
Combining Verification and MDE Illustrated

by a Formal Java Development

Selma Djeddai1,�, Mohamed Mezghiche2, and Martin Strecker1,∗

1 IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse

118 Route de Narbonne, 31062 Toulouse Cedex 9, France
{firstname.lastname}@irit.fr

2 LIMOSE, UMBB, Boumerdès, Algeria

Abstract. Formal methods are increasingly used in software engineer-
ing. They offer a formal frame that guarentees the correctness of devel-
opments. However, they use complex notations that might be difficult
to understand for unaccustomed users. It thus becomes interesting to
formally specify the core components of a language, implement a prov-
ably correct development, and manipulate its components in a graphi-
cal/textual editor.

This contribution constitutes a first step towards using Model Driven
Engineering (MDE) technology in an interactive proof development. It
presents a transformation process from functional data structures, com-
monly used in proof assistants, to Class diagrams in Ecore. To perform
the transformation we use an MDE-based methodology. The resulting
metamodels from the transformation process are used to generate tex-
tual or graphical editors for domain specific languages (DSLs) using tools
provided by the Eclipse enviornment. To illustrate this approach we use
as example a simple DSL description. It respresents a Java-like language
enriched with timing annotations.

Keywords: Model Driven Engineering, Model Transformation, Formal
Methods, Verification.

1 Introduction

Domain Specific Languages (DSL) have conquered many different aspects of
computer science. They are used in different fields such as aerospace, web-
services, multi-media, etc. [8]. Certain DSLs define their semantics in natural
languages. However, even though these tend to be quite easy to understand,
they usually suffer from incompleteness in some cases and ambiguity in others.
Therefore, there emerges a need for defining the formal semantics of DSLs in a
mathematically founded framework using proof assistants. Such a phase consists
in defining the abstract syntax of a DSL and then grafting a semantics on top

� Part of this research has been supported by the project Verisync (ANR-10-BLAN-
0310).

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 131–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 S. Djeddai, M. Mezghiche, and M. Strecker

of it, using well-understood mechanisms like structural recursion or inductive
relations. Such a semantics is often not executable, but other elements of a for-
mal development are, such as compilers or static analyses whose correctness is
proved on the basis of the formal semantics.

Interactive proof assistants such as Coq [6] or Isabelle [18] often use paradigms
stemming from functional programming (type systems, function definitions), but
they are as such not a programming language. It is however possible to export the
formal development to programming languages such as Caml [17] or Scala [19].
A formally verified compiler, for example, can therefore be effectively executed
in a standard programming language.

In order to improve the user interface for interacting with a DSL, we aim at
a textual or graphical concrete syntax as provided, for example, by the Eclipse
Xtext or GMF environments. Frequent changes of the DSL during the design
phase make it necessary to adapt this interface easily and to re-generate it au-
tomatically, as far as possible.

Fig. 1. Meta-modeling(MM), Verification environment and OO languages

Figure 1 depicts the essence of our approach based on studying the interplay of
three formalisms that offer different and complementary aspects. On one hand,
we have Model Driven Engineering (MDE) [4, 22] that supplies us with frame-
works (for example Eclipse Modeling Framework) allowing to specify, visualize
and understand DSLs. Also these frameworks are equipped with tools that per-
mit to define graphical and textual syntax for these DSLs (Xtext or Graphical
Modeling Framework GMF). They are rather close to Object Oriented program-
ming which is the choice when it comes to developing graphical user interfaces.
Besides these facilities, they often suffer from lack of precise semantics.

On the contrary, proof assistants (such as Isabelle) have solid formal bases
and precise semantics. They are increasingly used to verify the correctness of
software. Nevertheless, they use complex notations that might be difficult to
understand for a non-initiated public.

Thus, this work constitutes a first step towards using MDE technology in an
interactive proof development. The guiding example (see Section 3) is a Java-
like language enriched with assertions developed by ourselves for which no off-
the-shelf definition exists. This “meta-model” (in MDE parlance) is sufficiently

Combining Verification and MDE Illustrated by a Formal Java Development 133

complex to illustrate the method and to be a case study of realistic size for a
DSL. However, its formal model can be entirely defined as an inductive datatype
(and this is so for most formally defined languages). In this case study, we can
therefore not demonstrate some aspects of our work, such as the translation of
genuine graph structures that go beyond instances of inductive data types.

Section 2 constitutes the technical core of the article; it describes a transla-
tion from data models in the functional programming world, used in verification
environments, to meta models in Ecore: the core language of the Eclipse Mod-
eling Framework. We illustrate the methodology in Section 3 with a case study.
In Section 4 we compare our work to other approaches, before concluding in
Section 5 with perspectives of further work.

2 From Datatypes to Meta-models

In this part, we present in detail the translation process from functional data
types to meta-models. We start in Section 2.1 by giving an overview of our
methodology, then we introduce the source and the target of the transformation
in Sections 2.2 and 2.3 respectively. The essence of the translation is further
developed in Section 2.4.

2.1 Methodology

Model Driven Engineering (MDE) is a software development methodology where
the (meta-)models are the central elements in the development process. A meta-
model defines the elements of a language. The instances of theses elements are
used to construct a model of the language. A model transformation is defined by
a mapping from elements of the source meta-model to those of the target meta-
model. Consequently, each model conforming to the source meta-model can be
automatically translated to an instance model of the target meta-model. The
Object Management Group (OMG) [20] defined the Model Driven Architecture
(MDA) standard [15], as specific incarnation of the MDE.

We apply this method in order to define a generic transformation process from
datatypes (used in ML-style languages and interactive provers) into Ecore mod-
els. Figure 2 shows an overview of our approach. Using an EBNF representation
of the datatype definition grammar [18], we derive a meta-model of datatypes.
This meta-model is the source meta-model of our transformation. We also de-
fine a subset of the Ecore meta-model [12] to be the target meta-model. The
transformation rules are defined on the meta-level and map elements from the
source meta-model to their counterparts in the target meta-model. They are
detailed in Section 2.4. The DataTypeToEcore function implements these rules
in Java. It takes as input models which conform to the source meta-model and
returns their equivalent in a model which conforms to the target meta-model.
The implementation process is further developped in Section 3.2.

134 S. Djeddai, M. Mezghiche, and M. Strecker

Meta−Model

Datatype

Functional

Ecore
Datatype To

<<Implements>>

Grammar

of a Datatype’s
EBNF representation

<<ConformsTo>>

Transformation Rules

Meta−Model

Ecore

Model

Datatype

<<ConformsTo>>

Ecore
Model

<<ConformsTo>>

Datatype

Definition

Fig. 2. Overview of the Transformation Method

2.2 Source Meta-model: The Datatype Meta-model

Functional programming is a programming paradigm that implements λ-calculus:
a formal system in mathematical logic that formalizes systems through the no-
tion of function. A function, in functional programming, consists in the mapping
of elements from a set to another. These sets are called types. Usually, they re-
strict the set of legal programs. We can count among the languages implementing
functional programming: Lisp [24], Haskell [21], and the ML languages.

We are interested in ML languages. ML stands for Meta Language. It is
based on a user-friendly syntax of λ-calculus augmented with polymorphism.
It is known for its ability to automatically infer the types of expressions without
explicit type annotations. ML languages are considered as non purely functional
languages. In fact, they admit the use of mutable data structures, features al-
lowing to program in an imperative way. The most famous dialects of the ML
family are SML (Standard ML) and OCaml (Objective Caml) [17].

To perform the transformation, taking all the features provided by ML lan-
guages, would be unnecessarily complex, because some features which are specific
to functional programming are not used in MDE modeling and would have no
equivalent supported by Ecore. This is why we defined a subset of data structure
schemas provided by ML languages that allows to define data types and that is
convenient to be translated into Ecore models.

In this subset, we treat primitive types (integers, Booleans, floats and strings)
and user defined data types. We allow the use of some keywords introducing lists,
references and type option. However, we do not handle mutable constructs and
mutable data structures (including arrays). Also for now, we do not implement
a specific treatment for mutually recursive types.

Figure 3 depicts the datatype meta-model that is constructed from the subset
of datatype declaration grammars of typical functional languages [17, 18]. To
construct this meta-model we were inspired by the work of [1] and [25]. They
worked widely on defining generic processes to transform EBNF grammars into

Combining Verification and MDE Illustrated by a Formal Java Development 135

Meta-models and vice-versa. We mainly focused on the definition of transforma-
tion rules and the correspondence between the elements of the two formalisms.
However, we did not use any tools or algorithms developed.

In our subset represented by the meta-model depicted by Figure 3, a Module
may contain severalType Definitions. Each Type Definition has a Type Construc-
tor. It corresponds to the data types’ name. It is also composed of at least one
Constructor Declaration. These declarations are used to express variant types.
Type declarations have names, it is the name of a particular type case. It takes as
argument some (optional) type expressions which can either represent a Prim-
itive Type (int, bool, float, etc.) or also a data type defined previously in the
module. The list option is used to represent lists in functional programming.
The type option feature describes the presence or the absence of a value. The ref
option is used for references (pointers).

Fig. 3. Datatype Meta-model

We can notice that elements composing type definitions are often unnamed
and just expressed with type expressions. However, for the rest of our work
these typed elements have to be distinguishable by their names. Therefore, we

136 S. Djeddai, M. Mezghiche, and M. Strecker

enriched the type definition grammar with a new element named Accessor. It is a
function introduced by a special annotation (*@accessor*). It allows to assign
a name to a special part of the type declaration. These accessor functions are
essential for the transformation process, their absence would lead to nameless
EStructuralFeatures. The syntax of these functions in the OCaml language is
presented in Figure 4.

(*@ accessor *)

let acc namei ([constr-name] (x1, ..., xn)) = xi / 1 ≤ i ≤ n

Fig. 4. Syntax of Accessor functions in OCaml

2.3 Target Meta-model: The Ecore Meta-model

Eclipse Modeling Framework (EMF) is an Eclipse framework for building appli-
cations based on model definitions. It unifies three technologies: Java, XML and
UML. It allows to describe a model as a class diagram, class interfaces in the
Java programming language or in the form of an XML schema. Moreover, it is
possible to describe a model and generate it in the two others.

Ecore is the model that is used to describe and handle models in EMF. It has
been developed as a small and simplified implementation of full UML. Its main
components are:

– The EPackage is the root element in serialized Ecoremodels. It encompasses
EClasses and EDataTypes.

– The EClass component represents classes in Ecore. It describes the structure
of objects. It contains EAttributes and EOperations.

– The EDataType component represents the types of EAttributes, either pre-
defined (types: Integer, Boolean, Float, etc.) or defined by the user. There is
a special datatype to represent enumerated types EEnum, each enumeration
is called EEnumLiteral.

– EReferences is comparable to the UML Association link. It defines the kinds
of the objects that can be linked together. The containment feature is a
Boolean value that makes a stronger type of relations. When it is set to true,
it represents a whole/part relationship known as “by-value aggregation” in
UML.

The Meta Object Facility (MOF) standardized by the OMG defines a subset
of UML class diagram [11]. It represents the Meta-Meta-Model of UML. Ecore
is comparable to MOF but simpler. They are similar in their ability to specify
classes, structural and behavioral features, inheritance and packages. However,
their difference appears in the data type structures, package relationships and
complex aspects of association links. EMOF (Essential Meta-Object Facility) is
the new core meta-model that is very close to Ecore [5].

Combining Verification and MDE Illustrated by a Formal Java Development 137

Figure 5 represents a subset of the Ecore language. This subset contains
essentially the elements that are needed for the transformation process. In this
meta-model appear only basic classes features and operation. The items that do
not appear are not used by our transformation process.

Fig. 5. Simplified subset of the Ecore Meta-model

2.4 From Datatypes to Meta-models

The transformation method is from functional datatypes to Ecore meta-models.
To precisely define transformation rules, the transformation method is presented
in a formal notation in the form of a function noted Tr(). The transformation
rules are presented as sub-functions relatively to the component given as input.
In each rule definition, we start by an informal description, then we present it
formally and finally we show an effective example.

Tr : DataTypes −→ Ecore Meta-model

The following translation sub-functions are given for a concrete syntax in the
style of Caml [17]. Since most functional languages (including the language of
proof assistants) have great similarities, the concrete syntax can be mapped to
different functional languages.

138 S. Djeddai, M. Mezghiche, and M. Strecker

Rule DatatypeToEClass. This rule is applied when the datatype is formed
of only one constructor. the latter is translated to an EClass. The EClass name
is the name of the type constructor. The types composing the datatype are
translated using other rules (PrimitivTypeToEAttribute or TypeToEReference).

Tr(tpConstr = cn t1...tn) = createEClass();
setName(tpConstr);
Trtype(acci, ti)
/ 1 ≤ i ≤ n

Example:

type tpConstr =

Cn of int ∗ string ∗ ...∗ bool

Rule DatatypeToEEnum. Datatypes composed only of constructors (without
type expressions typexpr) are translated to EEnums which are usually employed
to model enumerated types in Ecore. Then, each constructor composing the
datatype is translated into a literal named EEnumLiteral. The name of each
constructor becomes the name of a literal.

Tr(tpConstr = cn1|...|cnp) = createEEnum();
setName(tpConstr);
TrconstrNm(cni) / 1 ≤ i ≤ p

T rconstrNm(cni) = EEnumLiteral(cni) / 1 ≤ i ≤ p

Example:

type tpConstr=
Cn1 |Cn2 |... | CnN

Rule DatatypeToEClasses. When constructor declarations are composed of
more than one constructor declaration containing type expressions: a first EClass
is created to represent the type constructor (tpConstr). Then, for each construc-
tor, an EClass is created too, and inherits from the tpConstr one. To transform
the types expressions of each constructor, we call the functions for translating
the type expressions.

Combining Verification and MDE Illustrated by a Formal Java Development 139

Tr(tpConstr = cd1|...|cdn) = createEClass();
setName(tpConstr);
Trdecl(cdi)
/ 1 ≤ i ≤ n

Trdecl : ConstructorDeclaration −→ EClass
T rdecl(cni t1...tm) = createEClass();

setName(cni);
setSuperType (EClass(tpConstr));
Trtype(accj , tj)
/ 1 ≤ j ≤ m

Example:

type tpConstr =

Cn1 of string

|Cn2 of int

|...
|CnN of bool

Rule PrimitivTypeToEAttribute. If a type expression is formed of a prim-
itive type, the translation function generates a new EAttribute. The name of
this EAttribute is the name of its corresponding accessor, and its type is the
EMF representation of the the primitive type : EInt for int, EBoolean for bool,
EString for string, etc.

Trtype : (accessor, type) −→ EStructualFeature
T rtype(acc, primTp) = createEAtrribute();

setName(acc);
setT ype(primTpEMF);

Example:

type tpConstr =

Cn of int ∗ string ∗ ...∗ bool

Rule TypeToEReference. When a type expression contains a type which is
not a primitive type, the latter has to be previously defined in the Isabelle theory.
Then, a containment link is created between the current EClass and the EClass
referenced by type constructor, and the multiplicity is set to 1.

140 S. Djeddai, M. Mezghiche, and M. Strecker

Trtype : (accessor, type) −→ EStructualFeature
T rtype(acc, tpConstr) = createEReference();

setName(acc);
setT ype (tp constr);
setContainment (true);
setLowerBound(1);
setUpperBound(1);

Example:

type tpConstr=
Cn oftpConstr2

Rule TypeOptionToMultiplicity. The type expressions can also appear in
the form of a type list. In this case the multiplicity is set to 0...*. The type
expression type option is used to express whether a value is present or not. It
returns None, if it is absent and Some value, if it is present. This is modeled by
changing the cardinality to 0...1.

Trtype : (accessor, type) −→ EStructualFeature
T rtype(acc, t list) = Trtype(acc, t)

setLowerBound(0);
setUpperBound(∗);

Trtype(acc, t option) = Trtype(acc, t)
setLowerBound(0);
setUpperBound(1);

Example:

type tpConstr=
Cn oftpConstr2 list

The last case that we deal with is references (type ref). References are used
to represent pointers in ML programming and Isabelle. It is translated to simple
references without containment option in Ecore.

Combining Verification and MDE Illustrated by a Formal Java Development 141

Trtype(acc, t ref) = Trtype(acc, t)
setContainment(False);

Example:

type tpConstr=
Cn of tpConstr2 ref

RuleAccessorToStructuralFeaturesName. This rule is spelled out to define
how the accessor name is selected for naming a particular EStructuralFeature.
Accessors are regrouped in accssors list. Each accessor structure is formed of an
accessor name, a constructor name and an integer value named ”index”. This
index corresponds to the place of the type the accessor is accessing in the type ex-
pressions.

The constructor name is used to select the corresponding EClass where the
EStructuralFeature is created. Then the index value is compared to the value
FeatureID given by Ecore to represent the rank of the EStructuralFeature

creation in a particular EClass. When these values are equal, the corresponding
accessor’s name is selected to name this EStructuralFeature.

Example:

type tp1= Constr1 of int

| Constr2 of (int list)∗ bool

type tp2 = Tp2 of tp1 ∗ string

(*@accessor*)

let acc1 (Constr1 (x)) =x ;;

(*@accessor*)

let acc2 (Constr2 (x,y)) =x ;;

(*@accessor*)

let acc3 (Constr2 (x,y)) =y ;;

(*@accessor*)

let acc4 (Tp2 (x,y)) =x ;;

(*@accessor*)

let acc5 (Tp2 (x,y)) =y ;;

142 S. Djeddai, M. Mezghiche, and M. Strecker

3 Case Study

In this section, we apply the method presented in Section 2 on a detailed example
that consist of a Domain Specific Language. We start by the DSL definition, then
we show the architecture of the application before finishing with the effective
results of the transformation.

3.1 Presentation of the Case Study

We are currently working on a real-time dialect of the Java language allowing
us to carry out specific static analyses of Java programs. We only sketch this
language here; details are described in [3]. This language is not a genuine subset
of Java, since we have added annotations characterizing timing behavior of pro-
gram parts that are inserted in particular comments into the program. Neither
is the language a superset of Java, because we have to impose syntactic restric-
tions on the shape of the program, and also static restrictions on the number of
objects that are allocated.

All this made us opt for writing our own syntax analysis, which is integrated
into the Eclipse Xtext environment [9]. After syntax analysis and verification
of the above-mentioned static restrictions, the program together with its timing
annotations is translated to Timed Automata (TA) for model checking. The
language is currently not entirely stable and will be modified while we refine and
improve the translation from Java to TA, and while the formal model evolves.

The formal aspect comes into play at the following point: We are currently
developing a real-time semantics of Java in the proof assistant Isabelle, based on
an execution semantics using inductive relations. Performing the translation for
the whole language description would generate a huge meta-model that couldn’t
be presented in the contribution. We thus choose to present only an excerpt of
it, corresponding to a method definition.

Figure 7 shows the datatype definitions in the Isabelle proof assistant, where
a method definition is composed of a method declaration, a list of variables,
and statements. Each method declaration has an access modifier that specifies
its kind. It also has a type, a name, and some variable declarations. The stmt
datatype describes the statements allowed in the method body: Assignments,
Conditions, Sequence of statements, Return and the annotation statement (for
timing annotations). In this example we use Booleans, integers, strings for types
and values.

3.2 Implementation: DatatypesToEcore

Our approach is implemented using the Eclipse environment which includes
among others

– Eclipse Modeling Framework (EMF) [5]: a framework for modeling and code
generation that builds tools and applications based on data models.

Combining Verification and MDE Illustrated by a Formal Java Development 143

– Eclipse Modeling Project (EMP) [12]: a framework allowing the manipula-
tion of DSLs by defining their (textual/graphical) concrete syntax based on
a corresponding meta-model using Xtext or GMF tools.

In this chapter we use the Xtext tool [9]. It is a tool that supports the devel-
opment of textual concrete syntax for DSLs. In the first versions of Xtext, it
was only possible to create a DSL textual editor starting from an Extended
Backus-Naur Form-like grammar and generating a corresponding Ecore-based
meta-model. But since Xtext 2.0, it is possible to start from a meta-model and
get the corresponding EBNF-like grammar. Starting from this grammar, the gen-
erator creates a parser as well as a functional Eclipse textual editor, complete
with syntax highlighting, code assist and outline view [12].

Figure 6 shows the architecture of our application. Non-dashed arrows repre-
sent automatic model transformations or code generation. On the contrary, the
dashed one stands for a manual intervention added to Xtext code generation
facilities. In our approach, the base element is an Isabelle theory where both of
the datatypes and the properties to be checked are defined. The corresponding
meta-model is generated using the translation function described in Section 2.4.
Starting from a generated Ecore meta-model, we use the Xtext tool to define
a textual concrete syntax. First, Xtext builds an EBNF grammar depending on
the structure of the meta-model. The grammar is then adapted using the right
key words of the language, yielding a textual editor as an Eclipse plug-in. We
thus generated code for a DSL textual tool.

Fig. 6. Datatype To Ecore implementation architecture

3.3 Applying the Transformation

Figure 7 shows datatypes taken form the Isabelle theory where the verifica-
tions were performed. These datatypes are used to express the elements of a

144 S. Djeddai, M. Mezghiche, and M. Strecker

method declaration in our DSL. This part of the theory was given as input to the
implementation of our translation rules presented in Section 2.4. The resulting
Ecore diagram is presented in Figure 8.

As it is shown on the figure, data type definitions built only of type construc-
tors (Tp, AccModifier, Binop, Binding) are treated as enumerations in the meta-
model, whereas Datatype MethodDecl composed of only one constructor derive a
single class. As for type expressions that represent list of types (like accModifier
list in varDecl), they generate a structural feature in the corresponding class
and their multiplicities are set to (0...*). The result of type definitions contain-
ing more than one constructor and at least a type expression (stmt and expr) is
modeled as a number of classes inheriting from a main one. Finally, the transla-
tion of the int, bool and string types is straightforward. They are translated to
respectively EInt, EBoolean and EString.

datatype binop = BArith| BCompar| BLogic
datatype value = BoolV bool

|IntV int
|StringV string
|V oidV

datatype binding = Local| Global
datatype var = V ar binding string
datatype expr = Const value

|V arE var
|BinOperation binop expr expr

datatype tp = BoolT | IntT | V oidT | StringT
datatype stmt = Assign var expr

|Seq stmt stmt
|Cond expr stmt stmt
|Return expr
|AnnotStmt int stmt

datatype accModifier =
Public |Private |Abstract|Static |Protected |Synchronized

datatype varDecl =
V arDecl (accModifier list) tp int

datatype methodDecl =
MethodDecl (accModifier list) tp string (varDecl list)

datatype methodDefn =
MethodDefn methodDecl (varDecl list) stmt

Fig. 7. Datatypes in Isabelle

Combining Verification and MDE Illustrated by a Formal Java Development 145

Fig. 8. Resulting Ecore Diagram after Transformation

146 S. Djeddai, M. Mezghiche, and M. Strecker

4 Related Work

EMF models are comparable to Unified Modeling Language Class diagrams. For
this reason, we are interested in the mappings from other formal languages to
UML Class diagrams. Some research is dedicated to establishing the link be-
tween these two formalisms. We cite the work of Idani & al. that consists of a
generic transformation of UML models to B constructs [14] and vice-versa [13].
The authors propose a metamodel-based transformation method based on defin-
ing a set of structural and semantic mappings from UML to B (a formal method
that allows to construct a program by successive refinement, using abstract spec-
ifications).

Similarly, there is an MDE based transformation approach for generating
Alloy (a textual modeling language based on first order logic) specifications
from UML class diagrams and backwards [2, 23].

Delahaye & al. describe in [7] a formal and sound framework for transforming
Focal specification into UML models.

These methods enable to generate UML components from a formal descrip-
tion but their formal representation is significantly different from our needs:
functional data structures.

Also, graph transformation tools [10, 16] permit to define source and target
metamodels all along with a set of transformation rules and use graphical repre-
sentations of instance models to ease the transformation process. However, the
verification functionality they offer is often limited to syntactic aspects (such as
confluence of transformation rules) and does not allow to model deeper seman-
tic properties (such as an operational semantics of a programming language and
proofs by bisimulation).

Our approach combines the two views by offering the possibility to define
the abstract syntax of a DSL, to run some verifications on the top of it and
to generate the corresponding metamodel to graphically document the formal
developments. Furthermore, this metamodel can be used to easily generate a
textual editor using Xtext facilities.

5 Conclusion

Our work constitutes a first step towards a combination of interactive proof and
Model Driven Engineering. We have presented a generic method based on MDE
for transforming data type definitions used in proof assistants to class diagrams.

The approach is illustrated with the help of a Domain Specific Language
developed by ourselves. It is a Java-like language enriched with annotations.
Starting from data type definitions, set up for the semantic modeling of the DSL,
we have been able to generate an EMF meta-model. In addition to its benefits for
documenting and visualizing the DSL, it is manipulated in the Eclipse workbench
to generate a textual editor as an Eclipse plug-in.

Currently, we are working on extending the subset of data type definitions
by adding a way to transform parameterized types to generic types in Ecore,

Combining Verification and MDE Illustrated by a Formal Java Development 147

and coupling our work with the generation of provably correct object oriented
code from proof assistants. Moreover, we intend to work on the opposite side of
the transformation, namely the possibility to generate data structure definitions
from class diagrams.

References

1. Alanen, M., Porres, I.: A relation between context-free grammars and meta ob-
ject facility metamodels. Tech. rep., Turku Centre for Computer Science (TUCS)
(March 2003), http://www.cis.uab.edu/courses/cs593/spring2010/TR606.pdf

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging
Model Transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

3. Baklanova, N., Strecker, M., Féraud, L.: Resource Sharing Conflicts Checking in
Multithreaded Java Programs. In: Informal Proceedings FAC 2012 (April 2012)

4. Bézivin, J.: Model Driven Engineering: An Emerging Technical Space. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64. Springer,
Heidelberg (2006),
https://www.uni-koblenz.de/~laemmel/gttse/2005/pdfs/41430036.pdf

5. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)

6. Coq Development Team: The Coq proof assistant reference manual. version 8.31
(2010), http://coq.inria.fr/refman/, http://coq.inria.fr/refman/

7. Delahaye, D., Étienne, J.F., Viguié Donzeau-Gouge, V.: A Formal and Sound
Transformation from Focal to UML: An Application to Airport Security Regu-
lations. In: UML and Formal Methods (UML&FM), vol. 4, pp. 267–274 (2008),
http://cedric.cnam.fr/~delahaye/?page=publis

8. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices 35(6), 26–36 (2000)

9. Eclipse Community: Tutorials and documentation for Xtext 2.0 (2011),
http://www.eclipse.org/Xtext/documentation/

10. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
Eclipse plugins. In: Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2005, pp. 134–143. ACM, New York
(2005), http://doi.acm.org/10.1145/1101908.1101930

11. France, R.B., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling
notation. Computer Standards & Interfaces 19(7), 325–334 (1998)

12. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Upper Saddle River (2009)

13. Idani, A.: UML Models Engineering from Static and Dynamic Aspects of Formal
Specifications. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp.
237–250. Springer, Heidelberg (2009)

14. Idani, A., Boulanger, J.L., Philippe, L.: A generic process and its tool support
towards combining UML and B for safety critical systems. In: Hu, G. (ed.) CAINE,
pp. 185–192. ISCA (2007)

15. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

http://www.cis.uab.edu/courses/cs593/spring2010/TR606.pdf
https://www.uni-koblenz.de/~laemmel/gttse/2005/pdfs/41430036.pdf
http://coq.inria.fr/refman/
http://coq.inria.fr/refman/
http://cedric.cnam.fr/~delahaye/?page=publis
http://www.eclipse.org/Xtext/documentation/
http://doi.acm.org/10.1145/1101908.1101930

148 S. Djeddai, M. Mezghiche, and M. Strecker

16. de Lara, J., Vangheluwe, H.: Using AToM3 as a meta-case tool. In: Proceedings
of the 4th International Conference on Enterprise Information Systems (ICEIS),
Ciudad Real, Spain, pp. 642–649 (April 2002),
http://www.cs.mcgill.ca/~hv/publications/02.ICEIS.MCASE.pdf

17. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 3.12. documentation and user’s manual (July 2011),
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002), http://isabelle.in.tum.de

19. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An Overview of the Scala Pro-
gramming Language. Tech. Rep. IC/2004/64, EPFL Lausanne, Switzerland (2007)

20. OMG: Meta Object Facility (MOF) Core v. 2.0 Document (2006),
http://www.omg.org

21. Peyton-Jones, S.: Haskell 98 language and libraries: the revised report. Cambridge
University Press, Cambridge (2003),
http://www.worldcat.org/isbn/9780521826143

22. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003)

23. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and Back Again.
In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Hei-
delberg (2010)

24. Steele, G.L.: Common LISP, 2nd edn. Digital Press (1990)
25. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. In: Bruel, J.-

M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006)

http://www.cs.mcgill.ca/~hv/publications/02.ICEIS.MCASE.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://isabelle.in.tum.de
http://www.omg.org
http://www.worldcat.org/isbn/9780521826143

	Combining Verification and MDE Illustrated by a Formal Java Development
	Introduction
	From Datatypes to Meta-models
	Methodology
	Source Meta-model: The Datatype Meta-model
	Target Meta-model: The Ecore Meta-model
	From Datatypes to Meta-models

	Case Study
	Presentation of the Case Study
	Implementation: DatatypesToEcore
	Applying the Transformation

	Related Work
	Conclusion
	References

