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Preface

The Symposium on Logical Foundations of Computer Science series provides a
forum for the fast-growing body of work in the logical foundations of computer
science, e.g., those areas of fundamental theoretical logic related to computer
science. The LFCS series began with “Logic at Botik,” Pereslavl-Zalessky, 1989,
which was co-organized by Albert R. Meyer (MIT) and Michael Taitslin (Tver).
After that, organization was taken over by Anil Nerode.

Currently LFCS is governed by a Steering Committee consisting of Anil
Nerode (General Chair), Stephen Cook, Dirk van Dalen, Yuri Matiyasevich,
J. Alan Robinson, Gerald Sacks, and Dana Scott.

The 2013 Symposium on Logical Foundations of Computer Science (LFCS 2013)
took place in the Catamaran Resort Hotel, San Diego, California, during January
6—8. This volume contains the extended abstracts of talks selected by the Program
Committee for presentation at LFCS 2013.

The scope of the symposium is broad and includes constructive mathemat-
ics and type theory; logic, automata and automatic structures; computability
and randomness; logical foundations of programming; logical aspects of compu-
tational complexity; logic programming and constraints; automated deduction
and interactive theorem proving; logical methods in protocol and program veri-
fication; logical methods in program specification and extraction; domain theory
logic; logical foundations of database theory; equational logic and term rewrit-
ing; lambda and combinatory calculi; categorical logic and topological semantics;
linear logic; epistemic and temporal logics; intelligent and multiple agent system
logics; logics of proof and justification; nonmonotonic reasoning; logic in game
theory and social software; logic of hybrid systems; distributed system logics;
mathematical fuzzy logic; system design logics; and other logics in computer
science.

We thank the authors and reviewers for their contributions. We acknowledge
the support of the U.S. National Science Foundation, the Graduate Center of
the City University of New York, and the University of California, San Diego.

We are grateful to Yu Junhua for preparing this volume for Springer.

October 2012 Anil Nerode
Sergei Artemov
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Compositional Reasoning for Multi-modal
Logics*

Luca Aceto', Anna Ingélfsdéttir!, Cristian Prisacariu?, and Joshua Sack®

1 ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
luca,annai@ru.is
2 Dept. of Informatics — Univ. of Oslo, P.O.Box 1080 Blindern, 0316 Oslo, Norway
cristi@ifi.uio.no
3 Institute of Logic, Language, and Computation — University of Amsterdam
joshua.sack@gmail.com

Abstract. We provide decomposition and quotienting results for multi-
modal logic with respect to a composition operator, traditionally used
for epistemic models, due to van Eijck et al. (Journal of Applied Non-
Classical Logics 21(3-4):397-425, 2011), that involves sets of atomic
propositions and valuation functions from Kripke models. While the com-
position operator was originally defined only for epistemic S5" models,
our results apply to the composition of any pair of Kripke models. In
particular, our quotienting result extends a specific result in the above
mentioned paper by van Eijck et al. for the composition of epistemic
models with disjoint sets of atomic propositions to compositions of any
two Kripke models regardless of their sets of atomic propositions. We also
explore the complexity of the formulas we construct in our decomposition
result.

1 Introduction

Decomposition and quotienting techniques [291523] have been used for a wide
variety of logics, such as Hennessy-Milner logic [I0] or modal p-calculus [13], and
much attention has been given to extending and optimizing these [21[14]. Com-
positional reasoning normally involves a parallel-like composition operator over
the models of the logic in question. In the cases just cited, the main composition
operator of interest is usually some form of parallel composition from process al-
gebras [ATTIRI9]. In these cases, one observes what is called the state explosion
problem; when a system is built up by composing several processes/components,
its state space grows exponentially with the number of components. This is the
main drawback of doing model checking of such systems (even for algorithms
that are linear in the size of the model and the formula). Compositional reason-
ing has proved useful in tackling the state space explosion problem in several
applications.

* Luca Aceto and Anna Ing6lfsdéttir were partially supported by the project ‘Processes
and Modal Logics’ (project nr. 100048021) of the Icelandic Research Fund. Joshua
Sack was partially supported by the VIDI research programme number 639.072.904,
which is financed by the Netherlands Organisation for Scientific Research.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 1-[[5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



2 L. Aceto et al.

Intuitively, considering some form of composition of models M;||Ms and a
formula ¢ to check on this composed model, the technique of compositional
reasoning provides an alternative to checking M ||Ms |= ¢, by instead checking
two potentially simpler problems: M; = ¢1 and My | ¢2. When the two new
formulas are not much larger than the original, this method can be very useful.
There are also heuristic techniques that aim at keeping the new formulas small
2.

The aim of this paper is to develop a theory of compositionality and quo-
tienting for multi-modal logic with respect to a composition operator that has
been recently introduced in [22] for S5™ (epistemic) models. This composition
behaves similarly to the well-known synchronous composition; however, while
the set of states in a parallel composition is generally the Cartesian product,
the composition between epistemic models introduced in [22] eliminates states
whose atomic valuations on the components are not, so to speak, compatible.

Arguably, the composition of [22] is the most natural that one would want on
S5™ models. This composition behaves similarly to the well-known synchronous
composition of labelled transition systems. It is easy to see that the standard asyn-
chronous composition that is normally studied in process algebras and concurrency
theory does not preserve S5” models (see e.g. [1]), whereas the synchronous compo-
sition does. Another observation is that unlike other types of frames (i.e., transition
systems without a valuation of propositional constants), the S5 frames are trivial
without propositional constants and a valuation attached to their states (i.e., they
are bisimilar to a single reflexive point). Therefore, a composition of S5 models
should take valuations and propositional constants into consideration.

Although originally defined for S5 models, the composition of [22] is also
well-defined on other classes of models. For example, the class of Kripke models
is closed under it. An example of a class of models that is not closed with respect
to the composition of [22] is that of KD45 models, often used to model belief.
(See Remark 226)

The involvement of valuations and propositional constants in compositions in
general has received relatively little attention, and distinguishes the results in this
paper from mainstream composition results [6LOL[15.23]. There are, however, other
compositions that use valuations and propositional constants, and there is work
that employs related techniques. One composition that uses valuations is the con-
current program of [T6], where two non-epistemic models are composed insuch a way
that the states of the composition may disagree with the components on the valu-
ation. The composition we employ in this paper eliminates any state where there
may be such disagreement between a composite state and its components. Another
related composition is the update product from [5], though that composition is not
between two Kripke models, but between a Kripke (or epistemic) model and an ac-
tion model, a syntactic structure that differs from a Kripke model in that the val-
uation is replaced by a function assigning a formula to each point of the model. A
composition result in the setting of transition systems that also involves pruning
the global state space is that of [20]; however this result does not involve logic as we
do. Furthermore, given that modal formulas characterize finite transition systems
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up to bisimulation, and synchronizing on common actions is similar to compatible
states based on common valuations, there are connections between our techniques
and the techniques for synchronizing up to bisimulation from [§].

Our most technically involved contribution is the proof strategy of a decom-
position result (Th.[B3]) for the composition operator of [22]. This result follows
naturally from the relationship between the primary composition of focus and
an auxiliary composition (Th. [B4]). We also study the connections between the
composition of models with overlapping sets of atomic propositions and composi-
tions of models with disjoint sets of atomic propositions (Th. B.0]). Furthermore,
we provide a quotienting theorem (Th. [£3), which can be used to synthesize
missing components in composite models. If we have a model N in the composi-
tion and want to construct M in order to achieve property ¢ for the composition
of M and N, we can first compute the quotient formula of ¢ with respect to
N and then synthesize a model for it, if one exists. We show in the proof of
Corollary that the quotienting result [22] Th. 16] involving only epistemic
models with disjoint sets of atomic propositions is an instance of our quotienting
result, and in Section 5.2 we discuss how to extend our primary decomposition
result to one involving an even more general composition operator. Finally, in
Section [G] we provide an analysis of the complexity of the formulas we construct
in our main decomposition result. To save space, we omit or abbreviate a number
of proofs, but make the full-length proofs available in [I].

2 Preliminaries

In what follows we assume a fixed finite set I of labels (also called agents in
epistemic logic).

Definition 2.1 (Multi-modal Logic). The multi-modal logic L£(P), over a
set P of propositional constants, is defined by the grammar:

¢:=peP)|LloVe[=g]|(i)p(icl).

The set P is called the vocabulary of the logic. The formulas ¢1 N ¢, ¢1 <> a2,
and [i|¢ for i € I are derived in the standard way from this grammar, empty
disjunctions identified with 1, and T with —L.

We are especially interested here in epistemic logics where the modality [i]¢ is
usually read as: agent i “knows” formula o, and is written K;p. But our work
is applicable more generally, to multi-modal logics with propositional constants.
We also want our notation to be close to both the epistemic logic community
and the works on decomposition techniques.

The logic £(P) is interpreted over (multi-modal) Kripke models.

Definition 2.2 (Multi-modal Kripke Structure and Model).

— A (multi-modal) Kripke structure is a tuple K = (W, —) where W is the set

of worlds (also called states), and — is a family of relations QQ W x W
indexed by a fized set I. A pointed (multi-modal) Kripke structure is a pair
(K,w), where K = (W,—) and w € W.
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— A multi-modal Kripke model is a tuple M = (W, —,P, V') where (W, —) is a
Kripke structure, P is the set of propositional constants (i.e., the vocabulary
of the model), and V : W — P(P) is a valuation function. A model is finite
if W and P are both finite. A pointed (multi-modal) Kripke model is a pair
(M, w), where M = (W,—,P,V) and w € W.

Definition 2.3 (Interpreting Multi-modal Logic). The formulae in L(P)
are interpreted in a Kripke model M = (W, —,P, V) at some w € W as follows:

) EpiffpeV(iw),

) = 1V g2 iff (M, w) = ¢ or (M, w) = ¢,
)

)

b

E —¢ iff it is not the case that (M, w) ): @ (abbreviated (M, w) (= ¢)
= (i)¢ iff there exists a w' € W s.t. w % w' and (M,w') | ¢.

(M,w
(M, w
- (M,w
(M, w

We read (M, w) |= ¢ as: “the formula ¢ holds/is true at state w in M ”. We may
write w = ¢ instead of (M, w) |= ¢ if the meaning is clear from the context.

2.1 Compositions of Models

Our paper is mainly concerned with the study of the interplay of the logic L(P)
and the composition operator introduced in [22], which we will denote @ and for-
mally define in Definition 25l Essentially this composition makes a synchronous
composition of the relations of the two models, but the new set of states is only a
subset of the Cartesian product of the two initial sets of states. For later use, we
redefine the restriction on states from [22] in terms of the notion of (in)consistent
states. Though in [22] the operation @ is defined over S5™ models, it can actu-
ally be applied to arbitrary multi-modal Kripke models. Since our decomposition
technique does not use the restrictions of the S5™ models, it can be readily used
over any class of multi-modal Kripke models that is closed under the operation
of Definition 25} S5™ models form one such class.

Definition 2.4 (Consistent States). Fortwomodels M =(War, —nr, Par, Var)
and N = (Wyn,—n,Pn, V), where Py and Pn may overlap, we say that two
states w € Wy and v € Wi are inconsistent, written (M, w)t (N,v), iff

Ip€Pu NPy :(p€Vm(w) andp & Vn(v)) or (p & Vm(w) and p € Vn(v)).

We say that w and v are consistent, written (M, w)o(N,v), iff the two states are
not inconsistent. We often write wiv for (M,w)t(N,v) and wov for (M,w) o
(N, v) when the models are clear from the context.

Definition 2.5 (Composition of Models [22]). Let M = (W, — s, Par, Vi)
and N = (Wyn,—n,Pn, V) be two finite models, with possibly overlapping vo-
cabularies Pps and Py . The composition of M and N is the finite model defined
as M @ N = (VV, —, Py U PN,V) with:
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- W ={(w,v) |we Wny,ve Wy, and wouv},

— (w,v) 5 (W) iff w Sy w' oand v Sx V', for (w,v), (W',v") € W and
i €1, and

= V((w,v)) = Vi (w) UVN(v), for (w,v) € W.

Note that, when the vocabularies are disjoint, the definition of ¢ becomes vacu-
ously true, whereas that of § is vacuously false. In this case, the above definition
becomes the standard synchronous composition, where new states are from the
full Cartesian product (as the requirement w ¢ v can be ignored).

It was shown in [22, Th. 3] that the composition @ endows the collection of
epistemic S5™ with a commutative monoid structure, that is, up to total bisimi-
larity, the composition @ is commutative, associative, and if F is the (epistemic
S55™) model with one point that is reflexive for every agent and has an empty
set of atomic propositions, then E is a left and right unit for @.

Remark 2.6. Tt is folklore from model theory that a sentence of first order logic
is preserved under restriction and product if and only if the sentence is universal
Horn. A universal Horn sentence of first-order logic is the universal closure of a
disjunction with at most one atom disjunct, and where the remaining disjuncts
are negations of atoms (see, e.g., [I7]). The classes of S5 models and S5 models
are universal Horn: the formulas for reflexivity, symmetry and transitivity can
be written as Horn formulas. Hence the collection of epistemic models must
be closed under the composition @. However, the class of KD45 models, often
used to model belief, is not universal Horn, for the seriality requirement cannot
be expressed as a universal Horn sentence. Although a property that is not
expressible by a universal Horn might be preserved under some products and
restrictions, one can easily check that KD45 is indeed not preserved under @

(see e.g. [I]).

3 Compositional Reasoning Wrt. the @ Composition

This section presents our main result, a general decomposition for L£(P) with
respect to @, and which we describe as follows. We consider two finite models
M = Wy, —un, Py, Vir) and N = (Wy,—n,Py, Vy) and a formula ¢ €
L(PpUPy). Our aim is to find two formulas ¢; € L(Pys) and ¢2 € L(Px) such
that
(M®N’(wvv)) ': ¢ iff (M’w) ): Y1 and (va) ':'(/JQ

We want 11 and 12 to depend only on ¢, but for each ¢ there can actually be
multiple candidate pairs of formulas (1, 1)2). We thus follow the works on com-
positional reasoning for Hennessy-Milner logic [9], and reformulate the problem
into finding a function x : L(Par UPx) — P(L(Par) x L(Px)) such that

(MoN, (w,0)) ¢ iff 3(h1,¢2) € x(¢) : (M, w) | ¢ and (N,v) = 4.

Note that this function x returns a subset of £L(Pas) x L(Px). This motivates
the following definition, an auxiliary composition that we use to prove the main
decomposition result of this section (Th. 3.9).
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Definition 3.1 (Auxiliary Composition). Let M = (War, =, Par, Var)
and N = (Wn,—n,Pn,VN) be two finite models. The auxiliary composition

M
of M and N is defined as the model M ® N = (W, —,P,V) (also written <N))
with:

— W = Wy x Wy, whose elements are also written (7:]) for (w,v) € Wy x

N

1%
. / . . /
(7:]) N (f/) iff w S w and v =y ', for (7:]), (f/) eEW andiel,

P = L(Pux) x L(Pn), whose elements are also written Zl) for (¥1,12),
2
V((w,v)) ={(p,9) € P| (M,w) | ¢ and (N,v) | 9}

As before, we may subscript the components with the model (such as by writing
Pyon for the set atomic propositions in M ® N). The usual laws of multi-modal
logic apply when determining the truth of a formula @ € L(Pyen) in a pointed
model. For example, from the definition of Vg n, we have, for (¢,v) € Pyon,

")) w e eminar

and, given & € L(Pyon),

() () e i () (1) F o orsome (%) wien () 5 (1)),

M
We may write (Zj) = & for ( N)’ (Zj) = & if the model is clear from context.

3.1 Relationship between ® and @

Our first step is to compare the compositions ® and @. A primary difference
between these two is that ® does not remove states that are considered incon-
sistent, while @ does. We thus provide the following formulas in the language
L(Pypen) that characterize inconsistency and consistency:

fuon = \/ ((p)v<ﬁp)) and opon = fmMoN. (1)
pEPMNPN P p

Lemma 3.2. For two finite pointed models (M, w) and (N,v), we have

<J\Z§>’ <11l1)> = fuon iff (M,w)i(N,v),

with the notation on the right taken from Definition [2-)

We now define a “meaning preserving” translation of formulas to be evaluated
on models composed using © to those evaluated on models composed using ©.
The correctness of this translation is given in Theorem B4
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Definition 3.3 (Translation Function). We define Z : L(Py UPN) —
L(Pron) as follows:

i) ifp € Py NPy,

- Z(p) = ifpe Py \Pn ,

p
T
—]: iprPN\P]yj.
Z(p1V ¢2) = Z(d1) V Z($2),

— Z(~¢) = ~Z(¢9),
= Z((i)p) = (i)(Z(d) N o).

Theorem 3.4. Let M = (WM,%M,PM,VM) and N = (WN,—>N,PN,VN) be
finite models and ¢ € L(Pyr UPN). Then for all (w,v) € Wyrpn (i.e. such that
wov)

wonwoko i (y) (V)20

Proof. We prove the statement by structural induction on ¢. We only detail the
case when ¢ = (i)¢1, for which Z((i)¢1) = (i)(Z(¢1) A¢). We proceed as follows:

(w,v) | (i) iff (by the definition of )

AW, v') € Waron : (w,v) > (w ’/ )y and (w',v) = ¢y iff  (by induction)
' € W, ' € Wy C‘)’) ( ) w o and( ) = Z(61) iff

(by Lemma B:2)
' € Wiy, ' € W - C‘}’) (‘5) and C‘}’) = Z(61) Ao iff
() @z no) .

3.2 Decomposing Formulas

Recall from Theorem 3] that we relate the formula ¢ with a formula Z(¢) from
L(Prpon). We now proceed to show that any formula in £(Pason) is equivalent
on M ® N to a disjunction of atomic propositions in Py/qn.

Definition 3.5 (Disjunctive Normal Form in L(Pyen)). The set of Dis-
gunctive Normal Forms in L(Pyen), written D(Pyon), is defined as the small-
est set such that:

- [,(PM) X [,(PN) g D(PM@N),'
— if@l,@g S D(PM@N) then &1V @5 € D(PNIGN)-

Note the difference between this definition and the standard notion of disjunctive
normal form (DNF). The conjuncts that normally appear in a DNF are, in
our case, part of the pairs (elements of Pyson), and similarly for the negation.
Moreover, this is a DNF for modal formulas, and similarly the modality is part
of the atomic pairs.. These are possible because of the following result.
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Lemma 3.6 (Equivalences). The following are valid on M ® N.

()« (D) ()
() () = ()
() = (e

Definition 3.7. We define a function d : LIPyeon) = D(Puen) inductively

as follows:

— If@ S P]W@N; then d(@) =@.
— Ifd1,P5 € ,C(PJWQN), then d(@l \Y @2) = d(@l) \Y d(djg)

~ If® € L(Pron) and A(D) = ek z: then
A9 = Vier (7).
cacnv] (5, Joes)
je J

The following result states that d preserves the semantics of the formulas.

Theorem 3.8. For all ® € L(Pyon), w € Wi and v € Wy,

(V) Fe i (V) Faw),

We are now ready for our main decomposition theorem.
Theorem 3.9. Let x : LIPapUPN) — P(L(Par)x L(Pn)) be defined by mapping
@ to the set of disjuncts in d(Z(¢)). Then

(MoON,(w,v)) E¢ iff (1,1h2) € x(d) : (M,w) =91 and (N, v) |= ¢s.

Proof. This result immediately follows from Theorems 34 and B8 and the def-
inition of the semantics of disjunction. O

4 Quotienting

In this section, we present our quotienting result, which we describe as follows.
Having a composed pointed model (M @ N, (w,v)) and a formula ¢ € L(Py U
Px), we build a new formula, denoted Qn,.(), that depends explicitly only
on one of the components, so that

(M®Nv (w,v)) ': ¥ iff M,U) ': Q(N,v)(go)'
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If for our logic and our composition operation @, the resulting quotient formula
is not significantly larger than the original formula and the component, then the
model checking task can be simplified [2].

We show how Qn,)() can be derived, by beginning with the following for-
mula for consistency.

Definition 4.1 (Consistent with v). Given a finite model M = (W, —
,Par, Var) and a finite pointed model (N,v) = (Wn, —n, PN, Vn) with v € Wy,
we define o, € L(Pap NPx) as:

Ov:/\{p‘pEPMmPN’ (va) ':p}
/\/\{—\p\pe Py NPy, (NV,v) E -p}.

This definition essentially encodes the valuation of (N, v) over the common part
of the vocabularies. Before, e.g. in Definition B.2] ¢ was encoding all possible
valuations, because we did not know in advance the state v. The intuition now
is that if M,w | ¢, then w and v are consistent in the same sense as before.
Again, we can observe that ¢, is a tautology when Py, and Py are disjoint.

One can already see how for quotienting, the knowledge of one component
(N,v) is used to build the quotient formula @y ,)(¢); whereas before we were
taking all possibilities into account in the pairs of formulas.

Definition 4.2 (Modal Quotient Function). For some set of propositional
constants Py and a finite pointed model (N,v), we define the function Q(n ) :
L(Py UPN) — L(Pun) by

piff p € Pa \ Py, orbothp € Pyy NPy and N, [=p
— Qvay(P) =S T iff pe Py \ Py and N,v = p ,
1 otherwise.
~ Qv (91 V d2) = Q) (91) V Q0 (62)
— Q) (79) = QN ) (9),
= Quv,((1)9) = )V i (Qv,uv) (@) Now).

v—=U

Theorem 4.3. For finite models M = (Wyr, =, Par, Var) and N = (W, =N
PN, VN), a formula ¢ € L(Py UPN), and two consistent states w o v, we have

Mo N,(w,v) E e iff M,wkE Q,uw(®)-

Proof (sketch). We prove the theorem by structural induction on ¢ where the
base case for ¢ = p follows directly from the definition and the inductive cases
for ¢ = ¢1 V ¢ and ¢ = —¢; use simple induction arguments.

For the case of ¢ = (i)¢1 the following are equivalent:

1. M@ N, (w,v) | (i)é1
2. (W', v") e W (w, )#( v') and M @ N, (w',v") = ¢1
KN

v w,
3. I(w',v") €W (w,v) = (w',v") and M, w' = Q(n,v) (1)



10 L. Aceto et al.

4. there exists w’, such that w s ' and there exists v’, such that v o and
both M,w' |= ¢, and M, w' = Q(n,v)(41)

5. there exists w’, such that w % w’ and M,w’ = V, i Qv Aow)
6. Myw =)V 4, (Quvw) Aow)). 0

v—v’
An interesting corollary of Theorem [3lis that checking whether a pointed model
(M, w) satisfies a formula ¢ can always be reduced to an equivalent model-
checking question over the pointed model (E,v), where E is the left and right
unit for the composition operator @ and v is the only state of E.

Corollary 4.4. For each finite model M = (Was, =, Par, Vi), state w € Wy
and formula ¢ € L(Pyr), there is some formula ¢ € L(0) such that

MuwEg iff BEvEd .

Proof. Recall that, by Theorem 3 in [22], E is a left unit for @ modulo total
bisimilarity. In fact, each state (v,w) in E' @ M is bisimilar to the state w in
M. This means that the pointed models (E @ M, (v,w)) and (M, w) satisfy the
same formulas in £(Pjs). By Theorem 3], we now have that, for each formula

¢ € L(Pum),
Maw ):90 iff E@M,(U,IU) ):(P iff E7U ':Q(M,w)(ﬁp)

By the definition of quotienting, it is easy to see that Qazw)(v) € L(0). We
may therefore take that formula as the 1 mentioned in the statement of the
theorem. a

5 Related Results and Relationships

5.1 Composing with Disjoint Vocabularies

The results of this section show that the problem of determining the truth value
of a formula in the composition of models with arbitrary (overlapping) vocab-
ularies can be equivalently formulated in terms of composition of models with
disjoint vocabularies.

We first provide functions that transform the models.

Definition 5.1. For some model M = (W, —, Py, Var) and i € {1,2}, we define
gi(M) = (W, —, Py x {i}, V), where V(w) = Vs (w) x {i}.

Given any two sets A and B, we define their disjoint union A + B to be (A x
{1} U (B x {2}). We now define formulas in £L(Ps; +Py) that characterize when
two states are consistent or inconsistent.

Definition 5.2. Let Py; and Py be finite vocabularies. We define the Boolean
formulas:

— §(Pu+PN) =V, ep,mpy (0, 1) A(p,2)) V (2(p, 1) A (p,2)))-
— O(P]y[ —+ PN) = ﬁﬁ(P]yj -+ PN)
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When M and N are understood from context, we simply write § and ¢ for
f(Par + Pn) and o(Pp + Pn) respectively.

Note the similarity of the definition for #yen and #(Py + Px). Because of
the pairing of models and of formulas in the valuation Vj;on, we did not need
the change of the common propositions, as we are doing here for # (Py + Py).
Otherwise the definitions are the same.

Proposition 5.3. Let M = (Wyr, —ar, Par, Var) and N = (Wx, =N, P, Vi)
be two finite models. For all w € Wy and v € Wy, we have

g1 (M) @ g2(N), (w,v) = 4 (Pam +Pn) iff (M,w)t(N,v).

Note that, by negating both sides of the above “iff”, we have an equivalent
formulation of the proposition with ¢ in place of #. We use the consistency
Boolean formula ¢ to rewrite a multi-modal formula that is defined over two
possibly overlapping vocabularies, into a multi-modal formula over the two dis-
joint vocabularies of the corresponding models changed by the functions g; from
above.

Definition 5.4 (Function fp,, p,)). For two sets of propositional constants
Par, Pn, we define a function fpp,, py) : LIPrrUPN) — L(Par+Pn) as follows:

(p,l)/\(pa2)p€ PMﬂPN,
- f(PIVhPN)(p) = (pv 1) p € Py \ P
(p72) pEPN\PM~

- f(PM,PN)(_‘(b) = _\f(PIW’PN)((ﬁ)'
= JPaPr) (81 02) = f(por ) (D1) V f(Pay,py) (D2)-
= [Py ((0)90) = (D) (f(Prr ) (9) N ©).

The functions g1 (M) and g2(N) produce models with the same structure but
with disjoint vocabularies, thus the following is the result we are looking for.

Theorem 5.5. Given any finite pointed models (M, w) and (N,v), such that
wov, and any formula ¢ € L(Ppr UPN),

M®Na (w,v) ): ® Zﬁ gl(M) ®92(N)v(wvv) ': f(PM,PN)(SO)'

Proof (sketch). We use induction on the structure of the formula . The base
case for ¢ = p follows from the definition of the satisfiability relation =, the
definition of f, and the fact that w ¢ v. The inductive cases for p = ¢1 V ¢o and
© = —¢1 use simple inductive arguments. The crux of the case of ¢ = (i)¢ is
the fact that f({(i)¢) = (i)(f(¢) A o) is defined using the ¢ formula inside the (7)
modality. This ensures that the induction goes through. Essentially it guarantees
that in the composition of the transformed models g1 (M) @ g2(N), we focus on
the consistent states (w’,v") that are reached from (w,v) in M @ N, thus looking
only at states that correspond to those in M @ N. O
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5.2 Special Instances and Extensions

In this section, we show that our quotienting result generalizes Theorem 16
from [22], and then we discuss how to extend our decomposition result (Th.[39)
to one involving a more general composition operator described in [22, Remark 2].

Corollary 5.6 (for Th.16 of [22]). Let (M;,w;), fori € {1,...,n}, be pointed
models such that the Py, are pairwise disjoint. Then for any ¢ € L(Py,), @ €
{1,...,n}, we have that

(My@-- @ My,), (w,...,w,) Ew iff Mij,w;=¢ .

Proof (sketch). This is an easy corollary of Theorem .3l Because @ is commu-
tative and associative, we can assume without loss of generality that i = 1.
Let (N,v) be the pointed model (Mz @ -+ @ M), (wa,...,w,). Note that
Pu, NPy = 0. Now, ¢ € L(P1), and hence Q(n ) (p) = p. The disjointness
of the vocabularies ensures that o, is always equivalent to T. A simple induction
on the structure of the input formula shows that Qv .)(®) is equivalent to ¢
itself. The desired theorem then immediately results from Theorem O

Compositional Reasoning wrt. a Generalized @ Composition: Our decomposition
method (and the proofs) can be easily adapted to other settings. One is the
application to compositional reasoning with respect to a generalization of the @
operator, remarked in [22] Remark 2].

Definition 5.7 (Generalized @ Composition). The modal depth of a for-
mula @ is the mazimum nesting of (i), i € I, occurring in it. For each n > 0, and
set of propositional constants P, we write L,,(P) for the collection of formulas in
L(P) whose modal depth is at most n.

Take the definition of o¢ to be that of © from Definition[2.4 Define o, to be the
same as ¢ only that instead of requiring agreement on the set of propositional
constants Py N Py, we ask consistent states to satisfy the same formulas in
Ln(PypNPN). Define the general composition operator @, over finite models to
be the same as @ in Definition but with ¢ replaced by ©,.

Note that @g is the same as @. All the proofs from Section B] work for any of
the generalized compositions ©@,. We only need to adapt the definitions of the
o formulas to be in terms of the languages £,,(Pas N Px). These languages are
infinite. However, since Py; N Py is finite, if we quotient £,,(Pas N Py) by the
equivalence relation identifying every two formulas ¢ and ¢ whenever ¢ <> 1 is
valid, then we are left with a finite language. Therefore the formula ¢, can be
expressed in L, (Py N Py).

Another application of the decomposition method is to dynamic epistemic
logic (DEL) [21I]. One approach is to use reductions of DEL to the epistemic
logic that we treated (see e.g. [2I]) and then our Theorem Another inter-
esting way is to use the logical language of DEL directly in our decomposition
technique and use a result from [22, Th.18] (ounly for propositionally differenti-
ated action models). We leave for future work the development of decomposition
and quotienting results that apply directly to DEL.
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6 Complexity Issues

In this section, we investigate how the decomposition operator @ affects size
(which we call dimension) of the models being composed, and how the trans-
formations Z and d affect the size (dimension) of the formulas. We also point
out some techniques for optimizing these, though we leave the pursuit of these
techniques for future work.

In what follows, for any finite set S, we denote the number of elements of
S by |S|. Let the dimension of a finite model M = (W,—,P, V) be |W| +
Pl + s = |+ > pep [V (p)]. Given two models M and N, if Py and Py
are disjoint, then the dimension of M @ N is much larger than the sum of the
dimensions of the components. In this case, the sizes of the components of the
composed model M @ N are as follows:

— Wuon| = [Wu| x [Wn],
— | Saron | =1 Sar | x| S,

= IPuen| =[Pyl +[Px],

Viron ()] = § V@)l x Wl if p € Pas
: |My| x [V (p)| if p € Py

The first two equalities hold also with respect to the synchronous parallel com-
position between M and N. The other two are perhaps less familiar, and a bit
more complicated. But clearly, the dimension of the composition M @ N is much
larger than the sum of the dimensions of the M and N when the vocabularies
are disjoint. If the vocabularies of M and N are not disjoint or even coincide,
the situation is more complicated. It is possible that the formulas are the same
as above if the valuations of both models are uniform, providing each state with
the same valuation. But it is also possible that some or even all the states be
removed when eliminating the “inconsistent” states from the composition (such
as when M and N have uniform valuations, but disagree on each atomic propo-
sition), in which case the dimension of the composition can be much smaller.
The techniques of this paper are most useful when the dimension of the com-
position is much larger than the dimension of the parts, and where the formula
translations do not increase the complexity of the formula too much.

As usual, we consider the complexity of a formula ¢ to be the number of
occurrences of symbols in it, and call this its dimension. The formulas in the
decomposition result are built in two stages, first using the function Z in Defini-
tion[333land then generating the DNF of the resulting formula using the function
d in Definition B7l For Z we use the Boolean formula ooy from ().

Proposition 6.1 (Dimension of ¢). The dimensions of § yeon and oypeN
from @) are linear in the size of Py NPy. The dimension of the DNF of oypon
s exponential in the size of Ppy N Py.

Since the dimension of ¢ depends only on the (propositional vocabularies of
the) models that are composed, we view it as a constant when calculating the
dimension of the formula generated by Z with respect to the input formula.
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Proposition 6.2 (Dimension of 7). The dimension of the formula Z(¢) from
Definition[3.3 is linear in the size of the input formula .

To calculate the dimension of the formulas in disjunctive normal form, resulting
from the function d in Definition B7, applied to formulas Z(y), we involve a
notion of disjunctive dimension; this is the number of disjuncts in a DNF.

Definition 6.3 (Disjunctive Dimension). For a formula @ in D(Ppyen), the
disjunctive dimension, denoted § (P), is defined to be the number of occurrences
in @ of elements from Pyon.

Note that the dimension of a formula in D(Ppon) is at least as large as its
disjunctive dimension.

Proposition 6.4. Let® € L(Pyon) be a formula with a nesting of k+1 (k > 0)
negation symbols. Then

5(d(P) = 9.+ }k: occurrences of 2.

For calculating the disjunctive dimension of d applied to Z(¢) in terms of the
dimension of ¢, observe that Z introduces, for every occurrence of a modal op-
erator (i) in ¢, a conjunction symbol, which is an abbreviation for an expression
with negation symbols. Furthermore, for a nesting of k& > 0 modal operators (i),
Z introduces a nesting of 2k negation operators, and hence by Proposition [(.4]
the disjunctive dimension of d(Z(y)) is at least a tower of 2k — 1 exponents. As
the disjunctive dimension is a lower bound to the actual dimension, this means
that the dimension of d(Z(¢)) is at least a tower of 2k — 1 exponents.

To reduce these dimensions, one may investigate the use of term graphs (see
[12] or [3, Sec. 4.4]) to identify repeated subformulas. One may also consider
representing formulas as binary decision diagrams (see [7]). A direct method
could be to process ¢ or Z(p), so as to remove double negations, or to identify
patterns of negation and disjunction that allow us to apply the conjunctive item
of Lemma[3:6l Furthermore, each step of the translation reduction methods in [2]
could be applied to eliminate redundant formulas by simple Boolean evaluations.
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Explicit Generic Common Knowledge

Evangelia Antonakos

Graduate Center CUNY

Abstract. The name Generic Common Knowledge (GCK) was sug-
gested by Artemov to capture a state of a multi-agent epistemic sys-
tem that yields iterated knowledge I(y): ‘any agent knows that any
agent knows that any agent knows. ..y’ for any number of iterations.
The generic common knowledge of ¢, GCK(p), yields I(p),

GCK(p) — 1(p)

but is not necessarily logically equivalent to I(¢). Modal logics with GCK
were suggested by McCarthy and Artemov. It has been shown that in
the usual epistemic scenarios, GCK can replace the conventional com-
mon knowledge. Artemov noticed that such epistemic actions as pub-
lic announcements of atomic sentences, generally speaking, yield GCK
rather than the conventional common knowledge. In this paper we intro-
duce logics with explicit GCK and show that they realize corresponding
modal systems, i.e., GCK, along with the individual knowledge modali-
ties, can be always made explicit.

Keywords: generic common knowledge, common knowledge, justifica-
tion logic, epistemic modal logic, realization.

1 Introduction

Common knowledge C' is perhaps the most studied form of shared knowledge.
It is often cast as equivalent to iterated knowledge I, “everyone knows that
everyone knows that...” [912]. However there is an alternate view of com-
mon knowledge, generic common knowledge (GCK), which has advantages. The
characteristic feature of GCK is that it implies, but not equivalent to, iterated
knowledge I. Logics with this type of common knowledge have already been seen
([7IT4YT5]) but this new term “GCK” clarifies this distinction (J3]). Generic Com-
mon Knowledge can be used in many situations where C' has traditionally been
used ([2053]) and has a technical asset in that the cut rule can be eliminated [

Moreover, Artemov pointed out in [3] that public announcements of atomic
sentence — a prominent vehicle for attaining common knowledge — generally
speaking, leads to GCK rather than to the conventional common knowledge.
Artemov also argues in [5] that in the analysis of perfect information games in
the belief revision setting, Aumann’s “no irrationality in the system” condition

! See details in [T] as to why the finitistic cut-elimination in traditional common knowl-
edge systems may be seen as unsatisfactory.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 16-E8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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is fairly represented by some kind of generic common knowledge rather than
conventional common knowledge, and that this distinction lies in the heart of
the well-known Aumann—Stalnaker controversy.

We assume that the aforementioned arguments provide sufficient motivation
for mathematical logical studies of the generic common knowledge and its dif-
ferent forms.

Another research thread we consider is Justification Logic. In the generative
justification logic LP, logic of proofs, knowledge and reasoning are made explicit
with proof terms representing evidence for facts and new logic atoms ¢ : F' are
introduced with the reading “¢ is (sufficient) evidence for knowing F” or simply
“t is a proof of F.”

In this paper we consider justification logic systems with multiple knowers
and generic common knowledge. As the standard example, we assume that all
knowers as well as their GCK system are confined to LP. We call the resulting
system LP,,(LP) which symbolically indicates n LP-type agents with an LP-type
common knowledge evidence system.

Multi-agent justification logic systems were first considered in [I8], but with-
out any common knowledge component. Systems with the explicit equivalent of
the traditional common knowledge were considered in [TTJT0]; capturing common
knowledge explicitly proved to be a serious technical challenge and the desirable
realization theorem has not yet been obtained.

Generic common knowledge in the context of modal epistemic logic, in which
individual agents’ knowledge is represented ‘implicitly’ by the standard epistemic
modalities was considered by Artemov in [7]. In the resulting modal epistemic
logic S4i, sentences may be known, but specific reasons are not. This is a multi-
agent logic augmented with a GCK operator J (previously termed justified com-
mon knowledge in [7] and elsewhere). Artemov reconstructed S4; -derivations in
5S4, LP via a Realization algorithm which makes the generic common knowledge
operator J explicit, but does not realize individual knowledge modalities.

The current paper takes a natural next step by offering a realization of the
entire GCK system S4,JL in the corresponding explicit knowledge system LP,,(LP),
In particular, all epistemic operators in S4i, not only J, become explicit in such
a realization.

2 Explicit Epistemic Systems with GCK

Here we introduce an explicit generic common knowledge operator into justifica-
tion logics in the context of a multi-agent logic of explicit justifications to form
a logic LP,,(LP). The “(LP)” corresponds to GCK.

Definition 1. Lp, (p), the language of LP,(LP), is an extension of the propo-
sitional language:

Lyip,wpy := { Var, pfVar, pfConst,V,\, =, =, +,-,1, Tm} .
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Var is propositional variables (p,q,...). Justification terms Tm are built from
pfVar and pfConst, proof variables (x,y,z,...) and constants (c,d,...), by the
grammar

ti=x|c|t+t|tt|t.

Formulas (Fm) are defined by the grammar, for i € {0,1,2,...,n},

p=pleleVe|lohp|lo—=0]|p|tip.

The formulas £ :; ¢ have the intended reading of “t is a justification of ¢ for agent
1.” Index i = 0 is reserved for explicit generic common knowledge, for which we
will also use the alternative notation [t]p for better readability.

Definition 2. The axioms and rules of LP,,(LP):

CLASSICAL PROPOSITIONAL LOGIC:
A. axioms of classical propositional logic
R. modus ponens
LP AXIOMS FOR ALL n + 1 AGENTS, i € {0,1,2,...,n}:
Lity(p—v)— (sue— (t-s):1)
L2.tyo— (t+8)upandtyo— (s+1):p
L3t —
Lyt =l (t)
CONNECTION PRINCIPLE:
C.tlp = t:p .
Term operators mirror properties of justifications: “” is application for deduc-
tion; “+”, sum, maintains that justifications are not spoiled by adding (possibly
irrelevant) evidence; and “!” is inspection and stipulates that justifications them-
selves are justified. This last operator appears only in justification logics with
L4, whose corresponding modal logic contains the modal axiom 4 (O — O0y),
as shown in [6]. A multitude of justification logics of a single agent corresponding
to standard modal logics have been developed ([6]). Yavorskaya has investigated
versions of LP with two agents in which agents can check each other’s proofs

([8]).

Definition 3. A constant specification for each agent, i € {0,1,...,n}, CS; is
a set of sentences of sort c:; A where c is a constant and A an aziom of LP,(LP).
The intuitive reading of these sentences is ‘c is a proof of A for agent i.’ Let

CS = {CSi,...,CS,}

and CSy C CS; for alli € {1,2,...,n}. By LP,, cs(LPcs,) we mean the system
with the postulates A, R, L1-L4, C above, plus CSqg and CS as additional axioms.
As formulas in a constant specification are taken as axioms, they themselves may
be used to form other formulas in a CS so that it’s possible to have c:1 (d:g A) €

CSl ZfdQA S CSQ
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The constant specification represents assumptions about proofs of basic postu-
lates that are not further analyzed. If CS; = ), agent i is totally skeptical; no
formulas are justified. If this is so for all agents, it would be denoted LP,, 41 (LPp).
Constant Specifications of different types have been studied: schematic, injec-
tive, full, etc. and have been defined with various closure properties. See [6] for
a fuller discussion of constant specifications. The total constant specification for
any agent, 7CS;, is the union of all possible CS;. Henceforth we will assume
each agent’s constant specification is total and will abbreviate this to LP,,(LP).

Definition 4. A modular model of LP,,(LP) is M = (W, Ro, R1, Ra, ..., R, *,1F)
where

1. o W is a nonempty set,
e R, CW x W are reflexive for i € {0,1,2,...,n}. Ry is the designated
accessibility relation for GCK.

o x: W x Var— {0,1} and * : W x {0,1,2,...,n} X Tm — 2f'm
i.e., for each agent i at node u, *(u,i,t) is a set of formulas t justifies.
We write t% for x(u,i,t). We assume that GCK evidence is everybody’s
evidence:

O Ctt for i€{0,1,2,...,n} .

2. For each agent i and node u, * is closed under the following conditions:

Application: s&¢-t5 C (s-t)%? ‘
Sum: si'UEE C (s+t)5"
Inspection: {t; ¢ | p € (t5)} C (1t)5?

where s*-t* ={Y | ¢ = Y € s* and ¢ € t* for some ¢}, the set of formulas
resulting from applying modus ponens to implications in s* whose antecedents
are in t*.

3. For p € Var, we define forcing I+ for atomic formulas at node u as u I p
if and only if x(u,p) = 1. To define the truth value of all formulas, extend
forcing I to compound formulas by Boolean laws, and define

ulktyp & petht,

4. ‘justification yields belief” (JYB), i.e., fori € {0,1,2,...,n}, ul- t:; p yields
v Ik ¢ for all v such that uR;v.

Modular models, first introduced for the most basic justification logic in [4], are
useful for their clear semantical interpretation of justifications as sets of formulas.
For modular models of some other justification logics refer to [13]. For a detailed
discussion of the relationship between modular models and Mkrtychev—Fitting
models for justification logics, see [H].

A model respects CSg,...,CSy, if each c:; ¢ in these constant specifications
holds (at each world w) in the model.

Theorem 1 (soundness and completeness). LP, cs(LPcs,) - F iff F' holds
in any basic modular model respecting CS;, i € {0,1,2,...,n}.
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Proof. Soundness — by induction on the derivation of F, for ¢ € {0,1,2,...,n}.

e Constant Specifications: If c¢:; p € CS;, then u I+ ¢:; ¢ as the model respects
CS;.

e Boolean connectives: hold by definition of the truth of formulas.

e Application: Suppose u IF s:; (F — G) and u |- ¢:; F. Then by assumption,
(F— G)esiiand F €t Then G € s&it5 C (st)5% thus u I- (st) 4 G.

e Sum: Suppose u IF t:; F. Then F € t%% and so F € s5 Uth! C (s+ )"
Thus u Ik (s +t):; F. Likewise, u I (¢ + s):; F.

e Modus Ponens: Suppose u IF F' — G. Then by the definition of the connec-
tives either u I F' or u IF G. So if also u I+ F', then v IF G.

e Factivity: Suppose u IF ¢ :; F. By the ‘justification yields belief’ condition,
v Ik F for all v such that uR;v. As each R; is reflexive, uR;u, so also u I+ F.
Inspection: Suppose u I t:; F. Then F € %% so t ;; F € (1)%% Thus
wlklt:; (64 F).

e Connection Principle: Suppose u IFt:g F. Then F € t50 C t5% so u I-t:; F.

Completeness — by the maximal consistent set construction. For i € {0,1,2,
coo,n}y let

W the set of all maximal consistent sets,

TR A iff I'# C A where I'# = {F | t;F € T'},

For p eVar, «(I,p)=1if pe I,

tp'={F|t;Fel} (le,for X=p,tF, T'FXifXel).

To confirm that these comprise a modular model, the R; need to be reflexive,
the GCK and closure conditions must be checked, and the model must satisfy
‘justification yields belief’. As each world is maximally consistent I'*# cr,
hence I'R;I" by L3, so each R; is reflexive. The GCK conditions t}’o C tp' for
i €{0,1,2,...,n} follow from the C axiom t: F — t:; F for i € {1,2,...,n}.
Closure conditions for -, +, and ! follow straightforwardly from the axioms L1,
L2, and L4. It remains to check the JYB condition, following the Truth Lemma.

Lemma 1 (Truth Lemma). I' I+ X iff X € I, for each I and X.

Proof. Induction on X. The atomic and Boolean cases are standard. The only
interesting cases are X = ¢:; F. Note that I' |- ¢:; F iff F € t;2" by the definition
of modular models. Moreover, under the evaluation particular to this model,
Fet}” iffty;Fel. Thus -t Fifft; Fel. |

Now to see the JYB condition, suppose I" IF ¢t:; F' and consider an arbitrary A
such that I'R;A. By the definition of this model, ¢ :; F € I', hence F € I'#,
hence F' € A. By the Truth Lemma, A IF F'.

To finish the proof of completeness, let LP, cs(LPcs,) I/ G, hence {=G} is
consistent and has a maximal consistent extension, ¢. Since G ¢ @, by the Truth
Lemma, @ I G. O

Corollary 1. Modular models for LP (i.e., LPo(LP)) are M = (W, R, *,IF) where
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1. o W is nonempty
e R is reflexive
o *:WxVar—>{0,1},*:W><Tm—>2Fm ;
2. x closure conditions for -, 4+, and!;
3. ulkp < x(u,p) =1 and forcing I+ extends a truth value to all formulas by
Boolean laws and ul-t: F & F €t
4. justification yields belief (JYB): w - t: F yields v Ik F for all v such that
uRv.

These modular models for LP differ from those by Kuznets and Studer in [13] as
no transitivity is required of R, which enlarges the class of modular models for
LP. Artemov suggests (personal communication) this modular model for LFPy
which satisfies Definition 4 and is not transitive and hence ruled out by the
formulation offered in [I3]:

o W ={a,b,c}
R = {(aa), (b)), (cc), (ab), (be)}

e x is arbitrary on propositional variables, ¢*

a’

t;, t are all empty.

Of course, one could produce more elaborate examples as well, e.g., on the same

non-transitive frame, fix a propositional variable p and have t1:to:...:%, :p hold
for all proof terms t1,...,t,, for all n, at any node (in particular, make p true
at a, b, c).

While it does not appear to be justified to confine consideration a priori to
transitive modular models, the exact role of transitivity of accessibility relations
in modular models is still awaiting a careful analysis.

3 Realizing Generic Common Knowledge

We show that LP,LP, a logic of explicit knowledge using proof terms, has a
precise modal analog in the epistemic logic with GCK, S4z.

Definition 5. The axioms and rules of S4;:

CLASSICAL PROPOSITIONAL LOGIC:
A. axioms of classical proposition logic
R1. modus ponens
S4-KNOWLEDGE PRINCIPLES FOR EACH K;, i € {0,1,...,n},
(J may be used in place of Ky ):
CKilp = ) = (Kip — Kiy)
-Kip— o
o= FKp
CONNECTION PRINCIPLE:
Cl. Jp— K;p .

%»—1x
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In S47 the common knowledge operator J is indeed generic as J(¢) — C(y)
while C(¢) 4 J(p), as illustrated in [2]. McCarthy et al. provide Kripke models
for one of their logics in [15], see also [7]. In Kripke models, a distinction between
generic and conventional common knowledge is clear. The accessibility relation
for C, R¢, is the exact transitive closure of the union of all other agents’ ac-
cessibility relations R;. Ry, the accessibility relation for J is any transitive and
reflexive relation which contains the union of all other agents’ relations, thus

Rgex = Ry 2 Re.

This means that generally speaking, there is flexibility in choosing R; while R¢
is unique in each given model. Note that in the case where we have explicit proof
terms and not just modalities of implicit knowledge, we also have this multiplicity
of options for generic common knowledge: there may be many evaluations * such
that 9 that satisfiest 50 C %7 for all i.

We now have LP,(LP) and S4,JL, each is a multi-agent epistemic logic with
generic common knowledge, where all justifications are explicit in the former
and implicit in the latter. By proving the Realization Theorem, we will establish
that LP,,(LP) is the exact explicit version of S4;.

Definition 6. The forgetful projection is a translation
o: Lip,p) = Ls4s

defined inductively as follows:

e p° =p, for p € Var
(—1)° = =(¢°)
o commutes with binary Boolean connectives: (YAp)° = Y°Ap° and (¥ V p)°
— wo \/ S00
(tu)° = K;(y°) forie{0,1,...,n} .

Proposition 1. [LP, (LP)]° C S47.

Proof. The o translations of all the LP,,(LP) axioms and rules are easily seen to
be theorems of S47. O

We want to show that these two logics are really correspondences and that
S47 C [LP,(LP)]°

also holds. This is much more involved. Theorem 3 shows that a derivation of
any S47 theorem o can yield an LP2(LP) theorem 7 such that 7° = o. This
process, the converse of the o-translation, is a Realization r.

Definition 7. A realization r is normal if all negative occurrences of modalities
(whether o K; or J) are realized by distinct proof variables.

To provide an algorithm r for such a process, we first give the Gentzen system
for S4; and the Lifting Lemma (Proposition 2).
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Definition 8. S4/G, the Gentzen version of S4;, is the usual propositional
Gentzen rules (i.e., system Glc in [16]) with addition of n+ 1 pairs of rules:

JILO0A = ¢

©,=) and JI.OA = Op

(=,0)

where O is J or some K;. As usual, capital letters are multisets and O{¢1,. ..,
en} ={0p1,...,Opn}.

Theorem 2. S4/G is equivalent to S4] and admits cut-elimination.

O

Proof. See Artemov’s proof in Section 6 of [7].

Let I' = {v,...,%m}, ¥ = {o01,...,0,} be finite lists of formulas, ¥, 2 fi-
nite lists of proof variables of matching length, respectively. Then [§ |7 =
[y1]y1, - [Ym)ym and 25 X = 21501, -+, z2niion, © € {0,1,2,...,n}.

Proposition 2 (Lifting Lemma). In LP,(LP), for i € {0,1,2,...,n} and
each I, X, 4, Z,
G122 F e
G125 2F f(4,2)ue
for the corresponding proof term f(¥, 2).
Proof. By induction on the complexity of .

— ¢ is an axiom of LP,(LP), then as LP,(LP) has 7CS, for any constant c,
cypsolet f(y,2) =c. Astip, wpy ciip, also [ [T, 22 X b ip, (Lpy €.
— ¢ is [y;]y; for some [y;]v; € [¢]], then

W12 X Fep, ey W50

hence

10,2 2 e, ey Mysl([ws)vs)
and

[ 10,25 2 e, ey s ([ys]) -
So,

W12 X Fep, ey y;ie
> :'

and we can put f(¥,2) =ly;.
— ¢ is z;:0; for some z;:,0; € Z:; X, then as 1z, (z5:,05) is given,

W25 Fep,amy i

So let f(¢,2) =!z;.

—  is derived by modus ponens from 1 and ) — . By the Induction Hypoth-
esis, there exists ¢:; 9 and u:; (v — @) (where t = f(¢, 2) and u = f,.(¥, 2)).
Since u:; (Y — @) = (t9 — (u-t):¢), by modus ponens (u-t):; ¢. So let
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—pisc:y A e TCS. Since ¢y A — lc i (¢ A) and Fip py ¢ A, also
|_|_P"(|_P) le:i (e:; A) thus

11,254 X Fip, upylcti o
So let f(¥,2) =le. O

Theorem 3 (Realization Theorem). If S47 + o, then LP,(LP) F " for
some normal realization r.

Proof. The proof follows closely the realization proof from [8] with adjustments
to account for the Lifting Lemma.

If S47 - ¢, then by Theorem 2 there is a cut-free derivation D of the sequent
= ¢ in S4/G. We now construct a normal realization algorithm 7 that runs on
D and returns an LP,,(LP) theorem " = v such that ¢¥° = .

In ¢, positive and negative modalities are defined as usual. The rules of
S47G respect these polarities so that (=, 0) introduces positive occurrences and
(O, =) introduces negative occurrences of O, where O is J or some K;. Call the
occurrences of O related if they occur in related formulas in the premise and con-
clusion of some rule: the same formula, that formula boxed or unboxed, enlarged
or shrunk by A or V, or contracted. Extend this notion of related modalities by
transitivity. Classes of related O occurrences in D naturally form disjoint fam-
ilies of related occurrences. An essential family is one which at least one of its
members arises from the (=, 0) rule, these are clearly positive families.

Now the desired r is constructed by the following three steps so that negative
and non-essential positive families are realized by proof variables while essential
families will be realized by sums of functions of those proof variables.

Step 1. For each negative family and each non-essential positive family, replace
all O occurrence so that Ja becomes [r]a and K;« becomes y; :; . Choose new
and distinct proof variables  and y; for each of these families.

Step 2. Choose an essential family f. Count the number ny of times the (=, 0)
rule introduces a box to this family. Replace each O with a sum of proof terms
so that for i € {0,1,2,...,n}, K;« becomes

(wig +wig+ -+ wi,nf) 4 Q,

with each w; ; a fresh provisional variable. Do this for each essential family. The
resulting tree D’ is now labeled by LP,,(LP)-formulas.

Step 3. Now the provisional variables need to be replaced, starting with the
leaves and working toward the root. By induction on the depth of a node in
D’ we will show that after the process passes a node, the sequent at that level
becomes derivable in LP, (LP) where

I'= A

is read as provability of
I'Fip,p) \/A-
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Note that axioms p = p and L = are derivable in LP,(LP). For each move
down the tree other than by the rule (=, 0), the concluding sequent is LP,,(LP)-
derivable if its premises are; for rules other that this one, do not change the
realization of formulas. For a given essential family f, for the occurrence num-
bered j of the (=, 0) rule, the corresponding node in D’ is labeled

~ AL % = o , for Ois K;, fori € {0,1,2,...,n}
(2, @ X = (ur + -+ un,)

where the z’s and ¢’s are proof variables and the u’s are evidence terms, with u;
a provisional variable. By the Induction Hypothesis, the premise is derivable in
LP,,(LP). By the Lifting Lemma (Proposition 2), construct a justification term
f(Z,q) for a where

[’2}[‘7 q_'ZE F f(ga(j):ia .
Now we will replace the provisional variable u; as follows
(211, @ X (ur+ -t ujor + f(20) Fujer + U, )

Substitute each u; with f(Z,§) everywhere in D’. There is now one fewer provi-

sional variable in the tree as f(Z, ¢) has none. The conclusion to this jth instance

of the rule (=, 0) becomes derivable in LP,,(LP), completing the induction step.

Eventually all provisional variables are replaced by terms of non-provisional
variables, establishing that the root sequent of D, ¢", is derivable in LP,,(LP).
The realization constructed in this manner is normal. O

Corollary 2. S4; is the forgetful projection of LP,,(LP).
Proof. A straightforward consequence of Proposition 1 and Theorem 3. O

We see that the common knowledge component of LP,, (LP) indeed corresponds

to the generic common knowledge J and hence can be regarded as the explicit
GCK.

4 Realization Example

Here we demonstrate a realization of an S47 theorem in LP5(LP).
Proposition 3. S4J F J-¢ — Ko—K¢.

Proof. Here is an S4JG derivation of the corresponding sequent.

¢ = ¢

~ (O,=)
Kip = ¢ (ﬁ’é)
_'(baKlqs = ’ (=, )
¢ = K¢
(@, =)
J"QS = _|K1¢
(=,0)
J_\¢ = KQ_\K1¢
(=, =)
= J_\(b—>K2_\K1¢
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Now we follow the realization algorithm to end up with an LP2(LP) theorem.
In the sequent proof, the J in the conclusion is in negative position and all the
Js in this derivation are related and form a negative family. The occurrences of
the K7 modality are all related and they too form a negative family. The two
occurrences of Ky form an essential positive family with ny = 1 as there is one
use of the (=, 0) rule.

Step 1. Replace all J occurrences with ‘[z]’ and K; occurrences with ‘y:7’.
Step 2. Replace all K5 occurrences with a ‘w:9 with w a provisional variable.

Since here ny = 1, a sum is not required. At this stage the derivation tree looks
like this, where ‘=" is read as ‘+’ in LP2(LP):

¢ = (0,=)
Yo =
(“7:)
_'¢ay:1¢ =
—\¢ = ¢ (é’_‘)
V1P (@5
[z]=¢ = -y
(=.,0)
[z]=¢ = w:i(-y:1e)
(=, =)
= [z]2¢ = wia (7y:1 )

Step 3. The one instance of the (=, 0) rule calls for the Lifting Lemma to
replace w with f(x) so that

[2]=¢ F f(x):2(7y:1 )

in LP2(LP). The proof of the Lifting Lemma is constructive and provides a
general algorithm of finding such f. To skip some routine computations we will
use the trivial special case of Lifting Lemma: if F' is proven from the axioms
of LP3(LP) by classical propositional reasoning, then there is a grounc@ term
g such that g:; F is also derivable in LP3(LP) for each i € {0,1,2}, without
specifying g.

Consider the following Hilbert-style derivation in LP5(LP), line 7 in particular.

1. yago—0o L3 axiom for agent 1
2. 2= yuo from 1. by contraposition
3. [9l(=¢ =~y 9) for some ground term g
4. [g](—p = ~y:10) = ([z]~¢ — [g-z]~y:1 0) L1 axiom for GCK
5. [z]-¢ = [g-x]-y ¢ from 3.and 4. by modus ponens
6. [g-x]-yd— (g:7)2 W connection principle
7. (2] — (g-x)e ~yi1d from 5. and 6. by propositional reasoning

2 Ground proof terms are built from constants only and do not contain proof variables.
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So, it suffices to put f(x) = g-x where g is a ground proof term from line 3B
Note the forgetful projection of the LP2(LP) theorem line 7.,

[z]2¢ = (9-2):2 7y:10]° = Jp = Kam K16,

is the original S4! theorem which was Realized.

5 Conclusion

The family of Justification Logics offers a robust and flexible setting in which to
investigate explicit reasons for knowing: ¢: F', “F' is know for reason t”, in con-
trast to a modal approach in which OF or KF represent implicit knowledge of
F', where reasons are not specified. The addition of generic common knowledge
opens these systems to numerous epistemic applications ([2I5/3]). The Realiza-
tion Theorem for S47 allows for all modalities, including GCK (.J), to be made
explicit in LP,,(LP), allowing reasoning to be tracked.

In the LP,,(LP) case presented here all agent reasoning represents knowledge.
While it is useful to track the justifications, in the knowledge domain, each justi-
fication is a proof and so yields truth. However, in a belief setting, justifications
are not necessarily sufficient to yield truth. In these situations it may become
even more crucial, essential, to track specific evidence in order to analyze their
reliability and compare justifications arriving from different sources. Logics of
belief with GCK can be constructed: without factivity (L3) belief rather than
knowledge is modeled. Investigating multi-agent logics of belief with GCK will
likely also yield a rich source of models in which to analyze several traditional
epistemic scenarios and may also offer an entry to considering an explicit version
of common belief.

Generic common knowledge is a useful choice for modeling many epistemic
situations and here we have presented what has yet to be shown for conventional
common knowledge: that a modal epistemic logic with generic common knowl-
edge can be made fully explicit. This is done through the introduction of the
justification logic LP,, (LP) with explicit GCK and the Realization algorithm.
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Abstract. Relational Hoare Logic is a generalization of Hoare logic that allows
reasoning about executions of two programs, or two executions of the same pro-
gram. It can be used to verify that a program is robust or (information flow)
secure, and that two programs are observationally equivalent. Product programs
provide a means to reduce verification of relational judgments to the verification
of a (standard) Hoare judgment, and open the possibility of applying standard
verification tools to relational properties. However, previous notions of product
programs are defined for deterministic and structured programs. Moreover, these
notions are symmetric, and cannot be applied to properties such as refinement,
which are asymmetric and involve universal quantification on the traces of the
first program and existential quantification on the traces of the second program.
Asymmetric products generalize previous notions of products in three direc-
tions: they are based on a control-flow graph representation of programs, they
are applicable to non-deterministic languages, and they are by construction asym-
metric. Thanks to these characteristics, asymmetric products allow to validate ab-
straction/refinement relations between two programs, and to prove the correctness
of advanced loop optimizations that could not be handled by our previous work.
We validate their effectiveness by applying a prototype implementation to verify
representative examples from translation validation and predicate abstraction.

1 Introduction

Program verification tools provide an effective means to verify trace properties of pro-
grams. However, many properties of interest are 2-properties, i.e. consider pairs of
traces, rather than traces; examples include non-interference and robustness, which
consider two executions of the same program, and abstraction/equivalence/refinement
properties, which relate executions of two programs. Relational Hoare logic [8] gener-
alizes Hoare logic by allowing to reason about two programs, and provides an elegant
theoretical framework to reason about 2-properties. However, relational Hoare logic is
confined to reason about universally quantified statements over traces, and only relates
programs with the same termination behavior. Thus, relational Hoare logic cannot cap-
ture notions of refinement, and more generally properties that involve an alternation
of existential and universal quantification. Moreover, relational Hoare logic is not tool
supported.

Product programs [20/4] provide a means to reduce verification of relational Hoare
logic quadruples to verification of standard Hoare triples. Informally, the product pro-
gram construction transforms two programs P; and P; into a single program P that

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 29-f3] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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soundly abstracts the behavior of P; and P, so that relational verification over P; and
P can be reduced to verification of P. Product programs are attractive, because they al-
low reusing existing verification tools for relational properties. However, like relational
Hoare logic, the current definition of product program is only applicable to universally
quantified statements over traces. Moreover, the construction of product programs has
been confined to structured and deterministic programs written in a single language.
This article introduces asymmetric (left or right) product programs, which generalize
symmetric products from [20l4], and allow showing abstraction/refinement properties,
which are typically of the form: for all execution of the first program, there is a related
execution of the second program. Furthermore, asymmetric product are based on a flow-
graph representation of programs, which provides significant advantages over previous
works. In particular, asymmetric products can relate programs: 1. with different termi-
nation behaviors; 2. including non-deterministic statements; 3. written in two different
languages (provided they support a control flow graph representation). Finally, asym-
metric products allow justifying some loop transformations that where out of reach of
our previous work on translation validation. We evaluate our method on representative
examples, using a prototype implementation that builds product programs and sends the
verification task to the Why platform.

Section Rl motivates left products with examples of predicate abstraction and trans-
lation validation. Sections 3 and M introduce the notion of left product and show how
they can be used to reduce relational verification to functional verification. Section
introduces full products, a symmetric variant of left products that is used to validate
examples of translation validation that were not covered by [4]]. Section [6] presents an
overview of our implementation.

2 Motivating Examples

In this section we illustrate our technique through some examples. The first two are
abstraction validation examples and for their verification we use the asymmetric frame-
work, while for the verification of the loop optimization, we use a stronger version of
the method, introduced in Section

For both domains of application, we first provide an informal overview of the verifi-
cation technique. Throughout the rest of the paper, we refer back to these examples in
order to illustrate the technical concepts and results.

2.1 Abstraction Validation

The correctness of the verification methods based on program abstraction relies on the
soundness of its abstraction mechanism. Since such abstraction mechanisms are in-
creasingly complex it becomes desirable to perform a posteriori, independent validation
of their results.

In general, abstractions induce some loss of information, represented in the abstract
programs as non-deterministic statements. The extensions presented in this paper enable
our framework to cope with non-determinism.
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Predicate Abstraction. Predicate abstraction [1/12] reduces complexity of a program
verification to the analysis of a bounded-state program, by representing infinite-state
systems in terms of a finite set of user-provided predicates. The program on the left of
Figure[Il drawn from [T]], partitions a singly linked list of integers into two lists: one
containing the elements with value greater than the parameter v and the other one con-
taining the cells with value less than or equal to v. The program on the right represents
the predicate abstraction of the program on the left, w.r.t. a set of user-provided boolean
predicates: {curr = null, prev = null, curr—wval > v, prev—val < v}. The abstrac-
tion is performed by representing each boolean predicate with a boolean variable: e.g.,
curr represents the condition curr = null. The effect of the instructions of the orig-
inal program is captured by assignments and assert statements involving the boolean
variables of the abstraction: e.g. the effect of the assignment prev := null on the pred-
icate prev = null is reflected by the assignment prev := true on the right program.
Note that some of the abstract predicates will have an unknown value after some of the
concrete instructions, as is the case with the predicate curr = null after the assignment
curr: = x [, reflected by the non-deterministic assignment curr : = 7.

We consider the problem of automatically validating abstractions that are expressed
as non-deterministic programs in some variant of the original programming language.
Our goal is to verify that the program on the right soundly abstracts the original one, i.e.
any execution path of the original program can be simulated by an execution path of the
abstracted program. In order to establish the correctness of the program abstraction, we
must verify a simulation relation between the execution traces of both programs. This
simulation is captured by a new program constructed from the original and abstract
programs, shown in Figure[d providing a fixed control flow for the simulation relation.

The validation of the abstraction is carried over the product program in Fig. dlby two
independent verification steps. One must first verify that the product program captures
correctly the synchronous executions of the original and abstract programs, i.e., that for
any trace on the left program there exists a trace on the right program. We say then that
the graph is a left product and it satisfies the properties stated in Lemmal2l In a second
step, one must check that the product program satisfies the given refinement relation,
stated as a relational invariant specification: (curr = null < curr) A (prev=null &
prev) A (curr—wval <v < currV) A (prev—val <v < prevV)

Numeric Abstraction. Numeric abstraction [[14] is a similar program abstraction strat-
egy based on a shape analysis defined from user-provided size abstractions. The output
of this transformation is not necessarily a bounded-state program, but it can be used
to establish some properties of the original program, e.g., termination behavior, or re-
source consumption.

Figure [2] shows an example of a source and an abstract programs, drawn from [14]].
The program on the left performs left to right, depth first traversal of the binary tree
pointed by its argument. It maintains a stack of nodes to be processed. On each iteration,
the top of the stack is removed and its children (if any) are added. The program on
the right of the figure is a numeric abstraction of the source program that explicitly
keeps track of the changes in data structure sizes. In the abstract program, tsizeroot
represents the number of nodes in the tree, slen the length of the list representing the
stack and ssize the number of nodes contained in the trees held within the stack. More
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curr:= x1l; prev:=null
newl : = null;

curr:=7; prev:=true;
currV:=7; prevV:=7;

while (curr # null) do while (*) do

nextCurr : = curr—next; assert(—curr);

if (curr—val > v) then if (x) then
if (prev # null) then assert(currV);

prev—next : = nextCurr; if (*) then

if (curr = xl) then *l:=nextCurr; assert(—prev);
curr—=next : =newl; newl: = curr; else

else assert(currV = false);

prev:=curr;
curr : =nextCurr,

prev:=curr;
prevV:=currV;
curr:=7; currV:=7;
assert(curr);

Fig. 1. Predicate abstraction

precisely, the user-provided abstractions are defined as inductive predicates over acyclic
heap structures, e.g.:

ListLength(Is—tail, n)

l I
ListLength(ls,n+1) s7nu

ListLength(null, 0)
TreeSize(t—left, n;) TreeSize(t—right, n,)

t#null
TreeSize(t, nj+n,+1) 7

TreeSize(null, 0)
Note that upon entering the loop, we do not have information on the size of the first
tree contained in the stack, nor of the size of the trees in the rest of the stack. This is
represented in the abstraction by a non-deterministic assignment.

As in the previous example, we can verify a posteriori that the numeric program
soundly abstracts a heap manipulating program by constructing a product program that
fixes the control flow of the simulation to be verified. The product program shown
in Figure[3lis totally synchronized, in the sense that every program edge represents a
simultaneous execution of the program components.

The simulation relation is defined in terms of the user-provided size abstractions.
This relational specification makes explicit the correspondence between the abstract
numeric variables and the size predicates over the original data structures; these size
relations include, e.g., ListLength(st, slen) and TreeSize(root, tsizeroot), which must
hold whenever the variables are in scope.

We develop the notion of left product used for abstraction validation in Section[3l

2.2 Translation Validation

Translation validation [3/16]] is a general method for ensuring the correctness of opti-
mizing compilation by means of a validator which checks, after each run of the com-
piler, that the source and target programs are semantically equivalent. In previous work,
we have used a notion of program products to formally verify the correctness of several
program optimizations [4]. An important limitation of our previous notion of program
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st :=push(root,0); assert(0 < tsizeroot);
slen:=1; ssize: =tsizeroot;
while (st # 0) do while (slen > 0) do
tail : = st — next; tsize:="7;ssizetail: =7;

assert(0 < tsize A 0 <ssizetail);
assert(ssize = tsize+ssizetail);

if (st —tree=0) then if (tsize =0) then
free(st); st:=tail; slen--;

else else
tail : = push(st —tree — right,tail); tsizel:=7;tsizer:=7;
tail : = push(st —tree— left,tail); assert(0 < tsizel A 0 < tsizer);
free(st); assert(tsize = tsizel+tsizer+1);
st :=tail; ssize : = tsizel+tsizer+ssizetail;

slen++;

Fig. 2. Numeric abstraction

a: rv:=0; 0:i:=0;
b: while (xt <NM)do 1: while (i<N) do
alz]:= f(x); j:=0;
TH+ 2:  while (j<M) do
Alirj] = F(IM)5 4+
i++

Fig. 3. Loop tiling example

products is that they are required to be representable syntactically as structured code.
The extension provided in this work enables the verification of more complex loop op-
timizations that were not considered in previous work.

Loop tiling is an optimization that splits the execution of a loop into smaller blocks,
improving the cache performance. If the loop accesses a block of contiguous data during
its execution, splitting the block in fragments that fits the cache size can help avoiding
cache misses, depending on the target architecture. The program at the right of Fig. 3]
shows the result of applying a loop tiling transformation to the code at the left. The
traversal of a block of size N M is split into N iterations accessing smaller blocks of
size M, by the introduction of an inner loop and new iteration variables 7 and j. It is
not hard to see that the iteration space of the outermost loops are equal and that the
relational invariant z = ¢M+j holds.

The structural dissimilarity of the original and transformed loop is a main obstacle
for the application of our previous relational verification method. However, the relaxed
notion of program product presented in this article can be used to validate this trans-
formation. Figure [6] shows a possible product of the two programs in Fig. Bl The loop
bodies (i.e., edges (2,2) and (b, b)) are executed synchronously, represented by edge
((b,2), (b,2)). Notice that asynchronous edges represents the transitions of the right
program that cannot be matched with transitions on the left program. We develop the
notion of full products for the validation of compiler optimizations in Section
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3 Simulation by Left Products

We define a general notion of product program and prove that under mild conditions
they mimic the behavior of their constituents. We adopt a representation of programs
based on labeled directed graphs. Nodes correspond to program points, and include an
initial and a final node; for simplicity, we assume their unicity. Edges are labeled with
statements from the set Stmt.

Definition 1 (Program). A program P is a tuple (N, €, G), where (N, E) is a directed
graph with unique source in € N and sink out € N, and G : £ — Stmt maps edges to
statements.

The semantics of statements is given by a mapping [.] : Stmt — P(S x ), where
S is a set of states. A configuration is a pair {I,0), where [ € N and o € S; we let
(I,0) ~ (I';0') stand for (o,0") € [G(l,1")]. A trace is a sequence of configurations
s.t. the first configuration is of the form (in, o), and (o,0") € [G(l,1)] for any two
consecutive elements (I, o) and (I’, 0’) of the sequence; we let Tr(P) denote the set of
traces of P. Moreover, an execution is a trace whose last configuration is of the form
(out, 0); we let Ex(P) C Tr(P) denote the set of executions of P. Finally, we write
(0,0") € [P] if there exists an execution of P with initial state o and final state o’;
and we say that P is strongly terminating, written P |}*, iff for every ¢ € Tr(P) there
exists t' € Ex(P) such that ¢ is a prefix of ¢’. For example, the abstract program in the
right of Fig.[lis strongly terminating, since every execution trace can be extended to a
terminating trace by suitable choices when evaluating the non-deterministic guards.

3.1 Synchronized Products

Informally, a product of two programs is a program that combines their effects. We
begin with a weaker definition (Def. B)) which only guarantees that the behavior of
products is included in the behavior of their constituents. Then, we provide a sufficient
condition (Def. M) for the behavior of products to coincide with the behavior of its
constituents.

One practical goal of this article is to be able to perform relational reasoning about
programs that are written in the same language, by using off-the-shelf verification tools
for this language. The embedding relies on separability; our conditions are inspired
from self-composition [15], and are reminiscent of the monotonicity and frame properties
of separation logic [19].

Assume given two functions 71,72 : S = Ss.t.forallo,0’ €S, 0 = o’ iff m1(0) =
m1(0’) and ma(0) = ma(0’). Given two states 01,02 € S, we define o010 o2 € S to be
the unique, if it exists, state o s.t. 71 (o) = o1 and w2 (o) = 03.

Definition 2 (Separable statements). A statement c is a left statement iff for all o1, 02
inS s.t. o1W o9 is defined:

1. forall o\ €S8, if (01,01) €[c], then o1 W o4 is defined and (o1 o2, o{W 02) € [];
2. forall o' €S, if (c1W09,0") €[], then there exists o} €S s.t. (01,0%) € [c] and
ooy =o'
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Right statements are defined symmetrically. Two statements ¢ and co are separable iff
ci is a left statement and ¢, is a right statement. Finally, two programs P; and P» are
separable iff P; is a left program, i.e. it only contains left statements, and P is a right
program, i.e. it only contains right statements. In this section, we let Py=(N1, &1, G1)
and P,=(N>, &2, G3) be separable programs.

Example 1. The programs in Fig. [l manipulate disjoint fragments of scalar state, thus
they are clearly separable. Dynamic memory manipulation may break separability if
both the left and right programs invoke a non-deterministic allocator. However, in this
particular example one of the product components does not manipulate the heap.

Definition 3 (Product). Let P = (N, €, G) be a program with statements in Stmt. P
is a product of Py and Py, written P € Py X Py, iff N C N1 x N3, and (iny,iny) €N and
Jorall (I1,12) EN 1y =outy iff la=outy, and every edge e € & is of one of the forms:

— left edge: (ll, lz) l—|> (l/lv lg), with <ll, l/1> in 51, and [[G 6]] = [[G1 <ll, l/1>ﬂ,

- synchronous edge: (11, l2) = (11, 15), with edges (11, 1}) in & and (l2,15) in E;, and
[Gel=[G1 (i1, 11)] o [G2 (I2,15)]; or

- I'ight edge: (ll, lz) 'L> (ll, 1/2), with <lz, lé) in 52, and [[G 6]] = [[GQ <lz, lé)ﬂ

For simplicity, the notion of product program is defined for two programs of the same
language. However, the definition readily extends to 2-languages products, i.e. products
of programs written in two distinct languages. Alternatively, 2-languages products can
be encoded in our setting: given two programming languages with statements in Stmt;
and Stmty respectively, and with state spaces S; and Sa respectively and semantics
[.]; : Stmt; — P(S1 x S1) and [.], : Stmty — P(S2 x Sz), one can define Stmt =
Stmt; 4 Stmty, and S = S; + 8o, and [.] = [.]; +[.]5- Then, programs of the first and
second languages can be embedded in a semantic-preserving manner into the “sum”
language, and one can use the notion of product program the usual way.

Example 2. The definition of products ensures that every edge in £ represents either an
execution step of program P, an execution step of program P, or a pair of simultane-
ous steps of both programs. The program product in Fig. @] contains both synchronous
and left edges. In this particular example, the left edges represent portions of the origi-
nal program that are sliced out in the abstract program, since they do not have an effect
on the validity of the boolean predicates.

Products underapproximate the behavior of their constituents, i.e, every trace of P &
P, x P is a combination of a trace of P, and a trace of P,. We formalize this fact
using left and right projections of traces. The left projection of an execution step in P
is defined by case analysis: 1. if ((I1,12),0) ~ ((I1,1}), 0’) and either (I;, lg)'—l>(l/1, 15)
or (I1,12)=-(11,15), then the left projection is defined as (l1, 71 (o)) ~ (I}, m1(c”));
2. otherwise, the left projection is undefined. The left projection 71 (¢) of a trace ¢ is
then defined as the concatenation of the left projections of its steps (steps with undefined
projections are omitted). The right projection 72 () of a trace ¢ is defined in a similar
way.

Lemma 1. Let P € P x Po. For all t € Tr(P), w1 (t) € Tr(P1) and ma(t) € Tr(Py).
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{prev#null A —prev};
prev—next : = nextCurr

curr—val >v};
currV}

{curr—val <v A =currV}; {prev=null}
prev:=curr;
prev:=curr;

curr : =nextCurr;
prevV:=currV;
curr:=7;currV:=7?

I I ) !
curr:=x*[;curr:="7 curr—next : = newl

nextCurr

curr # null};
—curr};
nextCurr : = curr—next

{curr # =1}

prev:=null; prev: =true; newl: = curr
newl :=null;carrV:=7; curr} curr: =nextCurr
prevV:=7 curr=null} curr:=7?; currV:=7

@

Fig. 4. Predicate abstraction example — Product program

tail: = push(st—tree —right,tail); -~

{0 <tsizeroot}; tail : = push(st— tree —left,tail); s
st:=push(root,0); free(st); st : =tail; slen++; tsizel : = 7; tsizer: = 7; g L
slen:=1; {0<tsizel A 0 <tsizer}; {tsize =tsizel+tsizer+1}; | o %
size: = tsizeroot ssize : = tsizel+tsizer+ssizetail; o
Sk

2

{st#0 Aslen>0}; =

tail : = st —next; tsize:="7;ssizetail: =7;
0 <tsize A 0 <ssizetail};
ssize = tsize+ssizetail}

0}

{st=0Aslen<0}

{tsize
st—tree=0

free(st); st: =tail;slen--

€

Fig. 5. Numeric abstraction — Product Program

The notion of left product guarantees that some converse of Lemmal[Ilholds. Informally,
aprogram P is a left product of P; and P if P can progress at any program point where
Py can progress. More precisely, we informally want that for every node (I1,2) such
that P, can progress from /1 to 4 and P; is not stuck, there exists a left or synchronous
edge from (11, l2) to (I, 15). Since it would be clearly too strong to require this progress
property for arbitrary states, the definition is parametrized by a precondition.

Definition 4 (Left product). P € P, X P» is a left product w.r.t. a precondition ¢,
written P € Py ¥, Py, iff for every trace t :: ((l1,12), 0180 02) € Tr(P) with initial
state o such that p(o), and for every nodes I} € Ny and Iy € N5 such that o1 €
dom([G1(l1,1})]) and oo € dom([G2(l2,15)]), one of the following holds:

1 (I, 12) Vs (1, 1) or (11, 1) = (11, 1) belongs to P;
2. there exists an edge (11,12) = (11,15) in P s.t. o2 € dom([G2(l2,15)]);
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Example 3. One can verify that the product examples shown in Section 2] are left prod-
ucts. For the product in Fig. @] one can deduce at node 5 the validity of the invariant
curr=null < curr. In order to verify the leftness condition at node /5 one must check
that every feasible transition on the left program is eventually feasible in the product
program. In this particular case, the equivalent of the boolean guards holds by the in-
variant above.

Lemma 2 (Lifting left products). Assume P € P, X, P» with Py ||*. Let t; € Tr(P))
with initial state o1, and let 03 €S s.t. ¢ (018 02). Then there exists a trace t € Tr(P)
with initial state 018 09 s.t. 71 (t) = t1.

The result above requires in general proving strong-termination of the right component
P,. However, it is often sufficient to perform a syntactic check over a program product
Pe Py x, P as suggested by the following result.

Lemma 3. Assume P € P X, Py has no asynchronous right loops, i.e., that for all
sequences of edges |y o lo, ..., lh_q Vs 1,, we have =% 1. Then Py |* implies Py |J*.

It follows from the lemma above, and the fact that we are interesting in terminating
executions of P, that it is enough to check for the absence of asynchronous right loops
in the product P.

4 Logical Validation

We now show how to check the correctness of product constructions and relational spec-
ifications using standard logical frameworks. Assuming that P, and P; are separable,
we cast the correctness of two programs P; and P, w.r.t. a relational specification @, in
terms of the functional correctness of a left product P € Py Xg(jn) 2. If the statement
languages of P; and P, are amenable to verification condition generation, one can gen-
erate from a product program P a set of verification conditions that ensure that P is a
left product of P; and P, and that P; and P, are correct w.r.t. a relational specifica-
tion . For clarity, we instantiate this section to the programming model used for the
examples in Section 2] and a weakest precondition calculus over first-order formulae.

Program correctness is usually expressed by a judgment of the form {p} P {¢},
where P= (N, &, G) is a program, and ¢, 1) are assertions. A judgment is valid, writ-
ten F {¢} P {4}, iff for all states 0,0’ € S s.t. (0,0’) € [P], if po then ¢ o’. One
can prove the validity of triples using a variant of Hoare logic [2]], or working with a
compositional flow logic [[17]]. However, the prominent means to prove that {¢} P {1}
is valid is to exhibit a partial specification @: N" — ¢ s.t. all cycles in the graph of P go
through an annotated node, i.e. a node in dom(®); and in, out € dom(®) with ¢ = $(in)
and ¢ = P(out).

We adopt a simplified version of the memory model of Leroy and Blazy [13]—
locations are interpreted as integer values and field accesses as pointer offsets. We in-
troduce to the assertion language a variable h, and the non-interpreted functions load,
store, alloc, and free, and the predicate Valid. We also introduce a suitable set of axioms,
including for instance:
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Valid(h,l) = load(store(
Valid(h,1) A Valid(h,l") Al#l' = load(store(
alloc(h)=(h",1) = Valid(h’,1)
Valid(h, 1) A1£1 Afree(h,))=h" = Valid(h',1)
The weakest precondition calculus is standard, with the exception perhaps of heap
operations:

wp(z:= (1], 6) = glload(h, sl wp([l] :=, 6) = Blstore(h, L, z)h]
wp(free(l), ¢) = d[free(h,)M] wp(l:=alloc, ¢) = ¢[h*h] A (h*, 1) = alloc(h)

where h* stands for a fresh variable. One can use the weakest preconditions to generate a
specification ¢! that extends & to all nodes. Using the well-founded induction principle
attached to partial specifications, see e.g. [7], we set

~ ~
<
=3

h,l,
h,l'

()= N wp(G(Q1),8%(1")  foralll ¢ dom(®)

(LIeE

The logical judgement - {¢} P {¢} is verifiable if there is a specification &* with
@ = 7(I'(in)) and v = ~(I'(out)) such that the verification conditions #(l) =
wp(G(l, 1"y, ®%(1")) are valid for all (I,1') € £ and [ € dom(®).

The leftness of a product can also be checked by logical means. We use a simple form
of path condition, which we call edge condition, to express leftness. Formally, the edge
condition ec(c) for a statement c is, if it exists, the unique (up to logical equivalence)
formula ¢ s.t. for all states o € S, o € [¢] iff o € dom([c]). We define for every

node (I1,l2) € N and edges (I1,1]) € & and (l2,1,) € & s.t. (ll,lg)yk)(l’l,h) and
(I1,12) & (11,14) the P-leftness condition as
D(l,12) Aec(Gi(li, 1)) A ec(Ga(la, 15)) = V ec(G2(l2, 1))
(g ,la) = (U1

and say that P is @-left iff all its P-leftness conditions are valid.
Weakest preconditions can be used to compute edge conditions. For instance one can
define ec(c) by the clauses:

ec(skip) = true ec(xz:=e) = true

ec({b}) = ec(c1;c2) = ec(e1) Awp(er,ec(cz))
ec(l] : = ):Valid(h ) ec(:= [I]) = Valid(h, 1)

ec(free(l)) = Valid(h, 1) ec(l:=alloc) = true

Example 4. In order to verify the leftness of the product program in Figure @it is suffi-
cient to check for every synchronous edge (11, l2) = (11, 15) that ec(G1 (I1,1})) implies
ec(G2(l2,15)). Consider for instance the product edge (l2, I3). The edge condition of the
corresponding left edge is curr # null whereas the edge condition of the corresponding
right edge is —~curr. The validity of curr # null = —curr follows trivially from the
strong invariant curr = null < curr.

Let S1,S2 C S be sets of pairwise separabl states. From the separability hypothesis,
one can embed relational assertions on P(S; X Sz)

" Two states o1 and o are separable if o1 o2 is defined.
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o1 € 81,02 € S2}. Relational program correctness is formalized by refinement quadru-
ples of the form |= {¢} P — P2{v}, where Py, P, are programs, and ¢, ¢ are asser-
tions. Such refinement judgment is valid iff for all ¢; € Ex(P;) with initial state o7 and
final state o7, and o2 s.t. ¢ (01W02) and P> |*, there exists to € Ex(P,) with initial
state oo and final state o s.t. ¢ (o]0 05).

Theorem 1. Let P;, P> be separable programs and let o, be assertions. Then the
Jjudgement |= {p} Py — P2{v} holds, provided there is a partial specification P s.t.
@ = P(iny,in2) and ¢ = P(outy,outs), and a product program P € Py x Py that is
®-left and correct w.r.t. .

Theorem [1] provides direct proofs of correctness for many common refinement steps,
e.g. replacing a non-deterministic assignment by an assignment (or a non-deterministic
choice by one of its substatements). Observe that by Lemma [3] it is enough to check
alternatively for the absence of right loops in the product program instead of requiring
the strong-termination of Ps.

4.1 Completeness of Abstraction Validation

We briefly show that abstraction validation is relatively complete under a soundness
assumption of the program abstraction procedure. To this end, we use the framework of
abstract interpretation [[11] to characterize sound program abstractions. Then we show
that the correctness of the abstract semantics w.r.t. the verification calculus implies
the verifiability of the resulting program abstraction using left products. For brevity,
we only consider forward abstract semantics; the adaptation to backward semantics is
straightforward.

In the rest of this section we let I = (A, [.]*) be an abstract semantics composed of

— an abstract domain A, that can be interpreted as assertions over states;
— an abstract interpretation function [.]* : Stmt — A — A for statements: [c]
approximates the execution of statement c in the abstract domain;

#

We assume the existence of a concretization function  from abstract values in A to
first order formulae. We need to assume also the soundness of the abstract semantics
I = (A, [.]%) war.t. the wp calculus, i.e. that for all ¢ € Stmt and a € A, & = v(a) =
wp(c, 'y([[c]]ﬁa)) is a verifiable formula. We also assume a standard characterization of
valid post-fixpoints: a labeling I" : N” — A is a post-fixpoint of the abstract semantics
Lif forall (I,1") € £ [G(,IN]I(1) ET'(1').

Let P = (N,&,G) and P = (N, &, G) be separable programs, and assume that
the abstract domain A represents relations between the disjoint memories of P and P.
We say that a P is a sound abstraction of P w.rt. a labeling I : N' — A if for all
e={(l,l') € £ we have

A of

[GesGe] I'(1) ET'(I)

Lemma 4. Let P be a program, I = (A, Hﬁ> an abstract semantics, and P' a sound
abstraction of P w.r.t. a post-fixpoint I' : N' — A. Assume that v a = ~ ' is verifiable
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for all a,a’ € A s.t. a T d. If I is sound w.r.t the wp calculus then there exists
Q € Pxy, P’ st F{p}Q {1} is a verifiable judgement, where p = ~(I'(in)) and
¥ = y(I"(out)).

It follows from the lemma above that, under mild conditions, if P’ is an abstract pro-
gram computed from P using a sound abstract semantics, then one can verify that P is
correctly abstracted by P’. Besides, in settings in which the abstract semantics is de-
fined as a strongest postcondition calculus, as in e.g. predicate abstraction, abstraction
validation is decidable. Indeed, it is sufficient that the decision procedure used for pro-
gram verification is as complete as the one used by the program abstraction algorithm.

5 Full Products

We introduce a symmetric variant of the notion of left product of Section[3] which al-
lows verifying one-to-one correspondences between traces of a source and transformed
program, as required by translation validation.

Definition 5 (Full product). P € Py x P5 is a full product w.r.t. a precondition o,
written P € Py W, Ps, iff for every trace t :: {(11,12), o1 02) € Tr(P) with initial
state o such that ¢(o), and for every nodes l{ € N1 and ly € N3 such that o1 €
dom([G1(l1,1})]) and o2 € dom([G2(l2,15)]), one of the edges (ll,lg)l—|>(l’1,lg),
(I1,12) ¥ (11, 1%), or (11, l2) &> (15, 15) belongs to P;

Product fullness is a stronger property than being both left and right. Indeed, requir-
ing the existence of the edge (I1,12) & (I],15) is stronger that requiring the existence
of (I1,l2) = (I4,15) or (I1,12) = (1Y, 1) for some I or I}. In a deterministic setting,
however, a product program P is full iff P is left and right. Moreover, for deterministic
programs, left products and full products coincide: assume that P, is deterministic, i.e.
if o € dom([G(l,1")]) and o € dom([G(l,I")]) then I’ =1". Then P € P, x,, P, iff
P € P X, . This has practical advantages when verifying deterministic programs,
since it is sufficient to discharge verification conditions for leftness to formally verify
the fullness of a program product.

Relational correctness is formalized by judgments of the form {¢} P, ~ P> {4},
where P;, P, are separable programs, and ¢, v are assertions. A relational judgment is
valid, written F {¢} Py ~ P {9}, iff for all t; € Ex(P1) and to € Ex(P») with initial
states o1 and o9, and final states o and 0%, ¢ (01W 02) imply ¢ (oW o). Full products
yield a symmetric variant of Theorem/[Il

Theorem 2. Let Py, P; be deterministic separable programs and let @, 1) be assertions.
Then E{p} Py ~ Py {1}, provided there is a partial specification ® and a product pro-
gram P € Py X Py s.t. ¢ = &(iny, ing), ¥ = &(outy, outs), and P is P-left and correct
w.rt. P.

Example 5. Figure[@l shows a full product for the validation of the loop tiling example
in Fig. Bl From Theorem 2] one can show that the product is full by proving that is
d-left, where @ is shown in the figure. E.g. ®-leftness at the node (b, 2) and for the
edges (b,b) and (2,2) reduces to showing that &(b,2) A ec(2,2) A ec(b,b) implies
ec((b,2)= (b,2)).
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Product

x:=0;7:=0 i<NY};j:=
@/—\ YAt {(x<NMAj<M};
o =

Ali, gl = f(iM+5);

X++; J++

{(NM<xAN<i} i+

Specification
®(a,0)= true
D(,2)= x=iM+jNi<NANF<MA (i) AVr.0<r<j = Ali,r|=a[iM+r]
P(out)= p(N)
where (i) =VI,r. 0<I<iAO<r<M = A[l,r]=a[lM+r]

Fig. 6. Loop tiling example — Product program

6 Implementation

We have implemented a proof of concept verification plugin in the Frama-C environ-
ment. We have used our this plugin to validate abstraction examples for list traversing
algorithms.

The plugin receives as input a file with a program, its abstraction, and a predicate
that describes the relation between the abstract and concrete states, using the ANSI C
Specification Language (ACSL). A product of the supplied programs is constructed by
following the program graphs and deciding at each branch statement whether to intro-
duce a right, left or synchronized edge, and generating additional program annotations.
Non-deterministic assignments are modeled in abstract programs with the use of unde-
fined functions, and assert statements were added to introduce hypotheses regarding the
non-deterministic output values. In order to deal with the weakness of the alias analysis,
we added some memory disjointness annotations manually.

The final annotated product program is fed into the Frama-C Jessie plugin, which
translates the C product program into Why’s intermediate language and discharges the
verification conditions using the available SMT solvers (AltErgo, Simplify, Z3, etc.).
Figure 7] depicts the interaction of the plugin with other components of the framework.

7 Related Work

Our technique builds upon earlier work on relational verification using product pro-
grams [4)20], and is closely related to relational logics [8/18] used to reason about
compiler correctness and program equivalence. Furthermore, there exist strong connec-
tions between abstraction validation and refinement proofs—refinement can be viewed
as a form of contextual approximation. In particular, developing connections between
our method and proof methods for program refinement, such as the refinement calcu-
lus [[15]], or refinement with angelic non-determinism [[10] is left for future work.
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Fig. 7. Tool architecture
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Abstraction validation may be seen as an instance of result checking, i.e. of the a
posteriori validation of a computed result, in the context of program analysis and pro-
gram transformations algorithms. In this sense, it is closely related to translation vali-
dation [21]] and abstraction checking for embedded systems [9].

8 Conclusion

Asymmetric products provide a convenient means to validate relational properties using
standard verification technology. They provide an automated method for reducing a re-
finement task to a functional verification task, and allow the validation of a broad set of
program optimizations. Their applicability has been illustrated with the implementation
a product construction prototype. In the future, we intend to used asymmetric products
for performing a certified complexity analysis of cryptographic games [6]]. Another tar-
get for future work is to broaden the scope of relational validation to object-oriented
and concurrent programs.
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Abstract. We undertake a study of imperative computation. Beginning
with a philosophical analysis of the distinction between imperative and
functional language features, we define a (pure) imperative language as
one whose constructs are (inherently) referentially opaque. We then give
a definition of a computation language by identifying desirable properties
for such a language.

We present a new pure imperative computation language, Assignment
Calculus AC. The main idea behind AC is based on the insight of T.
Janssen that Montague’s modal operators of intension and extension,
developed for the study of natural language semantics, are also useful for
the semantics of programming language features such as assignments and
pointers. AC consists of only four basic constructs, assignment ‘X := t’,
sequence ‘t;u’, procedure formation ‘it’ and procedure invocation ‘!t’.
Two interpretations are given for AC: an operational semantics and a
term-rewriting system; these interpretations turn out to be equivalent.

1 Introduction

What is a pure imperative language? This paper attempts to answer this question
by pursuing one possible definition: a pure imperative language is one whose
operators are fundamentally referentially opaque.

In Section 2 we give a discussion of this approach, involving referential trans-
parency and opacity, the substitutivity principle and intensionality, with natural-
language examples. We show that these problems are also present in imperative
programming languages, and introduce our imperative computation language
Assignment Calculus, AC.

Section 3 presents the syntax and operational semantics of AC, with a run-
ning example which will be used throughout the paper. We examine an important
aspect of AC: state backtracking.

In Section 4 a term rewriting system for AC is presented, and used with
our running example. We state the equivalence of the operational semantics and
rewriting system, and (without proof) a confluence theorem for this system. We
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conclude in Section 5 with a summary of the significance of the ideas presented
here, a brief examination of similar work, and possible lines of research.

A comment on notation: syntax is represented by bold text; the equivalence
of two syntactic entities is indicated by ‘=’.

This paper is based on the thesis [Benl0], which contains full proofs of most
of the results stated here. The thesis also provides, among other things, a full
denotational semantics for AC, along with related results including the equiva-
lence of operational, denotational, and rewriting semantics. This paper extends
our work by presenting a stronger syntax-directed proof of equivalence between
the operational semantics and term rewriting system.

2 Imperative Computation

To program a computer, we must provide it with instructions to arrive at the de-
sired result. There are two types of instructions: commands (or statements) and
goals. The latter provide a “specification,” and the computer (or compiler) must
figure out how to arrive at a solution. Goals are generally written as declarations,
often presented in a “functional” style [Bac7§].

This distinction between types of instructions forms the basis of the two types
of programming language: a language that is based on commands is called im-
perative, and one that is based on goals is called declarative.

This distinction can be traced back to two pioneers in computation theory,
Alan Turing and Alonzo Church. Turing’s analysis of computation [Tur36] is
via a machine that executes tasks sequentially, reading from and writing to a
storage device (the “tape”). Church’s system [Chu4l] is more abstract, taking
the mathematical notion of function as basic, and employing only the operations
of (functional) abstraction and application to express computational goals. Tur-
ing proved that their systems have the same computational power, and argued
convincingly that they are universal (the Church-Turing Thesis).

The benefit of Turing’s approach is its suggestion of a real computer; a vari-
ant, due to von Neumann, lies at the core of virtually every computing device in
use today. Since computers are basically built on Turing’s idea, so are impera-
tive languages. Thus any imperative language contains operations for sequencing
(‘37) and reading from and writing to memory (assignments). Imperative lan-
guages are thus closely connected to practice. However, dealing with imperative
languages’ semantics can be tricky, and the Turing machine can be a clumsy
theoretical tool.

Church’s A-calculus stems from research into the foundations of mathematics.
Its language of functional abstraction and application is small, elegant, and pow-
erful, and makes it immediately amenable to theoretical study [Bar84]. Many
“functional languages” have been designed around the A-calculus. However, a
major drawback to functional languages is their lack of “machine intuition”,
which can make them difficult to implement.

Real computers are based on the imperative model, so compilers for functional
languages are needed to translate Church-style computation into Turing’s model.
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Conversely, for those working in denotational semantics, giving a mathematical
meaning to imperative programming languages means interpreting Turing-style
computation in a Church-style language.

Can we “short-circuit” these interpretations in either direction? In other
words, can we either (a) build a computer on Church’s notion, or (b) design
a formal language that embodies Turing’s conception? In this paper we focus on
question (b). In this regard, it is somewhat surprising that there is no accepted
canonical theoretical computation language that is fundamentally imperative in
character. Our goal is to present such a language. It is not presented as “the”
basic language for imperative computation, but simply as a potential candidate.
First, however, we must answer a pressing question: what, exactly, is “imperative
computation”?

2.1 What Is Imperative Computation?

A first attempt to define imperative computation could be made from the point
of view of machine behaviour. If functional features are seen as “high-level,” then
we should remain close to a machine-based intuition.

The problem is that this does not sufficiently restrict our definition: there
are many different machine architectures, instruction sets, abstractions from
machine to assembly languages, and implementations of control structures; in
short, there is too much freedom when working with machine intuition alone.

So we want an imperative language which is (a) as simple as possible, (b)
Turing complete, and (¢) “pure”. How do we understand (c)? A good approach
is to take the concepts of pure imperative and pure functional as “orthogonal”
in some sense.

We begin by asking: what is functional purity?

Purely functional languages are referentially transparent [FH88]. This allows
for call-by-name or lazy evaluation, as in Haskell [HHJWQT7]. Referential trans-
parency as a concept goes back to Quine [Qui60, §30] and essentially embodies
Leibniz’s principle of substitutivity of equals:

e1=ey = e(--e;--)=e(e3 ).

The benefit of this is clear: “computation” proceeds by substituting expressions
for variables. This idea is taken to an extreme in the pure A-calculus, which
reduces functional computation to its smallest possible core. Its (only!) operators
are A-abstraction and application; its only atoms are wariables. Syntactically,
application of a function to an argument is accomplished by substitution, taking
advantage of referential transparency.

In fact we take the A-calculus as the paragon of theoretical computation lan-
guages: (a) it is small, elegant and intuitive; (b) its operators represent well-
understood, fundamental concepts; (¢) we can rewrite its terms using simple
rules; and (d) it has multiple equivalent forms of semantics. Our aim is to de-
velop a formal language for imperative computation that has as many of the
above virtues as possible.
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Going back to our question: what is a pure imperative language? We now
propose: it is a language whose features are fundamentally non-transparent, or
opaque, i.e., substitutivity is the exception rather than the rule.

2.2 Referential Opacity

We begin with an example in natural language. Consider the sentence:
The temperature is twenty degrees and rising.
Formalizing this gives us
twenty(temp) A rising(temp) (1)

Suppose the temperature is 20°. Substituting this for temp in ({0) (using sub-
stitutivity of equals) yields ‘twenty(20°)’ for the first conjunct, which is fine,
but ‘rising(20°)’ for the second, which is not even false, but nonsense: “tem-
perature” here means not its current value, but its value over time.

The problem is that although the predicate ‘twenty’ introduces a transparent
context, the predicate ‘rising’ creates an opaque contet.

Such intensional phenomena abound in natural language, and have been stud-
ied by philosophers and linguists for some time [Fre92]. They can be recognized
by apparent violations of substitutivity as above. This is also the case for im-
perative programming languages, to which we now turn.

Consider the assignment statement X := X + 1. Clearly, we can substitute
the current value of X for ‘X’ on the right-hand side, but not on the left-hand
side; attempting the latter gives a meaningless expression. Janssen [JVEB77,
Jan86] noticed that these are simple examples of transparent and opaque contexts
in programming languages; and he was able to develop a compositional semantics
for programming languages, dealing with assignments and pointers, comparable
to what Montague had done for natural languages. This penetrating insight of
Janssen’s was the starting point for a line of investigation continued in [Hun90,
HZ91], and further in [Benl0] and the present paper.

In fact, it turns out that opaque contexts are inherent in all the fundamental
imperative operations.

2.3 Intensions

Frege [Fre92] analyzed the substitutivity problem. He distinguished between two
kinds of meaning: sense (Sinn) and denotation (Bedeutung). He showed that,
in cases where substitutivity does not hold in terms of the denotations of ex-
pressions, it can be restored if we consider, not the denotation of the expression,
but its sense, which can be understood as a function from “contexts,” “states,”
“settings,” or (as in example () “time instants” to values.

A formal system implementing Frege’s ideas was developed by Church [Chu51],
and a semantic interpretation by Carnap [Car47], who introduced the terms in-
tension and extension for sense and denotation. Kripke [Kri59] rounded out the
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semantic treatment by providing the setting of possible worlds for modal logic.
By combining his work with Carnap’s, we can treat intension as a function from
possible worlds to values.

The next major step was accomplished by Montague [Mon70, Mon73|, who
developed a system IL of intensional logic for the mathematical treatment of
natural language. Next, Janssen and van Emde Boas [JVEBT7, [Jan86] applied
Montague’s techniques to imperative programming languages. By identifying
possible worlds with machine states, they provide a strikingly elegant treatment
of assignment statements and pointers.

A significant extension was accomplished by Hung and Zucker [Hun90, [HZ91],
who provided compositional denotational semantics for quite intricate language
features such as blocks with local identifiers; procedure parameters passed by
value, by reference and by name; and pointers which can be dereferenced any-
where, including the left-hand side of assignment statements. Janssen’s system —
specifically, Hung’s version—is the genesis of Assignment Calculus AC, the
language to be presented in this paper.

2.4 Intentions

We begin with the observation that
the intension operator generalizes the (parameterless) procedure. (2)

A procedure is a function from states to states, and an intension is a function
from states to values. If we include states in the set of values, then the general-
ization is clear. The reason that it was not noticed by Janssen or Hung is that,
in Montague’s systems, states cannot be treated as values.

Another observation is that we can allow “storage” of intensions in the state.
Stored procedures are a well-known but difficult feature of imperative languages
[Sco70l [SS71]. They allow general recursion, and also a generalization of the
treatment of pointers given by Janssen and Hung.

The resulting system is sufficiently interesting to be studied in “isolation”,
removing all the functional and logical components in DIL, such as variables,
abstraction and application. The resulting language AC is a case study in pure
imperative computation.

3 Assignment Calculus AC

In attempting to create a pure imperative computation language, it is important
to remain as close as possible to existing imperative languages.

An imperative programming language can perhaps be defined as a language
L with the following characteristics:

1. The interpretation of L depends on some form of computer memory (state)
through which data can be stored and retrieved.
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2. The state consists of contents of discrete memory locations that can be read
from or written to independently.

3. An L-program consists of a sequence of explicit commands or instructions
that fundamentally depend on (and often change) the state.

4. L contains some form of looping, branching or recursion mechanism to allow
for repeated execution of program parts.

The first three characteristics are common to all imperative languages. Therefore
AC includes them directly.

Characteristic 4 can be embodied in many ways: conditional branching, “goto”
statements; looping constructs (“while” etc.); and recursion.

AC’s approach to 4 is to employ Montague’s intension operator as a gener-
alization of parameterless procedure, in accordance with our observation above.
In AC, intensions are treated as first-class values: they can be defined anony-
mously, assigned to locations, and invoked freely.

The goals of AC are twofold: first to continue the line of research initiated by
Janssen and continued by Hung and Zucker in applying Montague’s work to pro-
gramming languages, and secondly to attempt to provide a small, elegant, useful
core language for imperative-style computation—a pure imperative computation
language as defined in Section 2.

3.1 Introduction to AC

Term is the set of AC terms t, u, .... Before defining Term formally, we go
over the basic constructs of AC and their intuitive meanings.

1. Locations: X, Y, ... correspond to memory locations. The collection of all
locations is the store.

2. Assignment: X := t. Overwrites the contents of location X with whatever
t computes. This operation computes the store that results from such an
update.

3. Sequence: t;u. Interpreted as follows: first compute t, which returns a store,
then compute u in this new context.

4. Intension: it. This is procedure formation. It “stops” evaluation of t so that
it is the procedure that, when invoked, returns whatever t computes.

5. Extension: 't. This is procedure invocation, that is, it “runs” the procedure
computed by t.

An easy way to remember our notation (different from Montague’s) for intension
and extension is that ‘i’ looks like a lowercase ‘i’, for intension, and that ‘!’, an
erclamation mark, is used for extension.

This constitutes pure AC. For convenience, we can add supplementary oper-
ators: numerals n, ..., booleans b, ... and their standard operations.

We will use the following as a running example of an AC term:

P:=iX; X:=1; !P. (3)

This term sets P to the procedure that returns X, then sets X to 1. Finally, P
is invoked thus returning the current value of X which is 1.
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3.2 Types and Syntax of AC
AC is a simply typed language in the sense of Church [Chu40].
Definition 3.1 (Types). The set Type of types T, ..., is generated by:

T :==B|N|S|S—oT,
where B, N and S are the types of booleans, naturals and stores respectively, and
S — T is that of intensions (procedures) which return values of type T. (The base
types B and N are added only to handle the supplementary operators described

above; for pure AC, they can be removed.)

Now we define the set of terms Term of AC. For each type 7, the sets Term™
of terms of type 7 are defined by mutual recursion:

Definition 3.2 (Syntax of AC)

X € Loc” = X € Term™
t € Term™ = it € Term®™"
t € Term®™" = !t € Term™

X € Loc™, t € Term” = X :=t" € Term®
t € Term®, u € Term” = t;u € Term”

U LN

Supplementary operators are defined in a standard way [Benl0)].

Notice that the intension of a term t of type 7 is of type S = 7, and the extension
of an (intensional) term t of type S — 7 is of type 7. The assignment construct
is (always) of type S. Most interestingly, the sequence operator allows terms of
type other than S to the right of assignments; for example we have the term
X7:= X 4+1;X of type N. This is discussed further in §3.5.

Assignments are of type S due to the fact that they return stores, and the
type of the location (on the left-hand side) and the assigned term must be in
agreement. We do not allow locations of type S, but we do allow locations of
type S— 7 for any 7. This amounts to storage of intensions in the store, which
accounts for much of AC’s expressive power.

As an example, think of it as representing the “text” of t, which, in an actual
computer, is the way that procedures and programs are stored. Now consider
the term

X:=ilX,

which is read “store in X the procedure that invokes X”. Once this action is
performed, an invocation of X

X:= “X; !X

will proceed to invoke X again and again, leading to divergence.
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3.3 Operational Semantics of AC

We access the contents of X in a store ¢ by function application ¢(X).
We will use the standard notion of function variant to update the contents
of a location, where the variant f[z/d] of a function f at = for d is defined by:

(flw/d))(@) = d and (fla/d))(y) = [(y) for y # .

We employ “big-step” operational semantics [Win93]. The rules define the
computation relation || C ((Term x Store) x (Term U Store)). Really, since
a term can compute either a store (if the term is of type S) or another term
(if it is of any type other than S), the computation relation can be broken into
two disjoint relations |, C ((Term® x Store) x Store) and |, C ((Term” x
Store) x Term). However, since the rules are so simple, we choose instead to
use the metavariable d to range over both terms and stores, and give the rules
as follows:

Definition 3.3 (Operational semantics of AC). First, the rules for loca-
tions, assignment and sequence are standard [Win935):

o(X) =t t,cdu tcld udld
X, ¢t Xi=1t ¢ | <[X/ul tiu, ¢ | d
The interesting new rules are those for intension and extension:

t,c | iu uc¢ld
oo i 't s | d

The rules for supplementary operators are standard, and omitted here.

The intuition for the rules for intension and extension are as follows:

e intension “holds back” the computation of a term,
e extension “induces” computation.

Note that there are no side-effects in AC; if a term is of type 7 # S then it
only results in a value. This is further discussed in §3.5.

Lemma 3.4. Computation is unique and deterministic, i.e., there is at most
one deriwation for any t,s.

We return to our running example (B]). Its operational interpretation is as follows.
For any ¢, ¢/ =¢[P/iX] and ¢" = ¢[P/iX][X /1],

g”(P):iX (H(X)ZI

1,¢ |1 P, | iX X, <" |1
iX, ¢l ix X:=1J | ¢ 'P¢” |1
P=iX,¢ || ¢ X=1!'P ¢ |1

P=iX; X:=1;!'P,¢c | 1
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3.4 Rigidity, Modal Closedness, and Canonicity

Definition 3.5 (Operational rigidity). A term t is called operationally rigid
iff there is a u s.t. all stores ¢ give t,s | u. A term for which this is not the case
1s called operationally non-rigid.

To provide a syntactic approximation to rigidity, we follow Montague and define
the set of modally closed terms as follows:

Definition 3.6 (Modal Closedness). The set of modally closed terms MC,
ranged over by mc, is generated by

mc == b |n|it| mc+mec | ...
with similar clauses for other arithmetic, comparison and boolean operators.
Lemma 3.7. t € MC = t is operationally rigid.

Modal closedness captures the intuitive notion of a completed imperative com-
putation, but it can leave arithmetic and boolean computations “unfinished”.
Terms in which all of these computations are also complete are called canonical
and are defined by:

Definition 3.8 (Canonical terms). The set of canonical terms Can, ranged
over by c, is generated by:
c:=Db|n]|it

Clearly, Can C MC. Hence:
tcCan = tec MC = tisoperationally rigid.

Definition 3.9 (Properness of Stores). A store < is proper if it maps loca-
tions only to canonical terms.

The main result of this section is that the operational semantics is well defined,
i.e., it only produces canonical terms or proper stores:

Theorem 3.10 (Properness of Operational Semantics). If ¢ is proper,
then for any t where t,s converges:

1. Ift is of type S then there is a proper store ¢’ s.t. t,¢ | ¢';
2. Otherwise, there is a (canonical) € s.t. t,s | c.

Proof. By induction on derivations. Details in [Benl0)].

3.5 State Backtracking

A significant difference between AC and traditional imperative languages is that
there are no side-effects. In AC, terms represent either stores (effects), if they
are of type S, or values if they are of some other type.
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In this respect, note that a language based on side-effects can easily be trans-
lated into AC. Further, the absence of side-effects in AC leads to an interesting
phenomenon: state backtracking.

State backtracking, or nmon-persistent or local state update, occurs when we
have terms of the form

t;u” where T #S (4)

because state changes caused by t are “lost,” “localized” or “unrolled” when the
value of u is returned. Consider the following example:

Y:=(X:=1; X).

Changes to X are local to the computation of Y, so in fact the above term is
equivalent to ‘Y := 1’, a result which can be confirmed easily by the reader (for
details, see [Benl0)]).

The inclusion of terms of the form (#]), makes possible a clean rewriting system
for AC: it gives us a way to “push assignments into terms”. We discuss this
further in §4; for now, consider this example: X := 1; X := (X + X). By
intuition and the operational semantics, we know that this term is equivalent
to X := 2. But how can it be possible, without overly complicated rules, to
rewrite the former to the latter? By admitting terms like (], we can express
intermediate steps of the computation that could not otherwise be written. Using
the rewriting rules (Definition E.T]),

X=1 X:==(X+X) = X:=(X:=1; (X+X))
= X=(X=1 X)+(X=1 X))
= Xi=(141) = X:=2

Thus, based on its usefulness and the simplicity of the resulting rewriting rules,
we believe that

State backtracking is a natural part of imperative computation.

4 Term Rewriting

In this section we explore AC by examining meaning-preserving transformations
of terms. What we will develop is essentially the “calculus” part of Assignment
Calculus—a term rewriting system whose rules are meant to capture and exploit
its essential equivalences

4.1 Rewrite Rules and Properties

In order to make the rewriting definitions simpler, we adopt the convention that
terms are syntactically identical regardless of parenthesization of the sequencing

! In developing these rules, we find significant guidance in Janssen’s [Jan86] and
Hung’s [Hun90] work on state-switcher reductions.
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operator; to wit, (t;u);v = t;(uj;v) This convention makes it much easier to
express rewriting rules that govern the interaction of assignment operators.

The heart of the rewriting system is the rewriting function = : Term —
Term. Recall the definition (B.0) of modally closed terms mc.

Definition 4.1. The rewriting function => is given by

1. lit =t

2. X := mcy; mcy E mcy

3. Xi=t X =t

4. X==mc; Y = Y

5 X:=mc; X:=u = X:= (X:=mc; u)

6. X:=mcg; Y=t = Y:=(X:=mc; t); X:=mc
7. X:=mc; 't = X:=mc; (X :=mc; t)

Definition 4.2. The rewrite relation = C (Term x Term) is defined by:
t = u iff u results from applying = to a subterm of t. Ift=> --- = u (includ-
ing if t = u), then we write t =y u; that is, =y is the reflexive-transitive closure

of =.

Some brief remarks are in order to explain the rewrite rules. Rule 1 expresses a
basic property of Montague’s intension and extension operators. In our setting,
it embodies the execution of a procedure. Rule 7 is very important: it is the
recursion rule. It may be difficult to see immediately why we identify this rule
with recursion; the following special case, which combines the use of rules 7, 3
and 1, illustrates the concept more clearly:

X:=it;!X = X:=it;t.

This amounts to simple substitution of a procedure body for its identifier, while
“keeping a copy” of the procedure body available for further substitutions.

Our first order of business is to show that the rewrite function does not change
the meaning of a term.

Theorem 4.3 (Validity of rewrite rules). t=u = (t,¢Jd < u,c{d)

Proof. By cases on the rewrite rules. This proof also provides constructive “rules
of replacement” for parts of operational derivation trees: each rewrite rule cor-
responds to a transformation on derivation trees. O

We can gain some valuable insight into how to use the rewriting rules by using
them to interpret our running example (B)):

P=iX; X:=1; !P = X:=1; P:=iX; !'P
= X:=1; P:=iX; (P:=iX; P)
= X:i=1; P:= iX; "X
= X=1; P=iX; X = 1
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4.2 Equivalence of Interpretations

In this subsection we demonstrate that the rewriting system provided by the
=» relation is equivalent to the operational interpretation. Before stating this
theorem, however, we need to address some technicalities.

In order to use the rewriting rules to arrive at the same result as the oper-
ational semantics, we need to take into account the store. That means that we
need a way to take the required information from the store and actualize it as a
term. For example, take the term t = X 4+ X and a store ¢ that maps X to 1;
then, t,¢ || 2. We can accomplish this in rewriting by prepending t with X := 1,
which gives X := 1; (X + X) => 2 as needed. For technical convenience, we
take the set of locations Loc to be finite ([Benl0] extends the treatment to a
countable set).

Definition 4.4 (Store terms, store actualization and store abstraction).
The store-actualization of ¢, assuming Loc = {X1,..., X}, is defined as

<§> Jof Xq:= §(X1) 3oy Xpi= g(Xn)

Terms like those above we call store-terms. The set of store-terms STerm,
ranged over by s, is the set of terms of the form

Xi:=c1 35 ... ; X,i=c¢,

We also define an inverse to the store-actualization operator, store abstraction,
which takes a store term and returns the corresponding store, such that [{)] =
¢ and ([s]) is s with its assignment statements reordered into some arbitrary
canonical ordering.

A convenient lemma shows the operational soundness of the above notions.
Lemma 4.5. t,c | d < V- ((s);t),¢' | d. O

We now present the first part of the proof of equivalence between the operational
semantics and term rewriting.

Theorem 4.6 (Operational adequacy).

1. Ift,c | c, then () ;t = c;
2. Ift,c | ¢/, then (¢);t = (¢').

Proof. By induction on derivations. Details can be found in [Benl0). O

The above theorem only works in one direction, in that it only shows that the
rewriting system is at least as strong as the operational semantics. In fact it is
(syntactically speaking) even stronger; as a simple demonstration of this, con-
sider the term i(1 4 1). Operationally, it is inert: it returns itself. However, the
rewrite rules allow us to “reach inside” the intension and rewrite it to 123

? This was not an issue in [Benl0] because the equivalence proof there was stated in
terms of denotational semantics; here we strive for a stronger result about the syntax
itself.
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The operational semantics and rewriting system are therefore syntactically
equivalent only up to rewriting of unevaluated intensions. The following theorem
completes the equivalence result.

Theorem 4.7 (Rewriting adequacy).

1. Ift=>c, then there is a ¢’ s.t. c=»c’ and for any ¢, t,¢’ |} .
2. Ift=>s, then there is a s’ s.t. s=»s’ and for any ¢, t,s" | [§/].

Proof. By induction on the length of the rewrite sequence t =y c or t =»s. The
inductive step consists roughly of identifying the affected parts of the operational
derivation tree and substituting a suitably modified tree (using Theorem [3);
or, if the rewrite step affects only an uninterpreted (i.e., bound by intension)
part of the term, to add the rewrite to c=y»c’ or s=»s’ as applicable. O

By combining Theorems 4.6 and 4.7, using Lemma 4.5, we obtain our desired
equivalence result.

We conclude this section by mentioning that we have also attained a conflu-
ence result for our term rewriting system [Benl0, App. B]. It will be discussed
in detail in a forthcoming publication.

Theorem 4.8 (Confluence). Ift =y u and t =y v, then there is aw s.t. u=pw
and v=pyw.

5 Conclusion

We hope to have convinced the reader, in the last four sections, that AC does
indeed possess the desirable properties listed in §2.1. (a) It is small, elegant
and (hopefully) intuitive: as discussed in §2, AC’s set of four basic operators is
simple and understandable; (b) its operators represent well-understood, funda-
mental concepts: by taking only assignment, sequence, procedure formation and
procedure invocation as basic, we remain close to practical imperative languages;
(c) we can rewrite its terms using simple rules: Definition [£.J] demonstrates this;
and (d) it has multiple forms of semantics that are equivalent: in this paper
we demonstrated this equivalence for operational semantics and term rewriting,
[BenlQ] extends this equivalence to denotational semantics as well.

We believe that the above points show that Assignment Calculus is a realiza-
tion of our goal to develop a true imperative computation language.

5.1 Related Work

The final step in our presentation is to explore related and otherwise relevant
work. First, note that there has been no other attempt, as far as the authors
are aware, to define a pure imperative computation language as we have done.
Therefore all of the other work that we will examine is only indirectly related to
our aims; nevertheless there are certainly interesting connections to be explored.
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The first and perhaps most striking language of interest that can be found in
the literature is (unfortunately!) nameless; it is defined in the seminal report of
Strachey and Scott [SST1, §5]. Here we find a language that has features that
closely resemble those of AC: there are operators for referencing and dereferenc-
ing, and operators for treating a procedure as an expression and an expression as
a procedure. This language does not appear to have been revisited in subsequent
work.

Insofar as rewriting systems for imperative-style languages, the prime example
is the work of Felleisen [FH92]. He adds facilities for handling state and control
operators to Plotkin’s call-by-value A-calculus, which results in a quite elegant
system. There could be a good deal of interesting work in comparing our work
with Felleisen’s; the main problem that we immediately encounter is that his
work depends fundamentally on the A-calculus, which is precisely what we have
tried to avoid incorporating into AC.

5.2 Future Work

We now discuss interesting avenues of further research. First, we should like to
continue exploring, expanding, and improving the rewriting system of §4. Our
present goal was to arrive at a small set of rules that was sufficient to achieve
our equivalence proof; however, it would be useful to develop more powerful
rules that might be more intuitive in terms of real-world use. In fact we have
already made significant progress in this direction while developing the proof of
confluence in [Benl0, App. BJ; the work will be elaborated in forthcoming work.

It would be interesting to examine more carefully the concept of state back-
tracking in AC. As mentioned in §3.5, we believe that state backtracking is a
fundamental part of imperative computation; therefore, we would like to provide
an improved analysis of what it comprises and how it takes part in and affects
imperative computation. Along these lines, it is important to explore connections
with Separation Logic [Rey02], particularly its interesting store model, and with
Felleisen’s work as mentioned above.

The aim of this paper was to provide an analysis of imperative computa-
tion. We have done this on multiple levels: from a philosophical dissection of
the concept of imperative computation in §2, to developing the actual types and
syntax of AC, and finally to AC’s operational and rewriting-based meanings.
We believe that this broad approach leaves AC well-prepared for further inves-
tigations, and we hope that it will stimulate future work in what we consider to
be an exciting new approach to an old paradigm.
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Abstract. Multiplayer games with selfish agents naturally occur in the design
of distributed and embedded systems. As the goals of selfish agents are usually
neither equivalent nor antagonistic to each other, such games are non zero-sum
games. We study such games and show that a large class of these games, includ-
ing games where the individual objectives are mean- or discounted-payoff, or
quantitative reachability, and show that they do not only have a solution, but a
simple solution. We establish the existence of Nash equilibria that are composed
of k memoryless strategies for each agent in a setting with £ agents, one main
and k£ — 1 minor strategies. The main strategy describes what happens when all
agents comply, whereas the minor strategies ensure that all other agents immedi-
ately start to co-operate against the agent who first deviates from the plan. This
simplicity is important, as rational agents are an idealisation. Realistically, agents
have to decide on their moves with very limited resources, and complicated strate-
gies that require exponential—or even non-elementary—implementations cannot
realistically be implemented. The existence of simple strategies that we prove in
this paper therefore holds a promise of implementability.

1 Introduction

The construction of correct and efficient computer systems (both hard- and software)
is recognised to be an extremely difficult task. Formal methods have been exploited
with some success in the design and verification of such systems. Mathematical logic,
automata theory [[16], and model-checking [[11] have contributed much to the success
of formal methods in this field. However, traditional approaches aim at systems with
qualitative specifications like LTL, and rely on the fact that these specifications are
either satisfied or violated by the system.

Unfortunately, these techniques do not trivially extend to complex systems, such as
embedded or distributed systems. A main reason for this is that such systems often con-
sist of multiple independent components with individual objectives. These components
can be viewed as selfish agents that may cooperate and compete at the same time. It is
difficult to model the interplay between these components with traditional finite state
machines, as they cannot reflect the intricate quantitative valuation of an agent on how
well he has met his goal. In particular, it is not realistic to assume that these components
are always cooperating to satisfy a common goal, as it is, e.g., assumed in works that

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 59-[73] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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distinguish between an environment and a system. We argue that it is more realistic to
assume that all components act like selfish agents that try to achieve their own objec-
tives and are either unconcerned about the effect this has on the other components or
consider this effect to be secondary. It is indeed a recent trend to enhance the system
models used in the classical approach of verification by quantitative cost and gain func-
tions, and to exploit the well established game-theoretic framework [20/21]] for their
formal analysis.

The first steps towards the extension of computational models with concepts from
classical game theory were taken by advancing from boolean to general two-player
zero-sum games played on graphs [14]]. Like their qualitative counter parts, those games
are adequate to model controller-environment interaction problems [23124]]. As usual
in control theory, one can distinguish between moves of a control player, who plays
actions to control a system to meet a control objective, and an antagonistic environment
player. In the classical setting, the control player has a qualitative objective—he might,
for example, try to enforce a temporal specification—whereas the environment tries
to prevent this. In the extension to quantitative games, the controller instead tries to
maximise its gain, while the environment tries to minimise it. This extension lifts the
controller synthesis problem from a constructive extension of a decision problem to a
classical optimisation problem.

However, this extension has not lifted the restriction to purely antagonist interactions
between a controller and a hostile environment. In order to study more complex systems
with more than two components, and with objectives that are not necessarily antagonist,
we resort to multiplayer non zero-sum games. In this context, Nash equilibria [20] take
the place that winning and optimal strategies take in qualitative and quantitative two-
player games zero-sum games, respectively. Surprisingly, qualitative objectives have so
far prevailed in the study of Nash equilibria for distributed systems. However, we argue
that Nash equilibria for selfish agents with quantitative objectives—such as reaching a
set of target states quickly or with a minimal consumption of energy—are natural objec-
tives that aught to be studied alongside (or instead of) traditional qualitative objectives.

Consequently, we study Nash equilibria for multiplayer non zero-sum games played
on graphs with quantitative objectives.

Our Contribution. In this paper, we study turn-based multiplayer non zero-sum games
played on finite graphs with quantitative objectives, expressed through a cost function
for each player (cost games). Each cost function assigns, for every play of the game, a
value that represents the cost that is incurred for a player by this play. Cost functions
allow to express classical quantitative objectives such as quantitative reachability (i.e.,
the player aims at reaching a subset of states as soon as possible), or mean-payoff objec-
tives. In this framework, all players are supposed to be rational: they want to minimise
their own cost or, equivalently, maximise their own gain. This invites the use of Nash
equilibria as the adequate concept for cost games.

Our results are twofold. Firstly, we prove the existence of Nash equilibria for a large
class of cost games that includes quantitative reachability and mean-payoff objectives.
Secondly, we study the complexity of these Nash equilibria in terms of the memory
needed in the strategies of the individual players in these Nash equilibria. More pre-
cisely, we ensure existence of Nash equilibria whose strategies only requires a number
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of memory states that is linear in the size of the game for a wide class of cost games,
including games with quantitative reachability and mean-payoff objectives.

The general philosophy of our work is as follows: we try to derive existence of
Nash equilibria in multiplayer non zero-sum quantitative games (and characterization
of their complexity) through determinacy results (and characterization of the optimal
strategies) of several well-chosen two-player quantitative games derived from the mul-
tiplayer game. These ideas were already successfully exploited in the qualitative frame-
work [[15], and in the case of limit-average objectives [25].

Related Work. Several recent papers have considered two-player zero-sum games played
on finite graphs with regular objectives enriched by some quantitative aspects. Let us
mention some of them: games with finitary objectives [9], mean-payoff parity
games [10]], games with prioritised requirements [1l], request-response games where
the waiting times between the requests and the responses are minimized [[17.27]], games
whose winning conditions are expressed via quantitative languages [2], and recently,
cost-parity and cost-Streett games [12].

Other work concerns qualitative non zero-sum games. In [[15]], general criteria ensur-
ing existence of Nash equilibria and subgame perfect equilibria (resp. secure equilibria)
are provided for multiplayer (resp. 2-player) games, as well as complexity results. The
complexity of Nash equilibria in multiplayer concurrent games with Biichi objectives
has been discussed in [3]]. [4] studies the existence of Nash equilibria for timed games
with qualitative reachability objectives.

Finally, there is a series of recent results on the combination of non zero-sum as-
pects with quantitative objectives. In [3]], the authors study games played on graphs
with terminal vertices where quantitative payoffs are assigned to the players. In [18],
the authors provide an algorithm to decide the existence of Nash equilibria for concur-
rent priced games with quantitative reachability objectives. In [22], the authors prove
existence of a Nash equilibrium in Muller games on finite graphs where players have a
preference ordering on the sets of the Muller table. Let us also notice that the existence
of a Nash equilibrium in cost games with quantitative reachability objectives we study
in this paper has already been established in [6]. The new proves we provide are simpler
and significantly improve the complexity of the strategies constructed from exponential
to linear in the size of the game.

Organization of the Paper. In Section[2] we present the model of multiplayer cost games
and define the problems we study. The main results are given in Section 3 Finally, in
Section[], we apply our general result on particular cost games with classical objectives.
Onmitted proofs and additional materials can be found in [8, Appendix].

2 General Background

In this section, we define our model of multiplayer cost game, recall the concept of
Nash equilibrium and state the problems we study.

Definition 1. A multiplayer cost game is a tuple G = (II,V, (V;)icm, E, (Cost;)icr)
where



62 T. Brihaye, J. De Pril, and S. Schewe

11 is a finite set of players,

G = (V, E) is a finite directed graph with vertices V and edges E C'V x V,
(Vi)iem is a partition of V' such that V; is the set of vertices controlled by player i,
Cost; : Plays — RU{+4o00, —oo} is the cost function of player i, where Plays is the
set of plays in G, i.e. the set of infinite paths through G. For every play p € Plays,
the value Cost;(p) represents the amount that player i loses for this play.

Cost games are multiplayer turn-based quantitative non zero-sum games. We assume
that the players are rational: they play in a way to minimise their own cost.

Note that minimising cost or maximising gain are essentiall equivalent, as max-
imising the gain for player ¢ can be modelled by using Cost; to be minus this gain
and then minimising the cost. This is particularly important in cases where two players
have antagonistic goals, as it is the case in all two-player zero-sum games. To cover
these cases without changing the setting, we sometimes refer to maximisation in order
to preserve the connection to such games in the literature.

For the sake of simplicity, we assume that each vertex has at least one outgoing edge.
Moreover, it is sometimes convenient to specify an initial vertex vg € V of the game.
We then call the pair (G, vo) an initialised multiplayer cost game. This game is played as
follows. First, a token is placed on the initial vertex vy. Whenever a token is on a vertex
v € V; controlled by player i, player ¢ chooses one of the outgoing edges (v,v’) € E
and moves the token along this edge to v'. This way, the players together determine an
infinite path through the graph G, which we call a play. Let us remind that Plays is the
set of all plays in G.

A history h of G is a finite path through the graph G. We denote by Hist the set of
histories of a game, and by e the empty history. In the sequel, we write h = hg ... hg,
where hg,...,hr € V (k € N), for a history h, and similarly, p = pop1 ..., where
po, P1,- .. €V, for aplay p. A prefix of length n 4+ 1 (for some n € N) of a play p =
P0p1 - - - 1s the history pg . . . pp,, and is denoted by p[0, n].

Given a history h = hg .. . hi and a vertex v such that (h,v) € E, we denote by hv
the history hyg . . . hiv. Moreover, given a history h = hg ... h; and aplay p = pop1 . ..
such that (hy, po) € E, we denote by hp the play hg . .. hgpop1 - . ..

The function Last (resp. First) returns, for a given history h = hg ... hg, the last
vertex hg (resp. the first vertex hg) of h. The function First naturally extends to plays.

A strategy of player i in G is a function o : Hist — V assigning to each history h €
Hist that ends in a vertex Last(h) € V; controlled by player i, a successor v = o(h)
of Last(h). That is, (Last(h),o(h)) € E. We say that a play p = pop1 ... of G is
consistent with a strategy o of player 4 if pp+1 = o(po ... px) for all k& € N such that
pr € Vi. A strategy profile of G is a tuple (0;);c7 of strategies, where o; refers to a
strategy for player ¢. Given an initial vertex v, a strategy profile determines a unique
play of (G, v) that is consistent with all strategies o;. This play is called the outcome
of (0;)ier and denoted by ((0;);cmr),. We say that a player deviates from a strategy
(resp. from a play) if he does not carefully follow this strategy (resp. this play).

A finite strategy automaton for player i € II over a game G = (II,V,(V})icm,
E, (Cost;)icqr) is a Mealy automaton A; = (M, my, V, d,v) where:

! Sometimes the translation implies minor follow-up changes, e.g., the replacement of lim inf
by lim sup and vice versa.
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— M is a non-empty, finite set of memory states,

— mo € M is the initial memory state,

0 : M xV — M is the memory update function,

v : M x V; — V is the transition choice function, such that (v, v(m,v)) € E for
allm € M andv € V.

We can extend the memory update function ¢ to a function 6* : M x Hist — M defined
by §*(m,€) = m and 6*(m, hv) = 6(6*(m, h),v) for all m € M and hv € Hist.
The strategy o 4, computed by a finite strategy automaton .4; is defined by o 4, (hv) =
v(6*(mg, h),v) for all hv € Hist such that v € V;. We say that o is a finite-memory
strategy if there existd a finite strategy automaton A such that o = o 4. Moreover, we
say that o = o 4 has a memory of size at most |M |, where | M| is the number of states
of A. In particular, if | M| = 1, we say that o is a positional strategy (the current vertex
of the play determines the choice of the next vertex). We call (0;);c 7 a strategy profile
with memory m if for all ¢ € II, the strategy o; has a memory of size at most m. A
strategy profile (0;);c7 is called positional or finite-memory if each o; is a positional
or a finite-memory strategy, respectively.
We now define the notion of Nash equilibria in this quantitative framework.

Definition 2. Given an initialised multiplayer cost game (G,vo), a strategy profile
(0i)icm is a Nash equilibrium in (G, vo) if, for every player j € II and for every
strategy a;- of player j, we have:

Cost;(p) < Cost;(p')

where p = <(Ui)ieﬂ>vo and p' = <U;-’ (Ui)ieﬂ\{j}>uo-
This definition means that, for all j € II, player j has no incentive to deviate from
o; since he cannot strictly decrease his cost when using cr;- instead of o;. Keeping
notations of Definition 2] in mind, a strategy o} such that Cost;(p) > Cost;(p’) is
called a profitable deviation for player j w.r.t. (0;)icr1.

Example 3. LetG = (II,V, V4, Vs, E, Costy, Costz) be the two-player cost game whose
graph G = (V| E) is depicted in Figure[Il The states of player 1 (resp. 2) are represented
by circles (resp. squares). Thus, according to Figure[T V; = {A, C, D} and Vo, = {B}.
In order to define the cost functions of both players, we consider a price function
m: E — {1,2,3}, which assigns a price to each edge of the graph. The price functior]
7 is as follows (see the numbers in Figure[I): 7(A, B) = n(B,A) = n(B,C) = 1,
m(A,D) = 2 and n(C, B) = w(D, B) = 3. The cost function Cost; of player 1 ex-
presses a quantitative reachability objective: he wants to reach the vertex C' (shaded
vertex) while minimising the sum of prices up to this vertex. That is, for every play

p=pop1...0of G:

> w(pi-1, pi) if nis the least index s.t. p, = C,
Cost: (p) = {+oo otherwise.

2 Note that there exist several finite strategy automata such that o = o 4.
3 Note that we could have defined a different price function for each player. In this case, the
edges of the graph would have been labelled by couples of numbers.
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As for the cost function Costy of player 2, it expresses a mean-payoff objective: the cost
of a play is the long-run average of the prices that appear along this play. Formally, for
any play p = pgp1 ... 0of G:

n

. 1
Costa(p) = limsup - Z T(pi=1, Pi)-

n
n——+oo i—1

Each player aims at minimising the cost incurred by the play. Let us insist on the fact
that the players of a cost game may have different kinds of cost functions (as in this
example).

Fig. 1. A two-player cost game G

An example of a play in G can be given by p = (AB)¥, leading to the costs
Costy (p) = +o00 and Costz(p) = 1. In the same way, the play p’ = A(BC)* induces
the following costs: Cost;(p) = 2 and Costa(p) = 2.

Let us fix the initial vertex vy at the vertex A. The play p = (AB) is the outcome of
the positional strateng profile (01, 02) where 01(A) = B and 02(B) = A. Moreover,
this strategy profile is in fact a Nash equilibrium: player 2 gets the least cost he can
expect in this game, and player 1 has no incentive to choose the edge (A, D) (it does
not allow the play to pass through vertex C).

We now consider the positional strategy profile (o}, 0%) with of(4) = B and
ob(B) = C. Tts outcome is the play p’ = A(BC)“. However, this strategy profile is
not a Nash equilibrium, because player 2 can strictly lower his cost by always choosing
the edge (B, A) instead of (B, C'), thus lowering his cost from 2 to 1. In other words,
the strategy o5 (defined before) is a profitable deviation for player 2 w.r.t. (o7, o).

The questions studied in this paper are the following ones:

Problem 1. Given a multiplayer cost game G, does there exist a Nash equilibrium in G?

Problem 2. Given a multiplayer cost game G, does there exist a finite-memory Nash
equilibrium in G?

Obviously enough, if we make no restrictions on our cost games, the answer to Prob-
lem [T] (and thus to Problem[2)) is negative (see Example ). Our first goal in this paper
is to identify a large class of cost games for which the answer to Problem[Tlis positive.
Then we also positively reply to Problem [2] for subclasses of the previously identified
class of cost games. Both results can be found in Section[3

* Note that player 1 has no choice in vertices C' and D, that is, o1 (hv) is necessarily equal to B
forv € {C, D} and h € Hist.
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Example 4. Let (G, A) be the initialised one-player cost game depicted below, whose
cost function Cost; is defined by Cost; (A" B¥) = 711 for n € Ny and Cost; (A¥) =
+00. One can be convinced that there is no Nash equilibrium in this initialised game.

B

In order to our class of cost games, we need the notions of Min-Max cost games,
determinacy and optimal strategies. The following two definitions are inspired by [26].

Definition 5. A Min-Max cost game is a tuple G = (V, Viyin, Vitax, E, Costain, Gainpay),
where

e G = (V, E) is a finite directed graph with vertices V and edges E C'V x V,
® (Vitin, Viax) is a partition of V' such that Vi, (resp. Vi) is the set of vertices
controlled by player Min (resp. Max), and
e Costyy, @ Plays — R U {+00, —00} is the cost function of player Min, that repre-
sents the amount that he loses for a play, and Gainy,, : Plays — R U {400, —c0}
is the gain function of player Max, that represents the amount that he wins for a
play.
In such a game, player Min wants to minimise his cost, while player Max wants to
maximise his gain. So, a Min-Max cost game is a particular case of a two-player cost
game. Let us stress that, according to this definition, a Min-Max cost game is zero-sum
if Costyin = Gainmax, but this might not always be the caseﬁ. We also point out that
Definition [3] allows to take completely unrelated functions Costygi, and Gainyax, but
usually they are similar (see Definition [[3)). In the sequel, we denote by Xy, (resp.
X)Max) the set of strategies of player Min (resp. Max) in a Min-Max cost game.

Definition 6. Given a Min-Max cost game G, we define for every vertex v € V the
upper value Val* (v) as:

Val*(v) = inf  sup Costyin({o1,02)s),
1€ XMin 5o € Sita

and the lower value Val, (v) as:

Val,(v) = sup inf Gaingg ({01, 02)s) .
02€ Siar O1 € Xbtin
The game G is determined if, for every v € V, we have Val*(v) = Val.(v). In this case,
we say that the game G has a value, and for every v € V, Val(v) = Val*(v) = Val,(v).
We also say that the strategies 07 € Xy and 05 € Yy, are optimal strategies for the
respective players if, for every v € V, we have that
inf  Gainyyy({o1,03),) = Val(v) = sup Costyin((07,02)s) -
1€ XMin 02€ XMax
If o7 is an optimal strategy for player Min, then he loses at most Val(v) when playing
according to it. On the other hand, player Max wins at least Val(v) if he plays according
to an optimal strategy o3 for him.
Examples of classical determined Min-Max cost games can be found in Section 4l

5 For an example, see the average-price game in Definition [[3]



66 T. Brihaye, J. De Pril, and S. Schewe

3 Results

In this section, we first define a large class of cost games for which Problem [Tl can be
answered positively (Theorem [I0). Then, we study existence of simple Nash equilib-
ria (Theorems [13] and [[4)). To define this interesting class of cost games, we need the
concepts of cost-prefix-linear and coalition-determined cost games.

Definition 7. A multiplayer cost game G = (II,V,(V;)icm, E, (Cost;)icrr) is cost-
prefix-linear if; for every player i € 11, every vertex v € V and history hv € Hist, there
exists a € R and b € RY such that, for every play p € Plays with First(p) = v, we
have:

Cost;(hp) = a+ b - Cost;(p) .

Let us now define the concept of coalition-determined cost games.

Definition 8. A multiplayer cost game G = (II,V, (V;)icm, F, (Cost;)ic11) is (positio-
nally/finite-memory) coalition-determined if, for every player i € I, there exists a gain
Sunction Gainy,,, : Plays — R U {+00, —0c0} such that

— Cost; > Gaini,,,, and

— the Min-Max cost game G' = (V,V;,V \ Vi, E, Cost;, Gain,, ), where player i
(player Min) plays against the coalition IT \ {i} (player Max), is determined and
has (positional/finite-memory) optimal strategies for both players. That is: o} €
Zmin, 07, € Xppax (both positional/finite-memory) such that Vv € V

inf  Gainjy,,((0i,0%;),) = Val'(v) = sup Cost;((0},0_i)s).
i € XMin 0 i € XMax

Given i € II, note that G does not depend on the cost functions Cost;, with j # 1.

Example 9. Let us consider the two-player cost game G of Example 3l where player 1
has a quantitative reachability objective (Cost;) and player 2 has a mean-payoff objec-
tive (Costz). We show that G is positionally coalition-determined.

Let us set Gain]{,Iax = Cost; and study the Min-Max cost game G' = (V, V4, Va,
E,Costl,GainI{,[ax), where player Min (resp. Max) is player 1 (resp. 2) and wants
to minimise Cost; (resp. maximise Gaini,[ax). This game is positionally determined
[26l13]. We define positional strategies o7 and o*; for player 1 and player 2, re-
spectively, in the following way: 07 (A) = B and 0*,(B) = A. From A, their out-
come is ((oF,0%,))a = (AB)¥, and Cost; ((AB)*) = Gainy,, ((AB)*) = +oc.
One can check that the strategies o} and ¢* ; are optimal in G'. Note that the po-
sitional strategy &7 defined by 63(A) = D is also optimal (for player 1) in G!.
With this strategy, we have that ((6},0%))a = (ADB)“, and Cost; ((ADB)~) =
Gainyy,, ((ADB)*)= 4.

We now examine the Min-Max cost game G2 = (V, Vs, Vi, E, Costy, Gain,%,[ax),
where Gaini,[ax is defined as Cost but with lim inf instead of lim sup. In this game,
player Min (resp. Max) is player 2 (resp. 1) and wants to minimise Costs (resp. max-
imise Gainy,,). This game is also positionally determined [26/13]. Let o and o*,
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be the positional strategies for player 2 and player 1, respectively, defined as follows:
03(B) = C and 0* 5(A) = D. From A, their outcome is ((¢3,0%,))a = AD(BC)¥,
and Costy(AD(BC)*) = Gaingy, (AD(BC)®) = 2. We claim that o3 and o* , are the
only positional optimal strategies in G2.

Theorem [1Q] positively answers Problem [l for cost-prefix-linear, coalition-determined
cost games.

Theorem 10. In every initialised multiplayer cost game that is cost-prefix-linear and
coalition-determined, there exists a Nash equilibrium.

Proof. Let (G = (I1,V,(V;)iem, E, (Cost;)icr), vo) be an initialised multiplayer cost
game that is cost-prefix-linear and coalition-determined. Thanks to the latter property,
we know that, for every i € IT, there exists a gain function Gainjy,, such that the Min-
Max cost game G¢ = (V,V;, V' \ Vi, E, Cost;, Gainy,,, ) is determined and there exist
optimal strategies o} and o* ; for player ¢ and the coalition IT \ {i} respectively. In
particular, for j # 4, we denote by o7 ; the strategy of player j derived from the strategy
o* ,; of the coalition IT \ {i}.

The idea is to define the required Nash equilibrium as follows: each player ¢ plays
according to his strategy o and punishes the first player j # ¢ who deviates from his
strategy o, by playing according to o7 ; (the strategy of player ¢ derived from ¢ ; in
the game G7).

Formally, we consider the outcome of the optimal strategies (07 );crr from vg, and
set p := ((0F)icm)v,- We need to specify a punishment function P : Hist — IT U { L}
that detects who is the first player to deviate from the play p, i.e. who has to be punished.
For the initial vertex vg, we define P(vp) = L (meaning that nobody has deviated from
p) and for every history hv € Hist, we let:

1 if P(h) = L and hv is a prefix of p,
P(hv) :=< 1 if P(h) = L, hv is not a prefix of p, and Last(h) € V;
P(h) otherwise (P(h) # 1).

Then the definition of the Nash equilibrium (7;);c 7 in G is as follows. For all ¢ € IT
and h € Hist such that Last(h) € V;,

_ for(h) if P(h) = L or4,
7i(h) = {U;P(h)(h) otherwise.

Clearly the outcome of (7;);¢ 7 is the play p (= (0] )iem)v,)-

Now we show that the strategy profile (7;);c 7 is a Nash equilibrium in G. As a con-
tradiction, let us assume that there exists a profitable deviation 7; for some player j €
IT. We denote by p’ := (7}, (7i)ic 1\ {5} )vo the outcome where player j plays according
to his profitable deviation 7} and the players of the coalition I7 \ {j} keep their strate-
gies (7;)icm\ {5}~ Since 7} is a profitable deviation for player j w.r.t. (7;)ier, we have
that:

Cost;(p") < Cost;(p). (1)
As both plays p and p’ start from vertex vp, there exists a history hv € Hist such

that p = h((7)iem)v and p" = (7}, (Ti)icm\ {5} )v (remark that i could be empty).
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Among the common prefixes of p and p’, we choose the history hv of maximal length.
By definition of the strategy profile (7;);c 7, we can write in the case of the outcome p
that p = h{(0})icr)». Whereas in the case of the outcome p’, player j does not follow
his strategy o7 any more from vertex v, and so, the coalition /1 \ {j} punishes him by
playing according to the strategy o ; after history hv, and so p’ = h(7},0% ), (see
Figure2)).

vo

o =hirlot Ny p=h{(o))iem)w

Fig. 2. Sketch of the tree representing the unravelling of the game G from vo

Since 0* ; is an optimal strategy for the coalition /T {;j} in the determined Min-Max
cost game G/, we have:

Val/(v) = inf GalnMax(<a],a*j>v)

0 € XMin

< GamMax((Tj,a j> )
< Cost; (7,07 )v) - (2)

The last inequality comes from the hypothesis Cost; > Gainf\',[ax in the game G/.
Moreover, the game G is cost-prefix-linear, and then, when considering the history
hv, there exist « € R and b € Rt such that

Cost;(p') = Cost;(h(7},0%;)y) = a+b- Cost;({1;,0%;)y) . 3)
As b > 0, Equations () and (@) imply:
Costj(p') > a+b-Val (v). 4)
Since h is also a prefix of p, we have:
Cost;(p) = Cost;(h((0] )icmr)v) = a+b- Cost;({(07 )icr)v) - (5)

Furthermore, as o7 is an optimal strategy for player j in the Min-Max cost game G, it
follows that:

Val/(v) = sup Cost, ({07, 0-4)v)
0 — 5 € XMax

> Cost; ({(07 )iem)wv) - (6)
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Then, Equations (3) and (@) imply:
Costj(p) <a-+b-Val/(v). @)
Finally, Equations () and () lead to the following inequality:
Cost;(p) < a+b-Val (v) < Cost;(p'),

which contradicts Equation (). The strategy profile (7;);c 7 is then a Nash equilibrium
in the game G. O

Remark 11. The proof of Theorem[IQremains valid for cost functions Cost; : Plays —
K, where (K, +,-,0,1, <) is an ordered field. This allows for instance to consider non-
standard real costs and enjoy infinitesimals to model the costs of a player.

Example 12. Let us consider the initialised two-player cost game (G, A) of Example[3]
where player 1 has a quantitative reachability objective (Cost;) and player 2 has a mean-
payoff objective (Costz). One can show that G is cost-prefix-linear. Since we saw in Ex-
ample [9] that this game is also positionally coalition-determined, we can apply the con-
struction in the proof of Theorem [I0to get a Nash equilibrium in G. The construction
from this proof may result in two different Nash equilibria, depending on the selection
of the strategies 03/5%, 0* |, 05 and 6* 5 as defined in Example[9]

The first Nash equilibrium (71, 72) with outcome p = (07,05)4 = A(BC)¥ is
given, for any history h, by:

B if P(hA) ={L,1}
D otherwise

C if P(hB) = {L1,2}
A otherwise

T1(hA) := { ; 1o(hB) = {
where the punishment function P is defined as in the proof of Theorem[I(Jand depends
on the play p. The cost for this finite-memory Nash equilibrium is Cost;(p) = 2 =
Costa(p).

The strategy 71 of the second Nash equilibrium (71,72) with outcome p =
(6F,05)a = AD(BC)¥ is given by 71(hA) := D for all history h. The cost for
this finite-memory Nash equilibrium is Cost; (p) = 6 and Costa(p) = 2, respectively.

Note that there is no positional Nash equilibrium with outcome p (resp. p).

The two following theorems provide results about the complexity of the Nash equilib-
rium defined in the latter proof. Applications of these theorems to specific classes of
cost games are provided in Section 4

Theorem 13. In every initialised multiplayer cost game that is cost-prefix-linear and
positionally coalition-determined, there exists a Nash equilibrium with memory (at
most) |V| + |II|.

Theorem 14. In every initialised multiplayer cost game that is cost-prefix-linear and
finite-memory coalition-determined, there exists a Nash equilibrium with finite memory.

The proofs of these two theorems rely on the construction of the Nash equilibrium
provided in the proof of Theorem[10l
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4 Applications

In this section, we exhibit several classes of classical objectives that can be encoded in
our general setting. The list we propose is far from being exhaustive.

4.1 Qualitative Objectives

Multiplayer games with qualitative (win/lose) objectives can naturally be encoded via
multiplayer cost games; for instance via cost functions Cost; : Plays — {1,400},
where 1 (resp. +00) means that the play is won (resp. lost) by player . Let us now
consider the subclass of qualitative games with prefix-independent] Borel objectives.
Given such a game G, we have that G is coalition-determined, as a consequence of the
Borel determinacy theorem [[19]. Moreover the prefix-independence hypothesis obvi-
ously guarantees that G is also cost-prefix-linear (by taking @ = 0 and b = 1). By
applying Theorem we obtain the existence of a Nash equilibrium for qualitative
games with prefix-independent Borel objectives. Let us notice that this result is already
present in [[15].

When considering more specific subclasses of qualitative games enjoying a posi-
tional determinacy result, such as parity games [14], we can apply Theorem [13] and
ensure existence of a Nash equilibrium whose memory is (at most) linear.

4.2 Classical Quantitative Objectives

We here give four well-known kinds of Min-Max cost games and see later that they are
determined. For each sort of game, the cost and gain functions are defined from a price
function (and a reward function in the last case), which labels the edges of the game
graph with prices (and rewards).

Definition 15 ([26])). Given a game graph G = (V, Vigin, Vatax, E), a price function m :
E — R that assigns a price to each edge, a divergingﬂ reward function ¥ : E — R that
assigns a reward to each edge, and a play p = pop1 - - . in G, we define the following
Min-Max cost games:

1. areachability-price game is a Min-Max cost game G = (G, RPpin, RPyax) together
with a given goal set Goal C V, where

m(p[0,n]) if n is the least index s.t. p, € Goal,

RPyin(p) = RPyax(p) = {+oo otherwise

with w(p[0,n]) = >0 w(piz1, pi);

® An objective £2 C V¥ is prefix-independent if only if for every play p = pop1 ... € V¥, we
have that p € 2 iff foreveryn € N, pppny1... € £2.

7 For all plays p = pop1 ... in G, it holds that limy, o | Z?zl I(pi—1,pi)| = +oo. This is
equivalent to requiring that every cycle has a positive sum of rewards.
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2. a discounted-price game is a Min-Max cost game G = (G, DPpin(\), DPpax(X))
together with a given discount factor \ € 10, 1], where

+oo

DPyin(N)(p) = DPyac(N)(p) = (1 = A) - Y~ N w(pimr, i) ;

i=1

3. an average-price gameﬁ is a Min-Max cost game G = (G, APpin, APyax), where

APyin(p) = lim sup m(p[0;n)) and  APyux(p) = lim inf m(pl0,n]) ;
n—-+oo n n—>—+00 n
4. a price-per-reward-average game is a Min-Max cost game G = (G, PRAvg,;.,
PRAvg,,,..), where
i m(p[0,n]) .. . m(p[0,n])
PRAvg i =1 d PRA =1 f
V&1in () w9 l0,n]) " V8iar(p) = lim inf ) (o0,

with 9(pl0,n]) = S, 9(pi1. o).

An average-price game is then a particular case of a price-per-reward-average game.
Let us remark that, in Example 3] the cost function Cost; (resp. Costs) corresponds
to RPygi, with Goal = {C} (resp. APyin). The game G (resp. G2) of Example[dis a
reachability-price (resp. average-price) game.

The following theorem is a well-known result about the particular cost games de-
scribed in Definition T3]

Theorem 16 ([26,13]). Reachability-price games, discounted-price games, average-
price games, and price-per-reward games are determined and have positional optimal
strategies.

This result implies that a multiplayer cost game where each cost function is RPpip,
DPuin, APmin or PRAvg, . is positionally coalition-determined. Moreover, one can
show that such a game is cost-prefix-linear. Theorem[I7lthen follows from Theorem I3

Theorem 17. In every initialised multiplayer cost game G = (II,V,(V:)icm, E,
(Cost;)icr) where the cost function Cost; belongs to {RPuin, DPpyin, APpin,
PRAvg, } for every player i € II, there exists a Nash equilibrium with memory (at
most) |V| + |II|.

Note that the existence of finite-memory Nash equilibria in cost games with quantita-
tive reachability objectives has already been established in [6l7]. Even if not explicitly
stated in the previous papers, one can deduce from the proof of [7, Lemma 16] that
the provided Nash equilibrium has a memory (at least) exponential in the size of the
cost game. Thus, Theorem [I7] significantly improves the complexity of the strategies
constructed in the case of cost games with quantitative reachability objectives.

8 When the cost function of a player is APwi,, we say that he has a mean-payoff objective.
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4.3 Combining Qualitative and Quantitative Objectives

Multiplayer cost games allow to encode games combining both qualitative and quanti-
tative objectives, such as mean-payoff parity games [[10]]. In our framework, where each
player aims at minimising his cost, the mean-payoff parity objective could be encoded
as follows: Cost;(p) = APwmin(p) if the parity condition is satisfied, +oo otherwise.

The determinacy of mean-payoff parity games, together with the existence of optimal
strategies (that could require infinite memory) have been proved in [10]. This result
implies that multiplayer cost games with mean-payoff parity objectives are coalition-
determined. Moreover, one can prove that such a game is also cost-prefix-linear (by
taking @ = 0 and b = 1). By applying Theorem [I0 we obtain the existence of a Nash
equilibrium for multiplayer cost games with mean-payoff parity objectives. As far as
we know, this is the first result about the existence of a Nash equilibrium in cost games
with mean-payoff parity games.

Remark 18. Let us emphasise that Theorem[I0]applies to cost games where the players
have different kinds of cost functions (as in Example[3). In particular, one player could
have a qualitative Biichi objective, a second player a discounted-price objective, a third
player a mean-payoff parity objective,. ..
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Abstract. In this paper, we define an analogue of the Forward Chain-
ing (FC) algorithm due to Marek, Nerode, and Remmel [12] for Hybrid
Answer Set Programming (H-ASP). The FC algorithm for normal logic
programs takes as an input a well ordering < of the non-Horn clauses of
a normal logic program P and produces a stable model D~ for a subpro-
gram A~ of P. It is the case that for every stable model M of P, there
is a well ordering < such that D* = M and A~ = P. Thus the search
for a stable model of P becomes a search for a well ordering < such that
A= = P. We show that a similar result hold in case of FC for H-ASP.
H-ASP is an extension of normal logic programming or Answer Set Pro-
gramming (ASP), introduced by the authors in [2] that allows users to
combine ASP type rules and numerical algorithms. The MFC algorithm,
introduced by the authors in [I] is a Monte Carlo algorithm that com-
bines the FC algorithm and the Metropolis-Hastings algorithm to search
for stable models of normal logic programs. We shall briefly discuss how
one can produce an analogue of the MFC algorithm to search for stable
models of H-ASP programs.

1 Introduction

In previous paper [I], the authors developed a Monte Carlo type algorithm called
the Metropolized Forward Chaining (MFC) algorithm to solve the following two
problems.

(1) Given a finite propositional logic program P which has a stable model, find
a stable model M of P.

(2) Given a finite proposition logic program P which has no stable model, find a
mazimal program P’ C P which has a stable model and find a stable model M’
of P’.

The MFC algorithm combines the Forward Chaining algorithm of Marek,
Nerode, and Remmel [12] and the Metropolis algorithm introduced by Metropo-
lis, Rosenbluth, Rosenbluth, Teller, and Teller [13].

Marek, Nerode and Remmel [12] developed the Forward Chaining (FC) algo-
rithm to solve both problems 1 and 2. The basic idea of the FC algorithm was
to start with a finite normal logic program P and divide P into is its monotonic
part mon(P), consisting of the set of Horn clauses in P, and its non-monotonic
part nmon(P), consisting of those clauses in P which contain negations in its

* Currently at Google Inc.; this work was completed before the change in affiliation.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 74-B8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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body. Then for any ordering or permutation o of nmon(P), the FC algorithm
produces a subset mon(P) C A° C P and a stable model D? of A?. Marek,
Nerode, and Remmel showed that for each stable model M of P, there is a per-
mutation o s of nmon(P) such that A = P and D°™ = M. Thus every stable
model can be computed by the FC algorithm relative to a suitable ordering of
the nonmonotonic rules in P. Marek, Nerode, and Remmel also noted that in the
case where P has no stable models, the FC algorithm automatically produces a
subprogram of P which does have a stable model.

The Metropolis algorithm is a widely applicable procedure for drawing sam-
ples from a specified distribution on large finite set. That is, let X be a finite set
and 7w(z) be a probability distribution on X. The algorithm requires that one
specifies a connected, aperiodic Markov chain K (z,y) on X. In the Metropolis
algorithm K (z,y) needs to be symmetric. However, the algorithm was later gen-
eralized to the Metropolis-Hastings algorithm by Hastings [§]. In the Metropolis-
Hastings algorithm K (x,y) need not be symmetric but it must be the case that
K(xz,y) > 0 if and only if K(y,x) > 0. The chain K is then modified by an
auxiliary coin tossing procedure to create a new chain M with stationary dis-
tribution 7. That is, if the chain is currently at x, one chooses y from K(z,y).
Then one defines an acceptance ratio by

m(y) K (y, x)
A= 2K () .
If A(z,y) > 1, then the chain moves to y. If A(z,y) < 1, then we flip a coin
with probability of heads equal to A(z,y). If the coin comes up heads, then we
move to y and, if the coin comes up tails, we stay at z. See the survey article
by Diaconis and Saloff-Coste [4] for a survey about what is known about the
Metropolis algorithm.

From the point of view of the FC algorithm, the search for a stable model
of a finite normal logic program P is a search through the set of possible well-
orderings of nmon(P) until one finds a suitable well ordering < such that FC
algorithm relative to < produces a stable model of P. Thus the Metropolis
algorithm in MFC uses an appropriate Markov chain K (z, y) defined on the space
of permutations of nmon(P). In [I], we defined several possible Markov chains
that could be employed and ran computer experiments to find good Markov
chains for certain classes of programs. We showed that in some cases, MFC could
find stable models of programs that were not found by ASP search engines clasp
[6] and smodels [14].

The main goal of this paper is to develop an analogue of the FC algorithm
for a far reaching extension of the logic programming called Hybrid Answer Set
Programming (H-ASP). H-ASP, introduced by the authors in [2], is an extension
of Answer Set Programming (ASP) that allows users to combine ASP type rules
and numerical algorithms. The goal of H-ASP is to allow users to reason about
dynamical systems that exhibit both discrete and continuous aspects. The unique
feature of H-ASP is that H-ASP rules can be thought of as general input-output
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devices. In particular, H-ASP programs allow users to include ASP type rules
that act as controls for when to apply a given algorithm to advance the system
to the next position.

FC for H-ASP programs is more complicated than FC for normal logic pro-
grams. First, H-ASP rules allow for nondeterministic outputs which is not com-
patible with FC. Thus, besides a well ordering < of the nonmonotonic rules one
has to have an additional parameter F' which specifies a selector function. F' has
the effect of choosing a fixed deterministic output for each rule. Second, stable
models are dependent on fixing an initial condition /. Thus in the analogue of the
MFC algorithm of H-ASP programs, one has to define an appropriate Markov
chain on triples (<, I, F) or, if we fix an initial condition I, on pairs (<, F').

In this paper we will be considering a finite version of FC for H-ASP. That is
we will assume that every H-ASP program considered has a finite set of rules,
that every algorithm on every invocation produces a finite set as an output and
that every stable model of a program is finite.

The outline of this paper is as follows. In section 2, we shall give the basic
definitions for both normal logic programs and H-ASP programs. In section 3,
we shall review the FC algorithm of Marek, Nerode, and Remmel [12]. In section
4, we shall define the FC algorithm for H-ASP programs. In section 5, we shall
define a possible analogue of the MFC algorithm for H-ASP programs. Finally,
in section 6, we shall state conclusions and discuss directions for further research.

2 Hybrid ASP Programs

We will now give a brief overview of normal logic programs and then a brief
overview of H-ASP programs.
A normal propositional logic programming rule is an expression of the form

C=p<+q,-..,qm,n0t r1,...,n0t 1y (2)

where p,q1,...,¢m,71,. .., n are atoms from a fixed set of atoms At. The atom
p in the rule above is called the head of C (head(C)), and the expression
q1,--->qm,Nn0t T1,...,not r,, with ¢’ interpreted as conjunction, is called the
body of C (body(C)). The set {q1,...,qm} is called the positive part of the body
of C' (posBody(C)) (or premises of C') and the set {rq,...,r,} is called the
negative part of the body of C' (negBody(C)) (or constraints of C'). Given any
set M C At and atom a, we say that M satisfies a (not a), written M | a
(M Enota),ifa e M (a ¢ M). For a rule C of the form (@), we say that M
satisfies the body of C' if M satisfies ¢; for i = 1,...,m and M satisfies not r; for
j=1,...,n. We say that M satisfies C, written M |= C, if whenever M satisfies
the body of C, then M satisfies the head of C. A normal logic program P is a
set of rules of the form of (2)). We say that M C At is a model of P, written
M [= P, if M satisfies every rule of P.
A propositional Horn rule is a logic programming rule of the form

HZP“Qlan-an
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where p,q1,...,qn € At. Thus in a Horn rule, the negative part of its body is
empty. A Horn program P is a set of Horn rules. Each Horn program P has
a least model under inclusion, LM p, which can be defined using the one-step
provability operator Tp. For any set A, let P (A) denote the set of all subsets of
A. The one-step provability operator Tp : P (At) — P (At) associated with the
Horn program P [15] is defined by setting

Tp(M)=MU{p:3C € P(p=head(C) N M = body(C))}

for any M € P (A). We define T%(M) by induction by setting T3 (M) = M,
TLH(M) = Tp(M) and Tp (M) = Tp(TE(M)). Then the least model LMp can
be computed as LMp = Tp (0) T w =,,>o TE(0).

If P is a normal logic program and M C At, then the Gelfond-Lifschitz reduct
of P with respect to M [7] is the Horn program P™ which results by eliminating
those rules C' of the form (2l such that r; € M for some ¢ and replacing C' by
P q1,..-,qy otherwise. We then say that M is a stable model for P if M equals
the least model of PM,

An answer set programming rule is an expression of the form (2) where
Dyqiy.-.,qm,T1,. .., are classical literals, i.e., either positive atoms or atoms
preceded by the classical negation sign —. Answer sets are defined in analogy to
stable models, but taking into account that atoms may be preceded by classical
negation.

z Arcaitl area I

region 1 region 2

region 1 region 2

Fig. 1. A cross section of the regions to be traversed by Secret Agent 00111

Next we shall present the basic definitions of Hybrid ASP programs and define
an analogue of stable models for such programs. To help motivate our definitions,
we shall consider the following toy example. Imagine that Secret Agent 00111
(the agent, for short) needs to move through a domain consisting of 3 areas:
Area I, Area II, and Area III. The domain’s vertical cross section is shown on
the diagram [Il Area I is a mountain, Area II is a lake, and Area III is a desert.
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The agent needs to descend down the mountain in his car until he reaches the
lake at which point the car can be reconfigured so that it can be used as a boat
that can navigate across the lake. We shall assume that the lake has a water
current moving with a constant speed and a constant direction. If the agent is
pursued by the evil agents, then he will attempt to travel through the lake as
fast as possible. If the agent is not pursued by the evil agents then he would like
to exit the lake at a point with a y-coordinate being close to the y-coordinate
of the point of his entrance into the lake. To accomplish this, the agent will be
able to steer the boat in directions which make various angles to the x-axis.

A H-ASP program P has an underlying parameter space S. Elements of §
are of the form p = (¢,x1,...,2,,) where t is time and z; are parameter values.
We shall let ¢(p) denote t and z;(p) denote z; for i = 1,...,m. We refer to the
elements of S as generalized positions. For example, in our secret agent example,
a generalized position would naturally have continuous parameters such as time,
position, velocity, and acceleration as well as discrete parameters such as is the
car currently configured as a car or as a boat and a parameter to tell us whether
the agent is being pursed by evil agents or not. Let At be a set of atoms of P.
Then the universe of P is At x S.

If M C At xS, welet GP(M) = {p € S : (Ja € At)((a,p) € M)}. For
I € Slet GPr(M) = GP(M)U{I}. A block B is an object of the form
B = a1,...,a,,n0t by,...,n0t b, where ai,...,an,b1,...,b,, € At. Given
M C At x S and p € S, we say that M satisfies B at the generalized posi-
tion p, written M = (B, p), if (a;,p) € M for i =1,...,n and (b;,p) ¢ M for
j=1,...,m. If Bis empty, then M = (B,p) automatically holds. We define
B~ =not by,...,not by,.

There are two types of rules in H-ASP.

Advancing rules are of the form

T:Bl;Bg;...;Bk:A,O (3)
a

where A is an algorithm, for each i, B; = a14,...,an; s, 00t b1 4,...,00t by, 5
where a1 ;,...,an, i,014y- -, bm,.i are atoms, and O is a subset of S* such that
if (p1,...,Pk) € O, then t(p1) < --- < t(px) and A (p1,...,Px) is a subset of
S such that for all g € A(p1,...,Pk), t(q) > t(pk). Here and in the next rule,
we allow n; or m; to be equal to 0 for any given i. O is called the constraint
parameter set of the rule r and will be denoted by CPS(r). A is called the
advancing algorithm of the rule r and is denoted by alg(r). The constraint atom
set of r, CAS(r), is defined to be Ule{bl’i, <oy bm, i} The arity of rule r, N (1),
is equal to k.

The idea is that if (pi1,...,pr) € O and for each i, B; is satisfied at the
generalized position p;, then the algorithm A can be applied to (p1,...,Px) to
produce a set of generalized positions O’ such that if q € O/, then t(q) > t(px)
and (a,q) holds. Thus advancing rules are like input-output devices in that the
algorithm A allows the user do derive possible successor generalized positions as
well as certain atoms a which are to hold at such positions. Here the advancing
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algorithm A can be quite arbitrary in that it may involve algorithms for solving
differential or integral equations, solving a set of linear equations or linear pro-
gramming equations, solving an optimization problem, etc. For example, in [3],
we incorporated algorithms for Markov Decision Processes into our advancing
algorithms to construct H-ASP programs that can be used to create efficient,
robust representations of dynamic domains and to compute optimal finite hori-
zon policies for the agents acting in such domains.

Stationary rules are of the form

Bi1;Bs;...;By : H
r—= 1, D2, y Dk aO (4)

a
where for each i, B; = ai4,...,0n,; i, 00t b1 4,...,n0t by, ; where aj ;,...,an, i,
b1, ...,bm, ; are atoms, H is a Boolean algorithm, and O C S*. As in advancing

rules, we let CPS(r) = O, alg(r) = H, CAS(r) = Ule{bl,i,...,bmi,i}, and
N (r) = k.

The idea is that if (p1,...,pr) € O and for each i, B; is satisfied at the gen-
eralized position p;, and H((p1,...,Pk)) is true, then (a, px) holds. Stationary
rules are much like normal logic programming rules in that they allow us to
derive new atoms at a given generalized position pg. The difference is that a
derivation with our stationary rules can be based on what happens at multiple
times in the past and the Boolean algorithm H can be any sort of algorithm
which gives either true or false as on output.

For a model M C At x .S and an initial condition I € S, a state corresponds to
a generalized position p € GPr (M) together with the set of all the atoms that
hold at p relative to M, i.e. {a| 3 (a,p) € M}. Given a generalized position p at
time ¢, we use advancing rules to generate the set of possible “next” generalized
positions at time t + A for some A > 0. For example, in the Secret Agent
example, if the agent is in the lake, then each “next” generalized position p’
would specify not only the position at ¢t + A but also a different steering angle
to be used from time ¢ to t + A. Then for such a “next” generalized position p’,
stationary rules can be applied to a pair (p,p’) to derive more atoms at p’ or
to enforce constraints.

A H-ASP program P is a collection of H-ASP advancing and stationary rules.
To define the notion of a stable model of P, we first must define the notion of
a H-ASP Horn program and the one-step provability operator for H-ASP Horn
programs.

A H-ASP Horn program is a H-ASP program which does not contain any
negated atoms. Let P be a Horn H-ASP program and I € S be an initial
condition. Then the one-step provability operator Tp s is defined so that given
M C At x S, Tp (M) consists of M together with the set of all (a,J) € At x S
such that
(1) there exists a stationary rule r = and (p1,...,px) € ON

(GP;(M))* such that (a,J) = (a,px), M | (Bi,pi) for i = 1,... k, and
H(p1,...,px) =1or

B1;Ba;...;By:H,O
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(2) there exists an advancing rule r = B“B”“;B‘“:A’O and (p1,...,px) € ON

(GPI(M))k such that J € A(p1,...,px) and M |= (B;,p;) fori =1,... k.
The stable model semantics for H-ASP programs is defined as follows. Let
M C At x S and I be an initial condition in S. An H-ASP rule C = B“""f":A’O

is inapplicable for (M, I) if for all (p1,...,px) € ON(GPr (M))k, either (i) there
is an ¢ such that M W (B;,p;), (i) A(p1,...,pr) "GP (M) =0 if A is an
advancing algorithm, or (iii) A(p1,...,px) = 0if A is a Boolean algorithm. Then
we form the Gelfond-Lifschitz reduct of P over M and I, PM! as follows.
(1) Eliminate all rules which are inapplicable for (M, I).
(2) If the advancing rule r = B““"f"':A’O is not eliminated by (1), then replace it
Bf;...Bl:AtT 0"
by r
atoms from B;, O% is equal to the set of all (p1,...,px) in O N (GPI(M))]C
such that M = (B; ,p;) fori=1,...,k and A(p1,...,px) NGPr(M) # 0, and
AT (p1,...,px) is defined to be A(p1,...,pr) N GPr(M).
(3) If the stationary rule r = B“""f’“:H’O is not eliminated by (1), then replace it
by Bj;...,B,j(;H|O+,o+
atoms from B;, OV is equal to the set of all (p1,...,px) in ON (GPI(M))k such
that M = (B ,p;) fori =1,...,k and H(p1,...,pPx) = 1.
We then say that M is a stable model of P with initial condition I if

U PI\/III @ M'

L where for each ¢, B;r is the result of removing all the negated

where for each i, Bj is the result of removing all the negated

3 The Forward Chaining Algorithm for Normal Logic
Programs

Let P be a normal logic program. We let H(P) denote the Herbrand base of P,
i.e. the underlying set of atoms of the program. We let mon(P) denote the set
of all Horn clauses of P and nmon(P) = P\ mon(P). The elements of nmon(P)
will be called nonmonotonic clauses. The Forward Chaining algorithm of [12]
applies to programs of arbitrary cardinality. It takes as an input a program
P and a well-ordering < of nmon(P). The principal output of the Forward
Chaining construction will be a subset D~ of H (P). Although such subset is
not, necessarily, a stable model of P, it will be a stable model of A= for a
subset A= C P. This subset, A=, is also computed out of Forward Chaining
construction and is the maximal set of clauses for which D= is a stable model.

For any set S C H(P), the monotonic closure of S relative of mon(P),
Clmon(S) is defined by

Clmon(s) = Tmon(P)(S) tw. (5)

The general Forward Chaining algorithm is the following.

Forward Chaining Algorithm
Let P be a normal logic program and let < be a well-ordering of nmon(P).
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Two sequences of sets of atoms from H(P), (D¢)ecq+ and (Re¢)ecq+ are defined,
where a™ is the least cardinal greater than the ordinal a determined by the well
ordering <. The set D¢ is the set of atoms derived by stage £ and R is the set
of atoms rejected by the stage &.

1. Set D5 = clyon(0) and Ry = 0.

2. If v = 8+ 1, then C € nmon(P) is an applicable clause at stage 7y
if (a) posBody(C) C D7, (b) ({head(C)} U negBody(C)) N D5 = 0, and (c)
clmon (D5 U {head(C)}) N (negBody(C) U RF) = 0.

If there is no applicable clause at stage -, then let Dj = D; and Rj = R;.
Otherwise, let C,, be the <-first applicable clause and set

D5 = clmon(DF U {head(C,)}) RS = R5 UnegBody(C,).

3. If v is a limit ordinal, then set D = {J,_., D; and R = U, R;.
4. Finally let

D¥=D7, = |J Df and R*=R} = J RS
feat feat
The sets D~ and R~ are called the sets of derived atoms and rejected atoms of
the Forward Chaining construction relative to < respectively.

C is inconsistent relative to < if ({head(C')} U negBody(C)) N D~ = 0,
posBody(C) € D=, but clmen(D= U {head(C)}) N (negBody(C) U R™) # 0.
We let I = {C: C is inconsistent} and A= = P\ I~.

Marek, Nerode, and Remmel [I2] proved the following results.

Theorem 1. Let P be a normal propositional logic program.

1. Let < be a well-ordering of nmon(P). Then D~ is a stable model of A™.
Hence if I™ =), then D~ is a stable model of P.

2. If M is a stable model of P, then there exists a well-ordering < of nmon(P)
such that D= = M. In fact, for every well-ordering < such that

NG(M, P) = {C € nmon(P) : posBody(C) C M,negBody(C) N M = 0}
forms an initial segment of <, D= = M and A~ = P.

For finite programs a well ordering of nmon(P) is determined by taking a per-
mutation o of nmon(P).

Ezample 1. Let H = {a,b,c,d,e, f} and let P consist of the following clauses:

1. a «+ 2.b+c 3.c+a,~d
4.d+b,—c b.e+c,f 6.f <« c e

Here, mon(P) consists of clauses (1) and (2), whereas nmon(P) consists of
clauses (3), (4), (5), and (6).
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Let < of nmon(P) be defined as (3) < (4) < (5) < (6). Then the construction
of sets D and R is as follows:
Stage 0 D' = clymon () = {a}, R; = 0.
Stage 1 r1 = (3), DI = clmon({a} U {c}) = {a,b,c}, RT = {d}.
Stage 2 ro = (5), D3 = {a,b,c,e}, and R5 = {d, f}.
Stage 3 At this stage our construction stabilizes.
It is easy to see that 1= = () so D= = D3 is an stable model of P.

Now, let <’ be an ordering of nmon(P) as follows: (4) <" (3) <" (6) <’ (5).
Here, the construction of D~ produces these stages:
Stage 0 D' = clyon(0) = {a}, RS = 0.
Stage 171 = (3), D7 = clpon({a} U{c}) = {a,b,c}, RY = {d}.
Stage 2 ro = (6), D5 = {a,b,c, f}, and Ry = {d, e}.
Stage 3 At this stage our construction stabilizes.
Again, it is easy to see that I= = () so D=’ = D;/ is a stable model of P. These
are the only stable models of P and one can check that the Forward Chaining
construction will produce one of these two stable models for any well-ordering
of nmon(P). O

4 The Forward Chaining for Hybrid ASP Programs

In this section, we shall describe how one can adapt the FC algorithm to H-
ASP programs. The main difficulty is that advancing rules in H-ASP are inher-
ently nondeterministic because advancing algorithms are set-valued functions.
We have used this feature in applications where one wants to reason about all
possible trajectories of a dynamical system rather than a single trajectory; see
[3] for an example. Unfortunately, the FC algorithm requires that we do some-
thing deterministic at any given stage. To remedy this problem, we introduce
the notion of selector function F' for an H-ASP program II which essentially
makes a deterministic choice for each advancing rule. Then we can define a FC
algorithm relative to a selector function F'.

Let IT be a H-ASP program whose underlying space of generalized positions
is S and whose underlying set of atoms is At. Let I € S be an initial condition.

A selector function for IT is a map F' which given any advancing rule r of the
form (@) and any k-tuple of generalized positions (p1,...,px) in O = CPS(r),
specifies a set F(r, (p1,...,px)) contained in A(p1,...,pr) where A = adv(r).
The idea is that the selector function tells us exactly which pairs (a,q) we can
conclude if we apply rule r at the generalized positions (p1, ..., px), namely, the
set of all (a,q) such that q € F(r, (p1,-..,Pk))-

The monotonic part of IT, mon(II) consists of all stationary rules r € IT
such that the constraint atom set of r, CAS(r), is empty. The nonmonotonic
part of IT, nmon(P), is I — mon(II). Note that mon(II) is always a Horn H-
ASP program so that we define the monotonic closure of a set M C At x S,
Clmon,1,1(M), relative to IT and an initial condition I to be

CZmon,H,I (M) = Tmon(H),I (M) T w.



Forward Chaining for Hybrid ASP 83

The FC algorithm for H-ASP depends on the program II and initial condition
I, a well ordering < on

Z(IT) = {(r, B) : € nmon(Il) & P € CPS(r)},

and a selector function F for II. The algorithm will generate three sequences of
sets (Dg) £€a+, cats and ( P5>§€ + where o™ is the least cardinal greater
than the ordlnal o éetermlned by the well ordering <. Here D¢ C At x S will
be the analogue of the derived atoms at stage £ in the FC algorithm for normal
logic programs, Re C At x .S will be the analogue of the rejected atoms at stage £
in the FC algorithm for normal logic programs, and Pz C S is the set of rejected
generalized positions at stage £ which has no analogue in the FC algorithm for
normal logic programs. At any given stage £, our construction will ensure that
Df n R{ = () and that GP](D&) n Pf = 0.
The FC algorithm for H-ASP is then defined as follows.
H-ASP Forward Chaining

1. Set DO = Clmon I (@) and RO = @, P() = @
2 We say that a pair (r, p) where r = BBz ’B" H,0
P = (p1,..,pPr) is applicable at stage & + 1 if () e (GPy (Df)) N o,
(ii) H(P) = 1, (iii) Vi = 1,...,k, D¢ E (Bi, pi), (iv) (a,pk) ¢ Dg, and (v) if
Q= clmonnI(Dgu{( a,pr)}), then QNRe =Pand Vi =1,...,k, Q = (B; , pi).
Thus (r ,ﬁ) is applicable at stage £ + 1, if D¢ allows us to apply rule r at the
generalized position tuple P, we have not already derived (a, px) and if adding
(a, pr) to D¢ and taking the monotonic closure with respect IT and I does not
generate any rejected pairs (b, p) and does stop us from applying rule r at p
We say that a pair (r, _>) where 7 = BBz~ ’B" 40 s an advancmg rule

and P = (p1, .-, Pk) is applicable at stage £+ 1 if (i ) € (GPy (Dg)) N o,
(i) ¥i = 1,...,k, D¢ = (By,pi), (iii) F(r, B) N P: = 0, (iv) there is at least
one generalized position p € F(r,?) such that (a,p) ¢ Dg¢, and (v) if Q =
lmon, 1,1 (De U{(a,p) : p € F(r, p)}) then QN Re =0, GPr(Q)NP: =0, and
Vi=1,..k QE ( ; 7p,) Thus (r, p) is apphcable at stage £+ 1, if D¢ allows
us to apply rule r at the generalized position tuple p and if addlng (a,p) to D¢
for all p € F(r, p) and taking the monotonic closure with respect II and I does
not generate any rejected pairs (b, p) or rejected generalized positions and does
not stop us from applying rule r at p.

is a statlonary rule and

(a) If there is no pair (r, B}) which is applicable at stage £ + 1, then set D¢y =
Dg, R{J,_l = R{ and P§+1 = Pf.

(b) Otherwise, let (r, P) = (r§+1,§>5+1) (where P = (p1,...,pr)) be the <-
least applicable pair at stage & + 1.
Ifr = B““‘;ljk:H’O is a stationary rule, set Pr1 = P,
De¢y1 = climon,mm,1 (De U{(a,px)}), and
Rep1 = Re U {(b,pi)|b € B ,i=1,.., k}.
Ifr = B“‘“;lj‘“:A’o is an advancing rule, set P11 = P: U (A (?) \F (r, ﬁ),
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D¢ty = climon,m,1 (Dg U {(a,p) lpeF (r, ?)}), and
R§+1 = R§ U {(b, pz) |b € BZ_, t=1,.., k}

Finally, we set D;J = U Dy, R;J = U Ry, PFJ = U P:. We shall call
feat feat feat
Dlﬁ’ ; the set of derived pairs relative to <, I, and F, R;’ ; the set of rejected

pairs relative to <, I, and F, and P1:“<, ; the set rejected generalized positions
relative to <, I, and F.

We say that a pair (r, ) where r = is a statlonary rule and
P = (p1,...,pk) is inconsistent relative to < I, and Fif (i) H ( ) =1,

(i) B e (GP <D;’1)) NO, (i) Vi = 1,...k, D5, k= (Bi,pi), (iv) (a,px) ¢
Dg p, and (v) if Q = clmon 1 (D;J U {(a,pk)}) then either QN R ; # 0 or

there is an ¢ with 1 < ¢ < k such that Q b ( ; 7p,) Thus (r, p) is inconsistent
if DR o, allows us to apply rule r at p and we have not already derived (a, pg),

B1;Bo;.. Bk H,0

but adding (a, px) to D<, = ; and taking the monotonic closure with respect to I7
and I either generates a rejected pair (b, p) or stops us from applying rule r at

P
We say that a pair (r, p) where r = is an advancing rule
=

and P = (p1, .-, Pr) is inconsistent relatlve to <, I,and F if (i) P €
(P (D;,))k NO, (ii) Vi = 1,...k, D, = (Bi,p), (iii) F(r, B) NP7, =0,
(iv) there is at least one generalized position p € F(r, P) such that (a, p) ¢ D;’I,
and (v) if Q = clmonp, 1 (D<I U{(a,p): p € F(r, 5))}) then either QN RE ; #
0, GPI(Q) OPFI # (b, or there is an 4 such that 1 < ¢ < k and Q # (B, pi)-
Thus (r, p) is inconsistent if D; ; allows us to apply rule r at but adding

Bi1;Ba;...;B: A0

(a,p) to D; ; forall p € F(r, p) and taking the monotonic closure with respect
IT and I either generates a rejected pair (b, p) or a rejected generalized position
or stops us from applying rule r at p.

For each statlonary rule = BB Bk:H’O € nmon(II), we let RPos< 1 p(r)
denote the set all P € O such that ( B) is inconsistent relative to <, I, and
F. We then let new( Yo = DB Bk H'.0" where
O = O — RPos<,1,r(r) and H' equals H restricted to O’ if O" # () and let
new(r)< 1,7 be empty if O' = ().

For each advancmg rule - = BB B":A’O € nmon(II), we let RPos~ 1 r(r)
denote the set all P € O such that ( B) is inconsistent relative to <, I, and
F. We then let new( Yo = BB aB’“:A/’O/ where O" = O — RPos~ 1,r(r)
and where for each P € O, A’(?) = F(r, ?) if O' # 0 and let new(r)< 1,F be
empty if O’ = (). We define

A;J = mon(II) U {new< 1 p(r) : v € nmon(II) & new~  p(r) # 0},

IPEI = {(T, 5)) | r € nmon(IT) & Pe RPos_ 1. (1)}
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Theorem 2. Let I be a H-ASP program whose underlying set of generalized
positions is S.

1. For any selector function F relative to II, any well ordering < of Z(II) and
an initial condition I € S, Dg ; is a stable model of AL with the initial
condition I.

2. For any stable model M of I with the initial condition I, there is a well
ordering < of Z(II) and selector function F relative to IT such that D;’I =
M and Ag ; =1I.

In fact if F (r, ﬁ) = alg(r) (ﬁ) NGP; (M) and < is any well ordering of
Z (IT) such that the set

(B =P BT i =1k M (BB and B €

(GP; (M) N CPS (r) and if r is a stationary rule then A (5)) =1}

forms an initial segment of <, then D;J =M.

5 The FC for H-ASP Based Monte Carlo Methods

In this section, we shall briefly review the Metropolis-Hastings algorithm and
then we will outline Metropolized Forward Chaining (MFC) algorithm to find
stable models of H-ASP programs. Our MFC algorithm for H-ASP programs will
be a modification of the MFC algorithm for normal logic programs described by
the authors in [IJ.

5.1 The Metropolis-Hastings Algorithm

The presentation in this section is based on the description of Markov Chains
and the Metropolis algorithm found in [5], [9], and [10].

A sequence of random variables xg, 1, T2, ... defined on a finite state space
X is called a Markov chain if it satisfies the Markov property:

Vt >0 (P (zi41 =yl 2t =2, ... 20 = 2) = P (241 = y| 2 = 1)).

In this paper we are considering only Markov chains with the additional prop-
erty: P (xi41 = y| ot = ) = P (2541 = y| s = ) for all ¢, s > 0. Hence, we can
record such probabilities as a transition function M (z,y) = P (z1 = y| zo = x).
We let M (-,-) denote the matrix which records this transition function and let
M™ (-,-) denote the n-th power of the matrix M(-,-) for any n > 1. It then
follows that for all n > 1, P (x, = y| 20 = ) = M™ (x,y).

A probability distribution on X is a function # : X — [0,1] such that
Y owex ™ (x) = 1. We say that 7 is a stationary distribution for M if for all

r€X, Y exT(y)M(y,2) =7(x).
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Given a Markov chain K (-,-), called the proposal chain, and a probability
distribution = (+), let G (z,y) = 7 (y) K (y,z) /7 (x) K (x,y). The Metropolis-
Hastings algorithm defines a new Markov chain M (-, -), where the probability
M (z,y) is equal to the probability of drawing x;11 = y given x; = z using the
following procedure:

1. given current state x; = x, draw y based on the Markov chain K (z,-);

2. draw U from the uniform distribution on [0, 1];

3.set xpp1 =y f U < G (24,y) and set 2441 = x4 otherwise.

The key result about the Metropolis-Hasting algorithm is the following.

Proposition 1. Let X be a finite set and K (-,-) be a proposal chain on X
such that Ve,y € X K (x,y) > 0 iff K (y,x) > 0. Let w(-) be a probability
distribution on X . Let M (-, -) be the Metropolis-Hastings chain as defined above.
Then m(x) M (x,y) = 7 (y) M (y,x) for all z, y. In particular, for all x, y € X
Tim M (z,) = 7 (3).

5.2 Using FC for H-ASP with the Metropolis-Hastings Algorithm

The following is an outline of how FC for H-ASP can be combined with the
Metropolis-Hastings algorithm to solve the following problem: given a H-ASP
program IT which has a stable model with respect to the initial condition I, find
a stable model M of IT with the initial condition I.

To apply the Metropolis-Hastings algorithm it is necessary to specify the state
space X, the Markov chain K (-,-) and the sampling distribution = (-).

In MFC algorithm for a finite normal propositional program P described in
[1], the state space X is the set perm (P) of well-orderings of nmon (P). To define
K (-,-), an integer k is fixed with 2 < k < |nmon (P)|. For o, 7 € perm (P),
K (0,7) is the probability that starting with o, 7 is produced by picking k
elements 1 < 43 < 42 < ... < i < |nmon (P)| uniformly at random, then
picking a permutation y of 41,...,ix uniformly at random and then creating a new
permutation by replacing oy, , ..., 04, in o by 03,), ..., Ty (i,)- Since K (0,7) =
K (7,0) the acceptance ratio for the Metropolis-Hastings algorithm is G (o, 7) =
;Eg Finally, to define 7 (-) we let r (o) equal [I?] - the number of inconsistent
rules produced by the FC algorithm when it is used on P with the well-ordering
o. We then choose 6 and m, with 0 < # < 1 and m > 1 independent of |perm (P)|
and set

7 (o) o g7

Since the denominator of 7 (o) is not needed for the computation of the accep-
tance ratio G (o, ), we only need to know 67(°)" for the computational purposes.

A similar approach can be used to combine the FC algorithm for a H-ASP
program P and the Metropolis-Hasting algorithm, to produce an MFC algorithm
for H-ASP. Given a H-ASP program II, let perm (Z (IT)) be the set of all the
well-orderings on Z (IT). Unlike MFC algorithm for normal logic programs where
only a well ordering has to be chosen in order to use the FC algorithm, for H-ASP
programs, we must also specify a selector function F' as well as a well-ordering
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< to apply the FC algorithm. Thus our state space X will consist of pairs (F, o)
where F is a selector function for IT and o is a well-ordering on Z (II).

Our Markov chain K (-, -) will be defined analogously to that for MFC except
that now changes to the selector function will need to be considered. We will
choose integer parameters k with 2 < k < |Z (II)| and s,¢,u > 1. For two selector
functions F' and H and two well orderings on Z (IT), o and 7, K ((F,0),(H,T))
is the probability that starting with (F, o), we produce (H,7) by the following
procedure.

1. Choose s advancing rules rq, g, ..., 75 from nmon (IT) uniformly at random.
For each rule r; choose t elements pj, ,17; from C'PS (r;) uniformly at
random. For each IT; , choose an integer w uniformly at random where 0 <
w < u and w elements p1, ..., Py from alg (r;) (IT;) uniformly at random.
For each py chosen for a IT;, ifpg € F (TZ—,IT;), then pr ¢ H (TZ—,IT;) and if
pr ¢ F (ri,ﬁ;), then pr € H (ri, IT;) H is identical to F in all other cases.

2. Pick k elements 1 <4y < ... < iy < |Z (IT)| of o uniformly at random. Pick
a permutation y of i1, ..., uniformly at random and create 7 by replacing
Ciys---, Oip, With Oy (ig)s -+ Ory(ig)-

To specify 7 (), we define r ((F,0)) = |IP1(~Z,I’~ Choose a parameter § where
0 < 0 <1 and a parameter m < 1. As in MFC we set

7 ((F,0)) oc g7(FoD™

It is the case that K ((F,o0),(H,7)) = K ((H,7),(F,0)) and so the acceptance
ratio for the Metropolis-Hastings algorithm is

G((F.0),(H,7)) = 77:((((1]; i )))) _ gr{(Pa)" —r((H)™

The Metropolis-Hastings algorithm for K(-,-) and 7 can thus be used to find a
pair (F, o) that minimizes r ((F,0)) = ’IPIZ’I’. In the case that II has a stable
model Metropolis-Hastings algorithm will eventually find it (when r ((F,0)) =
0). In the case that IT does not have a stable model, the Metropolis-Hastings
algorithm will eventually find a subprogram A% ; with the minimal 7 ((F),0))
that has a stable model Df ;

6 Conclusions and Future Research

In this paper, we have defined an analogue of the Forward Chaining algorithm
for normal logic programs due to Marek, Nerode and Remmel [I2] and discussed
an analogue of the Metropolized Forward Chaining Algorithm due to the authors
[1] for H-ASP programs.

There are several questions for future research. For example, Marek, Nerode
and Remmel [I1] define an analogue of Rieter’s normal default theories for nor-
mal logic programs which are logic programs P where the FC algorithm produces
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a stable model for every well ordering of nmon(P). There should be a similar
analogue of normal default theories for H-ASP programs. Also, there are several
issues that need to be resolved for our MFC algorithm for H-ASP programs to
be practical. For example, we must decide how one specifies a selector function
F and how one specifies a well-ordering o on Q7 The difficulty here lies in the
fact that 2 may be too large to enumerate. One approach to resolving the above
two issues is to specify F' and o implicitly by providing a procedure that is
able to access specific elements of a well-ordering o on Z (IT) without explicitly
enumerating o. Such issues will be the subject of future research.
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Abstract. The present paper explores the interaction between two re-
cursion-theoretic notions: program self-reference and learning partial re-
cursive functions in the limit. Kleene’s Recursion Theorem formalises the
notion of program self-reference: It says that given a partial-recursive
function v, there is an index e such that the e-th function 9. is equal
to the e-th slice of ¢,. The paper studies constructive forms of Kleene’s
recursion theorem which are inspired by learning criteria from inductive
inference and also relates these constructive forms to notions of learn-
ability. For example, it is shown that a numbering can fail to satisfy
Kleene’s Recursion Theorem, yet that numbering can still be used as
a hypothesis space when learning explanatorily an arbitrary learnable
class. The paper provides a detailed picture of numberings separating
various versions of Kleene’s Recursion Theorem and learnability.

Keywords: inductive inference, Kleene’s Recursion Theorem, Kolmo-
gorov complexity, optimal numberings.

1 Introduction

Program self-reference is the ability of a program to make use of its own source
code in its computations. This notion is formalized by Kleene’s Recursion
Theorem/[] Intuitively, this theorem asserts that, for each preassigned algorithmic
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malised by Rogers [Rog67, Theorem 11-I]. In contrast to Kleene’s Recursion Theo-
rem, Rogers’ recursion theorem is not strong enough to guarantee that a numbering
of partial-recursive functions satisfying it has a self-reproducing program which out-
puts its own index [CMO09].
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task, there exists a program e that computes exactly the e-th slice of this algo-
rithmic task. The theorem is stated below, following some necessary definitions.

Let N be the set of natural numbers, {0,1,2,...}. Let P be the collection of
all partial recursive functions from N to N. Let (-,-) be Cantor’s pairing func-
tion [Rogb67, page 64]: (x,y) = (z + y)(x +y + 1)/2 + y, which is a recursive,
order preserving bijection N x N — N [Rogb67, page 64]; here order preserving
means that z < 2/ Ay <y’ = (z,y) < (z/,y). For each ¢y € P and p € N, let
¥ be shorthand for ¥/({(p,-)). An effective numbering of P is a ¢ € P such that

(Vo € P)(Fp € N)[9p = 0. (1)

For this paper, we shall be concerned only with numberings that are effective,
and that number the elements of P. Hence, we shall generally omit the phrases
“effective” and “of P”.

The following is the formal statement of Kleene’s Recursion Theorem.

Definition 1 (Kleene [Kle38]). For each numbering 1, Kleene’s Recursion
Theorem holds in ¥ <

(Vp € N)(3e € N)[¢he = (e, -))]- (2)

Equation (2] can be interpreted as follows: Suppose the -program p represents
an arbitrary, algorithmic task to perform; then the equation says that there is a
1-program e such that 1. is equal to the e-th slice of this algorithmic task. This
is often used in diagonalizations by defining 1. in a way implicitly employing
parameter e (in effect, a self-copy of e) in some algorithmic task 1),.

The following constructive form of Kleene’s Recursion Theorem has been well-
studied. For reasons that will become apparent shortly, we call this form of the
theorem FinKrt.

Definition 2 (Kleene, see [Ric80,[Ric81),[Roy87]). A numbering % is called
a FinKrt-numbering <

(3 recursive 7 : N = N)(Vp) [ty () = ¥p((r(p), -))]- (3)

In (@), v-program r(p) plays the role played by e in (). In this sense, the func-
tion r finds a v-program r(p) such that v, ,) is equal to the r(p)-th slice of 1.

In this paper, additional constructive forms of the theorem are considered.
Each is inspired by a Gold-style criterion for learning partial recursive functions
in the limit. The Gold-style criteria differ in when a learning device is consid-
ered to have learned a target partial recursive function. However, the following
is common to all. The learning device is fed the elements of the graph of a par-
tial recursive function o After being fed each such element, the device outputs
either ‘7’ or a hypothesis, i.e., a program, possibly corresponding to the partial

2 The device may also be fed one or more instances of the pause symbol ‘#’. This
allows that graph of the target partial recursive function to be empty, i.e., in such a
case, the device is fed nothing but #.
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recursive function «. In the present paper, the device is expected to be algorith-
mic, that is, definable by a computer program.

For the finite (Fin) learning criterion, the device is considered to have learned
the target partial recursive function « iff the device outputs finitely many ‘7’ im-
mediately followed by a hypothesis corresponding to «e. The constructive form of
Kleene’s Recursion Theorem, given in Definition Bl may be viewed in a similar
way. A device is fed a program p for a preassigned task. After finitely many steps,
that device outputs a program e that uses its own source code in the manner
prescribed by p.

A numbering v is said to be optimal for Fin-learning iff every Fin-learnable
class of partial recursive functions can be Fin-learned using ¢ as the hypothesis
space. A numbering 1 is said to be effectively optimal for Fin-learning iff one
can effectively translate every Fin-learning device into a Fin-learning device that
uses 1 as its hypothesis space [JS10, [Jaill].

Not every numbering is optimal for Fin-learning [JS10], let alone effectively
optimal. Similarly, not every numbering is a FinKrt-numbering [Ric80) Ric8&1].
Hence, one might ask: is every FinKrt-numbering optimal for Fin-learning? Con-
versely, if a numbering is optimal for Fin-learning, then is it necessarily a FinKrt
numbering?

Additional Gold-style learning criteria are introduced in Section Pl below and
will be familiar to most readers familiar with inductive inference. These crite-
ria, which are successively less stringent in when a learning device is considered
to have learned a target partial recursive function, are: single mind-change ex-
planatory (Exp), explanatory (Ex), vacillatory (Vac) and behaviorally correct
(Bc). Section 2 also introduces additional constructive forms of Kleene’s Recur-
sion Theorem (ExKrt, VacKrt and BcKrt). Each is inspired by one of the just
mentioned learning criteria. Our results include the following.

— There is a numbering which does not satisfy Kleene’s Recursion Theorem,
but which is optimal for Fin-learning and effectively optimal for Ex, Vac and
Bc-learning (Theorem [1)).

— There is a FinKrt-numbering which is not optimal for any of the learning
criteria Fin, Ex, Vac, Bc (Theorem []).

— There is an ExKrt-numbering which is not a FinKrt-numbering and which
is effectively optimal for Ex-learning, but not optimal for Fin or Bc-learning
(Theorem [I0).

— There is a VacKrt-numbering which is not an ExKrt-numbering and which
is effectively optimal for Vac-learning but not optimal for Fin, Ex or Bc-
learning (Theorem [IT]).

— There is a BcKrt-numbering which is not a VacKrt-numbering and which
is effectively optimal for Bc-learning, but not optimal for Fin, Ex or Vac-
learning (Theorem [I3]).

— There is a numbering satisfying Kleene’s Recursion Theorem which is not a

BcKrt-numbering and which is not optimal for any of the learning criteria
Fin, Ex, Vac, Bc (Theorem [I4)).
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— There is a numbering satisfying Kleene’s Recursion Theorem which is not
a BcKrt-numbering, but which is effectively optimal for Ex, Vac and Bc-
learning (Theorem [IH]).

The remainder of this paper is organized as follows. Section [2] covers prelimi-
naries. Section [3] presents our results concerning numberings that do not satisfy
Kleene’s Recursion Theorem. Section Ml presents our results concerning num-
berings that satisfy Kleene’s Recursion Theorem in an effective way. Section
presents our results concerning numberings that satisfy Kleene’s Recursion The-
orem, but not in an effective way.

2 Preliminaries

Recursion-theoretic concepts not covered below are treated as by Rogers [Rog67].

Lowercase math-italic letters (e.g., a, b, ¢) range over elements of N, unless
stated otherwise. Uppercase math-italic italicized letters (e.g., A, B, C) range
over subsets of N, unless stated otherwise. Lowercase Greek letters (e.g., a, 3,
) range over partial functions from N to N, unless stated otherwise.

For each non-empty X, min X denotes the minimum element of X. We let
min ) 4f 0o. For each non-empty, finite X, max X denotes the maximum ele-
ment of X. We let max () 4¢f —1. Dy, D1, D, ... denotes a recursive canonical
enumeration of all finite subsets of N.

The pairing function (-,-) was introduced in Section [Il Note that (0,0) = 0
and, for each z and y, max{x,y} < (z,y).

For each one-argument partial function « and x € N, a(z)] denotes that a(z)
converges; a(z)1 denotes that a(x) diverges. We use 1 to denote the value of a
divergent computation. So, for example, Az 1 denotes the everywhere divergent
partial function.

Ny € NU {#} and N7 ¢f N U {?}. For each partial function f (of arbitrary
type), rng(f) denotes the range of f. A text is a total (not necessarily recursive)
function of type N — Ny. For each text T' and ¢ € N, T'[i] denotes the initial seg-
ment of T" of length . Init denotes the set of all finite initial segments of all texts.
For each text T" and partial function a, T is a text for « iff rng(T) — {#} is the
graph of a as coded by (-, -), i.e., rng(T) —{#} = {(z,y) | a(z) =y A =,y € N}.
For a total function f, we often identify f with its canonical text, that is, the
text T with T (i) = (i, f(¢)). Thus, f[n] represents the initial segment of length
n of this canonical text.

A numbering ¢ is acceptable iff for each numbering 1), there exists a recursive
function ¢ : N — N such that, for each p, ¢,y = ¥, [Rog67, Ric80, Ric81} Roy87].
Let ¢ be any fixed acceptable numbering satisfying ¢y = Ax 1. For each p,
W, f {2 | p,(z)4}. K denotes the diagonal halting problem with respect to
o, ie, {z | z € W,}. Let pad : N> — N be a recursive function such that, for
each e and ¥y, Ypad(e,y) = Ye and pad(e,y) < pad(e,y + 1), where we assume
pad(0,0) = 0.

The following are the Gold-style learning criteria considered in this paper.
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Definition 3. Let a be any partial recursive function. For each recursive func-
tion M : Init — N7 and each numbering 1, (a)—(e) below.

(a) [Gol67] M Finy-learns o iff for each text T for «, there exist ig and e such
that

(Vi <ig)[M(T[]) =7?] A (Vizio)[M(T[i])=¢€] AN he=a. (4)

(b) [CS83] M Exy,1-learns « iff for each text T for «, there exist ig, 41, eg and
e1 such that

(Vi <o) [M(T[i]) =?] N (Vi€ {io,... i1 — 1})[M(T[i]) = eo)

A (Vi 2 i) [MT) = e1] A de, = o (5)

(c) [Gol67] M Exy-learns « iff for each text T for «, there exist ip and e such
that
(Vi > i) [M(T[i]) = €] A e = v (6)
(d) [Cas99] M Vacy-learns « iff for each text T for «, there exist iy and a finite
set I/ such that

(Vi > o) [M(T[i)) € E] A (Ye € B)[ire = al. )

(e) [Bar74, [OWS82] M Bcy-learns « iff for each text T for «, there exists an g
such that

M(Tliol) #? and (Vi > io)(Ve)[M(T[) =¢ = de=a].  (8)

Let I € {Fin, Exy, Ex, Vac,Bc} and let S be a class of partial recursive functions.
M Iy-learns S iff M Iy-learns each partial recursive function in S. We say that S
is Iy-learnable if some M I-learns S. In above definitions, we omit the subscript
1) when 9 is the fixed acceptable numbering ¢.

Definition 4 (Jain & Stephan [JS10]). Let ¢ be an acceptable numbering.
For each I € {Fin, Ex;, Ex, Vac, Bc} and each numbering 1, (a) and (b) below.

(a) ¢ is optimal for I-learning iff each I -learnable class is I;-learnable.

(b) ¥ is effectively optimal for I-learning iff there exists a recursive function
t : N — N such that, for each p and each class of partial recursive functions
S, if pp I -learns S, then ¢y, Iy-learns S.

Note that while for learning criteria and the below constructive versions of KRT,
the implications Fin — Ex; — Ex — Vac — Bc hold, the corresponding implica-
tions do not always hold with respect to numberings being optimal or effectively
optimal for I-learning. For example, there are numberings which are optimal for
Vac-learning but not optimal for Be-learning [JSI0]. However, if a numbering is
effectively optimal for Fin-learning, then it is effectively optimal for Ex, Vac and
Bc-learning. Furthermore, if a numbering is effectively optimal for Ex-learning
then it is effectively optimal for Vac-learning [JS10].

The following are the constructive forms of Kleene’s Recursion Theorem con-
sidered in this paper. The reader will note the similarity to Definition Bl
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Definition 5. [Moe(9] For each numbering 1, (a)—(d) below.

(a) v is a FinKrt-numbering iff there exists a recursive function r : N — N such
that, for each p,

Urp) = Uy ((r(p), ) 9)

(b) ¢ is an ExKrt-numbering iff there exists a recursive function f : N> — N
such that, for each p, there exist 79 and e such that

(Vi = i0)[f (p,7) = €] A the = p((e;-))- (10)

(c) 9 is a VacKrt-numbering iff there exists a recursive function f : N> — N
such that, for each p, there exist ig and a finite set E such that

(Vi >i0)[f(p,i) € E] N (Ve € E)[ghe = tp({e,))]- (11)

(d) 1 is a BcKrt-numbering iff there exists a recursive function f : N2 — N such
that, for each p, there exists an ig such that

(Vi 2 io)(Ve)[f(p, 1) =€ = ve = Pp((e,-))]. (12)
Definition 6. For each numbering ), (a) and (b) below.

(a) v is Exq-acceptable iff there exists a recursive function f : N> — N such that,
for each p, there exist ig, eg and e; such that

(Vi <io)[f(p,7) = eo] N (Vi Zi0)[f(p,i) = er] N Ve, = pp. (13)

(b) (Case, Jain and Suraj [CJS02]) ¢ is Ex-acceptable iff there exists a re-
cursive function f : N2 — N such that, for each p, there exist ig and e such
that

(Vi > o) [f(p,i) = €] N e = pp. (14)

We use the convention that, for each y, log(y) 4f min{z | 2* > y}. So, for
example, log(0) = 0 and log(3) = 2. For each e, C(e) denotes the plain Kolmo-
gorov complexity of e [LV08|, [Nie09]. Note that there exists an approximation
As,e Cs(e) such that, for each e, C(e) = lims Cs(e). Further note that, for each
1-1 recursive sequence e, e1, €3, . . ., there exists a constant ¢ such that, for each
i, Clei41) < Cle;) +c.

3 When Kleene’s Recursion Theorem Is Absent

This section presents our results concerning numberings that do not satisfy
Kleene’s Recursion Theorem. Note that every acceptable numbering is a FinKrt-
numbering [Kle38]. However, as the next result shows, this does not generalize
to other criteria of acceptability. In particular, there is an Ex;-acceptable num-
bering that does not satisfy Kleene’s Recursion Theorem.

Theorem 7. There exists a numbering 1 satisfying (a)—(d) below.
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(a) ¥ does not satisfy Kleene’s Recursion Theorem.
(b) ¥ is an Ex;-acceptable numbering.

(c) ¥ effectively optimal for Ex, Vac and Bc-learning.
(d) + is optimal for Fin-learning.

Proof. Let 1 be such that, for each e and z,

| pe(x), ifrng(pe) Z {e;e+1,e+2,...};
Ve() = {T, if rng(¢e) C {e,e+1,e+2,...}. (15)

The numbering 1 does not satisfy Kleene’s Recursion Theorem: There is no
e such that ¢ = Az e; hence, there is no e such that ¥, = «a({e,-)) when
a = \e,z) e.

To show that v is Exj-acceptable: there exists a translator which behaves
as follows. On input e, the translator first conjectures 0 for ¥y = pg = Az 1.
Then, in the case that ¢.(z) = y, for some z and y, the translator outputs
pad(e,y). Note that y < pad(e, y). Hence, it follows from the definition of ¢ that
'l/}pad(e,y) = Pe-

To show that v is effectively optimal for Ex, Vac, and Bc-learning: given a Bc-
learner M, the new learner N first conjectures 0 for Az 7. If, however, a datum
(x,y) is ever seen, then, from that point onward, N simulates M and translates
each conjecture e of M into pad(e,y).

To show that v is optimal for Fin-learning: suppose that M is a Fin-learner
for a class not containing Az 1. Then, the new learner N waits for the first pair
(z,y); from that point onward, N simulates M and translates each conjecture
e of M into pad(e,y). On the other hand, suppose that M is a Fin-learner for
a class containing Az 1. Then, this class contains no other partial functions.
Hence, N can just ignore all input and output 0 as ¥y = Az 1. Hence, ¢ is
optimal for Fin-learningl O (Theorem 7)

4 When Kleene’s Recursion Theorem Is Effective

This section presents our results concerning numberings that satisfy Kleene’s
Recursion Theorem in an effective way. These results include the following.
First, a numbering can be a FinKrt-numbering, yet not be optimal for learn-
ing (Theorem []). Second, there exists an ExKrt-numbering that is not a FinKrt-
numbering (Theorem [I0). Third, there exists a VacKrt-numbering that is not an
ExKrt-numbering (Theorem [[1]). Finally, there exists a BcKrt-numbering that is
not a VacKrt-numbering (Theorem [[3]).

Theorem 8. There exists a numbering 1 satisfying (a) and (b) below.

(a) 1 is a FinKrt-numbering.
(b) ¥ is not optimal for any of the learning criteria Fin, Ex, Vac, Bc.

3 Note that, as v is not acceptable, 1) cannot be effectively optimal for Fin-
learning [JS10]. Hence, the non-uniform case distinction in this proof is unavoidable.
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Proof. The construction of ¥ is in two parts. First, we construct a numbering ¢
such that the set {e : ¥, has finite domain} is dense simple relative to K, i.e.,
the function that maps n to the n-th index of a function with infinite domain
dominates every K-recursive functiond From 1, we construct .

For each e, s, let F, s(-) be a uniformly recursive sequence of recursive func-
tions such that, for Fe(x) = lims_ o Fe s(),

(a) for all e,z, Fe s(x) < Fe s+1(x);
(b) if ¢ ()1, then F,(2)) > 0¥ ()
(c) if oX(z)1, then F,.(x)1.

Note that such F, s exist and are uniformly recursive from e, s. Furthermore,
each of Fy, F1, F5, ... is a partial K-recursive function. It should also be noted
that, for each e, X is majorized by F.. Hence, the function n — max{F,.(n) :
e<n A Fc(n)l} dominates every K-recursive function.

Let 9 be such that, for each n, m and =,

on(x), if (s> x)[ (e < n)[F.

s(n) =
ﬁ(nm)( ): 4 (Vdgn)[ Fd

/\

)
n)

\/I/\a

/\

T, otherwise.

We show that, for each n and m, ¥, ,,) has infinite domain iff ¢,, has infinite
domain and m = max{F.(n) : e < n A F.(n)l}. To see this, let n and m be
given and consider the following four cases.

Case 1: ¢, has finite domain. Clearly, for each n and m, @, extends 9, -
Hence, if ¢;, has finite domain, then so does ¥, ,)-

Case 2: {F.(n) : e <n A F.(n)}} = 0. Let w be so large that, for each e < n,

F, ,(n) > m. (17)

Then, for each > w, there is no s > « such that (Je < n)[Fe s(n) = m|. Hence,
for almost all z, ¥, ) ()1

Case 3: {F.(n) : e < n A F.n)l} # 0 and m # max{F.(n) : e <
n A F.(n)l} < co. Let w be so large that, for each e < n,

F.(n)l >m = F.u(n)=F.(n), (18)
and
F.(n)t = Feu(n)>m. (19)

Then, for each z > w, there is no s > = such that (Je < n)[F, s;(n) = m| and
(Vd <n)[Fgs(n) <m V Fys(n) > Fy.(n)]. Hence, for almost all x, 9, my(x)T.

Case 4: ¢, has infinite domain and m = max{F.(n) : e <n A Fe(n)]}. Then,
for each z, one can find an s > x such that (3e < n)[F. s(n) =m] and, for each
d<n,

[Fa(n)l = Fys(n)=Fin)] A [Fan)t = Fis(n) > Fi.(n)]. (20)

4 The existence of such numberings is a well-known folklore result.
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Hence, for each z, if ¢, ()|, then ¥, ,,,y ()4

From Case 4 it also follows that, 9 is a numbering for P. As the function
An max{F.(n) : e <n A F.(n)l} dominates every K-recursive function, the
set of all pairs (n, m) where 9, ,,,, has a finite domain is dense simple relative
to K.

Now, let ¢ be such that, for each p, 7 and z,

Y0y (x) = Vp(); (21)
w<p,i+1>(x) = w<p,i>(<<p77; + 1>’ .Z‘)) (22)

Note that 1) is defined such that ¢, ;11y coincides with the (p,i+ 1)-th row of
Yp.iy- Hence, 1 is a FinKrt-numbering.

To show that v is not optimal for any of the criteria Fin, Ex, Vac, Bc: consider
the class S = {fo, f1, f2,...} where, for each n and z, f,(z) = n+ 2. S is
Fin-learnable and, hence, is also Ex, Vac and Bc-learnable.

Note that, if ¢, = fn, then, by induction over j for all j > i, rng(¢,,;) —
rng(tp,;) is infinite and hence v, ; # fm for all m. Thus, the following claim
holds.

Claim 9. For each p, there exists at most one i such that ¢, € C.

We first show S is not Vacy-learnable. Now a Vac-learner for C would, for any
n, output only finitely many indices while learning the function f,. Hence, there
exists an index e such that F. is a K-recursive (i.e., total) function and, for each
n, Fe(n) is larger than all the indices output by the learner while learning f,,. It
follows that F.(n) is greater than at least one pair (p,i) such that ¢, ;y = fn.
Using Claim[@ it follows that ¢ has n+1 distinct indices of functions with infinite
domain below the value max{Fe(0), Fe(1),..., Fe(n)}. But this contradicts the
fact that ¢ is a numbering in which the set of indices of partial functions with
finite domain is dense simple relative to K. Hence, C is not Vacy-learnable, and
thus neither Finy nor Ex,-learnable.

Now, assume by way of contradiction that there exists a Bcy-learner M for
C. By Claim [@ it follows that, for each p and n, M outputs only finitely many
different indices of the form (p, i) while learning f,,. Furthermore, by an argument
similar to that of the previous paragraph, it can be shown that, for each n, the
set {p | (3i € N)[M outputs (p,¢) while learning f,,] } is finite. Hence, the overall
number of indices output by the learner while learning an f,, is finite. It follows
that M is actually a Vacy-learner for C. But such a learner does not exist as
shown in the previous paragraph. O (Theorem [§)

The next result shows, in part, that there exist ExKrt-numberings that are not
FinKrt-numberings.

Theorem 10. There exists a numbering v satisfying (a)—(e) below.

(a) ¥ is an Ex-acceptable numbering.
(b) ¥ is an ExKrt-numbering.
(c) ¥ is not a FinKrt-numbering.
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(d) 1 is effectively optimal for Ex-learning.
(e) v is neither optimal for Fin nor for Bc-learning.

Proof. Let 1 be such that, for each e and z,

First, we show that the set of indices of partial functions with infinite domain
is immune. Let E be any infinite r.e. set of indices and let eg, e1,es,... be any
ascending recursive sequence of elements of E. Then, there exists a constant c
such that, for each i, C(e;+1) < C(e;) + c. Let n be so large that n > C(eg)
and n > c. As there are only finitely many indices with Kolmogorov complexity
below n? + n, there exists a largest i such that C(e;) < n? + n. Note that

n®+n < Clejp1) < Cle;) +e<n®+2n < (n+1)°% (24)

It follows that v, , has a finite domain. Hence, the set of indices of partial
functions with infinite domain is immune.

To show that v is Ex-acceptable: let e be given. It follows by an argument
similar to that of the previous paragraph that there exist n and y such that
n? < C(pad(e,y)) < n? + n. Furthermore, one can find from e the least such y
in the limit. One then has that ¥paq(e,y) = ©e-

To show that ¢ is an ExKrt-numbering: let Ey, E1, FEo, ... be a uniformly r.e.
family of infinite sets such that, for each p and each e € E,, v = ¢p({e,-)). One
can construct a machine M to witness that ¢ is an ExKrt-numbering as follows.
Given p, M finds (in the limit) the least e € E,, for which there exists an n such
that n? < C(e) < n? + n. (The existence of such an e follows by an argument
similar to that of the first paragraph.) Then, 1. = . = 1, ((e, -)).

To show that ¢ is not a FinKrt-numbering: assume by way of contradiction
otherwise. Let eg be such that 1., = Az x. Then, enumerate e, ez, e3, ... such
that, for each n, v, ., = e, ((én+t1,-)). One can show by induction that, for
each n, rng(¢e, ) is a proper subset of rng(¢., ). Hence, {eg,e1,e2,...} is an
infinite r.e. set of ¢-indices of total functions. But this would contradict the fact
that the set of indices of partial functions with infinite domain is immune.

To show that 1 is optimal for Ex-learning: it was shown above that 1 is Ex-
acceptable. It is known that Ex-acceptable numberings are effectively optimal
for Ex-learning [JS10].

To show that 1 is not optimal for Fin-learning: consider the class of all constant
functions. This class of functions is Fin-learnable. However, if this class could be
Fin,-learned, then there would be an infinite r.e. set consisting only of indices
of total functions. Again, this would contradict the fact that the set of indices
of functions with infinite domain is immune.

In order to see that 1 is not optimal for Bc-learning, it can be shown that
every Bcy-learner can be transformed into a Vacy-learner. However, as there
are Bc-learnable classes of partial functions which are not Vac-learnable, the
numbering v cannot be optimal for Bc-learning. O (Theorem 10)
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Theorem 11. There exists a numbering 1 satisfying (a)—(d) below.

(a) ¥ is a VacKrt-numbering.

(b) ¥ is not an ExKrt-numbering.

(c) ¥ is effectively optimal for Vac.

(d) 1 is not optimal for any of the learning criteria Fin, Ex, Bc.

Proof. For this proof, let (Cs)sen be a sequence of uniformly recursive approxi-
mations to CX | such that C¥(d) = limsup,_, ., Cs(d). Here we assume that the
approximation is such that, for any s and any e, there are at most 2¢ many d
such that Cs(d) < e. Let, for all d, e,

Vg () = {T’ we({{d,e),x)), if [log(d) < e+ 1] and (Is > z)[Cs(d) > e;

otherwise.

Let g,h be recursive functions such that, for all p,z, @4 () = te(x) and
©n(e)({p; 7)) = @e(z). Note that there exist such g, h.

Claim 12. (i) If C¥(d) < e orlog(d) > e+ 1, then 14 is a finite function.
(ii) For all e, for all d such that, log(d) < e+ 1 and C¥(d) > e, the following
holds: (Y2) [y () = we({(d, €),)].
Here, note that for all e, there exists a d such that log(d) < e+ 1 and
CE(d) > e.

(iii) For all e, for all d such that, log(d) < h(e) + 1 and C¥(d) > h(e), the
Jollowing holds: (V)[4 n(ey) () = Phee ((d; h(e)), x)) = pe()].
(iv) For all e, for all d such that log(d) < g(e) + 1 and C¥(d) > g(e), the fol-

1
lowing holds: (Vx)[t(a,g(e)) (€) = ©g(e) ({{d; g(€)), 7)) = ve({{d, g(e)), z))].

Parts (i) and (ii) follow immediately from the construction. Parts (iii) and (iv)
follow using part (i) and definitions of g and h.

By part (ii) of Claim it follows that 1 is a numbering of all the partial
recursive functions. We now show the different parts of the theorem.

(a) Let f(e,s) = {(d,g(e)) such that log(d) < g(e) + 1 and C4(d) > g(e). By
part (iv) of Claim [[2] we have that f witnesses that ¢ satisfies VacKrt.

(b) Suppose (do, eg) is such that, for all z, 14, 0 (%) = x. Suppose by way
of contradiction that H witness ExKrt for v, that is, for all i,z, ¥y (z) =
¥;((H (i), 2)). Then for each n, let {(d,+t1,ent+1) = H({d,,ey)). Thus,

(¥, 2) [, 1.0000) () = Pid ) (({dnt1s €ng1), 7). (25)

Now, for all n, g, ., is total. Furthermore, range(¥a,, ., e,.,) C range(q, e, )-
Thus, (d,, e,) are pairwise different for different n. Thus, for each a € N, one
can effectively find an n, with d,, > a A e,, > a. For sufficiently large a,
C¥(d,,) <2log(a) and e,, > a. But then, for sufficiently large a, by ClalmI:IZL
V(dy, en,)» Would be finite function. A contradiction.

(c) To see that the numbering is effectively optimal for vacillatory learning
note that, by Claim[I2and definition of A, for all e, for all but finitely many s, for

the least d such that log(d) < h(e) +1 and C,(d) > h(e), we have ¢ g p(e)) () =
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©e(x). Thus, one can just convert a Vac-learner M using ¢ as the hypothesis
space to a Vac-learner M’ using v as the hypothesis space by having M'(f[n]) =
(d, h(M(f[n])), where d is least such that log(d) < h(M(f[n]) + 1 and Cy(d) >
R(M(f[n)).

(d) Let S be a class of total functions which is Bc-learnable by some learner
M using 1 as the hypothesis space. For any total f, let Ey = {M(f[n]) : n € N}.
We claim that E is finite for each f € S. Suppose by way of contradiction that
for some f € S, Ey is infinite. Note that Ey is an r.e. set. Let n(e) = d., for the
first pair (d., e) enumerated in Ey, if any. Now, n(e) is defined on infinitely many
e, and thus C¥ (d.) < 2log(e) for infinitely many e in the domain of 7. But then,
by Claim 02, 14, . is a finite function for infinitely many e in the domain of
7, a contradiction to M Bc-learning f. Thus, M is also a Vac-learner for S. As
there are classes of total functions which are Bc-learnable but not Vac-learnable
[CS83], ¢ is not optimal for Be-learning.

Now, suppose by way of contradiction that M Ex-learns all constant functions
using the numbering 1. Thus, for each a, there exists a constant ¢ such that, for
some dg, €4, for all but finitely many n, M (c*[n]) = (dq, €q), with min{d,, e,} >
a. Note that one such pair of values d,, e, can be computed using the oracle K.
Then, for almost all a, C¥(d,) < 2log(a) and e, > a. Hence, by Claim [[2 for
all but finitely many a, ¥4, ., is a finite function. Thus, M does not Ex-learn
the class of all constant functions using the numbering . It follows that 1) is
not optimal for Fin and Ex-learning. O (Theorem 12)

The final result of this section establishes, in part, that there exist BcKrt-
numberings that are not VacKrt-numberings.

Theorem 13. There exists a numbering ¥ satisfying (a)—(d) below.

(a) ¥ is a BcKrt-numbering.

(b) ¥ is not a VacKrt-numbering.

(¢) v is not optimal for any of the learning criteria Fin, Ex, Vac.
(d) 1 is effectively optimal for Bc-learning.

Proof. Let 1 be such that, for each e and =,

Pe(z), if [ Pe,z(0)1
Ity - Clge(0) <loge0)
z) = V o pe(0)d A Clpe(0)) < log(pe(0
vel=) V [@e(0) L A [Wieg(p.(0)).2] <€l (26)
v [‘Pe(o)i A ‘V[/log(Ape(O))‘ > J}] ]7
T, otherwise.

To show that v is a BcKrt-numbering: let Ey, Fq, Es,... be a uniformly r.e.
family of infinite sets such that, for each p and each e € E,, we = ¢, ({e,-)). One
can construct a machine M to witness that ) is a BcKrt-numbering as follows.
Suppose that M is given p. Then, at stage s, M outputs the first element e in
some canonical enumeration of £, such that
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‘PE,S(O)T
V. |rng(ge,s)| > 2

\ [‘Pe,s(o)i A Cs(‘Pe,s(O)) < log(ﬁpe,s(o))}
Vo e>s.

(27)

Consider the following two cases.

Case 1: There exists an e € E, such that . (0)1, [rng(ee)| > 2, or .(0) =y
for some y with C(y) < log(y). Then, M converges to the first such e in the
canonical enumeration of E,. Furthermore, for this e, it holds that ¢, = ¢, =
bolle ).

Case 2: Not Case 1. Then, the set F' = {¢.(0) : M outputs e} has an empty
intersection with the simple set {d : C(d) < log(d)} and, hence, is finite. Let
¢ = max{|Wiggq)| : d € F N [Wiggay| < 00}. As F is finite, this maximum c
is taken over only finitely many numbers and, hence, ¢ < oo. Furthermore, as
Case 1 does not apply, M outputs each index in £}, only finitely often. Hence, M
outputs almost always some index e > c. If, for such an e, Wi,g(,. (0)) is finite,
then, for each z, |[Wigg(4s.(0)),2] < ¢ < e. On the other hand, if Wiyg(,, (0)) 18
infinite, then, for each =, [Wigg (o, (0))| > 2. Either way, M outputs almost always
an e such that ¢, = ¥, ({e,-))

It follows from the case distinction that M witnesses that v is a BcKrt-
numbering.

To show that 1 is not a VacKrt-numbering: assume by way of contradiction
otherwise, as witnessed by M. We show that, under this assumption, one can
decide membership in {z | W; is finite} using an oracle for K (which is impos-
sible). It is known that, for almost all x, there exist distinct y and z such that
log(y) = log(z) = «, but C(y) > = and C(z) > zH Given z, one can find such
y and z using an oracle for K. One can then determine p such that, for each v
and w,

enltmn = {2 0 o (28)
Note that |rng(yp)| = 2 and, hence, ¥, = ¢,. One can then run M on input
p and, using the oracle for K, determine the largest e among the finitely many
indices output by M. Hence, for some v < e, v, is either the constantly y
function, or the constantly z function. It follows that either |Wiog(,, (0y)| < v or
[Wiog(p, (0| is infinite. If the former, then

|W£L" = ‘Wlog(¢7,(0))| <v<e (29)

If the latter, then
(Wl = [Wiog(eu0p)| = e (30)

® Recall from Section 2l that, for each y, log(y) 4¢f min{z | 2° > y}. For each x > 1,
there are 2”7 many numbers y with log(y) = « and only 2°~! + 1 many numbers y
with C(y) < z. Furthermore, for sufficiently large z, there will exist three or more
programs less than 2°~' + 1 that either produce no output, or produce the same
output as programs less than themselves. Hence, for sufficiently large z, such y and
z exist.
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Hence, W, is finite iff |W,| < e. As |[W,| < e can be decided using an oracle for
K, this allows one to determine whether W, is finite. Since this is impossible,
it follows that M does not witness that ¢ is a VacKrt-numbering and, more
generally, that v is not a VacKrt-numbering.

To show that ¢ is not optimal for any of the learning criteria Fin, Ex, Vac:
note that the class of constant functions is Fin-learnable. But it can be shown
that this class is neither Finy, Exy nor Vacy-learnable using a proof-idea similar
to that of the previous paragraph. Assume by way of contradiction otherwise,
as witnessed by M. Then, given x, one can use an oracle for K to find a y such
that log(y) = « and C(y) > x. Then, when M is fed a text for the constantly
y function, M outputs finitely many indices whose maximum is some e. Using
this e and the oracle for K, one can determine whether W, is finite as in the
previous paragraph (a contradiction). Hence, v is not optimal for any of the
learning criteria Fin, Ex, Vac.

To show that 1 is effectively optimal for Bc-learning: suppose that M is a
Bc-learner that uses ¢ as its hypothesis space. Further suppose that M is fed a
text for a partial recursive function « and that eg,eq, e, ... is the sequence of
indices output by M on this text. Without loss of generality, suppose that this
sequence is monotonically increasing, e.g., due to padding. We show that, for
almost all 4, ¥, = ¢.,. Consider the following three cases.

Case 1: «(0)1. Then, for almost all 4, ¢, (0)1 and, hence, ¥, = pe,.

Case 2: a(0)] and |Wigg(a(oy)| is infinite. Then, for almost all 4, |T/V10g(%i oyl
is infinite and, hence, e, = @,

Case 3: a(0)] and [Wisg(a(oy)| is finite. Then, as eg, €1, €2, . .. is monotonically
increasing, for almost all ¢, \VVlog(%i oy | < ei. Hence, for almost all 4, 1, = e, .

This case distinction shows that Bc,-learners that output successively larger
indices are also Bcy-learners. Hence, the numbering ¢ is effectively optimal for
Bc-learning. O (Theorem 13)

5 When Kleene’s Recursion Theorem Is Ineffective

This section presents our results concerning numberings that satisfy Kleene’s
Recursion Theorem, but not in an effective way. Moelius [Moe09, Theorem 4.1]
showed that there exist numberings that are not BcKrt-numberings, but in which
Kleene’s Recursion Theorem holds. Hence, in such numberings, Kleene’s Recur-
sion Theorem is extremely ineffective. Theorems [[4] and [[H expand on Moelius’s
result by showing that there exist such numberings that are optimal for learning
and such numberings that are not optimal for learning (respectively).

Theorem 14. There exists a numbering v satisfying (a)—(c) below.

(a) 1 satisfies Kleene’s Recursion Theorem.
(b) ¥ is not a BcKrt-numbering.
(c) ¥ is not optimal for any of the learning criteria Fin, Ex, Vac, Bc.

Theorem 15. There exists a numbering v satisfying (a)—(c) below.
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(a) 1 satisfies Kleene’s Recursion Theorem.
(b) ¥ is not a BcKrt-numbering.
(c) ¥ is effectively optimal for Ex, Vac and Bec-learning.

Acknowledgment. The authors would like to thank Samuel E. Moelius III for
discussions and support in writing this paper.
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Abstract. This paper defines a new notion of bounded pseudorandom-
ness for certain classes of sub-computable functions where one does not
have access to a universal machine for that class within the class. In par-
ticular, we define such a version of randomness for the class of primitive
recursive functions and a certain subclass of PSPACE functions. Our
new notion of primitive recursive bounded pseudorandomness is robust
in that there are equivalent formulations in terms of (1) Martin-Lof tests,
(2) Kolmogorov complexity, and (3) martingales.

Keywords: algorithmic randomness, complexity, computability.

1 Introduction

The study of algorithmic randomness has flourished over the past century. The
main topic of study in this paper is the randomness of a single real num-
ber which, for our purposes, can be thought of as an infinite sequence X =
(X(0),X(1),...) from {0,1}¥. Many interesting notions of algorithmic ran-
domness for real numbers have been investigated in recent years. The most
well-studied notion, Martin-Lof randomness [24] or 1-randomness, is usually de-
fined in terms of measure. A real X is l-random if it is typical, that is, X
does not belong to any effective set of measure zero in the sense of Martin-Lof
[24]. A second definition of l-randomness may be given in terms of informa-
tion content. X is 1-random if it is incompressible, that is, the initial segments
(X(0),X(1),...,X(n)) have high Kolmogorov [18] or Levin-Chaitin [L0/20] com-
plexity. A third definition may be given in terms of martingales. X is 1-random
if it is unpredictable, that is, there is no effective martingale for which one can
obtain unbounded capital by betting on the values of X [27]. These three ver-
sions have been shown by Schnorr [26] to be equivalent. This demonstrates the
robustness of the concept of Martin-L6f randomness. Many other notions of algo-
rithmic randomness have been studied and in most cases, formulations are only
given for one or perhaps two versions. For a thorough study of the area of algo-
rithmic randomness, the reader is directed to three excellent recently published
books: Downey and Hirschfeldt [I5], Nies [25] and Li and Vitanyi [21].

* Cenzer was partially supported by the NSF grant DMS-652372.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 104-[[T8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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In this paper we present a notion of bounded pseudorandomness for certain
classes of sub-computable functions where one does not have access to a universal
machine for that class within the class. We will first state our definitions for the
class of primitive recursive functions and define a new notion of bounded primitive
recursive pseudorandomness (BP randomness). We shall show that there are
three equivalent definitions of BP randomness, one in terms of measure, one
in terms of compressibility, and one in terms of martingales. For measure, a
bounded primitive recursive test will be a primitive recursive sequence of clopen
sets (Up)n>0 such that U, has measure < 27" and we define X to be BP random
if it does not belong to (,,~, U, for any such test. For compressibility, we say
that X is BP compressed by a primitive recursive machine M if there is a
primitive recursive function f such that Cp(X | f(c)) < f(¢) — ¢ for all ¢ where
C)y is a primitive recursive analogue of Kolomogrov complexity. We will show
that X is BP random if and only if X is not compressible by any primitive
recursive machine. For martingales, we say that a primitive recursive martingale
d succeeds on a sequence X if there is a primitive recursive function f such that
d(X | f(n)) > 2" for each n. Thus d makes us rich betting on X and f tells us
how fast this happens. We will show that X is BP random if and only if there
is no primitive recursive martingale which succeeds on X. These definitions can
easily be adapted to define a notion of bounded pseudorandomness for other
classes of sub-computable functions. As an example, we will define a notion of
bounded PSPACE pseudorandomness.

The terms bounded randomness or finite randomness are sometimes used to
refer to versions of randomness given by tests in which the c.e. open sets are in
fact clopen. Thus our notion of BP randomness is “bounded” in this sense. The
term “finite” comes from the fact that any clopen set U is the finite union of
intervals U = [o1] U - -+ U [o%]. Kurtz randomness [19], also refered to as weak
randomness, falls into this category. A real X is Kurtz random if it does not
belong to any IT{class @@ of measure zero. But any ITVclass may be effectively
expressed as a decreasing intersection of clopen sets @ = [, @» where the clopen
sets @, are unions of intervals of length n. If u(Q) = 0, it is easy to find a
subsequence U; = @y, with u(U;) <27 and thus (U,),>0 is a bounded Martin-
Lof test. Another special type of bounded randomness was recently studied by
Brodhead, Downey and Ng []].

As shown by Wang [28], Kurtz random reals need not be stochastic in the sense
of Church. For example, it need not be the case that the number of occurrences of
0’s in a Kurtz random sequence X tends to 1/2 in the limit. In such a situation,
one often uses the term pseudorandom instead of randomness. Our BP random
reals are pseudorandom in this sense. That is, we will construct a recursive real
which is BP random but not stochastic. However, we will show that BP random
sets satisfy only a weak version of the stochastic property.

A lot of work has been done on various notions of resource-bounded random-
ness. One of the first approaches to resource-bounded randomness was via the
stochastic property of typical reals [I2]. It is expected that for a random real,
the relative density of the occurrences of 0 and of 1 should be equal in the limit.
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We identify a set A of natural numbers with its characteristic function and in
those terms we expect that lim, Card(‘im[[nm = 5 where [[n]] = {0,1,...,n} for
any n € N. Levin [20] defined a notion of primitive randomness for a set A to
mean that for every primitive recursive set B, A N B is stochastic relative to B
and constructed a recursive set that is primitive random. Di Paola [13] studied
similar notions of randomness in the Kalmar hierarchy of elementary functions.
Wilber [29] defined a set A to be P-random if, for every PTIME set B, A and
B agree on a set of density ; and constructed an exponential time computable
P-random set.

The literature of computational complexity contains many papers on ran-
dom number generators and cryptography which examine various notions of
pseudorandomness. For example, Blum and Micali [7] gave a weak definition of
pseudorandom sequences in which a randomly generated sequence is said to be
pseudorandom if it meets all PTTM E statistical tests. Ko [I7] gave definitions
of randomness with respect to polynomial time and space complexity which are
in the tradition of algorithmic randomness as established by Levin, Martin-Lof
and Chaitin. One of the notions of Ko has equivalent formulations in terms of
tests and in terms of compressibility and has bounds on the compressibility that
are similar in nature to those presented in this paper. Ko’s definitions are based
on computation from a universal machine M and, in particular, states that X
is (PSPACE) compressed with polynomial bounding function f if, for every k,
there exists infinitely many n such that K (X | n) < n— (log n)*. In contrast,
our definitions are not based on the existence of a universal machine.

Lutz [22] defined an important notion of resource-bounded randomness in
terms of martingales. Here a real is, say, PSPACFE random if there is no
PSPACE martingale which succeeds on X. One can also say that a set X of
reals has PSP ACFE measure one if there is no PSPACE martingale which suc-
ceeds on every element of X'. Then almost every FX PSPACFE real is random
and this can be used to study properties of EXPSPACFE reals by examin-
ing whether the set of EXPSPACEFE reals with the property has measure one.
Buhrman and Longpre [9] gave a rather complicated equivalent formulation of
PSPACE randomness in terms of compressibility. Lutz’s notion of complexity
theoretic randomness concept has had great impact on complexity theory [TI2I3].
Shen et al. [IT] have recently studied on-line complexity and randomness.

There are several important properties of Martin-Lof random reals that are re-
garded as fundamental such as Ville’s theorem which states that any effective sub-
sequence of a random sequence is also random. We will prove an analogue of Ville’s
theorem for BP randomness. Another fundamental property for random reals is
van Lambalgen’s theorem, which states that the join A & B of two random sets is
random if and only if A is random relative to B and B is random. We define a no-
tion of relative BP randomness which still has three equivalent formulations, and
prove an analogue of van Lambalgen’s theorem for this notion. Our formulation
is a type of truth-table reducibility similar to that of Miyabe [23].

For the case of bounded PSPACEFE randomness, we give two different notions,
one which has equivalent versions for compression and for measure and the other
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of which has equivalent versions for measure and for martingales. These notions
are actually a hybrid of polynomial time and space.

We note that we get a notion of bounded computable pseudorandomness by
replacing primitive recursive functions by computable functions in our defini-
tions. In such a case, our definitions are equivalent to Kurtz randomness which
has nice equivalent formulations in all three settings. This was previously shown
by Wang [28] for the martingale definition and by Downey, Griffiths and Reid
[14] and also Bienvenu and Merkle [6] for the compression definition.

Jockusch [16] showed that Kurtz random sets are immune, that is, they do
not have infinite c. e. subsets. We will consider an analogue of immunity for our
notion of bounded pseudorandom sets.

We will normally work with the usual alphabet X = {0,1} and the corre-
sponding set {0,1}* of finite strings and the Cantor space {0,1}* of infinite
sequences, but our results hold for any finite alphabet.

The outline of this paper is as follows. In section 2, we study BP randomness
and show the equivalence of our three versions. We construct a computable real
which is BP random. We prove an analogue of Ville’s theorem for primitive re-
cursive subsequences of BP random reals. We will also define a notion of relative
randomness and prove an analogue of van Lambalgen’s theorem. In section 3,
we consider two notions of bounded PSPACFE pseudorandomness and give two
equivalent definitions for each notion. Finally, in section 4, we will state our
conclusions and some directions for further research.

2 Bounded Primitive Recursive Randomness

In this section, we will define the three notions of primitive recursive randomness,
Kolmogorov BP randomness, Martin-Lof BP randomness, and martingale BP
randomness and show their equivalence. Hence, we will say that a real X is BP
random if it satisfies one of these three definitions. We will then prove analogues
of Ville’s Theorem and van Lambalgen’s Theorem of BP random reals.

We will work with the family of primitive recursive functions M : X* — X*
where X is a finite alphabet (normally {0,1}). Note that we can code finite
strings as numbers in order to define these primitive recursive functions and
that the coding and decoding functions are all primitive recursive.

Martin-L6f BP Randomness

In what follows, the code c(o) of a finite sequence o = o1 ...0, € {0,1}* is just
the natural number whose binary expansion is loj...o0,. Given a nonempty
finite set S = {o(),... 0™} of strings in {0,1}* such that c(cM) < --- <
c(c™), the code C(S) of S is defined be the natural number n whose ternary
expansion is 2c(c)2...2¢(c®)). We let 0 be the code of the empty set. We
say a sequence {U, : n € N} of clopen sets is a primitive recursive sequence if
there is a primitive recursive function f such that for all n, f(n) is a code of
a finite set Gy, = {01,n,...,0k(n),n} such that U, = [G,]. Here for any string
o€ {0,1}* and X € {0,1}*, we write 0 C X if o is an initial segment of X and
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we let [0] = {X € {0,1}" such that ¢ C X }. For any set G of strings in {0, 1}*,
we let [G] = {[o] : 0 € G}.

Since we can recover {o1,n,...,0k(m)n} from f(n) in polynomial time, it is
easy to see that given any primitive recursive sequence {U, : n € N}, we can
produce a primitive recursive function g such that g(n) is a code of a finite set
Gn = {T1,n, -+ Tr(n).n t subseteq{0, 1}*(") where U,, = [G,,] and r and ¢ are also
primitive recursive functions.

We define a primitive recursive test to be a primitive recursive sequence
(Un)n>o0 of clopen sets such that, for each n, p(U,) < 27™. It follows that there
is a primitive recursive function m such that m(n) codes the measure p(Up)
as a dyadic rational. Since the measures p(U,) may be computed, one could
equivalently consider a primitive recursive sequence {V,, : n € N} such that
limy, 1(Vy,) = 0 and there is a primitive recursive function f such that, for each
p (Vi) <277,

We observe here that (), U, will be a II{ class of measure 0 so that any
primitive recursive test is a Kurtz test and, hence, is also a Schnorr test.

We say that an infinite sequence X € {0, 1}* is Martin-Léf BP random if X
passes every primitive recursive test, that is, for every primitive recursive test
(Un)n>o, there is some n such that X ¢ U,.

By the remarks above, every Kurtz random real is Martin-L6f BP random.

Proposition 1. X is Martin-Léf BP random if and only if there is no primitive
recursive sequence (Up)n>o of clopen sets with u(U,) = 27" such that X €

mn U” :

Proof. The if direction is immediate. Now suppose that there is a primitive
recursive sequence (V;,)n>0 such that p(V,) <27 and X € (), V,,. Let V,, =
Useg, [o] where G, C {0, 1}4() for some primitive recursive function £(n) where

{(n) > n for all n > 0. Then u(V,) = cagj((,,ﬁ") < 274") Now define H,, to be

G, together with 2¢(")=" — card(G,,) additional strings of length ¢(n) and let
Un =U,ep, [7]. Then for each n, X € U,, and p(U,) = 27"

We will also need the notion of a weak primitive recursive test. A weak primitive
recursive test (U,)n>0 is a primitive recursive sequence (G, )n>o of finite sets
of strings, where there is a primitive recursive function ¢ such that for each n,
U, = [Gy] and, for all 7 € G, |7| = £(n) and p(Unt1 N [7]) < pu((7]).

We can convert each primitive recursive test (Up)n>0 into a weak primitive
recursive test as follows. First, we may assume that U, C U, for each n,
since the sequence given by W;, = (,.,, U; is also a primitive recursive test with
p(Wn) < u(Uy) < 27" Next suppose Uy, = [T1,n] U -+ - U [Ty(n),n] Where there is
a primitive recursive function ¢ such that |7 ,,| = ¢(n) for 1 < i < k(n). Thus
each interval [7; ,,] has measure exactly 2~4") Now the clopen set Ug(n)+1 has
a total measure < 27" =1 5o that the relative measure of p(Up(n)11 N [Tin]) <
30([7i,n]). Then we can define a primitive recursive weak test (V;,)n>0 as follows.
Let h(0) = 0 and let Vo = Up. Then let h(1) = £(0)+1 and Vi = Up(1). In general
for n > 1, we let h(n + 1) = £(h(n)) + 1 and let V,,41 = Up(n41). Then the
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sequence Vg, V1, ... will be a weak primitive recursive test. Since the sequence
{V,, : n € N} is a subsequence of the original sequence {U,, : m € N}, it follows
that ), Vi, =(,, Un, so that X passes the weak test {V}, : n € N} if and only if
it passes the original test.

It follows that a real X passes every primitive recursive test, then it certainly
passes every weak primitive recursive test. Conversely, if X fails some primitive
recursive test, then the argument above shows that it also fails some weak test.
Hence we conclude the following.

Proposition 2. X is Martin-Lof BP random if and only if it passes every weak
primitive recursive test. O

Kolmogorov BP Random

Let Ca(7) be the length |o| of the shortest string o such that M(o) = T,
that is, the length of the shortest M-description of 7. Notice that we are using
plain and not prefix-free complexity. We say that X is primitive recursively
compressed by M if there exist primitive recursive functions M and f such that,
for every c € N, Cyr (X | f(c)) < f(¢) — ¢. Our definition of primitive recursive
compression is a natural analogue for primitive recursive functions of the usual
definition of Kolmogorov compression which says that, for every ¢ € N, there
exists n such that Cp (X | n) < n — ¢. Of course, one defines Kolmogorov
randomness in terms of prefix-free complexity Kj; since there are no infinite
Kolmogorov random sequences for plain complexity. We use plain complexity
here since every primitive recursive function is total so that there are no prefix-
free primitive recursive machines.

We say that an infinite sequence X € {0,1}* is Kolmogorov BP random if it
cannot be primitive recursively compressed by any primitive recursive machine
M. A notion of prefix-free complexity for primitive recursive functions may be
obtained by allowing primitive recursive functions M such that M (o) may di-
verge. This can be done by introducing a new symbol co as a possible output of
M (o) to signify that M (o) diverges. It is not hard to show that this makes no
difference.

Proposition 3. A real X is BP random if and only if it is prefiz-free BP
random.

Martingale BP Random

A martingale d is a function d : {0,1}* — QNJ0, oo] such that for all o € {0, 1}*,
d(0) = > 4eq0,13 d(0"a)/2. Of course, any primitive recursive martingale is
also a computable martingale. We say that the martingale d succeeds primitive
recursively on X if there is a primitive recursive function f such that, for all
n, d(X [ f(n)) > 2™. (Of course, we could replace 2™ here with any primitive
recursive function which is increasing to infinity.) In general, a martingale d is
said to succeed on X if limsup,, d(X | n) = oo, that is, for every n, there exists
m such that d(X [ m) > 2". Thus our definition is an effectivization of the usual
definition where there is a primitive recursive function f which witnesses that d
will return 2" at some point for every n. We say that X is martingale BP random
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if there is no primitive recursive martingale which succeeds primitive recursively
on X. If X is not martingale BP random, then there is a computable martingale
which succeeds primitive recursively on X and thus certainly succeeds on X, so
that X is not computably random. Hence every computably random real is also
a martingale BP random real.

Our definition of martingale BP random real has the following equivalent
formulations.

Proposition 4. The following are equivalent.

(1) X is martingale BP random.

(2) There do not exist a primitive recursive martingale d and a primitive re-
cursive function f such that, for every m, there exists m < f(n) such that
d(X ['m)>2m.

(8) There do not exist a primitive recursive martingale d and a primitive recur-
sive function f such that d(X | m) > 2" for all n and all m > f(n).

Proof. Our proof uses the idea of a savings account as formulated in [I5I25].
That is, if we have a martingale and function as in (2), then we can modify the
martingale so that whenever d(7) > 2"*! but d(o) < 2"*! for all proper initial
segments of 7, then we put aside 2 and only bet with the other half of our
capital. This means that we can never drop below 2" in the future. Thus if we
use the function f'(n) = f(n+ 1), we will satisfy condition (3) and hence satisfy
(1) as well.

Our main result in this section is to show the three versions of BP random
described above are equivalent.

Theorem 1. The following statements are equivalent for X € {0,1}%.

(1) X is Martin-Lof BP random.
(2) X is Kolmogorov BP random.
(3) X is martingale BP random.

Proof. We shall show the equivalence of (1) with both (2) and (3).

(1) implies (2): Suppose X is not Kolmogorov BP random. Then there ex-
ist primitive recursive M and f such that Cp(X | f(c)) < f(¢) —c—1 for every
ceN.

Let U = {X : Cu(X | f(c)) < f(¢) — ¢ — 1}. This is certainly a uniformly
primitive recursive sequence of clopen sets. That is, given ¢, compute M (o) for
all o with |o| < f(c) —c¢—1 and let

G.={M(0):0 € {0,1}5/@=c=1y 00,1}/

and Ue = U, ¢ [7]- Clearly, (Uc)c>o is a primitive recursive sequence of clopen
sets.

We claim that u(U.) < 27¢. That is, fix ¢ and let U, = [11] U [12] U -+ U [7%],
for distinct 7; € {0,1}/(¢). Thus there exist o1, ..., 0y such that, fori =1,...,k,
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loi| < f(¢) — ¢ —1 and such that M(c;) = 7;. Since there are only 2/(¢)=¢ — 1
strings of length < f(c) — ¢ — 1, it follows that k& < 2f(¢)=¢_ Since for each i,
u([r]) = 277 it follows that p(U.) = k- 27F(0) < 2f(e)=¢. 9=f(¢) = 2—¢ By
assumption, X € U, for all ¢ > 0 so that X is not Martin-L6f BP random.

(2) implies (1): Suppose that X is not Martin-L6f BP random. Thus there
exist primitive recursive functions g, k, and f so that for all ¢ > 0, g(c) is a
code of a finite sets of strings {7 : 1 < i < k(c)} C {0,1}7(°) such that if
Ue = [m1,e] Ulma,e] U+ U[The),el, then p(Uc) < 27¢ and X € (1,5 Ue. We may
assume without loss of generality that for each ¢, f(c+1) — (¢ +1) > f(c) —c.
This is because we may always break each [r;] into [, 0] U [1;71] to increase
f(c) by one, if necessary.

We will define a primitive recursive function M such that for all ¢ € N,
Cu(X | f(e)) < f(e) — e Since u(Ue.) = k(c) - 2779 it follows that k(c) <
2/(€)=¢, Now take the lexicographically first k(c) strings o1 ., . . . , O(c),c of length
f(c) — c and define M(o; ) = 7; .. To make M a total function, the remaining
strings of length f(c) — ¢ may all be mapped to 0 and all strings not of length
f(e) — ¢ for any c¢ are also mapped to 0.

By assumption X € U, for every ¢ € N so that X | f(¢) = 7. for some
i. Hence M(oic) = Tie = X [ f(c). Since |o;c| = f(c) — ¢, it follows that
Cut(X 1 £(0) = f(e) —c.

It remains to be checked that M is indeed a primitive recursive function.
Observe that since f(c+1) —c—1 > f(¢) — ¢ > 0 for all ¢ € N, we have by
induction that f(c) —¢ > ¢ for all c¢. Thus, given a string o of length m, we need
only check ¢ < m to see whether m = f(c) — ¢ for some c. This can be done
primitive recursively. That is, if m = f(¢) — ¢, then it is a bounded search to
determine whether o = o; . where M (o; ) = 7; . or not. If not, or if m # f(c)—c
for any ¢, then we just let M (o) = 0.

Hence, X is not Kolmogorov BP random.

(1) implies (3): Suppose that X is not martingale BP random. Then there
is a primitive recursive martingale d which succeeds primitive recursively on
X so that there is a primitive recursive function f such that, for all n, d(X |
f(n)) > 2" Let G,, = {7 € {0,1}Y™ . d(7) > 2"} and let U, = Ureq, [7]-
Since d and f are primitive recursive, it follows that the sequence (Up)n>0 is a
primitive recursive sequence of clopen sets. Certainly X € (1, Up.

Recall that for all martingales with d(0) =1, 37, |_,, d(r) < 2™. It follows

that there are at most 2/(") =" strings 7 € {0,1}/() such that d(r) > 2". For
each such 7, u([7]) = 277, Thus p(U,) < 2fW=n.2-f(0) = 2=,

Hence (U,,)n>0 is a primitive recursive test so that X is not Martin-Lof BP
random.

(3) implies (1): Suppose X is not Martin-L6f BP random. Then X € ), Uy
where (Up)n>0 is a weak primitive recursive test. We may assume that there are
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primitive recursive functions £ and & such that U, = [11,,] U+ - U [T(n),n] where
|7-i,n| = E(n) Let Gn = {Tl,na e 7Tk(n),n}-

We recursively define our martingale d as follows. For n = 1, we let d(7;1) =
20(1)

py fori=1,..., k(1).If 7 € {0,1}*W — {7 1,..., 1)1 }, then we let d(7) = 0.

Since p(U;) < ;, it follows that k(1) < 2¢(M)=1 and therefore d(7i1) > 2 for each

i. Moreover, > _c g 130 d(7) = k(1) - %:((11)) = 2¢(), Now work backwards using

the martingale equation d(c) = 1 (d(c™0) + d(c 1)) to define d(o) for all o of
length < f(1). It follows by induction that for all j < f(1), >_ c(o1ys d(7) =27
so that, in particular, d()) = 1.

Now suppose that we have defined d(7) for all 7 with |7| < ¢(n) so that
d(7) > 2™ for all 7 € G,,. Then we will show how to extend d to strings of length
< {4(n+1). For o of length £(n), we will define d(o7), where o7 = ™7, for all
7 of length ¢(n + 1) — ¢(n). If d(c) = 0, then we simply let d(o7) = 0 for all 7.
Now fix ¢ € G,, with d(c) > 2™ and consider G = {7 : 07 € G,41}. Since we
have begun with a weak test, it follows that x([G]) < . Thus we may proceed
as in the first case where n = 1 to define a martingale m such that m(o) =1
and m(7) > 2 for all 7 € G. Now extend the definition of d to the strings below
o by defining d(o7) = d(o) - m(7). Since d(c) > 2™ and, for 7 € G, m(7) > 2, it
follows that for o7 € G,41, d(oT) > 2"F1. It is easy to see that this extension
obeys the martingale equality, since, for any 7,

1
2

Since X € ), Un, it follows that d(X | ¢(n)) > 2" for each n and hence d
succeeds primitive recursively on X.

It is clear that from a given string o, this defines a primitive recursive pro-
cedure to compute d(c). The first step is to compute ¢(n) for n < |o| until we
find n so that |o| < £(n). Then we consider all extensions 7 of o of length £(n).
We can follow the procedure outlined above to compute d(o [ £(i)) for i < n,
and, hence, compute d(7) for all extensions 7 of o of length £(n). Finally we
backtrack using the martingale inequality to compute d(o) from the values of
such d(7). Thus d is a primitive recursive martingale so that X is not martingale
BP random. O

d(or) =d(o) -m(r) =d(o)- _(m(r70)+m(r71)) = ; (d(o770)+d(o771)).

We should note one could alternatively prove Theorem 1 by modifying proofs
that have already appeared in the literature. For example Downey, Griffiths and
Reid [14] proved the equivalence of parts (1) and (3) in the setting of Kurtz
randomness and their proof can be modified to give a proof of the equivalence
of parts (1) and (3) in Theorem 1. Similarly, Bienvenu and Merkle [6] gave a
proof the equivalence of parts (1) and (2) in the setting of Kurtz randomness
and their proof can easily be modified to give a proof of the equivalence of parts
(1) and (2) in Theorem 1.

Given Theorem [I] we define an X € {0,1}* to be BP random if and only
if X is Martin-L6f BP random. Since every BP test is also a Kurtz test and a
computable test, it follows that all Kurtz random and all computably random
reals are BP random.
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It is clear that no primitive recursive set can be BP random. It was shown by
Jockusch [16] that Kurtz random sets are immaune, that is, they do not include
any c.e. subsets. Here is a version of that result for BP randomness.

Proposition 5. If A is BP random, then for any increasing primitive recursive
function f, A does not contain the range of f.

Proof. Suppose for the contrapositive that A contains the range of f. For each
n, let G, = {o € {0,1}/(™ . (Vi < n)(c(f(i)) = 1)}. Then let U,, = Urea, [7]-
It is clear that u([U,]) = 27 so that (U,)n>0 is a primitive recursive test. But
then A belongs to each U, so that A is not BP random.

Theorem 2. There is a recursive real which is BP random.

Proof. Let (ge,lc)e>0 enumerate all pairs of primitive recursive functions. For
any e, let Gy = {01,n,.-+,0k, (n),n} be the finite set whose code is g.(n) and
Un,e = [Ge,n]-

Our goal is to construct an increasing recursive functions r and ¢ and recursive
sequence X = (X (0),X(1),...) such that for all s, either
(I) it is not the case that for all 1 <i < r(e), u(U; ) < 277 |o]| = £c(i) for all
oc Gi,ea and UO,e ) Ul,e 22 Ur(e),e or
(IT) (I) fails and (X(0),...,X(t(e) = 1)) & Ur(e)e-
That is, either g, and £, do not specify a primitive recursive test of the proper
form or (X(0),..., X(s(e) = 1)) € Up(e),e- This will ensure that X is a recursive
real which is not BP random.

We construct r, ¢, and X in stages as follows.

Stage 0. Compute ¢y(1), G1,0 and Uy 0. If it is not the case, that pu(Ui ) < é
and |o] = {o(1) for all o € Gy, then set 7(0) = s(0) = 1 and X (0) = 0. Oth-
erwise let o be the lexicographically least string 7 of length fo(1) such that
7 & Upo. Note that o must exists since pu(Urg) < 1. Then set r(0) = 1,
(X(0),...,X(lo(1) = 1)) = 0, and t(0) = £o(1).

Stage s+1. Assume that we have defined r(0) < --- < r(s), t(0) < --- < #(s),
and (X(0),...,X(¢(s) — 1)) such that either (I) or (II) hold for e < s.

Then let r(s + 1) = t(s) + 2. If it is the case that for all 1 < ¢ < r(s + 1),
w(Uisi1) <278 |o| = lsy1(i) for all 0 € G541, and Up s41 2 Ur 541 2 -+- 2
Uy (s+1),s+1, then we know that pu(Uy(s41),s+1) < 2= ()42 and £, (r(s+1)) >
t(s)+2. Thus there must exist an extension 7 of (X(0),..., X (t(s)—1)) of length
Lsy1(r(s + 1)) such that 7 & Uy(s41),s41- Then we let t(s + 1) = £y 1(r(s + 1))
and (X(0),...,X(t(s+1) —1)) be lexicographically least such 7. Otherwise, we
let t(s+1) =t(s) +1and X(¢t(s+1)—1)=0.

It is easy to see that our construction is completely effective so that X =
(X(0),X(1),...) will be a computable real which is not BP random.

Next we show that BP random reals satisfy the following analogue of Ville’s
Theorem.
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Theorem 3. Let X € {0,1}" be BP random and let g be a primitive recursive
increasing function. Then the sequence (X (g(0)), X (g(1)), X (g(2)),...) is also
BP random.

Proof. Let Y(n) = X(g(n)) and suppose by way of contradiction that Y is not
BP random. Let (U,),>0 be a primitive recursive test such that Y € U, for all
n. That is, suppose that there are primitive recursive functions a, b, and ¢ such
that

1. Upq1 C U, for all n,

2. u(Uy), is <27 for all n, and

3. for all n, a(n) is the code of a finite set G, = {T1,n,...,0p(n),n} Of strings
such that U,, = [G,,] and |o;,,| = ¢(n) for all 1 < i < b(n).

(e(n))—e(n)
For any string 7;n = T1...7¢(n) in Gy, let Tz(n),..., Z(ig ) be a list of
the 29(¢(M)=¢(") strings of length g(c(n)) such that ( ;()1) ;()2) gsz)c(n))) = Tin.

Then define

(n) 29(c(n)—c(n)

Vo = {X : (X(g(1),..., X (g(c(n) }eU}—U U [r2)).

It is easy to see that u(U,) = u(V,) and the (V,,)n>1 is a primitive recursive
test. But then X € (,,~, V» which would violate the fact that X is BP random.
Thus Y must be BP random.

2.1 Statistical Tests

It is important to see to what extent the BP random sets are statistically random.
We begin with a positive result.

Theorem 4. Let A be a BP random set. For any increasing primitive recursive

function f and any € > 0, there is some n such that |card(A?7[L[)f(")] sl <e

Proof. This follows from the law of large numbers (Chernoff’s Lemma [21], p.61).

Corollary 1. For any BP random set A, if lim, card(in[["m exists, then it
equals é

On the other hand, BP random sets do not have to be stochastic.

Theorem 5. There exists a computable BP random set A such that

card(z‘;ﬂ[[”“) does not exist.

lim,,
Proof. To construct such a set A, just modify the proof of Theorem 2 by adding
long strings of 0’s and long strings of 1’s (in alternation) after satisfying each re-
quirement. Then we can make the density go below :1)’ and then above g infinitely
often.
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2.2 Relative Randomness

Primitive recursive functions may be defined with inputs from N and also from
NN by simply adding the basic evaluation functional Ev where Ev(n, X) = X (n)
to the basic constant, successor, and projection functions and closing under com-
position and primitive recursion. If X is a fixed subset of N, then we obtain the
X-primitive recursive functions using the characteristic function of X as a fixed
oracle.

Relative Martin-Lof BP Randomness

We define a primitive recursive oracle test to consists of a primitive recursive
function g : N x N¥ — N and a primitive recursive function f such that for
all Z € N, g(n,Z) = gZ is the code of a finite sequences of strings GZ =
{of,. . ’Jlfz('n),n} C {0,1}7™ such that if UZ = [GZ], then for all n, p(UZ) <
27", Thus a primitive recursive oracle test must uniformly give a Z-primitive
recursive test for all Z C N. Then we say that X is Martin-Lof BP random rel-
ative to Y C N if, for any primitive recursive oracle test G, X ¢ [GY] for some n.

Relative Kolmogorov BP Random

Let M : {0,1}* x N¥ — {0,1}* be a primitive recursive oracle function. Then
for any Y C N, we let C},(7) be the length |o| of the shortest string o such that
MY (o) = 7, i.e., the length of the shortest MY -description of 7.

An infinite sequence X is Kolmogorov BP random relative to Y if it cannot
be primitive recursively compressed by any function MY which is primitive re-
cursive in Y. Here we say that X is primitive recursively compressed relative to
Y if there exist a primitive recursive oracle function M : {0,1}* x NY¥ — {0,1}*
and a primitive recursive function f such that, for every c € N, CY,(X | f(c)) <
f(c) — c. Notice that f is still primitive recursive although the function MY is
only primitive recursive in Y.

Relative Martingale BP Random

Let D : {0,1}* x NY¥ — QN [0,00] be a primitive recursive oracle function.
We say that D is a primitive recursive oracle martingale if the function DZ :
{0,1}* - QN [0,00] is a martingale for all Z C N where for any ¢ € {0,1}*,
D%(0) = D(0,Z). Then X is BP random relative to Y if there is no primi-
tive recursive oracle martingale D such that DY succeeds primitive recursively
on X.

It is easy to see that we can simply relativize the proof of Theorem [l to prove
that X is Kolmogorov BP random relative to Y if and only if X is Martin-Lof
BP random relative to Y if and only if X is martingale BP random relative
to Y.

With these definitions, we can modify the proof of van Lambalgen’s Theorem
to prove the following theorem. Recall that if A, B C N, then A@ B = {2z :x €
AYU{2x+1:x € B}.

Theorem 6. For any sets A,B C N, A® B is BP random if and only if B is
BP random relative to A and A is BP random.
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3 Polynomial-Space Bounded Pseudorandomness

In this section, we shall briefly outline how one might modify the definitons
of BP random to define a notion of random relative to PSPACE functions.
In particular, we shall define two possible analogues of BP random reals for
PSPACE. Let PSPACE™* be the family of functions computable in polynomial
space where we include the space needed to write the output. Thus the output
of a PSPACE* function has length which is a polynomial of the length of the
input.

To obtain a robust analogue of primitive recursive randomness, we speci-
fied primitive recursive bounding functions f which, for example, specified that
d(X | f(n)) > 2™ for a primitive recursive martingale to succeed. The key to
versions of PSPACFE random reals is that we require similar bounding func-
tions which are polynomial time functions f : {1}* — {1}*. That is, we have the
following notions of PSPACE BP random reals.

Martin-Lof BPS Random

A PSPACE test (Up)n>o0 is specified by a pair of functions (G, f) such that
G: {1}* x{0,1}* — {0,1} is a PSPACE-function and f : {1}* — {1}* is a
strictly length increasing PTIM E function such that for each n,

Grp={r€{0,1}5HII . G1" 7) =1} = {010, -, O }

is a set of strings of length < [f(1™)| such that U,, = [01,x] U - U [o}(n),n] is a
clopen set with measure < 27",

A weak PSPACE test (Up)n>o0 is specified by a pair (G, f) as above with
the additional property that for each n, p(Upt1 N [05n]) < 3u([oin])-

We say that X is Martin-Léf BPS random if X passes every PSPACE test
and is weakly Martin-Lof BPS random if X passes every weak PSPACE test.

Kolmogorov BPS Random

An infinite sequence X is Kolmogorov BPS random if there do not exist a
PSPACE* function M : {0,1}* — {0,1}* and a PTIMFE function f: {1}* —
{1}* such that, for every n € N, Cps (X [ [f(1")]) < [f(1™)| — n.

Martingale BPS Random

A PSPACE* martingale d : {0,1} — QN [0, 00] succeeds on X if there is a
PTIME function f: {1}* — {1}* such that, for all n, there is some m < | f(1")|
such that d(X [ m) > 2™. Here we shall think of QN[0, co] as the set of all strings
027 where 0.7 is the binary expansion of a rational number r € Q N [0, c0]. We
say that X is martingale BPS random if no PSPACE* martingale succeeds
on X.

By suitably modifying the proof of Theorem [l we can prove the following.

Theorem 7. For any X € {0,1}¥,

(1) X is Kolmogorov BPS random if and only if X is Martin-Léf BPS random
and
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(2) X is martingale BPS random if and only if X is weakly Martin-Lif BPS
random.

By modifying the proof of Theorem ], we can prove the following.
Theorem 8. There is a DSPACFE(2%") real which is Martin-Léf BPS random.

4 Conclusions and Future Work

In this paper, we defined a robust notion of primitive recursive and PSPACFE
bounded pseudorandom reals in that each definition could be framed in at least
two of the three versions of algorithmically random reals via measure, Kol-
mogorov complexity, or martingales. We view the work of this paper as a possible
model for defining algorithmically random reals relative to several other classes
of sub-computable functions. In future work, we will define similar notions of
bounded pseudorandom reals for other classes of sub-computable functions such
as elementary, on-line, or EXPSPACE.

A theory of algorithmic randomness for trees and effectively closed sets was
developed in a series of papers by Barmpalias, Cenzer, Remmel et al [4J5]. One
can adapt our definitions of primitive recursive bounded pseudorandomness to
define similar notions of bounded pseudorandom trees and effectively closed sets
for various classes of sub-computable functions. This will appear in future papers.
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Abstract. We automate the construction of analytic sequent calculi and
effective semantics for a large class of logics formulated as Hilbert calculi.
Our method applies to infinitely many logics, which include the family
of paraconsistent C-systems, as well as to other logics for which neither
analytic calculi nor suitable semantics have so far been available.

1 Introduction

Non-classical logics are often introduced using Hilbert systems. Intuitionistic,
modal and paraconsistent logics are just a few cases in point. The usefulness of
such logics, however, strongly depends on two essential components. The first
is an intuitive semantics, which can provide insights into the logic. A desir-
able property of such semantics is effectiveness, in the sense that it naturally
induces a decision procedure for the logic. Examples of such semantics include
finite-valued matrices, and their generalizations: non-deterministic finite-valued
matrices (Nmatrices) and partial Nmatrices (PNmatrices) (see [5l6]). The second
component is a corresponding analytic calculus, i.e. a calculus whose proofs only
consist of concepts already contained in the result. Analytic calculi are useful
for establishing various properties of the corresponding logics, and are also the
key for developing automated reasoning methods for them.

In this paper we provide both methodologies and practical tools for an auto-
matic generation of analytic sequent calculi and effective semantics for a large
class H of Hilbert systems. This is a concrete step towards a systematization of
the vast variety of existing non-classical logics and the developement of tools for
designing new application-oriented logics, see e.g. [11].

The calculi in H are obtained (i) by extending the language of CL™, the
positive fragment of classical logic, to a language £y which includes also a finite
set U of unary connectives, and (ii) by adding to a Hilbert axiomatization HC L™
of CL* axioms over Ly of a certain general form. H contains infinitely many
systems, which include well-known Hilbert calculi, the simplest and best known
of which is the standard calculus for classical logic, obtained by adding to HCL™
the usual axioms for negation. Another example of calculi in H is the family of
paraconsistent logics known as C-systems [8J10].
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Given a system H € H, our algorithm proceeds in two steps. First we intro-
duce a sequent calculus G equivalent to H. This is done by suitably adapting the
procedure in [9], where certain Hilbert axioms are transformed into equivalent
(sequent and hypersequent) structural rules. In contrast to [9], however, here the
rules extracted from the axioms of H are logical rules in Gentzen’s terminology,
that is they introduce logical connectives. The analyticity of the resulting calcu-
lus depends on the interaction between these rules. This is not anymore a local
check and needs instead a “global view” on the obtained calculus, which is pro-
vided by the semantics constructed in the second step. This semantics is given in
the framework of PNmatrices — a generalization of usual many-valued matrices
in which each entry in the truth-tables of the logical connectives consists of a
possibly empty set of options (see [6]). This framework allows non-deterministic
semantics, and also, using empty sets of options makes it possible to forbid some
combinations of truth values. However, it is still effective, as it guarantees the
decidability of the corresponding sequent calculus. As a corollary it follows that
each system H € H is decidable. Furthermore, we show that the PNmatrix con-
structed for H is an Nmatrix (i.e., it has no empty sets in the truth-tables) iff
G enjoys a certain generalized analyticity property.

Related Work: A semi-automated procedure to define semantics and analytic
calculi for the family of C-systems was introduced in [4]. A corresponding Nma-
trix was constructed there for each system in the family, and was then used for
introducing a corresponding analytic sequent calculus. However, the construc-
tion of Nmatrices out of the Hilbert calculi is done manually, and it requires
some ingenuity. In this paper we provide a full automation of the generation
of effective semantics and analytic calculi for all the systems considered in [4],
which have finite-valued semantics. Our method also applies to infinitely many
other extensions of CL™, which had so far no available semantics or adequate
calculi. These include some logics defined in [I], finding semantics for which was
left as an open problem. It should be noted that our algorithm reverses the steps
taken in []: it first extracts suitable sequent rules from the axioms of H, and
uses them to “read off” the semantics.

Implementation: Our method is implemented in the Prolog system Paralyzer,
available at www.logic.at/people/lara/paralyzer.html. For any set of ax-
ioms over £y of a certain general form Paralyzer (PARAconsistent (and other)
logics anaLYZER) outputs: (a) a set of corresponding sequent rules, and (b)
the associated PNmatrix. The user can choose whether to start as basic system
with HCL™ or with the system BK from [4], obtained by augmenting HCL™
with the axioms (nj), (b) and (k) (cf. Fig. [[l). In the latter case, by exploiting
the invertibility of the sequent rules for o, (a) and (b) for the C-systems having
finite-valued semantics coincide with the results in [4].

2 Step 1: From Hilbert Systems to Sequent Calculi

The first step of our method consists of a mapping from a family H of Hilbert
systems into a family G of “well-behaved” sequent calculi.
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2.1 The Family H

In what follows, £ denotes a propositional language, and wff; is its set of formulas.
We assume that the atomic formulas of £ are {p1,p2,...}. Ez is the language of
CL™T, the positive fragment of (propositional) classical logic, consisting of the bi-
nary connectives A,V and DO. We consider languages that extend L’z with finitely
many new unary connectives (such as = and o). Henceforth ¢ denotes an arbi-
trary finite set of unary connectives, and £y, denotes the extension of le with the
connectives of Y. For a Hilbert system H, we write I Fg ¢ if ¢ is provable in H
from a finite set I" of formulas. HCL™ denotes any Hilbert calculus for £, -7» Which
is sound and complete for CL*. H is a family of axiomatic extensions of HCL™,
each of which is in the language £y, for some . These systems are obtained by
augmenting HCL™ with axiomd] of the form defined below.

Definition 1. Let U = {*1,...,*n}. Axy is the set of Ly-formulas generated
by the following grammar (where S is the initial variable):

S=R,|Ri| R Pr=(ProP)|*p1|p1lp2]...
Rp:(RpoPl) | (P1<>Rp)|*p1 PQZ(PQOPQ) \*]91 ‘*pg |p1 ‘pg ‘pg ‘
Rlz(R10P1)|(P1<>R1)‘**p1 o=A,V,D
:(RQOPQ)|(P2<>R2)‘*(p10p2)*:*1‘...‘*n
N:(m) p1V-p nz) p1 D (=p1 D p2)

c) ——p1 Dp1 e) p1D-pr

n),) =(p1 Ap2) D (-p1 V —p2) n}) (=p1V —p2) D =(p1 Ap2)

nl) =(p1Vp2) D (pr A-p2)  (0}) (mp1 A-p2) D =(p1V pe)

5) (p1 A —=p2) D =(p1 D p2)
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n-
:(b) p1 D (=p1 D (op1 D p2)) ro) o(p1op2) D (op1V op2)
k) op1V(p1 A-p1) ) —op1 D (p1 A —p1)
05) op1 D o(p10p2) ) op2 D o(p1 o p2)
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Fig. 1. Examples of formulas in Ax;- o} (¢ € {V,A,D})

Definition 2. A Hilbert calculus H for a language Ly is called a U-extension
of HOL™ if it is obtained by augmenting HCLT with a finite set of axioms from
Axy. We denote by H the family of all U-extensions of HCL™ for some U.

The family H contains infinitely many systems, which include many well-known
Hilbert calculi. The most important member of H is the standard calculus for
(propositional) classical logic, obtained by adding (ny) and (nz) to HOL™ (cf.
Fig. ). Other important examples include various systems for paraconsistent
logics [U7IRITA].

Remark 1. Paraconsistent logics are logics which are tolerant of inconsistent
theories, i.e. there are some formulas 1), ¢, such that: ¥, =1 I . One well-known

! By azioms we actually mean aziom schemata.
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family of paraconsistent logics, formulated in terms of Hilbert calculi, is known as
C-systems [I7IRIT0]. In this family the notion of consistency is internalized into
the object language by employing a unary consistency operator o, the intuitive
meaning of ot being “i is consistent”. Clearly, a system which includes the
standard axiom for negation (ngz) (Fig.[d)) cannot induce a paraconsistent logic.
Many C-systems include instead the weaker axiom (b), and in addition also the
axiom (np). Furthermore, different C-systems employ different subsets of the
axioms from the set C (Fig.[Il), which express various properties of the operator
o. For instance, axiom (ay) says that the consistency of two formulas implies
the consistency of their disjunction. The axiom (ol,) expresses another form of
consistency propagation: the consistency of a formula implies the consistency of
its disjunction with any other formula. By adding to HC L™ various combinations
of axioms from Fig. [[I we obtain a wider family of systems (not all of them
paraconsistent), many of which are studied in [2/4].

2.2 The Family G
The sequent calculi we will consider, formulated label-style, are as follows:

Definition 3. 1. A labelled L-formula has the form b : 1, where b € {f,t}
and ¢ € wffz. An L-sequent is a finite set of labelled L-formulas. The
usual sequent notation P1,...,%n = P1,...,pm 1S interpreted as the set
{f:wla"'af:’l/}nat:9013"'at:90m}'

2. An L-substitution is a function o : wffy — wffz, such that o(o(1,...,¥,)) =
o(o(¥1),...,0(n)) for every n-ary connective & of wffz. L-substitutions are
naturally extended to labelled L-formulas and L-sequents.

3. An L-rule is an expression of the form Q/s, where Q is a finite set of L-
sequents (called premises) and s is an L-sequent (called conclusion). An
application of an L-rule Q/s is any inference step inferring the L-sequent
o(s)Uc from the set of L-sequents {c(q) Uc | q € Q}, where ¢ is an L-
substitution, and c is an L-sequent.

4. A sequent calculus G for L consists of a finite set of L-Tules. We write S Fg s
whenever the L-sequent s is derivable from the set S of L-sequents in G.

Ezxample 1. Formulated according to Def. 3] the standard sequent calculus LK™
for CL7T is the set of Ej‘l—rules consisting of the following elements:

(id)  O/{f:pr,t:pi} (cut) {{f:pi},{t:p1}}/0

(W=) {0}/{f:pm} (=W) {0}/{t: p1}

(N=) {Fpn fep/{fimAp} (= A) {{tp} {t:p2}}/{t:p1 Ap2}
(V=) {F:mhAf o3/ {f i p1Vpe} (= V) {t:pi,t:p2}}/{t:p1Vpa}

O=) {{t:;m}bA{fp}/{f:p1 Dp2} D) {{f:p,t:p2}}/{t:p1 Dp2}

G is a family of sequent calculi, each of which is in the language £y for some
U. These calculi are obtained by augmenting LK ' with simple rules:
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(= ) {F b/t s w} igey

(0 :>) {{t:pl},{t:_‘pl}}/{f:opl} F:>307A F:>_‘$0,A

Iop = A
(~=) AT ) i
(&M gt oAt Apa) Pl o

Fig. 2. Examples of L, ,3-rules and their applications forms

Definition 4. A U,-premise (n = 1,2) is an Ly-sequent of the form {b: p,}
or {b:xp,}, where b € {f,t} and x € U. An Ly-rule Q/s is (b€ {f,t}, x,p €U
and o € {A\,V,D}):

— primitive if s = {b: *p1} and Q consists only of Uy -premises.

— onevar if s = {b:*>p1} and Q consists only of Uy -premises.

— twovar if s = {b: x(p1 o p2)} and Q consists only of Ui-premises and Us-
premises.

— simple if it is either a primitive, a onevar or a twovar rule.

Ezample 2. (= ) is primitive, (—— =) onevar, and (= —A); twovar (cf. Fig.2)).

Distinguishing between the types of rules above will be crucial for the semantic
definitions of Section As we shall see, rules of different types will play dif-
ferent semantic roles: the primitive rules will determine the truth values in the
PNmatrices, while the onevar and twovar rules will dictate the truth-tables of
the unary and binary connectives respectively.

Definition 5. A sequent calculus G for Ly is called a U-extension of LK™ if it
is obtained by augmenting LK+ with a finite set of simple Ly-rules. We denote
by G the family of all U-extensions of LK™ for some U.

2.3 Mapping from H to G

Given a Hilbert system H € H we show how to construct a sequent calculus
Gy € G which is equivalent in the following sense:

Definition 6. A sequent calculus G is equivalent to a Hilbert system H if for
every finite set I' U {p} of formulas: I'Fy ¢ iff Fa T’ = .

Fact 1. LK™ is equivalent to HCL™.

We denote by HU{¢} the Hilbert system obtained from H by adding the axiom
p, and by G U R the sequent calculus extending G with the set R of rules.
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Definition 7. Let R and R’ be two sets of L-rules, and G be a sequent calculus
for L. R and R’ are equivalent in G if Q Fgur s for every Q/s € R, and
Q tgur s for every Q/s € R'.

Definition 8. An Ly-rule Q/s is invertible in G if s g g for every q € Q.

The key observations for our transformation procedure are: (i) the invertibility
of the rules for A,V and D in LK™, (ii) Lemma[Il known as Ackermann’s lemma
and used, e.g. in [9] for substructural logics, and (iii) Lemma[2] which allows the
generated rules to obey a (weaker form of) subformula property.

Lemma 1. Let G be a sequent calculus for £ extending LK. Let s be an L-
sequent, and v be a labelled formula in s. The L-rule (/s is equivalent in G to

the ruler = {{b: v} | b: o € s\ {v}}/{7} (where f =t andt = f).

Proof. {{b: ¢} |b:¢ e s\{v}}Fauqe/s) 7 is obtained by applying the rule (/s
and then have multiple applications of (cut) (preceded by suitable applications
of (W =) and (= W)). To prove gy} s we first use (id) to obtain {f : ¢, : 9}
for every ¢ € {p | b: ¢ € s\ {v}} followed by suitable applications of (W =)
and (= W). The claim then follows by applying 7. O

Lemma 2. Let G be a sequent calculus for L extending LK. Let s be an L-
sequent, and let s' = sU{b : p}, where b € {f,t} and p is an atomic formula
that does not occur in s. Then, Faugassy I' = ¢ iff Faugessy I = ¢, for every
sequent I' = ¢.

Proof. Clearly, Fquio/sy S-cuqoys) (applications of /s’ can be simulated using
(W=) or (=W), and 0/s). For the converse direction, we distinguish two cases
according to b. If b = f then every application of (/s deriving o(s) can be
simulated in G U {(/s’} by using (cut) on o(s) U{f : p1 D p1} (obtained by
()/s’" in which p is substituted with p; D p1) and o(s) U {t : p1 D p1}, derivable
in LKT. If b = t we need a proof transformation: every application of 0/s in
a derivation of I' = ¢ is replaced with an application of §§/s’, in which p is
substituted with ¢. ¢ : ¢ is then propagated till the end sequent. a

Theorem 1. Every H € H has an equivalent sequent calculus Gy € G.

Proof. Follows by repeatedly applying the following procedure (starting from
HCL*T and LK™). Let H € H and G € G be an equivalent sequent calculus for
Ly and let ¢ € Axy. We show how to construct a finite (possibly empty) set
R’ of simple Ly-rules such that H U {4} is equivalent to G U R’.

First, it is easy to see that H U {¢} is equivalent to G U {ry}, where ry is
the rule @/{t : ¥ }. For the right-to-left direction consider a proof of a sequent
I' = ¢ in GU{ry}, and transform it into a proof of I',7) = ¢ in G, by replacing
every application of ry with the identity axiom {f : ¢,t : ¢}, and propagating
f : ¢ through the derivation till the end sequent. The equivalence of H and G
entails that I',9 g ¢, and it immediately follows that I' F ey ¢

Now, starting from r; and using the invertibility of the rules for A,V and
D, we obtain a finite set of rules R, such that (i) R is equivalent to {ry} in G,
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and (ii) each 7 € R has the form @/s, where s has one of the following forms,
according to whether 4 is generated by R, R1 or Rs in the grammar of Def. [It

1. s consists of at least one labelled formula of the form b : xp; (b € {f,t},
* € U), and any number of labelled formulas b: p; (b € {f,t}, 7> 1).

2. s consists of exactly one labelled formula of the form b : x>p; (b € {f,t},
*,> € U), and any number of labelled formulas of the form b : p; or b : *p;
(be{f,t},i>1, and x €U).

3. s consists of exactly one labelled formula of the form b : x(p1op2) (b € {f,t},
* €U, o € {A,V,D}), and any number of labelled formulas of the form b : p;,
b:xpi,orb:xpy (b€ {f,t},i>1, and x € U).

Obviously, we can discard all rules (}/s of R for which {f : p;,t: p;} C s for some
i > 1. By Lemmal2] for each rule (/s left in R: if s has the form 1 or 2 above, we
can omit from s all labelled formulas of the form b : p; for ¢ > 1, and similarly,
if s has the form 3, all labelled formulas of the form b : p; for ¢ > 2. By Lemma
[ the resulting rules can be transformed into equivalent simple Ly,-rules. g

The proof above is constructive, and induces an algorithm to extract simple
Ly-rules out of axioms in Axy,.

Ezample 3. Let (b) be the axiom p; D (=p1 D (op1 D p2)). Consider the rule
0/{t : p1 D (-p1 D (op1 D p2))}. Using the invertibility of (=D) we obtain
an equivalent rule 0/{f : p1,f : —p1,f : op1,t : p2}. By Lemma 2] we get
0/{f :p1,f:=p1, f : op1}. The primitive rule {{t : p1},{t: =p1}}/{f: op1} (or
{{t:p1},{t: op1}}/{f : =p1}) then follows by Lemma [l

3 Step 2: Extracting Semantics

We define finite-valued semantics, using partial non-deterministic matrices, for
every calculus in G.

3.1 Partial Non-deterministic Matrices

Partial non-deterministic matrices were introduced in [6] in the context of la-
belled sequent calculi. They generalize the notion of non-deterministic matrices
by allowing empty sets of options in the truth-tables of the logical connectives.
This feature makes it possible to semantically characterize every G € G. Below
we shortly reproduce and adapt to our context the basic definitions from [6].

Definition 9. A partial non-deterministic matrix (PNmatrix) M for L consists
of: (i) a set Vaq of truth values, (ii) a subset Dag C Vi (designated truth values),
and (iii) a truth-table opq : V"™ — P(Vam) for every n-ary connective o of L.

Definition 10. Let M be a PNmatriz for L, and W be a set of L-formulas
closed under subformulas.
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1. A W-valuation is a function v from W to some set V (of truth values). A
wffz -valuation is also called an L-valuation.

2. A Wh-valuation v is called M-legal if its range is YV, and it respects the
truth-tables of M, i.e. v(o(¥1,...,1¥n)) € opm(v(¥h1), ..., v(hy)) for every
compound formula o(1,...,¢9,) € W.

3. A W-valuation v satisfies an L-sequent s for M (denoted by v Enm s) if
either v(¢) € Dag for somet: ¢ € s, or v(p) & Daq for some [ : ¢ € s.

4. Given an L-sequent s, I—}/\V/, s if v Em s for every M-legal W-valuation v.
We write by s instead of l—j’\’fcﬁ s.

Clearly, every (ordinary) matrix can be identified with a PNmatrix, in which all
truth-tables take only singletons.

Ezxample 4. The (positive fragment of the) standard classical matrix can be iden-
tified with the PNmatrix M i+ defined as:

1. VMLK+ ={f,t}, DMLK+ = {t}.
2. AM, 10 VM, o1s and Dy, . are defined according to the classical truth-
tables (singletons are used instead of values, e.g. Ay, (£, f) = {f})-

Fact 2. Mg+ is sound and complete for LK™ (i.e. Fpx+ s iff FM, or 8)-

3.2 PNmatrices for U-extensions of LK+

Until the end of this section, let G be some U-extension of LK+. The main
idea behind the construction of a PNmatrix Mg for G is to use truth values as
“information carriers” (along the lines of [I]) in the following sense. In addition to
determining whether ¢ is “true”, the truth value of ¢ contains also information
about the “truth/falsity” of all the formulas of the form x¢ for * € Y. To this end,
instead of using the truth values {f,¢}, we use extended truth values, which are
tuples over { f,t} of size |U|+ 1. The first element of each such a tuple u, denoted
by u?, is reserved for representing the “truth/falsity” of ¢. Each connective x € U
is then (arbitrarily) allocated one of the remaining elements. We shall denote
by u* the element of u allocated for x € U. Thus whenever ¢ is assigned the
truth value u, ¢ is “true” iff u® = t, and for each x € U, xp is “true” iff u* = t.
However, in constructing Mg not all the possible tuples will be used as truth
values: only those that “respect” the primitive rules of G (cf. Def. ). This is
formalized as follows:

Notation 1. We denote by Vi the set of all (|U| + 1)-tuples over {f,t}.

Definition 11. A tuple u € Vi satisfies a Uy -premise q, if either ¢ = {u® : p1},
or q = {u* : %p1} for some x € U. u respects a primitive rule Q/{b : xp1} if
u* = b whenever u satisfies every q € Q.

Definition 12. V., (the set of truth values of the PNmatriz Mg) is the set
of all tuples in Vi which respect all primitive rules of G. In addition, the set of
designated truth values Dagg, is {u € Vamg | u® = t}.
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Ezample 5. Suppose that U = {—}, and that the only primitive rule of G is
{{f : p1}}/{t : -p1}. A pair u € Vay, respects (= —) iff v~ = ¢ whenever
u® = f. Thus we obtain Var, = {{f, 1), {t, f),(t,t)} (here u~ is the second
component of each pair). The designated values are: Dy, = {(t, f), (¢, t)}.

Having defined the truth values of Mg, we proceed to providing a truth-table
>m, for each (unary) connective > € Y. This is done according to the onevar
rules of G of the form Q/{b: x> p1}.

Definition 13. Let> € U. For every u1 € Vg, >me (u1) is the set of all tuples
u € Vg such that: (i) u® = u%; and (ii) for every onevar rule of G of the form
Q/{b: x> p1}, if ur satisfies every q € Q then u* =b.

Intuitively, condition (i) forces the information about the “truth/falsity” of ¢
carried in the truth value of >g (in the first bit of this tuple) to be equal to the
one carried in the truth value of ¢.

Ezample 6. Following Example Bl suppose that G’s only onevar rule of the form
Q/{b:xp1}is {{f :p1}}/{f : 7 p1}. Let us explain, e.g., how -, ((¢, f)) is
obtained. The only tuple from Vaq, = {(f, 1), (¢, f), (¢, t)} satistying condition (i)
(that is, whose first component is (¢, )™ = f) is u = (f, ¢). Condition (ii) holds
trivially for w, as (¢, f) does not satisfy the premise {f : p1} of the above rule.
Thus we obtain: —ap, ((¢, f)) = {(f,t)}. Similarly, we get ~ a1, ({f, ) = {{¢, )},
and _‘Mc(<t’t>) = {<t7 f)a <t7t>}'

To complete the construction of M, we provide the truth-tables of the binary
connectives, using the twovar rules.

Definition 14. A pair of tuples (ui,us) € Vi 2 satisfies a Uy -premise q, if u
satisfies q. (u1,us) satisfies a Us-premise q, if ua satisfies q.

Definition 15. Let o € {A,V,D}. For every ui,uz € Ve, ome (U1, uz) is the
set of all tuples u € YV, satisfying: (i) u® € OM, 1ot (ud,u3); and (i) for every
twovar rule of G of the form Q/{b: x(p1 op2)}, tf (u1,u2) satisfies every q € Q
then u* = b.

Intuitively, condition () ensures that ¢ behaves as the corresponding classical
connective, and condition (i7) provides the correspondence between the truth-
table of ¢ and the twovar rules that involve <.

Ezample 7. Following Example Bl suppose that G’s only twovar rule of the form
Q/{b : x(p1 Ap2)} is (= —A)1 (see Fig. 2)). A pair of values (u1,uz) € Vs>
satisfies the premise of (= —A); iff u7 = ¢. In this case we require that for every
u € A (u1,u2) we have v~ = t. Thus we obtain the following table for A:

A 5D {t, f) {t,t)
(e {0 {0} {(f,0)}
(&, ) {03 & 1), (60} & 1), (&, 1)}
to {0 {1 {(t.t)
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3.3 Soundness and Completeness

We turn to prove the correctness of the construction of M. We establish strong
forms of soundness and completeness, to be used later in the characterization of
analyticity of G. The main idea is to maintain a correlation between the formulas
used in the derivation, and the formulas from the domain of the valuations. In
what follows W is an arbitrary set of £y;-formulas closed under subformulas. We
use the following additional notations and definitions:

Notation 2. Let s be an Ly-sequent.

1. subls] denotes the set of subformulas of all Ly-formulas occurring in s.
2. s is called a W-sequent if sub[s] C W.
3. We write =0 s if there exists a proof of s in G consisting only of W-sequents.

Definition 16. The sets Ut (W) and U~ (W) are defined as follows:
U™ (W) =W\{*xp € W | x € U, * is not a proper subformula of a formula in W}
U W) = WU % | % €U, € U~ (W)}

Example 8. For U = {—} and W = {p1,p2, ~p1, "p2,p1 V P2, ~p1 V p2,~(p1 V
p2)}, we have U~ (W) = {p1,p2, —p1,p1 V P2, p1 V p2}, and UT(W) = W U
{==p1,~(—p1 V p2)}.

Remark 2. Note that ¢ € U~ (W) whenever ) € UT (W) for some * € U.

The weaker notion of satisfaction, introduced in the following definition, is
needed later to characterize (a generalized form of) analyticity.

Definition 17. A U~ (W)-valuation v : U~ (W) — Vy w-satisfies a UT(W)-
sequent s if there exists some labelled formula b : 1 € s, such that either (i) v
does not have the form xp and v(1)° = b; or (i1) 1 = xp (for some x € U and
peU (W)) and v(p)* =b.

Theorem 2 (Soundness). Let s be a W-sequent. Ifl—lé+(w) s, then every Mg-
legal U~ (W)-valuation w-satisfies s.

Proof. Tt suffices to show that whenever an Mg-legal U™ (W)-valuation w-
satisfies the premises of some application of an Ly-rule r = Q/s of G consisting
solely of formulas from U™ (W), it also w-satisfies its conclusion. Consider such
an application of r inferring o(s) U ¢ from the set {o(¢) Uc | ¢ € Q}, where ¢
is an Ly-sequent, and o is an Ly-substitution. Assume that o(p1) = ¥ and
o(p2) = ¥a. Let v be an Mg-legal U~ (W)-valuation, and suppose that v w-
satisfies o(q) U ¢ for every g € Q). We prove that v w-satisfies o(s) U ¢. Clearly,
if v w-satisfies ¢, then we are done. Suppose otherwise. Then our assumption
entails that it w-satisfies o(q) for every ¢ € . We show that in this case v
w-satisfies o(s) (and so it w-satisfies o(s) U c). For r € LK™ the claim is easy
and left for the reader. Otherwise, r is a simple rule. Three cases can occur:
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— Suppose that » = Q/{b : >p1} is a primitive rule. Note that since we only
consider applications of r consisting solely of formulas from U+ (W), we have
that >y € UT (W) and so 11 € U~ (W). The fact v w-satisfies o(q) for every
q € Q implies that v(y1) satisfies every ¢ € Q. To see this, consider the
following cases:

e Assume that ¢ = {b : p1}, and 91 does not have the form *p. Since v
w-satisfies o(q), v(11)° = b.
e Assume that ¢ = {b: p1}, and ; has the form *p. Since v w-satisfies
a(q), v(¢)* = b. Since v is Mg-legal, v(x¢)? = b.
e Assume that ¢ = {b: xp1}. Since v w-satisfies o(q), v(¢1)* = b.
In all cases, we obtain that v(v1) satisfies q. Now, since v(¢1) € Vg, v(¢1)
respects 7, and so v(11)” = b. Thus v w-satisfies {b : >t)1 }.

— Suppose that r = Q/{b: x> p1} is a onevar rule. As in the previous case,
v(1p1) satisfies every ¢ € Q. Thus, since v(>1)1) € >, (v(¥1)), we have
v(p1)* = b. Tt follows that v w-satisfies {b: x> }.

— Suppose that 7 = Q/{b: x(p1op2)} is a twovar rule. Similarly to the previous
cases, we have (v(11),v(12)) satisfies every g € Q). Thus, since v(1)1 ¢ 12) €
omg(v(th1),v(1h2)), we have that v(11 01be)* = b. It follows that v w-satisfies

{b!*(’(/}l 01/)2)}. O
Theorem 3 (Completeness). If every Mg-legal U~ (W)-valuation w-satisfies
urmw)
a W-sequent s, then ¢ S0-

Proof. Suppose that %*(W) s0. We construct an Mg-legal U~ (W)-valuation
v that does not w-satisfy sg. Call a set {2 of labelled Ly-formulas mazimal if
it satisfies the following conditions: (i) 2 consnsts of labelled Ly-formulas of

the form b: v for v € UT(W); (1) '7(1/{ M s for every Ly-sequent s C (2,
and (ii7) For every formula v e UT(W) and b € {f,t}, if b : ¢ € 2 then
I—Zé+(w) sU{b: ¢} for some Ly-sequent s C 2. It is straightforward to construct
a maximal set 2 that extends sg.

Note that the availability of the cut rule implies that for every ¢ € UT (W),
either f : 1 € 2 ort: ¢ € 2 (otherwise, we would have I—Zg;(w) stU{f: ¢}

ut(w)
and

(W =) and (= W)) and (cut) we could obtain Fg*(W) s1 U s2). Similarly, the
availability of the identity axiom implies that for every ¢ € UT(W), either

f:vddort: ¢ (otherwise, the fact that l_Zé"'(W) {f :4,t: ¢} would
contradict §2’s properties).

Let v : U=(W) — Vy be a U™ (W)-valuation defined by: v(1)? = t iff
f € 2, and for every x € U: v(1p)* =t iff f:xp € £2. Thus we have that for
every v € U= (W) and b € {f,t}, v(¥)? = biff b: ¢ & 2, and for every x € U
v(W)* =biff b:*xp & 2. We show that v does not w-satisfy sg. Let b : ¢ € s
such that 1 does not have the form xp. Thus ¥ € U~ (W), and since s C {2,
v(1))? # b. Similarly, let b : ¢ € so such that 1) does have the form 1) = % (for
some * € U and Ly-formula ¢). Thus ¢ € U~ (W), and since sg C 2, v(p)* # b.

To show that v is Mg-legal, we use the following properties:

so U{t: 9} for s1,s0 C §2, and by applying weakenings (the rules
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(¥) Let o be an Ly-substitution, such that o(p1) € U~ (W). If v(o(p1)) satisfies
a Ui-premise ¢ then Fg*(W) sUo(q) for some Ly-sequent s C 2.

To see this, note that if v(o(p1)) satisfies ¢ then one of the following holds:

—g="b:p; and v(o(p1))° =b. Thus b: o(p1) & 2, and since o(p1) € UT (W),

we obtain that I—ng(W) sU{b:o(p1)} for some Ly-sequent s C 2.

— q=b:%p1 and v(o(p1))*=b. Thus b : xo(p1) € 2, and since xo(p1) € UT(W),

we obtain that I—Zg;(w) sU{b:*0(p1)} for some Ly-sequent s C (2.

Similarly, we have the following:

(xx) Let g be a Us-premise or a Us-premise, and o be an Ly-substitution, such

that o(p1),0(p2) € U= (W). If (v(o(p1)),v(c(p2))) satisfies ¢, then I—Zé+(w)
sUo(q) for some Ly-sequent s C 2.

We show that Vay,, is the range of v. Let ¢ € U~ (W). To prove that v(¢)) € YV,
we show that v(1)) respects all primitive rules of G. Consider a primitive rule
of G, r = Q/{b : xp1}. Suppose that v(¢)) satisfies every ¢ € . We show that
v(1p)* = b. Let o be any L;-substitution, assigning 1 to pi. By (x), for every

i
g € Q, there exists some Ly-sequent s, C {2 such that I—Zé ) sq Uo(g). By

applying weakenings and the rule r, we obtain that I—Zé+(w) Ugeq Sq U {b: %}
(here we use the fact that i) € UT (W) since ¢ € U~ (W)). This implies that
b:xp & 2, and so v(¢p)* = b.

Finally, we show that v respects the truth-tables of Mg:

(1) Let >y € U~ (W) (where > € U). We show that v(bt)) € >y, (v(1))). By the
construction of >4, it suffices to show: (i) v(>1)° = v(1))>; and (ii) v(>)* = b
for every onevar rule r = Q/{b : x> p1} of G for which v(v)) satisfies every
q € Q. (¢) trivially holds using the definition of v. For (i7), let r = Q/{b: x> p1}
be a onevar rule of G, and suppose that v(v¢) satisfies every ¢ € Q. We prove
that v(>e))* = b. Let o be any Ly-substitution, assigning ¢ to p;. By (%) (note
that ¢ € U~ (W) since U~ (W) is closed under subformula), for every ¢ € Q,
there exists some Ly-sequent s, C {2 such that I—Zﬁ(w) sq U o(q). By applying
weakenings and the rule r, we obtain that I—%ﬁ(w) Ugeg S¢ U {b: x>} (note
that x>t € UT (W) since >1p € U~ (W)). This implies that b : x> € 2, and so
v(>Y)* = 0.

(2) Let 91 0 9p2 € U= (W) for o € {A,V,D}. We show that v(y; o 1s) €
ome (V(11), v(12)). Here it suffices to show: (i) v(¢1 © ¢2)* = b for every twovar
rule 7 = Q/{b : x(p1 ¢ p2)} of G for which (v(v¢1),v(12)) satisfies every ¢ € Q;
and (ii) v(o(¥1,12))° € opm, 4 (0(¥1)%,v(1h2)?). We prove (i) and leave (i) to
the reader. Let r = Q/{b : *(p1 © p2)} be a twovar rule of G, and suppose that
(v(1),v(w2)) satisfies every ¢ € Q. We prove that v(i1 ¢ 12)* = b. Let o be
any Ly-substitution, assigning 11 to p1, and 1o to pa. By (xx), for every g € @,

it

there exists some Ly-sequent sq C 2 such that I—Zé W) sq Uo(q). By applying
+

weakenings and the rule r, we obtain that I—Zé ) Ugeq 8¢ U b+ x(¥1 0 92)}



Automated Support for the Investigation of Paraconsistent and Other Logics 131

(note that *(11 © 12) € UT(W) since 91 ¢ 13 € U™ (W)). This implies that
b (1)1 0 1) € £2, and so v(h1 ©2)* = b. O

Corollary 1. For every Ly-sequent s, Fa s iff Fag .

Proof. The claim follows by choosing W = wfjz,, in Thm. 2land Thm. B3] (in this
case UT (W) =U~ (W) = W). Note that an Mg-legal Ly-valuation v w-satisfies
an Ly-sequent iff v = s (since v(x))? = v(vp)* for every Ly-formula x¢p). O

4 Semantics at Work

Let us take stock of what we have achieved so far. Given a Hilbert calculus
H € H we introduced an equivalent sequent calculus Gy € G and extracted a
suitable semantics out of it (the PNmatrix Mg,,). In this section we show how
to use M¢,, to prove the decidability of H and to check whether G is analytic
(in the sense defined below). If Gy is not analytic, M¢,, is used to define a
family of cut-free calculi for H.

Corollary 2 (Decidability). Given a Hilbert system H € H and a finite set
I'u{¢} of formulas, it is decidable whether I' by ¢ or not.

Proof. Follows by the soundness and completeness of Mg, for Gy, Thm. [
and the fact, proved in [6], that each logic characterized by a finite PNmatrix is
decidable. O

Roughly speaking, a sequent calculus is analytic if whenever a sequent s is prov-
able in it, it can also be proven using only the “syntactic material available
within s”. Usually this “material” is taken to consist of all subformulas occur-
ring in s (in this case ‘analyticity’ is just another name for the global subformula
property). However, weaker variants have also been considered in the literature,
especially in modal logic. In this paper we use the following:

Definition 18. A U-extension G of LK™ is U-analytic if for every Ly-sequent

s: g s implies that I—g+(3“b[“"}) s

Next, we show that Mg can be easily used to check whether G is U-analytic.

Definition 19. A PNmatriz M for L is called proper if Vg is non-empty and
om(x1, ..., xn) # 0 for every n-ary connective ¢ of L and x1,...,%, € Vaq.

Theorem 4. A U-extension G of LK™ is U-analytic iff Mg is proper.

Proof. (=) Suppose that M is not proper. First, if V., is empty, then ., 0,
and so (by Cor.[ll), ¢ 0. But, U™ (0) = 0, and clearly there is no derivation in G
that does not contain any formula. It follows that G is not U-analytic in this case.
Otherwise, there exist either some > € U and u € Vaq, such that by, (u) = 0,
or some ¢ € {A,V,D} and ui,us € Vaq, such that o, (ur,u2) = 0. We con-
sider here only the first case and leave the second to the reader. Define the
Ly-sequent s = {u® : p1} U {u* : xp1 | x € U} (where t = f and [ =1¢).
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We first prove that F¢ s. By Cor. [[l it suffices to show ., s. Suppose oth-
erwise, and let v be an Mg-legal Ly-valuations such that v fEaq, s. Then,
v(p1)? = u® and v(xp1)? = u* for every x € U. Since v is Mg-legal, we have
that v(p1)* = u* for every x € U. It follows that v(p1) = u. Since v is M-legal,
we have v(bp1) € >, (v(p1)). Clearly, this is not possible under the assumption

that >aqg (u) = 0. Next we claim that %+(SUb[S]) s (and so G is not U-analytic).
To see this, note that the {p;}-valuation defined by v(p1) = u is an Mg-legal

U~ (subls])-valuation that does not w-satisfy s. By Thm. 2] |7y (subls])

(<) Assume that M is proper and b‘u (subls]) ¢ for some Cu—sequent s. We
prove that t/g s. By Thm. B there exists an Mg-legal U™ (sub[s])-valuation v
that does not w-satisfy s. Being Mg proper, it is straightforward to extend v to
a (full) Mg-legal Ly-valuation v'. Note that v' g, s (since v(x1))? = v/ (¢)*
for every Ly-formula tp). Cor. [[l then entails that /¢ s. O

There are, however, calculi in G which are not U-analytic. This is the case, e.g.,
for the extension of HCL™ by axioms (n1), (n%), (b) and (o}) (cf. Fig. ). Its
corresponding sequent calculus induces a PNmatrix which is not proper (this
can be verified in the system Paralyzer), hence it is not {—, o}-analytic. When
G € G is not U-analytic, we start by transforming M into a finite family of
proper PNmatrices, which satisfy the following property:

Definition 20. ([6]) Let M and N' be PNmatrices for L. We say that N is a
simple refinement of M if Var €V, Dy = Dag NV, and opn(21,...,2n) C
om(x1,...,xn) for every n-ary connective o of L and x1,...,2, € V.

Theorem 5. For every finite PNmatriz M for L, there exists My ... M, finite
proper simple refinements of M, such that Fp=Fapm, fori=1,...,n.

Proof (Outline). Let M be a PNmatrix for £. Choose My,..., M, to be all
simple refinements of M which are proper PNmatrices. Based on the results in
[6], we show that Fa(=Fna,. (=) By Prop. 1 in [6], FaqChar for every simple
refinement A of M. Therefore, - Chaa,-

(<) Suppose that /g s. Thus v FEaq s for some M-legal L-valuation wv.
Thm. 1 in [6] ensures that there exists some M,, such that v is M;-legal. The
fact that v =g s easily entails that v fEaq, s, and so Fay, s. O

We can now apply the method of [3], which produces a cut-free sequent cal-
culus G which is sound and complete for any proper PNmatrix M, whose set
of designated truth values (Dag) is a non-empty proper subset of the set of
its truth values (Vaq), provided that its language satisfies the following slightly
reformulated condition of [3]:

Definition 21. Let M be a proper PNmatrix for L. We say that L is sufficiently
expressive for M if for any x € Vaq, there exists a set S of L-sequents, each of
which has the form {b: ¥}, for some b € {f,t} and ¥ € wffz in which p; is the
only atomic variable, such that the following condition holds:
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— For any M-legal L-valuation v and ¢ € wffz, v(p) = x iff v satisfies every
L-sequent in o(S) for M for any L-substitution o such that o(p1) = ¢.

Corollary 3. Let G € G be a U-extension of LK™ that is not U-analytic. We
can construct a family of cut-free sequent calculi Fg, such that for every sequent
s:bg s iff Fgr s for every G’ € Fg.

Proof. We start by constructing Mg. If Dy, = 0 or Dy = Vg, Mg has a
trivial corresponding cut-free calculus. For the rest of the cases, the claim follows
by Thm. ] using the method of [3]. Note that £y is sufficiently expressive for
any simple refinement of M. Indeed, for z € V4, define S, = {z° : p1}U{z* :
*p1 | * € U}. Let M be a simple refinement of Mg and let v be an M-legal
Ly-valuation. The required condition is met by the fact that for every x € U
and 0 € wffz,,, v(x0)° = v(0)* (by condition (i) in Def. [[3). O
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Abstract. The logic of Bunched implications (BI) and its variants or extensions
provide a powerful framework to deal with resources having static properties. In
this paper, we propose a modal extension of BI logic, called DBI, which allows
us to deal with dynamic resource properties. After defining a Kripke semantics
for DBI, we illustrate the interest of DBI for expressing some dynamic properties
and then we propose a labelled tableaux calculus for this logic. This calculus is
proved sound and complete w.r.t. the Kripke semantics. Moreover, we also give a
method for countermodel generation in this logic.

1 Introduction

The notion of resource is an important notion in computer science. The location, owner-
ship, access to and, indeed, consumption of, resources are central concerns in the design
of systems, such as networks, and in the design of programs, which access memory and
manipulate data structures like pointers. We are interested in studying such notions on
resources through logics with an emphasis on usable semantics and proof-theory. In this
context we can mention Linear Logic (LL) [5] that focuses on resource consumption
and the logic of Bunched Implications (BI) [[13] that mainly focuses on resource sharing
and separation. The BI logic and its variants, like Boolean BI (BBI) [11J13]], can be seen
as the logical kernel of so-called separation logics, that provides a concrete way of un-
derstanding the connectives in the context of program verification [[7/14]. Some recent
results on BI and BBI concern new semantics [4]], proof-search with labelled tableaux
and resource graphs [3l4] and (un)decidability of these logics [419]. Some extensions
or refinements have led to separation logics, like BI’s pointer logic (PL) [[7] that allows
us to express properties on pointers or BiLoc [1] that is based on resource trees and
captures the notion of place. In this context MBI logic [[12] extends BI with modalities
and a calculus a la Hennessy-Milner [10]] dealing with processes and resources.

We can remark that two kinds of dynamic are captured by BI, BBI and their exten-
sions. On the one hand, there are logics that transform resources into other resources,
which is a first kind of dynamic. On the other hand, there are logics where properties of
resources can change (called here dynamic properties) or not (called here static prop-
erties). For example, in BI logic the resource properties are static because if a resource
satisfies a property, it will always satisfies this property. The dynamic, that corresponds

* This work is supported by the ANR grant DynRes on Dynamic Resources and Separation and
Update Logics (project no. ANR-11-BS02-011).

S. Artemov and A. Nerode (Eds.): LECS 2013, LNCS 7734, pp. 134-[48] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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to the transformation of resources, is captured in LL by proofs and in PL by a calculus
a la Hoare [6]. Moreover in MBI, the dynamic is also based on resource transformation
because of a calculus 2 la Hennessy-Milner with judgements of the form R, E < R, E’,
which means that a process E performs an action a on a resource R in order to obtain
a resource R’ and then becomes a process E’. But the modalities & la Hennessy-Milner
can only express properties on R’ and E’, directly at the next state, but not on any reach-
able resource and process (or state), knowing that reachable means after performing any
action.

In this paper, we are interested in expressing some dynamic properties on resources
directly at level of formulae, on future states (and not only on the next ones) and in
dealing with interacting systems. Then we define a modal extension of BI, called DBI
(Dynamic Bunched Implications logic), in order to model some dynamic properties of
resources. We define a Kripke semantics for this logic, which is an extension of Kripke
semantics for BI with state constraints (a set of states with a preorder) introduced in
addition to resource constraints. We also give a labelled tableaux calculus in the spirit
of works on BI logic [3l4] but dealing with both resource graphs and state graphs.
This calculus is proved sound and complete w.r.t. this semantics, with generation of
countermodels in case of non-validity in DBIL.

2 The DBI logic

Bl logic is a logic that expresses sharing and separation properties on resources [[11113].
We present here a modal extension of BI, called DBI, which allows us to express some
dynamic properties on resources. The language £ of DBI is obtained by adding two
modalities [J and ¢ to the BI language [[13].

Let Prop be a countable set of propositional symbols, the language £ of DBI is
defined as follows, where p € Prop:

Xu=p|T|L|T|XAX|XVX|X5X|X*X|X—=X|0X|0OX

The negation is defined by: =X =X — L. We now define a Kripke semantics that can be
seen as an extension of the Kripke semantics of BI [4] based on a resource monoid. In
the case of DBI we consider a dynamic resource monoid with an explicit inconsistency,
and also a preorder set of states with an accessibility relation between states.

Definition 1 (Dynamic resource monoid). A dynamic resource monoid is a structure
M = (Ra ®.¢,T, E7S’ j) such that:

R is a set of resources and S is a set of states
ecRandmeR
— o:R X R — R such that:
- Neutral element: Vr € R, ree =cer=r
- Associativity: Vr,r2,r3 ER, r1e(rer3) = (rier)er
- Commutativity: Nri,r €ER, rierp,=ryer
— C C RXRisapreorder (on resources):
- Reflexivity: Vre R, rCr
- Transitivity: Yry,r,r3 €R, if ry T rpand ry C r3 then ry C 13
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— T € R is the greatest element: Yr € R, rCtandVr € R, reT=T.
— X C S xSisapreorder (on states)
— Compatibility (P): Vri,r,r3 €ER, ifri Erp thenrier;s Cryers

We note P(E) the powerset of the set E, namely the set of sets built from E. We call
e the unit resource (empty resource), T the inconsistent resource and e the resource
composition. A preordered set (S, <) is added to the Kripke’s BI semantics with S that
can be viewed as the states of a system and < as the accessibility (through transitions)
of states of the system.

Definition 2 (Dynamic interpretation). A dynamic interpretation is a function [-] :
Prop — P(R x S), that verifies the following properties, for any s € S and p € Prop:

— Monotonicity (K): ¥r,r' € R such that r C 7, if (r,s) € [p] then (¥,s) € [p]
— Inconsistency (BC): Vr € R such that T C r, (r,s) € [p]

As we see the dynamic interpretation makes the resource properties non static: the in-
terpretation of a propositional symbol is not only a set of resources (as BI), but a set of
pairs of resources and states.

Definition 3 (Dynamic resource model). A dynamic resource model is a triple K =
(M, [-], Ex) such that M is a dynamic resource monoid, [-] is a dynamic interpretation
and F g is a forcing relation on R x S x L defined as follows:

- nskEx piff (rs) € [p]

- rskEgliffeCr

- r,sFq T always

- nskEg LiffnCr

- nSEx OAVIiffrsEg Gand s Egq

- nsEx OVViffrsEg GorrnsExy

- rsFEx 0= YiffV' €R-(rCr and v sEx ¢) = sEx vy
- rsEx 0xyiff 37" €R-r o Crandr ,skx dandr’ sExy
- nsEx O Yiff V' eR-V sEx 0=rer sExy

- rsEx OO iff3s’ € S-s <5 and r,s' Fx

- rsExO0iff Vs €S s <5 =rsExd

The definition of the forcing relation is an extension of the BI forcing relation with the
cases for O and ¢. For instance r,s F4 O¢ means that a resource r at state s satisfies
Q0 if a state s’ can be reached from the state s (s < s') such that r in state s satisfies ¢
(r,s' Ex ¢). Now we define the notion of validity.

Definition 4 (Validity). A formula ¢ is valid, denoted F ¢, if and only if e,s Fg ¢ for
all dynamic resource models K (and all states s € S).

The notation ¢ = means that for all resources r and all states s of any dynamic
resource model XK, if r,s E ¢ then r,s F g .

We give two lemmas that hold for all dynamic resource models X, all formulae ¢, all
resources 7,7 € R and all states s’ € S.

Lemma 1 (Monotonicity). If r,s E¢ ¢ and r C 1/ then v, s F x 0.

Lemma 2 (Inconsistency). We have w,s F« ¢.
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3 Expressiveness of DBI

We have previously introduced a semantics for modelling resources having dynamic
properties. In this section we emphasize the interest of this modal extension of BI by
illustrating it through some simple examples.

The first example deals with the management of resources with dynamic properties.
In BI logic the propositional symbols are considered as static descriptions/properties of
resources. But, we know that resource properties are not always static. For example, if
we consider the price of gold and silver, it is a dynamic property depending not only on
the resource. Let us denote 7, the resource one ounce of gold” and r, the resource “one
ounce of silver”. Propositional symbols P, and P, are prices of rg and r; on January
Ist of the year y. Moreover, sy denotes the state of the market on January 1st of the year
y. With DBI we are able to express the evolution of the silver and gold price:

Tg ®75,51970 Fx (Pgmo *Psmo) A <>(P82012 *P52012)

It means that on January 1st of the year 1970 (s1970), a resource composed by one ounce
of gold and one ounce of silver (7, ® r) has two properties: it could be decomposed into
two resources respectively satisfying the properties Py, and Py, (Pg 470 * Ps,70) and,
in a future state, it could be decomposed into two resources respectively satisfying the
properties Pg2012 and PSZOIZ (PgZOIZ * PSZOIZ)'

The second example illustrates how with DBI and a dynamic resource monoid we
can deal with properties on interacting systems. A dynamic resource monoid can be
viewed as two interacting systems. Indeed a resource monoid can model a first system,
where resources are states of this system and the preoder on resources is the state reach-
ability of this system [2]. Furthermore, the dynamic part of a dynamic resource monoid
(set of states with a preorder), can be viewed as an automaton and easily models a sec-
ond system. Moreover, the dynamic interpretation can be viewed as the result of the
interaction of these systems. For example, (7,s) € [p] can express that, if a first system
is in state r and a second system is in state s then their interaction satisfies the property
p. Here the word interaction does not mean that one of these systems influences the
second one: the preorder on resources does not depend on states and the preorder on
states does not depend on resources. Then the interaction (r,s) € [p] means that there
are two free (non influencing) systems which can perform together an action, which
satisfies the property p if the first system is in state » and the second system is in state s.

Let us consider a message sent in a network and modelled with a resource monoid.
We consider only five states (resources) R = {e, Msent , M passing Mdelivered , T}, Where e is
the state with no message, 7 is the state with an error that occurs in the system, m1, S
the state where the message is sent, 7,4ssing 15 the state where the message is passing in
transit and mgejivereq 18 the state where the message is delivered. The relation C, where
reflexivity and transitivity are not represented, is:
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In a first step, there is no message (e¢). Then the message is created and sent (725 ).
In a third step, it is passing in transit (71 p4ssing) and then, in a fourth step, it is delivered
(Mgeliverea)- As we can remark, mpagsing © Mgens, DUt Mpagsing 1s the next state of myep,
and it is not a mistake. As M, can reach 1 ,4s5ing then we aim the properties of 1 p4gsing
to be satisfied by the resource mi,;. In other words, if a resource r satisfies a property
p, then all resources that can reach r satisfy p. This is the property (K) of Definition 2l
In this example, we only consider one message and then we define o by (¢ e r =) and
(rer =mif r# e and ¥ # ), but it is possible to consider states composed by more
than one message. We remark that 7 is the biggest resource (by definition of dynamic
resource monoid), so when an error occurs (7), all states are reachable: it is considered
that when an error occurs, it is impossible to predict the behavior of the system.

Now we define the following service as a second system, where reflexivity and tran-
sitivity of < are not represented. It contains four states S = {so,s1,52,53} with 5o as
initial state and in the state s3 our service reads the delivered messages.

Having defined a dynamic resource monoid we are able to express that when the
message is sent, it is possible that our service read this message, that iS: Men, S0 Fx
OPn,,.s» Where Py, is the propositional symbol “message read” that occurs when m is
delivered and the service is in state s3: [Py, ] = {(r,53) | Maetiverea E 1}

We have mgeiivered ;3 F o Prm,yoy- AS S0 = 53 then maejivered, S0 Fa OP,,,; (the DBI
modalities encode the reachability of states). As mie,; can reach myejiverea (Maelivered =

Mgent) then Mg, 5o F o OPp,,, (DBl monotonicity encodes the resource reachability).

4 A proof System for DBI

In this section, we propose a proof system for DBI, in the spirit of previous works on
labelled proof system for BI with resource graphs [4]]. We introduce some rules to deal
with modalities and also the notions of state labels and constraints, in order to capture
some dynamic aspects.

4.1 Labels for Resources and States

In labelled tableaux method for BI [4], there are labels and constraints in order to
capture some semantic information inside the proof system. Labels are related to the
resource set (R), a label composition is related to the resource composition (e) and rela-
tions on labels named label constraints are related to C. In DBI, the resource monoids
are dynamic and then there are two sets (for resources and states) and two relations (on
resources and states). Thus we introduce a new kind of labels and constraints to deal
with states. Let us now define labels and constraints for DBI.
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Definition 5 (Resource labels). L, is a set of resource labels built from a constant 1,
an infinite countable set of constants Y, = {c1,ca,...} and a function denoted o,

Xu=1|ci|XoX

where c; € Y. Moreover o is a function on L, that is associative, commutative and 1
is its unit. A resource constraint is an expression of the form x <y where x and y are
resource labels.

For example the resource label ¢ o 1 o ¢ o ¢y is equal to the resource label ¢j ocj o cp.
We denote xy the resource label x o y. Moreover we say that x is a resource sub-label of
y if and only if there exists z such that x oz = y. The set of resource sub-labels of x is
denoted E(x).

Definition 6 (Statelabels). L; is an infinite countable set of state labels (Ly={l1,12,...}).
A state constraint on such labels is an expression of the form x 'y, where x and y are
state labels.

Definition 7 (Domain). Let G, be a resource constraints set, the domain of G, denoted
D,(C), is the set of all resource sub-labels appearing in C,. In particular: D,(C,) =

UxSyEC,(‘Z:(x) U ‘Z:(y))

Definition 8 (Alphabet). The alphabet of a set of resource / state constraints is the set
of all label constants appearing in G/ C;.
In particular we have 4,(C;) =¥, N Dy () and Ay(Cs) = Uyqvec, 1, v}-

We can remark that C is reflexive, transitive and compatible. Moreover, < is reflexive
and transitive. These properties have to be captured by the constraint sets. For that we
introduce a notion of closure of constraints.

Definition 9 (Closure of resource constraints). Let C, be a set of resource constraints,
the closure of C; (denoted C,) is the least relation closed under the following rules such
that C, C G,

x<y y=z o) xy < xy ky<ky — x<y x<y x<y

v<z rex @ k< ky @ Ly @ j, @

r

We can remark that as these rules do not introduce new resource label constants, then

2.(G) = 4(C).

Definition 10 (Closure of state constraints). Let C; be a set of state constraints, the
closure of Cs (denoted C;) is the least relation closed under the following rules such
that C; C Gy

x4y x<y x<y y<z

x<1x (o y<y {r) x<z )

As illustration we consider Gy = {1 < lp,l» <1 13,13 < ls}. We have [} < I € C; because
Cs C G and we have [ <1 l4 € C; because

Lh <l hL<ls
(ts)
Lh<lh <<l
(1)
L <y
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Proposition 1. Let . be a set of resource constraints, the following properties hold:

1. Ifkx<ye(C thenx<xé€ (s
2. If x<ky€ C theny<ye (

Corollary 1. Let G, be a set of resource constraints, x € D, () iff x < x € G,

Lemma 3 (Compactness). Let C, (resp. C;) be a (possibly infinite) set of resource
constraints (resp. state constraints). If x <y € C, (resp. u < v € () then there exists a
Sfinite set Cy such that Cr C G, (resp. Cy € Gy) and x <y € Cy (resp. u v € Cy).

4.2 A Labelled Tableaux Method for DBI

We now define a labelled tableaux method for DBI in the spirit of previous works for
BI [4] and BBI [8].

Definition 11 (Labelled formula / CSS). A labelled formula is a 4-uplet (S, ,x,u) €
{T,F} x L x L, x Ly written S¢ : (x,u). A constrained set of statements (CSS) is a triple
(F,Cr,Cs), where F is a set of labelled formulae, C, is a set of resource constraints
and Cy is a set of state constraints, such that the following property, called (Pys;), holds:
ifSo: (x,u) € Fthenx <x€ Crandu <u € (.

A CSS (¥, G, G) is arepresentation of a branch in which the formulae are the labelled
formulae of F and the constraints on labels are the elements of C, and (. Our calculus
extends some principles of BI calculus by adding a second kind of labels (state labels)
and a set of constraints () for state labels.

A CSS (F, G, C) is finite iff F, C, and (; are finite. We define the relation < by:
(F,CCs)  (F',C,C)Yiff F C F'and C, C C and C; C C.. Moreover we denote
<.f}—f7 Crf, Cs_f> '\<f <,{]:, Cr, Cs> when <.f}—f7 Crfy Cs},‘) =< <.f}:7 Cry Cs) holds and <,{]:f, Crfy CY»/‘>
is finite.

Definition 12 (Inconsistent label). Lez (F , G, C;) be a CSS and x be a resource label.
X is inconsistent if there exist two resource labels y and z such that yz < x € C, and
TL: (y,u) € F. A label is consistent if it is not inconsistent.

Proposition 2. Let (F,C,, C;) be a CSS. The following properties hold:

1. Ify <x € G and x is a consistent label then y is a consistent label.
2. Ifxy € D,(C) is a consistent label then x and y are consistent labels.

Figure [] presents rules of labelled tableaux method for DBI. Let us remark that “c;
and c; are new label constants” means ¢; # c; € ¥, \ 4,(C;) and that ”/; is a new label
constant” means /; € Ly \ 4;(C;). We note @ the concatenation of lists. For example
le1;e2;e4] @ [eas e3] = [e1;ea5ea5 €45 €3]

Definition 13 (DBI-tableau). A DBI-tableau for a finite CSS (%o, Cy,, Cs,) is a list of
CSS (branches), built inductively according the following rules:

1. The one branch list [(Fo, Gy, Cs,)) is a DBI-tableau for (Fo, Gy, Csy)
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ToAY: (x,u) € F Ay FoAy: (x,u) € F -
({10 (), Ty : (x,1)},0,0) ({Fo: (x,)}1,0,0) | ({Fy: (x,)},0,0)
ToVy: (x,u) € ) Fovwy: (x,u) e F )
{To: (x,u)},0,0) | ({Ty: (x 1)},0,0) ({F: (x,u),Fy: (x,u)},0,0)
TI: (x,u) € F -
(0,{1 <x},0)
To—y: (x,u) € Fandx<y€ (G (T ]F(b—)\y ( u)€F F )
{Fo: (»u)},0,0) | ({Tw: (yu)},0,0) ({To: (cisu), Fy : (ci,u)}, {x < ¢i},0)
Toxy: (x,u) € F - Foxy: (x,u) € Fandyz<x€ G -
<{T¢ : (Civu)vTW (’j7 )} {Ll(’j <x} 0> <{]F¢ (yvu)}7070> ‘ <{]F‘V (17”)}7070>
To—y: (x,u) € F andxy <xy€ G T Fo—xy: (x,u) € F (Fr)
({Fo: (5,10)}1,0,0) | ({Tw: (x,)},0,0) ({0 (cinu). By : (xei, )}, {xe; < x¢;},0)
TOO: (x,u) € F FOo: (x,u) € Fandu<ve G
(0 (e )10, fu i) (WFo: ey
TO¢: (x,u) € Fandu<ve G o) IF.EId) C(xu)eF ¥0)
{To: (x,v)},0,0) ({Fo: (x,1:)},0,{u 9 1;})

Note: ¢;, ¢j and [; are new label constants.

Fig. 1. Tableaux rules for DBI

2. Ifthe list T, & [(F , G, G)) @ Ty, is a DBI-tableau for (o, Gy, Cs,) and

cond({F, G, )
<9:]aCr]aCS]> | | <9_—kaCrkaCSk>

is an instance of a rule of Figure [l for which cond({F ,C;, G;)) is fulfilled, then
the list Tm@ [<,‘]’—U.‘7’—13Cru Crl,CsU Csl>y,<.‘}— U,l]:k,CrU CrkaCSUCS‘k” @‘2;’1 isa
DBI-tableau for (Fo, Gy, Cs,)-

A DBI-tableau for a formula ¢ is a DBI-tableau for ({F¢: (1,11)},{1 < 1},{li <11 }).

It is possible to prove, by observing rules of the tableaux method for DBI, that new
CSS, obtained by applying a rule, respect the condition (Peg) of Definition [[1l Then,
for all branches (¥, G, G;) of a DBI-tableau for a formula ¢, as F¢ : (1,/;) € F, then
1<le(CGandle€ D(G).

A first kind of rules concerns (TT), (F —), (T), (F—), (T{) and (FO). These rules
introduce new constraints and also new label constants (c;, ¢; and [;), except for (TT)
that only introduces a new constraint. Let us illustrate the (T¢) rule. To apply this rule
on a CSS (¥, G, ) on a labelled formula TO® : (¢1,3) € F, we choose a new label
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which does not appear in . For example, we say that /19 € C;. Thus, by choosing [,
we can apply the rule, getting the new CSS (F U{T¢: (c1,l10)}, G, GU{l3 < lio}). We
notice the new state constraint /3 <1 /1o added to the set of constraints. Let us observe
that the (T) rule introduces two new resource labels. Concerning the rule (F—x), as
Fy : (xc;,u) is added to the set of labelled formulae, xc; has to belong to G, in order to
satisfy the condition (P.) of Definition[ITl By adding xc; < xc; to G, xc; belongs to C;
and so (Pyys) is satisfied.

A second kind of rules concerns (T —), (Fx), (T—), (FO) and (TO). These rules
have a condition on a closure of label constraints. In order to apply one of these rules
we have to choose an existing label which satisfies the condition and then apply the rule
using it. Otherwise, we cannot apply such rules. We illustrate the (TO) rule: let a CSS
(F,Cr, Cs) such that TO¢ : (c1,/1) € F. To apply this rule, we have to choose a state
label [ such that [} <1/ € (. If we consider that /1 <, € (; then we can decide to apply
the rule using /», getting the CSS (F U{T¢ : (c1,2)}, G, Gs). Let us observe that (Fx)
rule needs to choose two labels y and z such that yz < x € .

Definition 14 (Closure condition). A CSS (F, G, Cs) is closed if one of the following
conditions holds:

1. To: (x,u) € F,Fo: (yu) € F andx<y€
2. FI: (x,u) € Fand1<x€ G

3. FT:(xu)eF

4. Fo: (x,u) € F and x is inconsistent

A CSS is open if it is not closed. A DBI-tableau is closed if all its branches are closed.

Definition 15 (DBI-proof). A DBI-proof for a formula ¢ is a DBI-tableau for & which
is closed.

Let us recall that we deal with labelled formulae with two kinds of labels: resource
labels and state labels. Each CSS (branch) contains two sets of constraints, one for
resources and another for states. Moreover the closure of such constraints can be repre-
sented by graphs. There are rules which modify constraint sets (graphs) and introduce
new labels. Other rules have a set of conditions that must be satisfied, by finding labels
satisfying it and then to solve constraints on the constraint graphs.

Let us now consider the formula ¢ = (O(P — $Q) AOP) — OQ and give a DBI-proof
for it. By Definition[I3] the following DBI-tableau [({F¢ : (1,1;)},{1 < 1},{l1 <1 })]
is a DBI-tableau for ¢. We introduce a new representation for a DBI-tableau, which is

(7] [ [G]
F(OWP = 00)AOP) =00 : (1,1) 1<1 L <l

We can observe that there are three columns, one for the labelled formula sets of the
CSS of the DBI-tableau ([F]), one for the resource constraint sets of the CSS of the
DBI-tableau ([C;]) and one for the state constraint sets of the CSS of the DBI-tableau
([G))- By applying some rules, we obtain the following DBI-tableau:
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(7] [C] 1G]
! |
Vo TO(P = QQ)AOP : (c1,h) c1 <ei
V7 FOQ : (e1,h)

\/4 TD(P —>I<>Q) : (Cl,ll)
\/3 TOP : (Cl,ll)

TP : (C[Jz) h<b

|
Vs TP = 00 (c1,1)
’ ~ \1 ’ /
FP: (Cl,lz) \/6 TQQ . (ClylZ)
| |

X TQ: (61,13) hL<l

FQ: (C17l3)

I
X

We decorate a labelled formula with \/; to show that we apply a rule on this formula at
step i. We remark that columns ([F], [C;] and [(]) are trees that contain two branches.
There are two branches because there are two CSS in the DBI-tableau. The branches
on the left (resp. right) contain the elements of the first (resp. second) CSS. We also
remark that all CSS are closed (denoted x). The CSS of the left is closed because
TP: (c1,k2) € F,FP: (c1,h2) € F and ¢; < ¢; € ;. Thus, by definition, this DBI-
tableau is a DBI-proof of (O(P — 0Q) A OP) - OQ.

5 Soundness and Completeness Results

The soundness proof uses similar techniques than the ones used in BI for a labelled
tableaux method [4]. The key point is the notion of realizability of a CSS (F, G, Cs),
that means there exists a dynamic model X and embeddings from resource labels to the
resource set (|-]) and state labels to the state set ([-]) of X such that if T¢ : (x,u) € F
then x|, [u] Fx ¢ and if Fd : (x,u) € F then |x], [u] Fx 0.

Definition 16 (Realization). Let (F,C,, ;) be a CSS. A realization of it is a triple
(K, 1-1,[.1) suchthat K = (M, [-],E ) is a dynamic resource model, M = (R,e,e,m,C
S, 2), 1] D(G) = Rand [.] : A(Cs) — S, such that:

- 1] =e

|xoy] =
o (x,
IfFo: (x,

lx] o |y]
) € F then |x],[u] Eg ®
) € F then |x|,[u] Fx ¢

u
u
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- Ifx<ye€ ( then |x]
- Ifu<iv € G then [u]

Ly
vl

We say that a CSS/branch is realizable if there exists a realization of it. We say that a
tableau is realizable if it contains a realizable CSS/branch.

C
=

Lemma 4. Let (F,C, G) bea CSS and (K, |.|,[.]) a realization of it. Forallx <y €
G, |x] C |y| and forallu <v € G, [u] = [v].

Lemma 5. The closed DBI-tableaux are not realizable.

Lemma 6. The expansion rules preserve realizability, i.e., if a rule of the DBI-tableau
method is applied on a labelled formula of a realizable CSS then one of the obtained
CSS is realizable.

Theorem 1 (Soundness). Let ¢ be a formula, if there exists a DBI-proof of ¢ then ¢ is
valid.

Proof. Let T be a DBI-proof of ¢. Let us assume that ¢ is not valid. Then there exits a
dynamic resource model X such that e,s '« ¢. If we consider [1] =e and [[;] = s we
obtain a realisation (%, |.],[.]) of the initial CSS ({F¢: (1,44)},{1 < 1},{li < L}).
Thus, by Lemmal6l one branch of T is realizable. But by Lemma[3it is contradictory,
because as T is a DBI-proof, then 7 is closed. Thus ¢ is valid.

Before to study completeness we consider the countermodel extraction for DBI tableaux
method. The main idea consists in transforming resource and state constraints into a
dynamic resource monoid, from a branch (F, G, ;) which is not closed.

In order to obtain a countermodel, this transformation has to verify two properties:
ifTo: (x,u) € F thenx,ulFg ¢ andif Fd : (x,u) € F then x,u F« ¢. In order to satisfy
them, our method needs to saturate labelled formulae (to obtain a Hintikka CSS), that
means, for instance, if TOd : (x,u) € F then we want that x,u g [, so for all state
labels v such that u <tv € G, To : (x,v) € F has to be verified.

Definition 17 (Hintikka CSS). A CSS (¥, G, Gs) is a Hintikka CSS if for any formula
0,y € L and any label x,y € L, and u,v € L:

1. To: (x,u) € F orFo: (yu) € Forx<y<& (G

2. FL: (qu) € Forl <x¢& ¢

3FT:(qu)gF

4. Fo: (x,u) & F or x is consistent

5 IfTL: (x,u) € F then1 <x € (;

6. IFTOAY: (x,u) € F then To: (x,u) € F and Ty : (x,u) € F

7. FFOAY: (x,u) € F thenFo: (x,u) € F orFy: (x,u) € F

8 IfTovVvy: (x,u) € F thenTo: (x,u) € F or Ty : (x,u) € F

9. IfFoOVy: (x,u) € F thenFd: (x,u) € F and Fy: (x,u) € F

10. If To —»y: (x,u) € F thenVy €L, x<ye G =Fo: (yu) € F orTw: (yu) € F
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11. IfFO—=vy: (x,u) € FthenIy €L, x<y€ G andTo: (y,u) € F andFy: (y,u) €
F

12. If Toxy : (x,u) € F then Iy,z € Ly, yz<x € G and T : (y,u) € F and Ty :
(zu) € F

13. IfFoxy: (x,u) € F thenVy,z€ L, yz<x€ G =F:(y,u) € F orFy: (z,u) € F

14. If To—~vy: (x,u) € F thenVy € L., xy € D(C) = Fo: (y,u) € F or Ty : (xy,u) €
F

15. If Fo -y : (x,u) € F then Iy € L,, xy € D(G) and T : (y,u) € F and Fy :
(xy,u) € F

16. If TOG : (x,u) € F thenIv € L, u v € G and To : (x,v) € F

17. IfFOO : (x,u) € F thenVv €L, u<ive G =Fo: (x,v) € F

18. If TOG : (x,u) € F thenWv €L, u<ve G=To: (x,v) € F

19. If FOO : (x,u) € F then Ive€ L, u<iv e G andFo: (x,v) € F

The conditions (1), (2), (3) and (4) of Definition [I7] certify that a Hintikka CSS is
not closed. Others conditions certify that all labelled formulae of a Hintikka CSS are
saturated. Let us now define a function € that allows us to extract a countermodel from
a Hintikka CSS.

Definition 18 (Function Q). Let (F, C,, C;) be a Hintikka CSS and C,, be the restric-
tion of G, to constraints including only consistent labels. The function Q associates to
(F .G ) atriple QF, G, G)) = (M, [1.Fx) where 3 = (R,»,e,,C.,S, <), such
that:

- R=D,(Cro)U{r}, withw & D,(C,)

- S:_Q[S(CS)

- e = 1 .

— e isdefined by: Vry,r € R{rl er2=rorn ifn °n € Dr(Cro)
riern =T otherwise

-nCnifn<neiGeyorn=ma
- s1232ifs1 <€ G
(r,s) € [P]iff (r=m)or (¥ €R,¥Y Crand TP: (¥,s) € F)

Let (F, G, Cs) be a CSS and x € D,((,). We remark that x is a consistent label resource
if and only if x € D, () Indeed, if x € D,(C,) then by Corollary[I} x < x € ;. Thus,
as x is consistent, all resource labels and sub-labels of x are consistent by Proposition[2l
Thus x < x € G and x € Dy(Gr)- Now, if x € D, () then there exist xy < z € Grg
or z < xy € G- Therefore x is consistent otherwise xy < 7 & Gy 01 2 < Xy € Crgp-

Lemma 7. Let (F, C;, Cs) be a Hintikka CSS and Q((F , Gy, Cs)) = (M, [-],Ex ) where
M = (R,e,e,m,C,S,=). (M,[-],FEx) is a dynamic resource model.

Lemma 8. Let (F,C,, Cs) be a Hintikka CSS. Let Q((F , G, Gs)) = (M, [-],Ex ) where
M = (R,e,e,m,C, S, <X). For any formula ¢ the following properties hold.:

1. s ):7( (0]
2. IfFo: (r,s) € F and r consistent then r,s Fx ¢
3. IfTo: (r,s) € F and r consistent then r,s Eg 0
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Lemma 9. Let (F, G, C;) be a Hintikka CSS such that o : (1,s) € F. ¢ is not valid.

Proof. If the resource label 1 is inconsistent, then it is contradictory because F¢ :
(1,s) € ¥ and by condition (4) of Definition [[7} Thus 1 is consistent. By Lemma 7]
Q(¥F,G,G)) is a dynamic resource model. By Lemma 8] e,s 5 ¢ in this model.
Thus Q({F, G, C;)) is a countermodel of ¢ and then ¢ is not valid.

The proof of completeness consists in building a Hintikka CSS from a CSS which
cannot be closed, in the spirit of the proof developed for BBI [§]]. Then we need a fair
strategy and a oracle which contains all finite consistent (not closed but saturated) CSS.

Definition 19 (Fair strategy). A fair strategy is a labelled formulae sequence (S;F; :
(xi,ui))ien in {T,F} x L x L, x Ls such that any labelled formula occurs infinitely
many times in this sequence, that is {i € N | S;F; : (x;,u;) = SF : (x,u)} is infinite for
any SF : (x,u) € {T,F} x L X L, x L.

Proposition 3. There exists a fair strategy.
The main argument is that the set of labelled formulae is countable.
Definition 20. Let P be a set of CSS.

1. P is g-closed if (F,Cr,Cs) € P holds whenever (F,C,Cs) < (F',C/,C,) and
(F'.C,Cl) € P hold.

2. P is of finite character if (¥, G, Gs) € P holds whenever (F¢, Gy, Csf) € P holds
for every (F¢,Gr 1, Csr) <5 (F .G Cs).

3. P is saturated if for any (F , G-, Cs) € ‘P and any instance

cond (¥, G, C)
<9_—]aCr17C¥l> ‘ ‘ <9_—k7Crk?CSk>

of a rule of Figurelll if cond(F, G, G) is fulfilled then (F U F;, ;U G, GU Cy) €
P for at least one i € {1,...,k}.

Definition 21 (Oracle). An oracle is a set of non closed CSS which is <-closed, of finite
character and saturated.

Lemma 10. There exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau.

This oracle is the set of all CSS such that there exists no closed DBI-tableau for their
finite sub-CSS (<). Let us assume that there exists no DBI-proof of formula ¢ and
show that ¢ is not valid by constructing a Hintikka CSS. Let us note that ¢ denotes the
formula for which we are constructing a Hintikka CSS and ¢ denotes any formula. Let
Ty a initial DBI-tableau for @, we have

L To=[({Fo: (1,h)}, {1 <1} {li <ii})]
2. 7 cannot be closed



A Modal BI Logic for Dynamic Resource Properties 147

By Lemmal [I0] there exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau. Let P be such an oracle. By hypothesis we have ({Fo :
(1,0}, {1 < 1},{L <« 1}) € P. By Proposition B there exists a fair strategy. Let §
be such a strategy. We denoted S;F; : (x;,u;) the i formula of . We built a sequence
(Fi, Gri, Gsi)oxi as follows:

= (F0,Gro: Goo) = {Fo: (1,0} {1 <1}, {li < l})

- I (FiU{SiF; : (xi,u:) }, Griy Gi) € P then (Fii1, Grig 1, Gsi1) = (Fir Griy Gsi)

— I (FU{SiF;: (xi,u:) }, G, Gsi) € Pthen (Fiy1, Grir1s Gig1) = (FU{SiFi : (xi,u;) }U
F., GiU Gre, Gsi U Gse) such that F,, G, and G, are determined by:

Si K Fe G Gse
Foéo—wv {To:(a,u),Fy:(a,u;))} {xi<a} 0

T oxy  {To: (a,u;),Ty: (b,u;)} {ab<x;} 0

F ¢o—xy {To: (a,u;),Fy: (xia,u;)} {xia <xia} 0

T 1 0 (1<x} 0

T O {To : (xi,c)} 0 {ui<c}
F Oo¢ {Fo: (x;,¢)} 0 {u; < ¢}
Otherwise 0 0 0

with a = ¢i4+1, b = ¢2i42 and ¢ = ;5.
Proposition 4. For any i € N, the following properties hold:

CFe: (1) e Fy 1 <1€Ciandly <1; € Gy
- Fi € Fiv1, Gi € Grigr and G; C Giia

- (F,Gi,Gi)o<i €P

. /qr(Cri) - {l,C],Cz,...,CQ,'}

- A(Gi) Sl byl )

L AN W N~

We now consider the limit CSS (%, Cre, o) Of the sequence (¥, Gi, Gsi)oxi defined
by:

Foo = UTi and G = UCri and Cyoo = UC”-
i i i
Proposition 5. We have (Fe, Cro, Csoo) € P and for all labelled formulae S¢ : (x,u), if
(Fo U{SO: (x,u0)}, Croo, Csoo) € P then SO : (x,u) € Feo
Lemma 11. The limit CSS is a Hintikka CSS.

Theorem 2 (Completeness). Let © be a formula, if ¢ is valid then there exists a DBI-
proof for @.

Proof. We suppose that there is no DBI-proof of ¢ and show that ¢ is not valid. Our
method allows us to build a limit CSS that is a Hintikka CSS, by Lemmal[ITl By property
1 of Propositiond] Fo: (1,1;) € ;. By Lemmal[0] ¢ is not valid.
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6 Conclusion

We have defined and studied a modal extension of BI, called DBI, that allows us to
express dynamic properties about resources. We propose a Kripke semantics for DBI
and a labelled tableaux method that is proved sound and complete w.r.t. this semantics.
Compared to previous works on proof-theory in BI, the labelled tableaux method for
DBI deals not only with a so-called resource graph but also with a state graph. Moreover
we show how we can generate countermodels in case of non-validity.

Future works will be devoted to the study of other extensions of BI with other modal-
ities such that fragments of SCRP/MBI [12]], in order to mix dynamic resources and
processes, and also of the semantics based on Petri nets for such extensions.
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Abstract. Probabilistic Automata (PAs) are a widely-recognized mathematical
framework for the specification and analysis of systems with non-deterministic
and stochastic behaviors. In a series of recent papers, we proposed Abstract Prob-
abilistic Automata (APAs), a new abstraction framework for representing possi-
bly infinite sets of PAs. We have developed a complete abstraction theory for
APAs, and also proposed the first specification theory for them. APAs support
both satisfaction and refinement operators, together with classical stepwise de-
sign operators.

One of the major drawbacks of APAs is that the formalism cannot capture PAs
with hidden actions — such actions are however necessary to describe behaviors
that shall not be visible to a third party. In this paper, we revisit and extend the
theory of APAs to such context. Our first main result takes the form of proposal
for a new probabilistic satisfaction relation that captures several definitions of
PAs with hidden actions. Our second main contribution is to revisit all the oper-
ations and properties defined on APAs for such notions of PAs. Finally, we also
establish the first link between stochastic modal logic and APAs, hence linking
an automata-based specification theory to a logical one.

1 Introduction

Nowadays, systems are tremendously big and complex and mostly result from the as-
sembling of several components. These components are usually designed by teams
working independently but with a common agreement on what the interface of each
component should be. These interfaces, also called specifications, precise the behaviors
expected from each component as well as the environment in which they can be used,
but do not impose any constraint on how the components are implemented.

Instead of relying on Word/Excel text documents or modeling languages such as
UML/XML, as is usually done in practice, a series of recent works recommend re-
lying most possibly on mathematically sound formalisms. Mathematical foundations
that allow to reason at the abstract level of interfaces, in order to infer properties of
the global implementation, and to design or to advisedly (re)use components is a very
active research area, known as compositional reasoning [18]. Any good specification
theory shall be equipped with a satisfaction relation (to decide whether an implemen-
tation satisfies a specification), a refinement relation (to compare sets of implementa-
tions), a logical conjunction (to compute intersection of sets of implementations), and

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 149-[163] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Implementation PA (left) and specification APA (right) of a coffee machine

a structural composition (to combine specifications). Additionally, properties such as
precongruence of composition with respect to refinement [[18] shall also be satisfied.

Building good specification theories has been the subject of intensive studies among
which one finds classical logical specifications, various process algebrae such as CSP,
or Input/Output automata/interfaces (see [19/7124]]). Recently, a new series of works has
concentrated on modal specifications [20]], a language theoretic account of a fragment
of the modal mu-calculus logic which is known to admit a more flexible and easy-to-use
compositional refinement method than those carried out in CSP [204293]].

As soon as systems include randomized algorithms, probabilistic protocols, or inter-
act with physical environment, probabilistic models are required to reason about them.
This is exacerbated by requirements for fault tolerance, when systems need to be ana-
lyzed quantitatively for the amount of failure they can tolerate, or for the delays that may
appear. As Henzinger and Sifakis [18]] point out, introducing probabilities into design
theories allows assessing dependability of IT systems in the same manner as commonly
practiced in other engineering disciplines.

In recent works [S11016], we proposed Constraint Markov Chains (CMCs), a com-
plete specification theory for pure stochastic systems, namely Markov Chains (MCs).
Roughly speaking, a CMC is a MC equipped with a constraint on the next-state prob-
abilities from any state. An implementation for a CMC is thus a MC, whose next-state
probability distribution satisfies the constraint associated with each state. Contrary to In-
terval Markov Chains where sets of distributions are represented by intervals, CMCs are
closed under both composition and conjunction. Later, in [8], the CMC approach was
extended to handle those systems that combine both stochastic and non-deterministic
behaviors, i.e., Probabilistic Automata (PA). APAs, whose theory is implemented in
the APAC toolset [9], is the result of combining Modal Automata and CMCs — the ab-
stractions for labelled transition systems and Markov Chains, respectively. Like other
modal-based specification theories, our formalism can be used in various areas, includ-
ing abstract model checking and compositional reasoning.

The specification theory induced by APAs is more expressive than any classical spec-
ification theories where both implementations and specifications are represented by the
same object. As an example, Segala’s theory assumes that both specifications and im-
plementations are represented with PAs [31126]. Such an approach does not permit to
represent an infinite set of non-deterministic behaviors in a finite way. On the other hand,
while satisfaction relation between PAs[25] can be expressed with classical notions of
(stochastic) simulations [31], ours requires the use of a rather more complex definition
of equivalence relation. Consider the implementation (left) and specification (right) of
a coffee machine given in Figure [l The specification specifies that there are two pos-
sible transitions from initial state /: a may transition labeled with action r (reset) and a
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must transition labeled with action ¢ (coin). May transitions, which may not be imple-
mented, are represented with dashed arrows. Must transitions, which shall be present in
any implementation of the specification, are represented with plain arrows. The proba-
bility distributions associated with these actions are specified by the constraints ¢, and
(¢, respectively. One can see that the implementation gives a more precise behavior
of the coffee machine: action r loops back to initial state ¢ with probability 1, while
coin leads to state a (coffee) with probability .6 and to state b (tea) with probability
.4. Satisfaction between implementation and specification lifts the classical notion of
simulation for PAs to APAs as follows: (1) all must transitions of the specification must
be matched with transitions in the implementations, and (2) all transitions in the imple-
mentation must be matched with may transitions in the specification. Additionally, we
have to check that the probability distributions in the implementation are matched with
probability distributions in the specification that satisfy the given constraints.

Contribution. In the process of incremental design (as well as for other applications), it
may be necessary to incrementally widen the scope of implementations. Usually, the lat-
ter is done by permitting the addition of hidden actions also called stutter steps [3144] in
the implementation. Introducing such actions is known to complicate the definition and
the computation of operations such as bisimulation/simulation [31]. Moreover, it may
break up some properties such as precongruence of refinement with respect to com-
position [31]]. The objective of this paper is to extend the APA specification theory by
considering implementations with stuttering steps. Our first contribution is the definition
of a new stochastic satisfaction relation for APAs. This relation generalizes stochastic
simulation to the APA level. We then study various notions of stuttering and compare
their expressivity. We also study the impact of adding stuttering on various properties
such as precongruence of refinement with respect to composition. Finally, we define
and study ML-(A)PA that is a new modal logic for APAs and stuttering PAs. ML-(A)PA
generalizes the PML logic [22121] of Larsen et al. from PAs to APAs and stuttering PAs.

Related Work. A wide spectrum of different approaches study stuttering for non
stochastic systems [32] and stochastic ones [28/112]]. In [2]], the authors define weak
bisimulation for fully probabilistic processes. This is in contrast with our model that
combines both probabilistic and non-deterministic aspects. In [28/1]], weak bisimula-
tion is extended to strictly alternating systems that combine both non-determinism and
probabilities. Although such systems are similar to PAs, it is known that weak (branch-
ing) bisimulation for alternating systems is incomparable to weak bisimulation for non-
alternating systems [30]]. Moreover, it is worth mentioning that above mentioned works
report on computing and checking weak bisimulation between probabilistic systems,
while our aim is to propose a notion of weak simulation (satisfaction) between a proba-
bilistic system and a probabilistic specification that represents a possibly infinite set of
implementations.

In [14]), the author defines a notion of constraints on states to represent sets of prob-
ability distributions. Although this formalism resembles the one of constraints used
in APAs, the constraints in [14] are used in a different context. Indeed, while we use
constraints to represent sets of probabilistic transitions, [[14] uses them to replace the
non-deterministic choice between internal transitions by probability distributions.
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Finally we mention that the problem of defining compositionality in the probabilistic
setting with hidden steps has also been addressed in various settings [30J27423115/14/16].
In particular [[15] defines a general parallel composition operator for CSP that deals with
hidden steps, and [16] suggests the removal of hidden steps through a transformation of
CSP models. In both papers, the systems considered are strictly alternating and results
are obtained with respect to a ready-trace notion of equivalence on processes, which
makes it incomparable to our notion of stuttering satisfaction between specifications
and implementations.

2 A Probabilistic Satisfaction for Abstract Probabilistic Automata

2.1 Abstract Probabilistic Automata

Let Dist(.S) denote a set of all discrete probability distributions over a finite set S and
By ={T,L}.

Definition 1. A PA[31] is a tuple (S, A, L, AP, V, sq), where S is a finite set of states
with the initial state sy € S, A is a finite set of actions, L: S x A x Dist(S) — Ba
is a (two-valued transition) function, AP is a finite set of atomic propositions and 'V :
S — 247 is a state-labeling function.

Consider a state s, an action a, and a probability distribution u. The value of L(s, a, 1)
is set to T in case there exists a transition from s under action a to a distribution p on
successor states. In other cases, we have L(s,a, u) = L.

We now switch to Abstract Probabilistic Automata (APA)[8]], that is a specification
theory for PAs. Let S be a finite set. We define C'(.S) to be the set of constraints defined
over discrete probability distributions on S. Each element ¢ € C(S) describes a set
of distributions: Sat(y) C Dist(S). Let B3 = {T,7, L}. APAs are formally defined as
follows.

Definition 2. An APA[8] is a tuple (S, A, L, AP, V| sq), where S is a finite set of states,
so € S, A is a finite set of actions, and AP is a finite set of atomic propositions.
L: S x AxC(S) — Bs is a three-valued distribution-constraint function, and V :

S — 22" maps each state in S to a set of admissible labelings.

APAs play the role of specifications in our framework. An APA transition abstracts tran-
sitions of a certain unknown PA, called its implementation. Given a state s, an action
a, and a constraint (, the value of L(s, a, ) gives the modality of the transition. More
precisely the value T means that transitions under ¢ must exist in the PA to some distri-
bution in Sat(y); ? means that these transitions are allowed to exist; L means that such
transitions must not exist. Again L may be partial. A lack of value for given argument
is equivalent to the | value, so we will sometimes avoid defining | -value rules in con-
structions to avoid clutter, and occasionally will say that something applies if L takes
the value of |, meaning that it is either taking this value or it is undefined. The function
V labels each state with a subset of the powerset of AP, which models a disjunctive
choice of possible combinations of atomic propositions.
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2.2 A Probabilistic Satisfaction for APA

We now study the notion of satisfaction that relates a probabilistic automata
P = (Sp,A,Lp,AP,Vp,sl’) to its corresponding APA specification N =
(S, A, L, AP, V, sq), The notion of satisfaction proposed in [8] directly relates distri-
butions in P to distributions in N. As in the notion of probabilistic forward simulation
presented in [25]], we now extend this notion to account for linear combinations of dis-
tributions in N, hence generalizing results in [§]].

Definition 3. Let S and S’ be non-empty sets, and p, p' be distributions; jn € Dist(S)
and p' € Dist(S"). We say that p is simulated by ' with respect to a relation R C
S x 8" and a correspondence function 6 : S — (S’ —[0, 1)) iff

1. forall s € S, §(s) is a distribution on S" if 1(s) > 0,
2. foralls'" € S, Y g u(s)-d(s)(s") = p'(s), and
3. whenever 6(s)(s") > 0 then (s,s’) € R.

We write 11 @‘75a i meaning that u is simulated by 1’ with respect to R and 6, and we
write i €g ' iff there exists a function § such that p €5 11'.

We then define probabilistic satisfaction as follows.

Definition 4 (Probabilistic Satisfaction). Let P = (Sp, A, Lp, AP,Vp,st) be a
PAand N = (S,A,L,AP,V,sy) be an APA. A binary relation R C Sp x S is a
probabilistic satisfaction relation iff, for any (s, s') € R, the following conditions hold:

- foralla € Aand ¢’ € C(S) such that L(s',a,¢") = T, there exists a distribution
wp € Dist(Sp) such that Lp(s,a,up) = T and there exists i/ € Sat(y') such
that pp Egr 1,

- forall a € A and pp € Dist(Sp) such that Lp(s,a,pup) = T, there exists
O1,..-pn € C(S) such that for all i, L(s',a,p;) # L and there exists u; €
Sat(p;) and p; € [0,1] such that )", p; = 1 and pp €r (>, pijti), and

- Vp(s) e V(s').

We say that P probabilistically satisfies N, written P |=p N iff there exists a proba-
bilistic satisfaction relation R such that sf’ R sq. The set of probabilistic implementa-
tions of APA N is defined by [N]p ={P | P Ep N}.

It is easy to see that this extension of satisfaction is conservative with respect to all
the good properties presented in [8]. In the rest of this paper, we study the impact of
adding stuttering to the specification theory.

3 Stuttering for Abstract Probabilistic Automata

We now study an extension of the APAs specification theory where implementations
may have stutter steps. In the rest of this section, we first introduce various notions of
stuttering for PAs and then we extend the satisfaction relation to them. Later, we shall
study the impact of stuttering on refinement and structural/logical composition.
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Fig. 2. Stuttering PA P with m and e as hidden Fig.3. Stuttering transition 1 —* y* in
actions P where stuttering happens both before and
after visible action c.

3.1 Introducing Stutter Actions

Consider a PA P = (Sp, A, Lp, AP, Vp, s{’). We must assume that any state s’ that
can be reached from a state s by following a sequence of hidden actions H C Ap
cannot be distinguished from s, i.e., have the same valuation as s.

Definition 5 (Consistent set of hidden actions). Let P = (Sp, Ap, Lp, AP, Vp, s¥)
and let H C Ap. We say that H is a consistent set of hidden actions regarding P if
Vs € Sp andVa € H, if there exists (o € Dist(Sp) such that Lp(s,a, ) = T, then
Vs' € S, we have u(s') > 0= Vp(s') = Vp(s).

The following example shows that, as it is the case for other specifications theories (see
e.g. [13]), there are various ways to formally define a stuttering transition.

Example 1. Consider the stuttering PA P given in Figure[2] and whose set of consistent
hidden action is given by {m,e}. P represents a coffee machine that has two modes.
Action m allows choosing between the two modes. In mode A, represented by state 2
and its successors, the action c leads to states labeled with tea and coffee with proba-
bility .5 each. From states 4 and 5, either the coffee machine can be reset with action r,
but will stay in the same mode, or can suffer an error (action e) that leads to deadlock
states 8 and 9. In mode B, one can again choose a sub-mode with action m, leading to
states 6 and 7 that deliver tea and coffee with different probabilities.

Considering different notions of stuttering will lead to different sets of executions for
the PA P. As an example, stuttering could be restricted to happen only before visible
actions. The execution presented in Figure@represents a stuttering execution 1 —* I

(informally, one can reach distribution i from state 1 by following action c interleaved
with hidden actions), where the internal action m happens before the visible action c,
leading to a distribution f. Remark that such an execution could not be considered if
we restricted stuttering to happen only after a visible action. The unfolding of P given
in Figure [3 presents two stuttering executions 1 — * 17 and 2 A 15 where in both
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cases stuttering only happens after the visible action. Again, such executions could not
be considered if we restricted stuttering to happen only before a visible action. Finally,
the execution presented in Figure [3] represents a stuttering transition 1 —— ** in P

where stuttering happens both before and after the visible action c.

As illustrated in the example above, the choice made in the definition of stuttering will
have a strong impact on the executions allowed in PAs. In order to be as general as
possible, we choose to allow stuttering to happen both before and after visible actions.
The only restriction we make is that stuttering cannot happen independently of visible
actions, that is, for each stuttering transition, a visible action must be taken. This leads
to the following definition.

Definition 6 (Stuttering transitions for PAs). Let P = (Sp, Ap, Lp, AP, Vp, st be
a PA, and let H C Ap be a consistent set of hidden actions. We define the notion of
‘H-stuttering recursively as follows:

Base case: Forall s € Sp, a € Ap and u € Dist(Sp), we say that s %) L iff

L(s,a,p) = T. As a shortcut, we write s %) Ly if there exists b € H such that
s %ﬂu.
Recursion: For all s € Sp, k > 1, a € Ap and p* € Dist(Sp), we say that
s —hu iff

1. either a ¢ H and there exists u1 € Dist(Sp) and b € H such that

L(s,b, 1) = T and the following conditions hold:
e for all states v € Sp such that py(r) > 0, there exists k' < k and p, €

Dist(Sp) such that r %k/ Ly, and
e forall s € Sp,

pi(s) = > plr)ue(s)

reSp
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2. orthere exists py € Dist(Sp) suchthat L(s,a, p1) = T and a subset R C Sp

such that the following conditions hold:
e for all states r € R, we have pi(r) > 0 and there exists k' < k and

Wy € Dist(Sp) such that r %k/ Ly, and
e forall s € Sp,

p(s") = > rer () (s') s € R
pi(s’) + ZTGR 11 (P (s') otherwise.

We say that s %*u* if there exists k > 0 such that s %ku*.

Informally stuttering can happen either before (case 1) or after (case 2) taking the visible
action a. Remark that both cases are not exclusive and can interleave. If stuttering occurs
before action a, then all successor states » must admit a stuttering transition involving
a. In such case, the overall probability of reaching a state s’ is the sum through all
stuttering paths. If stuttering occurs after action a, then we denote by R the set of
successor states from which we stutter, and by Sp \ R the set of states in which we
stop. Remark that the set R is dynamic in the sense that a different set R may be chosen
for each step of a stuttering transition. In this case the overall probability of going to
a state s’ € R is the sum through all stuttering paths, while the overall probability of
going to a state s’ ¢ R is the addition of the probabilities of going to s’ directly (without
stutter) with the the sum through all stuttering paths.

In the rest of the paper, we denote by %)2 (resp. %)E) stuttering transitions where

stuttering only happens after (resp. before) the visible action a, obtained by removing
item 1. (resp. 2.) from the recursive part of Definition[6l

Example 2. Consider the PA P = (Sp, Ap, Lp, AP, Vp,1) given in Figure 2 and a
distribution * such that p*(5) = p*(8) = p*(10) = p*(11) = .25.

The situation is represented in Figure Bl Let us see how to derive that 1 {ﬁ} 3.
We follow the following description.

1. for [1 (ﬁ}?’u*]., we have ¢ ¢ {e,m} and Lp(1,m,pu1) = T with m € {e,m}
(case 1). states 2 and 3 are the only states for which p1 gives a non-zero probability,
and 2 {ﬁ}zug and 3 (ﬁfug, with p*(s') = 1 (2)p2(s’) + p1(3)ps(s’).

2. for [2 {e‘i,f}2/‘2]" we have Lp(2, ¢, ub) = T (case 2) and there exists R = {4} C
Sp such that yz5(4) > 0and 4 (ﬁ} !114. In addition, we obtain after simplifications:
8 pp(4)pa(8) = .5
505 15(5) +0 =5
We observe that [4 (ﬁ} 114] is a base case.

3.3 {%ﬂz}ng]. We have ¢ ¢ {e,m} and Lp(3,m, u5) = T withm € {e,m} (case
1). states 6 and 7 are the only states for which p% gives a non-zero probability, and

6 {ﬁ)}lug and 7 {ﬁ)}lm with p3(s") = pb(6)pe(s’) + ws(7)pr(s"). We observe

that [6 {ﬁ}l we) and [7 (ﬁ}l p7) are base cases.
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Finally, we obtain the following result:
1" (5) = p1(2)(p2(5)) = .25 1" (10) = 11 (3)(p3(6) 16 (10) + p5(7) 7 (10)) = .25

1" (8) = p1(2)(p2(4)pa(8)) = 25 p*(11) = pa(3)(u3(6) s (11) + p3(7) 7 (11)) = .25

3.2 On Stutter Satisfaction

We now introduce the notion of stutter satisfaction, that is an extension of Definition @
for stuttering PAs.

Definition 7 (Stutter Satisfaction). Let P = (Sp, Ap, Lp, AP, Vp,st)) be a PA, let
N = (S,A,L,AP,V,so) be an APA such that A C Ap and H = Ap\ A is a consistent
set of hidden actions for P. A binary relation R C Sp x S is a stutter satisfaction
relation iff; for any (s, s') € R, the following conditions hold:

1. foralla € Aand ¢ € C(S), if L(s',a,¢’) = T, then there exists a distribution
w* € Dist(Sp) such that s % *u* and there exists u € Sat(y') such that
K ER 1,

2. for all u* € Dist(Sp) and a € A such that s % *p*, there exist constraints
©1,- .- pn € C(S) such that for all i, L(s',a,¢;) # L and there exist p; € [0, 1]
and p; € Sat(yp;) such thaty”, p; = 1 and p* €r (Y, pipti), and

3. Vp(s) e V(¢).

We say that P = (Sp, Ap, Lp, AP, Vp, st’) stutter-satisfies N = (S, A, L, AP, V, s),
written P =* N, iff A C Ap,H = Ap \ Ais a consistent set of hidden actions for P,
and there exists a stutter satisfaction relation R such that s’ R so. The set of stuttering
implementations of APA N is given by [N]* = {P | P E* N}. Algorithms to decide
such satisfaction relation can be obtained directly from those proposed in [[10J11] for
the case where there exists no stuttering loops. Otherwise, the problem is still open.

Example 3. The PA P given in Figure Plsatisfies the specification of the coffee machine
of Figure [T] with the notion of stuttering satisfaction given above. The stuttering satis-
faction relation R is as follows: R = {({1,2,3,6,7},1),({4,5,8,9,10,11},C)}. We
show how state 1 of P satisfies state I of the specification and leave it to the reader to
verify that the rest of the relation R satisfies the axioms of Definition[7l above.

— In the specification, we have L(I, ¢, ¢.) = T. There exists a matching distribution
in P: we have 1 {ﬁ} 3%, with p* defined in Example 2] and p* € p. with
te 1 C— 1€ Sat(pe),

— in the implementation, we can verify that for all a € {r,c} and 3 such that
1 (ﬁ} *p, we have a matching constraint and distribution in the specification:

either ¢, or ., and
- Vp(1) = {ready} € V(I) = {{ready}}.
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Remark that the choice we made on the definition of stutter transitions by allowing
stuttering to happen both before and after the visible action strongly influences the
notion of stuttering satisfaction. We denote by =% (resp. =73 the notion of satisfaction
obtained by replacing the general notion of stutter transition %) * with the restricted

notion %) % (resp. % 5)- The following theorem states that the different notions of

stutter satisfaction |=*, =% and =% cannot be compared in general.

Theorem 1. There exists PAs P, P4 and Pp and an APA N such that (1) P =% N,
PR N,and P =" N; (2) Py =% N, Py &5 N, and Py * N; (3) Pg % N,
Pp =% N, and Pg |=* N.

Refinement. We now consider Refinement that is a relation that allows us to compare
APAs in terms of sets of implementations. In Segala’s theory, refinement boils down
to (stochastic) simulation. In the context of APAs, refinement usually extends the def-
inition of satisfaction. Extending Definition [7] would require to consider stuttering in
the specification itself, which is not the topic of this paper. For this reason, we use the
refinement relation proposed in [11].

Definition 8 (Refinement([11])). Let N = (S, A, L,AP,V,s9) and N =
(S",A, L', AP,

V' sy) be APAs. R C S x S’ is a refinement relation if and only if, for all
(s,s") € R, the following conditions hold:

1. Yae A, Vo' € C(S"), if L' (s',a,¢") =T, then Jp € C(S) : L(s,a,p) =T and
Yu € Sat(yp), Iu’ € Sat(yp’) such that p Er 1/,

2. ¥Ya € A, Vo € C(S), if L(s,a,9) # L, then Vu € Sat(p), o' € C(5') :
L'(s';a,¢") # Land 3’ € Sat(y') such that n Er 1/, and

3. V(s) CV'(s).

We say that N refines N’, denoted N <y, N’, if and only if there exists a refinement
relation relating so and sg. In [11]], it is shown that for two given APAs N7 and Na, we
have N1 2w No = [N;] C [N2], where [N;] represent PAs without stuttering steps.
The following theorem extends this result to the case of PAs with stuttering steps.

Theorem 2. Let P be a PA and let N and N’ be APAs. If P =* N and N <y N/,
then P =* N'.

Conjunction. We now turn our attention to the interaction between stuttering and con-
junction. Due to space limitations, the definition of conjunction is given in [12]. As
proven in [11]], conjunction is the greatest lower bound with respect to refinement [11]],
i.e. for all APAs Ny, Ny and N3, (N1 <w NQ) AN (Nl <w Ng) — N =w
(N2 ® N3). Furthermore, it coincides with the intersection of sets of (non-stuttering)
implementations: for all Ny and Na, [N1] N [N2] = [N1 ® Na]. In the following, we
show that this result is preserved with the new notion of stuttering implementation.

Theorem 3. Given two APAs N1 and Na, it holds that [N1]* N [Nz]* = [N1 ® Nao]*.
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PA Semantics APA Semantics

4 sE" ¢ — skEY
Vil Vp(s) € Vi V(s) C Via
Y1 A s|E" ¢y and s|ET 12 slE ¢1 and s[= 2

, Ju” € Dist(Sp)st.s %*N* and 3y € C(S)st. L(s,a,9) = T and
(@)spt) (Z{S/ e (&) p> (\m € Sat(p) Y (o | wiury (s B p)

| Vi € Dist(Sp), if s —"p", then vy € O(S), if L(s,a,¢) # L, then
[a]opt) (Z{s/ ey () p> (\m € Sat(p) Y (| wipry (s B p)

Fig. 6. Semantics of ML-(A)PA for PAs and APAs

4 Logical Characterization

We now turn our attention to proposing a modal logic ML-(A)PA for PAs and APAs. This
logic resembles the Probabilistic Modal Logic PML [22/21]. The main differences be-
tween PML and ML-(A)PA are that (1) ML-(A)PA is designed to specify properties for
both PAs and APAs, while PML is restricted to PAs, (2) The semantics of ML-(A)PA for
PAs considers stuttering transitions, while PML does not, and finally (3) unlike PML,
ML-(A)PA is disjunction and negation-free. We first give the syntax of ML-(A)PA and
semantics for PAs and APAs, then we study its soundness and completeness.

Vo=V | Y1AYe | (a)opd” | [a]sp?,

where Vg € 22" a € Ab € {>,>},and p € [0,1]. Let F'(A, AP) be the set of
formulas over A and AP.

We define the semantics of ML-(A)PA for both PAs and APAs. Let P = (Sp, Ap,
Lp,AP,Vp,sl’) be aPA and let N = (S, A, L, AP,V, s9) be an APA. Assume that
A C Ap is aset of actions such that H = Ap \ A is a consistent set of hidden actions
for P. We define the satisfaction relation between states of P (resp. V) and formulas
in F(A, AP) by induction as in Figure[6l We say that P satisfies v, written P[=* 1) iff
Ap \ Ais a consistent set of hidden actions for P and s}’ [=* 1/. We say that NN satisfies
¥, written N[= ¢ iff sof= . The logic ML-(A)PA and its relation to PAs/APAs is
illustrated in the following example.

Example 4. Consider the specification of a coffee machine N given in Figure [I] and
the implementation P of the coffee machine given in Figure 2l Let A = {r,c} and
AP = {ready, tea, coffee} and consider the following formulas in F'(A, AP):

1 m=[c]>1{{coffee}, {tea}} 3 =(c)> 5{{coffee}}
Y2 m=[r]>1 ([]>1{{coffee}, {tea}}) vy =={{ready}} A (¢)>1 ([r]>1{{ready}})
One can verify that N[= ¢, N[E 12 and N[= 4 and that N does not satisfy 1)3.

Indeed, state C' of N does not satisfy the formula {{coffee}}. However, one can ver-
ify that P[=* 11 A ¥ A 13 A 14 In particular, the satisfaction of 13 is ensured by
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{{a}. 181}
© e Surle) o {a) {0}

a0 T (u(B)=.5) A (u(C) =.5) —(1)—

a1
{{0}}@

Fig.7. APA N< such that N<|= s  Fig.8. PA P< such that P< =" N< and P<[£* 95

{{aﬁ

the existence of a distribution p* given in Figure [3] such that 1 {e—cnz} *u* in P and
p* ({coffee}) = .5.

We now show that ML-(A)PA is sound and complete with respect to stutter satisfaction.
We start with soundness.

Theorem 4 (Soundness). Let N = (S, A,L,AP,V,sg) be an APA and ¢ €
F(A, AP) be a formula. If N|= 1), then for all PA P = (Sp, Ap,Lp, AP, Vp,st)
such that P |=* N, it holds that P[=* .

It is worth mentioning that soundness would not hold if ML-(A)PA was equipped with
negation or with the comparison operators {<, <}. This is illustrated in the following
example.

Example 5. Assume that ML-(A)PA is equiped with the dual comparison operator <.
Consider the formula ¢5 ::= [a]< 5{{a}}.

Consider APA N< given in Figure [l Since {{a},{5}} € {{a}}, we have that
state C' of N< does not satisfy {{c}}. It thus follows that N< [= 5. Now consider PA
P< given in Figure [8] One can verify that P< =* N<. However, since state 2 of P<
satisfies {{a}}, we have that P<[~* 5. A similar example can be produced to prove
that ML-(A)PA would not be sound if equiped with negation.

We now show that ML-(A)PA is complete with respect to stutter satisfaction.

Theorem 5 (Completeness). Ler N = (S, A, L, AP, V, sy) be a consistent APA and
let € F(A, AP). It holds that (VP € [N]*, P[=* v) = N[= 9.

This theorem is proved using an induction technique on the structure of the formula.
Due to space limitations, the proof is reported to [[12]. It is worth mentioning that com-
pleteness would not hold if ML-(A)PA was equiped with disjunction. This is illustrated
in the following example, adapted from [3]].

Example 6. Let Ny = ({4, B},{a}, Lv,{a, 8}, V4, A) be an APA such that V|, (A) =
W (B) = {{a}} and L(A, a, ) =? with u € Sat(p) iff u(B) = 1. Assume that ML-
(A)PA is extended with disjunction and consider the formula ¢s = (a)>1{{a}} V
[a]>1{{B}}. Since state A does not have any must transition, we have that N\ [~
(ay>1{{a}}. Moreover, since V4, (B) Z {{8}}, we have that Ny [~ [a]>1{{5}}. Asa
consequence, Ny [= 1. However, any implementation of N, either contains no tran-
sition at all, thus satisfying [a]>1{{5}}. or it contains a transition leading to {a} with
probability 1, thus satisfying (a)>1{{@}}. As a consequence, VP € [Ny]*, P[=* vs.
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In addition to being sound and complete with respect to stutter satisfaction, ML-(A)PA
also matches the notion of conjunction of APAs, as shown in the following theorem.

Theorem 6. Let Ny and Ny be two APAs and let 1 and )9 be two formulas. If N1 [=
Y1 and No= 1o then (N1 © Na)[= (1 A 2).

S On Composition of APAs and Stuttering

We now show that the notion of structural composition that allows to combine APAs
does not preserve precongruence of refinement. Consider the classical notion of com-
position between PAs, originally proposed by Segala [31] and extended to the setting
of APAs [8]. This notion of composition allows to synchronize on a common set of
actions A while allowing independent progress on the complement of A. When com-
posing APAs, the resulting constraint represents products of distributions satisfying the
original constraints. Due to space limitations, the formal definition is given in [12].
Unfortunately, the notion of stuttering satisfaction as presented in Section [3is not com-
patible with composition. This is formalized in the following theorem. Due to space
limitations, the detailed proof is given in [12].

Theorem 7. There exists two compatible (in the sense of composition) PAs Py and P
and two compatible (in the sense of composition) APAs Ny and Ny such that P; E=* Ny,
P2 ):* N2andP1 HAPZ %*Nl HANQ.

The reason for this setback is the well known problem of distributed scheduling [17].
When composing two stuttering PAs, one allows interleaving of atomic stuttering steps
from both sides, which generates extra behaviors. Our solution is to transform a PA P
with a consistent set of hidden actions # into a non-stuttering PA P that satisfies the
same APA specifications as P. This transformation removes stuttering by computing
all the distributions that can be reached with stuttering in P and inserting them in the
transition function of P*.

Definition 9. Let P = (Sp, Ap,Lp, AP, Vp, st') be a PA and let H be a consistent
set of hidden actions for P. Define the PA P" = (Sp, Ap \ H, L%, AP, Vp, s{’) such
that

Vs € S,a€ Ap \ H,p € Dist(S), L¥E(s,a,p) =T < s %)*,u in P.

By construction, P™ is such that for all APA N = (S,Ap\ H,L,AP,V, sq), we have
PE*N «— P*EN.

We have the following theorem.

Theorem 8. Let P, = (Sh, Ab, LL AP VL, s') and Py = (S3, A%, L%, AP?,

V2, [4]s5?) be two PAs such that AP'"NAP? = (). Let N, = (S', A', L', AP*, V1, s})

and Ny = (S?, A% L2 AP? V2, s%) be APAs such that H; = AL\ Ay and Hy =

A% \ Az are consistent sets of hidden actions for Py and P respectively, with H, NA; =
HoN Ay = 0. Forall A C Ay N Ag, we have the following:

—~H —~H
if Py =* Nyand Py =* Nythen P, ||5 Po = Ny |5 Na.



162 B. Delahaye, K.G. Larsen, and A. Legay

6 Future Work

In the future, we will study specifications with stuttering. This is complex as one will
have to define a notion of may/must stutter transition in the specification APAs. The
main problem is the constraints on distributions: the recursive step in the stutter transi-
tions will have to take into account and propagate that the stutter remains valid for any
solution of the constraints. Finally, all the work should also be implemented in APAC.
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Abstract. We consider the call-by-value A-calculus extended with a
may-convergent non-deterministic choice and a must-convergent parallel
composition. Inspired by recent works on the relational semantics of lin-
ear logic and non-idempotent intersection types, we endow this calculus
with a type system based on the so-called Girard’s second translation of
intuitionistic logic into linear logic. We prove that a term is typable if
and only if it is converging, and that its typing tree carries enough infor-
mation to give a bound on the length of its lazy call-by-value reduction.
Moreover, when the typing tree is minimal, such a bound becomes the
exact length of the reduction.

Keywords: A-calculus, linear logic, non-determinism, call-by-value.

1 Introduction

The intersection type discipline provides logical characterisations of operational
properties of A-terms, namely of various notions of termination, like head-, weak-
and strong-normalisation (see [I0J22], and [I6] as a reference). The basic idea is
to look at types as the set of terms having a given computational property — the
type aN S being the set of those terms enjoying both properties a and 5. With
this intuition in mind, the intersection is naturally idempotent (N a = «).

Another way to understand the intersection type discipline is as a deductive
system for presenting the compact elements of a specific reflexive Scott domain
(see e.g. [1, §3.3]). The set of types assigned to a closed term captures the inter-
pretation of such a term in the associated domain. Intersection types are then
a powerful tool for enlightening the relations between denotational semantics,
syntactical types and computational properties of programs.

Intersection types have been recently revisited in the setting of the relational
semantics Rel of Linear Logic (LL). Rel is a semantics providing a more quanti-
tative interpretation of the A-calculus than Scott domains. Loosely speaking, the
relational interpretation of a A-term M not only tells us whether M converges
on an argument, but in case it does, it also provides information on the number
of times M needs to calll its argument to converge. Just like the intersection

* Partially supported by grants from DIGITEO and Région Ile-de-France.
! The notion of calling an argument should be made precise by specifying an opera-
tional semantics, which is usually achieved through an evaluating machine.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 164-[[78] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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type discipline captures Scott domains, non-idempotent intersection type sys-
tems represent relational models. In this framework the type a; N --- N oy may
be more accurately represented as the finite multiset [aq, ..., ax]. The lack of
idempotency is the key ingredient to model the resource sensitiveness of Rel —
while in the usual systems M : o N 3 stands for “M can be used either as data
of type a or as data of type 8”7, when the intersection is not idempotent the
meaning of M : [a, ] becomes “M will be called once as data of type o and
once as data of type 7. Hence, types should no longer be understood as sets of
terms, but rather as sets of calls to terms.

The first intersection type system based on Rel has been presented in [IT],
where de Carvalho introduced system R, a type discipline capturing the re-
lational version of Engeler’s model. More precisely, he proved that system R,
beyond characterising converging terms, carries information on the evaluation
sequence as well — the size of a derivation tree typing a term is a bound on
the number of steps needed to reach a normal form. Similar results are obtained
in [6] for a variant of system R characterising strong normalisation and giving a
bound to the longest S-reduction sequence. More recently, Ehrhard introduced
a non-idempotent intersection type system characterising the convergence in the
call-by-value A-calculus [I4]. Also in this case, the size of a derivation tree bounds
the length of the lazy (i.e. no evaluation under \’s) call-by-value -reduction se-
quence. Our goal is to extend Ehrhard’s system with non-determinism.

Our starting point is [9], where it is shown that the relational model D of the
call-by-name A-calculus provides a natural interpretation of both may and must
non-determinism. Since Rel interprets A-terms as relations, the may-convergent
non-deterministic choice can be expressed in the model as the set-theoretical
union. The must-convergent parallel composition, instead, is interpreted by using
the operation D ® D —o D obtained by combining the mix rule D® D — DB D
with the contraction rule D% D —o D, this latter holding since the call-by-name
model D has shape ?A for A = DY —o1. We will show that the same principle
(may-convergence as union of interpretations and must-convergence as mix rule
plus contraction) still works in the call-by-value setting.

Ehrhard’s call-by-value type system is based on the so-called “second Girard’s
translation” of intuitionistic logic into LL [I5J19]. The translation of a type «
is actually given by two mutually defined mappings (o — «o? and o — af)
reflecting the two sorts (values and computations) at the basis of the call-by-
value A-calculus:

Vo= L (a N 6)1} — af —o 607 af = !av7

where ¢ is an atom. Hence, the relational model described by Ehrhard’s typing
system yields a solution to the equation ¥V ~ !V — !V in Rel. Since in this
semantics —o is interpreted by the cartesian product and ! by finite multisets,
a functional type for a value in this system is a pair (p,q) of types for compu-
tations, and a type for a computation is a multiset [aq,...,ay,] of value types
(representing n calls to a single value that must behave as aq, ..., ay).
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In order to deal with the must non-determinism, namely the parallel composi-
tion, we must add to the translation considered by Ehrhard a further exponential
level, called here the parallel sort:

=1, (a = P) =a° — Al af =la’, al =2a¢. (1)

This translation enjoys the nice property of mapping the call-by-value A-calculus
into the polarised fragment of LL, as described by Laurent in [17]. Then, our typ-
ing system is describing an object in Rel satisfying the equation V ~ 1V —o 7!V,
where the ? connective is interpreted by the finite multiset operator. In this
setting a value type is a pair (p,[q1,...,¢s]) of a computational type p and a
parallel type, that is a multiset of computations ¢, ..., g,. Intuitively, a value
of that type needs a computation of type p to create a parallel composition
of n computations of types qi,...,qn, respectively. Notice that, following [9],
the composition of the mix rule and the contraction one yields an operation
MY ® 7V —o 7V which is used to interpret the parallel composition.

To avoid a clumsy notation with multisets of multisets, we prefer to denote a
-multiset [av, ..., am] (the type of a computation) with the linear logic multi-
plicative conjunction a1 ®- + - ® @y, & -multiset [g1, . . ., g,] (the type of a parallel
composition of computations) with the multiplicative disjunction g1 % -+ % g,
and finally a pair (p, [q1,- - ., ¢qn]) with the linear implication p — (g1 % - % ¢y).
Such a notation stresses the fact that the non-idempotent intersection type sys-
tems issued from Rel are essentially contained in the multiplicative fragment of
LL (modulo the associativity, commutativity and neutrality equivalences).

Contents. Several non-deterministic extensions of the A-calculus have been pro-
posed in the literature, both in the call-by-name (e.g. [9J12]) and in the call-by-
value setting (e.g. [7[13]). In the present paper we focus on the call-by-value
A-calculus, first introduced in [21], endowed with two binary operators + and ||
representing non-deterministic choice and parallel composition, respectively. The
resulting calculus, denoted here A, is quite standard and its operational seman-
tics is given in Section [2] through a machine performing lazy call-by-value reduc-
tion. Following [9], we model non-deterministic choice as may non-determinism
and parallel composition as must. This is reflected in our reduction and in our
notion of convergence. Indeed, every time the machine encounters M + N in
active position it actually performs a choice, while encountering M || N it in-
terleaves reductions in M and in N; finally a term M converges when there is a
reduction of the machine from M to a normal form.

Section [ is devoted to provide the type discipline for A, based on the
multiplicative fragment of LL (as discussed above), and to define a measure | - |
associating a number with every type derivation. Such a measure “extracts” from
the information present in the typing tree of a term, a bound on the length of its
evaluation. In Section Ml we show that our type system satisfies good properties
like subject reduction and expansion. We also prove that the measure associated
with the typing tree of a term decreases by 1 at every reduction step, giving thus
a proof of weak normalisation in w for typable terms. From these properties it
ensues directly that a term is typable if and only if it converges. Moreover, thanks
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Bv-reduction +-reductions ||-reductions
Az M)V — M[V/z] M+N—>M (M || N)P — MP || NP
M+N— N V(M| N)= VM| VN

Contextual rules
M— M N — N M — M () M—M (%)
M|N—-M|N M|N=>M|N MNSMN VM=VM

Fig. 1. Reduction semantics for A . The condition (x) stands for “M # P || Q”.

to the resource consciousness of our type system, we are able to strengthen such a
result — we prove that, whenever M converges, there is a type derivation - M : «
(with « satisfying a suitable minimality condition) such that the associated
measure provides the exact number of steps reducing M to a normal form.

Finally, in Section Bl we discuss the properties of the model in Rel underlying
our system. As expected, the interpretation turns out to be adequate, i.e. a term
converges if and only if its interpretation is non-empty. On the other hand such a
model is not fully abstract — there are terms having different interpretations and
that cannot be (semi-)separated using applicative contexts. Our counterexample
does not rely on the presence of + and || .

2 The Call-by-Value Non-deterministic Machine

We consider the call-by-value A-calculus [21], extended with non-deterministic
and parallel operators in the spirit of [9]. The set Ay of terms and the set
V|| of values are defined by mutual induction as follows (where x ranges over
a countable set Var of variables):

Terms: M,N,P,Q:= V|MN|M+N|M|N Ayqy
Values: V= ao| M Vi

Intuitively, M 4+ N denotes the non-deterministic choice between M and N, while
M || N stands for their parallel composition. Such operators are not required to
be associative nor commutative. As usual, we suppose that application associates
to the left and A-abstraction to the right. Moreover, to lighten the notation, we
assume that application and A-abstraction take precedence over + and || .

The a-conversion and the set FV(M) of free variables of M are defined as
usual in A-calculus [5, §2.1]. A term M is closed whenever FV (M) = 0.

Given M € Ay and V € V|, we denote by M[V/x] the term obtained by
simultaneously substituting the value V for all free occurrences of x in M, subject
to the usual proviso about renaming bound variables in M to avoid capture of
free variables in V. Hereafter terms are considered up to a-conversion.
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Definition 1 (Operational semantics). The operational semantics of A is
gwen in Figure[dl We denote by —* the transitive and reflexive closure of —.

The side condition (%) on the context rules for the application avoids critical
pairs with the ||-rules: this is not actually needed but it simplifies some proofs.
A term M is called a normal form if there is no N € Ay such that M — N.
In particular, all (parallel compositions of) values are normal forms. Note that
when M is closed then either it is a parallel composition of values or it reduces.

Definition 2. A closed term M € A converges if and only if there exists a
reduction M —* Vi || --- || V,, for some V; € V.

The intuitive idea underlying the above notion of convergence is the following:

— The non-deterministic choice M + N is treated as may-convergent, either of
the alternatives may be chosen during the reduction and the sum converges
if either M or N does.

— The parallel composition M || N is modelled as must-convergent, the reduc-
tion forks and the parallel composition converges if both M and N do.

Let us provide some examples. We set I = Az.z, A = Az.zz and we denote
by € the paradigmatic non-converging term AA, which reduces to itself as
A is a value. The reduction is lazy, i.e. it does not reduce under abstractions,
so for example Ay.Q2 is a normal form. In fact, when considering closed terms,
the parallel compositions of values are exactly the normal forms, thus justifying
Definition 2l We would like to stress that our system is designed in such a
way that a parallel composition of values is not a value. As a consequence,
the term P = Ak.A || A is not a value, so the term (Az.zIz)P is converging.
Indeed, it reduces to (Az.xIx)(Ak.A) || (Ax.zlz)A —=* A || A. Notice that, if
we consider P as a value, then (Az.zIz)P would diverge since it would reduce
to PIP —* (A || I)P —* AP || P and one can check easily that AP diverges.

The presence of the non-deterministic choice + enlightens a typical feature
of the call-by-value A-calculus: application is bilinear (i.e. it commutes with +)
while abstraction is not linear. Indeed, one can prove that (M +M')(N+N') and
MN+MN'+M'N+M’'N' are operationally indistinguishable, while Az.(M+N)
and A\x.M + Az.N, in general, are not. For example, take S = Az.(z + 1), S’ =
M.z + Az, By = Az 1, Eq = \x.Q, and F = \b.bEq(bE1Eq)I. Now observe
that F'S is converging to the value I, while F'S’ diverges. Indeed, remarking that
S E1Eq reduces non-deterministically to I and to Egq, we have:

* oIl \
Eq(SErEq)l

I(SE1EQ)I <
“1EQI 5 0

while F'S’ has two reducts, either FI reducing to Q1I, or FEf reducing to €.

Q1
*EqEql /
FS - SEq(SE1EQ)I » (Eq +I)(SE1EQ)]

I —'1
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A,z i B M: oy 1<i<n
—O7 n20
ax

riThT:T éAil—/\x.Mzé(nwai)
i=1 i=1

AEM: Y Q)i —~ay) LEN:Y7; 1<i<k
=1

i=1 j=1 i= . k>1
k kE ny B n; > 1
AR QI MN: 29 7Y
i=1 i=1 j=1
AFM:« AFN:« AFM: o I'EN:as

+¢ +r
AFM+N:« AFM+N:«a AQIEM||N:on B o
Fig. 2. Type system: the inference rules

Finally, we give two examples mixing + and || . The term (Az.(z || 2))(V +V")
converges either to V || V or to V' || V', while the term (Az.(z 4+ 2))(V || V)
converges to V || V', only.

3 Linear Logic Based Type System

In this section we introduce our type system based on linear logic. The set T
of (parallel) types and the set C of computational types are generated by the
following grammar:

parallel-types: a,fB o= a®p|T T
computational-types: o= 1|7Q0p| 7o« C

For the sake of simplicity, types are considered up to associativity and commuta-
tivity of the tensor ® and the par %. The type 1, which is the only atomic type,
represents the empty tensor and is therefore its neutral element (i.e. T®1 = 7).
Accordingly, we write ®7_;7; for 11 ®---® 7, when n > 1, and for 1 when n = 0.
Similarly, when n > 1, @7, o; stands for a; % -+ & .

As mentioned in the introduction, 7 ® - - - ® 7, and a3 % - - - % v, are actually
notations representing two different kinds of multisets, namely the !- and ?-
multisets (respectively). Under this correspondence, 1 represent the empty !-
multiset. We do not allow the empty par as it would correspond to an empty
sum of terms, that would be delicate to treat operationally (cf. [4]).

Note that neither ® nor % are supposed idempotent.

Definition 3. A context I' is a total map from Var to C, such that dom(I") =
{z | I'(x) # 1} is finite. The tensor of two contexts I' and A, written I' ® A, is
defined pointwise.
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As a matter of notation, we write x1 : 71, ..., %, : T, for the context I" such that
I'(z;) =7 and I'(y) =1 for all y ¢ . The context mapping all variables to 1 is
denoted by 0; note that I’ @ ) = I".

Definition 4. — The type system for Ay is defined in Figure [2 Typing
judgements are of the form I' = M : a; when I' = () we simply write = M : a.
Derivation trees will be denoted by 7.

— A term M € Ay is typable if there exist a € T and a context I' such that
I'EM:a.

The rules for typing non-deterministic choice and parallel composition reflect
their operational behaviour. Non-deterministic choice is may-convergent, thus it
is enough to ask that one of the terms in a sum is typable; on the other hand
parallel composition is must-convergent, we therefore require that all its compo-
nents are typable. Intuitively, when dealing with closed terms, the % operator
can be only introduced to type a parallel composition, and gives an account
of the number of its components. In fact, for closed regular A-terms, the type
system looses the %-level and collapses to the one presented in [14].

The —og rule reflects the distribution of the parallel operator over the applica-
tion. For example, take M =z || 2’ and N =y || ¥’ in the premises of —g, then
we have k = 2 and n; = ny = 2 so that the type of the term M N is a % of four
types, which is in accordance with (z || 2")(y || ') =* (ay || ) || («'y || 'v').

Remark 1. For every V € V| we can derive =V : 1. Indeed, if V is a variable,
then the derivation follows by ax; if V is an abstraction, then it follows by —of
using n = 0. As a simple consequence we get = Vi || -+ || Vp 1R ---®1
(k times) for all Vi,..., Vi € V4.

Concerning the possible types of values, the next more general lemma holds.

Lemma 1. Let Ve V. If ARV :a then a € C.

Proof. A proof of A+ V : « ends in either a ax or a —oy rule. In both cases «
is a computational-type. ]

To help the reader to get familiar with the type system, we provide some exam-
ples of typable and untypable terms.

Ezxample 1. Recall that I = Az.z, A = Az.zx and 2 = AA.

LEI:Q; (1 —m)and FAzI: @ (1—o ®?;1(Tij —o Tij))-

2. FA: ®:»L:1((Ti —o Oéi) X Ti) —0 Q.

3. Q is not typable. By contradiction, suppose F Q : «. By (—og) and (2) there
is a type 7 such that H A : 7 — o« and F A : 7. Let us choose such a 7
with minimal size. Applying (2) toF A : 7 — a, we get 7 = (7/ — a) @ 7/,
from which one can deduce (see Lemma 2], below) that - A : 7/ — « and
F A : 7/, thus contradicting the minimality of 7.

4. However, - Az.Q : 1,50 F A\z.Q + Q : 1, but A\z.Q || Q is not typable.

5. From (1) and (4) we get: I || Ax.Q: (Q_,(1i — 7;)) B 1.

=1
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We now define a measure associating a natural number with every derivation
tree. In Section [f.J] we prove that such a measure decreases along the reduction.
In the next definition we follow the notation of Figure [l in particular in the
—op-case the parameter n; refers to the arity of the 7Y in the conclusion of ;.

Definition 5. The measure || of a derivation tree w is defined inductively as:

T = g ar || =0
1 Tn
s 7 7| = 320y |mil
To T1...T7k k21 b b
™= g —FE n; > 1 I =2 i Imil + (32— 2n4) — 1
7’ 7’ ,
T= 4, or mw= 4, || = |7'| +1
S S
T o
=g II1 || = ||+ [mel

Hereafter, we may slightly abuse the notation and write m1 = I' = M : « to refer
to a derivation tree m ending by the sequent I' = M : .

The measure of a derivation only depends on its rules of type —og, +¢ and +,.
These are in fact the kinds of rules that can type a redex (5, and || redexes are
typed by —op rules, + redexes by +4, +, rules). Each occurrence of a 4+, or
+, rule counts for one, because a +-reduction does not create new rules in the
derivation typing the contractum (see the proof of Theorem [ for more details).
An occurrence of a —o g counts for the number of “active” connectives appearing
in the principal premise, i.e. the number of the connectives that are underlined
in the left-most premise of the —og rule in Figure 2 indeed

k k k
Zni—&—Z(ni - 1)+£k;1l: (ZQni) —1.

= ,
N~ ~ 2 s
—o’s ®’s

—

Such a weight is needed since the ||-reduction creates two new —og rules in the
derivation typing the contractum. The measure decreases however, since the sum
of the weight of the two new rules is less than the weight of the eliminated rule.

For example, let us consider the derivation tree 7 in Figure[3] which types the
||-redex A(I || Axy.Q) with 1% 1, and has three —og rules — one of weight 1 in
each subtree 71, 72, and one of weight 3 giving the conclusion, so that |w| = 5.
Now, the —og-rule ending 7 splits into two —og-rules in the derivation tree 7’
typing the contractum of A(I || Azy.Q), namely 7’ = + AI || A(Azy.Q) : 171,
However, |7'| = |7|—1 since the number of the active connectives of the —og-rule
concluding 7 is greater than the sum of the number of the active connectives of
its “residuals” in 7’.

Finally, note that the term A(I || Azy.2) reduces to the value I || \y.Q2 in
5 = |rr| steps. As we will show in Theorem [ this does not happen by chance.



172 A. Diaz-Caro, G. Manzonetto, and M. Pagani

m=z:7khzx:1 m=z:7Fzzr:1 FI:7 FAxyQ:7
—or
= FA:(71—1)® (1t —1) FI|| ey Q:7®7
—op

FAI| Azy.©2):17%1

m=xz:TrFzx:1 me=x:TFxr:1
—or —or
, FA:7—1 FI:7 FA:7—1 Fzy. QT
= —F —F
FAI:1 FAAzy.Q):1

Iz
Al|| A(Azy.Q):1%1

Fig. 3. Derivation trees typing, respectively, the |-redex A(I | Azy.©2) and its
contractum AI || A(Azy.Q), taking 7=(1 —-1)=(1—-1)®1

4 Properties of the Type System

We prove that the set of types assigned to a term is invariant under —, in
a non-deterministic setting. More precisely, Theorem [2] states that if IV is the
contractum of a {8, || }-redex in M, then any type of M is a type of N, and if
N and N’ are the two possible contracta of a +-redex in M, then any type of M
is either a type of N or of N’ (subject reduction). On the other hand Theorem B
shows the converse, namely that whenever M — N, any type of N is a type of
M (subject expansion).

Moreover, the two theorems combined prove that the measure associated with
the typing tree of a term decreases (resp. increases) of exactly one unit at each
typed step of reduction (resp. expansion). This is typical of non-idempotent
intersection type systems, as discussed in the introduction. As a consequence,
any typable term M is normalising and the measure of specific derivation trees
of M gives the length of a converging reduction sequence.

4.1 Subject Reduction

In order to prove subject reduction we first need some preliminary lemmas. Their
proofs are lengthy but not difficult, therefore we write explicitly only the most
interesting cases.

Lemma 2. We have that m = A+ V : @', 7; if and only if A = @, A; and
m=A;FV i foralli=1,...,n. Moreover, |x| =>""" | |m]|.

Proof. We only prove (=), the other direction being similar. Since V' is a value,
the last rule of 7 is either axz or —o;. The first case is trivial. In the second
case, V = Ax.M and the premises of the —oj-rule are m > n, say 779 =Aj,x:
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pj = M :ajfor j < m,and 1 = ;2 lp]—oa]andA1—®m1A

_ My _ My
Tn = ®j 41 Pi o oy and A, = ®j:m"71+1 Aj, with my +--- +my, =m.
Notice |x| = Z] 1 |m3]. Then, for every i < n, a —oj-rule with premises
’ ’ . . o m;
Ty 41+ T, yields m = Ay B Az M+ 7, with [m = 30570 L) [ml,
therefore |7| = Y7 | |mil. 0

Lemma 3 (Substitution lemma). If m = Ajz:7F- M :a and e =T+
V i 7, then there is 13 = A® I' = M[V/x] : a. Moreover |ms| = |m1| + |m2].

Proof. By structural induction on M. We only treat the most interesting case,
namely M = NP. In this case, the last rule of m; is a —og-rule with k£ + 1
premises, say ) = Ag,x : 10 F N : 7& 1®] 1(pij — «yj;), and for i =

Lkyw = Ao B P 7&.:1 pij, where A = ®i:0AZ7 T = ®f:()7'i,
o =2 By and |m| = S m| + (X1 2ni) — 1. By Lemma B we
can split mp into k + 1 derivations 74 = I; = V : 7, for i = 0,...,k, such
that I' = ®f o i and |mo| = Zk o |7%|. By the induction hypothesis, there are
7 = 20@ Ty - NIV/a] - 295 @ (pij —o ), with [79] = [n9]+ |79, and for
i=1,...k i =A,IF P[V/x]: 251 pij, with |7i] = || + |7&|. Hence,
by rule —og, we have

k k
= (A ® ) @ Q)(Ai @ I}) - N[V/z] P[V/a] : 72 2 o

Notice that (A®I0)©®'_, (A;@ @) = A®T and N[V/z]P[V/z] = (NP)[V/z].
k i k k i i k

Moreovir, ‘773‘ = Zi?O s 4+ (i 2”12) —1= Yol +[ma]) +(30i 2ne) —
L= (Yo Imil + (i1 2ra) — 1) + X2 Ima| = |ma| + [mal. 0
We now prove the subject reduction property, which ensures that the type is
preserved during reduction, while the measure of the typing is strictly decreasing.

As a matter of terminology, we say that a term M reduces to a term N using
+-reductions, if M — N is derivable as a direct consequence of a +-reduction

and (possibly) some contextual rules. In the following proof, given a set S, we
denote by 45 its cardinality.

Theorem 2 (Subject reduction). Let 1 = A+ M : «.

— If M — N without using +-reductions, then there is @' = A+ N : a.
— If M — Ny and M — Ny using +-reductions, then there is ' such as either
o =AFNi:aorm’=AF Ny:a

Moreover, in both cases we have |n'| = || — 1.

Proof. We proceed by induction on the length of the derivation of M — N. We
only treat the most interesting cases.

— (Az.M")V — M’[V/xz]. Then, the last rule of 7 is a —opg-rule with &k + 1
premises, say mg = A’ F \z. M’ : 7& 1®j 1(pij — «i;) and for every
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i=1,...k,m =1 FV: 7& 1 Pij, with moreover A = A’ ® ®f:1 Iy,
a = ?&.:1 25, i, and || = Zi:O |7i| + (Zle 2n;) — 1. However, since
Lemma [ entails that &k = ny = 1 we get |w| = |mg| + |m1| + 1. In addition,
the only possibility for 7y is to come from 7 = A’z : p+ M’ : «, where
|mo| = |mg|- By Lemma B «’ = A’ ®@ I' F M'[V/z] : a, where || = |7j| +
|m1| = |mo| + |71 = |7| — 1. We conclude since A’ @ I' = A.

~Let V(M | N) = VM || VN. Then 7 = A@ Q" I - V(M || N) :
N 1 7Y, i ends in a —op rule having as premises mp = A = V :
7&1®]1pwwa”)and,fori:1, okymi =Ty M || N 290 pij.
Thus, we have |7| = Zj:O \m\—&—(Zle 2n,;)—1. However, by Lemmalll k& = 1,
so we omit the index ¢ where it is not needed, and |r| = |7g| + |m1| 4+ 2n — 1.
Then nf = I = M : 7§, 5p; and = Iy = N : 7§, 5pj, where
IF=nely,0#SC{l,....,k}and S = {1,...,k}\S with |m1| = |7]|+|7?].
By Lemma 2] we can s;_)lit T into two derivations, 5 = ®]€ gA; FV
®g‘es(pj —o ;) and 1§ = RjesAi EV : Qjeslps — aj), with |75 | +
|75 | = |mo|. By rule —op, we have 7! = Qjes Qi@ FVM: %Y, ga; and
w2 = ®JE§A'®FQ FVN: 7Y, 50a; where || = |n§ ‘+‘7T%|+2ﬂ5*1 and
7% = |n§| + 77| + 245 — 1. By rule |1, 7' = @], Ai@ @ I - VM |
VN : 2y} aj, where [r'| = |7!| + |7%] = (|=5] + \77}\ + 245 — 1) + (| +
|72| + 245 — 1) = |mo| + |m1| + 285 + 245 — 2 = |mo| + |m1| +2n—2= |x| - 1. O

4.2 Subject Expansion

The proof of the fact that our system enjoys subject expansion follows by
straightforward induction, once one has proved the commutation of abstraction
with abstraction, application, non-deterministic choice and parallel composition.

Theorem 3 (Subject expansion). If M — N and m = At N : «, then there
ism™ = AF M : a, such that |7'| = || + 1.

Proof. By induction on the length of the derivation of M — N, splitting into
cases depending on its last rule. We only consider the most interesting case,
ie. A\x.M")V — M'[V/x] where M’ = PQ. One first needs to establish, by
induction on 7, a claim about the commutation of abstraction with application.

Claim. f m = AF (Ax.P)V)((Az.Q)V) : o, where the last rule of 7 is a —op
rule having k + 1 premises, then there exists 7/ = AF (Ax.PQ)V : a such that
7| = || = k.

By definition we have N = (PQ)[V/z] = P[V/z]|Q[V/z]. So,m = AF N : a ends
in a —opg-rule with k + 1 premises mp = A’ + P[V/z] : 7& 1 ® 1 (Tij — ai4j)
and m = I = Q[V/x] « Y7L mj for i = 1,...,k, with A = A’ ® QI
a = 7&.:1 A1 aij and || = Zf:o i+ (Zi:1 2n;) — 1. Then, by the induc-
tion hypothesis, we get 7, = A" F (Az.P)V : 7??:1 ®?:1(sz —o a;j), and
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o= Ii - (Qe.Q)V : X%, 7y, with |7]| = || + 1. Hence by rule —op
we obtain 7/ = A'® @, I; F (Az.P)V)(Az.Q)V) : 2% | 2"y, with
|7 = Zf:() ‘T(;H-(Zf:l 2n,;)—1. By the above claim, we get 7’ = A’®®f:1 I+

(M. PQ)V : 7?;;1 2y, auj such that |7'| = |7"] — k = || + 1. a

4.3 Convergence

From our “quantitative” versions of subject reduction and subject expansion
one easily obtains that our type system captures exactly the weakly normalising
terms, and that the size |7| of a derivation tree 7 = - M : a decreases along
the reduction of M. However, when « satisfies in addition a suitable minimality
condition (namely the fact that « is of shape 1% --- % 1), then we can be more
precise and say that there exists a reduction from M to a normal form, having
length ezxactly |m|.
In the following %1, with k > 0, stands for 1% --- ® 1 (k times).

Theorem 4. Let M be a closed term, and k > 0. There is a typing tree ™ for

F M : %1 iff there are values Vi, ..., Vi and a reduction M —* Vi || --- || Vi
of length |r|.

Proof. (=) Suppose m = = M : ®%1. We proceed by induction on |r|. If
M=V | - || Vi, then 7 must start with a tree of &’ — 1 rules ||, and then &’
rules —o; with conclusion, respectively, - V7 : 1,..., F Vi : 1. We then have
k =k, and M trivially converges to V; || --- || Vir in |7| = O steps.

Otherwise, since M is closed, there exists N such that M — N. By Theorem[2]
such an N can be chosen in such a way 7’ = F N : %1, with |7’| = |7|— 1. From
the induction hypothesis we know that N converges in |7’| steps to Vi || -« - || V.
Therefore, M converges in || + 1 = || steps to Vi || -+« || Vi.

(<) Suppose that M —* Vi || --- || V. By Remark [l there is 7 = F V; ||

o+ || Vi : ®*1 and |7| = 0. Therefore, by the subject expansion (Theorem [)
there is 7 = = M : %1 and |7'| is equal to the length of the reduction M —*
Vil Vi u!

Corollary 1. Let M be closed, then M is typable if and only if M converges.

5 Adequacy and (Lack of) Full Abstraction

The choice of presenting a model through a type discipline or a reflexive object
is more a matter of taste rather than a technical decision. (Compare for instance
the type system of [20] and the interpretation of [9]). The model V associated
with our type system lives in the category Rel of sets and relations (refer to [14]
for more details) and is defined by V = |, . Vn, with

neN
VO = 07 Vn+1 = Mf(vn) X Mf(Mf(vn))a

where M;(X) denotes the set of finite multisets over a set X. In fact, M;(X)

interprets in Rel the exponentials !X and ?X, whilst the cartesian product is
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the linear implication —o, so that ) is the minimal solution of the equation V ~
'V — ?21V. Recalling Equation [[in the introduction, this means that the object
V represents “value types”, while computational types C will be represented by
elements of C = 1V = M;(V) and parallel-types T as elements of 7 = 7C =
M;(C). This intuition can be formalized by defining two injections (-)° : T — T
and (-)® : C — C by mutual induction, as follows: 7° = [7°], (a % §)° = a® W 3°,
1° =, (r@p)* = 7 p* and (1 — a)* = [(r*,0°)].

It is beyond the scope of the present paper to give the explicit inductive
definition of the interpretation of terms. For our purpose it is enough to know
that such an interpretation can be characterised (up to isomorphism) as follows.

Definition 6. The interpretation of a closed term M is defined by [M] = {« |
FM:a} CT.

The interpretations of terms are naturally ordered by set-theoretical inclusion;
an interesting problem is to determine whether there is a relationship between
this ordering and the following observational preorder on terms.

Definition 7 (Observational preorder). Let M, N € A, be closed. We set
M T N iff for all closed terms ]3, MP converges implies that NP converges.

A model is called adequate if [M] C [N] entails M T N; it is called fully abstract
if in addition the converse holds.

The adequacy of the model V follows easily from Theorem @l and the mono-
tonicity of the interpretation.

Corollary 2 (Adequacy). For all M, N closed, if [M] C [N] then M C N.

On the contrary, V is not fully abstract. This is due to the fact that the call-by-
value A-calculus admits the creation of an ‘ogre’ that is able to ‘eat’ any finite
sequence of arguments and converge, constituting then a top of the call-by-value
observational preorder. Following [7], we define the ogre as Y* = A*A* where
A* = \zy.xx. The ogre Y* converges since Y* — Ay.Y* and remains convergent
when applied to every sequence of values, by discarding them one at time.

Lemma 4. For all closed terms M we have M C Y*.

Proof. Given a term M and a sequence P= P --- Py of closed terms it is easy
to check that MP can converge only when P converges. In that case we have
Y*P My Y)YV |- | Va)Pe P =*Y*Po-- Py ||+ || Y*Pye - Py =
Ay Y* || -+ || Ay.Y*. Therefore Y* is maximal with respect to C. O

It is easy to check that 1 and (1 — 1) ® (1 — (1 —o 1)) are valid types for
Y™, and thus belong to its interpretation. The following lemma gives a precise
characterisation of [Y*].

Lemma 5. a € [Y*] iff @ = @._(1 — ;) withn > 0 and «; € [Y*] for all
i <n. In particular, we have that [I] Z [Y*].
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Proof. The crucial point is to remark that Y* — Ay.Y*, so by Theorem 2 and [3]
we get [Y*] = [Ay.Y*]. Therefore we have the following chain of equivalences:

a € [Y']iff « € [Ay.Y*]

iff @ =@ (1 — ;) € [My. Y] by Lemmal[ll n >0
iff a =@ o(7 — a;) and Vi, 7, —o a5 € [A\y. Y] by Lemma [2]

iff a =®jo(m — ;) and Vi,7; =1 and o; € [Y*]  since y ¢ FV(Y™).
We have that [I] € [Y*] as, for instance, (1 —1) — (1 — 1) € [I]\[Y*]. O

Summing up, get that I T Y*, while [I] Z [Y*].

6 Conclusion and Future Work

We introduced a call-by-value non-deterministic A-calculus with a type system
ensuring convergence. We proved that such a type system gives a bound on the
length of the lazy call-by-value reduction sequences, which is the exact length
when the typing is minimal. Finally, we show that the relational model V cap-
turing our type system is adequate, but not fully abstract.

As our counterexample to full abstraction contains no non-deterministic op-
erators, it also holds for the standard call-by-value A-calculus and the relational
model described in [I4]. This is a notable difference with the call-by-name case,
where the relational model is proven to be fully abstract for the pure call-by-name
A-calculus [I8], while other counterexamples (see [98]) break full abstraction in
presence of may or must non-deterministic operators. An open problem is to find
a relational model fully abstract for the call-by-value A-calculus.

Various fully abstract models of may and must non-determinism are known
in the setting of Scott domain based semantics and idempotent intersection
types. In particular, for the call-by-value case we mention [7JI3]. Comparing
these models and type systems with the ones issued from the relational semantics
is a research direction started in [I4] with some notable results. It would be
interesting to reach a better understanding of the role played by intersection
idempotency in the question of full abstraction.

Another axis of research is to generalize our approach to study the convergence
in (call-by-name and call-by-value) A-calculi with richer algebraic structures than
simply may/must non-deterministic operators, such as [23/4]. In these calculi
the choice operator is enriched with a weight, i.e. sums of terms are of the form
o.M + 5.N, where a, 8 are scalars from a given semiring, pondering the choice.
We would like to design type systems characterizing convergence properties in
these systems. First steps have been done in [213].
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Abstract. We describe the Wadge hierarchy of the w-languages recog-
nized by deterministic Petri nets. This is an extension of the celebrated
Wagner hierarchy which turned out to be the Wadge hierarchy of the w-
regular languages. Petri nets are an improvement of automata. They may
be defined as partially blind multi-counter automata. We show that the
whole hierarchy has height w“’Q, and give a description of the restrictions
of this hierarchy to every fixed number of partially blind counters.

1 Introduction

The languages of infinite words — also called w-languages — that are accepted
by finite automata were first studied by Biichi in order to prove the decidability
of the monadic second order theory of one successor over the integers. Since
then, the regular w-languages have been intensively studied, mostly for applica-
tions to specification and verification of non-terminating systems. See [29} 40, 41]
for many results and references. Following this trend, the acceptance of infinite
words by other types of finite machines, such as pushdown automata, multi-
counter automata, Petri nets, or even Turing machines, were later considered
[, [, 20, [32, 40].

Since the set of infinite words over a finite alphabet becomes a topological
space once equipped with the Cantor topology, a way to study the complexity
of the languages of infinite words accepted by finite machines is to study their
topological complexity. This consists in providing their precise localization inside
the projective hierarchy, the Borel hierarchy, or even the Wadge hierarchy (a
great refinement of the Borel hierarchy). This work was conducted through [9]
25, 133, 35, (37 [38], [39, 40, [41].

It is well known that every w-language accepted by a deterministic Biichi au-
tomaton is a Hg—set, and that an w-language accepted by a non-deterministic
Biichi (or Muller) automaton is a A$-set. The Borel hierarchy of regular w-
languages is then determined. Moreover, Landweber proved that one can effec-
tively determine the Borel complexity of a regular w-language accepted by a
given Muller or Biichi automaton, see [24] 29] [40, [4T]. Elaborating on this re-
sult, Klaus Wagner completely described the Wadge hierarchy of the w-regular
languages [44]. It is nowadays called the Wagner hierarchy, and its length is the

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 179-[[03] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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ordinal w®. Wagner gave an automaton-like characterization of this hierarchy,
based on the notions of chain and superchain, together with an algorithm to
compute the Wadge (Wagner) degree of any given w-regular language. Later,
Wilke and Yoo proved that the Wadge degree of an w-regular language may be
computed in polynomial time [45]. This hierarchy was thouroughly studied by
Carton and Perrin in [2], 8], and by Victor Selivanov in [311 [34].

Since there are various classes of finite machines recognizing w-languages,
each of them yields a countable sub-hierarchy of the Wadge hierarchy. Since the
1980’s it has been an endeavor to describe these sub-hierarchies. It started with
the work of Klaus Wagner on the w-regular languages — although Wagner was
unaware at the time of the connections between the Wadge hierarchy and his
own work. The Wadge hierarchy of deterministic context-free w-languages was
determined, together with its length: w(®”) [6, [7]. The problem whether this hi-
erarchy is decidable remains open. The Wadge hierarchy induced by the subclass
of deterministic one blind counter automata was determined in an effective way
[11], and other partial decidability results were obtained [12]. It was then proved
that the Wadge hierarchy of context-free w-languages is the same as the one
of effective analytic setd] [15, 20]. Intriguingly, the only Wadge class for which
one can decide whether a given context-free w-language belongs to or not, is
the rudimentary singleton {0}, see [12, [13| [14]. In particular, one cannot decide
whether a non-deterministic pushdown automaton is universal or not. This lat-
ter decision problem is actually I13-complete, hence located at the second level
of the analytical hierarchy and “highly undecidable”, [I8]. Moreover the second
author proved that the topological complexity of some context-free w-languages
may be subject to change from one model of set theory to another [I7]. (Similar
results hold for w-languages accepted by 2-tape Biichi automata [16, [I7].) Fi-
nally, the Wadge hierarchy of w-languages of deterministic Turing machines was
determined by Victor Selivanov, [32].

Petri nets are among the many accepting devices that are more powerful than fi-
nite automata in that they recognize more w-languages that finite automata. They
apply to the description of distributed systems. A Petri net is a directed bipartite
graph, in which the nodes represent transitions and places. The distributions of
tokens over the places define the configurations of the net. Petri nets work as an im-
provement of automata, since they may be defined as partially blind multicounter
automata [21]. Petri nets have been extensively examined, particularly in concur-
rency theory (see for instance [I0,30]). The infinite behavior of Petri nets was first
studied by Valk [42], and the one of deterministic Petri nets, by Carstensen [I].

In this paper, we first consider deterministic blind multicounter automata
(corresponding to deterministic Petri nets) and the w-languages that they accept
when they are equipped with a Muller acceptance condition. This forms the class
of deterministic Petri net w-languages denoted L2 ;, in [].

We describe the Wadge hierarchy of the w-languages recognized by deter-
ministic Petri nets. This is an extension of the celebrated Wagner hierarchy of

! The class of all effective analytic sets (denoted X7) is the class of all the w-languages
recognized by (non-deterministic) Turing machines.
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the w-regular languages. We show that the whole hierarchy has height w“z, and
give a description of the restrictions of this hierarchy to some fixed number of
partially blind counters.

2 Recalls on w-Languages, Automata and Petri Nets

We assume the reader to be familiar with the theories of formal languages and
w-regular languages (see [22 29, [41]).

Through along the paper, we assume X to be any finite set, called the al-
phabet. A finite word (string) over X' is any sequence of the form u = a; ... ay,
where k£ € IN and a; € X holds for each i < k. Notice that when & = 0, u is
the empty word denoted by . We denote by |u| the length of the word w (here
|u| = k). We write u(i) = a; and u[i] = u(1)...u(?) for i« < k and u[0] = . The
set of all finite words over X' is denoted X™*.

An infinite word over X is some sequence of the form z = aias ... a, ... where
a; € X holds for all non-zero integers i. These infinite words are called w-words
for their length corresponds to w: the first infinite ordinal. An infinite word z
over X can be viewed as a mapping z : IN — X, so we write z = z(1)z(2). ..
and z[n] = z(1)z(2) ... z(n) for its prefix of length 4. We write X% for the set
of all w-words over the alphabet X' so that an w-language over the alphabet X/
is nothing but a subset of X“.

As usual, the concatenation of two finite words u and v is denoted ww. It
naturally extends to the concatenation of a finite word v and an w-word x to
give the w-words y = ux defined by: y(k) = u(k) if k < |u| , and y(k) = z(k—|u|)
if & > |u|. Given any finite word u, and any finite or infinite word z, u is a prefix
of z (denoted u C x) if u(i) = x(¢) holds for every non-zero integer i < |ul.
Finally, for VC X* V¥ ={o=u1...up... € X¥ | u; € V,Vi > 1}.

A finite state machine (FSM) is a quadruple M = (Q, X, 0, qo), where Q is a
finite set of states, X is a finite input alphabet, ¢y € @ is the initial state and 9 is
a mapping from Q x X into 29 . It is deterministic (DFSM) if § : Q x X — Q.

Given an infinite word x, the infinite sequence of states p = q1¢2qs . . . is called
an (infinite) run of M on z starting in state p, if both ¢; = p and ¢;+1 € §(qi, a;)
(Vi > 1) hold. In case p is the initial state of M (p = qo), then p is simply called
an infinite run of M on x.

We denote by In(p) = {¢g € Q | Ym3In > m g, = q} the set of states that
appear infinitely often in p.

Equipped with an acceptance condition F', a finite state machine becomes
a finite state automaton M = (Q,X,0,qo, F). It is a Biichi automaton (BA)
when F C @, and a Muller automaton (MA) when F' C 29. A Biichi automaton
(respectively a Muller automaton) accepts x if for some infinite run of M on z,
In(p)NF is not empty (respectively In(p) € F holds). The w-language accepted
by an automaton is the set of all the infinite words it accepts. The classical result
of R. Mc Naughton [28] establishes that non-deterministic Biichi automata, and

2 Note that the enumeration © = z(1)2(2)... does not start at 0 so that we recover
the empty word as z[0].
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both deterministic and non-deterministic Muller automata recognize the exact
same w-languages known as the w-regular languagesﬁ.

A partially blind multicounter automaton is a finite automaton equipped with
a finite number (k) of partially blind counters. The content of any such counter
is a non-negative integer. A counter is said to be partially blind when the mul-
ticounter automaton cannot test whether the content of the counter is zero.
This means that if a transition of the machine is enabled when the content of a
counter is zero then the same transition is also enabled when the content of the
same counter is a non-zero integer. In order to get a partially blind multicounter
automaton — simply called a blind multicounter automaton — which accepts the
same language as a given Petri net, one can distinguish between the places of a
Petri net by dividing them into the bounded ones (the number of tokens in such
a place at any time is uniformly bounded) and the unbounded ones. Then each
unbounded place may be seen as a blind counter, and the tokens in the bounded
places determine the state of the blind multicounter automaton. The transitions
of the Petri net may then be seen as the finite control of the blind multicounter
automaton and the labels of these transitions are then the input symbols.

Contrary to what happens with non-deterministic Petri nets, allowing e-
transitions does not increase the expressive power of deterministic Petri nets
which read w-words [I]. For this reason, we restrict ourselves to the sole real
time — i.e., e-transition free — blind multicounter automata. Also, without loss
of generality we may assume that every transition, for every counter, either
increases or decreases its content by 1 or leaves it untouched.

Definition 1. For k any non-zero integer, A (real time) deterministic k-blind-
counter machine (k-BCM) is of the form M = (Q, X, 0, qo) where Q is a finite set
of states, X is a finite input alphabet, qo € Q is the initial state, and the transition
relation § is a partial mapping from Q x X x {0,1}*F into Q x {0,1, —1}*.

If the machine M is in state q, and for each i, ¢; € N is the content of the
counter C;, then the configuration (or global state) of M is the (k + 1)-tuple
(g,c1y. - k).

Given any a € X, q,¢' € Q, and (cy, ..., c;) € N if both §(q,a,iy,. .., ix) =
(¢ j1s--sjk), and jr € E={l e {1,...,k} | ¢ = 0} = j; € {0,1} hold, then
we write a : (q,c1,...,¢8) —m (¢yer+ 71, -y ck+ k). Thus the transition rela-
tion must verify: if 5(q,a,i1,...,%) = (¢, j1,- .-, Jk), and i,, = 0 holds for some
m € {1,...,k}, then we must have j,, =0 or j, = 1 (but j,, = —1 is prohibited).
Moreover the k counters of M are blind, i.e., if §(q,a,i1,...,ik) = (¢ s 41, -, Jk)
holds, and i, =0 form € E C {1,...,k}, thend(q,a,iy,...,1) = (¢ 1, -, k)
holds also whenever i, =1i,, form ¢ E, and i,, =0 ori,, =1 form € E.

For any finite word w = ajas...a, over X, a sequence of configurations
p = (qi,ci,...c)i<i<nt1 is a run of M on wu, starting in configuration
(pocrs..ovew) iff (quocly...ich) = (poery... ek), and a; = (qi,ch,...ch) —m

3 The class of all the w-regular languages is also characterized as the “w-Kleene clo-
sure” of the class REG of all the (finitary) regular languages. Where given any
class of finitary languages £, the w-Kleene closure of £ is the class of w-languages
{Uicicn Ul V2 | Ui, Vi € L}
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(gis1. ¢St ocitt) (all 1 < i < m). This notion extends naturally to infinite
words: for x = ajas...ay ... any w-word over X, an w-sequence of configura-
tions (gi, ¢4, ... ck)i>1 is called a complete run of M on x, starting in configura-
tion (p,cy,....ck) iff (qu,cl,...cp) = (p,cr, .. cr), and a; < (qi ¢}, ...ch) —pm
(gis1, T oeith) (for all 1 <i).

A complete run p of M on x, starting in configuration (qo,0,...,0), is simply

called “a run of M on x”.

Definition 2. A Biichi (resp. Muller) deterministic k-blind-counter automaton
is some k-BCM M’ = (Q, X, 0,q0), equipped with an acceptance condition F':
M = (Q,X,0,q0, F). It is a Biichi (resp. Mulleﬂ) k-blind-counter automaton
when F C Q (resp. F C 29), and it accepts x if the infinite run of M’ on x
verifies In(p) N F # 0 (respectively In(p) € F ).

We write L(M) for the w-language accepted by M, and BC(k) for the class
of w-languages accepted by Muller deterministic k-blind-counter automata.

3 Borel and Wadge Hierarchies

We assume the reader to be familiar with basic notions of topology that may be
found in [23| 25| 27], and of ordinals (in particular the operations of multiplica-
tion and exponentiation) that may be found in [36].

For any given finite alphabet X — that contains at least two letters — we
consider X“ as the topological space equipped with the Cantor topologyﬁ. The
open sets of X“ are those of the form W X%, for some W C X*. The closed sets
are the complements of the open sets. The class that contains both the open
sets and the closed sets, and is closed under countable union and intersection is
the class of Borel sets. It is nicely set up in a hierarchy but counting how many
times these latter operations are needed.

This defines the Borel Hierarchy: 3¢ is the class of open sets , and IT? is the
class of closed sets. For any non-zero integer n, 32 41 is the class of countable
unions of sets inside ITY, while II%_ ; is the class of countable intersections of
sets inside X0. More generally, for any non-zero countable ordinal a, X9 is the
class of countable unions of sets in U,y<al_Ig7 and ITY is the class of countable
intersections of sets in Uy <o X9.

The Borel rank of a subset A of X“ is the least ordinal o« > 1 such that A
belongs to X9 UTI®. By ways of continuous pre-image, the Borel hierarchy turns
into the refined Wadge Hierarchy.

Definition 3 (<, =y, <w). We let X, Y be two finite alphabets, and A C
X“ B CY¥, A is said Wadge reducible to B (denoted A <y B) iff there
exists some continuous function f : X — Y% that satisfies Vo € X¥ (x €
A& f(z) € B).

* The Muller acceptance condition was denoted 3-acceptance in [24} 1], and (inf, =)
in [40].
® The product topology of the discrete topology on X.
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We write A =, B for A <, B <, A, and A <, B for A <,, B £, A. A set
A C X% is self dual if A=, X\ A (denoted AC) is verified. It is non-self dual
otherwise [.

It is easy to verify that the relation <,, is both reflexive and transitive, and
that =, is an equivalence relation. Given any set A, the class of all its continuous
pre-images forms a topologicaﬂ class T called a Wadge class. A set is T'-complete
if it both belongs to T', and (Wadge) reduces every element in itf. It turns out
that 32 (resp. IT?) is a Wadge class and any set in 30 ~ TIO (resp. IT? \ 32)
is 39 -complete (resp. II-complete). Both X0-complete and TIC-complete sets
(any 0 < n < w) are examined in [38].

Wadge reducibility participates in game theory for continuous functions may
be regarded as strategies for a player in a two-player game of perfect information
and infinite length:

Definition 4. Given any mapping f : X¥ — Y%, the game G(f) is the two-
player game where players take turn picking letters in X for I and Y for II,
player I starting the game, and player II being allowed in addition to pass her
turn, while player I is not.

I T T3 7 Ton i1 Ton43  ——mmmm—

After w-many mowves, player I and player II have respectively constructed x €
XY andy € Y*UYY. Player II wins the game if y = f(x), otherwise player I
wins.

So, in the game G(f), a strategy for player I is a mapping o : (Y U{s})* — X,
where s is a new letter not in Y that stands for II’s moves when she passes her
turtfl. A strategy for player II is a mapping f: XT — Y U {s}. A strategy is
called winning if it ensures a win whatever the opponent does.

This game was designed to characterize the continuous functions. Wadge
found out that given f : X — Y“  f is continuous <= II has a winning
strategy in G(f). This is an easy exercise (see [23] 27]).

Definition 5. For A C X and B C Y%, the Wadge game W (A, B) is the
same as G(f), except that IT wins iff y € Y* and (x € A < y € B) hold[]

5 Non-self dual sets are precisely those that verify A %., AL

T A topological class is a class that is closed under continuous pre-images.

8 Tt follows that two sets are complete for the same topological class iff they are Wadge
equivalent.

9 «g” stands for “skips”.

10 One sees immediately that a winning strategy for II in W (A, B) yields a continuous
mapping f : X“ — Y that guaranties that A <,, B holds, whereas any continuous
function f that witnesses the reduction relation A <,, B gives rise to some winning
strategy for IT in G(f) which is also winning for II in W (A, B). This shows that
for AC X¥ and BCY*, A<, B <= II has a winning strategy in W (A, B).
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In 1975, Martin proved Borel determinacy [23] 26], whose consequence is that
for every Wadge game W (A, B), either player I or IT has a winning strategy as
long as both A and B are Borel. As immediate consequences, Wadge obtained
that for any Borel A, B C X%, there are no three <,-incomparable Borel sets.
Moreover, if A £, B and B £, A, then A =, BC. Later on, Martin and
Monk proved that there is no sequence (A4;);e., of Borel subsets of X“ such that
Ag > A1 > A2 >4 ... A >0 Apg1 > - .- holds [23] [3]. We recall that a set
S is well ordered by the binary relation < on S iff < is a linear order on S such
that there is no strictly infinite <-decreasing sequence of elements from S.

It follows that up to complementation and =,,, the class of Borel subsets of
X, is well-ordered by <,,. Therefore, there is a unique ordinal |W H| isomorphic
to this well-ordering, together with a mapping d9%, from the Borel subsets of X*
onto |W H|, such that for all Borel subsets 4, B: d%, A < d% B < A <,, B, and
A% A=d)yB & (A=, Bor A=, BY).

This well-ordering restricted to the Borel sets of finite ranks'] has length the
first ordinal that is a fixpoint of the operation o — w1 [543, where w; is the
first uncountable ordinal.

In order to study the Wadge hierarchy of the class BC(k) of w-languages
accepted by Muller deterministic k-blind-counter automata, we concentrate on
the non-self dual sets as in [5], and slightly modify the definition of the Wadge
degree. For A C X%, such that A >,, 0, we set d,,(0) = d,(0°) = 1, d,,(A) =
sup{dy(B) + 1| B non-self dual and B <y A}.

Every w-language which is accepted by a deterministic Petri net — more gen-
erally by a deterministic X-automaton in the sense of [9] or by a deterministic
Turing machine — is a boolean combination of X3-sets thus its Wadge degree
inside the whole Wadge hierarchy of Borel sets is located below w{’. Moreover,
every ordinal 0 < o < w$ admits a unique Cantor normal form of base w; [36],
i.e., it can be written as @ = w}?.6; +w;? .61 + -+ -+ w61 where 0 < j < w,
0<n; <...<n; <w, and d;,6;_1,...,01 are non-zero countable ordinals.

From Wagner’s study, such an ordinal is the Wadge degree of an w-regular
language iff §;,9,1,...,d1 are all integers. It is also known that such an ordinal
is the Wadge degree of a deterministic context-free w-language if and only if
these multiplicative coefficients are all below w* [6]. We add to this picture the
following results that exhibits the Wadge hierarchy of BC(k):

1. for every non-null ordinal o whose Cantor normal form of base w; is

n; ni_1 n
« :wlj.éj —|-OJ1J .(5]'_1 —|—-~'—|-OJ11.(51

where, for some integer k > 1, 61,...,8; are (non-null) ordinals < w**+!,
there exists some w-language L € BC(k) whose Wadge degree is a.

2. Non-self dual w-languages in BC(k) have Wadge degrees of the above form.

Next section is dedicated to operations that will be needed in the proof.

' The Borel sets of finite ranks are those in U =0 = U .
nelN nelN
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4 Operations over Sets of w-Words

4.1 The Sum

Definition 6. For {X.,X_} a partition in non-empty sets of Xp ~ Xa with
XACXp, ACXY, and BC X%, B+A=A U X3X,B U X3X_BC.

A player in charge of B + A in a Wadge game is like a player who begins the
play in charge of A, and at any moment may also decide to start anew but being
in charge this time of either B or of BE[3

Proposition 7 (Wadge). For non-self dual Borel sets A and B,
dy(B+ A) = dy(B) + dy(A4).

Notice that for any non-self dual Borel sets A, B, C, we have both A+ (B+C) =,
(A+B)+C, and (B + A)¢ =, B+ AL. Although the class BC(k) is not closed
under complementation, and B 4+ A was defined as A U X3} X, B U X:ZX_BC,
we may however use of the formulation B + A € BC(k) for A,B € BC(k) if
some C' € BC(k) verifies C' =,, BC.

4.2 The Countable Multiplication
We first need to define the supremum of a countable family of sets.

Definition 8. For any bijection f : IN — I, any family (A;)icr of non-self
dual Borel subsets of X, we fix some letter e € X to define

sup A; = U (X N A{e})"eArm).
iel RN

Proposition 9. (See [3,[6].) For (A;)icr any countable family of non-self dual
Borel subsets of X such that Vi € I 3Jj €1 A; <, Aj, then

1. sup;c; A; is a non-self dual Borel subset of X, and
2. dy(sup;e; Ai) = sup{dy,(A;) | i € I}.

By combining sum and supremum, we get multiplication by countable ordinals.

Definition 10. For A C X%, and 0 < o < w1, A e « is inductively defined by
Ael=A Ae(v+1)=(Aev)+ A, and Ae 3 =supscz Aed, for B limit.

12 The first letter in X5 ~ X 4 that is played decides the choice of B or B, Notice that
given any finite alphabets X, Y which contain at least two letters, and any B C X*,
there exists B’ C Y* such that B =, B’. Moreover, if for some integer k > 0 we
have B € BC(k), then B’ can be taken in BC(k). So that we may write B + A
whatever space B is a subset of, simply meaning B’ + A where B’ is any set that
satisfies both B’ =,, B and B’ C X“ for some X that contains the alphabet from
which A is taken from, and strictly extends it with at least two new letters.
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By Propositions [ and @ this operation verifies the following.
Proposition 11. Let A C X% be some non-self dual Borel set, and 0 < a < wy,

dy(Aea)=d,(A) - a.

For a player in charge of Ae« in a Wadge game, everything goes as if (s)he could
switch again and again between being in charge of A or A® — starting anew every
time (s)he does so — but restrained from doing so infinitely often by having to
construct a decreasing sequence of ordinals < « on the side every time (s)he
switches.

4.3 The Multiplication by w;

Definition 12. For A C X%, and a,b ¢ X two different letters, Y = X U{a, b},
Aew C (X U{a,b})¥ is defined by Aew; =A U Y*aA U Y*bAC.

Inside a Wadge game, a player in charge of Aew; may switch indefinitely between
being in charge of A or its complement, deleting what (s)he has already played
each time.

Proposition 13. (See [3].) For any non-self dual Borel A C X%, A ew; is
non-self dual Borel, and d,,(A e w1) = dy(A) - ws.

The following property will be very useful.
Proposition 14. If A C X% is regular, then A e wy is also regular.

Proof. Immediate from the closure of the class REG,, under finite union, com-
plementation, and left concatenation by finitary regular languages [7]. O

4.4 Canonical Non-self Dual Sets

The empty set, considered as an w-language over a finite alphabet is a Borel set
of Wadge degree 1, i.e., dy,(#) = 1. It is a non-self dual set and its complement
has the same Wadge degred'd. On the basis of the emptyset or its complement,
the operations defined above provide non-self dual Borel sets for every Wadge
degree < w{’. For notational purposes, given any A C X*“ we define A e wi" by
induction on n € IN by: Aew) = A, and Aew™ = (Aew})ew.

Clearly, by Proposition I3 d,, (A e w}) = dy(A) - w} holds for every non-self
dual Borel A C X“. Tt follows that the w-language () ew} is a non-self dual Borel
set whose Wadge degree is precisely w'.

Every non-null ordinal a < w{ admits a unique Cantor normal form of base
Wi a:w?"ﬁj—l—w?"’l-5j_1+-~-+w?1-51.
where w > 7 > 0, w > n; > nj_1 > ... > ng > 0, and 65,6j_1,...,01 are
non-zero countable ordinals [36].

As in [5,6], we set 2(a) == (Dow;?)e8;+ (Dew;’ " )es;_1+---+(Dew])ed;.

By Propositions [7l [Tl and I3 d,, (2(«)) = « holds.

'3 This operation was denoted A — A%oo in [7], and A — A" in [6].
e, dp(®) =dw(X¥) =1
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5 A Hierarchy of BC(k)

From now on, we restrain ourselves to the sole ordinals oo < w$ whose Cantor nor-
mal form of base w; contains only multiplicative coefficients strictly below w**1,
and we construct for every such a some Muller deterministic k-blind-counter au-
tomata M, and M such that both L(My) =, 2(a) and L(M) =, 2(a)C
hold.

To start with, notice that for every integer n since ) @ W™ € REG,, is veri-
fied, there exist deterministic Muller automata O,, = (Qn, Xp, 6n, %, Fn), where
F,, € 29 is the collection of designated state sets, such that L(O,) = () e w™.
We prove the following results:

Proposition 15. For any w-regular language A, any integer j > 1 there exist
w-languages B, C € BC(j) such that B =, (Aewl) and C =, (A e wi)L.

A careful generalization of the ideas of the proofs of Proposition [I5]leads to:

Proposition 16. For any w-reqular A, integer k, and ordinal w* < o < w1,

there exist B,C € BC(K) such that both B =, (Ae ) and C =, (Aea)C hold.

Theorem 17. Let a < wf be any ordinal of the form

o :w;” '(Sj —&—w}”fl '(5]‘_1 —|—-~-—|—w?° - 0o
wherew > j >0, w>n; >n;_1>...>n9 >0, and w* > 6;,0;-1,...,50 > 0.
Let k be the least integer such that ¥i < j §; < w**tl. Then there exist
w-languages B, C € BC(K) such that B =, () and C =, 2()C.

We recall that 2(a) := () e w]?) 0+ (Dew"™) 001+ -+ (Dewi)ed.

6 Localisation of BC(k)

This section is dedicated to proving that there is no other Wadge class generated
by some non-self dual w-language in BC'(k) than the ones described in Theorem
7 Prior to this we need a technical result about the Wadge hierarchy together
with a few others on ordinal combinatorics, and notations.

For some A C X¥ and u € X*, we write u~ ! A for the set {z € X | uz € A}.
We say that A is initializable if player II has a w.s. in the Wadge game W (A4, A)
even though she is restricted to positions u € X* that verify u=tA =, A.

Lemma 18. For A C X¥ any initializable set, B C Y, and §, 0 any countable
ordinals,

ulB=,Ae(0+1)
Ae(0+1)<, B<, Aed — FueY” or
uw B =, (Ae(0+1))L
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Lemma 19. We let B CY“, A C XY be any initializable set, and 9, 0 be any
countable ordinals. We consider any set of the form

C:A.Wil.yn+"'+14.w?7l.Vn—1+"'+A.OJ1.V1

for any non-zero integer n, and countable coefficients vy, vp_1,...,1 with at
least one of them being non-null.

uwlB=,C+Ae(0+1)
C+Ae(6+1) <, B<, C+A¢f — JueY” or
u'B=, (C+Ae(f+1))°.

We recall that for any set of ordinals O, its order type — denoted ot(O) — is the
unique ordinal that is isomorphic to O ordered by membership.

Definition 20. The function H : w* X w* — On is defined by
H(a, ) = (I +mp) + 0" (e +mp1) + -+ @ (lo +mo).

Where (a variation of the) the Cantor normal form of base w of a (resp. ) is
a=wk L+t Wy, B=wW om0 mp g w0 mg,
with U, my, lg—1, Mk—1, ..., lo,mg € IN. (Some of these integers may be nul.)

Lemma 21. Let H:w¥ X w* — On, 0 < d,a, '8 <w* witho' <a, f/ <f
but either o/ < a or ' < B, then H(a/,8') < H(w, B).

We make use of the mapping H to prove the following combinatorial result.

Lemma 22. Let o, 3,7 be non-null ordinals with o, 8 < w*, and f : v —
{0,1}. If both a = ot(f~1[0]) and 8 = ot(f~![1]) hold, then v < H(a, 3).

Corollary 23. Let k,n be non-null integers, v be any ordinal, 0 < ag,...,q <
w?, and f:y —{0,...,k}. If Vi <k o; =ot(f[i]) holds, then v < w™.

Lemma 24. Let k be some non-null integer, (]Nk,g) be a well-ordering such
that for every k-tuples (ao,...,ax-1),(bo,...,bk—1) € IN* the following holds:

Vi <k a; < b;
(ao,...,ak_l)S(bo,...,bk_1):> or
di,j <k  such that a; < b; and a; > b;.

Then, the order type of (]Nk, <) is at most w*.

Lemma 25. We let k be any non-null integer, B € BC(k), A C X“ be any
initializable set, and § any countable ordinal.

B<,Aed§ — B<, Aea for some a < w*1!.

15 In particular, Iy, lg_1,... Mk, Mr_1, ... might be null, but since a, 8 > 0 holds, at
least one of the I;’s, and one of the m;’s are different from zero.
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An immediate consequence is that B =,, A e § holds only for ordinals § < w+1.
Proof. First notice that for every B C X%, and every v € X*, if B € BC(k)
holds, then u~!B € BC(k) holds too.

Towards a contradiction, we assume that A e a <, B <,, A ¢ holds for
all @ < wht1. We let B be a k-blind counter automaton that recognizes B. By
Lemma [I8, for each successor ordinal o < w**! there exists some u, € X*
such that u;'B =, Aea or u;'B =, (A e a)t. For each such u,, we form
(Gas Ca,05Caly - - -5 Cak—1) Where g, denotes the control state that B is in after
having read u,, and cqo ; the height of its counter number ¢ (any i < k).

Now there exists necessarily some control state ¢ such that the order type
of the set S = {a < w**! | a successor and q, = ¢} is w**!. By Lemma
there exist a,a’ € S such that o’ < a holds together with c,; < ¢, ;
(any i < k). (Without loss of generality, we may even assume that w <
o/ < « holds.) Let us denote B, the k-blind counter automaton B that
starts in state (¢o,Ca’,05Ca’,15 - - -5 Car k—1), and By the one that starts in state
(Gas Ca,05 Caly - -+ 5 Cak—1)- Notlce that since ¢, ; < ¢, ; holds for all i < k, By
performs exactly the same as B, except when the latter crashes for it tries to
decrease a counter that is already empty. But it is then not difficult to see that
given the above assumption — that w < o/ < « holds — u;lB <w u;,lB holds
which leads to either Aea <,, Ao/ or (Ae oz)B <w Aecd’. In both cases, it
contradicts o < a. O

Notice that () e w? being initializable, we have in particular the following result.

Lemma 26. For k,n any integers, A any non-self dual w-language in BC(k),
and any non-zero countable ordinal o, A or A® =, (D e w}) e a = a < WFt!.

In a similar way, we may now state the following lemma.

Lemma 27. We let k be any non-null integer, B € BC(k), A C X“ be any
initializable set, § be any countable ordinal, and C' be any set of the form

C:A.W?.Vn‘k""‘!‘A.w?il.Vn—1+"'+A.OJ1.I/1

for any non-zero integer n, and countable multiplicative coefficients vy, v,_1,
., v1 with at least one of them being non-null. Then we have

B<,C+Aed — B<,C+Aeq for some a < w**t!

Theorem 28. Let k be any non-null integer, B C X*“ be non-self dual. If B €
BC(k), then either B or Bb is Wadge equivalent to some

)= Dow)ed;j+ (Dew ) ed; 1+ -+ (Dew)ed.
where j € N, n; >nj_1 >...>ng and w1 >6;,8;_1,...,50 > 0.

Proof. This is an almost immediate consequence of Lemmas 28] and O
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This settles the case of the non-self dual w-languages in BC(k). For the self-dual
ones, it is enough to notice the easy following:

1. Given any A C X%, if A € BC(k) is self dual, then there exists two non-self
dual sets B,C C X such that both B and C belong to BC(k), B =, cC,
and A =, XoB U X;C, where {Xj, X1} is any partition of X in two non-
empty sets.

2. If AC X% and B C X“ are non-self dual, verify A =, BB, and both belong
to BC(k), then, given any partition of X in two non-empty sets {Xo, X1},
XoA U X1 B is self-dual, and also belongs to BC(k).

If we set d°(A) = sup{d°(B) + 1| B <w A}(any A C X¥), then we obtain that
there exists an w-language B C X“ recognized by some deterministic Petri net,
such that A =,, B holds iff d°A is of the form a = w} - &, + -+ + w{ - § for
some n € IN, and w¥ > §,,...,59 > 0. Finally, an easy computation provides
(W) = w*’ as the height of the Wadge hierarchy of w-languages recognized by
deterministic Petri nets.

7 Conclusions

We provided a description of the extension of the Wagner hierarchy from au-
tomata to deterministic Petri Nets with Muller acceptance conditions. The re-
sults are rigorously the same if we replace Muller acceptance conditions with
parity acceptance conditions. But with Biichi acceptance conditions instead, it
becomes even simpler since the w-languages are no more boolean combinations
of XY-sets, but II9-sets. So, the whole hierarchy comes down to the following:

Corollary 29. For any A C X%, there exists an w-language B C X“ recognized
by some deterministic Petri net with Biichi acceptance conditions, such that
A =, B iff either d°A = w1, and A is TI-complete, or d°A < w®.

Deciding the degree of a given w-language in BC(k), for k£ > 2, recognized by
some deterministic Petri net — either with Bichi or Muller acceptance condi-
tions, remains an open question. Notice that for £ = 1 this decision problem has
been shown to be decidable by the second author in [11].

Another rather interesting open direction of research is to go from determin-
istic to non-deterministic Petri nets. It is clear that this step forward brings
new Wadge classes — for instance there exist w-languages recognized by non-
deterministic Petri nets with Biichi acceptance conditions that are not AY [19]
— but the description of this whole hierarchy still requires more investigations.
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Abstract. We introduce a class of set-theoretic operators on a toler-
ance space that models the process of minimal belief contraction, and
therefore a natural process of iterated contraction can be defined. We
characterize the class of contraction operators and study the properties
of the associated iterated belief contraction.

1 Introduction

Vagueness can be generated in several ways, but among them, distinguishability
— i.e., our observational power of telling whether two objects are distinct —
is the most cited. Its complement, the relation of indistinguishability has long
been used in logic to model a variety of systems. Most notably, the accessi-
bility relation of Kripke models is often interpreted as an indistinguishability.
Indistinguishability is often assumed to be an equivalence, like the accessibility
relation of the modal logic S5. However, a more interesting view arises when
we drop transitivity and assume that indistinguishability is only reflexive and
symmetric, that is, a tolerance [IJ2].

When indistinguishability is an equivalence, then the objects form a partition.
When indistinguishability is a tolerance, then a more refined situation appears
where the objects form a graph. In particular, the graph comes equipped with a
natural notion of distance based on the shortest path called geodesic. We have
argued that we can use the geodesic distance to measure similarity. Our idea ([3])
rests on the following maxim: two objects are similar when there is a context
within which they are indistinguishable. Therefore, similarity can be measured
with degrees of indistinguishability.

For example, when two houses appear indistinguishable from a certain dis-
tance x, then it is safe to say that those houses are similar. For, if we get closer,
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an inspection might reveal differences but their similarity will persist. Thus, in-
distinguishability at distance x implies similarity. The smaller the distance =z,
the more similar the objects are.

Now consider the following problem: assume that our view of the world —
that is, the set of states we consider possible — is A and we are asked to add
to A at least one element from a subset B. In other words, we are asked to
change our view to allow for the possibility that B holds. It seems natural to
pick the elements of B that are most similar to those of A. In our framework,
similarity is measured by the geodesic distance; that is, it is measured by degrees
of indistinguishability, and therefore we would pick those elements of B that are
closest to A. Making B possible is equivalent to contract its complement B¢ so
this process will be called contraction.

Contraction by minimization over a geodesic is straightforward. We illustrate
the process with the following example (edges represent the reflexive symmetric
tolerance relation).

a b c d e f g
[ J o o o o o o
Fig. 1.

In Figure[l] let A = {d} and B = {a,b, f, g} then A® B the contraction of A
with B equals the subset {d, b, f}. This is because the distance of d from b and
f is 2 while the distance of d from a and g is 3. So b and f are closest to A and
we choose to augment A with both of them.

Let C = {a, f,g}. Then A® C = {d, f}.

Now, let D = {a,f} and G = {b,g}. We have A® D = {d,f} and A @
G = {d,b}. The global character of the geodesic metric allows us to iterate the
contraction operator. So, we have (A@& D) ® G = {d, f,¢g} and (A® G)® D =
{d,b,a}. Therefore this example is also a counterexample to commutativity.

The main result of this paper is a characterization of the contraction oper-
ator @ on subsets of the elements of the tolerance space. This result appears
in Section [ (Proposition H). However the geodesic revision postulates can be
translated to propositional language and we will conclude by discussing this
translation while comparing it with earlier literature.

2 Tolerance Spaces and Their Geodesic

We will use a reflexive and symmetric relation to model indistinguishability.
A set equipped with such a relation is frequently called a tolerance space. In
addition, we will assume that the space is connected:

Definition 1. Let X be a set and R C X x X a relation on X. Then (X, R)
is called a (connected) tolerance space when R is reflexive, symmetric, and
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(X is) connected, i.c., for all x,y € X there is a non negative integer n such
that xR™y.

In the above definition, we assume R® = 1x, R” = R" ' o R for n > 0.
Given a tolerance space (X, R) we can define a metric called geodesic with a
map d from X x X to Z* (the set of non-negative integers) where

d(z,y) = min{n | zR"y}.

Note that a geodesic metric is not any integer metric. The values of the geodesic
metric are determined by adjacency. The results of this paper depend heavily on
this property which can be described with: for all z,y € X such that d(z,y) =n
with 1 < n < oo there is z € V with z # x, y such that d(x,y) = d(z, z) +d(z, y).
In particular we can choose z so that d(z,z) = 1. Note here that a geodesic
metric is a topological metric, that is, it satisfies identity, symmetry and triangle
inequality.
The geodesic distance extends to distance between non-empty subsets with

d(A, B) = min{d(z,y) | x € A,y € B}.

We shall also write d(x, A) for d({z}, A). Similarly for d(A, x). We will write A°
for the complement of A.

Lemma 1. If A and A® are non-empty, we have d(A, A°) = 1.

Proof. Suppose dg(A, A°) = n with n > 1 (it cannot be 0). Then there exists a
minimal path of length n between A and A®: x1 € A, xo,..., 241 € A where
z;Rx;+1. However, either zo € A or zo € A° and a shorter path arises in both
cases, which is a contradiction.

3 Contraction Based on a Geodesic

Contraction with ¢ means to augment our belief state with the possibility of a be-
cause removal of beliefs translates to the addition of possible states. Apart from
this semantic view, such addition could be achieved syntactically in a language
where possibility can be expressed (e.g. modal logic).

Definition 2. Given a tolerance space (X, R) and A,B C X with A # 0 then
the (induced) contraction of A with B is defined with

[AU{ye B|d(Ay) = d(A B)} if B#0
A®r B = {A otherwise.

Contraction is just one of the interesting operators one can define on tolerance
spaces. In [45], we studied conditioning and revision operators. The following
lemma holds.

Lemma 2. 1. d(A,z) =1 if and only if x € (A& A°) N A°
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Table 1. Geodesic Contraction Rules

ACAO®B

IfANB#0, then A® B=A

If B#0, then A® BN B # 0.

IfB=0then A®B=A

If ACB°then A@ B=((A® A°)® B)N(AUB)
fAe@CNB#@and BCC,then A®B=(AdC)N(AUDB)
If AC Bthen A9 B°C B@ B°

If A@ A° C B¢ then B® B¢ C A°

S I o

2. d(A,x) =n, for n > 1, if and only if, d(A®r A% x) =n — 1.

Proof. Part 1 is straightforward.

For2l d(A,x) = n implies that there exists y € A such that d(y,x) = n. Since
n > 1, this implies that there exists z € V such that d(y, z) + d(z,2) = (y, )
with d(y,z) = 1. Therefore, d(z,2) = n — 1 which implies that z ¢ A (for if
not the distance of « from A would be less than n). Therefore d(A, z) = 1 and
from above z € A@®g A°. This implies that d(A®g A°,x) < n—1. Now suppose
that d(A ®r A%, x) = k < n — 1. Then there would be z/ € A &r A° with
d(z',x) = k. By Lemma above d(A4, z') = 1. This implies that there is ¢y’ € A
such that d(y’, 2’) = 1. Hence, d(y',x) < d(y',2")+d(z',z) = k+1 < n—1 which
contradicts d(4, z) = n.

Definition 3. An operator that satisfies 148 of the Table[d will be called geodesic
contraction.

A few words about the rules appearing in Table [[} Rule [l implies reflexivity for
the underlying relation of indistinguishability and corresponds to AGM postulate
of Inclusion (see Tabled]), Rule@2to Vacuity, RuleBlto Success. Ruleddetermines
how the operator acts when we contract with the empty set (there is no effect).
Rule[lis the inductive step for contraction. Rule[@lis a weak form of monotonicity
in the first argument and similarly Rule [[ for the second argument. Finally,
Rule B implies symmetry for the underlying relation of indistinguishability.

Proposition 1. The contraction operator defined in a tolerance space (see Def-
ingtion[3) is geodesic.

Proof. We show soundness for selected rules.

Rule [ holds by definition.

For[2] observe that AN B # () implies that d(A, B) = 0 and therefore A® B =
AUu{z e B|d(A,z) =0} =AU(ANB) = A.

For Rule B assume A C BC. If B=0then A®@B=A=(A® A)NA. If
not assume d(A, B) = n > 0. By Lemma 2] we have d(A® A°,B) =n —1 and
therefore

{reBl|d(A,z)=n}={x e B|dA® A% x) =n— 1},
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Table 2. Geodesic Contraction Properties

APBCAUB

(AeB)NB°=A
f(AepC)NB#Pand BCC,then A@BC AaC
If(A®BUC)NB#0, then A@BC A& (BUC)

If AC Bthen A A° C B® B°
A®(BUC)CA®BUA®C

fA®DBNC#Pthen AGCCAGB

If BC A° then (A®@ AYNB#£0if (B&B)NA#D
fA®BNC#(0Pthen AGB®CCAGB

© 0N O N

again using Lemma 2l We have
(A®A°)®B)N(AUB) = (A A)U{z € B|d(A® A°,z) =n—1})N(AUB).
If d(A, B) = 1 then

(A AYN(AUB)=AU(A°NB)=AU{z € B|d(A,z)=1}

and
{reB|dA®d A% z)=0}N(AUB)={x € B|d(A,x)=1}.
If d(A, B) > 1 then
(A9 A°)N(AUB)=A
and

{reB|dAp A% z)=n—1}N(AUB)={z € B|d(4,z) =n}

In both cases we have (A® A°)® B)N(AUB)=A® B.

Proposition 2. A geodesic contraction operator satisfies the properties of
Table 3.

Proof. (selected) Property [ follows from Rules 2 and
Property 2] follows from Property [l
Property Bl follows from Rule [6l
Property @l follows from Property Bl because B C BU C.
Property Bl follows from Rules [ and [7

Proposition 3. The properties of Table[3 do not hold for the class of geodesic
contraction operators.

Proof. (selected) We employ Proposition [[I All counterexamples are based on
the tolerance space of Figure[dl
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Table 3. Non-valid Properties

IfA@CC B then (A C)eBC (A B)U(AdC)
IfA@CCB°and BCC,then (A C)BC (A B)U(A®C)
(AeB)pC=(ApC)® B

fA@CCB°and A@BCC¢ then(AeB)¢C=(AeC)eB
f(AeB)NC#Pand (AGC)NB#Pthen A®B=AdC
fACBthenC®BC (A®B)UC
IfAUBCC then (A C)UB=(B®C)UA
IfTACCCB“then A BCCa®B
IfACBthen Ao CCBagC

IfAUCC B thenAC(A@B)NDifCC (C®B)ND

C L XN O W

—_

For Property [l let A = {d}, B = {a, f} and C = {b,g}. We have A@® B =
{d,f} and A@ C = {d,b}. So, we have (A® B)U (A® C) = {d,b, f} and
(AdC)@ B ={d,b,a}.

For Property ] let A = {d}, B = {a, f} and C = {b,g} as above. We have
(AoB)® C={d,f,g} and (A®C)® B ={d,b,a}.

For Property [6 let A = {d}, B = {a, f} and C = {b, g} again as above. We
have C ® B = {a,b, f,g} and (A® B)UC = {b,d, f, g}.

4 The Tolerance Space Generated by Contraction

Next, we study the conditions under which a geodesic contraction operator de-
fines a tolerance. We shall show that this correspondence is bijective (Proposi-
tion H)). To this end, suppose X is a set and @ is an operation on its subsets.
Define a relation Rg on X with (x,y) € Rg if and only if y € {x} @ {z}°.

Lemma 3. Suppose @ is a geodesic contraction. Then, Rg is reflexive and
symmetric.

Proof. Reflexivity holds because, by Rule[ll {z} C {z}®{z}¢soz € {z} ®{z}°.
For symmetry, suppose (z,y) € Rg we have y € {x} @ {x}° therefore {y}N{z} ®
{z}¢ # 0 which implies by Rule Bl that {z} N {y} @ {y}¢ # 0. The latter implies
that z € {y} ® {y}, i.e. (y,2) € Re.

We will write d for the geodesic distance generated by Rg.
Lemma 4. Suppose @ is geodesic. Then,
{z|d(A,z) <1} = Aq A

Proof. For the left to right inclusion, let A C X such that « € A. Since {z} C A,
we have {z} @ {z}¢ C A® A° by Property [l

For the other direction, suppose z € A @ A°. If x € A then d(A,z) = 0.
Assume x € A, Since x € A @ A° implies A ® A° N {z} # 0, Rule B applies and
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we have {z} @ {z}°N A # 0. So, there exists y € A with y € {z} ® {x}¢ which
implies (z,y) € Rg, and by symmetry (y,x) € Rg i.e. d(y,z) = 1 which implies
d(A,z) = 1.

Now we can show that a geodesic generates a connected tolerance space.
Lemma 5. If @ is a geodesic contraction then (X, Rg) is connected.

Proof. Suppose (X, Rg) is not connected. Then place the (at least two) con-
nected components of X in two subsets A and A°. Since A¢ # () then, by Rule[3]
AdANA°#£(). Let z € Ad A°N A°. By Lemmal d(A,z) = 1 which implies
that there exits y € A such that yRgx, a contradiction.

Lemma 6. Suppose @ is a geodesic contraction. Then we have, for all n > 1,
d(A,z) =niff d(A® A% x) =n — 1.

Proof. Using Lemma @l the proof is similar to Lemma 212

Next we show that all geodesic contraction operators are induced by a tolerance
space (using Definition ) .

Proposition 4. Given a geodesic contraction @, we have
© = @ORgy-

Proof. Pick A, B C X. We shall show that A ® B = A ®r, B by induction on
the geodesic distance d(A, B) of A and B in the space (X, Rg).

Assume A, B # ). Let d(A, B) = 0 then there exists © € A N B therefore
ANB # 0 so by Rule[2 (satisfied by both @ and ® g, ) we have A@ B = ANB =
A @R@ B.

Let d(A, B) = 1. We have A®g, B = AU{x € B | d(A,x) = 1}. By Lemma[d]
the latter set is exactly A® A°N (AU B). We have A@B=A@ A°N (AU B)
by Rules 2] and Bl

Assume that is true for all k& where 1 < k < n and let d(4,B) = n. By
definition,

A®ry, B=AU{z € B|d(A,z)=n}.

We have,
A@R® B = ((A DOrg AC) DORg B) n (AUB)

by Rule Bl Because of the same rule,

A®B=((A® A°)@ B)Nn(AUB).
So it suffices to prove

(ADRy A°) ®r, B=(A® A°) ® B.
By the induction hypothesis, we have

A@p, A°=A® A°,
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S0 it remains to show
(ADA°) DR, B=(ADA°)D B

which follows from Induction hypothesis because d(A @ A°, B) = n — 1 using
Lemma
Finally assume B = (). Then A® B = A@g, B = A using Rule @l

The above proposition shows that the set of rules of Table [Il characterizes the
class of geodesic metrics. Note that it also implies that the given tolerance space
(X, R) equals the tolerance space generated by @g.

5 Comparison with Previous Approaches

Our notion of similarity based on the geodesic distance is novel (introduced
in [3]). We do not regard similarity as a basic notion but rather one that is derived
from the more fundamental concept of indistinguishability. Our models should
be thought of as graphs or Kripke models with an accessibility relation. The
geodesic distance that leads to similarity is a byproduct of this basic structure.

Nevertheless, our approach ultimately employs minimization of a similarity
relation and, therefore, it is part of a traditional approach of performing belief
change using similarity. One of the first uses of similarity was Lewis’s evaluation
of counterfactuals ([6]): @ > b holds when b is true at the most similar a-world(s)
to the current one. Lewis used a reflexive and symmetric relation of similarity
indexed with propositions.

Non-indexed global similarity relations have been mostly identified with met-
ric distances. A non-metric approach satisfying Williamson’s axioms ([7]) for
a quaternary comparative similarity relation appears in [8] where correspon-
dence results are shown between properties of selection functions (that can be
used to define contraction) and global similarity relations based on the subset
difference between theories. This study is syntactic because the similarity rela-
tion is imposed on theories rather than models, and is confined to properties of
the selection function rather than the properties of the associated contraction
operation.

The metric approach to belief change has been studied in detail in [9]. Al-
though the characterization results of [9] are confined to belief revision operators,
it is certain that corresponding postulates for distance-based contraction will all
be valid in our framework. However, as we have noted in [4], this correspondence
is not bijective, as two distance metrics may generate the same belief revision
operator; that is, logical operations are too coarse to tell the difference between
two distance metrics. Other results relating metrics and geodesic metrics to non-
prioritized belief revision (or merge) operators (as in [IOJII]) will appear in a
future paper.

Now, we will attempt to place geodesic contraction among the numerous con-
traction proposals. Using geodesic contraction, one can define the traditional
contraction operation & with

ASB=A® B“.
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Table 4. AGM Contraction Postulates

K +p=Cn(K +p) Closure
K+-CK Inclusion
Ifpg K, then K +p=K Vacuity

If p € Cn(), then p & Cn(K + p) Success

If p+» g€ Cn(d), then K +p=K +¢q Extensionality
K CCn((K +p)U{p}) Recovery
K+pNnK+qCK=+(pAgq) Intersection

Ifpg K+ (pAgq), then K =+ (pAgq) C K+ p Conjunction

As our approach is semantic and our rules are set theoretic, we will assume that
there is a way to turn the rules using subsets and set operations to rules about
theories. This happens when the operator M od, turning a theory to the set of its
models, is surjective (every subset is represented by a theory), and the operator
Th, turning a set of models to the corresponding closed theory are inverses
of each other (on closed theories). For example, such a correspondence appears
when we use a finite language, classical propositional logic for syntax, and binary
valuations for models. Assuming such a translation, we are able to compare our
rules and framework to those appearing in the majority of contraction literature.
Our presentation is informal.

We start with the basic AGM contraction postulates ([I2]). Closure and
Extensionality are assured by our framework. As we noted earlier, Inclusion
corresponds to reflexivity with Rule [II Vacuity corresponds to Rule 2l Success
corresponds to connectedness with Rule Bl Recovery is satisfied by geodesic con-
traction and corresponds to Property[2l Many authors have identified cases where
recovery is not appropriate ([I3JI4/15]). A desirable feature of our framework is
that it allows us to define a variety of contraction operators, including some
where recovery does not hold. The semantics, or rather, the underlying knowl-
edge representation structure is what guides the formation of the contraction
rules.

As an example, suppose that the speed limit is 65 miles per hour and our
tachometer reads 64 miles per hour. If we allow the possibility of speeding, then,
using contraction, we reach the state 64,66. However, we might want, as usually
the case is, to consider intervals, or more general, convex sets as epistemic states.
So an alternative would be to include 65 and instead reach the state {64, 65,66}.
This is achieved by defining a withdrawal (see [13]) operator with:

(A,y) <d(A,B)}if B# 0

_J{yld
A®r B = { A otherwise.

If now we receive information that we did not speed after all, then the final state
according to our framework should be {64,65} rather than the initial {64}.
Therefore, recovery fails.
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We will now turn to verifying contraction postulates governing successive
contraction. First, consider the following rule

Ifggd K+p, then K+p+qg=K=+p

which follows from the AGM postulates and corresponds to Property @ The
following postulate is called Insertion in [LI6]

Ifge K+p,then K+p+q=(K+p)N(K=+q)

and is not valid in our framework. It corresponds to the invalid property [II
Insertion is a property of Hansson’s Unified Global Specified Meet contraction
([I7]) so geodesic contraction does not belong in this class of operators. Moreover,
there is no rule that reduces geodesic contraction to a single-step contraction.
The slightly weaker property

Ifge K+pandptg, then K +p=+qg= (K +p)N(K+q)

is not valid either (see non-valid Property 2]). This property was introduced in
[16] and is satisfied by the class of Principled Iterated contraction operators,
so geodesic contraction does not belong in this class. Lexicographic contrac-
tion ([I8]) is a Principled Iterated contraction, so geodesic contraction is not
lexicographic.

Geodesic operators are not commutative; that is the following property

K+p+q=K-=+q=+p

is not valid in the geodesic class. Its counterpart is non-valid Property (Bl In
contrast, commutativity is valid in the Finite State contraction operators of
[19]. Even the following weaker form of commutativity

Ifge K+pandpe K +q,then K +p+-g=K +-q—+p

fails (non-valid Property M.

Geodesic contractions are global in the sense of Hansson, as they are defined
for every non-empty subset. However they violate almost all rules suggested in
[20]. In particular, the following four:

If pe Ky, then (K1 +p)NKy C Ko+ p Non-addition

If pe K1 N Ky, then (K7 +p) N Ko = (K3 + p) N K7 Symmetric inclusion
Ifpe K1 C Ko, then K1 +pC Ko +p Contractive monotonicity
For all z and all p € K1 N Ko:

KiCKi+p+zit Ko CKy+p+z Recovery equivalence

are all not valid (they correspond to invalid Properties [6 [ B and 0
respectively).
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6 Conclusion

We have introduced a semantic framework based on a view that similarity can be
measured with degrees of indistinguishability. The framework consists of toler-
ance spaces and their associated geodesic metrics. Then, we defined a contraction
operator through the minimization of the geodesic metric. We presented a simple
set of properties that characterize the class of geodesic contraction and proper-
ties that are valid and not valid for this class. We translated those properties into
the usual postulates of contraction and iterated contraction. Although geodesic
contraction satisfies all AGM postulates, it violates the majority of postulates
in the iterated contraction literature.

The fact that geodesic contraction fails to satisfy the suggested logical pos-
tulates can only be regarded as negative, both for geodesic contraction and said
postulates. Geodesic contraction appears to be weak. Although geodesic con-
traction has firm, easily comprehensible semantics, those semantics can easily
produce counterexamples. Similarly, it seems that suggested iterated contrac-
tion operators fail to include a restricted but useful source of contraction: error.
In addition, geodesic metrics are easily generated as thresholds of distance met-
rics, so we believe that further research towards applications may be useful.
Theoretical directions can include the study of other useful operators such as
the withdrawal operator of the previous section as well as formal logical systems
whose semantics include minimization of a metric on a tolerance space.
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Abstract. Any intermediate logic with the disjunction property admits
the Visser rules if and only if it has the extension property. This equiv-
alence restricts nicely to the extension property up to n. In this paper
we demonstrate that the same goes even when omitting the rule ex falso
quod libet, that is, working over minimal rather than intuitionistic logic.
We lay the groundwork for providing a basis of admissibility for minimal
logic, and tie the admissibility of the Mints—Skura rule to the extension
property in a stratified manner.

Keywords: admissible rules, minimal logic, disjunction property,
extensions of Kripke models.

The admissible rules of a theory are those rules under which the theory is
closed. Derivable rules are admissible. For classical propositional logic, this is
the whole story. For intuitionistic propositional logic (IPC) — and minimal logic
— it is not.

Friedman [7, Problem 40] conjectured admissibility for IPC to be decidable,
as has been confirmed by Rybakov [25]. De Jongh and Visser conjectured that
the Visser rules form a basis of admissibility for IPC, that is to say, all admis-
sible rules of IPC become derivable after adjoining the Visser rules. Roziere [24]
and Temhoff [13] independently confirmed this. Again independently, Skura [27]
demonstrated that IPC is the sole intermediate logic that admits a restricted
form of the Visser rules.

At the Pisa Proof Theory workshop of 2012 George Metcalfe gave a tutorial on
admissible rules. As has become standard practice, Metcalfe mentioned Lorenzen
[20] as the first place where admissible rules where studied an sich. Jan von Plato
objected that Johansson |18] already discussed them. Odintsov and Rybakov [23]
proved admissibility for minimal logic to be decidable. In this paper we lay the
groundwork for studying all admissible rules of lJohansson’s minimal logic, with
the eventual goal of providing an explicit basis of admissibility.

This paper aims to provide uniformity to some of the literature regarding
admissible rules for logics above minimal logic. We make several observations,
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639.032.918 is gratefully acknowledged.
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many of which not elsewhere available in the generality stated here. Although
this paper contains novel results, most notably the semantic characterization of
admissibility for an adaptation of the rules studied by Skura, its main purpose
is to provide a unified approach to the study of admissible rules over minimal
logic.

1 Preliminaries

We first fix some basic notation. Many definitions are fairly straightforward
adaptations of their well-known intuitionistic counterparts.

Definition 1 (Propositional Language). The language of propositional for-
mulae is defined as follows, starting from a fixed countably infinite set of propo-
sitional variables Var. A formula is said to be atomic if it consists solely of a
variable or falsum, the set of atomic formulae is denoted as Atom.

Lu=Var|L|LAL|LVL|L— L.

We will denote formulae by captital Latin letters at the beginning of the alpha-
bet, and use greek capitals to refer exclusively to finite sets of formulae. For
greater convenience we write I' = A to mean AI' — \/ A, that is to say, the
conjunction of all formulae in I" implies the disjunction of all formulae in A. We
will only use this notation when both I" and A are non-empty. This definition of
a Kripke model differs in one important regard from the standard definition as
given for instance by Troelstra and van Dalen [29]. The difference is in that a val-
uation can determine whether L is to hold, analogous to the definition of Dosen
[5], whereas in a Kripke model of IPC this is fixed. This to ensure completeness
for minimal logic, in which L does not derive everything.

Definition 2 (Kripke Model). A Kripke model is a pair K = (K,v) where
K is a partial order and v (the valuation) is a monotone map v : K — P(Atom).
We define a relation |- (forces) between K and L inductively as follows

ElF A = kewv(A) for atomic A

kElF ANB = klFAandklFB

k- AvB = klFAorklFB

klF A— B := [l B wheneverll- A for all k <1

The model K is said to be rooted if K has a least element, and K is strict when
kI L holds for no k € K. We say that K is finite when K is finite and v maps
but finitely many atoms to a non-empty upset. As usual, we write K |F A to
mean that k£ IF A for all £ € K. For convenience we also write K |- z when
z C L to mean that K I A for all A € x. The theory of K, written Th K, equals
the set of formulae A such that K I+ A.

Kripke models can be endowed with a topology, the Alexandroff topology,
where opens are exactly upsets. Using the thus inherited topology we can define
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a sensible notion of maps as follows. These kinds of maps have been called p-
morphisms and bounded morphisms, we will simply call them maps (of Kripke
models). From the definition it naturally follows that for any map f: K — L
we have Th L C Th K.

Definition 3 (Maps of Kripke Models). A map f : (K,v) — (L, w) between
Kripke models is an open and continuous function such that wo f = v.

We often place models next to one another, below a formal definition.

Definition 4. Given a set of Kripke models K = {K = (K,vk) | K € K} we
define their disjoint union as

[1x = <HIC U vK>.

Kek

In order to be as generic as possible, and to not get involved with the intricacies
of axiomatizations of the logics at hand, we use the notion of a consequence
relation. Rybakov [26] already used consequence relations in the context of ad-
missible rules, we shall do the same. We will use the formulation of Cintula and
Metcalfe [3], where a consequence relation is concerned with multi-conclusion
rules[] Multi-conclusion rules allow for a more succinct notation of the rule
schemes we will use later on, and help us steer clear of some obstacles concern-
ing the disjunction property, see Citkin [4].

First, a rule is an ordered pair of finite sets of formulae, written I'/A. A
consequence relation is simply a set of rules satisfying certain sensible properties.
When reading the following definition, think of the relation - defined as I' = A
iff there is a (minimal logic) proof of some A € A with assumptions in I'.

Definition 5 (Consequence Relation). A consequence relation (or logic)
consists of a relation called derivability, denoted &, between finite sets of for-
mulae subject to the following axioms, where A is a formula and I',©, A, Il are
finite sets of formulae.

reflexivity AFA;

monotonicity if ['F A, then IO+ A II;

transitivity f I’ A A and A,OF I, then IO+ A IT;
structurality  if I'F A, then o (I') F o (A).

We extend the notation to infinite sets on the left by defining z - A to mean
that there exists a finite I C x such that I" - A. When one of the sets is a
singleton we omit braces, and if it is empty we omit it entirely. A formulae A
is said to be a theorem of this consequence relation if - A. A logic is consistent
when not all formulae are theorems.

Given any set of formulae x and any consequence relation - one can form
a new consequence relation , where I' -, A holds if and only if x + "' - A.

! Note that they call the definition below a “finitary structural multi-conclusion con-
sequence relation”. We call this simply a consequence relation or logic.



A Note on Extensions 209

I'A I'+B I'+AAB I'AAB
I'AAB I'A I'+B
I'+A I'+B I'+AVB ATHC B,T'+C
I'AVB I'AVB rec
IAFB I'FA—>B I'+A
I'-A—B I'+B

Fig. 1. Closure properties of +

We say that z is a theory if it contains all theorems of F,. Moreover, given a
consequence relation F one can form the consequence relation of admissibility.
Roughly said, a rule is admissible when for each substitution we know that if its
assumptions are theorems under the substitution, then one of the conclusions
must be a theorem under the same substitution.

Definition 6 (Admissible Rule). Let F be a consequence relation and I'/A a
rule. We say that I'/A is admissible, denoted I b A when for each substitution
o,if Fo(A) forall A€ I, then & o (A) for some A € A.

The thus defined relation hr of admissibility is a consequence relation. By
structurality, i contains F, so reflexivity is clear. All other properties are a
simple matter of verification. A rule is said to be admissible for r whenever it is
admissible for .

It is important to keep in mind that a logic need not satisfy the deduction
theorem, that is, I" + A F B need not be equivalent to I' - A — B, even when
the logic is an extension of minimal logic. Likewise, when a rule is admissible
for a given logic, it need not be admissible for an extension. In the following, we
will let F stand for any logic which contains minimal logic, satisfying the close
properties of Fig. E], satisfying the deduction theorem.

2 Extensions of Models

An extension of a Kripke model is that same model, adjoined with a least element
and a choice of valuation there. In this section we investigate when a given model
of a theory has an extension satisfying the same theory. This is interesting in and
of itself, but it also has applications for admissible rules. The characterization
that is to be given at the end of this section suggests a particularly nice schema of
admissible rules, namely the de Jongh rules. With some additional bookkeeping
one can use this characterization to prove, for instance, that the de Jongh rules
form a basis of the Gabbay—de Jongh logics of Gabbay and de Jongh [§], as has
been done in Goudsmit and Temhoff [11]. Here we show how these results are
actually more general, in that they help towards providing a basis of admissibility
of minimal logic. As we do not attain this goal here, we omit the bookkeeping
to make the material more digestible.

Let us now first introduce notation for extensions. What the following defini-
tion comes down to is that the model K/z is K with a node (named z) placed
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below it, which forces precisely the atomics x contains. For greater convenience
we will often write K/x even when x contains non-atomic formulae, this is un-
derstood to denote K/ (x N Atom).

Definition 7 (Extension). Let K = (K, v) be a Kripke model and x C Th K
be a set of atoms. We define the extension of K over x, denoted K/z, as follows.

K/z = <Kx, (k€ Ky —v(A) ifk € K and x otherwise)>

Here K, is the partial order with underlying set K 4+ {x} ordered by k <1 if and
only if k <1 holds in K or k = x.

The following characterization is fairly straightforward and can be proven with
almost no effort at all. It does look fairly familiar to the inductive characteriza-
tion of the Aczel Slash as given in Smoryriski |28, Theorem 5.1.18], and this is
no coincidence. When we take K to be the canonical model of some theory x as
in Definition E, then this characterization is identical, as is can be readily seen in
the presence of Lemma . Another observation: if K IF A — B but K I A then
K/xz I+ A — B, which clarifies the importance of Definition [11 below. Later on
we will formulate some constraints on theories = given models K under which
Th K/z actually equals z. We will give an exact characterization when given a
model K and a theory x there exists some extension K /y such that Th K/y D x.

Lemma 1 (Forcing of Extensions). Let K be any Kripke model and let x C
Th K be arbitrary. The following hold:

K/xzl- C iff x> C for atomic C

K/zl- ANB iff K/xlF A and K/z+ B

K/zl- AVvB iff K/xl-AorK/xlFB

K/zlw A= B iff KIFA— B and if K/z - A then K/x |+ B

A logic is said to have the disjunction property when each derivable disjunction
has a derivable disjunct. See [2] for a wonderful and comprehensive survey of
intermediate logics and the disjunction property. The above characterization
shows that the theory of each extension satisfies this disjunction property. So
when we seek theories x such that Th K/x = x holds, x had better satisfy the
disjunction property too.

To smoothen proofs we use a generalized form of the disjunction property, the
idea of being saturated in something else. Note that a set of formulae has the
disjunction property if it is saturated in itself, in which case we call it saturated.
This is one of the many places where one could introduce further bookkeeping
by restricting the formulae considered to some set, for instance the set of atomic
formulae. For details regarding this one can consult [11], this is the last we speak
of it.

Definition 8 (Saturated Set). Let x C y be sets or formulae. We say that x
s saturated in y, written r < y, whenever

xh \/ A entails yNA#Q for all non-empty finite A.
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Each theory can be extended to a saturated set, avoiding a chosen formula
outside of this set. This is akin to a basic fact of lattices: given a filter and an
ideal with empty intersection, there exists an extension of the filter to a prime
filter, which does not intersect the ideal (see e.g. [19, section 2.3]). Let us mention
three small results. The first is an immediate corollary of Lemma 3 and 4 of [11],
the other two follow from the first. The final corollary comes in handy in proving
that our canonical model works well, and it is also crucial in Lemma 4.

Corollary 1. Let x be saturated in z. There exists a saturated set y such that
rCyCz.

Corollary 2 (Negative Saturation Lemma). Let x and A be sets of for-
mulae such that x t/ \/ A. Now there exists a saturated set extending x not
intersecting A.

Corollary 3. Let x be a set of formulae and let A and B be formulae such that
xt/ A — B. There exists a saturated set extending x such that z > A and z F B.

Let us now define the canonical model. Not to prove completeness, although
it is a natural byproduct, but to link the disjunction property to a semantic
property. Our canonical model is analogous to that of Dosen [, Definition 9]. It
is also similar to the model of Aczel [1], but it differs in several regards, most
importantly in that his model is strict.

A theory is said to be consistent when its associated logic is. This notion
of consistency is sufficient to ensure the existence of (consistent) saturated sets
above a consistent theory due to the Negative Saturation Corollary E, which we
need to make the model a bona fide model. When the logic at hand would be
some intermediate logic, then any theory must contain 1 — A for any A. This
ensures that a consistent theory does not contain 1, so the canonical model
under intermediate logics would always be strict, as desired.

Definition 9 (Canonical Model). Let z be a consistent theory. The canonical
model of x, denoted by canx, is defined as the Kripke model

canz := ({y 2 x| y saturated } ,y — y N Atom)
Lemma 2. For any theory x we have Thcanz = x.

Proof. If z F C then every saturated extension contains C. Conversely, if z I C'
there is a saturated extension which does not contain C. By structural induction
along C we prove that for any y € canz we have y I C if and only if y 5 C. For
atomic formulae this holds by definition. The conjunction and disjunction cases
follow readily from induction and saturation. We are left with the implication
case, where C = A — B.

From right to left, suppose that y 3 A — B and let z O y be a saturated set.
If z IF A then z 5 A by induction, whence y C z 3 B by saturation, induction
now finished the job. To prove the converse, suppose that y Z A — B. This
yields a saturated z O y such that z 5 A but z # B by Corollary [4. The desired
follows by induction.
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Corollary 4 (Completeness). For any theory x, if K |- A for all models K
with x C Th K then x + A.

We can characterize the disjunction property via the following semantic property.
This has already been proven by Maksimova |21, Theorem 1 and 2]. The proof
below is quite similar, in that it uses the same core idea, and it nicely illustrates
how little changes when moving to minimal logic.

Theorem 1. A theory x has the disjunction property if and only if for every
model K |+ x there is a rooted model L |- x and a map K — L.

Proof. The implication from right to left is fairly straightforward. Suppose z
does not have the disjunction property. This gives some A such that x - \/ A
but for no A € A we have x F A. Via completeness this ensures us models
K4 IF z such that K4 If A. Consider then K := HAeA K 4, by assumption we
have a rooted model L I- x and a map K — L. This entails that Th L C Th K.
Observe that L IF 2 F\/ A, whence L IF A for some A € A because L is rooted.
This in turn entails that K IF A and so K4 IF A, a clear contradiction.

Let us now focus on the other implication. Let K be a Kripke model of z.
Now consider the model L := (K + canz) /x, and see that the inclusion from
K to L is a map. We will prove that z 5 C if and only if L IF C. We proceed
via Lemma El, and there is only some work to be done in the implicative case.
Note that LI A — B iff K +canx IF A — B and if L IF A then L I+ B. It is
clear that Thcanx + K = Thcanz = z. By induction we know that L IF A and
L IF B to be equivalent to x - A and x F B. The burden of proof has completely
dissolved, keeping in mind modes ponens.

Consider again a model K of a particular theory . When we can find a theory
y 2 x such that Th K/y = y holds we know that an extension of K forcing x
exists. Such a theory y is, in a way, a saturated approximation of the model K
containing x. We are interested in the “best” such approximation, that is to say,
a saturated extension containing x such that every larger saturated extension
overshoots K. This idea is captured by the notion of a tight predecessor. The
definition first took form in Iemhoff [13, Section 2.1.1] where it pertained to
models, and was later adopted by Jefdbek [17, Definition 3.2] to suit modal
logic. Goudsmit and Iemhoff |11, Definition 11] adapted the idea to theories,
and it is this definition we use here.

Definition 10 (Tight Predecessor). Let © and z and be sets of formulae. We
say that x is a tight predecessor of z when x is saturated, © C z and for each
saturated set y D x we have z C y.

Definition 11 (Vacuous Implications and Assumptions). Let x be a set
of formulae. Define the following:

I(z) := {A%B’forformulaeAandB such that x> A — B but x 3 A}
T = {A|f0rsomeBwehavex3A%B}
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Lemma 3. Let K be a Kripke structure, let © C Th K be arbitrary and let y be a
set of implications. If y* does not intersect Th K and y C Th K then K/x - y.
In particular, I1(Th K) C Th K/x.

We can now show that a tight predecessor of a model contains all informa-
tion of the theory of the extension. In |11, Lemma 9] the intermediate case was
treated, here we consider any extension of minimal logic. The proof below uses
the characterization of extensions, which makes it a little smoother than the
original. Note that to prove the equivalence for a formulae C, one needs only
knowledge of structurally smaller formulae. The additional constraint about con-
taining I (Th K') may be dropped, as it can be shown to always hold.

Lemma 4 (Extension Lemma). Let K be any model, and let x be a tight
predecessor of Th K containing I (Th K). Now Th K/x = x holds.

Proof. We prove that K/x I+ C iff 5 C by structural induction along C. Only
the implication case is interesting, the other cases are either immediate or follow
from induction and the rules under which we assumed F to be closed. We know
that K/z Ik A — if and only if K/x IF B whenever both K IF A and K/x I+ A.

Let us first go from right to left. If x 5 A — B and K/x |- A then = 5> A by
induction, so z > B by assumption. Induction yields K/z IF B as desired.

Now for the other direction, suppose that K |- A — B and that if K/z IF A
then K/x IF B. Furthermore assume that © ¥ A — B. We will derive a contra-
diction from these assumptions. By Corollary E, there is a saturated extension
y 2 x such that y 5 A and y Z B. There are two cases, either y =z or y D =x.

In the former case we know z 3 A and = # B, so induction yields K/z |- A
and K/z I B.

In the latter case first observe that Th K C y. If K IF A then K IF B whence
y O B. On the other hand, if K I A then A — B € I(ThK) C z. Both cases
thus yield a contradiction, proving the desired.

Below we cite one of the main results of [11, Theorem 1]. The main point is that
this perfectly characterizes when a model has an extension satisfying a given
theory, and that this characterization works for logics extending minimal logic.

Theorem 2. Let K be a Kripke model, let x be a subset of Th K. The following
are equivalent:

1. the set t UT(Th K) is saturated in Th K;
2. there is a tight predecessor of Th K containing x and I (Th K);
3. there is a y C Th K such that v Cy = ThK/y.

3 Extension Properties and Projectivity

Every model of minimal logic has an extension, and the same goes for models of
IPC (in both cases, forcing nothing at all will do). In the n'* Gabby-de Jongh
logic one can give an extension to any juxtaposition of n 4+ 1 many models, but
more might fail. This property is of particular interest to us.
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Definition 12 (Extension Properties). A theory = is said to have the n'®
extension property when for each set KC of n rooted models of x there exists an
extension of [[ K forcing x. Given another theory y, we say that y has extensions
over x if for each model K |F y such that there is an extension forcing x, there
s an extension forcing y.

The property of having extensions over a given base theory is quite interesting.
First, there is a nice correspondence with projectivity in the sense of Ghilardi
[10]. Projectivity and projective formulae in particular play a role in unification
theory and in characterizing admissible rules, see for instance |9] and [6]. Sec-
ondly, when y has extensions over z and z has the n'" extension property, so
does y.

The definition below is a modest generalization of projectivity in the sense of
that paper. Note that a formula would be called projective there precisely if it
were projective over the theorems of IPC.

Definition 13 (Projectivity). A set of formulae y is said to be projective
over x when there is a substitution o (called the projective unifier) such that

xko(A) forally> A andyF o (A) < A for all A

We can readily prove that projectivity over x entails extensions over x. This
specializes to the intermediate case in that projectivity over IPC entails the n'P
extension property for all n.

Lemma 5. Let © C y be theories. Assume that y is projective over x. Then y
has extensions over x.

Proof. Take some Kripke model K IF y and assume that there exists an extension
forcing x. By Theorem , this means that z + I (K) < ThK. Per the same
theorem, it suffices to prove that y+1(K) < Th K. So suppose y+I1(K)F \ A
for some finite non-empty A C L. This gives a finite I" C I (K ), which we can
assume to be non-empty, such that y - I' = A. Because y is projective over x
we have a o such that z - o (A) for all A € y and y - o (A) = A for all A, fix
this o. Transitivity ensures that z - o (I') = o (A4).

Observe that o (I') C I(K), because if A — B € 1(K) then K | A and
KIFA— B.Now as y C Th K it follows that K If 0 (A) and K IF o (A — B).

We now know 2 F o (I') =0 (A) and c + I (K ) F o (C) for all C € T, so the
deduction theorem and transitivity ensures x+1 (K) - \/ o (A). The assumption
z+1(K) < ThK now proves K IF o (A) for some A € A, whence K IF A is
readily derived. This proves the desired.

Do note that the above proof is basically the same as that of [10, Theorem 5, (ii)
entails (ii)], it is slightly rephrased in terms of our characterization of extensions,
and isolates the bare necessities. The proof in the other direction unfortunately
does not generalize as readily, this is still work in progress. We solely cite the
easily generalizable part without proof.
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Lemma 6. Assume that the logic at hand is an intermediate logic. Let x be a
theory with the finite model property and let A be a formula such that x + A has
extensions over x. Now x + A is projective over x.

We end this section with one observation on the use of projectivity towards
providing bases of admissible rules. The nice property of projective formulae A
is that A v B if and only if A F BE When z + A admits all admissible rules of
z, that is to say, when each rule is admissible with respect to F, 4 whenever it
is admissible with respect to -, we get the same nice property. Below we prove
this, and moreover show that when y is projective over x, it follows that y admits
all rules of x. This is interesting, as y also “inherits n'" extension properties”
from x as stated above.

Lemma 7. Let x be closed under substitution. Suppose that A is such that all
rules that are admissible for x are admissible for x + A too. Now A, B if and
only ift+ AF B.

Proof. From left to right, assume that A i, B. Now A I~ 4 B follows from as-
sumption, whence the desired is immediate by monotonicity. Conversely, suppose
that  + A+ B. Let o be arbitrary and additionally assume that x - o (A). We
now see that x + o (A) D o (z) + 0 (A) F o (B), so transitivity yields = - o (B)
as desired.

Lemma 8. Let x C y be sets of formulae. If y is projective over x then y admits
all rules that x admits.

Proof. Let p be the projective unifier of y over z. Assume that I" i, A, and
suppose that o is such that y - o (A) for all I' 3 A. Because p unifies y under x
we get x F p (A) for all y 3 A, so by transitivity, « - po (A) for all A € I'. Now
note that as I' v, A, we obtain a A € A such that z - po (A). As x C y we
obtain y F o (A) as desired.

4 Admissible Rules

The interesting scheme of admissible rules of choice are the Visser rules. They
have been shown to be a basis of admissibility for IPC, and they correspond
nicely to the extension property. To neatly restrict the above result to the nt"
extension property the de Jongh rules were introduced in [11]. With the ma-
chinery available here we can quite smoothly prove that the de Jongh rules are
admissible in any of the logics at hand that satisfy the disjunction property. Let
us first define these rules. As an auxiliary definition, say that a non-empty set
U is an n-cover of another set X if JU = X, 0 € U and |U| < n. Per natural

2 This must be very well-known as it is re-proven quite often, see for instance Cintula
and Metcalfe |3, Lemma 2.3], Iemhoff |14, Section 2.6], Iemhoff and Metcalfe [15,
Lemma 1.a], Iemhoff and Metcalfe [16, Lemma 6], Jefabek [17, Theorem 4.1] and
Dzik [, Corollary 6].



216 J. Goudsmit

number n, finite non-empty set of implications I', non-empty finite set A and
n-cover U of I'*, the n de Jongh rule determined by I', A and U is defined as
below.

I'=A
{I'=60|0cUuUA}

U is a n-cover of I'®

Lemma 9. Assume that x has the disjunction property and the n' extension
property. Now x admits the n'* de Jongh rule.

Proof. Suppose we have non-empty finite I" (with only implications) and A
(arbitrary) and an n-cover U of I'* such that « - I'= A but « t/ I = O for any
O € U U A. Completeness provides us with rooted models Ky for each U € U
such that Ky IF  + I' but Ky If \/ U. Furthermore, we have models K4 for
each A € A such that K4 IF z 4+ I" but K4 I A.

By the n'*® extension property we have a model K;; extending [1.cus Kv such
that Ky IF z. The disjunction property of x ensures us a rooted model K IF x
of which K7, and all of K4 for A € A are open subsets.

Suppose that A — B € I'. If K I A then pick some A € U € U and note that
Ky IF AF \JU, a contradiction. This entails that K IFx +I. Asz+1'F A
we know that K I \/ A. This gives a A € A such that K I+ A, which entails
K4 IF A, quod non. Hence all n*" de Jongh rules are admissible.

The de Jongh rules have quite a lot of parameters, it would be nice if these could
be restricted in number. A nice source of inspiration can be found in the rule
below, which has been studied in several incarnations before. Its admissibility
for singleton covers with n = 2 in IPC was discussed by Mints [22]. Skura [27]
considered this rule, also with only singleton covers but for arbitrary n, and
proved that IPC is the sole intermediate logic which admits them all. Per natural
number n, non-empty finite set of implications I and n-cover U of I'* we define
the n'* Mints—Skura rule as below.

I'=1?

(Fr=0|6cu) U is a n-cover of I

The rule clearly is a special case of the de Jongh rule, so it holds in the presence
of the n'" extension property due to Lemma 9. We prove the the converse below.

Lemma 10. Assume that x has the disjunction property and assume that x
admits the n'* Mints—Skura rule. Now x has the n'" extension property.

Proof. Consider a set K of n rooted models of z. Due to Theorem , the model
L := JIK has an extension precisely if © + I (ThL) < Th L. We reason by
contradiction, so suppose that z+I1(Th L) F \/ A yet Th LN A is empty for some
finite non-empty A. The latter ensures that A C I (Th L), the former ensures
some finite non-empty I" C I(ThL) such that o + I" F \/ A. Monotonicity
ensures that we can assume that A C I'* without loss of any generality. We thus
know that z+ I" - \/ I'*. Construct the cover U as below, clearly of size at most
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n. It does not contain the empty set by construction, and its union equals I'?,
so U is not empty as well.

U:={Ok =I'"—ThK | K € K} — {0}

Due to the n'® Mints—Skura rule at & we now know that z - I" = O for some
K € K. Now see that as LIF z and LIFI(ThL) 2 I" we know that L IF\/ Ok.
This ensures that K I+ \/ O, whence Th K must have a non-empty intersection
with @ = I'* — Th K, utter nonsense of course.

The above two lemmas immediately entail the theorem below. Iemhoff [12,
Lemma 3.3] argued that any intermediate logic with the n'" extension prop-
erty for all n must be IPC. So the theorem below re-proves the main result
of Skura [27], namely that IPC is the sole intermediate logic which admits all
Mints—Skura rules.

Theorem 3. FEach logic above minimal logic with the disjunction property ad-
mits the n* Mints—Skura rule if and only if it has the n™ extension property.
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