

Communications
in Computer and Information Science 347

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Tai-hoon Kim
Konkuk University, Chung-ju, Chungbuk, Korea

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Xiaokang Yang
Shanghai Jiao Tong University, China

Vadim Ermolayev
Heinrich C. Mayr
Mykola Nikitchenko
Aleksander Spivakovsky
Grygoriy Zholtkevych (Eds.)

ICT in Education,
Research, and
IndustrialApplications
8th International Conference, ICTERI 2012
Kherson, Ukraine, June 6-10, 2012
Revised Selected Papers

13

Volume Editors

Vadim Ermolayev
Zaporozhye National University
Department of Information Technologies
66, Zhukovskogo Street, 69600 Zaporozhye, Ukraine
E-mail: vadim@ermolayev.com

Heinrich C. Mayr
Alpen-Adria-Universität Klagenfurt
Universitätsstrasse 65, 9020 Klagenfurt, Austria
E-mail: heinrich.mayr@aau.at

Mykola Nikitchenko
Taras Shevchenko National University of Kyiv
Department of Theory and Technology of Programming
64, Volodymyrska Street, 01033 Kyiv, Ukraine
E-mail: nikitchenko@unicyb.kiev.ua

Aleksander Spivakovsky
Kherson State University
27, 40-rokiv Zhovtnya Street, 73000 Kherson, Ukraine
E-mail: spivakovsky@ksu.ks.ua

Grygoriy Zholtkevych
V.N. Karazin Kharkiv National University
School of Mathematics and Mechanics
4, Svobody Sqr., 61022 Kharkov, Ukraine
E-mail: g.zholtkevych@gmail.com

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-35736-7 e-ISBN 978-3-642-35737-4
DOI 10.1007/978-3-642-35737-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954138

CR Subject Classification (1998): D.2, F.3, D.3, C.2, H.4, I.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our pleasure to present you the proceedings of ICTERI 2012, the eighth
International Conference on Information and Communication Technologies (ICT)
in Education, Research, and Industrial Applications: Integration, Harmoniza-
tion, and Knowledge Transfer. The conference was held in Kherson, Ukraine
on June 6–10, 2012. This volume is composed of the revised and substantially
extended versions of the best ICTERI 2012 papers. The selection was made by
the Steering Committee based on the quality, anticipated reader interest, and
coverage of the conference scope.

ICTERI as a conference series is concerned with interrelated topics that are
vibrant for both the academic and industrial communities:

• ICT infrastructures, integration, and interoperability
• Machine intelligence, knowledge engineering (KE), and knowledge manage-

ment (KM) for ICT
• Model-based software system development
• Methodological and didactical aspects of teaching ICT and using ICT in

education
• Cooperation between academia and industry in ICT

A look at Google Analytics statistics proves broad and growing professional
interest in ICTERI and its topics. Indeed, between the launch of the conference
web site in November 2011 and the beginning of the conference in June 2012 we
received about 3 500 visits from 75 countries (332 cities). Sixty-two per cent of
those visits were by returning visitors. Between the end of the conference in June
and the end of September 2012 we received an additional 900 visits, of which
approximately 49 per cent were by new visitors. In fact the growing interest of
the professional community was the indicator that encouraged us to offer this
selection of chapters that best cover the scope of the conference and come with
relevant research and development results.

This book begins with an invited contribution presenting the substance of
one of ICTERI 2012 invited talks given by Prof. Martin Strecker. The chapter
deals with the issues of abstraction and verification of properties in real-time
Java programs. The rest of the volume is structured in four topical parts:

• ICT Frameworks, Infrastructures, Integration, and Deployment
• Formal Logic and Knowledge-Based Frameworks
• ICT-Based Systems Modeling, Specification, and Verification
• ICT in Teaching and Learning

VI Preface

Part 1 begins with a chapter presenting a new formal approach to developing
information processing systems based on quantum automata and quantum com-
putations. The second chapter reports on recent developments in parallelizing
legacy software code using rewriting rules and algebraic models of programs. Fi-
nally, the third chapter presents the deployment of ICT that enables managing
a university using best practices adopted from business corporate management.

Part 2 of the volume focuses on formal logic and knowledge based systems
as an important part of the ICT landscape. It starts with a chapter reporting
the development of a business-to-consumer communication framework using sev-
eral channels. In particular, the chapter presents an approach to cross-channel
context-dependent message transformation based on the use of semantic technol-
ogy. The second chapter is more theoretical and reports recent results in solving
satisfiability and validity problems for a particular type of formal logic system
dealing with program models. Finally, the third chapter elaborates an existence
criterion of global-in-time trajectories of non-deterministic Markovian systems.

Part 3 deals with modeling, specification, and verification of ICT-based sys-
tems. It begins with a chapter on a case study that combined verification and
model driven engineering in a development process for Java programs. The next
chapter elaborates an algorithmic approach for reachability checking. The last
chapter in this part describes an approach to verifying UML designs looking at
potential cross-diagram inconsistencies.

Part 4 of the volume offers reports on the use of ICT in teaching and learn-
ing practices. It is opened by a chapter presenting the educational experiment
of using a peer-review approach and respective ICT for increasing motivation
and learning quality of computer science students. The second chapter reports
on the increase of the professional competencies of those future music teachers
who used music art multimedia products in their studies. The third chapter is
focused on forming a taxonomical structure of general principles for learning
software engineering as a profession. The learning approach is supported by a
tool suite that was built based on this taxonomy. The fourth chapter reports
on the outcomes of introducing new ICT-intensive didactics in the introductory
course on computer literacy for future elementary school teachers.

On the whole ICTERI 2012 attracted 70 submissions. The Conference Pro-
gram Committee selected the best 34 of those 70. In the second selection phase
the Steering Committee chose 18 papers as candidates for the proceedings vol-
ume. Out of those 18 we finally accepted the 14 most interesting chapters, which
have been substantially revised and extended. This resulted in an acceptance
rate of 20 per cent.

This volume would not have appeared without the support of many peo-
ple. First, we would like to thank the members of our Board of Reviewers for
providing timely and thorough reviews, and also for being very cooperative in
doing additional review work at short notice. We are very grateful to all the

Preface VII

authors for their continuous commitment and intensive work. Furthermore, we
would like to thank all the people who contributed to the success of ICTERI
2012. Without their effort there would have been no substance for this volume.
Finally, we would like to acknowledge the support of our technical assistant Olga
Tatarintseva, who invested considerable resources in checking our submissions.

September 2012 Vadim Ermolayev
Heinrich C. Mayr

Mykola Nikitchenko
Aleksander Spivakovsky

Grygoriy Zholtkevych

ICTERI 2012 Conference Organization

General Chair

Aleksander Spivakovsky Kherson State University, Ukraine

Steering Committee

Vadim Ermolayev Zaporozhye National University, Ukraine
Heinrich C. Mayr Alpen-Adria-Universität Klagenfurt, Austria
Natalia Morse National University of Life and Environmental

Sciences, Ukraine
Mykola Nikitchenko Taras Shevchenko National University of Kyiv,

Ukraine
Aleksander Spivakovsky Kherson State University, Ukraine
Mikhail Zavileysky DataArt, Russian Federation
Grygoriy Zholtkevych V.N. Karazin Kharkiv National University,

Ukraine

Program Co-chairs

Vadim Ermolayev Zaporozhye National University, Ukraine
Heinrich C. Mayr Alpen-Adria-Univerität Klagenfurt, Austria
Natalia Morse National University of Life and Environmental

Sciences, Ukraine

Workshops Chair

Mykola Nikitchenko Taras Shevchenko National University of Kyiv,
Ukraine

Tutorials Chair

Grygoriy Zholtkevych V.N. Karazin Kharkiv National University,
Ukraine

IT Talks Co-chairs

Aleksander Spivakovsky Kherson State University, Ukraine
Mikhail Zavileysky DataArt, Russian Federation

Technical Assistant to Volume Editors

Olga Tatarintseva Zaporozhye National University, Ukraine

X ICTERI 2012 Conference Organization

Program Committee

Mizal Alobaidi Tikrit University, Iraq
Costin Badica University of Craiova, Romania
Tobias Bürger Capgemini, Germany
Andrey Bulat Kherson State University, Ukraine
Maxim Davidovsky Zaporozhye National University, Ukraine
Anatoliy Doroshenko National Technical University NTU KPI,

Ukraine
Louis Feraud Paul Sabatier University (Toulouse 3), IRIT,

France
Jose Manuel Gomez-Perez Intelligent Software Components (iSOCO)

S.A., Spain
Vladimir Gorodetsky St. Petersburg Institute for Informatics and

Automation of the Russian Academy of
Science, Russian Federation

Sung-Kook Han Won Kwang University, South Korea
Mitja Jermol Jožef Stefan Institute, Slovenia
Jason J. Jung Yeungnam University, South Korea
Nataliya Keberle Zaporozhye National University, Ukraine
Ron S. Kenett KPA Group, Israel
Christian Kop Alpen-Adria-Universität Klagenfurt, Austria
Hennadiy Kravtsov Kherson State University, Ukraine
Vladyslav Kruglyk Kherson State University, Ukraine
Mikhail Lvov Kherson State University, Ukraine
Mihhail Matskin Royal Institute of Technology (KTH), Sweden
Natalia Morse National University of Life and Environmental

Sciences, Ukraine
Julia Neidhardt Vienna University of Technology, Austria
Andriy Nikolov Knowledge Media Institute, The Open

University, UK
Aljosa Pasic ATOS Origin, Spain
Vladimir Peschanenko Kherson State University, Ukraine
Sergey Rakov Ukrainian Center for Education Quality

Assessment, Ukraine
Kyryl Rukkas V.N. Karazin Kharkiv National University,

Ukraine
Abdel-Badeeh Salem Ain Shams University Abbasia, Egypt
Wolfgang Schreiner Research Institute for Symbolic Computation

(RISC), Johannes Kepler University, Austria
A.V. Senthil Kumar Hindustan College of Arts and Science, India

ICTERI 2012 Conference Organization XI

Vladimir A. Shekhovtsov Alpen-Adria-Universität Klagenfurt, Austria
Oleksandr Sokolov National Aerospace University “Kharkiv

Aviation Institute”, Ukraine
Marcus Spies Ludwig-Maximilians-Universität München,

Germany
Martin Strecker Paul Sabatier University (Toulouse 3), IRIT,

France
Vagan Terziyan University of Jyväskylä, Finland
Marcel Tilly European Microsoft Innovation Center,

Germany
Nikolay Tkachuk National Technical University “Kharkiv

Polytechnic Institute”, Ukraine
Yuriy Tryus Cherkasy State Technological University,

Ukraine
Mikhail Ugrumov National Aerospace University “Kharkiv

Aviation Institute”, Ukraine
Helmut Veith Vienna University of Technology, Austria
Maryna Vladimirova V.N. Karazin Kharkiv National University,

Ukraine
Paul Warren British Telecom, UK
Irina Zaretskaya V.N. Karazin Kharkiv National University,

Ukraine

Board of Reviewers

Costin Badica University of Craiova, Romania
Tobias Bürger PAYBACK GmbH, Germany
Anatoliy Doroshenko National Technical University NTU KPI,

Ukraine
Vadim Ermolayev Zaporozhye National University, Ukraine
Jason J. Jung Yeungnam University, South Korea
Natalya Keberle Zaporozhye National University, Ukraine
Christian Kop Alpen-Adria-Universität Klagenfurt, Austria
Hennadiy Kravtsov Kherson State University, Ukraine
Mykola Nikitchenko Taras Shevchenko National University of Kyiv,

Ukraine
Aleksander Spivakovsky Kherson State University, Ukraine
Martin Strecker Paul Sabatier University (Toulouse 3), IRIT,

France
Paul Warren Knowledge Media Institute, The Open

University, UK
Grygoriy Zholtkevych V.N. Karazin Kharkiv National University,

Ukraine

XII ICTERI 2012 Conference Organization

Additional Reviewers

Maria Del Carmen Calatrava
Moreno Vienna University of Technology, Austria

ICTERI 2012 Sponsors

Kherson State University www.ksu.ks.ua
DataArt www.dataart.com
Volkswagen Center Kherson volkswagen.ks.ua

Table of Contents

Invited Contribution

Abstraction and Verification of Properties of a Real-Time Java 1
Nadezhda Baklanova and Martin Strecker

ICT Frameworks, Infrastructures, Integration,
and Deployment

Abstract Quantum Automata as Formal Models of Quantum
Information Processing Systems . 19

Mizal Alobaidi, Andriy Batyiv, and Grygoriy Zholtkevych

Parallelizing Legacy Fortran Programs Using Rewriting Rules
Technique and Algebraic Program Models . 39

Anatoliy Doroshenko and Kostiantyn Zhereb

University as a Corporation Which Serves Educational Interests 60
Alexander Spivakovsky, Lyudmila Alferova, and Eugene Alferov

Formal Logic and Knowledge-Based Frameworks

A Multi-channel Communication Framework . 72
Michal Nagy

Satisfiability and Validity Problems in Many-Sorted
Composition-Nominative Pure Predicate Logics . 89

Mykola S. Nikitchenko and Valentyn G. Tymofieiev

A Criterion for Existence of Global-in-Time Trajectories
of Non-deterministic Markovian Systems . 111

Ievgen Ivanov

ICT-Based Systems Modeling, Specification,
and Verification

Combining Verification and MDE Illustrated by a Formal Java
Development . 131

Selma Djeddai, Mohamed Mezghiche, and Martin Strecker

About One Efficient Algorithm for Reachability Checking in Modeling
and Its Implementation . 149

Alexander Letichevsky, Olexander Letychevskyi, and
Vladimir Peschanenko

XIV Table of Contents

Cross-Diagram UML Design Verification . 165
Iryna Zaretska, Oleksandra Kulankhina, and Hlib Mykhailenko

ICT in Teaching and Learning

Coursework Peer Reviews Increase Students’ Motivation and Quality
of Learning . 177

Vadim Ermolayev, Natalya Keberle, and Sergey Borue

Influence of Music Art Multimedia Production on Professional
Competence of the Future Music Teachers . 195

Lyudmila Gavrilova

General Disciplines and Tools for E-Learning Software Engineering 212
Ekaterina Lavrischeva and Alexei Ostrovski

Formation of Digital Competence of Future Teachers of Elementary
School . 230

Nataliya Kushnir and Anna Manzhula

Author Index . 245

Abstraction and Verification of Properties

of a Real-Time Java

Nadezhda Baklanova and Martin Strecker

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse�

118 route de Narbonne, F-31062 Toulouse CEDEX 9, France
{nadezhda.baklanova,martin.strecker}@irit.fr

Abstract. We present a tool for analysing resource sharing conflicts in
multithreaded Java programs. Java programs are translated to timed au-
tomata models verified afterwards by the Uppaal model checker. Anal-
ysed programs are annotated with timing information indicating the
execution duration of a particular statement. Based on the timing in-
formation, the analysis of execution paths is performed, which gives an
answer whether resource sharing conflicts are possible in a multithreaded
Java program. If the analysis succeeds, resource locks may be eliminated
from the Java program.

Keywords: timed automaton, Java, multithreading, deadlock, resource
sharing conflict, Uppaal.

1 Introduction

Parallel computations quickly develop nowadays, and the problem of effective de-
bugging multithreaded programs arises. It is known to be a very difficult problem
for a software developer, and thorough testing cannot discover all the fatal errors
in a program due to unpredictability of execution. One type of errors are resource
sharing conflicts. In order to avoid them, one may want to guarantee that the
same resource is not accessed by different threads at the same moment of time.
If one concentrates on this aspect, the behavior of a program may be naturally
modelled by timed automata, and then one may find error-prone places in the
program using a timed automata model checker.

In order to achieve this goal, we need to enrich the Java language with an-
notations indicating time information. The annotations show how much time is
required for executing a statement and, consequently, how much time is required
for a thread to have an exclusive access to a resource. It allows to avoid usage of
synchronized statements in programs after verifying that no resource is used
simultaneously by two or more threads. It improves predictability of execution
and guarantees there will be no delays due to locking conflicts. Based on an an-
notated Java program, a timed automaton is generated taking into account the

� Part of this research has been supported by the project Verisync (ANR-10-BLAN-
0310).

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 N. Baklanova and M. Strecker

time required for execution of statements. Finally, we check the generated au-
tomaton for possible resource sharing conflicts using the Uppaal model checker
in the generated automaton. The transformation sequence is shown in the dia-
gram 1 below.

.java AST TA Uppaal Deadlocks?

Validator

YACC OCaml OCaml
OCaml Model

checker

Fig. 1. Java program verification process

The overall aim is thus to replace a lock-driven protocol for resource conflict
avoidance by a time-driven approach. If a check on the abstract level of timed
automata indicates no resource access conflict, then also the underlying Java
program can be expected to run without conflicting access to resources. In this
case, locking even becomes superfluous. If, however, the check fails, nothing can
be said about the behaviour of the Java program when executed, just like for an
ill-typed program.

The purpose of the present chapter is to sketch the overall approach and define
the correspondence between Java and timed automata, without giving a proof of
the soundness of the abstraction, which remains for future work. A preliminary
version of this chapter has appeared in [1].

1.1 Related Work

There are several tools for scheduling analysis of real-time tasks. Verification
of scheduling strategies with timed automata is considered in [2]. However, it
operates with a high level notion of abstract tasks and does not look inside the
source code. The authors perform schedulability analysis with the fixed-priority
scheduling strategy by translating a system to be verified to a timed automaton
and verifying it afterwards with the Times tool.

Another approach is used in [3,4]. Here SCJ source code analysis is performed
using timed automata. An automaton is generated from the source code, and
every statement is mapped to a certain part of the automaton. The timing
model is based on WCET computation and predefined periods of tasks. The
translation procedure described in [3] contains an inconsistency between Java
semantics and model semantics of the generated system. Locking mechanism
is implemented in Uppaal model as monitors which are incremented when a
lock is acquired and decreased when a lock is released. However, there are no
checks before acquiring the lock in the model. It makes the situation when two
threads have locked the same resource at the same time possible, but it does not
correspond to the JVM behavior. In order to manage this problem we suggest

Abstraction and Verification of Properties of a Real-Time Java 3

to define two semantics of Java execution. One treats locks in Java manner, i.e.
checks the resource monitor before acquiring the lock and does not allow double
locking made by different threads. Another one just stores the number of times
a resource lock has been acquired but does not check whether a resource has
already been locked. These two semantics are equivalent for programs without
resource sharing conflicts therefore the programs verified by our tool are correct
during execution on JVM.

An approach in the opposite direction is described in [5]. The authors generate
RTSJ code from a Uppaal model. Uppaal model of a system is supposed to be
verified, and if the generation procedure is assumed to be correct, the output is
a verified RTSJ program.

A translation from SystemC to Uppaal is presented in [6]. One of the pur-
poses of this work is to give a formal semantics to the (only informally defined)
SystemC language. The differences between SystemC and Java, as far as the
translation to Uppaal is concerned, still has to be explored.

In [7] a schedulability analysis of a set of tasks is performed by exhaustive
search combined with Uppaal for determining when the search is complete.
Again, the internal structure of tasks is not taken into account which makes
impossible to do conclusions about thread interactions. The authors listed the
limitations they had encountered: lack of memory and lack of Uppaal integer
range.

The paper [8] contains schedulability analysis of multithreaded SCJ (Safety
Critical Java) programs and takes resource sharing into account. Resources are
considered to be locked during the whole execution of a task. Analysis is per-
formed by Uppaal modeling taking into account the resource locks. This model
is not fine-grained, and the negative result may not be relevant in cases when
developers try to minimize the length of critical sections.

A tool for automatic verifying the determinism of Java programs is described
in [9]. In particular, parallel Java programs are checked for absence of race condi-
tions. It allows not to use Java synchronized statements. The tool does not use
any external checkers, the verification uses the internal abstract representation
of a Java program.

A theoretical approach to managing resources in parallel programs is sug-
gested in [10]. It is based on an enhanced version of rely-guarantee reasoning
and allows to verify memory safety and of parallel programs.

2 Preliminaries

2.1 Real-Time Java

Specification of the Real-Time profile for Java was developed in the first half of
the 2000s and aimed at making work with Java threads predictable and suitable
for real-time applications. The specification addressed defining an explicit sched-
uler and scheduling strategies, advanced memory management and raw memory
access, resource locking taking thread priorities into account, refined notion of
time, several additions for threads, asynchronous event handling etc. [11]. The

4 N. Baklanova and M. Strecker

real-time specification introduced thread priorities, thread deadlines and explicit
notion of scheduler which did not exist in usual Java.

In the middle of the 2000s the work on the specification of Safety-Critical Java
was started. The main goal was to allow the SCJ applications to be highly reliable
[12]. The SCJ specification defines more strictly the subset of possible programs
and pays a lot of attention to the VM performance requirements [13]. Until now,
there is no reference implementation of SCJ machine, however, there are projects
such as the Open SCJ project 1 aiming at an open-source implementation of SCJ
virtual machine.

2.2 Uppaal

Uppaal is a tool for modeling timed automata and verifying their properties.
A timed automaton [14] is a Büchi automaton enhanced with clocks. States
and edges may have Boolean constraints on clocks called invariants and guards
respectively; edges may also have abstract “actions”. There are two kinds of
possible transitions: delay transition and action transition. During a delay tran-
sition an automaton stays in the same state, and time advances. During an action
transition an automaton takes an edge and changes the state; some clocks may
be reset to 0. A timed automaton is allowed to stay in a certain state as long as
its invariant is true, and an automaton may take a particular edge, if its guard
is true in the current moment of time.

In Uppaal “actions” are concrete arithmetic actions with variables or arrays
whose values are preserved between TA states. Variables and array elements may
also be used in edge constraints.

Properties to be verified in Uppaal are to be expressed in a subset of TCTL
logic allowing a single path quantifier directly followed by a U operator [15].

3 Sample Usage

3.1 Input Program

Before describing our approach more in detail, we illustrate it here with a small
example. The outermost class containing the main method is called Threads.
Two threads t1, t2 are declared in the main method. Run1 and Run2 are nested
classes inside the Threads class implementing the Runnable interface.

Threads ts;

Run1 r1;

Run2 r2;

Thread t1,t2;

ts=new Threads ();

r1=ts.new Run1 ();

r2=ts.new Run2 ();

ts.res=new Res();

1 http://www.ovmj.net/oscj/

http://www.ovmj.net/oscj/

Abstraction and Verification of Properties of a Real-Time Java 5

t1=new Thread(r1,"t1");

t2=new Thread(r2,"t2");

Methods called on the thread start are the following:

private class Run1 implements Runnable {

public void run(){

int value ,i;

//@ 1 @//

i=0;

while(i<10){

synchronized (res){

//@ 2 @//

value=Calendar.getInstance ().get(Calendar.MILLISECOND);

//@ 5 @//

res.set(value);

}

try{

Thread.sleep (10);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

//@ 2 @//

i++;

}

}

}

private class Run2 implements Runnable {

public void run(){

int value ,i;

//@ 1 @//

i=0;

try{

Thread.sleep (9);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

while(i<10){

synchronized (res){

//@ 4 @//

value=res.get();

}

try{

Thread.sleep (8);

}

6 N. Baklanova and M. Strecker

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

//@ 2 @//

i++;

}

}

}

Here res is a resource declared in the main class. Calls of the res.get() and
res.set()methods are “actions” using the locked resources which are preceded
by timing annotations showing the amount of time the “action” requires. During
the translation they are considered to be abstract statements inside the locked
region taking n time units for execution.

Both threads do some “actions” requiring an exlusive lock with the resource
and then sleep for some time. The synchronized statements are a potential
source of resource sharing conflict if both threads wake up simultaneously. One
can see the resource access conflict in the execution timeline 2 showing times
when the threads demand an exclusive lock for the resource.

0 1 8 10 14 21 24 28
Fig. 2. Execution timeline. t1 is dark gray, t2 is gray. Conflict between 24 and
28 is shown in light gray.

res has type Res which is a simple class allowing to read and write to one
field.

class Res{

private int i;

public void set(int j){

i=j;

}

public int get(){

return i;

}

}

3.2 Generated System

On the basis of the annotated program, our framework generates the following
model which is passed to the model checker Uppaal for verification.

The generated timed automata are shown in Figure 3.

Abstraction and Verification of Properties of a Real-Time Java 7

annotated0 annotated1

cGlobal<=
curTime[0]+
execTime[0]

annotated2

annotated5

annotated6

cGlobal<=
curTime[0]+
execTime[0]

annotated7
annotated8

annotated9

cGlobal<=curTime[0]+
execTime[0]

annotated10

sync4

syncend4

sleep11

sleep12

cGlobal<=
curTime[0]+
execTime[0]

sleep13

annotated14

annotated15

cGlobal<=curTime[0]+
execTime[0]

annotated16

while3endloop3

START
run[0]

execTime[0]=1,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
execTime[0]=2,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
execTime[0]=5,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
Threads_monitor[0]++,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]

Threads_monitor[0]--,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
execTime[0]=10,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=
curTime[0]+
execTime[0]&&
run[0]

curTime[0]+=execTime[0],
execTime[0]=0,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
execTime[0]=2,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
run[0]=false,
runScheduler=true,
resetRunFlags(0)run[0]

resetRunFlags(0)

run[0]
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
resetRunFlags(0)

annotated0 annotated1

cGlobal<=
curTime[1]+
execTime[1]

annotated2

sleep3sleep4

cGlobal<=curTime[1]+
execTime[1]

sleep5

annotated8

annotated9
cGlobal<=curTime[1]+
execTime[1]

annotated10

sync7

syncend7

sleep11

sleep12

cGlobal<=
curTime[1]+
execTime[1]

sleep13annotated14

annotated15

cGlobal<=
curTime[1]+
execTime[1]

annotated16

while6

endloop6

START
run[1]

execTime[1]=1,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
execTime[1]=9,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
resetRunFlags(1)

run[1]
execTime[1]=4,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
Threads_monitor[0]++,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]

Threads_monitor[0]--,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
execTime[1]=8,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
execTime[1]=2,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
run[1]=false,
runScheduler=true,
resetRunFlags(1)run[1]

resetRunFlags(1)

run[1]
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
resetRunFlags(1)

Fig. 3. Generated automata for threads t1 and t2

The generated checking function is

int check_Threads (int m[1]){

return forall(i: int [0,0]) m[i]<=1;

}

The generated formula for model checking is

A[]check Threads(Threads monitor).

When performing verification with Uppaal, this formula is evaluated
to false, and the generated trace for counterexample stops in states
aut Run1 t1.annotated9 and aut Run2 t2.annotated8 during the second loop
iteration at the time moment 24.

8 N. Baklanova and M. Strecker

4 Translation from Java to Abstract Syntax Tree

4.1 Source Language

Considering the idea of “extended Java”, a possibility to write annotations for
every Java statement is added to Java syntax. These annotations contain time
required for executing the whole block or statement next of the annotation. The
annotations have syntax of Java comments, therefore, the annotated programs
can be compiled to bytecode by usual Java compilers. We assume that a devel-
oper has information about execution time of particular statements. The time
in the samples is in abstract time units but one can annotate a program with
real values in microseconds based on computer architecture, compiler version,
running software etc. Annotations may either contain an exact execution time
or an interval in which the execution time lies.

Unfortunately, standard Java annotations cannot be added to arbitrary state-
ments. Even the latest extension of Java annotations implemented in JDK 7 [12]
does not allow to annotate executable statements (assignments, loops, conditions
etc.) which are of the most interest for us. For this reason we used self-written
parser of the “extended Java” language. The parser is written with OcamlYACC
and recognizes Java with several restrictions. The parser produces an AST from
Java code as a set of OCaml objects.

Java programs consist of a number of classes containing methods. Classes may
have fields for storing object information. We concentrate on a subset of Java
containing the most important syntax constructions. Target Java programs may
contain the following statements:

type stmt =

Skip

(* empty statement *)

| Expr of expr

(* expression statement *)

| Assign of var * expr

(* assignment statement: a=5+4; *)

| Seq of stmt * stmt

(* seqence of two statements: a=4; b=5; *)

| Cond of expr * stmt * stmt

(* conditional statement: if(a=1) {...} else

{...} *)

| While of expr * stmt

(* loop statement: while(a<5){...} *)

| Return of expr

(* value return: return a; *)

| AnnotStmt of annot * stmt

(* annotated statement: //@ 4 @// a=3; *)

| SyncStmt of expr * stmt

(* synchronized statement: synchronized(a){...}

*)

Abstraction and Verification of Properties of a Real-Time Java 9

This is the representation of Java statements in AST written as OCaml type.
Internally, statements and expressions have the same type, however, there is a
difference on the semantics level. Expressions are supposed not to produce side
effects whereas statements can induce state changes.

Cast operators are not supported for now. Since we perform static analy-
sis, dynamic features are excluded, namely, arrays or references to this in-
stead of specifying an object name explicitly. try...catch constructions can
be parsed, however, code in the catch block is not translated, i.e. try block1

catch block2 is considered to be equivalent to block1.
The analysed programs must have a proper structure which would guarantee

the correctness of the generated model. In order to make the AST generator sim-
pler, all used packages are supposed to be imported in the header of a program.
Local variables must be declared in the beginning of methods before statements,
and declaration statements cannot be combined with assignments. This assump-
tion helps to avoid problems with scope of the variables declared in the middle
of a method. It is ensured in the parsing step.

We have developed a number of checking functions for testing the program
correspondence to the structure requirements. These functions work after parsing
on the semantics checking step. They return a Boolean value showing whether a
check was successful. The checking functions traverse a method body recursively
performing checks of the interesting cases. Currently, there are the following
checks:

– checkAliases. The objects which can be accessed by different threads should
not have more than one name, i.e. the correct program should not introduce
aliases for them. If there are aliases in a program, there is no easy way of
determining whether two variables point to the same object. This leads to
inability to know which objects are locked at a particular moment of time.

– checkAnnotCoverage. The whole AST except the main method must be
annotated with timing information. Each leaf or one of its parents must have
an annotation in order to avoid undetermined execution duration. Method
calls currently are not translated. However, since method calls are always
leafs in the AST, we can use timing information instead of looking inside the
method structure. The only exception must be a call of the Thread.sleep

method since it takes time for execution but does not load CPU. Currently,
we do not support wait/notify statements.

– checkSyncArgument. Argument of the synchronized statement is assumed
to be an explicit object name, not an expression.

– checkNestedSyncs. Reentrant locks are not allowed, i.e. when the same
thread acquires lock of the same object several times.

– checkAnnotSync. Annotated statements cannot contain synchronized state-
ments since the automata generator treats annotated statements as atomic
entities. If an annotated statement contains synchronized block, and during
runtime there is a conflict between threads for the locked resource, our model
cannot catch this conflict.

– checkMainMethodPosition. Program mainmethod must be in the first class
in order to make the generator simpler.

10 N. Baklanova and M. Strecker

– checkThreeadConstructors. Threads are supposed to be declared in the
main method which is an entry point of the program and must be declared
in the first class of a program. The main method cannot contain any code
except thread declarations, initializations and calls for starting the threads.
Threads are assumed to be created with the constructor

Thread(Runnable target , String name),

so the name of the object containing the thread logic is explicitly specified.
Runnable object should implement Runnable interface or extend Thread

class and override run method.

The checkAliases function first builds a list initObjects of the objects which
can be accessed by different threads and then searches for assignments to these
objects other than initializations. If an object is assigned a new ... expression,
check for this assignment succeeds; if the expression which is assigned contains
anything else except a constructor call, check for this assignment fails.

let rec checkAliasesInExpr initObjects=function

|Assign(CallObject(o),e)->

if mem o sharedFields then

(match e with

|CallMethod(New c,f,ps)->true

|Null ->true

|_->false)

else true

For the other cases the function looks inside statement bodies. Below there
are semi-formal rules for these cases.

check e1 check e2
check (Seq e1 e2)

check e1 check e2
check (Cond c e1 e2)

check e
check (While c e)

check e
check (Annot a e)

check e
check (Sync obj e)

The rest of checking functions are evident, and we do not show details of their
implementation here.

5 Translation from Abstract Syntax Tree to Timed
Automaton

5.1 Model of Java Program Execution

Multithreaded Java programs have a scheduler which selects a thread to be
executed in the next moment of time. It non-deterministically selects a thread
from those eligible for execution, and it can suddenly stop thread’s execution
and start executing another thread. Usual Java schedulers do not support thread
priorities or task deadlines.

Abstraction and Verification of Properties of a Real-Time Java 11

We model a Java scheduler as a separate automaton with three states:

– waitScheduling, where a scheduler waits for some time before starting the
next scheduling cycle,

– updateStatus, where eligibility status of all threads is updated,
– runThread, where the scheduler gives control to any eligible thread.

If no thread can be scheduled, the scheduler returns to waitScheduling and waits
for some time. Then it tries to schedule some thread again. When scheduled, a
thread executes an atomic action and returns control back to the scheduler. The
scheduler returns to the state updateStatus and updates thread eligibility flags.

waitScheduling

updateStatus

runThread

runScheduler

statusUpdated
schedule()

noScheduled
resetStatusUpdated(),
runScheduler=true

runScheduler
resetStatusUpdated()

cGlobal>=execTime[1]+
curTime[1]&&!isUpdated[1]

isEligible[1]=true,
isUpdated[1]=true,
updateAllStatuses()

cGlobal<execTime[1]+
curTime[1]&&!isUpdated[1]

isEligible[1]=false,
isUpdated[1]=true,
updateAllStatuses()

cGlobal>=execTime[0]+
curTime[0]&&!isUpdated[0]
isEligible[0]=true,
isUpdated[0]=true,
updateAllStatuses()

cGlobal<execTime[0]+
curTime[0]&&!isUpdated[0]

isEligible[0]=false,
isUpdated[0]=true,
updateAllStatuses()

Fig. 4. Model of the scheduler for two threads

Here, execT ime[i] is an array containing the execution time of the next in-
struction for all threads taken from annotation values. cGlobal is a global clock.
runScheduler is a Boolean flag indicating that it is scheduler’s turn to proceed,
statusUpdated shows that statuses of all threads were updated, isScheduled[i] is
an array indicating whether a particular thread is scheduled for execution. run[i]
is a global Boolean array showing that a thread with number i may proceed.

5.2 Semantics of Annotated Statements

Suppose we have an annotated statement

//@ 5 @//

a = b - 4;

12 N. Baklanova and M. Strecker

which claims that the statement a = b - 4; takes 5 time units for execution.
This time is considered as exact execution time, i.e. the exact amount of time
when the thread executing this statement loads CPU. We consider the time when
an annotation expires as a hard deadline. If a program does misses this deadline,
the situation is critically incorrect, and the program cannot be verified because
of incorrect annotations.

Formally, a small-step semantics of annotated statements may be written as
following:

G � (e, s)
δ−→ (e′, s′) t− δ � 0

G � (Annot t e; s)
δ−→ (Annot (t− δ) e′, s′)

t � 0

G � (Annot t (V al v), s)
t−→ (V al v, s)

Here G is a generated system, and the relation G � (e, s)
t−→ (e′, s′) means there

is a possible reduction of an expression e to an expression e′ which takes time t
and changes state from s to s′.

These rules should be read like

– if an expression e in the body of an annotated statement can be reduced to an
expression e′, and the system state is changed from s to s′, and the reduction
takes δ time units, and the deadline specified in the annotated statement is
not missed, then we may reduce the initial annotated statement to the new
one with the new body, e′, being in the state s′, and the new deadline, (t−δ).

– or, if an expression in the body of annotated statement has already been
reduced up to the end, i.e. to a single value V al v, and the deadline specified
in the annotation is not missed, we may reduce the annotated statement to
the value of its body staying in the same state, and this reduction would
take the rest of time specified in the annotation.

We assume that each thread is executed on its own processor i.e. the execution is
purely parallel. Eligible threads do not wait until other threads free the processor.
As soon as a thread becomes eligible for execution it starts executing.

5.3 Automata Generation

The generator translates each thread of a program to a separate automaton. At
the beginning it creates a set of OCaml objects representing a timed automaton,
and after that the timed automaton is printed in the format recognizable by
Uppaal, which performs model checking.

The Ocaml type for an automaton looks like

type ta = Empty

|TA of (node list) * (urgent list) *

(committed list) * (edge list) * start *

final

Abstraction and Verification of Properties of a Real-Time Java 13

Here start and final are start and final states of the timed automaton. The
final state is required because a timed automaton is generated recursively, and it
is necessary to determine where the previously generated parts finish, although
there is no such a notion in the definition of timed automata. Committed and
urgent are state characteristics specific for Uppaal, however, they can be mod-
eled by a standard timed automaton, i.e. they do not increase the expressiveness
of the traditional TA model. Final states of the generated timed automata are
always urgent, that means, the automata are not allowed to rest in these states
for any time. One may find definitions related to timed automata in [15].

Since method calls are not translated, only run methods of Runnable objects
are translated to timed automata because they are the only methods which can
contain executable code. Each thread declared and initialized in the mainmethod
is mapped to a separate automaton (template in the Uppaal terminology). The
system has one global clock and a global array of object monitors.

An object monitor is an integer variable which is incremented when this object
is locked and decremented when the lock is released. In Uppaal model monitors
are implemented as an array of integers, each object is encoded as an array item;
consistency of indices is guaranteed by the automata generator.

All statements except Thread.sleep and the annotated ones are assumed
not to take any time for execution; for this reason all the states without timing
information are made urgent in Uppaal model. Time is not allowed to pass when
an automaton is in urgent state.

Statements annotated with timing information are treated as a “black box”
and are supposed contain synchronized blocks. Otherwise, a possible situation
is when a thread tries to access an object field which is locked by another thread.
In this situation JVM keeps the thread waiting until the lock is released, however,
our translation does not notice this delay and produces an incorrect automaton.

The generated system has one global clock, cGlobal and several auxiliary
variables. There are Boolean flags for each automaton, run and runScheduler,
which are set to true if this automaton may advance in the current time moment.
An integer array curTime represents the time when an automaton entered the
state corresponding to an annotation statement. Another integer array, execTime,
stores the duration of the currently executed statement. Finally, an integer array
<class name> monitor stores the number of object locks for each shared object.

Annotations in Java programs contain relative time but timed automata use
global time, therefore we need to keep track of how much time has passed since
a program has been started. The only statements allowing time to increase are
annotated statements and calls of Thread.sleep. Values for execTime are taken
from timing annotations or method argument. Suppose t was the global time
when an automaton entered a state corresponding to an annotated statement.
When it leaves this state, model time and curTime variable are increased by real
execution time, execTime. curTime values may be different in different automata
but the global time is always equal to curTimewhen its corresponding automaton
is executing.

14 N. Baklanova and M. Strecker

Basic items for building timed automata are statements: each statement is
translated into a part of timed automaton.

Translation from AST to timed automata skips field and variable declarations
because they do not change the state of a program. At the same time, all the
objects declared in the main program class get a monitor.

Boolean conditions inside while and if statements are not translated. It is
assumed that any of the two possible ways can be taken during runtime.

Skip and Return statements are mapped to an empty automaton because
they do not influence the state of a program.

The rules for mapping other AST statements to the parts of a timed automa-
ton are listed in the table below.

Table 1. Translation rules

Assign(v,e): add two urgent
states: ASSIGNMENT 1 and
ASSIGNMENT 2, which are start
and final, and a transition with a guard
and an update between them. The
guard checks run[i], i.e. whether this
automaton is allowed to proceed in the
current moment of time. The update
sets run[i] to false, runScheduler to
true and other run[j �= i] to false.

FINAL

START

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

Seq(c1,c2): suppose a1 and a2 are the
automata for c1 and c2 respectively, add
an edge from final1 to start2, start1 is
the start state, final2 is the final state.
The edge has a guard checking run[i]

and an update setting run[j �= i] to
false.

final2 start2

final1start1

run[i]
resetRunFlags(i)

Cond(e,c1,c2): suppose a1 and a2 are
the automata for c1 and c2 respectively,
add two urgent states START and
FINAL, which are the start and final
states of the new automaton, and edges
from START to start1 and start2, from
final1 and final2 to FINAL. The
edges from START to start1, start2
have guards checking run[i] and up-
dates resetting run[i] to false,

FINAL

final2start2

final1start1

START

run[i]
resetRunFlags(i)

run[i]
resetRunFlags(i)

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]run[i]=false,
runScheduler=true,
resetRunFlags(i)

Abstraction and Verification of Properties of a Real-Time Java 15

runScheduler to true and run[j �= i] to
false. The edges from final1 and final2
have only guards checking run[i] and
updates setting run[j �= i] to false. If one
of the branches is absent, e.g. there is no
else branch, a transition from START to
FINAL is added. This transition has a
guard checking run[i] and updates re-
setting run[i] to false, runScheduler to
true and run[j �= i] to false.

FINAL

final1start1

START

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]
resetRunFlags(i)run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

Loop(e,c1): suppose a1 is the au-
tomaton for c1, add two urgent states
START and FINAL, which are the
start and final states of the new au-
tomaton, and edges from START to
start1, from final1 to FINAL and
from START to FINAL. The edges
from START to start1 and from
final1 to START have guards checking
run[i] and updates resetting run[i]

to false, runScheduler to true and
run[j �= i] to false. The edge from
START to FINAL has only a guard
checking run[i] and an update setting
run[j �= i] to false.

FINAL

final1start1

START

run[i]
run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]
resetRunFlags(i)

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

Expr(e): not translated except methods
for thread management. For translation
of Thread.sleep see the Annot item.

Sync(e,c1): suppose a1 is the au-
tomaton for c1, add two urgent states
START and FINAL, which are the
start and final states of the new au-
tomaton, and edges from START to
start1, from final1 to FINAL. We as-
sume that expression e is a field de-
clared in the outermost class. Its moni-
tor is incremented when the edge from
START to start1 is taken and decre-
mented when the edge from final1 to
FINAL is taken. Also, both edges have
guards checking run[i] and updates re-
setting run[i] to false, runScheduler
to true and run[j �= i] to false.

FINALSTART

final1start1

run[i]

<className>_monitor[j]--,
run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]

<className>_monitor[j]++,
run[i]=false,
runScheduler=true,
resetRunFlags(i)

16 N. Baklanova and M. Strecker

Annot(a,c1), Thread.sleep(a): add
three states: START , MIDDLE and
FINAL, and edges from START to
MIDDLE and from MIDDLE to
FINAL. START and FINAL are the
start and final states of the new au-
tomaton, both are urgent. The edge
from START to MIDDLE has a guard
checking run[i], an update setting
execTime to the execution time indi-
cated in the annotation and another
update setting run[j �= i] to false. The
edge from MIDDLE to FINAL has
a guard checking run[i] and several
updates. First, there is an update in-
creasing curTime to execTime. Second,
there is an update resetting execTime

to zero. Third, there are updates setting
run[i] to false, runScheduler to true
and run[j �= i] to false.

FINAL

MIDDLE

cGlobal<=curTime[i]+execTime[i]

START

run[i] curTime[i]+=execTime[i],
execTime[i]=0,
run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]

execTime[i]=<annotation>,
resetRunFlags(i)

5.4 Model Checking

Our initial goal was to check whether there are possible resource sharing conflicts
during program execution. Uppaal provides an ability to check properties of
timed automata expressed with TCTL formulas [16]. The basics of TCTL and
its applications are described in [17]. Together with automata code our generator
produces a file with properties to check. The negative property of the generated
system is whether there are two threads accessing the same resource at the same
time. We check the positive variant of it. There is a function check <class name>

checking that all the elements of the monitors array are less or equal to 1. If this
property holds for all states of all possible paths, the system does not have
resource sharing conflicts. In Uppaal syntax the property looks like

A[]check 〈className〉(〈className〉 monitor).

If the property does not hold, Uppaal produces a trace violating the check.

6 Conclusions

We presented the very first steps of an approach for generating timed automata
from Java programs. The Java language is extended with timing annotations,
which makes possible to check resource sharing conflicts and deadlocks in a gen-
erated system. We expect that replacing a lock-controlled resource access policy

Abstraction and Verification of Properties of a Real-Time Java 17

by a time-driven approach allows for better temporal and functional predictabil-
ity, while allowing for greater flexibility than, say, synchronous languages.

The approach has been implemented in a prototype tool, and first tests allow
to assume that this approach works. However, the number of states increases
rapidly with the growth of program size. That makes this approach difficult
to apply for large systems. In order to avoid state explosion, large parts of
code should be included into annotated statements. It allows to abstract from
particular statements and generate an automaton with quite a few states.

6.1 Interval Annotations

We have considered an approach to make our analysis more precise. Currently,
an annotation is exact time required for execution of a statement. Certainly, it is
not a realistic model as one can never know before execution itself how much time
it will take. The real execution time depends on the contents of the processor
cache, also on the compiler optimisation level and many other things. For this
reason we considered a simple model where timing annotation is an interval, and
execution time must lie within it. However, this naive model cannot represent the
execution flow correctly; consider an example when a loop body has an interval
annotation.

while (true) {

//@ 3 - 5 @//

... // some actions

}
Fig. 5. Execution timeline for intervals

On the execution timeline to the right one can see that after the third round
of loop execution the interval of non-determinism became longer than the loop
execution time itself. The better model is still a question for further investiga-
tion; one of the possible examples is the model discussed in [18]. The approach
suggested by the authors is to keep non-determinism for separate steps of execu-
tion, however, sets of instructions have a hard deadline. This may help to solve
the mentioned unlimited growth between best and worst execution time.

6.2 Future Work

Further work may be performed in two directions: Firstly, more Java source code
statements and thread-specific methods should be translated to timed automata.
Secondly, the adequacy of the translation algorithm is expected to be verified
with a proof assistant, based on a formal semantics of Real-Time Java. The final
aim of the future work is to support the constructions of Real-Time Java and
have a formally verified translation procedure.

18 N. Baklanova and M. Strecker

References

1. Baklanova, N., Strecker, M., Féraud, L.: Resource sharing conflicts checking in
multithreaded Java programs. In: Journées FAC 2012 (2012)

2. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of fixed-
priority systems using timed automata. Theor. Comput. Sci. 354, 301–317 (2006)

3. Bøgholm, T., Kragh-Hansen, H., Olsen, P.: Model based schedulability analysis of
real-time systems. Master’s thesis, Aalborg University (2008)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-
based schedulability analysis of safety critical hard real-time Java programs. In:
Bollella, G., Locke, C.D. (eds.) JTRES. ACM International Conference Proceeding
Series, vol. 343, pp. 106–114. ACM (2008)

5. Hakimipour, N., Strooper, P., Wellings, A.: A model-based development approach
for the verification of real-time java code. Concurrency and Computation: Practice
and Experience 23(13), 1583–1606 (2011)

6. Herber, P., Pockrandt, M., Glesner, S.: Transforming systemc transaction level
models into uppaal timed automata. In: 2011 9th IEEE/ACM International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE), pp. 161–170
(2011)

7. Cordovilla, M., Boniol, F., Noulard, E., Pagetti, C.: Multiprocessor schedulability
analyser. In: Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.C. (eds.) SAC, pp.
735–741. ACM (2011)

8. Ravn, A.P., Schoeberl, M.: Cyclic executive for safety-critical java on chip-
multiprocessors. In: Kalibera, T., Vitek, J. (eds.) JTRES. ACM International Con-
ference Proceeding Series, pp. 63–69. ACM (2010)

9. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic Verification of Deter-
minism for Structured Parallel Programs. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010)

10. Tofan, B., Schellhorn, G., Bäumler, S., Reif, W.: Embedding rely-guarantee rea-
soning in temporal logic. Technical Report 2010-07, Informatik (2010)

11. The Real-Time for Java Expert Group: The Real-Time Specification for Java (2006)
12. The Open Group JSR: JSR-302 Safety Critical Java Technology Specification

(2010), http://jcp.org/en/jsr/detail?id=308
13. Henties, T., Hunt, J.J., Locke, D., Nilsen, K., Schoeberl, M., Vitek, J.: Java for

safety-critical applications. In: 2nd International Workshop on the Certification of
Safety-Critical Software Controlled Systems, SafeCert 2009 (March 2009)

14. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

15. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-27755-2_3

16. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Pro-
ceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
LICS 1990, pp. 414–425 (June 1990)

17. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
18. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for

embedded programming. Proceedings of the IEEE 91(1), 84–99 (2003)

http://jcp.org/en/jsr/detail?id=308
http://dx.doi.org/10.1007/978-3-540-27755-2_3

Abstract Quantum Automata as Formal Models

of Quantum Information Processing Systems

Mizal Alobaidi1, Andriy Batyiv2, and Grygoriy Zholtkevych2

1 Tikrit University,
Faculty of Computer Science and Mathematics, P.O. Box–42, Tikrit, Iraq

mizalobaidi@yahoo.com
2 V.N. Karazin Kharkiv National University,

School of Mathematics and Mechanics, 4, Svobody Sqr., 61022, Kharkiv, Ukraine
generatorglukoff@gmail.com, zholtkevych@univer.kharkov.ua

Abstract. Nowadays, quantum computation is considered as a perspec-
tive way to overcome the computational complexity barrier. Development
of a quantum programming technology requires to build theoretical back-
ground of quantum computing similarly to the classical computability
theory and the classical computational complexity theory. The challenge
to develop such theoretical background was posed by Yu.I. Manin. An
attempt to build a mathematically rigorous model for quantum informa-
tion processing systems in compliance with the concept of Yu.I. Manin
is presented in the chapter. The attempt carries out by identifying el-
ementary constituents of quantum computational processes. They are
called quantum actions and their properties are studied in the chapter.
In particular, the equivalence criterion of quantum actions in terms of
their generating operators has been found; the special class of quantum
actions has been characterised in terms of generating operators too. This
class is formed by quantum actions leading to the collapse of quantum
states. Further in the chapter, the mathematical model of quantum in-
formation processing systems. It is defined as an ensemble of interacting
quantum actions on the common memory. The term ”abstract quantum
automata” is introduced to denote such model. At the end of the chapter
models of some important quantum information processing systems are
presented.

Keywords: Algorithmic solvability, computational complexity, quantum
algorithm, formal specification, labelled transition system, operational se-
mantics, Kraus’ family, quantum action, abstract quantum automaton.

1 Introduction

In theoretical computer science it is accepted that to determine the possibility of
using a computer to solve a problem it is necessary to answer two main questions.
The questions are

− ”Does there exist an algorithm solving the problem?”;

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 19–38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 M. Alobaidi, A. Batyiv, and G. Zholtkevych

− ”Does there exist a possibility to provide enough computing power to run
the algorithm?”.

Studies aimed to find an answer to the first question have been begun by the
works of A. Church [4], A.M. Turing [20,21], and E.L. Post [19]. Modern theory
of computability is the result of the studies.

Similarly, efforts, aimed to developing methods for evaluating computational
resources needed for problems solving, have led to the theory of computational
complexity [5,11]. This theory provides methods to estimate the computational
complexity of a solvable problem, and such estimation determines limits of the
practical applicability of a computer to solve this problem.

Modern research shows that our computational capabilities make possible to
solve problems with polynomial computational complexity. Unfortunately, sci-
ence, engineering, and technology require to solve a lot of problems with more
than polynomial computational complexity. Thus, developing non-classical com-
putational systems, which have computing power much more than computing
power of classical computational systems, is a challenge for computer scientists.

The idea to use quantum systems as computing devices appeared in the early
eighties of the twentieth century. The idea’s authors expected that such systems
would provide overcoming the barrier of computational complexity.

In this context, the Yu.I. Manin’s monograph [12], articles written by R.P.
Feynman [9], and D. Deutsch [6] should be mentioned.

The hypothesis that quantum computers can overcome the complexity barrier,
is based on the following reasoning: ”. . . the quantum state space has far greater
capacity than the classical one: for a classical system with N states, its quantum
version allows superposition accommodates cN states. When we join two classical
systems, their number of states N1 and N2 are multiplied, and in the quantum
case we get the exponential growth cN1N2 These crude estimates show that
the quantum behaviour of the system might be much more complex than its
classical simulation” [13].

And indeed, in 1992 D. Deutsch and R. Jozsa found the example of a problem,
which has the estimation of the quantum computational complexity O(n), while
its classical computational complexity has exact estimation O(2n) [7]. As known
now, in addition to Deutsch–Jozsa problem there is quite a number of problems
such that their solving process can be accelerated by using a quantum computer.

Thus, two questions, which have formulated at the beginning of the chapter,
arise in the quantum case too.

To answer the first question it is necessary to develop a quantum analogue
of the theory of computability. In our opinion, the general framework for such
a theory was formulated by Yu.I. Manin [13]: ”. . . we need a mathematical the-
ory of quantum automata. Such a theory would provide us with mathematical
models of deterministic processes with quite unusual properties. . . . The first
difficulty we must overcome is the choice of the correct balance between the
mathematical and the physical principles. The quantum automaton has to be
an abstract one: its mathematical model must appeal only to the general prin-
ciples of quantum physics, without prescribing a physical implementation. Then

Abstract Quantum Automata 21

the model of evolution is the unitary rotation in a finite dimensional Hilbert
space, and the decomposition of the system into its virtual parts corresponds to
the tensor product decomposition of the state space (”quantum entanglement”).
Somewhere in this picture we must accommodate interaction, which is described
by density matrices and probabilities”.

Therefore, we can determine two main objectives of the chapter: firstly, to
build a rigorous mathematical model that provides tools for specification and
verification of quantum information processing systems; secondly, to demon-
strate usefulness of the model.

It should be stressed that following to Yu.I. Manin [12,13] we called the mod-
els introduced below by quantum automata. But there are some other models
of quantum computational systems called quantum automata too [1,15]. As a
rule they are obtained by applying a quantization procedure to classical state
machines. Description of the relationship between our models and these models
is an open problem.

2 Basic Notions and Notation

We need a few basic notions and notation. First of all, we note that Dirac
notation [8] is used in the chapter as usual in quantum informatics [17].

In addition, we use the following notions and notation.
An n-dimensional linear space with an inner product is denoted by Hn. It is

called an n-dimensional Hilbert space. Let’s suppose that the inner product is
conjugate-linear in the first argument and linear in the second argument.

For a finite set Λ a Hilbert space of all complex-valued functions on Λ with
inner product 〈f | g〉 =

∑
α∈Λ f(α)g(α) is denoted by l2(Λ). Further for an

arbitrary α ∈ Λ by |α〉 we denote the function δ(α, ·) where δ is the Kronecker
delta. It is evident that the collection {|α〉 : α ∈ Λ} forms an orthonormal basis
in l2(Λ).

For a Hilbert space H by 1 the identity linear operator on H is denoted.
For a Hilbert space H and a linear operator A : Hn → H by A† its adjoin

operator is denoted. Remind that the relation between an operator and its adjoin
operator is defined by the equation 〈ψ′′|A†|ψ′〉 = 〈ψ′|A|ψ′′〉.

For a Hilbert space H a linear operator W : Hn → H is called an isometric
operator if for an arbitrary |ψ〉 ∈ Hn the next equality is true ‖W |ψ〉‖ = ‖ψ‖.

For a linear operator A on a Hilbert space Hn its trace is defined by the equa-
tion Tr(A) =

∑n−1
k=0 〈k|A|k〉 where vectors |0〉, . . . , |n−1〉 form some orthonormal

basis in Hn.
A linear operator A on a Hilbert space Hn is called a density operator if it

is a nonnegative definite operator (i.e. 〈ψ|A|ψ〉 ≥ 0 for all |ψ〉 ∈ Hn) and its
trace is equal to unit. It is known that each density operator can be represented
as a convex combination of one-dimensional ortho-projectors [10]. Of course,
a one-dimensional ortho-projector is a density operator. The set of all density
operators is convex and the subset of one-dimensional ortho-projectors is the
subset of its extreme points [10]. In the chapter the set of density operators on
a space Hn is denoted by Sn.

22 M. Alobaidi, A. Batyiv, and G. Zholtkevych

In the chapter we use the next construction.
Let Hn be an n-dimensional Hilbert space and Λ be a finite set. For each

α ∈ Λ let’s define an operator J(α) : Hn → Hn ⊗ l2(Λ) by the formula

J(α)|ψ〉 = |ψ〉 ⊗ |α〉. (1)

Properties of the operator family {J(α) : α ∈ Λ} are established by the next
lemma.

Lemma 1. The next identities are true:

J(α)†
∑

α′∈Λ

(|ψ(α′)〉 ⊗ |α′〉) = |ψ(α)〉 (2)

J(α′)†J(α′′) = δ(α′, α′′) · 1 (3)

J(α′)J(α′′)† = 1⊗ |α′〉〈α′′| (4)

Proof. Identities (2) and (3) are proved by direct calculation.
To prove identity (4) one can calculate J(α′)J(α′′)† and 1⊗|α′〉〈α′′| on the same
vector:

J(α′)J(α′′)†
∑
α∈Λ

(|ψ(α)〉 ⊗ |α〉) = J(α′)|ψ(α′′)〉 = |ψ(α′′)〉 ⊗ |α′〉,

(1⊗ |α′〉〈α′′|)
∑
α∈Λ

(|ψ(α)〉 ⊗ |α〉) =
∑
α∈Λ

(|ψ(α)〉 ⊗ |α′〉〈α′′ | α〉) = |ψ(α′′)〉 ⊗ |α′〉.

Now one can conclude that identity (4) is true by comparing the two previous
rows ��

3 Physical Principles of Quantum Informatics

In the section we describe physical principles of quantum informatics. As in [17],
they are formulated as postulates of quantum mechanics for systems with finite
quantity of levels (finite-level quantum systems). The postulates introduce basic
notions used to construct mathematical models of the systems.

3.1 The Postulate of the State Space

Postulate: an n-dimensional Hilbert space Hn is associated to any quantum
physical system with n levels. This space is known as the state space of the
system. The system is completely described by its pure state, which is a one-
dimensional subspace of the state space. This subspace is uniquely represented by
the ortho-projector |ψ〉〈ψ| on the unit vector |ψ〉 which generates the subspace.

In contrast to pure states mixed states are used to describe quantum systems
whose state is not completely known.

Rather more detailed suppose we know that a quantum system is in one
of a number of states {|ψk〉〈ψk| : k = 1, . . . ,m} with respective probabilities

Abstract Quantum Automata 23

{pk : k = 1, . . . ,m}. We shall call {pk, |ψk〉〈ψk| : k = 1, . . . ,m} an ensemble
of pure states. The density operator for the system is defined by the equation
ρ =

∑m
k=1 pk|ψk〉〈ψk|.

We identify mixed states with density operators. The statement that pure
states are described by one-dimensional ortho-projectors allows to consider pure
states as indecomposable states.

3.2 The Postulate of a Composite System

Postulate: the state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have
systems indexed by k = 1, . . . ,m, and the state of the system with number k
is described by the density operator ρk, then the joint state of the total system
before any interactions is ρ1 ⊗ · · · ⊗ ρm.

3.3 The Postulate of a Quantum Evolution

Postulate: the evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ〉〈ψ| of the system at time t1 is related to the
state |ψ′〉〈ψ′| of the system at time t2 by a unitary operator U which depends
only on the times t1 and t2, |ψ′〉〈ψ′| = U |ψ〉〈ψ|U †.

If we have an ensemble of pure system states and this ensemble is described
by the density operator ρ at the time t1 then the density operator ρ′ at the time
t2 can be calculated by the formula ρ′ = UρU †.

3.4 The Postulate of a Quantum Measurement

Postulate: quantum measurements are described by a Λ-indexed finite family
K = {K(α) : α ∈ Λ} of operators, where Λ is a finite set. These are operators
acting on the state space of the system being measured. The symbol α refers to
the measurement outcome that may occur in the experiment. If the state of the
quantum system is described by the density operator ρ immediately before the
measurement then the probability that result α occurs is given by the following
formula

Pr(α | ρ) = Tr(ρK(α)†K(α)) (5)

and the state of the system immediately after the measurement is described by
the density operator

Eff[ρ | α] = K(α)ρK(α)†

Pr(α | ρ) (6)

Any Λ-indexed family K = {K(α) : α ∈ Λ}, which describes a quantum mea-
surement, satisfies the completeness condition∑

α∈Λ

K(α)†K(α) = 1. (7)

This condition ensures correctness of the definitions given by formulae (5) and (6).

24 M. Alobaidi, A. Batyiv, and G. Zholtkevych

A Λ-indexed family that satisfies the correctness condition is called a Kraus’
family.

4 Quantum Measurements and Isometric Operators

The quantum evolution postulate and the quantum measurement postulate de-
scribe two different ways of changing a system state. It does not seem natural.
Hence, we can set the problem: unify descriptions for evolutions and measure-
ments of a finite-level quantum system. The aim of the section is to solve the
problem.

4.1 Generating Operator of Kraus’ Family

Theorem 1. Let Λ be a finite set and K = {K(α) : α ∈ Λ} be a Λ-indexed
family of operators on an n-dimensional Hilbert space Hn. K is a Kraus’ family
if and only if there exists an isometric operator W : Hn → Hn ⊗ l2(Λ) such that
the next condition is true

K(α) = J(α)†W for all α ∈ Λ. (8)

Moreover, the isometric operator W is uniquely defined by condition (8).

Proof. Suppose that K = {K(α) : α ∈ Λ} is a Kraus’ family. Let’s define an
operator W : Hn → Hn ⊗ l2(Λ) by the formula

W =
∑
α∈Λ

J(α)K(α). (9)

We claim that the operator W is an isometric operator. To prove this it is
sufficient to prove the equality W †W = 1.
Really,

W †W =

(∑
α′∈Λ

J(α′)K(α′)

)†(∑
α′′∈Λ

J(α′′)K(α′′)

)
=

∑
α′,α′′∈Λ

K(α′)†J(α′)†J(α′′)K(α′′).

Using this equality, identity (3), and the completeness condition (7) we can fulfil
the next transformations

W †W =
∑
α∈Λ

K(α)†K(α) = 1.

Further, for any α ∈ Λ one can obtain using identity (3)

J(α)†W = J(α)†
(∑

α′∈Λ

J(α′)K(α′)

)
=
∑
α′∈Λ

J(α)†J(α′)K(α′) = K(α).

Abstract Quantum Automata 25

Now suppose that K(α) = J(α)†W for all α ∈ Λ and for some isometric operator
W : Hn → Hn ⊗ l2(Λ), then

∑
α∈Λ

K(α)†K(α) =
∑
α∈Λ

W †J(α)J(α)†W = W †
(∑

α∈Λ

J(α)J(α)†
)
W.

Using this equality, identity (4), and the isometric property for the operator W
we obtain

∑
α∈Λ

K(α)†K(α) = W †
(∑

α∈Λ

(1⊗ |α)〉〈α|)
)
W = W †W = 1.

Hence, the completeness condition for the family {K(α) : α ∈ Λ} is true.
Verify uniqueness of W now. Suppose that there are two different isometric

operators W1 and W2 such that the next statement holds

J(α)†W1 = J(α)†W2 for all α ∈ Λ. (10)

Multiplying the equality contained in statement (10) by J(α) from left and
summing over α we get(∑

α∈Λ

J(α)J(α)†
)
W1 =

(∑
α∈Λ

J(α)J(α)†
)
W2.

From this equality and identity (4) one can derive that W1 = W2. The obtained
contradiction proves uniqueness of the operator W ��

Theorem 1 grounds the next definition.

Definition 1. Let Hn be an n-dimensional Hilbert space, Λ be a finite set, and
K = {K(α) : α ∈ Λ} be a Λ-indexed Kraus’ family then the isometric operator
W : Hn → Hn ⊗ l2(Λ) from Theorem 1 we call the generating operator of the
Kraus’ family K.

4.2 Unified Model of Quantum Evolution and Quantum
Measurement

Taking in account Theorem 1 we can reformulate the postulate of a quantum
measurement.

Corollary 1 (of Theorem 1). The postulate of a quantum measurement is
equivalent to the next statement: quantum measurements are described by an
isometric operator W : Hn → Hn ⊗ l2(Λ), where Λ is a finite set. The index α
refers to the measurement outcome that may occur in the experiment. If the
state of the quantum system is described by the density operator ρ immediately
before the measurement then the probability that result α occurs is given by the
following formula

Pr(α | ρ) = Tr(ρW †(1⊗ |α〉〈α|)W) (5′)

26 M. Alobaidi, A. Batyiv, and G. Zholtkevych

and the state of the system immediately after the measurement is described by
the density operator

Eff[ρ | α] = J(α)†WρW †J(α)
Pr(α | ρ) . (6′)

Definition 2. In the context of Corollary 1 we say that the isometric operator
W is the generating operator of the quantum measurement.

Now let’s consider a quantum measurement which has a single outcome, i.e.
Λ = {λ}.

In the case the next equalities l2(Λ) = C and Hn ⊗ l2(Λ) = Hn are true.
Hence, any generating operator W : Hn → Hn ⊗ l2(Λ) is a unitary operator
W : Hn → Hn. Formula (5′) gives Pr(λ | ρ) = 1 and from formula (6′) we obtain
Eff[ρ | λ] = WρW †.

Therefore, we can consider a quantum evolution as a quantum measurement
with a one-element set of outcomes.

5 Quantum Actions

Unifying descriptions of a quantum evolution and a quantum measurement al-
lows to introduce the generalising notion for evolutionary and measuring pro-
cesses. We use the term a quantum action to designate this notion.

For physical reasons, we do not distinguish between actions that have the
same pair (Pr(· | ·),Eff[· | ·]). But such pair does not determine an appropriate
isometric operator uniquely as it shows the next simple proposition.

Proposition 1. Let Hn be a state space of n-level quantum system, Λ be a
finite set, and W1,W2 : Hn → Hn ⊗ l2(Λ) be isometric operators such that

W2 =

(∑
α∈Λ

(1⊗ eiθ(α)|α〉〈α|)
)
W1 for some θ : Λ→ [0, 2π), then for any ρ ∈ Sn

and α ∈ Λ the next equalities are held

Tr(ρW †
1 (1⊗ |α〉〈α|)W1) = Tr(ρW †

2 (1⊗ |α〉〈α|)W2), (11)

J(α)†W1ρW
†
1 J(α) = J(α)†W2ρW

†
2J(α). (12)

Proof. The proposition is proved by a direct calculation ��

5.1 Equivalence of Generating Operators for Quantum
Measurements

Proposition 1 demonstrates that there are different isometric operators that gen-
erate the same pair (Pr(· | ·),Eff[· | ·]). Hence, different isometric operators W1

and W2 satisfying conditions (11) and (12) describe the same quantum action.
This reasoning leads us to the next definition.

Abstract Quantum Automata 27

Definition 3. Let Hn be a state space of n-level quantum system, Λ be a finite
set, and W1,W2 : Hn → Hn ⊗ l2(Λ) be isometric operators, then we shall say
that operators W1 and W2 generate the same quantum action if and only
if conditions (11) and (12) are held.

It is evident that Definition 3 identifies equivalence relations on the sets of
suitable isometric operators. The explicit form of these relations is given by the
next theorem.

Theorem 2. Let Hn be a state space of n-level quantum system, Λ be a finite
set, and W1,W2 : Hn → Hn ⊗ l2(Λ) be isometric operators.
These operators generate the same quantum action if and only if there exists a

function θ : Λ→ [0, 2π) such that W2 =

(∑
α∈Λ

(1⊗ eiθ(α)|α〉〈α|)
)
W1.

Proof. Taking in account Proposition 1 we can conclude that to prove the the-
orem it is sufficient to establish existence of a function θ for isometric operators
generate the same quantum action.

Let’s suppose that isometric operators W1,W2 : Hn → Hn ⊗ l2(Λ) satisfy
conditions (11) and (12).

Define the next vectors |ω(s)
k (α)〉 = J(α)†Ws|k〉 where |0〉, . . . , |n − 1〉 form an

orthonormal basis in Hn, α ∈ Λ, and s = 1, 2.
Easy to see, that

〈ω(s)
k (α) | ω(s)

k (α)〉 = Tr(|k〉〈k|W †
s (1⊗ |α〉〈α|)Ws).

Taking in account equality (11) one can obtain that the previous equality implies
the equality

〈ω(1)
k (α) | ω(1)

k (α)〉 = 〈ω(2)
k (α) | ω(2)

k (α)〉. (13)

For α ∈ Λ by Γ (α) denote the set of integers such that k ∈ Γ (α) if and only if

0 ≤ k < n and 〈ω(1)
k (α) | ω(1)

k (α)〉 = 〈ω(2)
k (α) | ω(2)

k (α)〉 > 0. From equality (12)
it follows that for k ∈ Γ (α) the next equality is true

|ω(1)
k (α)〉〈ω(1)

k (α)| = |ω(2)
k (α)〉〈ω(2)

k (α)|.

Therefore, for all α ∈ Λ and any k ∈ Γ (α) the next condition holds

|ω(2)
k (α)〉 = |ω(1)

k (α)〉 〈ω
(1)
k (α) | ω(2)

k (α)〉
〈ω(2)

k (α) | ω(2)
k (α)〉

.

Owning to (13) the last equality means that for each α ∈ Λ and any k ∈ Γ (α)
there exists θ(α, k) with the following properties

0 ≤ θ(α, k) < 2π, (14)

|ω(2)
k (α)〉 = eiθ(α,k)|ω(1)

k (α)〉. (15)

28 M. Alobaidi, A. Batyiv, and G. Zholtkevych

Further, from equality (12) one can derive that

|ω(1)
k (α)〉〈ω(1)

l (α)| = |ω(2)
k (α)〉〈ω(2)

l (α)|
where k, l ∈ Γ (α) for some α ∈ Λ.
This equality can be rewritten by using (15) in the next form

|ω(1)
k (α)〉〈ω(1)

l (α)| = ei(θ(α,k)−θ(α,l))|ω(1)
k (α)〉〈ω(1)

l (α)|.
Easy to see that the last equality implies ei(θ(α,k)−θ(α,l)) = 1 and, therefore,
θ(α, k) = θ(α, l).

Thus, we proved that for any α ∈ Λ and k ∈ Γ (α) the next condition holds

|ω(2)
k (α)〉 = eiθ(α)|ω(1)

k (α)〉 where 0 ≤ θ(α) < 2π.

If k ∈ {0, . . . , n − 1} \ Γ (α) for some α ∈ Λ then |ω(1)
k (α)〉 = |ω(2)

k (α)〉 = 0 and
the previous condition holds too.

Using the definition of |ω(s)
k (α)〉 where s = 1, 2 we obtain

J(α)†W2 = eiθ(α)J(α)†W1.

Multiplying the last equality by J(α) from left and summing over α ∈ Λ we get

W2 =

(∑
α∈Λ

(1⊗ eiθ(α)|α〉〈α|)
)
W1.

Theorem is proved ��
Corollary 2. Let Hn be a state space of an n-level quantum system, Λ be a finite
set of outcomes, W1,W2 : Hn → Hn⊗ l2(Λ) be isometric operators that generate
the same quantum action, K1 = {K1(α) : α ∈ Λ} and K2 = {K2(α) : α ∈ Λ} be
respective Kraus’ families then there exists a function θ : Λ → [0, 2π) such that
the next condition holds

K2(α) = eiθ(α)K1(α) for each α ∈ Λ.

5.2 Formal Definition of Quantum Action

Now we can define the notion of a quantum action formally.
As it has been noted above, a quantum action is described by an appropriate

pair (Pr(· | ·),Eff[· | ·]). Hence, we can suppose that a quantum action is a class
of isometric operators that generate the same quantum action in compliance
with Definition 3.

Definition 4. Let Hn be a state space of an n-level quantum system and Λ be a
finite set then we call a quantum action on the system with set of outcomes Λ
a class of isometric operators from Hn into Hn ⊗ l2(Λ) that generate the same
quantum action.

Moreover, if W : Hn → Hn ⊗ l2(Λ) is a representative of such class then the
probability to obtain an outcome α is determined by formula (5′) and the state
after acting is determined by formula (6′).

Abstract Quantum Automata 29

Hence, Definition 4 sets the following meaning of an action on a quantum system:
if immediately before the action the system is described by the pure state ρ =
|ψ〉〈ψ| then the ensemble {Pr(α | ρ),Eff[ρ | α] : α ∈ Λ} is an a priori description
of the system immediately after the action.

5.3 Quantum Actions Leading to State Collapse

Let’s remind that the important class of quantum measurements was introduced
by J. von Neumann in [16]. Measurements of this class are described by Kraus’
families formed by orthoprojectors. Hence, Kraus’ families of measurements be-
longing to this class are orthogonal identity decompositions [10]. By a direct
calculation one can prove the next proposition.

Proposition 2. Let Hn be a state space of n-level quantum system, Λ be a
finite set, E = {E(α) : α ∈ Λ} be an orthogonal identity decomposition, ρ be any
density operator, and α′, α′′ be any elements of Λ; then

Pr(α′′ | Eff[ρ | α′]) = δ(α′′, α′), (16)

Eff[Eff[ρ | α′] | α′] = Eff[ρ | α′]. (17)

Conditions (16) and (17) we call the collapse conditions. Hence, each von
Neumann’s measurement (it is called a projective measurement too) describes a
quantum action which satisfies the collapse conditions.

We claim that each measurement satisfying the collapse conditions is equiva-
lent to a projective measurement in compliance with Definition 3. More precise
statement is given by the next theorem.

Theorem 3. Let Hn be a state space of n-level quantum system, Λ be a finite
set of outcomes, and K = {K(α) : α ∈ Λ} be a Kraus’ family such that associated
quantum action satisfies the collapse conditions then the family K is equivalent
to some orthogonal identity decomposition.

Proof. Note that the next condition follows from equalities (16):

(K(α)2)†K(α)2 = K(α)†K(α) for all α ∈ Λ.

Hence, |K(α)2| = |K(α)| and K(α)2 = U(α)K(α) for some unitary operator
U(α).

Denote by L(α) the subspaces K(α)Hn and consider the decomposition Hn =
L(α) ⊕ L(α)⊥. The subspace L(α) is an invariant subspace of operator K(α).

Therefore, K(α) =

(
K1(α) K2(α)

0 0

)
where K1(α) is an operator on L(α) and

K2(α) is an operator from L(α)⊥ into L(α). The equality K(α)2 = U(α)K(α)
implies that K1(α) is a unitary operator on L(α).

Let ρ1 be some density operator on L(α) then ρ =

(
ρ1 0
0 0

)
is a density

operator on Hn.

30 M. Alobaidi, A. Batyiv, and G. Zholtkevych

From (17) we get

K(α)ρK(α)† = K(α)2ρ(K(α)2)†.

Using this equality and a matrix representation for K(α) we obtain

K1(α)ρ1K1(α)
† = K1(α)

2ρ1(K1(α)
2)†.

Therefore, from unitarity of the operator K1(α) one can derive

K1(α)ρ1 = ρ1K1(α).

Hence,
K1(α) = eiθ(α) · 1 where 0 ≤ θ(α) < 2π.

Using Theorem 2 we can change the Kraus’ family {K(α) : α ∈ Λ} by the Kraus’
family {K ′(α) = e−iθ(α)K(α) : α ∈ Λ}. After such changing we obtain that

K ′(α) =
(
1 K ′

2(α)
0 0

)
where K ′

2(α) = e−iθ(α)K2(α).

Easy to see that
K ′(α)2 = K ′(α). (18)

Note, that from (16) it follows that

if α′ �= α′′ then K ′(α′)K ′(α′′) = K ′(α′′)†K ′(α′)† = 0. (19)

Multiplying from left the equality
∑

α′∈Λ K ′(α′)†K ′(α′) = 1 by K ′(α)† and
using (18) and (19) we obtain

K ′(α)†K ′(α) = K ′(α)†.

Similarly, multiplying from right the equality
∑

α′∈Λ K ′(α′)†K ′(α′) = 1 by
K ′(α) we obtain

K ′(α)†K ′(α) = K ′(α).

The last two equalities imply K ′(α)† = K ′(α).
Therefore K ′(α) is an ortho-projector ��

6 Abstract Quantum Automata

Each computer program can be presented as a finite set of interacting commands
(or actions). The interaction is determined by calculating the successor for each
command. This calculation is performed by a command itself. Chains of actions
arise as a result of such calculations. They are known in computer science as
control flows. The structure of control flows for a program is described by a
finite state machine.

Hence, we can try to specify quantum systems of information processing by
the similar way. Namely, we shall present a quantum system of information
processing as a finite set of interacting quantum actions on the common finite-
level quantum memory. Similarly to the classical case, the interaction between
actions is determined by control flows. We use the notion of a deterministic
labelled transition system for modelling control flows.

Abstract Quantum Automata 31

6.1 Labelled Transition Systems

Below we give the notion of a labelled transition system as it was defined in the
R. Milner’s monograph [14].

Definition 5. A labelled transition system over a finite set Λ is a pair
(X,T) consisting of

− a finite set X of configurations;
− a ternary relation T ⊆ X × Λ×X, known as a transition relation.

If (x, α, x′) ∈ T we write x
α−→x′ and we call x the source and x′ the target of

the transition.
If x

α1−→x1 & x1
α2−→x2 & . . .& xn−1

αn−→xn we call the alternate sequence

x, α1, x1, α2, . . . , αn, xn the walk and write x
α1−→x1

α2−→ . . .
αn−→xn.

The important class of labelled transition system is identified by the next
definition.

Definition 6. A labelled transition system over a finite set Λ is called deter-
ministic if for any x, x′, x′′ ∈ X and any α ∈ Λ the following statement is
true

x
α−→x′ & x

α−→x′′ implies x′ = x′′.

6.2 Formal Definition of an Abstract Quantum Automaton

We shall consider the finite set Q of quantum actions on a common n-level
quantum memory which is described by the state space Hn. For an arbitrary
q ∈ Q let denote by Wq, Prq(· | ·), Effq[· | ·] its generating operator, probability
of an outcome, and the state after performing it respectively.

Definition 7. A tuple A(Hn, Λ,Q, q0, H, T) we call by an abstract quantum
automaton if it consists of

− a state space of an n-level quantum system Hn;
− a finite set of labels Λ;
− a finite set of quantum actions Q on the state space Hn such that their

outcomes are elements of Λ;
− a fixed quantum action q0 from Q;
− a non-empty finite set H;
− a deterministic labelled transition system (X,T) over Λ where X = Q ∪H,

and satisfies the following conditions

x′ α−→x′′ implies x′ ∈ Q; (20)

q
α−→x if and only if there exists a density operator ρ

such that Prq′(α | ρ) > 0. (21)

To define dynamics of an abstract quantum automaton we are in need of the
following definition.

32 M. Alobaidi, A. Batyiv, and G. Zholtkevych

Definition 8. Let A(Hn, Λ,Q, q0, H, T) be an abstract quantum automaton,
then a pair (ρ, x) ∈ Sn×X where X = Q∪H is called an automaton snapshot.

Now let’s describe an algorithm that determines a behaviour of an abstract
quantum automaton:

1. let’s assign t := 0, x := q0, ρ := ρin where ρin is an initial state of the
quantum memory;

2. let’s assign x(t) := x, and ρ(t) := ρ;

3. if x ∈ H then terminate performing algorithm;

4. let’s choose an element αt+1 ∈ Λ according to the stochastic distribution
Prx(· | ρ);

5. let’s transform ρ := Effx[ρ | αt+1];

6. let’s choose xnew using the condition x
αt+1−→ xnew and assign x := xnew;

7. let’s assign t := t+ 1;

8. go to item 2.

It is evident, that the algorithm of an abstract quantum automaton generates
finite or infinite alternating sequences of the form

(ρ(0), x(0) = q0), α1, (ρ(1), x(1)), α2, (ρ(2), x(2)), α3, . . . (22)

which we call runs. Runs are characterised by the next simple proposition.

Proposition 3. Let A(Hn, Λ,Q, q0, H, T) be an abstract quantum automaton
and r be a finite or infinite alternating sequence of the form (22) then r is a run
if and only if it satisfies the next conditions:

q0
α1−→x(1)

α2−→x(2)
α3−→ . . . is a walk of the transition

system (X,T) over Λ; (23)

if x(t)
αt+1−→ x(t+ 1) is a member of r then x(t) ∈ Q; (24)

if r is finite and q(T − 1)
αT−→x(T) is its last member then x(T) ∈ H ; (25)

if q(t)
αt+1−→ x(t+ 1) is a member of r then

Prq(t)(αt+1 | ρ(t)) > 0 and ρ(t+ 1) = Effq(t)[ρ(t) | αt+1]. (26)

Proof. Really, taking into account (20) and (21) it is easy to see that each run
satisfies conditions (23), (24), (25), and (26). To prove the converse assertion it
is necessary to use mathematical induction ��

6.3 The Simplest Examples of Abstract Quantum Automata

We complete this section by two examples of modelling quantum information
processing systems. Some two-level quantum systems are used in these examples.
Such systems are called qubits.

Abstract Quantum Automata 33

m: measure a qubit in

the selected basis

⊗
outcome = z

f: flip a qubit

outcome = u

�

z

u

#

Fig. 1. Cleaning a qubit

Example 1. Let’s consider a quantum information process which sets a qubit into
the state |0〉〈0| where |0〉, |1〉 form a fixed orthonormal basis in H2. Evidently,
this problem can not be solved by any unitary transformation. Below we specify
an abstract quantum automaton that solves this problem.

We use the notation of UML activity diagrams [18] to specify a transition
system of an abstract quantum automaton (see Fig. 1). As one can see Λ =
{z,u,#}. Let’s define Wm : H2 → H2 ⊗ l2(Λ) by the formula

Wm = (|0〉 ⊗ |z〉)〈0| + (|1〉 ⊗ |u〉)〈1|.

Further, define Wf : H2 → H2 ⊗ l2(Λ) by the formula

Wf = (|1〉 ⊗ |#〉)〈0|+ (|0〉 ⊗ |#〉)〈1|.

Easy to see that this automaton has only two runs:

1. m, z, exit;
2. m,u, f,#, exit.

Direct checking shows that after handling by the automaton a qubit from a pure
state |ψ〉〈ψ| passes into the state |0〉〈0|.

Therefore, we have built the abstract quantum automaton that specifies the
process of cleaning a qubit.

Example 2. This example deals with preparing an entangled pair of qubits. The
process is used as a fragment of many quantum algorithms.

We shall specify an abstract quantum automaton that does it. The transition
system of the automaton is shown in Fig. 2. Note that we use the previous
example at the beginning of the specification.

34 M. Alobaidi, A. Batyiv, and G. Zholtkevych

c: apply the "controlled-not"

gate to the second qubit

⊗

�

#

cleaning

the first qubit

cleaning
the second qubit

h: apply the Hadamar

gate to the first qubit

#

Fig. 2. Preparing an entangled pair of qubits

The automaton state space equals H⊗2
2 and Λ is equal to the set {z,u,#} as

in the previous example. As it follows from Example 1, the memory’s state of
the automaton is described by the density operator |0〉〈0| ⊗ |0〉〈0| after cleaning
two qubits. Apply to this pair a quantum action with the generating operator
Wh defined by the formula

Wh =
1√
2

1∑
k,l=0

(((|0〉+ (−1)k|1〉)⊗ |l〉 ⊗ |#〉) (〈k| ⊗ 〈l|)) .
Then the pair passes into the state described by the vector 1√

2
(|0〉 + |1〉) ⊗ |0〉.

Further, apply a quantum action with the generating operator Wc defined by
the formula

Wc =

1∑
k,l=0

(
(|k〉 ⊗Xk|l〉 ⊗ |#〉)(〈k| ⊗ 〈l|)) , where X |k〉 = |k + 1 mod 2〉.

Easy to see that after all transformations the final state is described by the
vector 1√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉).

7 Abstract Quantum Automata for Some Quantum
Information Processing Systems

In the section abstract quantum automata for the qubit teleportation and
Deutsch – Jozsa algorithm are built. This demonstrates the usefulness of the
notion of an abstract quantum automaton.

Abstract Quantum Automata 35

c: apply the "controlled-not" gate

to the first qubit of the pair

⊗

�

#

preparing

an entangled pair

h: apply the Hadamar

gate to Alice’s qubit

#

Alice’s activity

Bob’s activity

m: measure Alice’s pair

in the standard basis
��

0

1x: apply X-gate to

Bob’s qubit

z: apply Z-gate to

Bob’s qubit

y: apply Y-gate to

Bob’s qubit

��

⊗

2

3

#

#

#

Fig. 3. Teleportation of a qubit state

7.1 Quantum State Teleportation

Quantum teleportation is a process by which a qubit state can be transmit-
ted exactly from one location to another, without the qubit being transmitted
through the intervening space. This phenomenon has been confirmed experimen-
tally [2,3].

There are two participants, Alice and Bob, in the process. Their objective is
to transmit a pure qubit state from Alice to Bob.

At the beginning we specify the transition system of the corresponding au-
tomaton. It is shown in the Fig. 3. Before the process Alice has a qubit that is
in a state |ψ〉〈ψ|.

The first step of the teleportation process a qubits entangled pair is prepared
by using the abstract quantum automaton from Example 2.

Then the first qubit of the pair is sent to Alice and the second qubit of
the pair is sent to Bob. Hence, H⊗3

2 is the state space of the studied system,
Λ = {0,1,2,3,#} is the set of labels, and 1√

2
|ψ〉 ⊗ (|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) is the

vector describing the system state before applying the quantum action associated
with the node c.

The generating operator associated with the node c is defined by the formula

Wc =

1∑
k0,k1,k2=0

(|k0〉 ⊗Xk0 |k1〉 ⊗ |k2〉 ⊗ |#〉
)
(〈k0| ⊗ 〈k1| ⊗ 〈k2|) .

36 M. Alobaidi, A. Batyiv, and G. Zholtkevych

Let’s choose some orthonormal basis in H2: |0〉, |1〉 and define the generating
operator associated with the node m by the following formula:

Wm =
1∑

k0,k1,k2=0

((|k0〉 ⊗ |k1〉 ⊗ |k2〉 ⊗ |k0 + 2 · k1〉) (〈k0| ⊗ 〈k1| ⊗ 〈k2|)) .

The respective action is performed by Alice. Then she sends the action outcome
to Bob. Bob selects one among nodes x, y or z in compliance with the message
received from Alice and applies the action associated with this node:
1 : J(#)(1⊗2 ⊗X)
2 : J(#)(1⊗2 ⊗ Z)
3 : J(#)(1⊗2 ⊗ Y)

, where X =

[
0 1
1 0

]
, Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
.

By direct calculation one can check that after halting automaton its state is
described by the density operator 1

2 (|0〉〈0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)⊗ |ψ〉〈ψ|.

7.2 Deutsch – Jozsa Algorithm

The Deutsch – Jozsa algorithm solves a problem, which is not important for
applications. But this algorithm gives a simple example of an exponential de-
creasing computational complexity for solving problem at the expense of using
quantum information processing system.

Let’s f : {0, 1}n → {0, 1} be a boolean function. It is called balanced if the
sets {(x1, . . . , xn) : f(x1, . . . , xn) = 0} and {(x1, . . . , xn) : f(x1, . . . , xn) = 1}
have the same number of elements.

The Deutsch – Jozsa problem: let you have a boolean function of n variables
and you know that it is balanced or constant. You should determine whether
this function is balanced or it is constant.

It is evident that in the classical case it is necessary to compute the function
O(2n) times for answering the question. In contrast to the classical case the
Deutsch – Jozsa algorithm solves this problem such that total number of its
steps is estimated as O(n).

The Deutsch – Jozsa algorithm is described by an abstract quantum automa-
ton that uses a 2n+1-level quantum system as a memory. The space H⊗n

2 ⊗H2

presents the corresponding state space.
O(n) performing actions is needed to set the memory in the state which is de-

scribed by the vector |Ψ0〉 = |0〉⊗n⊗|1〉. This process is described by compositing
automata defined above.

The generating operator of the next action is defined by the formula

Wu = J(#) · H⊗(n+1) where H =
1∑

k,l=0

(−1)k·l|k〉〈l|. As result we obtain the

state which is described by the vector

|Ψ1〉 = 1√
2n

⎛
⎝ 1∑

k1,...,kn=0

|k1〉 ⊗ · · · ⊗ |kn〉
⎞
⎠⊗ 1√

2
(|0〉 − |1〉).

Abstract Quantum Automata 37

The generating operator for calculating the function f is denoted by Wf and it
is defined by the formula

Wf (|k1〉 ⊗ · · · ⊗ |kn〉 ⊗ |y〉) =
|k1〉 ⊗ · · · ⊗ |kn〉 ⊗ |y + f(k1, . . . , kn) mod 2〉 ⊗ |#〉.

After applying the action generated by Wf and the action generated by
J(#) · (1⊗n ⊗H) we obtain the state which is described by the vector

|Ψf 〉 = 1√
2n

⎛
⎝ 1∑

k1,...,kn=0

(−1)f(k1,...,kn)|k1〉 ⊗ · · · ⊗ |kn〉
⎞
⎠⊗ |1〉.

Let’s denote by |Ξ〉 the vector 1√
2n
|0〉⊗n, by E(b) the ortho-projector |Ξ〉〈Ξ|⊗1,

and by E(c) the orto-projector 1− E(b). Then the measurement generated by
the Kraus’ family {E(b), E(c)} gives with probability 1 b if f is balanced, and
c if f is constant.

It is evident that complexity of this computation is estimated as O(n).
We do not give a diagram of the corresponding automaton, because it is not

difficult but is cumbersome.

8 Conclusion

Thus, the mathematical model for quantum information processing systems has
been built in this chapter. This model describes quantum information processing
as an interaction between elementary quantum actions.

Although some properties of quantum actions have been studied in the chap-
ter the problems of investigating their structure and developing their synthesis
methods are waiting to be solved.

It would be interesting to identify natural operations on the set of quantum
actions and to describe the subset of irreducible elements for the operations on
this set.

Finally, it is interesting to develop some software framework for simulating
abstract quantum automata. Such framework can make possible to carry out
computing experiments for finding new properties of quantum information pro-
cessing systems.

References

1. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: Proc. 39th Ann. Symp. on Found. Comp. Sci., pp. 332–341.
IEEE (1998)

2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eible, M., Weinfurter, H., Zeilinger, A.:
Experimental quantum teleportation. Nature 390, 575–579 (1997)

38 M. Alobaidi, A. Batyiv, and G. Zholtkevych

3. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental Re-
alization of Teleporting an Unknown Pure Quantum State via Dual Classical and
Einstein–Podolsky–Rosen Channel. Phys. Rev. Lett. 80, 1121–1125 (1998)

4. Church, A.: An unsolvable problem of elementary number theory. Amer. J.
Math. 58(2), 345–363 (1936)

5. Cook, S.: The Complexity of Theorem Proving Procedures. In: Proc. 3rd Ann.
ACM Symp. on Theory of Computing, pp. 151–158. ACM, New York (1971)

6. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quan-
tum computer. Proc. Roy. Soc. Lond., Series A 400(1818), 97–117 (1985)

7. Deutsch, D., Jozsa, R.: Rapid Solution of Problems by Quantum Computation.
Proc. Roy. Soc. Lond., Series A 439(1907), 553–558 (1992)

8. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University
Press (1958)

9. Feynman, R.P.: Simulating Physics with Computer. Int. J. Theor. Phys. 21, 467–
488 (1982)

10. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-
Holland Publishing Company, Amsterdam (1982)

11. Karp, R.M.: Complexity of Computation. SIAM-AMS Proceedings, vol. 7. AMS,
Providence (1974)

12. Manin, Y.I.: Computable and Uncomputable (Cybernetics), Sovetskoe radio,
Moscow (1980) (in Russian)

13. Manin, Y.I.: Mathematics as metaphor: selected essays of Yuri I. Manin. AMS
(2007)

14. Milner, R.: Communicating and Mobile System: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

15. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret.
Comput. Sci. 237, 99–136 (2000)

16. Neumann von, J.: Mathematische Grundlagen Der Quantenmechanik. Verlag von
Julius Springer, Berlin (1932)

17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

18. OMG Unified Modelling Language (OMG UML), Superstructure. OMG, v 2.4.1
(2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

19. Post, E.L.: Finite Combinatory Processes – Formulation 1. J. Symb. Logics. 1(3),
103–105 (1936)

20. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 2(42), 230–265 (1936)

21. Turing, A.M.: Computability and λ-Definability. J. Symb. Logics. 2(4), 153–163
(1937)

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 39–59, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Parallelizing Legacy Fortran Programs
Using Rewriting Rules Technique
and Algebraic Program Models

Anatoliy Doroshenko and Kostiantyn Zhereb

Institute of Software Systems of National Academy of Sciences of Ukraine,
Glushkov prosp. 40, 03187 Kyiv, Ukraine

{doroshenkoanatoliy2,zhereb}@gmail.com

Abstract. We present ongoing research in the area of transforming existing
sequential Fortran programs into their parallel equivalents. We propose a semi-
automated parallelization approach that uses rewriting rules technique to
automate certain steps of the transformation process. A sequential source code
is transformed into a parallel code for shared-memory systems, such as
multicore processors. Parallelizing and optimizing transformations are formally
described as rewriting rules which allows their automated application across the
whole source code, and also facilitates their implementation and reuse. Using
high-level algebraic models allows to describe program transformations in a
more concise and stepwise manner. Performance measurements demonstrate the
high efficiency of the obtained parallel programs, compared to the initial
sequential programs and also to automated parallelization tools.

Keywords: rewriting rules technique, algebraic program models, multicore
processors, Fortran, OpenMP.

1 Introduction

Despite being one of the first programming languages, Fortran is still widely used, in
particular for solving scientific and engineering computation-intensive problems. Its
popularity is due to its relative simplicity and lack of complex facilities (e.g. pointers),
closeness to the mathematical description of problem and efficiency of the generated
binary code. Another reason for continued use of Fortran is that in more than 50 years of
its existence a vast repository of programs, libraries and routines for solving different
scientific problems has been created. Algorithms implemented in such programs are still
valuable, however there is a need to adapt this legacy code to new parallel
computational platforms. Furthermore, due to the size and complexity of existing code,
manual adaptation is not a practical option: there is a need for automated tools to
facilitate the conversion of legacy code to modern parallel platforms [9].

In this chapter we describe ongoing research on parallelizing Fortran programs
using formal methods: algebraic program models and rewriting rules technique.
Sequential source code is transformed into a parallel code for shared-memory parallel

40 A. Doroshenko and K. Zhereb

platform (such as multicore processors) using automated transformations. The code is
represented as high-level algebraic models, facilitating their manipulation and
enabling formal analysis methods, such as correctness proofs. The user has to select
the suitable code fragments (usually loops) for parallelization, and the transformation
to be applied (however, the selection of the suitable loops can be automated using
dynamic analysis methods, as described in Section 4). Parallelizing and optimizing
transformations are formally described as rewriting rules which facilitates their
implementation and reuse. The rules are applied automatically across the whole
source code, thus relieving the programmer from routine work and preventing copy-
paste mistakes.

Our approach is aimed at two main goals: to improve runtime efficiency of
programs and to increase developer’s productivity. Therefore we use semi-automated
parallelization approach, automating many routine steps in the parallelization process,
yet enabling the programmer to make the changes that cannot be implemented using
fully-automated tools. We illustrate our approach on two sample programs: a simple
Gauss elimination algorithm and an applied problem of calculating electron density
from the field of quantum chemistry. A comparison with selected automated tools
demonstrates the efficiency of our approach.

This chapter continues our research on automation of the process of designing and
development of efficient parallel programs, started in [3], [16], [17]. Our previous
papers [3], [16] applied a similar approach to the development of parallel programs
written in C# language for Microsoft .NET framework, while this chapter
concentrates on parallelizing Fortran programs. We have already described our first
experiences with Fortran programs in [17]. Now we describe an application of our
approach to a real-world legacy code. Also this chapter places more significance on
choosing place of application of existing program transformation (see Section 4),
rather than developing new transformations.

Below we describe our approach in more detail, provide the examples of the
parallelizing transformations and illustrate them with parallelization and evaluation of
two programs: a small example program (Gauss elimination) and an applied quantum
chemistry problem (electron density).

2 Our Approach: Algebraic Models and Rewriting Rules

As in our previous works [3], [16], [17], we use formal facilities, namely rewriting
technique and high-level algebraic models of programs, to automate the process of
parallelization of existing sequential code. Legacy source code of a sequential
program written in Fortran is transformed into a parallel version targeting the shared-
memory parallel platform (multicore processors). As a part of the transformation
process, we create high-level algebraic models of legacy source code based on
Glushkov algebra [4]. As described in [3] the models are created in two steps. First
we use the target language parser (Fortran in this chapter) to build a low-level syntax
model, and then rewriting rules of special form (patterns, see Section 2.3) to extract
language-independent algebraic operators from language constructs. Using high-level
algebraic models allows describing program transformations in a more concise

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 41

manner. The additional benefit of such models when applied to legacy code is that
they aid in understanding of algorithms by hiding the (frequently obsolete)
implementation details. To this end, using multiple levels of algebraic models can be
useful – e.g. the highest level describes just general structure of algorithm, while
lower levels supply the implementation details (the example of such models is
described in Section 3).

After a high-level program model is created, we use the parallelizing transformations
to implement a parallel version of the program on a given platform. Transformations are
represented as rewriting rules and therefore can be applied in automated manner.
(Selection of loops that could be transformed is performed manually – we provide GUI
for exploring program models and marking selected loops with special mark symbols,
see Section 3.2.) The declarative nature of rewriting rules simplifies adding new
transformations. Also the transformations work with the high-level model elements (on
any level of abstraction), which means they are language-independent.

As our research goes on, we plan to collect a library of reusable transformations
that can be applied in different situations. Another goal is to provide the facilities
powerful enough to implement any reasonable transformation. If this goal is achieved,
the developer will be able to study an ideal manually created parallel version of a
program, implement (as rewriting rules) the transformations that produce this version
from a sequential program, and then reuse these transformations for other programs.
So far, this principle has worked for us: we were able to implement all possible
transformations for a simple problem (Gauss elimination, see Section 3) and then
reused one of them for a more complex problem (electron density, Section 4). Of
course, such simple case is not enough to validate our assumptions; in future, we plan
to study more complex code, such as parallel benchmarks.

Usage of high-level algebraic models also allows to prove the correctness of the
developed transformations [3]. Based on program models, we have developed the
algebra-dynamic models of program execution for multicore architecture using
discrete dynamic (transitional) systems [4]. For these models, we have (manually)
proved that each of the proposed code transformations is correct under certain
conditions, i.e. that initial and transformed programs are equivalent.

2.1 Algebraic Program Models

During all transformations we represent program code as an algebraic model. The
model of entire program consists of a set of procedures: 1{ ,..., }kP P P= . In case of

Fortran program, the procedures correspond to subroutines or functions. Each
procedure is described by an identifier (a name, unique within the program) and also
by a code model: (,)i i iP name code= . One procedure is designated as an entry point.

To model a code we use Glushkov algebra of algorithms [4]. Procedural code is
represented as an expression of the algebra. Glushkov algebra is the two-sorted
algebra (,)A Y U containing sets of operators Y and conditions (predicates) U.

Standard operations of the algebra are determined: logic operations of conjunction

42 A. Doroshenko and K. Zhereb

AND, disjunction OR and negation NOT, serial composition THEN, branching IF,
iteration (loop) WHILE. (To simplify model description, we denote ; a b a THEN b=).
On the sets of operators and conditions basic elements are defined, and then various
algebra expressions are built that can be described by compound operators and
conditions. Basic operators and conditions usually depend on a subject domain. The
common for all subject domains basic operator is a procedure call ()icall P .

Algebraic program models are used to hide implementation details and represent
only algorithmic structure of a program. Therefore, they could be considered
language-independent. In practice, target language (e.g. Fortran) has a significant
effect on the choice of basic operators and predicates. Still, if multiple language
support is needed, missing basic operators from one language can be implemented as
compound operators from the other.

2.2 Termware: Rewriting Rules Platform

Once the program model is built, we use rewriting rules to manipulate it, in particular
to analyze the model and automate its transformations. We use the rewriting rules
system Termware [15], initially written in Java and then ported to C#. The data in
Termware is represented as terms, i.e. tree-like expressions of a form ()1, , nf t t… ,

where it are either terms or simple types (numbers, strings, booleans). Algebraic

models of previous section have obvious representation as terms. Transformations are
described as Termware rules, i.e. expressions of form source [condition]->
destination [action].

Here source is a source term (a pattern that is matched across the whole input
model), condition is an additional condition of rule application, destination
is a transformed term, action is additional action that is performed when the rule
fires. Each of 4 components of a rule can contain variables (denoted as $var), so that
the rules are more generally applicable. The components condition and action
are optional. They can execute any procedural code implemented in Java or C# class
(Facts DB), in particular use the additional data on the program, e.g. identifiers table.

Termware supports a number of evaluation strategies, including TopDown (used in
this chapter), BottomUp and a possibility to implement additional strategies.
Termware system itself doesn’t check that the transformation process terminates,
however the rules used in this chapter are designed in such way that each model
element is processed at most once (the rules in Section 4.2 provide an example),
therefore the transformation process is guaranteed to terminate.

Termware could be compared to the functional programming languages such as
Haskell. Its main differences are:

• Termware is not supposed to be used as a standalone language, but rather as
a coordination part of a program written in Java or C#. Therefore, it lacks imperative
features, such as I/O. Such features, if needed, can be implemented through actions.

• Unlike many functional languages, Termware is not strictly typed. This
simplifies description of rules, although may have negative impact on performance.

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 43

In addition to rewriting system, our tools include parsers and generators for target
languages that perform transformation between source code and a low-level (syntax)
program model represented as Termware term. We have previously developed such
tools for C# language [3], [16]; now we have developed also a Fortran parser and
generator based on GCC Fortran Compiler.

2.3 Patterns

An important part of our transformation process is transformation between source
code and algebraic program models. As already mentioned, such transformation is
performed in two steps. First, source code is parsed and a syntax model is created.
Then the syntax model is transformed into an algebraic model using rewriting rules of
special type called patterns.

In general case a pattern is defined as a pair of rulesets: pR – for extraction of a

pattern from given term, gR – for expanding a pattern. In more specific case the

pattern is determined by a pair of terms pt – a designation of pattern (an element of

high-level model) and gt – an implementation of pattern (an element of low-level

model). In this case { }p g pR t t= → and { }g p gR t t= → .

For each of high-level operators we define a pattern consisting of the operator pt

and its implementation in terms of low-level model gt . Then to create a high-level

model from a low-level one we apply pR rulesets for each pattern. Similarly, we

apply gR rulesets for transformation from high-level to low-level model.

3 Parallelization for Shared-Memory Systems Using OpenMP

In this section we describe the process of parallelizing sequential Fortran programs
for parallel systems with shared memory, such as multicore processors. The source
code of Fortran programs is parallelized by replacing suitable loops with the parallel
loop constructs. To create multithreaded Fortran program we use OpenMP framework
[11]. OpenMP PARALLEL DO directives are used to parallelize loops. For simple
loops, just addition of such directive can produce quite efficient parallel code. In this
case there is additional advantage of keeping transformed parallel code similar to
existing sequential code. In more complex cases (when there is data dependency
between iterations) there is a need of more significant transformations, such as using
OpenMP library subroutines for advanced thread management. In such cases, the
transformed source code contains significant changes. However, usage of high-level
algebraic models allows describing these changes in concise and understandable form.

3.1 Program Example: Gauss Elimination

We will describe the details of our approach using as an example a Fortran program
implementing Gauss elimination algorithm for solving systems of linear algebraic

44 A. Doroshenko and K. Zhereb

equations. The Fortran source code was transformed into a low-level syntax model
using a parser we have developed, then into a high-level algebraic model using
Termware patterns. When working with legacy code, we found it useful to apply
several levels of patterns. First we used generic linear algebra patterns, such as vector
and matrix operations. The obtained algebraic model was language-independent, but
still quite detailed. Then we applied patterns specific to the problem in question. In
this way we obtained schematic representation of algorithm useful for its
understanding and deciding where parallelizing transformations should be applied.

The high-level model of a relevant code fragment has the following form:

 DoCnt(K,1,N-1,
 FindMaxElement; CheckDetZero; SwapMaxRowColumn;
 CalculateRow(K); UpdateElements)

We will parallelize only two of the operators present in the program, namely
FindMaxElement and UpdateElements. Other operators have less
computational complexity, therefore their parallelization is less effective.

3.2 Parallelizing Loops without Dependencies

Out of two operators, the simplest is UpdateElements, responsible for calculating
new values for elements of submatrix:

UpdateElements= DoCnt(I,K+1,N, Assign(S,A(I,K)),
 DoCnt(J,K,N+1, Update(A(I,J),S)))

Here, DoCnt denotes common DO loop with counter. The iterations of the outer
loop are independent, so this fragment is easily parallelized. We use the following
rewriting rule:

DoCnt($var,$start,$end,$body,_MARK_Parallel)->
 ParallelDoCnt($var,$start,$end,$body)

The user marks the loop to be transformed with a _MARK_Parallel symbol to
enable rule application. ParallelDoCnt operator is high-level model element
responsible for parallel loop. In particular, for OpenMP platform it is transformed into a
OmpParallelDo operator that describes OpenMP directive represented in Fortran as
a pair of special comments: !$OMP PARALLEL DO … !$OMP END PARALLEL DO.

Notice that for C language the same OmpParallelDo operator is represented as
a single pragma statement: #pragma omp parallel for. Therefore, using
multiple levels of patterns allows us to provide the operators that are common for
given platforms, use these generic operators in most rewriting rules and then
specialize them only when transforming the program model back into source code.

3.3 Reduction Case

While UpdateElements operator can be parallelized by simple application of
OpenMP directive, the other operator FindMaxElement is more complex. It has
the following form:

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 45

FindMaxElement= DoCnt(I,K,N,
 DoCnt(J,K,N,
 GetMaxIndex(Abs(A(I,J)),I,J,Max,Imax,Jmax)))

Iterations of the loop update the same set of variables (value of the maximum
element in submatrix Max and its indices Imax, Jmax). This is the case of
reduction, when some local values are calculated on each iteration and then merged
into one global value. OpenMP supports reduction loops with the REDUCTION
clause, however it supports only a set of predefined reduction operators: while finding
just maximum value can be accomplished using OpenMP directives, finding
maximum value and indices where it occurs is not directly supported.

Therefore we need to provide transformations that parallelize the loop in general case
of reduction. Our goal is to represent FindMaxElement as the following combination:

FindMaxElement=FindMaxElLoc1;… ;FindMaxElLocTN; FindMaxElReduct

On each thread we execute a local version of the operator (FindMaxElLoc1,…,
FindMaxElementLocTN), and then execute the reduction operator FindMaxElReduct
that combines the local values into one global value. In this case, the local operators
FindMaxElLoc1,…, FindMaxElementLocTN are independent and can be executed in
parallel.

In order to obtain such decomposition, we need to look at the structure of
GetMaxIndex operator:

GetMaxIndex(Val,I,J,Max,Imax,Jmax)=
 If(Val>Max,Assign(Max,Val);Assign(Imax,I);Assign(Jmax,J))

Let’s group the parameters of the operator in the following way: a=(Val,I,J),
b=(Max,Imax,Jmax) and denote GetMaxIndex(Val,I,J,Max,Imax,Jmax)=GMI(a,b).
Notice that the GMI operator is associative:

GMI(GMI(a,b),c)=GMI(a,GMI(b,c)

Therefore, we can split the matrix into a number of regions, compute GMI operator
on each of them (FindMaxElLoc operator) and then combine the obtained results
using the same GMI operator (FindMaxElReduct operator):

FindMaxElLoc(t)= DoCnt(I,K(t),N(t),
 DoCnt(J,K,N
 GetMaxIndex(Abs(A(I,J)),I,J,Max(t),Imax(t),Jmax(t))))

Here, t is a number of a thread, K(t),N(t) – bounds of a matrix region, assigned
to this thread, MAX(t),IMAX(t),JMAX(t) – the local versions of results.

FindMaxElReduct= DoCnt(t,1,nthreads,
 GetMaxIndex(Max(t),Imax(t),Jmax(t),Max,Imax,Jmax))

Therefore we use the following rules to parallelize FindMaxElement operator:

1. FindMaxElement-> Parallel(GetThreadParams;
 FindMaxElLoc); FindMaxElReduct

2. GetThreadParams->Assign(t,GetThreadNum);
 Assign(nthreads,GetThreads)

46 A. Doroshenko and K. Zhereb

3. FindMaxElLoc->ParallelDoCnt(I,K,N, DoCnt((J,K,N,
 GetMaxIndex(Abs(A(I,J)),I,J,
 Maxloc(t), Imaxloc(t), Jmaxloc(t)))

4. FindMaxElReduct-> DoCnt(t,1,nthreads,
 GetMaxIndex(Maxloc(t),Imaxloc(t), Jmaxloc(t),
 Max,Imax,Jmax)

The rule 1 describes decomposition of FindMaxElement operator into number
of FindMaxElLoc operators executed in parallel, followed by
FindMaxElReduct operator. The rule 2 is needed to save total number of threads
nthreads and position of current thread t that is used to store local copies of data.
Rules 3 and 4 implement FindMaxElLoc and FindMaxElReduct operators
using GetMaxIndex operator.

3.4 Optimizing Memory Performance

Both already described parallelizing transformations are aimed at the high-level
structure of algorithm. However, as we observed in [3], low-level implementation
details, e.g. memory access, can have a profound impact on the overall performance.

In the Gaussian elimination program we have observed the same effect. We noticed
that for certain sizes of input matrix (N=256*M) there was a sudden increase of the
execution time. We attribute this increase to the peculiarities of memory access:
namely, caching adjacent matrix elements. For such matrix size, the adjacent matrix
elements were put into the same cache items, therefore increasing the number of
cache misses and greatly reducing overall performance. To overcome this peculiarity,
we declare the matrix size as N+1 instead of N. The extra elements are not used in
calculations, but they change the location of the elements and improve the efficiency
of memory access. The transformation is implemented with the following rules:

1. [Declaration(N,Integer,$val):$next]->
 [Declaration(N,Integer,$val):
 [Declaration(MN,Integer,$val+MShift($val)): $next]]

2. MShift($val) [$val%32==0]->1 !->0
3. Declaration(A,Array(Double,[N,N+1]))->

 Declaration(A,Array(Double,[MN,MN+1]))
4. Procedure($name,[N:[A:$next]])->

 Procedure($name,[N:[MN:[A:$next]]])
5. [Parameter(N,Integer,In):$next]->[Parameter(N,Integer,

 In): [Parameter(MN,Integer,In):$next]]
6. Call($name,[N:[A:$next]])->

 Call($name,[N:[MN:[A:$next]]])

The rule 1 adds a new parameter, MN, denoting declared matrix size. (Currently
variable name is provided by the developer who should ensure that it does not
coincide with existing variables. In future versions of Termware we plan to provide
the means to query already defined variables in any point of program and to generate
a variable name that was not defined.) The rule 2 specifies for which values of matrix
size the transformation should be applied. It uses an extension of basic rule syntax:
src[cond]->dest1 !-> dest2, meaning that src is transformed into dest1

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 47

if cond holds, and into dest2 otherwise.. The rule 3 modifies matrix declaration to
use new size MN instead of N. Rules 4-6 propagate new parameter to all procedures,
procedure parameters and procedure calls.

Notice that rules 4-6 are applied multiple times in a single program: for each
procedure definition (rules 4-5) and for each procedure call (rule 6). One of the
advantages of rewriting technique is that single rule can describe changes in multiple
places, reducing the effort to make the changes and preventing the mistakes possible
when applying such changes manually. Notice also that rules 1-6 work on a lower
level of abstraction compared with previously described rules. The ability to describe
transformations on different model levels is another advantage of proposed approach
allowing to describe different types of transformations with the same tools.

4 Real-World Example: Electron Density Program

After developing our tools on a sample problem (Gauss elimination) we have tried
them on a real-world program in the area of quantum chemistry. The program
calculates electron and spin density in atoms of polycyclic aromatic hydrocarbons on
a N*N grid [29]. The size of the program is 1680 lines of Fortran code. Source code is
not well structured – actual calculations are mixed with I/O operations, debug code
and some hardcoded data. Also it contains mix of features from different versions of
language – from Fortran 77 to Fortran 95. Therefore usage of high-level algebraic
models helped us to understand this legacy code and apply parallelizing
transformations in the most efficient way.

4.1 Finding Hotspots Using Profiler

We were able to reuse the parallelizing transformations developed for Gauss
elimination program also in electron density program. Only the first, most simple loop
transformation was applied. However, the challenge was to select the most suitable
loop for this transformation, as the program contained 54 loops and trying all of them
was not a feasible option. To this end, we have used a profiler tool, Intel VTune
Amplifier [7], to find hotspots in source code.

The most computationally intensive part of the program resided in the ELDENS
subroutine, responsible for the calculation of electron density in a given point of a
grid. The calculations are rather simple, but they are nested in multiple loops and
therefore executed repeatedly. Fig. 1 shows the results obtained by the profiler.

Using a profiler tool provides dynamic analysis capabilities that complement static
analysis performed by means of algebraic models and rewriting technique. In this
way, runtime behavior of a program can be analyzed. The drawback of such an
approach is dependency on input data: if program behavior can vary significantly
depending on inputs (e.g. because of branching), such analysis becomes unreliable.
However, for many applied problems the computationally intensive parts of algorithm
are the same for all possible inputs.

4.2 Finding a Set of Enclosing Loops

After the hotspots have been found, we need to decide how we can parallelize them.
Our transformations work by parallelizing loops; therefore, we need to find the loop

48 A. Doroshenko and K. Zhereb

that encloses the found hotspots and can be parallelized. The easiest approach would
be to take the closest (innermost) loop. It can be easily identified manually, just by
looking at source code (in Fig. 1, this loop spans lines 1010-1015 and starts with do
j=ia,i statement).

Fig. 1. Results of the profiler tool

However, such approach is inefficient, because of the following reasons:

• Some of the statements that do not belong to this loop are also quite
computationally intensive (see, e.g., lines 1007, 1008, 1016 in Fig.1).

• The loop itself is quite small and it is repeated multiple times. In OpenMP,
an end of a parallel loop is a synchronization point, therefore, the synchronization
overhead will be quite significant. (The advantages of choosing the outer loops for
parallelization have been discussed in literature [49]; see also the discussion in
Section 5.3)

Therefore, we would like to obtain all loops enclosing the hotspot code fragments.
This includes both the loops inside ELDENS procedure and the loops in other
procedures that call ELDENS. To find all such loops, we can use rewriting rules. We
mark the discovered hotspot fragments by wrapping the corresponding model element
inside _MarkHotspot term. The following rules were used:

1. [_MarkHotspot($x):$y] -> _MarkHotspot([$x:$y])
2. [$x:_MarkHotspot($y)] -> _MarkHotspot([$x:$y])
3. DoCnt($var,$start,$end, _MarkHotspot($body)] ->

_MarkHotspot(DoCnt($var,$start,$end,$body,
_MARK_CAND_PARALLEL))

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 49

4. Procedure($name, $params, $return,_MarkHotspot($body))
-> Procedure($name,$params,$return,$body,_MARK_PASSED)
[addItem($name)]

5. Call($name,$params) [hasItem($name)] ->
 _MarkHotspot(Call($name,$params))

Here, the rules 1 and 2 are used to spread the mark to neighbor elements within the
same loop. The rule 3 is activated once the whole loop body is marked; it marks the
loop with a _MARK_CAND_PARALLEL symbol and promotes _MarkHotspot to a
higher level. The rules 4 and 5 are needed to perform interprocedural analysis. The
rule 4 activates when the whole body of a procedure is marked; it saves procedure
name using addItem() method. Procedure name is stored in the Facts DB
associated with the ruleset and used in the rule 5: when one of the procedures that
contain hotspots in called, it is also marked with a _MarkHotspot term. In order to
guarantee that the rewriting process terminates, the rule 4 marks processed procedure
with a _MARK_PASSED symbol. Therefore, the rule applies to each procedure at
most once.

By applying the rewriting rules, we obtained 6 candidate loops that should be
considered for parallelization. In this way, using combination of static analysis
(rewriting rules) and dynamic analysis (profiler), we were able to reduce number of
possible loops from 54 to 6.

4.3 Selecting a Loop for Parallelization

The candidate loops have the following structure:

DO IB=1, NZ
DO KD=1, NY

DO MS=1, NX
CALL ELDENS

SUBROUTINE ELDENS
DO II=1, NATOMS

DO I=IA, IB
DO J=IA, I

<hotspot>

When choosing the loops for parallelization, we use the following guidelines:

• try to parallelize the outermost loop, as it will both include the larger amount
of code and reduce number of synchronizations (as described in Section 4.2)

• ignore the loops that cannot be parallelized (e.g. because of dependencies
between loop iterations)

• ignore small loops (with a number of iterations less than a number of cores).

According to these guidelines, we ignore the outermost loop (on IB), as in input data
often NZ=1. The second loop (on KD) can be parallelized using OpenMP directives,
so we use it as the transformation target.

50 A. Doroshenko and K. Zhereb

5 Performance Evaluation

To evaluate the effects of the developed transformations, we have measured the
performance of different versions of the two programs. All measurements were
performed on a shared memory parallel system with Intel Core2 Quad Q8200 CPU (4
cores, 2.33 GHz) and 4GB DDR2 RAM. Programs were compiled using Intel Fortran
Compiler 12.1 (included in Intel Parallel Studio XE 2011).

5.1 Gauss Program

For the Gauss program, we have compared the performance of 4 versions: an initial
sequential program (SEQ), a parallel program with the UpdateElements operator
parallelized (PAR1), a parallel program with both UpdateElements and
FindMaxElement operators parallelized (PAR2), and a program with both
operators parallelized and memory optimization applied (MEM). The measurements
were performed for matrix sizes from 256 to 2048, for multiples of 256 only (to
demonstrate the difference of MEM program; for other values of N, the behavior of
the MEM program is the same as the PAR2 program). Obtained speedup (compared
to the SEQ program) is shown on Fig. 2.

Fig. 2. Speedup of the transformed programs (Gauss elimination)

As can be seen from the diagram, all transformations result in some performance
increase, although their effect differs. For small matrix sizes, both PAR1 and PAR2
show some noticeable speedup, while MEM is not very effective and is very close to
PAR2. However, for larger matrix sizes (N>1024), the situation changes. PAR1 and
PAR2 become less efficient, close to SEQ (this effect holds for the multiples of 256
only; for the data related to other values, see Section 5.3). However, MEM becomes
much more efficient and demonstrates the speedup of more than 10X. Therefore both
high-level transformations of algorithms and taking care of low-level implementation
details are necessary to obtain the efficient parallel programs. Measurement results
also demonstrate the complex dependency of the execution time on real parallel
systems, as compared to ideal theoretical models that suggest a simple O(N3)
dependency.

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 51

5.2 Electron Density Program

For the electron density program, we have compared the execution time of the initial
sequential program (SEQ) and the parallelized program (PAR) for grid dimensions N
from 200 to 800 (see Fig. 3).

Fig. 3. Comparison of initial and transformed program (electron density)

Applying transformations has resulted in quite significant speedup – from 3.3X to
3.6X (depending on the problem size) on a 4-core system.

5.3 Comparison with Auto-Parallelizing Tools

In order to compare our approach with other parallelization solutions for Fortran, we
have used two popular tools for automatic parallelization: Intel Fortran Compiler [7]
and Par4All source-to-source transformation tool [51]. Both tools were used to
parallelize the initial sequential version of the Gauss elimination program.

In case of Intel Fortran Compiler, we used the following parameters related to
parallelization: enable parallelization (/Qparallel); threshold for auto-parallelization
(/Qpar-threshold:70); interprocedural optimization (/Qipo); optimization level
(/O3); complete auto-parallelizer report (/Qpar-report3). By running the compiler
with these parameters, we obtained a parallelized executable file and also a
parallelization report, describing the loops that were parallelized.

Par4All tool was used without additional parameters and produced a new version
of Fortran code with OpenMP directives inserted for some of the loops. However, we
had to slightly modify the source code: in particular, the Fortran 95 variable
declarations and comments were changed to the Fortran 77 format. The obtained
OpenMP code was compiled using Intel Fortran Compiler.

We have measured the performance of 5 versions of Gauss elimination program:
SEQ – an initial sequential version; PAR1 – a parallel program with the
UpdateElements operator parallelized; PAR2 – a parallel program with the both
UpdateElements and FindMaxElement operators parallelized; COMP – a
program parallelized using Intel Fortran Compiler (same source code as for the SEQ
version, but compiled with different parameters); P4A – a program parallelized with a
Par4All tool. We have excluded from this comparison the MEM version (with
memory access optimizations), as such optimization is not supported by parallelizing
tools, and also it only works for selected values of matrix size. The speedup of the
parallel versions (compared to the initial SEQ version is shown on the Fig. 4.

52 A. Doroshenko and K. Zhereb

Fig. 4. Comparison with auto-parallelizing tools

As can be seen from the experimental results, the automatic parallelization
approach provides a speedup of about 1,5X for large matrix sizes (N>1000). Both
Intel Fortran Compiler and Par4All tool provide very close results (although Intel
Fortran Compiler is slightly better for large matrix sizes). Indeed, looking at the tools
output (transformed source code with OpenMP directives in case of Par4All and
parallelization report in case of Intel Fortran Compiler), we can see that they have
parallelized the same loops. When comparing the results of the auto-parallelization
tools with our transformations (implemented in the PAR1 and PAR2 programs), the
following key differences can be identified:

1. The auto-parallelizing tools have parallelized many small loops, such as those in
the SwapMaxRowColumn and CalculateRow(K) operators, and also
outside of the code fragment that we considered. Our approach was to select only
the most computationally intensive, O(N3) loops, because they provide noticeable
speedup. We have ignored O(N2) and O(N) loops in order to simplify transformed
code, while the automatic tools have processed them (this difference between
fully automated and semi-automated parallelizing tools is noted also in [49]).
However, the difference in performance from these loops is negligible, at least
for the range of matrix sizes that we have measured. It may become significant
for small matrix sizes (N<100), but in such cases parallelization is not efficient
and the sequential program performs better anyway.

2. In the UpdateElements operator, the auto-parallelizing tools have parallelized
the inner loop, but not the outer loop. Parallelizing inner loop is less efficient
because of the synchronization overhead, as already discussed in Section 4.2. In
fact, this decision accounts for the difference between the performance of the
auto-parallelized COMP and P4A versions, and the PAR1 version obtained using
our approach (about 1,2X performance improvement). This difference illustrates
the tendency of the fully automated tool to make more conservative decisions,
e.g. to ignore the loop if the dependency analysis hints that there may be a
dependency between loop iterations, rather than try to use more sophisticated
analysis to prove that there is in fact no dependency.

3. The FindMaxElement operator was not parallelized by the auto-parallelizing
tools. This accounts for the difference between the PAR1 and the PAR2 versions,

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 53

which is quite significant (about 2X performance improvement). Such difference
illustrates that the selected auto-parallelizing tools were unable to perform more
complex transformations, changing not only loop indices, but also loop bodies.

The biggest advantage of the auto-parallelizing tools compared to our approach is the
full automation of the transformation process. The only input required from the user
(apart from the sequential source code) is the choice of the parameters. In our
approach, the user has to provide the following additional input: what loops should be
parallelized, what transformations should be used, and if the desired transformation is
not available, it should be described using Termware system.

However, as was demonstrated in Section 4, the loop selection can be sufficiently
automated using the combination of static analysis with rewriting rules and dynamic
analysis with a profiler. As for implementing transformations, the high-level nature of
the algebraic program models and the declarative style of the Termware language
simplify creation of new transformations. Also, as our research progresses, we plan to
build a library of reusable transformations, so that the user can either apply an
existing transformation “as is”, or use it as a starting point to create a new
transformation.

6 Related Work

There has been an extensive research in the area of parallelizing existing sequential
Fortran code, in particular for multicore architectures. Historically, the Fortran
language was used to solve complex computational problems in scientific and
engineering domain. As such problems benefit the most from the parallelization, it is
natural that emerging parallel systems supported Fortran and provided the means to
express parallelism in this language [6]. As the technology matured, a standardization
of different vendor-specific extensions became an important topic [27]. Also with the
increase in program size and complexity, the means for automating parallel
programming were developed [26]. Very important for the Fortran programmers is
dealing with the legacy code [48], as a huge amount of code has been created during
more than 50 years of Fortran history, most of it no longer supported by original
developers, but still valuable to the research community. Recently, with the appearance
of the new parallel platforms, such as multicore processors [9], GPUs [18] and Cell
processors [24], programming such devices using Fortran has been studied [5].

The Fortran parallelization solutions can be divided, according to their level of
automation, into the following groups:

1. Manual parallelization. These approaches provide the means for the user to
explicitly describe parallelism.

2. Semi-automated parallelization. Some parallelization steps are automated, still
non-trivial input from the user is required. Our approach belongs to this group.

3. Fully automated parallelization. The tool requires only source code and possibly
some configuration as an input, and produces a parallel program without user
intervention.

54 A. Doroshenko and K. Zhereb

Manual parallelization approaches provide the programming model to divide a
program into parallel tasks, coordinate execution of these tasks and data exchange
between them. Such model can be implemented in form of a parallel library, such as
the widely used for distributed memory systems MPI library [47]. For the multicore
platform, there are parallel libraries such as Intel TBB [44] for C++ or TPL [31] for
.NET languages. Domain-specific and highly optimized libraries, e.g. LAPACK [2]
and ATLAS [52] for linear algebra, are widely used to implement specific functions.

More popular in Fortran community is describing parallelism using language
extensions. For shared memory systems, the most used programming model is
provided by OpenMP [11]. Recently, similar language extensions have been proposed
for distributed memory systems – XcalableMP [35] and for GPU programming –
HMPP [14]. Previously developed Fortran parallel extensions include HPF [27], Co-
Array Fortran [36] and others. Using language extensions simplifies transforming a
sequential source code into a parallel code: only small regions of code have to be
modified. Also they preserve familiar language style, therefore simplifying the
understanding of a parallel code.

Yet another approach is using new, specially constructed parallel languages, such
as X10 [46], Chapel [10], Fortress [1]. Such languages were specifically designed for
parallel programming; therefore they provide powerful features for creating new
programs. However, using such languages with legacy code requires rewriting large
portions of code, which is usually not possible.

In general, manual parallelization approaches allow obtaining the most efficient
code, but require significant effort from the programmer in order to learn new
programming model and implement it correctly and efficiently.

Semi-automated parallelization approaches try to reduce the effort required from
the programmer by automating some steps of the parallelization, yet retain the high
efficiency of the obtained code by delegating the most significant decisions to the
programmer. An important research direction is interactive parallelization,
represented by such tools as SUIF Explorer [33], PIPS [22], iPat/OMP [23],
ParaScope editor [28], HPFIT [8], Paralax [50] and others. These tools include the
capabilities of auto-parallelizing compilers, such as dependency analysis, detection of
loops for paralellelization, code transformations. They also provide a way for the
programmer to influence the parallelization process, using graphical user interface
(SUIF Explorer and others), annotations (Paralax) or scripting (PIPS).

An interesting approach proposed by Tournavitis et al. [49] combines static
analysis of data dependencies, dynamic analysis of runtime profiles to detect the
missed parallelization opportunities, and machine learning to specialize the parallel
program for concrete execution platforms. Our approach is similar, although more
limited in scope – we do not (yet) use the machine learning techniques, and our
system currently supports fewer transformations. The difference of our approach from
[49] and other interactive parallelizing solutions lies in the usage of rewriting rules
system as an implementation language for the transformations, which significantly
simplifies the addition of the new transformations.

Another research area related to semi-automated parallelization is refactoring of
Fortran code [38], i.e. code transformations that do not change the behavior of the

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 55

program, but improve the code structure. The tool implementing source-to-source
transformations can be used both for refactoring and for parallelization [32], [42]. The
popular refactoring tools for the Fortran language include Photran [39] and ROSE
[43]. As reported in [48], using refactoring tools before parallelization improves the
efficiency of the parallelizers, as static analysis benefits from more clear and
understandable code structure. Notice that such tools operate on AST level, while our
approach uses higher-level and more concise algebraic models of source code. The
capabilities of our tools should be sufficient to implement refactoring transformations,
although we haven’t attempted it yet. Refactoring could be useful for our legacy code
program (electron density) – we haven’t performed it as we tried to stay as close as
possible to the original source code that is well known and understood by existing
users of the program.

The third group of approaches is fully automated parallelization, as exemplified by
the parallelizing compilers [26]. These approaches try to relieve the programmer from
parallelizing sequential code by detecting and parallelizing the suitable code fragments
(mostly the loops without data dependencies between iterations). The popular recent
parallelizing compilers for the Fortran language include the commercial Intel Fortran
Compiler [7] and Portland Group (PGI) compiler [41], and the open-source OpenUH
[21] and Omni OpenMP [30] compilers. Significant previously developed compilers
include Rice Fortran D compiler [19] and Vienna Fortran Compiler [12].

Some source-to-source transformation tools also work in a fully automated
manner. The recent Par4All tool [51] provides fully automated interface to PIPS [22]
and transforms sequential C and Fortran code by inserting OpenMP directives. By
using this tool, the programmer can quickly transform existing code without learning
PIPS transformations and scripting. Many research parallelizing compilers are also
implemented as source-to-source transformations, including Omni OpenMP [30] and
Rice Fortran D compilers [19]. Source-to-source transformations allow studying (and
possibly modifying) the compiler output in a more convenient way, compared to the
parallelization reports.

While the fully automated tools greatly improve the programmer’s productivity,
they often produce inefficient code [48], [49]. Therefore, using semi-automated
approaches is more practical, at least for the current state of research.

There is also an extensive research of various methods and techniques that can be
used in parallelization tools, either fully or semi-automated. This research area
includes static analysis [25], [40], dynamic analysis [20], [37], [45], performance
analysis [34], auto-tuning [13], [52], machine learning [49] etc. Our system currently
does not use such advanced approaches, which limits its applicability, especially
when dealing with complex legacy code. In future, we plan to include such
approaches, both to improve the capabilities of our tool and to validate the possibility
of implementing advanced techniques using rewriting rules system.

7 Conclusion

In this chapter we have described our approach for parallelizing Fortran programs by
applying formalized program transformations to existing sequential Fortran code.

56 A. Doroshenko and K. Zhereb

Using rewriting rules technique automates application of the transformations and
prevents mistakes that can appear when applying changes to source code manually.
High-level algebraic models simplify understanding of legacy programs and their
transformations, and enable transformation on different levels of abstraction. We have
applied our approach both to the simple program implementing Gauss elimination
algorithm and to the real-world quantum chemistry problem (calculating electron
density). Performance measurements demonstrate significant speedup for both
programs. We also compare our approach to automated parallelizing solutions,
demonstrating the benefits of semi-automated parallelization.

Further research directions include development of additional transformations for
the shared memory systems, as well as using the same approach for transforming
legacy Fortran applications to target distributed memory systems and GPUs. Our
future plans also include extension to Grid and cloud-based platforms. Also we are
planning to improve support for large and complex Fortran programs, in particular
automate selection of most suitable place of application for transformations.

References

1. Allen, E., et al.: The Fortress language specification version 1.0. Sun Microsystems (2006)
2. Anderson, E., et al.: LAPACK Users’ guide, 3rd edn. Society for Industrial and Applied

Mathematics, Philadelphia (1999)
3. Andon, P., Doroshenko, A., Zhereb, K.: Programming high-performance parallel

computations: formal models and graphics processing units. Cybernetics and Systems
Analysis 47(4), 659–668 (2011)

4. Andon P.I., Doroshenko, A.Y., Tseitlin, G.O., Yatsenko O.A.: Algebra-algorithmic models
and methods of parallel programming. Academperiodika, Kiev (2007) (in Russian)

5. Asanovic, K., et al.: A view of the parallel computing landscape. Communications of the
ACM 52(10), 56–67 (2009)

6. Backus, J.: The history of FORTRAN I, II, and III. SIGPLAN Not. 13(8), 165–180 (1978)
7. Blair-Chappell, S., Stokes, A.: Parallel Programming with Intel Parallel Studio XE. John

Wiley & Sons, Hoboken (2012)
8. Brandes, T., et al.: HPFIT: a set of integrated tools for the parallelization of applications

using High Performance Fortran. PART I: HPFIT and the TransTOOL environment.
Parallel Comput. 23(1-2), 71–87 (1997)

9. Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Luszczek, P., Tomov, S.: The Impact of
Multicore on Math Software. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J.
(eds.) PARA 2006. LNCS, vol. 4699, pp. 1–10. Springer, Heidelberg (2007)

10. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the chapel
language. International Journal of High Performance Computing Applications 21(3), 291–
312 (2007)

11. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared memory parallel
programming. The MIT Press, Cambridge (2007)

12. Chapman, B., Mehrotra, P., Zima, H.: Programming in Vienna Fortran. Sci. Program. 1(1),
31–50 (1992)

13. Datta, K., et al.: Stencil computation optimization and auto-tuning on state-of-the-art
multicore architectures. In: ACM/IEEE Conference on Supercomputing, SC 2008, pp. 1–
12. IEEE Press, Piscataway (2008)

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 57

14. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core parallel programming
environment. Technical report, CAPS Enterprise (2007)

15. Doroshenko, A., Shevchenko, R.: A Rewriting Framework for Rule-Based Programming
Dynamic Applications. Fundamenta Informaticae 72(1), 95–108 (2006)

16. Doroshenko, A., Zhereb, K., Yatsenko, O.: Formal Facilities for Designing Efficient GPU
Programs. In: International Conference on Concurrency Specification and Programming
(CS&P 2010), Bornicke, pp. 142–153 (2010)

17. Doroshenko, A.Y., Zhereb, K.A., Tyrchak, Y.M., Khatniuk, A.O.: Creating Efficient
Parallel Programs in Fortran Using Rewriting Rules Technique. In: International
Conference on High-Performance Computations (HPC-UA 2011), Kyiv, pp. 76–83 (2011)
(in Russian)

18. Henderson, T., et al.: Experience Applying Fortran GPU Compilers to Numerical Weather
Prediction. In: 2011 Symposium on Application Accelerators in High-Performance
Computing, pp. 34–41. IEEE Computer Society, Washington (2011)

19. Hiranandani, S., Kennedy, K., Tseng, C.-W.: Compiling Fortran D for MIMD distributed-
memory machines. Commun. ACM. 35(8), 66–80 (1992)

20. Hoefler, T., Schneider, T.: Communication-centric optimizations by dynamically detecting
collective operations. In: 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 305–306. ACM, New York (2012)

21. Huang, L., Eachempati, D., Hervey, M.W., Chapman, B.: Exploiting global optimizations
for OpenMP programs in the OpenUH compiler. SIGPLAN Not. 44(4), 289–290 (2009)

22. Irigoin, F., Jouvelot, P., Triolet, R.: Semantical interprocedural parallelization: an
overview of the PIPS project. In: 5th International Conference on Supercomputing, pp.
244–251. ACM, New York (1991)

23. Ishihara, M., Honda, H.: Development and implementation of an interactive parallelization
assistance tool for OpenMP: iPat/OMP. IEICE Transactions on Information and
Systems 89(2), 399–407 (2006)

24. Keir, P., Cockshott, P.W., Richards, A.: Mainstream Parallel Array Programming on Cell.
In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M.,
Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L.,
Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 260–269.
Springer, Heidelberg (2012)

25. Kejariwal, A., et al.: Cache-aware partitioning of multi-dimensional iteration spaces. In:
SYSTOR 2009: The Israeli Experimental Systems Conference, pp. 15:1–15:12. ACM,
New York (2009)

26. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann, San Francisco (2002)

27. Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of High Performance Fortran. In: 3rd
ACM SIGPLAN Conference on History of Programming Languages (HOPL III), pp. 7:1–
7:22. ACM, New York (2007)

28. Kennedy, K., McKinley, K.S., Tseng, C.W.: Interactive parallel programming using the
ParaScope Editor. IEEE Transactions on Parallel and Distributed Systems 2(3), 329–341
(1991)

29. Khavryuchenko, V.D., et al.: Quantum chemical study of polyaromatic hydrocarbons in
high multiplicity states. International Journal of Modern Physics B 21(26), 4507–4515
(2007)

30. Kusano, K., Satoh, S., Sato, M.: Performance Evaluation of the Omni OpenMP Compiler.
In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.) ISHPC 2000. LNCS,
vol. 1940, pp. 403–414. Springer, Heidelberg (2000)

58 A. Doroshenko and K. Zhereb

31. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In: 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA 2009), pp. 227–242. ACM, New York (2009)

32. Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-Based OpenMP 3.0
Research Compiler Supporting Multiple Runtime Libraries. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 15–28. Springer, Heidelberg (2010)

33. Liao, S.-W., et al.: SUIF Explorer: an interactive and interprocedural parallelizer. In: 7th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 37–
48. ACM, New York (1999)

34. Liu, X., et al.: Automatic performance debugging of SPMD-style parallel programs.
Journal of Parallel and Distributed Computing 71(7), 925–937 (2011)

35. Nakao, M., Lee, J., Boku, T., Sato, M.: Productivity and Performance of Global-View
Programming with XcalableMP PGAS Language. In: 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), pp. 402–409. IEEE
Computer Society, Washington (2012)

36. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. ACM SIGPLAN
Fortran Forum 17(2), 1–31 (1998)

37. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop parallelization. In:
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 509–520. ACM, New York (2012)

38. Overbey, J., Xanthos, S., Johnson, R., Foote, B.: Refactorings for Fortran and high-
performance computing. In: Proceedings of the Second International Workshop on
Software Engineering for High Performance Computing System Applications, pp. 37–39.
ACM, New York (2005)

39. Overbey, J.L., Fotzler, M.J., Kasza, A.J., Johnson, R.E.: A collection of refactoring
specifications for Fortran 95. SIGPLAN Fortran Forum 29(3), 11–25 (2010)

40. Paek, Y., Hoeflinger, J., Padua, D.: Efficient and precise array access analysis. ACM
Transactions on Programming Languages and Systems (TOPLAS) 24(1), 65–109 (2002)

41. Portland Group PGI Compiler, http://www.pgroup.com/
42. Preissl, R., et al.: Transforming MPI source code based on communication patterns. Future

Gener. Comput. Syst. 26(1), 147–154 (2010)
43. Quinlan, D.J.: ROSE compiler infrastructure, http://rosecompiler.org/
44. Reinders, J.: Intel Threading Building Blocks: outfitting C++ for multi-core processor

parallelism. O’Reilly Media, Inc., Sebastopol (2007)
45. Rus, S., Pennings, M., Rauchwerger, L.: Sensitivity analysis for automatic parallelization

on multi-cores. In: 21st Annual International Conference on Supercomputing (ICS 2007),
pp. 263–273. ACM, New York (2007)

46. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for modern
architectures. In: 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, p. 271. ACM, New York (2007)

47. Snir, M., et al.: MPI: The complete reference. MIT Press, Cambridge (1995)
48. Tinetti, F.G., Méndez, M.: Fortran Legacy software: source code update and possible

parallelisation issues. SIGPLAN Fortran Forum 31(1), 5–22 (2012)
49. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.P.: Towards a holistic approach to

auto-parallelization: integrating profile-driven parallelism detection and machine-learning
based mapping. ACM SIGPLAN Notices 44(6), 177–187 (2009)

 Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique 59

50. Vandierendonck, H., Rul, S., De Bosschere, K.: The Paralax infrastructure: automatic
parallelization with a helping hand. In: 19th International Conference on Parallel
Architectures and Compilation Techniques, pp. 389–400. ACM, New York (2010)

51. Ventroux, N., et al.: SESAM/Par4All: a tool for joint exploration of MPSoC architectures
and dynamic dataflow code generation. In: Proceedings of the 2012 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools, pp. 9–16. ACM, New York
(2012)

52. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In: 1998
ACM/IEEE Conference on Supercomputing, pp. 1–27. IEEE Computer Society,
Washington (1998)

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 60–71, 2013.
© Springer-Verlag Berlin Heidelberg 2013

University as a Corporation
Which Serves Educational Interests

Alexander Spivakovsky, Lyudmila Alferova, and Eugene Alferov

Kherson State University, 27, 40 Rokhiv Zhovtnya St., Kherson, 73000, Ukraine
{Spivakovsky,alferov_jk}@ksu.ks.ua, kuznetsova.mila@gmail.com

Abstract. This chapter focuses on analyzing the structure of a university as a
corporation – a complex organizational and functional mechanism which serves
educational interests. It suggests that looking at a university as a specific
business corporation helps better understand, more accurately plan, and
seamlessly implement the transformation of a university towards better meeting
the requirements of academic reform and the society at large. It is demonstrated
that managing a university as a corporation is more complex compared to
conventional business because of bigger diversity of different aspects and facets
to be regarded in a balanced and harmonized way. A conclusion is drawn that
an Information Technology and Analytics infrastructure is imperative as an
instrument for managing a university at all levels. Finally the evidence is given
of a successful trial of this management model and approach in real world
settings at Kherson State University during the last several years – in particular
for training professionals in our Computer Science and IT programme.

Keywords: university, corporation, IT infrastructure, management, labor
market, academic reform competence, education process.

1 Introduction

University management today faces several difficult issues in transforming their
organizations towards being more effective, efficient, and competitive. One of
important instruments in optimizing the performance of a university is Information
Technologies (IT). Indeed, an IT infrastructure is a backbone which shapes the way
several important questions in strategic and operational management are answered.
Therefore the result of a proper deployment of IT components, implementation and
proper configuration of an integrated IT infrastructure for a university needs to be
regarded as one of the top priority assets influencing the performance of the whole
organization. Under this facet university management needs to make several
important decisions on: the configuration of investments into strategic development,
IT in particular; specification, unification, harmonization, and deployment of business
processes in management at all levels; a proper superimposition of those business
processes on to the IT infrastructure; use of IT for making the processes and results of
management activity more transparent to the employees, students, and society; and,

 University as a Corporation Which Serves Educational Interests 61

last but not least, introducing appropriate incentives to managers at all levels for
lowering their acceptance barriers with respect to new IT, working patterns, and style.

Resolving all these important issues in a harmonized and balanced way allows
expecting a considerable increase in management performance – with positive
implications to improvement in university competitiveness. For that, regarding a
university as a corporation with specific inputs, objectives, and outputs may be
helpful. If so, the methods, patterns, and best practices of corporate management may
be tested at a university, hence adopting at academia better flexibility and adaptability
of business organizations to market and economy changes.

The remainder of this chapter is structured as follows. Section 2 presents our
motivation for the reported research in more detail and defines the focus – IT
management. The related work is briefly reviewed in Section 3. Section 4 presents our
main contribution – the model of a university as a corporation which serves
educational interests. Section 5 presents our results in validating this model by
applying it to IT management at Kherson State University (KSU) in a real world case
study. Our conclusions are drawn and plans for the future work outlined in Section 6.

2 Motivation

In this chapter we explore the idea of adopting corporate management style and
pattern at a University and elaborate it in a form of a model. A university in our
approach to shape out its management is regarded as a corporation which serves
educational interests. The focus on this specificity straightforwardly allows us to
choose appropriate inputs, objectives, and outputs for management processes.

A university, very similarly to a corporation, is a big and complex organization
with many important facets in management: human resources; finance; materials and
procurement, teaching; research, development, and intellectual property; student
government; public relations; etc. Successful and productive management of all these
diverse aspects of university life is heavily based on collecting, processing, analyzing,
and communicating information. Therefore, IT and information management needs to
be regarded as a first priority activity in this broad spectrum. This premise motivated
us to choose IT management as the focus of our research.

One of important strategic level corporate management tasks is to develop a
pathway for a university to maintain or even increase competitiveness on the market.
The same is fairly true for universities today – the environment is the market of
educational services. The complications at this market are its volatility and a tendency
of toughening the requirements to university graduates in terms of the quality of their
professional capabilities. These specificities imply that a well-managed university
behaves like a business corporation – is adaptive to emerging loci of influence,
redistribution of those influences. Adaptation mechanisms are incorporation of
external units or bodies in the university structure, inclusion of these new units in
decision making processes, adoption and adaption of new approaches, mechanisms,
workflows, and policies for better decision making. For example a tendency today is
involving students and staff in decision making processes as first class citizen with
capability and authority proportional to university management. These changes

62 A. Spivakovsky, L. Alferova, and E. Alferov

factually trigger the transformation of the behaviors of different groups of people
contracted to a university to a corporate behavior.

In the settings circumscribed above the role of IT managements receives substantial
importance. Effective and efficient IT management allows quickly and adequately
implement required changes – both in management strategies and operations – with
substantially less effort and in shorter time. So the overall performance of university
management increases and the organization becomes more responsive and adaptable to
environmental changes reflecting the evolution of societal needs.

Consequently, perceiving a university as a corporation which serves educational
interests of its students allows to shift the emphasis of university educational service
from traditional communication of knowledge from a professor to his students to
establishing an educational environment or infrastructure. This infrastructure provides
much richer opportunities both for a tutor and a student. For a tutor it facilitates
creating all the necessary educational information resources and substantially
extended interface for communication. For a student it guarantees right-on-time
delivery of personalized educational material in the contexts of different disciplines
and in different modalities. Straightforwardly, Information and Communication
Technology (ICT) infrastructure and tools play a very important role in that as an
instrumental basis of the outlined educational infrastructure that facilitates better
satisfying intellectual requirements of all involved categories of knowledge workers.

Our extensive analysis of the published best practices of university management
unfortunately did not reveal reliable and robust methods for measuring effectiveness
and efficiency (i.e. performance) of IT management in academia. To the best of our
knowledge, the influence of introducing performance measurement practice on the
improvement of IT support to the abovementioned facets of academic activities – in
particular organizational and process optimization, strategy development, decision
making, and ultimately, the professional capabilities of the graduates. Therefore we
hypothesized that adopting a corporate management model (where all the required
metrics, mechanisms, and best practices are in place) to university IT management
will provide a desired outcome. We believed that such a hypothesis may be
formulated also because universities cooperate with industry in many aspects and
adapt this interface to industrial standard. One of relevant examples is involvement of
business leaders in creating and developing new organizational capabilities at
academia for better integration into the labor market and prompter reaction to market
requirement to the major academic product – their graduates looking for employment
and carrier building in industries.

Based on that, our grand objective in this research was to investigate how the
introduction of an appropriate and comprehensive IT infrastructure at a university will
increase the performance of university management and, consequently, the quality of
the academic product provided to the labor market. Methodologically we:

- Regarded a university as a specific corporation which serves educational interests
of students. We also supposed that their interests are coherent to the requirements
of the labor market and evolve in line with these requirements. Hence, educational
interests are in fact the reflection of what is expected from university graduates in
terms of their professional competencies. For further implementation of this view
the model of a university as a corporation has been elaborated.

 University as a Corporation Which Serves Educational Interests 63

- Used the corporation model for proof-testing it in a real world case study focused
on analyzing the performance of IT management at Kherson State University. The
infrastructure and preconditions for this case study have been developed in our
previous research and development activities [1].

3 Related Work

Our research reported in this chapter is based on several interrelated aspects relevant
to managing and productively using IT in business. The first building block has been
taken from the review of the best practices in business by the Center for Information
Systems Research of the Sloan School of Management at Massachusetts Institute of
Technology. Their review is based on the analysis of using information technology
(IT) practices in business by more than 250 companies [2]. Apart of very useful and
valid factual material on the use of IT, one valid side effect of this report is the
confirmation of the importance of the role of IT and IT infrastructures in modern
enterprises. Notably, it has been shown in [2] effective use of IT management for
implementing strategies leads to success of institution. In particular companies that
were successful in their IT management had more than 20% higher profits than
similar companies with the same strategy but with ineffective IT Governance [2-4].
Another confirmation of the importance of IT in performance management is given
by Melchert and Winter [5] who also define performance “as valued contribution to
reach the goals of an organization.” We follow this definition of performance in our
research as it straightforwardly connects means to ends.

In the vast body of relevant publications in business performance management
domain, the papers focusing on modeling performance were of particular relevance
for our work as we were seeking for proper metrics and methods of measuring
performance of IT management. A good review of performance management
practices, perspectives, and measurement models is given in [6, 7] resulting in the
proposal of a Performance Ontology [7].

According to the performance management literature (e.g., [8]), the most popular
frameworks for performance measurement and management (PMM) are Balanced
Scorecards, Business Excellence Model, Performance Prism. Those frameworks are
based on the introduction of a set of interrelated performance indicators.

Based on the analysis of the related publications, it may be stated in a summary
that IT management serves as a strategic driver for each successful organization
today. The competitive advantage of an organization is determined not just by the
presence of effective mechanisms for collecting and processing various information
resources and providing them to their customers (students and their employers in case
of a university), but also the ability to transform these resources into their corporate
actionable knowledge.

4 University as a Corporation

A business corporation (further – a corporation) is a legal business entity, formed as
the union of individual founders and functioning independently of them. A

64 A. Spivakovsky, L. Alferova, and E. Alferov

corporation has economic objectives guiding its business activity [9]. A big
corporation normally generates influences on the society, hence needs to elaborate its
social orientation and responsibility [10]. As a legal entity, a corporation has to act
according to the normative environment – i.e. comply with relevant normative rules
and laws. It has to respect consumer rights and interests, take care of its employees.
All these aspects have to be treated harmonically and lay the basics of the corporate
culture with implications to specifying the code of employee behavior, corporate
traditions, etc.

Corporations sell products or services. In a market oriented economy corporate
income strongly depends on the quality of product which is one of the major
indicators of competitiveness. For a university, regarded as a corporation with a
specific focus on education, the markets are: (i) labor market; and (ii) the market of
educational and related services. With respect to the labor market the product of a
university is their graduate. Product quality is therefore the quality of the professional
capabilities of university graduates. Hence, a university as a corporation has to set the
assurance of providing quality professional capabilities to their graduates as one of its
primary objectives. At the market of educational services, a university sells not their
graduates but teaching and learning services to their students and, perhaps, to other
academic entities. So, one more primary goal for a university is to assure that the
quality of their teaching materials is competitively high.

Perhaps because of the outlined similarities between modern academic
organizations and business companies an opinion that a university and, at a higher
level, an academic system in their structure and action resemble a corporate system
very much, also in public opinion. Moreover, as a university is an organization
providing substantial societal impact and in a large proportion use public funding,
taxpayers identify themselves as, so to say, university stockholders with an influence
on forming management structure. In fact a university president, though elected
internally by a university council, is in fact assigned to this position based also on the
opinion of the regional community – the stockholders. If so, the stakeholders will be
more willing to become also the customers of the university corporation – as students
and their parents who pay for educational services in some way. Hence, market
relationships and their specificity needs to be taken into account in all aspects of
university management.

As in any other type of business corporations, business information at a university
is a specific type of information tightly connected with and influencing decision
making at all levels of management structure. Business information covers the
internals of a University (human resources, student contingent, educational
programmes, budget, funding sources, etc.) and external environment of a university
(e.g. government order, situation on labor market, economic indicators like an average
salary in industry, tariffs for communal services, state tax policies and so on). Hence,
collection and timely processing of all the relevant facets of business information is of
a high priority for university management as it influences noticeably the pragmatic
decisions they make and further implement in the corporation. It is also important
that only valid or reliable information is taken into account that depicts the internals
and externals in a fair and unbiased manner. Basing management practices on
objective facts will substantially increase the effectiveness and efficiency of

 University as a Corporation Which Serves Educational Interests 65

management, compared to a widely spread practice in which strategic decisions are
often made based on personal subjective attitudes and perceptions, traditional
business patterns, or intuition of senior university management. Possible
inconsistencies between objective business information and subjective business
knowledge have therefore be resolved using known methodologies and best practices
of knowledge elicitation and acquisition (e.g. [11]).

A well-known fact is that knowledge based businesses and corporations face
information overload (e.g. [12]) which implies knowledge acquisition bottleneck (e.g.
[13]). The trend is that these problems will be sharpened in time as the volumes and
velocities of incoming information increase. Therefore the importance is growing of
using an IT infrastructure as a corporate instrument that supports timely, reliable, and
effective information processing, knowledge acquisition, communication, decision
making. Introducing IT instruments in all relevant business processes and ground
them in a coherent IT infrastructure increases the performance of business
information and knowledge processing and, consequently, university management –
improving timeliness, objectivity, and completeness of knowledge acquisition and use
for decision making which now is able to account all the related information facets
and aspects. For example the corrective actions in a student enrollment company may
be proposed and approved based on monitoring the dynamics of enrollment
applications. Statistical information about paying education fees by students may
trigger the expulsion of those students who break their contractual obligations, but
also help predict the financial balance of a university.

Our experience in implementing and deploying such an IT infrastructure at
Kherson State University (KSU) convinces that a properly configured IT toolset
provides qualitatively better possibilities to have access to and process information
sources inside a university. Using IT in our Information Analytical Systems (IAS)
allows effectively collect up-to-date information about the key aspects of organization
activities. For example at our university we have developed and deployed the
following modules of the university IAS [14] that help significantly increase
management performance:

• Planning and financial accounting [14] comprising human resources and students;
• Financial bookkeeping [14, 15] comprising debits, credits, and transfers for

personnel, students and contractual obligations;
• Materials accounting [14, 15];
• University entrants [14, 15];
• Academic accounting [14, 15].

The IAS as an infrastructure facilitates providing reliable and relevant information in
particular by maintaining the system of access rights and personified services for all
involved management roles and serves as an information integrator. Integration of
information provided by IAS means that all authorized users acquire all available and
relevant business information in the form of automatically generated reports. These
reports are further used to fulfill functional duties. IAS also helps generating reports
for external bodies like governmental agencies: the Pension Fund, Tax
Administration, National Statistical Office, Ministry of Education and Science.

66 A. Spivakovsky, L. Alferova, and E. Alferov

Universities as corporations active on the market of education services use IT as an
instrument for obtaining the following impacts:

• Extending the contingent of students as customers, expanding the spectrum of
educational services

• Reducing uncertainty and lowering risk while implementing strategic management
decisions at operational level. For example, opening of new educational
programmes, creation of new business units, expansion of material base that
requires constant renewal, etc.

• Positively influencing certain aspects of society and regional community
• Improving university corporate performance through monitoring and evaluation of

internal performance indicators such as quality of teaching and learning, quality of
personnel, availability of computers and information resources, library funds, etc.

• Improving university corporate competitiveness through monitoring and evaluation
of external performance indicators such as the proportion of successfully employed
graduates, business testimonials with respect to the professional capabilities of
graduates, participation in international programmes, etc.

It has to be noted that solutions of university management and education process
issues are not only be sought within economic and legislative facets. The mentality of
stakeholders is also a very important aspect that may be a source of serious blocking
factors for academic reform. For ensuring that the reform is performed in a proper and
coordinated way the code of desirable behavior [2, 15] has to be changed in a way to
stimulate rational acceptance of IT in management practice. Both material and
immaterial incentives may be used for that. .

In the context of globalization university is gaining new features. Providing,
supporting and dissemination of culture – the main mission of a university in the
XIX - XX centuries – fades into the background. Other roles come to the forefront of
university management activity: adaptation to the current socio-economic and
political changes and cooperation between a university and the society. At the
National level cooperation partners comprise the State and its governmental bodies,
while at the Global level the partners are academic peers and international
organizations. Anyhow, these changes in management priorities still have to be
properly focused on satisfying societal educational interests.

A Business company usually focuses on profitability as a major indicator of
competitiveness. In contrast to business in general, the major focus of university
business is on continuous commitment to provide quality education to its students –
which subsumes profitability indirectly and in a broader, not only material sense. Due to
this broadness the business model of a university corporation is naturally richer and
comprises more aspects. The most important are: attractiveness for students; richness of
the portfolio of educational programmes supported by the appropriate institute and
departmental structure; the disciplines and their curricula; teaching and didactical
materials; diversification of the funding resources; and, last but not least, the IT
infrastructure and resources required to manage university business. These factors must
be always considered in a harmonic balance to achieve the goals of the university.

For achieving a proper balance on all the scales an effective and efficient
management system needs to be implemented with a focused use of relevant IT

 University as a Corporation Which Serves Educational Interests 67

instruments. In the context of the major objective – improving teaching and learning
quality – the performance of educational process needs to be addressed in a close
cooperation between teaching departments who manage the process and IT
management who provides and maintains the tooling for teaching and learning.

Table 1. The specificity of increasing performance at university corporations

Factors relevant to improving
performance in a business corporation

The specificity of related indicators
in a university corporation

Increase of income Diversifying the portfolio of funds by
acquiring scientific and technological
capabilities and resources for
National and International funded
projects. Harmonically combining
research and teaching.

Increase of product quality With respect to education services, v
Publishing and carefully maintaining
teaching and learning resources
digitally using university IT
infrastructure. Establishing digital
communication culture among all
stakeholders, comprising academic
staff and students.
With respect to producing graduates:
ensure that the education service
infrastructure is effectively and
efficiently used for constantly
improving professional capabilities
of students throughout the whole
period of study.

Improvement of staff competencies Using integrated, corporate,
personalized information and
analytical system to support business
processes at a University.

Modernization of equipment. Priority is
given to the core production facilities.

Very similarly to a business
corporation, except the core
production facility is the complex of
educational services based on the IT
infrastructure. Hence, investment in
the IT infrastructure has to be a
priority one.

Modernization and optimization of
technology

Again, very similarly to a business
corporation, except the technology is
different – didactics. For making
didactics effective and efficient a
proper IT support has to be at hand.

68 A. Spivakovsky, L. Alferova, and E. Alferov

To summarize the analysis of the common features and differences of a business
and university corporation several analogies could be drawn as shown in Table 1.

5 KSU as a Corporation Serving Computer Science and IT
Students

In this section we provide the evidence of how managing KSU as a corporation and
introduction of the university IT infrastructure helped us increasing performance and
better serving the interests of Computer Science and IT students.

For creating the preconditions for developing highly professional specialists at
KSU many resources and web services are designed, implemented, deployed, and
widely used in teaching and learning processes. All these help academic staff create
information and communication environment where they can share their learning
materials, communicate and work together with students on developed courses.
Starting from the first year of studies at the university our students have an
opportunity to observe the changes and innovations in information technologies, take
part in software development projects which extend and refine the IT infrastructure
and IAS. So, they combine active participation in a traditional education process with
obtaining practical experience of software development in an environment that is very
similar to software industry.

In addition to that our senior students explore the benefits of several partnerships
of KSU with several external business companies working in software production:
DataArt (www.dataart.com), PostIndustria (www.postindustria.com), Aricent
(www.aricent.com) and many others. Well-formed and mutually beneficial
cooperation between competent IT professionals from these industrial companies and
students having their internships at the companies helps identify, reveal, and further
develop the creative traits of future specialists. Student internship projects therefore
yield results that are seamlessly used in industry and produce business value. The
situatedness of our students in the industrial environment is also very helpful in
validating the quality of the professional capabilities they have obtained at the
university. Furthermore the environment motivates students well to continue their
professional development.

Our training cycle that involves industry as a stakeholder is sketched out in Fig. 2.
Starting from the 1st year the students in a Computer Science and IT programme are
taught several fundamental and applied disciplines. Didactics for these disciplines
involves the use of many teaching software tools for illustrative purposes, as
simulators, for providing teaching and learning materials. The tools are managed and
configured and the feedback from students is collected using the university IT
infrastructure. Leading specialists from the partner IT companies are involved in the
educational process as tutors for the applied disciplines.

IT management at KSU comprises several IT departments for providing software
and IT services, supporting business and academic processes, technical support.
Starting from 2nd year of study our Computer Science and IT students are given an
opportunity to apply for a part time job in these departments. Successful applicants
become a part of our IT management and development team and work in the projects

 University as a Corporation Which Serves Educational Interests 69

of these departments that develop, maintain, and manage information resources and
services. In addition to industrial internships mentioned above our senior students are
directed for traineeships or scholarships to study and practice at the universities in
France, Germany, Great Britain and USA.

Legend: – university with its information and communication infrastructure

Fig. 1. Computer Science and IT training cycle at KSU

The result of implementing this training cycle is very positive. Those graduates
who passed it have much better chances to be employed either at industry or by a
university department because: (i) their professional capabilities have been formed
under direct influence of and with full account to the requirements of these
employers; and (ii) they are already known to the employers.

Our academic infrastructure also creates good opportunities for those students who
choose to develop an academic carrier. Students involved in research and
development projects become well known to our internal and sometimes external
leading scientists. So, it is much easier for them to select a scientific adviser for post-
graduate studies. For fostering exchanges and further cooperation between our senior
students and scientific communities KSU is active in organizing and hosting academic
conferences. In ICT domain for example, KSU host ICTERI conference series
(icteri.org). Our academics together with students are active in submitting their
research and development results to these conferences.

70 A. Spivakovsky, L. Alferova, and E. Alferov

Finally it may be noted that such an organization of teaching and learning in our
Computer Science and IT programme not only increases the performance and refines
the capabilities of knowledge workers considerably, but also creates an attractive and
comfortable professional environment for students and academics.

6 Conclusions

In this chapter we formulated a hypothesis that looking at a university as to a business
corporation may be a correct approach to improve performance in management and
academic activities. We exploited many analogies between a business corporation and
a university which, put together in a coherent management model, allowed us to adopt
industrial best practices for performance management and improvement in academic
environment. We also figured out the specificities of a university as a particular kind
of a business corporation. Important ones were the objectives, the impacts on the
society at large, and the specific markets where a university sells its product –
educational services and graduates. Last but not least, we found out that managing a
university as a corporation is more complex compared to conventional business
because of bigger diversity of different aspects and facets to be regarded in a balanced
and harmonized way. We drew a conclusion that an IT (and IAS) infrastructure is
imperative as an instrument for managing a university at all levels.

We have also provided the evidence of a successful trial of this management model
and approach at Kherson State University during the last several years – in particular
for training professionals in our Computer Science and IT programme. Practical
results testify that the major performance indicator for an academic programme – the
proportion of graduates who are employed and continue building their professional
carriers became much higher than it was before. As a conclusion we may now state as
practically proven that the investment in implementing and further developing an
integrated university IT infrastructure is one of the most effective and efficient kinds
of investment. It increases the competitiveness of a university corporation and makes
it firmly established on the markets. It facilitates impacting the stakeholders and the
society in broad in a proper and constructive way.

References

1. Spivakovsky, A., Alferova, L., Alferov, E.: Conceptualization of University Structure as a
Complex Mechanism Serving Educational Interests. In: Proc. 8-th Int. Conf. ICTERI 2012,
Kherson, Ukraine, June 6-10, CEUR-WS.org, vol. 848, pp. 121–127 (2012) (in Ukrainian)

2. Weill, P., Ross, J.W.: IT Governance: How Top Performers Manage IT Decision Rights
for Superior Results. Harvard Business School Press (2004)

3. Albrecht, R., Pirani, J.A.: Using an IT governance structure to achieve alignment at the
university of Cincinnati. ECAR Case Studies, Educause Center for Applied Research,
ECAR (2004)

4. Clark, A.J.: IT governance: determining who decides. Educause Center for Applied
Research (ECAR), Research Bulletins (2005)

 University as a Corporation Which Serves Educational Interests 71

5. Melchert, F., Winter, R.: The Enabling Role of Information Technology for Business
Performance Management. In: Meredith, B., Shanks, G., Arnott, D., Carlsson, S. (eds.)
Decision Support in an Uncertain and Complex World, Proc. 2004 IFIP Int. Conf. on
Decision Support Systems (DSS 2004), Prato, Italy, pp. 535–546 (2002)

6. Matzke, W.-E.: Engineering Design Performance Management - from Alchemy to Science
through ISTa (Invited Talk). In: ISTA 2005. LNI, vol. 63, pp. 154–179. GI (2005)

7. Ermolayev, V., Matzke, W.-E.: Towards Industrial Strength Business Performance
Management. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007. LNCS
(LNAI), vol. 4659, pp. 387–400. Springer, Heidelberg (2007)

8. Collett, R.: Benchmarking IC Development Capability – What to Measure? Fabless
Forum. Fabless Semiconductor Association 11(2) (2004)

9. Investopedia, http://www.investopedia.com/terms/c/corporation.asp
10. What is corporation,

http://ehow.in.ua/78315-shho-take-korporaciya.html (in Ukrainian)
11. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde,

W., Wielinga, B.: Knowledge engineering and management. The Common KADS
Methodology. MIT Press (1999)

12. Edmunds, A., Morris, A.: International Journal of Information Management 20(1), 17–28
(2000), doi:S0268-4012(99)00051-1

13. Cullen, J., Bryman, A.: The Knowledge Acquisition Bottleneck: Time for Reassessment?
Expert Systems 5(3), 216–225 (1988)

14. Belyaev, Y., Spivakovsky, A., Shedrolosev, D.: Information analytical system of
university management “University”: Practical Aspects. Kherson State University
Publishing, Kherson (2006) (in Ukrainian)

15. Spivakovsky, O.V., Fedorova, Y.B., Glushenko, O.O., Kudas, N.A.: IT management of
higher education establishments, 3rd additional edn., Kherson (2010) (in Ukrainian)

A Multi-channel Communication Framework

Michal Nagy

University of Jyväskylä, P.O. Box 35 (Agora), FI-40014, Jyväskylä, Finland
michal.nagy@jyu.fi

Abstract. We present a modular framework for a business-to-customer
communication service integrating several communication channels. Us-
ing such a service it is possible to find hidden relationships between mes-
sages and thus collect more customer-related data. The framework core is
a message-conversion engine capable of converting channel-independent
abstract messages into concrete messages and vice-versa. The conver-
sion process is context-dependent. The context consists of formally de-
scribed communication channel characteristics and user preferences. The
framework is based on semantic technologies due to a balance between
their expressive power, reasoning properties, and existence of production-
quality tools. This chapter describes the multi-channel communication
framework with relation to its components. Among others we discuss
message conversion and channel selection.

Keywords: communication, ontology, context-awareness, B2C.

1 Introduction

The introduction of electronic media into businesses changed the way businesses
communicate with their customers and between each other. A typical business
has nowadays several options how it can reach its customers and how the cus-
tomers can reach the business. We call these means of communication commu-
nication channels. With the increasing number of communication channels the
problem of consolidation and integration becomes more complicated.

We will illustrate this problem on an example of a consumer electronics seller
trying to communicate with a potential customer. The seller has a web page,
Facebook page, Twitter account, phone number and an email address. These
are the communication channels. The seller may start a campaign selling a new
model of a TV. The seller sends a new message to all followers on Twitter and
Facebook. The next day a customer asks a question about the new product
through the seller’s web page. The seller replies by sending an email to the email
address that the customer provided in the web form. Then the customer buys the
product using a form on the seller’s web page. The example illustrates commu-
nication through several communication channels – social networks, web forms
and email. It would be useful for the seller to understand that the customer
asking the question through the web form is the same person that later bought
the product. This way the seller may build up a database of all communication

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 72–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Multi-channel Communication Framework 73

happening between the business and a particular customer no matter what com-
munication channel is being used. The seller may for example find out that the
customer prefers email communication in 90% of cases and that he/she prefers
to buy the products in person in the brick-and-mortar shop instead of buying
them online. This may differ from another customer that prefers communication
through Facebook and always buys product electronically through the electronic
shop.

In order to make such a system we have to overcome several issues. In [7] we
present five issues related to multi-channel communication – message conversion,
communication channel selection, information element extraction, goal/purpose
modeling and context modeling. In this publication we propose a framework
that tries to solve these issues. The framework is mostly based on semantic
technologies and utility functions. The emphasis was given to the real-world
implementation.

Section 2 talks about the motivation behind this effort. Section 3 describes
the framework and briefly discusses the main framework components. Section 4
defines ontologies that are used by various components of the framework. Section
5 describes engine algorithms used for message conversions and channel selection.
Lastly, section 6 concludes the chapter.

2 Motivation

A multi-channel communication system brings several advantages to businesses.
Firstly, it allows them to collect more meaningful information about their cus-
tomers. Nowadays, information systems can collect a significant amount of data
related to B2C communication. However, more data does not necessarily mean
more information. Isolated facts become more useful once they are linked with
each other given a certain context. This is the motivation of the Linked Data
initiative as well [1]. This way hidden links between data can be detected.

Every communication effort initiated by the business should be rational and
should be done with a goal and purpose (e.g. promoting a product with the goal
of selling it). Better aimed communication increases the chances of goals being
fulfilled. In order to make these rational decisions, one must be well informed.
There should be a system capable of collecting information about every customer
– past actions, preferences, financial profile, etc. Instead of sending a message to
concrete customers, a business may decide to send a message to a certain type of
customer. For example if the business tries to advertise a TV, it should advertise
it one way to home cinema enthusiast, but other way to customers interested in
products with low energy consumption.

There is a significant amount of business-relevant information on the Internet.
The problem is however that the information is difficult or even impossible to
understand by a machine [4]. The situation is changing. Technologies such as
RDF (Resource Description Framework), OWL (Web Ontology Language) allow
people and businesses to publish this information in a machine-readable form on
the Internet. There are many publicly available RDF storages that contain useful

74 M. Nagy

information (e.g. DBpedia [3], data.gov.uk portal [2], etc.). It could be beneficial
to utilize this information in business’ decision making process.

3 Multi-channel Communication Framework

3.1 Framework Overview

The framework consists of two main components – knowledge base and message
conversion engine. The goal of the knowledge base is to store information about
five main areas – messages, communication channels, customers, commodities
and business actions. All these partial knowledge bases are linked. The frame-
work user is free to extend the knowledge base and corresponding knowledge
schemas (ontologies) to fit the business needs. The message conversion engine is
responsible for message conversion. It converts message received from customers
to abstract message trying to extract information elements that are relevant to
the business. Then it interprets them in form of actions. The framework user may
specify several message templates to send message to the customers. The engine
converts message templates into concrete messages that can be sent to the cus-
tomer. It is also responsible for proper channel selection that may depend on cus-
tomer’s personal preferences and other circumstances. The framework overview
is available in Figure 1.

Fig. 1. Multi-channel communication framework overview

3.2 Knowledge Base

The system should be capable of storing different types of information about
customers, channels and business. Some of this data is relatively static (e.g.
product data) and some data is dynamic (e.g. customer information). However,

A Multi-channel Communication Framework 75

we believe that a single way of representation is favorable due to the need to
integrate and reason about all these kinds of data together. Reasoning will take
place mostly in two cases – when a message is received and when a message is
sent.

We need a way of knowledge modeling that would be expressive enough to
describe relationships between heterogeneous entities such as customers, prod-
ucts, services, channels, etc. Moreover, the language must allow reasoning about
the facts. This reasoning must be sound, so that it infers only valid facts. It
should be complete as well, so that no valid fact is missing. If a valid missing
was missing, it would result in a failure to send an outbound message or to
properly annotate an inbound message. Lastly, this modeling framework must
not be computationally too complex. As mentioned earlier, the discussed system
should be usable in real-world production environment. Therefore the existence
of a mature tool with abovementioned properties is important.

Based on these requirements we believe that Resource Description Framework
(RDF) is the most reasonable way to model our data. It is expressive enough,
proven and widely supported by a great amount of production-quality tools for
modeling (e.g. Protégé [8]), storing and querying data (e.g. Jena framework [6],
Sesame [12]). Also, there are many reasoners that are sound, complete and still
computationally inexpensive (e.g. RacerPro [9], HermiT [5], etc.). RDF is built
on top of wide-spread standards such as XML, XML Schema, etc. It is closely
related to Web Ontology Language (OWL) which is used to formally define
knowledge schemas called ontologies. Thanks to ontologies and reasoners it is
possible not only to conclude new facts from existing ones, but to check data
consistency as well.

4 Ontologies

4.1 Overview

In this section we present several ontologies that are needed for the framework’s
operation. Each ontology belongs to a different namespace due to logical division.
Later in the text we use prefix names to refer to specific namespaces. They are
described in Table 1.

Prefixes xsd, owl, rdfs and rdf represent well-known namespaces and ontolo-
gies. All the other prefixes represent framework-specific namespaces and ontolo-
gies. The commodity ontology represents all the products and services that the
business is trying to sell. The message ontology represents abstract and concrete
messages. The action ontology is about actions that the business or a customer
can perform. The channel ontology is used to describe communication channels.
Lastly, the customer ontology represents a customer schema including customer
personal information, contact addresses, preferences, etc. In order to conserve
space the ontologies are not described directly in OWL. For each ontology the
class hierarchy is graphically depicted in a figure and the list of preferences is
described in a table.

76 M. Nagy

Table 1. Namespaces and prefixes used in this chapter

Prefix Namespace Ontology

b http://cs.jyu.fi/ai/OntoGroup/mmcc/commodity# Commodity ontology
a http://cs.jyu.fi/ai/OntoGroup/mmcc/action# Action ontology
m http://cs.jyu.fi/ai/OntoGroup/mmcc/message# Message ontology
ch http://cs.jyu.fi/ai/OntoGroup/mmcc/channel# Channel ontology
cu http://cs.jyu.fi/ai/OntoGroup/mmcc/customer# Customer ontology
xsd http://www.w3.org/2001/XMLSchema# XML Schema [15]
owl http://www.w3.org/2002/07/owl# Web Ontology Lan-

guage [14]
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# Resource Description

Framework [10]
rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema [11]

4.2 Commodity Ontology

In general the commodity ontology depends on the business domain and can
comprise of a variety of goods and services. However, there is a single primitive
generic ontology that can be extended based on the needs of the business. The
generic commodity ontology together with an example of an extension can be
seen in Figure 2. The extension is based on a scenario where the user of the
framework is a small consumer electronics seller.

Fig. 2. Class hierarchy of a generic commodity ontology and its sample extension

The central point of the ontology is the class b:Commodity. A commodity rep-
resents either a product (b:Product) or a service (b:Service). Class b:Commodity
also acts as an integration point to other ontologies, that means other framework
ontologies refer to it.

http://cs.jyu.fi/ai/OntoGroup/mmcc/commodity#
http://cs.jyu.fi/ai/OntoGroup/mmcc/action#
http://cs.jyu.fi/ai/OntoGroup/mmcc/message#
http://cs.jyu.fi/ai/OntoGroup/mmcc/channel#
http://cs.jyu.fi/ai/OntoGroup/mmcc/customer#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#

A Multi-channel Communication Framework 77

4.3 Communication Channel Ontology

The communication channel ontology is relatively small. The user of the frame-
work needs to extend it with communication channels he/she wants to use in
his/her business. The central point of the communication channel ontology is
the class ch:ComChannel. The class hierarchy is depicted in Figure 3.

Fig. 3. Class hierarchy of a generic commodity ontology and its sample extension

Each communication channel (or just channel) is characterized by several
object and datatype properties. The speed and reliability of the channel is de-
termined by the property ch:speed and ch:reliability. Higher value represents
higher speed/reliability. Property ch:cost represents any other considerations –
e.g. financial cost. The capability to transfer attachments is expressed through
ch:attachmentFeature object property. In general a channel might have no possi-
bility to transfer attachments (e.g. SMS) up to the ability transfer several types
of attachments (e.g. electronic mail). For the sake of simplicity we describe com-
munication channel ontology properties in Table 2.

Table 2. Object and datatype properties of the channel ontology

URI Min. card. Max. card. Domain Range

ch:speed 1 1 ch:ComChannel xsd:float
ch:reliability 1 1 ch:ComChannel xsd:float
ch:cost 1 1 ch:ComChannel xsd:float
ch:attachmentFeature 0 n ch:ComChannel ch:Attachment
ch:registeredHandler 1 1 ch:ComChannel ch:ChannelHandler
ch:acceptsContent 1 n ch:ChannelHandler ch:Content
ch:conversionFunction 1 1 ch:ChannelHandler xsd:string

In general, each channel uses different types of messages and handles them in a
different way. Channel handler is a special class that represents the way messages
are constructed and manipulated. It stores the list of content types that can be

78 M. Nagy

transferred through the particular communication channel. This is expressed by
linking the channel handler to a content instance by ch:acceptsContent property.
The list of content types is configurable and fully depends on the framework
user. There is a content conversion function associated with each handler. This
function takes the content definition from the message template and converts
it to a particular content suitable for this channel. Since each channel can deal
with different types of content, each channel has its own handler.

4.4 Action Ontology

The main goal of the multi-channel communication framework is to allow mes-
sage integration among various communication channels. However, messages
have no business value unless they are properly interpreted. As mentioned ear-
lier we assume that each message is sent for a reason and that it has a purpose.
Therefore we believe that each message is associated with one or more actions.
A message is a piece of information that needs to be interpreted under a certain
context. Usually a message has a recipient, sender, subject and body. An action
is something that a message represents. In our case we are interested in business
actions. Some of these actions are related to certain commodities (products or
services) such as a purchase, question about a product, ordering a service or
a product return. Other actions are not related to any product – e.g. contact
information change, change of preferences, etc.

We use class m:Message for representation of messages, class a:Action for
representation of actions and class b:Commodity for the representation of com-
modities. The relationship between these classes is depicted in Figure 4. Object
property m:represents represents a connection between a message and action(s).
There are two subclasses of a:Action. Subclass a:GeneralAction represents an ac-
tion that is not related to any commodity. Subclass a:RelatedAction represents
an action related to a concrete product or service. This connection is expressed
by object property a:regardingCommodity. The specific actions that businesses
are interested in can vary and each business should have the ability to define
their own types of actions. The ontology in Figure 4is a generic action ontology
that can easily be extended by businesses

4.5 Customer Ontology

The customer ontology models information related to personal data of the cus-
tomers together with their business preferences. Each customer can be reached
through several channels. This is expressed through the class cu:Contact. A cus-
tomer may have several contacts. Each contact is linked to a channel and has
a datatype property representing customer’s address in that particular channel.
Also, the ontology defines a datatype property cu:preference for each contact.
The value of the preference property is a real number between 0 and 1. This
number expresses the customer’s willingness to be informed using this contact.
If the value is 0, the user never wants to be contacted. If the value is 1, the
user always wants to be contacted. The list of customer ontology properties is

A Multi-channel Communication Framework 79

Fig. 4. Relationship between messages, actions and commodities

depicted in Table 3. We do not provide any class hierarchy figure, because both
ch:Customer and ch:Contact are direct descendants of OWL class owl:Thing.
The customer ontology contains only entities that are important for the proper
framework operation. Personal information such as name or birth date are not
included in the ontology. The framework user can provide them by extending
the ontology.

Table 3. Object and datatype properties of the customer ontology

URI Min. card. Max. card. Domain Range

cu:hasContact 0 n cu:Customer cu:Contact
cu:correspondingChannel 1 1 cu:Contact ch:Channel
cu:contactAddress 1 1 cu:Contact xsd:string
cu:preference 1 1 cu:Contact xsd:float

4.6 Message Ontology

There are two basic types of messages – inbound and outbound. An inbound
message is a message sent by a customer to the business. An outbound message
is a message originating from the business and sent to one or more customers.
According to another criterion a message can either be abstract or concrete. A
concrete message is a message sent through a concrete channel from/to a concrete
address with a concrete content. In case of a concrete message no information
about the action or customer is included. An abstract message is a message on

80 M. Nagy

a higher thought level. It is linked to a concrete customer from the customer
database in case the customer is the receiver or sender of the message. It is
also linked to the proper action that was supposed to be achieved through it.
Both abstract and concrete messages can be either inbound or outbound. That
makes it four types of messages. Apart from abstract and concrete messages
the framework distinguishes a term called message template. A message tem-
plate is a prescription for an outbound abstract message. In the message tem-
plate the recipients, the content and the communication channel are known in
a form of a query. Such a template can be converted into an outbound abstract
message by resolving these queries. This concept is similar to the idea of exe-
cutable knowledge by Terziyan [13] and will be described in detail in the next
section.

The message ontology consists of four main classes – m:ConcreteMessage,
m:AbstractMessage, m:InboundMessage and m:OutboundMessage. The class hi-
erarchy is depicted in Figure 5. The property descriptions are in Table 4.

Fig. 5. Class hierarchy of the message ontology

A concrete message has datatype properties annotating the sender, receiver,
subject and content. All these properties expect string as their values. As men-
tioned earlier, a concrete message is not mapped to a concrete customer URI.
It only stores the information about the concrete address (string) it was sent
to or received from. It is the job of the engine to do the conversion between
an abstract and a concrete message. A concrete message also has two object
properties. The one connects it to the communication channel that was used
to send/receive the message. The other object property points to attachments
that were sent or received together with the message. The user can extend the
message ontology and specify subclasses of concrete messages such as text mes-
sage (SMS), email, tweet, etc. Some of these subclasses do not specify certain
properties. For example tweets and SMS messages do not have subjects. Some
concrete messages may contain attachments and some may not.

A Multi-channel Communication Framework 81

Table 4. Object and datatype properties of the message ontology

URI Min. card. Max. card. Domain Range

m:to 1 n m:ConcreteMessage xsd:string
m:from 1 1 m:ConcreteMessage xsd:string
m:dateReceived 1 1 m:Message xsd:dateTime
m:subject 0 1 m:Message xsd:string
m:content 0 1 m:Message xsd:string
m:channel 1 1 m:Message c:Channel
m:hasAttachment 0 n m:Message m:Attachment
a:represents 0 n m:AbstractMessage a:Action
m:receivingCustomer 0 1 m:AbstractMessage cu:Customer
m:sendingCustomer 0 1 m:AbstractMessage cu:Customer

An abstract message describes the sender and receiver in form of a URI identi-
fying a concrete individual from the knowledge base. As mentioned in the action
ontology description, an abstract message includes the information about an
action that the message represents.

5 Message Conversion Engine

5.1 Message Template Description

A message template is a prescription for an abstract message. Naturally, the
abstract message generation process requires data that the template should be
filled with. The data needed for the generation process is expressed in a form of a
query. During the conversion the query is executed by the engine and the result
of the query represents that working data set that is used to fill the template
with data. A message template is a prescriptive element, not a descriptive one.
Therefore we believe that RDF is not the most suitable way of expressing it. In
Figure 6 we present a simple language to describe a message template.

The template description consists of four main parts – query, recipient spec-
ification, message content and channel specification. The recipient specification
defines who should receive this message. It can be a single person or several peo-
ple. The message content is a piece of information that will become the content
of the concrete message after the conversion. Use of variable is permitted in the
message content specification. Lastly, channel specification is a description of a
channel that should be used to send the concrete message.

The query defines the working dataset that the conversion engine will work
with during the conversion process. This query is written in SPARQL (SPARQL
Protocol and RDF Query Language), which is a standard query language for
RDF data. The other elements describe the other three main parts of the mes-
sage by referring to the data in the working dataset. Recipients of the mes-
sage are defined as an enumeration of concrete customers through their URIs or

82 M. Nagy

Fig. 6. Message template description language

variable names from the query. Message content can be a combination of textual
messages, images, attachments, etc. Each message content specification is ac-
companied with a content type specification. These are used to determine which
communication channel can be used to transfer them. For example if the mes-
sage is a simple short text, it can be used as an email, SMS or tweet. However,
if it is a text with images and some PDF document as an attachment, it can
be specified as an email message only. Each abstract message can have several
message content specifications with accompanying content type definitions. An
example of a message template can be seen in Figure 7.

The query portion of the abstract message above describes a dataset that
contains information about customers and products. The query is looking for
customers that have bought a consumer electronics product after March 1st
2012. It also looks for the product name, product service file URL and product
service file physical location. The query is used later in the message conversion
process. The recipients of the message will be customers specified by a variable.
The content of the message are two triples. The first triple contains some text
with variables, attached service file and content type description specifying that
it is an HTML text with an attachment. The second triple consists of some text,
empty attachment set and content type description indicating that it is a short
text. We will use this abstract message later to describe the message conversion
process.

A Multi-channel Communication Framework 83

Fig. 7. An example of a message template

5.2 Message Conversion Process

The goal of the message conversion process is to produce a set of concrete mes-
sages by applying a message template on top of the contextual data. The mes-
sage conversion process is described in a function called ConvertMessage (see
Algorithm 1). It takes a message template and applies it on top of the data by
performing the SPARQL query described in the query portion of the template.

The message conversion algorithm first performs a SPARQL query defined by
the query portion of the abstract message definition. The result of the query is a
binding table where each binding is represented by a row. A sample binding table
is shown in Table 5. The sample binding table contains five variables representing
the customer (?cust), customer’s first name (?fn), product name (?prod), service
file location (?servicefile) and URL of the service file on the producer’s web page
(?serviceurl). Then the algorithm iterates through all lines and for each line
it determines the recipient and content. The channel definition is taken as it
is provided in the message template. The channel selection process is described
later in the chapter. The recipient is relatively straightforward to determine, since
it is represented by a single variable. In the example from Figure 7 the recipient
is represented by variable ?cust. The content is determined by substituting the
variables in the template text with the values from the binding table. In the
example from Figure 7 these variables are ?fn, ?prod, ?servicefile and ?serviceurl.

Recipient, channel, and content are three parameters that define an abstract
message. Please note that in case of an abstract message the recipient is de-
termined by a list of user URIs. Similarly, channel is determined by a list of

84 M. Nagy

Algorithm 1. ConvertMessage

input : MsgTemplate msgtemp
TableRow[] rows = performSPARQLQuery (msgtemp.query);
ConcreteMessage[] concrMsgs;
foreach row in rows do

URI recipient = row.getColumn (msgtemp.recipientVariable);
ChannelDefinition[] channel = row.getColumn (msgtemp.channelVariable);
ContentDescription[] content = msgtemp.contentDescription;
concrMsgs.add(ConvertAbstractToConcrete (recipient, channel, content));

end
foreach cMsg in concrMsgs do

SendConcreteMessage(cMsg);
end

Table 5. Sample binding table based on a fictional customer and product database

?cust ?fn ?prod ?servicefile ?serviceurl

u:id5 John Sonic X52 /mans/X52.pdf http://sonic.com/X52.pdf
u:id3 Jane Jogman 2000 /mans/Jog2k.pdf http://tony.com/J2000.pdf
u:id2 Bill Pear uPhone /mans/PuP.pdf http://pear.com/uPhone.pdf

channel URIs or utility functions with resolved variables. The content is rep-
resented as a list of triples (message content, attachments, content type) with
resolved variables. Thanks to the use of URIs, an abstract message can be linked
to concrete users and channels. Figure 8 contains an example of an abstract
message based on the first row of the binding table. In the example we can see
that the first member of the content list is a triple with a text for customer
named John, attachment containing one PDF file and marked as a content type
con:HTMLTextWithAttachment. The second member of the content list con-
tains just text and content type, but it does not contain any attachment. In the
channel section we can see the same content as in the channel section of the
message template. One channel was given statically and one is described using
a utility function (see Figure 7). The channel selection process is explained later
in the chapter.

However, an abstract message does not contain enough information for a mes-
sage to be sent to a concrete user. Firstly, it is still lacking a concrete address
(e.g. email address, phone number, social network account, etc.). Secondly, in
case utility functions are used to specify the communication channels, it is also
lacking information about the concrete channel. Lastly, the content is specified
as a list of content triples describing various content types. Therefore it has to
be converted it into a concrete message. A concrete message then contains a
concrete address, concrete message text with concrete attachments and concrete
channel that it should be sent to. The conversion from an abstract message to
a concrete message is done by calling ConvertAbstractToConcrete function (see
Algorithm 2).

A Multi-channel Communication Framework 85

Fig. 8. An example of an abstract message

Algorithm 2. ConvertAbstractToConcrete

input : URI customer,
ChannelDefinition[] channelDefs,
ContentDefinition[] contentDefs

output: ConcreteMessage[] concrMsgs
ConcreteMessage[] concrMsgs;
URI[] channels;
foreach chDef in channelDefs do

switch typeOf (chDef) do
case URI

channels.add(chDef);
break;

case UtilityFunction
channels.add(determineChannel(chDef, customer));
break;

endsw

end
foreach ch in channels do

ChannelHandler chh = getChannelHandler(ch);
foreach content in contentDefs do

if channelAccepts (channel, content.contentType) then
Message msg = chh.convertMessage(content.msg,
content.attachmentList, content.contentType);
Address addr = chh.extractAddress(content.user);
concrMsgs.add(channel, addr, msg);

end

end

end
return concrMsgs;

86 M. Nagy

ConvertAbstractToConcrete function takes an abstract message as the input
and produces a set of concrete messages as the output. Please note that the
three input parameters of ConvertAbstractToConcrete function correspond to
recipient, channel, and content parameters of the abstract message mentioned
above. The first step of the conversion is to obtain the channel handler based on
the channel URI. The handler is capable of message content generation and ex-
tracting addresses from user descriptions. Then the function it iterates through
the list of content triples and for each triple it checks if the particular chan-
nel accepts the particular content type from the triples. For example channel
ch:SMS can accept content type con:ShortText, but it cannot accept content
type con:HTMLwithAttachment. If the channel can accept the content type de-
fined in the abstract message description, then a concrete message is created
with the help of a channel handler. If the channel cannot accept the content
type, the algorithm proceeds to the next content description triple. As a result
a set of concrete message is created.

5.3 Channel Selection

The channel selection depends on the context data and the message template
used to generate the message. From ConvertAbstractToConcrete function it is
clear that the channel definition section of the message template may contain
either a channel URI or a utility function. If a channel URI is found, it is sim-
ply added to the list channels that will be used to send the concrete message.
However, if a utility function is found, the process is more complicated. In Con-
vertAbstractToConcrete function the process of utility function evaluation is
hidden behind the determineChannel call.

Fig. 9. An example of a utility function substitution and evaluation

A Multi-channel Communication Framework 87

The determineChannel function takes the recipient’s URI and finds all chan-
nels that the recipient may use. Then, in an iteration each of them is used to
substitute the ?ch variable in the utility function definition and the function is
evaluated. The substitution and evaluation process is depicted in Figure 9. The
<channel URI, property>pairs are replaced with values and the utility func-
tion is evaluated. The result is a real number representing the score of a given
channel. Higher value represents more desirable channel. The channel with the
highest value is considered the most suitable one and it is selected.

6 Conclusion

We presented a multi-channel communication framework capable of message in-
tegration from various communication channels. The framework consists of two
main parts – knowledge base and message conversion engine. The framework’s
knowledge base is built on top of semantic technologies such as RDF, OWL,
SPARQL, etc. The data is stored in form of RDF triples. The data schema is
based on five main OWL ontologies. The commodity ontology describes prod-
ucts and services that the business is dealing with. The communication channel
ontology is model for communication channels, channel handler and content
types. The action ontology represents a variety of actions that the business or
a customer can perform. The fourth ontology is the customer ontology deal-
ing with customer’s personal information, contact addresses and channel prefer-
ences. Lastly, the message ontology defines abstract and concrete messages and
their relationships to other components. All the ontologies are extendable by the
framework user in order to reflect the business needs.

The message conversion engine works with message templates that are being
transformed into concrete messages. The message template is a prescription for
a concrete message and it is defined by four parts – SPARQL query, recipient
definition, channel definition and content definition. The engine performs the
query and retrieves a working data set in form of a binding table. Then it chooses
the best communication channel to send the message to. Lastly, it generates
the message content based on the content specifications and communication
channel’s capability of accepting various content types.

Acknowledgements. The author would like to thank the industrial partner
IPSS (Intelligent Precision Solutions and Services), members of IOG (Industrial
Ontologies Group) and the TIVIT Cloud Software Program for supporting this
work. Moreover, many thanks go to the reviewers for their helpful comments.

References

1. Berners-Lee, T.: Linked Data (2006),
http://www.w3.org/DesignIssues/LinkedData.html

2. data.gov.uk, http://data.gov.uk/
3. DBpedia, http://dbpedia.org

http://www.w3.org/DesignIssues/LinkedData.html
http://data.gov.uk/
http://dbpedia.org

88 M. Nagy

4. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 2, 30–37
(2001)

5. HermiT reasoner, http://hermit-reasoner.com/
6. Jena framework, http://jena.apache.org/
7. Nagy, M.: On the Problem of Multi-Channel Communication. In: Proceedings of

ICTERI 2012, Kherson, Ukraine, pp. 128–133 (2012)
8. Protégé ontology editor, http://protege.stanford.edu/
9. RacerPro reasoner, http://www.racer-systems.com/

10. Resource Description Framework, http://www.w3.org/RDF/
11. Resource Description Framework Schema, http://www.w3.org/TR/rdf-schema/
12. Sesame framework, http://www.openrdf.org/
13. Terziyan, V., Kaykova, O.: From Linked Data and Business Intelligence to Exe-

cutable Reality. International Journal on Advances in Intelligent Systems 5, 194–
208 (2012)

14. Web Ontology Language, http://www.w3.org/TR/owl-features/
15. XML Schema, http://www.w3.org/XML/Schema

http://hermit-reasoner.com/
http://jena.apache.org/
http://protege.stanford.edu/
http://www.racer-systems.com/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.openrdf.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/XML/Schema

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 89–110, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Satisfiability and Validity Problems in Many-Sorted
Composition-Nominative Pure Predicate Logics

Mykola S. Nikitchenko and Valentyn G. Tymofieiev

Department of Theory and Technology of Programming
Taras Shevchenko National University of Kyiv
64, Volodymyrska Street, 01601 Kyiv, Ukraine

nikitchenko@unicyb.kiev.ua,
tvalentyn@univ.kiev.ua

Abstract. We propose methods for solving the satisfiability and validity prob-
lems in many-sorted composition-nominative pure predicate logics (without
functions and with equality). These logics are algebra-based logics of many-
sorted partial predicates constructed in a semantic-syntactic style on the metho-
dological basis that is common with programming; they can be considered as
generalizations of traditional many-sorted logics on classes of partial predicates
that do not have fixed arity. We show the reduction of the satisfiability problem
to the same problem for many-sorted classical first-order pure predicate logic
with equality. As validity is dual to satisfiability, the method proposed can be
adopted to the validity problem. This enables us to use existent satisfiability and
validity checking procedures developed for classical logic also for solving these
problems in composition-nominative pure predicate logics with equality.

Keywords: many-sorted logic, composition-nominative logic, partial predicate,
quasiary predicate, partial logic, first-order logic, satisfiability, validity.

1 Introduction

Satisfiability and validity problems [1] are important for such areas as program verifi-
cation, synthesis, analysis, testing, etc. [2–5]. In this chapter we address the satisfia-
bility and validity problems in the context of the composition-nominative approach
[6], which aims to construct a hierarchy of logics of various abstraction and generality
levels on the methodological basis that is common with programming. The main prin-
ciples of the approach are principles of development from abstract to concrete,
priority of semantics, compositionality, and nominativity.

These principles specify a hierarchy of new logics that are semantically based on
algebras of predicates, functions, and programs, which are considered as partial map-
pings. Operations over such mappings are called compositions. Data classes are con-
sidered on various abstraction levels, but the main attention is paid to the class of
nominative data. Such data consist of pairs name–value. Nominative data can
represent various data structures such as records, arrays, lists, relations, etc. [6, 7]; this
explains the importance of the notion of nominative data. In the simplest case

90 M.S. Nikitchenko and V.G. Tymofieiev

nominative data can be treated as partial mappings from a certain set V of (possibly
typed) names (or variables) into a set of basic (atomic) values. Such data are called
nominative sets. Nominative sets represent program states for simple programming
languages (see, for example, [6–8]). From this follows that semantic models of pro-
grams and logics are mathematically based on the notion of nominative set (nomina-
tive data in general case). Partial mappings over nominative sets are called quasiary.
This fact permits to integrate models of programs and logics, and represent them as a
hierarchy of composition-nominative models [9, 10]. Logics developed within such
approach are called composition-nominative logics (CNL) because such logics are
determined 1) by operations (compositions) in algebras of predicates, functions, and
programs, and 2) by nominative structures of data on which these predicates, func-
tions and programs are defined. In this connection we should admit that, in particular,
logical connectives and quantifiers are also formalized as compositions because com-
positions represent general semantic constructs used in logic.

CNL can be considered as generalization of classical predicate logic but many me-
thods developed within classical logic can also be applied to CNL. Here we confirm
this statement for the satisfiability and validity problems in CNL. The investigations
on the topic in hand were initiated in [11] and developed in [12]. The latter work pro-
vides a brief discussion of related approaches and presents hierarchy of CNL along
with reduction methods for solving satisfiability problems in abstract CNL: proposi-
tional, quantifier-free, and pure first-order predicate logics without equality. In [13]
similar result was announced for pure predicate logics with equality.

In this chapter we introduce the notion of many-sorted CNL and consider satisfia-
bility and validity problems for many-sorted pure CNL (a predicate logic with equali-
ty but without functions). We construct algorithms that reduce the satisfiability and
validity problems in this logic to the same problems in classical first-order predicate
logic with equality.

The chapter is structured in the following way. In section 2 we give a motivating
example; then in section 3 we give formal definitions of the many-sorted logics stu-
died in this chapter, and define the satisfiability and validity problems. In section 4 we
describe reduction methods for solving these problems and present a simple example.
In section 5 we summarize our results and indicate directions for future investigations.

2 Motivating Example

Let us consider a simple programming language ELT (Example Language with
Types) which is used here to demonstrate how many-sorted program logics can be
constructed. ELT is similar to such languages as WHILE [8], IMP [14], etc.

The grammar of the language is defined as follows:

prg ::= begin var dcl ; stm end
dcl ::= i: integer | x: real | dcl ; dcl
stm ::= i:=ie | x:=re | stm1 ; stm2 | if b then stm1 else stm2 |
 while b do stm | begin stm end
ie ::= n | i | ie1 + ie2 | ie1 – ie2 | ie1 * ie2 | (ie)

 Satisfiability and Validity Problems 91

re ::= c | x | re1 + re2 | re1 – re2 | re1 * re2 | re1 / re2 | (re)
b ::= ie1= ie2 | ie1≠ ie2 | ie1>ie2 | re1= re2 | re1≠ re2 | re1>re2 | b1∨b2 | ¬b | (b)

where:

─ n ranges over integer numbers Int={..., –2, –1, 0, 1, 2, …}
─ c ranges over real numbers Real={ …, –0.1, …, 0.0, …, 0.1, …}
─ i ranges over variables (names) of integer type VI={I, M, N, …}
─ x ranges over variables (names) of real type VR={R, X, Y, …}
─ ie ranges over integer expressions Iexpr
─ re ranges over real expressions Rexpr
─ b ranges over Boolean expressions Bexpr
─ stm ranges over statements (programs) Stm
─ dcl ranges over variable declarations Dcl
─ prg ranges over programs Prg

As an example consider an ELT program RF for calculating a rational function
r = 1/xn. In this program we use variables N, X, and R for denoting values n, x, and r
respectively:

begin
var N: integer; X: real; R: real;
begin

R:=1.0;
while N≠0 do begin N:=N–1; R:=R/X end

end
end

Starting from this example we construct program algebras of two forms:

─ First, we define semantics of RF in the style of denotational semantics; as a result
we obtain an algebra oriented on the program RF. This algebra is a many-sorted
program algebra with partial quasiary predicates, ordinary functions, and program
functions.

─ Then, we define a class of many-sorted program algebras. This class of algebras is
a semantic base for program logics. It captures main program properties that are
invariant of such programs’ specifics as variable typing, interpreted functions, etc.

To emphasize mapping’s partiality/totality we use the sign ⎯→⎯p for partial map-

pings and the sign ⎯→⎯t for total mappings; therefore the terms ‘partial’ and ‘total’
are often omitted.

To formalize program semantics various approaches were proposed. Here we will
follow denotational semantics (see, for example, [8, 14]). Semantic mapping is
represented as〚.〛. On the abstract level semantics of RF can be treated as a certain
function. Given a state d of the form [N n, X x] where n is an integer number
and x is a real number, this function evaluates (if terminates) a new state of the form
[N 0, X x, R r] in which r – a value of the variable R – is equal to 1/xn.

92 M.S. Nikitchenko and V.G. Tymofieiev

For our program RF examples of states are [X 5.3, N 4], [X 5.3, N 4,
R 8.2], [X 5.3]. In a state d a variable v can have a value (this is denoted d(v)↓)
or be undefined (denoted d(v)↑); thus,

[X 5.3, N 4](X)↓ and [X 5.3, N 4](R)↑.

Let V={N, X, R}, Τ ={Int, Real}, A=Int∪Real. To give a definition of states with
typed variables we first introduce type valuation (type assignment) mapping

τRF : V ⎯→⎯t Τ in the following way: τRF=[N Int, X Real, R Real]. Note that
this notation can be considered as another form of variable declarations: “N: integ-
er; X: real; R: real”. Now, having τRF we can define the set of states StateRF as
the set of all partial mappings d:V ⎯→⎯p A such that the value of N in d belongs to Int
if it is defined and the values of X and R belong to Real if they are defined.

Having described states we are able to represent formal semantics of arithmetic and
Boolean expressions. Integer expressions denote functions (called many-sorted qua-

siary functions of integer type) of the set FnInt(τRF)=StateRF ⎯→⎯p Int; thus, for
ie∈Iexpr we have〚ie〛∈FnInt(τRF). Real expressions denote functions (called many-

sorted quasiary functions of real type) of the set FnReal(τRF)=StateRF ⎯→⎯p Real; thus,
for re∈Rexpr we have〚re〛∈FnReal(τRF). Boolean expressions denote predicates

(called many-sorted quasiary predicates) of the set Pr(τRF)=StateRF ⎯→⎯p Bool; thus
for b∈Bexpr we have 〚b〛∈Pr(τRF).

As states are constructed with the help of naming (nominative) relation, they are
also called typed nominative sets and their class is denoted by NST(τRF). Therefore
functions of the classes FnInt(τRF), FnReal(τRF), and predicates of the class Pr(τRF) are
also called integer nominative functions, real nominative functions, and nominative
predicates respectively since they are defined on classes of nominative sets. As to
classification related to the ranges of functions from FnInt(τRF) and FnReal(τRF) we call
them ordinary functions since their ranges are sets of atomic (non-structured) values.

In RF the following expressions occur: Boolean expression N≠0, integer expres-
sions 1 and N–1, real expressions 1.0 and R/X. For simplicity’s sake we use bold font
to represent semantics of these expressions, thus,

〚N≠0〛= N≠0, 〚1〛= 1, 〚N–1〛= N–1, 〚1.0〛= 1.0, and 〚R/X〛= R/X.

These mappings have the following types: N≠0 ∈Pr(τRF); 1, N–1∈FnInt(τRF);
1.0, R/X ∈FnReal(τRF). Functions 1 and 1.0 are constant functions. Note that R/X is
partial.

Analyzing the structure of the program we see that it is constructed from the above
considered expressions and from structuring constructs such as assignment, sequenc-
ing, and loop.

The semantics of structuring constructs is defined with the help of special operators
(compositions).

 Satisfiability and Validity Problems 93

Programs from Prg and statements from Stm denote program functions of the class

FPrg(τRF)=StateRF ⎯→⎯p StateRF = NST(τRF) ⎯→⎯p NST(τRF). Such functions are also
called biquasiary functions; they belong to the class of binominative functions.

Semantics of structured statements is defined by total n-ary compositions. Each
composition has a type (also called type arity of composition). The following compo-
sitions with conventional meaning are used for formalizing semantics of RF:

1. Integer assignment composition i
IAS : FnInt(τRF) ⎯→⎯t FPrg(τRF) and real assign-

ment composition x
RAS : FnReal(τRF) ⎯→⎯t FPrg(τRF) (parameter i denotes a vari-

able of integer type and parameter x denotes a variable of real type);

2. Composition of sequential execution •: FPrg(τRF)×FPrg(τRF) ⎯→⎯t FPrg(τRF);

3. Loop composition WH: Pr(τRF)×FPrg(τRF) ⎯→⎯t FPrg(τRF).

Thus,

〚N:=N–1〛= N
IAS (N–1), 〚N:=N–1;R:=R/X〛= N

IAS (N–1) • R
RAS (R/X).

Note, that we define • by commuting arguments of conventional functional composi-
tion: f • g = g f.

The definitions introduced permit to conclude that the following many-sorted pro-
gram algebra with many-sorted quasiary predicates, ordinary functions, and program
functions has been constructed:

ARF(τRF) = < Pr(τRF) , FnInt(τRF), FnReal(τRF), FPrg(τRF);

N≠0, 1, N–1, 1.0, R/X, i
IAS , x

RAS , •, WH> .

This algebra has four carriers of quasiary mappings (Pr(τRF) , FnInt(τRF), FnReal(τRF),
FPrg(τRF)), one predicate (N≠0), four ordinary functions (1, N–1, 1.0, R/X), and four

compositions (i
IAS , x

RAS , •, WH). The predicate and ordinary functions are consi-

dered as algebra constants.
We would like to emphasize the fact that semantics of RF program or its subex-

pressions can be represented as terms of this algebra. In particular, the term for RF
program is as follows:

〚RF〛= R
RAS (1.0) • WH(N≠0, N

IAS (N–1) • R
RAS (R/X)).

Note that this term and its subterms can denote partial mappings, as the division can
be undefined; also WH composition can be a source of undefinedness.

Many-sorted algebra ARF(τRF) has been constructed directly oriented on RF pro-
gram, therefore it is very restricted, but still it can be used to prove some properties of
this program or its components. For example, we can prove the following equality
(commutativity of assignment operators):

N
IAS (N–1) • R

RAS (R/X)= R
RAS (R/X) • N

IAS (N–1).

94 M.S. Nikitchenko and V.G. Tymofieiev

Please note that this equality holds for any typing of variables, say, N may have type
of natural or real numbers, R and X can be typed as rational numbers, etc. This obser-
vation puts a question: what program properties are invariant under type valuations, or
under predicate/function variations, etc? In other words, what properties are general
program properties that are independent of program’s specifics, or, more precisely,
what program properties hold for a certain class of program algebras? This question
has a logical nature related to general laws of programs. To answer such questions we
construct special program logics called composition-nominative program logics.

The idea of such construction can be explained on example of algebra ARF(τRF). In
this algebra we have carriers of three kinds: 1) quasiary predicates, 2) integer and real
quasiary functions (ordinary functions), and 3) biquasiary functions (program func-
tions). This will lead to many-sorted logics of three levels: 1) pure predicate logics
based on algebras with one carrier (predicates), 2) predicate-function logics based on
algebras with carriers of two kinds (predicates and ordinary functions), and 3)
predicate-function-program logics based on algebras with carriers of three kinds
(predicates, ordinary functions, and programs functions). Obtained logics are called
composition-nominative pure predicate logics, composition-nominative predicate-
function logics, and composition-nominative program logics respectively.

The above-mentioned classes of algebras constitute semantic components of corre-
sponding logics. As to syntactic component, it is specified by classes of algebra terms.
In logic, terms of algebras related to predicates are usually called formulas, terms
related to classes of ordinary functions are called by the same word – terms, and
terms related to program functions are called here program texts. Logics under con-
struction should usually be more expressive than program algebras they are built
upon. In particular, the set of compositions over predicates additionally includes such
compositions as renomination [10] and quantification; program logics should also
include compositions that relate program functions with predicates. As an example of
such composition we can mention ternary (Floyd–Hoare) composition [12], which
given two predicates (precondition and postcondition) and a program function
produces new predicate that specifies the validity of corresponding Floyd–Hoare
assertion.

To construct a composition-nominative program logic we choose the following
semantic-syntactic scheme. First, we should describe a class of algebras that forms a
semantic base of corresponding logic (semantic component of a logic). Then, we
should describe a signature of the logic and a class of formulas (language expressions
in general) constructed over the signature (syntactic component of a logic). At last, we
should define methods of interpreting language expressions in each algebra of the
constructed class (interpretational component of a logic).

A class of algebras (semantic component) is specified by the following components:

─ A set of types denoted by a capital Greek letter Τ
─ A set of variables denoted by V

─ A class of all type valuations of the form τ : V ⎯→⎯t Τ ; for each τ we define:

 Satisfiability and Validity Problems 95

─ A class of typed nominative sets NST(τ)
─ A class of predicates Pr(τ) = NST(τ) ⎯→⎯p Bool

─ Classes of ordinary functions of the form FnA(τ)=NST(τ) ⎯→⎯p A (for each
A∈Τ)

─ A class of program (binominative) functions FPrg(τ)=NST(τ) ⎯→⎯p NST(τ)
─ A class C(τ) of compositions with fixed types (type arities) which specify their

domains and ranges (this class is defined in a uniform way for all type valuation
mappings)

─ An algebra A(τ)=<Pr(τ), {FnA(τ) | A∈Τ }, FPrg(τ); C(τ)>

A many-sorted program logic language (syntactic component) consists of logic ex-
pressions partitioned into classes of formulas, terms, and program texts. Informally
speaking, it is specified by the following components:

─ A set S of sorts (sorts may be considered as type variables)

─ A signature),,(ξSVS =Σ of sort valuation (here SV t⎯→⎯:ξ is a sort valuation

mapping)

─ A set of composition symbols Cs(SΣ) with their sort arities which specify sorts for
their domains and ranges. Here a sort arity of a composition symbol is a formal ex-

pression of the form E1×…×En ⎯→⎯t E where E1, …, En, E ∈{Pr(ξ)}∪{Fns(ξ) |
s∈S}∪{FPrg(ξ)}, n≥0

─ Sets Ps, Fs, and Prgs of predicate symbols, ordinary function symbols with their
sorts, and program symbols respectively

─ A language signature specified by sets SΣ , Cs(SΣ), Ps, Fs, Prgs and by (implicit)
arity mappings for symbols of compositions and ordinary functions

─ Sets of atomic expressions (atomic formulas, terms, and program texts) with their
sort arities; for composition-nominative logics these sets usually coincide with Ps,
Fs, and Prgs respectively; symbols of null-ary compositions are not considered as
atomic formulas because they have fixed interpretation

─ Inductive rules for constructing new logic expressions from existing ones (for each

composition symbol)(SCscs Σ∈). In such constructions sort arities of expressions

should be taken into account; thus for each logic expression its sort arity can be
evaluated

An interpretational component is defined by:

─ A class of sort interpretation mappings of the form Τ⎯→⎯tS SI : . In combination

with ξ a mapping SI specifies type evaluation mapping ξτ SI= , and conse-

quently, a certain algebra A(τ)
─ A uniform interpretation of composition symbols from Cs(ξ) as compositions in

the algebra A(τ); this interpretation is fixed for the logic, therefore it is not in-
cluded in the list of interpretation mappings

96 M.S. Nikitchenko and V.G. Tymofieiev

─ Classes of interpretation mappings of predicate, function, and program symbols of
the form

)(: τPrPsI tPs ⎯→⎯ ,)(: τ
Τ∈

⎯→⎯
A

AtFs FnFsI , and ⎯→⎯tPrgs PrgsI : FPrg(τ)

─ Classes of interpretation mappings for atomic expressions (if they differ from Ps,
Fs, and Prgs)

A tuple (A(τ), PrgsFsPs III ,,) is called a model of a composition-nominative program

logic. Models can be represented by tuples of the form),,,(PrgsFsPsS IIIΣ called

language interpretation (or logic interpretation) usually denoted here by J (possibly
with subscripts). Given such an interpretation, each logic expression can be inter-
preted in a traditional way as predicate, ordinary function, or program function in
algebra A(τ). Thus, interpretational component describes classes of language models
represented by language interpretations.

The proposed scheme permits to define various kinds of composition-nominative
program logics varying from simple ones to more complex ones. Still, taking into
consideration the fact that this chapter is practically a first step in studying many-
sorted composition-nominative program logics, we restrict ourselves to considering
satisfiability and validity problems only for composition-nominative pure predicate
logics with equality, i.e. logics which are based on a class of algebras of the form
A(τ)=<Pr(τ), C(τ)> where the set C(τ) consists of compositions of disjunction ∨,

negation ¬, renomination v
xR , existential quantification x∃ , and equality predi-

cate xy= (see the next section for formal definitions).

3 Formal Definitions of Many-Sorted Composition-Nominative
Pure Predicate Logics

To define the logics we have to specify their semantic, syntactic, and interpretational
components. Semantic component is formed by special predicate algebras considered
below.

3.1 Algebras of Quasiary Predicates over Typed Nominative Sets

Let V be a set of names. According to tradition, names from V are also called va-

riables. Let Τ be a class of types and Τ⎯→⎯tV:τ be a total mapping called type
valuation.

Given V, ,Τ and τ, a class),,(τΤVNST (shortly:)(τNST) of typed nominative

sets is defined by the following formula:

)(τNST = .))()()((:

∈↓∈∀⎯→⎯
∈

vvdvdVvAVd
TA

p τ

 Satisfiability and Validity Problems 97

Informally speaking, typed nominative sets represent states of typed variables.
Though nominative sets are defined as mappings, we follow mathematical traditions
and also use set-like notation for these objects. In particular, the notation

d = [vi ai | i∈I] describes a nominative set d. Ternary membership relation

vi ai ∈n d means that d(vi) is defined and its value is ai (d(vi)↓ =ai).

Let },{ TFBool = be a set of Boolean truth values. Let

BoolNSTVPr p⎯→⎯=Τ)(),,(ττ be a set of all partial predicates (this set is shortly

denoted by)(τPr). Predicates from)(τPr are called many-sorted partial quasiary

predicates.
For)(τPrp∈ ,)(τNSTd ∈ , ,Vv∈)(va τ∈ we write:

─ ↓)(dp to denote that p is defined on a nominative set d

─ bdp ↓=)(to denote that p is defined on d with a Boolean value b

─ ↑)(dp to denote that p is undefined on d

─ ↓)(vd to denote that a component with a name v is present in d

─ avd ↓=)(to denote that dav n∈

─ ↑)(vd to denote that the value of the name v is undefined in d

Operations over)(τPr are called compositions. For pure predicate logic the set of

compositions),,(τΤVC (shortly:)(τC) is },,,,{ xy
v
x xR =∃¬∨ . These compositions

are defined as follows ()(, τPrqp ∈ ,)(τNSTd ∈).

─ Binary composition of disjunction)()(: ττ PrPr ×∨ ⎯→⎯t)(τPr :

↓=↓=
↓=↓=

=∨
 cases.other in undefined

,)(and)(if ,

,)(or)(if ,

))((FdqFdpF

TdqTdpT

dqp

─ Unary composition of negation)(: τPr¬ ⎯→⎯t)(τPr :

↑
↓=
↓=

=¬
 .)(if undefined

,)(if ,

,)(if ,

))((

dp

TdpF

FdpT

dp

─ Unary parametric composition of renomination n
n

vv
xxR ,...,

,...,
1
1

:)(τPr ⎯→⎯t)(τPr :

∇∉∈= }],...,{|([)()(1
,...,
,...,

1
1 nn

vv
xx vvvdavpdpR n

n

}]),...,1{,)(|)([nixdxdv iii ∈↓ ,

98 M.S. Nikitchenko and V.G. Tymofieiev

where: nvv ...,,1 , Vxx n ∈...,,1 , nvv ...,,1 are distinct upper names,),()(11 xv ττ = …,

)()(nn xv ττ = , 0≥n . The ∇ operation is defined as follows: if d1 and d2 are two

nominative sets then 21 ddd ∇= consists of all named pairs of d2 and only those pairs

of d1, whose names are not defined in d2.

─ Unary parametric composition of existential quantification

∃x)(: τPr ⎯→⎯t)(τPr with the parameter x∈V:

↓=∇∈
↓=∇∈

=∃
 cases.other in undefined

,)(:)(each for if ,

,)(:)(exists thereif ,

))((FaxdpxaF

TaxdpxaT

dpx

τ
τ

Here axd ∇ means][axd ∇ .

─ Null-ary parametric composition of equality)(: τPrxy= with parameters x, y∈V,

)()(yx ττ = :

 =ху (d)

↑↑
=↓↓

=
 otherwise.

 ,)(and)(if ,

),()(and ,)(,)(if ,

F

ydxdT

ydxdydxdT

Note that parametric compositions of existential quantification, renomination, and
equality can also represent classes of compositions. Thus, notation x∃ can represent
one composition, when x is fixed, or a class { x∃ | Vx∈ } of such compositions for
various names.

A pair AS >ΤΤ=<Τ),,(,),,(),,(τττ VCVPrV is called a many-sorted algebra of

quasiary predicates. Such algebras form semantic base for a many-sorted composi-
tion-nominative pure predicate logic (here referred to as L) and a many-sorted first-
order classical pure predicate logic (here referred to as CL). Let us now proceed with

syntactic and interpretational components of respective logics.

3.2 Many-Sorted Composition-Nominative Pure Predicate Logic L

Syntactic component. Let S be a set of sorts. Let ξ be a total mapping

SV t⎯→⎯:ξ called sort valuation (sort assignment). A triple),,(ξSVS =Σ is called

a signature of sort valuation.

Let)(SCs Σ be a set of composition symbols that represent compositions in alge-

bras defined above, },,,,{)(xy
v
x

S xRCs =∃¬∨=Σ . For simplicity, here and afterwards

we use the same notation for symbols of compositions and compositions themselves.
We also assume that each composition symbol is (implicitly) decorated with its sort
arity.

 Satisfiability and Validity Problems 99

Let Ps be a set of predicate symbols.

A triple)),(,(PsCs SSL ΣΣ=Σ is a signature of a language of L.

Given a language signature)),(,(PsCs SSL ΣΣ=Σ , we inductively define the lan-

guage of L – the set of formulas)(LFr Σ :

1. If PsP∈ then)(LFrP Σ∈

2. If Φ, Ψ)(LFr Σ∈ then)()(LFr Σ∈Ψ∨Φ

3. If Φ)(LFr Σ∈ then)(LFr Σ∈Φ¬

4. If Φ)(LFr Σ∈ , ,, VxVv ii ∈∈ iv are distinct, 0,...,,1),()(≥== nnixv ii ξξ

then ∈Φn
n

vv
xxR ,...,

,...,
1
1

)(LFr Σ

5. If Φ)(LFr Σ∈ , Vx∈ then)(LFrx Σ∈Φ∃

6. If)()(,, yxVyx ξξ =∈ then)(L
xy Fr Σ∈=

Formulas of the form P are atomic formulas (PsP∈). Following conventional nota-

tion, we write x = y instead of = xy.

Interpretational component. Let Τ⎯→⎯tS SI : be a sort interpretation mapping.

Given ξ, this mapping specifies a type valuation mapping ξτ SI= , and conse-

quently an algebra of quasiary predicates over typed nominative sets
AS >ΤΤ=<Τ),,(,),,(),,(τττ VCVPrV .

Composition symbols have fixed interpretation, but we additionally need interpre-

tation)(: τPrPsI tPs ⎯→⎯ of predicate symbols to obtain a language interpretation.

A corresponding tuple),,(PsSS IIJ Σ= is called an L-interpretation.

Given a formula Φ and an interpretation J we can speak of an interpretation of Φ
in J. It is denoted by JΦ or).(ΦJ

For different equivalent transformations of L-formulas we need unessential va-
riables (analogs of fresh variables in classical logic) that do not affect the formula
meanings [10]. Therefore we assume that there is a set U of unessential typed va-
riables, U ⊆ V such that U contains an infinite number of variables of each sort. By
calling a variable Uu∈ unessential we restrict considered interpretations of predicate
symbols to such that are neither sensitive to the value of the component with the name
u in nominative sets, nor to presence of such a component. Formally, a variable Vu∈

is unessential in an interpretation PsI if))(())((audPIdPI PsPs ∇= for all

PsP∈ ,)(τNSTd ∈ ,)(ua τ∈ .

100 M.S. Nikitchenko and V.G. Tymofieiev

3.3 Many-Sorted First-Order Classical Pure Predicate Logic LС

Syntactic component. Let),,(ξSVS =Σ be a signature of sort valuation. Let

)(S
CCs Σ be a set of composition symbols, },,,{)(xy

S
C xCs =∃¬∨=Σ . Note, that

renomination composition is not explicitly used in classical logic, thus

)()(SS
C CsCs Σ⊂Σ .

Let Ps be a set of predicate symbols and
0

:
≥

⎯→⎯
n

nt SPsarity be a sort arity

mapping. It maps each predicate symbol P to a tuple),...,(1 nss ,

0,,...,1, ≥=∈ nniSsi that represents sorts of its arguments.

A tuple),),(,(arityPsCs S
C

SLC ΣΣ=Σ is a signature of a language of CL . Given

this signature we define the language of CL – the set of formulas)(CLFr Σ –

inductively:

1. If PsP∈ ,),...,()(1 nssParity = , Vxx n ∈,...,1 , ,)(ii sx =ξ ni ,...,1= , 0≥n

then)....,,(1 nxxP ∈)(CLFr Σ

2. If Φ, Ψ)(CLFr Σ∈ then ∈Ψ∨Φ)()(CLFr Σ

3. If Φ)(CLFr Σ∈ then ∈Φ¬)(CLFr Σ

4. If Φ)(CLFr Σ∈ , Vx∈ then ∈Φ∃x)(CLFr Σ

5. If)()(,, yxVyx ξξ =∈ then ∈=)(yx)(CLFr Σ

Formulas defined according to rules 1 and 5 are called atomic.

Interpretational component. Let Τ⎯→⎯tS SI : be a sort interpretation mapping.

Define ξτ SI= and consider an algebra of quasiary predicates over typed nomina-

tive sets AS >ΤΤ=<Τ),,(,),,(),,(τττ VCVPrV . We assume that types are not empty.

Formulas)(CLFr Σ are interpreted as predicates in such algebras. Atomic formulas of

the form x=y are interpreted as predicates =ху. To give an interpretation of atomic for-
mulas of the form)....,,(1 nxxP we need to specify an interpretational mapping for

predicate symbols. In case of classical logic it is specified by a mapping Ps
CI that

associates each predicate symbol PsP∈ of arity),...,(1 nss with a total n-ary predi-

cate Ps
CI (P):)(...)(1 n

SS sIsI ×× ⎯→⎯t Bool. Thus, CL -interpretations have the form

),,(Ps
C

SS
C IIJ Σ= . Such interpretation CJ for every atomic formula Р(х1, ..., хn)

defines its meaning in)(τPr as a predicate Р(х1,..., хn)J such that Р(х1, ..., хn)J (d) =
Ps
CI (Р)(d(х1), …, d(хп)) for every)(τNSTd ∈ ; if one of the values d(х1), …, d(хп) is

not defined then Р(х1, ..., хn)J is undefined on d. Let us note that in classical logic d is

 Satisfiability and Validity Problems 101

called variable valuation or variable assignment. The meaning)(τPrJ ∈Φ of a

complex formula Φ)(CLFr Σ∈ is defined in a usual way.

For the logics L and CL derived compositions (such as conjunction &, universal

quantification ∀x, negated equality xy≠ , etc.) are defined in a traditional way. In the

sequel we consider formulas in their traditional form using infix operations and
brackets; brackets can be omitted according to conventional rules for the priorities of
operations (priority of the binary disjunction is weaker than priority of unary
operations).

Formulas and interpretations in logics L and CL are called L-formulas / CL -

formulas and L-interpretations / CL -interpretations respectively.

Notions of satisfiability and validity can be defined in a uniform way for both log-
ics, therefore their definitions are given only for the logic L.

A formula Φ is called satisfiable in an L-interpretation J, if there is a nominative
set),,(τΤ∈ VNSTd such that ΦJ (d)↓= T. We shall denote this by J |≈ Φ. A formula

Φ is called satisfiable in a logic L if there is an L-interpretation J such that J |≈ Φ.
We shall denote this Φ≈L| , or Φ≈| if L is understood from the context.

A formula Φ is called valid in an L-interpretation J if there is no),,(τΤ∈ VNSTd

such that ΦJ (d)↓= F. This is denoted J |= Φ, which means that Φ is not refutable in J.
A formula Φ is called valid in logic L if J |= Φ for every L-interpretation J. We shall
denote this Φ=L| , or just Φ=| if L is understood from the context.

Formulas Φ and Ψ are called equisatisfiable in a logic L if they are either both sa-
tisfiable or both not satisfiable (i.e. unsatisfiable) in L.

We call formulas Φ and Ψ equivalent if JJ Ψ=Φ for every interpretation J.

In classical first-order logics we have the property that Φ is satisfiable if Φ is
valid. This is not the case in CNL due to possible presence of a nowhere defined pre-
dicate (which is valid). Still satisfiability and validity are related notions in CNL:
formula Φ is satisfiable in an L-interpretation J iff ¬Φ is not valid in J. This property
permits to consider satisfiability and validity as dual properties.

Satisfiability problem for composition nominative logics considered in the chapter
consists in checking whether or not given L-formula is satisfiable. Validity problem
consists in checking whether or not given L-formula is valid.

4 Reduction of Satisfiability and Validity Problems

In this section we aim to reduce the satisfiability and validity problems for many-
sorted composition-nominative pure predicate logic to the same problems for many-
sorted first-order classical pure predicate logic.

Consider an arbitrary formula ∈Φ)(LFr Σ . We transform it to a formula

∈ΦC)(CLFr Σ , which is satisfiable in CL if and only if the formula Φ is satisfiable

in L.

102 M.S. Nikitchenko and V.G. Tymofieiev

Given a formula Φ, we first construct its unified renominative normal form de-
noted urnf[Φ]. This form has several properties outlined below.

An L-formula Φ is said to be in unified renominative normal form (URNF) if the
following requirements are met:

─ Renomination compositions are only applied in Φ to predicate symbols. That is, for

every subformula of the form R v
x Ψ we have that Ψ∈Ps

─ Every occurrence of a predicate symbol P∈Ps is a part of some subformula of the

form R u
q P (possibly with empty lists of names in renomination)

─ For every two subformulas R u
q P and R w

y Q we have that vectors u and w coin-

cide; it means that for all instances of renomination composition the lists of upper
names are the same

─ For every subformula R v
x P and every quantifier ∃y that occur in the formula Φ we

have that vy∈

We use notation vy∈ (y∈{ v , x }) to indicate that y is among the variables of the list

v (lists v and x).

When a formula is in URNF we call every its subformula of the form PRv
x a re-

nominative atom. Note that if a formula is in URNF then every its subformula is also
in URNF.

Lemma 1. There is a (non-deterministic) algorithm that given an arbitrary formula

)(LFr Σ∈Φ constructs its equisatisfiable unified renominative normal form

)(][LFrurnf Σ∈Φ .

Proof. Consider the following transformation rules (T1–T9) of the form rl ΦΦ ,

where lΦ ,)(L
r Fr Σ∈Φ :

T1) yxxy
v
xR ~~== where)/(~ xvxx = ,)/(~ xvyy = (see T4 for definitions);

T2))()(2121 Φ∨ΦΦ∨Φ v
x

v
x

v
x RRR ;

T3) Φ¬Φ¬ v
x

v
x RR ;

T4) ΦΦ kmn
kmn

kп
kп

mn
mn

uuwwvv
yy

uuvv
zzss

wwvv
yyxx RRR ,...,,,...,,,...,

,...,,,...,,,...,
,...,,,...
,...,,,...,

,...,,,...,
,...,,,...,

111
111

11
11

11
11 ββαα where

),,...,1;,...,1(kjmiuw ji ==≠ αi = si(v1,...,vn, w1,...,wm / x1,...,xn, y1,...,ym),

βj = zj(v1,...,vn, w1,...,wm / x1,...,xn, y1,...,ym). Here r(b1,...,bq / c1,...,cq) = r if
r∉{b1,...,bq}, r(b1,...,bq / c1,...,cq) = ci if r = bi for some i;

T5) Φ∃Φ∃ v
x

v
x RyyR , when y∉{ v , x };

T6) R vy
xz
,
, ∃yΦ ∃y R v

x Φ ;

T7) vz
xyR ,

, ∃yΦ ∃u vz
xyR ,

,
y
uR Φ , u∈U,)()(yu ξξ = , u does not occur in the

formula on the left hand side of the rule;

 Satisfiability and Validity Problems 103

T8) R u
q P R uz

qz
,
, P (in case when vectors vu , are empty this rule is represented

as P PRz
z);

T9) PRPR nij

nij

nji

nji

uuuu
qqqq

uuuu
qqqq

,...,,...,,...,
,...,,...,...,

,...,,...,,...,
,...,,...,,...,

1

1

1

1
= .

The rule T4 represents explicitly the result of functional composition of parameters of
two successive renominations. The rule T7 permits to assume without loss of gene-
rality that all quantified variables in initial formula are different.

The rules T1–T9 are equivalent transformations in L [10]. Using these rules the
formula can be transformed to renominative normal form. First, using rules T1–T7 we
can push renomination composition down to atomic formulas. Then, using rules T8,
T9 we unify all renominative atoms so that the lists of upper names (variables) coin-
cide. Obtained formula will be equivalent (and therefore equisatisfiable) with initial
formula. □

Once L-formulas are in unified renominative normal form, we can apply a syntactical
reduction mclf, which transforms them into CL -formulas,

)()(: CLtL FrFrmclf Σ⎯→⎯Σ . This reduction is formalized inductively as follows:

1.)(][yxmclf xy ===

2.),...,(][1
...,,

,...,
1
1 n

vv
xx xxPPRmclf n

n
=

3.][][Φ¬=Φ¬ mclfmclf

4.])[][()][(2121 Φ∨Φ=Φ∨Φ mclfmclfmclf

5. sxmclfexxxmclf s =Φ≠∃=Φ∃)(]),[&(][ξ

For the rule 5 we specify that for each sort Ss∈ there is a predefined unessential
variable of the same sort seUe ss =∈)(, ξ that does not occur in original formula.

All applications of the 5-th rule introduce the same variable se when processing

quantifier instances over variables of the same sort s.
Due to properties of URNF, applications of the rule 2 create instances of predicates

of the same arity.
Now we can proceed with reducing the satisfiability problem in logic L to the satis-

fiability problem in classical logic CL .

Lemma 2. Let Φ be an L-formula in unified renominative normal form,

Φ ∈)(LFr Σ , J be an L-interpretation such that Φ≈|J . Then there is an CL -

interpretation CJ such that][| Φ≈ mclfJC .

Proof. Let)),(,(PsCs SSL ΣΣ=Σ ,),,(ξSVS =Σ ,),,(PsSS IIJ Σ= ,

)(: τPrPsI tPs ⎯→⎯ , ξτ SI= , SV t⎯→⎯:ξ , Τ⎯→⎯tS SI : . Due to monotonicity

of compositions in considered CNL, if a formula is satisfiable in L then it is also satisfiable

104 M.S. Nikitchenko and V.G. Tymofieiev

on some total L-interpretation [12]. Total interpretations mean that predicate symbols are

interpreted in the class),,(τΤVNST ⎯→⎯t Bool of total predicates. Therefore without

loss of generality we assume that PsI maps predicate symbols Ps to total predicates.
To construct an interpretation CJ we consider algebras of quasiary predicates over

typed nominative sets defined over extended types. Such an algebra, denoted by
AS),,(εε τΤV , is constructed from the algebra AS),,(τΤV .

Let ε be a new element such that
Τ∈

∉
A

Aε . For Τ∈A define }{εε ∪= AA . Let

}|{ Τ∈=Τ AAεε and εε TSI tS ⎯→⎯: be such a sort interpretation that

}{)()(εε ∪= sIsI SS for all Ss∈ . Let ξτ εε SI= .

Now we define the class of total nominative sets by the following formula:

),,(εε τΤVNSTT = : (() ()) .t

A

d V A v V d v v
∈Τ

 ⎯⎯→ ∀ ∈ ∈

ε ε

ε ετ

Denote by VV ⊆Φ the set of all variables that occur as upper names in renominative

atoms of Φ .
From Φ≈|J follows that ΦJ (d0)↓=T for some ,,(0 Τ∈ VNSTd τ). As Ues ∈ for

all Ss∈ we can assume without loss of generality that for all Ss∈ ↑)(0 sed . Let

us denote][Φ=Φ mclfC , CΦ)(CLFr Σ∈ ,),),(,(arityPsCs S
C

SLC ΣΣ=Σ . We

will now construct an interpretation CJ of the form),,(Ps
C

SS
C IIJ εΣ= , where

Ps
CI is described below, such that CCJ Φ≈| .

Let us first define the mapping),,(: τε Τ+ VNST ⎯→⎯t),,(εε τΤVNSTT by the

formula .]|[)(dVvvd ∇∈=+ εε Informally, this mapping adds a pair εv to

the nominative set d for every name v that is undefined in d.

It is clear that +ε is bijective. We denote the inverse mapping

),,(: εε τε Τ− VNSTT ⎯→⎯t),,(τΤVNST , .])(,|)([)(εε ≠∈=− vdVvvdvd In-

formally, this mapping deletes all pairs εv from the nominative set d.
Let (v1, …, vn) be a list of upper names of renominative atoms occurring in Φ.

Then for every P∈Ps of arity ())(),...,(1 nvv ξξ we construct a total predicate

pPI Ps
C =)(, p:)(...)(1 nvv εε ττ ×× ⎯→⎯t Bool in the following way:

p(a1,…, an) = ∇∉∈ }],...,{,|([)(10 nn
Ps vvvdavavPI

]).,,...,1|[ε≠= iii aniav

This completes definition of CL -interpretation CJ .

 Satisfiability and Validity Problems 105

Let)},,(|))(({ 0 εε τεε Τ∈∇= Φ
+− VNSTTdddD . The set D contains nominative

sets that are variations of d0 for only those names that occur in upper names of reno-
minative atoms in Φ . The set of such names is finite and their values determine satis-
fiability of Φ ; this fact permits to prove that satisfiability of constructed classical
formula is preserved.

Now we prove by induction that for every subformula Ψ of Φ and its counterpart

][Ψ=Ψ mclfC we have that)(dJΨ =))(()(d
CJC

+Ψ ε for each Dd ∈ .

Base of induction: we have that))(()),...,(()()(1
,...,
,...,

1
1

dxxPdPR
C

n
n JnJ

vv
xx

+= ε by

construction of Ps
CI and))(()()()(dyxd

CJJxy
+=== ε by definition of CL .

We prove the induction statement only for the non-trivial case of existential quan-
tifier composition.

Let Θ∃=Ψ x , then)&(][)(CxC exxmclf Θ≠∃=Ψ=Ψ ξ , where][Θ=Θ mclfC .

By induction base we have that for every Dd ∈)(dJΘ =))(()(d
CJC

+Θ ε . Let us

prove that for every Dd ∈)).(()()(dd
CJCJ

+Ψ=Ψ ε

Suppose)(dJΨ = T. That is: Tdx J =Θ∃)()(. It means there is some)(xa τ∈

such that TaxdJ =∇Θ)(. As Φ∈Vx we have that DaxdDd ∈∇∈ . That

means, according to induction assumption, that Taxd
CJC =∇Θ +))(()(ε .

Note that)(axd ∇+ε = axd ∇+)(ε . That is, Taxd
CJC =∇Θ +))(()(ε .

For every Dd ∈ we have εε ξ =+))(()(xed ; we also have by construction that)(xeξ

does not occur in Ψ and .ε≠a Hence)(axd ∇+ε (x)))(()(xeaxd ξε ∇≠ + and

.))(()()(Taxdex
CJx =∇≠ + εξ Therefore, .))(())&(()(Tdexx

CJCx =Θ≠∃ +εξ

So we have obtained that the implication)(dJΨ = T Td
CJC =Ψ +))(()(ε holds.

Suppose that)(dJΨ = F. That is: Fdx J =Θ∃)()(. Then we have that for all

)(xa τ∈ FaxdJ =∇Θ)(. That means, according to induction assumption, that

for all)(xa τ∈ Faxd
CJC =∇Θ +))(()(ε . Let us assume that

Tbxd
CJC =∇Θ +))(()(ε for some).(xb ετ∈ It then follows immediately that

ε=b , which means that Fbxdex
CJCx =∇Θ≠ +))(()&()(εξ for all),(xb ετ∈

which means that Fdexx
CJCx =Θ≠∃ +))(())&(()(εξ . Thus the implication

)(dJΨ = F Fd
CJC =Ψ +))(()(ε holds.

Hence, from ΦJ (d0)↓=T we obtain that Td
CJC ↓=Φ +))(()(0ε . □

106 M.S. Nikitchenko and V.G. Tymofieiev

Now we can prove the inverse of lemma 2: satisfiability of]][[Φurnfmclf in classical

logic CL implies satisfiability of Φ in L. The idea is the following: having an interpre-

tation in CL we construct a new interpretation in L deleting values of variables se for

all Ss∈ . But it may happen that from one type we delete more than one value. This
can violate satisfiability of Φ in the obtained interpretation. Therefore we first should
construct an interpretation in which types are disjoint. This can be formalized by the

following notion: a sort interpretation mapping Τ⎯→⎯tS SI : is called type-disjoint if

for every ,, 21 Sss ∈ 21 ss ≠ we have that ∅=∩)()(21 sIsI SS . Then having a type

disjoint interpretation we can delete from types values of se for all Ss∈ . For such

interpretations we will delete one value only from each type. The both constructions
described preserve satisfiability (lemmas 3 and 4).

Lemma 3. Let Φ ∈)(LFr Σ ,),,(PsSS IIJ Σ= be an L-interpretation such that

Φ≈|J . Then there is an L-interpretation),,(###
PsSS IIJ Σ= such that Φ≈|#J and

SI# is type-disjoint.

Proof. Let)),(,(PsCs SSL ΣΣ=Σ ,),,(ξSVS =Σ ,)(: τPrPsI tPs ⎯→⎯ , ξτ SI= ,

SV t⎯→⎯:ξ , Τ⎯→⎯tS SI : . Given Τ∈∈ ASs , define }|),{(AaasAs ∈= and

},|{# SsAAs ∈Τ∈=Τ . Then define ## : Τ⎯→⎯tS SI by the formula sS AsI =)(#

where)(sIA S= . It is easy to see that SI# is type-disjoint. Let ξτ SI## = . Consider

mapping #:),,(τΤVNST ⎯→⎯t),,(## τΤVNST defined by the formula

#(d)=]|)),(([davavv n∈ ξ ,),,(τΤ∈ VNSTd . Obviously, # is a bijection. De-

fine)(: ## τPrPsI tPs ⎯→⎯ by the formula))(())()(#(# dPIdPI PsPs = , PsP∈ ,

),,(τΤ∈ VNSTd . The equality in the formula is a strong equality. Let

),,(###
PsSS IIJ Σ= . By induction on the structure of Φ we can prove that

))()(#())((# dJdJ Φ=Φ ,),,(τΤ∈ VNSTd . From this follows the statement of the

lemma. □

It is easy to check that an equivalent lemma also holds for LC -formulas and LC –
interpretations.

Lemma 4. Let Φ be an L-formula in unified renominative normal form,

Φ ∈)(LFr Σ , CJ be an CL -interpretation such that][| Φ≈ mclfJC . Then there is an

L-interpretation J such that Φ≈|J .

Proof. Let),),(,(arityPsCs S
C

SLC ΣΣ=Σ ,),,(Ps
C

S
C

S
C IIJ Σ= ,),,(ξSVS =Σ ,

SV t⎯→⎯:ξ , C
tS

C SI Τ⎯→⎯: , ξτ S
CC I= , Ps

CI be an interpretation of predicate

 Satisfiability and Validity Problems 107

symbols to total n-ary predicates. Due to lemma 3 we can assume that C
tS

C SI Τ⎯→⎯:

is type-disjoint.
Let][Φ=Φ mclfC , TdCCJC =Φ)()(for some),,(CCC VNSTTd τΤ∈ .

According to mclf transformation, for each sort s in S we have a predefined varia-

ble se . Let Τ be the class of sets that consists of the sets)}({\)(sC
S
C edsI for all

sorts Ss∈ . Now we construct a sort interpretation Τ⎯→⎯tS SI : such that for all

Ss∈)}({\)()(sC
S
C

S edsIsI = . Let ξττ St IV =Τ⎯→⎯ ,: . This definition is

correct since S
CI is type-disjoint and therefore, injective.

Let us define the mappings),,(: τδ Τ+ VNST ⎯→⎯t),,(CCVNSTT τΤ and

),,(: ССVNSTT τδ Τ− ⎯→⎯t),,(τΤVNST by the following formulas:

dVvedvd vC ∇∈=+]|)([)()(ξδ , .)]()(,|)([)()(vC edvdVvvdvd ξδ ≠∈=−

Obviously, these mappings are bijections.
Finally, let us construct the interpretation of predicate symbols
: ()Ps tI Ps Pr⎯⎯→ τ and a nominative set 0 (, ,)d NST V∈ Τ τ such that ΦJ (d0)↓=T

where),,(PsSS IIJ Σ= .

Let ∈∇= dddD CC |{)},,(CCVNSTT τΤΦ . For each predicate symbol P occurring

in Φ within renominative atoms with (1v , …, nv) as upper names and for every

),,(τTVNSTd ∈ we assign =))((dPI Ps))(()),...,((1 dvvP
CJn

+δ . Now we can

prove that for every subformula Ψ of Φ and its counterpart][Ψ=Ψ mclfC we have

that)()())((dd
CJCJ Ψ=Ψ −δ for each CDd ∈ . The proof scheme is the same as

that of lemma 2.

Assign)(0 Cdd −= δ . Then we obtain that TdJ =Φ)(0 . □

Theorem 1. Let Φ∈)(LFr Σ . Then Φ≈L| if and only if]][[| Φ≈ urnfmclf
CL .

Proof of the theorem follows from lemmas 2–4.

Theorem 2. Let Φ∈)(LFr Σ . Then Φ=L| if and only if]][[| Φ= urnfmclf
CL .

Proof. Duality of satisfiability and validity means that Φ=L| iff Φ¬ is not satisfiable

in L. From the theorem 1 follows that Φ¬ is not satisfiable in L iff]][[Φ¬urnfmclf

is not satisfiable in LC. This means that]][[| Φ¬¬= urnfmclf
CL . By inspections of

rules for urnf and mclf we can conclude that negation is distributive with respect to
these transformations. Thus,

]][[| Φ¬¬= urnfmclf

CL ⇔]][[| Φ¬¬= urnfmclf
CL ⇔]][[| Φ= urnfmclf

CL . □

108 M.S. Nikitchenko and V.G. Tymofieiev

The results obtained state the reduction of satisfiability and validity problems in
many-sorted composition-nominative pure predicate logic to the same problems in
many-sorted first-order classical pure predicate logic.

Let us illustrate the proposed reduction methods on a simple example.

Example. Let us check satisfiability and validity of the formula Φ ,

))&(&)&((,
, PaRPRzyx ba
cd

b
cxzyzxy ∃¬=→≠≠∀∀∀=Φ ,

in the logic L such that)),(,(PsCs SSL ΣΣ=Σ ,),,(ξSVS =Σ , },,,,,,{ dcbazyxV = ,

},,{ 21 ssS = ,)()()()(1sdcba ==== ξξξξ 2)()()(szyx === ξξξ .

Let us construct its unified renominative normal form URΦ . First we push the re-

nomination down according to the rule T6 and obtain the following formula:

))&(&)&((PRaPRzyx b
c

b
cxzyzxy ∃¬=→≠≠∀∀∀ .

Then we change the form of the renominative atoms due to quantifier occurrences,
and get the following formula][Φ=Φ urnfUR ,

))&(&)&((,,,,
,,,,

,,,,
,,,, PRaPRzyx zyxba

zyxca
zyxba
zyxcaxzyzxyUR ∃¬=→≠≠∀∀∀=Φ .

Note that we use derived transformation rules that handle compositions & and ∀ .

Now we can apply the mclf transformation and obtain:

→≠→≠→≠∀∀∀=Φ=Φ 222 ((((][sssURC ezeyexzyxmclf

))),,,,(&(&),,,,(&))))&(1 zyxcaPeaazyxcaPzxzyyx s≠¬∃=→≠≠ .

Formula CΦ is satisfiable in two-sorted logic LC. Therefore Φ is satisfiable in L.

Formula CΦ is not valid in two-sorted logic LC. Therefore Φ is not valid in L.

Indeed, let),,(PsSS IIJ Σ= be an L-interpretation such that }3,2,1{)(1 =sI S ,

},{)(2 βα=sI S . Let PsI (P)(d)↓ = F if a pair dra n∈ for some)(1sIr S∈ and

T in all other cases. In other words, the predicate P takes the value T on a nominative
set d if the variable a is undefined in d. Now, for instance we have that
ΦJ ([]1,1 cb)↓ = T and ΦJ ([]1,1,1 cba)↓ = F.

5 Conclusions

Composition-nominative logics are grounded on the same methodological and ma-
thematical basis as program models. Therefore these logics should reflect such pro-
gram features as partiality, compositionality, nominativity, elaborated type system,
etc. These new features of CNL complicate their investigation; therefore it seems
reasonable to transfer results obtained in classical logic to CNL. In the chapter we
have demonstrated this idea for satisfiability and validity problems for many-sorted

 Satisfiability and Validity Problems 109

composition-nominative pure predicate logic. As a main result we have shown that
the problems under consideration can be reduced to the same problems for many-
sorted classical predicate logic with equality. Thus, existent state-of-the-art methods
and techniques for checking satisfiability and validity in classical logics can also be
applied to composition-nominative logics.

Future work on the topic will include investigation of satisfiability and validity
problems for richer CNL, in particular, for predicate-function logics and for program
logics of Floyd-Hoare style. Another direction is related to logics over hierarchic
nominative data. Hierarchic data permit to represent such complex structures as lists,
stacks, arrays etc; thus, such logics will be closer to program models with more rich
data types. We also plan to inspect what methods and techniques for studying partiali-
ty, compositionality, nominativity, and satisfiability modulo theory [15–20] can be
applied in composition-nominative logics.

References

1. Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London
(1997)

2. Kroening, D., Strichman, O.: Decision Procedures – an Algorithmic Point of View. Sprin-
ger, Heidelberg (2008)

3. Marques-Silva, J.: Practical Applications of Boolean Satisfiability. In: Workshop on Dis-
crete Event Systems, Goteborg, Sweden, May 28-30, pp. 74–80 (2008)

4. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from
an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53, 937–
977 (2006)

5. de Moura, L., Bjørner, N.: Satisfiability Modulo Theories: Introduction and Applications.
Comm. ACM 54(9), 69–77 (2011)

6. Nikitchenko, N.S.: A Composition Nominative Approach to Program Semantics. Technic-
al Report IT, TR 1998-020, Technical University of Denmark (1998)

7. Basarab, I.A., Gubsky, B.V., Nikitchenko, N.S., Red’ko, V.N.: Composition Models of
Databases. In: Eder, J., Kalinichenko, L.A. (eds.) East-West Database Workshop. Work-
shops in Computing Series, pp. 221–231. Springer, London (1995)

8. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction. John Wi-
ley & Sons Inc. (1992)

9. Nikitchenko, M.S.: Composition-Nominative Aspects of Address Programming. Kiberne-
tika I Sistemnyi Analiz 6, 24–35 (2009) (in Russian)

10. Nikitchenko, M.S., Shkilnyak, S.S.: Mathematical Logic and Theory of Algorithms. Pub-
lishing House of Taras Shevchenko National University of Kyiv, Kyiv (2008) (in Ukrai-
nian)

11. Nikitchenko, M.S., Tymofieiev, V.G.: Satisfiability Problem in Composition-Nominative
Logics. In: Proceedings of the Eleventh International Conference on Informatics
INFORMATICS 2011, Roznava, Slovakia, November 16-18, pp. 75–80 (2011)

12. Nikitchenko, M.S., Tymofieiev, V.G.: Satisfiability in Composition-Nominative Logics.
Central European Journal of Computer Science (to appear)

110 M.S. Nikitchenko and V.G. Tymofieiev

13. Nikitchenko, M.S., Tymofieiev, V.G.: Satisfiability Problem in Composition-Nominative
Logics of Quantifier-Equational Level. In: Proc. 8th Int. Conf. ICTERI 2012, Kherson,
Ukraine, June 6-10, vol. 848. CEUR-WS.org (2012), http://ceur-ws.org/Vol-
848/ICTERI-2012-CEUR-WS-paper-38-p-56-70.pdf

14. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)
15. Blamey, S.: Partial Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical

Logic, vol. III. D. Reidel Publishing Company (1986)
16. Jones, C.B.: Reasoning About Partial Functions in the Formal Development of Programs.

ENTCS 145, 3–25 (2006)
17. Owe, O.: Partial Logics Reconsidered: A Conservative Approach. Form. Asp. Comput. 5,

208–223 (1997)
18. Janssen, T.M.V.: Compositionality. In: van Benthem, J., ter Meulen, A. (eds.) Handbook

of Logic and Language, pp. 417–473. Elsevier and MIT Press (1997)
19. Pitts, A.M.: Nominal Logic, A First Order Theory of Names and Binding. Inform. Com-

put. 186, 165–193 (2003)
20. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Bi-

ere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press
(2009)

A Criterion for Existence

of Global-in-Time Trajectories
of Non-deterministic Markovian Systems

Ievgen Ivanov1,2

1 Taras Shevchenko National University of Kyiv, Ukraine
2 Paul Sabatier University, Toulouse, France

ivanov.eugen@gmail.com

Abstract. We consider the following question: given a continuous-time
non-deterministic (not necessarily time-invariant) dynamical system, is it
true that for each initial condition there exists a global-in-time trajectory.
We study this question for a large class of systems, namely the class of
complete non-deterministic Markovian systems. We show that for this
class our question can be answered using analysis of existence of locally
defined trajectories in a neighborhood of each time moment.

Keywords: dynamical systems, non-deterministic systems, Markovian
systems, global-in-time trajectories.

1 Introduction

In this chapter we consider the following question: given a continuous-time non-
deterministic (not necessarily time-invariant) dynamical system, is it true that
for each time moment t0 and initial state x0 there exists a global-in-time tra-
jectory t �→ s(t) such that s(t0) = x0. Our goal is to study how this question is
related to existence of locally defined trajectories.

For deterministic systems the existence of a global trajectory for each initial
condition implies that each locally defined trajectory (e.g., on a finite interval of
the real time scale) can be extended to a globally defined trajectory. This is not
necessary for non-deterministic systems. For example, for each initial condition
x(t0) = x0 > 0 the differential inclusion dx

dt ∈ [0, x2] has both a globally defined

constant trajectory x(t) = x0 and a trajectory of the equation dx
dt = x2 which

escapes to infinity in finite time and cannot be extended infinitely into future.
Some related problems, e.g., global existence of solutions of initial value prob-

lems for various classes of differential equations [1,2,3] and inclusions [4,5,6],
existence of non-Zeno global-in-time executions of hybrid automata [7,8,9] are
well known. However, most studies either consider a more strong property of non-
deterministic systems than we do (e.g., whether for each initial condition every
trajectory exists into future [4,5,6]), or are limited to deterministic systems (dif-
ferential equations with unique solutions, deterministic hybrid automata, etc.).

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 111–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

112 Ie. Ivanov

We will study our existence question for a large class of systems, namely the
class of complete non-deterministic Markovian systems. A formal definition of
this class will be given in the next section, but note that the term Markovian
here refers to purely non-deterministic (i.e., non-stochastic) systems. This class
includes systems defined by continuous and discrete-continuous formalisms (dif-
ferential inclusions, switched systems) which are used for modeling and analysis
in natural sciences and technology.

The article is organized in the following way. In Section 2 we give a defini-
tion and consider examples and basic properties of non-deterministic complete
Markovian systems. In Section 3 we consider our existence question for systems
of this class and formulate a theorem which shows that it can be answered using
independent analysis of existence of locally defined trajectories in a neighbor-
hood of each time moment. In Section 4 we give a proof of this theorem.

2 Non-deterministic Complete Markovian Systems

The notions of a Markov process or system [10] are usually defined and stud-
ied in the context of probability theory. However, they also make sense in a
purely non-deterministic setting, where no quantitative information is attached
to events, trajectories, transitions, etc. General definitions of continuous-time
Markovian systems of such kind have appeared in the literature [11]. They de-
scribe a large class of non-deterministic systems which can have both continuous
and discontinuous (jump-like) trajectories. The idea is that the current state of
a system contains all the information that is needed to characterize its possible
future behaviours.

Below we define the notion of a non-deterministic (complete) Markovian sys-
tem in spirit of, but not exactly as in [11]. The main reasons for this are that we
would like to take into account non-time-invariant systems and focus on partial
trajectories, i.e., trajectories defined on a subset of the time scale.

We will use the following notation: N = {1, 2, 3, ...}, N0 = N∪{0}, f : A→ B
is a total function from A to B, f : A→̃B is a partial function from A to B,
f |X is the restriction of a function f to a set X , 2A is the power set of a set
A. The notation f(x) ↓ (f(x) ↑) means that f is defined (resp. undefined) on
the argument x, dom(f) = {x | f(x) ↓}. Also, ¬, ∨, ∧, ⇒, ⇔ denote the logical
operations of negation, disjunction, conjunction, implication and equivalence
correspondingly. Let us denote:

– T = [0,+∞) is the (real) time scale. We assume that T is equipped with
a topology induced by the standard topology on R. We will use the same
positive real time scale T throughout the chapter.

– T is the set of all connected subsets of T with cardinality greater than one.

For the purpose of this chapter we will use the following definition of dynamical
system on the time scale T .

Definition 1. A dynamical system on T is an abstract object M (a mathemati-
cal model; in applications this may be an equation, inclusion, etc.) together with

About Existence of Global-in-Time Trajectories 113

an associated time scale T , a set of states Q, and a set of (partial) trajectories
Tr. A trajectory is a function s : A→ Q, where A ∈ T (note that trivial trajec-
tories defined on singleton or empty time sets are excluded). The set Tr satisfies
the property: if s : A → Q ∈ Tr, B ∈ T, and B ⊆ A, then s|B ∈ Tr. We will
refer to this property as ”Tr is closed under proper restrictions (CPR)”.

We will say that a trajectory s1 ∈ Tr is a subtrajectory of s2 ∈ Tr (denoted as
s1 � s2), if dom(s1) ⊆ dom(s2) and s1 = s2|dom(s1). The trajectories s1 and s2
are incomparable, if s1 is not a subtrajectory of s2 and vice versa.

According to the definition given above, for any t0 ∈ T and q0 ∈ Q there may
exist multiple incomparable trajectories s such that s(t0) = q0 (as well as one
or none). In this sense a dynamical system can be non-deterministic. It is easy
to see that (Tr,�) is a (possibly empty) partially ordered set (poset).

Definition 2. A CPR set of trajectories Tr is

(1) complete, if every non-empty chain in (Tr,�) has a supremum (Tr may be
empty).

(2) Markovian, if s ∈ Tr for each s1, s2 ∈ Tr and t ∈ T such that t =
sup dom(s1) = inf dom(s2), s1(t) ↓, s2(t) ↓, and s1(t) = s2(t), where

s(t) =

{
s1(t), t ∈ dom(A)

s2(t), t ∈ dom(B)
.

Note that because of CPR property, the supremum of a chain c in the poset
(Tr,�) exists if and only if s∗ ∈ Tr, where s∗ :

⋃
s∈c dom(s) → Q is defined as

follows: s∗(t) = s(t), if s ∈ c and t ∈ dom(s) (this definition is correct, because
c is a chain).

Fig. 1.Markovian property for non-deterministic systems. If one partial trajectory ends
and another begins in state q at time t (both are defined at t), then their concatenation
is a partial trajectory.

Proposition 1. Let Q = R. Consider the following sets of trajectories:

– Trall is the set of all functions s : A→ Q, A ∈ T.
– Trcont is the set of all continuous functions s ∈ Trall (on their domains).

114 Ie. Ivanov

– Trdiff is the set of all differentiable functions s ∈ Trall (on their domains).
– Trbnd is the set of all bounded functions s ∈ Trall (on their domains).

Then the following holds:

(1) ∅, Trall, Trcont, Trdiff , Trbnd, Trdiff ∩ Trbnd are CPR.
(2) ∅, Trall, Trcont are complete and Markovian.
(3) Trdiff is complete, but is not Markovian.
(4) Trbnd is Markovian, but is not complete.
(5) Trdiff ∩ Trbnd is neither complete, nor Markovian.

The proof of this proposition follows from definitions.

Definition 3. A non-deterministic complete Markovian system (NCMS) is a
dynamical system (M,T,Q, T r) such that Tr is complete and Markovian.

The following simple propositions 2-4 give some examples of NCMS.

Proposition 2. Let Q = Rd (d ∈ N) and M be a differential equation dy
dt =

f(t, y), where f : R×R
d → R

d is a continuous function. Let Tr be the set of all
functions s : A → Q, A ∈ T such that s is differentiable on A and satisfies M
on A. Then (M,T,Q, T r) is a NCMS.

Proposition 3. Let M be a differential inclusion dy
dt = F (t, y), where F : R ×

Rd → 2R
d

is a given (total) function. Let M ′ be the system

{
dy
dt = x

y ∈ F (t, x)
,

where x is a new variable. Let Q = Rd ×Rd and Tr be the set of all s : A→ Q,
A ∈ T such that s is locally absolutely continuous on A and satisfies M ′ almost
everywhere on A (w.r.t. Lebesgue’s measure). Then (M,T,Q, T r) is a NCMS.

Proposition 4. Let Q be a set equipped with discrete topology. Let r ⊆ Q×Q be

a relation on Q. Let M be a system

{
y(t+) = y(t), t /∈ N0

(y(t), y(t+)) ∈ r, t ∈ N0

, where y denotes

an unknown function, y(t+) denotes the right limit at t. Let Tr be the set of all
piecewise-constant left-continuous functions s : A → Q (w.r.t. discrete topology
on Q) which satisfy M on A (see Fig. 2). Then (M,T,Q, T r) is a NCMS.

Let us introduce the following terminology:

Definition 4. Let s1, s2 : T →̃Q. Then s1 and s2 coincide:

– on a set A ⊆ T , if A ⊆ dom(s1)∩ dom(s2) and s1(t) = s2(t) for each t ∈ A.
We denote this as s1

.
=A s2.

– in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t), such that
s1

.
=(t′,t] s2. We denote this as s1

.
=t− s2.

– in a right neighborhood of t ∈ T , if there exists t′ > t, such that s1
.
=[t,t′) s2.

We denote this as s1
.
=t+ s2.

About Existence of Global-in-Time Trajectories 115

Fig. 2. A piecewise-constant left-continuous trajectory which models an execution of a
(discrete-time) state transition system (Q, r). At integer time moments system changes
its current state q to a next state q′ such that (q, q′) ∈ r (if binary relation r is not
functional, such a state is chosen non-deterministically).

Let Q be a set of states. Denote by ST (Q) the set of pairs (s, t) where s : A→ Q
for some A ∈ T and t ∈ A.

Definition 5. A predicate p : ST (Q)→ Bool (Bool = {true, false}) is called

– left-local, if p(s1, t) ⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q) and s1
.
=t−

s2, and moreover, p(s, t) whenever t is the least element of dom(s).
– right-local, if p(s1, t)⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q), s1

.
=t+ s2,

and moreover, p(s, t) whenever t is the greatest element of dom(s).

Let us denote by LR(Q) the set of all pairs (l, r) of a left-local predicate l :
ST (Q)→ Bool and right-local predicate r : ST (Q)→ Bool.

Let us introduce an implication relation ⇒ on LR(Q) in the following way:
(l, r)⇒ (l′, r′) iff l(s, t)⇒ l′(s, t) and r(s, t)⇒ r′(s, t) for all s, t. It is easy to see
that ⇒ is a partial order and that (LR(Q),⇒) is a complete meet semi-lattice
(in the sense that every subset has an infinum), because the sets of all left-local
predicates on ST (Q) and all right-local predicates on ST (Q) are closed under
pointwise conjunction.

Let Tr(Q) be the class of all CPR complete Markovian sets of trajectories
which take values in the set of states Q. It is not difficult to check that Tr(Q)
is closed under intersections (of arbitrary cardinality). So we will consider it as
a complete meet semi-lattice (with relation ⊆ as a partial order). Let us define
a set-valued function Φ on LR(Q) as follows:

Φ((l, r)) = {s : A→ Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

In the rest of the chapter we will write Φ(l, r) instead of Φ((l, r)).
The following theorem shows how left- and right-local predicates can represent

complete Markovian sets of trajectories (and systems).

116 Ie. Ivanov

Theorem 1. Φ is a surjective homomorphism from the complete meet semi-
lattice LR(Q) onto Tr(Q) (here homomorphism means a mapping that preserves
arbitrary meets).

Proof. It is straightforward to check that Φ indeed takes values in Tr(Q) and
that Φ is a homomorphism. Let us prove that Φ is surjective.

Let us fix an arbitrary Tr ∈ Tr(Q) and define predicates l : ST (Q) → Bool
and r : ST (Q)→ Bool as follows:

– l(s, t) iff t is the least element of dom(s), or there exists t′ < t such that
[t′, t] ⊆ dom(s) and s|[t′,t] ∈ Tr.

– r(s, t) iff t is the greatest element of dom(s), or there exists t′ > t such that
[t, t′] ⊆ dom(s) and s|[t,t′] ∈ Tr.

It follows immediately from CPR property of Tr that l is left-local, r is right-
local, and Tr ⊆ Φ(l, r). Let us prove the opposite inclusion Φ(l, r) ⊆ Tr.

Assume that A ∈ T, s : A→ Q, and ∀t ∈ A l(s, t) ∧ r(s, t).
Consider the following cases:

– A = [a, b] for some a < b. For each t ∈ (a, b) there exists t′ < t and t′′ > t
such that [t′, t′′] ⊆ dom(s) and s|[t′,t′′] ∈ Tr. Denote Ot = (t′, t′′). For a
there exists t′′ > a such that [a, t′′] ⊆ dom(s) and s|[a,t′′] ∈ Tr. Denote
Oa = [a, t′′). Similarly, for b there exists t′ < b such that [t′, b] ⊆ dom(s)
and s|[t′,b] ∈ Tr. Denote Ob = (t′, b]. Thus we defined Ot for all t ∈ A. Then
(Ot)t∈A is an open cover of a compact set A (in sense of induced topology).
Then it has a finite subcover Oti = (t′i, t

′′
i), i = 1, 2, ..., k. Without loss of

generality we can assume that a = t1 ≤ t2 ≤ ... ≤ tk = b. By construction
of Ot, s|[t′i,t′′i] ∈ Tr and t′i ≤ ti ≤ t′′i for i = 1, 2, ..., k. Then it is easy to see
that CPR and Markovian properties of Tr imply that s|[a,b] = s ∈ Tr.

– A = [a, b) for some a < b (a ∈ T, b ∈ T ∪ {+∞}). From the previous case,
left locality of l, and right locality of r we obtain s|[a,t] ∈ Tr for all t ∈ (a, b).
From completeness property of Tr we conclude that s ∈ Tr.

– A = (a, b] for some a < b. The proof is analogous to the previous case.
– A = (a, b) for some a < b (a ∈ T, b ∈ T ∪{+∞}). Let us choose an arbitrary

c ∈ (a, b). From the two previous cases, left locality of l, and right locality
of r we obtain that s|(a,c] ∈ Tr and s|[c,b) ∈ Tr. Then s ∈ Tr by Markovian
property of Tr.

We conclude that (l, r) ∈ LR(Q) and Φ(l, r) = Tr. Thus Φ is surjective.

Consider an example. Let Q = Rd and Tr be the set of all functions s : A→ Q,
A ∈ T such that s is differentiable on A and satisfies a differential equation
dy
dt = f(t, y) on A, where f : R × Rd → Rd is a given function. Then Tr is
complete and Markovian by Proposition 2. One possible representation of Tr
using left-/right-local predicates can be constructed as follows.

Let l, r : ST (Q)→ Bool be predicates such that

– l(s, t) iff either t is the least element of dom(s), or ∂−s(t) ↓= f(t, s(t)),

About Existence of Global-in-Time Trajectories 117

– r(s, t) iff either t is the greatest element of dom(s), or ∂+s(t) ↓= f(t, s(t)),

where ∂−s(t) and ∂+s(t) denote the left- and right- derivative of s at t (the
symbol here ↓ indicates that the left hand side of the equality is defined). Then
it is not difficult to check that l is left-local, r is right-local, and Tr = {s : A→
Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

3 Existence of Global-in-Time Trajectories

Let us recall our original question about global-in-time trajectories and consider
it for non-deterministic complete Markovian systems.

Let Σ = (M,T,Q, T r) be a NCMS.

Definition 6. We say that Σ satisfies

(1) global trajectory existence (GTE) property, if for each t0 ∈ T , q0 ∈ Q there
exists a (global-in-time) trajectory s : T → Q of Σ such that s(t0) = q0.

(2) local trajectory existence (LTE) property, if for each t0 ∈ T , q0 ∈ Q there
exists s ∈ Tr such that dom(s) is a neighborhood of t0 and s(t0) = q0.

Our original question corresponds to GTE property. Our goal is to show that
GTE can be checked using independent analysis of existence of locally defined
trajectories of Σ in a neighborhood of each time moment.

Assume that information about trajectories of Σ defined in a neighborhood
of each time moment t is represented as some function F : T → 2Tr such that
for each t ∈ T there exists a neighborhood O(t) of t such that F (t) includes all
trajectories which are defined on a subset of O(t) and at time t, i.e.,

F (t) ⊇ {s ∈ Tr | t ∈ dom(s) ⊆ O(t))} (1)

(obviously, such a function exists and in general case it is not unique). We would
like to analyze F (t) for each t independently and decide whether GTE holds.
More specifically, we would like to express GTE in the form ∀t.P (t, F (t)) or
¬∀t.P (t, F (t)), where P is some predicate on T × 2T→̃Q independent of F and
Tr. Note that it is straightforward to express LTE in this form.

Definition 7. We say that Σ satisfies

(1) strong global extensibility (SGE) property, if for each trajectory s there exists
a (global-in-time) trajectory s′ : T → Q such that s � s′.

(2) weak global extensibility (WGE) property, if for each trajectory s of the form
s : [a, b] → Q there exists a (global-in-time) trajectory s′ : T → Q such that
s � s′.

Obviously, conjunction of LTE and SGE implies GTE. But as we have noted in
the introduction, GTE may hold even if some locally defined trajectory cannot
be extended to a globally defined trajectory.

Lemma 1. Σ satisfies GTE iff Σ satisfies LTE and WGE.

118 Ie. Ivanov

Proof. ”If”: Assume that Σ satisfies LTE and WGE. Let t0 ∈ T , q0 ∈ Q. By
LTE there exists s ∈ Tr such that dom(s) is a neighborhood of t0 and
s(t0) = q0. Let us choose a segment [a, b] ⊆ dom(s) such that a < b and
t0 ∈ [a, b]. By CPR s|[a,b] ∈ Tr. By WGE there exists a trajectory s′ : T → Q
such that s|[a,b] � s′. Then s′(t0) = s(t0) = q0. Thus Σ satisfies GTE.

”Only if”: Assume that Σ satisfies GTE. From definitions we have that Σ
satisfies LTE. Let us show that Σ satisfies WGE. Let s ∈ Tr and dom(s) =
[a, b] (a < b). By GTE there exist trajectories sa : T → Q and sb : T →
Q such that sa(a) = s(a) and sb(b) = s(b). By CPR, sa|[0,a] ∈ Tr and
sb|[b,+∞) ∈ Tr. Then s ∈ Tr by Markovian property.

Because of this lemma we will focus on WGE property.
Let us introduce several definitions.

Definition 8. Σ satisfies a weak local extensibility (WLE) property, if for each
s ∈ Tr of the form s : [a, b] → Q there exists s′ : [a, b′] → Q ∈ Tr such that
s � s′ and b′ > b, and if a > 0, there exists s′′ : [a′, b] → Q ∈ Tr such that
s � s′′ and a′ < a.

Definition 9. (1) A right dead-end path (in Σ) is a trajectory s : A→ Q such
that A has a form [a, b), where a, b ∈ T , and there is no s′ : [a, b]→ Q ∈ Tr
such that s = s′|dom(s) (i.e., s cannot be extended to a trajectory on [a, b]).

(2) A left dead-end path (in Σ) is a trajectory s : A → Q such that A has a
form (a, b], where a, b ∈ T , and there is no s′ : [a, b] → Q ∈ Tr such that
s = s′|dom(s).

(3) A dead-end path is either a right dead-end path, or a left dead-end path.

Definition 10. (1) An escape from a right dead-end path s : [a, b)→ Q (in Σ)
is a trajectory s′ : [c, d) → Q (d ∈ T ∪ {+∞}) or s′ : [c, d] → Q such that
c ∈ (a, b), d > b, and s(c) = s′(c). An escape s′ is called infinite, if d = +∞.

(2) An escape from a left dead-end path s : (a, b]→ Q is
– a trajectory s′ : (c, d] → Q or s′ : [c, d] → Q such that c < a, d ∈ (a, b),

and s′(d) = s(d), if a > 0.
– a trajectory s′ : [0, d]→ Q such that d ∈ (a, b) and s′(d) = s(d), if a=0.

An escape s′ from s is called initial, if 0 ∈ dom(s′).

Definition 11. A right (or left) dead-end path s : [a, b) → Q in Σ is called
strongly escapable, if there exists an infinite (resp. initial) escape from s.

Lemma 2. (1) If s : [a, b) → Q is a right dead-end path and c ∈ (a, b), then
s|[c,b) is a right dead-end path.

(2) If s : (a, b] → Q is a left dead-end path and c ∈ (a, b), then s|(a,c] is a left
dead-end path.

The proof follows immediately from CPR and Markovian properties of Tr.

Lemma 3. Σ satisfies WGE iff Σ satisfies WLE and each dead-end path is
strongly escapable.

About Existence of Global-in-Time Trajectories 119

Proof. ”If”: Assume that Σ satisfies WLE and each dead-end path in Σ is
strongly escapable. Let s : [a, b]→ Q be a trajectory. Let S = {s′ ∈ Tr | s �
s′}. Then S �= ∅ and because of completeness property of Tr, each �-chain of
elements of S has a supremum which belongs to S. Then by Zorn’s lemma, S
has some maximal element s∗ (with respect to �). Because of WLE, domain
of s∗ cannot be a (compact) segment. Consider the following cases:
– dom(s∗) = [x, y) for some x, y ∈ T . Because s∗ is maximal in S, s∗

cannot be extended to a trajectory on [x, y]. Hence s∗ is a right dead-
end path. Moreover, y > b and x ≤ a. Then b ∈ (x, y) and by Lemma 2,
s∗|[b,y) is a right dead-end path. Then there exists some infinite escape
s1 : [c,+∞) → Q from s∗|[b,y) (where c ∈ (b, y), se(c) = s∗(c)). Let us
define s2 : [x,+∞) as follows:

s2(t) =

{
s∗(t), t ∈ [x, c]
s1(t), t > c

Then s2 ∈ Tr by CPR and Markovian properties. Moreover, s � s2,
because c > b and s � s∗ . Also, WLE, CPR and Markovian properties
imply that x = 0 (otherwise one can extend s∗ to the left and obtain a
contradiction with maximality of s∗ in S). Thus s2 is defined globally.

– dom(s∗) = [x,+∞) for some x ∈ T . Using WLE, CPR and Markovian
properties it is straightforward to show that x = 0.

– dom(s∗) = (x, y] for some x, y ∈ T . Using WLE, CPR, and Markovian
properties it is straightforward to show that this case is impossible.

– dom(s∗) = (x, y) for some x, y ∈ T . Then x < a and y > b. Because s∗

is maximal in S, s∗ cannot be extended on [x, y) or (x, y]. Let us choose
an arbitrary z ∈ (a, b) ⊂ (x, y). Then CPR and Markovian properties
imply that s∗|[z,y) is a right dead-end path and s∗|(x,z] is a left dead-end
path. By Lemma 2, s∗|[b,y) is a right dead-end path and s∗|(x,a] is a left
dead-end path. Then there exists an infinite escape sr : [cr,+∞) → Q
from s∗|[b,y) (where cr ∈ (b, y)) and an initial escape sl : [0, cl]→ Q from
s∗|(x,a] (where cl ∈ (x, a)). Let us define s3 : [0,+∞)→ Q as follows:

s3(t) =

⎧⎨
⎩

sl(t), t ∈ [0, cl]
s∗(t), t ∈ (cl, cr)
sr(t), t > cr

By Markovian property, s3 ∈ Tr. Moreover, s � s3, because [a, b] ⊂
(x, y) ⊂ (cl, cr) and s � s∗.

– dom(s∗) = (x,+∞) for some x ∈ T . The proof is analogous to the
previous case (with distinction that only left dead-end path is used).

We conclude that there exists s′ : T → Q such that s � s′. Thus WGE holds.
”Only if”: Assume that Σ satisfies WGE. Then Σ satisfies WLE because of

CPR property. Let us check that each dead-end path is strongly escapable.
– Let s : [a, b)→ Q (a < b) be a right dead-end path. Let c ∈ (a, b). Then

s|[a,c] ∈ Tr by CPR. Then there exists a trajectory s′ : T → Q such
that s|[a,c] � s′ by WGE. Let s′′ = s′|[c,+∞). Then s′′ ∈ Tr by CPR and
s′′(c) = s(c). Then s′′ is an infinite escape from s.

120 Ie. Ivanov

– Let s : (a, b] → Q (a < b) be a left dead-end path. Let c ∈ (a, b). Then
s|[c,b] ∈ Tr by CPR and there exists a trajectory s′ : T → Q such that
s|[c,b] � s′ by WGE. Let s′′ = s′|[0,c]. Then s′′ ∈ Tr by CPR, because
c > 0. Then s′′ is an initial escape from s, because s′′(c) = s(c).

Thus each dead-end path is strongly escapable.

Lemma 4. LTE implies WLE.

Proof. Assume that Σ satisfies LTE.
Let s : [a, b] → Q be a trajectory. By LTE there exists s1 ∈ Tr such that

dom(s1) is a neighborhood of b and s1(b) = s(b). Let us choose b′ > b such that
[b, b′] ⊆ dom(s1). Then s1|[b,b′] ∈ Tr by CPR. Let us define s′ : [a, b′] → Q as
follows: s′(t) = s(t), if t ∈ [a, b] and s′(t) = s1(t), if t ∈ (b, b′]. Then s′ ∈ Tr by
Markovian property. Moreover, s � s′.

Analogously, if a > 0, we can find s′′ : [a′, b] → Q ∈ Tr such that s � s′′,
a′ < a. Thus Σ satisfies WLE.

Because of the previous two lemma, now we will focus on the question of whether
each dead-end path is strongly escapable.

Definition 12. (1) A right extensibility measure is a function f+ : T × T →̃T
which is defined and continuous on {(x, y) ∈ T × T |x ≤ y} such that
– f+(x, y) is strictly decreasing in x and strictly increasing in y;
– f+(x, x) = x and f+(x, y) > y for all x, y such that x < y.

(2) A left extensibility measure is a function f− : T ×T →̃T which is defined and
continuous on {(x, y) ∈ T × T |x ≥ y} such that
– f−(x, y) is strictly increasing in x and strictly decreasing in y;
– f−(x, x) = x and f−(x, y) < y for all x, y such that x > y > 0.

Let us fix a right extensibility measure f+ and a left extensibility measure f−.

Definition 13. (1) A right dead-end path s : [a, b)→ Q is called f+-escapable,
if there exists an escape s′ : [c, d]→ Q from s such that d ≥ f+(c, b).

(2) A left dead-end path s : (a, b] → Q is called f−-escapable, if there exists an
escape s′ : [d, c]→ Q from s such that d ≤ f−(c, a).

Theorem 2. Assume that Σ satisfies WLE. Then each right dead-end path is
strongly escapable iff each right dead-end path is f+-escapable.

Theorem 3. Assume that Σ satisfies WLE. Then each left dead-end path is
strongly escapable iff each left dead-end path is f−-escapable.

Note that these theorems hold for any fixed f+ and f−. We will give a proof of
Theorem 2 in the next section. The proof of Theorem 3 is analogous.

An example of a right extensibility measure is f+(x, y) = 2y − x (x ≤ y). In
this case for a right dead-end path to be f+-escapable it is necessary that there
exists an escape s′ : [c, d]→ Q with d− b ≥ b− c.

Theorem 4. Σ satisfies GTE iff Σ satisfies LTE and each right dead-end path
is f+-escapable and each left dead-end path is f−-escapable.

The proof follows from lemmas 1, 3, 4 and theorems 2, 3.
Using this theorem it is not difficult to represent GTE in the form ∀t.P (t, F (t)),

where F is defined as in (1).

About Existence of Global-in-Time Trajectories 121

Fig. 3. An f+-escapable right dead-end path s : [a, b) → Q (displayed here as a curve)
and a corresponding escape s′ : [c, d] → Q (displayed here as a horizonal segment) such
that d ≥ f+(c, b).

4 Proof of Theorem about Right Dead-End Paths

In this section we give a proof of Theorem 2. Let us introduce several auxiliary
definitions and lemmas.

Definition 14. A right t0-bunch (in Σ) is a non-empty set A ⊆ Tr such that
min(dom(s)) ↓= t0 for each s ∈ A and s1=̇t0+s2 for all s1, s2 ∈ A.

For each non-empty A ⊆ Tr denote

|A|+ = sup
s∈A

(sup dom(s)).

(we assume |A|+ = +∞, if sup(dom(s)) = +∞ for some s ∈ A).

Definition 15. A (right) t0-bunch A is called bounded, if |A|+ < +∞. Other-
wise it is called unbounded.

Lemma 5. For a right extensibility measure f+ there exists a function g+ :
T × T →̃T which is defined on {(x, y) ∈ T × T |x ≤ y} such that

(1) g+ is strictly increasing in both arguments;
(2) g+(x, x) = x and x < g+(x, y) < y for all x, y such that x < y;
(3) g+(x, f+(x, y)) = y for all x, y such that x ≤ y.

Proof. For each fixed x ≥ 0, function f+(x, ·) maps the set [x,+∞) to itself.
Because f+(x, ·) is strictly increasing, it has a strictly increasing inverse. Denote
this inverse as g+(x, ·). Then g+(x, y) is defined for all x ≤ y. It is straightforward
to check that it satisfies (1)-(3).

Let us fix a right extensibility measure f+ and let g+ be a corresponding function
described in Lemma 5. We call g+ a right bunch convergence measure.

122 Ie. Ivanov

Definition 16. A bounded right t0-bunch A is called g+-convergent, if for each
t′ ∈ (t0, |A|+) and s1, s2 ∈ A:

if min{sup(dom(s1)), sup(dom(s2))} ≥ g+(t′, |A|+), then s1=̇[t0,t′)s2.

Definition 17. A function α : [0,+∞) → [0,+∞) is of class K∞, if it is
continuous, strictly increasing, unbounded (lim

x→+∞α(x) = +∞), and α(0) = 0.

Lemma 6. There exists a function α ∈ K∞ such that α(x) < x for all x > 0
and the function x �→ f+(α(x), x) is of class K∞.

The proof follows from continuity and monotonicity of f+ and that f+(x, x) = x.
To continue we need the notion of iterative root [12]. A function f which

satisfies the functional equation f(f(...f(x)...))︸ ︷︷ ︸
N times

= g(x) (N ∈ N) is called an

N -th order iterative root of the function g. The existence of iterative roots can
be established in some cases using the following lemma.

Lemma 7 ([12], Theorem 11.2.2). Let X ⊆ R be an interval and f be a
strictly increasing and continuous self-mapping of X. Then f possess strictly in-
creasing and continuous iterative roots of all orders.

Let us choose α as in Lemma 6. Then by Lemma 7 there exists a continuous and
strictly increasing function ξ on [0,+∞) such that for all x ≥ 0,

ξ(ξ(x)) = f+(α(x), x) (2)

Lemma 8. ξ is of class K∞ and ξ(x) > x for all x > 0.

The proof follows immediately from definitions.
Let φ be a strictly increasing and continuous function such that

φ(φ(x)) = ξ(x)

for all x > 0 (it exists by Lemma 7). Then φ(x) > x for all x > 0 (because
otherwise there exists x0 > 0 such that φ(x0) ≤ x0, whence ξ(x0) = φ(φ(x0)) ≤
φ(x0) ≤ x0 – a contradiction). Let ψ be a strictly increasing and continuous
function such that

ψ(ψ(x)) = φ(x)

for all x > 0 (it exists by Theorem 7). Then ψ(x) > x for all x > 0, because
φ(x) > x for all x > 0. Then for all x > 0,

x < ψ(x) < ψ(ψ(x)) = φ(x) < φ(φ(x)) = ξ(x). (3)

For each set of sets S and a binary relation ≺⊆ S × S let us denote:

1. Ch(S,≺) is the set of all subsets c ⊆ S such that
– c is a Dedekind-complete chain with respect to the subset relation ⊆,

i.e., A ⊆ B or B ⊆ A for each A,B ∈ c, and for each non-empty subset
c′ ⊆ c, if there exists X ∈ c such that

⋃
c′ ⊆ X , then

⋃
c′ ∈ c;

About Existence of Global-in-Time Trajectories 123

– for each non-maximal A ∈ c (i.e., A ⊂ A′ for some A′ ∈ c) there exists
A′ ∈ c such that A ⊆ A′ and A ≺ A′.

2. ≤ is a binary relation on Ch(S,≺) such that c1 ≤ c2 iff c1 ⊆ c2, and A ⊆ B
for all A ∈ c1 and B ∈ c2\c1.

For each t0 ≥ 0 let us define:

1. S+
t0 is the set of all bounded g+-convergent right t0-bunches (in Σ).

2. ≺+ is a binary relation on S+
t0 such that A ≺+ B iff |A|+ < |B|+ < ψ(|A|+).

Let us consider some general properties of Ch(S,≺).
Lemma 9. (1) ≤ is a partial order on Ch(S,≺).
(2) Each chain in the poset (Ch(S,≺),≤) has an upper bound.

Proof. (1) follows immediately from definition of ≤.
Let us show (2). Let C ⊆ Ch(S,≺) be a ≤-chain. Let us show that c =

⋃
C ∈

Ch(S,≺). It is straightforward to check that c is a ⊆-chain.
Let us check that for each non-empty c′ ⊆ c, if there exists X ∈ c such that⋃
c′ ⊆ X , then

⋃
c′ ∈ c. Assume c′ ⊆ c, c′ �= ∅, X ∈ c and

⋃
c′ ⊆ X . Then there

exists cX ∈ C such that X ∈ cX , because X ∈ c =
⋃
C. Firstly, let us show that

c′ ⊆ cX . Let A ∈ c′. Because A ∈ c′ ⊆ c =
⋃
C, there exists cA ∈ C such that

A ∈ cA. Now assume that A /∈ cX . Then cA �≤ cX (otherwise A ∈ cA ⊆ cX).
Then cX ≤ cA, because C is a ≤-chain and cA, cX ∈ C. Then X ⊆ A, because
X ∈ cX , A ∈ cA\cX . Then A ⊆ ⋃ c′ ⊆ X ⊆ A. Then we have a contradiction
A = X ∈ cX . Thus A ∈ cX and we conclude that c′ ⊆ cX . Now we have that
c′ ⊆ cX , c′ �= ∅ and there exists X ∈ cX such that

⋃
c′ ⊆ X . Then

⋃
c′ ∈ cX by

the definition of Ch(S,≺), because cX ∈ C ⊆ Ch(S,≺). Thus ⋃ c′ ∈ ⋃C = c.
Let us check that for each non-maximal A ∈ c (with respect to ⊆) there exists

A′ ∈ c such that A ⊆ A′ and A ≺ A′. Assume that A ∈ c is non-maximal. Then
there exists B ∈ c such that A ⊂ B. Then there exist cA, cB ∈ C such that
A ∈ cA, B ∈ cB , because c =

⋃
C. Moreover, either cA ≤ cB or cB ≤ cA. If

A ∈ cB, then A is a non-maximal element of cB. Then there exists A′ ∈ cB such
that A ⊆ A′ and A ≺ A′, because cB ∈ Ch(S,≺). Then A′ ∈ ⋃C = c. On the
other hand, if A /∈ cB, then cB ≤ cA (because otherwise A ∈ cB) and B ⊆ A,
because B ∈ cB and A ∈ cA\cB. This contradicts the inclusion A ⊂ B given
above. We conclude that there exists A′ ∈ c such that A ⊆ A′ and A ≺ A′.

Thus c ∈ Ch(S,≺) by the definition of Ch(S,≺).
Lemma 10. Let cm be a ≤-maximal element of Ch(S,≺) and X =

⋃
cm ∈ S.

(1) X ∈ cm.
(2) There is no set Y ∈ S such that X ⊂ Y and X ≺ Y .

Proof. Let us prove (1). Let c′m = cm ∪ {X}. Let us show that c′m ∈ Ch(S,≺).
We have c′m ⊆ S and A ⊆ X for all A ∈ cm, because X =

⋃
cm. Moreover,

cm is a ⊆-chain. Thus c′m = cm ∪ {X} is a ⊆-chain.
Let us check that for each non-empty c′ ⊆ c′m, if there exists X ′ ∈ c′m such

that
⋃
c′ ⊆ X ′, then

⋃
c′ ∈ c′m. Assume that c′ ⊆ c′m, c′ �= ∅. If X ∈ c′, then

124 Ie. Ivanov

X ⊆ ⋃ c′ ⊆ ⋃ c′m = (
⋃
cm) ∪ X = X and

⋃
c′ ∈ c′m. Consider the case when

X /∈ c′. Then c′ ⊆ cm and because cm is a ⊆-chain, for each A ∈ cm, either
A ⊆ B holds for some B ∈ c′, or B ⊆ A holds for all B ∈ c′. Then for each
A ∈ cm, either A ⊆ ⋃ c′ or

⋃
c′ ⊆ A. If

⋃
c′ ⊆ A for some A ∈ cm, then by taking

into account that c′ ⊆ cm, c′ �= ∅ and cm ∈ Ch(S,≺), we have ⋃ c′ ∈ cm ⊆ c′m. If
A ⊆ ⋃ c′ for all A ∈ cm, then X =

⋃
cm ⊆ ⋃ c′ ⊆ ⋃ cm = X , because c′ ⊆ cm.

Then
⋃
c′ ∈ c′m. Thus in all cases

⋃
c′ ∈ c′m.

Let us check that for each non-maximal A ∈ c′m (with respect to ⊆) there
exists A′ ∈ c′m such that A ⊆ A′ and A ≺ A′. Assume that A ∈ c′m is non-
maximal. Then A �= X . Then A ∈ cm. Moreover, A is a non-maximal element
of cm, because otherwise X =

⋃
cm = A. Then because cm ∈ Ch(S,≺), there

exists A′ ∈ cm ⊆ c′m such that A ⊆ A′ and A ≺ A′.
Thus c′m ∈ Ch(S,≺) by definition of Ch(S,≺).
We have cm ⊆ c′m and A ⊆ B for all A ∈ cm and B ∈ c′m\cm, because

c′m\cm ⊆ {X} and A ⊆ ⋃
cm = X . Then cm ≤ c′m. Then cm = c′m, because

c′m ∈ Ch(S,≺) and cm is a ≤-maximal element of Ch(S,≺). Thus X ∈ cm.
Now let us prove (2) by contradiction. Assume that there exists Y ∈ S such

that X ⊂ Y and X ≺ Y . Let c′m = cm ∪ {Y }. Let us show that c′m ∈ Ch(S,≺).
We have c′m ⊆ S. Also, A ⊆ Y for all A ∈ cm, because

⋃
cm = X ⊆ Y .

Moreover, cm is a ⊆-chain. Thus c′m = cm ∪ {Y } is a ⊆-chain.
Let us check that for each non-empty c′ ⊆ c′m, if there exists X ′ ∈ c′m such

that
⋃
c′ ⊆ X ′, then

⋃
c′ ∈ c′m. Let c′ ⊆ c′m, c′ �= ∅. If Y ∈ c′, then Y ⊆ ⋃ c′ ⊆⋃

c′m = (
⋃
cm)∪Y = X ∪Y = Y and

⋃
c′ ∈ c′m. Consider the case when Y /∈ c′.

Then c′ ⊆ cm and
⋃
c′ ⊆ ⋃ cm = X . Moreover, X ∈ cm by the statement (1)

of this lemma. From this and from c′ ⊆ cm, c′ �= ∅ and cm ∈ Ch(S,≺), we have⋃
c′ ∈ cm ⊆ c′m. Thus in both cases we have

⋃
c′ ∈ c′m.

Let us check that for each non-maximal A ∈ c′m (with respect to ⊆) there
exists A′ ∈ c′m such that A ⊆ A′ and A ≺ A′. Assume A ∈ c′m is non-maximal
element. Then A �= Y , because Y is a maximal element of c′m. Then A ∈ cm. If
A is a non-maximal element of cm, then there exists A′ ∈ cm ⊆ c′m such that
A ⊆ A′ and A ≺ A′, because cm ∈ Ch(S,≺). If A is a maximal in cm, then
X =

⋃
cm = A, Y ∈ c′m, A ⊆ Y and A ≺ Y . Thus c′m ∈ Ch(S,≺).

We have cm ⊆ c′m and A ⊆ B for all A ∈ cm and B ∈ c′m\cm, because
c′m\cm ⊆ {Y } and A ⊆ ⋃ cm = X ⊆ Y . Then cm ≤ c′m. Also, we have X =⋃
cm �= Y =

⋃
c′m, because X ⊂ Y . Then cm �= c′m. Then cm is not a ≤-

maximal element of Ch(S,≺), because cm ≤ c′m and c′m ∈ Ch(S,≺)\{cm}. We
have a contradiction with assumptions of the lemma. Thus there is no set Y ∈ S
such that X ⊂ Y and X ≺ Y .

Let us consider some properties of the set Ch(S+
t0 ,≺+)\{∅} for a fixed t0 ∈ T .

Note for each element c of this set,
⋃
c �= ∅, because ∅ /∈ S+

t0 .

Lemma 11. If c ∈ Ch(S+
t0 ,≺+)\{∅} and |⋃ c|+ < +∞, then

⋃
c ∈ S+

t0 .

Proof. Let c ∈ Ch(S+
t0 ,≺+)\{∅}, X =

⋃
c, and |X |+ < +∞. Then X �= ∅.

Let us show that X is a bounded right t0-bunch. For each s ∈ X there exists
A ∈ c such that s ∈ A. Then min(dom(s)) ↓= t0, because A is a right t0-bunch.

About Existence of Global-in-Time Trajectories 125

Let s1, s2 ∈ X . Then there exist A1, A2 ∈ c such that s1 ∈ A1 and s2 ∈ A2.
Then A1 ⊆ A2 or A2 ⊆ A1, because c is a ⊆-chain. Moreover, A1, A2 ∈ S+

t0 . If
A1 ⊆ A2, then s1, s2 ∈ A2 for i = 1, 2. Then s1=̇t0+s2, because A2 is a right t0-
bunch. Similarly, if A2 ⊆ A1, then s1=̇t0+s2, because A1 is a right t0-bunch. In
both cases s1=̇t0+s2. Thus X is a bounded right t0-bunch, because |X |+ < +∞.

Let us show that X is g+-convergent. Let t′ ∈ (t0, |X |+), s1, s2 ∈ X . Then
there exist A1, A2 ∈ c such that s1 ∈ A1, s2 ∈ A2. Then A1 ⊆ A2 or A2 ⊆ A1,
because c is a chain. Also, A1, A2 are bounded t0-bunches, because A1, A2 ∈ S+

t0 .

Let ti = sup(dom(si)), i = 1, 2. Assume that min{t1, t2} ≥ g+(t′, |X |+).
Let us show that s1=̇[t0,t′)s2.
Consider the case A1 ⊆ A2. Then s1, s2 ∈ A2 and t1, t2 ≤ |A2|+. Then

|X |+ ≥ |A2|+ ≥ min{t1, t2} ≥ g+(t′, |X |+) > t′,

because A2 ⊆ X and t′ < |X |+. If t′ ∈ (t0, |A2|+), then s1=̇[t0,t′)s2, because A2

is g+-convergent. Otherwise, t′ = |A2|+. Then

min{t1, t2} ≥ g+(t′, |X |+) ≥ g+(t′, |A2|+) = |A2|+ ,

by monotonicity of g+, whence t1 = t2 = |A2|+, because t1, t2 ≤ |A2|+.
For each t′′ ∈ (t0, |A2|+) we have

min{t1, t2} = |A2|+ > g+(t′′, |A2|+).

Then s1=̇[t0,t′′)s2, because A2 is g+-convergent. Then s1=̇[t0,t′)s2, because t′′ ∈
(t0, |A2|+) = (t0, t

′) is arbitrary.
In the case A2 ⊆ A1 we can show that s1=̇[t0,t′)s2 using analogous arguments.

Thus X is g+-convergent. Then X ∈ S+
t0 by the definition of S+

t0 .

Let us define a prefix relation � on Tr: s1 � s2 iff s1 � s2 and there exists E ⊆ T
such that t1 < t2 for all t1 ∈ dom(s1), t2 ∈ E, and dom(s2) = dom(s1)∪E. It is
easy check see that � is a partial order on Tr.

Let us define a prefix closure operation pcl on 2Tr

pcl(A) = {s ∈ Tr | ∃s′ ∈ A s � s′}.

Then pcl is a closure operator (extensive, monotone, and idempotent).

Lemma 12. pcl(A) ∈ S+
t0 for each A ∈ S+

t0 .

The proof follows immediately from definitions.

Lemma 13. If c ∈ Ch(S+
t0 ,≺+), then {pcl(A) |A ∈ c} ∈ Ch(S+

t0 ,≺+).

Proof. Let c ∈ Ch(S+
t0 ,≺+) and ĉ = {pcl(A) |A ∈ c}. Each A ∈ ĉ belongs to S+

t0
by Lemma 12. Also, ĉ is a ⊆-chain, because c is a ⊆-chain and pcl is monotone.

Let us check that ĉ is Dedekind-complete. Assume that for a non-empty c′ ⊆ ĉ
there exists X ∈ ĉ such that

⋃
c′ ⊆ X . Then there exists non-empty c′′ ⊆ c and

126 Ie. Ivanov

Y ∈ c such that
⋃
c′ =

⋃{pcl(A) | A ∈ c′′} ⊆ pcl(Y) = X . Then
⋃{pcl(A) | A ∈

c′′} = pcl(
⋃
c′′) ⊆ pcl(Y). If there exists Z ∈ c such that

⋃
c′′ ⊆ Z, then⋃

c′′ ∈ c, because c is Dedekind-complete, and
⋃
c′ = pcl(

⋃
c′′) ∈ ĉ. Otherwise,⋃

c′′ =
⋃
c, because c is a chain. Then

pcl(
⋃

c) = pcl(
⋃

c′′) =
⋃

c′ ⊆ X = pcl(Y) ⊆ pcl(
⋃

c)

by monotonicity of pcl, whence
⋃
c′ = X ∈ ĉ. Thus ĉ is Dedekind-complete.

Let A ∈ ĉ be non-maximal and B ∈ c be such that A = pcl(B). Then B is
non-maximal in c. Then there exists B′ ∈ c such that B ⊆ B′ and B ≺+ B′.
Then pcl(B) ∈ ĉ, A ⊆ pcl(B′), and A ≺+ pcl(B′), because |pcl(B′)|+ = |B′|+.
Lemma 14. If c ∈ Ch(S+

t0 ,≺+)\{∅} and |⋃ c|+ = +∞, then there exists a
trajectory s∗ : [t0,+∞)→ Q and A ∈ c such that s∗=̇t0+s

′ for all s′ ∈ A.

Proof. Let c ∈ Ch(S+
t0 ,≺+)\{∅} and |⋃ c|+ = +∞. Let ĉ = {pcl(A) |A ∈ c}.

Because c �= ∅, we have ĉ ∈ Ch(S+
t0 ,≺+)\{∅} by Lemma 13. Moreover, |⋃ ĉ|+ =

+∞, because c ⊆ ĉ.
Let us construct a ⊆-monotone sequence An ∈ ĉ, n ∈ N and a sequence

sn ∈ An, n ∈ N as follows.
Lemma 8 implies that the function ξ has an inverse function ξ−1 which is

defined and strictly increasing on [0,+∞). Moreover, ξ−1(x) < x for all x > 0.
Let us choose A1 ∈ ĉ arbitrarily and choose s1 ∈ A1 in such a way that

sup dom(s1) = ξ−1(|A1|+) (this is possible, because A1 �= ∅, 0 < ξ−1(|A1|+) <
|A1|+, and A1 is prefix-closed, i.e., pcl(A1) = A1).

Suppose that elements A1, ..., An and s1, ..., sn are already constructed. Let
us construct An+1, sn+1 in the following way.

1. Let C = {A′ ∈ ĉ |An ⊆ A′, An ≺+ A′}. Then C �= ∅, because An is not a ⊆-
maximal element of ĉ (ĉ has no maximal elements, because |⋃ ĉ|+ = +∞).
Let A∗ =

⋃
C. Then |A∗|+ ≤ ψ(|An|+) < +∞, because |A′|+ < ψ(|An|+)

for all A′ ∈ C. Let us choose X ∈ ĉ such that |X |+ > |A∗|+. Because ĉ is a
⊆-chain, A′ ⊆ X for all A′ ∈ C ⊆ ĉ. Then A∗ ⊆ X . Then A∗ ∈ ĉ, because
ĉ is Dedekind-complete. Then there exists B ∈ ĉ such that A∗ ⊆ B and
A∗ ≺+ B, because A∗ is a non-maximal element of ĉ and ĉ ∈ Ch(S+

t0 ,≺+).
Let us define An+1 = B. Then An ⊆ An+1 and An+1 ∈ ĉ.

2. Let us choose s ∈ An+1 such that sup dom(s) = ξ−1(|An+1|+) (this is possi-
ble, because An+1 �= ∅, ξ−1(|An+1|+) < |An+1|+, and An+1 is prefix-closed).
Then let us define sn+1 = s.

We have defined sequences An and sn, n ≥ 1. The sequence An is obviously
⊆-monotone. Let us show that for each n ≥ 1,

|An|+ < ψ(|An|+) ≤ |An+1|+ < ξ(|An|+). (4)

Let n ≥ 1. Like above, let C = {A′ ∈ ĉ |An ⊆ A′, An ≺+ A′} and A∗ =
⋃
C.

Then |An+1|+ ≤ ψ(ψ(|An|+)), because |A∗|+ ≤ ψ(|An|+) and A∗ ≺+ An+1.

About Existence of Global-in-Time Trajectories 127

Moreover, An+1 /∈ C and |A∗|+ < |An+1|+ ≤ ψ(|A∗|+), because A∗ ⊆ An+1

and A∗ ≺+ An+1. Then An �≺+ An+1 by definition of C, because An+1 ∈ ĉ,
and An ⊆ An+1. Then ψ(|An|+) ≤ |An+1|+ or |An+1|+ ≤ |An|+ by definition
of ≺+. However, |An+1|+ ≥ |A∗|+ > |An|+, because C �= ∅. Thus ψ(|An|+) ≤
|An+1|+ ≤ ψ(ψ(|An|+)). From this and (3) we finally have (4).

The sequence |An|+ is monotone. If it is bounded from above, then its limit is
a fixed point of ψ, because ψ is continuous. But ψ(x) > x for all x > 0, whence

lim
n→∞ |An|+ = +∞.

By construction of sn, sup dom(sn) = ξ−1(|An|+) for all n ≥ 1, thus

lim
n→∞ sup dom(sn) = +∞. (5)

From (2) and Lemma 6 we have for all x ≥ 0,

g+(α(x), ξ(ξ(x))) = g+(α(x), f+(α(x), x)) = x > α(x).

Let us prove that for each n ≥ 1,

sn(t) = sn+1(t) for all t < α(sup dom(sn)). (6)

Let n ≥ 1 and x = sup dom(sn), a = |An|+, b = |An+1|+. Then x = ξ−1(a) and
a < b < ξ(a) by (4). Then

x ≥ g+(α(x), ξ(ξ(x))) = g+(α(x), ξ(a)) ≥ g+(α(x), b).

by monotonicity of g+. Then

min{sup dom(sn), sup dom(sn+1)} = min{ξ−1(|An|+), ξ−1(|An+1|+)} =
= ξ−1(|An|+) = x ≥ g+(α(x), |An+1|+).

Because x ∈ (0, |An+1|+) and α(x) ∈ (0, |An+1|+), sn, sn+1 ∈ An+1, and An+1

is g+-convergent, we have sn(t) = sn+1(t) for all t < α(x) = α(sup dom(sn)).
Let us define a function s∗ on [t0,+∞) such that for each t ≥ t0, s∗(t) =

sm(t)(t) wherem(t) = min{n | t ∈ [t0, α(sup dom(sn)))}. Because α is unbounded
and α(y) < y for all y > 0, from (5) it follows that s∗(t) is defined for all t ≥ t0.

The sequence sup dom(sn), n ≥ 1 is monotone (by construction of sn) and α
is monotone, therefore (6) implies that sm(t) = sn(t) for all m, n ≥ m and t <
α(sup dom(sm)). Then s∗(t) = sn(t) for each t such that t < α(sup dom(sm(t)))
and n ≥ m(t). But t < α(sup dom(sm(t))) for all t ≥ t0. Thus

s∗(t) = sn(t) for all t ≥ t0 and n ≥ m(t).

It is easy to see that the function m(t) is monotonically non-decreasing, so for
each t ≥ t0 and τ ∈ [t0, t + 1], s∗(τ) = sm(t+1)(τ), whence s∗=̇t+sm(t+1) and
s∗=̇t−sm(t+1). Let (l, r) ∈ LR(Q) be a pair of predicates such that Φ(l, r) = Tr
(it exists by Theorem 1). Because for all n, sn ∈ Tr and min(dom(sn)) = t0 (each

128 Ie. Ivanov

sn belongs to some right t0-bunch), and for each t ≥ t0, sup(dom(sm(t+1))) ≥
t + 1, we have l(sm(t+1), t) ∧ r(sm(t+1), t) for all t ≥ t0. Then because l is left-
local and r is right-local, l(s∗, t)∧ r(s∗, t) for all t ≥ t0. Hence s∗ ∈ Φ(l, r) = Tr.
Moreover, s∗=̇t0+sm(t0+1). Let A ∈ c be a set such that Am(t0+1) = pcl(A).
Because A is a right t0-bunch, we have s∗=̇t0+s

′ for all s′ ∈ A ⊆ Am(t0+1).

Lemma 15. Assume that Σ satisfies WLE and each right dead-end path is f+-
escapable. Then for each X ∈ S+

t0 there exists s̄ ∈ Tr such that X ∪ {s̄} ∈ S+
t0

and X ≺+ X ∪ {s̄}.
Proof. Assume X ∈ S+

t0 . Then X �= ∅ and |X |+ < +∞. Denote tm = |X |+ and

H = {(t, q) ∈ T ×Q | t ≥ t0 ∧
∃t′ ∈ (t, tm) ∃s ∈ X (s(t) ↓= q ∧ sup(dom(s)) ≥ g+(t′, tm))}

Denote H1 = {t | ∃q (t, q) ∈ H}, i.e., H1 is the domain of relation H .
Let us show that H1 = [t0, tm). The inclusion H1 ⊆ [t0, tm) follows from the

definition of H . Let t ∈ [t0, tm). Let us choose an arbitrary t′ ∈ (t, tm). Then
g+(t′, tm) < tm. Because tm = |X |+, there exists s ∈ X such that sup(dom(s)) ≥
g+(t′, tm) ≥ t′ > t. Because t ≥ t0, we have t ∈ dom(s) and (t, s(t)) ∈ H . Then
[t0, tm) ⊆ H1, because t ∈ [t0, tm) is arbitrary.

Let us show that H is a functional binary relation. Assume that (t, q1) ∈ H
and (t, q2) ∈ H . Then there exist t′1, t′2 and s1, s2 ∈ X such that t′i ∈ (t, tm),
sup(dom(si)) ≥ g+(t′i, tm), and qi = si(t) for i = 1, 2. Let t′ = min{t′1, t′2}. Then
t′ ∈ (t0, |X |+), because t ≥ t0. Moreover,

min{sup(dom(s1)), sup(dom(s2))} ≥ min{g+(t′1, tm), g+(t′2, tm)} ≥ g+(t′, tm),

by monotonicity of g+. Then s1(t) = s2(t) for t ∈ [t0, t
′), because X is g+-

convergent. Then s1(t) = q1 = q2 = s2(t), because t ∈ [t0, t
′
1) and t ∈ [t0, t

′
2).

We conclude that H is a graph of some (total) function s∗ : [t0, tm)→ Q. Let
(l, r) ∈ LR(Q) be a pair such that Φ(l, r) = Tr (it exists by Theorem 1).

Let us show that s∗ ∈ Tr. Let t ∈ (t0, tm). Then (t, s∗(t)) ∈ H and there exists
t′ ∈ (t, tm), and s ∈ X such that s∗(t) = s(t) and sup(dom(s)) ≥ g+(t′, tm) ≥
t′ > t. For each τ ∈ [t0, t

′),

τ ≥ t0 ∧ t′ ∈ (τ, tm) ∧ sup(dom(s)) ≥ g+(t′, tm) ∧ s ∈ X

Then (τ, s(τ)) ∈ H . Hence s(τ) = s∗(τ) for all τ ∈ [t0, t
′). Then s=̇t−s∗ and

s=̇t+s∗, because t ∈ (t0, t
′). Because t0 < t < sup(dom(s)) and s ∈ Tr = Φ(l, r),

we have l(s, t) ∧ r(s, t). Then l(s∗, t) ∧ r(s∗, t), because l is left-local and r is
right-local. Thus l(s∗, t)∧ r(s∗, t) for all t ∈ (t0, tm). Moreover, because t0 ∈ H1,
there exists t′ ∈ (t0, tm) and s ∈ X such that sup(dom(s)) ≥ g+(t′, tm) and
s∗(t0) = s(t0). Then t ≥ t0 and t′ ∈ (t, tm) for each t ∈ (t0, t

′). Hence (t, s(t)) ∈
H for each t ∈ (t0, t

′). Then s(t) = s∗(t) for t ∈ [t0, t
′). Then r(s∗, t0), because

r(s, t0). We conclude that s∗ ∈ Φ(l, r) = Tr. Moreover, s∗=̇t0+s for all s ∈ X ,
because X is a right t0-bunch.

About Existence of Global-in-Time Trajectories 129

Consider the case when s∗ is not a dead-end path, i.e., there exists a contin-
uation of s∗ to [t0, tm]. Then by WLE and CPR there exists t′m ∈ (tm, ψ(tm))
and a trajectory s̄ : [t0, t

′
m] → Q such that s̄ � s′∗. Then using monotonicity of

g+ it is straightforward to show that X ∪ {s̄} is a bounded g+-convergent right
t0-bunch (i.e., X ∪ {s̄} ∈ S+

t0), and X ≺+ X ∪ {s̄}.
Consider the case when s∗ is a right dead-end path. Then s∗ is f+-escapable.

Let us choose τ ∈ (t0, tm) such that f+(τ, tm) < ψ(tm) (this is possible, because
f+(tm, tm) = tm, f+(·, tm) is continuous on (t0, tm], and ψ(tm) > tm).

CPR and Lemma 2 imply that there exists an escape se from s∗ of the form
se : [te, t

′
e)→ Q, where te ∈ (τ, tm) and t′e = f+(te, tm). Because te ≥ τ , we have

tm < t′e = f+(te, tm) ≤ f+(τ, tm) < ψ(tm).

Let us define a function s̄ : [t0, t
′
e)→ Q as follows:

s̄(t) =

{
s∗(t), t ∈ [t0, te)
se(t), t ∈ [te, t

′
e)

Markovian property implies that s̄ ∈ Tr. Moreover, X ∪ {s̄} is a bounded right
t0-bunch, because s̄=̇t0+s∗ and dom(s̄) is bounded. Also, X ≺+ X∪{s̄}, because
|X |+ = tm < t′e = |X ∪ {s̄}|+ < ψ(tm) = ψ(|X |+).

Let us prove X ∪ {s̄} is g+-convergent. Assume that t′ ∈ (t0, t
′
e), s1, s2 ∈

X ∪ {s̄}, ti = sup(dom(si)), i = 1, 2, and min{t1, t2} ≥ g+(t′, t′e). Let us show
thats1=̇[t0,t′)s2. Consider the following cases.

– Suppose that s1, s2 ∈ X and t′ < tm. Then min{t1, t2} ≥ g+(t′, t′e) ≥
g+(t′, tm). Then s1(t) = s2(t) for all t ∈ [t0, t

′), because X is g+-convergent.
– Suppose that s1, s2 ∈ X and t′ ≥ tm. Then min{t1, t2} ≥ g+(t′, t′e) ≥ t′ ≥

tm. Then t′ = t1 = t2 = tm, because s1, s2 ∈ X . The definition of H
implies that (t, s1(t)) ∈ H and (t, s2(t)) ∈ H for all t ∈ [t0, tm), because
tm ≥ g+(t′′, tm) for all t′′ < tm. Thus s1=̇[t0,t′)s2.

– Suppose that {s1, s2} �⊆ X . The case s1 = s2 = s̄ is trivial, so assume either
s1 ∈ X and s2 = s̄, or s2 ∈ X and s1 = s̄. We consider only the former case,
because the latter case is analogous. Let s1 ∈ X , s2 = s̄. Then tm ≥ t1 =
min{t1, t2} ≥ g+(t′, t′e) ≥ t′. Also, t1 ≥ g+(t′, tm) because t′ ≤ tm < t′e.
We have (t, s1(t)) ∈ H for all t ∈ [t0, t

′) by definition of H , because tm ≥
g+(t′′, tm) for all t′′ < tm. Hence s1=̇[t0,t′)s∗.
Assume that t′ > te. Then t1 ≥ g+(t′, t′e) ≥ g+(te, t

′
e) ≥ tm, because t′e =

f+(te, tm). Then g+(t′, t′e) = g+(te, t
′
e) = tm. Then te ≥ t′ by monotonicity of

g+. This contradicts assumption t′ > te. Thus t
′ ≤ te. Moreover, s∗(t) = s̄(t)

for all t ∈ [t0, te]. Thus s1(t) = s̄(t) = s2(t) for all t ∈ [t0, t
′).

Now we have lemmas that are necessary to prove Theorem 2.

Proof (of Theorem 2). The ”Only if” part of theorem follows from CPR, so let us
show the ”If” part. Let s : [t0, t

∗)→ Q be a right dead-end path in Σ, A0 = {s},
and c0 = {A0}. It is easy to see that c0 ∈ Ch(S+

t0 ,≺+). From Lemma 9 and

Zorn’s lemma it follows that there exists a maximal element cm ∈ Ch(S+
t0 ,≺+)

130 Ie. Ivanov

(with respect to ≤) such that c0 ≤ cm. Let X =
⋃
cm. Then X �= ∅, cm �= ∅, and

A0 ⊆ X , because c0 ⊆ cm. Assume |X |+ < +∞. Then X ∈ S+
t0 by Lemma 11.

Then by Lemma 15 there exists s̄ such that X ∪ {s̄} ∈ S+
t0 and X ≺+ X ∪ {s̄}.

Then X ⊂ X ∪ {s̄}, but this contradicts Lemma 10. Thus |X |+ = +∞. Then
by Lemma 14 there exists a trajectory s∗ : [t0,+∞)→ Q and A ∈ cm such that
s∗=̇t0+s

′ for all s′ ∈ A. Because cm is a ⊆-chain, A �= ∅, and {s} ∈ c0 ⊆ cm, we
have s ∈ A. Then s∗=̇t0+s. Then s∗ is an infinite escape from s.

5 Conclusion

We have studied the question of existence of a global-in-time trajectory for each
initial condition for non-deterministic complete Markovian systems. We have
shown that this question can be answered using analysis of existence of locally
defined trajectories of the system in a neighborhood of each time.

The obtained results can be useful for proving existence of trajectories of non-
deterministic continuous-time systems such as differential inclusions, switched
systems, etc.

References

1. Coddington, E., Levinson, N.: Theory of ordinary differential equations. McGraw-
Hill, New York (1955)

2. Fillipov, A.: Differential equations with discontinuous right-hand sides. AMS
Trans. 42, 199–231 (1964)

3. Gliklikh, Y.: Necessary and sufficient conditions for global-in-time existence of
solutions of ordinary, stochastic, and parabolic differential equations. Abstract and
Applied Analysis 2006, 1–17 (2006)

4. Tangiguchi, T.: Global existence of solutions of differential inclusions. Journal of
Mathematical Analysis and Applications 166, 41–51 (1992)

5. Aubin, A., Cellina, A.: Differential inclusions. Springer, Berlin (1984)
6. Seah, S.W.: Existence of solutions and asymptotic equilibrium of multivalued dif-

ferential systems. J. Math. Anal. Appl. 89, 648–663 (1982)
7. Heemels, W., Camlibel, M., Van der Schaft, A.J., Schumacher, J.M.: On the ex-

istence and uniqueness of solution trajectories to hybrid dynamical systems. In:
Johansson, R., Rantzer, A. (eds.) Nonlinear and Hybrid Control in Automotive
Applications, pp. 391–422. Springer, Berlin (2003)

8. Goebel, R., Sanfelice, R., Teel, R.: Hybrid dynamical systems. IEEE Control Sys-
tems Magazine 29, 29–93 (2009)

9. Henzinger, T.: The theory of hybrid automata. In: IEEE Symposium on Logic in
Computer Science, pp. 278–292 (1996)

10. Doob, J.B.: Stochastic processes. Wiley-Interscience (1990)
11. Willems, J.: Paradigms and Puzzles in the Theory of Dynamical Systems. IEEE

Transactions on Automatic Control 36, 259–294 (1991)
12. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Cambridge

University Press, Cambridge (1990)
13. Constantin, A.: Global existence of solutions for perturbed differential equations.

Annali di Matematica Pura ed Applicata 168, 237–299 (1995)

Combining Verification and MDE Illustrated

by a Formal Java Development

Selma Djeddai1,�, Mohamed Mezghiche2, and Martin Strecker1,∗

1 IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse

118 Route de Narbonne, 31062 Toulouse Cedex 9, France
{firstname.lastname}@irit.fr

2 LIMOSE, UMBB, Boumerdès, Algeria

Abstract. Formal methods are increasingly used in software engineer-
ing. They offer a formal frame that guarentees the correctness of devel-
opments. However, they use complex notations that might be difficult
to understand for unaccustomed users. It thus becomes interesting to
formally specify the core components of a language, implement a prov-
ably correct development, and manipulate its components in a graphi-
cal/textual editor.

This contribution constitutes a first step towards using Model Driven
Engineering (MDE) technology in an interactive proof development. It
presents a transformation process from functional data structures, com-
monly used in proof assistants, to Class diagrams in Ecore. To perform
the transformation we use an MDE-based methodology. The resulting
metamodels from the transformation process are used to generate tex-
tual or graphical editors for domain specific languages (DSLs) using tools
provided by the Eclipse enviornment. To illustrate this approach we use
as example a simple DSL description. It respresents a Java-like language
enriched with timing annotations.

Keywords: Model Driven Engineering, Model Transformation, Formal
Methods, Verification.

1 Introduction

Domain Specific Languages (DSL) have conquered many different aspects of
computer science. They are used in different fields such as aerospace, web-
services, multi-media, etc. [8]. Certain DSLs define their semantics in natural
languages. However, even though these tend to be quite easy to understand,
they usually suffer from incompleteness in some cases and ambiguity in others.
Therefore, there emerges a need for defining the formal semantics of DSLs in a
mathematically founded framework using proof assistants. Such a phase consists
in defining the abstract syntax of a DSL and then grafting a semantics on top

� Part of this research has been supported by the project Verisync (ANR-10-BLAN-
0310).

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 131–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 S. Djeddai, M. Mezghiche, and M. Strecker

of it, using well-understood mechanisms like structural recursion or inductive
relations. Such a semantics is often not executable, but other elements of a for-
mal development are, such as compilers or static analyses whose correctness is
proved on the basis of the formal semantics.

Interactive proof assistants such as Coq [6] or Isabelle [18] often use paradigms
stemming from functional programming (type systems, function definitions), but
they are as such not a programming language. It is however possible to export the
formal development to programming languages such as Caml [17] or Scala [19].
A formally verified compiler, for example, can therefore be effectively executed
in a standard programming language.

In order to improve the user interface for interacting with a DSL, we aim at
a textual or graphical concrete syntax as provided, for example, by the Eclipse
Xtext or GMF environments. Frequent changes of the DSL during the design
phase make it necessary to adapt this interface easily and to re-generate it au-
tomatically, as far as possible.

Fig. 1. Meta-modeling(MM), Verification environment and OO languages

Figure 1 depicts the essence of our approach based on studying the interplay of
three formalisms that offer different and complementary aspects. On one hand,
we have Model Driven Engineering (MDE) [4, 22] that supplies us with frame-
works (for example Eclipse Modeling Framework) allowing to specify, visualize
and understand DSLs. Also these frameworks are equipped with tools that per-
mit to define graphical and textual syntax for these DSLs (Xtext or Graphical
Modeling Framework GMF). They are rather close to Object Oriented program-
ming which is the choice when it comes to developing graphical user interfaces.
Besides these facilities, they often suffer from lack of precise semantics.

On the contrary, proof assistants (such as Isabelle) have solid formal bases
and precise semantics. They are increasingly used to verify the correctness of
software. Nevertheless, they use complex notations that might be difficult to
understand for a non-initiated public.

Thus, this work constitutes a first step towards using MDE technology in an
interactive proof development. The guiding example (see Section 3) is a Java-
like language enriched with assertions developed by ourselves for which no off-
the-shelf definition exists. This “meta-model” (in MDE parlance) is sufficiently

Combining Verification and MDE Illustrated by a Formal Java Development 133

complex to illustrate the method and to be a case study of realistic size for a
DSL. However, its formal model can be entirely defined as an inductive datatype
(and this is so for most formally defined languages). In this case study, we can
therefore not demonstrate some aspects of our work, such as the translation of
genuine graph structures that go beyond instances of inductive data types.

Section 2 constitutes the technical core of the article; it describes a transla-
tion from data models in the functional programming world, used in verification
environments, to meta models in Ecore: the core language of the Eclipse Mod-
eling Framework. We illustrate the methodology in Section 3 with a case study.
In Section 4 we compare our work to other approaches, before concluding in
Section 5 with perspectives of further work.

2 From Datatypes to Meta-models

In this part, we present in detail the translation process from functional data
types to meta-models. We start in Section 2.1 by giving an overview of our
methodology, then we introduce the source and the target of the transformation
in Sections 2.2 and 2.3 respectively. The essence of the translation is further
developed in Section 2.4.

2.1 Methodology

Model Driven Engineering (MDE) is a software development methodology where
the (meta-)models are the central elements in the development process. A meta-
model defines the elements of a language. The instances of theses elements are
used to construct a model of the language. A model transformation is defined by
a mapping from elements of the source meta-model to those of the target meta-
model. Consequently, each model conforming to the source meta-model can be
automatically translated to an instance model of the target meta-model. The
Object Management Group (OMG) [20] defined the Model Driven Architecture
(MDA) standard [15], as specific incarnation of the MDE.

We apply this method in order to define a generic transformation process from
datatypes (used in ML-style languages and interactive provers) into Ecore mod-
els. Figure 2 shows an overview of our approach. Using an EBNF representation
of the datatype definition grammar [18], we derive a meta-model of datatypes.
This meta-model is the source meta-model of our transformation. We also de-
fine a subset of the Ecore meta-model [12] to be the target meta-model. The
transformation rules are defined on the meta-level and map elements from the
source meta-model to their counterparts in the target meta-model. They are
detailed in Section 2.4. The DataTypeToEcore function implements these rules
in Java. It takes as input models which conform to the source meta-model and
returns their equivalent in a model which conforms to the target meta-model.
The implementation process is further developped in Section 3.2.

134 S. Djeddai, M. Mezghiche, and M. Strecker

Meta−Model

Datatype

Functional

Ecore
Datatype To

<<Implements>>

Grammar

of a Datatype’s
EBNF representation

<<ConformsTo>>

Transformation Rules

Meta−Model

Ecore

Model

Datatype

<<ConformsTo>>

Ecore
Model

<<ConformsTo>>

Datatype

Definition

Fig. 2. Overview of the Transformation Method

2.2 Source Meta-model: The Datatype Meta-model

Functional programming is a programming paradigm that implements λ-calculus:
a formal system in mathematical logic that formalizes systems through the no-
tion of function. A function, in functional programming, consists in the mapping
of elements from a set to another. These sets are called types. Usually, they re-
strict the set of legal programs. We can count among the languages implementing
functional programming: Lisp [24], Haskell [21], and the ML languages.

We are interested in ML languages. ML stands for Meta Language. It is
based on a user-friendly syntax of λ-calculus augmented with polymorphism.
It is known for its ability to automatically infer the types of expressions without
explicit type annotations. ML languages are considered as non purely functional
languages. In fact, they admit the use of mutable data structures, features al-
lowing to program in an imperative way. The most famous dialects of the ML
family are SML (Standard ML) and OCaml (Objective Caml) [17].

To perform the transformation, taking all the features provided by ML lan-
guages, would be unnecessarily complex, because some features which are specific
to functional programming are not used in MDE modeling and would have no
equivalent supported by Ecore. This is why we defined a subset of data structure
schemas provided by ML languages that allows to define data types and that is
convenient to be translated into Ecore models.

In this subset, we treat primitive types (integers, Booleans, floats and strings)
and user defined data types. We allow the use of some keywords introducing lists,
references and type option. However, we do not handle mutable constructs and
mutable data structures (including arrays). Also for now, we do not implement
a specific treatment for mutually recursive types.

Figure 3 depicts the datatype meta-model that is constructed from the subset
of datatype declaration grammars of typical functional languages [17, 18]. To
construct this meta-model we were inspired by the work of [1] and [25]. They
worked widely on defining generic processes to transform EBNF grammars into

Combining Verification and MDE Illustrated by a Formal Java Development 135

Meta-models and vice-versa. We mainly focused on the definition of transforma-
tion rules and the correspondence between the elements of the two formalisms.
However, we did not use any tools or algorithms developed.

In our subset represented by the meta-model depicted by Figure 3, a Module
may contain severalType Definitions. Each Type Definition has a Type Construc-
tor. It corresponds to the data types’ name. It is also composed of at least one
Constructor Declaration. These declarations are used to express variant types.
Type declarations have names, it is the name of a particular type case. It takes as
argument some (optional) type expressions which can either represent a Prim-
itive Type (int, bool, float, etc.) or also a data type defined previously in the
module. The list option is used to represent lists in functional programming.
The type option feature describes the presence or the absence of a value. The ref
option is used for references (pointers).

Fig. 3. Datatype Meta-model

We can notice that elements composing type definitions are often unnamed
and just expressed with type expressions. However, for the rest of our work
these typed elements have to be distinguishable by their names. Therefore, we

136 S. Djeddai, M. Mezghiche, and M. Strecker

enriched the type definition grammar with a new element named Accessor. It is a
function introduced by a special annotation (*@accessor*). It allows to assign
a name to a special part of the type declaration. These accessor functions are
essential for the transformation process, their absence would lead to nameless
EStructuralFeatures. The syntax of these functions in the OCaml language is
presented in Figure 4.

(*@ accessor *)

let acc namei ([constr-name] (x1, ..., xn)) = xi / 1 ≤ i ≤ n

Fig. 4. Syntax of Accessor functions in OCaml

2.3 Target Meta-model: The Ecore Meta-model

Eclipse Modeling Framework (EMF) is an Eclipse framework for building appli-
cations based on model definitions. It unifies three technologies: Java, XML and
UML. It allows to describe a model as a class diagram, class interfaces in the
Java programming language or in the form of an XML schema. Moreover, it is
possible to describe a model and generate it in the two others.

Ecore is the model that is used to describe and handle models in EMF. It has
been developed as a small and simplified implementation of full UML. Its main
components are:

– The EPackage is the root element in serialized Ecoremodels. It encompasses
EClasses and EDataTypes.

– The EClass component represents classes in Ecore. It describes the structure
of objects. It contains EAttributes and EOperations.

– The EDataType component represents the types of EAttributes, either pre-
defined (types: Integer, Boolean, Float, etc.) or defined by the user. There is
a special datatype to represent enumerated types EEnum, each enumeration
is called EEnumLiteral.

– EReferences is comparable to the UML Association link. It defines the kinds
of the objects that can be linked together. The containment feature is a
Boolean value that makes a stronger type of relations. When it is set to true,
it represents a whole/part relationship known as “by-value aggregation” in
UML.

The Meta Object Facility (MOF) standardized by the OMG defines a subset
of UML class diagram [11]. It represents the Meta-Meta-Model of UML. Ecore
is comparable to MOF but simpler. They are similar in their ability to specify
classes, structural and behavioral features, inheritance and packages. However,
their difference appears in the data type structures, package relationships and
complex aspects of association links. EMOF (Essential Meta-Object Facility) is
the new core meta-model that is very close to Ecore [5].

Combining Verification and MDE Illustrated by a Formal Java Development 137

Figure 5 represents a subset of the Ecore language. This subset contains
essentially the elements that are needed for the transformation process. In this
meta-model appear only basic classes features and operation. The items that do
not appear are not used by our transformation process.

Fig. 5. Simplified subset of the Ecore Meta-model

2.4 From Datatypes to Meta-models

The transformation method is from functional datatypes to Ecore meta-models.
To precisely define transformation rules, the transformation method is presented
in a formal notation in the form of a function noted Tr(). The transformation
rules are presented as sub-functions relatively to the component given as input.
In each rule definition, we start by an informal description, then we present it
formally and finally we show an effective example.

Tr : DataTypes −→ Ecore Meta-model

The following translation sub-functions are given for a concrete syntax in the
style of Caml [17]. Since most functional languages (including the language of
proof assistants) have great similarities, the concrete syntax can be mapped to
different functional languages.

138 S. Djeddai, M. Mezghiche, and M. Strecker

Rule DatatypeToEClass. This rule is applied when the datatype is formed
of only one constructor. the latter is translated to an EClass. The EClass name
is the name of the type constructor. The types composing the datatype are
translated using other rules (PrimitivTypeToEAttribute or TypeToEReference).

Tr(tpConstr = cn t1...tn) = createEClass();
setName(tpConstr);
Trtype(acci, ti)
/ 1 ≤ i ≤ n

Example:

type tpConstr =

Cn of int ∗ string ∗ ...∗ bool

Rule DatatypeToEEnum. Datatypes composed only of constructors (without
type expressions typexpr) are translated to EEnums which are usually employed
to model enumerated types in Ecore. Then, each constructor composing the
datatype is translated into a literal named EEnumLiteral. The name of each
constructor becomes the name of a literal.

Tr(tpConstr = cn1|...|cnp) = createEEnum();
setName(tpConstr);
TrconstrNm(cni) / 1 ≤ i ≤ p

T rconstrNm(cni) = EEnumLiteral(cni) / 1 ≤ i ≤ p

Example:

type tpConstr=
Cn1 |Cn2 |... | CnN

Rule DatatypeToEClasses. When constructor declarations are composed of
more than one constructor declaration containing type expressions: a first EClass
is created to represent the type constructor (tpConstr). Then, for each construc-
tor, an EClass is created too, and inherits from the tpConstr one. To transform
the types expressions of each constructor, we call the functions for translating
the type expressions.

Combining Verification and MDE Illustrated by a Formal Java Development 139

Tr(tpConstr = cd1|...|cdn) = createEClass();
setName(tpConstr);
Trdecl(cdi)
/ 1 ≤ i ≤ n

Trdecl : ConstructorDeclaration −→ EClass
T rdecl(cni t1...tm) = createEClass();

setName(cni);
setSuperType (EClass(tpConstr));
Trtype(accj , tj)
/ 1 ≤ j ≤ m

Example:

type tpConstr =

Cn1 of string

|Cn2 of int

|...
|CnN of bool

Rule PrimitivTypeToEAttribute. If a type expression is formed of a prim-
itive type, the translation function generates a new EAttribute. The name of
this EAttribute is the name of its corresponding accessor, and its type is the
EMF representation of the the primitive type : EInt for int, EBoolean for bool,
EString for string, etc.

Trtype : (accessor, type) −→ EStructualFeature
T rtype(acc, primTp) = createEAtrribute();

setName(acc);
setT ype(primTpEMF);

Example:

type tpConstr =

Cn of int ∗ string ∗ ...∗ bool

Rule TypeToEReference. When a type expression contains a type which is
not a primitive type, the latter has to be previously defined in the Isabelle theory.
Then, a containment link is created between the current EClass and the EClass
referenced by type constructor, and the multiplicity is set to 1.

140 S. Djeddai, M. Mezghiche, and M. Strecker

Trtype : (accessor, type) −→ EStructualFeature
T rtype(acc, tpConstr) = createEReference();

setName(acc);
setT ype (tp constr);
setContainment (true);
setLowerBound(1);
setUpperBound(1);

Example:

type tpConstr=
Cn oftpConstr2

Rule TypeOptionToMultiplicity. The type expressions can also appear in
the form of a type list. In this case the multiplicity is set to 0...*. The type
expression type option is used to express whether a value is present or not. It
returns None, if it is absent and Some value, if it is present. This is modeled by
changing the cardinality to 0...1.

Trtype : (accessor, type) −→ EStructualFeature
T rtype(acc, t list) = Trtype(acc, t)

setLowerBound(0);
setUpperBound(∗);

Trtype(acc, t option) = Trtype(acc, t)
setLowerBound(0);
setUpperBound(1);

Example:

type tpConstr=
Cn oftpConstr2 list

The last case that we deal with is references (type ref). References are used
to represent pointers in ML programming and Isabelle. It is translated to simple
references without containment option in Ecore.

Combining Verification and MDE Illustrated by a Formal Java Development 141

Trtype(acc, t ref) = Trtype(acc, t)
setContainment(False);

Example:

type tpConstr=
Cn of tpConstr2 ref

RuleAccessorToStructuralFeaturesName. This rule is spelled out to define
how the accessor name is selected for naming a particular EStructuralFeature.
Accessors are regrouped in accssors list. Each accessor structure is formed of an
accessor name, a constructor name and an integer value named ”index”. This
index corresponds to the place of the type the accessor is accessing in the type ex-
pressions.

The constructor name is used to select the corresponding EClass where the
EStructuralFeature is created. Then the index value is compared to the value
FeatureID given by Ecore to represent the rank of the EStructuralFeature

creation in a particular EClass. When these values are equal, the corresponding
accessor’s name is selected to name this EStructuralFeature.

Example:

type tp1= Constr1 of int

| Constr2 of (int list)∗ bool

type tp2 = Tp2 of tp1 ∗ string

(*@accessor*)

let acc1 (Constr1 (x)) =x ;;

(*@accessor*)

let acc2 (Constr2 (x,y)) =x ;;

(*@accessor*)

let acc3 (Constr2 (x,y)) =y ;;

(*@accessor*)

let acc4 (Tp2 (x,y)) =x ;;

(*@accessor*)

let acc5 (Tp2 (x,y)) =y ;;

142 S. Djeddai, M. Mezghiche, and M. Strecker

3 Case Study

In this section, we apply the method presented in Section 2 on a detailed example
that consist of a Domain Specific Language. We start by the DSL definition, then
we show the architecture of the application before finishing with the effective
results of the transformation.

3.1 Presentation of the Case Study

We are currently working on a real-time dialect of the Java language allowing
us to carry out specific static analyses of Java programs. We only sketch this
language here; details are described in [3]. This language is not a genuine subset
of Java, since we have added annotations characterizing timing behavior of pro-
gram parts that are inserted in particular comments into the program. Neither
is the language a superset of Java, because we have to impose syntactic restric-
tions on the shape of the program, and also static restrictions on the number of
objects that are allocated.

All this made us opt for writing our own syntax analysis, which is integrated
into the Eclipse Xtext environment [9]. After syntax analysis and verification
of the above-mentioned static restrictions, the program together with its timing
annotations is translated to Timed Automata (TA) for model checking. The
language is currently not entirely stable and will be modified while we refine and
improve the translation from Java to TA, and while the formal model evolves.

The formal aspect comes into play at the following point: We are currently
developing a real-time semantics of Java in the proof assistant Isabelle, based on
an execution semantics using inductive relations. Performing the translation for
the whole language description would generate a huge meta-model that couldn’t
be presented in the contribution. We thus choose to present only an excerpt of
it, corresponding to a method definition.

Figure 7 shows the datatype definitions in the Isabelle proof assistant, where
a method definition is composed of a method declaration, a list of variables,
and statements. Each method declaration has an access modifier that specifies
its kind. It also has a type, a name, and some variable declarations. The stmt
datatype describes the statements allowed in the method body: Assignments,
Conditions, Sequence of statements, Return and the annotation statement (for
timing annotations). In this example we use Booleans, integers, strings for types
and values.

3.2 Implementation: DatatypesToEcore

Our approach is implemented using the Eclipse environment which includes
among others

– Eclipse Modeling Framework (EMF) [5]: a framework for modeling and code
generation that builds tools and applications based on data models.

Combining Verification and MDE Illustrated by a Formal Java Development 143

– Eclipse Modeling Project (EMP) [12]: a framework allowing the manipula-
tion of DSLs by defining their (textual/graphical) concrete syntax based on
a corresponding meta-model using Xtext or GMF tools.

In this chapter we use the Xtext tool [9]. It is a tool that supports the devel-
opment of textual concrete syntax for DSLs. In the first versions of Xtext, it
was only possible to create a DSL textual editor starting from an Extended
Backus-Naur Form-like grammar and generating a corresponding Ecore-based
meta-model. But since Xtext 2.0, it is possible to start from a meta-model and
get the corresponding EBNF-like grammar. Starting from this grammar, the gen-
erator creates a parser as well as a functional Eclipse textual editor, complete
with syntax highlighting, code assist and outline view [12].

Figure 6 shows the architecture of our application. Non-dashed arrows repre-
sent automatic model transformations or code generation. On the contrary, the
dashed one stands for a manual intervention added to Xtext code generation
facilities. In our approach, the base element is an Isabelle theory where both of
the datatypes and the properties to be checked are defined. The corresponding
meta-model is generated using the translation function described in Section 2.4.
Starting from a generated Ecore meta-model, we use the Xtext tool to define
a textual concrete syntax. First, Xtext builds an EBNF grammar depending on
the structure of the meta-model. The grammar is then adapted using the right
key words of the language, yielding a textual editor as an Eclipse plug-in. We
thus generated code for a DSL textual tool.

Fig. 6. Datatype To Ecore implementation architecture

3.3 Applying the Transformation

Figure 7 shows datatypes taken form the Isabelle theory where the verifica-
tions were performed. These datatypes are used to express the elements of a

144 S. Djeddai, M. Mezghiche, and M. Strecker

method declaration in our DSL. This part of the theory was given as input to the
implementation of our translation rules presented in Section 2.4. The resulting
Ecore diagram is presented in Figure 8.

As it is shown on the figure, data type definitions built only of type construc-
tors (Tp, AccModifier, Binop, Binding) are treated as enumerations in the meta-
model, whereas Datatype MethodDecl composed of only one constructor derive a
single class. As for type expressions that represent list of types (like accModifier
list in varDecl), they generate a structural feature in the corresponding class
and their multiplicities are set to (0...*). The result of type definitions contain-
ing more than one constructor and at least a type expression (stmt and expr) is
modeled as a number of classes inheriting from a main one. Finally, the transla-
tion of the int, bool and string types is straightforward. They are translated to
respectively EInt, EBoolean and EString.

datatype binop = BArith| BCompar| BLogic
datatype value = BoolV bool

|IntV int
|StringV string
|V oidV

datatype binding = Local| Global
datatype var = V ar binding string
datatype expr = Const value

|V arE var
|BinOperation binop expr expr

datatype tp = BoolT | IntT | V oidT | StringT
datatype stmt = Assign var expr

|Seq stmt stmt
|Cond expr stmt stmt
|Return expr
|AnnotStmt int stmt

datatype accModifier =
Public |Private |Abstract|Static |Protected |Synchronized

datatype varDecl =
V arDecl (accModifier list) tp int

datatype methodDecl =
MethodDecl (accModifier list) tp string (varDecl list)

datatype methodDefn =
MethodDefn methodDecl (varDecl list) stmt

Fig. 7. Datatypes in Isabelle

Combining Verification and MDE Illustrated by a Formal Java Development 145

Fig. 8. Resulting Ecore Diagram after Transformation

146 S. Djeddai, M. Mezghiche, and M. Strecker

4 Related Work

EMF models are comparable to Unified Modeling Language Class diagrams. For
this reason, we are interested in the mappings from other formal languages to
UML Class diagrams. Some research is dedicated to establishing the link be-
tween these two formalisms. We cite the work of Idani & al. that consists of a
generic transformation of UML models to B constructs [14] and vice-versa [13].
The authors propose a metamodel-based transformation method based on defin-
ing a set of structural and semantic mappings from UML to B (a formal method
that allows to construct a program by successive refinement, using abstract spec-
ifications).

Similarly, there is an MDE based transformation approach for generating
Alloy (a textual modeling language based on first order logic) specifications
from UML class diagrams and backwards [2, 23].

Delahaye & al. describe in [7] a formal and sound framework for transforming
Focal specification into UML models.

These methods enable to generate UML components from a formal descrip-
tion but their formal representation is significantly different from our needs:
functional data structures.

Also, graph transformation tools [10, 16] permit to define source and target
metamodels all along with a set of transformation rules and use graphical repre-
sentations of instance models to ease the transformation process. However, the
verification functionality they offer is often limited to syntactic aspects (such as
confluence of transformation rules) and does not allow to model deeper seman-
tic properties (such as an operational semantics of a programming language and
proofs by bisimulation).

Our approach combines the two views by offering the possibility to define
the abstract syntax of a DSL, to run some verifications on the top of it and
to generate the corresponding metamodel to graphically document the formal
developments. Furthermore, this metamodel can be used to easily generate a
textual editor using Xtext facilities.

5 Conclusion

Our work constitutes a first step towards a combination of interactive proof and
Model Driven Engineering. We have presented a generic method based on MDE
for transforming data type definitions used in proof assistants to class diagrams.

The approach is illustrated with the help of a Domain Specific Language
developed by ourselves. It is a Java-like language enriched with annotations.
Starting from data type definitions, set up for the semantic modeling of the DSL,
we have been able to generate an EMF meta-model. In addition to its benefits for
documenting and visualizing the DSL, it is manipulated in the Eclipse workbench
to generate a textual editor as an Eclipse plug-in.

Currently, we are working on extending the subset of data type definitions
by adding a way to transform parameterized types to generic types in Ecore,

Combining Verification and MDE Illustrated by a Formal Java Development 147

and coupling our work with the generation of provably correct object oriented
code from proof assistants. Moreover, we intend to work on the opposite side of
the transformation, namely the possibility to generate data structure definitions
from class diagrams.

References

1. Alanen, M., Porres, I.: A relation between context-free grammars and meta ob-
ject facility metamodels. Tech. rep., Turku Centre for Computer Science (TUCS)
(March 2003), http://www.cis.uab.edu/courses/cs593/spring2010/TR606.pdf

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging
Model Transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

3. Baklanova, N., Strecker, M., Féraud, L.: Resource Sharing Conflicts Checking in
Multithreaded Java Programs. In: Informal Proceedings FAC 2012 (April 2012)

4. Bézivin, J.: Model Driven Engineering: An Emerging Technical Space. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64. Springer,
Heidelberg (2006),
https://www.uni-koblenz.de/~laemmel/gttse/2005/pdfs/41430036.pdf

5. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)

6. Coq Development Team: The Coq proof assistant reference manual. version 8.31
(2010), http://coq.inria.fr/refman/, http://coq.inria.fr/refman/

7. Delahaye, D., Étienne, J.F., Viguié Donzeau-Gouge, V.: A Formal and Sound
Transformation from Focal to UML: An Application to Airport Security Regu-
lations. In: UML and Formal Methods (UML&FM), vol. 4, pp. 267–274 (2008),
http://cedric.cnam.fr/~delahaye/?page=publis

8. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices 35(6), 26–36 (2000)

9. Eclipse Community: Tutorials and documentation for Xtext 2.0 (2011),
http://www.eclipse.org/Xtext/documentation/

10. Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as
Eclipse plugins. In: Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2005, pp. 134–143. ACM, New York
(2005), http://doi.acm.org/10.1145/1101908.1101930

11. France, R.B., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling
notation. Computer Standards & Interfaces 19(7), 325–334 (1998)

12. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Upper Saddle River (2009)

13. Idani, A.: UML Models Engineering from Static and Dynamic Aspects of Formal
Specifications. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp.
237–250. Springer, Heidelberg (2009)

14. Idani, A., Boulanger, J.L., Philippe, L.: A generic process and its tool support
towards combining UML and B for safety critical systems. In: Hu, G. (ed.) CAINE,
pp. 185–192. ISCA (2007)

15. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

http://www.cis.uab.edu/courses/cs593/spring2010/TR606.pdf
https://www.uni-koblenz.de/~laemmel/gttse/2005/pdfs/41430036.pdf
http://coq.inria.fr/refman/
http://coq.inria.fr/refman/
http://cedric.cnam.fr/~delahaye/?page=publis
http://www.eclipse.org/Xtext/documentation/
http://doi.acm.org/10.1145/1101908.1101930

148 S. Djeddai, M. Mezghiche, and M. Strecker

16. de Lara, J., Vangheluwe, H.: Using AToM3 as a meta-case tool. In: Proceedings
of the 4th International Conference on Enterprise Information Systems (ICEIS),
Ciudad Real, Spain, pp. 642–649 (April 2002),
http://www.cs.mcgill.ca/~hv/publications/02.ICEIS.MCASE.pdf

17. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 3.12. documentation and user’s manual (July 2011),
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002), http://isabelle.in.tum.de

19. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An Overview of the Scala Pro-
gramming Language. Tech. Rep. IC/2004/64, EPFL Lausanne, Switzerland (2007)

20. OMG: Meta Object Facility (MOF) Core v. 2.0 Document (2006),
http://www.omg.org

21. Peyton-Jones, S.: Haskell 98 language and libraries: the revised report. Cambridge
University Press, Cambridge (2003),
http://www.worldcat.org/isbn/9780521826143

22. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003)

23. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and Back Again.
In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Hei-
delberg (2010)

24. Steele, G.L.: Common LISP, 2nd edn. Digital Press (1990)
25. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. In: Bruel, J.-

M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006)

http://www.cs.mcgill.ca/~hv/publications/02.ICEIS.MCASE.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://isabelle.in.tum.de
http://www.omg.org
http://www.worldcat.org/isbn/9780521826143

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 149–164, 2013.
© Springer-Verlag Berlin Heidelberg 2013

About One Efficient Algorithm for Reachability
Checking in Modeling and Its Implementation

Alexander Letichevsky1, Olexander Letychevskyi1, and Vladimir Peschanenko2

1 Glushkov Institute of Cybernetics of NAS of Ukraine, 40 Glushkova ave., Kyiv, Ukraine
let@cyfra.net, lit@iss.org.ua

2 Kherson State University, 27, 40 Rokiv Zhovtnya str., Kherson, Ukraine
vladimirius@gmail.com

Abstract. The problem of reachability of states of transition systems is consi-
dered hereby. The notions of partial unfolding and permutability of two opera-
tors (including the notion of statically permutable operators) are presented. New
algorithm for reachability problem in terms of insertion modeling, and imple-
mentation of this algorithm are described. An example of application of the
proposed algorithm is considered.

Keywords: insertion modeling, reachability, verification, interleaving.

1 Introduction

Verification of models of multiagent distributed systems and models of parallel
computation usually involves symbolic modeling [1] and is performed on a high level
of abstraction. These models are highly nondeterministic because of their symbolic
nature and usage of parallel composition, which adds a new level of non-determinism
by interleaving (nondeterministic choice of actions order in parallel composition) [2].

The main problem of verification is the problem of combinatorial explosion of the
number states of the model. A state in model checking includes a lot of attributes and
processes. The total number of states could be very large even if the number of
processes is finite and all of the attributes have finite number of possible values. Main
source of combinatorial explosion of states are the number of processes, interleaving
between them and nondeterministic behavior of them. Usually the systems are parallel
and the number of their states grows exponentially with the number of processes.
Obviously, model checking by naive enumeration of states is not feasible. Many dif-
ferent technologies are devoted to solve this problem: methods that introduce partial
order approach to reduce interleaving [4], methods for determining the symmetry
when verifying the equivalence of states [5], techniques of abstraction [6], approxima-
tion [7], symbolic modeling, etc. These standard model checking algorithms work
only when the set of states that are reachable from the given initial state is finite.

Insertion modeling [15] allows to perform symbolic modeling with infinite number
of states. There are various model checking techniques for infinite-state systems,
but they are less developed than finite-state techniques and tend to place stronger

150 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

limitations on the kind of systems and/or the properties that can be model checked.
One of such techniques are presented in [9, 10]. In Petri net theory there is a
well-known McMillan's algorithm of unfolding [11] that in many cases helps to expo-
nentially decrease interleaving in system analysis. The book [12] generalizes this
technique to finite automata networks. This chapter presents a new algorithm for rea-
chability problem in terms of insertion modeling [13, 14, 15] for models with infinite
number of states. The algorithm combines the ideas of economic unfolding of McMil-
lan with online reachability checking using some general assumptions about informa-
tion dependencies of actions expressed in terms of permutability [14].

The chapter is devoted to the solution of the problem of interleaving reduction in
insertion models with infinite number of states.

The algebra of behaviors is presented in section Behavior Algebras, the verification
environments, corresponding insertion function, and predicate transformer are consi-
dered in section Verification Environments. The normal form of behavior is defined
in section Behaviors Over Basis B. The problem of reachability of the states is de-
scribed in section Verification. The notion of partial unfolding is examined in section
Partial Unfolding. The optimization of partial unfolding by statically permutable
operators is reviewed in section Static Permutability Property. The algorithm for re-
ducing of interleaving for transition systems is presented in section Algorithm of In-
terleaving Reduction. The implementation of this algorithm is considered in section
Algorithm Implementation. The example which demonstrates a good result of using
the partial unfolding algorithm is presented in section Examples of Application.

2 Behavior Algebras

Behavior algebra [14] is a kind of process algebra; it is used to express the behavior of
agents (transition systems) considered up to bisimilarity or trace equivalence. To
make economic unfolding we need to distinguish sequential and parallel behaviors.
So we consider the following modification of the notion of behavior algebra. It is a
multisorted algebra with three components: the algebra of actions, the algebra of
sequential behaviors, and the algebra of parallel behaviors.

The algebra of sequential behaviors has operations of prefixing: <ac-
tion> . <sequential behavior> and one internal operation of nondeterministic choice
(()+()), which is associative, commutative, and idempotent operation with neutral
element 0. We also consider the constant behavior Δ (successful termination), which
is the common element of the algebra of sequential and the algebra of parallel beha-
viors. The operations of action algebra will be considered later.

The algebra of parallel behaviors has the parallel composition ()||() of sequential
behaviors as the main binary operation. It is associative commutative (but is not idem-
potent) and has the neutral element Δ . It also has the prefixing operation and nondeter-
ministic choice. The algebra of sequential behaviors is implicitly included to the algebra
of parallel behaviors by the identity Δ= ||uu (parallel composition with one compo-

nent). Unfolding of parallel composition by interleaving will be considered only after
inserting of agents that are formed by parallel composition, into the environment.

 About One Efficient Algorithm for Reachability Checking in Modeling 151

3 Verification Environments

Verification environments of the form),,(BPUEE = are defined by the following
parameters: the set of conditional expressions U, the set of operators P, and the set of
basic behaviors B. The set of actions is defined as a union of the set of conditions and
the set of operators. The set of basic behaviors is used to define the behaviors of
agents inserted into environment in the way which will be explained later. We also
suppose that some logic language (first order or temporal) called basic language is
fixed to define the states of environment and checking conditions for verification. The
conditional expressions also belong to this language.

The state of environment is represented as][uE , where E is a statement of basic
language and u is a parallel composition of sequential behaviors of agents inserted
into environment. We suppose that operators are divided into the set of conditional
and unconditional operators. Conditional operator has the form a→α where α is a
condition and a is an unconditional operator. Unconditional operator a is identified
with conditional operator a→1 . The associative product ()*() and the function

UPUpt →×: (predicate transformer) are defined by the set of actions so that the
following identities are valid:

)(),(aptapt →∧=→ βαβα

)*,()),,((baptbaptpt αα =

),),(()(*)(baptptba βαβα ∧=→→

βαβα ∧=*

Here α and β are conditions, a and b are unconditional operators.
Predicate transformer is supposed to be monotonic:),(),(aptapt βαβα →→ .

In general case, the pt function is defined by some concrete syntax. An example of
such pair (syntax, pt) can be found in [16].

Example. The basic language is a first order language. Conditions are formulae over
simple attributes - symbols that change their values when a system changes its state.
Formally they are considered as function symbols with arity 0. Unconditional opera-
tors are assignments (parallel assignments, sequences of assignments, if-then-else
operators, loops with finite number of repetitions, etc.). As usually in this case,

)))()(()(())),(:),(:(),((22112211 ∧=∧=∧∃=== ztxztxzzxtxxtxxpt αα

Actually this is the strongest postcondition for precondition α .

Insertion function is defined by the following identities and rules.
1.]||[],[vuEvuE = , u,v are agents with sequential behavior (see sec. 1).

Identities for conditions
2.][].[vEvuE =+α , if 0)(=∧αE .

3.].[]..[vuEvuE +∧=+ βαβα , if 0)(≠∧αE (merging conditions).

4.].[]..[vuaEvuaE +→∧=+→ βαβα , if 0)(≠∧∧ βαE . Special cases of these

identities are obtained when v=0 or 1=β .

5.][].[εαεα ∧= EE , if 0)(=∧αE .

152 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

Identities for operators
6.][].[vEvuaE =+ , if 0),(=aEpt .

7.)],(||)[,(.].[EauaEptauaE ϕ= , if 0),(≠aEpt ,),(Eaϕ is a parallel composition

of sequential behaviors (it generates some new parallel branches). If Δ=),(Eaϕ ,

then uuEau =Δ= ||),(||ϕ and u remains unchanged.

Nondeterministic choice
8.]).([]..[wvuaEwvauaE =+=++ . The use of left distributivity means that envi-

ronment considers behavior expressions up to trace equivalence. It also means that a
system uses delayed (angelic) choice.
9.][][][Δ+=Δ+ EuEuE . The states]0[E and][ΔE are called terminal states of the

environment. Formally, the states of the form]0[E are equivalent to 0, and states of the

form][ΔE are equivalent to Δ (if Δ+Δ=Δ][][EE is added). But from the point of

view of verification, it is useful to distinguish syntactically different terminal states.

Parallel behaviors
10.]||[]||[][][wvEwuEvEuE == . Therefore all identities for conditions and op-

erators can be applied within the parallel composition. A component

nn uaua .. 11 ++ of parallel composition is called degenerated relative to the state E,

if for all operators 0),(. =ii aEpta and for all conditions iα it is true that

0)(=∧ iE α . Each component that is degenerated relatively to the state E is equiva-

lent to 0 relatively to this state.
11.][][][vFvFuE =+ , if parallel composition u contains degenerated component

relative to E. So all states of environment with degenerated components are equiva-
lent to 0.
12.][]||[]||[vEvuEvuE +=Δ+ .

13. ++=++]||.[]||.[]..[22112211 vuaEvuaEuauaE , if all actions ia are differ-

ent, if ia is a condition then iu is terminal constant, and v does not contain compo-

nents degenerated relatively to the state E. The state of environment][uE is called

dead lock state, if there are no transitions from this state, but u is not a successful
termination. If there is at least one degenerated component in parallel composition,
then the corresponding state is a dead lock state. All dead lock states are equivalent to
0, but it is useful to distinguish them as well as terminal constants. The rules (9), (12),
and (13) are called unfolding of nondeterministic choice.

14. = ++−−= n
i iiiiiinn uauuaauauaE 1 111111)||.||||.||.(].||||.[, if all compo-

nents of parallel composition are non-degenerated. This relation is called a full unfold-
ing algorithm for a parallel composition. This is a complete unfolding and the main
result of this chapter shows that it is not needed to make the complete unfolding at
each step of verification. Let nn uauau .||||. 11 = , and =),(iuunfold

)||.||||.||.(1111 ++−−= iiiiii uauuaa . Then identity (14) can be rewritten as

14a. == n
inn iuunfolduauaE 111),(].||||.[.

 About One Efficient Algorithm for Reachability Checking in Modeling 153

Environment does not distinguish trace equivalent behaviors and consequently, bisi-
milar states of environment are trace equivalent [14]. The identity (14) defines the
main transition rule for the system:

][][uEuE ia ′′⎯→⎯ ,

if u is a parallel composition with non-degenerated components and][uE ′′ is defined

by the identity (7).

4 Behaviors over Basis B

The set of symbols is given for the set B of behavior basis. These symbols are called
basic sequential behaviors. The expression of the algebra of sequential behaviors
constructed from these symbols and termination constants are called sequential
behavior over basis B. Suppose that for each symbol Bv∈ an equation of the form

),,(21 vvFv v= is given with sequential behavior over basis B as a right hand side.

This equation is called the definition of a basic behavior v. The application of this
definition as rewriting rule is called the unfolding of behavior v. System of basic
behaviors is called non-degenerated if each path in the tree representation of the

expression),,(21 vvFv contains at least one operator.

Normal form of sequential behavior is an expression of the form
ε++++ nn uauaua ... 2211 where ,, 21 uu are sequential behaviors. If ia is a

condition, then iu is a termination constant, 0≥n , and all actions are different (not

equivalent with respect to the environment E), because of delayed (angelic) choice
(see sec. 2).

It can be easily proved that each sequential behavior u over non-degenerated basis
in a state][uE can be reduced to a normal form v equivalent to u with respect to E.

Parallel behavior over B is a parallel composition of sequential behaviors over B.
Normal form of parallel behavior is a nondeterministic sum of behaviors of the

form ++ 2211 .. uaua , where ,, 21 uu are sequential behaviors over B, ,, 21 aa

are operators or conditions such that if ia is a condition, then iu is a termination con-

stant.
Normal form of environment state is a term of the form ∈ ∈ Δ+Ii Jjiii uEa][.

or 0. Each environment state with non-degenerated system of basic behaviors is trace
equivalent to some normal form.

5 Verification

A property ξ of environment state is said to be correct if it does not distinguish

equivalent states. A property ξ of environment state is monotonic if

])[(])[(uEuEEE ′→′→ ξξ . A property ξ is reachable from the given state of a

154 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

model M if there exist a trace that starts in this state and finishes in the state which
satisfies propertyξ .

Let Ξ be the set of correct and monotonic properties, defined on the set of envi-
ronment states of a model M (checked properties). The verification of M is to check
which properties from Ξ are reachable (not reachable) from the initial states of M for
a finite number of steps or a number of steps bounded by some constant.

Usually models are highly non-deterministic. This non-determinism is caused by
nondeterminism of a model which increases by interleaving of parallel processes:

)||..().||.(.||. vuabvbuavbua += . So the reducing interleaving is an important problem of
efficient verification. It is supposed that the set of properties to be checked contains
the property of a state “to be a dead lock” and a property “to be a state of successful
termination”.

The simplest verification algorithm is exhaustive unfolding of initial states up to
saturation or depletion of a given number of steps. It uses the following formula of

unfolding: =

n

i
iuunfoldE

1
)],([. The properties to be checked are checked in the

process of unfolding and the states that satisfy checked properties are collected. A
more economic unfolding algorithm reducing interleaving can be constructed using
the following notion of partial unfolding.

6 Partial Unfolding

Two operators a and a' are called permutable with respect to a state E (denoted

aa E ′⎯→←), if]*[]*[aaEaaE ′=′ . Let the state of environment
].||||.[][11 nn uauaEuE = be given. Select a component ii uas .= and construct for

this component the set),(sEnonp of those components jiua jj ≠,. such that ia

and

ja are not permutable with respect to the current state E. Obtain

),(),()(),,(iECiEBiAiuEpunfold ++=
)||.||||.||.()(1111 ++−−= iiiiii uauuaaiA

...)||.||||.||.(...),(11

),(),(
11 ++

∈∧≠
−−= jjj

sEnonpaaji
jjj uauuaaiEB

ji
...)||.||));;((||.||.(...),(11

),(),(
11 ++

⎯→←∧∉∧≠
−− ′= kk

aasEnonpaaik
kwkkk uauapuaaiEC

w
E

kik

In the last formula kkw uuap =′));;((, and p is a sequential composition of actions. The
function punfold is called a partial unfolding for parallel composition. Let us consider
the following algorithm of checking reachability. Check needed properties on the
current state and the states reachable on one step from the current. Proceed using par-
tial unfolding of the current state. This algorithm is called a partial unfolding algo-
rithm (algorithm punfold) of reachability checking.

In general case, the algorithm punfold uses dynamic permutability of operators, but
it is not optimal because pt function is used four times for each pair of the operators.
Algorithm punfold can be improved by using the notion of static permutability prop-
erty of operators.

 About One Efficient Algorithm for Reachability Checking in Modeling 155

6.1 Static Permutability Property

Theorem 1. If two operators bqap →=→= βα , are permutable with respect to

the states βα ∧=1E , βα ∧¬=2E , βα ¬∧=3E then they are permutable for all

states.
Assume the contrary that])*[]*[(pqeqpee ≠∃ and],*[]*[11 pqEqpE =

],*[]*[22 pqEqpE =]*[]*[33 pqEqpE = . Consider]*[]*[11 pqEqpE = :

∧∧∧=∧∧∧))),,((])[,(]*[(baptptpaptqp βαβαβαβα

∧∧∧=∧∧∧∧))),,((])[,(]*[(abptptqbptpq βααββαβα

∧=∧∧])*[]*[(pqqp βαβα

∧∧=∧∧)),,(()),,((abptptbaptpt βααβαβ

¬∨∧∧∧=¬∨∧∧∧)),),((()),),(((abeeptptbaeeptpt βααβαβ

)),,(()),,((

)),),(()),),((

abeptptabeptpt

baeptptbaeptpt

¬∧∧∧∨∧∧∧=
=¬∧∧∧∨∧∧∧

βααβαα
βαββαβ

Consider]*[]*[22 pqEqpE = :

∧∧¬∧∧¬)0])[,(]*[(qaptqp βααβα

∧∧¬∧∧¬∧∧¬∧))),,((])[,(]*[(abptptpbptpq βααβαββα

∧¬=∧¬∧])*[]*[(pqqp βαβα

)0)),,(((=∧¬∧ abptpt βαα

Consider]*[]*[33 pqEqpE = :

∧¬∧∧¬∧)0])[,(]*[(qbptpq βαββα

∧¬∧∧¬∧∧¬∧∧))),,((])[,(]*[(baptptqbptqp βαββααβα

¬∧=¬∧∧])*[]*[(pqqp βαβα

)0)),,(((=¬∧∧ baptpt βαβ

Let us try to prove this theorem by contradiction. Let us consider insertion of two
operators p,q:

)),,((])[,()](*)[(]*[baeptptbaeptbaeqpe αββαβα ∧∧→∧→→=

)),,((])[,()](*)[(]*[abeptptabeptabepqe βααβαβ ∧∧→∧→→=

So,))),,(()),,(((abeptptbaeptpte βααβ ∧∧≠∧∧∃ .

¬∨∧∧∧≠¬∨∧∧∧∃))),),((()),),((((abeptptbaeptpte ααβαββαβ

¬∧∧∨∧∧∧≠
≠¬∧∧∨∧∧∧∃

))),,((

)),,(((

abeeptpt

baeeptpte

αβαβα
βαβαβ

∧¬∧∧∨∧∧∧≠
≠¬∧∧∧∨∧∧∧∃

))),,(()),,((

)),,(()),,(((

abeptptabeptpt

baeptptbaeptpte

βααβαα
βαββαβ

156 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

So, using monotonicity property of pt function obtain

0)),,((

)),,(()),,((

),(),(

→∧¬∧∧
∧¬∧→∧¬∧∧
∧¬→∧¬∧∧¬→∧¬∧

abeptpt

abptptabeptpt

bptbepte

βαα
βααβαα

βαβαβαβα

0)),,((

)),,(()),,((

),(),(

→¬∧∧∧
¬∧∧→¬∧∧∧
¬∧→¬∧∧¬∧→¬∧∧

baeptpt

baptptbaeptpt

aptaepte

βαβ
βαββαβ

βαβαβαβα

It means that

)))),,(()),,(((

))),,(()),,((((

])*[]*[(

))),,(()),,(((

11

abeptptbaeptpt

baeptptabeptpte

pqEqpE

abeptptbaeptpte

βααβαβ
βαββαα

βααβαβ

∧∧¬∧=∧∧∧∧
∧∧∧¬∧=∧∧∧∃

=∧
∧∧∧∧≠∧∧∧∃

Let us consider the case when

))),,(()),,(((baeptptabeptpte βαββαα ∧∧¬∧=∧∧∧∃ .

0=∧∧¬∧∧∧ βαβα ee means that pt function translates this formulae into one state

independently from e and e¬ . It is only possible when all attribute expressions from e
are in r,s list of pt, and after application of both protocols p,q no restrictions are left
from e and e¬ , because of contradiction in other cases. It means that both operators p,q
translate all subformulae, which depend on attribute expressions from e, into one sub-
formula, independently from sequence of application. So, by obtaining a contradiction,
we have)),,(()),,((baeptptabeptpt αββα ∧∧=∧∧ , theorem is proved.

Two operators bqap →=→= βα , are called statically permutable if they satis-

fy the following conditions:

1.)),,(()),,((baptptabptpt βαββαα ∧∧=∧∧

2. 0)),,((=∧¬∧ abptpt βαα

3. 0)),,((=¬∧∧ baptpt βαβ

From the practical point of view, it is a slow process to call pt function 8 times in
order to check the static permutability property for two operators. So, let us define the
weak property for static permutability of two operators.

Let r(p),s(p),z(p) be the lists of predicate transformer for operator ap →=α ,
where r(p) is the list of the attribute expressions from left part of assignment of a, r(p)
is the list of the attribute expressions from the formulae part of a, z(p) is the list of
attribute expressions from α that are not in)()(pspr ∪ [16].

Two operators bqap →=→= βα , are called weakly statically permutable if

)))()()(())()(((

)))()()(())()(((

∅=∪∪∩∪∧
∧∅=∪∪∩∪

pzpsprqsqr

qzqsqrpspr

Theorem 2. If two operators bqap →=→= βα , satisfy weak condition of static

permutability then they are statically permutable

 About One Efficient Algorithm for Reachability Checking in Modeling 157

If p, q satisfy weak condition of static permutability then both operators work with
different memory. It means that all conditions for static permutability are satisfied and
the theorem is proved.

7 Algorithm of Interleaving Reduction

The algorithm of interleaving reduction is presented in Fig.1.

 Static Preparation Make Normal Form

Apply Filters

Unfold Best Choice

Finish

Fig. 1. Algorithm of Interleaving Reduction

Verification environments of the form),,(BPUEE = are input for our algorithm.

The first component Static Preparation founds all statically non-permutable operators
from the behavior B. Component Make Normal Form translates behavior into normal
form of B (section 3). Next component Apply Filters checks input verification envi-
ronments with the following filters:

1. Visited. If current verification environment was visited previously, then it should
be removed from current consideration. If not, then it is added to the storage of vi-
sited verification environments.

2. Terminal States. If verification environment is one of the terminal states
]0[E (deadlock) or][ΔE (successful termination state), then it should be removed

from current consideration and saved to terminal storage.
3. Goal. Goal filter is by user defined formula gϕ . If formula Eg ∧ϕ is satisfiable,

then current verification environment is removed from the consideration.
4. Safety. Safety filter is by user defined formula sϕ . If formula Es ∧¬ϕ is satisfia-

ble, then current verification environment is removed from the consideration.

Of course, the algorithms for detecting visited states and dead locks should be defined
for partial unfolding.

The state in the set of search tree is considered as visited if it is in the set of already
visited states and all its possible successors are in this set:

visiteduauauauaE nnii −)].||||.||||.||.([2211

visiteduauauuauaaE nniiiiii −++−−)].||||.||||.||||..([111111

visiteduuauaaE nnnn −−−)]||.||||..([1111

158 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

The state in the set of search tree is considered as dead lock if all of these expressions
are equal to 0.

Component Unfold Best Choice selects verification environment and component of
parallel composition which should be unfolded first.

Let’s consider the process of choice of verification environment and component
for unfolding. Usage of the breadth-first search (BFS) algorithm is better than the
depth-first search (DFS) algorithm for checking of reachability property. But, in gen-
eral case our algorithm could be used with any traversal strategy. So, let us use BFS
algorithm and let the chosen component be in normal form

iii uasuauaE .],||.||.[2211 = . Then component)(min ii snonpj = is chosen for

partial unfolding },2,1{),),||.||.(,(2211 ∈jjuauaEpunfold .

In general case the partial unfolding loses states, because
),(),(iuunfoldiupunfold ≠ .

Let)(21 SS be sets of all reachable states, which were obtained with function un-

fold (punfold), let 21 / SS be a set of states, which are called lost states. Situation

where state 2S a is reachable from 1S with the unfold, but not reachable with the

punfold is called “ broken rechability property”.

Theorem 3. The partial unfolding algorithm does not break the reachability property.

The proof is based on the correctness and monotonicity of checked properties, and the

following property of partial unfolding algorithm: if][][uEuE a ′′⎯→⎯ and the state s is

reachable from][uE ′′ then there exists a transition][][uEuE b ′′′′⎯→⎯ made by partial

unfolding algorithm such that s is also reachable from][uE ′′′′ . To prove this statement it

is sufficient to consider all cases for transitions in partial unfolding algorithm.
If the algorithm of partial unfolding is used for checking reachability property of

goal and safety states, then algorithm should check those states after each call of the
punfold.

Finally, if where are no verification environment left, then component Finish prints
statistic of model verification: number of covered states, list of terminal, goal, safety
states, time of verification and finishes its work.

8 Algorithm Implementation

The described algorithm was implemented in Insertion Modeling System as a com-
ponent of insertion machine - analytical Model Driver[8], which is intended for model
analysis, investigation of its properties etc.

So, the main function of implemented algorithm is run_model. The part of imple-
mentation could be presented as the following APLAN [18] (algebraic programming
language) code:

run_model:=proc(init_states)(
new_states:=0;
 generate_static_permutable_table(init_states);

 About One Efficient Algorithm for Reachability Checking in Modeling 159

 active_states-->make_active(init_states);
 active_states-->process_active(active_states);

loop(
 active_states-->check_filters_disj(active_states);
 new_states-->mrg(active_states|/new_states);
 equ(new_states,0)->return 1;
 S-->select_best(new_states);
 S-->punfold(S);

S-->process_active(S)
 active_states-->S)
);

The function generate_static_permutable_table creates two lists: list of full stati-

cally permutable operators for all of the parallel processes, list of non-statically per-
mutable pairs of two operators from different parallel processes.

The function make_active makes the internal environment presentation using com-
position of insertions. For example, now we use the following internal normal form:
obj(nonp:0,dist:1,hist:Nil)[E[u]]. Here nonp is the number of nonpermutable opera-
tors according to environment state E (nonp=0 for any full statically permutable oper-
ator, the function pt should be called for checking permutability property for non
statically permutable pairs only), dist is the depth of this state search, hist is the list of
insertion functions which appeared in this search branch (this field is used as restric-
tion for depth search), E[u] is the initial insertion function.

The function process_active returns the disjunction of insertion functions with the
behaviors in the normal form (∨∨]]||.[)[:,:,:(11

iii uaEzhistydistxnonpobj).

Here ia1 is an action which should be inserted in this environments state E, x is the

number of nonpermutable operators in ||. 11
ii ua for ia1 , y is a number of depth dis-

tance, z is history.
The loop is an operator which could be defined with the help of the following equa-

tion: loop(x)=while(1,x). The function check_filters_disj checks filters settings for all
new environment states (see sec. 7) and returns all environment states which were not
filtered. It replaces each filtered environment state by 0 (neutral element for disjunction).
The function mrg creates canonical form for a formula, operation |/ is a disjunction [17].

The function select_best returns the environment state from the list new_states
with which algorithm will work in the next step. The implementation of it depends on
problem which we should check. Here a user could try to apply the different types of
heuristics (for example, BFS, DFS etc). Current implementation of algorithm returns
a state with)(min xi . If there are several states with the same value of)(min xi then it

returns a state with)(min yi or first of them.

The function punfold makes partial unfolding for selected state and chosen action
in behavior. If after partial unfolding the situation appears where all new states are
visited, then algorithm chooses one of other components of parallel composition for
partial unfolding. If no new components are chosen for partial unfolding then it

160 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

returns 0. If not, then it makes the partial unfolding for component of parallel compo-
sition which was chosen.

The algorithm finishes its work when there is no state for unfolding is left
(new_states=0).

9 Examples of Application

Let us discuss the simple example which demonstrates work of the function
run_model. Let the environment description have three integer attributes:

obj(
 attributes:obj(
 x:int,
 y:int,
 z:int))

Initial environment state has the form:

obj(formula:1)[
 1-> (x:=1)||1-> (x:=2)||1->(y:=3)||1->(z:=4)]
The function generate_static_permutable_table returns two lists:

─)))4:(1()),3:(1((1 =>−=>−= zyL – list of full permutable operators.

─))2:(1),1:(1(2 =>−=>−= xxL – list of nonstatic permutable pairs.

make_active function makes a template for initial environment state:
obj(nonp:0,dist:0,hist:Nil)[
obj(formula:1)[1-> (x:=1)||1-> (x:=2)||1->(y:=3)||1->(z:=4)]]

The function process_active checks which component could be unfolded in this step.
It is 1->(y:=3) and it returns:

obj(nonp:0,dist:0,hist:Nil)[
obj(formula:1)[1->(y:=3)||1-> (x:=1)||1-> (x:=2)||1->(z:=4)]]

The next step is to check filters. The initial state is not filtered and system adds the
new visited state (current one). select_best returns the current state because it is only
one case here. punfold makes partial unfolding for first component. Operator 1-
>(y:=3) is full statically permutable, in that case

0))3:(1,())3:(1,(==>−==>− yECyEB . So, obtained:

obj(nonp:0,dist:1,hist:(1->(y:=3),Nil))[
obj(formula:(y=3)[1-> (x:=1)||1-> (x:=2)||1->(z:=4)]]

After that process_active returns the state with next full statically permutable operator
for partial unfolding:

obj(nonp:0,dist:1,hist:(1->(y:=3),Nil))[
obj(formula:(y=3)[1->(z:=4)||1-> (x:=1)||1-> (x:=2)]]

Starting the new iteration of loop. The next step is to check filters. The current state is
not filtered (add it to the storage of visited states). select_best returns the current state.
Next, punfold returns

 About One Efficient Algorithm for Reachability Checking in Modeling 161

obj(nonp:0,dist:2,hist:(1->(z:=4),1->(y:=3),Nil))[
obj(formula:((y=3) ∧ ((z=4))[1-> (x:=1)||1-> (x:=2)]]

The left two operators are nonpermutable statically and dynamically. So,
process_active marks that case:

obj(nonp:1,dist:2,hist:(1->(z:=4),1->(y:=3),Nil))[
obj(formula:((y=3)&((z=4))[1-> (x:=1)||1-> (x:=2)]]

Starting the new iteration of loop. This state is not filtered too and only one for se-
lect_best. punfold returns here nondeterministic states:

obj(nonp:0,dist:3,hist:(1->(x:=1),1->(z:=4),1->(y:=3),Nil))[
obj(formula:((y=3)&((z=4)&(x=1))[1-> (x:=2)]] |/
obj(nonp:0,dist:3,hist:(1->(x:=2),1->(z:=4),1->(y:=3),Nil))[
obj(formula:((y=3)&((z=4)&(x=2))[1-> (x:=1)]]

process_active leaves this state in the same view because there is no parallel components.
Starting the new iteration of loop. Both states are not filtered. select_best returns

first argument. punfold returns terminal state:

obj(nonp:0,dist:4,hist:(1-> (x:=2),1->(x:=1),1->(z:=4),1->(y:=3),Nil))[
obj(formula:((y=3)&((z=4)&(x=2))[Δ]] (Successful termination state)
process_active leave terminal state in the same view.

Starting the new iteration of loop. Successful termination state is filtered as a one of
terminal states and function check_filters_disj returns 0. select_best returns one left
state which was created in previous step of loop. punfold returns terminal state:

obj(nonp:0,dist:4,hist:(1-> (x:=1),1->(x:=2),1->(z:=4),1->(y:=3),Nil))[
obj(formula:((y=3)&((z=4)&(x=1))[Δ]] (Successful termination state)
process_active leave terminal state in the same view.

Starting the new iteration of loop. Successful termination state is filtered as one of
terminal states and function check_filters_disj returns 0. There are no states left to
consider in the loop, so the loop breaks,

It was a simple example which demonstrates some internal data structures and the
work of the algorithm. Let us consider another example to demonstrate efficiency of
this algorithm. Let the initial state be]312||20[URE . The behavior R20 and U312 is

defined by the following graphs fig. 2, fig. 3 respectively.
The */R2 means all operators except R2, the grey color in fig. 2 means the special

situation when the R2 could be inserted after any of operators except R2 and that after
insertion of R2 any protocol could be inserted except R2. The grey color on fig. 3 is
used to mark a subpath for successful termination state (terminal states).

The following results are obtained after analyzing the two lists of operators from
behavior R20 and U312:

1. Behavior R20 has 5 out of 20 operators that are statically permutable for all opera-
tors from U312.
2. Behavior U312 has 31 out of 33 operators that are statically permutable for all op-
erators from R20.

162 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

3. The time for creating the list of statically permutable operators is approx. 1 min
(CPU - Intel Core Duo 2.0 MHz, RAM - 2 Gb).
4. The whole state space was covered after approx. 25 min.
5. Total number of covered states is 1102.

Out of memory error was obtained without partial unfolding algorithm after approx. 1
hour of work and approx. 50000 of states were covered. So, it is a good result for this
example, because if one of the operators is statically permutable for all of the opera-
tors from other parallel processes, then)(),(iAiupunfold = , because 0)()(== iCiB .

Fig. 2. Behavior for R20

Fig. 3. Behavior for U312

 About One Efficient Algorithm for Reachability Checking in Modeling 163

10 Conclusions

The verification algorithm based on partial unfolding has been implemented in the
system of insertion modeling IMS. It has shown considerable decreasing of the
verification time on several examples taken from industrial applications. It is expected
that pure C++ version of this algorithm will be at least 10 times faster. It is a well-
known case for IMS that C++ implementations of algorithms are generally 10 times
faster than their prototypes written in APLAN, which is an interpreted language IMS
is written in.

In the near future this algorithm will be applied for the verification of distributed
systems in VRS, for verification of parallel programs [8], and for verification of for-
mal specifications in new subject domains using our tool for symbolic modeling with
infinite number of states.

References

1. Symbolic modeling, http://en.wikipedia.org/wiki/Model_checking
2. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communications. Information

and Control 60, 109–137 (1984)
3. Letichevsky, A., Kapitonova, J., Volkov, V., Letichevsky Jr., A., Baranov, S., Kotlyarov,

V., Weigert, T.: System Specification with Basic Protocols. Cybernetics and System Anal-
ysis 4, 3–21 (2005)

4. Lomuscio, A., Penczek, W., Qu, H.: Partial Order Reductions for Model Checking Tem-
poral-epistemic Logics over Interleaved Multi-agent Systems. Fundam. Inf. 101, 71–90
(2010)

5. Ip, C.N., Dill, D.L.: Better verification through symmetry. Methods Syst. Des. 9, 41–75
(1996)

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans.
Program. Lang. Syst. 16, 1512–1542 (1994)

7. D’silva, V., Purandare, M., Kroening, D.: Approximation Refinement for Interpolation-
Based Model Checking. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 68–82. Springer, Heidelberg (2008)

8. APS & IMS Systems, http://apsystem.org.ua
9. Escobar, S., Meseguer, J.: Symbolic Model Checking of Infinite-State Systems Using Nar-

rowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidel-
berg (2007)

10. Herbreteau, F., Sutre, G., Tran, T.Q.: Unfolding Concurrent Well-Structured Transition
Systems. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 706–720.
Springer, Heidelberg (2007)

11. McMillan, K.L.: Trace Theoretic Verification of Asynchronous Circuits Using Unfoldings.
In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 180–195. Springer, Heidelberg (1995)

12. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Checking.
Springer, Heidelberg (2008)

13. Letichevsky, A., Gilbert, D.: A Model for Interaction of Agents and Environments. In:
Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 311–328.
Springer, Heidelberg (2000)

164 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

14. Letichevsky, A.: Algebra of behavior transformations and its applications. In: Kudryavt-
sev, V.B., Rosenberg, I.G. (eds.) Structural Theory of Automata, Semigroups, and Univer-
sal Algebra. NATO Science Series II. Mathematics, Physics and Chemistry, vol. 207, pp.
241–272. Springer, Heidelberg (2005)

15. Letichevsky, A., Kapitonova, J., Kotlyarov, V., Letichevsky Jr., A., Nikitchenko, N., Vol-
kov, V., Weigert, T.: Insertion modeling in distributed system design. Problems of Pro-
gramming 4, 13–39 (2008)

16. Letichevsky, A.A., Godlevsky, A.B., Letichevsky Jr., A.A., Potienko, S.V., Peschanenko,
V.S.: Properties of Predicate Transformer of VRS System. Cybernetics and System Ana-
lyses 4, 3–16 (2010)

17. Letichevsky, A.A., Letychevskyi, O.A., Peschanenko, V.S.: Insertion Modeling System.
In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 262–
273. Springer, Heidelberg (2012)

18. Letichevsky, A.A., Kapitonova, J.V.: Algebraic Programming in the APS System. In: In-
ternational Symposium on Symbolic and Algebraic Computation, pp. 68–75. ACM, New
York (1990)

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 165–176, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cross-Diagram UML Design Verification

Iryna Zaretska, Oleksandra Kulankhina, and Hlib Mykhailenko

V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
zar@univer.kharkov.ua, {mary.cauliflower,tas.nix}@gmail.com

Abstract. The chapter presents a general method and software implementation
for checking inconsistencies in UML design of a software project. The pro-
posed method uses its own model and first order predicate logic to specify rela-
tions between components of the design. Unlike various existing methods the
proposed one is focused mostly on cross-diagram inconsistencies and strong
adhering to object-oriented principles. The model used in the method is based
on the unified graph representation of UML diagrams.

Keywords: Software design, object-oriented approach, UML, design model,
verification.

1 Introduction

Software design has become an increasingly important part of software lifecycle due
to the increasing complexity of software under development.

The Unified Modeling Language (UML) [13] is the de facto standard for modeling
software systems. The UML supports a wide range of diagrams for modeling soft-
ware. UML diagrams are independent but connected; their meta-model describes
them under a common roof.

Detection of errors at the software design level allows reducing a great number of
problems in the late stages of software life cycle. There are several approaches for
testing design models but they are mainly dealing with intra-diagram inconsistencies
or using scripts for design execution.

In this chapter model faults concerned with cross-diagram inconsistencies are con-
sidered. We present a method for detecting cross-diagram inconsistencies in a UML
design and its Java implementation. The general model of UML design for verifica-
tion and refining purposes is introduced and discussed.

2 Related Work

This section describes some existing approaches to UML design verification.

2.1 OCL Constraints

The most common approach to set the rules of consistency for a UML model is to use
Object Constraint Language (OCL) which is supported by the majority of UML
CASE tools. In fact a lot of OCL constraints are embedded into the wide spread UML

166 I. Zaretska, O. Kulankhina, and H. Mykhailenko

CASE tools in order to provide inconsistency verification of the model. The fact is
that one can freely use OCL on the intra-diagram level but not on the cross-diagram
level.

2.2 Critic Approach

A number of UML visual design tools provide model verification support including
syntax checking and structural and consistency analysis. One of the components of
such integrated support tools are critics.

There are various definitions of a design critic or a critic system in the literature. A
critic can be considered as an intelligent user interface that evaluates a design made
by a user and provides feedback to assist the user to improve the design. Generally
critic tools detect potential problems, give advice and alternative solutions, and
possibly automated or semi-automated design improvements to the end user.

Design critic tools have been used in design tools for various domains, including
software engineering, design sketches, education, etc. Several studies report the
benefits of applying design critic tools in software developments activities [1 – 8].

One of the critic tools is ArgoUML (http://argouml.tigris.org/), an open source
UML CASE tool. This tool supports the editing of UML notation diagrams and
detects common errors made by software designers. For example, after placing a class
in a class diagram, several critiques are displayed reminding the user that the class
requires a better attribute name, needs operations, constructor and associations with
other classes, and its class name needs to be capitalized. Thus, the user is helped
to improve the design through the critiques. Java API (http://docs.oracle.com/javase/
7/docs/api/) is used to implement these features. Other critic-based tools like
ArchStudio (http://www.isr.uci.edu/projects/archstudio/), IDEA (http://www.
jetbrains.com/idea/) or ABCDE-Critic [5] provide knowledge to architects,
designers, and requirement engineers who lack specific understanding of the problem
or solution domains. These critic tools all produce critiques that are specific to their
problem domain. They use various approaches such as Java API, Prolog rules and
knowledge bases, first-order production systems etc. to design and define critiques
constraints. These tools have several limitations such as particular code or design
language orientation or difficulties in customization requiring comprehension of the
critic’s domain.

2.3 UML Design Execution

A number of approaches have been proposed to execute UML models [9 – 12]. Most
of them use UML models to generate high level language code and execute the gener-
ated code.

Mellor and Balcer [11] for example use model compilers to support UML model
execution. A set of domain and platform-specific model compilers are available
commercially for realtime system modeling. At present the compilers cannot be
extended to incorporate specific checks as the compiler source is not freely available
for modifications.

 Cross-Diagram UML Design Verification 167

Another technique for executing UML designs is to execute code that is generated
from the model. Assuming that the code and model both contain the same informa-
tion, executing the code is the same as executing the model.

Trung T. Dinh-Trong at el. [12] offer the systematic approach to testing UML de-
signs based on a Java-like action language (JAL) used to transform the UML design
under test into the executable form and then exercise them with generated inputs.

3 Cross-Diagram Inconsistencies

It is quite important to verify that the information about the model of the system in
one UML diagram does not contradict to the information in the other UML diagram.
We call such contradictions cross-diagram inconsistencies.

A UML design may contain different cross-diagram inconsistencies. Some of them
are listed below.

1. An instance of the class A sends the message to the instance of the class B in the
Sequence diagram, but the class B isn’t visible for the class A in the Class diagram
(Fig. 1).

Fig. 1. Class B should be visible

2. An instance of the class A sends the message to an instance of the class B in the
Sequence diagram, but there is no corresponding method in the class B (Fig. 2).

Fig. 2. Class B does not have method3()

168 I. Zaretska, O. Kulankhina, and H. Mykhailenko

3. Transition from one state of the class A to another one in the State Machine dia-
gram occurs by the class A method invocation, but there is no such method in the
class A in the Class diagram (Fig. 3).

Fig. 3. Class A does not have method2()

4. An instance of the class A sends the message to the class B (but not to the instance
of this class) in the Sequence diagram, but the corresponding method of the class
B isn’t specified as static (Fig.4).

Fig. 4. In class B method2() is not specified as static

As our analysis shows the most wide spread UML CASE tools cannot detect such
faults in the design and neither critic tools nor the design execution method are of any
help in a cross-diagram verification process.

4 Simple Method for Detecting Cross-Diagram Inconsistencies
in UML Design

As most of the UML CASE tools allow exporting an object oriented design (OOD) of
a target system into XMI format it is natural to use a simple method of cross-diagram
verification: parse XMI file and find UML components dependences we are interested

 Cross-Diagram UML Design Verification 169

in. Depending on the type of an inconsistence under check we developed different
check modules with their own models and consistency rules. The whole process
looks like shown in Fig. 5. After parsing the XMI file into the Document Object
Model (DOM) the Visitor takes care of getting over its elements and creating in-
stances of the classes from the Checker’s model. Then the concrete Checker verifies
this model according to its own rules and generates check results. To support this
process the Java plug-in was developed. We called it Cross Diagram Inconsistency
Check Plug-in (CDICP). It can be easily added to most of the UML CASE tools.

Fig. 5. The process of checking UML design

As an example of a Check Module (Fig. 5) we developed Visibility Check Module
(VCM) which finds the inconsistencies of the first type (Fig.1).

VCM uses three classes for UML components representing; we call them Role,
AsRole, and SeqRole (Fig. 6). The class Role represents a class in the Class diagram,
the class SeqRole represents this class in the Sequence diagram (in fact they are two
different UML components), and the class AsRole represents an association or de-
pendency between classes in the Class diagram or a message between classes in the
Sequence diagram.

The Visitor in VCM identifies these components in the DOM, creates their in-
stances and places them to the lists of classes, associations, messages, etc. Then the
Checker applies its rules, verifies them and generates the result messages. The Check-
er of VCM for every instance of the class AsRole, which represents some message
between classes, checks if there is an association or dependency between these classes
(another instance of the class AsRole) and detects its direction. If the connection is
not found the Checker forms an error message. This message contains information
about the cross-diagram inconsistency specifying its type and names of classes.

The CDICP plug-in for the VCM was developed and incorporated into Eclipse.

170 I. Zaretska, O. Kulankhina, and H. Mykhailenko

Fig. 6. Classes used by VCM

5 General Method for Detecting Cross-Diagram Inconsistencies
in UML Design

Analyzing only four diagrams, most important at the design stage, namely Class dia-
gram, Sequence diagram, Object Diagram and State Machine diagram (in UML 2.0
specification) [13, 14] we defined more than 30 intra- and cross-diagram relations to
be checked. None of well known CASE tools offers such checks. Using the simple
method mentioned above is quite tedious as it supposes developing a special Checker
(Fig. 5) for each relation, which in its turn requires multiple searches on XMI file.
Even for a middle size project this file is quite big. The main idea here is to develop a
special model of the system design for verification purposes (as usually done in veri-
fication methods), build it once by parsing XMI file, and then make all checks on this
model. Moreover such model can be used for refining design on account of lessening
couplings, strengthening cohesion and applying design patterns. All results of this
model analysis regardless of the purpose take the form of recommendations so the
corrective changes are up to the designer.

Thorough analysis of UML 2.0 specification led us to using graph representation of
such model. It allows unified representation of all four diagrams by graphs with dif-
ferent types of vertices and edges. In this case checking relations between UML dia-
grams is just searching for the definite types of vertices or edges or their interconnec-
tions in the model. The first order predicate logic is used to formulate the relations
leading to inconsistencies. In fact graph representation simplifies the description of
diagrams comparing to their formal specification but is sufficient for verification pur-
poses. For a class diagram the corresponding graph’s vertices are classes and edges
are connections between them which are association, dependency, generalization and

 Cross-Diagram UML Design Verification 171

interface realization. The information about generalization sets is stored separately to
simplify search algorithms. For an object diagram the corresponding graph’s vertices
are objects and edges are links between them. For a sequence diagram the vertices are
objects and edges are messages between them. For a state machine (or state chart)
diagram the vertices are states and edges are transitions between them. Each type of
vertex and each type of edge stores information needed to check intra- and cross-
diagram inconsistencies. Say an association of a class diagram as an edge of a graph
keeps the name of the association, roles and multiplicities of its participants, etc. An
example of the simple class diagram and its graph representation is given in Fig. 7.
The edges of the graph represent different types of connections between classes and
hence store different information.

Here is the formal representation of our model consisting of graphs of four types
for Class, Object, Sequence and State Machine diagrams respectively:

}}{}{}{}{{ stseqobcl DDDDD ∪∪∪= (1)

Fig. 7. Example of graph representation of a class diagram

Each of these graphs consists of two sets: V stands for vertices and E stands for
edges. Their description is given below.1

1 Elements in [] are optional.

172 I. Zaretska, O. Kulankhina, and H. Mykhailenko

).],([

},);,,(:{

},,]);,,[,(:{

},{

)},(:{

])[,,(

),],([

},);,,(:{

},{

},);,,(:{

)},(:{

)},[,,(:{

},{

]),,,,,,,,([

}|||,,);,,(:{

)},,(:{

])},[,,,(:{

])},,,[,,(:{

},{

mthdCallguardtrCall

VvvtrCallvveeE

mthdCallexitdoentryexitdoentrynamevvV

EVD

valuenumarmntarmntARGS

ereturnValuARGSnamemthdCall

mthdCallseqnumguardmsgCall

VVvvmsgCallvveeE

EVVD

VvvnamevveeE

valuenameattrvalattrvalATTRVAL

STRTATTRVALclNamenamevvV

EVD

navignavigaggraggrmmrrnameinfo

impldepassgentypeVvvinfo][,typevveeE

(name)}stereotype:e{stereotypSTRT

domain)}name],(num[,param:{paramPARAMS

in])returnDomaPARAMS,(name[,mthdSgn

package|protected|private|publicvisibility

classifier|instancescope

visibilityscopemthdSgnmthdmthdMTHD

tymultiplicivisibilityscopedomainnameattrattrATTR

visibilitySTRTMTHDATTRisAbstractnamevvV

EVD

stesestr

st

trstst

obclesesmsg

msgobclseq

obeseslink

ob

linkobob

eseseses

clesescl

cl

clclcl

=
∈==

∈==
=

==
=
=

∪∈==

∪=
∈==

==
==

=
=

=∈==
==

==
=
=

=
==

==
==

=

(2)

An example in Fig. 8 illustrates information stored with some types of vertices and
edges.

The relation to be checked should be represented as the first order predicate logic
formula. Propositional variables in this formula are the elements of the model above.
Such unified approach to formulating the criteria of relations to be checked allows
using the only Checker for any sort of relation.

Here is an example of such formula. It describes the fact that if the instance of one
class sends the message to the instance of another class in the sequence diagram then
the corresponding method should be among the methods of the latter class in the class
diagram (Fig. 2 shows an example of this relation not satisfied).

))()(()))(((

)))((()(

mthdmthdSgnemsgCallevMTHDmthd

evhimplGenPatvEe emsg

≈∈∃

∈∃∈∀
 (3)

 Cross-Diagram UML Design Verification 173

Fig. 8. Information stored in graph elements for the example in Fig.7

where

1

1

1

1

)()())()((

:)(1,1(

))))()(:((

)((

:...)(

+=∧=∧=∨=
∈∃−=∀

∧=∧=∈∃∧∈
∨=∧∈

==

ieis

Cl

clob

cl

n

vevvevimpletypegenetype

Eeni

clvclnamevclNameVclVv

vvVv

vvvhimplGenPat

 (4)

is introduced to take into account the fact that the method in question can be inherited
along the path in the inheritance tree of the class or be an implementation of an inter-
face method.

The formulas for some relations are quite bulky. Say to check that the destination
class of some message in a sequence diagram has the corresponding method with
needed visibility modifier in a class diagram one has to use the following formula:

))()(()))(()(:())(((

))(()()((()"")(((

))()"")((()"")(((

)"")()((

))()(()))(((

)))((()(

clhimplGenPatevevclNameclnameVclVev

evhimplGenPatevVevprotectedmthdvisibility

vvprivatemthdvisibilitypublicmthdvisibility

classifiermthdscopeVev

mthdmthdSgnemsgCallevMTHDmthd

evhimplGenPatvEe

esclobs

secls

se

obe

emsg

∈∧=∈∃∧∈
∨∈∧∈∧=

∨=∧=∨=
=∨∈
≈∈∃

∈∃∈∀

 (5)

It takes into account the facts that not only the signature of the message call should
correspond to the signature of the corresponding method but the visibility modifier of
this method can be different depending on the relations between the source and

174 I. Zaretska, O. Kulankhina, and H. Mykhailenko

destination classes of the message. Moreover if the message is sent to a class (not to
an instance of a class) then the corresponding method should have static modifier
which means that its scope is “classifier”.

6 Evaluation Results

The software tool for the proposed method has been developed and tested. As the part
of the research we checked inconsistencies in a number of real students’ projects of
different scope using the developed tool. The results have been compared with ex-
perts’ evaluation of these projects.

The first project being the biggest one was designed for a university on-line testing
system. It allows teachers to create tests including tasks of five types and with differ-
ent levels of difficulty. A teacher can also define the way each test is estimated. After
that a student may pass a test at the time set by a teacher. All students’ results are
stored by the system and might be viewed by its users. The project’s design consists
of 4 class diagrams with 95 classes and 15 sequence diagrams with 142 messages in
them. Overall number of inconsistencies found in the project is 77.

The second project was designed for a cinema ticket system. It allows cinema cash-
iers to sell tickets on various sessions. The project’s design consists of 2 class dia-
grams with 22 classes and 4 sequence diagrams with 21 messages in them. Overall
number of inconsistencies found in the project is 10.

The third project was designed for an on-line drug store. It allows its clients to or-
der medications via the Internet. The project’s design consists of 4 class diagrams
with 67 classes and 18 sequence diagrams with 101 messages on them. Overall num-
ber of inconsistencies found in the project is 88.

The fourth project was designed for a system supporting a multi-level marketing
company selling cosmetics and goods for personal care. The project’s design consists
of 1 class diagrams with 15 classes and 7 sequence diagrams with 41 messages in
them. Overall number of inconsistencies found in the project is 32.

The fifth project was designed for a system of generating reports based on the in-
formation taken from a database. A report might include a table with data and charts.
The project’s design consists of 1 class diagrams with 12 classes and 4 sequence dia-
grams with 21 messages in them. Overall number of inconsistencies found in the
project is 13.

The analysis results show that the most common types of inconsistencies found by
the developed tool are of three types: a message call for a nonexistent method, send-
ing a message to an instance of nonexistent class and a message call for a method
with an unaccepted visibility modifier.

We asked an expert designer to analyze the same projects for inconsistencies and
compared their results with the results given above which were obtained by the devel-
oped tool. It may seems unnatural but an expert found about eighty percent of incon-
sistencies in small projects but only about thirty percent in a project including about
one hundred messages and more than sixty classes. The results of the experiment are
given in the Table 1.

 Cross-Diagram UML Design Verification 175

Table 1. The results of experiment

Name of
the
project

Num.
of
classes

Num.
of
msgs

Nonexistent method Nonexistent
class

Unaccepted
visibility

 Tool
evaluation

Expert
evaluation

Tool Expert Tool Expert

Test
system 95 142 42 10 12 3 23 5

Cinema
ticket
system

22 21 7 6 2 1 3 1

Drug store 67 101 56 18 14 4 18 3

Multi-level
marketing
company

15 41 26 21 3 2 10 3

Reports’
generator 12 21 9 9 0 0 4 2

The results of the experiment show that even an expert can find less than a half of

inconsistencies in a middle-size project and the developed tool could assist a designer
to avoid not only misprints but also inaccurate assignment of responsibilities between
classes.

7 Conclusions

This chapter offers a simple method for detecting inconsistencies between different
UML diagrams. It was implemented as an Eclipse plug-in and tested on some types of
cross-diagram inconsistencies.

Another more general method for checking inconsistencies in UML design is pro-
posed. It uses the unified model with graph representation of the design components
and formulae of the first order predicate logic to represent relations which should be
satisfied to make the design consistent. This approach can also be used to evaluate the
quality of a design and make recommendations on its improvement on account of
better use of the main principles of the object-oriented design.

References

1. Andrews, A., France, R.B., Ghosh, S., Craig, G.: Test Adequacy Criteria for UML Design
Models. Journal of Software Testing, Verification and Reliability 13(2), 95–127 (2003)

2. Fischer, G., et al.: The Role of Critiquing in Cooperative Problem Solving. ACM Transac-
tions of Information Systems 9(3), 123–151 (1999)

176 I. Zaretska, O. Kulankhina, and H. Mykhailenko

3. Briand, L., Labiche, Y.: A UML-based approach to system testing. Software and System
Modeling 1(1), 10–42 (2004)

4. Souza, C.R.B., et al.: Using Critiquing Systems for Inconsistency Detection in Software En-
gineering Models. In: Proceedings of the Fifteenth International Conference on Software En-
gineering and Knowledge Engineering (SEKE 2003), San Francisco Bay, pp. 196–203
(2003)

5. Souza, C.R.B., et al.: A Group Critic System for Object-Oriented Analysis and Design. In:
Proceedings of the 15th IEEE International Conference on Automated Software Engineer-
ing (ASE 2000), pp. 313–316 (2000)

6. Ghosh, S., France, R.B., Braganza, C., Kawane, N., Andrews, A., Pilskalns, O.: Test Ade-
quacy Assessment for UML Design Model Testing. In: Proceedings of the International
Symposium on Software Reliability Engineering, pp. 332–343. Denver, Co. (2003)

7. del Mar Gallardo, M., Merino, P., Pimentelis, E.: Debugging UML Designs with Model
Checking. Journal of Object Technology 1(2), 101–117 (2002)

8. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by Automatic
Snapshot Generation. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 265–279. Springer, Heidelberg (2003)

9. Kawane, N.: Fault Detection Effectiveness of UML Design, Model Test Adequacy Crite-
ria. In: Supplementary Proceedings of the International Symposium on Software Reliabili-
ty Engineering, pp. 327–328. Denver, Co. (2003)

10. Kawane, N.: EPTUD: An Eclipse plug-in for testing UML design models. Master’s of
science thesis, Colorado State University, Fort Collins, Colorado (2005)

11. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model Driven Architecture.
Addison Wesley Professional (2002)

12. Dinh-Trong, T., Kawane, N., Ghosh, S., France, R.B., Andrews, A.A.: A Tool-Supported
Approach to Testing UML Design Models. In: Proceedings of 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2005), Shanghai,
China (2005)

13. Object Management Group: UML 2.0 Superstructure Specification (2005),
http://www.uml.org/

14. Pender. T.: UML Bible. Wiley Published Inc. (2003)

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 177–194, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Coursework Peer Reviews Increase
Students' Motivation and Quality of Learning

Vadim Ermolayev, Natalya Keberle, and Sergey Borue

Zaporozhye National University, Department of Information Technologies,
Zhukovskogo st. 66, 69063 Zaporozhye, Ukraine

vadim@ermolayev.com, nkeberle@gmail.com, bsu@znu.edu.ua

Abstract. This chapter reports about a pedagogical experiment at Zaporozhye
National University (ZNU) aiming at improving students’ motivation and learn-
ing quality in our Computer Science Bachelor program. The major novelty in
teaching and learning practice introduced in the experiment was the use of peer
evaluation for the assessment of coursework reports in two disciplines – one in
the second and the other in the fourth year of study. The results were compared
to the historical data collected in the previous 3-4 years for which traditional as-
sessment by instructors was applied. Our experiment proved that constructively
exploiting students’ aspirations for informal leadership and incurred competi-
tion is effective and yields some increase in motivation to learn and learning
quality. The assessments were also subjectively regarded as more clear and
better justified by the students involved in the experiment. A good side effect is
also that the students learn the working patterns broadly used by professionals
in their field in academia and industry for making qualitative and unbiased peer
evaluations.

Keywords: Incentive, motivation, learning quality, peer evaluation, Computer
Science Bachelor program, coursework.

1 Introduction

Recent higher education experience reveals a substantial decrease in popularity of
University education and degrees which is reflected for instance in the decrease in
degree completion rates [1]. Researchers analyzing the reasons for this decrease point
out:

− The rise of pragmatic attitudes to education in life planning among young people
− The trend for devaluation of a University degree as a factor facilitating to employ-

ment and career development

As a result and because of the concurrent demographic and economic crises a substan-
tial decrease of interest to quality learning among University students is observed. For
example the quantity of students enrolled for the 1-st year is going down. This obser-
vation is also supported by the decrease in student grades. Consequently, the employ-
ers suffer from a decreased quality of the graduates coming to the labor market.

178 V. Ermolayev, N. Keberle, and S. Borue

Academia can not remove or relax demographic or economic factors unfortunately.
Hence, the only feasible way of keeping academic performance at a competitive level is
focusing on the stimuli for their students based on more social than purely pragmatic
basics. For example, exploiting the value of informally assessed professional capability
and leadership in student groups may be an effective way of stimulating spending more
effort on learning.

The research presented in this chapter aims at finding such stimuli for Computer
Science students based on their attitude to informal leadership grounded on profes-
sional competencies. The idea behind our pedagogical experiment was to place the
subjects in an environment which is similar to a professional one and offer them peer-
evaluation of their individual courseworks. Hence, the higher the grades a person gets
from his or her peers in such an evaluation – the higher becomes the professional
reputation of the person in the class – a professional group of the peers.

In fact the approach we have taken is not new and has been effectively exploited:

− In the academic world in peer evaluation mechanisms
− In social networks for forming communities of interest and building social reputation

for the individuals

Such stimuli are qualified as solidary (in contrast to material) incentives [2] i.e.
intangible rewards from the act of being a part of a group having coherent interests.
In our research we build upon the mechanisms and tool support adopted from the
mentioned domains. We involve students in peer evaluation of their individual
coursework assignment reports similarly to that of reviewing conference papers. We
measure their qualification by: comparing evaluations by peers and instructors – as-
signment results; and measuring deviations between their individual scorings and the
mean values – reviewer competence. Anonymized results are then made available to
the group.

We have observed that being an evaluator of the peers’ work proved to be a notice-
able incentive for the subjects who took part in our pedagogical experiment. Knowing
that their results will be assessed by the fellows in the class, on average they worked
harder and delivered better elaborated coursework reports – both in terms of tasks
coverage and quality. Consequently the degree of active involvement and the quality
of individual assignment results have increased noticeably, in particular for the gradu-
ate fourth year group of our Bachelor program in Computer Science. This observation
is backed up by the results presented in Section 4.

The remainder of the chapter is structured as follows. Section 2 gives an overview
of the related work on incentive mechanisms relevant for motivating higher education
students to participate more actively in the learning process and provide better quality
outputs. Section 3 presents the setting of our pedagogical experiment. Section 4 dis-
cusses experimental results. Conclusions are drawn and plans for the future work
given in Section 5.

2 Related Work

Motivations are denoted as “… reasons individuals have for behaving in a given man-
ner in a given situation” (c.f. [3]). “They exist as part of one’s goal structures, one’s
beliefs about what is important, and they determine whether or not one will engage in

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 179

a given pursuit’’ (c.f. [4]). In academic settings two types of motivation are distin-
guished – intrinsic and extrinsic. Intrinsically motivated subjects learn for their own
sake, because they enjoy learning or assess the outcome of the learning process as
important for them – e.g. [5]. Extrinsic motivation is driven by a desire of getting
rewards – from the others; or avoiding punishment. Students motivated extrinsically
focus on receiving approval – like judgements by lecturers and peers – e.g. [4]. Our
approach, though welcoming intrinsic motivation, focuses on obtaining the utility of
exploiting student’s extrinsic stimuli – which proves to become more widespread and
influential in the current economic settings.

Many authors stress the importance of a skill to maintain and enhance students’
motivation as one of the core capabilities of a University lecturer. “A wide variety of
theories of learning and teaching recognises motivation as an essential prerequisite for
successful learning. The ability to maintain and enhance student motivation is there-
fore one of the most important skills …, and many publications and training programs
devote considerable space and time to this matter. Application of this theoretical
knowledge to practice, however, remains difficult due to the complexity of the
concept and the number of different models of motivation available” (c.f. [6]). Our
research is focused exactly on the application of motivation stimuli to practice in a
Bachelor level Computer Science program – so the experimental data we have
analysed spans across several disciplines taught from the 1-st to 4-th year of the pro-
gram at Zaporozhye National University (ZNU).

The mainstream of experimental studies in higher education teaching and learning
centres around using the methodologies of individual subjective assessment by sub-
jects – based on interviews, questionnaires, etc (e.g. [7] to mention just one of many
relevant publications). In contrast to the mainstream methodology, we exploit the
collaborative character that is intrinsic to student collectives and base our approach on
well known social and peer approaches – this is why peer evaluation is used. Such a
method allows us not only to collect and analyse individual judgements, but also rate
the subjects by their own cross-judgements and stimulate healthy competition – thus
increasing positive stimuli.

A solid body of related work giving insight on relevant ways of incentivising sub-
jects to contribute their creative work for reputation could be found in socio-economic
publications on on-line communities or crowd-sourcing.

Forte and Bruckman [8] stress that recognition by peers plays a role for Wikipedia
contributors and is mentioned as an important factor for increasing visibility and in-
fluence in the community. Basing their analysis on the framework by Latour and
Woolgar [9], Forte and Bruckman observe that the incentives for Wikipedia authors to
contribute content are very similar to the motivations of scientists spending effort on
publications. They conclude that a reason for behaving altruistically is a reputational
“credit” in a broad sense obtained indirectly for helping, serving to the community,
and sharing knowledge. This credit is often assessed in terms of increased visibility
of the author’s contributions, or more frequent invitations to provide featured content.

Wasko and Faraj [10] argue that if knowledge is considered a public good, know-
ledge exchange in on-line communities of practice is motivated by moral obligation
and community interest rather than by self-interest. They prove their argument by the
analysis of the results from a survey examining why people participate and share
knowledge in three electronic communities of practice related to software and IT.

180 V. Ermolayev, N. Keberle, and S. Borue

These results indicate that people participate primarily out of community interest,
generalized reciprocity, and pro-social behavior.

A good analytical review of different relevant incentive mechanisms for participa-
tion in human-driven semantic content creation is [11]. The authors also stress the
dominance of extrinsic motivation (building reputation among the peers) for increas-
ing interest to contribute content and share knowledge.

These examples of related work in fact support our intention to exploit extrinsic
motivational mechanisms for incentivizing students to take an active part in the
educational activity within a social group of peers who cross-evaluate the content
provided themselves.

3 Experimental Settings

Stimulated by the necessity to seek for a remedy for the decrease of interest in quality
learning at Universities, we have planned and further conducted a pedagogical experi-
ment at ZNU. We have focused on the individual coursework as one of the important
kinds of students’ creative activities in which motivation plays a very important role.

Our major objective was to check the validity of the pedagogical hypothesis:

If students are given an opportunity to act as peer-evaluators of
the other students reports, their extrinsic motivation to:
(a) Deliver the coursework
(b) Perform as well as they can
– will be higher than among those who do individual work in a
traditional way and are graded by their instructor only. Further-
more, the quality of submitted reports is expected to be better,
as students informally compete and cross-evaluate their quality.
Finally, the objectivity of the assessments will be higher; those
will be perceived as fair by the subjects.

For that we have:

− Chosen the disciplines: (a) for which the historical data on the coursework grades
existing for several years; (b) for which the complexities of doing coursework as-
signments were comparable; and (c) so that the coverage of all four years of our
Bachelor program was even

− Developed detailed assessment forms for inexperienced evaluators offering a clear
procedure and set of explicit metrics for coursework report assessment for each in-
volved discipline

− Chosen the academic student groups comprising the cases when the same group
acted as an experimental sample and formerly a control sample; briefed the ex-
perimental groups

− Configured the set of software tools to support the experiment and developed
written methodological recommendations for the subjects

− Adopted and adapted simple and effective metrics that allowed testing our research
hypothesis

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 181

3.1 Pedagogical and Methodological Setting

The pedagogical setting of our experiment covers: the choice of disciplines; the prep-
aration of the evaluation forms; and subjects’ briefing about the evaluation procedure
and tools.

First, we have chosen the disciplines with historical data and currently available in
our Bachelor program, as summarized in Table 1. The table also shows that:

− More than 3 years’ historical data on the coursework assignment grades is available
− The disciplines cover all 4 years of study within the program evenly

The complexity of the assignments, though different per discipline, is comparable as
shown in Table 1.

Table 1.Choice of disciplines and complexities of related coursework assignments

Discipline Year 2008 2009 2010 2011 Avg

Programming I --- 100 100 100 100

Algorithms and Data Structures II 100 150 200 250 175

DataBases and Information Systems III --- 150 150 150 150

Intro to Logical Programming and AI IV --- 150 150 250 183

Legend: numbers in columns 3-7 are coursework complexities. The cells corresponding to our
experiment are shaded gray and have bolded numbers in white.

Grade data for the coursework assignments in Programming (year I) and Databases
and Information Systems (year III) form our first and second baseline control datasets
respectively.

The complexity of the first year coursework assignment in Programming has been
chosen as basic – represented by 100 abstract points. This coursework contains a sur-
vey part on a particular topic and a practical assignment to develop a program solving
a given simple problem. The complexity of the coursework in this discipline remains
without change for all the 3 years of our observations.

The complexity of the third year coursework in Databases and Information Sys-
tems is also static within the period of observation. However, it is 1.5 times more
complex as it contains several interrelated practical problems in database and IS de-
velopment using SQL Server software. Another difference is that the subjects for this
assignment were the third year students whose motivation and experience differ from
those of first year students.

Observations in Algorithms and Data Structures and Introduction to Logical Pro-
gramming and Artificial Intelligence contain both control and experimental (shaded
gray in Table 1) data.

The complexity of the coursework assignment in Algorithms and Data Structures
increases from 100 points in 2008 to 250 points in 2011. In 2008 it was very similar
in structure to the coursework in Programming – a detailed written presentation of a
sorting algorithm studied individually and its practical implementation in a computer
program. In 2009 the task of analytically evaluating the computational complexity of
the algorithm was added – raising the complexity up to 150 points. In 2010 the task of

182 V. Ermolayev, N. Keberle, and S. Borue

experimental measurement of the computational complexity and comparing it to the
analytical estimation was added – the complexity has therefore increased to 200
points. In 2011 the coursework has been complicated (up to 250 points) by offering a
comparative evaluation exercise – the students were tasked to measure the perfor-
mance of their program and compare to the performance of a program developed by a
peer based on several common datasets containing records of different types.

The complexity of the coursework assignment in Introduction to Logical Pro-
gramming and Artificial Intelligence increased from 150 points in 20091 to 250 points
in 2011. In 2009 and 2010 the assignment contained two parts: (i) a survey of the state
of the art in a sub-field of Artificial Intelligence; and (ii) development of a micro-
ontology describing the major terms in this sub-field of Artificial Intelligence. In 2011
the assignment has been substantially re-thought and re-worked. It has been realized
that it also needs to cover a practical work on developing a tiny expert system for
solving logical problems in PROLOG. Urban traffic domain has been chosen for this
part of the coursework. A student is tasked to develop a rule-based expert system in
PROLOG that answers the questions taken from the driver license examination ques-
tionnaire2. For that a pattern PROLOG program is offered and a student has to:

− Check the validity of conclusions provided by the given program in several possi-
ble traffic situations on a typical T-shaped crossroad

− Refine the program by adapting it to a particular crossroad configuration of the
given variant2 by adding statements reflecting particular constraints

− Evaluate the refined program by offering all possible traffic situations as inputs
− Document the results in the coursework report

This addition to coursework assignment has added 100 points in complexity – which
raised the overall complexity of the coursework up to 250 points.

Secondly, we have developed the evaluation forms for coursework reports in both
disciplines. An example of a fragment of an evaluation form is pictured in Fig. 1. The
forms are in fact structured questionnaires covering all the sections of the report and
suggesting several weighted Likert scale [12] based metrics covering several aspects
that were different for each section. Tables 2 and 3 contain the lists of the report sec-
tions and evaluation questions for both disciplines. Weights represent the importance
of a given evaluation aspect in the Section – given that the sum of the weights per
sections equals 100 per cent. Sections also have different importance indicated by the
maximal number of grade points given in brackets.

It has been decided that the overall grade for a coursework report of maximum 20
points is divided in two parts:

− Coursework grade (0 – 15 points) computed as a mean of the three assessments
done by two peers and one instructor

− Evaluation grade (0 – 5 points) computed as 5 minus the mean of the absolute val-
ues of the deviations of the subject’s evaluation scores from the corresponding
mean scores. So, the closer an individual scoring is to the mean scoring in all the

1 In its current format the course has been given for the first time in 2009.
2 http://www.gai.ru/voditelskoe-udostoverenie/examen-pdd-online/

last accessed on 11.08.2012

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 183

evaluation assignments – the higher the resulting evaluation grade is. This method
of computing evaluation grades may be considered as unfair at first look. Indeed, if
there were two student reviewers A and B, A gave the same grade as the instructor
whilst B’s grade was very different, then A would have been penalized because of
B’s scoring. This interpretation would be correct only if B made a mistake. How-
ever it is possible that both A’s and instructor’s decisions were wrong, though less
likely. So, our method penalizes both students but proportionally to the likelihood
of their mistake.

Table 2. Evaluation aspects covered by review forms, and scoring weights. Discipline:
Algorithms and Data Structures.

Aspect to Evaluate Weight
%

Section 1: Sorting method and algorithm (0-2 points)

1.1 Is the description of the family of sorting methods given? 25
1.2 Is the algorithm described sufficiently completely and clearly? 50

1.3 Is algorithm stability analyzed? 25

Section 2: Software implementation (0-3 points)
2.1 Is the source code provided? 10

2.2 Does the implementation comply with the algorithm described in Section 1? 15
2.3 Are the implementation decisions described sufficiently fully and clearly? 30

2.4 Are the constraints (absence of) wrt input data explained and justified? 10
2.5 Does the provided software work? 25

2.6 Is the source code reasonably commented? 10

Section 3: Theoretical estimation of computational complexity (0-2 points)
3.1 Is the estimation the computational complexity given? 50

3.2 Is the graphical illustration of the computational complexity given? 50
Section 4: Computational experiment – comparison with other algorithms (0-
3 points)

4.1 Are the data sets chosen correctly 50

4.2 Are the other algorithms for comparison chosen reasonably? 50
Section 5: Experimental assessment of computational complexity (0-3 points)

5.1 Are the rules and programming solution for measuring computational com-
plexity described?

30

5.2 Is the comparative analysis of the computational complexity given? 30
5.3 Is the experimental assessment compared with the theoretical estimation? 30

5.4 Is the graphical illustration of the computational experiment results given? 10
Section 6: Conclusions (0-3 points)

6.1 Do the conclusions reflect the results obtained? 50

6.2 Are the references to the adopted components given? 30
6.3 Is the report compliant to the template (abstract, contents, references, appen-
dices)?

20

184 V. Ermolayev, N. Keberle, and S. Borue

Table 3. Evaluation aspects covered by review forms, and scoring weights. Discipline:
Introduction to Logical Programming and Artificial Intelligence.

Aspect to Evaluate Weight
%

Section 1: Survey (0-6 points)

1.1 Is the graph of the basic notions elaborated? 20

1.2 Are the basic terms denoted correctly and completely? 40

1.3 Are the major problems in the field covered? 40

 1.3.1 Are the problem statements given?

 1.3.2 Is the actuality of these problems explained?

 1.3.3 Are the descriptions of solution methods given?

 1.3.4 Are the surveyed solution methods compared?

Section 2: Solving Problems in Visual PROLOG (0-7 points)

2.1 Is task 2 solved? 10

2.2 Is task 3 (traffic expert system design) solved? 30

 2.2.1 Are schematic descriptions of situations at T-shaped crossroad given?

 2.2.2 Are predicates and goals for situations fully described?

 2.2.3 Are predicates and goals compliant to the schematic descriptions?

2.3 Is task 4 (traffic expert system implementation) solved? 30

 2.3.1 Are predicates and goals specified correctly?

 2.3.2 Does the developed expert system work?

 2.3.3 Are the implementation decisions documented?

2.4 Is task 5 (traffic expert system refinement) solved? 30

 2.4.1 Are predicates and goals specified correctly?

 2.4.2 Is the sense of the predicates and structures explained?

 2.4.3 Are all possible traffic situations described?

 2.4.4 Does the refined Expert System work?

Section 3: Conclusions (0-2 points)

3.1 Do the conclusions reflect the results obtained? 50

3.2 Are the references to the adopted components given? 30

3.3 Is the report compliant to the template (abstract, contents, references, appen-
dices)?

20

3.2 Experimental and Control Groups

Two experimental groups in the second and fourth year of study were selected so that
the historical coursework grade data was available for them. For comparison, the
control data about the grades in the other groups of different years of study and in all
four chosen disciplines was taken into account. The groups, for which the control data
was taken into account, were further treated as control groups. Table 4 depicts the

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 185

distribution of our control and experimental groups over the years of study. As it
could be seen in Table 4, the experimental groups are also control groups but in dif-
ferent disciplines and years of study. So, different ways of comparing subjects’ activi-
ty and performance in fulfilling coursework assignments arise:

− The same group in different years
− The same group in different disciplines
− The same group as an experimental one and doing the work in a traditional way; etc.

Table 4. Experimental and control groups

Group No 2008 2009 2010 2011

Year
of

Study

Role Year
of

Study

Role Year
of

Study

Role Year
of

Study

Role

8216 IV C

4327 II C III C IV C

4328 II C III C IV E

4329 I C II C III C

4320 I C II E

4321 I C

Legend: C – control group; E – experimental group.

At the beginning of the experiment the subjects of our two experimental groups were
briefed about: the deadlines; the objectives of peer evaluation; the structure and the
content of the evaluation forms; the grades that would be assigned for the reports and
for the reviews; the tools they would use in the peer evaluation process.

3.3 Instrumental Setting

Two procedures have been chosen for evaluation that differed in the used tools. For
the experiment with the second year students the workflow based on e-mail exchange
and manual supervision has been adopted. For the fourth year students we have intro-
duced the EasyChair Conference Management System3 as a tool to manage the
process, final ranking and grading. In both cases structured evaluation forms have
been offered to the subjects to be filled out using MS Excel.

4 Experimental Results and Discussion

The evaluation process was organized and executed similarly to the peer evaluation of
conference papers by program committee members. Students were invited to serve on
the evaluation panel and the review assignments have been made by the instructors

3 The service is persistently available at http://www.easychair.org/

186 V. Ermolayev, N. Keberle, and S. Borue

who acted as program chairs. The results of evaluation have been collected and
processed using two different patterns:

− For second year students – collected by e-mail and processed manually using Excel
spread sheet as shown in Fig. 2

− For fourth year students – collected and processed using the EasyChair installation
which provided data for a very similar score table as the one in Fig. 2

R
ev

ie
w

er
 1

R
ev

ie
w

er
 2

R
ev

ie
w

er
 3

R
ev

ie
w

er
 4

R
ev

ie
w

er
 5

R
ev

ie
w

er
 6

R
ev

ie
w

er
 7

R
ev

ie
w

er
 8

R
ev

ie
w

er
 9

R
ev

ie
w

er
 1

0

R
ev

ie
w

er
 1

1

R
ev

ie
w

er
 1

2

R
ev

ie
w

er
 1

3

In
st

ru
ct

or
 1

In
st

ru
ct

or
 2

A
ve

ra
ge

D
ev

ia
ti

on
 -

 R
.1

D
ev

ia
ti

on
 -

 R
.2

D
ev

ia
ti

on
 -

 R
 3

<Author 1> 7.40 2.60 5.00 -2.400 5.000 2.400

<Author 2> 11.79 13.19 11.39 12.12 0.333 -1.067 0.733
<Author 3> 8.98 9.80 8.15 8.98 -0.003 -0.823 0.827
<Author 4> 1.09 1.53 1.43 1.35 0.260 -0.180 -0.080
<Author 5> 12.21 5.98 10.29 9.49 -2.717 3.513 -0.797
<Author 6> 13.30 10.98 6.15 10.14 -3.157 -0.837 3.993
<Author 7> 0.00 0.00 0.00 0.000 0.000 0.000
<Author 8> 10.86 12.18 5.93 9.66 -1.203 -2.523 3.727
<Author 9> 6.20 8.61 4.79 6.53 0.333 -2.077 1.743
<Author 10> 5.45 6.00 4.60 5.35 -0.100 -0.650 0.750
<Author 11> 15.13 13.90 10.01 13.01 -2.117 -0.887 3.003
<Author 12> 13.28 13.15 11.38 12.60 -0.677 -0.547 1.223
<Author 13> 12.21 9.61 9.15 10.32 -1.887 0.713 1.173

Evaluation
Grade

3.63 4.78 3.94 2.70 4.53 2.82 0.00 4.14 4.15 4.64 2.89 3.54 3.74

Fig. 2. Review results visible to instructors (anonymized for the publication)

The authors of the coursework reports were further notified by e-mail about their
individual results and rating position in the overall list (Fig. 3). Again, the notifica-
tions to the second year students were manually communicated by e-mail; and the
fourth year students were notified by e-mails sent automatically by the EasyChair
system.

4.1 Additional Effort for Tutors

As experienced, the additional instructors’ effort for organizing and managing the
peer review process was substantial.

The major part of their additional work could be qualified as the set-up effort:

− Developing review forms (Fig. 2)
− Compiling briefing manuals for the student reviewers
− Preparing management tables;
− and Configuring the software tools

The result of this effort may however be re-used quite substantially. So the start-up
effort may be regarded as an initial investment and neglected in further considerations
of the tutor effort overheads in the context of a discipline.

Following two different workflows for the second and fourth year students implied
different management efforts because of using different toolsets. Overall, using Ea-
syChair Conference Management System appeared to require 3 times less effort than
using just e-mail and MS Excel.

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 187

R
ev

ie
w

er
 1

R
ev

ie
w

er
 2

In
st

ru
ct

or
 1

In
st

ru
ct

or
 2

A
ve

ra
ge

R
ev

ie
w

 P
oi

nt
s

T
ot

al

<Author 1> 7.4 2.6 5.00 4.64 10
<Author 2> 11.79 13.19 11.39 12.12 4.15 16
<Author 3> 8.98 9.8 8.15 8.98 3.63 13
<Author 4> 1.09 1.53 1.43 1.35 2.70 4
<Author 5> 12.21 5.98 10.29 9.49 3.54 13
<Author 6> 13.3 10.98 6.15 10.14 4.78 15
<Author 7> 0 0 0.00 2.82 3
<Author 8> 10.86 12.18 5.93 9.66 3.94 14
<Author 9> 6.2 8.61 4.79 6.53 4.14 11
<Author 10> 5.45 6 4.6 5.35 0.00 5
<Author 11> 15.13 13.9 10.01 13.01 3.74 17
<Author 12> 13.28 13.15 11.38 12.60 2.89 15
<Author 13> 12.21 9.61 9.15 10.32 4.53 15

(a) Score table for the second year class

 No Author, Title Scores (0-15) Average Decision

1 <Author 1>.LPAI CourseWork Report 13(4),13(4),13(3) 13 ACCEPT
13 <Author 13>.LPAI CourseWork Report 11(3),13(4),13(2),13(4) 12.5 ACCEPT
15 <Author 15>.LPAI CourseWork Report 11(3),13(2),13(4) 12.3 ACCEPT
23 <Author 23>.LPAI CourseWork Report 11(4),7(2),11(4) 10.2 accept?
16 <Author 16>.LPAI CourseWork Report 11(3),11(1),9(3) 10.1 accept?
26 <Author 26>.LPAI CourseWork Report 9(1),9(3),11(4) 10 accept?
17 <Author 17>.LPAI CourseWork Report 9(3),9(2),11(4) 9.9 accept?
18 <Author 18>.LPAI CourseWork Report 9(3),11(4),7(1) 9.8 accept?
25 <Author 25>.LPAI CourseWork Report 9(3),11(3),9(2) 9.8 accept?
14 <Author 14>.LPAI CourseWork Report 7(2),7(3),11(4) 8.8 borderline
27 <Author 27>.LPAI CourseWork Report 9(4),11(4),3(2) 8.6 borderline
22 <Author 22>.LPAI CourseWork Report 7(2),7(3),11(3) 8.5 borderline
24 <Author 24>.LPAI CourseWork Report 9(2),7(3),9(4) 8.3 borderline
21 <Author 21>.LPAI CourseWork Report 7(2),11(3),5(2) 8.1 borderline
28 <Author 28>.LPAI CourseWork Report 9(3),7(4),7(3) 7.6 borderline

3 <Author 3>.LPAI CourseWork Report 3(4) 3 reject
5 <Author 5>.LPAI CourseWork Report 3(4) 3 reject

10 <Author 10>.LPAI CourseWork Report 3(4) 3 reject

(b) Score and rating table for the fourth year class. Numbers in brackets in column 3 indicate
self-assessments of how confident the reviewers were in their evaluation judgments.

Fig. 3. Anonymized resulting score and rating tables

188 V. Ermolayev, N. Keberle, and S. Borue

Table 5. Experimental Results

Discipline

Year

G
ro

up
 N

o

A
ve

ra
ge

 S
co

re

(0
-2

0)

Average
Submission Ratio

Average Score
among

Submitted

of
 S

tu
dy

C
al

en
da

r

N
o

of

Su
bm

is
-

si
on

s
T

ot
al

 S
tu

-
de

nt
s

R
at

io

F
ac

tu
al

(0

-2
0)

A
lig

ne
d

by

C
om

pl
ex

it
y

Programming (PR) I 2009 4329 5.00 9 23 0.39 12.78 12.78

2010 4320 10.33 9 15 0.60 17.22 17.22

2011 4321 4.06 7 16 0.44 9.29 9.29

Algorithms and Data
Structures (ADS)

II 2008 4327 9.68 21 31 0.68 14.29 14.29

2009 4328 12.03 21 29 0.72 16.62 24.93

2010 4329 8.50 10 19 0.53 15.30 30.60

2011 4320 10.13 13 15 0.87 11.69 29.23

DataBases and Informa-
tion Systems (DBIS)

II 2009 4327 11.70 14 23 0.61 19.21 28.82

2010 4328 12.00 18 33 0.55 18.67 28.00

2011 4329 11.00 12 19 0.63 18.33 27.50

Introduction to Logic
Programming and Artifi-
cial Intelligence (LPAI)

IV 2009 8216 4.47 10 36 0.28 16.10 24.15

2010 4327 4.76 6 21 0.29 16.67 25.00

2011 4328 7.14 15 28 0.54 13.33 33.33

4.2 Interpretation of Experimental Results

Table 5 contains the summary of our experimental findings and is structured as follows:

− Broad horizontal sections correspond to the data related to one discipline. Two of
them are baseline (as explained in Section 3.1) – Programming and Databases and
Information Systems. The other two contain both control and experimental data –
Algorithms and Data Structures (second year) and Introduction to Logic Program-
ming and Artificial Intelligence (fourth year). Experimental data is in the rows that
are shaded gray.

− The Year column informs about the timing attribution of data (years of study and
calendar years)

− The Group No column associates the rows to the academic groups. Group
numbers may be found similar in several cases – reflecting the availability of both

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 189

control and experimental measurements for several groups in different years and
disciplines.

− The Average Scores are in fact based on the total number of students in a group
which makes it different to the scores in the last two columns computed based on
the number of submitted reports.

− Average Submission Ratio is in fact the measure that reflects the motivation of
our students to submit their work

− The Factual Average Scores are the averages for the submitted reports. but with-
out balancing them by coursework complexity

− Finally, the rightmost column contains the score averages multiplied by the com-
plexity scaling factors provided in Table 1

Let us explain now how the results given in Table 5 and further interpreted graphical-
ly in Fig. 4 prove our research hypothesis. The Y-values in Fig. 4(a) are the numbers
from the Submission Ratio column of Table 5; while the Y-values in Fig. 4(b) are
taken from the Aligned by Complexity column of this table.

Firstly, we expected that the introduction of peer reviews as a non-traditional way
of teaching will increase students’ extrinsic motivation. This expectation was valid
as pictured by the values of the submission ratio. Indeed, the ratio of coursework
submission in our experiment with the second year students reached the global maxi-
mum of 0.87 across all the disciplines. The next lower value was 0.72 which is 15 per
cent lower. For the fourth year subjects the increase in motivation was not that signif-
icantly high overall, though very substantial within their year of study. Indeed the
reached submission ratio of 0.54 is 1.86 times better than the next lower value of 0.29
in 2010.

Secondly, the quality of submitted reports may be interpreted as quite average in
our experiments: 11.69 in the second year and 13.33 in the fourth. The registered
decrease in scores, compared to the previous year, is: 23.96 per cent for the second
year; and 20.03 per cent for the fourth year. An explanation for that decrease in quali-
ty is twofold:

(i) As the ratio of submissions increased the proportion of the best students (who
always submit their work) decreased – so did the average scores. For the second
year the ratio increase was 15 percent versus a 23.96 decrease in scores4. However,
for the fourth year the increase in submission ratio (86 per cent) substantially out-
performed the decrease in average score (20.03 per cent). Hence, it could be con-
cluded that our approach proved to be effective for the final year students of our
Bachelor program.

(ii) The observed decrease in scores is to some extent explained by the increase of
coursework complexity. Indeed, the maximal values of the average scores have been
reached in the cases with substantially less complicated coursework assignments – as

4 It has to be noted that the decrease in scores should not be regarded as dramatic. If the grades

of only the best halves of the groups have been taken into account – to compensate the nega-
tive effect of the increase in submission ratio – their averages would have been 15.14 for the
experimental and 15.30 for the control samples. The difference would have been only 0.16
points (0.8 per cent).

190 V. Ermolayev, N. Keberle, and S. Borue

explained in Table 1. For example, the global maximum of 19.21 corresponds to the
assignment weighted 150 points. It is ‘outperformed’ by the score of 13.33 in our
fourth year experiment because the complexity of the experimental coursework is
250 points. As pictured in Fig. 4(b), this imbalance is corrected by the values shown
in the Aligned by Complexity column of Table 5.

0

0.2

0.4

0.6

0.8

1

2008 2009 2010 2011

PR ADS DBIS LPAI

(a) Submission Ratio (Motivation)

0
5

10
15
20
25
30
35

2008 2009 2010 2011

PR ADS DBIS LPAI

(b) Quality of Reports

Fig. 4. Graphical interpretation of the increase in motivation and quality of work

Thirdly, the analysis of the quality of evaluation results, which has direct impli-
cations on subjective perceptions of fairness by students, reveals some interesting
findings.

While analyzing the quality of reviews we first looked at how similar or deviated
the assessments were. The grades in the class of Algorithms and Data Structures giv-
en by student peer reviewers and instructors are quite well aligned – as could be seen
in Fig. 5 (a). Overall the instructors were noticeably harsher, though the proportion of
the grades between different coursework reports follows the overall tendency demon-
strated also by the student reviewers. The only fluctuation is for the report (author) No
5, where one of the peer reviewers gave the lowest grade. Interestingly, the picture for
the fourth year class in the Introduction to Logic Programming and Artificial Intelligence

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 191

is absolutely different – the grades by different peer reviewers and also instructors are
uncorrelated. Generally, the instructors were more generous in scoring, perhaps resolv-
ing doubts in favor of victims. The students were harsher in the majority of cases,
with quite substantial deviations in scores sometimes (for example the scores for the
reports No 14, 7, 10).

(a) Scores Given by Reviewers (II-nd Year)

0.00

2.00
4.00

6.00

8.00

10.00
12.00

14.00

16.00

Author No

S
co

re

Peer 1 7.40 11.79 8.98 1.09 12.21 13.30 10.86 6.20 5.45 15.13 13.28 12.21

Peer 2 13.19 9.80 1.53 5.98 10.98 0.00 12.18 8.61 6.00 13.90 13.15 9.61

Instructor 2.60 11.39 8.15 1.43 10.29 6.15 0.00 5.93 4.79 4.60 10.01 11.38 9.15

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Scores Given by Reviewers (IV-th Year)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Author No

S
co

re

Peer 1 13.00 13.00 7.00 11.00 11.00 11.00 11.00 7.00 7.00 7.00 9.00 9.00 9.00 3.00 7.00

Peer 2 13.00 11.00 7.00 13.00 11.00 9.00 7.00 5.00 7.00 11.00 9.00 11.00 9.00 11.00 7.00

Instructor 13.00 13.00 11.00 13.00 9.00 9.00 9.00 11.00 11.00 11.00 7.00 9.00 11.00 9.00 9.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 5. The distribution of coursework grades in the second year and fourth year classes

There are two possible explanations for this difference. Firstly, the evaluation criteria
for LPAI courseworks were not perhaps clear enough for inexperienced student review-
ers, which allowed too much freedom in interpretation. This fact suggests that the
review forms for this discipline have to be better elaborated and structured. Secondly,
and with less probability in our opinion, the fourth year students perhaps treated the
exercise as more serious and competitive for them as they were in the final year of
study.

Consequently, we checked if good students are also good reviewers – i.e. are the evalu-
ation and coursework grades well correlated. If so, there is a good chance that the reviews
were fair and were accepted as fair by the coursework authors. The correlations are shown
in Fig. 6. In fact the grades are correlated quite well, though there are some imperfections
in the graphs outlined by dotted ellipses. Reviewer No 7 in the second year class simply
did not submit reviews – so got 0 points for evaluation. Reviewers 11 and 13 in the second
year class just behaved contrary to being graceful to their fellow peers (as the majority did)

192 V. Ermolayev, N. Keberle, and S. Borue

and judged the reports fairly harsh – which resulted in higher deviations and lowered their
evaluation grades. Reviewers 2 and 4 in the fourth year class also acted against the
majority, but in the opposite way – they were more generous in scoring than their fellow
colleagues. Again this outstanding behavior resulted in higher deviations and lower
evaluation grades.

(a) Evaluation and Coursework Grades (II-nd Year)

0.00

5.00

10.00

15.00

Reviewer No

S
co

re

Evaluation Grade * 3 10.90 14.35 11.82 8.10 13.60 8.46 0.00 12.43 12.44 13.91 8.66 10.63 11.22

Coursew ork Grade 8.98 10.14 9.66 1.35 10.32 0.00 5.35 6.53 12.12 5.00 12.60 9.49 13.01

1 2 3 4 5 6 7 8 9 10 11 12 13

(b) Evaluation and Coursework Grades (IV-th Year)

0.00

5.00

10.00

15.00

Reviewer No

S
co

re

Evaluation Grade * 3 11.00 4.00 13.00 8.00 11.00 11.00 12.00 8.00 12.50 14.00 13.00 11.75 13.00 13.00 13.25

Coursew ork Grade 9.67 7.67 8.33 9.00 9.67 8.33 8.33 7.67 13.00 12.50 9.67 7.67 10.33 12.33 9.67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 6. Correlation between Evaluation and Coursework grades. Evaluation grades (0-5) are
multiplied by the factor of 3 to be evenly based with coursework grades (0-15)

In addition to the above two aspects in review quality analysis we also observed
the correlation between the evaluation grades and confidence self-assessments of the
fourth year students. We based this observation on the information provided by Easy-
Chair (column 3 in Fig. 3b). The upper two curves in Fig. 7 indicate that, with minor
deviations, the correlation is noticeable – those who are confident are good reviewers.
It is also worth mentioning that several reviewers indicated different levels of their
confidence for different reviewed reports – as shown by the lower curve in Fig. 7. We
interpret this fact as another indication of a need to better elaborate the review forms
for the Introduction to Logical Programming and Artificial Intelligence.

Finally, we hypothesized that the objectivity and fairness of the assessments, as
perceived by students, will be higher in our experiment compared to the traditional
assessment by instructors. We did not elaborate a proof for that as we did not under-
take a focused experiment for scientifically measuring the objectivity. However, for
obtaining a preliminary subjective estimation, we interviewed our subjects informally.

 Coursework Peer Reviews Increase Students' Motivation and Quality of Learning 193

These interviews revealed that the students treat their grades as more clear and fair
compared to the previous experience, even if the scores were lower both individually
and on average (column Factual of Table 5).

Evaluation Grade and Reviewer's Confidence (IV-th Year)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Reviewer No

S
co

re

Evaluation Grade 3.67 1.33 4.33 2.67 3.67 3.67 4.00 2.67 4.17 4.67 4.33 3.92 4.33 4.33 4.42

Review er's Conf idence *1.25 2.50 2.50 1.25 5.00 5.00 3.75 3.75 1.88 4.00 5.00 3.13 3.75 2.50 3.75 2.50

Conf idence Deviation 0.00 0.00 0.00 0.00 0.00 0.00 2.50 1.25 2.00 0.00 1.25 0.00 0.00 0.00 0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 7. The correlation between evaluation grades and reviewers’ self-confidence in their
assessments. Reviewers’ confidence values (0-4) are multiplied by the factor of 1.25 to be
evenly based with evaluation grades (0-5).

5 Concluding Remarks and Future Work

This chapter reported about our pedagogical experiment undertaken for seeking a way
of improving extrinsic motivation and learning quality of Computer Science students
in our Bachelor program at ZNU. The increase in motivation has been proven
convincingly. Exploiting students’ aspirations for informal leadership and incurred
competition constructively is effective and attracts people to learning. A gain in the
quality of learning was a little bit over-estimated. Indeed, having involved more
students in a creative learning activity does not guarantee that the quality of their
work increases dramatically by miracle. However, the increase in motivation helped
increasing also the quality to some degree – as shown in the previous section.

A good side effect is also that the students learn the working patterns broadly used
by the professionals in their field in academia and industry for making qualitative and
unbiased peer evaluations.

The results discussed in Section 4 appeared to be positive also for the other col-
leagues at the department of IT at our University. So, we plan to extend the experi-
ment by covering more disciplines and collecting a broader sample of results in the
near future. Among other things, this will allow us to base our work on a statistically
representative set of subjects for making the results statistically valid. Finally, we plan
to undertake an evaluation of the objectivity of the scoring in our settings.

194 V. Ermolayev, N. Keberle, and S. Borue

Acknowledgement. The results reported in this chapter have been obtained in the
pedagogical experiment conducted at the Department of Information Technologies of
Zaporozhye National University. The authors are grateful to all the colleagues at the
Department who took part in discussions and helped in setting and performing the
experiment. The authors would also like to thank the anonymous reviewers whose
comments and suggestions helped improve the chapter substantially.

References

1. Bound, J., Lovenheim, M.F., Turner, S.: Why Have College Completion Rates Declined?
An Analysis of Changing Student Preparation and Collegiate Resources. Am. Econ. J.
Appl. Econ. 2(3), 129–157 (2010), doi:10.1257/app.2.3.129

2. Clark, P.B., Wilson, J.Q.: Incentive Systems: A Theory of Organizations. Administrative
Science Quarterly 6(2), 129–166 (1961)

3. Middleton, J.A., Photini, A.: Spanias: Motivation for Achievement in Mathematics: Find-
ings, Generalizations, and Criticisms of the Research. J. Research in Mathematics Educa-
tion 30(1), 65–88 (1999)

4. Ames, C.: Classrooms: Goals, structures, and student motivation. J. Educational Psycholo-
gy 84, 261–271 (1992)

5. Middleton, J.A.: A Study of Intrinsic Motivation in the Mathematics Classroom: A Per-
sonal Constructs Approach. J. Research in Mathematics Education 26, 254–279 (1995)

6. Ramirez-Iniguez, R., Canton, U.: Understanding Motivation in Large Groups of Engineer-
ing and Computing Students. In: Proc. of Engineering Education Inspiring the Next Gen-
eration of Engineers (2010)

7. Wong, S.H.S.: Motivating Students to Learn through Good and Helpful Coursework Feed-
back. In: Proc. Engineering Education Inspiring the Next Generation of Engineers (2010)

8. Forte, A., Bruckman, A.: Why do People Write for Wikipedia? Incentives to Contribute to
Open-Content Publishing. In: Proc. 41st Annual Hawaii Int. Conf. on System Sciences,
HICSS (2008)

9. Latour, B., Woolgar, S.: Laboratory Life: the Construction of Scientific Facts. Princeton
University Press, Princeton (1986)

10. Wasko, M., Faraj, S.: It is what one does: why people participate and help others in elec-
tronic communities of practice. J. Strategic Information Systems 9, 155–173 (2000)

11. Cuel, R., Morozova, O., Rohde, M., Simperl, E., Siorpaes, K., Tokarchuk, O., Wiedenhoe-
fer, T., Yetim, F., Zamarian, M.: Motivation Mechanisms for Participation in Human-
Driven Semantic Content Creation. Int. J. of Knowledge Engineering and Data Min-
ing 1(4), 331–349 (2011)

12. Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychology 140,
1–55 (1932)

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 195–211, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Influence of Music Art Multimedia Production
on Professional Competence of the Future Music

Teachers

Lyudmila Gavrilova

DSPU, Donbass State Pedagogical University Street General Batyuk 19,
84112 Slavyansk, Ukraine
lusjamuz@mail.ru

Abstract. The сhapter examines the urgent problem of higher musical
education, which concerns the impact of multimedia technologies on formation
of future music teachers’ professional competence. It provides the analysis of
existing multimedia production useful in training of music students. The
authors present the electronic textbook Russian Music: from Ancient Times to
Early 20th Century, define pedagogical objectives determining the necessity to
introduce the textbook to the study of the history of music. Consequently, the
structure of the manual and various possibilities of its use in teaching music
students of both pedagogical and professional specialties are being analyzed.

Keywords: professional competence of a music teacher, multimedia musical
production, multimedia textbook, history of music.

1 Introduction

In recent years, training of music teachers is considered to be determined by two main
trends, one of which is competence-based approach, and the other is the process of
informatization of education. Formation of music teachers’ professional competence
became an object of thorough scientific and theoretical investigation, aimed also at
the modes of application of information and communication facilities in teaching
practice.

In the latest investigations professional competence is defined as an ability to teach
music, essential for further development of the teacher’s skills. M. Mykhas'kova
infers that music teacher’s professional competence is an integrative complex unity
of such components as musical taste and abilities, practical skills of singing, playing
a musical instrument, choir leading, creative artistic experience [4]. I. Poluboyaryna
states that structure of music teachers’ professional competence includes three
components: personal component, communicative component and activity compo-
nent, each embracing specified kinds of competence. For instance activity compo-
nent includes methodological, didactic, musical, scientific, artistic, managerial and
organizational kinds of competence [6].

196 L. Gavrilova

Some researchers (e.g. N. Murovana) see the essence of music teacher’s proficiency
in the form obtained by certain specific skills, the others (e.g. S. Svitaylo) differentiate
specialty competence from professional competence as a particular type of the latter.
O. Shcholokova defines professional competence in the field of art education as a per-
sonal and professional characteristics, including cognitive (professional knowledge),
operational (special skills and abilities), axiological (interiorated system of artistic
values) components [10].

However, none of the aforementioned definitions renders information and commu-
nication component. As we are witnessing the becoming of information society,
where information and knowledge form the core of production, this fact indicates an
essential contradiction between the urgent needs and the real state of music education.
Thus, the up-to-date interpretation of music teacher’s proficiency integrates musical
and pedagogical (special) knowledge, skills, aesthetic experience and value orienta-
tions of teacher’s personality and mastery of ICT. Music teacher’s ICT proficiency is
a component of general culture of a teacher, it also indicates the level of teacher’s
professional skills and their relevance to international standards in higher education.

It must be noted that practice proves the advantage of computer and multimedia
technologies use over traditional teaching techniques. Multimedia technologies
provide the possibility to combine different forms of information presentation (text,
sound, graphics, animation, audio and video). In recent years they became widely
used for music lessons in elementary school, as evidenced by the experience of teach-
ers presented in articles of O. Huminskaya [3], L. Stolyarchuk [7], N. Novikova [5],
and others. This experience concerns methodological guidance for creation of multi-
media Microsoft Power Point presentations and use of STT (Software Teaching
Tools) on music lessons.

Scientific and theoretical consideration is being given to the problems of using
computer technology on music lessons at school. This is explicated by scientific ex-
ploration of V. Shtepa [9], who identifies such domains of computer use on music
lessons as representation of historical and theoretical material, listening and music
analysis, composing music, obtaining various musical information on Internet.
N. Byelyavina [1] proves that computer multimedia technology provides progressive
alternative forms of representation of content (auditory, visual and motor-tactile).
O. Chaykovskaya [8] examines different aspects of multimedia use in the process of
obtaining musical knowledge in primary school.

The system of higher special and pedagogical music education also becomes an
object of critical analysis. I. Gaidenko introduces a special term "music computer
technology" to define various computer tools for composing, music recording and
editing, represented in the form of audiovisual media production, tape records, printed
production, etc. Many Ukrainian universities provided such disciplines as "Music
Informatics", "Composition, Sound Synthesis and Processing by Computer", "Com-
puter Analysis of Musical Text", "Modern Music Technologies". Some pedagogical
universities provide the course "Computer Music Printing" as a sequence of the
discipline "New Information Technologies and Technical Teaching Aids". When
there is a total decrease of musical literature publishing, music students get the oppor-
tunity to professionally notate their own compositions, song accompaniments, choral
scores. Mastering special software conditions acquiring skills of musical notation,

 Influence of Music Art Multimedia Production on Professional Competence 197

orchestration and arrangement, listening to each voice separately or several voices in
any combination, listening to all parties together, and use of different timbres.

Thus, the course "Musical Computer Technologies" is a part of curriculum offered
to the students of the Faculty of Arts, in Sumy State Pedagogical University, and be-
longs to the set of optional disciplines for specialty 7.010103 - "Pedagogics and Me-
thods of Secondary Education. Music". This course aims at obtaining and enriching
theoretical knowledge and practical skills of using music computer technologies.

Since 1999 Zhytomyr State University offers a special course "Modern computer
arrangement" to the students of specialty 7.02020401 - "Music Art", specialization -
"Culture". This academic discipline comprises theoretical knowledge and skills
concerning the basic components of multimedia facilities and their classification,
MIDI-technologies, notation, music software, and the foundations of sound directing,
acoustics of musical instruments.

These are only few examples of how music information and computer technologies
can be introduced to higher music education in Ukraine. Incidentally, similar
processes occur in the Russian education. Russian State Pedagogical University, for
example, developed a new system of higher music education based on music comput-
er technologies (Bachelor, Master). To sustain the project there was founded the edu-
cational laboratory "Music computer technology". G. Tarayeva, Professor of music
theory and composition department at Rostov State Conservatory, works over the
introduction of computer technology into the practice of music education. She is also
the author of the book "Computer and innovation in music education. Technology of
creation of electronic teaching resources".

One way to introduce modern ICT into higher musical education is to create and
develop new courses, aimed at mastering music computer technologies. It is equally
important to use these technologies in teaching such cultural, historical and pedagogical
courses as "History of Music", "Music Theory", "Music Analysis", "Methodics of Mu-
sic Teaching", as well as to create electronic teaching aids, multimedia textbooks, etc.

The objective of this research is to analyze the multimedia facilities on music art,
reliable for training of music teacher’s, as well as to present the multimedia textbook
Russian Music: From Ancient Times to the Early 20th Century.

The structure of the research comprises three sections:

─ Review of multimedia encyclopedias on music art, which can be efficient in form-
ing music teachers’ professional competence

─ Analysis of multimedia production for children, revealing the possible ways of its
use on music lessons as a factor of proficiency formation

─ Presentation of the multimedia textbook Russian Music: From Ancient Times to
the Early 20th Century

2 Review of Multimedia Encyclopedias on Music Art

The market of current multimedia editions offers a great number of various produc-
tion, which can be differentiate into certain groups in accordance with the objectives
and the modes of its use in educational practice. These are primarily multimedia
encyclopedias, those editions which contain a significant amount of scientific data

198 L. Gavrilova

and information from a wide range of issues. Among them, special attention should be
paid to the following ones:

1. Encyclopedia "Masterpieces of Music" (developed by "Cyril and Methodius",
1997) – a multimediareference book that provides various information on music, its
content includes an overview of musical genres (opera, piano music, cantatas and orato-
rio, symphonic music, ballet , instrumental concert), historical styles and traditions of
music art (baroque, romanticism, impressionism, modernism, etc.). The material is
given in the form of lectures including the story narration combined with corresponding
slides and music fragments. Textual material of the encyclopedias is subdivided into
four sections: glossary, musical instruments (about 80 articles), music compositions
(stories about the most famous operas, ballets, instrumental compositions, etc.),
composers (stories of life and work of 40 famous artists). To test knowledge of classical
music, one can choose the section of "Test Game". The program lets the user print
articles, use the search function of a required term or name.

2. Multimedia Collection "Sonata: World Culture in the Mirror of Music" (by L. Za-
leski and "Three Sisters", 2004 - 2008.) is a guide of European and Russian classical
music, jazz and popular music in high-quality performance, which has an extensive
structure including such sections as "Not only classics" (articles about more than 100
composers, arranged alphabetically in accordance with historical epochs and genres),
"Music for All" (compilation of articles about music and art, e.g. "Bach and the
Baroque", "Classics and Classicism", "Music and Language "), the section "Musical
Instruments", dealing with different groups of instruments (modern, vintage, ethnic,
electronic ones), "Outstanding Performers" (a compilation of articles on the most
outstanding representatives of instrumental and vocal performance) , "Gallery", which
presents relevant collections of paintings, semiserious "Quiz" which offers simple
questions about music and composers, glossary of music terms.

The encyclopedia "Sonata: World Culture in the Mirror Music" provides resources
for work on school lessons in music, literature, history, world culture, encourages
learning, opens opportunities for interactive activities in the classroom, lets stimulate
interest in learning music. Therefore this book can be used for training future music
teachers.

3. Multimedia Encyclopedia "Musical Instruments" (KorAx, 2002) – a reference
book where information about different musical instruments is given in four sections:
"Instruments from A to Z," "Groups of instruments ", "Musical ensembles", "World
Musical Instruments". Each instrument is given a precise description, sustained with
still images of the instrument, taken from different angles. There are also examples of
sound eliciting and sound effects inherent to instrumental performance, enriched with
fragments of instruments sounding solo and in various ensembles and orchestras.

4. "Virtual Museum of Musical Instruments "TerraMusicalis "(HyperMethod,
2000) presents a unique collection of St. Petersburg Museum of Musical Instruments.
The encyclopedia is designed as a virtual excursion. In "Exhibition" hall one encoun-
ters detailed descriptions and illustrations of 350 instruments, supplemented with
samples of their sounding, and synthesizer of all items with the virtual keyboard, and
video of an artist playing the instrument), a tour through the halls of the museum is in
the 3D format (panorama mode); "Excursions" hall is a globe with indicated zones of
instruments’use, art gallery and the history of collecting of musical instruments;

 Influence of Music Art Multimedia Production on Professional Competence 199

"Masterpieces" hall exhibits the history of the most valuableinstruments; "Workshop"
hall represents drawings, x-ray and tomography images of instruments.

The multimedia products mentioned above can be recommended as tutorials and
reference books for such special courses as "History of Music: Russian Music," "The
History of Foreign Music," as well as for comprehensive subjects including "Culture",
" Aesthetics, "" History of Culture".

To sustain music lessons in seventh and eighth grades, when the pupils are to
understand the correlation between classical music and trends of modern art, it is
appropriate to use such encyclopedic multimedia books as the following:

─ "Great Encyclopedia of Jazz" (DELTA-MMCorp., 2003.), which is an electronic
version of the encyclopedic handbook by V. Feyyertaha "Jazz. Twentieth century
"(St. Petersburg, 2001), includes more than 1,000 articles about jazz musicians (bi-
ography, stages of creative work, illustrations and discography), some articles are
accompanied by the most famous songs in the format mp.3.

─ "Encyclopedia of Popular Music" ("Cyril and Methodius", 2004) - multimedia
edition of the main directions of modern rock, pop and jazz, represents extensive
information about the musical style of the so-called "light music" group musicians,
performers (with full discography), as well as composers, DJs, producers and oth-
ers. The book includes numerous illustrations (portraits, photographs, slides), video
and audio fragments, glossary of popular music.

─ Multimedia encyclopaedias "Ballet" (2008), "Music Encyclopedia" (2006) are
electronic versions of paper publications, produced in collaboration of DyrektMe-
dia with "Great Russian Encyclopedia" They contain scientific articles on musical
and choreographic arts, concerning aesthetics, music theory and choreography, his-
torical aspects of the arts. These books clarify the artistic vocabulary and increase
the thesaurus of future teachers.

Unfortunately there are no Ukrainian production of that kind. All multimedia music
encyclopedias, mentioned above, are made in Russia and the possibility to use it in
Ukrainian universities is quite limited.

Domestic production of such character is represented by CD Set "Treasures of
Ukrainian culture" (Infodisk, 2005), a multimedia encyclopedia on various arts,
created as a joint project of the international agency "Ukraine-Art", the Ministry of
Culture and Arts of Ukraine, Ukrainian Association "Prosvita"and " World Music
Ltd ". It includes discs "Cultural Heritage of Ukraine" (information about national
museums, parks, libraries, historical monuments and architecture), "Visual Arts" (re-
view of the types of Ukrainian, creative work of famous artists with a special focus on
Ukrainian avant-garde, non-figurative painting, sculpture, graphics, etc.). Three CDs
of "Treasures of Ukrainian Culture" contain information about musical art. "Classical
Music" disk tells about the most famous Ukrainian theaters and concert halls, the
leading Ukrainian musicians, and fragments of music plays. "Folk Music" CD
presents folk choirs and orchestras, ensembles and soloists from different regions of
Ukraine. "Pop" CD gives a review of Ukrainian rock music with information about
rock musicians, rock festivals,in includes a photo gallery and a great selection of
songs. The multimedia encyclopedia can be recommended for music students as an
additional reference book for such courses as "History of Ukraine", "History of
Ukrainian Culture", "Ukrainian Music", "Folklore", as well as music lessons at
school.

200 L. Gavrilova

3 Analysis of Multimedia Production for Children

It must be noted that a particular group of multimedia products are created for musical
development of children. These are interesting computer music and game facilities
and multimedia products of educational nature, which have to be exposed to the mu-
sic students in the course of "Methodics of Teaching Music".

Multimedia products for children can be classified as follows:

1. Educational programs that relate to the basic concepts of musical knowledge, mas-
tering the basics of playing musical instruments;

2. Developing games, aimed to musical abilities (sense of timbre, rhythm, musical
auditory imagination). Moreover, we can differentiate musical gaming editions for
beginners andfrom the ones of advanced level.

Let us consider multimedia products for children of educational and developing character.
Interactive games for beginning musicians, who are about to enter the world of

music, are electronic resources designed for children of preschool and primary school
age. They introduce students to the world of sounds that surround them, the basics of
musical literacy and creativity, elementary musical instruments. The information
about these games is given in the Table 1.

Table 1. Multimedia music games for beginners

Name of the game,
the authors, the editors

Characteristics of the game

1."School of Music. Magic
Disc of Brownie Bu" is a
musical educational game
from the series "Play" (Biz-
nesSoft Ltd,2007) for the 4 or
6 years old children.

Brownie Bu invites a child to the music studio, where they
encounter musical sounds of varying pitch and duration. They
also learn the basics of musical literacy, perform rhythmic
exercises, collect a real ensemble of musical instruments,
learn to read the scores and create a CD of tunes.

2. "Clifford. Guess the melo-
dy" (Scholastic Inc. and New
CD, 2003) for the 4 - 7 years
old children.

This educational and developmental musical game trip lets a
child join a friendly dog-giant Clifford in learning the basics
of music literacy, including information about musical in-
struments, get an idea of composition, rhythm, musical styles,
etc.. It also teaches singing and dancing. The game creates
conditions for solving logical and creative tasks, training in
mathematics and logic, helps to develop memory, creative
thinking, and musical ear. Together with Clifford, the child
can play different instruments in the style of jazz, rock and
roll, country, waltz, etc., learn a new song or a certain dance.

3. "Murzilka. Lost Melody"
(IDCOMPANY and New
CD, 2009) for the children
older than 6 years

A developing game that allows the child to dive into the
realm of Russian folk tales and learn more about the world of
music together with Murzilka, while attempting to cheer
Princess Nesmiyana, the child makes a real musical journey,
finds the lost magical melody. The game promotes musical
abilities and skills, it also improves imagination, memory,
and creativity of children.

 Influence of Music Art Multimedia Production on Professional Competence 201

Table 1. (Continued)

Name of the game,
the authors, the editors

Characteristics of the game

4. "Sesame Street: Let's make
music" (Akella, 2003), origi-
nally named SesameStreet:
MusicMaker for children of 3
years age and older

An electronic facility that combines elements of musical
simulator and educational and developmental game. The
characters of the famous cartoon serial "Sesame Street" invite
a child to the concert, where the child would create music
himself. Such Sesame Street characters as Elmo, Ernie, Gruv-
er and Cookie give the user introductory music lessons, teach
how to distinguish high and low sounds, tell about musical
instruments and show how they sound.

5. "Music School of Princess
Lilifi" (Tivola and Buka,
2009)

A popular series of developing games with Princess Lilifi, an
iconic character that has come into the world of computer
games from the modern German literature for children. The
Princess invites a child to her music school, full of such fas-
cinating instruments as a magic harp, star xylophone, and
magic piano. One can repeat melodies after Lilifi’s friends or
create one’s own melody, and play funny games.

6. "Mary and Musical Hare"
DerezaProduction and "Rus-
sobit-M» / GFI ("Bestway
Ltd"), 2011

A musical game. I order to teach the Hare to sing, Mary
wants to build a real music school, make music instruments
(flute, drum, maracas, cymbals, guitar, etc.) and invite a fam-
ous singer Nightingale. Children will learn about some musi-
cal instruments, their simple construction, and listen to their
sound.

Multimedia products for more knowledgeable users, who already acquired basic

knowledge of music and developed their musical abilities, is characterized by more
complex structure and content. Table 2 contains the list of such aids.

The critical review of educational and developing multimedia music-gaming prod-
ucts, created for children of primary school age, evidences the variety of methodolog-
ical approaches to the problem of early musical development.

So, the above-mentioned programs contain enough material to encourage pupils to
listening to music, and increase thir interest in fates of artists. The possibility to listen
to the music fragments is another important feature of the music gaming facili-
ties.producers of the series "Playing a Game with Music" specially invited instrumen-
tal ensembles and orchestras for recording:

─ "The Magic Flute. Playing Music of Mozart "is accompanied by sound fragments of
the same opera (the popular arias of the Queen of the Night, Papageno and music of
the overture to the opera), in the" Magic Box " children are introduced to other well-
known works by Mozart (A Little Night Music, Symphony number 40, Concerto for
Violin and Orchestra, Part 1, Concerto for Clarinet and Orchestra, Part 2);

─ "Alice and Four Seasons. Playing the Music of Vivaldi" introduces instrumental
music by Vivaldi, music of the well-known cycle is divided into twelve fragments
according to the number of months in a year;

─ "Nutcracker. Playing the Music of Tchaikovsky" gives children an opportunity to
listen to the most famous melodies from the ballet by Tchaikovsky and miniatures
from his"Children's Album" for piano, arranged for different instrumental ensembles.

202 L. Gavrilova

Table 2. Multimedia facilities of advanced level

Name of the game,
the authors, the editors

Characteristics of the game

1. "Drakosha in the World of
Music" (GOGGames and
Media Services, 2000) is an
educational game program
for 5 year olds

The character from the cartoon enters the world of music and
learn about the musical instruments given to Drakosha (harp,
balalaika, drums, violin, guitar, trumpet, piano, etc.), and the
basics of musical literacy (notes, keys, duration). Deeper
knowledge is offered in "Harmony Lesson" (beat, pause,
tempo, dynamic shades). "Music Literature" lets the child
learn more about famous composers, there are short stories
about J. Bach, L. Beethoven, G. Bizet, R. Wagner,
M. Mussorgsky, P. Tchaikovsky, S. Prokofiev, accompanied
with fragments of their works. At the end of each unit there
are tests to generalize the information received.

2. "Music Class" ("NewMe-
diaGeneration", 1997, 2004)
for 5 year olds

This is a pioneer program of primary musical education via
computer, actualizing different musical activities,
representing the basics of musical notation and theory. "Mu-
sic Theory" section offers to know about basics of music
knowledge (musical sound, meter and rhythm, signs of altera-
tion, etc.). In "The History of Musical Instruments" section
children are introduced to the history and development of
musical instruments, with their construction described, and
the specifics of their sound and features noted. "Computer
Piano" section gives children the opportunity to improvise
and play timbres of ten different instruments. "Cybersynthesi-
zor" can be used to compile pieces of music in different ge-
nres. The games "Musical Tic-tac-toe", "Musical Dictation"
and "Music Cubes" offer to test knowledge of music theory
and develop a musical ear.

3. "The Magic Flute. Playing
the Music of Mozart" (Quaim
Interactive and Media House,
2003) for 5 year olds

An educational game program from the series"Playing a
Game with Music ", it is based on the music of the Mozart’s
opera, and combines games, quizzes, fabulous adventures and
musical encyclopaedia. Gaming tasks are accompanied with
fragments from Mozart’s "The Magic Flute" and some other
famous works of the composer.

4. "Alice and Four Seasons.
Playing the Music of Vivaldi"
(Music Games International
and Media House, 2005) for
5 year olds

An interactive music game from the series "Playing a Game
with Music" based on the works of L. Carroll’s classic "Alice
in Wonderland" and A. Vivaldi's "Four Seasons". The pro-
gram develops musical abilities, hearing, introduces the com-
poser’s musical legacy. "Alice and Four Seasons" contains 12
music games that teach children to listen to music, to distin-
guish sounds of musical instruments by ear. The structure of
the game contains music encyclopedia that provides informa-
tion about music instruments of symphonic orchestra.

 Influence of Music Art Multimedia Production on Professional Competence 203

Table 2. (Continued)

Name of the game,
the authors, the editors

Characteristics of the game

5. "The Nutcracker. Playing
the Music of Tchaikovsky"
(Music Games International,
Guaint Interactive, Media
House, 2002 - 2004) for 5
year olds

A developing program that combines computer game, music
encyclopedia and fabulous musical adventure. The structure
of the program contains the following components: 9 games
to develop musical hearing and abilities; musical masterpiec-
es of Tchaikovsky, written for children, including ballet "The
Nutcracker" and "Children's Album"; Music Encyclopedia,
which introduces a biography of the composer, ballet libretto
and the history of its creation.

6. "Children's Collection:
Famous World Composers"
(Garbuz.Studio and Atlanti-
cRecords, 2006) for the child-
ren of preschool and primary
school age

Ukrainian training program with elements of the game. There
are stories and interesting facts about the composer's life
adapted for children: "Violin, Vivaldi and Paganini," "Create
blindly. Bach and Handel "," The Mystery of Mozart and
Salieri ","Beethoven and Schubert", "Piano in the life of
Chopin and Liszt", "Maurice Ravel ","Peter Tchai-
kovsky","Myhaylo Verbytsky "and others.

7. "Entering School. Develop
Your Musical Abilities
"(IDCOMPANY,2009) for
children from the youngest
age to 7

An educational entertaining program that opens the world of
scores, tells interesting stories about the life of famous com-
posers, introduces musical instruments and their sounds.
Music classes are differentiated by age groups. The program
sections represent the following items: all about the music
(stories of musical genres), notation for kids, music theory
exercises and development of musical hearing, who "makes"
music (stories about famous composers), all about musical
instruments, musical stories. It also offers recommendations
for parents.

8. "Camille Saint-Saëns.
Carnival of Animals "(Alisa
Studio and New CD, 2005)
for 5 year olds

A training and developing computer program which
represents Carnival of Animals by Camille Saint-Saëns. It
combines information about animals, cartoons, tasks to de-
velop skills of listening classical music, facilities for painting
and child’s creative work. The program includes 14 pieces of
"Carnival of Animals". The narrator tells us about the mean-
ing of the music. Each fragment is supplemented by a corres-
ponding animated video illustrating the narration. The section
"Tasks" allows us to reveal the child’s reaction to C. Saint-
Saëns’ music and the narrator’s explanations andand offers
the means to express the child’s feelings in paint.

We have to add that the music analysis on the very lesson requires sufficient know-

ledge of means of musical expression and musical instruments with their specific
sound. For instance, the interactive games "The Magic Flute. Playing Music of Mo-
zart " and "The Nutcracker. Playing Music of Tchaikovsky" contain encyclopedic

204 L. Gavrilova

sections on musical instruments, presenting instruments for small orchestra: violin,
viola, cello, bass, piano, harpsichord, flute, oboe, clarinet, bassoon, horn, trumpet,
trombone, drums and more. Music for these instruments in various ensemble combi-
nations is also provided by the gaming programs.

"Alice and Four Seasons" also includes an encyclopedia of musical instruments:
besides the instruments of small orchestra there are articles on vibraphone, cymbals,
vintage mandolin strings, theorbo, lute, supplemented with short stories and examples
sounding instruments.

In our opinion, the quality of learning musical instruments in primary school can
be improved through the use of specified educational and entertaining programs that
include not only sections of informative character, but also provide game tasks,
checking knowledge about instruments to their sounds. "The Magic Flute. Playing
Music of Mozart ", for example, includes such games as "Guess the Musical Instru-
ment" (the task is to click on an instrument that sounds), "Guess the melody" (the task
is to choose the quartet that performs a particular work of the composer), "Riddles of
the Queen of the Night" (the task is to guess distorted tones) and others.

The interactive music game "Alice and Four Seasons" also contains many games
and tasks that check out whether the child can distinguish sounds of different instru-
ments aurally: the game "Orchestra" (the task is to identify the instrument that repro-
duces some sound among the ones depicted on the game screen); the game "Music
Card" (the task is to find instruments sounding similarly); the game "Two orchestras"
(the task is to divide musicians into two groups in accordance with piece of music
they play).

Various game tasks for knowledge of musical instruments and their timbers are
provided by the "Nutcracker. Playing the Music of Tchaikovsky ". It includes the
game "Orchestra Pit "(the task is to identify musical instruments by timbre and drag
them from the pit to the stage), the game "Find me the Tree "(the task is to look for
the voice-tone of each character), the game "Mad House" (the task is to guess the
distorted melody), the game "Children's Album" (the task is to listen to orchestrated
pieces from the collection of Tchaikovsky and determine which instruments sound in
each fragment).

Thus, multimedia music gaming aids of the series "Playing the Music" raise pupils’
interest in musical instruments, and are helpful for development of listening skills.

Musical training program "Children's Collection: Famous World Composers" from
the series "Wolf Panas’ School " is designed to represent life events and famous
works of composers from different countries and eras. The elements of the game are
nothing but the steps to follow the fate of the artist (J. Bach, Handel, Vivaldi, Pagani-
ni, Mozart, Beethoven, Chopin, Liszt, Ravel, Tchaikovsky, Verbytsky). It also should
be said that this is the only resourse in the Ukrainian language.

The other multimedia facilities can be partially used on the music lessons. The
game "Entering School. Develop Your Musical Abilities" is much less interesting for
children, since it is not animated, which decrease the childrn’s attention to the
theory,and makes it look rather like a studybook than a game.

The music multimedia games for the beginners can be applied to the music lessons
as additional tasks and informational aids, helpful for gaining musical literacy and
speifics of musical instruments. Such games as "Clifford. Guess the melody", "Mur-
zilka. Lost Melody", and "Mary and Musical Hare" are useful in individual work of

 Influence of Music Art Multimedia Production on Professional Competence 205

pupils. The hometasks can be enriched through involvement of the possibilities pro-
vided by "Music School of Princess Lilifi", "Sesame Street: Let's make music", or
"School of Music. Magic Disc of Brownie Bu".

"Murzilka. Lost Melody" is distinct for the use of Russian folk orchestra s accom-
paniment, and contains the information about traditional instruments of Russia, Spain,
Turkey, and Ireland.

Multimedia means can also be used to develop the skills of musical creative work.
Almost every game, reference book or musical simulator offers the task of composing
a melody of certain fragments, improvising on musical instruments (usually the result
of children's creativity can be saved, printed, and even recorded).

Future music teachers, trying to respond the current requirements of education,
determined by informatization and computerization of educational process, ought to
follow the production of multimedia teaching and developing music-gaming means
and be able to introduce them to music lessons in primary school.

Thorough analysis of all musical multimedia educational game products for child-
ren should be one of the tasks for independent students’ work. Knowledge of each
resource is one of the conditions for the use of their educational and developmental
opportunities for music lessons at school. The ability to design lessons with multime-
dia educational game support, using games, tests, video narratives, and music sound-
ing, the skill of enriching the lessons with certain sections of electronic training and
developing aids, transforms nowinto an integral component of practical training in
methodicss of teaching music in pedagogical universities.

4 Presentation of the Multimedia Textbook Russian Music:
From Ancient Times to the Early 20th Century.

Yet, there is another aspect of the problem to be examined in the article, which con-
cerns the idea that involvement of future teachers to information and communication
technologies, including multimedia, should be provided by modern electronic teach-
ing aids and textbooks for high school. At the present moment, there are certain
achievements in Ukrainian higher education, represented by educational electronic
products in computer science, physics, economics, social sciences and foreign lan-
guages. The corresponding issues in artistic education are basically limited to the
electronic versions of the most popular textbooks on musico and culture studies
(scanning paper editions), and separate references guides to electronic libraries,
encyclopedias, or galleries.

In recent years, there have been some changes in the situation. The teachers of Meli-
topol State Pedagogical University developed electronic training complexes in artistic
disciplines for undergraduate students and masters: "History of Western Music" (Hore-
mychkyn A.I., 2006), "Musical Culture of Ukraine of the 20th and the beginning of
21st century" (Martyniuk A.K., Kornyshev V.V., Osadchy V.V., 2008), "Choral Cul-
ture" (Martyniuk A.K., Kornyshev V.V., Osadchy V.V., 2009). All resources are avail-
able for free in online library MSPU (http://lib.mdpu.org.ua/kat.html).

206 L. Gavrilova

An interesting approach to creating an electronic textbook "Music Analysis" with
Microsoft Front Page is worked out by M. Dyadchenko, a lecturer in the history and
theory of music at Taganrog Pedagogical Institute .

Taking into consideration the experience of colleagues, we created a multimedia
textbook on the history of music, which is based on scientifically sound and norma-
lized requirements to the content of electronic textbooks. In what follows we are
going to highlight the structure of the textbook, its techical characteristics and the
posibilities of its use in teaching music students.

The textbook on the history of musical art Russian Music: from Ancient Times to
the Early 20th Century was created as the basic studybook for the course History of
Russian Music, obligatory for the students of Slavyansk state Pedagogical University
(specialty 6.010102 – Primary Education, specialization: Music). The textbook can be
used not only in the system of art education in pedagogical universities, but also in
professional music education, since similar courses are offered in music schools and
conservatories.

Fig. 1. The cover of the textbook

The multimedia training product on the history of musical art Russian Music: from
Ancient Times to the Early 20th Century is an electronic textbook which in contrast to
the traditional printed editions contains visual and audio components. The textbook is
meant to be used at university, so its structure and content follow the requirements for
the design of electronic textbooks for high school and include:

 Influence of Music Art Multimedia Production on Professional Competence 207

─ A management system, providing means of structuring the educational material,
tests and feedback

─ Methods that accelerate the learning process, such as hypertext and hypermedia
─ Graphical tools that provide effective use of visual aids
─ Test system that enables to control students’ knowledge

Textbook materials are presented on 2 discs: the first DVD-ROM contains the text-
book itself and the second is a compilation of music for individual listening. We
should also mention the hardware requirements needed to install the tutorial, which
are as follows:

─ Processor 1000Mhz (recommended 2000 Mhz)
─ Memory: 512 Mb (1024 Mb)
─ Hard Disk 3 Gb of free memory
─ Operating system: WindowsXP, Vista (32/64) Windows 7(32/64-bit)

It is important to consider the structure of the textbook and the possibility of its use in
training future music teachers.

Installation of the textbook is traditional: one should insert the CD into the CD
drive then select "autorun.exe" in the menu, which will lead to a startup tutorial.

Fig. 2. Menu

The course of the history of Russian music covers the period from ancient times to
the early 20th century that is from the early Middle Ages to the so called Silver Age
of music in Russian culture. The textbook is opening with the Menu and it is
structured as follows:

208 L. Gavrilova

Lecture (a text with hyperlinks to the glossary, index of names, biographies,
opera librettos);

─ Multimedia slide show
─ Glossary (dictionary of musical terms)
─ Index of names
─ Opera librettos
─ Biographies of composers
─ Musical quiz in two variants that is aimed at controlling students’ knowledge of

certain compositions
─ Tests in two variants

Music for individual listening is presented on a separate mp.3 disk. Students are
offered to listen to the following works by Russian composers:

─ A sufficiently large collection of Russian sacred music (from ancient chants to the
works by anonymous composers of Synodal School of the late 19th century, and
the finest examples of sacred music of Sergei Rachmaninoff)

─ Masterpieces of Russian chamber and vocal music
─ Works of Russian musical theater: the most famous operas and ballets that are

traditionally studied in the course of the history of Russian music (Glinka’s Ruslan
and Lyudmila, Ivan Susanin, Dargomyzhsky’s Rusalka, Mussorgsky’s Boris Go-
dunov, Borodin’s Prince Igor, Tchaikovsky’s Eugene Onegin, Queen of Spades,
Stravinsky’s Petrushka and The Rite of Spring)

─ The best examples of instrumental music of Russian composers (symphonic works
by Glinka, Borodin, and Scriabin, Tchaikovsky’s symphonies, Rachmaninoff’s pi-
ano concertos, separate instrumental miniatures and cycles)

The Menu opens navigation to any section of the textbook. Lectures are set in the
textbook according to the historical principle. Culturological material is divided into 3
modules and 7 units.

Module 1. Pre-classical stage of development of Russian music: from ancient times
to the late 18th century).

Module 2. Russian classical music (from Glinka to Tchaikovsky).
Module 3. Russian music of Silver Age: genre and style transformations (Rachma-

ninoff, Stravinsky, Scriabin, and others).

Texts of lectures, modules and clusters were composed with the reference to modern
printed books on the history of Russian music (l. Rapatsky History of Russian Music:
From Ancient Rus’ to the Silver Age, Moscow (2001) (In Russian). In addition we
used other books (E. Orlova Lectures on the History of Russian Music, Moscow
(1979) (In Russian); B. Asafiev Russian Music of 19th and 20th Centuries, Leningrad
(1978) (In Russian); T. Levaya Russian Musical Culture of the Early 20th Century in
the Context of Artistic Trends of the Era, Moscow (1991) (In Russian)), as well as
multi-volume history of Russian Music edited by A. Kandinsky, and Y. Keldysh,
Internet sources (such sites as mus-info.ru,classic-music.ru,belcanto.ru, etc.). Glos-
sary that includes 262 items and Index of names including 335 items have interesting

 Influence of Music Art Multimedia Production on Professional Competence 209

selection of concepts from theory of music, music history and general cultural
context. Informative sections of the book are supplemented with the biographies of 25
Russian composers, and 11 of the most famous opera librettos.

Slide show serves as a multimedia application to every topic, including widely
available photographic materials, reproductions of paintings, audio fragments of
music compositions and video clips of operas, ballets, concerts.

Special attention is given to the system of means aimed at controlling students’
knowledge of theory and musical compositions. Traditionally while studying the
course of history of music, students are supposed to penetrate the world of music
through listening to numerous pieces of music. The multimedia textbook provides
students with an opportunity to listen to the set of compositions, and use quizzes to
test their knowledge:

─ To identify certain audio fragment, to name the author, the composition and the
part the fragment was taken from (an act in opera, a part of symphony)

─ To choose the right answer among the given variants

Passing each stage of the quiz, students can examine the record of their answers,
compare them with the right options and find out the level of their knowledge. In
addition, the textbook contains an actual test at the end of each unit, students are of-
fered two variants of closed test, so they have to choose one ore more correct answers.

The introduction of electronic textbook to the process of studying the history of
music contributes to the solution of the following educational objectives:

─ To study Russian musical culture as a whole which absorbed spiritual experience
of the nation and reflected religious, philosophical, aesthetic and moral principles
of certain historical periods

─ To learn the main styles and trends in the Russian music of the period from ancient
times to Silver Age, to get knowledge of the origins and the main stages of the
evolution of Russian culture

─ To specify the features of different musical styles and trends in Russian music on
the basis of certain compositions by the great Russian musicians

─ To develop feelings, emotions, imagination, and artistic abilities of students
─ To refine their artistic and aesthetic tastes, to bring up the need in personal assess-

ment of values
─ To enlarge the scope of their thinking, to make them create the cultural space of

their own

The multimedia textbook on the history of music History of Russian Music: from
Ancient Times to the Early 20th Century can be used in various spheres of higher
education.

First, it can be used for lectures on the history of Russian music, when the
lecturer’s narration is followed by presentations of audio and video clips, photo-
graphs, reproductions of paintings, etc. Multimedia slide show can accompany the
given facts of the composer’s life and work, it can illustrate information about the
features of the musical culture of certain age, exemplify specific traits of certain
musical trend, etc. The lecturer has an opportunity to select the necessary information

210 L. Gavrilova

in accordance with the audience comprehension. The textbook can be used to introduce
the new material as well as to fix and repeat the items already known to the students, it
can be useful on practical classes, and at the stage of assessment of students’ know-
ledge.

Students can work with the textbook in the classroom, the computers being pro-
vided, and independently as well. The textbook can be used:

─ As a source of the following information: lectures, slides, audio and video clips,
glossary, index of names, biographies of Russian composers

─ As a visual aid: the variety of multimedia components helps to get acquainted with
the numerous masterpieces of art, sculpture, architecture, as well as to listen to the
episodes of musical compositions, to watch the fragments of operas and ballets

─ To exercise in self-listening, and preparation to the quiz
─ To write papers and reports
─ To get ready for the practical classes
─ To reduce the gaps of knowledge in the history of Russian music
─ To estimate the level of knowledge

The textbook can be used in a classroom with one computer and a projector, as well
as in the computer lab.

Use of multimedia provides additional possibilities of presenting information on
the history of music:

─ The possibility to see the visual details of paintings, historical documents, old edi-
tions of music, etc.

─ The possibility to use hypertext and hypermedia links that simplifies the coordina-
tion of student’s independent work

─ Free navigation through the content, the direct access to the menu of the textbook

We began to introduce the multimedia textbook on the history of music in the 2009 at
the music department of primary school faculty of Slovyansk (since 2012 Donbass)
State Pedagogical University. The textbook was approved by the Ministry of Educa-
tion and Science, Youth and Sport of Ukraine from 13.04.2012 № 1/11-5116 for
production, classified as "Recommended by MESYS of Ukraine".

5 Conclusions

Information and communication technologies, especially computer multimedia, at the
present stage of development of society is an important factor in improving the pro-
fessional competence of future teachers. To possess skills of ICT use, to know the
current multimedia publications (encyclopedias, web-resources developed for adults,
and educational developing game programs for children, etc.), as well as to create
their own e-products, and to apply them music teaching are essential conditions for
becoming a really modern music teacher.

 Influence of Music Art Multimedia Production on Professional Competence 211

References

1. Belyavina, N.: Pedagogical Conditions of Computer Technologies at Primary Stage of
Music Education: Abstract of the thesis for Candidate degree. Kyiv State University of
Culture and Arts, Kyiv (1999) (in Ukrainian)

2. Volynsky, V., Krasovsky, O., Chornous, O., Yakushina, T.: Structure and Content pf Elec-
tronic Textbooks: Cognitive and Behavioral Aspects. In: Computer at School and Family,
pp. 44–49 (2011) (in Ukrainian)

3. Huminska, O.: Multimedia Use as the Means of Innovation of Teaching Arts. Art and
Education 3(53), 4(54), 21–25, 19–22 (2009) (in Ukrainian)

4. Mykhas’kova, M.: Formation of Professional Competence of the Future Teacher of Music:
Abstract of the dissertation for obtaining the scientific degree of the candidate of pedagog-
ical sciences in specialty 13.00.02 – theory and methodics of teaching music and musical
upbringing. M.P. Dragomanov National Pedagogical University, Kyiv (2007) (in Ukrai-
nian)

5. Novikova, N.: Computer Presentation on Music Lessons. Art and Education 3, 25–29
(2010) (in Ukrainian)

6. Poluboyarina, I.: Forming of the Professional Competence of Future Music Teachers at a
Teachers’ Training College. Abstract of the thesis on getting the scientific degree of a can-
didate of pedagogical sciences in specialty 13.00.04 – theory of professional education.
State Ivan Franko University of Zhitomir, Zhitomir (2008) (in Ukrainian)

7. Stolyarchuk, L.: Computer Technologies Use on Music Lessons (in Ukrainian),
http://intkonf.org/stolyarchuk-li-vikoristannya-
kompyuternih-tehnologiy-na-urokah-muziki/

8. Tchaikovska, O.: The Formation of Junior School Students Music Knowledge by Means of
Multimedia Training Techniques. Abstract of the dissertation on competing a scientific
degree of the candidate of pedagogical sciences by specialty 13.00.02 – theory and me-
thods of musical education. Kyiv National University of Culture and Arts. Kyiv (2002) (in
Ukrainian)

9. Shtepa, V.: Computer Educational Programs for Music Lessons. Computer for School and
Family 3, 33–37 (2011) (in Ukrainian)

10. Shcholokova, O.: Principles of Professional Artistic Training of Future Teacher Kyiv
(1996) (in Ukrainian)

General Disciplines and Tools

for E-Learning Software Engineering

Ekaterina Lavrischeva and Alexei Ostrovski

Institute of Software Systems, NAS of Ukraine, Akademika Glushkova str.,
40, Kiev, Ukraine

{lavryscheva,ostrovski.alex}@gmail.com

Abstract. This chapter presents new theoretical aspects of software
engineering, which are oriented towards usage of technological lines for
building applied systems and software product families from readymade
reusable components. These aspects include: the theory of component
programming; models of variability and interoperability; theory for build-
ing applied systems and SPFs using algebraic transformation of
data types having different formats; principles for implementing certain
theoretical aspects as lines for developing new components in the instru-
mental and technological complex; interoperability between program-
ming systems and environments; developing structure of certain domains
using VS.NET DSL Tools; product line-based experimental programs
factory, developed by students at Kiev National University; approach
to e-learning new theories and technologies, C#, Java, Visual Basic
programming languages, and the “Software Engineering” discipline.

Keywords: software engineering, interoperability, variability, software
industry, reusable components, applied systems, education, e-learning.

1 Introduction

The goal of the fundamental project for Institute of Software Systems (ISoftS),
NAS of Ukraine, was to develop new scientific and applied aspects of software
engineering, directed towards the advances in software product industry from
the readymade software resources (reuses, aspects, services, etc.). We studied
and took into account modern facilities and advances in the domain of software
engineering, such as object-component programming, generative, compositional,
and service-oriented programming [1–3], as well as peculiarities of modern oper-
ating environments and systems (Microsoft .NET, CORBA, Java, IBM, Eclipse,
Protégé and others). This was done in order to implement the industrial tech-
nologies of software engineering on the basis of the reuse techniques, including
engineering, economic, management, production disciplines and education. As
a result of efforts, we elaborated the new theoretical foundation in producing
applied systems (AS) and software product families (SPF), and developed the
instrumental and technological complex (ITC) [4–6].

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 212–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

General Disciplines and Tools for E-Learning Software Engineering 213

2 New Disciplines for Building Applied Systems from
Reusable Components

Software engineering is a system of methods, means and disciplines for design-
ing, developing, computing and supporting ready-to-adopt software. It provides
means for the software development for multipurpose applied and informational
systems.

The main principles of software engineering are productivity, industry, and
quality, according to the corresponding body of knowledge – SWEBOK, which
was developed in 2001–2004 by the international committee, formed by ACM
and IEEE.

Ten areas of SWEBOK knowledge include the two directions:

1. Development: requirement engineering, designing, developing, testing, and
maintaining software

2. Management: managing project, configuration, quality, methods and means
of software engineering

These areas are based on the lifecycle processes of ISO/IEC 12207 and 15539
standards.

SWEBOK does not include software engineering target objects (applied sys-
tems, software product families, domains, business applications), and technolo-
gies for developing such objects.

According to the approach towards teaching computer sciences in the United
States, software engineering plays a prominent role in the informational disci-
plines. The area of software engineering comprises the entire hardware level, as
well as technological and organizational levels of informational sciences. As a
discipline, software engineering covers systematic software development of soft-
ware system families, domains, and other scalable software projects. The main
goal of software engineering is developing systematic models, reusable readymade
components, and reliable methods for producing high-quality software products.
This goal encompasses theories, concepts, paradigms, including both develop-
ment structures for reliable computational software systems and management
aspects of the designing process to meet customers’ needs.

We proposed a new classification of software engineering disciplines (Fig. 1),
which is necessary in industrial production of applied systems and software prod-
uct families [6, 8]. The basic goals of SE disciplines according to this classification
are as follows:

– Scientific discipline consists of the classic sciences (theory of algorithms,
set theory, logic theory, proofs, and so on), lifecycle standards, theory of
integration, theory of programming and the corresponding language tools
for creating abstract models and architectures of the specified objects, etc.

– Engineering discipline is a set of technical means and methods for software
development by using standard lifecycle models; software analysis methods;
requirement, application and domain engineering with the help of product
lines; software support, modification and adaptation to other platforms and
environments

214 E. Lavrischeva and A. Ostrovski

Fig. 1. Classification of SE disciplines

– Management discipline contains the general management theory, adapted to
team-based software development, including job schedules and their super-
vision, risk management, software versioning and configuration

– Economy discipline is a collection of the expert, qualitative and quantitative
evaluation methods and techniques of the interim artifacts and the final
result of product lines, and the economic methods of calculating duration,
size, quality, and cost of software development

– Product discipline consists of product lines, utilizing software resources (re-
usable components, services, aspects, and so on), taken from libraries and
Internet-based software repositories; it also contains assembling, configuring
and assessing quality of software products

These disciplines are built on the basis of software engineering, modern ap-
proaches, and the scientific fundament; they are used in developing product
lines and producing applied software products with these lines.

2.1 Software Industry in SE. New Concepts for Software Industry

Software industry uses modern methods, means and tools for mass production
of software products. Kinds of software products include: systems, applied sys-
tems, distributed applied systems, business applications, real-time and on-board
systems, etc. All of them, as a rule, are developed from readymade resources.

Basic principles of applied systems industry are as follows:

General Disciplines and Tools for E-Learning Software Engineering 215

– Assembly line by V. Glushkov (1975), which uses readymade modules [5]

– Conveyor by K. Czarnecki and U. Eisenecker [1]

– Software factories by J. Greenfild, K. Short et al.

– Continuous integration by Martin Fowler

– EPAM assembly line (Belarus) for building various types of software, im-
proving software quality and reducing risk

– Compositional programming by E. Lavrischeva for developing software prod-
ucts from reuses, services, and so on

The notion of assembly conveyor, originally proposed by Glushkov, has been
elaborated for many years; nowadays we have created the experimental program
factory at Kiev National University based on product lines for reusable compo-
nents [9, 10]. Interfaces of these components contain a standardized description
in a certain programming language, as well as a communication interface to
enable interoperability with other objects.

2.2 Theory for Building Applied Systems Using Components

To model applied domains for business applications and applied systems with
readymade components, the theory of compositional programming has been de-
veloped [5, 12]. Its main postulates are as follows.

Proposition 1. The applied domain, which is modeled with a set of compo-
nents C, is a component itself.

Proposition 2. The applied domain that is modeled may be a separate compo-
nent C in another domain.

Based on the theory of sets, if C = {C0, C1, . . . , Cn} is the set of components
and C0 corresponds to the whole domain, then the following equation holds for
C elements:

∀i (i > 0)→ (Ci ∈ C0). (1)

Each component is represented as an element in the set. In this case, the expres-
sion (1) is transformed into

∀i ∃j (i > 0) ∧ (j ≥ 0) ∧ (i �= j) ∧ (Ci ∈ Cj). (2)

For each component of the set C (except C0), algebraic operations from the set
theory may be applied, such as the “part-whole” relation, aggregation, and so on.

Proposition 3. If C = {C1, C2, . . . , Cn} is a set of components, and P =
{P1, P2, . . . , Pr} is a set of unary predicates associated with the properties of
elements of C, then the component Ci corresponds to a set of statements and
predicates of P , and for a certain set of pairs (i, k), Pk(Ci) = true.

216 E. Lavrischeva and A. Ostrovski

Building component-based applied systems and SPFs from the elements of these
sets is performed by assembling reusable components using their interface data,
which corresponds to the defined properties and description of the C elements,
stored in interface and implementation repositories.

Definition 1. Component is understood by us as a PL-independent self-reliant
software product that provides execution for a certain set of applied functions
and services of the applied domain, which can be only accessed with remote calls.

Component model is a corollary of generic typical solutions or functions for the
applied domain, which are represented by the component and its interface in the
following form:

C = (CNa,CIn,CFa,CIm,CSe), (3)

where

– CNa is a name of the component
– CIn = CIn(in) ∪ CIn(out) is a set of input and output interfaces
– CFa is a set of methods and instances of components
– CIm is the interface implementation
– CSe is the system service

Input interfaces CIn(in) correspond to the component implementation, while
output interfaces CIn(out) match another component from the set C. Input
interface CIni ∈ CIn has the model

CIni = (InNai, InFui, InSpi), (4)

while interface implementation CImi ∈ CIm has the following model:

CImi = (ImNai, ImFui, ImSpi), (5)

where suffix ·Na denotes the name of an interface or an implementation, ·Fu
denotes a list of its functions, and ·Sp is its specification.

The necessary condition for the component Cj ∈ C to exist is its integrity:

∀CIni ∈ CIn ∃CImj ∈ CIm Pr(CIni) ⊆ CImj , (6)

where Pr(CIni) denotes functionality that provides implementation of the in-
terface methods from CIni.

Proposition 4. To assemble two heterogeneous components C1 and C2, the fol-

lowing condition must be satisfied: if CIni
1 ∈ CIn

(out)
1 , then there must exist

CInk
2 ∈ CIn

(in)
2 that satisfies

(Sign(CIni
1) = Sign(CInk

2)) ∧ (Pr(CIni
1) ⊆ CImj

2), (7)

where Sign(·) is the signature of the corresponding interface.

General Disciplines and Tools for E-Learning Software Engineering 217

The model of the component environment has the following form:

CE = (CNa, InRep, ImRep, CSe, CSeIm), (8)

where

– CNa = {CNam} is a set of component names
– InRep = {InRepi} is the repository for component interfaces
– ImRep = {ImRepj} is the repository for component implementations
– CSe = {CSer} is the system services interface
– CSeIm = {CSeImr} is a set of implementations of system services

Each element in InRep is described by the pair (CIni, CNam), with CIni the
component interface (4), CNam the name of the implementing component. By
analogy, each element in ImRep is described by (CImj , CNam), where CImj

is the implementation interface (5).
These theoretical statements, as well as the theory for transforming data types

in heterogeneous components [12, 19, 20], are implemented in the component
environment of the ITC [14].

2.3 Reusable Components

The component model for component-based development has the following spec-
ification [6]:

C = (T, I, F, Im, S), (9)

where T denotes type, I – interface, F – functionality, Im – implementation, S
– interoperability service for work with other components and the environment.

Basic operations upon components are:

– Specifying components and their interfaces (pre- and post-conditions, which
must be satisfied by caller components) in such languages as IDL, API,
WSDL, etc.

– Maintenance of components and reuses in the component repository for their
future integration in AS

– Application engineering, domain engineering, software product family engi-
neering, executing lifecycle processes for applied systems, etc.

2.4 Notion of Technological Lines

Technological line (TL) is created at the stage of technological preparation, which
precedes the production of artifacts and includes designing and developing the
architecture of the line. Processing components of the applied system is then
performed using the corresponding technological modules or programming
systems [20].

The main requirement imposed on the technological line development is thor-
ough selection of lifecycle processes, standard tools of the operational environ-
ment, as well as developing a certain set of normative documents. Bearing in
mind the specifics of the chosen applied domain, one can choose appropriate
reusable components, generative and implementation tools, as well as the route
for the product line processes.

218 E. Lavrischeva and A. Ostrovski

2.5 Notion of Product Lines

Product line and software product family are defined in the ISO/IEC FDIS
24765:2009(E) – Systems and Software Engineering Vocabulary as “a group of
products or services having the common manageable set of properties which
meets the requirements of a certain market segment”.

Models for representing processes of SPF development, according to Software
Engineering Institute, are the engineering and the process model.

The engineering model is created at SEI and corresponds to the three-step
production:

– Developing reusable components
– Merging them into software systems
– Managing components and applied systems

The development process encompasses defining the SPF domain, designing the
manufacturing process for a set of components, allowing for its context of use,
restrictions and production strategy. The merge process includes designing im-
plementations of each applied system on the base of the manufactured resources
and reusable components. The management process is oriented towards process
coordination.

The process model sorts out a set of processes that run on the two levels: do-
main engineering level, which is also referred to as the development “for reuse”,
and applied systems engineering level, referred to as the development “with
reuse”. Assembly lines use readymade components, which improve the time of
development and are able to support the whole manufacturing cycle according
to the specific requirements and needs. Product lines for manufacturing certain
elements of software products are developed within the fundamental project for
ISoftS, NAS Ukraine, and implemented in the instrumental and technological
complex [14], as a web site (http://sestudy.edu-ua.net). ITC is oriented
towards developing variable and interoperable components, applied systems,
and SPFs.

2.6 Concept of SPF Variability

Definition 2. Variability is the ability of a software system or artifact in soft-
ware product line to be extended, changed, customized or configured for use in
a specific context with the proper quality characteristics to mitigate its current
limitations.

Variability serves to increase reusability and sensitivity of application to the
changes in business processes and environmental conditions by expanding the
context of its applicability. At the same time it increases the complexity of
the integrated development environment (IDE) and, consequently, the duration
and cost of application production cycle. Compliance with the balance between
expected benefits and costs of implementation leads to variability assessment
and management in IDE [15, 21].

http://sestudy.edu-ua.net

General Disciplines and Tools for E-Learning Software Engineering 219

Definition 3. Variability model in SPF is a pair of mutually agreed models:

VM = (SV,AV), (10)

where SV is the SPF structure model; AV is the development process assets
model.

VM model is used to:

– increase the variability level in SPFs continuously
– provide variants of variability in SPF products
– decrease cost and time spent on producing applications

Variability includes management processes for SPF versions for:

– imposing requirements on the SPF by solving scheduling tasks
– adapting to the new operating conditions and changing certain functions and

programs
– widening the context of usage for applied systems, when processes or com-

ponents of the object domain are changing

Basics of variability are mechanisms (model, metrics, and management process),
which result in optimization of the structure of software systems built using
reusable components.

2.7 Interoperability between Programs, Systems, and Environments

Definition 4. Interoperability is the ability of components or systems to interact
with each other and exchange common information.

Formally, interoperability model is understood as the representation of parame-
ters and relationships between different components of software or informational
systems. The model reflects the relationship system and the designing process for
software product development. The relationships may be described with math-
ematical means, such as abstract algebras, set theory, and so on [18–22].

Migration of connective components and systems into new environments is
based on using interfaces and network communication protocols. Theoretical
foundation of system interoperability is based on the OSI standard model and
includes:

– Model and mechanisms for describing system interfaces
– Mechanisms and operations for transmitting data via networks from local

and global storages in heterogeneous environments

System interconnection model Minter covers interconnection between systems,
developed in a certain heterogeneous environment, to another one, extending
their limits [19]. It has the following generic structure:

Minter = {Mpro,Msys,Menv}, (11)

where

220 E. Lavrischeva and A. Ostrovski

– Mpro = (C, Int, Pr) is a program model, C being a component, Int – an
interface, Pr – a program;

– Msys = (SS, Int, Prot) is a software system model for the system SS, Int is
an interface, Prot is the data transmission protocol;

– Menv = (Env, Int, Prot) is an environment model, in which Int, Prot con-
tain the set of external interfaces and remote calls that transmit data between
programs via networks.

The basic parameters for the interconnection modelMinter are program, interface
and message or protocol. Figure 2 represents the data flow between the modern
programming environments.

Fig. 2. Interconnection between modern programming environments

The applied models for system interconnection via Eclipse IDE implement
three relationships: VS.NET↔ Eclipse, CORBA↔ Java, and IBM Web Sphere
↔ Eclipse.

General Disciplines and Tools for E-Learning Software Engineering 221

3 Structure of the ITC

The instrumental and technological complex is primarily designed for learning
basic aspects of software engineering:

– Product lines for manufacturing applied systems from heterogeneous reus-
able components

– Techniques for assembling readymade components from repositories into new
software products using technological lines

– Means and tools for supplying interoperability between systems and envi-
ronments

– Technological methods, verification, testing and assessment, described in the
e-textbook “Software Engineering” [6]

– Designing ontology-based models

– Measuring the characteristics of quality, cost, and capacity

One of the core aspects of the complex is its technological lines, which automate
the following processes:

– Development of components, reuses and services and their maintenance in
Internet repositories

– Using DSLs for creating domain descriptions (for software lifecycle and com-
putational geometry) with Eclipse-DSL environment and Protégé

– Configuring reuses and systems into SPFs with Workflows tool in VS.NET

– Translating general data types (GDT) into fundamental data types (FDT)
according to ISO/IEC 11404 standard, marshalling data and transforming
nonequivalent data in programming environments

– Programming techniques in C#, Visual Basic and other programming lan-
guages

– Using service tools within the complex

The scientifically important results of our long-term research and development
within the complex are as follows:

– Software development, adaptation theory, generative programming [1]; a new
ideology, models (interoperability, variability, livability), and methods for sup-
plying correctness (expert, V&V, metric analysis, testing) [4]

– Developing product lines from repository components and services; developing
applied systems from multi-language reuses [5]; configuring AS and domains;
methods of supplying correctness (V&V); assessing software systems (quality,
cost, capacity, reliability) [6]

– Software development using the programs factory (http://programsfactory.
univ.kiev.ua) at Shevchenko Kiev National University [9, 10]

– Methods and means described in the electronic textbook by E. Lavrischeva,
available on http://www.intuit.ru

http://programsfactory.univ.kiev.ua
http://programsfactory.univ.kiev.ua
http://www.intuit.ru

222 E. Lavrischeva and A. Ostrovski

Judging by the list of several criteria, such as the wide coverage of various soft-
ware engineering topics and supplying product lines with detailed descriptions
and examples, the ITC has no known counterparts with free access in the ex-
USSR domain of the Internet. The introduced modular architecture of the com-
plex allows widening its functionality with ease by adding new product lines or
elaborating the existing ones.

4 Approach to E-Learning Basics of Software Engineering

Teaching students the aspects of industry at Ukrainian universities is currently
at its initial stage; to solve some education problems, we have introduced a new
approach to e-learning students various aspects of SE, which assists in acquiring
knowledge on software industry in general. We suggest learning foundation of
SE with the help of the ITC web site.

4.1 Functions and Structure of the ITC Web Site

The site in question was developed as a collection of tools for software engineering
and at the same time was displayed during lectures on SE at Kiev National Uni-
versity. This drove the authors to orient the complex towards teaching students
and graduate students the basics of software engineering, including various tools
and means of its support, along the following aspects: developing programs, re-
usable components, and services; assembling software systems and their families
from reusable components, as well as developing, generating, interoperability,
and ontological modeling techniques for object domains (software lifecycle, com-
puting geometry, etc.).

Taking the above into account, we have chosen a strategy of teaching var-
ious aspects of industry-compliant SE. In order to gradually and consistently
implement this strategy within the ITC, we utilized the Internet-based meth-
ods and modern programming systems that support different aspects of software
development, namely:

– Protégé system to model object domain ontologies
– Eclipse as a tool to embed different programming and system components

into the ITC by using its plug-ins
– Microsoft Visual Studio .NET as a multifunctional tool to organize team

development of the new systems, including developing software via Internet
using various programming languages, OOP, UML, and cloud computing
frameworks, such as Azure, SkyDriven, Amazon, etc.

– CORBA system that has a universal object request broker providing in-
teroperability between programs, written in different languages, by using
stub/skeleton mechanisms

– Eclipse-DSL and Microsoft DSL Tools to support DSL tools with a graphical
user interface for designing systems, domains, applications, and software
product families

General Disciplines and Tools for E-Learning Software Engineering 223

The start page of the web site features a list of implemented sections and subsec-
tions concerning software engineering. The sections in question are: Main Page,
Technologies, Interoperability, Tools, Presentations, and Learning (http://www.
sestudy.edu-ua.net , Fig. 3).

Fig. 3. Main page of the ITC web site

Each section contains subsections with keywords that specify the names of
product lines (10 altogether). The keywords, divided into the aforementioned
main categories, are as follows:

1. Technologies
(a) Component repository
(b) Component development
(c) Composing reuses
(d) Component configuration
(e) DSL generation
(f) Quality engineering
(g) Ontologies
(h) Web services
(i) Data types transformation

2. Interoperability
(a) CORBA ↔ Eclipse
(b) Visual Studio .NET ↔ Eclipse
(c) Visual Basic ↔ Visual C++

3. Tools
(a) Eclipse
(b) Protégé

4. Presentations
(a) Applied systems

http://www.sestudy.edu-ua.net
http://www.sestudy.edu-ua.net

224 E. Lavrischeva and A. Ostrovski

(b) Software engineering and program factories

(c) Software industry

5. Education

(a) C# and Microsoft .NET framework

(b) Java

(c) Software engineering

All sections and subsections include standardized pages, such as an overall the-
oretical description, an example that illustrates the concerned topic (developed
with one of the workbench programming environments, in most cases), a thor-
ough description of the example, and so on. Each page displaying an article on
one of the topics of the complex is built using the same template that contains
the following main components:

1. The unified header, which contains the site banner and the title

2. The current location string

3. The main menu including the language panel and links for navigation

4. The navigation panel, which contains links to various subsections of the
current section

5. The content of the article

6. The footer that includes information about the site authors and developers

During the course of choosing product lines for their inclusion into the complex,
the following main criteria were taken into account (with the order reflecting
their priority, from the most important to the least significant ones):

1. Relevance of the topic in question within the software engineering discipline,
as well as its applicability for solving present-day real-world problems

2. Theoretical basis supporting the technology

3. Relations between the technology and techniques behind other product lines

4. Simplicity and accessibility of both theoretical and applied aspects of the
technology for a sufficiently wide audience, including students and lecturers
of Ukrainian universities

5. Availability of an illustrative example to explain the main concepts behind
the technology in question, preferably with applicability to certain real-world
problems

Employees of the software engineering department at ISoftS and students of
KNU and MIPT in course of writing their thematic and graduate papers imple-
mented the web site and several product lines of software development on the
basis of readymade resources and components. Particularly, they have developed
an experimental program factory, means of interoperability support between pro-
grams and systems, a domain description in DSL using Protégé environment, and
an applied system for registering academic missions in the institutes of NAS of
Ukraine.

General Disciplines and Tools for E-Learning Software Engineering 225

4.2 E-Learning Concept of Technological Lines

The ITC web site features several basic technological lines for component devel-
opment, namely:

– The program factory, which contains the specification of reusable compo-
nents and courses on basic MS .NET programming and software engineering,
and the students’ program factory, developed at the cybernetics department
of Kiev National University

– The repository of reusable components, which is an integral part of the
aforementioned factory

– Assembling multi-language programs and components into a software system
by converting incompatible data types

– Configuring reusable components in a system with complex structure that
possesses points of possible modifications in some subprograms according
to customer’s needs (variability points), designed with MS .NET Workflow
environment

– Describing applied domains in DSL with an example of the lifecycle domain
with graphical and textual representations, created with Eclipse-DSL envi-
ronment

– Quality and cost engineering with the help of Softest application, designed
to estimate labor expenditures and the cost of software development

– Designing domain ontology with Protégé environment, with an example of
the applied domain of computational geometry

– Constructing software product families by merging components that use dif-
ferent programming platforms with the help of web services

– Translating general and fundamental data types (GDT and FDT) according
to ISO/IEC 11404 standard and GRID system programming practices, by
example of the primitive library

– Generating software resources and merging them into programs, software
products, and their families with the configurator, as specified by the vari-
ability model

– Testing programs in order to obtain a correct software product and to collect
data about faults and errors, required in assessing its operational reliability

These lines are intended primarily for e-learning, but nevertheless are capable
to be used as building blocks in program factories development.

4.3 E-Learning Concept of Interoperability

The principles of interaction between systems and environments were studied by
us by examining conditions and capabilities of modern operating systems and
development environments (VS.NET, Java, CORBA, Eclipse; see Fig. 2). The
objects of the study were components, applied systems, and SPFs. The main
question of system adaptation across different environments was transforming
different formats in the application data and usage of compiled code. In their
master works, students of KNU and MIPT proposed applied interoperability

226 E. Lavrischeva and A. Ostrovski

models and implemented them for pairs of systems: Visual Basic and Visual
C++, Java and Microsoft .NET, Microsoft Visual Studio and Eclipse.

Parameters of the interconnection model are used to exchange messages be-
tween systems and environments. Interaction between systems is based on the
notion of interface, which is specified in IDL and contains definitions of data
types and remote call operations.

The ITC web site features three examples of interoperability between systems,
which are used to demostrate different levels of interconnection in software prod-
ucts:

– Interoperability between programs created in Visual Basic and Visual C++,
provided by the interface layer in form of a library, which transmits data
from one program to another and transforms incompatible data types, when
necessary

– Interoperability between Java and Microsoft .NET programming platforms,
implemented by utilizing the CORBA object request broker and using inter-
face definition language (IDL) to describe interfaces in these platforms

– Interoperability between Microsoft Visual Studio and Eclipse integrated de-
velopment environments, provided by transmitting application data of a pro-
gram, developed with Visual Studio, into the Eclipse repository, utilizing
Eclipse plug-in capabilities

4.4 KNU Students’ Experimental Program Factory

During learning SE disciplines and informational systems [7] in universities, stu-
dents perform scientific and applied work to develop their first programs or new
artifacts. Sometimes their knowledge and know-hows will be required by other
students. Therefore their artifacts may be used by others in solving different
problems, associated with a similar artifact, as well as in development of new
applied systems. Author, Prof. Lavrischeva has proposed to create an experi-
mental programs factory to accumulate knowledge about students’ artifacts and
programs.

To allow students participate in the development of research artifacts for mass
use, the web site http://programsfactory.univ.kiev.ua has been developed
(Fig. 4). The site is a part of the ‘Technologies’ line of the ITC. To develop
reusable components and programs, technological lines 1, 2, 3, 4 have been built.
These technological lines are:

– Learning C# programming language in Visual Studio .NET environment
– Selecting reusable components from the repository to meet market demands

in special-purpose software
– Configuring components to create complex program structures
– Basic fragments of knowledge (knowledge domains) concerning SE discipline

for students provided with a dedicated e-textbook by one of authors, Prof.
E. Lavrischeva

The line for repository maintenance includes mechanisms for providing uniform
documentation of stored components using their interfaces, and various tools for

http://programsfactory.univ.kiev.ua

General Disciplines and Tools for E-Learning Software Engineering 227

Fig. 4. Main page of the programs factory web site

readymade components and programs. Technological lines of the ITC are used
for quality assessment of components or programs, as well as cost assessment
using COCOMO model. The data obtained with these estimations and the gen-
eral description of the component are the elements of the certificate of software
products.

The line for building applied systems at the factory includes tools for engineer-
ing specific required components with various programming languages, programs
and artifacts.

The factory has been fully implemented; since January 2011 it was visited by
more than 4000 users.

5 Conclusion

We have implemented the following theoretical foundations of applied systems
development, necessary for teaching students:

– Classification of disciplines in SE and software industry
– Concepts for developing AS lines based on conveyor principles
– New models of interoperability and variability
– Configuring components, testing, evaluation of quality and cost of the prod-

uct
– Software development in C#, Java, Basic programming languages with Vi-

sual Studio .NET and Eclipse
– Ontological representation of knowledge on new disciplines for e-learning

(software lifecycle and computational geometry)
– ITC complex, supported by the two web sites: http://sestudy.edu-ua.net

and http://programsfactory.univ.kiev.ua

http://sestudy.edu-ua.net
http://programsfactory.univ.kiev.ua

228 E. Lavrischeva and A. Ostrovski

References

1. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley, Boston (2000)

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. Wiley, Hoboken (2004)

3. Duval, P., Matyas, S., Glover, A.: Continuous integration. Improving Software
Quality and Reducing Risk. Addison-Wesley (2007)

4. Lavrischeva, E., Koval, G., Babenko, L., Slabospitska, O., Ignatenko, P.: New The-
oretical Foundations of Production Methods of Software Systems in Generative
Programming Context. Electronic monograph. In: UK 2011, vol. 67. Akadempe-
riodika, Kiev (2011) (in Ukrainian)

5. Lavrischeva, E., Grischenko, V.: Assembly Programming, 2nd edn. Basics of Soft-
ware Industry. Naukova Dumka, Kiev (2009) (in Russian)

6. Lavrischeva, E.: Software Engineering. Akademperiodika, Kiev (2008) (in
Ukrainian)

7. Lavrischeva, E.: Cybernetics, informatics and SE: evolution aspects. In: Problems
in Programming, vol. 1, pp. 3–14. Akademperiodika, Kiev (2010) (in Russian)

8. Lavrischeva, E.: Classification of Software Engineering Disciplines. Cybernetics and
Systems Analysis 44(6), 791–796 (2008)

9. Anisimov, A., Lavrischeva, E., Shevchenko, V.: On Scientific Software Industry.
Technical report, Conf. Theoretical and Applied Aspects of Cybernetics (2011) (in
Ukrainian)

10. Aronov, A., Dzubenko, A.: Approach to Development of the Students’ Program
Factory. In: Problems in Programming, vol. 3, pp. 42–49. Akademperiodika, Kiev
(2011) (in Ukrainian)

11. Framework for Software Product Line Practice, version 5,
http://www.sei.cmu.edu/productlines/index.html

12. Lavrischeva, E.: Formation and Development of the Modular-Component Software
Engineering in Ukraine, 31 p. Glushkov Institute of Cybernetics, Kiev (2008)

13. Andon, P., Lavrischeva, E.: Development of Program Factories in the Informational
World. In: Bulletin of NAS of Ukraine, vol. 10, pp. 15–41. Akademperiodika, Kiev
(2010)

14. Lavrischeva, E.: Instrumental and Technological Complex for Developing and
Learning Aspects of Software System Development. In: Bulletin of NAS of Ukraine,
vol. 3, pp. 17–27. Akademperiodika, Kiev (2012) (in Ukrainian)

15. Lavrischeva, E., Slabospitska, O., Koval, G., Kolesnik, A.: Theoretical Aspects of
Variability Management in Software Product Families. In: KNU Bulletin. Physics
and Mathematics Series, vol. 1, pp. 151–158. KNU, Kiev (2011) (in Ukrainian)

16. Ostrovski, A.: Approach to Interconnection Support between Java and MS.NET
Programming Environments. In: Problems in Programming, vol. 2, pp. 37–44. Aka-
demperiodika, Kiev (2011) (in Russian)

17. Radetskyi, I.: One of Approaches to Maintenance Interconnection Environments
Visual Studio and Eclipse. In: Problems in Programming, vol. 2, pp. 45–52. Aka-
demperiodika, Kiev (2011) (in Ukrainian)

18. Lavrischeva, E.: Generative Programming of Software Products and Their Families.
In: Problems in Programming, vol. 1, pp. 3–16. Akademperiodika, Kiev (2009) (in
Ukrainian)

19. Lavrischeva, E.: Interaction Models of Programs, Systems, and Operational Envi-
ronments. In: Problems in Programming, vol. 3, pp. 13–24. Akademperiodika, Kiev
(2011) (in Ukrainian)

http://www.sei.cmu.edu/productlines/index.html

General Disciplines and Tools for E-Learning Software Engineering 229

20. Lavrischeva, E.: Concept of Scientific Software Industry and Approach to Cal-
culation of Scientific Problems. In: Problems in Programming, vol. 1, pp. 3–17.
Akademperiodika, Kiev (2011) (in Ukrainian)

21. Lavrischeva, E.: Problem of Interoperability between Heterogeneous Objects, Com-
ponents, and Systems. Approach to Solve It. In: 7th International Programming
Conference, UkrProg 2010, pp. 28–41. Akademperiodika, Kiev (2010)

22. Lavrischeva, E., Ostrovski, A., Radetskyi, I.: Approach to E-Learning Fundamental
Aspects of Software Engineering. In: Proceedings of ICTERI 2012, Aachen. CEUR
Workshop Proceedings, pp. 176–187 (2012)

V. Ermolayev et al. (Eds.): ICTERI 2012, CCIS 347, pp. 230–243, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Formation of Digital Competence of Future Teachers
of Elementary School

Nataliya Kushnir and Anna Manzhula

Kherson State University, 27, 40 rokiv Zhovtnya St., Kherson, Ukraine 73000
kushnir@ksu.ks.ua, ilovetrees@mail.ru

Abstract. The chapter presents the experience of forming the ICT-competencies
of future teachers of elementary school and early education. The course is
developed on the Moodle platform for distance education. The course objective is
training of future teachers to use ICT in their pedagogical activities, understanding
the role of ICT, its opportunities and perspectives for improving educational
process.

Keywords: ICT-competencies, future teachers of elementary school, distance
learning, Moodle.

1 Introduction

There is no doubt that it is the first time in the history of human kind when the gen-
eration of things, processes and ideas changes faster than generation of people [1]. All
these changes were caused by the transmission and processing of large amounts of
information by experts in a short time.

The world has changed so much since the 70th years of the XX century, that now
we face completely different reality. We live in the overloaded of information world,
it requires new skills, new lifestyle and new vision; information society presents
fundamentally new requirements to the entire education system in particular to the
training of teachers.

2 Related Work

Among the trends of society that significantly affect education it is necessary to
emphasize the active development of mobile technologies, the creation of open
electronic content, the appearance of virtual educational game technologies, the usage
of social networks for studying and so on.

Nowadays informal education outstrips the formal one. Because we (parents and
teachers) cannot prevent or stop the active usage of ICT by children, we must lead
and guide this process for children of all ages. “… it is not necessary any more to
prove that ICT matters in early childhood education. New digital technologies have
entered every aspect of our reality, including families and lives of young people. They
have already affected preschool children’s play and learning” [2].

 Formation of Digital Competence of Future Teachers of Elementary School 231

Modern children were born in the century of digital technologies and perceive in-
formation in rather different way. Mark Prensky called them digital natives [3].
Neil How & William Shtrauss in their paper Theory of generations described this
phenomenon as Generation Y. At the same time majority of modern teachers are
digital emigrants so such imbalance prevents the development of adequate interaction
between teachers and children [4].

Alan Kay in 1968 described the Dynabook concept as a portable interactive per-
sonal computer, as accessible as a book’. The Dynabook would be linked to a network
and offer users a synthesis of text, visuals, animation and audio. Kay drew an initial
pen and ink sketch of this device, which is widely considered the prototype for the
notebook computer, but in fact is much closer to today’s iPad [2].

Today, people can use massive and free internet services that allow them creation
of their own content, freely sharing it, and active participation in the communities and
social networks. Most students already use these opportunities while the process of
education at schools still remains traditional. Moreover, some internet services, such
as social networks are not supported there. As a result, there is a gap between the
level of communication and presentation of information on Social Web and at school,
where the educational process excluding home assignments is usually interrupted as
soon as the student leaves the class.

Informatics education, due to its relationship to technical devices, is bound to act
swiftly in response to societal trends. To meet modern requirements and needs of
students and their parents schools have to overcome merging gaps and provide more
personalized process of education that focuses on student’s individuality and ensure
continuity of studying.

It’s known that changes in educational system follow social and economical ones.
A new Ukrainian National standard of Primary education that was approved in April
2011 has already included Informatics as required course for all pupils starting from
the second year.

The goal of Educational system is therefore to facilitate increasing the quantity of
digital natives among the teachers. An important part of teacher's skills is related to
the competences and abilities to design, develop, conduct, facilitate and access teach-
ing and learning processes aimed at acquisition of productive “soft skills” enhanced
by Information and Communication Technologies. These skills include: knowledge
presentation, working on projects, problem solving, and communication skills. The
term “ICT-enhanced skills” is a concept coined to denote the synergy between soft
skills and ICT skills [5].

Changing the level of teachers’ ICT-skills is so important that it become a point of
attention of many large commercial and noncommercial organizations. UNESCO
worked out ICT-competency Standards for Teachers [6]. The company Microsoft
realizes project Partnership in Education, the company Intel develops the project Edu-
cation for Future and so on. As a result of the project Innovative Teacher (I * Teach)
the most essential skills were identified for teachers in the participating countries,
such as Bulgaria, Germany, Italy, Lithuania, Netherlands, Poland and Romania (as
ICT-enhanced skills for which there was a biggest need in the countries involved):

232 N. Kushnir and A. Manzhula

─ Searching and selecting information
─ Presenting information
─ Working on a project
─ Working in a team

Similar skills are the most essential either for Ukrainian school teachers.
Unfortunately, the system of education is quite inert. Despite the fact a new Ukrai-

nian national standard was approved in April last year there weren’t done any changes
in the syllabus of future teachers’ training till the 1st of September, 2012.

Therefore, the authors of this chapter have made an attempt within former discip-
line "New Information Technologies and Technical Facilities of Education" (NIT and
TFE) to develop a new curriculum and organize educational process based on the
usage of distance learning technologies which helps build ICT skills and digital com-
petence of future teachers.

Digital competence means confident usage of electronic media for work, leisure
and communication. Within this course is focused on the usage of technologies in
educational process and in future professional activities. This competence is based on
logical thinking, the high level of proficiency in information management and highly
developed communication skills. At a basic level of ICT skills includes utility of
modern IT (computers, multimedia, Internet, electronic media, ATMs, mobile phones,
etc.) for search, access, storage, production, presentation and exchange of informa-
tion, as well as communication between people and work on the Internet [1].

Other authors use the term "digital literacy" that includes the following abilities [7]:

─ Using ICT skills to create and share information
─ Searching, sifting, scanning, and sorting information
─ Navigating through screens of information
─ Locating and evaluating information
─ Using ICT to research and solve problems
─ Making multimedia presentations
─ Retrieving, organizing, managing, and creating information
─ Sending and receiving messages

The clusters of students’ skills that are need in the digital age of the 21st century are
described by different terms as digital literacy (or in the plural digital literacies), e-
literacy, new literacies, screen literacy, multimedia literacy, information literacy, ICT
literacies [7].

If we analyze the employers’ requirements, the most essential skills for them are
developed analytical thinking, communication skills, the willingness to experiment,
the ability to work in teams and so on. Of course, a teacher who doesn’t have these
skills will not be able to help students to form them. Formation of Digital competence
requires expansion of didactic goals of typical tasks for students. Therefore a
new goal “forming ICT-competencies” emerges beside the traditional goal “learning
concrete material by students”.

 Formation of Digital Competence of Future Teachers of Elementary School 233

We asked ourselves the following questions before upgrading the course:
Who will teach Informatics at Primary school?
What will be simpler and more effective:

─ empowering a teacher of primary school knowledge and skills in Informatics; or
─ empowering a teacher of Informatics knowledge and skills in Didactics and

Psychology of children

To answer these questions let us remember Ukrainian experience that is similar to the
situation with adding Informatics as required discipline in Primary school. Ten years
ago foreign languages has become a required course for all pupils starting from the
second year. It showed that a teacher is used to work with high school children and
doesn’t know Didactics and best practices of working with 6-10 year old children. As
a result many children had negative attitude to this discipline. From our point of view
the level of professional competence of primary school teachers, particularly in the
area of ICT, should be such that enable them to teach computer science.

And the next common question: What should be learnt by future teachers in ICT
field and how can we realize these didactic purposes?

At the Conference “Informatics in Secondary School - Evolution and Perspectives”
(ISSEP, 2005 in Klagenfurt, Austria and in 2006 in Vilnius, Lithuania) questions
about what exactly teachers need to be trained in terms of ICT proficiency were dis-
cussed. The one of the topic attracted much attention was about European Computer
Driving License (ECDL) that had been propagated since the late 1990s and imple-
mented at schools at this time already on a broad scale. Teachers, parents, as well as
pupils had welcomed such approach to education in ICT. Firstly, teachers had materi-
al that had a clear scope and was easy to teach and examine. Secondly, parents were
sure that their children learn “modern and relevant staff”, moreover, work with com-
puters was attractive to kids. Some colleagues already proposed to weave conceptual
knowledge in the strictly application-focused instruction of how to handle computers;
and how to handle widely used general application software [5].

We have experience in introducing ECDL at our training center at Kherson State
University that has been established as the international project (Tempus/Tacis Joint
European Project “ECDL4UA”). In the research reported in this chapter we used this
background experience and extended it on educational process of future teachers of
primary school [8]. According to ECDL students must be familiar with the basic con-
cepts of information technologies and must be able to use a personal computer and
basic applications, but the study of concrete applications is not so important now. It’s
consequence of the fact that people started using the Internet not only as professional
resource but also privately as an information resource as well as communication me-
dia with relatives and friends. There are new free services that allow each user to
create own space on the network and fill it with their content. E-learning becomes
more relevant and is positioned as “learning for future”, but there is a lack of suffi-
ciently competent educators for e-learning. It was initially pushed into the domain of
those teachers who can handle computers, i.e., teachers of informatics [5]. However,
every teacher needs to know features that modern information and communication
technologies provide for educational process, which of them are appropriate in a

234 N. Kushnir and A. Manzhula

particular situation, teachers need to have the skills of mastering new programs or
services by themselves. It is important for teachers to understand the necessity of
improving their ICT skills during the life and have a desire to do it.

There is a world tendency of shifting teacher’s role from a source of knowledge to
facilitator and ICT can be core means for this process [10]. The approval of a new
educational standard of elementary school, which includes Informatics as required
course for all pupils starting from the second year, led to increasing the priority of the
course NIT and TFE for professional training of future elementary school teachers.

Now lecturers of this course observe such tendency: students use ІCТ more often
and have better skills of working with different application in comparison with the
previous years. The results of analyzing of data, gotten from the entrance poll, have
confirmed it. Really, there is no sense to repeat the school course of Informatics: 89%
of students have their own computer or laptop; 70% of respondents have free access
to the Internet outside university; 78% of students have stated they are skilled in using
Office programs, Internet, printers, scanners; 51% of respondents have experience of
self-reliant learning of software. 49% of students feel comfortable with working at the
computer, 33% – feel confident [13]. So, there is a need to shift the emphasize from
the learning keystrokes in Informatics to understanding ICT creative potential for
teaching and applying it in future pedagogical activities. As we have seen before the
authors identified a need to investigate how goals and tasks, content, methods and
forms of teaching this course should be appropriately changed, peculiarities of its
realization and analysis of received results.

The course “NIT and TFE” is the only ICT-related discipline for undergraduate
students in our Computer Science Program., except students studying at specialization
“Basics of Informatics”. The course “NIT and TFE” is a base for studying the discip-
line “New information technologies in preschool education” (8 hours of lectures and
12 hours of practical classes) for undergraduate students of the specialty “Preschool
education”. The overall objective of these disciplines is to train future teachers to use
ICT in their pedagogical activities, to understand the role of ICT, its opportunities and
perspectives for improving educational process.

The objective of the course implemented such educational and training tasks:

─ To uncover the importance of role, opportunities and perspectives of the ICT in
preschool and elementary education, train the skills of studying with the ICT and
reasonable using these technologies in future professional activities

─ To familiarize the students with the basic facilities and methods of the modern
information technologies, their theoretical and technical basis

─ To give knowledge to the students, abilities and skills, which necessary for their
further self-improvement and self-education for the effective usage of ICT in their
future professional work

─ To organize students’ creative activities in making their own computer programs
for teaching

─ To give an opportunity to each student to realize his educational trajectory in a way
of differentiation and increasing the quantity of creative tasks

 Formation of Digital Competence of Future Teachers of Elementary School 235

─ To encourage students to make a collection of e-resources for learning
─ To form the basics of information culture of the students

The importance of the educational and training tasks listed above requires a priority
status of this and similar discipline in the curriculum of pedagogical specialties. In our
opinion, it would be reasonable to extend this course and add a lot of academic hours
by the variation part of the curriculum. For example, at the Department of Preschool
and Elementary Education of Kherson State University (DPEE and ES KSU) there is
only 18 academic hours for work in auditorium: 4 hours for lectures and 14 hours for
practical lessons, while the quantity of time for independent work is 36 hours. It re-
quires making clear tasks, forms and terms of the students’ work. It was confirmed by
the results of final poll in which fair quantity of students had expressed an opinion to
add a lot of academic hours and extend this course.

The actual level of the development of Internet-services lets an educator write an
electronic summary (e.g. in form of presentation), regularly change content without
any expenses for re-edition. Students can use such electronic resources any time, if
they missed a lesson or wish to revise the material. Students can get distant recom-
mendations from the educator or other students about different questions concerning
their tasks. Students can also load the files with the executed work to the site for con-
trol. Students have the opportunity to evaluate the course and quality of teaching and
in this way the administration can commit monitoring. This type of organization of
studying has already become a standard in many leading universities all over the
world, e.g. The University of Glasgow (http://moodle.gla.ac.uk/), University of Not-
tingham (http://moodle.nottingham.ac.uk/login/index.php), Humboldt University of
Berlin (http://moodle.hu-berlin.de/?lang=en), European University Cyprus
(http://moodleold.euc.ac.cy/login/index.php), Saint Petersburg University of Technol-
ogy (http://95.163.77.122/en/), First Moscow State Medical University
(http://moodle.spbstu.ru/).

In most cases, information and communication technologies were used to maintain
educational process at university, to supplement and intensify studying in the class-
rooms with a radical change in didactics, for example utility of presentations at lec-
tures, internet access to website with lecture material. The appearance of technologies
such as the Internet, computer multimedia and World Wide Web, Web2.0 has led to a
number of significant changes in teaching and learning process.

Our course satisfies all these norms and the Moodle platform for distant learning helps
even the beginner to realize it conveniently and easily (see http://ksuonline.ksu.ks.ua) [11].

3 Didactical and Instrumental Setting

The main webpage visualizes the structure of the course; it consists of the annotation
and the blocks with hyperlinks to each topic. The course contains the entrance poll
and testing, which give more information about the audience, identify the level of

236 N. Kushnir and A. Manzhula

residual knowledge of Informatics of the students that gives an opportunity to optim-
ize educational process. According to the results of the entrance test students are sub-
divided in two levels of difficulty of the tasks: intermediate Level А and advanced
Level В. The course includes also the final poll. Despite the fact the students spend a
lot of time at the computer, they use it mainly for entertainments. So the level of
residual knowledge of the school Informatics course is low and 79% of students stu-
died at level А, respectively 21% performed the tasks of level В. The latter level we
proposed to the students, which showed high results of the entrance testing: a quantity
of correct answers had to amount more than 75 %.

The content of lectures includes the basic definitions of ICT, approaches to using
ICT in education and classification of pedagogical software, special issues of using
ICT by children, new opportunities for teachers that are offered by technology
Web 2.0. The theoretical part of the course also contains modern requirements to
elementary teacher’s ICT-competency. The priority of the course is its professional
focus, so the lectures include peculiarities and approaches of using ICT, sanitary and
hygienic norms of working at computer in kindergartens and elementary schools,
recommendations for choosing pedagogical software.

We formulated the following requirements to the practical tasks for students on the
ground of methodological literature analysis:

1. Using ICT in the educational process, on the one hand, facilitates to the systemati-
zation of student’s knowledge in this sphere, on the other hand, reduces the level of
creative activities. Therefore, the need to increase amount of creative tasks appears
to be the compensation for such ICT influence.

2. Tasks should be directed to the forming self-education skills that is one of the
factors of the further professional development.

3. Tasks should raise internal motivation for education, particularly for studying
opportunities of using ICT in the future teaching practice.

4. Tasks should be oriented to the future professional activities.
5. Tasks should form understanding of modern tendencies of the ICT development

and using it in the educational process.

Practical tasks were structured in four blocks: “Information and communications”,
“Creating and using an educational presentation”, “Text documents for a teacher”, “Us-
ing of Excel program in pedagogical practice” and distinguished between two levels:
intermediate Level А and advanced Level В. Students are subdivided on two groups
according to the results of the entrance test (see Table 1). We considered starting the
course with the topic “Information and communications” to be principally important,
because not every student has an experience of distance learning and unfortunately a lot
of students even don’t have e-mail or don’t use it. Therefore, we had to teach students to
use the Moodle platform for distant learning and give tutor’s consultations in a case of
difficulties or technical problems with electronic correspondence.

 Formation of Digital Competence of Future Teachers of Elementary School 237

Table 1. The plan of the course “NIT and TFE”

The
acade-
mic
hours

Theme
blocks

Auditorium tasks Individual work
The content of the tasks The

forms of
control

Content of
the tasks

The
forms of
control

А (intermediate) В (ad-
vanced)

2/1

In
fo

rm
at

io
n

an
d

co
m

m
un

ic
at

io
ns

Search of the
information on
the theme: “Edu-
catio-nal pro-
grams for child-
ren”, adding the
web-pages to the
“Favorite”, filling
the table follow-
ing the example
for 5 sites.

Creating
the site by
the tools of
Google
sites, filling
the main
page and
the page of
the useful
recourses
(min5).

Loading
the file to
the site.
The hyper-
link to the
blog on the
educator’s
e-mail box.

The acquaint-
tance with the
rules of net-
work etiquette.
Formulating 5-
10 rules of
using the Inter-
net for children
of primary
school age.

The
answers
in a text
form.

2/2 Forums and polls.
Searching the
forums of the
professional the-
mes, registration
and participation
in one of them.
Creating a poll.

Creating
the poll on
the free
service and
allocation
it on the
own site.

The hyper-
link to the
site on the
educator’s
e-mail box.

The acquain-
tance with the
document “ICT
competency
standards for
teachers”.

Test on
KSU
Online.
Loading
the file to
the site.

2/5

C
re

at
in

g
an

d
us

in
g

an
 e

du
ca

tio
n-

al
 p

re
se

nt
at

io
n

Producing “film-
strip” tale with
music support

Creating an
interactive
visual aid.

Loading
the file to
the site.

The acquain-
tan-ce with the
document
“Design of
educational
products in MS
PowerPoint”.
Making test
with triggers.

Loading
the file to
the site.

2/4 Creating didac-
tical game with
the hyperlinks.

Creating
didactical
game with
the triggers.

Loading
the file to
the site.

Making the
design
of all presenta-
tions.

Loading
the file to
the site.

2/2

T
ex

t d
oc

u-
m

en
ts

 f
or

 a

te
ac

he
r

Making the letter
of commendation
by merging the
documents.

Creating
labels for a
student’s
exercise
book.

Loading
the file to
the site.

The “It would
be interesting to
know”

Loading
the file to
the site.

2/1

U
si

ng
 o

f
th

e
E

xc
el

 p
ro

gr
am

in

 p
ed

ag
og

ic
al

pr

ac
tic

e

Statistical data
analysis using
MS Excel.

Statistical
data using
MS Excel.

Loading
the file to
the site.

Drawing the
graphics and
diagrams.

Loading
the file to
the site.

2

Fi
na

l l
es

so
n

“Children and the computer”:
search of information, statistical
data, its graphic presentation in
MS PowerPoint.

Loading
the file to
the site.

 Final
complex
test.
Test.Con
clusive
poll.

238 N. Kushnir and A. Manzhula

Among practical tasks there are such ones as creating and editing a site by the tools
of Google Sites, filling its content; communicating in a blog or forum on the profes-
sional topics; producing “film-strip” tale with music support; creating interactive
visual aids and didactical games by means of MS PowerPoint; creating labels for
student’s exercise book; making certificate of good work and conduct by merging
documents in MS Word; statistical data analysis using MS Excel etc.

We’ve got interesting results of anonymous final students’ poll. They noticed that
the most difficult creative tasks are the most attractive and useful for them. The analy-
sis of data showed 64% of respondents answering the question “What task was the
most difficult one?” Chose following answers: “Creating a didactical game with the
hyperlinks”, “Making test with triggers”, “Producing “film-strip” tale”. As an answer
to the question “What task do you consider to be the most useful for you?” 79% of
students have selected variants “Producing “film-strip” tale”, “Creating a didactical
game with hyperlinks”, “Certificate of good work and conduct by merging the docu-
ments”. About 67% of students gave the following answers: “Producing “film-strip”
tale”, “Creating a didactical game with hyperlinks”, “Making poster “It would be
interesting to know”, “Making certificate of good work and conduct by merging the
documents” on the question “What of the tasks did arouse the greatest interest?”.

We have to mention that statistic data presented earlier characterize answers of
students, who studied at Level А (79% of the whole group). Approximately such
statistical data describe poll’s results in the group of Level В.

The practical tasks have unified structure: a title, an objective, necessary software,
criterion of assessment, examples of executed task, step-by-step instruction with
illustrations. Also we have developed video-lessons and put hyperlinks to subsidiary
web-resources as collateral relief. Observing the network etiquette was the important
requirement to the students’ work.

The best works by our students are made publicity retrievable at the site “Virtual
gallery of creative multimedia works of DPEE KSU students”
https://sites.google.com/site/museumfdpo, which shows the real example of using free
internet services in educational aims.

Among the most original products in gallery we wish to point to next works of our
students: “In the vegetable garden” (Irina Govrishchenko), “The games” (Tetyana
Kydrevs’ka) and “Compare numbers!” (Svitlana Shrub) [12].

This site motivates students increase quality of creating multimedia educational
products and cultivates respective attitude to copyright. Furthermore, the students’
participation in creating of the open collection of multimedia projects promotes fur-
ther collaboration, exchange of experience among other teachers in the future.

Tasks for individual work are not differentiated and do not require the high level
skills of ICT using. They induce generalization and deepening Informatics know-
ledge, understanding of the role and opportunity of using ICT in future professional
activities. Students have the considerable duration of time (36 hours) for the individu-
al work that predetermined its clear organization (statement or problem, forms of
control, execution terms etc.). Moodle Platform provides a possibility for an educator
to regulate the time for execution of the tasks (for example, the access to the function
“loading files” will be closed for students after the deadline).

 Formation of Digita

It is well known that pri
motivation. Therefore it’s
before the next lesson and i
tions, they can improve the
of their work in a form de
site”, “send hyperlink to tut

The authors added a se
students, which contain the
collating of Internet-resour
contains instructions illustr
materials decrease the task
cated. The structure of suc
rienced” software users: it
and it does not draw the ad
that let them proceed quickl

Hence, we practically rea
including more elements of

Fig. 1. Including Ele

al Competence of Future Teachers of Elementary School

nciple “effort here and now, but result – later” reduces
important that all tasks should be checked and mar

if students get some educator’s comments or recommen
eir product and get a better mark. Students submit a re
etermined previously by educator like “submit file on
tor’s e-mail”, “test on the site”, etc.
ection “Recourses for You” as an additional support
e presentations of lectures, “Useful resources” – structu
rces, “Main definitions” (glossary). ‘Guide to algorithm
ating some operation of using MS Office. These refere
description because elements of algorithms are not du

ch tasks is convenient both for “novice” and for “ex
t gives step-by-step illustrated instructions for “novice
vanced users’ attention to unnecessary detailed descript
ly and independently [11].
alized our vision of the extension of didactical purposes

f digital literacy in each course task (see Fig.1).

ements of Forming Digital Literacy in the Course Tasks

239

the
rked
nda-
esult

the

for
ured
ms”
ence
upli-
xpe-
es”,
tion

s by

240 N. Kushnir and A. Manzhula

Students use free Internet service Google.sites and
the given template for School class site creation.
School class site is an opportunity for publication
of the pupils’ works, useful information for
children and parents, home tasks and etc.

Students are offered to recall strategies of an
effective search (using key words, complicated
inquiries, analysis of few higher resources among
the results and different search engines).

Students should evaluate the results of search
appropriately to pupils’ age, security, utility and etc.

One of the tasks is edition of the page “Useful
resources”, search information, its analysis and
publication on the site. They also should describe
Internet resources for children and their parents.

School class site can be used for increasing of
interactions between pupils, parents and a teacher.
Publication of their own results and works is one
more motivate factor. Moreover, school class site
can be used for surveys by a teacher (Task 2.B).

Students should think over and change a structure
of site pages and also prepare information
for publication.

A link of the created site is sent on teacher’s e-mail.
A teacher sends a proving of its admission.

Task
“Creation of School Class Site”

Using ICT tools to create
and share information

Searching, sifting,
scanning, and sorting

information

Locating and evaluating
information

Navigating through
screens of information

Using ICT to research and
solve problems

Retrieving, organizing,
managing and creating

information

Sending and receiving
messages

Digital Literacies

Fig. 2. Forming Digital Literacy during an Execution Task “Creation of School Class Site”

As an example, forming elements of digital literacy during an execution of the task
“Creation of School class site” are in detail depicted in Fig. 2. There is one absent
element of digital literacy in Fig.2; it’s “Creation of multimedia presentation”. Students
shouldn’t create a presentation in this task, though they’ll public their presentations on
this site during next topic.

Evidently, not only elements of digital literacy but professional competency are
formed during an execution of this task. Hence, they should evaluate searched internet-

 Formation of Digital Competence of Future Teachers of Elementary School 241

resources not only appropriately its reliability, relevance but also check an adequacy to
pupils’ age, possible benefit for children and their parents and etc. Previously known
criteria of evaluating the results of this task are one of the mechanisms of formative
assessment and develop critical attitude to own work.

The final block of the webpage helps an educator in organizing the last lesson that
includes the complex task (55 minutes) and the final test (20 minutes). Students must
show skills of using at least three of four program tools offered to them at the
practical lessons and abilities to search and analyze information, identify a problem
question, well-reasoned presentation of the certain point of view and graphical visua-
lization of data, particularly statistical one. So we chose broad theme of the final task
“Children and computers” not to limit students’ creative freedom.

The aim of the final test is to check the main learnt statements of the lecture ma-
terial. Test includes questions of different form with different quantities of the right
answers. Every student has only one attempt to take the test. The aim of the conclu-
sive poll is to detect the level of student’s satisfaction by quality of methodical
support of the course, reveal the most interesting and useful topics for them, identify
new strategies of improving the course.

Thereby developed course “NIT and TFE” fully corresponds to the modern level of
educational process organization at universities. The course materials could be “dis-
seminated” at other educational institutions without attracting the authors of this
course to teaching and organizing lessons. Moreover the electronic form of this course
is open for modification and improvement.

4 Educational Experiment and Results

The discipline has been taught in the fall semester of 2011 to the third year students in
the Bachelor program Preschool and Elementary Education. 109 students attended the
class and accomplished the course.

The results of final poll evidence students’ understanding the role of ICT in future
professional activities. So, to the question “Do you consider the skills of working at
the computer to be an integral part of your teacher’s activity?” 47% students gave an
answer “Yes” and 42% – “Likely yes than no”.

Students have estimated the quality of the course materials “NIT and TFE” as 9.29
(arithmetical mean) of 10 and novelty of lecture information for them – 7.59 respec-
tively, practical tasks – 7.64according to the ten-point scale.

The students described their emotional state during studying the course “NIT and
TFE” as follows: 42% students felt interest, 17% –enthusiasm, 12% – astonishment,
8% –pride, 8% –joy, 6% –anxiety, 4% –terrible and 2% –happiness (see Fig.3).

Consequently, the results of our educational experiment have confirmed positive
results of our work.

As for further improvement of substantive component of the course we can also
follow the student’s wishes expressed in conclusive poll. Summarizing students’
replies the future course may include studying of other software and studying applica-
tions as MS PowerPoint (triggers), MS Word, MS Excel, using Internet, creating sites,

242 N. Kushnir and A. M

etc. Also students mention
sional activities and a need

Fig. 3. The Re

5 Conclusions and

Detailed and clear structure
criteria (excluding double s
academic achievements ind
organization of pedagogica
regular attention and highe
they got help from a lectur
sultations – 9% (10% of st
help from their colleagues).

The participation of stud
experience of effective ICT
work makes possible for a
influences on further impro
and educators work.

Moodle distance learning
and structured. It makes an
Moodle led to positive stud
can do some tasks distantly
of Moodle is useful for edu

The main principle for fu
that while teaching the basi
operates but mainly how to
communication, organizatio
significant change of educat

Intere
42%

Enthusiasm
17%

Manzhula

ned their desire to study methods of ICT using in prof
to add the hours of auditorium lessons.

esults of the Final Poll: Students' Emotional State

d Future Work

e of the course is useful for supporting equal conditions
standards) and makes the process of estimation of studen
dependent from the educator. We want to note, that s
al process chasten both students and tutors: requires th
r level of activity. Students note when they had proble
er during the lesson – 54% and during the individual c
tudents didn’t have any difficulties at all and 25% got
.

dents in this project has become the factor of enriching th
T using in education. Such system and style of pedagog

student to act as a subject of educational process: it a
oving the course and can access through the poll develop

g platform makes it possible to present a course visuali
educator’s work extremely organized and clear. The use
dent’s attitude to the course, particularly because stude
y. The experience of development of this course by me
cators of any other discipline as well.

uture teachers of elementary school should be the realizat
ics of informatics they should show not only how compu
o use computer as a tool for solving various problems,
on of activities, particularly research activity, that cause
tional methodology and moves accents.

est
%

m

Astonishment
12%

Pride
8%

Joy
8%

Anxiety
6%

Terrible
4%

Happiness
2%Other

1%

fes-

and
nts’
uch
heir

ems,
con-

the

heir
ical
also
pers

ized
e of
ents
eans

tion
uter
for

es a

 Formation of Digital Competence of Future Teachers of Elementary School 243

References

1. Burmakina, V.F., Zelman, M., Falina, I.N.: Great Seven (G7). Information-
communication-technological competence. Methodological preparation to testing teacher.
The International Bank for Reconstruction and Development, Moscow (2007) (in Russian)

2. Kalaš, I.: Recognizing the potential of ICT in early childhood education. Analytical sur-
vey. UNESCO Institute for Information Technologies in Education, UNESCO IITE, Mos-
cow (2010)

3. Prensky, M.: Digital Natives, Digital Immigrants. In: On the Horizon, vol. 9(5). NCB Uni-
versity Press, Lincoln (2001)

4. How, N., Strauss, W.: Millennials Rising: The Next Great Generation. Vintage Books,
New York (2000)

5. Mittermeir, R.T., Sysło, M.M. (eds.): ISSEP 2008. LNCS, vol. 5090. Springer, Heidelberg
(2008)

6. ICT Competency Standards for Teachers,
http://www.unesco.org/en/competency-standards-teachers

7. Anderson, J.: ICT Transforming Education. A Regional Guide. UNESCO, Bangkok (2010)
8. Petuhova, L.E., Osipova, N.V., Kushnir, N.O.: Actual problems of the implementation the

course ECDL in the system of training future teachers. In: Spivakovskiy, O., Kravtsov, G.
(eds.) Information Technology in Education, vol. 8, pp. 17–22. KSU, Kherson (2010) (in
Ukrainian)

9. Anderson, J., van Weert, T. (eds.): Information and Communication Technology in Educa-
tion: A Curriculum for Schools and Programme of Teacher Development. UNESCO, Paris
(2002)

10. Kashevarova, A.: Role of teacher: tutor and facilitator. Monologue psychologist. E-
magazine Schoolpsychologist,
http://psy.1september.ru/chapterf.php?ID=200700115

11. The course New information technologies and technical facilities of education,
http://ksuonline.ksu.ks.ua/course/view.php?id=10

12. The site Virtual gallery of creative multimedia works of students DPEE KSU,
https://sites.google.com/site/museumfdpo/%20

13. Kushnir, N.O., Manzhula, A.M.: The practical tasks of the course “NIT and TFE” for stu-
dents of pedagogical specialties. Scientific Pedagogical Journal Parus 4, 54–60 (2012) (in
Ukrainian)

Author Index

Alferov, Eugene 60
Alferova, Lyudmila 60
Alobaidi, Mizal 19

Baklanova, Nadezhda 1
Batyiv, Andriy 19
Borue, Sergey 177

Djeddai, Selma 131
Doroshenko, Anatoliy 39

Ermolayev, Vadim 177

Gavrilova, Lyudmila 195

Ivanov, Ievgen 111

Keberle, Natalya 177
Kulankhina, Oleksandra 165
Kushnir, Nataliya 230

Lavrischeva, Ekaterina 212
Letichevsky, Alexander 149
Letychevskyi, Olexander 149

Manzhula, Anna 230
Mezghiche, Mohamed 131
Mykhailenko, Hlib 165

Nagy, Michal 72
Nikitchenko, Mykola S. 89

Ostrovski, Alexei 212

Peschanenko, Vladimir 149

Spivakovsky, Alexander 60
Strecker, Martin 1, 131

Tymofieiev, Valentyn G. 89

Zaretska, Iryna 165
Zhereb, Kostiantyn 39
Zholtkevych, Grygoriy 19

	Title
	Preface
	Table of Contents
	Invited Contribution
	Abstraction and Verification of Properties of a Real-Time Java
	Introduction
	Related Work

	Preliminaries
	Real-Time Java
	Uppaal

	SampleUsage
	Input Program
	Generated System

	Translation from Java to Abstract Syntax Tree
	Source Language

	Translation from Abstract Syntax Tree to TimedAutomaton
	Model of Java Program Execution
	Semantics of Annotated Statements
	Automata Generation
	Model Checking

	Conclusions
	Interval Annotations
	Future Work

	References

	ICT Frameworks, Infrastructures, Integration, and Deployment
	Abstract Quantum Automata as Formal Modelsof Quantum Information Processing Systems
	Introduction
	Basic Notions and Notation
	Physical Principles of Quantum Informatics
	The Postulate of the State Space
	The Postulate of a Composite System
	The Postulate of a Quantum Evolution
	The Postulate of a Quantum Measurement

	Quantum Measurements and Isometric Operators
	Generating Operator of Kraus’ Family
	Unified Model of Quantum Evolution and QuantumMeasurement

	Quantum Actions
	Equivalence of Generating Operators for QuantumMeasurements
	Formal Definition of Quantum Action
	Quantum Actions Leading to State Collapse

	Abstract Quantum Automata
	Labelled Transition Systems
	Formal Definition of an Abstract Quantum Automaton
	The Simplest Examples of Abstract Quantum Automata

	Abstract Quantum Automata for Some QuantumInformation Processing Systems
	Quantum State Teleportation
	Deutsch – Jozsa Algorithm

	Conclusion
	References

	Parallelizing Legacy Fortran Programs Using Rewriting Rules Technique and Algebraic Program Models
	Introduction
	Our Approach: Algebraic Models and Rewriting Rules
	Algebraic Program Models
	Termware: Rewriting Rules Platform
	Patterns

	Parallelization for Shared-Memory Systems Using OpenMP
	Program Example: Gauss Elimination
	Parallelizing Loops without Dependencies
	Reduction Case
	Optimizing Memory Performance

	Real-World Example: Electron Density Program
	Finding Hotspots Using Profiler
	Finding a Set of Enclosing Loops
	Selecting a Loop for Parallelization

	Performance Evaluation
	Gauss Program
	Electron Density Program
	Comparison with Auto-Parallelizing Tools

	Related Work
	Conclusion
	References

	University as a Corporation Which Serves Educational Interests
	Introduction
	Motivation
	Related Work
	University as a Corporation
	KSU as a Corporation Serving Computer Science and IT Students
	Conclusions
	References

	Formal Logic and Knowledge-Based Frameworks
	A Multi-channel Communication Framework
	Introduction
	Motivation
	Multi-channel Communication Framework
	Framework Overview
	Knowledge Base

	Ontologies
	Overview
	Commodity Ontology
	Communication Channel Ontology
	Action Ontology
	Customer Ontology
	Message Ontology

	Message Conversion Engine
	Message Template Description
	Message Conversion Process
	Channel Selection

	Conclusion
	References

	Satisfiability and Validity Problems in Many-Sorted Composition-Nominative Pure Predicate Logics
	Introduction
	Motivating Example
	Formal Definitions of Many-Sorted Composition-Nominative Pure Predicate Logics
	Algebras of Quasiary Predicates over Typed Nominative Sets
	Many-Sorted Composition-Nominative Pure Predicate Logic
	Many-Sorted First-Order Classical Pure Predicate Logic

	Reduction of Satisfiability and Validity Problems
	Conclusions
	References

	A Criterion for Existence of Global-in-Time Trajectories of Non-deterministic Markovian Systems
	Introduction
	Non-deterministic Complete Markovian Systems
	Existence of Global-in-Time Trajectories
	Proof of Theorem about Right Dead-End Paths
	Conclusion
	References

	ICT-Based Systems Modeling, Specification, and Verification
	Combining Verification and MDE Illustrated by a Formal Java Development
	Introduction
	From Datatypes to Meta-models
	Methodology
	Source Meta-model: The Datatype Meta-model
	Target Meta-model: The Ecore Meta-model
	From Datatypes to Meta-models

	Case Study
	Presentation of the Case Study
	Implementation: DatatypesToEcore
	Applying the Transformation

	Related Work
	Conclusion
	References

	About One Efficient Algorithm for Reachability Checking in Modeling and Its Implementation
	Introduction
	Behavior Algebras
	Verification Environments
	Behaviors over Basis B
	Verification
	Partial Unfolding
	Static Permutability Property

	Algorithm of Interleaving Reduction
	Algorithm Implementation
	Examples of Application
	Conclusions
	References

	Cross-Diagram UML Design Verification
	Introduction
	Related Work
	OCL Constraints
	Critic Approach
	UML Design Execution

	Cross-Diagram Inconsistencies
	Simple Method for Detecting Cross-Diagram Inconsistencies in UML Design
	General Method for Detecting Cross-Diagram Inconsistencies in UML Design
	Evaluation Results
	Conclusions
	References

	ICT in Teaching and Learning
	Coursework Peer Reviews Increase Students' Motivation and Quality of Learning
	Introduction
	Related Work
	Experimental Settings
	Experimental Results and Discussion
	Additional Effort for Tutors
	Interpretation of Experimental Results

	Concluding Remarks and Future Work
	References

	Influence of Music Art Multimedia Production on Professional Competence of the Future Music Teachers
	Introduction
	Review of Multimedia Encyclopedias on Music Art
	Analysis of Multimedia Production for Children
	Presentation of the Multimedia Textbook Russian Music: From Ancient Times to the Early 20th Century.
	Conclusions
	References

	General Disciplines and Tools for E-Learning Software Engineering
	Introduction
	New Disciplines for Building Applied Systems fromReusable Components
	Software Industry in SE. New Concepts for Software Industry
	Theory for Building Applied Systems Using Components
	Reusable Components
	Notion of Technological Lines
	Notion of Product Lines
	Concept of SPF Variability
	Interoperability between Programs, Systems, and Environments

	Structure of the ITC
	Approach to E-Learning Basics of Software Engineering
	Functions and Structure of the ITC Web Site
	E-Learning Concept of Technological Lines
	E-Learning Concept of Interoperability
	KNU Students’ Experimental Program Factory

	Conclusion
	References

	Formation of Digital Competence of Future Teachers of Elementary School
	Introduction
	Related Work
	Didactical and Instrumental Setting
	Educational Experiment and Results
	Conclusions and d Future Work
	References

	Author Index

