
Edit Distance for XML Information Retrieval:

Some Experiments on the Datacentric
Track of INEX 2011

Cyril Laitang, Karen Pinel-Sauvagnat, and Mohand Boughanem

IRIT-SIG, 118 route de Narbonne,
31062 Toulouse Cedex 9, France

Abstract. In this paper we present our structured information retrieval
model based on subgraphs similarity. Our approach combines a content
propagation technique which handles sibling relationships with a docu-
ment query matching process on structure. The latter is based on tree
edit distance (TED) which is the minimum set of insert, delete, and re-
place operations to turn one tree to another. As the effectiveness of TED
relies both on the input tree and the edit costs, we experimented various
subtree extraction techniques as well as different costs based on the DTD
associated to the Datacentric collection.

1 Introduction

XML documents can be naturally represented through trees in which nodes are
elements and edges hierarchical dependencies. Similarly structural constraints of
CAS queries can be expressed though trees. Based on these common representa-
tions we present a SIR model using both graph theory and content scoring. This
paper is organized as follows: Section 2 presents work related to the different
steps of our approach; Section 3 presents our approaches and finally Section 4
discusses the results obtained in the Datacentric track of INEX 2011.

2 Related Works

As our algorithm is based on the structure of documents we will first overview
document structure extraction techniques. We will then give a brief survey on
tree-edit distance algorithms.

2.1 Document Structure Representation and Extraction

In the literature we identify two families of approaches regarding how to handle
document structure regardless of content. The first one is relaxation [1] [3] [5].
In these approaches, the main structure is atomized into a set of node-node
relationships. The weight of these relationships is then the distance between
nodes in the original structure. The second family is linked to subtree extraction.
The lowest common ancestor (LCA) is the tree rooted by the first common
ancestor of two or more selected nodes [4]. In IR it aims at scoring the structure
by finding the subtrees in which all the leaves contain at least on term of the
query [2].

S. Geva, J. Kamps, and R. Schenkel (Eds.): INEX 2011, LNCS 7424, pp. 138–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Edit Distance for XML Information Retrieval 139

2.2 Edit Distance

Two graphs are isomorphic if they share the same nodes and edges. Finding a de-
gree of isomorphism between two structures is called approximate tree matching.
There are three main families of approximate tree matching: inclusion, align-
ment and edit distance. We choose to use the latter as it offers the most general
application. The original tree edit distance (TED) algorithms [14] generalize
Levenshtein edit distance[10] to trees. The similarity is the minimal set of op-
erations (adding, removing and relabeling) to turn one tree to another. Later,
Klein et al. [9] reduced the overall complexity in time and space by splitting the
tree structure based on the heavy path (defined in Section 3.2). Finally Touzet
et al. [6] used a decomposition strategy to dynamically select the best nodes
to recurse on between rightmost and leftmost. Regarding the costs, a common
practice is to use apriori fixed costs for the primitive operations [11]. However
as these costs impact the isomorphism evaluation one can find some approaches
that try to estimate these costs. Most of the non-deterministic approaches are
based on learning and training techniques [13] [12].

3 Tree-Edit Distance for Structural Document-Query
Matching

In our approach the document-query similarity is evaluated by scoring content
and structure separately.We then combine these scores to rank relevant elements.
In this section, we first describe the content evaluation and then detail our
structure matching algorithm based on tree edit distance.

3.1 Content Relevance Score Evaluation

First, we used a tf × idf(Term Frequency × Inverse Document Frequency [8])
to score the document leaf nodes according to query terms contained in content
conditions. We propose two approaches. In the first one (which we call Vague)
content parts of the query are merged and the content score is evaluated in a
one time pass. In our second approach which we define as Strict, the content
conditions are considered separately and summed at the end of the process.

Our propagation algorithm is based on the idea that the score of an inner
node must depend on three elements. First, it must contain its leaves relevance
(this is what we call the intermediate score). Second we should score higher a
node located near a relevant element. Finally, the node score must depend on
the score of its ancestors. Based on these constraints we define the content score
c(n) of an element n as the intermediate content score of the element itself plus
its father’s intermediate score plus all its father’s descendants score. Recursively,
and starting from the document root:

140 C. Laitang, K. Pinel-Sauvagnat, and M. Boughanem

c(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(n)

| leaves(n) |
︸ ︷︷ ︸

(i)

+
p(a1)− p(n)

| leaves(a1) |
︸ ︷︷ ︸

(ii)

+
c(a1)− p(a1)

|leaves(a1)|
| children(a1) |

︸ ︷︷ ︸
(iii)

if n �= root

︷ ︸︸ ︷
p(n)

| leaves(n) | otherwise

(1)

(i) is the intermediate content score part, with | leaves(n) | the number of leaf
nodes descendants of n and p(n) the intermediate score of the node based on
the sum of the scores of all its leaf nodes: p(n) =

∑
x∈leaves(n) p(x), with p(x)

evaluated using a tf × idf formula; (ii) is the neighborhood score part which
allows us to convey a part of the relevance of a sibling node through its father
a1. p(a1) is the intermediate score of a1 and | leaves(a1) | the number of leaves of
a1; (iii) is the ancestor scores, evaluated with c(a1) the final score of the father
a1 minus its intermediate score.

3.2 Structure Relevance Score Evaluation

Our structural evaluation process follows three steps : subtree selection and
extraction, structure score through tree-edit distance, and the score combination.
As the final part is strongly related to the type of subtree extracted we will post-
pone our explanations subtree extraction to the end of this section.

Optimal Path of Tree-Edit Distance. As seen in section 2.2, the TED
measures similarity based on the minimal cost of operations to transform one
tree to another. The number of subtrees stored in memory during this recursive
algorithm depends on the direction we choose when applying the operations.
Our algorithm is an extension of the optimal cover strategy from Touzet et al.
[6]. The difference is that the optimal path is computed with the help of the
heavy path introduced by Klein et al. [9]. The heavy path is the path from root
to leaf which passes through the rooted subtrees with the maximal cardinality.
Selecting always the most distant node from this path allows us to create the
minimal set of subtrees in memory during the recursion : this is the optimal
cover strategy. Formally a heavy path is defined as a set of nodes [n1, ..., nz] with
T (x) the rooted tree in x, satisfying:

∀(ni, ni+1) ∈ heavy

{
ni+1 ∈ children(ni)
∀x ∈ children(ni), x �∈ ni+1, | T (ni+1) |≥| T (x) | (2)

This strategy is used on the document and the query as input of our following
TED algorithm (Algorithm 1) in which F, G are two forests (i.e. the document
and the query as first input), pF and pG are positions in OF and OG the optimal
paths (i.e. paths of the optimal cover strategy). Function O.get(p) returns the
node in path O corresponding to position p.

Edit Distance for XML Information Retrieval 141

Algorithm 1. Tree-Edit Distance using Optimal Paths

d(F , G, pF , pG) begin
if F = � then

if G = � then
return 0;

else
return d(�, G - OG.get(pG)), pF , pG++) + cdel
(OG.get(pG));

end

end
if G = � then

return d(F - OF .get(pF)), �, pF++, pG) + cdel (OF .get(pF));
end
a = d(F - OF .get(pF), G, pF++, pG) + cdel (OF .get(pF));
b = d(F , G - OF .get(pF), pF , pG++) + cdel (OG.get(pG));
c = d(T (OF .get(pF)) - OF .get(pF), T (OG.get(pG)) - OG.get(pG),
pF++, pG++) + d(F - T(OF .get(pF)), G - T(OG.get(pG)),
next(pF), next(pG)) + cmatch (OF .get(pF), OG.get(pG));
return min(a, b, c);

end

Tree-Edit Distance Costs Evaluation. TED operation costs are generally
set to 1 for removing, to 0 for relabeling similar tags and to 1 otherwise [14]
which is sufficient for evaluating relatively similar trees. However in our approach
document trees are larger than query trees which means that the edit costs
must be less discriminative. There is two constraints in estimating these costs.
First, as relabeling is equivalent to removing and then adding a node, its cost
should be at most equivalent to two removings. Second, we need to reduce the
estimation of these costs to the minimum computation cost. For these reasons
we propose to use the DTD of the considered collection to create an undirected
graph representing all the possible transitions between elements. The idea behind
is that the lower degree a node have the less its cost must be. As the Datacentric
collection comes up with two distinct DTDs (respectively movie and person)
we choose to create three graphs : one for each DTD and a last one merged
on the labels equivalent in the two. In order to process the substitution cost
cmatch(n1, n2) of a node n1 by a node n2, respectively associated with the tags
t1 and t2, we seek the shortest path in these DTD graphs through a Floyd-
Warshall [7] algorithm which allows to overcome the cycle issues. We divide this
distance by the longest of all the shortest paths that can be computed from this
node label to any of the other tags in the DTD graph. Formally, with sp() our
shortest path algorithm :

cmatch(n1, n2) =
sp(t1, t2)

max(sp(t1, tx))
∀x ∈ DTD (3)

142 C. Laitang, K. Pinel-Sauvagnat, and M. Boughanem

The removing cost is the highest cost obtained from all the substitution costs
between the current document node and all of the query nodes :

cdel(n1) = max(
sp(t1, ty)

max(sp(t1, tx))
)∀x ∈ DTD; ∀y ∈ Q (4)

Subtree Extraction and Evaluation. In our Strict model we use the minimal
subtree representing all the relevant nodes labeled with a label contained in the
query as input for the matching process. In our Vague algorithm we extract all
the subtrees rooted from the first node with a label matching a label in the query
to the documents root. Formally, for the Vague approach, with Anc(n) the set
of n ancestors; a ∈ Anc(n); T (a) the subtree rooted in a; d(T (a), Q) the TED
between T (a) and Q, the structure score s(n) is :

s(n) =

∑
a∈{n,Anc(n)}(1 − d(T (a),Q)

|T (a)|)

| Anc(n) | (5)

The idea behind this extraction is that a node located near another one matching
the structural constraint should get an improvement to its score.

For our Strict algorithm the subtree S is created from the combination of all
the paths from the deepest relevant nodes which contain a label of the query to
the higher in the hierarchy. The subtree is then the merged paths rooted by a
node having the same label than the query root. Formally it is composed of all
the nodes a extracted as {a ∈ G | a ∈ {n,Anc(n)}, ∀n ∈ leaves ∧ p(n) �= 0}

As we apply one TED for all the nodes in the created subtree, the final score
is then :

s(n) =
d(S,Q)

| S | (6)

3.3 Final Structure and Content Combination

For both models, the final score score(n) for each candidate node n is evalu-
ated through the linear combination of the previously normalized scores ∈ [0, 1].
Formally, with λ ∈ [0, 1]:

score(n) = λ× c(n) + (1− λ)× s(n). (7)

4 Experiments and Evaluation

In order to evaluate both the efficiency of our algorithms as well as the use-
fulness of the DTD based costs we run various combinations of our Strict and
Vague algorithms. These runs are with split DTD in which we used the three
DTD graphs; with no DTD for our solution in which the TED operation costs
are fixed to 1 for removing a node not in the query, 0.5 for a node with a tag in
the query, 0 for a relabeling of one node with another if their label are equiva-
lent and 1 otherwise. λ parameter from the equation (7) is set to 0.4 for Strict

Edit Distance for XML Information Retrieval 143

approachand 0.6 for the Vague one. Finally baseline are the runs in which we
only use the content part (λ = 1). As the task is to rank documents, and as
our method retrieve elements, we decided to score documents as the score of
their best element. Finally it is important to notice the presented runs are not
the official ones as the submitted runs for the INEX 2011 Datacentric track
were launched over a corrupted index missing around 35% of the documents.
Results are presented in table 1. Our Strict algorithm scores overall better that
the Vague version. It tends to demonstrate that using the content location over
the structure improves the results. However our TED structure scoring process
doesn’t seem to improve the search process even if the score tend to drop less
with the DTD costs than with the empirically set costs for our Strict algorithm.
Regarding the Vague version we cannot conclude are the results are very similar
between our three versions.

Table 1. Our corrected INEX 2011 results with λ set to 0.4 for our Strict method and
0.6 for our Vague approach compared to our baselines with no use of the DTD

Runs MAP P@5 P@10 P@20 P@30

Strict with split DTD 0.1636 0.2667 0.2361 0.2208 0.2213

Strict with no DTD 0.125 0.2167 0.1917 0.2069 0.2185

Strict baseline 0.1756 0.25 0.2389 0.2125 0.23

Vague with split DTD 0.105 0.1842 0.1789 0.1605 0.1439

Vague with no DTD 0.1083 0.1895 0.1658 0.1421 0.1289

Vague baseline 0.1104 0.1737 0.1579 0.1382 0.1351

Queries of the Datacentric track were of four types [15]. These types are
Known-item in which the aim is to retrieve a particular document; Informational
in which the user tries to find information about a subject or event; List for which
the aim is to retrieve a list of documents matching a particular subject; and
finally Others for the queries not listed in one of the previous categories. Results
against these types are shown in table 2. It appears that the ranking between the
different versions of our algorithm stays the same. However we notice that our
Strict algorithm scores significantly for the Know-item queries. As these types
of queries are particularly focused on finding only a few relevant documents this

Table 2. Our corrected INEX 2011 results for the four different types of queries

Runs Known-item Informational List Others

Strict with split DTD 0.3439 0.1082 0.1473 0.1122

Strict with no DTD 0.1796 0.1093 0.1043 0.1097

Strict Baseline 0.3637 0.1416 0.1646 0.1002

Vague with split DTD 0.1498 0.0262 0.138 0.086

Vague no DTD 0.1978 0.0254 0.1404 0.0695

Vague baseline 0.1848 0.027 0.1421 0.0772

144 C. Laitang, K. Pinel-Sauvagnat, and M. Boughanem

tends to demonstrate that our strict algorithm is more relevant in the context
of a focus search process.

4.1 Conclusions and Future Work

In this paper we presented two XML retrieval models whose main originality
is to use graph theory through tree edit distance (TED). We proposed a way
of estimating the TED operation costs based on the DTD. It appears that the
use of the DTD as well as the edit distance doesn’t improve our results for this
particular track. In future work we plan to modify our final scoring formula to
score documents. Then we will update our leave scoring process by using a more
up-to date algorithm such as a language model. Finally we will conduct future
studies on Datacentric 2010 to determine if our DTD based edit distance system
work betters on element retrieval than it does for document retrieval.

References

1. Alilaouar, A., Sedes, F.: Fuzzy querying of XML documents. In: International Con-
ference on Web Intelligence and Intelligent Agent Technology, Compigne, France,
pp. 11–14. IEEE/WIC/ACM (September 2005)

2. Barros, E.G., Moro, M.M., Laender, A.H.F.: An Evaluation Study of Search Algo-
rithms for XML Streams. JIDM 1(3), 487–502 (2010)

3. Ben Aouicha, M., Tmar, M., Boughanem, M.: Flexible document-query matching
based on a probabilistic content and structure score combination. In: Symposium
on Applied Computing (SAC), Sierre, Switzerland. ACM (March 2010)

4. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

5. Damiani, E., Oliboni, B., Tanca, L.: Fuzzy Techniques for XML Data Smushing.
In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 637–652. Springer,
Heidelberg (2001)

6. Dulucq, S., Touzet, H.: Analysis of Tree Edit Distance Algorithms. In: Baeza-
Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
83–95. Springer, Heidelberg (2003)

7. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5, 345 (1962)
8. Sparck Jones, K.: Index term weighting. Information Storage and Retrieval 9(11),

619–633 (1973)
9. Klein, P.N.: Computing the Edit-Distance between Unrooted Ordered Trees. In:

Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

10. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

11. Mehdad, Y.: Automatic cost estimation for tree edit distance using particle swarm
optimization. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers,
ACLShort 2009, pp. 289–292 (2009)

Edit Distance for XML Information Retrieval 145

12. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit dis-
tance. Information Science 177(1), 239–247 (2007)

13. Oncina, J., Sebban, M.: Learning stochastic edit distance: Application in hand-
written character recognition. Pattern Recogn. 39, 1575–1587 (2006)

14. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
15. Wang, Q., Ramı́rez, G., Marx, M., Theobald, M., Kamps, J.: Overview of the INEX

2011 Data Centric Track. In: Geva, S., Kamps, J., Schenkel, R. (eds.) INEX 2011.
LNCS, vol. 7424, pp. 118–137. Springer, Heidelberg (2012)

	Edit Distance for XML Information Retrieval:Some Experiments on the Datacentric Track of INEX 2011
	Introduction
	Related Works
	Document Structure Representation and Extraction
	Edit Distance

	Tree-Edit Distance for Structural Document-Query Matching
	Content Relevance Score Evaluation
	Structure Relevance Score Evaluation
	Final Structure and Content Combination

	Experiments and Evaluation
	Conclusions and Future Work

	References

