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Abstract. Aumann’s Rationality Theorem claims that in perfect infor-
mation games, common knowledge of rationality yields backward induc-
tion (BI). Stalnaker argued that in the belief revision setting, BI does not
follow from Aumann’s assumptions. However, as shown by Artemov, if
common knowledge of rationality is understood in the robust sense, i.e., if
players do not forfeit their knowledge of rationality even hypothetically,
then BI follows. A more realistic model would bound the number of hy-
pothetical non-rational moves by player i that can be tolerated without
revising the belief in i’s rationality on future moves. We show that in
the presence of common knowledge of rationality, if n hypothetical non-
rational moves by any player are tolerated, then each game of length less
than 2n+3 yields BI, and that this bound on the length of model is tight
for each n. In particular, if one error per player is tolerated, i.e., n = 1,
then games of length up to 4 are BI games, whereas there is a game of
length 5 with a non-BI solution.

1 Introduction

Aumann proved that in games of perfect information, common knowledge of
rationality yields backward induction [3]. Stalnaker showed that if players are
allowed to revise their beliefs in each other’s rationality in response to surprising
information, this is not the case [10]. In [7], Halpern showed that the differ-
ence between the two lies in how they interpret the following counterfactual
statement: “If the player were to reach vertex v, then she would be rational at
vertex v.”

Let us consider the game in Figure 1 which is due to Stalnaker and which
Halpern uses to point out the difference in Aumann’s and Stalnaker’s arguments.
Assume that it is common knowledge that the actual state is (dda). This means
that Ann plays down (d) in vertex v1, Bob plays down (d) in vertex v2, and
Ann plays across (a) in vertex v3, and that all of this is common knowledge
between Ann and Bob. To say that some fact F is common knowledge between
Ann and Bob means that Ann knows F , Bob knows F , Ann knows that Bob
knows F , Bob knows that Ann knows F and so on. So if we assume that the
state (dda) is common knowledge, this means that all moves are known right
at the beginning of the game. The question is whether (dda), which is different
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than the backward induction solution (aaa), can be the solution of the game in
the presence of common knowledge of rationality.

Here it should also be noted that Stalnaker has no problem with the formal
correctness of Aumann’s proof. Aumann’s framework does not allow belief revi-
sion. Stalnaker, on the other hand, allows players to revise their beliefs after a
non-rational move by another player, even if that mentioned non-rational move
is hypothetical.

Let us look at the game in Figure 1 from Stalnaker’s perspective: At (dda),
Ann is rational at v1, because Bob is playing d at v2. At v2, Bob revises his
belief on Ann’s rationality, due to her hypothetical non-rational move (or the
surprising information) a at v1, and considers Ann’s playing d at v3 also possible
as a result of this belief revision. He plays d and he is rational. Ann is rational
at v3 by playing a.

While Halpern layed out the differences in Aumann’s and Stalnaker’s argu-
ments, Artemov in [2] showed that in perfect information games with Stalnaker-
style belief revision setting, if players maintain their beliefs in each other’s
rationality in all, even hypothetical situations, i.e., if there is so-called robust
knowledge of rationality in the game, then the only solution of the game is the
backward induction. That is, if Bob does not revise his beliefs on Ann’s rational-
ity at v2, (dda) cannot be the solution of the game in the presence of common
knowledge of rationality.

Other works on epistemic foundations for backward induction include [1], [4],
[5], [8] and [9].
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Fig. 1. 3-move game

In this paper, we will investigate the case where it is common knowledge that
players are rational (in Stalnaker’s sense) at all vertices of the game tree, and
they tolerate n hypothetical non-rational moves of other players. If n = 0, we end
up with Stalnaker’s framework where after 1 error, players revise their beliefs.

2 Game Models and Rationality

Halpern extends Aumann models to represent N -player extensive form games
with perfect information where players can revise their beliefs [7]. An extended
model is a tuple
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M = (Ω,K1, ...,KN , s, f)

where Ω is a set of states of the world, Ki is the information partition of player
i, and s maps each state ω ∈ Ω to a strategy profile s(ω) = (s1, ..., sN) where
si is player i’s strategy at state ω. Function f , called selection function, maps
state-vertex pairs to states. Informally, f(ω, v) = ω′ means that ω′ is the closest
state to ω where vertex v is reached. Let hv

i (s) denote player i’s payoff if strategy
profile s is played starting at vertex v. Let P be the function that maps non-
terminal nodes to players to indicate the player moving at a given node.

Definition 1. Player i is Aumann-rational, or A-rational, at vertex v in state
ω if for all strategies si such that si �= si(ω), h

v
i (s(ω

′)) ≥ hv
i (s−i(ω

′), si) for some
ω′ ∈ Ki(ω) where s−i(ω

′) denotes the strategy profile of the players other than
i at state ω′.

Note that according to this definition, a player is rational as long as her
strategy in the current state ω yields her a payoff at least as good as any of her
other strategies in some state that she considers possible at ω.

Definition 2. Player i is Stalnaker-rational, or S-rational, at vertex v in state
ω if i is A-rational at v in state f(ω, v).

Substantive rationality is rationality (A-rationality or S-rationality, depend-
ing on which framework we are working with) at all vertices of the game tree.

The formalization of selection functions is due to Halpern [7], and the main
idea of a selection function f is for each state ω and vertex v to indicate the
epistemically closest state f(ω, v) to ω in which v is reached. Halpern assumes
that the selection function f satisfies the following requirements:

– F1. Vertex v is reached in f(ω, v).
– F2. If v is reached in ω, then f(ω, v) = ω.
– F3. s(f(ω, v)) and s(ω) agree on the subtree below v.

3 Tolerating Hypothetical Errors

Our model extends Halpern’s so that the selection function now satisfies an
additional requirement F4n (given below) in order to represent the n-tolerance
of the players. We will give the definitions of an error-vertex and the condition
F4n simultaneously.

The following definition extends Aumann’s rationality to hypothetical moves.

Definition 3. We say that a move m at v in ω is rational if player i = P (v)
is Aumann-rational at v in some state ω′ which has the same profile as some
ω̃ ∈ Ki(ω) except, possibly, for the move m which is plugged into v.

Definition 4. Given a state ω, a vertex v is an n-error vertex, if n is the least
natural number ≥ 0 such that each player makes not more than n non-rational
moves (possibly hypothetical) at vertices v′ from the root to v in states f(ω, v′).
Obviously, the root vertex is always 0-error. If there are 2k moves from the root
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to v, then each player makes ≤ k moves there and v is at most a k-error vertex.
Other examples will be discussed later in this section.

The following condition reflects the idea of n-tolerance which is built-in into
the selection function: sets of future scenarios are not revised after ≤ n (possibly
hypothetical) non-rational moves of each player.

Condition F4n. For each state ω and k-error vertex v with k ≤ n and
i = P (v), if ω′ ∈ Ki(f(ω, v)), then there exists a state ω′′ ∈ Ki(ω) such
that s(ω′) and s(ω′′) agree on the subtree below v.

Halpern uses a similar condition to model Aumann’s framework, which says
that players consider at least as many strategies possible at ω as at f(ω, v); and
this applies to all vertices in the game tree. Our condition F4n says the same
thing for ≤ n-error vertices, hence limiting the tolerance level in the game to
n (possibly hypothetical) non-rational moves per player. In other words, in an
n-tolerance game, players will not revise their beliefs about rationality for the
first n hypothetical non-rational moves of those players.

Example 1. Consider the game in Figure 1. The following extended model is
from [7]

The strategy profiles are as follows:

– s1 = (dda)
– s2 = (ada)
– s3 = (add)
– s4 = (aaa): this is the BI solution.
– s5 = (aad)

The extended model is M1 = (Ω,KAnn,KBob, s, f) where

– Ω = {ω1, ω2, ω3, ω4, ω5}
– KAnn = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}}
– KBob = {{ω1}, {ω2, ω3}, {ω4}, {ω5}}
– s(ωj) = sj for j = 1− 5
– f(ω1, v2) = ω2, f(ω1, v3) = ω4, f(ω2, v3) = ω4, f(ω3, v3) = ω5, and f(ω, v) =

ω for all other ω and v.

It is assumed that the actual state is ω1 with s(ω1) = (dda), and this is commonly
known to players. Let us check which vertices are erroneous:

– v1 is a 0-error vertex.
– v2 is a 1-error vertex since Ann’s move from v1 to v2 is not rational in ω1.

She only considers (dda) possible at this node and changing the move at v1
to a results in (ada), which would make Ann non-rational at v1.

– v3 is a 1-error vertex, by an easy combinatorial argument. Ann was not
rational at v1, so v3 is at least 1-error vertex. However, it is at most 1-error,
since the move at v2 is made by Bob, and it cannot change the maximum of
error counts at v3. However, let us check that Bob is rational in moving from
v2 to v3 at f(ω1, v2) = ω2 = ada. In (ada), Bob considers both (ada) and
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(add) possible, and plugging the hypothetical move a into vertex v2 would
result in strategy profile (aaa) that corresponds to state ω4 in which Bob is
rational at v2.

4 Belief Revision with Tolerance

Example 2. Let us consider the game in Figure 1 again. Note that in this
game, with the model M1, in the presence of common knowledge of substantive
rationality the realized strategy profile, i.e., (dda), is different than the backward
induction solution (aaa). We will also assume common knowledge of substantive
rationality, and show that (dda) cannot be the solution of the 1-tolerant version
of this game.

Since players are 1-tolerant, the selection function f should satisfy the con-
dition F4n with n = 1. This means that the first hypothetical error for each
player is tolerated. In particular, even if Ann and Bob make one hypothetical
error each, those will be tolerated and beliefs in rationality will not be revised.

Therefore in a 1-tolerance game, if we assume that the state (dda) is common
knowledge, we need to consider only three strategy profiles:

– s1 = (dda): This is the original strategy profile which is commonly known.
– s2 = (ada): This is the revised state at v2.
– s3 = (aaa): This is the revised state at v3.

The extended 1-tolerance game model is M2 = (Ω,KAnn,KBob, s, f) where

– Ω = {ω1, ω2, ω3}
– KAnn = KBob = {{ω1}, {ω2}, {ω3}}
– s(ωj) = sj for j = 1− 3
– f(ω1, v2) = ω2, f(ω1, v3) = ω3, f(ω2, v3) = ω3.

The actual state is ω1 with s(ω1) = (dda). Let us count the number of errors in
this model.

– v1 is 0-error.
– v2 is 1-error, since in order to (hypothetically) get from v1 to v2, Ann has

to make a non-rational move, by the same reasoning as in Example 1.
– v3 is again 1-error by trivial combinatorial reasons, as before. Moreover,

Bob’s move from v2 to v3 is rational at ω2, by the same reasoning as before.

Condition F41 is obviously met, so this is a 1-tolerant model in which strategy
profile (dda) is common knowledge. We’ll see, however, that the substantive S-
rationality condition is violated in this model, namely, Bob is not rational at v2.
Indeed, S-rationality in ω1 at v2 reduces to (Aumann-)rationality in f(ω1, v2) at
v2, i.e., in ω2 at v2. Since s(ω2) = (ada), the real move at v2 is down which is
not rational because of the better alternative across.

Example 3. Figure 2 shows an extensive form 1-tolerance game of length 5.
Assuming common knowledge of substantive rationality, we will show that there
exists a non-BI solution, namely (dddda).

The strategy profiles are as follows:
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Fig. 2. 5-move game

– s1 is the strategy profile (dddda)
– s2 is the strategy profile (addda)
– s3 is the strategy profile (aadda)
– s4 is the strategy profile (aaada)
– s5 is the strategy profile (aaaaa)
– s6 is the strategy profile (aaaad)
– s7 is the strategy profile (aaadd).

Consider the extended model A = (Ω,KAnn,KBob, s, f) where

– Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7}
– KAnn = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω7}}
– KBob = {{ω1}, {ω2}, {ω3}, {ω4, ω7}, {ω5}, {ω6}}
– s(ωj) = sj for j = 1− 7
– f(ω1, v2) = ω2, f(ω1, v3) = ω3, f(ω1, v4) = ω4, f(ω1, v5) = ω5,

f(ω2, v3) = ω3, f(ω2, v4) = ω4, f(ω2, v5) = ω5,
f(ω3, v4) = ω4, f(ω3, v5) = ω5,
f(ω4, v5) = ω5,
f(ω7, v5) = ω6.

The actual state is (dddda). Let us count the number of errors.

– v1 is 0-error.
– Ann is not rational moving from v1 to v2 in state f(ω1, v2) = ω2. Indeed,

s(ω2) = (addda), hence Ann moves across at v1 while knowing that Bob will
play down at v2. Hence v2 is 1-error.

– Bob, is not rational when moving from v2 to v3 in state f(ω1, v3) = ω3.
Indeed, s(ω3) = (aadda), hence Bob moves across at v2 while knowing that
Ann will play down at v3. Hence v3 is 1-error by both Ann’s and Bob’s
accounts.

– Ann is not rational moving from v3 to v4 in state f(ω1, v4) = ω4. Indeed,
s(ω4) = (aaada), hence Ann moves across at v3 while knowing that Bob will
play down at v4. Hence v4 is 2-error on Ann’s account.

– v5 is 2-error by trivial combinatorial reasons. However, it is worth mentioning
that Bob is rational when moving across from v4 to v5.
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To secure 1-tolerance, we have to check the conclusion of F41 at all 0-error and
1-error vertices, in this case at vertices v1, v2, and v3 which is quite straightfor-
ward. Indeed, selection function f does not add new indistinguishable states at
these vertices, but just makes the corresponding vertex accessible in the revised
state.

Since KAnn(ω1) = KBob(ω1) = {ω1}, everything that is true at ω1 will be
common knowledge to Ann and Bob at that state. To check substantive ratio-
nality at ω1, we need to check players’ rationality in the following situations:

S = {(ω1, v1), (ω2, v2), (ω3, v3), (ω4, v4), (ω5, v5)}

– Ann is rational at (ω1, v1). Since Bob plays d at vertex v2, d is the rational
move for Ann at (ω1, v1).

– Bob is rational at (ω2, v2). At (ω2, v2), Bob thinks Ann was not rational at v1
but since we assume that each player tolerates one error, he does not revise
his beliefs on her future rationality. So he looks at node v3. Seeing that Ann
is playing d at that node, he himself chooses to play d at v2, which is the
rational thing to do. So we can conclude that Bob is rational at (ω2, v2).

– Ann is rational at (ω3, v3). At (ω3, v3), Ann thinks Bob was not rational at
node v2. This time Ann tolerates Bob’s error and does not revise her beliefs
about his future rationality. She looks at node v4. Seeing that Bob is playing
d at that node, she chooses to play d at v3, which is the rational thing to do.

– Bob is rational at (ω4, v4). At (ω4, v4), Bob thinks that Ann was not rational
at node v3. Since he will not tolerate one more error, he revises his beliefs
and takes into the account the possibility of Ann’s playing d at v5. In this
case, it is rational for him to play d.

– Ann is rational at (ω5, v5) regardless of her beliefs about Bob.

If we count the length of the game as the number of moves in its longest path
in the game tree, this example shows that, assuming common knowledge of
rationality and 1-tolerance, there exists a game of length 5, where a non-BI
solution is realized.

Theorem 1. In perfect information games with common knowledge of rationality
and of n-tolerance, each game of length less than 2n+ 3 yields BI.

Sketch of Proof: Let m ≤ 2n+ 2. We will show that all m-tolerant games are
BI-games. At a vertex that at which the last move of a given path is made (such
vertex is reachable from the root in ≤ 2n + 1), Aumann-rationality yields the
move that is dictated by the backward induction solution. Any other vertex v is
reachable from the root in ≤ 2n steps. So there are at most 2n previous nodes
prior to reaching v. Since no player makes two moves in a row, each player makes
at most n moves prior to v, and even if all of these moves were erroneous, player
i = P (v) will tolerate them and do not revise his assumption of the common
belief of rationality till the end of the game. By Artemov’s argument in [2], this
yields BI solution for the rest of the game.
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Theorem 2. The upper bound 2n+3 from Theorem 1 is tight. Namely, for each
n, there exists a perfect information game with common knowledge of rationality
and of n-tolerance of length 2n+ 3 which does not yield BI.

Proof: Consider the straightforward generalization of Example 3 (which has
length 5 = 2 × 1 + 3, i.e., corresponds to n = 1) to an arbitrary n in Figure 3.
In particular, the profile

(dd . . . da)

is assumed to be commonly known and players to be n-tolerant.
The same reasoning as in Example 3 shows that this profile (dd . . . da) is both

rational and not BI. Since the strategy profile (dd . . . da) is commonly known,
and players are n-tolerant, Ann and Bob will not revise their beliefs in each
other’s rationality during the first 2n moves. The move at v2n+1 belongs to Ann.
She is playing d according to the strategy profile (dd . . . da) and she is rational
(because Bob is playing d at v2n+2). However, in order to decide whether Bob is
rational at v2n+2, we need to take into account Ann’s hypothetical non-rational
moves a to reach v2n+2, and there are n + 1 such moves. Therefore Bob may
revise his beliefs on her rationality, consider Ann’s playing d possible at v2n+3,
and this makes Bob’s move d at v2n+2 rational. At the very last vertex, Ann is
also rational since she plays a.
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Fig. 3. Game of length 2n+ 3

5 Conclusion and Future Work

We see a conceptual contribution of this work in stressing the role of tolerance in
the analysis of perfect information games in the belief revision setting that ac-
commodates both Aumann’s and Stalnaker’s paradigms. Stalnaker’s players are
zero-tolerant and give up their “knowledge of rationality” in hypothetical rea-
soning after the first hypothetical non-rational move of other players. Aumann’s
players are infinitely tolerant, and never give up their knowledge of rationality
even when confronted, hypothetically, with strong evidence of the contrary. A
natural problem of what happens in between, when the level of tolerance to
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hypothetical errors is a parameter of the game is addressed is this paper. Our
findings indicate that for a given tolerance level n, short games, up to length
2n+2 are Aumann’s games, i.e., yield backward induction solutions only. Longer
games of length 2n+ 3 and greater can show Stalnaker’s behavior based on the
revision of player’s belief of each other’s rationality.

What does it say about games with human players who can be tolerant to some
limited degree? One more parameter intervenes here: the nested epistemic depth
of reasoning, which is remarkably limited for humans ([6]) to small numbers like
one – two. In order to calculate BI, players have to possess the power of nested
epistemic reasoning of the order of the length of the game. So, realistically, the
BI analysis of human players applies to rather short games, say, of length three –
four. According to Theorem 1, assuming 1-tolerance of players (which we regard
as a meaningful assumption for humans) the only solution is backward induction.

In this game, with the given definition of rationality of hypothetical moves
and common knowledge of a non-BI strategy profile as the actual state, we see
no way to interpret the hypothetical errors as a move (signal) where the player is
trying to reach the pareto-optimal payoff pair, which is the BI solution. A next
logical step could be to look into this direction.
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