
Constructive Polychronous Systems

Jean-Pierre Talpin1, Jens Brandt2, Mike Gemünde2,
Klaus Schneider2, and Sandeep Shukla3

1 INRIA Rennes-Bretagne-Atlantique, France
2 Department of Computer Science, University of Kaiserslautern, Germany
3 Department of Electrical and Computer Engineering, Virginia Tech, USA

Abstract. The synchronous paradigm provides a logical abstraction of
time for reactive system design which allows automatic synthesis of em-
bedded programs that behave in a predictable, timely and reactive man-
ner. According to the synchrony hypothesis, a synchronous model reacts
to input events and generates outputs that are immediately made avail-
able. But even though synchrony greatly simplifies design of complex sys-
tems, it often leads to rejecting models when data dependencies within
a reaction are ill-specified, leading to causal cycles. Constructivity is a
key property to guarantee that the output during each reaction can be
algorithmically determined. Polychrony deviates from perfect synchrony
by using a partially ordered or relational model of time. It captures
the behaviors of (implicitly) multi-clocked data-flow networks and can
analyze and synthesize them to GALS systems or to Kahn process net-
works (KPNs). In this paper, we provide a unified constructive semantic
framework, using structural operational semantics, which captures the
behavior of both synchronous modules and multi-clocked polychronous
processes. Along the way, we define the very first operational semantics
of Signal.

1 Introduction

Languages such as Esterel [1], Quartz [2] or Lustre [3] are based on the
synchrony hypothesis. Synchrony is a logical abstraction of time which greatly
facilitates verification and synthesis of safety-critical embedded systems. In par-
ticular, it enforces deterministic concurrency, which has many advantages in
system design, e.g. avoiding Heisenbugs (i.e. bugs that disappear when one tries
to simulate/test them), predictability of real-time behavior, as well as provably
correct-by-construction software synthesis [4].

It is also the key to generate deterministic single-threaded code from multi-
threaded synchronous programs so that synchronous programs can be directly
executed on simple micro-controllers without using complex operating systems.
Another advantage is the straightforward translation of synchronous programs to
hardware circuits [5,6]. Furthermore, the concise formal semantics of synchronous
languages allows one to formally reason about program properties [7], compiler
correctness and worst-case execution time [8,9].

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 335–349, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

336 J.-P. Talpin et al.

Under the synchrony hypothesis, computation progresses through totally or-
dered synchronized execution steps called reactions. The computation involved
in reacting to a particular input combination starts by reading the inputs, com-
puting the intermediate values as well as the outputs, and the next state of the
system. Each reaction is referred to as a macro-step. Computations during the re-
action are called micro-steps. A reaction is said to happen at a logical instant. A
logical instant abstracts the duration of a reaction to a single point in a discrete
totally ordered timeline.

Consequently, and from a semantic point of view which postulates that a
reaction is atomic, neither communication nor computation therefore takes any
time in a synchronous instant. Even though this zero-time assumption does not
correspond to reality, it is where the power of the synchronous abstraction lies
– zero delay is compatible to predictability. If (1) the minimum arrival time of
two consecutive values on all inputs is long enough, and if (2) all micro-steps in
a reaction (macro-step) are executed according to their data dependencies, then
the behaviors under the zero-time assumption are the same as behaviors of the
same system in reality.

However, the synchronous abstraction of time also has a drawback. Since out-
puts are generated in zero-time, and since synchronous systems can typically read
their own outputs, there may be cyclic dependencies due to actions modifying their
own causes within the same reaction. These issues lead to programs having incon-
sistent or ambiguous behaviors. In the context of synchronous programs, they are
known as causality problems, and various solutions have been proposed over the
years to tackle them. The most obvious and pragmatic one is to syntactically for-
bid cyclic data dependencies. It is simple to check but rules out many valid pro-
grams. For example, the synchronous language Lustre follows this approach.

Clearly, this is a conservative approach that hardly scales to mapping models
on platforms or composing models as this often introduces cycles [10]. Therefore,
other synchronous languages, such as Esterel [1], opted for a more sophisticated
but costly solution. Their semantics is given in terms of a constructive logic, and
compilers perform a causality analysis [11,12,13,14] based on the computation of
fixpoints in a three-valued logic similar to Brzozowski and Seger’s ternary simu-
lation of asynchronous circuits [15]. Thereby, cyclic dependencies are allowed as
long as they can be constructively resolved. This definition of causality does not
only show parallels to hardware circuit analysis but also to many other areas.

In contrast to synchronous languages, the polychronous language Signal [16]
follows a different model of computation. Execution is not aligned to a totally
ordered set of logical instants but to a partial order. This allows one to directly
express (abstractions of) asynchronous computations which possibly synchronize
intermittently. The lack of a global reference of time offers many advantages for
the design of embedded software architectures. First, it is closer to reality since
at the system level, integrated components are typically designed based on differ-
ent clock domains or different paces, which is a desirable feature especially with
the advent of, e.g., multi-core embedded processors. Second, polychrony avoids un-
necessary synchronization, thereby offering additional optimization opportunities.

Constructive Polychronous Systems 337

Polychrony gives developers the possibility to refine the system in different ways,
and compilers can choose from different schedules according to non-functional
mapping constraints, which are ubiquitous in embedded systems design. Due to
these advantages, Signal is particularly suited as a coordination layer on top of
synchronous components to describe a globally asynchronous locally synchronous
(GALS) network.

As Signal makes use of the synchronous abstraction of time, it faces the same
problems as other synchronous languages. One way to overcome the causality
problem is to syntactically forbid cyclic dependencies but as stated before that
is not always possible, especially when composing separately specified processes.
The Signal compiler uses a so-called conditional dependence graph [17,18] to
model dependencies between equations and check that all equations in a syn-
tactic cycle cannot happen at the same logical instant. As discussed above, the
synchronous languages are all based on slightly varying notions of causality.

This mismatch makes it unnecessarily hard (if not impossible) to integrate,
e.g., a set of reactive Quartz modules with a Signal data-flow network: should
the integration of modules and processes be limited/approximated by syntac-
tically causal data-flow networks, instead of constructive ones ? There is no
fundamental reason why a common notion of constructivity should not exist for
these languages. So, instead of an approach to causality analysis based on cycle
detection, we want to endow Signal with a constructive semantics compatible
to that of languages like Quartz, which is exactly what this paper presents.

Contribution. Our work is rooted in a collaborative project, Polycore, in which
we aim at combining the expressive capabilities of the imperative synchronous
language Quartz and the data-flow polychronous language Signal towards the
goal of synthesizing executable GALS systems from the specification of poly-
chronous networks of synchronous modules. This goal demands a common un-
derstanding of (i) constructivity and synchronous determinism, best known and
studied in the context of imperative synchronous languages, and (ii) endochrony
and asynchronous determinism, better developed in the context of relational
synchronous languages (yet applicable to imperative ones). This paper tries to
bridge the mathematical gap between constructivity and clock/causality analysis
in order to show to what extent the former can be explained with the latter.

Our approach consists in the definition of a constructive semantics for poly-
chronous processes that works for synchronous modules as well, so as to share
existing notions, theorems and methods. This semantics is of interest on its
own: it allows us to better understand the relationship between synchrony and
polychrony, between constructivity and endochrony, and to model causality as a
formal verification problem. We provide a unified structured operational seman-
tics framework which both captures the synchronous behavior of reactive mod-
ules and the multi-clocked behavior of polychronous data-flow networks. This
framework allows us to formulate a constructivity theory which captures deter-
minism for both synchronous modules and asynchronous networks. Its expressive
capability defines an effective framework in which embedded systems can be de-
signed by combining the best of both styles: imperative modules to describe

338 J.-P. Talpin et al.

system functions and polychronous data-flow networks to describe high-level ab-
stractions of their software architecture. Along the way, we give the very first
executable semantics (i.e. an interpreter) of Signal.

Related Work. Causal cycles may be real or may be induced by the syn-
chronous abstraction of time. They were first considered in hardware circuits in
the early seventies [19,20]. However, causality issues are not only related to the
stability analysis of hardware circuits. Berry pointed out that causality analy-
sis is equivalent to theorem proving in intuitionistic (constructive) propositional
logic and introduced the notion of constructive programs [11]. Finally, Edwards
reformulates the problem such that the existence of dynamic schedules must
be guaranteed for the execution of mutually dependent microsteps [13]. Hence,
causality analysis is a fundamental algorithm that has already found many ap-
plications in computer science. Malik [21] was first to show that this problem in
general is NP-hard [21] and used the embedding of Boolean algebra in ternary
algebra as proposed by Bryant for the simulation of switch-level circuits [22].
More details about causality analysis for synchronous programs may be found
in [21,12,14,23]. In the domain of polychronous programs, causal cycle detection
using SMT solvers has been reported in [24,25].

2 Constructive Synchronous Systems

In general, cyclic systems might have no behavior (loss of reactivity), more than
one behavior (loss of determinism) or a unique behavior. However, having a
unique behavior is generally not sufficient, since there are programs whose unique
behavior can only be found by trial and error (or large lookup-tables for all
inputs and states, alternatively) – which obviously does not lead to an efficient
computation. For this reason, one is usually interested in whether a program
has a unique behavior that can be constructively determined by the operational
semantics. Such a constructive semantics is based on fixpoint iteration, which
repeatedly execute iterations in order to infer the clocks and values of all signals
at every logical instant, i.e., during every reaction.

Embedding Clocks and Values in a Complete Lattice. We shall first
define some of the essential concepts of fix-point theory used in this paper [26].

Definition 1 (Complete Lattice). A partial order (D,�) is a lattice, if every
pair {x, y} ⊆ D has a supremum

⊔{x, y} and an infimum
�{x, y} in D. It is

complete if
⊔

M and
�

M exist for all M ⊆ D. A function f : D → D is
monotonic, if for all x, y ∈ D s.t. x � y, f(x) � f(y). It is continuous, if
f(

⊔
M) =

⊔
f(M) and f(

�
M) =

�
f(M) holds for all directed sets M ⊆ D.

To define a constructive semantics, we need to embed the set of data values into
a lattice. We achieve this by adding new elements D′ = D ∪ {?,⊥,�, �} to the
domain D, the domain of values taken by a variable (see Figure 1).

Starting from D′, we define a partial order � ⊆ D′ × D′. Intuitively, the
greater a value is, the more information we have about it. The error value � is

Constructive Polychronous Systems 339

the greatest element since inconsistent values should never become consistent,
while the opposite may occur. We can lift every operator g : Dn → Dm to g′ :
D′n → D′m to evaluate g′ in the lattice D′ under the conditions (1) the extended
operator g′ comply with the original one on D, i. e. ∀x ∈ Dn. g′(x) = g(x) and
(2) g′ is monotonic w. r. t. � (for finite D′ this also implies continuity of g′).

? signal status is unknown
⊥ signal is absent or inhibited
� signal is present or activated
� signal is inconsistent (e. g. runtime error)

⊥
��������

? ��

��������������� � ��

����
��

��
� 0 �� �

...

���������

Fig. 1. Embedding a value domain D in a complete lattice

These conditions predetermine some values of the extension. For the remaining
ones, we prefer values x ∈ D in order to accept as many programs as possible,
and hence choose to use the maximal extension of g w. r. t. � [23]. As an
example, Figure 2, consider Boolean conjunction ∧ : B

2 → B. Its extension ∧′

is extended from the original function ∧ on Booleans by choosing the greatest
value that satisfies condition 2 above. For example, � ∧′ 0 must be less than or
equal 0 ∧′ 0 = 0 and 1 ∧′ 0 = 0 (since � � 0 and � � 1). As both results are 0,
we can also set �∧′ 0 = 0. Now consider �∧′ 1, it must be less than or equal to
0 ∧′ 1 = 0 and 1 ∧′ 1 = 1. Again, we must set � ∧′ 1 = �. All the other values
in the table can be determined in the same way.

∧′ ? ⊥ � 0 1 �

? ? ⊥ � 0 � �

� � � � � � �

∧′ ? ⊥ � 0 1 �

⊥ ⊥ ⊥ � � � �

� � � � 0 � �

∧′ ? ⊥ � 0 1 �

0 0 � 0 0 0 �

1 � � � 0 1 �

Fig. 2. Embedding conjunction into B
′

We obtain an embedding of all operators into continuous functions over our
extended domain D′. As monotonic functions are closed under function compo-
sition, the entire system model also yields a monotonic function. Hence, from
the Tarski-Knaster theorem 1, it follows that the extensions of all monotonic
operators in lattice D′ have fixpoints and, more interestingly, that they have
uniquely defined least and a greatest fixpoints. Our framework only needs one
half of this theorem, namely the existence and computability of a least fix-point,
which requires a complete semi-lattice with an infimum but not necessarily a
supremum. Hence, our constructive semantics start with known input variables
and local/output variables. If the least fix-point does no longer have unknown
values, the program has a unique behavior, it is constructive.

Theorem 1 (Fixpoints in Lattices [26]). Let (D,�) be a complete lattice
and f : D → D be a monotonic function. Then, f has fixpoints and the set of
fixpoints even has a minimum and a maximum. If f is moreover continuous, then
the least fixpoint of f can be computed by the iteration p0 := �D, pi+1 := f(pi),
and the greatest fixpoint of f by q0 := �D, qi+1 := f(qi).

340 J.-P. Talpin et al.

Constructive Synchronous Guarded Actions. In this article, we repre-
sent imperative Quartz modules using synchronous guarded actions [27,28], as
defined in Figure 3 and in the spirit of guarded commands [29,30,31], a well-
established formalism for the description of concurrent systems. However, our
guarded actions follow the synchronous abstraction of time. A reactive system is
represented by a set of synchronous guarded actions of the form 〈γ ⇒ α〉 defined
over a set of variables V . The Boolean condition γ is called the guard and α is
called the action of the guarded action. An immediate assignment x = τ writes
the evaluated value of τ immediately to the variable x. A delayed assignment
next(x) = τ stores it until the next execution step.

p, q::= init(x) = τ (initial)
| γ ⇒ next(x) = τ (delayed)

| γ ⇒ x = τ (immediate)
| var x : p default v (block)

| p || q (compose)
| done p (done)

Fig. 3. Synchronous Guarded Actions

Immediate assignments define a causal dependency within the instant from
all the variables read (i. e. variables in the guard γ and on the right-hand side τ)
to the written variable x. In contrast, a delayed assignment does not, because
they set a values for the following instant. Guarded actions are composed by the
operator p || q and grouped by the operator var x : p default v to locate all actions
defining a variable x. If none of these guarded actions apply, x is set to its default
value v. Immediate variables E ⊆ V are reset to their default values (like wires
in hardware circuits), while delayed variables M ⊆ V are reset to their previous
value (like registers in hardware circuits).

As guarded actions manipulate signal (timed) values, we have to keep track of
the status and value of each signal. To this end, we use a store s ∈ S = X → D′,
defined by a function from signal names to status, to evaluate the program
expression φ with respect to the values stored in s as s, φ ⇀ v. For � ∈ {and, or},
we assume that s, x � y ⇀ v is defined iff v = s(x)�s(y) ∈ B and, for � ∈ {not, id},
that s, � x ⇀ v iff v = �s(x) ∈ B. Notice that the relation s, φ ⇀ v evaluates
φ to the value v ∈ D only if all its free variables are defined on D in s: it is
a synchronous expression (which explains why ⊥ and � will not be needed in
Figure 4). Additionally, an update operation � sets the status of x in s as follows:
s � (x, v) = s ∪ {(x, sup(s(x), v))}. This definition sets the status of x to � if a
status v is assigned that conflicts with that stored in s.

Figure 4 defines transition rules s, p ⇀ s′, q for synchronous guarded actions
(we assume v, w, u ∈ D). If the guard γ of an immediate action γ ⇒ x = τ
evaluates to 1 and its action τ to a value v ∈ D, the store s is updated with
s� (x, v). In the case of a delayed action, the additional initial action init(x) = v
is added to be applied in the following instant. The rule for composition p || q
defines the possible evaluation schedules of concurrent statements. The marker
done indicates that a guarded action has been executed and is propagated by
composition and blocks var x : p default v, allowing one to reset the default value
of a variable x in that block.

Constructive Polychronous Systems 341

s′ = (s(x) ∈ D)?s, s � (x, v) w = (x ∈ M)?s′(x), v
s, var x : done (p) default v ⇀ s′, done (var x : p default w)

s, p ⇀ s′, p′

s, q || p ⇀ s′, q || p′

s, γ ⇀ 1 s, τ ⇀ v
s, γ ⇒ next(x) = τ ⇀ s, done (init(x) = v || γ ⇒ next(x) = τ)

s, p ⇀ s′, p′

s, p || q ⇀ s′, p′ || q
s, γ ⇀ 1 s, τ ⇀ v

s, γ ⇒ x = τ ⇀ s � (x, v), done (γ ⇒ x = τ) s, done p || done q ⇀ s, done (p || q)
s, γ ⇀ 0

s, γ ⇒ next(x) = τ ⇀ s, done (γ ⇒ next(x) = τ)

s, γ ⇀ 0
s, γ ⇒ x = τ ⇀ s, done (γ ⇒ x = τ)

s, init(x) = v ⇀ s � (x, v), ()

Fig. 4. Rules for Synchronous Guarded Actions

3 Polychronous Systems

In contrast to synchronous systems, polychronous specifications [32,16] are based
on a partially ordered model of time to express asynchronous computations which
possibly need to synchronize sporadically. As the name suggests, polychronous
systems use multiple clocks, which means that signals do not need to be present
in all instants. Here, the clock of a signal is encoded by its status, present or
absent. The value of a signal can only be computed if it is known to be present.

Signal Specifications. In the remainder, we use Signal programs to represent
polychronous specifications. A Signal program, Figure 5, consists of the compo-
sition of several nodes. Each node has an interface consisting of input and output
signals and, possibly, local signals. Its body is the composition of equations built
from primitive � ∈ {and, or, not, $init, when, default} operators.

p, q, r ::= · · ·
| x := y � z (equation)

s(x, y, z) ⇀� (a, b, c)
s, x := y � z ⇀ s � (x, a)(y, b), (z, c), x := y � z

(op)

s(x, y), a ⇀$init (b, c, d)
s, x := y $init a ⇀ s � (x, b)(y, c), x := y $init d

(pre)

Fig. 5. Small-step operational semantics of polychronous equations

Figure 5 gives the main transition rule for a polychronous equation x := y � z.
It relies on the relation ⇀� to check progress from the current status s(x, y, z)
of its inputs and output to an hypothetical triple (a, b, c). If so, a transition
occurs and the status of (x, y, z) signals is updated. Let us first consider the case
of a functional equation such as x := y and z, Figure 6. From an initial status
s(x, y, z), there are three possible ways to progress. First, (1) is when one of the
inputs or the outputs is known to be absent, and the others are either unknown
or absent (written ?/⊥). In that case, all three parameters can be deemed absent
altogether (right) as they need to occur synchronously. As a result, information
on absence may flow backwards from outputs to inputs and possibly inhibits
further signals in the environment. A second case is (2) when one of the inputs
or the outputs is known to be present, and others either unknown or present

342 J.-P. Talpin et al.

(written ?/�). In this case all three parameters can be deemed present (right).
As a result information on presence may again flow from outputs to inputs and
possibly trigger further input signals in the environment. At last, (3), the values
a, b ∈ B of inputs are known and the result a ∧ b of the equation is computed.

⇀and

s(x) s(y) s(z) a b c

⊥ ?/⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ?/⊥ ⊥ ⊥ ⊥ ⊥
� ?/� ?/� � � �

?/� � ?/� � � �
?/� ?/� � � � �
?/� a ?/� � a �
?/� ?/� a � � a
?/� b a a∧b b a

(1)

(2)

(3)

⇀when

s(x) s(y) s(z) a b c

⊥ ?/⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ?/⊥ ⊥ ⊥ ⊥ ⊥
?/⊥ X 0 ⊥ X 0

� ?/� a � � a � 1
?/� a 1 a a 1

(1)

(2)

Fig. 6. Small-step relations of polychronous equations

The same evaluation principle can be applied to the downsampling operator
x := y when z, Figure 6, the rules are the same for propagating absence (1) and
there is only one possible way to propagate presence: when that of the output is
already known, for any positive progress a, b ∈ {?,�, 0, 1} of the inputs. When
z = 0, we "don’t care" the first input: X ∈ D′, and issue the output as absent.
Again, there is only one way to propagate presence (2): when that of the output
is already known and for any positive progress a ∈ {?,�, 1} of the inputs. Also,
there is only one case where the output can possibly have a value a ∈ B, when
z = 1 (supremum a � 1).

⇀default

s(x) s(y) s(z) a b c

⊥ ?/⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ⊥ ⊥ ⊥ ⊥ ⊥
? � X � � X

? X � � X �
?/� a X a a X

?/� ⊥ a a ⊥ a

(1)

(2)

(3)

⇀$init

s(x) s(y) a b c d

⊥ ?/⊥ a ⊥ ⊥ a
?/⊥ ⊥ a ⊥ ⊥ a

� ?/� a a � a
?/� � a a � a

?/⊥ b a a b b
a b a a b b

(1)

(2)

(3)

Fig. 7. Small-step relations of polychronous equations

The merge operator x := y default z works in a way opposite to sampling,
Figure 6, there is only one way its result (or its inputs) can be ruled absent (1).
There are many ways merge can make positive progress from the knowledge of
either of its inputs, "regardless" of the (don’t care) value X ∈ D′ of the other
(2). Finally, merge gives a value a ∈ D to its output if y holds a or when it is
absent and z does (3). The case of the delay equation x := y $inita is a little
trickier and first requires a specific rule (pre) to take care of the fact that its
third argument, the state, is a value a, d ∈ D. Apart from that, it mainly acts

Constructive Polychronous Systems 343

as a synchronous operation between its input and output signals. Once again,
absence can be propagated both ways in the data-flow to either inhibit or trigger
signals in the environment (1). However, as soon as one of the input or output
is known to be present, delay forwards its stored value a ∈ D to the output (2).
Last, once the input value b ∈ D has been calculated (3), it can be stored in
place of the old one (here a, the output).

Example. We consider the specification of a polychronous counter of input n and
output o. Every time its execution is triggered, its purpose is to provide the value
of a count along with its output signal o. When that count reaches 0, the counter
synchronizes with the input signal n to reset the count with a new value. Clock
synchronization n sync y is rewritten by an equation (z := ((y = y) = (n = n)))/z
that forces y and n to have the same status.

counter(n, o) Δ=
(c := o $init 0 || o := n default x ||x := (c − 1) ||n sync y || y := 1 when (c = 0))) /cxy

In the remainder, and referring to both a Quartz module or a Signal process
〈s, p〉, we note V (p) for all signals of p, O(p) for its output signals, I(p) for
its inputs and L(p) for its locals. The counter has input n, output o and locals
{c, x, y}. The local signals c defines the current count, x its decrement, and y the
reset condition. The synchronous execution of the counter is modeled by a series
of steps (changes are marked with a•). First, the environment of the counter
triggers execution by setting the output signal o to present (“I want a count”).
This forces the current count c evaluate (⇀$init). Then, its decrement x and the
reset condition y can both be evaluated (⇀sub and ⇀eq). Next, the status of
the input n can be defined from that of y (⇀sync). Since it is absent and c is
present with the count, the output o can now be output (⇀default) and its value
is stored in place of the previous one (⇀$init). As the example shows, we obtain
a constructive and executable operational semantics that captures the behavior
of synchronous Quartz modules, as well as of polychronous Signal processes
and for the first time in the literature.

(c, ?)(n, ?)(o,�•)(x, ?)(y, ?)⇀(c, 1•) (n, ?) (o,�) (x, ?) (y, ?) from ⇀$init

⇀(c, 1) (n, ?) (o,�)(x, 0•) (y, ?) from ⇀sub

⇀(c, 1) (n, ?) (o,�) (x, 0) (y,⊥•) from ⇀when

⇀(c, 1) (n,⊥•)(o,�) (x, 0) (y,⊥) from ⇀sync

⇀(c, 1) (n,⊥) (o, 0•) (x, 0) (y,⊥) from ⇀default

⇀(c, 1) (n,⊥) (o, 0) (x, 0) (y,⊥) from ⇀$init

From Synchrony to Asynchrony. Our next step is to embed this semantics
in its execution environment of asynchronous streams in order to reason about
networked processes. Towards this goal, we first need to interface the small step
operational semantics with an environment of asynchronous streams. We repre-
sent a stream by a word w ∈ S = D∗ of values a and define the operation of
reading a from a stream as a.w and writing onto it as w.a in order to reflect a
first-in-first-out protocol. The environment or trace of a process p in a network
is represented by a finite map E ∈ T = X �→ S that associates signal names x

344 J.-P. Talpin et al.

and streams w. Since a module p owns a local store s, we shall note 〈s, p〉 its
embedding in a network P constructed by asynchronous composition.

w ::= ε | a.w | w.a (FIFO) P, Q ::= 〈s, p〉 | P ‖ Q (network)

Then, we simply lift the transition relation s, p ⇀ t, q to further account for
the way a process p interacts with asynchronous environment and construct
the small-step semantics E, P ⇀ F, Q to define this interaction between local,
synchronous, steps of execution and shared, asynchronous, FIFO streams, i.e.,

s, p ⇀ t, q

E, 〈s, p〉 ⇀ E, 〈t, q〉 .

Interfacing Polychronous Processes. The execution of a Signal process
p is locally triggered by activating the status of one or several of its signals,
by setting them present (Figure 8, top-left). We call these signals T (p) – the
triggers of p. Once a trigger is enabled, other signals can be and, when an input
x is, its value can be loaded from the environment E (right). The output of
a process onto streams is performed when computation within the process is
completed (Figure 8, bottom) in order to respect the synchronous step paradigm.
The “flush” relation E, 〈s, p〉 ⇁ F, 〈s, p〉 models this very step. It is defined by
pulling computed output values from the local store to the shared streams. It
delimits the temporal barriers of a synchronous instant or reaction and filters
inputs which have been read and signals which are absent.

x ∈ T (p)
E, 〈s � (x, ?), p〉⇀E, 〈s � (x,�), p〉

x ∈ I(p)
E � (x, a.w), 〈s � (x,�), p〉⇀E � (x, w), 〈s � (x, a), p〉

x �∈ O(p) ∨ a �∈ D
E, 〈s � (x, a), p〉 ⇁ E, 〈s � (x, ?), p〉

x ∈ O(p) ∧ a ∈ D
E � (x, w), 〈s � (x, a), p〉 ⇁ E � (x,w.a), 〈s � (x, ?), p〉

Fig. 8. Interface semantics of polychronous equations p

Interfacing Synchronous Modules. The asynchronous interface of a syn-
chronous Quartz module is simpler. It only requires rules for the ⇁ relation
to handle writing the computed output values and reading the next values of
inputs (Figure 9, sx stands for s without x).

E � (x, w), 〈s � (x, a), p〉⇁E � (x, w.a), 〈sx � (x, ?), p〉 x ∈ O(p)
E � (x, a.w), 〈s, p〉⇁E � (x, w), 〈sx � (x, a), p〉 x ∈ I(p)

E, 〈s, p〉⇁E, 〈sx � (x, ?), p〉 x ∈ L(p)
E, 〈s, done p〉⇁E, 〈s, p〉

Fig. 9. Interface semantics of synchronous modules p

Constructive Polychronous Systems 345

E, P ⇀ F, Q
E, P → E,Q

E, 〈s, p〉 ⇁∗ F, 〈s′, q〉
E, 〈s, p〉 → F, 〈s′, q〉

E, P → E′, P ′

E, P ‖ Q → E′, P ′ ‖ Q
E,P → E′, P ′

E, P ‖ Q → E′, P ′ ‖ Q

Fig. 10. Interface semantics of synchronous modules p

A Constructive GALS Semantics. Finally, the GALS semantics E, P →
E, Q, Figure 10, can be defined for synchronous modules and polychronous pro-
cesses. It comprises of local synchronous execution steps E, P ⇀ E, Q (left)
during which inputs are read, outputs are computed, and a synchronization step
E, P ⇁∗ F, Q (middle), during which outputs are registered in the environment.
and the local store is reset to start a new step of execution. Interleaving or
scheduling is again defined by parallel composition (right).

Communication from a process to another is assumed to be point-to-point.
Multiple writers on a single stream are not allowed as per the synchronous
paradigm. Broadcast communication can be simulated by multiplexing the out-
put of the writer to multiple readers: for any x ∈ dom(E) such that x ∈
O(P) and x ∈ I(Q) and x ∈ I(R), we can rewrite P ‖ Q ‖ R as P ‖
(Q[y/x] ‖ R[z/x] ‖ 〈(), y := x || z := x〉) /yz using any y, z not in Q, R.

4 Determinism and Constructivity

The layered constructive semantics allows us to formulate classical properties
of polychronous processes, as stated in the trace or logical settings of [33], yet
in a constructive operational semantics framework. We first state the property
of reactivity pertaining to the correctness of Quartz programs. A synchronous
module p is reactive iff for any combination of input values, its transition function
always terminates by producing a combination of output values.

Definition 2 (Reactivity). A module p is reactive iff, for all valuation s0 =
{(x, a) |x ∈ I(p), a ∈ D} ∪ {(y, ?) | y ∈ V (p) \ I(p)}, there exists s0, p ⇀∗ s, q
with s defined on D.

Synchronous determinism relates to reactivity. However, while reactivity assumes
that the values of all inputs are known, synchronous determinism also applies
to the case of a Signal process, whose inputs may not all be read: a process p
is synchronously deterministic iff for any initial status s, its step relation always
converges to a unique fixpoint.

Definition 3 (Synchronous Determinism). A process p is synchronously
deterministic iff for all store s and derivations s, p ⇀∗ t, q and s, p ⇀∗ u, r we
have t = u and q = r.

Now, once embedded in an asynchronous environment of streams E, determin-
ism becomes endochrony or asynchronous determinism. A process P is asyn-
chronously deterministic iff for every input trace E, it yields a unique output
trace F and unique final state Q.

346 J.-P. Talpin et al.

Definition 4 (Asynchronous Determinism). A process p is asynchronously
deterministic iff for all input traces E and derivations E, 〈s, p〉 ⇀∗ F, 〈t, q〉 ⇁∗

G, 〈u, r〉 and E, 〈s, p〉 ⇀∗ F ′, 〈t′, q′〉 ⇁∗ G′, 〈u′, r′〉, G = G′ and r = r′.

Notice that, in the case of a deterministic process, equality G = G′ is defined
over finite maps between variables and values and that, in r = r′, syntactic
congruence is taken care of by the rules of synchronous composition i.e. G = G′

and r = r′ denote canonical configurations).

Constructivity. So far, and thanks to the definition of a complete domain of
clocked signals, we have defined the very first, executable, structured operational
semantics for the polychronous data-flow language Signal. Its purpose starts to
unveil as we consider the fixpoint theoretic implication of its definition on that
continuous domain and try to formulate the property of constructivity. Originally,
constructivity was defined as a property of an imperative synchronous module
that pertains to the reachability of a stable state in its electrical semantics [12].
In the operational setting of the Quartz language, this means that, given any
combination of input values, a synchronous module p should always define unique
output values.

Definition 5 (Synchronous constructivity). A module p is synchronous
constructive iff for all initial valuations s0 = {(x, a) |x ∈ I(p), a ∈ D}∪{(y, ?) | y ∈
V (p) \ I(p)}, s0, p ⇀∗ s, q and s is defined on D (i.e. s = lfp⇀p(s0)).

Thanks to the fidelity level of our small-step operational framework, the formu-
lation of constructivity matches that of reactivity and determinism as stated in
the previous section.

Proposition 1. If p is synchronously constructive then p is reactive and syn-
chronously deterministic

We shall now formulate constructivity in the context of a polychronous process p.
However, it is clear from the example of the counter that a polychronous process
not necessarily is constructive in the sense as Quartz: it may not be reactive.

counter(n, o) Δ=
(c := o $init 0 || o := n default x ||x := (c − 1) ||n sync y || y := 1 when (c = 0))) /cxy

Unlike a Quartz module, the counter triggers a sequence of execution steps
every time its trigger o is activated. It only loads an input from n when c is 0.
Hence, it is not reactive w. r. t. its input signals, but it is reactive w. r. t. its input
streams. This observation yields a more general (asynchronous) formulation of
constructivity: a process p is asynchronously constructive iff for any combination
of values available from its input streams, it always produces an output.

Definition 6 (Asynchronous constructivity). A process p is asynchronously
constructive iff for any environment E of non-empty streams defined on V (p) and
s0 = {(x, ?) |x ∈ V (p)}, we have E, 〈s0, p〉 ⇀∗ F, 〈s, q〉 with s defined on D⊥

(i.e. (F, s) = lfp⇀∗
p(E, s0)).

Constructive Polychronous Systems 347

Notice that the transitive closure ⇀∗ F of a constructive process always yields
a unique valuation on D⊥ (it is a continuous domain). If a process isn’t con-
structive, it either blocks (e.g. x = y || y = x) and yields values below D⊥ or
conflicts (e.g. x = 0 ||x = 1) and yields value �. Again, asynchronous constructiv-
ity corresponds to the property of asynchronous determinism in the logical and
denotational frameworks of Signal [33,34].

Proposition 2. If p is asynchronously constructive then p is asynchronously
deterministic

Case of Isochronous Systems. Definition 6 of asynchronous constructivity is
formulated in a way that may seem to coincide with a class of systems which can
deterministically be executed starting from a singleton trigger T (p). This case in-
deed characterizes so called endochronous systems [33] whose input/output signal
status can all be decided from that of a single one, “the master clock”. A larger
class of deterministic systems can be captured by considering processes p that de-
terministically execute from several, independent, concurrent triggers: so-called
weakly endochronous systems [34]. In our framework, a weakly endochronous pro-
cess p is characterized by a set of multiple, independent triggers T (p), each of them
triggers execution of independent computations and yields a confluent state. To al-
low this, however, we additionally need to allow some of these triggers to possibly
(non-deterministically) be chosen to be absent during a given execution step (all
computations depending of that trigger would then evaluate to absent). This can
be done by choosing the following inhibition rule, instead of the triggering one:

x ∈ T (p)
E, 〈s � (x, ?), p〉⇀E, 〈s � (x,⊥), p〉

While a weakly endochronous process may have several triggers, it is addition-
ally required to be stuttering invariant: an inhibited process shall not react to
absence.

Definition 7 (Stuttering). p is stuttering iff for s = {(x,⊥) |x ∈ T (p)} ∪
{(x, ?) |x ∈ V (p) \ T (p)}, we have 〈s, p〉 ⇀∗ 〈s′, p〉 and s′ = {(x,⊥) |x ∈ V (p)}
Notice that Definition 6 accommodates the case of weakly endochronous systems
with the above additions of a rule and of a definition for stuttering.

5 Summary

In this article, we defined a constructive operational semantics to unite the syn-
chronous imperative language Quartz and the polychronous data-flow language
Signal in a common framework. This model is of interest on its own, since it al-
lows us to better understand the relationship between synchrony and polychrony,
between constructivity and endochrony. It additionally allows us to model the
causality problem as a formal verification problem. We formulated a construc-
tivity theory which captures the behavior of correct synchronous modules and
deterministic asynchronous/polychronous networks. Along the way, we provided
the very first truly executable operational semantics of Signal.

348 J.-P. Talpin et al.

Acknowledgement. This work is partially supported by INRIA under
associate-project Polycore, by the US Air Force Research Laboratory, grant
FA8750-11-1-0042, and the German Research Foundation (DFG).

References

1. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)
Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 425–454.
MIT Press (1998)

2. Schneider, K.: The synchronous programming language Quartz. Internal Report
375, Department of Computer Science, University of Kaiserslautern (December
2009)

3. Halbwachs, N.: A synchronous language at work: the story of Lustre. In: Formal
Methods and Models for Codesign (MEMOCODE), pp. 3–11. IEEE Computer
Society (2005)

4. Titzer, B., Palsberg, J.: Nonintrusive precision instrumentation of microcontroller
software. In: Paek, Y., Gupta, R. (eds.) Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), Chicago, Illinois, USA, pp. 59–68. ACM (2005)

5. Berry, G.: A hardware implementation of pure Esterel. Sadhana 17(1), 95–130
(1992)

6. Rocheteau, F., Halbwachs, N.: Pollux: A Lustre-based hardware design environ-
ment. In: Quinton, P., Robert, Y. (eds.) Algorithms and Parallel VLSI Architec-
tures II, Gers, France, pp. 335–346. Elsevier (1992)

7. Schneider, K., Brandt, J., Schuele, T.: A verified compiler for synchronous programs
with local declarations. Electronic Notes in Theoretical Computer Science 153,
71–97 (2006)

8. Logothetis, G., Schneider, K.: Exact high level WCET analysis of synchronous
programs by symbolic state space exploration. In: Design, Automation and Test in
Europe (DATE), pp. 10196–10203. IEEE Computer Society (2003)

9. Boldt, M., Traulsen, C., von Hanxleden, R.: Compilation and worst-case reaction
time analysis for multithreaded Esterel processing. EURASIP Journal on Embed-
ded Systems (2008)

10. Stok, L.: False loops through resource sharing. In: International Conference on
Computer-Aided Design (ICCAD), pp. 345–348. IEEE Computer Society (1992)

11. Berry, G.: The constructive semantics of pure Esterel (July 1996),
http://www-sop.inria.fr/meije/esterel/esterel-eng.html

12. Shiple, T., Berry, G., Touati, H.: Constructive analysis of cyclic circuits. In: Euro-
pean Design Automation Conference (EDAC), Paris, France, pp. 328–333. IEEE
Computer Society (1996)

13. Edwards, S.: Making cyclic circuits acyclic. In: Design Automation Conference
(DAC), Anaheim, California, USA, pp. 159–162. ACM (2003)

14. Schneider, K., Brandt, J., Schuele, T.: Causality analysis of synchronous programs
with delayed actions. In: Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), Washington, District of Columbia, USA, pp. 179–189. ACM
(2004)

15. Brzozowski, J., Seger, C.J.: Asynchronous Circuits. Springer (1995)
16. Le Guernic, P., Gauthier, T., Le Borgne, M., Le Maire, C.: Programming real-time

applications with SIGNAL. Proceedings of the IEEE 79(9), 1321–1336 (1991)

http://www-sop.inria.fr/meije/esterel/esterel-eng.html

Constructive Polychronous Systems 349

17. Le Guernic, P., Benveniste, A.: Real-time, synchronous, data-flow programming:
The language SIGNAL and its mathematical semantics. Research Report 533, IN-
RIA (June 1986)

18. Besnard, L., Gautier, T., Le Guernic, P., Talpin, J.P.: Compilation of polychronous
data flow equations. In: Shukla, S., Talpin, J.P. (eds.) Synthesis of Embedded Soft-
ware – Frameworks and Methodologies for Correctness by Construction. Springer
(2010)

19. Kautz, W.: The necessity of closed circuit loops in minimal combinational circuits.
IEEE Transactions on Computers (T-C) C-19(2), 162–166 (1970)

20. Rivest, R.: The necessity of feedback in minimal monotone combinational circuits.
IEEE Transactions on Computers (T-C) C-26(6), 606–607 (1977)

21. Malik, S.: Analysis of cycle combinational circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (T-CAD) 13(7),
950–956 (1994)

22. Bryant, R.: A switch level model and simulator for MOS digital systems. IEEE
Transactions on Computers (T-C) C-33(2), 160–177 (1984)

23. Schneider, K., Brandt, J., Schuele, T., Tuerk, T.: Maximal causality analysis.
In: Desel, J., Watanabe, Y. (eds.) Application of Concurrency to System Design
(ACSD), Saint-Malo, France, pp. 106–115. IEEE Computer Society (2005)

24. Jose, B., Gamatie, A., Ouy, J., Shukla, S.: SMT based false causal loop detection
during code synthesis from polychronous specifications. In: Singh, S. (ed.) Formal
Methods and Models for Codesign (MEMOCODE), Cambridge, UK, pp. 109–118.
IEEE Computer Society (2011)

25. Nanjundappa, M., Kracht, M., Ouy, J., Shukla, S.: Synthesizing embedded software
with safety wrappers through polyhedral analysis in a polychronous framework. In:
Electronic System Level Synthesis Conference (ESLsyn), pp. 1–6 (2012)

26. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

27. Brandt, J., Schneider, K.: Separate translation of synchronous programs to guarded
actions. Internal Report 382/11, Department of Computer Science, University of
Kaiserslautern, Kaiserslautern, Germany (March 2011)

28. SYNCHRON: The common format of synchronous languages - the declarative code
DC. Technical report, C2A-SYNCHRON project (1998)

29. Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM (CACM) 18(8), 453–457 (1975)

30. Chandy, K., Misra, J.: Parallel Program Design. Addison-Wesley (May 1989)
31. Dill, D.: The Murφ Verification System. In: Alur, R., Henzinger, T.A. (eds.) CAV

1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)
32. Gamatié, A., Gautier, T., Le Guernic, P., Talpin, J.: Polychronous design of em-

bedded real-time applications. ACM Transactions on Software Engineering and
Methodology (TOSEM) 16(2) (2007)

33. Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for system design. Journal
of Circuits, Systems, and Computers (JCSC) 12(3), 261–304 (2003)

34. Potop-Butucaru, D., Sorel, Y., de Simone, R., Talpin, J.P.: Correct-by-construction
asynchronous implementation of modular synchronous specifications. Fundamenta
Informaticae 108(1-2), 91–118 (2011)

	Constructive Polychronous Systems
	Introduction
	Constructive Synchronous Systems
	Polychronous Systems
	Determinism and Constructivity
	Summary
	References

