initial values. We can observe that in presence of small noise
the residuals become significantly smaller in the first iterations in our method
compared to the classical approach, since the object points act in the classical
approach as anchor. Our proposed method does not show this disadvantageous
behavior. The convergence behavior has to be examined in more detail in the
future, when integration robustification methods is completed.

3.2 Real Data

We also tested our method on a real datasets. The first dataset consists of an
image sequence of 624 images of the left camera of a stereo system. A feature
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Fig. 7. Left: Birds-eye view of the corridor and estimated as well as reference camera
position and orientation. Middle: Single frame extracted from an image sequence with
tracked features. Right: Differences between reference camera and estimated camera
parameter, X,Y, Z.

detection and flow computation system does tracking using a graphics processing
unit implementation. Additionally SIFT features are extracted and descriptor
matching is performed [18]. A keyframe dataset of the whole sequence using
20 images and 55 randomly selected feature tracks has been taken. A reference
trajectory was computed using the stereo tracking system of [19] including a
huge number of observations. In Figure 7 sample keyframe with detected im-
age features is shown. To the left a schematic birds-eye view of the estimated
camera trajectory derived by error propagation is presented. To the right the
differences of the estimated camera position to the high accuracy reference tra-
jectory is shown. We remark, that the present implementation is not robustified
and optimized for speed yet.

The second dataset consists of an image collection of the Brandenburger Tor
containing 100 images with 1600 3d-points and roughly 24000 trifocal constraints
taken from a photo-sharing website like Flickr.com. The focal length initally
is taken from the image header and the principal point is fixed to the image

Fig. 8. Left: 3d-view of estimated camera parameters and reconstructed object points
using the novel method. Middle: Example images of an image collection. Right: Abso-
lute sum of the residuals for 20 iterations.
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center. An existing robust classical bundle adjustment incorporating intrinsic pa-
rameters as unknowns determined intrisic parameter as references. Again SIFT
features are extracted and descriptor matching is performed, then pairwise rela-
tive orientations are computed using a RANSAC based scheme and outliers are
rejected. To the left of Figure 8 the estimated camera orientations, as well as
the reconstructed 3d object points determined by intersection 2 estimated pro-
jection rays are shown. To the right the absolute sum of the residuals thought
20 iterations are presented. The novel method decrease the residuals constantly
and seems to have converged for this real dataset.

4 Conclusions

This paper introduced a new approach to circumvent the limitations of classical
bundle adjustment by changing the observation model and the camera repre-
sentation of the least square solution. The results of the classical bundle and
the novel approach are equal as proved in [14,15]. We focus in the paper on the
structural differences of the normal equation system and proved the usefulness
of the proposed concept on simulated data and real data. The main advantages
can be summarized as follows:

– No approximate values for the object points are necessary any more. The new
algorithm is therefore able to handle points at infinity. This can improve the
solution of a structure from motion task significantly. In addition the pre-
filtering of the observations can be neglected and there is no need of the
reduction of the normal equation system using the Schur-Complement.

– Due to the relative representation the condition number of the information
matrix seems to be independent of the length of a camera trajectory. This
is very useful for structure from motion tasks on mobile platforms.

– We observed a faster convergence and robustness in present of corrupted
approximate values in our experiments compared to a classical bundle ad-
justment. We are aware that this fact should be investigated in more detail
in future experiments.

Although our algorithm shows significant positive properties, the computation of
the Jacobians using kinematic chains is computationally more complex compared
to the classical formulation. We have yet to examine how this interacts with the
speed up due to faster convergence.

We leave it to future work to demonstrate the performance of the new
method using large image sets along with applying robustification techniques
to the parameter estimation. While not demonstarted the approach can be ex-
tended to a more general approach to accomodate uncalibrated cameras. We
also plan to implement an online version, where images can be incrementally
added.
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Abstract. A well known problem in photogrammetry and computer vi-
sion is the precise and robust determination of camera poses with respect
to a given 3D model. In this work we propose a novel multi-modal method
for single image camera pose estimation with respect to 3D models with
intensity information (e.g., LiDAR data with reflectance information).

We utilize a direct point based rendering approach to generate syn-
thetic 2D views from 3D datasets in order to bridge the dimensionality
gap. The proposed method then establishes 2D/2D point and local re-
gion correspondences based on a novel self-similarity distance measure.
Correct correspondences are robustly identified by searching for small re-
gions with a similar geometric relationship of local self-similarities using
a Generalized Hough Transform. After backprojection of the generated
features into 3D a standard Perspective-n-Points problem is solved to
yield an initial camera pose. The pose is then accurately refined using
an intensity based 2D/3D registration approach.

An evaluation on Vis/IR 2D and airborne and terrestrial 3D datasets
shows that the proposed method is applicable to a wide range of differ-
ent sensor types. In addition, the approach outperforms standard global
multi-modal 2D/3D registration approaches based on Mutual Informa-
tion with respect to robustness and speed.

Potential applications are widespread and include for instance multi-
spectral texturing of 3D models, SLAM applications, sensor data fusion
and multi-spectral camera calibration and super-resolution applications.

Keywords: Multi-Modal Registration, Pose Estimation, Multi-Modal
2D/3D Correspondences, Self-Similarity Distance Measure.

1 Introduction

A fundamental issue in computer vision and photogrammetry is the precise de-
termination of camera poses with respect to a given 3D model. It has many
applications, e.g., augmented reality, image based localization or robot naviga-
tion. The involved registration task is mostly formulated as the determination of
a geometric transformation1 which maps corresponding features onto each other

1 In case of camera pose estimation the geometric transformation is known as the
external calibration matrix or extrinsic parameters of the camera.
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by minimizing a proper distance measure. In general there are two solution ap-
proaches for matching 2D/3D image data. Either one computes 3D information
from 2 or more 2D images and performs the similarity comparison in 3D, or 2D
data is simulated from the 3D dataset and compared in a two-dimensional space.
We focus on the latter, since we assume only one available 2D image and a pre-
recorded 3D dataset with intensity information as described in Sec.2. This paper
considers 2D/3D camera pose estimation for multi-modal data, i.e., estimating
the external camera R, t parameters when the internal camera parametersK are
known and the involved datasets stem from different image modalities. The pro-
jection of 3D world points Mi to corresponding 2D image points mi is modeled
by a standard pinhole camera model. The intrinsic parameters K with the pa-
rameters skew s, focal length f , aspect ratio α and principal point u = [u0 v0]

T

are assumed to be known.

mi = PMi, P = K [R|t] ,K =

⎡⎣f s u0
0 αf v0
0 0 1

⎤⎦ . (1)

1.1 Related Work and Contribution

2D/3D camera pose estimation received much attention in the last decades
[1,2,3,4]. Existing methods can be roughly divided by the spatial extent/type
of the used features/structures:

Pose from 2D/3D Point Correspondences: Pose estimation is basically
solvable from 3 2D/3D point correspondences and is widely known as the P3P
problem. A common approach is to determine the 3D point positions MC

i in the
camera coordinate frame C. This leads to a root finding problem for a polyno-
mial of degree 8 with only even terms. To disambiguate the 4 solutions in the
general case an additional point is often used. However, the computed pose from
4 point correspondences is usually not accurate and therefore it is advisable to
simultaneously use n >> 4 point correspondences. This leads to the well known
PnP (perspective n points) problem [3]. Often RANSAC type algorithms [5] or
robust cost functions [3] are used to handle outliers in the correspondence set.
A non-linear least squares optimization of the reprojection error with all inlying
feature correspondences increases accuracy further:

minimizeR,t

∑
i

‖K(RMi + t)−mi‖22 . (2)

Modern algorithms [1,4] efficiently solve this problem under real-time constraints
even on modest computing hardware [4].

Pose from Planar Structures: By observing a corresponding planar struc-
ture in both datasets one can extract the pose parameters directly from the
homography H [6,7] which maps the structures onto each other. In this case the
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projection equation of model Mi and 2D image points mi simplifies without loss
of generality to:

s

⎡⎣uv
1

⎤⎦ = K [r1 r2 r3 t]

⎡⎢⎢⎣
X
Y
0
1

⎤⎥⎥⎦ = K [r1 r2 t]

⎡⎣XY
1

⎤⎦ , (3)

where ri denotes the i.th column of the matrix R. Therefore the model points
Mi and image points mi are related by a homography H (defined up to a scale
factor λ):

H = [h1 h2 h3] = λK[r1 r2 t]. (4)

Based on the assumption that K is known, the camera pose is given by:

q1 = λK−1h1

q2 = λK−1h2

q3 = r1 × r2
t = λK−1h3

(5)

Due to data noise the computed matrix Q = [q1 q2 q3] usually does not satisfy
the ortho-normality constraint of a rotation matrix R,RTR = I. Therefore R is
computed to minimizeR ‖R−Q‖2F s.t. RTR = I in a Frobenius norm sense. This
can be efficiently achieved [6] by a singular value decomposition of Q = U S V T

and setting R to U V T .

Pose from Intensity Based Distance Minimization: A standard approach
for pose determination in the field of medical image computing (e.g., X-Ray/CT-
computed tomography, X-Ray/MR-magnetic resonance imaging) is to simu-
late pose parametrized 2D views Vsim(R, t) from the 3D dataset which mini-
mize/maximize an intensity based distance/similarity measure D(Typ), D : RN ×
R

N → R between the acquired reference image IR and a simulated view over
the support of the image region A.

minimizeR,t

∫
A

D(Typ)(Vsim(R, t), IR). (6)

We refer to [8,9] for a comparison of common intensity based 2D/3D distance
measures e.g., Normalized Cross Correlation (NCC), Spearman Rank Order Cor-
relation (SPROCC), Gradient Correlation (GC), Correlation Ratio (CR) and
Mutual Information (MI).

Generally, intensity based similarity optimization allows for accurate registra-
tion results but is computationally expensive. Additionally, these methods often
rely on a very good initialization to avoid local optima. Local feature meth-
ods are more advantageous when significant changes of the underlying scenery
hamper global intensity based similarity computations. However, a common dif-
ficulty of the outlined approaches is the determination of 2D/3D feature/planar
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region correspondences, respectively a sufficiently close starting point for an in-
tensity based similarity computation. Local feature based correspondence meth-
ods [10,11] work very well if the image data stems from the same image modal-
ity. An excellent review can be found in [12]. Local feature approaches mostly
match common image features based on gradient information. The registration
task becomes challenging if the image data is multi-modal, e.g., the image in-
tensity data stems from different sensors with, e.g., different image acquisition
techniques, spectral sensitivities or passive/active illumination. The problem of
finding accurate local feature correspondences across different image modali-
ties is less understood. Successful multi-modal matching applications mostly
stem from medical image registration, e.g., the fusion of MR/CT or CT/PET
(positron emission tomography) images by maximization of the information the-
oretic similarity measure MI.We focus on the determination of point and region
correspondences using local multi-modal features. The main difficulty is the in-
herent trade off between feature correspondence discrimination and multi-modal
matching capabilities. We adapt the approach of Shechtman and Irani [13] who
proposed self-similarity descriptors for sketch based object and video detection
and extend it with ideas from the work of Leibe et. al. [14] to determine multi-
modal point and region correspondences. To the best of our knowledge there is
no literature about accurate multi-modal pose determination with local corre-
spondences based on self-similarity. We additionally propose to refine the pose
optimization by minimizing locally a densely computed self-similarity distance
to accurately align local image regions where standard multi-modal similarity
measures like MI or CR have major difficulties. The fusion of 2D images with
LiDAR data is still an active research field [15,16,17]. The closest work [18] with
respect to our application uses MI to register optical images with LiDAR data.
However, we claim that our method is more robust w.r.t. to pose initialization
and cluttered image data.

The outline of the paper is as follows: first we give a short overview for laser
based acquisition of 3D data. Then we describe the key parts of the approach
and discuss specific details which enable the robust local correspondence search
in the multi-modal case. We evaluate the method on different image datasets
with a focus on IR/Vis in combination with airborne (ALS) and terrestrial laser
scanning (TLS) datasets. In the end, we discuss the results and give further
research directions.

2 Laser-Based 3D Data Acquisition

Remote sensing of 3D structures in the far-field is commonly approached with
multi-view image analysis as well as active illumination techniques. In this con-
text, LiDAR (light detection and ranging) is a comparatively new method that
enables direct acquisition of 3D information [19]. LiDAR sensors emit laser radi-
ation and detect its reflection in order to determine the precise distance between
sensor and illuminated object. Currently available laser scanners are capable
of performing hundreds of thousands of range measurements per second, thus
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allowing a complete 3D scenery to be captured in a reasonably short time inter-
val. Two main types of laser scanners can be distinguished that follow different
concepts of range determination: phase shift and time-of flight laser scanners. In
case of phase-shift scanners, a continuous laser beam is emitted with sinusoidally
modulated optical power. The distance to the reflecting object is estimated based
on the phase shift between received and emitted signal. Phase-shift scanners are
well suited for static terrestrial laser scanning. When operating the scanning
head on a rigid tripod, ranging accuracies of few millimeters at distances up to
hundred meters can be achieved. Mobile methods like airborne laser scanning
usually combine a time-of-flight LiDAR device with high-precision navigational
sensors mounted on a common sensor platform. The ranging accuracy of such a
system is typically limited to few centimeters, while maximum distances up to
one kilometer can be measured.

Currently available time-of-flight laser scanners are capable of acquiring the
full waveform of reflected pulses, thus enabling new methods of data analysis [20].
The portion of the reflected energy can be considered in relation to the emitted
radiation and the measured distance. This ratio reveals the local reflectivity at
the specific laser wavelength, which typically lies in the near infrared due to eye-
safety reasons. High-speed scanning and exploitation of reflectivity information
results in highly detailed textured 3D point clouds. However, unlike ambient
background light, the reflection of directed laser radiation is significantly affected
by the incidence angle and the surface characteristics of the illuminated objects.

3 Method

The multi-modal 2D/3D registration procedure can be summarized as follows:
first we utilize a point based rendering approach to generate a synthetic 2D
View from the 3D dataset to enable the correspondence search. Then we es-
tablish 2D/2D point and local region correspondences based on local features.
Correct correspondences are robustly identified by searching for small regions
with a similar geometric relationship of local features by employing a Gener-
alized Hough Transform. The 3D positions for the synthetically generated 2D
features can easily be determined using the depth buffer information from the
rendering procedure. The registration is then carried out by solving a PnP based
pose determination. The calculated pose is finally refined with an intensity based
registration. This refinement step is intended for applications with very high ac-
curacy requirements, e.g., multi-spectral texturing of 3D models, multi-modal
camera calibration or multi-modal super-resolution. Summarizing, the method
can be divided (cf., Fig.1) as follows:

1. Synthetic 2D View Generation
2. Feature Extraction
3. Feature Correspondence Search and Constraint Filtering
4. Feature Correspondence Based Pose Determination
5. Intensity Based Multi-Modal Registration
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Fig. 1. Registration algorithm overview: (a) extracted local image regions, (b) feature
matching by searching geometrically consistent feature matches and fundamental ma-
trix filtering, (c) 3D backprojection of 2D feature matches, (d) pose determination. The
registration result (bottom image) shows a superposition (red cross) of the airborne IR
image and the textured LiDAR view from the left side.

Synthetic 2D View Generation: We propose a direct point based rendering
approach [21] for synthetic view generation. The automated generation of texture
mapped models (e.g., Fig. 4i) is still error prone and a time consuming process.
To this end we use a simple rendering of the 3D point cloud data based on small
spheres with adaptive sizes. In this work we selected the initial pose for the view
generation manually. However, the proposed feature based method shows a wide
convergence range.

Feature Extraction: We extract local features over different scales and use
standard descriptors for an initial correspondence search. To this date we evalu-
ated SIFT [10], SURF [11] and recently proposed self-similarity descriptors [13].

Feature Correspondence Search and Constraint Filtering: To enable a
robust local feature based 2D/3D registration approach for multi-modal data
we utilize the concept of simultaneously matching local features inside small im-
age regions. The selection of these image regions serves as a starting point for
the correspondence search. Each region defines a local coordinate frame, where
the geometric layout of contained features is determined. Our experiments show
that it is favorable to use image regions with strongly distinct features in or-
der to increase the number of correct region matches. In this work we used
constant region sizes (60x60px) and a simple heuristic based on Harris corners,
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Fig. 2. Local feature correspondence search algorithm (IR/Vis example): (a) extracted
local image regions (Harris/Foerstner), (b) feature matching by searching geometrically
consistent feature matches, (c) best hypothesis supporting feature matches, (d) inten-
sity based local image region alignment, (e) final point correspondences for one local
image region. The right columns shows local patch alignments (Init/MI/Self-Sim).

which serve as the origin. We employ a Generalized Hough Transform similar
to the one used in [14]. We also use a technique called soft-matching [14] for
local feature matching which incorporates the k (e.g., 2-4) nearest neighbors
in descriptor space as potential matches. Due to fundamentally different ob-
ject appearances, many initial local feature matches are not correct and would
lead to an enormous amount of wrong point correspondences (see Fig. 2a left).
Therefore each local feature casts a vote for a corresponding region center ac-
cording to the geometric layout in its reference coordinate system [14]. Under
the assumption that wrong correspondences spread their votes randomly, we de-
termine the corresponding image region center with a simple maximum search.
The final 2D/2D point correspondences are feature matches which contributed
a vote near to the maximum in voting space. We refer to Leibe et. al. [14] for
a detailed description of the voting principle. However, the voting space maxi-
mum in multi-modal image pairs does not always correspond to a correct region
match. We use point correspondences that contributed a vote near the maximum
in voting space (backprojection of best hypothesis supporting feature matches)
to estimate (RANSAC) a local affine transformation Ta of the corresponding
image patch (e.g., 60x60px). We then discard matches with a high self-similarity
distance (eqn. 12) based on an empirical determined threshold.

Intensity Based Optimization of Local Planar Patches: Due to small er-
rors in the determined feature correspondences we also applied a local intensity
based multi-modal distance optimization to find local region correspondences
(cf., Fig.2right). Formally, we search for a set of optimal transformation param-
eters θ̂ which minimize a multi-modal distance measure D : RN → R over the
support of a local image region Ai around the determined point correspondences:
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θ̂ = argminθ D(θ), (7)

D(θ) =

∫
Ai

D(·)(ITθ
, IR). (8)

To this end we use parametric (projective) transformations Tθ with 8 degrees
of freedom for distance minimization. The local image region Ai should be as
small as possible for projective transformations since they inherently imply pla-
narity. The affine transformation Ta serves as a starting point for the image
alignment optimization. The nonlinear optimization is based on a specific pat-
tern search method which does not rely on gradient information. Basically, we
approximate the distance function D(θ) with a multi-variate polynomial of de-
gree 2 and recenter/rescale a search pattern at the optimum of the surrogate
polynomial. Given a proper initialization, the method needs only a few distance
function evaluations to converge to a local optimum and is especially designed
for computationally expensive distance functions. We plan to directly compute
an accurate pose from the local projective transformations Tθ as described in
Sec. 1.1. However, to this end we use this computationlly expensive step only for
an optional point correspondence optimization, when we omit a global intensity
based similarity optimization.

Feature Correspondence Based Pose Determination: The corresponding
3D feature positions from the 2D rendering are efficiently backprojected into 3D
by using the depth buffer information from the rendering process2. Given the
2D/3D correspondences we calculate the pose using a standard PnP algorithm.
We used the recently proposed EPnP [4] algorithm, which expresses the n 3D
feature positions as a weighted sum of four virtual control points. This algo-
rithm proved to be superior w.r.t. speed and accuracy compared to the popular
POSIT algorithm [22]. To robustly detect outliers in the 2D/3D correspondence
set we employed a RANSAC approach. We used n = 8 subset sizes and a 5px
reprojection error (cf. eqn. 2) threshold for the inlier set. The computed pose
was additionally refined by a non-linear Gauss-Newton minimization of the re-
projection error (eqn. 2) w.r.t. the inlier set.

Intensity Based Multi-Modal Registration: To accurately align the multi-
modal data sets we additionally minimize/maximize an intensity based distance/
similarity measure. The convergence range of intensity based multi-modal 2D/3D
methods is usually very small. However, the local feature based pose computation
usually provides a sufficiently close starting point. An important design choice is
the selection of an appropriate distance measure.Mutual Information [9] is consid-
ered the gold standard similarity measure for multi-modal matching. It measures
the mutual dependence of the underlying image intensity distributions:

2 It’s important to transform the data into an adequate coordinate system to reduce
inaccuracies caused by a limited Z-Buffer resolution.
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D(MI)(IR, ITθ
) = H(IR) +H(ITθ

)−H(IR, ITθ
) (9)

where H(IR) and H(ITθ
) are the marginal entropies and

H(IR, ITθ
) =

∑
X∈ITθ

∑
Y ∈IR

p(X,Y )log(
p(X,Y )

p(X)p(Y )
) (10)

is the joint entropy. p(X,Y ) denotes the joint probability distribution func-
tion of the image intensities X,Y in IR and ITθ

, and p(X) and p(Y ) are the
marginal probability distribution functions. However, MI is very difficult to es-
timate (e.g.,see Fig. 3) for small image regions and does not cope well with
spatially-varying intensity fluctuations (eqn. (10)). Therefore we propose to
minimize a self-similarity distance of corresponding image regions in IR and
ITθ

. To compute the self-similarity description for an image patch point we
compare a small image patch with a larger surrounding image region cen-
tered at q ∈ Ri using simple sum of squared differences (SSD) between im-
age intensities normalized by the image patch intensity variance and noise
c(I)noise,variance:

Sq(x, y) = exp

(
− SSDq(x, y)

c(I)noise,variance

)
(11)

This correlation image Sq(x, y) is then transformed into a log polar coordinate
system and partitioned into bins (e.g., 20 angles, 4 radial intervals) where the
maximal correlation value in each bin is used as an entry for the self-similarity

dimension description of the vector S
I(·)
q (x, y) located at the image position

(x, y) ∈ Ai. Each vector is then linearly normalized to [0, 1]. The distance mea-
sure now simply computes the sum of squared distances of the self-similarity

description vectors S
I(·)
q computed at the region Ai:

D(SSim)(ITθ
, IR) =

∑
(x,y)∈Ai

‖SIR
q (x, y)− S

ITθ
q (x, y)‖2. (12)

In multiple experiments we plotted the values of the optimization func-
tion while varying function parameters as shown in Fig. 3f,g. The plots
of this distance measure show unique maxima and relatively smooth and
monotonically increasing function shapes especially for small local image
regions.

3.1 Implementation Details and Runtime Information

The implemented point based rendering and intensity based 2D/2D and 2D/3D
registration software is based on the OpenCV and VTK [23] C/C++ libraries.
We used the SiftGPU [24] and OpenSURF [11] implementation for the local de-
scriptor computation. Since the voting based correspondence approach requires
many feature correspondence searches, it is important to use fast search struc-
tures [25] for nearest neighbor determination in descriptor space (L2 norm).
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(a) GC (b) MI (c) MI+Grad (d) SPROCC

(e) Self-Sim (f) MI-local (g) Self-Sim-local (h) Optimal Pose

Fig. 3. Plots of global distance/similarity values (a-e) for deviations from the found
value by the optimization algorithm (camera translation in x and y direction (±2.5m)).
Comparison of local MI and Self-Sim values (f,g) for a small image patch (60x60px)
(image translation in x and y direction) from the found value by the optimization
algorithm. The optimal value for the pose (h) is shown at where all parameters
are zero.

Since our implementation is not runtime-optimized, the reported time measure-
ments provide only a rough estimate for the actual overall algorithm runtime.
The determination of 500 region correspondences ranges from 60-200s on an In-
tel Q9550 System. An intensity based local image patch refinement (60x60px)
needs 10-15s (single core) for one image patch optimization (Self-Similarity fea-
tures and distance measure).

4 Results

We evaluated the voting based feature correspondence method (Sec.3) by count-
ing point correspondences w.r.t. a robustly estimated fundamental matrix (8-pt
algorithm, RANSAC, 1.25px inlier threshold). When possible, e.g., in case of
IR/Vis aerial images we estimated a global homography (RANSAC, 2.5px inlier
threshold) to evaluate correct correspondences. In total we used 10 Vis/IR, 50
Vis/IR aerial and 2 LiDAR/IR/Vis image pairs. Our experiments show (Tab.
1, Fig. 4) that this method enables a robust determination of multi-modal fea-
ture correspondences. The self-similarity descriptors proved to be well suited
for this task compared to well established local feature approaches like SIFT
[10] or SURF [11] (see Fig. 4). A visualization comparing SIFT, SURF and
Self-Similarity features for TLS/Vis image data is shown in Fig.4. This effect
especially holds for ALS based renderings from close view points where render-
ing holes drastically affect gradient histogram based descriptors (e.g., Fig.4h).
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Table 1. Averaged rounded (found/correct) point correspondences. The correctness of
point correspondences was additionally checked by visual inspection in case of funda-
mental matrix constraint filtering.

Features IR/Vis (2D/2D) IR/Vis (Aerial 2D/2D) ALS/IR

SIFT 0 / 0 63 / 85% 0 / 0

SURF 0 / 0 35 / 91% 0 / 0

Self-Sim 3706 / 49% 2185 / 64% 4881 / 23%

Given high quality synthetic renderings and high point densities local feature
methods based on gradient information can still work. Fig.4(a-f) shows corre-
spondences and PnP based pose computations for SIFT, SURF and Self-Sim
features. However, the number and distribution of correct correspondences was
considerably higher for Self-Sim features. In case of IR/ALS (cf., Fig.4h) data
we were not able to compute correct correspondences using standard local fea-
tures like SIFT and SURF. To evaluate the pose determination accuracy from
the found point correspondences we calculated ground truth pose information
by jointly matching small sets of 3-5 images in order to calculate accurate ex-
trinsic and intrinsic parameters. Then we artificially perturbed the camera po-
sitions from TCam

World to T pertCam
World . The translation parameters were randomly

perturbed by maximally ±5 m and the rotation parameters were perturbed
by maximally ±3 deg. After registration we calculated the Euler angle repre-
sentation of the deviation matrix Tdev using the calculated registration matrix
TWorld
regCam.

Tdev = TWorld
regCamT

Cam
World. (13)

The average point based pose estimation accuracy for 20 TLS/Vis views showed
rotational deviations of 0.95 (x), 1.12 (y) and 0.74 (z) degree and an average
translational deviation of 0.93 (x), 0.72 (y), 0.69 (z) m for voting based SURF
feature correspondences. Self-Similarity feature correspondences led to rotational
deviations of 0.89 (x), 1.02 (y) and 0.97 (z) degree and an average translational
deviation of 0.89 (x), 0.93 (y), 0.67 (z) m. For the intensity based multi-modal
registration, we evaluated various intensity based distance measures like MI, CR,
GC, SPROCC, linear combinations of MI+GC and the proposed densely com-
puted Self-Similarity. First we evaluated intensity based registration performance
for local patches by visual inspection with respect to MI, Spearman Rank Corre-
lation Coefficient and Self-Similarity. We evaluated the number of (correct/false)
alignments for a representative set of 113 local image patches. SPROCC led to
34% correct alignments, MI to 31%, and Self-Sim to 94% correct alignments
(e.g., Fig.2right). By using the global intensity based 2D/3D camera pose es-
timation step we finally achieved very accurate visual registration results (cf.,
Fig. 5).
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(a) SIFT (b) SURF (c) Self-Sim

(d) SIFT-Pose (e) SURF-Pose (f) Self-Sim-Pose

(g) TLS/Vis (h) IR/ALS (i) TLS (TextureMap)/Vis

Fig. 4. Voting based correspondences using (a) SIFT, (b) SURF and (c) Self-Similarity
features for identical Vis/TLS images. The second row (d-f) shows resulting poses using
the PnP approach. The last row depicts Self-Similarity feature correspondences for
TLS/Vis (g), IR/ALS (h) and TLS(Texture Mapped)/Vis (i) data. All correspondences
are fundamental matrix constraint (RANSAC, 2.25px) filtered.
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(a) Vis/TLS Result (b) IR/TLS Result (c) IR/ALS Result

Fig. 5. Intensity based camera pose estimation results for Vis/TLS-LiDAR (a),
IR/TLS-LiDAR (b) and IR/ALS-LiDAR (c) image pairs

5 Conclusion and Future Work

In this work we proposed and implemented a robust method to determine ac-
curate local multi-modal 2D/3D correspondences. The method is based on si-
multaneously matching geometrically consistent feature correspondences. Very
accurate multi-modal 2D/3D alignments can be achieved in combination with
local intensity based optimization which allows for a precise multi-spectral tex-
turing of 3D models, sensor data fusion and multi-spectral camera calibration.

The registration of multi-modal 2D/3D datasets is inherently difficult due to
fundamental differing object appearances. Multi-modal distance measures are
usually application dependent and the suitability of self-similarity as a gen-
eral multi-modal distance measure remains open. However, experiments show a
clear dominance of the proposed self-similarity distance measure for IR/Vis and
ALS/TLS/IR/Vis image pairs in case of small region sizes (see Fig.2right). In
addition, we find the approach of locally matching self-similar structures [13]
very intriguing since it does not assume a global functional relationship like
correlation ratio or clusters in the joint intensity distribution like MI [9]. Most
importantly Self-Sim copes well with spatially varying intensity fluctuations.
Future research directions are manifold. The fast computation of self-similarity
descriptors and distances is crucial for the practicability of the method. More-
over, we work on an extension of the voting procedure to enable wide baseline
scenarios. We also plan to extend the method to allow a robust and accurate
multi-modal 2D/3D registration starting from a sparsely sampled set of 2D ren-
derings of large scale 3D models without any knowledge of extrinsic and intrinsic
camera parameters.
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Abstract. An important part of large-scale city reconstruction systems is an im-
age clustering algorithm that divides a set of images into groups that should cover
only one building each. Those groups then serve as input for structure from mo-
tion systems. A variety of approaches for this mining step have been proposed
recently, but there is a lack of comparative evaluations and realistic benchmarks.
In this work, we want to fill this gap by comparing two state-of-the-art landmark
mining algorithms: spectral clustering and min-hash. Furthermore, we introduce
a new large-scale dataset for the evaluation of landmark mining algorithms con-
sisting of 500k images from the inner city of Paris. We evaluate both algorithms
on the well-known Oxford dataset and our Paris dataset and give a detailed com-
parison of the clustering quality and computation time of the algorithms.

1 Introduction

Recently, significant advances in large-scale city reconstruction have been made. Struc-
ture from motion (SfM) is used as a basic tool for reconstructing environments as point
clouds [1–3], dense 3D representations [4, 5], or for photo browsing applications [6]. A
prerequisite for SfM is a high-quality set of photos of the object to be reconstructed. A
simple and cheap approach for obtaining such image sets is to collect them from com-
munity photo sharing sites However, this typically results in unordered photos of several
different buildings with a significant fraction of unrelated photos. Therefore, there is a
need for efficient image mining algorithms that group photos on a building or view
level and remove photos that do not show buildings. Such photo clustering approaches
are also a prerequisite for other interesting applications such as photo auto-annotation
[7, 8], landmark recognition [2] or automatic landmark detection [9, 10].

Despite their importance, there is not yet a suitable benchmark for evaluating and
comparing large-scale landmark mining algorithms. In this paper we take a first step
in this direction by performing an evaluation of two state-of-the-art approaches: The
first [11] is a top-down method that builds the complete pairwise matching graph of
the image collection and segments it using spectral clustering. The second [12, 13] is a
fast and approximate bottom-up approach that finds cluster seeds using the (geometric)
min-hash image hashing algorithm. The seeds are then grown to clusters using query
expansion [14].

In their original publications, both clustering approaches were evaluated on the Ox-
ford buildings dataset which was originally created for evaluating image retrieval [15].

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 310–323, 2012.
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The dataset was constructed by collecting images of touristic sites by querying Flickr
with the site labels. This results in a clear segmentation into groups that show a particular
building, making the clustering task very simple. We use this dataset in our evaluation
for consistency, but show that due to its structure the results are not very meaningful.

An important question not fully answered in the original publications [11, 13] is how
the performance of these approaches translates to a more unconstrained setting, i.e. un-
structured photos of an entire city. In this paper, we investigate this question by applying
spectral clustering and geometric min-hash to a dataset of 500k geotagged images from
the inner city of Paris. We furthermore present a ground truth for the evaluation of land-
mark mining systems on this dataset1. We closely examine the performance tradeoff
between the two methods and propose a combination of them that can help eliminate
the shortcomings of each approach. The tradeoff between computation time and clus-
tering recall can then be adjusted using a single parameter.

Related Work. In the following, we describe the most closely related approaches from
the literature in more detail. Agarwal et al. [1] present a large-scale SfM system with a
highly distributed clustering pipeline. Effectively, the major landmarks of Rome are dis-
covered and reconstructed from 150,000 images in 21 hours (using 495 compute nodes)
of which 13 hours are spent in the image matching stage. For the clustering, a full tf ·idf
matching is performed and the top 10 matches for each image are verified using epipolar
geometry. The resulting clusters are then merged and extended using query expansion to
produce the largest possible connected components. Opposed to this, Strecha et al. [16]
propose to reconstruct cities at a building level and to then join the partial reconstruc-
tions into a city-scale model using meta data. A prerequisite for this is a clustering on the
building level. Gammeter et al. [7] build a system for automatic tagging of landmarks
in touristic photos. Retrieval is performed by overlaying a square grid of 200×200 m
cells over entire cities. By performing matching only within these cells, scalable and
distributed preprocessing is possible. Meta information such as tags are used as a cue
to cluster photos and to distinguish between photos of events and photos of landmark
buildings. An object-driven pruning of the inverted index is performed in order to speed
up the retrieval process. Finally, the discovered clusters are associated with Wikipedia
articles, which serves as an additional verification. Zhang et al. [17] build a web-scale
image-based landmark search engine by compiling a list of landmarks from geotagged
photos and online travel guides and then collecting images of these landmarks from
community photo collections and image search engines. In settings where meta infor-
mation is not available, approaches based only on image information are necessary.
Philbin et al. [11] present an exhaustive method for landmark detection. A full pairwise
matching graph is constructed and segmented using spectral clustering. The approach
is discussed in detail in Section 2. Because this approach requires a complete pairwise
matching including spatial verification of the image collection it does not scale well to
larger datasets. Chum et al. [13] present a faster but approximate approach using a ran-
domized hashing scheme that allows for constant-time discovery of near duplicates in
web-scale databases. The authors propose to use the hash collisions as “cluster seeds”
from which to start a graph discovery using query expansion [14].

1 Both the dataset and the ground truth are available from
http://www.mmp.rwth-aachen.de/data/paris-dataset.

http://www.mmp.rwth-aachen.de/data/paris-dataset
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(a) Spectral clustering.

(b) Min-hash pipeline.

Fig. 1. The two different landmark discovery pipelines. The dashed lines denote the spectral clus-
tering add-on that we propose for improving clustering precision.

2 Spectral Clustering on the Matching Graph

This section outlines the steps for clustering an image collection using spectral cluster-
ing, as proposed in [11]. Fig. 1a gives an overview of the pipeline.

Image Representation. A local feature representation of the images is built by first
extracting scale-invariant Hessian affine regions [18] and SIFT descriptors [19]. The
collected SIFT features are quantized into a codebook of 1M entries using k-means. To
make this step computationally feasible, an approximate nearest neighbor (NN) search
based on randomized kd-trees [15] is employed. The visual vocabulary is constructed on
a smaller subset of the data with low-precision but a fast NN search. A higher precision
NN search is used when matching features against the visual vocabulary.

Efficient Image Matching. The final image representation comprises the bag of vi-
sual words, feature positions, and the affine regions from the detector. Image retrieval
is conducted in a similar fashion as text retrieval: query matches are retrieved using an
inverted file structure that maps every visual word to all images it occurs in. The results
are ranked using the cosine distance of their “term frequency · inverse document fre-
quency” (tf · idf ) vectors. This results in a shortlist of k candidate matches, which are
then geometrically verified by fitting a homography using SCRAMSAC [20]. The im-
ages for which the estimated homographies have sufficient support, are re-ranked above
all other images [15] by adding 1.0 to the tf · idf score. This yields the final ranking
score. The matching graph is constructed efficiently by querying the inverted file and
inserting an edge for each match that exceeds a certain matching score threshold.

Spectral Clustering. In general, the connected components of the resulting matching
graph correspond to a rough under-segmentation of the landmarks. Following [11] we
first over-segment the connected components to get basic image clusters which can then
be merged again with sufficient spatial verification. To this end, we use the spectral
clustering algorithm of [21]. For each connected component, the optimal number of
clusters is found by optimizing the Newman Q measure [22].

Re-merging Clusters. Philbin et al. [11] employ a heuristic to determine which spec-
tral clusters show the same building and should therefore be merged: Each cluster is
represented by its member image with the highest valence in the matching graph. The
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image boundaries are then projected using the homographies of the edges along the
shortest paths between the representative images. This yields the length of the shortest
paths and the size of the overlapping area between representative images. Thresholds for
the path length and overlap influence precision and recall as we will show in Sec. 5.2.

3 Min-hash Cluster Discovery

Min-hash [12, 13, 23] is a technique from text retrieval [24] used for efficiently dis-
covering pairs of similar images in large image collections. The special property of
min-hash is that the probability of an image pair being discovered increases with its
similarity. This makes min-hash suitable as a near-duplicate image detector [25]. Chum
et al. [12] demonstrate that the discovered image pairs can also serve as seeds for image
clustering. Clusters are discovered in a growing step starting with the cluster seeds. This
way, instead of building a complete matching graph, the min-hash approach reduces
computational time by only exploring certain connected components. An overview of
the pipeline is given in Fig. 1b. The stages in dashed boxes are an extension that we
propose later in this section.

Hashing Images. A min-hash is a pseudo-random number generated from the visual
words of an image. Let V be a visual word codebook. Given a random permutation of
the numbers {1, . . . , |V |}, the min-hash of an image is the first of the image’s visual
words occurring in the permutation. Typically, about 500-1000 random permutations
are pre-generated and used for computing a set of min-hashes for each image. The
probability of two images having the same min-hash equals the set overlap of their
visual words [25]. To decrease the number of random collisions, several min-hashes are
summarized into s-tuples called sketches (s = 3, . . . , 5). An image pair is said to cause
a collision if all min-hashes in a sketch are identical.

Detecting Collisions. To efficiently find min-hash collisions, hash-tables are created,
storing for each min-hash the list of images with this hash. Then, sketch collisions
are the intersections of the s sets of colliding images. This hashing procedure enables
constant-time collision detection [12]. The price to pay for this efficiency is a very low
recall, particularly for less similar, but still relevant, image matches.

Geometric Min-Hash. In geometric min-hash [13], sketches are created from features
in a spatial neighborhood. This is done by selecting the first min-hash in a sketch ran-
domly and then restricting the search for the remaining min-hashes to the affine region
around the first feature. With this extension, a sketch collisions means that the colliding
images not only have the colliding visual words in common, but also that the corre-
sponding features come from the same image region. Because of this more distinctive
definition of a sketch, Chum et al. report [13] an increase in precision and recall over
standard min-hash even with the sketch size reduced to s = 2 and the number of min-
hashes per image reduced to k = 60. Therefore, we only use geometric min-hash in our
evaluation.

Cluster Growing. Given a set of cluster seeds, clusters are grown by recursively ap-
plying query expansion [14]. For each cluster seed discovered by min-hash, codebook-
based image retrieval is performed (Sec. 2). For each match above a ranking score
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Table 1. Statistics of the datasets, their corresponding ground truths and matching graphs

(a) Statistics of Oxford and Paris datasets. GT
denotes ground truth.

Oxford Paris

# Images 5,063 501,356
# Features 16,334,970 1,564,381,034

# GT Images 568 94,303
# GT Clusters 11 79

(b) Statistics of the complete matching
graphs.

Oxford Paris

# Nodes 5052 501,356
# Edges 11,957 11,356,090

avg. valence 4.7 45.3
max valence 83 4,100

threshold, a recursive retrieval is performed until no new images are found. This pro-
cess can be thought of as finding connected components in the matching graph.

Extension: Spectral clustering. The cluster growing process aims at maximizing recall
by growing single-link components in the matching graph. Multiple landmarks can thus
potentially end up in the same cluster (see Fig. 2b). We thus propose to segment the
grown components with spectral clustering and subsequent merging (Sec. 2).

4 Experimental Setup

Datasets. We use two different datasets in our evaluation (Table 1a). The well-known
Oxford Buildings dataset consists of selected photos depicting eleven distinct landmark
buildings in Oxford that were retrieved from Flickr using keyword searches. With 5,063
images and well-separated objects, it is however quite limited. We use the dataset for
the sake of comparison but show that the results are not very expressive. Following the
approach of Philbin et al. [11], we build a clustering ground truth from the provided
image retrieval ground truth by combining the sets of “good” and “ok” relevant images
for each query.

Due to the lack of a large-scale landmark mining database with a “natural” distribu-
tion of tourist photos, we built a larger corpus of photos downloaded from Flickr. We
deliberately neither queried particular landmarks nor filtered the query results, so the
resulting dataset is closer to real-world conditions. We downloaded all geotagged pho-
tos from a bounding box around the inner city of Paris from Flickr and Panoramio and
rescaled them to 1024×768 pixels. The Paris corpus therefore contains noise like heav-
ily post-processed images, images of parties, pets, etc. that do not depict landmarks as
well as many duplicates and near-duplicates, which we filtered out in order not to bias
our evaluation. To establish a ground truth we first over-segmented the complete match-
ing graph using spectral clustering on the connected components (Sec. 2). Inspection
showed that the resulting clusters had a high purity with only a negligibly low number
of outliers. We then manually joined clusters which showed the same buildings from the
same view. The ground truth consists of 79 clustering covering 94k images (Tab. 1a).

Evaluation Measures. We adopt the measures precision and recall from classification
evaluations. LetG denote the ground truth andC a clustering. ThenNC andNG denote
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(a) Density of the matching graph. Color en-
codes node valence (log scale).

(b) Connected components of the matching
graph larger than 20.

Fig. 2. Distribution of downloaded photos in Paris

the total number of images covered by C and G, respectively. To measure how well an
algorithm groups similar photos, we use the well-known concept of purity:

P =
1

NC

∑
c∈C

max
g∈G

{|c ∩ g|} (1)

Note that this formulation allows more than one cluster in C to be “assigned” to the
same ground truth cluster. This measure is insensitive with respect to over-segmentation
and missing borderline cases.

We define recall similar to [12]: For each ground-truth cluster g, we find its best
representative c in the clustering C and sum up the fraction of member images actually
represented by c.

R =
1

NG

∑
g∈G

max
c∈C

{|c ∩ g|} (2)

The Mean Cluster Recall allows multiple ground-truth clusters to be assigned to the
same cluster c, so assigning all photos to the same cluster would optimize recall. Thus,
recall is insensitive with respect to under-segmentation and including borderline cases.

5 Results

We now evaluate spectral clustering and min-hash on the Oxford Buildings and Paris
datasets. In particular, we show what level of performance spectral clustering can achieve
and how the performance of min-hash compares to this. Finally, we give a detailed anal-
ysis of the computation time of both algorithms.

5.1 Matching Graph

The first step of the spectral clustering pipeline is to build a matching graph (Section 2).
Table 1b shows statistics of the graphs for the two datasets. Interestingly, the average
valence of the Paris dataset is an order of magnitude higher than the average valence
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Table 2. Statistics of the connected components. The first column gives the number of connected
components with a particular size, and the second column gives the total number of images in
these components. Connected components of size 1 are images for which no match was found.

(a) Oxford

CCs images

total 3,297 5,052
= 1 2,917 2,917
≥ 2 380 2,135
≥ 20 11 929
≥ 100 2 518
≥ 500 0 0

(b) Paris

CCs images

total 303,522 501,356
= 1 277,490 277,490
≥ 2 26,032 223,866
≥ 20 397 150,367
≥ 100 63 138,122
≥ 500 19 129,961

of the Oxford dataset. This is due to the extreme density of tourist photos at the most
popular public places. The photo with the highest valence (4,100) is a frontal shot of
the facade of Notre Dame. Fig. 2a shows the distribution of valences in the matching
graph of Paris and Figure 2b shows the connected components. The largest connected
component (blue, 58,652 images) spans an area ranging from Notre Dame to the Lou-
vre. This shows that connected components can give a good initial grouping [11], but
further segmentation is required for a building-level clustering. In contrast, the largest
connected component on the Oxford dataset is All Souls College (406 images). Table 2
gives statistics of the connected component sizes.

5.2 Spectral Clustering

For each connected component we perform a spectral clustering as described in Section
2. This results in 3,881 clusters for the Paris dataset and 410 clusters for the Oxford
dataset. Since spectral clustering results in an over-segmentation (images of the same
building are split up into several clusters), a subsequent homography-based merging
step is performed [11]. We found that this step requires some tuning to produce the
desired results, since the error in the estimated homographies increases when accumu-
lating the transformations along long paths. Limiting the path length is an effective way
to restrict this effect. Furthermore, it is necessary to define a lower bound on the overlap
between the two cluster centers. A too low value results in different views being merged.
A too high value limits the permitted degree of viewpoint change too much. Fig. 3
shows the effect of both parameters on precision and recall. On the Oxford dataset,
when increasing the overlap threshold, we see an increase in recall while maintaining
100% precision, which means that only correct join operations are performed. From a
certain point on, only wrong merges are performed, resulting in a decrease of precision
without any change in recall. Due to the simplicity of the Oxford task we cannot draw
any conclusions regarding the merging parameters. On the Paris dataset, the tradeoff is
more clearly visible: A larger path length leads to a loss in precision, since clusters are
incorrectly joined. Too short paths cause us to miss cluster pairs that should be joined,
resulting in low recall. The best tradeoff is a path length of 5. Similarly, a too high
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Fig. 3. Cluster merging performance when varying the overlap parameter from 0% to 100%. The
colored lines show results for different path length settings.

overlap threshold will cut off paths between valid matches, while a too low threshold
will allow paths between barely overlapping images.

The merging step can still perform false merges in some problematic cases typical for
internet photo collections: For example, time-stamps in photos or embedded signatures
of the photographer can create false-positive edges in the matching graph that serve as
“tunnels” between normally unconnected landmarks. Here, further heuristics would be
necessary to discard such matches, which is not done here.

5.3 Geometric Min-Hash

Using spectral clustering as a baseline, we now evaluate the performance of min-hash.
Min-hash generates suitable cluster seeds i.e. entry points into the image collection [12].
The reason is that many similar images are made at popular places, and thus the prob-
ability for a seed is high at landmark buildings. To show this, we compare the clusters
discovered starting from min-hash seeds to clusters discovered starting from randomly
drawn images. We then apply the spectral clustering and merging steps [11] to break down
the connected components to building-level clusters and evaluate the resulting clustering.

Seed Generation. The parameters of the seed generation procedure are the sketch size
s and the number of sketches k. Fig. 4 shows the influence of these parameters (dashed
lines). The more sketches are used, the more collisions occur and the more seeds are
generated. For larger sketch sizes the algorithm becomes more selective and returns
only very similar images, which significantly decreases the number of seeds.

Duplicate Removal. Since by design, the probability for min-hash collisions is pro-
portional to the similarity (visual word set overlap) of the colliding images, duplicate
images are returned first and introduce arbitrary seeds which have a lower probability
of belonging to a landmark cluster. Therefore, it is necessary to filter the duplicates
from the seeds. Chum et al. [12] manually removed duplicates for their experiments.
We chose to perform duplicate detection using the tf · idf distance of a seed image pair.
By visual inspection of min-hash seeds, we determined a tf · idf threshold of 0.3. Seeds
with a higher tf · idf score are considered duplicates and are removed. Figure 4 (solid
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Fig. 6. Distribution of min-hash seeds (drawn as yellow dots) for k=60 and s=2 (left) and the
distribution when drawing the same number images (31,946) randomly (right).

lines) shows the effect on the number of seeds for different settings of s. For s = 3,
most of the returned seeds are duplicates, and the number of seeds detected increases
only very slowly. We thus use a setting of s = 2 for our following experiments.

Min-Hash vs. Random. Fig. 6 (left) shows the distribution of the min-hash seeds for
k = 60 and s = 2 (31,946 images), and Fig. 6 (right) shows the distribution when
the same number of images is selected randomly. The random images are much more
scattered over the city while the images selected by min-hash concentrate around the
landmarks, which is the desired behaviour for a seed selection algorithm.

For a quantitative comparison, we use the following procedure: For each setting of
s, we consider the number of seed images Ns that min-hash produces and randomly
draw Ns images from the dataset. This is done 10 times, for each value of s. In our
evaluation, we give the average results for the 10 sets of images. We only perform this
comparison on the Paris dataset.

Cluster Growing. Starting from the seeds, we grow clusters by query expansion (Sec. 3).
Each resulting cluster corresponds to a connected component of the matching graph. Ta-
ble 3 shows the results of the cluster growing process. The number of discovered clusters
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Table 3. Results of the cluster growing process starting from min-hash seeds and random images.
On the Paris dataset, the ground truth consists of the 79 largest landmark clusters. CC and GT
denote connected component and ground truth respectively. The sketch size is s = 2.

(a) Oxford

k # seeds # clusters # images covered GT covered

1 8 3 4 38.98%
2 12 4 40 52.56%
3 16 6 43 66.31%
5 36 8 54 66.31%

10 55 13 71 75.84%
30 167 26 108 80.07%

120 422 63 367 84.48%

(b) Paris

min-hash random (avg. of 10)

k # seeds # CCs avg. CC size GT covered # CCs avg. CC size GT covered

1 784 58 2,158.2 81.87% 590.0 222.6 87.11%
2 1,883 102 1,268.9 90.39% 1,407.5 97.6 94.53%
3 2,570 141 941.1 93.38% 1,887.9 74.5 96.70%
5 4,437 220 620.5 94.53% 3,236.1 44.9 98.63%

10 8,753 360 389.3 97.56% 6,292.2 24.5 99.60%
30 20,453 915 161.6 99.56% 14,463.7 11.8 99.98%

120 51,855 3,022 52.8 100.00% 35,607.5 5.7 100.00%

is roughly proportional to the number of seeds. However, we find less new images when
increasing the number of sketches k, because the largest clusters have the highest prob-
ability of being found [12]. On the Paris dataset, the 79 largest clusters in the dataset
(which make up the ground truth) are almost fully discovered already for k = 10.

Comparing min-hash to a random selection of seed images shows that roughly ten
times the number of connected components are found, but their average size is roughly
ten times smaller. This shows that randomly selected images more likely belong to small
connected components than images selected using min-hash.

Spectral Clustering of Discovered Connected Components. Even very low settings
of k produce impressive recall but the clustering lacks precision, because the clusters
discovered using query expansion become too large and thus cover multiple landmarks.
To break up the clusters to a building level, we apply spectral clustering and homography-
based cluster merging (Sec. 2) on top of the min-hash pipeline [12]. Table 4 shows the
effect of this additional step on the results. Since the results vary only slightly for different
min-hash sketch counts, we only give mean and standard deviation values computed
using settings of k from the range [1, 120]. The additional steps strongly improve the
clustering precision while only slightly decreasing recall. Fig. 5 shows a comparison of
the precision-recall curves of the two approaches when varying the minimum overlap
parameter of the merging step. The recall of min-hash increases with a growing number
of sketches and almost reaches the recall of spectral clustering at 120 sketches. Note that
the precision of min-hash does not change much when varying the number of sketches.
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Table 4. Summary of precision/recall of min-hash and subsequent cluster growing before and
after spectral clustering on the Paris dataset. Tolerance values are given in standard deviation.

Precision Recall

w/o spectral clustering 50.1% ± 0.04 97.0% ± 0.07
w/ spectral clustering 85.7% ± 7.4 83.9% ± 9.9

To summarize, the extended min-hash pipeline achieves performance comparable
to the spectral clustering pipeline for high values of k. However, the largest landmark
clusters are already discovered for low settings of k. Reducing the number of sketches
k trades off recall for computational speed. In the following section, we will investigate
this tradeoff more closely.

5.4 Runtime Analysis

Pairwise Matching. The first step of the spectral clustering pipeline the pairwise image
matching (Sec. 2). The runtime of this step consists of the inverted-file matching and
the RANSAC verification of the top k matches. Performing inverted file lookup for such
a database size has an effective runtime that is quadratic in the number of images2:

Tif = (N · (N − 1))/2 · cm . (3)

Here,N is the number of database images and cm is a constant for the matching time of
one image pair. In our measurements, cm ≈ 5.75·10−6 seconds. The time complexity of
the RANSAC verification is linear in the number of images and depends on the number
l of matches that we verify for a query.

Tv = N · l · cv (4)

Here, cv denotes the time required for the spatial verification of one image pair. It can
approximately be considered a constant. We measured the verification time to be on
average cv = 0.0005 seconds. The number of top l matches trades off missing potential
matches for computational time. Following [15], we choose k = 800 for the Oxford
dataset. For the Paris dataset we use l = 15, 000 following considerations of worst-case
match counts. Table 5a gives the number of operations and an approximate computation
time for both databases using our implementation.

Cluster Growing. Cluster growing (Sec. 3) is performed using query expansion, i.e.
by querying the inverted index with the seed image and using each verified result as
another query. This process is iterated until no new results are found and the whole
connected component is explored. Thus, the numberNc of queries for exploring a con-
nected component corresponds to its size. The runtime for this can be written as:

Tg(c) = Nc · (N · cm + l · cv) . (5)

2 Assuming N images, f matching features per image and a codebook with C entries, the ex-

pected number of inverted file entries processed per query is (without stop word removal)N·f2

C
.
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Table 5. (a) Number of matching operations and runtime estimates of the pairwise matching for
both datasets. (b) Approximate runtime of cluster growing for different min-hash settings. For all
results, a sketch size of 2 was used.

(a)

Oxford Paris

Ops t Ops t

p/w matching 1.2 · 107 73 s 1.3 · 1011 201 h
verification 4.0 · 106 34 m 7.5 · 109 44 d∑

35 m 52 d

(b)

Oxford Paris

k # imgs t # images t

5 54 23 s 102,865 12.4 d
10 71 30 s 108,982 13.1 d
15 80 34 s 113,328 13.6 d
30 108 46 s 120,760 14.5 d
60 246 106 s 126,814 15.2 d

120 367 157 s 134,884 16.2 d
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Fig. 7. Computation time of the min-hash pipeline for varying k

Table 5b gives a comparison of the computation times for different sketch counts. Since
most of the large clusters are already discovered using very few sketches, the sketch
count does not affect the computation time of the cluster growing step much.

Min-Hashing. An appealing property of min-hash is that its time complexity is (in
practice) linear in the number of images [12]. The computation of the hashes itself
takes up the major part of the processing time. Insertion into the hash table and finding
collisions is comparably fast. Computation time increases linearly in both the number of
sketches s and the sketch size k. In our implementation, the computation of a geometric
min-hash took on average 0.015 seconds per image and sketch for s = 2, and 0.016
seconds per image and sketch for s = 3. Hashing and finding collisions took 0.0008
seconds per image and sketch. So, for k = 5 and s = 2, the total time for computing
min-hash seed candidates for the Paris dataset is 10.4 hours, whereas for k = 120
computation would take 10.4 days. Additionally, a spatial verification of the candidate
seeds is performed, but the computation time for this is negligible in comparison.

Spectral Clustering. Spectral clustering involves three basic steps. First, it is neces-
sary to compute a singular value decomposition on a modified matching graph (N×N )
into k singular values, where k is the number of clusters we want to obtain for every
connected component. Then we need to find k out of N vectors of dimension k which
are orthogonal to each other to initialize k-means clustering in order to obtain stable
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results. Finally, we need one run of k-means with k centroids, N points, and k dimen-
sions. This procedure has to be repeated for different k, to find the appropriate number
of clusters for each connected component.

Experiments showed that runtime of one spectral clustering run is approximately lin-
ear in the number of photos, but quartic in the number of clusters k. For large connected
components we also need larger values for k, in order to discover cluster on a building
level. Therefore, runtime is dominated by the few largest connected components: Clus-
tering the largest four connected components takes about 2 weeks, whereas clustering
all other connected components (smaller than 5,000 images) only takes 2 hours in total.
Since all methods explore the four largest connected components, we can approximate
the runtime for spectral clustering with 2 weeks in each case.

Summary. We now summarize the computation times of both approaches for the Paris
dataset. We will not cover feature extraction time, because this step is necessary for both
approaches. The total computation time of the spectral clustering pipeline includes pair-
wise matching (47 days), spectral clustering (14 days) and cluster merging (12 hours).
The total computation time of the spectral clustering pipeline on the Paris dataset is thus
61.5 days. (Computation was performed on a cluster of PCs.)

The computation time of min-hash is influenced by the sketch count k. This pa-
rameter directly affects the time for computing the min-hashes and it indirectly affects
the cluster growing time through the number of discovered clusters. Fig. 7 gives an
overview of the computation time of the min-hash pipeline for different settings of k.
For a choice of k = 5, the total runtime is 16 days, and for k = 120, the runtime is 30
days. Depending on the parameter settings, min-hash is thus two to four times faster.

6 Conclusion and Outlook

We evaluated two approaches for landmark mining in large-scale image collections.
We presented a new dataset and ground truth for the evaluation of such approaches.
Our results show that spectral clustering is capable of clustering the pairwise image
matching graph into building-level clusters, however at high computational cost.

Min-hash focuses the cluster growing step on promising entry points, and thus trades
off speed for recall. However, it is necessary to implement duplicate removal to sup-
press low-quality seeds. We also showed that using the connected components directly
as clusters, as proposed by Chum et al. [14], results in low precision, which can be
improved by spectral clustering the connected components. The resulting approach was
shown to be a good tradeoff between computation time and clustering quality, but is
relatively complex. In particular, it seems overkill to first over-segment the image col-
lection and to then again join clusters of the same building.

An ideal approach would find seed images with a high probability if they are good
representatives for their neighbors. The growing step should avoid under-segmentation,
so that it becomes unnecessary to run a costly re-segmentation process. That is, the seed
growing step should stop as soon as a single building is covered. Achieving these goals
will require deeper investigation, which is ongoing research.
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Abstract. The analysis of vanishing points on digital images provides
strong cues for inferring the 3D structure of the depicted scene and can
be exploited in a variety of computer vision applications. In this paper,
we propose a method for estimating vanishing points in images of ar-
chitectural environments that can be used for camera calibration and
pose estimation, important tasks in large-scale 3D reconstruction. Our
method performs automatic segment clustering in projective space – a
direct transformation from the image space – instead of the traditional
bounded accumulator space. Since it works in projective space, it han-
dles finite and infinite vanishing points, without any special condition or
threshold tuning. Experiments on real images show the effectiveness of
the proposed method. We identify three orthogonal vanishing points and
compute the estimation error based on their relation with the Image of
the Absolute Conic (IAC) and based on the computation of the camera
focal length.

Keywords: Vanishing point detection, Segment clustering, 3D
reconstruction.

1 Introduction

Large-scale three-dimensional (3D) reconstruction is a challenging task in com-
puter vision and has received considerable attention recently due to the useful-
ness of the recovered 3D model for a variety of applications, such as city planning,
cartography, architectural design, fly-through simulations, and forensic science.

The key task in large-scale 3D reconstruction is to recover high-quality and
detailed 3D scene models from two or more unordered and wide-baseline im-
ages [1], which may be taken from widely separated viewpoints.

Due to the complexity of the scenes, conventional modeling techniques are
very time-consuming and recreating detailed geometry become very laborious.
In order to overcome these difficulties, some works have been inclined towards
image-based modeling techniques [2], using images to drive the 3D reconstruc-
tion [3, 4]. However, in many image-based modeling techniques, the scenes are
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reconstructed using camera calibrated images or, when this is not the case, it is
nontrivial to establish correspondences between different images.

Recent works have focused on using scene constraints to optimize the recon-
struction, especially the geometric ones found in almost man-made environments,
such as parallelism and orthogonality [5, 6]. Vanishing points are an important
geometric constraint widely found in images of man-made objects, that can be
used to calibrate the camera [6, 7] and to find the relative pose.

A vanishing point is defined as the convergence point of a set of lines in the
image plane that is produced by the projection of parallel lines in real space,
under the assumption of perspective projection, e.g. with a pin-hole camera. The
analysis of such vanishing points provides strong cues to make inferences about
the 3D structures of a scene, such as depth and object dimension, because they
are invariant features.

Each vanishing point corresponds to an orientation in the 3D scene and when
the camera geometry is known, these orientations can be recovered. Even without
this information, vanishing points can be used to group segments on the image
with the same 3D orientation.

Because of its important role in 3D reconstruction, the detection of the vanish-
ing points in a scene has to be effective, especially when no human intervention
is required. This work proposes a novel and automated method based on a geo-
metrical approach, in which all finite and infinite vanishing points are estimated
in an image of a man-made environment. It does not rely on calibration param-
eters or thresholds. Our solution is based on the clustering of line segments that
are detected in the image, representing points and segments on the projective
space. The advantages of our method with respect to previous methods are:

– Translational and rotational invariance. Preserves the original dis-
tances among points and lines, because it does not operate on a bounded
space, such as the Gaussian sphere or the Hough space.

– Unlimited location accuracy. It does not use accumulator-space tech-
niques.

– Unified handling of vanishing points. It uses projective geometry.

– Estimates all vanishing points. It includes orthogonal and non-orthogonal
vanishing points.

– No need for camera calibration. All camera parameters are unknown.

Figure 1 shows the stages of this method including detection of image line seg-
ments, determination of seeds based on a computed quality value for each seg-
ment, grouping of the line segments based on the distance among the intersection
points of the corresponding lines in projective space (and not relying on any or-
thogonality assumption). The two later stages iteratively run until convergence
to find the vanishing points. Experimental results on real images show that the
proposed method can effectively detect all finite and infinite vanishing points.
We also compute the estimation error based on the relation of the detected
vanishing points with the Image of the Absolute Conic (IAC).
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Fig. 1. Flowchart of the proposed vanishing point detection method

2 Related Work

In recent years, a lot of effort has been devoted to finding vanishing points out
of 2D perspective projections and practical methods consider this task as a line
intersection detection problem. Due to quantization and error on the detection
of segments, the segments corresponding to a specific vanishing point do not
intersect at a single point, but they intersect inside an area called vanishing
region. To address this problem, methods often break the task into three steps:

1. Extraction of line segments on the image plane.
2. Clustering of line segments to groups of lines converging to the same vanish-

ing point.
3. Vanishing point estimation for the extracted line clusters.

The first step is often implemented using a zero-crossing technique to extract
edges that are subsequently grouped to form straight segments, e.g. Canny op-
erator [8] followed by Hough transform [9]. For the second and third steps, the
methods can be roughly divided in two categories: the ones that use accumulator
spaces [10–14] and the ones that perform the clustering directly on the image
plane [15, 16].

In the seminal technique due to Barnard [10], a Gaussian sphere is used to
represent the orientation space. In this approach, lines from image space are
projected onto a sphere that is tangent to the image plane at the center of the
image. The projection of lines are circles and the sphere is discretized to compose
an accumulator space for these circles; maxima on the sphere represents orien-
tations shared by several line segments, and can be hypothesized as vanishing
points for the image.
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Since Bernard’s work, however, methods for vanishing points detection in
digital images have been based on some variation of the Hough transform in
a conveniently quantized Gaussian sphere, for mapping the parameters of the
line segments into a bounded Hough space [11]. One problem that arises in such
methods is categorized as noise: artifacts of digital image geometry and textural
effects can combine to produce spurious maxima on the Gaussian Sphere [12].
To address this problem, Almansa et al. [13] use the Helmholtz principle to
partition the image plane into Meaningful vanishing regions and use Minimum
Description Length to reject spurious vanishing points. Unfortunately, bounded
spaces are not translational and rotational invariant (do not preserve distances
between lines and points).

In [14], the image plane itself is chosen as the accumulator space and although
it is not straight-forward to treat in the same way finite and infinite vanishing
points, this method addresses the problem. But since determining local maxima
is difficult and expensive, this method imposes an orthogonal criterion – the
vanishing points must correspond to the three mutual orthogonal directions of
the scene.

The second category of methods use the image plane itself for the clustering
process, without the use of any accumulator technique [15, 16]. Generally, the
clustering process depends on computations, such as distance among points and
lines, that are performed on image space. Such methods have the advantage of
not limiting the location accuracy and of preserving distances. It can be difficult,
however, to handle infinite vanishing points without additional criterion.

Against this background, this work provides a method for vanishing point
estimation that uses the projective space – a direct transformation from the
image space – to perform the clustering of segments and to handle all vanishing
points without special criterion, despite the fact that the space is unbounded.

3 Large-Scale 3D Reconstruction from Vanishing Points

Under perspective projection, a 3D point x ∈ R
3 is projected to an image point

m ∈ R
2 via a projection matrix P ∈ R

3×4 as

m̃ = Px̃ = K[R|T]x̃ , (1)

where m̃ and x̃ are the homogeneous form of points m and x, respectively; R
is the rotation matrix, T is the translation vector from the world system to the
camera system, and K is the camera intrinsic matrix. Matrix K is defined as

K =

⎡⎣f/mx ς px
0 f/my py
0 0 1

⎤⎦ , (2)

where f is the focal length, (mx,my) is the camera pixel dimension, (px, py) is the
camera principal point, and ς refers to the skew factor. For a three-parameter
camera, we have to assume square pixels, i.e., ς = 0 and mx = my; known
principal point and known aspect ratio γ = mx/my.
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3.1 Recovering Camera Matrices

In [7], Wang et al. show that camera parameters can be learned from three
orthogonal vanishing points, assuming some restrictions. More specifically, they
prove that the camera projection matrix can be uniquely determined from three
orthogonal vanishing points, assuming a three-parameter camera. Furthermore,
they prove that the global consistent projection matrices can be recovered if an
arbitrary reference point in space is observed across multiple views.

To calibrate the camera, we have to recover the image of the absolute conic [7].
The absolute conic C∞ = I3 is a conic on the plane at infinity composed of purely
imaginary points. Under perspective projection, the image of the absolute conic
(IAC) is defined as

ω = K−TK−1 . (3)

It is know that two orthogonal vanishing points v and vT satisfies

vTωv = 0 . (4)

Consequently, a set of three orthogonal vanishing points can provide three lin-
early independent constraints to ω and a three-parameter camera can be
calibrated.

The projection matrix P is defined as P = [sxṽx, sy ṽy, sz ṽz, soṽo], where
ṽx, ṽy, ṽz are the homogeneous form of the three orthogonal vanishing points,
ṽo is the world origin; and sx, sy, sz, so are unknown scalars.

Given a set of three orthogonal vanishing points vx, vy and vz , the scalars
sx, sy and sz can be uniquely determined if the camera is assumed to have
three-parameter and if soṽo is known [7].

For large-scale 3D reconstruction, when we have multiple views of the scene,
the scalars corresponding to the projection matrices of these views must be con-
sistent. Given an arbitrary point in space which can be observed across multiple
views, the consistent scalars associated with the translation terms of the projec-
tion matrices of these views can be uniquely determined [7].

In [2], the authors solved the inconsistency among the multiple views using
digital compass information associated with each view, instead of using a key
point in multiple views.

3.2 3D Reconstruction

A possible outline for large-scale 3D reconstruction based on vanishing point
detection from uncalibrated images is presented in [7]:

(i) For each view:
(a) Compute three orthogonal vanishing points;
(b) Compute three scalars sx, sy and sz for a specified world origin.

(ii) Determine the consistent scalars of the projection matrices:
(a) Select a reference point in the first image and determine its correspon-

dence in other views;
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(b) Compute the scalars pair-wisely;

(c) Compute the consistence projection matrices for each view weighted by
the scalars;

(iii) Detect and match key features across the images;

(iv) Recover the 3D structure of these key features via triangulations;

(v) Perform global optimization.

4 Effective Vanishing Point Detection

As presented in Figure 1, our method has four main steps. The first step, de-
tection of line segments, is discussed in Section 4.1. The second and the third,
that together characterize the clustering process are presented in Section 4.2.
The last step is presented in Section 4.3.

4.1 Line Segment Detection

The line segments are used as primitives of our vanishing point estimator and
to detected them, we use a method based on the Helmholtz Principle [17]. The
usefulness of this specific method is beyond the task of segment detection. It
also provides an important value – the number of false alarms for a segment –
that is useful in the next steps to compute a quality value for the segment.

The Helmholtz principle states that if the expectation in the image of an
observed configuration is very small, then the grouping of the objects is a Gestalt:

Definition 1 (ε-meaningful event). An event is ε-meaningful, if the expecta-
tion of the number of occurrences of this event in an image is less than ε.

Let f be an image of size N ×N and x1, . . . , xl a set of l independents pixels of
a line segment A. At each xi, a random variable Xi equals 1 if the angle between
the image gradient �f(xi) and the normal to the segment A is less than pπ,
where p is the precision level (usually p ≈ 1/16); and Xi = 0 otherwise, assuming
a uniform distribution of the gradient orientations.

The random variable that represents the number of points having the same
direction as the line is Sl = X1+X2+ . . .+Xl, which has a binomial distribution
of parameters p and l.

The method considers a segment of length l0 to be meaningful when its ex-
pected number of occurrences in the image is low (lower than ε).

Definition 2 (ε-meaningful segment). A segment of length l is ε-meaningful
in a N × N image if it contains at least k(l, ε) points having their direction
aligned with that of the segment, where k(l, ε) is given by

k(l, ε) = min
{
k ∈ N, P [Sl ≥ k] ≤ ε

N4

}
. (5)
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Let li be the length of the i-th segment and ei the event “the i-th segment is
ε-meaningful”. Let χei denote the characteristic function of the event ei, so that

P [χei = 1] = P [Sli ≥ k(li, ε)] =

li∑
k=k(li,ε)

(
li
k

)
pk(1− p)li−k . (6)

Then the variable representing the number of ε-meaningful segments is R =
χe1 , χe2 , . . . , χeN4 , and its expectation E(R) gives the expected number of false
alarms.

Definition 3 (number of false alarms). Given a segment of length l0 in a
N ×N image containing k0 points aligned with the direction of the segment, the
number of false alarms for this segment is

NF (k0, l0) = N4P [Sl0 ≥ k0] . (7)

To avoid spurious responses, the method considers a subset of the ε-meaningful
segments that are maximal.

The described method depends on two parameters. The meaningful threshold
ε is necessary and it is not critical. The standard setting ε = 1 works well for
all images. However, the precision parameters p is not really necessary. Even
though p = 1/16 works well for most images, a finer p might do better in edges
with highly precise gradient orientations [13].

4.2 Line Segment Clustering

The input of our method is a set S = {s1, . . . , s|S|} of detected image segments on
Euclidean space R2, and the numberM of clusters. The output is a classification
cluster(si) for each segment, representing its assignment to a cluster.

For the segment clustering process, the method constructs three sets: set L
of lines on the real projective space RP

2, corresponding to each segment in S;
set W of the intersection points for each pair of lines in L, where w(a,b) ∈ W
corresponds to the intersection point between lines a and b; and set Q of quality
values for each segment. For a segment si with the number of false alarms NFi,
the quality value qi is

qi =

∣∣∣∣NFi − (max(NFj) +min(NFj))

max(NFj)

∣∣∣∣ , sj ∈ S . (8)

The goal of the line segment clustering is to assign a cluster for each one of
the segments in S. We denote Cj the j-th cluster. In addition, the following
properties corresponds to Cj : a seed (d1j , d2j ), where d1j and d2j are lines in
L; and a pseudo-centroid tj = w(d1j

,d2j
) ∈ W that is the intersection point

between lines d1j and d2j .
The clustering process is divided in three steps: selection of the first seeds, assign-

ment step, and update step. The algorithm aims to minimize an objective function
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M∑
j=1

∑
si∈Cj

DLP (li, tj) , (9)

where the function DLP gives the distance between a line and a point. This
function is defined in RP

2 and is given by

DLP (k, h) =
|k · h|

‖ k ‖‖ h ‖ . (10)

An important property is that the distance between two points in RP
n is the

angle between the corresponding lines in RP
n+1 [18]. Using this information, the

functionDLP gives a value that is relative to the angle between the corresponding
line and plane in RP

3. This distance is symmetric, but it is not a full metric – it
does not satisfy triangle inequality. However, it is a robust way to measure the
amount of symmetry between lines and points.

First Seeds. For a number M of vanishing points, we select as seeds 2M lines
based on the quality of the corresponding segments. More precisely, we select
the 2M lines with highest corresponding segment quality and distribute these
pairs of lines randomly across the clusters.

Assignment Step. At this step, the algorithm assigns each segment s ∈ S to
the cluster C that has the closest pseudo-centroid t. The “closest” concept is
determined by the distance function DLP . Formally,

cluster(si) = C | t = argmin
tj ,j∈[1,M ]

DLP (li, tj) . (11)

Update Step. When all segments in S have been assigned to a cluster, we need
to recalculate the positions of the pseudo-centroids. To accomplish this task, the
method selects a new seed for each cluster. For the cluster Cj , the new seed is
(d1j , d2j ).

The choice of the lines d1j and d2j is so that they minimize the error to the
lines that would pass through the real corresponding vanishing point, i.e., line
d1j minimizes the distance to the mean line of cluster Cj and d2j is chosen so
that the new pseudo-centroid tj minimizes the distance to some key intersection
points.

The line d1j is the one that the corresponding segment is assigned to the
cluster Cj and that minimizes the angular distance to the weighted mean ori-
entation of the cluster. The angular distance is the smallest angle between two
orientations. The weighted mean orientation θj for the cluster Cj , considering
the quality values as the weight, is computed as [19]

θj = arctan

⎛⎜⎝
∑

si∈Cj

qi ∗ sin(2θi)∑
si∈Cj

qi ∗ cos(2θi)

⎞⎟⎠ , (12)
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where θi is the orientation of the line corresponding to the i-th segment assigned
to the cluster.

The line d2j is the one that the corresponding segment is assigned to the
cluster Cj and which intersection point with the line d1j , w(d1j

,d2j
), minimizes

the sum of the distances to all other intersection points w(d1j
,i), where si is

assigned to Cj .
The process of determining d1j and d2j on cluster Cj is illustrated on Figure 2.

First, the mean orientation of segments assigned to Cj (corresponding to non-
dotted lines) is computed. Line d1j is the one with closest orientation to the
mean. Line d2j is the one that, together with d1j , forms the intersection point
closest to all other intersection points of d1j (only considering the ones formed
by lines corresponding to segments assigned to cluster Cj).

Fig. 2. Determination of the seed (d1j , d2j ) of the cluster Cj . Non-dotted lines corre-
spond to segments assigned to cluster Cj .

The relative distance between two intersection points in RP
2 is given by

the angle between the corresponding lines in RP
3. Figure 3 illustrates the dis-

tance on the spherical model of RP
2 between a finite point a and a infinite

points b.

Fig. 3. Relative distance between a finite point a and a infinite points b, on a spherical
model of RP2
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The new pseudo-centroid tj of cluster Cj is w(d1j
,d2j

) – the intersection point

between lines d1j and d2j .
The two last steps – assignment and update – must be computed until con-

vergence is achieved, i.e. until the pseudo-centroids no longer change.

4.3 Vanishing Point Estimation

The final step is the estimation of the vanishing points location. For each de-
tected cluster Cj , the method selects, as the corresponding vanishing point, the
intersection point vj that is the closest one to all lines in the cluster, according
to DLP :

vj = argmin
p

∑
si∈Cj

DLP (li, p) . (13)

5 Experiments and Results

We implemented our algorithm in C++ and we conducted the experiments using
the York Urban Database [20]. It consists of 102 indoor or outdoor images of
man-made environments. Figure 4 illustrates a few obtained results. The first
column shows input images with the detected segments. The second row shows
the line clustering results and the location of the finite vanishing points. For
experimental purposes, the parameter M was set for each image. For real pur-
poses, the parameter M does not need to be tuned. If M = 3, the method will
actually detect three vanishing points.

Our first experiment to test the effectiveness of the estimated vanishing points
was to compute the error associated with their relation with the Image of Ab-
solute Conic (IAC).

The York Urban Database provides the camera intrinsic parameters and there-
fore it is simple to construct the camera intrinsic matrix K (Equation 2). Given
K, the IAC ω is given by Equation 3.

Let vi, i = 1, . . . ,M be the estimated vanishing points. Our goal is to find the
triplet that is more orthogonal, i.e, we want to minimize

ei,j,w = (viωvj)
2 + (vjωvw)

2 + (vwωvi)
2 . (14)

For all vanishing points estimated by our method, we select the triplet that
minimizes Equation 14, the orthogonality error, as the three orthogonal vanish-
ing points. A triplet (vi, vj , vw) of orthogonal vanishing points leads to a zero
ei,j,w (Equation 14), the error associated with our estimation procedure. Fig-
ure 5 shows the cumulative orthogonality error histogram for our method and
for the method provided in York Urban database (hand detected segments and
vanishing points detection on the Gaussian sphere), called here as Ground Truth.

The second experiment was to estimate the focal length with the vanishing
point triplet that minimized Equation 14 and to compute the focal length er-
ror compared to the real focal length provided in the York Urban database.
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Fig. 4. The first column shows the input image and all detected segments. The second
column shows the line clustering result and the estimated finite vanishing points. Each
input image has exactly three vanishing points. Parallel lines with the same color rep-
resent lines associated with a vanishing point at infinity; the other lines are associated
with finite vanishing points.

To compute the focal length, we recovered the camera intrinsic matrix K by
decomposing the IAC matrix with unknown focal length.

Our method is compared with three other vanishing point detectors, summa-
rized in Table 1. The method Almansa 2003 detects vanishing regions instead of
vanishing points. For comparison purposes, we have selected the center of the
detected regions as the vanishing points location. We called this extension as
Almansa 2003 + vpe.

Figure 6 shows the cumulative focal length error histogram for our method
and for the others methods (Table1) in the York Urban database. We can see
that for the critical part of the histogram, where the focal length error is low,
our method provides significant superior results.

Table 1. Vanishing point detectors used for comparison

Method Line detection VP estimation

Ground Truth [20] by hand Gaussian sphere

Tardif 2009 [16] Canny detector+flood fill J-Linkage

Almansa 2003 [13] Helmholtz Principle Helmholtz Principle
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Fig. 5. Cumulative histogram for the estimated errors on York Urban Database. A
point (x, y) represents the fraction y of images in the database that have error e < x.
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Fig. 6. Cumulative histogram for the focal length errors on York Urban Database. A
point (x, y) represents the fraction y of images in the database that have focal length
error less than x.

6 Conclusion

This work has examined the problem of estimating vanishing points on an image,
a useful tool in large-scale 3D reconstruction, since vanishing points can be used
for camera calibration and pose estimation.

We presented a new automated method to detect finite and infinite vanish-
ing point, without any prior camera calibration or threshold tuning. Since the
method is performed on an unbounded space – the projective plane – all vanish-
ing points can be accurately estimated with no loss of geometrical information
from the original image, as illustrated on the experimental results.
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The method is effective when applied to images of architectural environments,
where there is a predominance of straight lines corresponding to different 3D
orientations. This is characterized as a strong perspective. However, if we go
to ICCV 2011 in Barcelona, Spain, for example, our pictures will not be good
inputs for the method. Most of the buildings in Barcelona have no straight lines,
an important characteristic to achieve the detection of the vanishing points.

The results show visually the effectiveness of the vanishing points estimation.
The method is also effective when relating the orthogonal vanishing points with
the Image of Absolute Conic and for focal length estimation.
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Abstract. To improve the accuracy and efficiency of image copy detection, a 
novel system is proposed based on Graphics Processing Units (GPU). We com-
bine two complementary local features, Harris-Laplace and SURF, to provide a 
compact representation of an image. By using complementary features, the im-
age is better covered and the detection accuracy becomes less dependent on the 
actual image content. Moreover, ordinal measure (OM) is applied as semilocal 
spatial coherent verification. To improve time performance, the process of local 
features generation and OM calculating are implemented on the GPU through 
NVIDIA CUDA. Experiments show that our system achieves a 15% precision 
improvement over the baseline Hamming embedding approach. Compared to 
the CPU-based method, the GPU realization reaches up to a 30-40x speedup, 
having real-time performance.  

Keywords: image copy detection, CUDA, GPU, local feature, semilocal spatial 
coherent verification. 

1 Introduction 

The goal of image copy detection, given a query copy image, is to locate its original 
image in the database. The copy image is obtained by editing the original image 
through photometric and geometric changes. It is useful in many applications, such as 
copyright protection and redundant image filtering. 

State-of-the-art image copy detection systems [1, 2, 3, 4] are based on a bag-of-
features (BOF). BOF image retrieval systems first extract a set of local descriptors for 
each image, such as the popular SIFT descriptor [5]. Combined with effective region 
detectors [6, 7], these descriptors are invariant to local deformations [8]. Then, the 
detection systems quantize the descriptors into visual words and apply textual index-
ing and retrieval methods. The commonly used quantizer is k-means clustering. By 
adopting an inverted file index of visual words the retrieval systems avoid storing and 
comparing high-dimensional descriptors sequentially. 

While critical for scalability, quantization has two major shortcomings. First, quan-
tization reduces the discriminative capacity of local descriptors, since different de-
scriptors quantized to the same visual word are considered to match with each other. 
Second, it is sensitive to transformations. The slight modifications to an image patch 
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can lead to its descriptor being quantized to different visual words. Soft-quantization 
[4] has been proposed to solve these two problems by quantizing a descriptor to sev-
eral neighboring visual words, but it increases the index file size and still ignores the 
spatial information of feature points. Global spatial coherent verification [1, 2, 3] has 
been proposed as post-processing to reject mismatches, but it is computationally ex-
pensive. Besides, the extracting of local regions and descriptors is so time-consuming 
that most of the existing systems only apply one kind of local feature [1, 3, 4]. As 
different local features contain different characteristics of an image, adopting one 
kind of local feature cannot represent an image comprehensively [8].  

In the past few years, the progress of GPU is tremendous. The computational capa-
bility of GPU today is much higher than that of the CPU. Due to its powerful compu-
ting capability, the GPU nowadays serves not only for graphics display, but also for 
general-purpose computation [9], such as molecular dynamics and image processing. 
To promote the use of GPU in the field of parallel computing, NVIDIA announced a 
powerful GPU architecture called “Compute Unified Device Architecture” (CUDA) 
[6]. CUDA provides two main modifications to effectively improve the programma-
bility of GPU: unified shaders and shared memory. CUDA is basically a single in-
struction and multiple data architecture and can let programmers efficiently map a 
computing problem onto the GPU [11, 12, 13]. 

In this paper we propose a novel scheme which combines two local features, Har-
ris-Laplace (with SIFT descriptor) [5, 6] and SURF [7], to design an effective and 
efficient image copy detection system. These two local features are complementary to 
each other and can provide highly compact representation of an image. We also em-
ploy OM [14, 15] to represent the spatial configuration around the interest point, sup-
plying semilocal spatial coherent verification. OM is easy to calculate and has great 
distinguishability. Furthermore, the processes of interest point extraction, descriptor 
generation and OM computing are all accomplished on GPU, which improve the time 
performance significantly. Experiments show that our scheme achieves a 15% im-
provement over the baseline approach [1] and has real- time performance. 

The paper is organized as follows. Section 2 describes the new image indexing 
strategy. Section 3 presents the details of GPU implementation. Finally, section 4 
shows the experiment results and section 5 concludes the paper. 

2 Image Indexing Strategy 

In this section, we propose a novel image copy detection system. Instead of using a 
single local feature, we make use of two local features, which represent different parts 
of an image, to increase the detection accuracy of our system. Meanwhile, to avoid 
the complex global spatial coherent verification, we adopt OM [14] as semilocal spa-
tial coherent verification. Then an effective image copy detection system is proposed.  

2.1 Combination of Local Features 

Local features have been widely used in image copy detection and other applications 
[1 - 8]. But the existing systems [1 - 4] usually adopt only one kind of local feature. 
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As a local feature just represents partial information of an image, such as corner, blob 
and region, it is not representative to distinguish an image in a large corpus of images 
[8]. Among all the local features, we pay special attention to Harris-Laplace [6] and 
SURF [7]. 

 

Fig. 1. Left: Interest points detected by Harris-Laplace. Right: Interest points detected by 
SURF. The red circles represent the detected features. 

The Harris-Laplace detector [6] is based on the second moment matrix. The second 
moment matrix is also called the auto-correlation matrix, which is often used for 
feature detection and describing local image structures. This matrix describes the 
gradient distribution in a local neighborhood of a point. 
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Where Iσ is the integration scale, Dσ is the differentiation scale; xI and yI are the 

derivatives computed in the x and y direction. The eigenvalues of matrix M represent 
two principal signal changes in the neighborhood of point X. This property enables 
the extraction of points, for which both curvatures are significant, that is the signal 
change is significant in the orthogonal directions i.e. corners, junctions etc [6], as the 
left image of Fig.1 shows. 

The SURF detector is based on Hessian matrix [7], which can also be applied to 
describe the properties of local image structures. The Hessian matrix of an image is 
built with second order derivatives. 

              
( , ) ( , )

( , )
( , ) ( , )

xx D xy D

D
xy D yy D

I X σ I X σ
H X σ

I X σ I X σ
 

=  
 

 .                   (2) 

Where Dσ is the differentiation scale; xxI , yyI and xyI are the second order deriva-

tives. These derivatives encode the shape information by providing the description of 
how the normal to an isosurface changes, that is the signal change is conspicuous in 
all the directions around the point X. Based on this property, blob-like structures can 
be found in the image [7], as the right image of Fig.1 shows. 
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The theoretical analysis of Harris-Laplace and SURF shows that SURF is in a 
sense complementary to Harris-Laplace [8]. As an example shown in Fig.1, for an 
image of sunflower field, Harris-Laplace [6] detects “corner” like structures and the 
detected points are near object boundaries. For the same image, SURF [7] detects 
“blob” like structures and the detected points are localized in the object plane than 
corners. By using them together, the image is better covered and the detection per-
formance becomes less dependent on the actual image content. In this motivation, we 
combine these two detectors to realize effective image copy detection. 

2.2 Semilocal Spatial Coherent Verification 

To improve the discriminative power of local features, global spatial coherent verifi-
cation has been introduced to image copy detection [1-5]. By estimating the affine 
transformation between the query image and the candidate images, it can filter out 
images that do not arise from valid 2D geometric transforms of the query image. 
Global spatial coherent verification is effective, but it has a high degree of computa-
tional complexity. Local spatial consistency from k (k = 15) nearest neighbors, a 
weaker but computationally more feasible geometric constraint, is proposed in [2] to 
filter false matches. However it is sensitive to image transformations. 

So far, little attention has been paid to using the information of the interest point's 
spatial neighborhood to improve its distinguishability [15]. In this paper, instead of 
using global spatial coherent verification, we adopt OM [14] to represent the semiloc-
al spatial relation of the neighborhood around the detected interest point, providing 
semilocal spatial coherent verification. As shown in Fig.2, the red dot is the interest 
point p ; suppose the characteristic scale of p is σ , the side length of the local region 

and the spatial neighborhood are 1k σ and 2k σ respectively. In experiment, 1k is 10 

and 2k equals to 20. We extract the descriptor of p from its local region and the OM 

of p from the spatial neighborhood. 

 

Fig. 2. Feature generation areas and corresponding features 

Let 1 2 9( , , , )xom x x  ... x=  and 1 2 9( , , , )yom y y  ... y=  are the two OMs of interest 

points X and Y, the similarity of xom and yom is defined by: 

                 
9

1
, ,x y i ii

S om om  d x y
=

= （ ） （ ） ，                  (3) 

where d(.) is the 1L distance. 
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2.3 Image Copy Detection Strategy 

Our image copy detection system is illustrated in Fig.3. To improve the detection 
accuracy, we apply approximate nearest neighbors (ANN) indexing structure [16] for 
feature storage and search. 

 

Fig. 3. The image copy detection system 

The system consists of the following three steps: 

1. Construct feature datasets: For each image in the image database we extract 
its local features, Harris-Laplace (with SIFT descriptor) [5, 6] and SURF [7]. 
The OMs are computed for all the interest points. Then the ANN algorithm 
[16] builds feature datasets to store and index the features, one dataset for a 
kind of feature. The OMs are stored in the document. 

2. Query and filter: As we apply two kinds of features, there are twice query 
processes for a query image Q. For each interest point q of Q, we use approx-
imate k (k = 10) near neighbor search to query the corresponding feature data-
set, getting the initial candidate point set S'. Then we filter out the point p in 
S', if , ) 5q pS om om <( . The score of the candidate image P is calculated by: 

                         
( , )

( )
( , )

match Q P
score P

min Q P
=  .                    (4) 

Where ( , )match Q P is the number of matched points between image Q and 

P, and ( , )min Q P is the minimum point number of the two images. So Q 

have two result lists and P may appear in both lists and have two scores, 

1score P( ) and 2score P( ) . 

3. Results fusion: We fuse the result lists returned by the queries of each kind of 
feature. For each candidate image in “Result 1” and “Result 2”, the fusion is 
defined by: 
 

                 1 2final score P  = max score P score P( ) ( ( )， ( ) )  .        (5) 
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It means to take its maximum score. The final returned images are sorted ac-
cording to their scores, and the top-ranked images are the copy images of the 
query. 

3 Implementation on the GPU 

This section presents the implementation of our image copy detection system on the 
GPU. Limited to the architecture of GPU [10] and the characteristics of the algo-
rithms, we cannot transplant the whole system to the GPU. So far, we can only realize 
interest point extraction, descriptor generation and OM computing on the GPU, while 
the rest of the system is still carried out on the CPU. The CPU and GPU co-working 
model of our system is illustrated in Fig.4. 

 

Fig. 4. The CPU and GPU co-working model 

3.1 GPU- Based Harris-Laplace 

Harris-Laplace algorithm only involves convolution and derivation operations, which 
have the inherent nature of parallelism. So, we partition the image data equally into 
data blocks and distribute them among the thread blocks, as shown in Fig.5. In the 
implementation, there are 16 × 16 threads in a thread block and the total number of 
thread block is: 

          
_ _

_
16 16

image width image height
Block num = ×  .                 (6) 

Each thread is responsible for the processing of a pixel, and the intermediate results 
are stored in the shared memory to reduce the time consuming caused by data transi-
tion. Furthermore, to speed up convolution operation, we approximate Gaussian with 
box filters, which is beneficial to GPU acceleration too. As box filters are constant, 
we put them in the constant memory when the program starts.  

During the convolution calculation, the problem of “boundary cases” will be con-
fronted. As shown in Fig.5, when calculating convolution for data blocks 1 and 6, the 
required data are represented by the red and blue dashed box. If we set “conditional 
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check” for each pixel, speedup gain will be reduced [10]. So we copy image data to 
texture memory, which handles the “boundary cases” automatically. 

 

Fig. 5. Data partition and distribution 

The data layout of our GPU-based Harris-Laplace follows the method of [11]. Four 
scales, which are four Gaussian filtered versions, are being calculated simultaneously. 
The scale-level parallelism can get further speedup. 

3.2 GPU- Based SURF, SIFT and OM 

We implement SURF and SIFT on GPU as [12] and [11] do, except for histogram 
computation, which can also be applied for OM calculation. As a commonly used 
analysis tool, histogram is quite difficult to compute efficiently on the GPU [10]. 
CUDA SDK takes advantages of atomic shared memory operations and designs an 
efficient histogram calculation method [13]. But atomic functions operating on shared 
memory are only available for devices of compute capability 1.2 and above. 

Based on the compute capability of our device (NVIDIA GeForce 9800GTX+, 
1.1), we use shared memory to calculate histogram step by step, as illustrated in Fig.6. 
To calculate the histogram of a 8× 8 pixel block, we divide it into four 4× 4 pixel 
blocks; then, four threads compute the four histograms of these blocks, one for each; 
the intermediate results are stored in the shared memory; finally, one thread combines 
the four histograms into one, getting the final result.  

 

Fig. 6. Parallel histogram computation 
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4 Experiments 

4.1 Experiment Data and Environment 

We take the INRIA Copydays dataset as evaluation dataset1.The dataset contains 157 
original images. To represent typical transformations performed on images in a copy 
detection application, each image of the dataset has been transformed with three kinds 
of transformations: 

• Image resizing (by a factor of 4 in dimension and 16 in total surface), followed by 
JPEG compression ranging from JPEG3 (low quality) to JPEG75 (high quality). 

• Cropping ranging from 5% to 80% of the image surface. 
• Strong transformations: print and scan, perspective effect, blur, paint, contrast 

change, etc.  

The transformed images are illustrated in Fig.7. The goal of this dataset is to evaluate 
the behavior of indexing algorithms for most common image copies.  

We also have 100 thousand images as “distracting images”, which are crawled 
from Flickr2. The distracters include nature scenes, people, buildings and cartoons. 
Their size ranges from 256 × 364 to 1024× 1024. 

 

Fig. 7. Sample images from INRIA Copydays and corresponding transformed images 

In the evaluation, we use the 157 original images as queries. Following the 
standard evaluation measure [1, 3], we use mean average precision (mAP) as our 

                                                           
1 http://lear.inrialpes.fr/people/jegou/data.php 
2 http://www.flickr.com/ 
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evaluation metric. For each query image we calculate its precision-recall curve, from 
which we obtain its average precision and then take the mean value over all queries. 

The experiment environment is: Intel Core E8400 3.0GHz with 2048MB memory, 
NVIDIA GeForce 9800GTX+ with 512MB DRAM, Microsoft Windows XP sp2, 
CUDA Toolkit 2.1 and CUDA Driver (181.20). 

4.2 Time Performance Analysis 

Fig.8 and Fig.9 show the time used by CPU and GPU to extract Harris_Laplace, 
SIFT, SURF and OM for images of different size. From these tables, we observe that 
local feature extraction speed can get significant improvement with GPU. It only 
takes 67.4 ms to compute a 600× 600 image, and the speedup for high resolution im-
ages is much more salient. This saves time for feature querying process and is the 
basis for real-time image copy detection. 

 

Fig. 8. Time cost of CPU and GPU to calculate SURF and OM 

 

Fig. 9. Time cost of CPU and GPU to calculate Harris-Laplace, SIFT and OM 

Table 1 illustrates the time used by the different parts of our system for detecting a 
640× 480 image. The matching process is implemented on CPU, so the time cost is 
identical. Compared to the CPU-based method, the GPU realization achieves up to a 
30-40x speedup. With the powerful parallel computing capability of GPU, our system 
has real-time performance. 
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Table 1. Time (ms) used by the different parts of our system for detecting a 640× 480 image 

 
Feature 

extraction 
Matching Total Speedup 

GPU 52.4 
17.5 

69.9 
37.4 

CPU 2602.5 2620 

4.3 Accuracy Performance Analysis 

To prove the effectiveness of semilocal spatial coherent verification played by OM, 
we do queries with and without OM and compare the corresponding mAP values, as 
illustrated in Fig.10 (a) and (b). “Harris_Laplace_no_OM” means we only use Har-
ris_Laplace, without applying OM. “Harris_Laplace_OM” means we not only use 
Harris_Laplace, but also adopt OM for semilocal spatial coherent verification. The 
same hold for “SURF_no_OM” and “SURF_OM”.  

 

(a) CROP 

 

(b) SCALE (1/16) +JPEG 

Fig. 10. The performance verification of OM as spatial coherent verification 
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From Fig.10, we can see that using OM as semilocal spatial coherent verification 
can obviously improve detection accuracy. The mAP values are increased by 10 – 
20% for CROP and SCALE + JPEG attacks; the effect is more obvious when the 
attacks getting stronger. This is because that using the spatial neighborhood informa-
tion can improve the distinguish ability of local features, and reduce mismatches. 

To evaluate the detection accuracy of our system, we take Hamming embedding 
(HE) [1] as the “baseline” approach, which is one of the best methods in state-of-the-
art [1, 3]. The vocabulary has 2000 visual words, which gives best performance 
when we experiment with different sizes. As our system has excellent performance 
in dealing with JPEG attack, we only show the comparison of handling 
cropping attack, as illustrated in Fig.11. “FUSE” is fusing the result lists returned by 
“Harris_Laplace_OM” and “SURF_OM”, as described in 2.3. 

 

Fig. 11. The performance verification of our system 

From Fig.11, we can draw two major observations. First, result fusion improves the 
mAP value remarkably, as can be seen by comparing the results for “FUSE” to “Har-
ris_Laplace_OM” and “SURF_OM”. This shows the benefit of using complementary 
features. As complementary local features has a much more compact representation of 
an image, and can deal with images of different content. Second, compared to HE [1], 
the mAP of “FUSE” gets significant improvement. When cropping rate is 50%, the 
mAP is increased from 0.83 to 0.96, about 15% improvement. It demonstrates the 
effectiveness of our system. 

5 Conclusions 

We have introduced an effective and efficient image copy detection system based 
on GPU. We combine two complementary local features together and use OM 
as semilocal spatial coherent verification. To speed up detection, the process of 
local features generation and OM computing are implemented on the GPU. The com-
bination of complementary local features can represent the information of an image 
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comprehensively. OM makes the features more discriminative and reduces mis-
matches. Experiments show that our system outperforms the current state-of-the-art 
and has excellent time performance. 

Features combination and using GPU are two general and powerful frameworks. 
Our future work is to combine features in an advanced way and port the other parts of 
copy detection, such as indexing and matching on the GPU. 
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Abstract. The paper presents an exact GPU implementation of the
quick shift image segmentation algorithm. Variants of the implementa-
tion which use global memory and texture caching are presented, and the
paper shows that a method backed by texture caching can produce a 10-
50X speedup for practical images, making computation of super-pixels
possible at 5-10Hz on modest sized (256x256) images.

Keywords: super-pixels, segmentation, CUDA, GPU programming.

1 Introduction

Segmentation algorithms have played an important role in computer vision re-
search, both as an end goal [1–3] and more recently as a preprocessing step
for other domains, including stereo [4] and category-level scene parsing [5, 6].
Breaking the image into smaller components, often called super-pixels, allows al-
gorithms to consider the image in meaningful chunks, rather than at the lowest
common denominator (pixels).

Unfortunately, algorithms developed for segmentation are often quite costly
in both memory usage and computation. This bottleneck limits the scale of the
applications and data that they can be applied to.

In this work, we show that a GPU implementation of quick shift [3] can
improve the performance of an already (relatively) fast segmentation algorithm
by 10X-50X, opening up a host of potential new applications such as scene
understanding in videos, and improved real time video abstraction [7].

2 Related Work

Most related work involving GPUs for segmentation is in the medical imaging
domain, where the extra dimension of data (a volume instead of an image) has
made speed a requirement rather than an option [8–11]. One notable exception
found outside of medical imaging is that of Catanzaro et al . [12] who adapt a
boundary detection technique (gPb [13]) to the GPU. While gPb can be used

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 350–358, 2012.
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for segmentation [14], our exact implementation of quick shift is over ten times
faster on similar hardware.

In recognition, GPU based feature detectors and trackers [15, 16] have been
proposed, as have learning components such as support vector machines [17]
and k-nearest neighbors [18]. Recently, Wojek et al . [19] even proposed a GPU
accelerated sliding window categorization scheme.

Other recent successes in using GPUs for vision include general purpose li-
braries such as OpenVIDIA [20], and specific applications which are often cen-
tered around video such as motion detection [21] or particle filtering [22].

Carreira et al . [23] have done work on approximating Gaussian Mean Shift
(GMS) by decreasing the number of iterations required by the algorithm and the
cost per iteration (by approximating the density). We effectively circumvent the
need to optimize the number of iterations because quick shift only requires one
iteration. Instead of approximating the density, we simply exploit the parallelism
of the density computation to achieve a speedup by using hardware suited for
the task (a GPU). We note that we could also approximate the density as in
[23], and that would result in further speedups.

3 Quick Shift Algorithm

Quick shift is a kernelized version of a mode seeking algorithm similar in concept
to mean shift [2, 24] or medoid shift [25]. Given N data points x1, . . . , xN , it
computes a Parzen density estimate around each point using, for example, an
isotropic Gaussian window:

P (x) =
1

2πσ2N

N∑
i=1

e
−‖x−xi‖2

2σ2

Once the density estimate P (x) has been computed, quick shift connects each
point to the nearest point in the feature space which has a higher density es-
timate. Each connection has a distance dx associated with it, and the set of
connections for all pixels forms a tree, where the root of the tree is the point
with the highest density estimate.

Quick shift may be used for any feature space, but for the purpose of this
paper we restrict it to one we can use for image segmentation: the raw RGB
values augmented with the (x, y) position in the image. So, the feature space is
five dimensional: (r, g, b, x, y). To adjust the trade-off between the importance of
the color and spatial components of the feature space, we simply pre-scale the
(r, g, b) values by a parameter λ, which for these experiments we fix at λ = 0.5.

To obtain a segmentation from a tree of links formed by quick shift, we choose
a threshold τ and break all links in the tree with dx > τ . The pixels which are
a member of each resulting disconnected tree form each segment.
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3.1 Segmentation Specific Optimizations

In the case where our feature space is restricted to contain components which
are defined on the image plane, and our set of data points are the set of pixels,
we can immediately put some useful bounds on both the density computation
and the neighbor linking process.

First, when computing the energy we can restrict the domain of pixels we
consider to a window which is less than 3σ pixels away, because beyond this the
contribution to the density is guaranteed to be small. Second, when linking the
neighbors, there is also a natural bound for the search window, because pixels
which are further than τ away in the image plane must be at least that far away
in the feature space. Conceptually we will talk about the density computation
and linking process as separate components of the algorithm, because one (the
density computation) must precede the other, and they operate on different
domains of data. A pseudo-code implementation is shown in Figure 2, and some
segmentations with various parameters are shown in Figure 1.

4 Quick Shift on a GPU

Because quick shift operates on each pixel of an image, and the computation
which takes place at each pixel is independent of its distant surroundings, it is
a good candidate for implementation on a parallel architecture.

We use CUDA 3.0 to develop a first implementation which simply copies the
image to the device and breaks the computation of the density and the neighbors
into blocks for the GPU to process.

Although this is faster than the CPU version, the bottleneck is clearly memory
latency. Global memory on GPUs is slow, requiring hundreds of cycles to access,
and for each pixel quick shift needs to access ceil((6 ∗ σ)2) neighbors.

To address this, one option is to load an apron of pixels surrounding the block
being computed into shared memory, so that when an element of the block
computes its similarity with a pixel outside of the block, the memory access
is cached. However, because this operation is not easily separable, the shared
memory requirement scales quadratically with sigma. Even modest values of
sigma will quickly exhaust the 16000 bytes of shared memory available on modern
GPUs.

So, we instead map the image and the estimate of the density to a 3D and
2D texture, respectively. We have good locality of access because each thread
accesses a block of pixels around it. The results based of this texture cached
approach are labeled with a “Tex” suffix in the next section.

5 Evaluation

There are two aspects of the algorithm to evaluate: the correctness and the time
required. To confirm the correctness of the GPU implementation, we compare
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Fig. 1. Sample quick shift results. Increasing σ smoothes the underlying estimate
of the density, providing fewer modes. Increasing τ increases the average size of a region
as well as the error in the distance estimate. The top row of images have σ = 2, the
bottom row σ = 10. The left column has τ = 10 and the right τ = 20.

function computeDensity()

for x in all pixels

P[x] = 0

for n in all pixels less than 3*sigma away

P[x] += exp(-(f[x]-f[n])^2 / (2*sigma*sigma))

function linkNeighbors()

for x in all pixels

for n in all pixels less than tau away

if P[n] > P[x] and distance(x,n) is smallest among all n

d[x] = distance(x,n)

parent[x] = n

Fig. 2. Quick shift image segmentation in pseudo-code. The algorithm proceeds
in two steps. First it iterates over the image creating a Parzen estimate of the density
at each pixel. Then, it links each pixel to the nearest pixel (in the feature space) which
increases the estimate of the density.
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Fig. 3. Evaluation images. Four images from PASCAL-2007 used to evaluate the
speed of the proposed algorithm.

the energy and segmentation to the one returned by the publicly available im-
plementation of quick shift in VLFeat [26].

To measure the speed of the algorithm, we pick a few random images from
the PASCAL-2007 dataset (shown in Figure 3). The images are cropped and
up-sampled to 1024x1024. All reported performance numbers are obtained by
averaging the results from all of the images.

We explore the effect of each parameter which changes the runtime of the
algorithm. First, in Figure 4 we show the performance of the algorithms as
the resolution of the image is increased while keeping σ and τ fixed. Next, in
Figure 5 we keep the resolution fixed at 512x512, fix τ , and adjust σ, showing
how it affects the runtime of just the density computation part of the algorithm.
Finally, Figure 6 keeps both the resolution and σ fixed and instead adjusts τ ,
showing the time required to link the neighbors.

Hardware. The CPU ground truth version is evaluated on a 2.4Ghz Core 2 Duo.
We show results for two GPUs: a laptop board (GeForce 8600M GT), and a mid-
range desktop card (GeForce 9800 GT). The 8600M GT has 4 multiprocessors,
32 cores, and a core clock speed of 475MHz. The 9800 GT has 14 multiprocessors,
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Fig. 4. Quick shift CPU vs GPU. The graph shows the amount of time required
on two different GPUs as the resolution of the image is increased. Results are averaged
over the four images from PASCAL-2007 shown in Figure 3. For this data, σ = 6 and
τ = 10. At 1024x1024, the speedup compared to the CPU version is 54X.
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Fig. 5. Effect of σ on density computation time. As in Figure 4, we show that
as σ is increased, processing time is increased and the texture memory-backed GPU
version remains the most efficient option. Here we fix τ = 10 and the image resolution
to 512x512. Results are averaged over the same four images as before.
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Fig. 6. Effect of τ on neighbor linking time. We show that as τ is increased, the
amount of time required for finding the nearest neighbor which increases the density
estimate is naturally increased. Here we fix σ = 6 and the image resolution to 512x512.
Results are averaged over the same four images as before.

112 cores, a 550MHz core clock speed. Due to limits on the runtime of CUDA
kernels on the 8600M, in Figures 5 and 6 results are not reported for the slowest
running case because the kernel was stopped before completion. We note that
while newer hardware (such as cards based on the recently released FERMI
architecture) would undoubtedly be faster, we want to show what is possible
with only limited hardware investment.

For both GPUs evaluated we use a block size of 16x16, even though it has
been shown that tuning the block size for a particular GPU can provide a boost
in performance.

Our complete source code as well as precompiled binaries for major architec-
tures are available on our website at http://vision.ucla.edu/~brian/qsgpu.

6 Conclusion

We have shown a GPU implementation of quick shift which provides a 10 to 50
times speedup over the CPU implementation, resulting in a super-pixelization
algorithm which can run at 10Hz on 256x256 images. The implementation is an
exact copy of quick shift, and could be further speeded up by approximating the
density, via subsampling or other methods. It is likely that the implementation
would also present similar speedups for exact mean shift.
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Abstract. For many years articulated tracking has been an active re-
search topic in the computer vision community. While working solutions
have been suggested, computational time is still problematic. We present
a GPU implementation of a ray-casting based likelihood model that is
orders of magnitude faster than a traditional CPU implementation. We
explain the non-intuitive steps required to attain an optimized GPU im-
plementation, where the dominant part is to hide the memory latency ef-
fectively. Benchmarks show that computations which previously required
several minutes, are now performed in few seconds.

Keywords: CUDA · GPU Computing · Articulated Tracking · Particle
Filtering.

1 The Computational Problem of Articulated Tracking

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [1]. One approach
to this estimation is to use motion capture equipment where e.g. electromagnetic
markers are attached to the body and then tracked in three dimensions. While
this approach gives accurate results, it is intrusive and cannot be used outside
laboratory settings. Alternatively, computer vision systems can be used for non-
intrusive analysis such as the one shown in Figure 1. One standard approach

Fig. 1. The type of articulated tracking for which we achieve a speed up factor of up
to 600 when using a GPU optimization. The images show stereo points with a super
imposed illustration of the skin model.
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is to use a particle filter [2] for finding a sequence of poses that match the ob-
served data well. From a practical point of view this means making many random
guesses of the current pose and comparing these to the observed data. In terms
of performance, the critical part is comparing each guess to the data. In this
paper, we present a GPU-based solution to this problem and show a substantial
increase in performance compared to a CPU-based implementation. Such perfor-
mance increases are essential in allowing us to build proper generative likelihood
models, that otherwise would be impractical.

Before dwelling into the details of this work, we briefly describe in Section 2
the general particle filter based framework for articulated tracking that forms
the foundation for this work. Next we consider related work in Section 3 and in
Section 4 we describe the likelihood model for our work. We focus on using the
GPU in Section 5 and results can be found in Section 6 before we conclude in
Section 7.

2 Particle Filtering for Articulated Tracking

The objective of articulated human tracking is to estimate the position and ori-
entation of each limb in the human body. This, as such, requires a representation
of the human body. The most common choice [1] is the kinematic skeleton which
is a collection of rigid bones organised in a tree structure (see Fig. 2(a)). Each
bone can be rotated at the point of connection between the bone and its parent.
We will refer to such a connection point as a joint.

(a) (b)

Fig. 2. (a) A rendering of the kinematic skeleton. Each bone position is computed by
a rotation and a translation relative to its parent. The joints are drawn as circles. (b)
A rendering of the skin model.

We model the bones as having known constant length (i.e. rigid), so the di-
rection of each bone constitute the only degrees of freedom in the kinematic
skeleton. The direction in each joint can be parametrised with a vector of angles,
noticing that different joints may have different number of degrees of freedom.
We may collect all joint angle vectors into one large vector θt representing all
joint angles in the model. The objective of the tracking system then becomes to
estimate this vector at each time step.
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At the heart of our articulated tracker is the well-known particle filter [2],
which we will briefly describe here. The particle filter is, in general, concerned
with estimating an unobserved state of a system from observations. In terms of
articulated tracking it is concerned with estimating the pose θt at each frame in
a video sequence. In terms of statistics, we seek p(θt|X1:t), where the subscript
denotes time and X1:t = {X1, . . . ,Xt} denotes all observations seen at time t.
This distribution is crudely represented as a set of samples that are propagated
through time by sampling from p(θt|θt−1). Each sample θ

(j)
t is assigned a weight

according to its likelihood p(Xt|θ(j)
t ). Thus, at each time step t we compute

for j = 1 to J do
Sample θ

(j)
t from p(θt|θ(j)

t−1) ;

wj ← p(Xt|θ(j)
t ) ;

end for

Usually it is computationally cheap to sample from p(θt|θ(j)
t−1), whereas it is

expensive to evaluate the likelihood p(Xt|θ(j)
t ). It is worth noting that the loop

can be executed in parallel as each sample is treated completely independent.
Once we have drawn new samples and assigned them weights, we can estimate

the current pose as the mean value of p(θt|X1:t). This can be approximated as

θ̄t ≈
J∑

j=1

wj∑J
l=1 wl

θ
(j)
t . (1)

3 Related Work on Computational Tracking

Most work in the articulated tracking literature falls in two categories. Either the
focus is on improving the image likelihoods or on improving the predictions. Due
to space constraints, we forgo a review of various predictive models as this paper
is focused on computational efficient likelihoods. For an overview of predictive
models, see the review paper by Poppe [1].

Most publications on likelihood models for articulated tracking are concerned
with finding descriptive image features. Sminchisescu and Triggs [3] showed suc-
cessful tracking using a combination of edge strength and horizontal flow in a
monocular setup. This approach is, however, bound to have difficulties due to
only having one viewpoint. One solution is to use multiple calibrated cameras
as, amongst others, was done by Deutscher et. al. [4] who used a combination of
edge strength and background subtraction. Due to the difficulties of calibration,
such approaches are, however, hard to use in non-laboratory settings. A possible
compromise is to use a pre-calibrated stereo camera as was done by Hauberg et.
al. [5]. Their solution did, however, not cope with limbs occluding each other.

While much work has gone into developing functional likelihood models, not
much has been published on efficient implementations on GPU hardware. Ex-
ceptions include the work of Bandouch et. al. [6] that use a simple colour based
appearance model in a multiple camera setup. By representing pixel colours as
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bitmasks they are able to make likelihood evaluations using only bitwise oper-
ations that can be efficiently implemented on the GPU. Cabido et. al. [7] use
a combination of background subtraction along with binary template matching
for a planar low-dimensional articulated model. They rephrase the entire opti-
misation as an application of textures on the GPU and as such get very high
frame rates.

4 Our Likelihood Model

In this section we define the likelihood model p(Xt|θt) used in this paper. We
use an off-the-shelf consumer stereo camera1, which provides us with a set of
points in 3D at each time step. We, thus, have Xt = {x1,t, . . . ,xI,t}, where I
denotes the number of points and each xi,t ∈ R

3.
We will assume that each point generated by the stereo camera is independent

and is normally distributed around the skin of the pose. Thus, we have

p(Xt|θ(j)
t ) ∝

I∏
i=1

exp

(
−d

2
i (θ

(j)
t )

2σ2

)
, (2)

where d2i (θ
(j)
t ) denotes the square Euclidean distance between the ith stereo

point and the skin of the pose parametrised by θ
(j)
t . For numerical stability [2]

we implement the particle filter on a logarithmic scale and as such only need to
compute

log p(Xt|θ(j)
t ) = − 1

2σ2

I∑
i=1

d2i (θ
(j)
t ) + constant , (3)

where the constant term can be ignored. For this definition to be complete, we
need a definition of the skin model and a suitable metric.

For the skin of the jth sample we will use a collection of capsules Cj =
{cj1, . . . , cjK}. Specifically, we assign a capsule to each bone in the kinematic
skeleton, such that the capsule is aligned with the bone. The radius of the cap-
sule depends on the bone. We then define the skin of the skeleton as the union
of these capsules. This gives us skins such as the one in Fig. 2(b). This model is
very similar to the common model (see e.g. [8, 9]) where a cylinder is assigned
to each bone. Here, we use capsules for mathematical convenience.

To compute the distance between a point and the skin, we compute the dis-
tance from the point to each capsule and pick the smallest, i.e.

d2i (θ
(j)
t ) = min

k
d2(xi,t, c

j
k) , (4)

where d2(xi,t, c
j
k) denotes the square distance from the ith stereo point to the kth

capsule of the jth sample. We will define this distance in terms of ray casting in

1 http://www.ptgrey.com/products/bumblebee2/

http://www.ptgrey.com/products/bumblebee2/
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the following. To avoid notational clutter, we will omit the time subscript from
our notation in the rest of the paper.

Let the capsule cjk be defined by the two bone end points a ∈ R
3 and b ∈ R

3

and the radius r ∈ R+. Consider the stereo point xi. This is a point seen by
the camera. Thus, xi must lie on a ray starting at the camera origin p ∈ R

3

and casting in the direction of v = xi−p
‖xi−p‖ . We can therefore think of xi as a

function of the ray length parameter Δ. That is, we have the ray definition

xi(Δ) = p+ vΔ ∀Δ ≥ 0 . (5)

From this definition we may define a measure indicating how well a given stereo
point xi fits with a given capsule. Let Δ be the ray length of the stereo point
and let Δmin be the shortest ray length corresponding to an intersection point
between the ray and the capsules then intuitively a distance measure may be
taken as |Δ−Δmin|. This corresponds to rendering a depth map of the capsules,
and computing the absolute difference between this and the depth map from the
stereo camera.

Since stereo data contains outliers, both from other objects appearing in the
scene and from false matches, we need a robust metric. Here we simply truncate
the distance if it exceeds a given threshold

d(xi, c
j
k) =

{
|Δmin −Δ| if Δmin exists and |Δmin −Δ| ≤ τ .
τ otherwise.

(6)

For this metric to be computable, we need to be able to determine if a given
ray intersects the capsules and if so compute the distance Δmin. The details of
ray capsule intersection can be found in Appendix A. It is worth noting that the
basic model works for all skin models, though ray casting details will have to be
adapted.

5 Optimizing for the GPU

The algorithm presented in this paper achieves a major speedup when imple-
mented on the GPU. However, it requires careful planning in designing for the
massive parallelism in the GPU architecture. The first problem to be addressed
is how to block data and computations most efficiently with respect to perfor-
mance. The task is to minimize data communication and maximize the amount
of computations done by one block of threads. Our targeted GPU architectures
are the CUDA enabled Nvidia GPUs with compute capability from 1.1 to 1.3.

For our current applications we typically use in the order of I ≈ 50000 stereo
points, K ≈ 40 capsules and J ≈ 2000 samples. One simple approach would be
to create a 3D float array of dimension J×K×I where entry (j, k, i) would hold
the value of d(xi, c

j
k). This would result in a naive data parallel computation

where each thread would compute a single distance measurement. However, such
an array would require 2000× 40× 50000× 4 bytes ≈ 16 Gigabytes of memory.
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This clearly exceeds the maximum available device memory, so some tiling must
be applied to our problem.

Thus, we create a grid of thread blocks in such a way that each thread block
corresponds to one sample and one tile of stereo points and we launch a mea-
sure kernel on this grid. During execution the measure kernel will loop over
samples in consecutive launches to avoid kernel time-outs. Additionally, support
for multiple GPU devices is performed by dividing the samples into one chunk
for each GPU. If multiple GPUs are available the same number of CPU worker
threads is created and then given a GPU to control. The overhead of launching
CPU threads is small and the effect will only be visible for small problem sizes
which are not the target for this paper. This orchestration results in the grid
setup illustrated in Figure 3. Using this approach we will have an intermediate
2D result array A consisting of J × POINTS_TILES computed measurements,
where POINT_TILES is set to I

POINTS_PER_BLOCK . The number of threads
in each block is identical to POINTS_PER_BLOCK, thus this value is tuned
to achieve the best occupancy for a given GPU.

measure

measure

measure

reduction

SA
MP

LE
_T

IL
ES

POINT_TILES

SA
MP

LE
S_

PE
R_

KE
RN

EL

POINTS_PER_BLOCK

Kernel Launches Measure Grid Layout

Fig. 3. Illustration of the grid layout and kernel launches for a single GPU. A se-
quence of measure kernel launches is executed: one for each tile of samples where SAM-
PLE_TILES = SAMPLES_PER_GPU/SAMPLES_PER_KERNEL. Only a single
reduction kernel is launched prior to returning to the CPU thread handling the GPU.

Subsequently we will launch a partial sum reduction kernel. We execute the
reduction kernel on a grid where each thread block corresponds with one sample.
The kernel performs partial sum reduction on the result array A to produce
the final measurement set M. The jth component in set M holds the final
measurement value of the jth sample. Observe that partial sum reduction is a
well studied problem on the GPU and we will therefore not treat it further in this
paper. The NVIDIA CUDA SDK version 3.0 contains a sample with code [10]
and the next release of CUDPP will also contain sum reduction [11].
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To perform the entire computation on the GPU we need to transfer the stereo
points X and the capsules {Cj}Jj=1 to the GPU device and then read back the
set M from the GPU device. We also need to setup the intermediate storage
A. Since each capsule takes 7 floats to store and each stereo point 3 floats the
total memory requirements on device memory is for our typical use: 7JK+3I+
J POINT_TILES+I ≈ 3 Megabytes. This is far from our upper bound on global
memory of 256 Megabytes and means that we can keep all points, capsules and
measurements in device memory during execution.

The problem that we have specified is memory bound, since it traverses the
set of capsules {Cj}Jj=1 for every stereo point in X while the computation does
not outweigh the latency of the memory. It is essential that we hide this mem-
ory latency. The GPU is perfect for doing exactly this, if enough thread blocks
are active and the memory operations are handled with care. For optimal per-
formance it will be necessary to keep data aligned in host memory and ensure
coalesced access to host memory by using the 16 Kb shared memory available in
each SM (streaming multiprocessor)2. Seven threads are used to fetch the data of
one capsule (7 floats). In Figure 4 and Listing 1.1 we show how the stereo point
data, consisting of the coordinates x, y, and z for a single point, are handled in
a similar manner, where every set of three threads is working together to fetch
one stereo point (3 floats).

/∗ blockDim . x = POINTS_PER_BLOCK ∗/
__shared__ f l o a t Xds [ 3 ] [ blockDim . x ] ;
s i z e_t i = threadIdx . x ;
s i z e_t t o t a l = blockDim . x∗3u ;
s i z e_t o f f s e t = blockDim . x∗blockIdx . y∗3u ;
f o r ( s i z e_t i i = i ; i i < t o t a l ; i i += blockDim . x )

Xds [ i i %3][ i i /3 ] = Xd[ o f f s e t+ i i ] ;

Listing 1.1. All threads in a warp of 32 threads will request data from aligned
neighboring addresses in device memory, Xd. This results in two coalesced memory
requests of maximum size (64 bytes). The data is then copied to shared memory and
organized as illustrated in Figure 4, to avoid bank conflicts.

Fig. 4. Ensuring coalesced memory transfers when transferring stereo points from GPU
device memory to shared memory. Data is fetched in blocks of 16 and thus aligned in
host memory.

2 The Nvidia Fermi architecture has 64 Kb of cache / shared memory reserved for
each SM.
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The reason for orchestrating the arrays coordinate-wise in shared memory is
to avoid bank conflicts [12]. The GPU is a SIMT (single instruction, multiple
thread) architecture and executes in an SM one instruction for a warp of 32
threads. When the 32 threads access a shared memory address, it is crucial
that they balance the requests onto all 16 banks. Since the shared memory is
organized in a round-robin fashion to the 16 banks, we can make sure that we
access neighbouring addresses.

When the GPU executes branch instructions all threads in a warp (32 threads)
follow the same branch. This means that if some threads in a warp follow one
branch and others follow another branch, all threads must visit both branches
and the instruction count goes up. With this in mind we have worked to minimize
the number of divergent branches, and where we knew there would be divergent
branches, conditional expressions were preferred instead, since both expressions
would be evaluated anyway.

The resulting measure kernel uses 24 registers, which means that we can run
up to 320 threads on devices with compute capability 1.1 or 1.2 (8192 registers)
and 640 threads on devices with compute capability 1.3 (16384 registers). 24
registers is not low enough to completely hide the memory latency, but to go
lower would require to split the measure kernel into multiple kernels which could
each use less registers. This task would require a huge temporary data set in
device memory and thus we concluded that 24 registers is the best we can do. The
block size used for the benchmarks in Section 6 is chosen so that the maximum
number of active blocks is 8 and can go to either 320 or 640 active threads.

6 Two Orders of Magnitude Speedup

To benchmark the implementation, it was run on the three systems listed in Table
1. For every benchmark, a sequential CPU implementation was also executed and
the result values compared for correctness. We varied the number of stereo points
and the number of samples to see how well the solution scales for up to 43000
stereo points and 3500 samples. The number of capsules was constant at 48. The
current GPU implementation is only limited by the maximum grid sizes and
the shared memory, thus it actually supports up to 4.194.240 stereo points and
65535 samples of 64 capsules, which can all fit inside 256Mb device memory.

Table 1. Benchmark systems

System 1 System 2 System 3
Intel Core 2 Quad @ 2.4Ghz Intel Core 2 Duo @ 2.33Ghz Intel Core 2 Duo @ 2.4Ghz
4Gb DDR2 800Mhz 4Gb DDR2 800Mhz 2Gb DDR2 667Mhz
Nvidia C1060 Tesla 4Gb 2 * Nvidia 9800GX2 1Gb Nvidia 8600M GT 256Mb
Compute cap. 1.3 Compute cap. 1.1 Compute cap. 1.1
240 cores @ 1.30Ghz 512 cores @ 1.50Ghz 32 cores @ 0.94Ghz
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When comparing the performance of the two 9800GX2 with the C1060, no-
tice that one 9800GX2 actually consists of 2 GPUs with hardware similar to a
8800GTX. This means that we are comparing a system with a total of 4 GPUs
with a system with 1 GPU, which gives a disadvantage to the system with 4
GPUs, since the benchmark results include the overhead of handling 4 threads.
The plots in Figure 5 clearly shows that the GPU implementation scales linearly
with an increasing number of stereo points or samples for both systems. The
effect of handling the extra threads can be seen for the smaller problems and we
expect that the C1060 will be fastest for small problems. For the largest prob-
lem the two 9800GX2 are 2.1 times faster than the C1060, but theoretically two
9800GX2 can actually execute 2.46 times more FLOPS than one C1060. The
two 9800GX2 are also more capable at hiding the memory latency, since they
can have 4 times 320 active threads, while the C1060 is limited to 512 active
threads for our implementation. System 3 was not included in these plots, since
the benchmark results was around 20 times slower.
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Fig. 5. Plots showing linear scaling for increasing number of stereo points or samples.
The number of capsules is kept constant at 48.

The speedup plot in Figure 6 is created using the CPU implementation in
Listing 1.2 as the reference. We have used the same input data set for the CPU
and the GPU benchmarks. The measurement function used in the CPU imple-
mentation (Listing 1.2) is identical to the measurement function used in the GPU
implementation (Listing 1.3), but the invocation of the measurement function in
listing 1.2 is purely sequential and thus only utilize one core. Since the problem
is memory bound, the one thread will have to wait on memory. We expect that
an optimized CPU implementation could execute twice as fast, compared to the
reference CPU implementation. On the GPU the memory latency has been suc-
cessfully hidden, which becomes apparent when looking at the speedup numbers
in Figure 6.
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f o r ( s i z e_t j = 0 ; j < J ; ++j )
{

M[ j ] = 0 .0 f ;
f o r ( s i z e_t i = 0 ; i < I ; ++i )
{

s i z e_t const i i = i ∗3u ;
f l o a t 3 const x_i = make_float3 (X[ i i ] ,X[ i i +1] ,X[ i i +2] ) ;
f l o a t value = MAX_DISTANCE;
f o r ( s i z e_t k = 0u ; k < K; ++k)
{

s i z e_t const kk = ( j ∗K + k) ∗7u ;
f l o a t 3 const a = make_float3 (C[ kk ] , C[ kk+1] , C[ kk+2] )

;
f l o a t 3 const b = make_float3 (C[ kk+4] ,C[ kk+5] , C[ kk+6] )

;
f l o a t const r = C[ kk+3] ;
va lue = min( measurement ( x_i , r , a , b ) , va lue ) ;

}
M[ j ] += value ;

}
}

Listing 1.2. The CPU implementation used for benchmarking. This code is executed
in a single thread for the CPU.

/∗ Extracted from the body o f the measurement_kernel ∗/
f l o a t 3 const x_i=make_float3 (Xds [ 0 ] [ i ] , Xds [ 1 ] [ i ] , Xds [ 2 ] [ i ] )

;
f l o a t value = Ads [ i ] ;
f o r ( s i z e_t k = 0u ; k<K; ++k)
{

f l o a t 3 const a = make_float3 (Cds [ 0 ] [ k ] , Cds [ 1 ] [ k ] , Cds [ 2 ] [ k ] )
;

f l o a t 3 const b = make_float3 (Cds [ 4 ] [ k ] , Cds [ 5 ] [ k ] , Cds [ 6 ] [ k ] )
;

f l o a t const r = Cds [ 3 ] [ k ] ;
va lue = min( value , measurement ( x_i , r , a , b ) ) ;

}
Ads [ i ] = value ;

Listing 1.3. The GPU implementation, which computes results identical (apart from
rounding differences) to the CPU implementation in Listing 1.2. This code is executed
in J ∗ I threads for the GPU.

The 8600M GT achieves a stable speedup of ≈ 20, while the others increase
in speedup until reaching their maximum stage. The increase in speedup is ex-
plained by the overhead of running many kernels. For these benchmarks a kernel
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Fig. 6. The speedup achieved when computing a data set of the specified size on a
GPU vs. the CPU. The number of capsules is kept constant at 48.

was called for every 8 samples, thus the overhead of calling a kernel takes up a
larger proportion when the problem size is small and the GPUs are fast.

The fact that we see a correlation in Figure 6 between the speedup of the
GPUs and with the GPU hardware specifications, means that we can conclude
that the GPU implementation has succeeded to utilize the GPUs efficiently.

7 Conclusions and Future Work

In this work we have presented a tiling approach that results in a very efficient
GPU acceleration of the measurement process for articulated tracking with a
particle filter. The main causes to our two orders of magnitude speedup factor
lies in careful hiding memory latencies from device memory and avoiding memory
bank conflicts in the shared memory. We not only gain from the raw processing
power of the GPU, but also from its alternative memory layout.

Our future work involves benchmarking on small scale GPU clusters as this
may further interactive markerless computer vision based articulated tracking.
Besides this, the sampling process of the particle filter is currently implemented
in a naive consumer-producer scheme using a single CPU thread for each sample.
This appears to be the next performance bottleneck that we will investigate.
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A Computing the Ray–Capsule Intersection Point

To find the intersection between the ray and the capsule we first consider the
situation with an infinitely long capsule. Here we can find the point of intersection
by first finding the point yi on the line through a and b that is closest to the
ray xi(Δ). By orthogonal projection we find this as

yi = a+
(
(xi(Δ)− a)

T
c
)
c (7)

where we have defined c = b−a
‖b−a‖ .

At the point of intersection between the ray and the infinite capsule we must
have

‖ xi(Δ)− yi ‖2= r2 . (8)

Inserting the ray definition from Eq. 5 gives us

r2 =‖ p+ vΔ− yi ‖2=‖ v⊥Δ+ p⊥ ‖2 , (9)

http://code.google.com/p/cudpp/
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where P =
(
I − ccT

)
and v⊥ = Pv and p⊥ = P (p− a). This is readily identi-

fied as a second order polynomial in Δ

Pc(Δ) = vT
⊥v⊥Δ2 + 2vT

⊥p⊥Δ+ pT
⊥p⊥ − r2 = 0 . (10)

If no roots to this polynomial exist then the ray does not intersect the infinite
long capsule. Otherwise we solve for the minimum positive root Δcap which will
give us the intersection point on the infinite long capsule.

In practice, the skeleton model does not have infinite long limbs and as such
we do not have infinite long capsules. The above approach thus needs to be
modified to cope with finite capsules. In the case where 0 ≤ cT (y − a) ≤ 1
the above analysis still holds. In all other cases we only need to see if the ray
intersects with the spheres of radius r centred in a and b. If the ray intersects
the sphere centred in a, we must have

‖ xi(Δ)− a ‖2= r2 . (11)

Once again, this gives as a second order polynomial

Pa(Δ) = vTvΔ2 + 2vT (p− a)Δ+ (p− a)T (p− a)− r2 = 0 . (12)

If this polynomial has no roots then the ray does not intersect the sphere centred
in a. If it does have roots, we find the intersection from the smallest positive
root. A similar treatment can be given to the sphere centred in b.

Thus, the ray intersection algorithm will solve three second order polynomials
Pa(Δ), Pb(Δ), and Pc(Δ) and use some if -statements that will determine select
the proper smallest positive root as the ray intersection length.
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Abstract. The Euler-Lagrange (EL) framework is the most widely-used strategy
for solving variational optic flow methods. We present the first approach that
solves the EL equations of state-of-the-art methods on sequences with 640×480
pixels in near-realtime on GPUs. This performance is achieved by combining
two ideas: (i) We extend the recently proposed Fast Explicit Diffusion (FED)
scheme to optic flow, and additionally embed it into a coarse-to-fine strategy. (ii)
We parallelise our complete algorithm on a GPU, where a careful optimisation
of global memory operations and an efficient use of on-chip memory guarantee
a good performance. Applying our approach to the variational ‘Complementary
Optic Flow’ method (Zimmer et al. (2009)), we obtain highly accurate flow fields
in less than a second. This currently constitutes the fastest method in the top 10
of the widely used Middlebury benchmark.

1 Introduction

A fundamental task in computer vision is the estimation of the optic flow, which de-
scribes the apparent motion of brightness patterns between two frames of an image
sequence. As witnessed by the Middlebury benchmark [1] 1, the accuracy of optic flow
methods has increased tremendously over the last years. This trend was enabled by the
recent developments in energy-based methods (e.g. [2,3,5,6,7,8,9,10,11]) that find the
flow field by minimising an energy, usually consisting of a data and a smoothness term.
While the data term models constancy assumptions on image features like the bright-
ness, the smoothness term (regulariser) penalises fluctuations in the flow field.

To achieve state-of-the-art results, a careful design of the energy is mandatory. In
the data term, robust subquadratic penaliser functions reduce the influence of outliers
[5,7,11,10], higher-order constancy assumptions [7,10] help to deal with illumination
changes, and a normalisation [4,10] prevents an overweighting at large image gradi-
ents. In the smoothness term, subquadratic penalisers yield a discontinuity-preserving

1 Available at http://vision.middlebury.edu/flow/eval/

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 372–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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isotropic smoothing behaviour [5,7,11]. Anisotropic strategies [3,6,8,9,10] additionally
allow to steer the smoothing direction, which in [10] yields an optimal complementarity
between data and smoothness term.

A major problem of recent sophisticated methods is that their energies are highly
nonconvex and nonlinear, rendering the minimisation a challenging task. Modern multi-
grid methods are well-known for their good performance on CPUs [12,13], but still
do not achieve even near-realtime performance on larger image sequences. Multigrid
methods on GPUs do achieve realtime performance, but due to their complicated im-
plementation, they were only realised for basic models so far [14].

Another class of efficient algorithms that can easily be parallelised for GPUs and
additionally support modern models are primal-dual approaches; see e.g. [11,9]. These
methods typically introduce an auxiliary variable to decouple the minimisation w.r.t. the
data and smoothness term. For the data term, one ends up with a thresholding that can
be efficiently implemented on the GPU. For the smoothness term, a projected gradient
descent algorithm similar to [15] is used. Problems of primal-dual approaches are (i)
the rather limited number of data terms that can be efficiently implemented and (ii) the
required adaptation of the gradient descent algorithm to the smoothness term. The latter
is especially challenging for anisotropic regularisers, see [9].

The most popular minimisation strategy for continuous energy-based (variational)
approaches is the Euler-Lagrange (EL) framework, e.g. [2,3,7,10,16]. Following the
calculus of variations, one derives a system of coupled partial differential equations
that constitute a necessary condition for a minimiser. The benefits of this framework
are: (i) Flexibility: The EL equations can be derived in a straightforward manner for
a large variety of different models. Even non-differentiable penaliser functions like
the TV penaliser [17] can be handled by introducing a small regularisation parame-
ter. (ii) Generality: The EL equations are of diffusion-reaction type. This does not only
allow to use the same solution strategy for different models, but also permits to adapt
solvers known from the solution of diffusion problems. However, one persistent issue of
the EL framework is an efficient solution. As mentioned above, multigrid strategies are
either restricted to basic models [14] or do not give realtime performance for modern
test sequences [12].

Our Contribution. In the present paper, we present the first method that achieves near-
realtime performance on a GPU for solving the EL equations. To this end, we adapt
the recent Fast Explicit Diffusion (FED) scheme [18] to the EL framework. FED is an
explicit solver with varying time step sizes, where some time steps can significantly
exceed the stability limit of classical explicit schemes. If a series of time step sizes is
carefully chosen, the approach can be shown to be unconditionally stable. The already
high performance is further boosted by a coarse-to-fine strategy. Finally, our whole
approach is parallelised on a GPU using the NVidia CUDA architecture [19]. By doing
so, we introduce FED for massively parallel computing, where it unifies algorithmic
simplicity with state-of-the-art performance. To obtain high performance despite the
large amounts of data involved in the computation, we pay particular attention to an
efficient use of on-chip memory to reduce transfers from and to global memory.

To prove the merits of our approach, we apply it within the recent variational optic
flow method of Zimmer et al. [10], which gives qualitatively good results. Moreover,
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due to its anisotropic regulariser, it can easily be specialised to less complicated smooth-
ness terms. Experiments with our GPU-based algorithm show speedups by more than
one order of magnitude over CPU implementations of both a multigrid solver and an
FED scheme. Compared to the anisotropic primal-dual method of Werlberger et al. [9],
we obtain better results in an equivalent runtime. In the Middlebury benchmark, we
rank among the top 10 methods, and can report the smallest runtime among them.

Paper Organisation. In Sec. 2 we review the optic flow model of Zimmer et al. [10].
We then adapt the FED framework in Sec. 3, and present details on the GPU implemen-
tation in Sec. 4. Experiments demonstrating the efficiency and accuracy of our method
are shown in Sec. 5, followed by a summary in Sec. 6.

2 Variational Optic Flow

Let f(x) = (f1(x), f2(x), f3(x))� denote an image sequence where f i represents
the i-th RGB colour channel, x := (x, y, t)�, with (x, y)�∈Ω describing the location
within a rectangular image domain Ω⊂R

2 and t≥ 0 denotes time. We further assume
that f has been presmoothed by a Gaussian convolution of standard deviation σ. The
sought optic flow field w := (u, v, 1)� that describes the displacements from time t to
t+1 is then found by minimising a global energy functional of the general form

E(u, v) =

∫
Ω

[M(u, v) + αV (∇u,∇v)] dx dy , (1)

where ∇ := (∂x, ∂y)
� denotes the spatial gradient operator, and α>0 is a smoothness

weight.

2.1 Complementary Optic Flow

The model we will use to exemplify our approach is the recent method of Zimmer et
al. [10], because it gives favourable results at the Middlebury benchmark and uses a
general anisotropic smoothness term.

Data Term. For simplicity, we use a standard RGB colour representation instead of the
HSV model from the original paper. Our data term is given by

M(u, v) := ΨM

(
3∑

i=1

θi0
(
f i(x+w)− f i(x)

)2)
(2)

+γ ΨM

(
3∑

i=1

(
θix
(
f i
x(x+w)− f i

x(x)
)2

+ θiy
(
f i
y(x+w)− f i

y(x)
)2))

,

where subscripts denote partial derivatives. The first line in (2) models the brightness
constancy assumption [2], stating that image intensities remain constant under the dis-
placement, i.e. f(x+w) = f(x). To prevent an overweighting of the data term at
large image gradients, a normalisation in the spirit of [4] is performed. To this end, one
uses a normalisation factor θi0 := (|∇f i|2 + ζ2)−1, where the small parameter ζ > 0
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avoids division by zero. Finally, to reduce the influence of outliers caused by noise or
occlusions, a robust subquadratic penaliser function ΨM (s2) :=

√
s2+ε2 with a small

parameter ε>0 is used [7].
Weighted by γ > 0, the second line in (2) models the gradient constancy assump-

tion ∇f(x+w) = ∇f(x) that renders the approach robust under additive illumi-
nation changes [7]. The corresponding normalisation factors are defined as θi{x,y} :=
(|∇f i

{x,y}|2 + ζ2)−1. As proposed in [12] a separate penalisation of the brightness and
the gradient constancy assumption is performed, which is advantageous if one assump-
tion produces an outlier.

Smoothness Term. The data term only constraints the flow vectors in one direction, the
data constraint direction. In the orthogonal direction, the data term gives no informa-
tion (aperture problem). Thus, it makes sense to use a smoothness term that works com-
plementary to the data term: In data constraint direction, a reduced smoothing should
be performed to avoid interference with the data term, whereas a strong smoothing is
desirable in the orthogonal direction to obtain a filling-in of missing information.

To realise this strategy, one needs to determine the data constraint direction. This can
be achieved by considering the largest eigenvector of the regularisation tensor

Rρ :=

3∑
i=1

Kρ ∗
[
θi0∇f i

(∇f i
)�
+γ

(
θix∇f i

x

(∇f i
x

)�
+θiy∇f i

y

(∇f i
y

)�)]
, (3)

whereKρ is a Gaussian of standard deviation ρ, and ∗ denotes the convolution operator.
Apart from this convolution, the regularisation tensor is a spatial version of the motion
tensor that occurs in a linearised data term. For more details, see [10].

Let r1 ≥ r2 denote the two orthonormal eigenvectors of Rρ, i.e. r1 is the data con-
straint direction. Then, the complementary regulariser is given by

V (∇u,∇v) = ΨV

((
r�
1 ∇u

)2
+
(
r�
1 ∇v

)2)
+
(
r�
2 ∇u

)2
+
(
r�
2 ∇v

)2
. (4)

To reduce the smoothing in data constraint direction, we use the subquadratic Perona-
Malik penaliser (Lorentzian) [5,20] given by ΨV (s

2) := λ2 ln(1 + (s2/λ2)) with a
contrast parameter λ > 0. In the orthogonal direction, a strong quadratic penalisation
allows to fill in missing information.

2.2 Energy Minimisation via the Euler-Lagrange Framework

According to the calculus of variations, a minimiser (u, v) of the proposed energy (1)
necessarily has to fulfil the associated Euler-Lagrange equations

∂uM − α div
(
D (r1, r2,∇u,∇v) ∇u

)
= 0 , (5)

∂vM − α div
(
D (r1, r2,∇u,∇v) ∇v

)
= 0 , (6)

with reflecting boundary conditions. These equations are of diffusion-reaction type,
where the reaction part (∂uM and ∂vM ) stems from the data term, and the diffusion
part (written in divergence form) stems from the smoothness term.
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To write down the reaction part of the EL equations, we use the abbreviations f i
∗∗ :=

∂∗∗f i(x+w), f i
z := f i(x+w)− f i(x) and f i

∗z := ∂∗f i(x+w)−∂∗f i(x), where
∗∗ ∈ {x, y, xx, xy, yy} and ∗ ∈ {x, y}. With their help, we obtain

∂uM = Ψ ′
M

(
3∑

i=1

θi0
(
f i
z

)2) ·
(

3∑
i=1

θi0f
i
z f

i
x

)
(7)

+ γ Ψ ′
M

(
3∑

i=1

(
θix
(
f i
xz

)2
+ θiy

(
f i
yz

)2)) ·
(

3∑
i=1

(
θixf

i
xz f

i
xx + θiyf

i
yz f

i
xy

))
,

∂vM = Ψ ′
M

(
3∑

i=1

θi0
(
f i
z

)2) ·
(

3∑
i=1

θi0 f
i
z f

i
y

)
(8)

+ γ Ψ ′
M

(
3∑

i=1

(
θix
(
f i
xz

)2
+ θiy

(
f i
yz

)2)) ·
(

3∑
i=1

(
θixf

i
xz f

i
xy + θiyf

i
yz f

i
yy

))
.

The joint diffusion tensor D (r1, r2,∇u,∇v) is given by

D (r1, r2,∇u,∇v) := Ψ ′
V

((
r�
1 ∇u

)2
+
(
r�
1 ∇v

)2)
r1r

�
1 + r2r

�
2 . (9)

Analysing the diffusion tensor, one realises that the resulting smoothing process is not
only complementary to the data term, but can also be characterised as joint image- and
flow driven: The smoothing direction is adapted to the direction of image structures,
encoded in r1 and r2. The smoothing strength depends on the flow contrast given by
the expression (r�

1 ∇u)2+(r�
1 ∇v)2. As a result, one obtains the same sharp flow edges

as image-driven methods, but does not suffer from their oversegmentation problems.

Solution of the Euler-Lagrange Equations. The preceding EL equations are difficult
to solve because the unknown w implicitly appears in the argument of the expressions
f i(x+w). A common strategy to resolve this problem is to embed the solution into
a coarse-to-fine multiscale warping approach [7]. To obtain a coarse representation of
the problem, the images are downsampled by a factor of η ∈ [0.5, 1). At each warping
level k, the flow field is split up into wk+dwk=:wk+1, where wk=(uk,vk,1)� is the
already computed solution from coarser levels and dwk=(duk,dvk,0)� is a small flow
increment that is computed by a linearised approach.

Let us derive this linearised approach. To ease presentation, we omit the gradient
constancy part, i.e. set γ = 0, and restrict ourselves to the first EL equation (5). The
extension to the full model works straightforward in accordance to [7]. A first step is to
perform a Taylor linearisation

f i,k+1
z := f i(x+wk+1)−f i(x) ≈ f i,k

z + f i,k
x duk + f i,k

y dvk , (10)

where in expressions of the form f i,k the flow wk is used. Replacing all occurrences of
f i
z by this linearisation and using the information from level k for all other constituents,

one obtains the linearised first EL equation (with γ=0)

Ψ ′
M

(
3∑

i=1

θi,k0

(
f i,k
z +f i,k

x duk+f i,k
y dvk

)2) ·
3∑

i=1

θi,k0

(
f i,k
z +f i,k

x duk+f i,k
y dvk

)
f i,k
x

−α div
(
D
(
rk
1 , r

k
2 ,∇

(
uk+duk

)
,∇(

vk+dvk
)) ∇(

uk+duk
))

= 0 . (11)
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At this point, it is feasible to use a solver for nonlinear systems of equations. However,
we use a second coarse-to-fine strategy per warping level for an even faster convergence.
Here the prolongated solution from a coarse level serves as initialisation for the next
finer level.

3 Fast Explicit Diffusion Solver

A classical approach to solve elliptic problems such as the linearised EL equation (11)
are semi-implicit schemes: They are unconstrained in their time step sizes, but require
to solve large linear systems of equations in each step. In contrast, explicit schemes
are much easier to implement and have a low complexity per step, but are typically re-
stricted to very small step sizes to guarantee stability. In this paper, we use a new time
discretisation that combines the advantages of both worlds [18]: Fast Explicit Diffusion
(FED) schemes are as simple as classical explicit frameworks, but use some extremely
large time steps to ensure a fast convergence. Still, the combination of large (unstable)
and small (stable) time steps within one cycle guarantees the unconditional stability
of the complete approach. Hence, FED schemes outperform semi-implicit schemes in
terms of efficiency and are additionally much simpler to implement, especially on mas-
sively parallel architectures.

Let us first derive a stabilised explicit scheme [16] for solving the linearised EL
equation (11) w.r.t. the unknown duk. To this end, we introduce the iteration variable l:

duk,l+1−duk,l
τ
l

= div
(
D
(
rk
1 , r

k
2 ,∇

(
uk+duk,l

)
,∇(

vk+dvk,l
)) ∇(

uk+duk,l
))

− 1

α

(
ψ′
M
k,l
(..)·

3∑
i=1

θi,k0

(
f i,k
z +f i,k

x duk,l+1+f i,k
y dvk,l

)
f i,k
x

)
, (12)

where τ
l

denotes the FED time step size at iteration 0 � l < n which is computed
as [18]

τ
l
= 1

8 ·
(
cos2

(
π 2l+1

4n+2

))−1

. (13)

In (12), the term ψ′
M
k,l
(..) is an abbreviation for the expression Ψ ′

M (..) in the first line
of (11), where we additionally replace duk by duk,l and dvk by dvk,l. Finally, note that
our scheme is stabilised by using duk,l+1 from the next iteration in the last row.

In our next step we discretise the expression div(D(..)∇(uk +duk,l)) in matrix-
vector notation by A(uk+duk,l, vk+dvk,l)(uk+duk,l) =: Ak+1,luk+1,l. This enables
us to rewrite (12) as

duk,l+1=

[
duk,l+τ

l
Ak+1,luk+1,l− τ

l

α

(
ψ′
M
k,l
(..)·

3∑
i=1

θi,k0

(
f i,k
z +f i,k

y dvk,l
)
f i,k
x

)]

·
(
1 +

τ
l

α
· ψ′

M
k,l
(..) ·

3∑
i=1

θi,k0

(
f i,k
x

)2)−1

. (14)
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Remarks. The number of individual time steps n in a cycle is given by min{n ∈
N

+ | (n2 + n)/12 � T }, where T denotes the desired stopping time of the cycle. For
n � 3, one can show that an FED cycle reaches this stopping time T faster than any
other explicit scheme with n stable time step sizes.

Moreover, the ordering of steps within one FED cycle is irrelevant from a theoretical
point of view, but can in practice affect the influence of rounding errors to the result.
However, it is possible to find permutations of the set {τ

l
| 0 � l < n} that are more

robust w.r.t. floating-point inaccuracies than others. Given the next larger prime number
p to n and κ < p, a series {τ

l̃
| l̃= ((l+1) · κ) mod p, l̃ < n} is known to give good

results [18,21]. In order to find a suitable value for the parameter κ, we analysed a sim-
ple 1-D problem and choose the one κ that minimises the error between the FED output
and the analytic reference solution. These values were once computed for all practical
choices of n to set up a lookup table which is used throughout our implementation.

4 Implementation on the GPU

Since our algorithm is hierarchic and uses different data configurations and cache pat-
terns for the operations it performs, we split it up into single GPU kernels of homo-
geneous structure. This concept allows to have a recursive program flow on the CPU,
while the data is kept in GPU memory throughout the process.

FED Solver. Our stabilised fast explicit scheme forms the heart of our algorithm. It
is also the most expensive GPU kernel in our framework: Due to its low arithmetic
complexity, it is strictly memory bound and requires significant amounts of data. For
the smoothness term, we reduce the memory complexity by exploiting the symmetry of
the non-diagonal matrix A from (14), which comes down to store the four upper off-
diagonals. The remaining entries can be computed in shared memory. Where offset data
loads are necessary for this strategy, they can be efficiently realised by texture lookups.

Derivatives. Spatial image and flow derivatives are discretised via central finite differ-
ences with consistency order 2 and 4, respectively [12]. For the motion tensor, these
derivatives are averaged from the two frames f(x, y, t) and f(x, y, t+ 1), whereas for
the regularisation tensor, they are solely computed at the first frame. Where required,
we compute both the first order and second order derivatives in the same GPU ker-
nel which saves a large number of loads from global memory. Thanks to the texture
cache, the slightly larger neighbourhood that is needed in this context does again not
significantly affect the runtime.

Diffusion Tensor. In order to set up the diffusion tensor D for the smoothness term,
we apply the diffusivity function to the eigenvalues of the structure tensor and use these
new eigenvalues to assemble a new tensor. Both the derivative computation and the
principal axis transforms that are used in this context are fully data parallel. Note that
we do not store the tensor entries to global memory, but directly compute the weights
that are later to be used in the solver. By this, we save again a significant number of
global loads and stores. Due to our nonlinear model, we update the diffusion tensor
after every cycle.
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Gaussian Convolution. Our GPU-based Gaussian convolution algorithm is tailored to
the small standard deviations σ that typically occur in the context of optic flow: We
exploit the operation’s separability and cut off the discretised kernel at a precision of
3σ. This allows our ‘sliding window’ approach to keep a full neighbourhood in shared
memory, and thus to reduce global memory operations to one read and write per pixel.
Along the main direction of the 2-D data in memory, we apply loop unrolling over
data-independent rows and keep three consecutive sub-planes of the source image in a
ring buffer. Across this direction, we cut our domain in sufficiently large chunks, and
maintain a ring buffer of chunk-wide rows that cover the entire neighbourhood of the
computed row.

Resampling. Key ingredients for hierarchic coarse-to-fine algorithms are prolongation
and restriction operators. Several examples for such operators are known in the litera-
ture, but they are either quite expensive on GPUs due to their ‘inhomogeneous’ algorith-
mic structure, or do not possess necessary properties such as grey value preservation,
aliasing artefact prevention, and flexibility with respect to the choice of the resampling
factor [22,23]. As a remedy, we propose a fast but versatile technique that approximates
the desired behaviour well enough to satisfy the quality requirements for optic flow. It
has a uniform algorithmic structure for all target cells and uses the texturing mechanism
of CUDA cards to obtain a high performance.

Textures can be queried at any point in a continuous domain, and in particular in
between grid points. The resulting value is then computed in hardware by means of a
bilinear interpolation. These properties alone yield an efficient prolongation algorithm:
For any target cell of the result, we use the value at the corresponding point of the
source texture. Note that this strategy does not guarantee grey value preservation from
a theoretical point of view, but experimentally yields favourable results.

As it turns out, we must not apply the same algorithm for restriction purposes: Typi-
cal choices of restriction factors close to two cause undersampling and lead to aliasing
artefacts. To overcome this problem, we use four sampling points instead of one: Let
rx, ry be the restriction factors in x– and y–direction, respectively, and assume textures
to be defined on the domain [0, nx−1) × [0, ny−1). For any target point (x, y)�, we
then average over the texture values at locations(

1

rx
·
(
x± 1

4

)
,
1

ry
·
(
y ± 1

4

))�
. (15)

This modification allows us to choose arbitrary factors in the interval [ 12 , 1) which suf-
fices for our purposes. Moreover, since nearby sampling points are likely to be in the
2-D texture cache at the same time, this strategy is almost as fast as prolongation.

Warping. In order to access images at warped positions, i.e. to evaluate expressions of
type f i(x+wk), we use the texturing mechanism of graphics cards: We store the image
channel i that is to be warped in a texture, compute the target location by adding flow
field and pixel coordinates, and fetch the texture at the respective point. Albeit inco-
herent memory access is often considered a major performance problem on massively
parallel hardware, this operation turns out to be highly efficient: Optic flow is often
piecewise laminar and sufficiently smooth, such that the missing data locality is largely
compensated by the 2-D texture cache.
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5 Experiments

Quality. We first consider a qualitative evaluation of our results. To this end, we chose
4 sequences with known ground truth from the Middlebury database, and computed
the optic flow fields using our algorithm and an individual choice of parameters. A
visualisation of the results is shown in Fig. 1. Like in the original CPU implementa-
tion of Zimmer et al. [10], the flow fields are accurate and without visual artefacts.

226 ms

366 ms

322 ms

725 ms

Fig. 1. Our results for 4 Middlebury sequences with ground truth. Top to bottom: Dimetrodon,
Grove2, RubberWhale, Urban2. Left to right: First frame with flow key, ground truth, result
with runtime. We use optimised parameter sets (α, γ, ζ, λ) for the individual sequences (D: (400,
8, 1.0, 0.05), G: (50, 1, 1.0, 0.05), R: (1000, 20, 1.0, 0.05), U: (1500, 25, 0.01, 0.1)). Fixed
parameters for all cases: η = 0.91, σ = 0.3, ρ = 1.3, 1 cascadic FED step with 1 nonlinear
update and T = 150 per warp level.
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Table 1. Error measures for 4 Middlebury sequences with known ground truth using the optimal
parameter sets from Fig. 1, and a fixed parameter set (300, 20, 0.01, 0.1).

Sequence Dimetrodon Grove2 RubberWhale Urban2

Optimised
AEE 0.08 0.16 0.09 0.29
AAE 1.49 2.32 2.93 2.75

Fixed
AEE 0.11 0.19 0.11 0.36
AAE 2.20 2.69 3.76 3.56
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m
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734 ms

1280x960:
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+ Transfer

Fig. 2. Runtimes (with and without device transfer) on images with size ratio 4:3

We also evaluated our results to the ground truth by computing the Average Endpoint
Error (AEE), as well as the Average Angular Error (AAE). In order to be better com-
parable to the results of other state-of-the-art methods, we additionally performed the
same experiment on a fixed parameter set for all sequences, as it is required for the
Middlebury benchmark. From Tab. 1, we see that if we use fixed parameters, we ob-
tain results comparable to those of Werlberger et al. [9], which has been the top-ranked
anisotropic GPU-based method in the Middlebury benchmark so far. Using individually
tuned parameters as in Fig. 1, the obtained quality can be further enhanced.

The high quality of our algorithm is also reflected in the position in the Middlebury
benchmark. In August 2010, it ranks seventh out of 35 both w.r.t. AAE and AEE.

Runtime. Finally, we evaluate the efficiency of our approach on image sequences of
varying sizes. To this end, we benchmark the runtimes on an NVidia GeForce GTX 480
graphics card. Since runtimes are affected by the size ratio of the image sequence and
the parameter set, we used a ratio of 4:3 and the fixed parameter set from Tab. 1. This
is depicted in Fig. 2. On Urban2 (640×480), our algorithm takes 734 ms. Compared to
hand-optimised Multigrid (FAS) [12] and FED schemes with equivalent results on one
core of an 2.33 GHz Intel Core2 Quad CPU, this performance results in speedups of 15
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and 17, respectively. Thanks to a better GPU occupancy, these factors are even higher
the larger the frame size, e.g. 23 and 28 for frames of 1024 × 768 pixels. Moreover,
our algorithm has comparable runtimes to the approach of Werlberger et al. [9], despite
yielding more accurate results, as seen in the Middlebury benchmark. Concerning the
latter, our method currently is the fastest among the top 10 approaches, outperforming
the competitors by one to three orders of magnitude.

6 Conclusions and Outlook

We have presented a highly efficient method for minimising variational optic flow ap-
proaches by solving the corresponding Euler-Lagrange (EL) equations. The core of our
approach is the recently proposed Fast Explicit Diffusion (FED) scheme [18], which
can be adapted to optic flow due to the diffusion-reaction character of the EL equations.
Additionally, we apply a coarse-to-fine strategy, and parallelise our complete algorithm
on a GPU, thereby introducing the first parallel FED implementation.

In our experiments, we used the proposed approach to minimise the optic flow model
of Zimmer et al. [10], resulting in highly accurate flow fields that are computed in less
than one second for sequences of size 640×480. This gives a speedup by more than one
order of magnitude compared to a CPU implementation of (i) a multigrid solver and (ii)
an FED solver. In the Middlebury benchmark, we rank among the top 10 and achieve
the smallest runtime there.

Since most variational optic flow algorithms are based on solving the EL equations,
we hope that our approach can also help to tangibly speedup other optic flow methods
based on the EL framework. Note that we used an anisotropic regulariser, which results
in the most general form of the diffusion part. Applying our approach with other pop-
ular smoothness terms, like TV regularisation, thus works straightforward by simply
replacing the diffusion tensor by a scalar-valued diffusivity.

Our future research will be concerned with further reducing the runtimes to meet an
ultimate goal: Realtime performance for state-of-the-art optic flow approaches on high
resolution (maybe high-definition) image sequences.

Acknowledgements. We gratefully acknowledge partial funding by the cluster of ex-
cellence ‘Multimodal Computing and Interaction’, by the International Max Planck Re-
search School, and by the Deutsche Forschungsgemeinschaft (project We2602/7-1).
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Abstract. We present work on exploiting modern graphics hardware
towards the real-time production of a textured 3D mesh representation
of a scene observed by a multicamera system. The employed computa-
tional infrastructure consists of a network of four PC workstations each
of which is connected to a pair of cameras. One of the PCs is equipped
with a GPU that is used for parallel computations. The result of the
processing is a list of texture mapped triangles representing the recon-
structed surfaces. In contrast to previous works, the entire processing
pipeline (foreground segmentation, 3D reconstruction, 3D mesh compu-
tation, 3D mesh smoothing and texture mapping) has been implemented
on the GPU. Experimental results demonstrate that an accurate, high
resolution, texture-mapped 3D reconstruction of a scene observed by
eight cameras is achievable in real time.

1 Introduction

The goal of this work is the design and the implementation of a multicamera
system that captures 4D videos of human grasping and manipulation activities
performed on a desktop environment. Thus, the intended output of the target
system is a temporal sequence of texture mapped, accurate 3D mesh representa-
tions of the observed scene. This constitutes rich perceptual input that may feed
higher level modules responsible for scene understanding and human activity
interpretation.

From the advent of GPU programmable pipeline, researchers have made great
efforts to exploit the computational power provided by the graphics hardware
(i.e. GPGPUs). The evolution of GPUs led to the introduction of flexible comput-
ing models such as shader model 4.0 and CUDA that support general purpose
computations. Various GPU implementations of shape-from-silhouette recon-
struction have been presented in the recent literature [1,2]. Moreover, following
past attempts on real-time reconstruction and rendering (e.g. [3,4]), some recent
works introduce full 3D reconstruction systems [5,6] that incorporate modern
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graphics hardware for their calculations. The later implementations take as in-
put segmented object silhouettes and produce as output voxel scene representa-
tions. In contrast to these systems, the one proposed in this paper parallelizes
the whole processing pipeline that consists of foreground object segmentation,
visual hull computation and smoothing, 3D mesh calculation and texture map-
ping. The algorithms implementing this processing chain are inherently parallel.
We capitalize on the enormous computational power of modern GPU hardware
through NVIDIA’s CUDA framework, in order to exploit this fact and to achieve
realtime performance.

The remainder of this paper is organized as follows. Section 2 introduces the sys-
tem architecture both at hardware and software level. Section 3 details the GPU-
based parallel implementation of the 3D reconstruction process. Experiments and
performance measurements are presented in Sec. 4. Finally, Sec. 5 provides con-
clusions and suggestions for future enhancements of the proposed system.

2 Infrastructure

2.1 Hardware Configuration

The developed multicamera system is installed around a 2 × 1m2 bench and
consists of 8 Flea2 PointGrey cameras. Each camera has a maximum framerate
of 30 fps at highest (i.e. 1280× 960) image resolution. The system employs four
computers with quad-core Intel i7 920 CPUs and 6 GBs RAM each, connected
by an 1 Gbit ethernet link. Figure 1 shows the overall architecture along with a
picture of the developed multicamera system infrastructure.

In our switched-star network topology, one of the four computers is declared
as the central workstation and the remaining three as the satellite workstations.
The central workstation’s configuration, includes also a Nvidia GTX 295 dual
GPU with 894GFlops processing power and 896 MBs memory per GPU core.
Currently, the developed system utilizes a single GPU core.

Each workstation is connected to a camera pair. Cameras are synchronized
by a timestamp-based software that utilizes a dedicated FireWire 2 interface
(800MBits/sec) which guarantees a maximum of 125μsec temporal discrepancy
in images with the same timestamp. Eight images sharing the same timestamp
constitute a multiframe.

2.2 Processing Pipeline

Cameras are extrinsically and intrinsically calibrated based on the method and
tools reported in [7]. The processing pipeline consists of the CPU workflow,
responsible for image acquisition and communication management and the GPU
workflow, where the 3D reconstruction pipeline has been implemented. Both
processes are detailed in the following.

CPU Workflow and Networking
Each workstation holds in its RAM a buffer of fixed size for every camera that
is connected to it. Each buffer stores the captured frames after they have been
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Central Workstation

Satellite Workstations

(a) (b)

Fig. 1. The developed platform (a) schematic diagram (b) actual configuration

converted from Bayer Tile to RGB format. Moreover, prior to storing in buffer,
each image is transformed so that geometric distortions are cancelled out based
on the available calibration information. The rate of storing images into buffers
matches the camera’s acquisition frame rate. Image data are stored together with
their associated timestamps. To avoid buffer overflow as newer frames arrive,
older frames are removed.

Each time a new image enters a buffer in a satellite workstation, its timestamp
is broadcasted to the central workstation. This way, at every time step the cen-
tral workstation is aware of which frames are stored in the satellite buffers. The
same is also true for central’s local buffers. During the creation of a multiframe,
the central workstation selects the appropriate timestamps for each buffer, local
or remote. Then, it broadcasts timestamp queries to the satellite workstations
and acquires as response the queried frames, while for local buffers it just fetches
the frames from its main memory. The frame set that is created in this way con-
stitutes the multiframe for the corresponding time step. The process is shown
schematically in Fig. 2.

GPU Workflow
After a multiframe has been assembled, it is uploaded on the GPU for further
processing. Initially, a pixel-wise parallelized foreground detection procedure is
applied to the synchronized frames. The algorithm labels each pixel either as
background or foreground, providing binary silhouette images as output. The
produced silhouette set is given as input to a shape-from-silhouette 3D recon-
struction process which, in turn, outputs voxel occupancy information. The oc-
cupancy data are then send to an instance of a parallel marching cubes algorithm
for computing the surfaces of reconstructed objects. Optionally, prior to mesh
calculation, the voxel representation is convolved with a 3D mean filter ker-
nel to produce a smoothed output. Then, the texture of the original images is
mapped onto the triangles of the resulted mesh. During this step multiple texture
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coordinate pairs are computed for each triangle. Each pair, projects the triangle’s
vertices at each view the triangle’s front face is visible from. A disambiguation
strategy is later incorporated to resolve the multi-texturing conflicts. Finally,
results are formatted into appropriate data structures and returned to the CPU
host program for further processing. In case the execution is intended for visual-
ization, the process keeps the data on the GPU and returns to the host process
handles to DirectX or OpenGL data structures (i.e. vertex and texture buffers).
These are consequently used with proper graphics API manipulation for onscreen
rendering. The overall procedure is presented schematically in Fig. 3.

3 GPU Implementation

In this section, the algorithms implemented on the GPU are presented in detail.

3.1 Foreground Segmentation

The terms foreground segmentation and background subtraction refer to methods
that detect and segment moving objects in images captured by static cameras.
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Due to the significance and necessity of such methods a great number of ap-
proaches have been proposed. The majority of these approaches define pixel-wise
operations [8]. The most straightforward of those subtract the average, median
or running average within a certain time window from static views. Others utilize
kernel density estimators and mean-shift based estimation [9,10].

A very popular approach [11] that achieves great performance defines each
image pixel’s appearance model as a mixture of Gaussian components. This
method is able to model complex background variations. Targeted at systems
operating in relatively controlled environments (i.e., indoor environments with
controlled lighting conditions) this work is based on the parallelization of the
background modeling and foreground detection work of [12] which considers the
appearance of a background pixel to be modeled by a single Gaussian distribu-
tion. This reduces substantially both the memory requirements and the overall
computational complexity of the resulting process. Moreover, the assumption
that pixels are independent, indicates the inherent parallelism of this algorithm.
In addition, our implementation incorporates a technique for shadow detection
that is also used in [13] and described thoroughly in [14]. Detected shadows are
always labeled as background.

Formally, let I(t) correspond to an image of the multiframe acquired at times-
tamp t, and let x(t) be a pixel of this image represented in some colorspace. The
background model is initialized by the first image of the sequence (i.e. I(0)) and
is given by

p̂(x|x(0), BG) = N(x; μ̂, σ̂2I), (1)

with μ̂ and σ̂2 being the estimates of mean and variance of the Gaussian, respec-
tively. In order to compensate for gradual global light variation, the estimations
of μ and σ are updated at every time step through the following equations:

μ̂(t+1) ← μ̂(t) + o(t)αμδµ
(t) (2)

σ(t+1) ← σ(t) + o(t)ασδσ
(t), (3)

where δµ = x(t) − μ(t), δσ = |μ(t) − x(t)|2 − σ(t) and aμ, aσ are the update
factors for mean and standard deviation, respectively, and

o(t) =

{
1 if x(t) ∈ BG

0 if x(t) ∈ FG.
(4)

A newly arrived sample is considered as background if the sample’s distance to
the background mode is less than four standard deviations. If this does not hold,
an additional condition is examined to determine whether the sample belongs
to the foreground or it is a shadow on the background:

T1 ≤ μ · x(t)

|μ|2 ≤ 1 and

∣∣∣∣∣
(
μ · x(t)

|μ|2
)
μ− x

∣∣∣∣∣
2

< σ2T2

(
μ · x(t)

|μ|2
)2

, (5)
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where T1, T2, are empirically defined thresholds that are set to T1 = 0.25, T2 =
150.0.

The above described foreground detection method has been parallelized in a
per pixel basis. In addition, because there is a need to preserve the background
model for each view, this is stored and updated on GPU during the entire life-
time of the reconstruction process. In order to keep the memory requirements
low and to meet the GPU alignment constrains, the background model of each
pixel is stored in a 4-byte structure. This representation leads to a reduction
of precision. Nevertheless, it has been verified experimentally that this does not
affect noticeably the quality of the produced silhouettes.

3.2 Visual Hull Computation

The idea of volume intersection for the computation of a volumetric object
description was introduced in the early 80’s [15] and has been revisited in several
subsequent works [16,17,18]. The term visual hull, is defined as the maximal
shape that projects to the same silhouettes as the observed object on all views
that lay outside the convex hull of the object [19].

To compute the visual hull, every silhouette image acquired from a given mul-
tiframe, is back-projected and intersected into the common 3D space along with
all others, resulting to the inferred visual hull, i.e. a voxel representation contain-
ing occupancy information. In this 3D space, a fixed size volume is defined and
sampled to produce a 3D grid, G =

{
G0, G1, . . . , Gn

}
where Gc = (Xc, Yc, Zc).

Let Ci be the calibration matrix of camera i and Ri, Ti the corresponding rota-
tion matrix and translation vector respectively, in relation to the global world-
centered coordinate system. The general perspective projection of a point G
expressed in homogeneous coordinates (i.e. (Xc, Yc, Zc, 1) ) to the ith view plane
is described through the following equation

(xc, yc, fc)
T
= Ci [Ri|Ti] (Xc, Yc, Zc, 1)

T
, (6)

where Pi = Ci [Ri|Ti] is the projection matrix of the corresponding view. Each
point can be considered to be the mass center of some voxel on the defined 3D
volume. We also define two additional functions. The first, labels projections
falling inside the FOV of camera i as

Li(x, y) =

{
1 1 ≤ x ≤ wi ∧ 1 ≤ y ≤ hi

0 otherwise,
(7)

where wi and hi denote the width and height of the corresponding view plane,
respectively. The second function measures the occupancy scores of each voxel
via its projected center of mass, as

O(Xk, Yk, Zk) =

{
1 s = l > |C|

2

0 otherwise
, ∀k ∈ [0, n], (8)
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Fig. 4. Each figure presents a xy plane slice of the voxel space. (a) The intersection
of the projected silhouettes in slice Zslice = 90cm. (b) The voxel space defined in this
example is much larger than the previous, visibility factor variations are shown with
different colors. Dark red denotes an area visible by all views.

where |C| is the number of views. l is the visibility factor, s the intersection
factor and are defined as

l =
∑
i∈C

Li

(
xik
f i
k

,
yik
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)
, s =

∑
i∈C
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(
xik
f i
k

,
yik
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)
, (9)

with
(
xik/f

i
k, y

i
k/f

i
k

)
be the projection of (Xk, Yk, Zk) at view i and Si(x, y) is the

function that takes value 1 if at view i the pixel (x, y) is a foreground pixel and
0 otherwise (i.e. background pixel). Figure 4 illustrates graphically the notion of
l and s.

The output of the above process is the set O(Xk, Yk, Zk) of occupancy val-
ues that represent the visual hull of the reconstructed objects. It can also be
conceived as the estimation of a 3D density function. Optionally, the visual hull
can be convolved with a 3D mean filter to smooth out the result. Due to its
high computational requirements, this method targets the offline mode of 3D
reconstruction.

The above described 3D reconstruction process has been parallelized on a per
3D point basis. More specifically, each grid point is assigned to a single GPU
thread responsible for executing the above mentioned calculations. To speed
up the process, shared memory is utilized for storing the static per thread block
calibration information, silhouette images are preserved in GPU texture memory
in a compact bit-per-pixel format and occupancy scores are mapped to single
bytes.

3.3 Marching Cubes

Marching cubes [20,21] is a popular algorithm for calculating isosurface de-
scriptions out of density function estimates. Due to its inherent and massive
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(a) (b)

Fig. 5. (a) Marching Cubes fundamental states. (b) Byte representation and indexing.

data parallelism it is ideal for GPU implementation. Over the last few years,
a lot of isosurface calculation variates that utilize GPUs have been proposed
[22,23,24,25,26]. In this work we employ a slightly modified version of the march-
ing cubes implementation found at [27] due to its simplicity and speed. More
specifically, the occupancy grid resulting from 3D visual hull estimation is mapped
into a CUDA 3D texture. Each voxel is assigned to a GPU thread. During cal-
culations, each thread samples the density function (i.e. CUDA 3D texture) at
the vertices of it’s corresponding voxel. The normalized (in the range [0, 1]),
bilinearly interpolated, single precision values returned by this step, represent
whether the voxel vertices are located inside or outside a certain volume. We
consider the isosurface level to be at 0.5. Values between 0 and 1, also show how
close a voxel vertex is to the isosurface level. Using this information, a voxel can
be described by a single byte, where each bit corresponds to a vertex and is set
to 1 or to 0 if this vertex lays inside or outside a volume, respectively. There are
256 discrete generic states in which a voxel can be intersected by an isosurface
fragment, produced from the 15 fundamental cases illustrated in Fig. 5a.

Parallel marching cubes uses two constant lookup tables for its operation.
The first lookup table is indexed by the voxel byte representation and is utilized
for determining the number of triangles the intersecting surface consists of. The
second table is a 2D array, where its first dimension is indexed by the byte
descriptor and the second by an additional index trI ∈ [0, 3Niso − 1] where Niso

is the number of triangles returned by the first lookup. Given a byte index,
sequential triplets accessed through successive trI values, contain the indices of
voxel vertices intersected by a single surface triangle. An example of how the
voxel byte descriptor is formed is shown in Fig. 5b. This figure also presents the
vertex and edge indexing along with an example of an intersecting isosurface
fragment that consists of a single triangle.

To avoid applying this process to all voxels, our implementation determines
the voxels that are intersected by the iso-surface and then, using the CUDA data
parallel primitives library [28], applies stream compaction through the exclusive
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sum-scan algorithm [29] to produce the minimal voxel set containing only in-
tersected voxels. Finally, lookup tables are mapped to texture memory for fast
access.

3.4 Texture Mapping

Due to the fact that the employed camera setup provides multiple texture
sources, texture mapping of a single triangle can be seen as a three step proce-
dure: a) determine the views from which the triangle is visible, b) compute the
corresponding texture coordinates and c) apply a policy for resolving multitex-
turing ambiguities (i.e. texture selection). The current implementation carries
out the first two steps in a per view manner i.e.: a) determines the subset of
triangles that are visible by a certain view and b) computes their projections on
view plane. The third step is applied either on a per pixel basis through a pixel
shader during the visualization stage, or is explicitly computed by the consumer
of the offline dataset.

Specifically, given the calibration data for a view and the reconstructed mesh,
a first step is the calculation of the triangle normals. Then, the direction of each
camera’s principal axis vector is used to cull triangles back-facing the camera
or having an orientation (near-)parallel to the camera’s view plane. The trian-
gle stream is compacted excluding culled polygons and the process continues
by computing the view plane projections of the remaining triangles. Projec-
tions falling outside the plane’s bounds are also removed through culling and
stream compaction. Subsequently, the mean vertex distance from the camera
center is computed for each remaining triangle and a depth testing procedure
(Z-buffering) is applied to determine the final triangle set. The procedure is
shown schematically in Fig. 6. This figure also shows the granularity of the de-
composition in independent GPU threads. During depth testing, CUDA atomics
are used for issuing writes on the depth map. The reason for the multiple culling
iterations prior to depth testing is for keeping the thread execution queues length
minimal during serialization of depth map writes.

There is a number of approaches that one can use to resolve multitextur-
ing conflicts. Two different strategies have been implemented in this work. The
first assigns to each triangle the texture source at which the projection area is
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(a) (b) (c)

Fig. 7. 3D reconstruction of a single multiframe: (a) no smoothing, (b) smoothed re-
construction and (c) smoothed and textured output

maximal among all projections. The second blends all textures according to a
weighting factor, proportional to the size of the projected area. A special case
is the one where all weights are equal. This last approach is used during online
experiments to avoid the additional overhead of computing and comparing the
projection areas, while the others are used in offline mode for producing better
quality results. In online mode the process is applied through a pixel shader im-
plemented using HLSL and shader model 3.0. Visualizations of a resulted mesh
are shown in Fig. 7. The supplemental material attached to this paper shows
representative videos obtained from both online and offline experiments.

4 Performance

Given a fixed number of cameras, the overall performance is determined by
the network bandwidth, the size of transferred data, the GPU execution time
and the quality of the reconstruction. In online experiments, camera images are
preprocessed, transferred through network and finally collected at the central
workstation to construct a synchronized multiframe. This is performed at a rate
of 30 multiframes per second (mfps). To achieve this performance, original images
(i.e. 1280 × 960) are resized during the CPU preprocessing stage to a size of
320× 240. Further reduction of image resolution increases the framerate beyond
real-time (i.e. ≥ 30mfps) at the cost of reducing the 3D reconstruction quality.
Table 1 shows the achieved multiframe acquisition speed.

Table 1 also shows that, as expected, foreground segmentation speed is linearly
proportional to image size. These last reported measurements do not include
CPU/GPU memory transfers.

The number of voxels that constitute the voxel space is the primary factor
that affects the quality of the reconstruction and overall performance. Given a
bounded voxel space (i.e., observed volume), smaller voxel sizes, produce more
accurate estimates of the 3D density function leading to a reconstruction out-
put of higher accuracy. Moreover, higher voxel space resolutions issue greater
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Table 1. Performance of acquisition and segmentation for various image resolutions

Image resolution Multiframe acquisition Foreground segmentation

320× 240 30 mfps 22.566, 3 fps / 2.820, 8 mfps

640× 480 13 mfps 6.773, 9 fps / 846, 4 mfps

800× 600 9 mfps 4.282, 6 fps / 535, 3 mfps

1280 × 960 3, 3 mfps 1.809, 9 fps / 226, 2 mfps

numbers of GPU threads and produce more triangles for the isosurface that, in
turn, leads to an increased overhead during texture mapping. The performance
graph of Fig. 8a shows the overall performance impact of voxel space resolution
increment in the cases of a) no smoothing of the visual hull, b) smoothed hull
utilizing a 33 kernel and c) smoothed hull utilizing a 53 kernel. The graph in Fig.
8b presents computational performance as a function of smoothing kernel size.
In both graphs, multiframe processing rate corresponds at the processing rate
of the entire GPU pipeline including the CPU/GPU memory transfer times. It
is worth mentioning that although image resolution affects the quality of the re-
construction and introduces additional computational costs due to the increased
memory transfer and foreground segmentation overheads, it does not have a
significant impact on the performance of the rest of the GPU reconstruction
pipeline.

Table 2 presents quantitative performance results obtained from executed ex-
periments. In the 3rd and 4th columns, the performance of 3D reconstruction and
texture mapping are shown independently. The 3D reconstruction column corre-
sponds to the processes of computing the visual hull, smoothing the occupancy
volume and creating the mesh, while texture mapping column corresponds to the
performance of the process depicted in Fig. 6. Finally, in the output column, as in
the previous experiments, the performance of the entire reconstruction pipeline
is measured including foreground segmentation and memory transfers. It can be
seen that keeping the voxel space resolution at a fixed size, the multiframe pro-
cessing rate of 3D reconstruction drops significantly when the smoothing process
is activated. On the contrary, texture mapping is actually accelerated due to the
fact that the smoothed surface is described by less triangles than the original

Table 2. Quantitative performance results obtained from representative experiments.
Image resolution is set to 320× 240 for online and 1280× 960 for offline experiments.

Voxels Smoothing 3D reconst. Text. mapping Output

Online Experiments

120× 140× 70 No 136, 8 mfps 178, 0 mfps 64, 0 mfps

100× 116× 58 No 220, 5 mfps 209, 9 mfps 84, 5 mfps

Offline Experiments

277× 244× 222 Kernel: 33 7, 7 mfps 27, 5 mfps 5, 0 mfps

277× 244× 222 Kernel : 53 4, 7 mfps 28, 9 mfps 3, 5 mfps

277× 244× 222 No 11, 4 mfps 25, 3 mfps 6, 2 mfps
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Fig. 8. Performance graphs. Image resolution is set to 640 × 480 in all experiments.
(a) Performance impact of voxel space descretization resolution. (b) The performance
effect of 3D smoothing kernel size.

one. Online experiments present clearly the effect of the voxel space resolution
in overall performance.

5 Conclusions - Future Work

In this paper, we presented the design and implementation of an integrated,
GPU-powered, multicamera vision system that is capable of performing fore-
ground image segmentation, silhouette-based 3D reconstruction, 3D mesh com-
putation and texture mapping in real-time. In online mode, the developed system
can support higher level processes that are responsible for activity monitoring
and interpretation. In offline mode, it enables the acquisition of high quality 3D
datasets. Experimental results provide a quantitative assessment of the system’s
performance. Additionally, the supplementary material provides qualitative ev-
idence regarding the quality of the obtained results.

The current implementation utilizes a single GPU. A future work direction
is the incorporation of more GPUs either on central or satellite workstations,
to increase the system’s overall raw computational power in terms of GFlops.
In this case, an intelligent method for distributing the computations over the
entire GPU set must be adopted, while various difficult concurrency and syn-
chronization issues that this approach raises must be addressed. Furthermore,
performance gains could be achieved by transferring the image post-acquisition
CPU processes of Bayer Tile-to-RGB conversion and distortion correction to
GPUs as they also encompass a high degree of parallelism. Finally, mesh defor-
mation techniques instead of density function smoothing and advanced texture
source disambiguation/blending strategies that incorporate additional informa-
tion (e.g. edges) can be utilized in order to further augment the quality of the
results.
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Abstract. In this paper, a local and a global dense stereo matching me-
thod, implemented using Compute Unified Device Architecture (CUDA),
are presented, analyzed and compared. The purposed work shows the ge-
neral strategy of the parallelization of matching methods on GPUs and
the tradeoff between accuracy and run-time on current GPU hardware.
Two representative and widely-used methods, the Sum of Absolute Dif-
ferences (SAD) method and the Semi-Global Matching (SGM) method,
are used and their results are compared using the Middlebury test sets.

1 Introduction

In this paper, two representative and widely-used dense matching methods of
stereo processing for near real-time 3D reconstruction using Compute Unified
Device Architecture (CUDA) on programmable GPUs are described and evalua-
ted. Real-time stereo reconstruction is a very active research topic in computer
vision and is required for many applications such as remote sensing tasks and
close range applications. Compared with feature-based methods, the dense mat-
ching methods are less sensitive with application scenarios and can be used more
diffusely for both video sequences in robotics and large observation images from
airborne system [1]. Generally, the taxonomy divides dense stereo matching me-
thods in local (block-based) and global methods. Global stereo methods show
the best performance on the Middlebury online evaluation [2] than the simpler
local methods without special postprocessing steps.

The Semi-Global Matching (SGM) method is selected, because it is a high
performance global stereo method, but retains a complexity that is linear to
the reconstructed volume. It is realized for many practical applications like in
automobiles on FPGAs and the earth observation tasks on CPU [3]. The lo-
cal methods are favorited by real-time applications because of their simple and
fast implementations. Their mechanisms are similar and can be rephrased or
extended from the Sum of Absolute Differences (SAD) method [4].

In 2007, the G80 series graphics card of NVIDIA was introduced based on the
CUDA Architecture that enables the General-Purpose Computation on Graphics
Hardware (GPGPU) in a familiar C programming language [5]. Compared to the
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earlier GPGPU programming paradigm, CUDA does not need the reformulation
of the algorithms into a computer graphics rendering framework. This eases the
implementation and allows more flexible use of the GPU hardware.

The novel core of our approach is to find a combination between the me-
thods and the hardware, to demonstrate the general parallelization strategy of
matching methods on GPUs and compare two different dense stereo matching
algorithms. The presented work consists of three parts: the next section includes
the basic algorithms and introduction to CUDA, section 3 the implementation of
them on GPU and section 4 an evaluation using the Middlebury stereo images.

2 Basics

2.1 The Dense Matching Methods

A taxonomy of existing stereo algorithms is provided in [6]. Generally, the ste-
reo algorithms perform four steps: matching cost computation, cost aggregati-
on, disparity optimization and selection and disparity refinement. The taxono-
mic branch appears in the disparity optimization step: local methods perform a
block-based “winner-take-all ”optimization at each pixel in the aggregation step.
In contrast, global methods skip it and are formulated in an energy-minimization
frame work.

Generally, the disparity computation of local algorithms depends only on the
intensities within a finite window. The Sum of Absolute Differences (SAD) algo-
rithm is selected as an example, as it can be easily parallelized due to its simple
structure. It can be described in the following steps: the cost of pixel p(r,c) is
the absolute difference of intensity values at the given disparity d. The cost ag-
gregation is done by summing of matching costs over the window. Disparity is
selected with the minimal aggregated value:

S(p(r, c), d) =
1

4× n×m
×

−m∑
m

−n∑
n

|I1(r + i, c+ j)− I2( r + i, c+ j + d)|. (1)

In contrast, global algorithms perform almost all of their work in the dispa-
rity optimization step. The Semi-Global Matching (SGM) method is chosen,
because of its accuracy and computational complexity as O(width × height ×
DisparityRange) like local methods [7]. Its methodical realization has a regular
structure and maps to the Single Instruction Multiple Data (SIMD) mechanism
of GPUs.

The matching cost for two pixels can be derived from different methods. The
absolute differences between pixel intensities are used as correspondence cost.
For larger baselines other cost functions, such as Mutual Information, result in
a better performance [8], but are not evaluated here:

C(p, d) = L(p)−R(p+ d), (2)

where C(p, d) is the cost of pixel p at the disparity d. L(p) and R(p, d) denote
the intensities in the left and right image respectively.
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The SGM method approximates the minimization of the global energy E(D):

E(D) =
∑
p

(C(p,Dp)+
∑
q∈Np

P1 [|Dp −Dq| = 1]+
∑
q∈Np

P2 [|Dp −Dq| > 1]). (3)

The first term sums the costs of all pixels in the image with their particular
disparities Dp. The next two terms penalize the discontinuities with penalty
factors P1 and P2, which differ in small or large disparity differences within a
neighbourhood q of the pixel p. This minimization approximation is realized by
aggregating S(p, d) of path wise costs into a cost volume:

S(p, d) =
∑
r

Lr(p, d). (4)

Lr(p, d) in (4) represents the cost of a pixel p with disparity d along one direction
r. It is described as following:

Lr(p, d) = C(p, d) +min (Lr(p− r, d), Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,min
i
Lr(p− r, i) + P2) −min

i
Lr(p− r, i).(5)

This regularization term function favors planar and sloped surfaces, but still
allows larger height jumps in the direction of cost aggregation. The disparity at
each pixel is selected as the index of the minimum cost from the cost cube.

2.2 Compute Unified Device Architecture (CUDA)

The computational design for Semi-Global Matching concerns not only the par-
allelization mechanism but also the limitations of the hardware. Hence, in this
subsection the basic concepts of CUDA programming as well as the method-
involved physical features are introduced.

CUDA divides the computation units into hosts, such as a CPU and device,
normally such as a GPU. Massively parallel processing runs on the device during
the kernel -functions. The kernels specify the code to generate a large number of
threads to exploit data parallelism. They are organized in blocks and refer via
the thread indices in 1D, 2D or 3D. A Warp is defined as a group of 32 threads,
which is the minimum data processing size in a SM (Streaming Multiprocessor).
All of these threads within a block execute the same code as well-known Single-
Program, Multiple-Data (SPMD) parallel programming style [5]. Threads in the
same block share data and synchronize while doing their share of the work.
Figure 1 left shows CUDA thread organization. Each SM in graphics cards
with compute capability 1.3 can take up to 8 blocks and allows maximal 1024
threads [9].

CUDA enabled devices have separate memory spaces with different charac-
ters. Figure 1 right shows an overview of the device memory model. Global and
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constant memories are used for data transfer between host and device. The con-
stant memory allows read-only access and allows quick caching using a broadcast
mechanism. The shared memory is the key for hidding memory access latency
to avoid bandwidth saturation. Its latency is roughly 100 times faster than glo-
bal memory latency [10]. The profitable strategy for performing computation on
GPUs using this advantage is to partition data in subsets, copying them from
global memory to shared memory using multiple threads, achieving them from
shared memory locally in threads and copying the results back to global memo-
ry. The amount of shared memory per SM is 16 KB [9] and must be noticed by
design for data tiling.

Fig. 1. Overview of the CUDA threads (left) and memory model (right)

3 GPU Implementations Using CUDA

3.1 Strategy for Real-Time Stereo Processing

The preprocessing for unconstrained stereo rigs to simplify the correspondence
searching is the rectification of images using a compact algorithm of [11] on
GPU. The pixel coordinates are mapped with the combination of the block ID
and thread ID. The new pixel coordinates in the epipolar images are genera-
ted using locally defined transformation matrices in the kernel. The resulted
epipolar images enable a linear correspondence searching. The remaining stereo
processing stays in GPU until copying the results back.

The SAD and SGM method use the same GPU implementation by the cost
calculation step: the absolute differences for each pixel along an epipolar line are
calculated synchronously using the line-by-line tiled data in the shared memory.
Like that, the SAD method uses the similar way to parallelize its cost aggregation
on GPU. The disparities are selected directly after the aggregation. Differently,
by the cost optimization of SGM method each data element in the 3D cost cube
maps a thread in GPU and is path wise aggregated into the optimized cost
cube in global memory. As disparity refinement, an additional median filter is
implemented. The left-right check can be executed using the same processing
with exchanged data sequence.
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3.2 Matching Cost Calculation

In the cost computation step, each pixel in the left image is compared with
all reference pixels in the disparity range of the right image. The accordant
matching costs are read from the cost table using their intensities as indices. In
fact, a pixel from the left image is related with all pixels between minimum and
maximum disparity in the right image. The values in the image are partitioned
line-by-line and tiled into the shared memory to reduce the memory accesses on
global memory and increase the data utilization rate, because each pixel from
the right image can be used (DisparityRange − 1) times. The ground design
idea is visualized in Figure 2.

Fig. 2. Generation of cost cube from tiled data using lookup table: u is the intensity
of pixel p in the first image, v is the intensity of his corresponded pixel in the second
image along the epipolar line, c is the cost reading from the cost table

The block dimension is designed in 2D, because the maximum size of the
x-, y-, and z-dimension of a thread block is limited for all GPUs up to the
compute capability 1.3 at 512, 512, and 64, respectively [9]. One dimension
block for large images exceeds the hardware competence. In the kernel function
a barrier synchronization call ensures that all required data for the next step
is already updated to the shared memory before their individual calculations.
Consequently, each thread in a block answers to a pixel in the image line. A
threads block generates a part of the complete cost cube. The excerpt of the
CostCal reports the CUDA kernel code:
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__global__ void CostCal(...){

__shared__ float1 sData_l[IMG_LENGTH],

sData_r[IMG_LENGTH];

for (int l = 0; l<imgH; l++){//over complete image

//Update intensities from texture

sData_l[ix] = tex2D(l_texImg, threadIdx.x, l);

sData_r[ix] = tex2D(r_texImg, threadIdx.x, l);

__syncthreads();

for(int DStep = 0; DStep<DDepth; DStep++){

//Cost Calculation

cost = tex2D(ct_texImg, threadIdx.x, blockIdx.x);

d_ccube[DStep*imgW*imgH + imgW*l + threadIdx.x]

= cTable(sData_l[ix].x,sData_r[threadIdx.x].x);

}

}

}

This separate cost computation step is only required for the SGM method.

3.3 Cost Aggregation

In the local SAD method, the disparity is computed for all pixels independently.
In this case, the cost computation, cost aggregation and disparity selection steps
can be computed in parallel, without requiring additional storage space. The
main CUDA kernel for the local SAD method is shown below:

for (int di = 0; di < Depth; di++){

sad = 0;

//Aggregation in windows

for (int wj = 0; wj < w_width; wj++){

for (int wi = 0; wi <w_height; wi ++){

sad = sad + abs(tData[...].x - mData[...)].x);

}

}

if (di == 0) tempM = sad; selI = 0;

if (sad < tempM) tempM = sad; selI = di;

}

d_disp[imgW*iy + ix] = make_color1(selI);

Thus, each pixel is mapped to a thread. In a thread, the cost aggregation is
iteratively executed d times. The block size is dependent on the window size. A
rectangular window is selected to use the already stored data in shared memory
repeatedly along the epipolar line shown in Figure 3.
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Fig. 3. Block tiling for the cost aggregation of the SAD method

In contrast, the semi-global cost aggregation is typically a serial computation
from different paths. The cost optimization for each pixel in one direction requi-
res the storage of both the computed cost values and the aggregated costs from
the previously visited pixel. A pixel in the image contains DisparityRange data
elements in the cost cube, in which each concerned element of them maps to a
thread. The block size is depended on the disparity range and the number of
pixels inside each block is shown in the following kernel configuration:

dim3 ca_threads(PixelAmount, DisparityRange, 1);

dim3 ca_grid(ImageWidth/PixelAmount,1,1);

CostAggr<<<ca_grid, ca_threads>>>(CostCube, TempL, ...);

A further challenge is that pixels are no more independently with each other
by the path wise aggregation. The optimized results backwards along a path
are used for the actual optimization. The results must be rewritten into the
global memory for the aggregation with other paths. Thus, the massive data
accessing on global memory is not avoided completely. The ground idea for the
parallelization is visualized in Figure 4. In this example, one image line is tiled
in ImageWidth/4 segments. In a block there are 4×DisparityRange threads.
The computation is then executed ImageLength times iteratively in each block
over the complete image.

Fig. 4. Block tiling for the cost aggregation of the SGM method

Traditionally, the sweeping is executed more times for e.g. eight directions
SGM. The fast implementation achieves the cost optimization in six directions
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with two passes through the images. Cost aggregation can be extended for more
directions, if the sweepings start from the other sides of the image. The incline
optimizations e.g. path 1 requires the communication with other blocks. Hence,
the optimized costs must be stored in the global memory. A distinct problem
for large images is that CUDA features no block synchronization. This hardware
inherency barrages the block communication on boundaries. The visibilities of
the aggregations from oblique paths are depended on the amount of SMs. The
quick approach and its problem is shown in Figure 5.

Fig. 5. Fast aggregation processing in three directions within one sweeping

The meanwhile optimized cost walls in the direction 0, 2, 4 and 6 are written
to global memory, but not eliminated from shared memory, because they can be
used for the next line. This finesse avoids reading the optimized cost from the
global memory and economizes the expensive memory accessing for each block.

4 Results

The experimental results are computed on a NVIDIA GeForce GTX 295 gra-
phics card. One of the both GT200 graphic processor is used for the calculation.
This device core has 30 SMs on-chip and supports 1.3 CUDA compute capabi-
lity [9]. The GPU implementations use the Middlebury Stereo Datasets [2] as
well as aerial photos from the DLR’s 3K system [1], which are additionally rec-
tified on the GPU. Two comparisons are presented in this section: the run-time
improvement of the GPU implementation with the CPU implementation and
the accuracy and run-time differences between the SGM method and the SAD
method.

Figure 6 shows the results of the Middlebury Teddy and Cones datasets using
our SGM GPU implementation with an image size of 450 × 375 pixels. In ad-
dition, Figure 7 shows the results of the comparison between CPU and GPU
implementation of an aerial image pair, which has an image size of 1000× 1000
pixels with a disparity range of 80. Generally, they take similar results, but the
disparities on the church roof on the GPU result are better than CPU executi-
on, caused by the left to right and right to left cost aggregations on GPU use
a different parameter with other aggregation paths. The compared CPU imple-
mentation runs on an Intel Core2 Q9450 CPU with 6 MB L2 Cache. The CPU
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implementation needs about 5200 ms to finish the stereo processing including
rectification. In contrast, the CUDA improvement requires 722ms for six aggre-
gation directions and 1120 ms for eight aggregations totally. A comparison of
the execution time between CPU and GPU implementations with the above re-
ferred example are presented step by step in Table 1. The GPU implementation
is roughly 5 times faster than the CPU implementation written in C.

Fig. 6. Results of SGM GPU implementation using the Middlebury Stereo Datasets:
the left images are related input images, the middle images are the ground truth depths
and the right images are the GPU results

Table 1. Run-time comparison between CPU and GPU SGM implementation

CPU run-time (8x) GPU run-time (8x)

Rectification 432ms 96ms
Cost computation 200ms 9ms
Cost aggregation 4215ms 481ms(6×)/879ms(8×)
Disparity selection 362ms 136ms

Total 5209ms 722ms(6×)/1120(8×)ms

Figure 8 shows the run-times of the different steps of the SGM method for
different image sizes. The run-time on small images with 384 × 288 pixels and
a disparity range of 64 reaches 13 fps. Even though the results are promising,
a potential improvement could be reached with a more adaptive data tiling
strategy. The experiment with large images of 1000 × 1000 pixels exhibits a
slowdown due to bandwidth latency. The path-wise cost aggregation is the key
for the better performance of SGM, but results in an algorithm that cannot be
parallelized as effectively as the local SAD method, as the temporarily aggregated
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Fig. 7. Result comparison between CPU (middle) and GPU (right) SGM implementa-
tion. The left image is one of the related input images.

Fig. 8. The SGM GPU run-times on different image sizes

costs must be rewritten to the global memory in order to be used for aggregations
with other directions.

The results of the SAD method with different window-sizes are compared with
the SGM result and ground-truth in Figure 9. The SGM method achieves a less
noisy result with more details. The results of SAD with a small window show
many errors. The SAD with a larger window leads to a similar result as SGM,
but it is still less precise. This comparison shows the improved reconstruction
archived with the semi-global matching method.

With increasing window size, the local SAD method loses its runtime advan-
tage with respect to SGM. Figure 10 shows strange spikes in the run-time graph
with the window sizes in one dimension. The spikes at size 12 and 13 appear
always using different test data and probably caused by hitting a cache limita-
tion. After these impulses the factor of linear run-time increasing goes up and
remains almost constantly.
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Fig. 9. The results compared between the SAD method with different window-sizes
and the SGM result: the left part lists the SAD results with 3× 31, 7× 13 and 9× 31
window size, respectively. In the middle is the SGM result shown. The input image
pair and the disparity ground-truth are given on the right.

Fig. 10. The run-time analysis of a 3× x window of the SAD method: the blue line
shows the processing time during the growing of window size in one direction. The
red line demonstrates the run-time differences. The green line confirms the constantly
run-time increasing before and after the impulse.
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Fig. 11. The run-time analysis of the SAD method with different fixed window sizes
in x direction: 3× x in blue , 5× x in red, 7× x in green and 9× x in black

In addition, the changes with different fixed window sizes in x direction are
observed in Table 2 and shown in Figure 11. The comparison shows by the
implementation of dense matching method on GPU, that the global methods
keep their accuracy advantage and the cost/performance ratio of local matching
methods is not beneficial for a fast processing on GPUs. The reason for inef-
ficiencies of the local methods with large aggregation window sizes is that the
computational win via the repeatedly employing of the updated data from the
shared memory can not cover the memory accessing latency. Thus, the discret
approached global methods like the SGM perform a better and more efficient
result.

Table 2. Run-time increasing with fixed window sizes in x-direction and changed sizes
in y-direction

3x 5x 7x 9x 11x 13x 15x 17x 19x 21x 23x 25x 27x 29x

3x 4.9 8.4 10.0 14.3 18.6 121.0 59.5 67.1 74.7 82.2 89.9 97.3 104.9 113.2
5x 9.5 13.8 18.1 24.6 30.1 37.3 122.5 138.4 154.3 170.2 186.6 201.9 217.8 234.6
7x 14.6 22.7 29.3 38.3 48.1 59.5 194.6 220.0 245.2 270.6 295.9 322.0 346.6 371.9
9x 17.3 26.2 35.9 45.6 56.9 69.7 235.4 266.3 296.9 327.7 358.4 389.9 419.9 451.4

5 Conclusions

The proposed work demonstrates the general strategy for parallelization of dense
matching methods on GPUs to show the potential capability of common graphics
cards for general computation and to compare the implementations between
local and global methods with the example of SAD and SGM method. The
main architectural difference between CPU and GPU is the small amount of
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fast shared memory and massive parallel computation power. This makes them
suitable for simple problems without many dependencies between the data to be
processed.

In contrast, the CPUs have large L2 Cache, which is enough to store the locally
relevant cost cube. In future work, the dense matching methods will be optimized
in CPU-implementation and compared with their GPU-optimized visions. The
combination and adaptation between the current methods and modern hardware
is not suitable. A parallel design of new method will be researched.

Thus, the SGM implementation on the GPU cannot use the full computation
power of the graphics card. Future work will include the design of a (semi)
global matching algorithm with a structure adapted to the constraints of the
GPU hardware architecture.
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Abstract. The Graphics Processor Unit (GPU) has expanded its role
from an accelerator for rendering graphics into an efficient parallel pro-
cessor for general purpose computing. The GPU, an indispensable com-
ponent in desktop and server-class computers as well as game consoles,
has also become an integrated component in handheld devices, such as
smartphones. Since the handheld devices are mostly powered by bat-
tery, the mobile GPU is usually designed with an emphasis on low-power
rather than on performance. In addition, the memory bus architecture of
mobile devices is also quite different from those of desktops, servers, and
game consoles. In this paper, we try to provide answers to the following
two questions: (1) Can a mobile GPU be used as a powerful accelerator
in the mobile platform for general purpose computing, similar to its role
in the desktop and server platforms? (2) What is the role of a mobile
GPU in energy-optimized real-time mobile applications? We use face
recognition as an application driver which is a compute-intensive task
and is a core process for several mobile applications. The experiments
of our investigation were performed on an Nvidia Tegra development
board which consists of a dual-core ARM Cortex A9 CPU and a Nvidia
mobile GPU integrated in a SoC. The experiment results show that, uti-
lizing the mobile GPU can achieve a 4.25x speedup in performance and
3.98x reduction in energy consumption, in comparison with a CPU-only
implementation on the same platform.

1 Introduction

It has been an active research subject to explore the use of Graphics Processor
Unit (GPU), an indispensable component in desktop computers, as a general
purpose coprocessor to accelerate the compute-intensive part of an algorithm.
The research directions include (1) to identify algorithms’ parallelism or redesign
algorithms to be suitable running on a GPU, and (2) to extend the fixed graphics
pipeline into programmable pipelines with a more flexible memory manipulation
by high-level APIs, such as CUDA[1]. Depending on the algorithms’ inherent
parallelism, the number of cores, and the available memory bandwidth of the
GPU hardware, a speedup of tens to hundreds has been reported in the liter-
atures for various applications. Computer vision is one of the areas for which
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the GPU has demonstrated significant performance improvement, such as image
registration [2] and feature tracking [3].

The programmable GPU is now moving its way from desktop and server com-
puters into handheld devices, such as smartphones and portable game consoles.
While the GPUs inside mobile devices and desktop computers have similar high-
level functionality, there are many differences under the hood. For example, a
GPU inside a smartphone is usually integrated in a single chip with CPU, DSP,
and other application-specific accelerators (e.g. [4]). Instead of having its own
graphics memory, an embedded GPU shares the system bus with other com-
puting components to access the external memory and therefore has much less
available bus bandwidth than those of laptop and high-performance desktop sys-
tems [5]. Also, the only available APIs for current mobile GPUs are OpenGL
ES [6], which is a graphics API and does not provide some essential compo-
nents of GPGPU, such as ”scatter” (i.e. write to an arbitrary memory location)
and thread-level synchronization. As most existing CPU-GPU optimizations are
based on, and optimized for, desktop and server platforms, it is highly desirable
to characterize the mobile CPU-GPU platform and revisit the GPGPU strategies
in order to better utilize the computational power of a mobile GPU. A study of
comparing the use of a mobile CPU (ARM) and a mobile GPU (PowerVR SGX)
for executing an image processing pipeline (adjusting geometry, Gaussian blur,
and adjusting color) reports that the mobile GPU achieves 3.58x speedup (8.6
seconds per frame for CPU and 2.4 seconds per frame for GPU) [7]. Their in-
vestigation is conducted with an emulated version of OpenCL embedded profile
[8], which is not available on current commodity smartphones and development
boards. Also, the target task of their study is low-level image processing, not
high-level vision tasks.

Power and energy efficiency is another critical design considerations when
design applications on a battery-powered mobile platform. A mobile handheld
device is typically limited by a power ceiling of less than 1 watt, while the power
ceilings for the desktop processors alone range from 30 to 150 Watts. In addition
to explore the utilization of mobile GPU to speedup time-consuming tasks, it is
also important to characterize the power consumption of the mobile GPU and
CPU. The overall objective of developing an application on a mobile platform
should be to optimize the total energy consumption while meeting the real-time
constraint.

In this paper, we investigate the computational capability and energy effi-
ciency of current mobile CPU-GPU system for an exemplar computer vision
application, automatic face annotation. We use Nvidia’s Tegra SoC/platform
[9], which is specifically designed for smartphones and tablets, as the target
platform in our study. Running the face recognition algorithm on Tegra’s CPU,
on average, takes 8.5 seconds to detect and recognize a face. When utilizing
Tegra’s GPU by OpenGL ES 2.0 to offload the most compute-intensive task,
face feature extraction, in the face recognition pipeline, the execution time as
well as the total energy consumption can be significantly reduced. This paper
is organized as follow: In Section 2 we first review the recent research of mobile
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computer vision and energy efficiency of desktop CPU-GPU systems. Section 3
provides an overview of the face annotation system and its runtime profile. Then
in Section 4, we show the experimental setup of our study. The experimental re-
sults are presented in Section 5. Finally we conclude our study and the future
exploration directions.

2 Related Works

While state-of-the-art face recognition algorithms can achieve a high accuracy
to support automatic face annotation, their implementations on an embedded
platform cannot achieve real-time performance due to the demanding compu-
tational requirement. Applications targeted for mobile platforms usually re-
move the compute-expensive operations, or rely on the clouds to do most of
the computation. For example, a real-time face annotation system on PDA was
demonstrated in [10]. Although it achieves real-time performance, the intensity-
comparison based method is not sufficiently robust to handle the luminance vari-
ation or pose changes. Hence it could not achieve the level of accuracy needed
for real-life applications.

As a sophisticated hardware component with massive parallelism, running
tasks on a GPU consumes significant power. The Nvidia 8800GTS graphics card
is measured consuming 210W before the kernel launches, and 310W while the
kernel is running [12]. On the other hand, the CPU employs several advanced
low-power design techniques and power management strategies, thus making it
more power efficient. The measured standby power and active power of Intel i7 is
33.03W and 102.2W (for one core) respectively [12]. For applications where the
GPU can finish the task in a significantly shorter period of time, in comparison
with its CPU counterpart, the performance gain results in energy savings as well,
making the GPU a preferred choice from both performance and energy points of
view. However, when the GPU speedup is not as pronounced, the choice becomes
less obvious. The cost/performance investigation of an Intel Core 2 Duo CPU and
a Nvidia CUDA enabled GPU in [11] shows, despite an increase in total system
power, using a GPU is more energy efficient when the performance improvement
is 5x or greater.

3 Face Recognition System

Face recognition enables easy sharing and better management of digital photos
and videos. Fig. 1 shows an exemplar face annotation application on
smartphones. Given a newly taken photo, or one from the photo gallery in a
smartphone, the face regions are identified, recognized and tagged with names
automatically. The tagged face(s) could be added to the face database, linked
to the user’s address book, and/or uploaded the annotated photo to a photo-
sharing or social networking websites such as Picasa or Facebook in real-time
using the smartphone’s Wi-Fi or 3G network connectivity. The face recognition
process can be divided into four steps: (1) Face detection, which scans the whole
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image to identify face regions. (2) Face landmark localization, which identifies
the face landmark locations such as eyes, nose and mouth within a detected face
region, and then resize and register the face region accordingly. (3) Face feature
extraction, which represents a face region by its features that are invariant or
robust to the variations of illumination, pose, expression, and occlusion. (4) Face
feature classification, which compares the face feature to the training face set
and assigns a name of the most similar identity to the query face.

Fig. 1. A face annotation system on smartphones

3.1 Gabor-Based Face Feature Extraction

The Gabor-based feature descriptor [13] has been demonstrated as one of the
most suitable local representation for face recognition. The Gabor wavelet rep-
resentation of an image is the convolution of the image with a family of Gabor
kernels as defined in the following:

Ψμ,v(z) =
||kμ,v||
σ2

e(−||kμ,v||2||z||2/2σ2)[eikμ,vz − e−σ2/2] (1)

Where μ and v define the orientation and scale of the Gabor filters, z = (x, y),
||.|| denotes the norm operator, and the wave vector kμ,v = kve

iφμ , where
kv = kmax/f

v gives the frequency, φμ = μπ/8 gives the orientation. This repre-
sentation captures the local structure corresponding to spatial frequency (scale),
spatial localization, and orientation selectivity. As a result, it is robust to illu-
mination and facial expression variations. A typical Gabor-based face descriptor
uses 40 different Gabor kernels which include 5 different scales and 8 different
orientations. After that, it is further processed by Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) to reduce its dimensionality and
forms the final face feature descriptor. The use of Gabor feature combined with
the PCA-LDA method is reported to achieve 93.83% accuracy on the traditional
face recognition dataset FERET [14] and 71.69% on a more challenging photo
dataset LFW [15].
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3.2 System Profiling

In order to understand the complexity of the face recognition system and the
performance of such application on modern smartphones, we have implemented
a Gabor-based face recognition system on an Android-powered [16] smartphone
platform. The details of this platform are revealed in the next section. In our
system, we use Android facedetector API [17] to identify face regions in a given
photo, and an AdaBoost-based eye localization method to identify the land-
mark regions. Face feature classification is performed by the K-Nearest-Neighbor
method. All the tasks, except the face detection (which is an Android API and
the implementation details are not easy to obtained), are implemented in C and
compiled using the tool chain provided by Android Native Development Kit r3
(NDK).

Table 1 shows the execution time breakdown of face recognition system run-
ning on a 1GHz ARM Cortex A9 CPU. The picture size in this study is 480x1000.
The total number of training images is 15. The identified face region is aligned
and scaled to 64x80 before extract face feature. The profiling results show that,
feature extraction is the most time-consuming part. It takes 6.1 seconds to pro-
cess one face, which is about 71.8% of the total computing time. Without any
optimization, the overall execution time of the face recognition too long to be
considered as a real-time mobile applications.

Table 1. Execution time breakdown of face recognition system running on Tegra
platform’s CPU

Task Time (sec) %

Face detection 1.5 17.6
Landmark detection 0.7 8.2
Feature extraction: Gabor wavelet 5.1 60.0
Feature extraction: PCA-LDA 1.0 11.8
Feature classification 0.2 2.4

Total 8.5 100

Since the Gabor wavelet in the face feature extraction is the most dominant
component, optimization of this aspect will result in the most improvement.
In the following, we examine using the mobile GPU to accelerate this part.
The experimental setup is first described in Section 4, and then we discuss the
implementation details and the experimental results in Section 5.

4 Experimental Setup

Our experiments were performed on a Nvidia Tegra SoC platform with the fol-
lowing specifications: a 1GHz dual-core ARM Cortex A9 CPU, 1GB of RAM,
a Nvidia GeForce GPU, and 512MB of Flash memory. This chip is one of the
representative heterogeneous processors designed for handheld devices such as
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smartphones and tablets. A Nvidia Tegra developer kit [9] is available for de-
veloping software running on the Tegra chip. Fig. 2 shows our experimental
setting: the Tegra board is connected to a VGA monitor and a keyboard and
a mouse are also connected. The operating system running on this platform is
Android.

Fig. 2. Tegra development board and the experimental setup

The Tegra board is powered by a 15V DC input which is then converted into
3.3V, 5V, 1.8V and 1.05V for various components on the board by a regulator.
It is difficult to precisely measure the power consumption because it requires
isolating the traces on the board that provide power to the Tegra chip and
measuring the current values. Also, because the CPU and the GPU respectively
are integrated in a single chip, it’s hard to measure exactly the current drawn by
each individual component in the chip. Therefore, we approximate the current
used by the CPU and the GPU by measuring the current consumed by the entire
board. The average idle current is about 0.2A which is considered as the offset
current.

The Tegra GPU has fully programmable unified vertex and fragment shaders.
The shaders are programed through OpenGL ES 2.0 [6] which is the primary
graphics library for handheld and embedded devices with a programmable GPU.
The commonly used high-level API for a desktop environment, such as CUDA
or OpenCL, is not supported in this, and any other embedded, platform yet.

5 Execution Efficiency and Energy Efficiency Study

Gabor wavelet can be implemented by convolution or the Fast Fourier Transform
(FFT). The GPU implementation of the convolution method is suitable only for
small-size kernels due to the memory limitation. However, a small-size kernel is
not realistic for object and pattern recognition [18]. Therefore, our GPU-based
Gabor face feature extraction is based on the FFT method: first transforming
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both face image and the Gabor kernel into the Fourier space, multiplying them
together, and then inverse-transforming the result back to the space domain.
In our study, we first take FFT as a benchmark program to investigate the
computational and energy efficiency of mobile GPU, and then extend the result
to the Gabor face feature extraction processing.

5.1 FFT Benchmark on Mobile CPU and GPU

Fig. 3 shows the pseudo code of our FFT benchmark program. The CPU im-
plementation is written in C. In the GPU implementation, the GPU shaders,
which are launched by the host CPU, perform FFT and IFFT computation.
The data needs to first transfer from the CPU domain to the GPU domain and
then transfer back after the GPU finishes its computation. The shader program
is compiled on the Tegra GPU. After the execution is completed, the resulting
image is displayed on the screen.

Fig. 3. FFT benchmark used in our study

A GPU-acceleration method in [21] is used in our study. Although some other
GPU-accelerated FFT methods have been proposed [19][20][22], they were pro-
posed for dedicated hardware and could not be applied to an embedded GPU
which has significantly less resources due to the power constraint. The approach
used in our study relies on the fragment shader to do the per-pixel (i.e. each sam-
ple of the 2D array) computation. The input index and weighting factor which
are used for the calculation of the each sample are pre-computed and stored in
the texture memory.

We ran a FFT benchmark program, which performs FFT and IFFT 50 times,
on Tegra’s CPU and GPU respectively for comparison. The measured power
consumption results are shown in Figure 5. Both CPU and GPU start running
roughly at reference time 0.6 second. After CPU starts running, it takes about
0.4 second for the CPU to initialize the GPU and to transfer data from the CPU



418 Y.-C. Wang, B. Donyanavard, and K.-T. (Tim) Cheng

to the GPU before the GPU runs at its full capacity. After the FFT and the
IFFT computations are completed, the application program is still running (but
does nothing). Therefore, the power consumption level is still higher than the
level of the idle stage before the application was launched.

The measurement results show that, for this FFT benchmark, the GPU is 3x
faster and consumes 8% more power than the CPU (1 second vs. 3.1 seconds,
and 4.0 watts vs. 3.7 watts). The slightly higher power when using GPU is
because the CPU is not idle when the GPU is running and is standing by for
the completion of GPU. As a result, the ratio of the total energy consumption
of the CPU version vs. the GPU version for this FFT benchmark is 2.86 to 1.

Fig. 4. Power consumption of our FFT benchmark on mobile CPU and GPU

5.2 GPU Accelerated Gabor-Based Face Feature Extraction

The FFT benchmark result demonstrates that using a mobile GPU is not only
more computationally efficient but also more energy efficient. We then extend
the GPU-accelerated FFT and IFFT to compute the Gabor-based face feature
extraction, and compare the results with the CPU implementation. The left side
of Fig. 5 shows the pseudo code of the Gabor-based face feature extraction.
In the GPU implementation, the FFT and IFFT are the same shader program
with different input arguments in order to perform either forward or inverse
transform, and the MULTIPLY is a separate shader program. In other words,
different shader programs have to be swapped back and forth repeatedly to
complete the task. The execution time of both CPU and GPU implementation
are shown in the first two rows of Table 2. The GPU implementation runs
4.25x faster than the CPU implementation (1.2 seconds vs. 5.1 seconds) while
consuming slightly more power (3.75 Watt vs. 3.52 Watt).
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Since the computation of convolving 40 different Gabor kernels with a face
image can be computed concurrently and independently, processing multiple Ga-
bor kernels in a batch mode may further improve the performance by reducing
overall time spent on swapping shader programs. Three different configurations
are examined in our study: The first configuration (Fig. 6(a)) is the original
method which performs 40 Gabor wavelets with 40 different kernels. The sec-
ond configuration (Fig. 6 (b)) combines four kernels in a batch, and the shader
program is configured to draw a 256x256 quad but performs four 128x128 FFTs
while each FFT tile has a different texture access address. This could be easily
performed by loading another texture to lookup the index. The third configura-
tion (Fig. 6 (c)), similar to the second one, combines nine Gabor kernels in a
batch and performs nine 128x128 FFTs at a time.

Fig. 5. Doing 40 Gabor filter in the single mode and batch mode

Fig. 6. Combine various number of Gabor kernels to perform larger size FFT to-
gether. (a) Perform a 128x128 FFT for one kernel at a time. (b) Perform four 128x128
FFTs for four kernels at a time. (c) Perform nine 128x128 FFT for nine kernels at
a time.

The measurement results show that, however, the batch mode does not reduce
the computation time as we expected. As shown in Table 2, GPU 1x1, GPU 2x2,
and GPU 3x3 take 1.2, 1.4, and 1.5 seconds respectively to complete the assigned
tasks. This could be explained that a larger amount of data is required for the
computation when running a larger number of concurrent tasks. If the GPU
cache size is not large enough, it takes more time to store and load data from
the main memory.
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Table 2. The execution time and energy consumption of different implementation
configurations

configuration # of batch Time (sec) Power (Watt) Energy (J)

CPU (1x1) 40 5.1 3.52 17.95

GPU (1x1) 40 1.2 3.75 4.50
GPU (2x2) 10 1.4 3.59 5.02
GPU (3x3) 5 1.5 3.63 5.44

5.3 Overall Performance

Computing Gabor representation of a face image is the most time consuming
part of the whole face recognition system. It takes about 5.1 seconds for a 1
GHz ARM processor to complete this task. The mobile GPU takes only 1.2
seconds to complete the same task, which represents a 4.25x speedup. As shown
in Fig. 7, with the GPU successfully offloading the computational burden from
CPU, the overall computation time for recognizing a person on a smartphone is
reduced from 8.5 seconds to 4.6 seconds. As for the total energy consumption,
the mobile CPU-GPU implementation consumes 16.3 J while the CPU only
implementation consumes 29.8 J. After the Gabor wavelet is accelerated by
the GPU, the face detection and face feature dimension reduction by PCA-
LDA become the most time-critical parts. We will further explore in the future
the opportunity of utilizing mobile GPU to remove these new computational
bottlenecks to achieve better performance and energy consumption level.

Fig. 7. Comparison of face recognition system running on Tegra’s CPU and
CPU+GPU. (a) Execution time (b) Total energy consumption.

6 Conclusion and Future Works

In this paper, we investigate the computing power and energy consumption of a
mobile CPU-GPU platform for mobile computer vision applications. Compared
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to a CPU-only implementation, our preliminary GPU-accelerated Gabor face
feature extraction, the most compute-intensive task in a face annotation system
can achieve a 4.25x speedup and 3.94x reduction in energy consumption. This
experimental investigation confirms that a mobile GPU, although is designed pri-
marily for low-power rather than maximum performance, can provide significant
performance speedup for vision tasks on a mobile platform, similar to the role of
its high-performance counterparts in the desktop and server systems. Therefore,
the performance improvement achieved by GPU-based computing also results in
overall energy reduction, which is a tremendous benefit for mobile devices.

Due to the lack of a higher level programming environment, such as CUDA,
for mobile GPUs, it is difficult to port existing GPU-optimized algorithms to the
mobile SoCs, even for those already designed for generic GPU architectures. It is
worthwhile to further explore low-power architectures and extend them toward
a more programmable, general-purpose architecture. While increasing the pro-
grammability may somewhat compromise the execution efficiency or increase the
power consumption, exploring the tradeoffs between energy efficiency and the
programmability and identifying a solution for easier programming without cost-
ing too much degradation in performance and energy consumption are necessary
steps for improving the productivity for programming for mobile GPUs.
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Abstract. Large-scale 3D reconstruction has received a lot of attention
recently. Bundle adjustment is a key component of the reconstruction
pipeline and often its slowest and most computational resource intensive.
It hasn’t been parallelized effectively so far. In this paper, we present a
hybrid implementation of sparse bundle adjustment on the GPU using
CUDA, with the CPU working in parallel. The algorithm is decomposed
into smaller steps, each of which is scheduled on the GPU or the CPU. We
develop efficient kernels for the steps and make use of existing libraries for
several steps. Our implementation outperforms the CPU implementation
significantly, achieving a speedup of 30-40 times over the standard CPU
implementation for datasets with upto 500 images on an Nvidia Tesla
C2050 GPU.

1 Introduction

Large scale sparse 3D reconstruction from community photo collections using the
structure from motion (SfM) pipeline is an active research area today. The SfM
pipeline has several steps. The joint optimization of camera positions and point
coordinates using Bundle Adjustment (BA) is the last step. Bundle adjustment
is an iterative step, typically performed using the Levenberg-Marquardt (LM)
non-linear optimization scheme. Bundle adjustment is the primary bottleneck
of the SfM, consuming about half the total computation time. For example,
reconstruction of a set of 715 images of Notre Dame data set took around two
weeks of running time [1], dominated by iterative bundle adjustment. The BA
step is still performed on a single core, though most other steps are performed
on a cluster of processors [2]. Speeding up of BA by parallelizing it can have a
significant impact on large scale SfM efforts.

The rapid increase in the performance has made the graphics processor unig
(GPU) a viable candidate for many compute intensive tasks. GPUs are being
used for many computer vision applications [3], such as Graph Cuts [4], tracking
[5] and large scale 3D reconstruction [6]. No work has been done to implement
bundle adjustment on the GPUs or other multicore or manycore architectures.

In this paper, we present a hybrid implementation of sparse bundle adjustment
with the GPU and the CPU working together. The computation requirements

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 423–435, 2012.
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of BA grows rapidly with the number of images. However, the visibility aspects
of points on cameras places a natural limit on how many images need to be
processed together. The current approach is to identify clusters of images and
points to be processed together [7]. Large data sets are decomposed into mildly
overlapping sets of manageable sizes. An ability to perform bundle adjustment
on about 500 images quickly will suffice to process even data sets of arbitrarily
large number of images as a result. We focus on exactly this problem in this
paper.

Our goal is to develop a practical time implementation by exploiting the
computing resources of the CPU and the GPU. We decompose the LM algorithm
into multiple steps, each of which is performed using a kernel on the GPU or a
function on the CPU. Our implementation efficiently schedules the steps on CPU
and GPU to minimize the overall computation time. The concerted work of the
CPU and the GPU is critical to the overall performance gain. The executions of
the CPU and GPU are fully overlapped in our implementation, with no idle time
on the GPU. We achieve a speedup of 30-40 times on an Nvidia Tesla C2050
GPU on a dataset of about 500 images.

2 Related Work

Brown and Lowe presented the SfM pipeline for unordered data sets [8]. Pho-
totourism is an application of 3D reconstruction for interactively browsing and
exploring large collection of unstructured photographs [1]. The problem of large
scale 3D reconstruction takes advantage of the redundancy available in the large
collection of unordered dataset of images and maximizes the parallelization avail-
able in the SFM pipeline [2,7]. Bundle Adjustment was originally conceived in
photogrammetry [9], and has been adapted for large scale reconstructions. Ni
et al. solve the problem by dividing it into several submaps which can be op-
timized in parallel [10]. In general, a sparse variant of Levenberg-Marquardt
minimization algorithm [11] is the most widely used choice for BA. A public
implementation is available [9]. Byröd and Äström solve the problem using pre-
conditioned conjugate gradients, utilizing the underlying geometric layout [12].
Cao et al. parallelize the dense LM algorithm, but their method is not suited
for sparse data [13]. Agarwal et al. design a system to maximize parallelization
at each stage in the pipeline, using a cluster of 500 cores for rest of the compu-
tations but a single core for bundle adjustment [2]. Frahm et al. uses GPUs to
reconstruct 3 million images of Rome in less than 24 hours [6]. They don’t use
the GPUs for the BA step. No prior work has been reported that parallelizes
BA or the LM algorithm.

3 Sparse Bundle Adjustment on the GPU

Bundle adjustment refers to the optimal adjustment of bundles of rays that
leave 3D feature points onto each camera centres with respect to both camera
positions and point coordinates. It produces jointly optimal 3D structure and
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viewing parameters by minimizing the cost function for a model fitting error
[9,14]. The re-projection error between the observed and the predicted image
points, which is expressed for m images and n points as,

min
P,X

n∑
i=1

m∑
j=1

d(Q(Pj , Xi), xij)
2

(1)

where Q(Pj , Xi) is the predicted projection of point i on image j and d(x, y) the
Euclidean distance between the inhomogeneous image points represented by x
and y. Bundle Adjustment is carried out using the Levenberg-Marquardt algo-
rithm [11,15] because of its effective damping strategy to converge quickly from
a wide range of initial guesses. Given the parameter vector p, the functional rela-
tion f , and measured vector x, it is required to find δp to minimize the quantity
‖x− f(p+ δp)‖. Assuming the function to be linear in the neighborhood of p,
this leads to the equation

(JTJ+ μI)δp = JTε (2)

where J is the Jacobian matrix J = ∂x
∂p . LM Algorithm performs iterative min-

imization by adjusting the damping term μ[16], which assure a reduction in the
error ε.

BA can be cast as non-linear minimization problem as follows. A parameter
vector P ∈ RM is defined by the m projection matrices and the n 3D points, as

P = (aT1 , . . . , a
T
m,b

T
1 , . . . ,b

T
n )

T , (3)

where aj is the jth camera parameters and bi is the ith 3D point coordinates.
A measurement vector X is the measured image coordinates in all cameras:

X = (xT
11, . . . ,x

T
1m,x

T
21, . . . ,x

T
2m, . . . ,x

T
n1, . . . ,x

T
nm)T . (4)

The estimated measurement vector X̂ using a functional relation X̂ = f(P) is
given by

X̂ = (x̂T
11, . . . , x̂

T
1m, x̂

T
21, . . . , x̂

T
2m, . . . , x̂

T
n1, . . . , x̂

T
nm)T , (5)

with x̂ij = Q(aj,bi). BA minimizes the squared Mahalanobis distance εTΣ−1
x ε,

where ε = X− X̂, over P. Using LM Algorithm, we get the normal equation as

(JTΣ−1
X J+ μI)δ = JTΣ−1

X ε. (6)

Apart from the notations above, mnp denotes the number of measurement pa-
rameters, cnp the number of camera parameters and pnp the number of point
parameters. The total number of projections onto cameras is denoted by nnz,
which is the length of vector X.

The solution to Equation 6 has a cubic time complexity in the number of
parameters and is not practical when the number of cameras and points are
high. The Jacobian matrix for BA, however has a sparse block structure. Sparse
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BA uses a sparse variant of the LM Algorithm [9]. It takes as input the pa-
rameter vector P, a function Q used to compute the predicted projections x̂ij ,
the observed projections xij from ith point on the jth image and damping term
μ for LM and returns as an output the solution δ to the normal equation as
given in Equation 6. Algorithm 1 outlines the SBA and indicates the steps that
are mapped onto the GPU. All the computations are performed using double
precision arithmetic to gain accuracy.

Algorithm 1. SBA (P,Q, x, μ)

1: Compute the Predicted Projections x̂ij using P and Q. � Computed on GPU
2: Compute the error vectors εij ← xij − x̂ij � Computed on GPU
3: Assign J← ∂X

∂P
( Jacobian Matrix ) where

Aij ← ∂x̂ij

∂aj
=

∂Q(aj ,bi)

∂aj
(
∂x̂ij

∂ak
= 0 ∀i �= k) and

Bij ← ∂x̂ij

∂bi
=

∂Q(aj ,bi)

∂bi
(
∂x̂ij

∂bk
= 0 ∀j �= k) � Computed on GPU

4: Assign JTΣ−1
X J←

(
U W

WT V

)
where U,V,W is given as

Uj ←∑
i A

T
ijΣ

−1
xij

Aij , Vi ←∑
j B

T
ijΣ

−1
xij

Bij and

Wij ← AT
ijΣ

−1
xij

Bij � Computed on GPU

5: Compute JTΣ−1
X ε as εaj ←

∑
i A

T
ijΣ

−1
xij

εij ,

εbi ←
∑

j B
T
ijΣ

−1
xij

εij � Computed on CPU

6: Augment Uj and Vi by adding μ to diagonals to yield
U∗

j and V∗
i � Computed on GPU

7: Normal Equation:

(
U∗ W

WT V∗

)(
δa
δb

)
=

(
εa
εb

)
� Using Equation (6)

8:

⎛
⎝U∗ −WV∗−1WT︸ ︷︷ ︸

S

0

WT V∗

⎞
⎠(

δa
δb

)
=

(εa −WV∗−1εb︸ ︷︷ ︸
e
εb

)
� Using Schur Complement

9: Compute Yij ←WijV
∗−1
i � Computed on GPU

10: Compute Sjk ← U∗
j −

∑
i YijW

T
ik � Computed on GPU

11: Compute ej ← εaj −
∑

i Yijεbi � Computed on CPU

12: Compute δa as (δTa1
, . . . , δTam

)T = S−1(eT1 , . . . , e
T
m)T � Computed on GPU

13: Compute δbi ← V∗−1
i (εbi −

∑
j W

T
ijδaj ) � Computed on GPU

14: Form δ as (δTa , δ
T
b )

T

3.1 Data Structure for the Sparse Bundle Adjustment

Since most of the 3D points are not visible in all cameras, we need a visibility
mask to represent the visibility of points onto cameras. Visibility mask is a
boolean mask built such that the (i, j)th location is true if ith point is visible
in the jth image. We propose to divide the reconstruction consisting of cameras
and 3D points into camera tiles or sets of 3D points visible in a camera. Since
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Fig. 1. An example of the compressed column storage of visibility mask having 4
cameras and 4 3D Points. Each CUDA Block processes one set of 3D points.

the number of cameras is less than number of 3D points and bundle of light
rays projecting on a camera can be processed independent of other cameras, this
division can be easily mapped into blocks and threads on fine grained parallel
machines like GPU. The visibility mask is sparse in nature since 3D points are
visible in nearby cameras only and not all. We compress the visibility mask using
Compressed Column Storage (CCS) [17]. Figure 1 shows a visibility mask for 4
cameras and 4 points and its Compressed Column Storage. We do not store the
val array as in standard CCS [17] as it is same as the array index in 3D point
indices array. The space required to store this is (nnz +m) × 4 bytes whereas
to store the whole visibility matrix is m×n bytes. Since the projections x̂ij ,xij

and the JacobianAij ,Bij is non zero only when the ith 3D point is visible in the
jth camera, it is also sparse in nature and thereby stored in contiguous locations
using CCS which is indexed through the visibility mask.

3.2 Computation of the Initial Projection and Error Vector

Given P and Q as input, the initial projection is calculated as X̂ = Q(P)

(Algorithm 1,line 1) where X̂ is the estimated measurement vector and x̂ij =
Q(aj,bi) is the projection of point bi on the camera aj using the function Q. The
error vector is calculated as εij = xij − x̂ij where xij and x̂ij are the measured
and estimated projections. The estimated projections and error vectors consumes
memory space of nnz × mnp each. Our implementation consists of m thread
blocks running in parallel, with each thread of block j computing a projection
to the camera j. The number of threads per block is limited by the total number
of registers available per block and a maximum limit of number of threads per
block. Since the typical number of points seen by a camera is of the order of
thousands (more than the limit on threads) we loop over all the 3D points visible
by a camera in order to compute projections. The GPU kernel to calculate the
initial projection and error vector is shown in Algorithm 2.
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Algorithm 2. CUDA INITPROJ KERNEL (P,Q,X)

1: CameraID ← BlockID
2: Load the camera parameters into shared memory
3: repeat
4: Load the 3D point parameters (given ThreadID and CameraID)
5: Calculate the Projection x̂ij given 3D Point i and Camera j
6: Calculate the Error Vector using εij = xij − x̂ij

7: Store the Projections and Error Vector back into global memory
8: until all the projections are calculated

3.3 Computation of the Jacobian Matrix (J)

The Jacobian matrix is calculated as J = ∂X
∂P (Algorithm 1, line 3). For X̂ =

(x̂T
11, . . . , x̂

T
n1, x̂

T
12, . . . , x̂

T
n2, . . . , x̂

T
1m, . . . , x̂

T
nm)T , the Jacobian would be

(∂x̂11

∂P

T
, . . . , ∂x̂n1

∂P

T
, ∂x̂12

∂P

T
, . . . , ∂x̂n2

∂P

T
, . . . , ∂x̂1m

∂P

T
, . . . , ∂x̂nm

∂P

T
). Since

∂x̂ij

∂ak
= 0

∀i �= k and
∂x̂ij

∂bk
= 0 ∀j �= k, the matrix is sparse in nature.

For the example, shown in Figure 1, the Jacobian matrix would be

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A10 0 0 0 0 B10 0 0
A20 0 0 0 0 0 B20 0
0 A01 0 0 B01 0 0 0
0 A31 0 0 0 0 0 B31

0 0 A12 0 0 B12 0 0
0 0 A32 0 0 0 0 B32

0 0 0 A03 B03 0 0 0
0 0 0 A13 0 B13 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where, Aij =
∂x̂ij

∂aj
=

∂Q(aj ,bi)
∂aj

and Bij =
∂x̂ij

∂bi
=

∂Q(aj ,bi)
∂bi

. The matrix when

stored in compressed format would be J = (A10, B10, A20, B20, A01, B01, A31, B31,
A12, B12, A32, B32, A03, B03, A13, B13) The memory required is (cnp + pnp) ×
mnp× nnz × 4 bytes. The CUDA grid structure used in Jacobian computation
is similar to initial projection computation. Block j processes the Aij and Bij ,
corresponding to the jth camera. The kernel to calculate the Jacobian Matrix is
shown in Algorithm 3.

Algorithm 3. CUDA JACOBIAN KERNEL (P,Q)

1: CameraID ← BlockID
2: repeat
3: Load the 3D point parameters and Camera parameters (given ThreadID and

CameraID) into thread memory.
4: Calculate Bij followed by Aij using scalable finite differentiation
5: Store the Aij and Bij into global memory at contiguous locations.
6: until all the projections are calculated
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3.4 Computation of JTΣ−1
X J

JTΣ−1
X J is given as

(
U W
WT V

)
where Uj =

∑
iA

T
ijΣ

−1
xij
Aij , Vi =

∑
j B

T
ijΣ

−1
xij

Bij and Wij = AT
ijΣ

−1
xij
Bij . For the example in Figure 1, JTΣ−1

X J is given as:

JTΣ−1
X J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0 0 0 0 W10 W20 0
0 U1 0 0 W01 0 0 W31

0 0 U2 0 0 W12 0 W32

0 0 0 U3 W03 W13 0 0
0 WT

01 0 WT
03 V0 0 0 0

WT
10 0 WT

12 W
T
13 0 V1 0 0

WT
20 0 0 0 0 0 V2 0
0 WT

31 W
T
32 0 0 0 0 V3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

Computation of U: The CUDA grid structure consists m blocks, such that
each block processes Uj where j is the BlockID. Thread i in block j processes
AT

ijΣ
−1
xij
Aij , which is stored in the appropriate segment. The summation is faster

when using a segmented scan[18] on Tesla S1070 whereas a shared memory
reduction is faster on the Fermi GPU. The memory space required to store U
is cnp × cnp × m × 4 bytes. The computation of U is done as described in
Algorithm 4.

Algorithm 4. CUDA U KERNEL (A)

1: CameraID ← BlockID
2: repeat
3: Load Aij where j = CameraID ( for a given thread )
4: Calculate Aij × AT

ij and store into appropriate global memory segment
5: until all the Aij are calculated for the jth camera
6: Perform a shared memory reduction to get final sum on Fermi. Write to global

memory and perform a segmented scan on Tesla S1070.

Computation of V: The CUDA grid structure and computation of V is similar
to the computation of U. The basic difference between the two is thatBT

ijΣ
−1
xij
Bij

is stored in the segment for point i for reduction using segmented scan on Tesla
S1070 where as a shared memory reduction is done on Fermi. The memory space
required to store V is pnp× pnp× n× 4 bytes.

Computation of W: The computation of each Wij is independent of all other
Wij as there is no summation involved as in U and V. Therefore the computa-
tion load is equally divided among all blocks in GPU.

⌈
nnz
10

⌉
thread blocks are

launched with each block processing 10 W matrices. This block configuration
gave us the maximum CUDA occupancy. The memory space required to store
W is pnp× cnp× nnz× 4 bytes. The computation of W is done as described in
Algorithm 5.
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Algorithm 5. CUDA W KERNEL (A,B)

1: Load Aij and Bij for each warp of threads.
2: Calculate Aij ×BT

ij

3: Store Wij back into global memory at appropriate location.

3.5 Computation of S = U∗ −WV∗−1WT

The computation of S is the most demanding step of all the modules (Algorithm
1, line 10). Table 1 shows the split up of computation time among all components.
After calculating U,V and W, augmentation of U,V is done by calling a simple
kernel, with m,n blocks with each block adding μ to the respective diagonal
elements. Since V ∗ is a block diagonal matrix, it’s inverse can be easily calculated
through a kernel with n blocks, with each block calculating the inverse of V ∗

submatrix ( of size pnp× pnp).

Computation of Y = WV∗−1: Computation of Y is similar to the compu-
tation of W.

⌈
nnz
10

⌉
thread blocks are launched with each block processing 10 Y

matrices and each warp of thread computing Wij × V ∗−1
i .

Computation of U∗ − YWT: S is a symmetric matrix, so we calculate only
the upper diagonal. The memory space required to store S is m ×m × 81 × 4
bytes. The CUDA grid structure consists of m×m blocks. Each block is assigned
to a 9 × 9 submatrix in the upper diagonal, where each block calculates one
Sij = Uij − ∑

k YkiW
T
kj . Limited by the amount of shared memory available

and number of registers available per block, only 320 threads are launched. The
algorithm used for computation is given in Algorithm 6.

Algorithm 6. CUDA S KERNEL (U∗,Y,WT)

1: repeat ( for Sij )
2: Load 320 3D Point indices ( given camera set i ) into shared memory
3: Search for loaded indices in camera set j and load them into shared memory.
4: for all 320 points loaded in shared memory do
5: Load 10 indices of the camera set i and j from the shared memory.
6: For each warp, compute YkiW

T
kj and add to the partial sum for each warp

in shared memory
7: end for
8: Synchronize Threads
9: until all the common 3D points are loaded.
10: Sum up the partial summations in the shared memory to get the final sum.
11: if i == j then
12: Compute YiiW

T
ii ← U∗

ii − YiiW
T
ii

13: end if
14: Store YijW

T
ij into global memory.
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3.6 Computation of the Inverse of S

As the S Matrix is symmetric and positive definite, Cholesky decomposition is
used to perform the inverse operation (Algorithm 1, line 12). Cholesky decom-
position is done using the MAGMA library [19], which is highly optimized using
the fine and coarse grained parallelism on GPUs as well benefits from hybrids
computations by using both CPUs and GPUs. It achieves a peak performance
of 282 GFlops for double precision. Since GPU’s single precision performance
is much higher than it’s double precision performance, it used the mixed preci-
sion iterative refinement technique, in order to find inverse, which results in a
speedup of more than 10 over the CPU.

3.7 Scheduling of Steps on CPU and GPU

Figure 2 shows the way CPU and GPU work together, in order to maximize
the overall throughput. While the computationally intense left hand side of the
equations are calculated on GPU, the relatively lighter right hand side are com-
puted on CPU. The blocks connected by the same vertical line are calculated
in parallel on CPU and GPU. The computations on the CPU and the GPU
overlap. The communications are also performed asynchronously, to ensure that
the GPU doesn’t lie idle from the start to the finish of an iteration.

Fig. 2. Scheduling of steps on CPU and GPU. Arrows indicate data dependency be-
tween modules. Modules connected through a vertical line are computed in parallel on
CPU and GPU.

4 Experimental Results

In this section, we analyze the performance of our approach and compare with
the CPU implementation of Bundle Adjustment [9]. We use an Intel Core i7,
2.66GHz CPU. For the GPU, we use a quarter of an Nvidia Tesla S1070 [20]
with CUDA 2.2 and an Nvidia Tesla C2050 (Fermi) with CUDA 3.2. All com-
putations were performed in double precision, as single precision computations
had correctness issues for this problem.
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We used the Notre Dame 715 dataset [21] for our experiments. We ran the
3D reconstruction process on the data set and the input and output parameters
(P,Q, x, μ, δ) were extracted and stored for bundle adjustment. We focussed on
getting good performance for a dataset of around 500 images as explained before.
The redundancy is being exploited for larger data sets using a minimal skeletal
subset of similar size by other researchers [2,7]. We used a 488 image subset to
analyze the performance and to compare it with the popular implementation of
bundle adjustment [9].

Table 1 shows the time taken for a single iteration for each major step. The
S computation takes most of the time, followed by the S inverse computation.
The Schur complement takes about 70% of the computation time for S, as it
involves O(m2 × mnp × pnp × cnp × mnvis) operations, where mnvis is the
maximum number of 3D points visible by a single camera. On the GPU, each
of the m2 blocks performs O(mnp × pnp × cnp × mnvis) computations. 60%
of S computation is to find the partial sums, 30% for the reduction, and 10%
for the search operation. It is also limited by the amount of shared memory.
The Jacobian computation is highly data parallel and maps nicely to the GPU
architecture. Rest of the kernels (U, V, W and initial projection) are light.

As shown in Figure 3, the total running time on the GPU is t = t1 + t2+ t3+
t4+C4+ t5 and on CPU is T = T1+C1+T2+C2+T3+C3 where ti is the time
taken by GPU modules, Ti time taken by CPU modules and Ci communication
time. The total time taken is max(t, T ). CPU-GPU parallel operations take
place only when max(t, T ) < (t + T ). For the case of 488 cameras, the time
taken by GPU completely overlaps the CPU computations and communication,
so that there is no idle time for the GPU. Figure 4 compares the time taken
by our hybrid algorithm for each iteration of Bundle Adjustment with the CPU

Table 1. Time in seconds for each step in one iteration of Bundle Adjustment for
different number of cameras on the Notre Dame data set. Total time is the time taken
by hybrid implementation of BA using CPU and GPU in parallel. GPU1 is a quarter
of Tesla S1070 and GPU2 is Tesla C2050.

Time Taken (in seconds)
Computation GPU1 GPU2 GPU1 GPU2 GPU1 GPU2 GPU1 GPU2 GPU1 GPU2

Step 38 104 210 356 488
Cameras Cameras Cameras Cameras Cameras

Initial Proj 0.02 0.01 0.02 0.03 0.05 0.04 0.06 0.04 0.06 0.05

Jacobian 0.1 0.04 0.2 0.07 0.32 0.12 0.39 0.16 0.45 0.17

U, V, W Mats 0.14 0.04 0.23 0.09 0.39 0.15 0.5 0.18 0.56 0.2

S Matrix 0.25 0.09 0.97 0.27 2.5 0.56 4.63 1.01 6.55 1.3

S Inverse 0.01 0 0.09 0.02 0.28 0.08 0.87 0.19 1.74 0.39

L2 Err (CPU) 0 0.01 0.01 0.01 0.02

εa, εb (CPU) 0.05 0.12 0.17 0.21 0.24

e (CPU) 0.03 0.05 0.08 0.1 0.11

Total Time 0.52 0.19 1.51 0.51 3.54 0.97 6.44 1.61 9.36 2.15
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Fig. 3. Starting and ending times for each step including memory transfer for one
iteration using 488 cameras. Times in paranthesis are for the use of the S1070 and
others for the C2050.

only implementation on the Notre Dame dataset. The hybrid version with Tesla
C2050 gets a speedup of 30-40 times over the CPU implementation.

Memory Requirements: The total memory used can be a limiting factor in
the scalability of bundle adjustment for large scale 3D reconstruction. As we
can see in Figure 5, the total memory requirement is high due to temporary
requirements in the segmented scan [18] operation on the earlier GPU. The
extra memory required is of the size 3×nnz×81×4 bytes which is used to store
the data, flag and the final output arrays for the segmented scan operation. The
permanent memory used to store the permanent arrays such as J, U, V, W,
and S is only a moderate fraction of the total memory required. The Fermi has
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Fig. 4. Time and speedup for one iteration of Bundle Adjustment on the CPU using
Tesla S1070 and Tesla S2050.
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Fig. 5. Memory required (in MB) on the GPU for different number of cameras.

a larger shared memory and the reduction is performed in the shared memory
itself. Thus, the total memory requirement is the same as the permanent memory
requirement when using Tesla C2050.

5 Conclusions and Future Work

In this paper, we introduced a hybrid algorithm using the GPU and the CPU
to perform practical time bundle adjustment. The time taken for each iteration
for 488 cameras on using our approach is around 2 seconds on Tesla C2050
and 9 seconds on Tesla S1070, compared to 81 seconds on the CPU. This can
reduce the computation time of a week on CPU to less than 10 hours. This can
make processing larger datasets practical. Most of the computations in our case
is limited by the amount of available shared memory, registers and the limit
on number of threads. The double precision performance is critical to the GPU
computation; the better performance using Fermi GPUs may also be due to this.

Faster bundle adjustment will enable processing of much larger data sets in the
future. One option is to explore better utilization of the CPU. Even the single-
core CPU is not used fully in our implementation currently. The 4-core and 8-core
CPUs that are freely available can do more work, and will need a relook at the
distribution of the tasks between the CPU and the GPU. The use of multiple
GPUs to increase the available parallelism is another option. Expensive steps
like the computation of S matrix can be split among multiple GPUs without
adding enormous communication overheas. This will further change the balance
between what can be done on the CPU and on the GPU.
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Abstract. Visual categorization is important to manage large collections of dig-
ital images and video, where textual meta-data is often incomplete or simply un-
available. The bag-of-words model has become the most powerful method for
visual categorization of images and video. Despite its high accuracy, a severe
drawback of this model is its high computational cost. As the trend to increase
computational power in newer CPU and GPU architectures is to increase their
level of parallelism, exploiting this parallelism becomes an important direction
to handle the computational cost of the bag-of-words approach. In this paper,
we analyze the bag-of-words model for visual categorization in terms of com-
putational cost and identify two major bottlenecks: the quantization step and the
classification step. We address these two bottlenecks by proposing two efficient
algorithms for quantization and classification by exploiting the GPU hardware
and the CUDA parallel programming model. The algorithms are designed to keep
categorization accuracy intact and give the same numerical results.

In the experiments on large scale datasets it is shown that, by using a par-
allel implementation on the GPU, quantization is 28 times faster and classifi-
cation is 35 faster than a single-threaded CPU version, while giving the exact
same numerical results. The GPU accelerations are applicable to both the learn-
ing phase and the testing phase of visual categorization systems. For software
visit http://www.colordescriptors.com/.1

1 Introduction

Visual categorization aims to determine whether objects or scene types are visually
present in images or video segments. This is a useful prerequisite to manage large col-
lections of digital images and video, where textual meta-data is often incomplete or
simply unavailable [2]. Letting humans annotate such meta-data is expensive and infea-
sible for large datasets. While automatic visual categorization is not yet as accurate
as a human annotation, it is a useful tool to manage large collections. The bag-of-
words model [3] has become the most powerful method today for visual categoriza-
tion [4,5,6,7,8,9,10,11]. The bag-of-words model computes image descriptors at spe-
cific points in the image. These descriptors are then quantized against a codebook of
prototypical descriptors to obtain a fixed-length representation of an image. Although

1 Since the workshop, an extended version of this paper has been accepted for publication in
IEEE Transactions on Multimedia [1].

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 436–449, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ksande@uva.nl
http://www.colordescriptors.com/
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the bag-of-words model is a powerful mechanism for accurate visual categorization, a
severe drawback is its high computational cost. Current state-of-the-art in visual cat-
egorization benchmarks such as TRECVID 2009 [12] require weeks of compute time
on compute clusters to process 380 hours of video. However, even with weeks of com-
pute time, most systems are still only able to process a limited subset of about 250,000
frames. In the future, more and more data needs to be processed as datasets continue to
grow. To address the problem of computation, the two directions are faster approx-
imate methods and larger compute clusters. Faster to compute descriptors (such as
SURF [13,14]) and indexing mechanisms (tree-based codebooks [15,16]) have been
developed. Another direction is to use large compute clusters with many CPUs [11,10]
to solve the computational problem using brute force. However, both directions have
their drawbacks. Faster methods will (1) suffer from reduced accuracy when they re-
sort to increasingly coarse approximations and (2) suffer from increased complexity in
the form of additional parameters and thresholds to control the approximations, all of
which need to be hand-tuned. Brute force solutions based on compute clusters have the
problem that (1) compute clusters are available in limited supply and (2) are expensive.

Recently, another direction for acceleration has opened up: computing on consumer
graphics hardware. Cornelis and Van Gool [17] have implemented SURF on the GPU
(Graphics Processing Unit) and obtained an order of magnitude speedup compared to a
CPU implementation. These GPU implementations [17,18] build on the trend of in-
creased parallelism. Whereas commodity CPUs currently have up to 4 cores, com-
modity GPUs have hundreds of cores at their disposal [19]. Together, the increased
programmability and computational power of GPUs provides ample opportunities for
acceleration of algorithms which can be parallelized [19]. Compared to faster approxi-
mate methods, algorithms for the GPU do not need to approximate for speedups, if they
are able to exploit the parallel nature of the GPU. Compared to compute clusters, the
main advantages of the GPU are their wide availability and their potential to be more
energy-efficient.

When optimizing a system based on the bag-of-words model, the goal is to min-
imize the time it takes to process batches of images. Individual components of the
bag-of-words model, such as the point sampling strategy, descriptor computation and
SVM model training, have been independently studied on the GPU before [17,20,21].
These studies accelerate specific algorithms with the GPU. However, it remains unclear
whether those algorithms are the real bottlenecks in accurate visual categorization with
the bag-of-words model. In our overview of related work on visual categorization with
the GPU, we observe that quantization and classification have remained CPU-bound so
far, despite being computationally very expensive. Therefore, in this paper, the goal is
to combine GPU hardware and a parallel programming model to accelerate the quanti-
zation and classification components of a visual categorization architecture. Two algo-
rithms are proposed to accelerate these two components. The algorithms are designed
to keep categorization accuracy intact and give the same numerical results.

2 Overview of Visual Categorization

The aim of this paper is to speed up state-of-the-art visual categorization systems us-
ing GPUs. In visual categorization [22], the visual presence of an object or scene of
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specified type is determined. In Figure 1, an overview of the components of a visual
categorization system is shown. A trained visual categorization system takes an image
as input and returns the likelihood that one or more visual categories are present in the
image. Visual categorization systems break down into a number of common steps:

– Image Feature Extraction, which takes an image as input and outputs a fixed-length
feature vector representing the image.

– Category Model Learning, learns one model per visual category by taking all vector
representations of images from the train set and the category labels associated with
those images.

– Test Image Classification, which takes vector representations of images from the
test set and applies the visual category models to these images. The output of this
step is a likelihood score for each image and each visual category.
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Fig. 1. The components of a state-of-the-art visual categorization system. For all images in both
the train set and the test set, visual features are extracted in a number of steps. First, a point
sampling method is applied to the image. Then, for every point a descriptor is computed over the
area around the point. All the descriptors of an image are subsequently vector quantized against a
codebook of prototypical descriptors. This results in a fixed-length feature vector representing the
image. Next, the visual categorization system is trained based on the feature vectors of all training
images and their category labels. To learn kernel-based classifiers, similarities between training
images are needed. These similarities are computed using a kernel function. To apply a trained
model to test images, the kernel function values are also needed. Given these values between a test
image and the images in the train set, the category models are applied and category likelihoods
are obtained.

2.1 Image Feature Extraction

Visual categorization systems which achieve state-of-the-art results on the PASCAL
VOC benchmarks [5,9,6] use the bag-of-words model [3] as the underlying repre-
sentation model. This model first extracts specific points in an image using a point
sampling strategy. Over the area around these points, descriptors are computed which
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represent the local area. The bag-of-words model performs vector quantization of the
descriptors in an image against a visual codebook. A descriptor is assigned to the code-
book element which is closest in Euclidean space. Figure 1 gives an overview of the
steps for the bag-of-words model in the image feature extraction blocks. In Table 1, the
computation times of different steps within the bag-of-words model are listed. For every
step, multiple options are available. Next, we will discuss these options, their presence
in related work and their computation times on the CPU and GPU.

Table 1. Computation times of different steps within the bag-of-words model on both the CPU
and the GPU. For every step, multiple choices are available. CPU times obtained on AMD
Opteron 250 @ 2.4GHz. GPU times obtained from the literature. One of the contributions of
this paper is substantially accelerating the vector quantization step using the GPU.

Image Feature Extraction Times (s)

CPU GPU
1) Point Sampling Strategy
• Dense Sampling < 0.01 < 0.01
• Difference-of-Gaussians 1.4 [23] < 0.1 [17]
• Harris-Laplace 4.4 [24] < 0.5 [25]

2) Descriptors
• SIFT 1.4 [23] < 0.1 [18]
• SURF < 1.0 [13] < 0.01 [17]
• ColorSIFT 4.0 [6] < 0.3 [18]

3) Bag-of-Words
• Tree-based Codebook < 0.5 [15,16] < 0.01 [20]
• Vector Quantization 5.0 [3] < 0.1 this paper

Point Sampling Strategy. As a point sampling strategy, there are two commonly used
techniques in state-of-the-art systems [9,6]: dense sampling and salient point methods.
Dense sampling samples points regularly over the image at fixed pixel intervals. As it
does not depend on the image contents, it is a trivial operation to perform. Typically,
around 10,000 points are sampled per image. Two examples of salient point methods
are the Harris-Laplace salient point detector [24] and the Difference-of-Gaussians de-
tector [23]. See Table 1 for computation times of these point sampling strategies. The
Harris-Laplace detector uses the Harris corner detector to find scale-invariant interest
points. It then selects a subset of these points for which the Laplacian-of-Gaussians
reaches a maximum over scale. Using recursive Gaussian filters [25], the computation
of Gaussian derivatives at multiple scale required for these steps is possible at a rate
of multiple images per second: computational complexity of recursive Gaussian filters
is independent of the scale. As has been shown by Cornelis and Van Gool [17], run-
ning the Difference-of-Gaussians detector is possible in real-time, using a scale-space
pyramid to limit computational complexity.
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Descriptor Computation. To describe the area around the sampled points, the SIFT
descriptor [23] and the SURF descriptor [13] are the most popular choices. Sinha et al.
[18] compute SIFT descriptors at 10 frames per second for 640x480 images. Cornelis
and Van Gool [17] compute SURF descriptors at 100 frames per second for 640x480
images. Both of these papers show that descriptor computation runs with excellent per-
formance on the GPU, because one thread can be assigned per pixel or per descrip-
tor, and thereby performing operations in parallel. The standard SIFT descriptor has
a length of 128. Following Everingham et al. [5], color extensions of SIFT [6] would
form a reasonable state-of-the-art baseline for future VOC challenges, due to their in-
creased classification accuracy. ColorSIFT increases the descriptor length to 384 and
the required computation time is also tripled.

Bag-of-Words. Vector quantization is computationally the most expensive part of the
bag-of-words model. With n descriptors of length d in an image, the quantization
against a codebook with m elements requires the full (n×m) distance matrix between
all descriptors and codebook elements. For values which are common for visual catego-
rization, n = 10, 000, d = 128 and codebook size m = 4, 000, a CPU implementation
takes approximately 5 seconds per image, as the complexity is O(ndm) per image.
When d increases to 384, as is the case for ColorSIFT, the CPU implementation slows
down to more than 10 seconds per image, which makes this a computational bottleneck.

One approach to address this bottleneck is to index using a tree-based codebook
structure [15,16,14], instead of a standard codebook. A tree-based codebook replaces
the comparison of each descriptor with all m codebook elements by a comparison
against log(m) codebook elements. As a result, algorithmic complexity is reduced
to O(nd log(m)). Tree-based methods have been shown to run in real-time on the
GPU [20]. However, for a tree-based codebook generally the accuracy is lower [14],
especially for high-dimensional descriptors such as ColorSIFT. Therefore, tree-based
codebooks conflict with our goal of keeping accuracy intact. The same argument applies
to other indexing structures such as miniBOF (mini bag-of-features) [26]: accuracy is
sacrificed in return for faster computation. Another drawback of tree-based codebooks
and miniBOFs is that soft assignment [7,27], which improves accuracy by 5% by as-
signing weight to more than just the closest codebook element, requires the full distance
matrix instead of only the closest elements. These methods are unable to provide this
matrix. Therefore, this paper studies how to accelerate the vector quantization step us-
ing normal codebooks on the GPU, as the same accelerations are then also applicable
to soft assignment.

In conclusion, in a state-of-the-art setup of the bag-of-words model, the most expen-
sive part is the vector quantization step. Approximate methods are unable to satisfy our
requirement to maintain accuracy.

2.2 Category Model Learning

To learn visual category models, supervised kernel-based learning algorithms such as
Support Vector Machines (SVM) and Spectral Regression Kernel Discriminant Analy-
sis [28] have shown good results [4,6]. Key property of a kernel-based classifier is that
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it does not require the actual vector representation of the feature vector F , but only a
kernel function k(F ,F ′) which is related to the distance between the feature vectors.
This is sometimes referred to as the ‘kernel trick’. It has been shown experimentally [4]
that the non-linear χ2 kernel function is the best choice [9,6] for accurate visual cat-
egorization. While typical implementations compute the values of this kernel function
on-the-fly and only keep a cache of the most recent evaluations, it is more efficient to
compute all values in advance and store them, because then the values can be re-used
for every parameter setting and for every visual category. The total number of kernel
values to be computed in advance is the number of pair-wise distances between all train-
ing images, e.g. , it is quadratic with respect to the number of images. The benefit of
precomputing kernel values is illustrated in Table 2.

Table 2. Computation times of the different steps in visual categorization. The times listed are
for an image dataset (PASCAL VOC 2008), which has a training set of size 4332 and test set
of size 4133. Classification times are totals for all 20 visual categories. CPU times obtained on
AMD Opteron 250 @ 2.4GHz. This paper substantially accelerates the precomputation of kernel
values (shown in bold) using the GPU.

Category Model Learning Times (s)

CPU GPU
Category Model Learning (without precomputed)
Parameter Tuning (length F = 4, 000) > 1, 000, 000 [29] > 10, 000 [21]
Train Classifier (length F = 4, 000) > 100, 000 [29] > 1, 000 [21]

Category Model Learning (with precomputed)
Precompute Kernel Values (length F = 4, 000) 660 9 this paper
Precompute Kernel Values (length F = 32, 000) 3,600 64 this paper
Precompute Kernel Values (length F = 320, 000) 36,000 650 this paper
Parameter Tuning 1,050 [29] 60 [21]
Train Classifier 240 [29] 10 [21]

Test Image Classification (with precomputed)
Precompute Kernel Values (length F = 4, 000) 600 8 this paper
Apply Classifier < 5 [29] < 1 [21]

The kernel-based SVM algorithm has been ported to the GPU by [30,21]. In [30],
specific optimizations are made in the GPU version such that only linear kernel func-
tions are supported. For visual categorization, however, support for the more accurate
non-linear χ2 kernel function is needed to maintain accuracy. Catanzaro et al. [21] per-
form a selection of the training samples under consideration for SVM, resulting in a
speedup of up to 35 times for training models. Further speedups are possible if this
GPU-SVM implementation is combined with the precomputation of kernel values. The
precomputation of kernel values itself has not been investigated yet. Therefore, in sec-
tion 3.3, we propose an algorithm to precompute the kernel values and investigate the
speedup possibilities offered by precomputing these values.

Table 2 gives an overview of computation times on the PASCAL VOC 2008 dataset
for different feature vector lengths, where the learning of visual category models is
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split into a precomputation of kernel values and the actual model learning. Because the
ground truth labels of all images and their extracted features are needed before training
can start, it is an inherently offline process. When multiple features are used, more than
90% of computation time is spent on precomputing the kernel values. This makes it the
most expensive step in category model learning.

In conclusion, the learning of category models can be split into two steps, kernel
value computation and classifier training. The classifier training has been accelerated
with the GPU before, but the kernel value computation is the most expensive step. This
paper will study how to accelerate the computation of the kernel values on the GPU.

2.3 Test Image Classification

To classify images from a test set, feature extraction first has to be applied to the images,
similar to the train set. Therefore, speed-ups obtained in the image feature extraction
stage are useful for both the train set and the test set. To apply the visual category mod-
els, pair-wise kernel values between the feature vectors of the train set and those of the
test set are needed. Therefore, when accelerating the computation of kernel values, this
speedup will apply to both the training phase and the test phase of a visual categoriza-
tion system. This speedup is made possible by processing the test set in small batches,
instead of one image at a time. Timings in Table 2 show that for the test set, again, the
computation of kernel values takes up the most time.

In conclusion, the speedups obtained using GPU vector quantization and GPU pre-
computation of kernel values also directly apply to the classification of images/frames
from the test set.

3 GPU Accelerated Categorization

We start with discussing the CUDA programming model with an example of parallel
programming for the GPU in section 3.1. Next, we discuss the GPU-accelerated ver-
sions of vector quantization (section 3.2) and kernel value precomputation (section 3.3).
Both of these visual categorization steps take large numbers of vectors as input, and
therefore are ideally suited for the data parallelism offered by the GPU.

3.1 CUDA Programming Model

A CUDA program is organized into a normal C/C++ host program, running sequentially
on the host CPU, and one or more parallel procedures that are suitable for execution on
a parallel processing device like the GPU. A parallel procedure2 is a simple sequential
program which is executed simultaneously on a set of parallel threads. The programmer
organizes these threads into thread blocks. The threads within a thread block are allowed
to synchronize and support inter-thread communication through a high-speed shared
memory. Threads from different blocks coordinate only through global memory. CUDA

2 In the CUDA documentation, parallel procedures are called parallel kernels. In this paper, we
refer to them as parallel procedures to avoid using the word kernel in two different contexts.
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requires that thread blocks are independent, meaning that a parallel procedure must
execute correctly no matter the order in which blocks are run. This restriction on the
dependencies between blocks of a parallel procedure provides scalability.

Figure 2 shows a basic example of parallel programming with CUDA. The example
shows a common parallelization pattern, where a serial loop with independent itera-
tions is executed in parallel across many threads. The results of the various threads are
gathered through a parallel reduction [31], also known as the ‘butterfly pattern’. With a
parallel reduction, n elements are summed in logn steps.
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Fig. 2. Simple serial and parallel implementations of the χ2 distance function 1
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∑
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(Fi−F ′
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Fi+F ′
i

for given vectors F and F ′ consisting of 4 floating point numbers. The serial version on the left
is a simple loop. The parallel procedure on the right executes independent iterations in parallel.

3.2 Algorithm 1: GPU-Accelerated Vector Quantization

In section 2.1, we have shown that vector quantization is computationally the most
expensive step in image feature extraction. Therefore, in this section, the GPU imple-
mentation of vector quantization for an image with n descriptors against a codebook of
m elements is proposed. The descriptor length is d. Quantization against a codebook
requires the full (n × m) distance matrix between all descriptors and codebook ele-
ments. A descriptor is then assigned to the column which has the lowest distance in a
row. By counting the number of minima occurring in each column, the vector quantized
representation of the image is obtained. To be robust against changes in the number of
descriptors in an image, these counts are divided by the number of descriptors n for the
final feature vector.

The most expensive computational step in vector quantization is the calculation of
the distance matrix. Typically, the Euclidean distance is employed:

||a− b|| =
√
(a1 − b1)2 + (a2 − b2)2 + ...+ (aq − bq)2. (1)

This formula for the Euclidean distance can be directly implemented on the GPU using
loops [32]. However, such a naive implementation is not very efficient, because the same
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result is obtained with fewer operations by simply vectorizing the Euclidean distance.
This well-known trick [21] computes the Euclidean distance in vector form:

||a− b|| =
√
||a||2 + ||b||2 − 2a · b. (2)

The advantage of the vector form of the Euclidean distance is that it allows us to decom-
pose the computation of a distance matrix between sets of vectors into several smaller
steps which are faster to compute. The dot products a · b in (2) between sets of vectors
can be rewritten as a matrix multiplication: ABT contains all the dot products required
for the full distance matrix, with A the matrix with all image descriptors as rows and B
the matrix with all codebook elements as rows. Highly optimized BLAS linear algebra
libraries exist for both the CPU and the GPU which contain matrix multiplication. On
the CPU we use the ATLAS library, which we tune for every CPU architecture used.
Another key insight when implementing this operation is that the squared vector lengths
||a||2 and ||b||2 are used multiple times and can be cached. After the compute distance
matrix has been computed, assigning the descriptors to codebook elements is a matter
of finding the codebook element with the lowest distance to a descriptor, which is a
simple minimization over the rows of the distance matrix.

In conclusion, vector quantization involves computing the pair-wise Euclidean dis-
tances between n descriptors and m codebook elements. By simply vectorizing the
computation of the Euclidean distance, the computation can be decomposed into steps
which can be efficiently executed on the GPU.

3.3 Algorithm 2: GPU-Accelerated Kernel Value Precomputation

To compute kernel function values, we use the kernel function based on the χ2 distance,
which has shown the most accurate results in visual categorization (see section 2.2). Our
contribution is evaluating the χ2 kernel function on the GPU efficiently, even for very
large datasets which do not fit into memory. The χ2 distance between feature vectors F
and F ′ is:

distχ2(F ,F ′) =
1

2

s∑
i=1

(Fi − F ′
i )

2

Fi + F ′
i

, (3)

with s the size of the feature vectors. For notational convenience, 0
0 is assumed to be

equal to 0 iff Fi = F ′
i = 0.

The kernel function based on this χ2 distance then is:

k(F ,F ′) = e−
1
D dist(F ,F ′), (4)

where D is an optional scalar to normalizes the distances [4]. Because the χ2 distance
is already constrained to lie between 0 and 1, this normalization is unnecessary and we
therefore fix D to 1.

For vector quantization, discussed in the previous section, all input data and the
resulting output fits into computer memory. For kernel value precomputation, memory
usage is an important problem. For example, for a dataset with 50, 000 images, the input
data is 12 GB and the output data is 19 GB. Therefore, special care must be taken when
designing the implementation, to avoid holding all data in memory simultaneously. We
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divide the processing into evenly sized chunks. Each chunk corresponds to a square
1024x1024 subblock of the kernel matrix with all kernel function values. Because the
final kernel function values only depend on the subset of feature vectors involved in
the chunk, the operations are performed for every chunk separately. For every feature
j, compute the χ2 distances D between the 1024 vectors F (j) and the 1024 vectors
F ′

(j). To compute the pair-wise distances between all these vectors, one thread block
is created per pair (e.g. 1024x1024 thread blocks): F is the first input and F ′ is the
second input to (3). The parallel procedure applied to every thread block to compute
distχ2(F ,F ′) follows the parallelization pattern shown in Fig 2: one thread is assigned
per data element. After the distances have been computed, they are divided by D and
their exponent with base e is taken (see (4)). Repeat this operation for all chunks and
the complete kernel matrix has been computed.

4 Experimental Setup

4.1 Experiment 1: Vector Quantization Speed

We measure the relative speed of two vector quantization implementations: CPU and
GPU versions of the vectorized approach from section 3.2. Measured times are the
median of 25 runs; an initial warm-up run is discarded to exclude initialization effects.
For the experiments, realistic data sizes are used, following the state-of-the-art [6]: a
codebook of sizem = 4, 000; up to 20, 000 descriptors per image and descriptor lengths
of d = 128 (SIFT) and d = 384 (ColorSIFT). Because CPU architectures still improve
with every generation, we include multiple CPU architectures in our comparison of
CPU and GPU versions, to show the rate of development in CPU compute speeds.

4.2 Experiment 2: Kernel Value Precomputation Speed

To measure the speed of kernel value computation, we compare a CPU version and a
GPU version based on the approach from section 3.3. An alternative approach besides
the GPU would be to compute the kernel values on a compute cluster. Therefore, for
reference, we include an MPI version which can execute on such a cluster. We compare
the GPU version on the Geforce GTX275 to the single-threaded CPU version on the
Xeon X5570 and the Opteron 250. To demonstrate the execution speed relative to that
of a compute cluster, we also show results using 4, 16, 25, 36 and 49 Opteron CPUs. To
obtain timings results, we have chosen the large Mediamill Challenge training set of 30
993 frames [33] with realistic feature vector lengths: from a single feature (total feature
vector length 4, 000) up to 10 features (total feature vector length 128, 000). For a real
system, the number of features might be even higher [6,10].

5 Results

5.1 Experiment 1: Vector Quantization Speed

Figure 3 shows the vector quantization speeds for SIFT descriptors using different hard-
ware platforms and implementations. From the results, it is shown that vector quanti-
zation on CPUs takes more time than on GPUs. The difference between the fastest
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Fig. 3. Vector quantization speeds for a varying number of SIFT descriptors (on the left) or
ColorSIFT descriptors (on the right). Each line represents a different hardware configuration plus
appropriate implementation (CPU, GPU). The difference between the fastest single CPU core
and the GPU is a factor 28.

single-threaded CPU and the fastest GPU is a factor of 28; both are using a vectorized
implementation. An unvectorized GPU implementation is 6 times slower than a vector-
ized GPU implementation. For a typical number of SIFT descriptors per frame, 10,000,
this is the difference between 0.6s and 0.06s spent per image in vector quantization. In
the ColorSIFT results, we see the same speedup: from 1.2s to 0.13s. When processing
datasets of thousands or even millions of images, this is a crucial acceleration.

An interesting observation is that the CPU times can be used to roughly order them
by release date. The 2004 Xeon takes about 1.4 times longer than a 2006 Core 2 Duo
and 2.8 times longer than a 2009 Xeon X5570.

In conclusion, the speedup through parallelization obtained for vector quantization is
an important acceleration when processing large image datasets. When combined with
GPU versions of the other image feature extraction stages (see Table 1), even the most
expensive feature can still be extracted in less than 1 second per image. Without GPU
vector quantization, this would require an order of magnitude longer.

5.2 Experiment 2: Kernel Value Precomputation Speed

Figure 4 shows the kernel value precomputation speeds on different hardware platforms.
The difference between a single GTX275 and a single Opteron CPU is a factor 90! The
difference between the more recent Xeon X5570 CPU and the GPU is a factor 35. When
using a bag-of-words model with features computed for four spatial pyramid levels (a
total feature vector length of 120, 000), this is the difference between 2250 minutes and
170 minutes. Again, the GPU architecture results in a substantial acceleration.

When comparing the GPU implementation on a single Geforce GTX275 to the dis-
tributed CPU implementation, we see that a compute cluster with 49 Opteron CPUs is
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Fig. 4. Timings of kernel value precompution on different hardware for various feature vector
lengths. The difference between a single GTX275 and a single Opteron CPU is a factor 90. The
difference between the more recent Xeon X5570 CPU and the GPU is a factor 35. Furthermore,
a single GPU outperforms a compute cluster with 49 Opteron CPUs by a factor of 2.

still outperformed by the GPU with a factor 2. This implies that a medium-size compute
cluster is insufficient to beat a single GPU when precomputing kernel values. For large
datasets, consisting of tens of thousands of training images (e.g. , TRECVID 2009 [12],
Mediamill Challenge [33]), this allows the category learning step to be performed us-
ing a single machine, instead of using an expensive compute cluster. Alternatively, the
improved efficiency could be used to include more visual features (which implies even
longer feature vectors) or to process additional frames from a video.

6 Conclusions

This paper provides an efficiency analysis of a state-of-the-art visual categorization
pipeline based on the bag-of-words model. In this analysis, two large bottlenecks were
identified: the vector quantization step in the image feature extraction and the kernel
value computation in the category classification. By using a vectorized GPU imple-
mentation of vector quantization, it is 28 times faster than when it is computed on a
CPU. For the classification, we exploit the intrinsic property of kernel-based classifiers
that only kernel values are needed. By precomputing these kernel values, the parameter
tuning and model learning stages can reuse these values, instead of computing them on
the fly for every visual category and parameter setting. Also, computing these kernel
values on the GPU accelerates it by a factor of 35, while giving the exact same results
for visual categorization. The latter GPU acceleration is applicable to both the learning
phase and the test phase. In the future, we will look at applying our GPU accelerations
to other problems, such as k-means clustering and text retrieval.
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Abstract. Inspired by recent successes in parallelized optic flow estima-
tion, we propose a variational method which allows to directly estimate
dense depth fields from a single hand-held camera in real-time conditions.
In particular we show how the central ingredient of the corresponding op-
tic flow method, namely a thresholding scheme, can be generalized to the
problem of geometric reconstruction considered in this paper and how
it can be parallelized on recent graphics cards. We compare alternative
parallelization strategies and experimentally validate that high-quality
depth maps can be computed in a few milliseconds from a hand-held
camera.

1 Introduction

1.1 From Optic Flow to Geometric Reconstruction

Over the last years parallel algorithms accelerated by means of graphics hardware
have revolutionized many areas of Computer Vision, bringing computationally
intense challenges within the realm of real-time applications. One of the major
breakthroughs in this context was the acceleration of variational optical flow
algorithms [1] which allow to compute highly accurate dense motion fields at
640× 480 pixels with speeds well above 60 frames per second.

For many computer vision problems the optical flow between two frames pro-
vides a correspondence between pairs of pixels in either image which is then
further processed, for example to track articulated object models [2] or to recon-
struct the depth field of a scene [3]. Yet, in many such cases one is not directly
interested in the estimated flow field: For example when reconstructing a static
scene from a moving camera as recently done in [3], the estimation of a motion
vector field seems entirely unnecessary since apart from the 6-parameter camera
motion everything else is static. One may therefore ask: How can we exploit the
drastic accelerations of such parallel algorithms without actually computing a
flow field?

Recently Stühmer et al. [4] proposed a variational approach to compute dense
depth maps from a handheld camera. The estimation of dense geometry from
a handheld camera is formulated as a variational approach that can be solved
by algorithms that are quite reminiscent of optical flow approaches. Yet rather
than computing a vector field that assigns a velocity to each pixel, the geometry
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of the scene is directly determined in a coarse-to-fine manner. In particular,
the central algorithmic component, namely the thresholding scheme proposed
in [1] for computing the primal variables can be generalized to the geometry
reconstruction problem. In this paper, we revisit this formulation and show how
the arising thresholding scheme can be efficiently implemented on graphics cards.

1.2 Related Work

The reconstruction of dense geometry from images is a major challenge in com-
puter vision. Several methods for stereo reconstruction have been suggested,
that compute a disparity map from two images. By using GPU-accelerated al-
gorithms, some of these approaches are even realtime capable, for example those
based on belief propagation [5]. More precise and very detailed results can be
obtained by using multiple input images [6,7]. Because existing multiview stereo
approaches usually require calibrated input images from known camera positions
and because of the computational complexity, these methods cannot be used in
realtime-applications and therefore have been restricted to offline processing.

Recent developments of keyframe based structure from motion algorithms
allow highly accurate camera pose estimation in realtime [8]. However, these
approaches represent the scene as a sparse point cloud and do not allow a dense
reconstruction of the geometry in front of the camera.

Two early precursors of variational approaches to estimate dense depth maps
were proposed in [9,10] One of the central differences of our approach is that
it makes use of quadratic relaxation and an efficient primal dual optimization
strategy and allows to use robust error norms both for the data term and the
regularizer.

The usage of graphics hardware as processing platform for computer vision
problems has lead to realtime variational approaches in the field of optic flow
computation. By parallelizing the computation on the GPU, even sophisticated
PDE methods can be implemented in realtime. Highly accurate dense optic
flow can be computed by using a total variation regularizer and a robust L1-
norm error measure for the data term [1]. Because both the regularizer and the
data term are not continuously differentiable, the minimization of the energy
functional involves some computational difficulties. For the minimization of the
L1-norm data term, a so called thresholding scheme has to be used.

In this paper we will provide a generalization of the thresholding scheme used
in optic flow computation, that allows live reconstruction of dense geometry from
multiple images. We show in detail how the generalized thresholding scheme can
be parallelized and therefore efficiently computed on the GPU. A combination
of our method with realtime camera tracking allows live dense geometry recon-
struction from the images of a handheld camera.

1.3 Variational Methods for Realtime Optic Flow

Zach et al. [1] suggested the following energy functional for the estimation of
dense optic flow
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E(u) =

∫
Ω

{
|∇u|+ λ |I1 (x+ u(x))− I0 (x)|

}
dx, (1)

where Ω is the image domain, I0 and I1 are two given images and u is the sought
vector field that describes the optic flow between both images. The weighting
parameter λ controls the influence of the data term in relation to the total
variation regularizer.

This functional is not continuously differentiable, and therefore cannot be
minimized directly using the Euler-Lagrange formalism. The authors propose to
decouple the data term and the regularizer, as it has been previously suggested
by Aujol et al. [11]. This leads to the following convex approximation

Eθ =

∫
Ω

{
|∇u|+ 1

2θ
(u− v)2 + λ |ρ(v,x)|

}
dx, (2)

where θ > 0 is a small constant. With ρ we denote the residual of the linearized
data term

ρ(v,x) := I1(x+ u0) + 〈∇I1(x+ u0), v − u0〉 − I0(x), (3)

where u0 is a given flow field.
Because the regularizer and data term are decoupled and do not share any

variables, a solution of Eq. 2 can be obtained with an alternating minimization
scheme. The first step of this alternating scheme is the minimization of Eq. 2 for
u. This sub problem is also known as the ROF energy model for image denoising
[12] and can be solved using Chambolle’s algorithm [13]. By minimizing Eq. 2
for v we obtain the update step of the data term. This update can be computed
with a relatively simple thresholding scheme that follows directly from the three
possible cases ρ(v) > 0, ρ(v) < 0 and ρ(v) = 0.

By subsequently solving the convex minimization problem and taking each
new solution as point u0 for the linearization of the data term, the flow field can
be computed in an iterative warping scheme.

2 Dense Depthmap Estimation from Multiple Images

Instead of estimating a vector field of two-dimensional optic flow vectors, we
will provide a method for dense geometry reconstruction from multiple images
by minimizing the functional

E(h) = λ

∫
Ω0

∑
i∈I(x)

|Ii (π (gi(h · x)))− I0 (x)| dx+

∫
Ω0

|∇h| dx (4)

with respect to a scalar depth field h : Ω → R. Here x denotes the 2D image
location in homogeneous coordinates, h · x denotes the corresponding 3D coor-
dinate and gi the rigid body transformation into the camera frame i, and π is
the projection from homogeneous coordinates to pixel coordinates regarding a
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Ω0

Ω2

h·x

Ω1

Fig. 1. The depthmap h is defined for the coordinate frame of camera 0. The 3D-point
h · x lies on the surface of the depthmap.

calibrated camera model, in the simplest case this is the perspective projection
π
(
x y z

)
=
(
x/z y/z 1

)
.

The set I(x) contains the indices of all images for which π(gi(h · x)) is inside
the image boundaries of Ii. In the following we will use the short form Ii(h,x)
for Ii (π(gi(h · x))).

This functional is inspired by variational optic flow methods where a robust
regularizer allows to preserve discontinuities in the displacement field. By using
the L1 error measure also in the data term, outliers can be handled robustly. In
our case we expect similar advantages: The total variation regularizer enables
the reconstruction of dense continuous surfaces while preserving discontinuities
at object boundaries. The sum of L1-norm error measures in the data term
is motivated by robust statistics and provides robustness against outliers that
arise from sensor noise, illumination changes and occlusion. However, using these
robust error norms gives rise to some difficulties when solving the functional, that
we will address in the following.

We linearize the images Ii by using a first order Taylor expansion, i.e.

Ii(h,x) = Ii(h0,x) + (h− h0)
d

dh
Ii(h,x)

∣∣∣
h0

(5)

where h0 is a given depth map. Because this linearization only holds for small
innovations of the depthmap, the whole minimization process is embedded into
a coarse-to-fine warping strategy [14,15].

The derivative d
dhIi(h,x) can be considered as a directional derivative in direc-

tion of a differential vector on the image plane of Ii that results from a variation
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of h. By using the chain rule, this derivative can be expressed as the scalar
product of the gradient of Ii(h,x) with the mentioned differential vector, i.e.

d

dh
Ii(h,x) = ∇Ii(h,x) · d

dh
π(gi(h · x)). (6)

The differential vector

d

dh
π(gi(h · x)) =

(
d
dhx

′
d
dhy

′

)
(7)

needs to be computed with respect to the chosen camera model.
With above linear approximation for Ii(h,x) we can express the current resid-

ual of the data term for input image i as

ρi(h,x) := Ii(h0,x) + (h− h0)
d

dh
Ii(h,x)

∣∣∣
h0

− I0(x) (8)

Inserting this expression into the original energy functional (Eq. 4) gives

E(h) = λ

∫
Ω

∑
i∈I(x)

|ρi(h,x)| dx+

∫
Ω

|∇h| dx. (9)

This functional is still difficult to minimize, because it is not continuously dif-
ferentiable and therefore the Euler-Lagrange formalism cannot be used directly.
By decoupling the data term and the regularizer [11] we get the following convex
approximation of Eq. 4:

Eθ =

∫
Ω

⎧⎨⎩|∇u|+ 1

2θ
(u− h)2 + λ

∑
i∈I(x)

|ρi(h,x)|
⎫⎬⎭ dx. (10)

The proposed approximation Eq. 10 is convex, thus the functional can be mini-
mized using an alternating minimization procedure in u and h:

1. For fixed h solve Eq. 10 for u

min
u

∫
Ω

{
|∇u|+ 1

2θ
(u− h)2

}
dx. (11)

This optimization problem is exactly the ROF model [12], with θ as reg-
ularization parameter. We can use Chambolle’s projected gradient descend
method to solve this problem [13].

2. For fixed u solve Eq. 10 for h

min
h

∫
Ω

⎧⎨⎩ 1

2θ
(u− h)2 + λ

∑
i∈I(x)

|ρi(h,x)|
⎫⎬⎭ dx. (12)

This minimization problem can be solved point-wise, because it does not de-
pend on any spatial derivatives of u any more. We will show in the following,
how this minimization problem can be solved efficiently with a generalized
thresholding scheme.



Parallel Thresholding for Live Dense Geometry from a Handheld Camera 455

3 Generalized Thresholding Scheme

The second step of the alternation scheme offers some difficulties, because the
sum of absolute valued functions results in multiple critical points, where the
whole data term is not differentiable. Thus, a simple thresholding scheme as in
the optical flow problem cannot be used. Nevertheless we will provide a general-
ization of the thresholding scheme that allows a closed-form solution of Eq. 12,
that is a further generalization of the concept presented in [7].

For fixed h0 and x the linearized data term ρi for each image Eq. 8 can be
written in the general form of a linear function

ρi(h,x) = ai h+ bi, (13)

where

ai := Ihi (x) and bi := Ii(h,x0)− h0 I
h
i (x)− I0(x). (14)

In the following we will consider h0 and x as fixed and therefore we simplify our
notation and omit the dependencies of ai and bi from these fixed values.

The absolute valued functions |ρi(h)| are differentiable with respect to h ex-
cept at their critical points, where one of the ρi equals zero and changes its sign.
Let us denote these critical points as

ti := − bi
ai

= −Ii(h,x0)− h0 I
h
i (x)− I0(x)

Ihi (x)
, (15)

where i ∈ I(x).
At these points Eq. 11 is not differentiable, as the corresponding ρi changes

its sign. Without loss of generality we can assume that ti ≤ ti+1, i.e. we obtain
a sorted sequence of {ρi : i ∈ I(x)}, that is sorted by the values of their critical
points. In order to avoid special cases we add t0 = −∞ and t|I(x)|+1 = +∞ to
this sequence.

Proposition 1. The minimizer of Eq. 12 can be found using the following strat-
egy: If the stationary point

h1 := u− λθ

⎛⎝ ∑
i∈I(x):i≤k

Ihi (x) −
∑

j∈I(x):j>k

Ihj (x)

⎞⎠ (16)

lies in the interior of (tk, tk+1) for some k ∈ I(x), then h = h1. Else the mini-
mizer of Eq. 12 can be found among the set of critical points:

h = arg min
h2∈{ti}

⎛⎝ 1

2θ
(u− h2)

2 + λ
∑

i∈I(x)
|ρi(h2,x)|

⎞⎠ . (17)
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h

t1 t2 t3

f0

f1

f2

f3

h1

Fig. 2. The minimizations problem in the second step of the alternation scheme Eq.
12 (blue) can be written as the sum of a quadratic function and a piecewise linear
function (red). In the interior of the intervals (tk, tk+1) this term is differentiable with
respect to h. In this illustration the minimum is at the critical point h1 that lies in the
interval (t1, t2).

Proof. First we show, that Eq. 12 can be written as the sum of a quadratic
function with a linear function in the interior of each interval (tk, tk+1) with
k ∈ {0, |I(x)|}. This is also illustrated in Fig. 2. We replace the absolute value
function by using the signum function∑

i∈I(x)
|ρi(h,x)| =

∑
i∈I(x)

|ai h+ bi| (18)

=
∑

i∈I(x)

{
sgn (ρi(h,x)) (ai h+ bi)

}
(19)

=
∑

i∈I(x)

{
sgn (ρi(h,x)) ai

}
h+

∑
i∈I(x)

{
sgn (ρi(h,x)) bi

}
.(20)

In order to write above equation in the general form of linear functions, we need
to eliminate the signum functions. Let us consider the interior of an interval
(tk, tk+1) with k ∈ {0, |I(x)|}. If h′ lies in the interior of the interval (tk, tk+1),
i.e. h′ > tk and h′ < tk+1, then by definition of the sorted sequence {ρi} it holds
that

sgn (ρi(h
′,x)) = +1 if i < k (21)

sgn (ρi(h
′,x)) = −1 if i ≥ k. (22)
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By replacing the signum functions with above expressions the data term can be
written in the general form of a linear function fk for each interval k ∈ {0, |I(x)|}∑

i∈I(x)
|ρi(h′,x)| = ãk h

′ + b̃k =: fk(h
′) (23)

with
ãk =

∑
i∈I(x):i<k

ai −
∑

j∈I(x):j≥k

aj (24)

and
b̃k =

∑
i∈I(x):i<k

bi −
∑

j∈I(x):j≥k

bj . (25)

As a result Eq. 12 can be written as

1

2θ
(u− h′)2 + λ fk(h

′), (26)

where h′ lies in the interior of (tk, tk+1).
By differentiating above equation with respect to h′ we get the stationary

point

h1 = u− λ θ ãk (27)

= u− λ θ

⎛⎝ ∑
i∈I(x):i<k

ai −
∑

j∈I(x):j≥k

aj

⎞⎠ (28)

= u− λ θ

⎛⎝ ∑
i∈I(x):i≤k

Ihi (x)−
∑

j∈I(x):j>k

Ihj (x)

⎞⎠ (29)

Such a stationary point h1 exists, if it stays inside the interval (tk, tk+1) for
some k ∈ {0, |I(x)|}. If no stationary point can be found for any of the intervals,
the minimizer of Eq. 12 resides on the boundary of one of the intervals, i.e. the
minimizer can be found among the set of critical points {ti}. ��

4 Generalized Thresholding Scheme on the GPU

We implemented the proposed method on the GPU using the CUDA (Compute
Unified Device Architecture) framework. For the computation of the generalized
thresholding scheme first we need a sequence of the coefficients of ρi, that is
sorted by the critical points ti. This sorting operation needs to be performed
only once for each linearization of the data term, because the values of ti and the
coefficients do not depend on the further iterations. This step can be computed
in a parallel-sequential manner on the graphics hardware, i.e. for each pixel of
the depthmap, one thread (x, y) sorts the coefficients of all ρi at this point (x, y).
Because the number of images is rather small a simple bubblesort algorithm is
used in each thread.
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The output of this sorting step is the sorted sequence of critical points tk, the
sum of the derivatives

ek :=
∑

i∈I(x):i≤k

Ihi (x)−
∑

j∈I(x):j>k

Ihj (x) ,

and
fk :=

∑
i∈I(x)

|ρi(x, tk)| , (30)

the residuals of the data terms at the critical points. With these coefficients
the values of h1 (Eq. 16) and h2 (Eq. 17) can be computed efficiently in every
iteration of the minimization scheme.

5 Experimental Results

We evaluated two different GPU implementations of the general thresholding
scheme. The first (implementation A) is a parallel sequential implementation,
where one thread is assigned to each pixel of the depthmap. This thread takes
the data of the views I1 . . . In as input and iteratively determines the minimizer
by sequential processing of the data of each view.

Because each thread can stop any further computation when the first sta-
tionary point is found, the amount of computation varies for each thread. This

Iteratively load
coefficients and
compute v1

Load u

Load tk, ek
and fk

Parallel com-
putation of v1

1 2 3 4k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

x 0 1 2 3 4

0 1 2 3Thread index 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1
2
3
4

0

1
2
3
4

0

Minimize and
write out v

1
2
3
4

0

x 0 1 2 3 4

x 0 1 2 3 4 y

20 21 22 ...

1 2 3 ...

Load u

Minimize and
write out v

x 0 1 2 3 4

0 1 2 3 4 Thread index

x 0 1 2 3 4

x 0 1 2 3 4

5 6 7 ...

Fig. 3. Two different implementations of the generalized thresholding scheme. The
implementation on the left is higher parallelized and allows a better performance bal-
ancing when the number of views increases. In the implementation on the right each
thread processes the data sequentially.
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usually results in suboptimal performance and lower occupancy of the GPU.
Therefore we evaluated a second implementation, that is highly parallelized and
has a deterministic computational load for each thread. By assigning multiple
threads to each pixel of the depthmap, the data of all views Ii can be processed
in parallel. While all necessary computations to find the stationary points can
be performed highly parallelized, only the last step, the determination of the
minimal value, involves sequential processing. In the following we will refer to
this kind of implementation as implementation B. The difference of both imple-
mentations is depicted in Fig. 3.

5.1 Comparison of Different GPU Implementations

We optimized the block sizes for both algorithms by searching values of the power
of two for the block-width and -height. For the parallelized implementation A, we
expected that the optimal block-size would depend on the amount of data that
is processed in parallel, in this case on the number of input images. The results
show, that the optimal block-size is determined by the size of the small block
in Fig. 3, that contains the pixels of the depthmap. While the size of the bigger
block where the values of h1 are actually computed depends on the number
of images, the optimal size of the small block stays constant. The dependency
between runtime performance and the size of this small block is shown in Fig. 4a
for different number of input images. A size of 32×1 outperforms all other tested
configurations on a NVidia Tesla C1060. On a recent GTX 480 the optimal size
is 64× 1.
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Fig. 4. (a) Performance of algorithm B on a Tesla C1060 for different sizes of the part
of the depthmap that is processed in parallel. (b) Comparison of both implementa-
tion strategies for different number of input images. When the amount of input data
increases, the higher parallelized algorithm B is faster than algorithm A.
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(a) Reference camera image (b) Reconstructed geometry (c) Synthesized View

Fig. 5. Dense depthmaps estimated from a single moving camera

(a) Reference camera image (b) Reconstructed geometry

Fig. 6. Note the accurate reconstruction of small-scale details like the network socket
and cords.

We also compared the performance of both implementations for different num-
ber of input images. While the parallel sequential implementation A is faster for
smaller number of input images, the parallelized implementation B shows a bet-
ter performance for higher numbers. The exact number of input images, for
which implementation B performs better than A, depends on the specific hard-
ware configuration. The parallelized algorithm B shows a linear dependency
between runtime performance and the number if input images. The images and
the reconstructed depthmap in both experiments are of size 450× 375.

5.2 Real World Data

The combination with a recently proposed method for realtime camera tracking
[8] allows the reconstruction of dense geometry with a single hand-held cam-
era. Figure 5 shows the input image of the reference camera, the reconstructed
geometry and a synthesized view. Another example is shown in figure 6. The
proposed method computes a dense geometry rather than the location of sparse
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(a) 3 images (b) 4 images (c) 5 images

(d) 6 images (e) 7 images (f) 8 images

Fig. 7. Multiple images allow a more detailed reconstruction.

feature points. Increasing the number of input images allows a finer and more
detailed reconstruction as shown in figure 7.

6 Conclusion

In this paper we adapted state-of-the-art variational optic flow algorithms so as
to directly generate dense depth maps in a coarse-to-fine primal dual algorithm.
The algorithm runs on a single GPU and allows to compute highly accurate dense
geometric information within fractions of a second. In particular, we present a
GPU implementation of the generalized thresholding scheme arising in the com-
putation of the primal variables. We experimentally compare two alternative
strategies of parallelization that differ with respect to the amount of balancing
assured across different threads. Experimental results show that one implemen-
tation shows a higher performance when the number of views is rather small,
while the other strategy is better suited when the input data increases. Highly
accurate and detailed results from real world image data are presented.
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Abstract. In this paper, we introduce a system for the automatic or-
ganization of photo collections consisting of millions of images down-
loaded from the Internet. To our knowledge, this is the first approach
that tackles this problem exclusively through the use of general-purpose
GPU computing techniques. By leveraging the inherent parallelism of
the problem and through the use of efficient GPU-based algorithms, our
system is able to effectively summarize datasets containing up to three
million images in approximately 16 hours on a single PC, which is orders
of magnitude faster compared to current state of the art techniques. In
this paper, we present the various algorithmic considerations and design
aspects of our system, and describe in detail the various steps of the pro-
cessing pipeline. Additionally, we demonstrate the effectiveness of the
system by showing results for a variety of real-world datasets, ranging
from the scale of a single landmark, to that of an entire city.

Fig. 1. A subset of the iconic images automatically found by our system, for the Berlin
dataset
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1 Introduction

Organizing Internet photo collections is an important task for many computer
vision applications. For instance, partitioning a large set of photographs into
clusters of similar images allows for more efficient post-processing tasks, such
as structure from motion [1,2]. In addition, the organization of images into se-
mantically consistent groups can also greatly enhance the browsing experience1.
For the summarization strategy described in this paper, we define “similar” im-
ages as those which represent the same scene or landmark, taken from nearby
vantage points, and under similar lighting conditions. Given these groupings of
similar images, we then automatically extract a small subset of representative
or iconic images that represent dominant aspects of the scene, and thus provide
a concise visual summary of the dataset. This approach lends itself naturally to
a hierarchical organization of the dataset into a form that is suitable both for
3D reconstruction as well as browsing.

With the ever-increasing abundance of images on the Internet, photo collec-
tions for a single search term now yield datasets on the order of millions of
images – for example, a query for Rome on the photo sharing website Flickr
yields approximately 3.4 million images. To operate on massive datasets of this
form within a reasonable time-frame, it thus becomes essential to develop effi-
cient algorithms that are capable of elegantly scaling to Internet-scale datasets.
This is a particularly important consideration, given that the amount of digital
information is predicted to increase exponentially in the years to come2. In this
paper, we introduce an efficient method for the automatic organization of large
scale photo collections ranging from several tens of thousands of images (the
scale of a single landmark) to millions of images (representing an entire city).
To our knowledge, this is the first system that runs completely on the GPU and
scales to datasets on the order of millions of images.

In the following sections of the paper, we present previous work leading up
to our approach (Section 2), followed by a high-level overview of our system
(Section 3). We then provide an in-depth look at each step of the pipeline
along with a discussion of important implementation details and design decisions
(Section 4). The paper concludes with a presentation of results on three
challenging real-world datasets (Section 5).

2 Previous Work

Organizing large scale photo collections has been of interest to many researchers
in recent years [3,4,1,5,6,2]. The various approaches can be broadly classified
into two categories: the first group uses two-view geometric constraints between
images to determine similarity, while the second category uses appearance cues,

1 For instance, tag clusters on Flickr:
http://www.flickr.com/photos/tags/berlin/clusters/

2 http://www.emc.com/collateral/analyst-reports/diverse-exploding-

digital-universe.pdf

http://www.flickr.com/photos/tags/berlin/clusters/
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
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or constraints from object/scene recognition to measure image similarity. The
notable departures from this classification are the approaches introduced in [1]
and [2], which are hybrid approaches combining both appearance and geometric
constraints to perform scene summarization, reconstruction and recognition. The
method presented in this paper is similar in spirit to the approach of [1], but
scales each of the techniques used to the true scale of internet photo collections,
as in [2]. However, in addition to [2], we also propose a way to parallelize the
computationally expensive two-view geometric verification step on the GPU, in
addition to the appearance grouping steps.

The first work that performed 3D reconstruction of landmarks from internet
photo collections containing a few thousand images was the Photo Tourism sys-
tem [4]. This method yields high-quality reconstruction results with the help
of exhaustive pairwise image matching and global bundle adjustment after in-
serting each new view. Both of these steps are computationally prohibitive on
large scale datasets as the exhaustive matching grows exponentially and is no
longer practical given contaminated real-world photo collections. To improve
the performance of their system, Snavely et al. [7] find skeletal sets of images
from the collection, whose reconstruction provides a good approximation to a
reconstruction involving all the images. One remaining limitation of this work
is that it still requires the exhaustive computation of all two-view relationships
in the dataset as a prerequisite. Most recently, Agarwal et al. [5] address this
computational challenge by using a computing cluster with up to 500 cores in
order to process larger datasets. Similar to our system, the work in [5] uses im-
age recognition techniques such as approximate nearest neighbor search [8] and
query expansion [9] to reduce the number of candidate relations from the full
exhaustive set. However, in contrast to Agarwal et al., our system uses a single
PC, thereby achieving an even higher effective processing rate. The main source
of the computational advantage we achieve is through the cascaded application
of appearance and geometric constraints. By first using computationally cheaper
2D appearance cues, we identify consistent clusters of images that are likely to
be spatially related. In turn, this leads to an overall decrease in the number of
candidates to be considered for pairwise registration.

Our main goal in this work is to leverage the computing power of the GPU in
order to develop a high performance system capable of efficiently organizing large
image collections. Strong and Gong present such a system in [10,11], however our
system differs in that it does not require a training step. Our system also scales to
millions of images, whereas theirs scales to only thousands. Computation of gist
vectors on the GPU was proposed in [12], however their results for large datasets
were extrapolated from results on smaller datasets. Our paper presents results
that were collected from actual runs on datasets of millions of images. To our
knowledge, this is the first attempt that implements certain algorithms (binary
code generation, RANSAC) on the GPU. In addition to these, since we operate
on binary vectors, we have also developed a k-medoids implementation for the
GPU, as an alternative to existing k-means implementations [13,14]. Finally, for
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the geometric verification step, we make use of SiftGPU, a publicly available
GPU implementation of SIFT extraction and matching3.

3 System Overview

In this section, we present a brief description of the main components of our sys-
tem. At a high-level, the system operates in a hierarchical manner, using both
2D image appearance cues as well as 3D scene geometry in order to solve the
task of partitioning images from large Internet photo collections into clusters
of similar photographs. The input to the system is a raw Internet photo collec-
tion, downloaded using keyword searches on Flickr. It has been observed [15]
that these collections can often be significantly contaminated, with a substan-
tial fraction of the images being semantically unrelated to the query. Thus, our
system has been designed with a view towards being robust to the significant
amount of clutter present in community photo collections. The downloaded im-
ages are then subjected to several algorithms in a pipeline, first enforcing a loose
grouping of the images based on 2D appearance cues, and subsequently refining
the initial partitioning using stricter 3D constraints. This procedure allows for
the efficient processing of very large datasets, since the more computationally
demanding geometric verification steps are carried out only on smaller subsets
of images that are already grouped together by similarity. The end result is a
clustering where each image within a cluster is similar in geometric structure,
vantage point, and color. The main steps in the pipeline are outlined below.

– Global Descriptor Extraction (Sec. 4.1): In order to cluster images
based on similarity, we first need to compute feature vectors for each image.
We choose to compute gist descriptors [16] for each image, which has been
shown to effectively capture perceptual similarity and has been used to re-
trieve structurally similar scenes [17]. We combine the gist descriptor with
low resolution color descriptions of the image to produce a 368 dimensional
feature vector for each image.

– Conversion to Binary Codes (Sec. 4.2): To efficiently store the feature
vectors on the GPU, we compress them into binary codes. The compressed
representation allows all of the data to be simultaneously stored on the GPU,
which significantly reduces the amount of data transfer necessary between
device and host during the clustering step.

– Clustering on the Binary Codes (Sec. 4.3): Given a set of compressed
descriptor vectors, we cluster the dataset with a parallel implementation of
the k-medoids algorithm [18]. This provides a rough grouping of the dataset
into clusters that are similar in global appearance. In addition, this step also
filters out a large fraction of unrelated images, since these fall into small and
isolated clusters.

– Geometric Verification (Sec. 4.4): Once a loose grouping of the images
has been obtained, strict geometric constraints are enforced to ensure that

3 http://www.cs.unc.edu/~ccwu/siftgpu

http://www.cs.unc.edu/~ccwu/siftgpu
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the images within a cluster represent the same scene or structure. This step
requires the extraction of SIFT features [19], followed by a RANSAC [20]
procedure for estimating the pairwise epipolar geometry [21,22]. Geometri-
cally consistent images, or images that capture the same 3D structure, are
retained, while the others are discarded. This produces clean clusters that
are consistent both in terms of appearance as well as geometry.

Each of the above steps is implemented in CUDA and runs on one or multiple
GPUs. We also plan to make these implementations freely available on the web,
for use by the community.

4 Image Organization for Internet Photo Collections

In this section we introduce the details of our proposed processing pipeline. Along
with the algorithmic considerations we will discuss design decisions to ensure a
efficient use of the highly parallel GPU architecture. In particular we explore the
considerations made in regards to memory access patterns, maximizing hardware
utilization and minimizing I/O between the host and GPU.

4.1 Global Descriptor Extraction

To boost computational efficiency, we aim at compactly describing each image
with a single global image descriptor. We choose the powerful gist descriptor
proposed by Oliva and Torralba [16], which was shown to achieve good results
for the tasks of scene matching and retrieval [17]. The gist vector is a description
of the oriented edges in an image. It is an aggregation of image convolutions that
have been downsampled to a resolution of 4x4. Each convolution picks up edge
responses at a certain orientation and scale. The convolution kernel used in
our implementation is the Gabor filter. In our implementation, we perform a
total of 20 convolutions at three different scales. The images we convolve are
greyscale thumbnails with a resolution of 128x128, and are cropped accordingly
to preserve their original aspect ratio. Performing these operations leads to a
320-dimensional gist vector. It is also typical to augment the gist descriptor
with color information, usually by appending an additional vector that carries
color information. In contrast to the downsampled L*a*b color space used to
incorporate colour information as in [17], our method directly uses the RGB
representation of the image. For the task of organizing image collections, we
empirically found the two representations to perform comparably. Thus, a 4 ×
4 RGB representation is then appended to the gist feature vector. The final
descriptor has 368 dimensions, stored as floats.

Computationally, the convolution with the Gabor filter and the downsampling
of the images are the most demanding tasks in this step. We improve GPU
utilization during the convolution step by efficiently processing the images in
batches. Since each of the input images is only of size 128× 128, we combine the
processing of multiple images to achieve greater occupancy of the GPU. Images
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are convolved in batches of 256 (determined empirically, we measure no gain
with bigger batch sizes) to reduce the number of memory transfers from host to
GPU. The images are laid out in row major order, one after the other and are
passed to the CUDA kernel for convolution.

The CUDA kernel for convolution assigns 16x16 thread blocks to compute the
convolution of some 16x16 patch of the virtual image, and each thread within a
block computes one pixel of the convolved image. Prior to dispatching the CUDA
kernel, the convolution kernel is transferred into a constant memory buffer. We
chose to use constant memory for two main reasons. First, constant memory is
cached, so reads from the buffer will be fast. Secondly, constant memory is useful
for memory accesses when each thread in a half-warp accesses the same index.
In this case, each thread reads from the same location in the convolution kernel
simultaneously, providing a slight advantage over textured memory.

Each thread block loads its corresponding image patch into shared memory.
It also needs to load in a portion of the image that borders this patch, and the
size of this portion is dependent on the size of the convolution kernel. All of
these memory loads are coalesced by carefully controlling which threads load a
particular part of the image. Once all necessary image data is loaded into shared
memory, the patches are convolved with a standard double nested loop, and the
sum is written out to global memory.

Before the next convolution is performed, the current convolved images are
downsampled to reduce the amount of storage necessary. Downsampling is per-
formed on the virtual image, and care is taken to ensure that sub-image bound-
aries within the virtual image are preserved. Downsampling is performed in two
one-dimensional passes over the virtual image. The thread blocks, accordingly,
are 1-dimensional. Since each thread block outputs one downsampled pixel, the
size of each thread block is determined by the level of downsampling.

The downsampling kernel essentially performs a sum reduction along a con-
tiguous portion of the image, with a final division to achieve an average value
over its portion of the image. Each thread block outputs its result to global
memory buffer in a transposed fashion, so that the next pass can read in the
image in a set of coalesced memory accesses. After two passes the virtual image
has been downsampled in both the x and y directions, and the result remains in
the row-major storage format. See Figure 2 for a pictorial explanation.

Fig. 2. Visualization of the downsampling process. It is performed in two one-
dimensional passes with transpositions after each pass.
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Intuitively, the extracted gist descriptors describe the viewpoint, through the
edge structure, and the illumination, by means of the subsampled image, of the
scene. These gist vectors can thus be leveraged to roughly group together similar
images, as outlined in subsequent sections.

4.2 Conversion to Binary Codes

To group together similar images, we would like to perform a clustering proce-
dure on the gist vectors. However, there are some important memory limitations
that must be overcome in order to achieve good performance. In order to achieve
efficient clustering on the GPU, we require that all feature vectors fit into the
GPU memory. Given today’s GPU memory limitations, we could only fit about
600K to 700K of the 368 dimensional descriptors into the GPU memory, which
is significantly smaller than the dataset sizes that we seek to operate on. Pro-
cessing the dataset in batches would require a large number of transfers between
host and device for each iteration of the clustering algorithm, thus leading to
significant overhead. To overcome this limitation, we compress each feature vec-
tor into a string of binary numbers, known as a binary code. The particular
compression technique we implemented is based on the method of [23]. Since
we would like to retain the appearance relationships of the gist vectors, these
vectors are compressed in such a way that the Hamming distance between the
resulting binary codes approximates the Euclidean distance between the original
feature descriptors. Each bit of the code describes on which side of a randomly
generated hyper-plane the original GIST descriptor is located. This method of
compression has been compared to a simpler locality sensitive hashing method
in [2], and it has been shown to preserve feature vector distances sufficiently.
The ability to choose the number of bits in our binary codes provides flexibil-
ity for the clustering step. We may decrease the number of bits if we wish to
manage GPU memory more conservatively, or we may increase the number of
bits if we wish to approximate the feature vectors more accurately. To ensure
high computational performance, our technique employs the highly optimized
CUBLAS library, with the exception of a kernel for converting float vectors into
binary strings. This kernel dispatches 1-dimensional thread blocks of length 32,
and each thread block produces one unsigned integer of output by performing a
bitwise OR reduction on 32 bits. The reduction represents the sgn of 32 floats.
For Berlin, using a 512-bit binary code scheme reduces the storage requirement
of the features from 3.7GB to 164MB.

4.3 Clustering

Once the binary codes have been generated we can cluster them using a par-
allel implementation of k-medoids. Similar to k-means, the standard k-medoids
algorithm [18] takes n features as input, and outputs k clusters. It differs from
k-means in that the cluster centers are the most central data elements of the
respective clusters, instead of the mean of the cluster center. This accommo-
dates our binary representation of the image descriptors for which the mean is
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not meaningful. Since the Hamming distance of our binary codes approximates
the Euclidean distance of the original gist descriptors, our k-medoids implemen-
tation uses this as the distance metric. K-medoids consists of iterations of an
assignment step and update step. It is initialized by randomly selecting k distinct
binary codes as cluster centers, or medoids. During the assignment step, each
binary code is associated with the closest medoid by Hamming distance. In the
update step, the binary code that minimizes the sum of distances to all other
codes in its cluster becomes the new medoid center. We define convergence as
the number of medoid changes falling below a defined threshold (we use 0.01k).

The bottleneck of the k-medoids algorithm is the computation of the Hamming
distance matrices for all clusters. Distance matrices are computed in both the
assignment and the update stage. In the assignment stage, an n × k matrix is
computed. In the update step, k smaller matrices are computed, one for each
cluster. The dimension of each matrix is square and equal to the number of
elements in that cluster. Fortunately, this computation is highly parallelizable.
Our kernel for computing the distance matrix dispatches as many 16x16 thread
blocks as needed to cover the full distance matrix. Each thread computes one
entry of the distance matrix, and does so by processing 32 bits of the binary codes
at a time. This way, each thread block only requires 128 bytes of shared memory
at any given time. An overview of the clustering can be found in Algorithm 1.

Algorithm 1. K-Medoids
for i=1 to k do

randomly assign medoid[i] to a binary code

end for

repeat

for i=1 to n do

compute distance of ith binary code to medoids in parallel

do parallel min-reduce to assign binary code i to closest medoid

end for

for i=1 to k do

compute distance matrix between all elements of cluster i

do parallel sum-reduce over rows of distance matrix

do parallel min-reduce of result to find new cluster center

end for

until converged

4.4 Geometric Verification

The initial clusters provided by k-medoids may contain still images which are
close in the compressed gist space, but they still may be visually or geometrically
inconsistent as shown in Figure 3. Given that the desired output of our system
only consists of clusters of images which have captured a consistent geometrical
scene structure, we perform a final step to remove inconsistent images. This is
performed by selecting the first r images of each cluster (the medoid and the
images closest to it) and estimating the epipolar geometry of each image pair
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within those r images. If any image has less than ρ inliers (we use ρ = 18 in all our
experiments), they are replaced with the next closest image. Similarly, to [1] this
process is repeated until r consistent images are found, or the cluster is rejected.
In order to prevent extensive computation for large but inconsistent clusters, we
reject a cluster if no consistent set has been found after 3r different images have
been tested. When a cluster has been verified, the image with the most inliers
over the set of r images is declared as the most representative view: the iconic.
Afterwards, all remaining images are verified against the chosen iconic.

To compute the two-view geometry, we first extract SIFT [19] features using
the efficient CUDA SiftGPU implementation. We limit the maximum number
of extracted features to 4000 in the interest of computational efficiency. Follow-
ing this, we compute pairwise putative matches using the CUBLAS library to
perform fast matrix multiplication, followed by a distance ratio test to identify
likely correspondences. The putative matches are then verified by estimating the
fundamental matrix using the 7-point algorithm [24] in a RANSAC framework
[20], both of which have been implemented in our system, using CUDA.

Algorithm 2. CUDA QR Decomposition Kernel

{Given A, compute matrices Q and R such that A = Q*R}
shared float *sR, *sQ

load A into sR, sQ = I
for k=1 to min(rows-1, cols) do

compute kth Householder reflector in serial

apply reflector to sR, sQ in parallel

end for

write sR, sQ to global memory

Due to the randomized nature of memory access patterns in RANSAC, im-
plementing RANSAC efficiently on the GPU presents the challenge of achieving
coalesced memory accesses. That is, nearby threads access nearby locations in
memory. To overcome this, we push N random samples of 7 points onto the
GPU, where N is the maximum number of iterations of RANSAC, set to 1024
in our experiments. This way, coalesced reads from memory can still reflect ran-
domized reads of the data. These randomized reads of the data are used as input
to the 7-point fundamental matrix estimator.

Estimating the fundamental matrix requires finding solutions to the funda-
mental matrix constraint x′TFx = 0, where x and x′ represent corresponding
points across two views. At least seven of these constraints are required to solve
for the fundamental matrix [24], so we randomly select 7 correspondences, which
define a system of equations. The null space of this system of equations defines
the fundamental matrix. To find the null space, we develop a QR decomposi-
tion algorithm in CUDA using Householder reflections. The pseudocode for our
algorithm is shown in Algorithm 2. Since each thread block decomposes a sep-
arate matrix, our CUDA kernel only works for small matrices. This is not a
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Fig. 3. An example cluster output from k-medoids on the Tower Bridge dataset. Note
the inconsistent images near the bottom.

problem, as the system of linear equations is represented by a 7x9 matrix. The
QR decomposition works by solving for one column of R at a time, and multiple
columns cannot be solved simultaneously. However, all elements in one column
can be solved simultaneously. Multiple blocks can be dispatched simultaneously,
allowing for fast QR decompositions of multiple matrices.

Once the fundamental matrices have been generated, they must be evaluated
against the entire set of correspondences. This data is stored on a GPU buffer,
and we test the Sampson distance for each correspondence against a predefined
threshold to identify inliers. We use the adaptive stopping criterion, where the
number of iterations is updated based on the highest inlier ratio observed so far.

5 Results

In this section, we present results on three challenging real-world datasets. The
experiments were run on a 2 Intel Xeon processor machine (8 available cores),
with 50GB RAM and 4 Nvidia GTX 295 GPUs (8 GPU cores). The sift ex-
traction, gist computation and RANSAC modules utilize all 8 GPUs, while the
binary compression and clustering steps use 1 GPU, since multiple GPUs would
require significant I/O between devices (eg., in the computation of the distance
matrix). The number of clusters in k-medoids was chosen to be 10% of the
dataset size, capped at a maximum of 100,000 centers.

The three datasets presented in this paper – Notre Dame (90,196 images),
Tower Bridge (137,073 images), and Berlin (2,704,448 images) – were downloaded
using keyword searches on Flickr. Figure 3 shows an example cluster output from
k-medoids for the Tower Bridge dataset. Note that at this stage, only appearance-
based cues have been employed. While the cluster demonstrates a appreciable
degree of visual similarity, there exist incorrect images that are consistent in
appearance, but that do not depict the same scene. Enforcing tighter geometric
constraints helps “clean-up” these clusters, as shown in Figure 4.
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Fig. 4. The same cluster as in Fig. 3 after it has passed through geometric verification.
Note how the inconsistent images have been removed.

Figures 5 shows a subset of 120 iconic images for the Notre Dame dataset.
It can be seen that this provides a concise summary of the “popular” aspects
and viewpoints of the landmark. These iconic images can then be used to seed a
structure-from-motion system, since they capture a variety of different camera
locations covering the scene. Thus, the process of 3D reconstruction may be
initialized using just a small, representative subset of the dataset, thus allowing
for the processing of massive image collections. In addition, the iconic images can
be used as the top level of a hierarchical browsing system, where each iconic may
in turn be expanded to show all the images within the corresponding cluster,
which are very similar in appearance and geometry to the iconic of interest. If
desired, an additional level in the browsing hierarchy may be formed by grouping
together iconic images into related “components” as in [1], thereby providing a
three-level organization of the image collection.

To demonstrate some of the advantages of a GPU-based approach, we com-
pared the performance of the proposed GPU RANSAC algorithm versus a very
high performance real-time robust estimation technique called ARRSAC [25].
For this experiment, 50 random clusters were selected from the Berlin dataset
and geometric verification was performed as outlined in Section 4.4. The results
are tabulated in Table 1 for varying numbers of CPU and GPU cores. It can
be seen from the table that the use of GPU-RANSAC for the geometric veri-
fication step results in a 2-8% improvement in speed, compared to ARRSAC.
While this is not a large speedup, it should be noted that ARRSAC is a highly
optimized framework, whereas our brute force implementation leaves much room
for optimization.

Table 2 lists summary statistics for the complete pipeline operating on all
three datasets. The table lists the number of iconics found by our system for
each dataset, and it can be seen that these large datasets are efficiently reduced
to a small, representative set of iconic images. The table also lists the number
of geometrically consistent images that remain in the clusters following the ro-
bust geometric verification step of the processing pipeline. On average, roughly
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Fig. 5. Subset of 120 iconic images for the Notre Dame dataset. The iconics denote
dominant aspects of the scene or landmark, thus providing a concise but representative
visual summary of the dataset.

5-35% of the images in each dataset are retained at this stage, though it must
be noted this fraction can be increased through additional stages that attempt
to match discarded images across different iconic clusters. Finally, Table 2 also
lists runtimes for each stage of the pipeline. It can be seen that our GPU-based
pipeline is able to process more than two million images in approximately 16



Fast Organization of Large Photo Collections Using CUDA 475

Table 1. Geometric verification performance: ARRSAC vs. our GPU-RANSAC. Tim-
ings were collected for different numbers of CPU and GPU cores used simultaneously.

Number of CPU/GPU cores Geometric verification timing (seconds)
ARRSAC GPU-RANSAC

1/1 155.38 152.40
4/4 38.5802 36.8281
8/8 28.299 25.892

Table 2. Summary statistics and timings for each processing step in the pipeline

Dataset # Iconics # Images Gist Binary Clustering Geom
Registered Code Verif.

Notre Dame 3,566 27,496 87s 0.79s 20.4s 42min 8s
Tower Bridge 5,479 47,146 138s 1.29s 26.2s 59min 46s
Berlin 13,612 133,634 1hr 1min 28.9s 30min 46s 14hr 27min

hours, on a single PC equipped with graphics hardware. This represents an or-
der of magnitude more data than current state of the art techniques [5].

6 Conclusion

This paper presents a high-performance GPU-based system for organizing large
photo collections. The system employs recognition constraints along with 3D
geometry, and exploits the underlying parallelism of the organization problem.
The system is entirely implemented on the GPU in CUDA, and is capable of
efficiently organizing massive image collections, containing millions of images, on
a single computer while still producing high-quality results. To our knowledge,
this is the first system that uses GPGPU computation to achieve the image
organization task.
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Prinet, Véronique I-168

Raguram, Rahul II-463
Rapantzikos, Konstantinos I-298
Ren, Huamin II-338
Ritz, Martin II-197
Robinovitch, Stephen N. I-181
Rohrbach, Marcus I-15
Rosenhahn, Bodo I-139
Rosman, Guy II-50
Rother, Carsten II-131
Roussos, Anastasios I-258
Russakovsky, Olga I-1

Samaras, Dimitris II-1
Sankur, Bülent I-207
Sarmis, T. II-384
Savakis, Andreas I-29
Savvides, Marios I-86
Saxena, Ashutosh I-70
Schiele, Bernt I-15
Schmid, Cordelia I-219
Seidel, Hans-Peter I-139
Seshadri, Keshav I-86
Shah, Shishir K. I-244
Shin, Yong-Ho II-104
Sinha, Sudipta N. II-267
Sivic, Josef I-43
Smeulders, Arnold W.M. II-62
Snoek, Cees G.M. II-436
Soatto, Stefano II-350
Stark, Michael I-15
Steedly, Drew II-267
Stefan, Alexandra I-342
Steffen, Richard II-282
Stork, André II-197
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