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Abstract. Timed Modal Epistemic Logic, tMEL, is a newly introduced
logical framework for reasoning about the modeled agent’s knowledge.
The framework, derived from the study of Justification Logic, is adapted
from the traditional Modal Epistemic Logic, MEL, to serve as a logi-
cally non-omniscient epistemic logic and dealing with problems where
the temporal constraint is an unavoidable factor. In this paper we will
give a semantic proof for the formal connection between MEL and tMEL,
the Temporalization Theorem, which states that every MEL theorem can
be turned into a tMEL theorem if suitable time labels can be found for
each knowledge statement involved in the MEL theorem. As a result, the
proof also gives us a better understanding of the semantics on the both
sides of the theorem.
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1 Introduction

Contemporarily, the modal approach of epistemic logic, MEL, with its possi-
ble world semantics is the standard logical framework for reasoning about the
mental qualities of agents [11, 8, 20]. But it is also well-noticed that the setting
is defective. The modeled agents are able to know, say, all the logical conse-
quences of their knowledge, a reasoning ability categorizing only ideal agents.
Not surprisingly, approaches has been proposed to deal with the problem (e.g.
[16, 13, 12, 7]). Based on the analysis that the problem is due to the agents’
knowing too much, different apparatuses have been suggested to restrict the
modeled agent’s reasoning ability (awareness function, impossible world, incom-
plete set of rules, etc.). However, these restrictions have been argued to be ad
hoc, and the rationality of the agency appears absent in these approaches [4]. Al-
ternatively, it has been suggested that the problem can’t be solved by proposing
weaker logical frameworks, as what these approaches are trying to do. Instead,
to solve the problem, a logical framework toward the epistemic foundation of
agent theory should reveal the dynamic feature of agents’s reasoning such that
the propositions that are hard to know can be distinguished from the ones that
are easy to.
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Several logical setting can be counted as falling into this later group of ap-
proaches, which include Step Logic (later Active Logic) [6, 15], Algorithmic Logic
[4, 5], Justification Logic [1, 2, 9], and timed Modal Epistemic Logic tMEL
[17, 18], to name some of them. Among them, tMEL is distinct in the way that
it is built up on the foundation of the original MEL logical framework, so keep-
ing the flavor of possible world semantics, serves as a logically non-omniscient
epistemic logic, so the modeled agents don’t assume to possess the reasoning
ability beyond the reach of human beings, and is capable of dealing with prob-
lems where deadline constraint is a factor, such as The Nell & Dudley Problem
[14, 10, 3]. Roughly speaking, syntactically, each MEL formula of the form Kφ
will be accompanied with a natural number i to form a formula Kiφ in tMEL,
purported to mean φ is known at the time i; and semantically, each world of a
tMEL structure will be equipped with a syntactical device, called an awareness
function, to capture when the agent is aware of a formula by the deductive pro-
cedure that the model designers assume the agent to possess. Then for example
the MEL theorem K(φ→ψ)→(Kφ→Kψ), which can be interpreted as saying
that the agent is able to perform modus ponens, has temporal counterparts in
tMEL, Ki(φ→ψ)→(Kjφ→Kkψ), for numbers i, j<k, saying further that the
rule takes time to apply. This temporalization of an MEL theorem into a tMEL
theorem is in fact not an isolated result. One of the important metatheorems
concerning tMEL, the Temporalization Theorem, making the formal connection
between MEL and tMEL, states that every MEL theorem can be turned into a
tMEL theorem if suitable time labels can be found for each knowledge statement
(formula of the form Kφ) involved in the MEL theorem.

This Temporalization Theorem renders such a fact that there is indeed a tem-
poral aspect hidden in our all familiar Modal Epistemic Logic, with its temporal
information revealed in the setting of tMEL. And with such a connection result,
it moreover suggests that it is possible for the future study to turn whatever
technical results established based on MEL in the context that temporal rela-
tions are not relevant, to more refined consequences in which the time that the
modeled agents is taken for reasoning plays an essential role. The goal of this
paper is thus to supply a semantic proof for such a connection metatheorem. Al-
though a syntactic proof of the Temporalization Theorem has been given in the
context of studying the proof relations between MEL, tMEL, and Justification
Logic [19], a semantic proof of a logical result is always of its own interests. In
particular, the generalization of the proof-theoretical method is restricted, for it
needs to take cut-free Gentzen style proofs into consideration, and, as we can
see, besides its promise of generalization, the semantic proof provided here shed
light on both the tMEL and MEL semantics.

2 MEL and tMEL Logics

2.1 Modal Epistemic Logic

We begin with a presentation of the semantics, together with the axiom systems
for reference, of the logics on the both sides of the main result. We first review
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the possible world semantics, which is the foundation of tMEL semantics. The
language of MEL is built up from a nonempty set of primitive propositions P ,
boolean connectives, and a modal operator K. To simplify the arguments, only
cases of boolean connectives negation (∼) and implication (→) will be explicitly
discussed. A well-formed MEL formula is defined according to the following
grammar φ := p|∼φ|φ→φ|Kφ, where p ∈ P .

A structure or a model for MEL is a tuple 〈W,R,V〉, whereW is a set of worlds
or epistemic alternatives, R is a binary relation defined on W , normally called
accessibility relation, and V is a function assigning possible worlds to primitive
propositions. The satisfaction relation in a structure M is recursively defined as
follows:

M,w � p⇔ w ∈ V(p),
M,w � ∼φ⇔M,w � φ,
M,w � φ→ ψ ⇔M,w � φ or M,w � ψ,
M,w � Kφ⇔M,w′ � φ for all w′ ∈ W with wRw′.

A formula is valid in a structure if it is satisfied in every world of the structure.
Formulas which are valid in all structures compose the smallest MEL logic K,
and its corresponding complete and sound axiom system is:

Axioms

Classical propositional axiom schemes
K(φ→ ψ) → (Kφ→ Kψ)

Inference Rules

if � φ→ ψ and � φ, then � ψ
if � φ, then � Kφ

Several extensions of K are often discussed in the literature. The following is
a table of some well studied modal logical axioms, especially in the epistemic
context, and their correpsponding conditions on the binary relation R:

Axiom R
T Kφ→φ Truth Axiom reflexive
4 Kφ→K(Kφ) Positive Introspection Axiom transitive
5 ∼Kφ→K(∼Kφ) Negative Introspection Axiom euclidean

Let Λ be a subset of {T, 4, 5}. A KΛ-structure is a structure whose binary
relation satisfies conditions corresponding to the axioms mentioned in Λ. We
call a formula KΛ-valid if it is valid in all KΛ structures. KΛ logic contains all
KΛ-valid formulas, and its complete and sound axiomatic counterpart is exactly
the axiom system K plus axioms in Λ. For example K45 is the logic of all
formulas valid in transitive and euclidean structures, and K45 axiom system is
K plus axioms 4 and 5. Notice that the KT 4 logic in our terminology is the
familiar S4, and KT 45 is S5. All the logics listed here are the targets of this
paper. We will show at once that theorems in these logics can be temporalized
into their counterparts in tMEL logics.
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2.2 Timed Modal Epistemic Logic

Semantics Basics. The language of tMEL is similar to the language of MEL
except that the natural numbers are now part of the formula constructors. Nat-
ural Numbers are used to denote the passage of time, that is, in tMEL a simple
structure of time, discrete, linear, with a beginning point, is considered. The
grammar of well-formed tMEL formulas is: φ := p|∼φ|φ→φ|Kiφ, where p ∈ P
and i ∈ N a natural number. Kiφ is read as the formula φ is known at time i.

A tMEL base is a tuple A = 〈A, f〉, where A is a set of tMEL formulas and
f :A → N. Given a base A = 〈A, f〉, we call a partial function α that associates
tMEL formulas with natural numbers an A-awareness function, if it satisfies the
following condition:

If A ∈ A, then α(A) ≤ f(A). (Initial Condition)

Furthermore, we will call an A-awareness function normal if it satisfies two more
conditions (α(φ)↓ means α(φ) is defined):

If α(φ→ψ)↓ and α(φ)↓, then
α(ψ)≤max(α(φ→ψ), α(φ))+1. (Deduction by Modus Ponens)

If A ∈ A and f(A) ≤ i, then
α(KiA) ≤ i + 1. (Deduction by A-Epistemization)

Basically, an agent modeled by a tMEL logic is assumed to employ some kind
of axiomatic method for reasoning, and the aim of an awareness function is to
record the reasoning process of the modeled agent. Formulas in the set A of
a base are supposed to be the formulas of which the truths are acceptable by
the agent through non-deductive methods, such as perceiving some self-evident
logical truths inherently or conveyed by others, and f indicate when these non-
deductive methods takes place. Then those conditions for awareness function
just reflect the rules that the agent can apply, and for an awareness function α,
α(φ) = i indicates that the first time when the agent accepts the truth of φ is i.

Given a base A = 〈A, f〉, a tMEL A-structure is a tuple M= 〈W,R,A,V〉,
where 〈W,R,V〉 is an MEL structure and A = {αw} is a collection ofA-awareness
functions with one for each world w ∈ W . Then the satisfaction relation in a
tMEL structure M is the same as that in MEL structure except that the rule
for modal formulas is changed to the following:

M,w � Kiφ⇔M,w′ � φ for all w′ ∈W with wRw′,
and αw(φ) ≤ i.

It says that in the world w ∈W the agent knows a formula at the time i if and
only if the formula is true in all possible worlds accessible from w and the agent
accepts the truth of the formula before or equal to i.

A formula is valid in a tMEL structure if the formula is satisfied at all worlds in
the structure. Given a base A, a structureM= 〈W,R,A,V〉 is a tK(A)-structure
if A consists of normal A-awareness functions, and the logic of tK(A) is the set
of formulas valid in all tK(A)-structures.



Temporalizing Modal Epistemic Logic 363

Similar to MEL logics, several extensions of tK(A) are defined based on sub-
classes of tK(A) structures. But now subclasses are determined not only by the
binary relation R but also by the collection of awareness functions A, and its
relation to the structure.

Given two awareness functions α, β, we write β ≤ α to mean that β(φ) ≤ α(φ)
for every formula φ with α(φ)↓. Let M= 〈W,R,A,V〉 be a tMEL structure, and
here are some more conditions on awareness functions:

If αw(φ) ≤ i, then αw(K
iφ) ≤ i+ 1 (Inner Positive Introspection)

If αw(φ) � i, then αw(K
iφ) � i+ 1 (Inner Negative Introspection)

For any wRw′, αw′ ≤ αw (Monotonicity)

For any wRw′, αw ≤ αw′ (Anti-Monotonicity)

If M,w � Kiφ, then αw(K
iφ) ≤ i+ 1. (Outer Positive Introspection)

If M,w � Kiφ, then αw(K
iφ) � i+ 1. (Outer Negative Introspection)

Within a given structure, an awareness function is positive regular (with respect
to the structure) if it satisfies the monotonicity and both inner and outer positive
introspection, and negative regular (with respect to the structure) if it satisfies
the anti-monotonicity and both inner and outer negative introspection. Some
tMEL axioms and their corresponding conditions on the awareness functions in
A are listed in the following table:

Axiom A
tT Kiφ→φ none
t4 Kiφ→Kj(Kiφ) i < j positive regular
t5 ∼Kiφ→Kj(∼Kiφ) i < j negative regular

Let Λ be a subset of {T, 4, 5}, and A be a base. A tK(A)-structure 〈W,R,A,V〉 is
a tKΛ(A)-structure if 〈W,R,V〉 is a KΛ-structure and every awareness function
in A also satisfies the conditions corresponding the tMEL axioms in Λ. A formula
is tKΛ(A) valid if it is valid in all tKΛ(A)-structures. tKΛ(A) logic contains
all tKΛ(A) valid formulas. So a tK45(A) valid formula is valid in all tK(A)-
structures whose binary relation is transitive and euclidean and its awareness
functions are all both positive and negative regular.

Logical Bases and Axiomatization. Till now, there is no restriction on
the base that is employed for the definition of tMEL semantics. But it will be
more interesting if a base consists of logical truths, since it means the agent
modeled by a tMEL logic with respect to the base have basic logical knowledge
which will function like axioms in axiom systems in the agent’s reasoning. Given
bases A= 〈A, f〉 and B= 〈B,g〉, we will write B ⊆ A to mean B ⊆ A and
f(B) ≤ g(B) for all B ∈ B. A set of bases {Ai(= 〈Ai, fi〉)}i∈N is an ascending
chain if A1 ⊆ A2 ⊆ . . ., and a base A is the limit of the chain if A =

⋃Ai,
i.e., A =

⋃
Ai and f(A) = min{fi(A) : fi(A)↓}. The following is the definition

of such bases:
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Definition 1. A base A is tKΛ-logical if one of following is true:
(1) A is empty,
(2) A consists of tKΛ(B)-valid formulas with B tKΛ-logical,
(3) A is the limit of an ascending chain of tKΛ-logical bases {Ai}i∈N

where Ai+1 consists of tKΛ(Ai)-valid formulas for every i ∈ N.

Lemma 1. If A= 〈A, f〉 is a tKΛ logical base, every formula in A is tKΛ(A)
valid.

Given a tK-logical base A= 〈A, f〉, there is a corresponding axiom system of the
logic of tK(A):

Axioms

Classical propositional axiom schemes

Ki(φ→ ψ) → (Kjφ→ Kkψ) i, j < k (Deduction by Modus Ponens)

KiA→ Kj(KiA) i < j if A ∈ A and f(A) ≤ i (Deduction by A-Epistemization)

Kiφ→ Kjφ i < j (Monotonicity)

Inference Rules

if � φ→ ψ and � φ, then � ψ (Modus Ponens)

if A ∈ A and f(A) ≤ i, then � KiA (A-Epistemization)

Let A be a tKΛ-logical base. For the logic of tKΛ(A), the sound and complete
corresponding axiom system is tK plus the tMEL axioms in Λ (more precisely,
tK plus tX axioms with X∈Λ).
Theorem 1. Given a tKΛ-logical base A, a tMEL formula φ is tKΛ(A)-valid
if and only if it is provable in the tKΛ(A) axiom system.

So for a given tKΛ logic, there is actually a collection of corresponding tKΛ(A)
logics introduced. The logical bases A are capturing the basic logical truths that
agents are assumed to be aware of, and hence different tKΛ(A) logics manifest
different logical strengths. For example, if A is the empty base, then no formula
of form Kiφ is tKΛ(A) valid. In [18], it is shown that there exists comprehensive
tKΛ-logical bases A such that every tKΛ(A) valid formula is in the base A. One
type of logical bases lying between the above two deserves additional attention.
A full tKΛ-logical base A is such that for any tKΛ valid formula φ, though φ
might not be in the base, Kiφ is tKΛ valid for some i. This feature of a full
logical base is a desirable one, since it indicates that the agent modeled by a
tKΛ logic with respect to a full logical base has enough basic logical knowledge
to derive to know all valid formulas.

Another good and natural feature that we would like a logical base to possess
is schematic. By a schematic logical base A= 〈A, f〉, we mean that suppose φ ∈ A
and f(φ) = i , then if we add a fixed number n to every number labels in φ to
form a new tMEL formula ψ, then ψ ∈ A and f(ψ) = i, too. This property
suggests that the agent modeled by a tKΛ logic with respect to a schematic
logical bases is aware of the formula in A by schema, and hence for formulas
falling into the same schema the agent is aware of them at the same time.

Fixing a Λ ⊆ {T, 4, 5}, our main goal is just to show that every KΛ theorem
can be temporalized to a theorem of a tKΛ logic with respect to a schematic full
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logical base A, that is, every KΛ theorem can be turned into a tKΛ(A) theorem
by finding suitable number labels for knowledge statements involved in the KΛ
theorem, and equivalently, due to the completeness theorem, to show that every
KΛ valid formula can be temporalized to a tKΛ(A) valid formula.

However, the route we take to prove the result will take several stages. First
we need the following lemma proved in [18] (for simplication, all the logical bases
are taken to be schematic in the following discussions):

Lemma 2. A tKΛ-logical base A is full if and only if there is a comprehensive
tKΛ-logical base B such that for every tMEL formula φ, φ is tKΛ(A) valid if
and only if φ is tKΛ(B) valid.
We call a logical base A= 〈A, f〉 principal if f is the constant function 0, that
is, f(φ) = 0 for all φ ∈ A. Let A be a principal comprehensive KΛ-logical base,
and B an arbitrary comprehensive KΛ-logical base. In the next section we will
show that a KΛ valid formula can be temporalized to a tKΛ(A) valid formula
if and only if it can be temporalized to a tKΛ(B) valid formula. This result
together with the previous lemma shows that a tKΛ logic with the principal
comprehensive logical base and that with a full logical base have the same logical
strength to temporalize KΛ valid formulas. Then in the section after, we will
prove that a tKΛ logic with the principal comprehensive logical base indeed can
temporalize every KΛ valid formula to conclude our main theorem.

3 Comprehensive Bases

Before continuing, we need some notations and terminology for our discussions
in this and the next section. For simplicity, we will use subformulas to mean
subformula occurrences of a formula in this paper. According to their positions
in a formula, subformulas can be categorized either positive or negative: for
a formula φ, φ is a positive subformula of itself and if θ→ψ, Kψ or ∼θ is a
positive subformula, or if ψ→θ, Kθ, or ∼ψ is a negative subformula, ψ and
θ are positive and negative subformula of φ respectively. Let φ be an MEL
formula. We use O(φ) to denote the set of all subformulas of φ with the form
Kψ, andO+(φ) andO−(φ) to denote the subsets ofO(φ) of positive and negative
subformulas respectively. Given a function τ :O(φ) → N, it will induce a natural
translation, also denoted as τ , on φ such that φτ is a tMEL formula and τ fixes
the primitive propositions, commutes with boolean connectives, and (Kψ)τ =
Ki(ψτ ) with i = τ(Kψ). We will call τ :O(φ) → N a temporalization function
on φ or a t-function on φ. For each MEL formula φ and a t-function τ on φ
there is a corresponding tMEL formula φτ , and for each tMEL formula ψ there
is a corresponding unique MEL formula φ (the resulting formula from removing
number labels from ψ) and a unique t-function on φ such that ψ = φτ . So in the
following we will simply write a tMEL formula as φτ with φ an MEL formula
and τ a t-function on φ. Given a t-function τ on φ, τ + n is the t-function on φ
such that (τ + n)(Kψ) = τ(Kψ) + n for every subformula Kψ ∈ O(φ), and we
will call φτ+n the n-shift of φτ .
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With these notations we can define a schematic logical base A(= 〈A, f〉) as
that if φτ ∈ A, φτ+n ∈ A for every n and f(φτ+n) = f(φτ ), and we can define
a temporalization of a KΛ valid formula φ as that there is a t-function τ on φ
such that φτ is a tKΛ valid formula with respect to a logical base.

We call a set S of tMEL formulas tKΛ(A)-satisfiable if all the formulas are
satisfiable in a world of a tKΛ(A) structure, and tKΛ(A)-finitely satisfiable
if every finite subset of S is satisfiable. The compactness theorem holds for
all tKΛ(A) with A a logical base. The proof is basically by constructing the
tKΛ(A)-structure M= 〈W,R,A,V〉 composed of all maximal tKΛ(A)-finitely
satisfiable set Γ of formulas, where ΓRΓ ′ if and only if Γ � ⊆ Γ ′ for Γ � =
{ψ | Kψi ∈ Γ}, and αΓ and V are defined as αΓ (ψ)=min{i | Kψi ∈ Γ} and
V(P )={Γ | P ∈ Γ}, respectively. In the following discussions, this model will
be referred to as the canonical tKΛ(A) model. We will leave the qualification of
this structure as a tKΛ(A)-structure and the Truth Lemma: M,Γ � φ if and
only if φ ∈ Γ , for the readers to check.

Theorem 2 (Compactness Theorem). Given a tKΛ-logical base A, a set
of tMEL formulas is tKΛ(A)-satisfiable if and only if it is tKΛ(A)-finitely
satisfiable.

For a function f :A → N, we write f |B to mean the restriction of f to the subset
B of A.

Corollary 1. Given a tKΛ-logical base A = 〈A, f〉, a tMEL formula φτ is
tKΛ(A) valid if and only if there is a A′ = 〈A′, f ′〉 where A′ is a finite subset
of A and f ′ is f |A′ such that φτ is tKΛ(B) valid.
We call an awareness function β an n-backshift of an awareness function α pro-
viding for every φ if α(φτ+n)↓, then β(φτ )↓, and β(φτ ) = max{0, α(φτ+n)−n}.
A structure M ′ = 〈W ′, R′,A′,V ′〉 is an n-backshift of M = 〈W,R,A,V〉 if
〈W,R,V〉 = 〈W ′, R′,V ′〉 and every awareness function βw in A′ is an n-backshift
of αw in A. We have the following lemma.

Lemma 3. If a tMEL structure M ′= 〈W ′, R′,A′,V ′〉 is an n-backshift of M=
〈W,R,A,V〉, M,w � φτ+n if and only if M ′, w � φτ for any tMEL formulas φτ .

The proof is simply by induction on the complexity of formulas. Finally, we also
need the following:

Lemma 4. For any tKΛ-logical bases A, if φτ is tKΛ(A) valid, then for any
number n, φτ+n is also tKΛ(A) valid.

Proof. The syntactical proof of this lemma is straightforward (take a look at
the axiom systems); however we give a semantic proof here to investigate the
tMEL semantics and to render some skills and techniques that might be use-
ful for the future work. Suppose that there is an n and a tKΛ(A)-structure
M= 〈W,R,A,V〉 such that M,w � (∼φ)τ+n. Let M ′ be the n-backshift of M ,
then by Lemma 3, M ′, w � (∼φ)τ . Now we have to prove that M ′ is also a
tKΛ(A)-structure to finish the proof. That is, we have to show whatever condi-
tions that are listed above are satisfied by αw ∈M , are also satisfied by βw ∈M ′.
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The proof is straightforward. We only check the case for the initial condition.
Since φτ ∈ A, φτ+n ∈ A (logical bases are supposed to be schematic). Then
β(φτ ) = max{0, α(φτ+n)−n} ≤ f(φτ+n) = f(φτ ). So βw is also an A-awareness
function.

Theorem 3. A tMEL formula φτ is a valid formula of a tKΛ logic with re-
spect to a comprehensive logical base if and only if there is a t-function τ ′ on
φ such that φτ

′
is a valid formula of a tKΛ logic with respect to the principal

comprehensive logical base.

Proof. Given a logical base A = 〈A, f〉, we first assign a rank to every tKΛ(A)
valid formula. Let S be the set of all tKΛ(A) valid formulas, and ∅ be the empty
logical base. If φτ ∈ S is tKΛ(∅) valid, the rank is 1. Suppose we have assigned
formulas in S with rank less than k. Let B be the set of formulas in A whose
ranks less than k, and B = 〈B, f |B〉. Then for formulas in S whose ranks are
undefined and which are also tKΛ(B) valid, their ranks are k. Now according
to Corollary 1, every formula in S is of a finite rank. Since for a comprehensive
logical base every valid formula of the tKΛ logic with the base is in the base, so
every formula in the base has a rank.

We first prove the if-part of the theorem. LetA(= 〈A, 0〉) be the principal com-
prehensive tKΛ-logical base, and B(= 〈B,g〉) be a comprehensive tKΛ-logical
base. We will actually show that if φτ is tKΛ(A) valid, then there is a n ∈ N

such that for any m ≥ n, φτ+m is tKΛ(B) valid, by induction on the rank of
φτ ∈ A. When φτ ’s rank is 1, which means φ is tKΛ(∅) valid, so φ is tKΛ(B)
valid. Then by Lemma 4, φτ+n is tKΛ(B) valid, too, for every n. So φτ+n ∈ B.
The base case holds. Now suppose φτ ’s rank is k>0, then there is a finite base
A′ = 〈A′, 0〉 such that φτ is tKΛ(A′)-valid, where A′ = {φτ11 , . . . , φτss } and for
each i the rank of φτii is less than k. Then by IH, there is an ni for each i such
that φτi+ni

i is tKΛ(B)-valid, and hence g(φτi+ni

i ) ↓.
Now picking m large enough such that m > ni and m > g(φτi+ni

i ) for each i,
we are going to show φτ+m is tKΛ(B)-valid, and then finish the proof. Suppose
φτ+m is not tKΛ(B)-valid, ∼φτ+m is satisfiable in a tKΛ(B)-structure M . Let
M ′ be the m-backshift of M . Then ∼φτ is satisfiable in M ′, by Lemma 3. So
all we need to show is that M ′ is a tKΛ(A′)-structure. Everything is similar
to the proof in the previous Lemma 4, except that we have to show that every
m-backshift awareness function βw in M ′ of the awareness function αw in M is
an A′-awareness function. Since φτi+m

i is in B, αw(φ
τi+m
i )↓ and hence βw(φ

τi
i ) is

defined. By the definition ofm-backshift βw(φ
τi
i ) = max{0, αw(φ

τi+m
i )−m} = 0.

Hence every βw in M ′ is tKΛ(A′) valid and M ′ is a tKΛ(A′)-structure.
For the only-if-part, let Ai= 〈Ai, 0〉, where Ai={φτ∈A | the rank of φ is equal

to or less than i}, and Bi= 〈Bi,gi〉, where Bi={φτ∈B | the rank of φ is equal to
or less than i} and gi=g|Bi

. We will prove that for every i, Bi ⊆ Ai. and hence
B ⊆ A. We prove it by induction on the index. For the base case, both A1 and
B1 are the collection of tKΛ(∅) valid formulas, so B1 ⊆ A1. Suppose Bi ⊆ Ai,
then every tKΛ(Ai)-awareness function is a tKΛ(Bi)-awareness function, and
hence every tKΛ(Ai)-structure is a tKΛ(Bi)-structure, so every tKΛ(Bi) valid
formula is a tKΛ(Ai) valid formula. This completes the proof.
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4 Temporalization Theorem

So in this section we will complete the semantic proof of Temporalization The-
orem. We first prove several interesting theorems about the tMEL semantics,
which will lead us to the main result. In this section we fix an MEL logic KΛ
and its tMEL counterpart tKΛ(A) with A the principal comprehensive logical
base. All discussions will be relative to these fixed logics. We will omit the logic
name. From the context it should be clear which logic (KΛ or tKΛ(A)) is under
discussion. We write � φτ to mean φτ is tKΛ(A) valid. Notice that the most
important feature of the principal comprehensive logical base is that if � φτ then
� K0(φτ ).

Definition 2. Let φ be an MEL formula and τ and τ ′ two t-functions on φ,

1. τ < τ ′ if for any Kψ ∈ O(φ), τ(Kψ) < τ ′(Kψ).
2. τ ≺ τ ′ if for any Kψ ∈ O+(φ), τ(Kψ) < τ ′(Kψ), and for any Kψ ∈ O−(φ),
τ ′(Kψ) < τ(Kψ).

Lemma 5. If τ ≺ τ ′ on φ, then � φτ → φτ
′
.

Proof. The proof is by induction on the complexity of formula φ. The base case is
trivial. Suppose φ≡∼ψ, then τ ′ ≺ τ on ψ, and by the Induction Hypothesis (IH),
� ψτ ′→ψτ , so � ∼(ψτ )→∼(ψτ ′

), and hence � (∼ψ)τ→(∼ψ)τ ′
. We skip to check

the case for φ≡ψ→θ. Suppose φ≡Kψ, then τ ≺ τ ′ on ψ. By IH, � ψτ→ψτ ′
. Since

� K0(ψτ→ψτ ′
), � Ki(ψτ )→Kj(ψτ ′

) for i < j and hence � (Kψ)τ→(Kψ)τ
′
. The

case for implication is similar. This completes the proof.

Theorem 4. Let φ be an MEL formula. If for every t-function τ , φτ is satisfi-
able, then the set S composed of formulas φτ for all τ is satisfiable.

Proof. Suppose the set S is not satisfiable, then there is a finite subset
{φτ1 , . . . , φτs} of S which is not satisfiable. So � ∼(φτ11 ∧ . . .∧φτss ). By Lemma 4,
for any n ∈ N, � ∼(φτ1+n

1 ∧ . . . ∧ φτs+n
s ). Hence we can pick a larger number n

and a τ such that τ ≺ τi + n for each i. Then � ∼φτ . A contradiction. So S is
satisfiable.

Definition 3. Let φ be an MEL formula.

φ is t-satisfiable if there is a τ on φ such that φτ is satisfiable, and t-refutable
if there is a τ on φ such that ∼φτ is satisfiable.

φ is unboundedly t-satisfiable (t-refutable) if there is a τ on φ such that for
every τ ′ > τ on φ there is a τ ′′ > τ ′ on φ such that φτ

′′
is satisfiable (refutable).

φ is upward-closedly t-satisfiable (t-refutable) if there is a τ on φ such that for
every τ ′ > τ , φτ

′
is satisfiable (refutable).

Definition 4. A configurational structure M= 〈W,R,A,V〉 is such that Kφ is
unboundedly t-satisfiable at w, provided for every w′ with wRw′, φ is unboundedly
t-satisfiable at w′ then.
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Theorem 5. Every satisfiable set is satisfied in a configurational structure.

Proof. We will prove the canonical structure is configurational, and it is sufficient
to prove the following lemma. Let [φτ ] = {φτ ′ |τ ′ > τ}.
Lemma 6. Let Γ be a maximal finitely-satisfiable set of tMEL formulas. If for
an MEL formula ∼Kφ there is a τ on ∼Kφ such that [(∼Kφ)τ ] ⊆ Γ , then
Γ � ∪ [(∼φ)τ ′

] is satisfiable, for τ ′ > τ on ∼φ.
Proof. We will prove this theorem by contraposition. Suppose for an τ ′ > τ ,
Γ � ∪ [(∼φ)τ ′

] is not satisfiable. Then there are finitely many formulas Fi ∈ Γ �,
and finitely many formulas (∼φj)τj ∈ [(∼φ)τ ′

] such that the set {Fi}∪{(∼φj)τj}
is not satisfiable, and hence � ∼((

∧
Fi)∧(

∧
(∼φj)τj )) (i and j belong to some

finite index sets which we do not mention here). It follows that � (
∧
Fi)→(

∨
φ
τj
j ).

Define τ ′′ on φ such that for any Kψ ∈ O+(φ), τ ′′ = max{τj(Kψ)}+ 1, and for
any Kψ ∈ O−(φ), τ ′′(Kψ) = τ ′(Kψ). Then τj ≺ τ ′′ and τ < τ ′′ on φ. Since

� (
∧
Fi)→(

∨
φ
τj
j ) and � φτj→φτ

′′
for all j, then � (

∧
Fi)→φτ

′′
. Since Fi ∈ Γ �,

then
∧
Fi ∈ Γ � and Kk(

∧
Fi) ∈ Γ for some k. Since � (

∧
Fi)→φτ

′′
, then

� K0((
∧
Fi)→φτ

′′
), so � K(

∧
Fi)

k→K(φτ
′′
)l, for l > k, and hence � K(φτ

′′
)l.

Then let τ ′′′ on Kφ such that τ ′′′(Kψ) = τ ′′(Kψ) for all Kψ ∈ O(φ), and
τ ′′′(Kφ) = max{τ(Kφ), l} + 1, so τ ′′′ > τ on Kφ and � (Kφ)τ

′′′
. It follows

(Kφ)τ
′′′ ∈ Γ . So the lemma holds.

(Proof of Theorem 5 Continued) Suppose the canonical structure is not configu-
rational, then there is a formulaKφ, and a maximal finitely satisfiable set Γ such
that Kφ is not unboundedly t-satisfiable at Γ but φ unboundedly t-satisfiable
at all maximal finitely satisfiable set Γ ′ ⊇ Γ �. Then ∼Kφ is upward-closedly
t-satisfiable at Γ , and hence there is a τ on ∼Kφ such that [(∼Kφ)τ ] ⊆ Γ ,
by Truth Lemma. By the previous lemma, there is a τ ′ > τ on ∼φ such that
Γ � ∪ [(∼φ)τ ′

] is satisfiable. Then φ is not unboundedly t-satisfiable at some Γ ′.
A contradiction. So the canonical structure is configurational.

Given a tKΛ structure M= 〈W,R,A,V〉, we will call 〈W,R,V〉 the underlying
KΛ structure of M and denote it as M◦.

Theorem 6. Let φ be an MEL formula, M= 〈W,R,A,V〉 be a configurational
structure and w ∈W .

1. If φ is upward-closedly t-satisfiable at (M,w) then φ is satisfiable at (M◦, w),
2. If φ is upward-closedly t-refutable at (M,w) then φ is refutable at (M◦, w),

Proof. We will prove this by induction on the complexity of φ. The basic case
is trivial. Suppose φ≡∼ψ is upward-closedly t-satisfiable at (M,w), then ψ is
upward-closedly t-refutable at (M,w). So ψ is refutable at (M◦, w), and φ is
satisfiable at (M◦, w). The proof for the second condition is similar.

Suppose at (M,w), φ≡ψ→θ is upward-closedly t-satisfiable, we will show
that either ψ is upward-closedly refutable or θ is upward-closedly satisfiable at
(M,w). Suppose not, then for every τ on ψ there is a τ ′ > τ on ψ such that
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ψτ is satisfiable, and for every τ on θ there is a τ ′ > τ on θ such that θτ
′
is

refutable. Then for every τ on φ, we can always establish a τ ′ > τ on φ such that
ψτ ′

is satisfiable and θτ
′
is refutable, and hence φ≡ψ→θ is not upward-closedly

satisfiable. A contradiction. Then either ψ is upward-closedly refutable or θ is
upward-closedly satisfiable at (M,w). So, by IH, ψ is refutable at (M,w) or θ is
satisfiable at (M,w), and hence ψ → θ is satisfiable at (M,w). The other part
for this case is straightforward. We skip the proof here.

Finally we deal with the modal case. Suppose φ ≡ Kψ, and φ is upward-
closedly satisfiable at (M,w), then for every wRw′, ψ is upward-closedly satis-
fiable at (M,w′), so ψ is satisfiable at (M◦, w′), and hence Kψ is satisfied at
(M◦, w). Now we suppose φ is upward-closedly refutable at (M,w), then suppose
for every wRw′, ψ is unboundedly satisfiable at (M,w′), thenKψ is unboundedly
satisfiable at (M,w), sinceM is configurational. ThenKψ is not upward-closedly
refutable at (M,w). This contradicts to our assumption. So there is a w′ with
wRw′ such that ψ is upward-closedly refutable at (M,w′), and hence ψ is not
satisfiable at (M◦, w′), so φ is not satisfiable at (M◦, w). This completes the
proof.

Let Λ be a subset of {T, 4, 5}. Here is our main result:

Theorem 7. Given the principal comprehensive tKΛ-logical base A, φ is KΛ
valid if and only if there is a temporalization function τ on φ such that φτ is
tKΛ(A) valid.

Proof. We first prove the direction from right to left. Suppose φ is satisfiable in a
world w of a KΛ structureM= 〈W,R,V〉. LetM+= 〈W,R,A,V〉, where A is the
collection of awareness functions αw such that αw(φ

τ ) = 0 for all tMEL formulas
φτ . Then all αw are tKΛ(A)-awareness function, and hence M+ is a tKΛ(A)-
structure. It can then be checked by induction that for any MEL formula φ and
any t-function τ on φ, M,w � φ if and only if M+, w � φτ for any w ∈M . This
completes the proof. Now suppose there is no τ such that φτ is tKΛ-valid, then
for all τ on φ, ∼φτ is satisfiable. By Theorem 4, there is a structure M and a
world w of the structure such that for all τ , ∼φτ is satisfiable at (M,w). And
then by Theorem 5, we can assumeM is configurational. At last, by Theorem 6,
∼φ is satisfied at (M◦, w). A contradiction. So the other direction and the whole
theorem is proved.

Corollary 2. Given a full tKΛ-logical base A, φ is KΛ valid if and only if there
is temporalization function τ on φ such that φτ is tKΛ(A) valid.

5 Conclusion

In this paper we render a semantic proof to the Temporalization Themorem,
and the proof itself, which includes several lemmas and theorems, also gives us
a closer look of the tMEL secmantics and its relation to the MEL semantics.
Taken as an example, the Theorem 6 gives us the idea that the pattern of
the truth-values of the formulas in the tail of such a sequence: {φτi}i∈N with



Temporalizing Modal Epistemic Logic 371

τi < τi+1 in a world of a tMEL structure is an indication of the truth value of
φ in the same world of the underlying MEL structure. For the future work, we
hope we can extend the method used here to provide a semantic proof for the
Realization Theorem in Justification Logic, which is varied from tMEL in the
way that, briefly, it is the proof terms, which enjoy a more complicated structure,
that plays the roles in Justification Logic as that played by natural numbers in
tMEL.
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