
A Multi-channel Communication Framework

Michal Nagy

University of Jyväskylä, P.O. Box 35 (Agora), FI-40014, Jyväskylä, Finland
michal.nagy@jyu.fi

Abstract. We present a modular framework for a business-to-customer
communication service integrating several communication channels. Us-
ing such a service it is possible to find hidden relationships between mes-
sages and thus collect more customer-related data. The framework core is
a message-conversion engine capable of converting channel-independent
abstract messages into concrete messages and vice-versa. The conver-
sion process is context-dependent. The context consists of formally de-
scribed communication channel characteristics and user preferences. The
framework is based on semantic technologies due to a balance between
their expressive power, reasoning properties, and existence of production-
quality tools. This chapter describes the multi-channel communication
framework with relation to its components. Among others we discuss
message conversion and channel selection.

Keywords: communication, ontology, context-awareness, B2C.

1 Introduction

The introduction of electronic media into businesses changed the way businesses
communicate with their customers and between each other. A typical business
has nowadays several options how it can reach its customers and how the cus-
tomers can reach the business. We call these means of communication commu-
nication channels. With the increasing number of communication channels the
problem of consolidation and integration becomes more complicated.

We will illustrate this problem on an example of a consumer electronics seller
trying to communicate with a potential customer. The seller has a web page,
Facebook page, Twitter account, phone number and an email address. These
are the communication channels. The seller may start a campaign selling a new
model of a TV. The seller sends a new message to all followers on Twitter and
Facebook. The next day a customer asks a question about the new product
through the seller’s web page. The seller replies by sending an email to the email
address that the customer provided in the web form. Then the customer buys the
product using a form on the seller’s web page. The example illustrates commu-
nication through several communication channels – social networks, web forms
and email. It would be useful for the seller to understand that the customer
asking the question through the web form is the same person that later bought
the product. This way the seller may build up a database of all communication

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 72–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Multi-channel Communication Framework 73

happening between the business and a particular customer no matter what com-
munication channel is being used. The seller may for example find out that the
customer prefers email communication in 90% of cases and that he/she prefers
to buy the products in person in the brick-and-mortar shop instead of buying
them online. This may differ from another customer that prefers communication
through Facebook and always buys product electronically through the electronic
shop.

In order to make such a system we have to overcome several issues. In [7] we
present five issues related to multi-channel communication – message conversion,
communication channel selection, information element extraction, goal/purpose
modeling and context modeling. In this publication we propose a framework
that tries to solve these issues. The framework is mostly based on semantic
technologies and utility functions. The emphasis was given to the real-world
implementation.

Section 2 talks about the motivation behind this effort. Section 3 describes
the framework and briefly discusses the main framework components. Section 4
defines ontologies that are used by various components of the framework. Section
5 describes engine algorithms used for message conversions and channel selection.
Lastly, section 6 concludes the chapter.

2 Motivation

A multi-channel communication system brings several advantages to businesses.
Firstly, it allows them to collect more meaningful information about their cus-
tomers. Nowadays, information systems can collect a significant amount of data
related to B2C communication. However, more data does not necessarily mean
more information. Isolated facts become more useful once they are linked with
each other given a certain context. This is the motivation of the Linked Data
initiative as well [1]. This way hidden links between data can be detected.

Every communication effort initiated by the business should be rational and
should be done with a goal and purpose (e.g. promoting a product with the goal
of selling it). Better aimed communication increases the chances of goals being
fulfilled. In order to make these rational decisions, one must be well informed.
There should be a system capable of collecting information about every customer
– past actions, preferences, financial profile, etc. Instead of sending a message to
concrete customers, a business may decide to send a message to a certain type of
customer. For example if the business tries to advertise a TV, it should advertise
it one way to home cinema enthusiast, but other way to customers interested in
products with low energy consumption.

There is a significant amount of business-relevant information on the Internet.
The problem is however that the information is difficult or even impossible to
understand by a machine [4]. The situation is changing. Technologies such as
RDF (Resource Description Framework), OWL (Web Ontology Language) allow
people and businesses to publish this information in a machine-readable form on
the Internet. There are many publicly available RDF storages that contain useful

74 M. Nagy

information (e.g. DBpedia [3], data.gov.uk portal [2], etc.). It could be beneficial
to utilize this information in business’ decision making process.

3 Multi-channel Communication Framework

3.1 Framework Overview

The framework consists of two main components – knowledge base and message
conversion engine. The goal of the knowledge base is to store information about
five main areas – messages, communication channels, customers, commodities
and business actions. All these partial knowledge bases are linked. The frame-
work user is free to extend the knowledge base and corresponding knowledge
schemas (ontologies) to fit the business needs. The message conversion engine is
responsible for message conversion. It converts message received from customers
to abstract message trying to extract information elements that are relevant to
the business. Then it interprets them in form of actions. The framework user may
specify several message templates to send message to the customers. The engine
converts message templates into concrete messages that can be sent to the cus-
tomer. It is also responsible for proper channel selection that may depend on cus-
tomer’s personal preferences and other circumstances. The framework overview
is available in Figure 1.

Fig. 1. Multi-channel communication framework overview

3.2 Knowledge Base

The system should be capable of storing different types of information about
customers, channels and business. Some of this data is relatively static (e.g.
product data) and some data is dynamic (e.g. customer information). However,

A Multi-channel Communication Framework 75

we believe that a single way of representation is favorable due to the need to
integrate and reason about all these kinds of data together. Reasoning will take
place mostly in two cases – when a message is received and when a message is
sent.

We need a way of knowledge modeling that would be expressive enough to
describe relationships between heterogeneous entities such as customers, prod-
ucts, services, channels, etc. Moreover, the language must allow reasoning about
the facts. This reasoning must be sound, so that it infers only valid facts. It
should be complete as well, so that no valid fact is missing. If a valid missing
was missing, it would result in a failure to send an outbound message or to
properly annotate an inbound message. Lastly, this modeling framework must
not be computationally too complex. As mentioned earlier, the discussed system
should be usable in real-world production environment. Therefore the existence
of a mature tool with abovementioned properties is important.

Based on these requirements we believe that Resource Description Framework
(RDF) is the most reasonable way to model our data. It is expressive enough,
proven and widely supported by a great amount of production-quality tools for
modeling (e.g. Protégé [8]), storing and querying data (e.g. Jena framework [6],
Sesame [12]). Also, there are many reasoners that are sound, complete and still
computationally inexpensive (e.g. RacerPro [9], HermiT [5], etc.). RDF is built
on top of wide-spread standards such as XML, XML Schema, etc. It is closely
related to Web Ontology Language (OWL) which is used to formally define
knowledge schemas called ontologies. Thanks to ontologies and reasoners it is
possible not only to conclude new facts from existing ones, but to check data
consistency as well.

4 Ontologies

4.1 Overview

In this section we present several ontologies that are needed for the framework’s
operation. Each ontology belongs to a different namespace due to logical division.
Later in the text we use prefix names to refer to specific namespaces. They are
described in Table 1.

Prefixes xsd, owl, rdfs and rdf represent well-known namespaces and ontolo-
gies. All the other prefixes represent framework-specific namespaces and ontolo-
gies. The commodity ontology represents all the products and services that the
business is trying to sell. The message ontology represents abstract and concrete
messages. The action ontology is about actions that the business or a customer
can perform. The channel ontology is used to describe communication channels.
Lastly, the customer ontology represents a customer schema including customer
personal information, contact addresses, preferences, etc. In order to conserve
space the ontologies are not described directly in OWL. For each ontology the
class hierarchy is graphically depicted in a figure and the list of preferences is
described in a table.

76 M. Nagy

Table 1. Namespaces and prefixes used in this chapter

Prefix Namespace Ontology

b http://cs.jyu.fi/ai/OntoGroup/mmcc/commodity# Commodity ontology
a http://cs.jyu.fi/ai/OntoGroup/mmcc/action# Action ontology
m http://cs.jyu.fi/ai/OntoGroup/mmcc/message# Message ontology
ch http://cs.jyu.fi/ai/OntoGroup/mmcc/channel# Channel ontology
cu http://cs.jyu.fi/ai/OntoGroup/mmcc/customer# Customer ontology
xsd http://www.w3.org/2001/XMLSchema# XML Schema [15]
owl http://www.w3.org/2002/07/owl# Web Ontology Lan-

guage [14]
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# Resource Description

Framework [10]
rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema [11]

4.2 Commodity Ontology

In general the commodity ontology depends on the business domain and can
comprise of a variety of goods and services. However, there is a single primitive
generic ontology that can be extended based on the needs of the business. The
generic commodity ontology together with an example of an extension can be
seen in Figure 2. The extension is based on a scenario where the user of the
framework is a small consumer electronics seller.

Fig. 2. Class hierarchy of a generic commodity ontology and its sample extension

The central point of the ontology is the class b:Commodity. A commodity rep-
resents either a product (b:Product) or a service (b:Service). Class b:Commodity
also acts as an integration point to other ontologies, that means other framework
ontologies refer to it.

http://cs.jyu.fi/ai/OntoGroup/mmcc/commodity#
http://cs.jyu.fi/ai/OntoGroup/mmcc/action#
http://cs.jyu.fi/ai/OntoGroup/mmcc/message#
http://cs.jyu.fi/ai/OntoGroup/mmcc/channel#
http://cs.jyu.fi/ai/OntoGroup/mmcc/customer#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#

A Multi-channel Communication Framework 77

4.3 Communication Channel Ontology

The communication channel ontology is relatively small. The user of the frame-
work needs to extend it with communication channels he/she wants to use in
his/her business. The central point of the communication channel ontology is
the class ch:ComChannel. The class hierarchy is depicted in Figure 3.

Fig. 3. Class hierarchy of a generic commodity ontology and its sample extension

Each communication channel (or just channel) is characterized by several
object and datatype properties. The speed and reliability of the channel is de-
termined by the property ch:speed and ch:reliability. Higher value represents
higher speed/reliability. Property ch:cost represents any other considerations –
e.g. financial cost. The capability to transfer attachments is expressed through
ch:attachmentFeature object property. In general a channel might have no possi-
bility to transfer attachments (e.g. SMS) up to the ability transfer several types
of attachments (e.g. electronic mail). For the sake of simplicity we describe com-
munication channel ontology properties in Table 2.

Table 2. Object and datatype properties of the channel ontology

URI Min. card. Max. card. Domain Range

ch:speed 1 1 ch:ComChannel xsd:float
ch:reliability 1 1 ch:ComChannel xsd:float
ch:cost 1 1 ch:ComChannel xsd:float
ch:attachmentFeature 0 n ch:ComChannel ch:Attachment
ch:registeredHandler 1 1 ch:ComChannel ch:ChannelHandler
ch:acceptsContent 1 n ch:ChannelHandler ch:Content
ch:conversionFunction 1 1 ch:ChannelHandler xsd:string

In general, each channel uses different types of messages and handles them in a
different way. Channel handler is a special class that represents the way messages
are constructed and manipulated. It stores the list of content types that can be

78 M. Nagy

transferred through the particular communication channel. This is expressed by
linking the channel handler to a content instance by ch:acceptsContent property.
The list of content types is configurable and fully depends on the framework
user. There is a content conversion function associated with each handler. This
function takes the content definition from the message template and converts
it to a particular content suitable for this channel. Since each channel can deal
with different types of content, each channel has its own handler.

4.4 Action Ontology

The main goal of the multi-channel communication framework is to allow mes-
sage integration among various communication channels. However, messages
have no business value unless they are properly interpreted. As mentioned ear-
lier we assume that each message is sent for a reason and that it has a purpose.
Therefore we believe that each message is associated with one or more actions.
A message is a piece of information that needs to be interpreted under a certain
context. Usually a message has a recipient, sender, subject and body. An action
is something that a message represents. In our case we are interested in business
actions. Some of these actions are related to certain commodities (products or
services) such as a purchase, question about a product, ordering a service or
a product return. Other actions are not related to any product – e.g. contact
information change, change of preferences, etc.

We use class m:Message for representation of messages, class a:Action for
representation of actions and class b:Commodity for the representation of com-
modities. The relationship between these classes is depicted in Figure 4. Object
property m:represents represents a connection between a message and action(s).
There are two subclasses of a:Action. Subclass a:GeneralAction represents an ac-
tion that is not related to any commodity. Subclass a:RelatedAction represents
an action related to a concrete product or service. This connection is expressed
by object property a:regardingCommodity. The specific actions that businesses
are interested in can vary and each business should have the ability to define
their own types of actions. The ontology in Figure 4is a generic action ontology
that can easily be extended by businesses

4.5 Customer Ontology

The customer ontology models information related to personal data of the cus-
tomers together with their business preferences. Each customer can be reached
through several channels. This is expressed through the class cu:Contact. A cus-
tomer may have several contacts. Each contact is linked to a channel and has
a datatype property representing customer’s address in that particular channel.
Also, the ontology defines a datatype property cu:preference for each contact.
The value of the preference property is a real number between 0 and 1. This
number expresses the customer’s willingness to be informed using this contact.
If the value is 0, the user never wants to be contacted. If the value is 1, the
user always wants to be contacted. The list of customer ontology properties is

A Multi-channel Communication Framework 79

Fig. 4. Relationship between messages, actions and commodities

depicted in Table 3. We do not provide any class hierarchy figure, because both
ch:Customer and ch:Contact are direct descendants of OWL class owl:Thing.
The customer ontology contains only entities that are important for the proper
framework operation. Personal information such as name or birth date are not
included in the ontology. The framework user can provide them by extending
the ontology.

Table 3. Object and datatype properties of the customer ontology

URI Min. card. Max. card. Domain Range

cu:hasContact 0 n cu:Customer cu:Contact
cu:correspondingChannel 1 1 cu:Contact ch:Channel
cu:contactAddress 1 1 cu:Contact xsd:string
cu:preference 1 1 cu:Contact xsd:float

4.6 Message Ontology

There are two basic types of messages – inbound and outbound. An inbound
message is a message sent by a customer to the business. An outbound message
is a message originating from the business and sent to one or more customers.
According to another criterion a message can either be abstract or concrete. A
concrete message is a message sent through a concrete channel from/to a concrete
address with a concrete content. In case of a concrete message no information
about the action or customer is included. An abstract message is a message on

80 M. Nagy

a higher thought level. It is linked to a concrete customer from the customer
database in case the customer is the receiver or sender of the message. It is
also linked to the proper action that was supposed to be achieved through it.
Both abstract and concrete messages can be either inbound or outbound. That
makes it four types of messages. Apart from abstract and concrete messages
the framework distinguishes a term called message template. A message tem-
plate is a prescription for an outbound abstract message. In the message tem-
plate the recipients, the content and the communication channel are known in
a form of a query. Such a template can be converted into an outbound abstract
message by resolving these queries. This concept is similar to the idea of exe-
cutable knowledge by Terziyan [13] and will be described in detail in the next
section.

The message ontology consists of four main classes – m:ConcreteMessage,
m:AbstractMessage, m:InboundMessage and m:OutboundMessage. The class hi-
erarchy is depicted in Figure 5. The property descriptions are in Table 4.

Fig. 5. Class hierarchy of the message ontology

A concrete message has datatype properties annotating the sender, receiver,
subject and content. All these properties expect string as their values. As men-
tioned earlier, a concrete message is not mapped to a concrete customer URI.
It only stores the information about the concrete address (string) it was sent
to or received from. It is the job of the engine to do the conversion between
an abstract and a concrete message. A concrete message also has two object
properties. The one connects it to the communication channel that was used
to send/receive the message. The other object property points to attachments
that were sent or received together with the message. The user can extend the
message ontology and specify subclasses of concrete messages such as text mes-
sage (SMS), email, tweet, etc. Some of these subclasses do not specify certain
properties. For example tweets and SMS messages do not have subjects. Some
concrete messages may contain attachments and some may not.

A Multi-channel Communication Framework 81

Table 4. Object and datatype properties of the message ontology

URI Min. card. Max. card. Domain Range

m:to 1 n m:ConcreteMessage xsd:string
m:from 1 1 m:ConcreteMessage xsd:string
m:dateReceived 1 1 m:Message xsd:dateTime
m:subject 0 1 m:Message xsd:string
m:content 0 1 m:Message xsd:string
m:channel 1 1 m:Message c:Channel
m:hasAttachment 0 n m:Message m:Attachment
a:represents 0 n m:AbstractMessage a:Action
m:receivingCustomer 0 1 m:AbstractMessage cu:Customer
m:sendingCustomer 0 1 m:AbstractMessage cu:Customer

An abstract message describes the sender and receiver in form of a URI identi-
fying a concrete individual from the knowledge base. As mentioned in the action
ontology description, an abstract message includes the information about an
action that the message represents.

5 Message Conversion Engine

5.1 Message Template Description

A message template is a prescription for an abstract message. Naturally, the
abstract message generation process requires data that the template should be
filled with. The data needed for the generation process is expressed in a form of a
query. During the conversion the query is executed by the engine and the result
of the query represents that working data set that is used to fill the template
with data. A message template is a prescriptive element, not a descriptive one.
Therefore we believe that RDF is not the most suitable way of expressing it. In
Figure 6 we present a simple language to describe a message template.

The template description consists of four main parts – query, recipient spec-
ification, message content and channel specification. The recipient specification
defines who should receive this message. It can be a single person or several peo-
ple. The message content is a piece of information that will become the content
of the concrete message after the conversion. Use of variable is permitted in the
message content specification. Lastly, channel specification is a description of a
channel that should be used to send the concrete message.

The query defines the working dataset that the conversion engine will work
with during the conversion process. This query is written in SPARQL (SPARQL
Protocol and RDF Query Language), which is a standard query language for
RDF data. The other elements describe the other three main parts of the mes-
sage by referring to the data in the working dataset. Recipients of the mes-
sage are defined as an enumeration of concrete customers through their URIs or

82 M. Nagy

Fig. 6. Message template description language

variable names from the query. Message content can be a combination of textual
messages, images, attachments, etc. Each message content specification is ac-
companied with a content type specification. These are used to determine which
communication channel can be used to transfer them. For example if the mes-
sage is a simple short text, it can be used as an email, SMS or tweet. However,
if it is a text with images and some PDF document as an attachment, it can
be specified as an email message only. Each abstract message can have several
message content specifications with accompanying content type definitions. An
example of a message template can be seen in Figure 7.

The query portion of the abstract message above describes a dataset that
contains information about customers and products. The query is looking for
customers that have bought a consumer electronics product after March 1st
2012. It also looks for the product name, product service file URL and product
service file physical location. The query is used later in the message conversion
process. The recipients of the message will be customers specified by a variable.
The content of the message are two triples. The first triple contains some text
with variables, attached service file and content type description specifying that
it is an HTML text with an attachment. The second triple consists of some text,
empty attachment set and content type description indicating that it is a short
text. We will use this abstract message later to describe the message conversion
process.

A Multi-channel Communication Framework 83

Fig. 7. An example of a message template

5.2 Message Conversion Process

The goal of the message conversion process is to produce a set of concrete mes-
sages by applying a message template on top of the contextual data. The mes-
sage conversion process is described in a function called ConvertMessage (see
Algorithm 1). It takes a message template and applies it on top of the data by
performing the SPARQL query described in the query portion of the template.

The message conversion algorithm first performs a SPARQL query defined by
the query portion of the abstract message definition. The result of the query is a
binding table where each binding is represented by a row. A sample binding table
is shown in Table 5. The sample binding table contains five variables representing
the customer (?cust), customer’s first name (?fn), product name (?prod), service
file location (?servicefile) and URL of the service file on the producer’s web page
(?serviceurl). Then the algorithm iterates through all lines and for each line
it determines the recipient and content. The channel definition is taken as it
is provided in the message template. The channel selection process is described
later in the chapter. The recipient is relatively straightforward to determine, since
it is represented by a single variable. In the example from Figure 7 the recipient
is represented by variable ?cust. The content is determined by substituting the
variables in the template text with the values from the binding table. In the
example from Figure 7 these variables are ?fn, ?prod, ?servicefile and ?serviceurl.

Recipient, channel, and content are three parameters that define an abstract
message. Please note that in case of an abstract message the recipient is de-
termined by a list of user URIs. Similarly, channel is determined by a list of

84 M. Nagy

Algorithm 1. ConvertMessage

input : MsgTemplate msgtemp
TableRow[] rows = performSPARQLQuery (msgtemp.query);
ConcreteMessage[] concrMsgs;
foreach row in rows do

URI recipient = row.getColumn (msgtemp.recipientVariable);
ChannelDefinition[] channel = row.getColumn (msgtemp.channelVariable);
ContentDescription[] content = msgtemp.contentDescription;
concrMsgs.add(ConvertAbstractToConcrete (recipient, channel, content));

end
foreach cMsg in concrMsgs do

SendConcreteMessage(cMsg);
end

Table 5. Sample binding table based on a fictional customer and product database

?cust ?fn ?prod ?servicefile ?serviceurl

u:id5 John Sonic X52 /mans/X52.pdf http://sonic.com/X52.pdf
u:id3 Jane Jogman 2000 /mans/Jog2k.pdf http://tony.com/J2000.pdf
u:id2 Bill Pear uPhone /mans/PuP.pdf http://pear.com/uPhone.pdf

channel URIs or utility functions with resolved variables. The content is rep-
resented as a list of triples (message content, attachments, content type) with
resolved variables. Thanks to the use of URIs, an abstract message can be linked
to concrete users and channels. Figure 8 contains an example of an abstract
message based on the first row of the binding table. In the example we can see
that the first member of the content list is a triple with a text for customer
named John, attachment containing one PDF file and marked as a content type
con:HTMLTextWithAttachment. The second member of the content list con-
tains just text and content type, but it does not contain any attachment. In the
channel section we can see the same content as in the channel section of the
message template. One channel was given statically and one is described using
a utility function (see Figure 7). The channel selection process is explained later
in the chapter.

However, an abstract message does not contain enough information for a mes-
sage to be sent to a concrete user. Firstly, it is still lacking a concrete address
(e.g. email address, phone number, social network account, etc.). Secondly, in
case utility functions are used to specify the communication channels, it is also
lacking information about the concrete channel. Lastly, the content is specified
as a list of content triples describing various content types. Therefore it has to
be converted it into a concrete message. A concrete message then contains a
concrete address, concrete message text with concrete attachments and concrete
channel that it should be sent to. The conversion from an abstract message to
a concrete message is done by calling ConvertAbstractToConcrete function (see
Algorithm 2).

A Multi-channel Communication Framework 85

Fig. 8. An example of an abstract message

Algorithm 2. ConvertAbstractToConcrete

input : URI customer,
ChannelDefinition[] channelDefs,
ContentDefinition[] contentDefs

output: ConcreteMessage[] concrMsgs
ConcreteMessage[] concrMsgs;
URI[] channels;
foreach chDef in channelDefs do

switch typeOf (chDef) do
case URI

channels.add(chDef);
break;

case UtilityFunction
channels.add(determineChannel(chDef, customer));
break;

endsw

end
foreach ch in channels do

ChannelHandler chh = getChannelHandler(ch);
foreach content in contentDefs do

if channelAccepts (channel, content.contentType) then
Message msg = chh.convertMessage(content.msg,
content.attachmentList, content.contentType);
Address addr = chh.extractAddress(content.user);
concrMsgs.add(channel, addr, msg);

end

end

end
return concrMsgs;

86 M. Nagy

ConvertAbstractToConcrete function takes an abstract message as the input
and produces a set of concrete messages as the output. Please note that the
three input parameters of ConvertAbstractToConcrete function correspond to
recipient, channel, and content parameters of the abstract message mentioned
above. The first step of the conversion is to obtain the channel handler based on
the channel URI. The handler is capable of message content generation and ex-
tracting addresses from user descriptions. Then the function it iterates through
the list of content triples and for each triple it checks if the particular chan-
nel accepts the particular content type from the triples. For example channel
ch:SMS can accept content type con:ShortText, but it cannot accept content
type con:HTMLwithAttachment. If the channel can accept the content type de-
fined in the abstract message description, then a concrete message is created
with the help of a channel handler. If the channel cannot accept the content
type, the algorithm proceeds to the next content description triple. As a result
a set of concrete message is created.

5.3 Channel Selection

The channel selection depends on the context data and the message template
used to generate the message. From ConvertAbstractToConcrete function it is
clear that the channel definition section of the message template may contain
either a channel URI or a utility function. If a channel URI is found, it is sim-
ply added to the list channels that will be used to send the concrete message.
However, if a utility function is found, the process is more complicated. In Con-
vertAbstractToConcrete function the process of utility function evaluation is
hidden behind the determineChannel call.

Fig. 9. An example of a utility function substitution and evaluation

A Multi-channel Communication Framework 87

The determineChannel function takes the recipient’s URI and finds all chan-
nels that the recipient may use. Then, in an iteration each of them is used to
substitute the ?ch variable in the utility function definition and the function is
evaluated. The substitution and evaluation process is depicted in Figure 9. The
<channel URI, property>pairs are replaced with values and the utility func-
tion is evaluated. The result is a real number representing the score of a given
channel. Higher value represents more desirable channel. The channel with the
highest value is considered the most suitable one and it is selected.

6 Conclusion

We presented a multi-channel communication framework capable of message in-
tegration from various communication channels. The framework consists of two
main parts – knowledge base and message conversion engine. The framework’s
knowledge base is built on top of semantic technologies such as RDF, OWL,
SPARQL, etc. The data is stored in form of RDF triples. The data schema is
based on five main OWL ontologies. The commodity ontology describes prod-
ucts and services that the business is dealing with. The communication channel
ontology is model for communication channels, channel handler and content
types. The action ontology represents a variety of actions that the business or
a customer can perform. The fourth ontology is the customer ontology deal-
ing with customer’s personal information, contact addresses and channel prefer-
ences. Lastly, the message ontology defines abstract and concrete messages and
their relationships to other components. All the ontologies are extendable by the
framework user in order to reflect the business needs.

The message conversion engine works with message templates that are being
transformed into concrete messages. The message template is a prescription for
a concrete message and it is defined by four parts – SPARQL query, recipient
definition, channel definition and content definition. The engine performs the
query and retrieves a working data set in form of a binding table. Then it chooses
the best communication channel to send the message to. Lastly, it generates
the message content based on the content specifications and communication
channel’s capability of accepting various content types.

Acknowledgements. The author would like to thank the industrial partner
IPSS (Intelligent Precision Solutions and Services), members of IOG (Industrial
Ontologies Group) and the TIVIT Cloud Software Program for supporting this
work. Moreover, many thanks go to the reviewers for their helpful comments.

References

1. Berners-Lee, T.: Linked Data (2006),
http://www.w3.org/DesignIssues/LinkedData.html

2. data.gov.uk, http://data.gov.uk/
3. DBpedia, http://dbpedia.org

http://www.w3.org/DesignIssues/LinkedData.html
http://data.gov.uk/
http://dbpedia.org

88 M. Nagy

4. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 2, 30–37
(2001)

5. HermiT reasoner, http://hermit-reasoner.com/
6. Jena framework, http://jena.apache.org/
7. Nagy, M.: On the Problem of Multi-Channel Communication. In: Proceedings of

ICTERI 2012, Kherson, Ukraine, pp. 128–133 (2012)
8. Protégé ontology editor, http://protege.stanford.edu/
9. RacerPro reasoner, http://www.racer-systems.com/

10. Resource Description Framework, http://www.w3.org/RDF/
11. Resource Description Framework Schema, http://www.w3.org/TR/rdf-schema/
12. Sesame framework, http://www.openrdf.org/
13. Terziyan, V., Kaykova, O.: From Linked Data and Business Intelligence to Exe-

cutable Reality. International Journal on Advances in Intelligent Systems 5, 194–
208 (2012)

14. Web Ontology Language, http://www.w3.org/TR/owl-features/
15. XML Schema, http://www.w3.org/XML/Schema

http://hermit-reasoner.com/
http://jena.apache.org/
http://protege.stanford.edu/
http://www.racer-systems.com/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.openrdf.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/XML/Schema

	A Multi-channel Communication Framework
	Introduction
	Motivation
	Multi-channel Communication Framework
	Framework Overview
	Knowledge Base

	Ontologies
	Overview
	Commodity Ontology
	Communication Channel Ontology
	Action Ontology
	Customer Ontology
	Message Ontology

	Message Conversion Engine
	Message Template Description
	Message Conversion Process
	Channel Selection

	Conclusion
	References

