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Preface

The Symposium on Logical Foundations of Computer Science series provides a
forum for the fast-growing body of work in the logical foundations of computer
science, e.g., those areas of fundamental theoretical logic related to computer
science. The LFCS series began with “Logic at Botik,” Pereslavl-Zalessky, 1989,
which was co-organized by Albert R. Meyer (MIT) and Michael Taitslin (Tver).
After that, organization was taken over by Anil Nerode.

Currently LFCS is governed by a Steering Committee consisting of Anil
Nerode (General Chair), Stephen Cook, Dirk van Dalen, Yuri Matiyasevich,
J. Alan Robinson, Gerald Sacks, and Dana Scott.

The 2013 Symposium on Logical Foundations of Computer Science (LFCS 2013)
took place in the Catamaran Resort Hotel, San Diego, California, during January
6–8. This volume contains the extended abstracts of talks selected by the Program
Committee for presentation at LFCS 2013.

The scope of the symposium is broad and includes constructive mathemat-
ics and type theory; logic, automata and automatic structures; computability
and randomness; logical foundations of programming; logical aspects of compu-
tational complexity; logic programming and constraints; automated deduction
and interactive theorem proving; logical methods in protocol and program veri-
fication; logical methods in program specification and extraction; domain theory
logic; logical foundations of database theory; equational logic and term rewrit-
ing; lambda and combinatory calculi; categorical logic and topological semantics;
linear logic; epistemic and temporal logics; intelligent and multiple agent system
logics; logics of proof and justification; nonmonotonic reasoning; logic in game
theory and social software; logic of hybrid systems; distributed system logics;
mathematical fuzzy logic; system design logics; and other logics in computer
science.

We thank the authors and reviewers for their contributions. We acknowledge
the support of the U.S. National Science Foundation, the Graduate Center of
the City University of New York, and the University of California, San Diego.

We are grateful to Yu Junhua for preparing this volume for Springer.

October 2012 Anil Nerode
Sergei Artemov
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Compositional Reasoning for Multi-modal

Logics�

Luca Aceto1, Anna Ingólfsdóttir1, Cristian Prisacariu2, and Joshua Sack3
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2 Dept. of Informatics – Univ. of Oslo, P.O.Box 1080 Blindern, 0316 Oslo, Norway
cristi@ifi.uio.no
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Abstract. We provide decomposition and quotienting results for multi-
modal logic with respect to a composition operator, traditionally used
for epistemic models, due to van Eijck et al. (Journal of Applied Non-
Classical Logics 21(3–4):397–425, 2011), that involves sets of atomic
propositions and valuation functions from Kripke models. While the com-
position operator was originally defined only for epistemic S5n models,
our results apply to the composition of any pair of Kripke models. In
particular, our quotienting result extends a specific result in the above
mentioned paper by van Eijck et al. for the composition of epistemic
models with disjoint sets of atomic propositions to compositions of any
two Kripke models regardless of their sets of atomic propositions. We also
explore the complexity of the formulas we construct in our decomposition
result.

1 Introduction

Decomposition and quotienting techniques [2,9,15,23] have been used for a wide
variety of logics, such as Hennessy-Milner logic [10] or modal μ-calculus [13], and
much attention has been given to extending and optimizing these [2, 14]. Com-
positional reasoning normally involves a parallel-like composition operator over
the models of the logic in question. In the cases just cited, the main composition
operator of interest is usually some form of parallel composition from process al-
gebras [4,11,18,19]. In these cases, one observes what is called the state explosion
problem; when a system is built up by composing several processes/components,
its state space grows exponentially with the number of components. This is the
main drawback of doing model checking of such systems (even for algorithms
that are linear in the size of the model and the formula). Compositional reason-
ing has proved useful in tackling the state space explosion problem in several
applications.

� Luca Aceto and Anna Ingólfsdóttir were partially supported by the project ‘Processes
and Modal Logics’ (project nr. 100048021) of the Icelandic Research Fund. Joshua
Sack was partially supported by the VIDI research programme number 639.072.904,
which is financed by the Netherlands Organisation for Scientific Research.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 L. Aceto et al.

Intuitively, considering some form of composition of models M1||M2 and a
formula ϕ to check on this composed model, the technique of compositional
reasoning provides an alternative to checking M1||M2 |= ϕ, by instead checking
two potentially simpler problems: M1 |= φ1 and M2 |= φ2. When the two new
formulas are not much larger than the original, this method can be very useful.
There are also heuristic techniques that aim at keeping the new formulas small
[2].

The aim of this paper is to develop a theory of compositionality and quo-
tienting for multi-modal logic with respect to a composition operator that has
been recently introduced in [22] for S5n (epistemic) models. This composition
behaves similarly to the well-known synchronous composition; however, while
the set of states in a parallel composition is generally the Cartesian product,
the composition between epistemic models introduced in [22] eliminates states
whose atomic valuations on the components are not, so to speak, compatible.

Arguably, the composition of [22] is the most natural that one would want on
S5n models. This composition behaves similarly to the well-known synchronous
composition of labelled transition systems. It is easy to see that the standard asyn-
chronous composition that is normally studied in process algebras and concurrency
theory does not preserve S5nmodels (see e.g. [1]), whereas the synchronous compo-
sition does. Another observation is that unlike other types of frames (i.e., transition
systems without a valuation of propositional constants), the S5n frames are trivial
without propositional constants and a valuation attached to their states (i.e., they
are bisimilar to a single reflexive point). Therefore, a composition of S5n models
should take valuations and propositional constants into consideration.

Although originally defined for S5n models, the composition of [22] is also
well-defined on other classes of models. For example, the class of Kripke models
is closed under it. An example of a class of models that is not closed with respect
to the composition of [22] is that of KD45 models, often used to model belief.
(See Remark 2.6.)

The involvement of valuations and propositional constants in compositions in
general has received relatively little attention, and distinguishes the results in this
paper frommainstream composition results [6,9,15,23]. There are, however, other
compositions that use valuations and propositional constants, and there is work
that employs related techniques. One composition that uses valuations is the con-
currentprogramof [16],wheretwonon-epistemicmodelsarecomposed insuchaway
that the states of the composition may disagree with the components on the valu-
ation. The composition we employ in this paper eliminates any state where there
may be such disagreement between a composite state and its components. Another
related composition is the update product from [5], though that composition is not
between twoKripkemodels, but between a Kripke (or epistemic) model and an ac-
tion model, a syntactic structure that differs from a Kripke model in that the val-
uation is replaced by a function assigning a formula to each point of the model. A
composition result in the setting of transition systems that also involves pruning
the global state space is that of [20]; however this result does not involve logic as we
do. Furthermore, given that modal formulas characterize finite transition systems
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up to bisimulation, and synchronizing on common actions is similar to compatible
states based on common valuations, there are connections between our techniques
and the techniques for synchronizing up to bisimulation from [8].

Our most technically involved contribution is the proof strategy of a decom-
position result (Th. 3.9) for the composition operator of [22]. This result follows
naturally from the relationship between the primary composition of focus and
an auxiliary composition (Th. 3.4). We also study the connections between the
composition of models with overlapping sets of atomic propositions and composi-
tions of models with disjoint sets of atomic propositions (Th. 5.5). Furthermore,
we provide a quotienting theorem (Th. 4.3), which can be used to synthesize
missing components in composite models. If we have a model N in the composi-
tion and want to construct M in order to achieve property ϕ for the composition
of M and N , we can first compute the quotient formula of ϕ with respect to
N and then synthesize a model for it, if one exists. We show in the proof of
Corollary 5.6 that the quotienting result [22, Th. 16] involving only epistemic
models with disjoint sets of atomic propositions is an instance of our quotienting
result, and in Section 5.2, we discuss how to extend our primary decomposition
result to one involving an even more general composition operator. Finally, in
Section 6, we provide an analysis of the complexity of the formulas we construct
in our main decomposition result. To save space, we omit or abbreviate a number
of proofs, but make the full-length proofs available in [1].

2 Preliminaries

In what follows we assume a fixed finite set I of labels (also called agents in
epistemic logic).

Definition 2.1 (Multi-modal Logic). The multi-modal logic L(P), over a
set P of propositional constants, is defined by the grammar:

φ := p (p ∈ P) | ⊥ | φ ∨ φ | ¬φ | 〈i〉ϕ (i ∈ I ).

The set P is called the vocabulary of the logic. The formulas φ1 ∧ φ2, φ1 ↔ φ2,
and [i]φ for i ∈ I are derived in the standard way from this grammar, empty
disjunctions identified with ⊥, and 	 with ¬⊥.
We are especially interested here in epistemic logics where the modality [i]ϕ is
usually read as: agent i “knows” formula ϕ, and is written Kiϕ. But our work
is applicable more generally, to multi-modal logics with propositional constants.
We also want our notation to be close to both the epistemic logic community
and the works on decomposition techniques.

The logic L(P) is interpreted over (multi-modal) Kripke models.

Definition 2.2 (Multi-modal Kripke Structure and Model).

– A (multi-modal) Kripke structure is a tuple K = (W,→) where W is the set

of worlds (also called states), and → is a family of relations
i→⊆ W ×W

indexed by a fixed set I . A pointed (multi-modal) Kripke structure is a pair
(K,w), where K = (W,→) and w ∈W .
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– A multi-modal Kripke model is a tuple M = (W,→,P, V ) where (W,→) is a
Kripke structure, P is the set of propositional constants (i.e., the vocabulary
of the model), and V : W → P(P) is a valuation function. A model is finite
if W and P are both finite. A pointed (multi-modal) Kripke model is a pair
(M,w), where M = (W,→,P, V ) and w ∈W .

Definition 2.3 (Interpreting Multi-modal Logic). The formulae in L(P)
are interpreted in a Kripke model M = (W,→,P, V ) at some w ∈ W as follows:

– (M,w) |= p iff p ∈ V (w),

– (M,w) |= φ1 ∨ φ2 iff (M,w) |= φ1 or (M,w) |= φ2,

– (M,w) |= ¬φ iff it is not the case that (M,w) |= φ (abbreviated (M,w) �|= φ)

– (M,w) |= 〈i〉φ iff there exists a w′ ∈W s.t. w
i→ w′ and (M,w′) |= φ.

We read (M,w) |= ϕ as: “the formula ϕ holds/is true at state w in M”. We may
write w |= φ instead of (M,w) |= φ if the meaning is clear from the context.

2.1 Compositions of Models

Our paper is mainly concerned with the study of the interplay of the logic L(P)
and the composition operator introduced in [22], which we will denote  and for-
mally define in Definition 2.5. Essentially this composition makes a synchronous
composition of the relations of the two models, but the new set of states is only a
subset of the Cartesian product of the two initial sets of states. For later use, we
redefine the restriction on states from [22] in terms of the notion of (in)consistent
states. Though in [22] the operation  is defined over S5n models, it can actu-
ally be applied to arbitrary multi-modal Kripke models. Since our decomposition
technique does not use the restrictions of the S5n models, it can be readily used
over any class of multi-modal Kripke models that is closed under the operation
of Definition 2.5; S5n models form one such class.

Definition 2.4 (Consistent States). For twomodelsM =(WM ,→M ,PM , VM )
and N = (WN ,→N ,PN , VN ), where PM and PN may overlap, we say that two
states w ∈WM and v ∈WN are inconsistent, written (M,w) � (N, v), iff

∃p ∈ PM ∩ PN : (p ∈ VM (w) and p �∈ VN (v)) or (p �∈ VM (w) and p ∈ VN (v)).

We say that w and v are consistent, written (M,w)�(N, v), iff the two states are
not inconsistent. We often write w � v for (M,w) � (N, v) and w � v for (M,w) �
(N, v) when the models are clear from the context.

Definition 2.5 (Composition of Models [22]). LetM=(WM ,→M ,PM , VM )
and N = (WN ,→N ,PN , VN ) be two finite models, with possibly overlapping vo-
cabularies PM and PN . The composition of M and N is the finite model defined
as M N = (W,→,PM ∪ PN , V ) with:
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– W = {(w, v) | w ∈ WM , v ∈ WN , and w � v},
– (w, v)

i→ (w′, v′) iff w
i→M w′ and v

i→N v′, for (w, v), (w′, v′) ∈ W and
i ∈ I, and

– V ((w, v)) = VM (w) ∪ VN (v), for (w, v) ∈W .

Note that, when the vocabularies are disjoint, the definition of � becomes vacu-
ously true, whereas that of � is vacuously false. In this case, the above definition
becomes the standard synchronous composition, where new states are from the
full Cartesian product (as the requirement w � v can be ignored).

It was shown in [22, Th. 3] that the composition  endows the collection of
epistemic S5n with a commutative monoid structure, that is, up to total bisimi-
larity, the composition  is commutative, associative, and if E is the (epistemic
S5n) model with one point that is reflexive for every agent and has an empty
set of atomic propositions, then E is a left and right unit for .

Remark 2.6. It is folklore from model theory that a sentence of first order logic
is preserved under restriction and product if and only if the sentence is universal
Horn. A universal Horn sentence of first-order logic is the universal closure of a
disjunction with at most one atom disjunct, and where the remaining disjuncts
are negations of atoms (see, e.g., [17]). The classes of S5 models and S5n models
are universal Horn: the formulas for reflexivity, symmetry and transitivity can
be written as Horn formulas. Hence the collection of epistemic models must
be closed under the composition . However, the class of KD45 models, often
used to model belief, is not universal Horn, for the seriality requirement cannot
be expressed as a universal Horn sentence. Although a property that is not
expressible by a universal Horn might be preserved under some products and
restrictions, one can easily check that KD45 is indeed not preserved under 
(see e.g. [1]).

3 Compositional Reasoning Wrt. the � Composition

This section presents our main result, a general decomposition for L(P) with
respect to , and which we describe as follows. We consider two finite models
M = (WM ,→M ,PM , VM ) and N = (WN ,→N ,PN , VN ) and a formula φ ∈
L(PM ∪PN ). Our aim is to find two formulas ψ1 ∈ L(PM ) and ψ2 ∈ L(PN ) such
that

(M N, (w, v)) |= φ iff (M,w) |= ψ1 and (N, v) |= ψ2.

We want ψ1 and ψ2 to depend only on ϕ, but for each ϕ there can actually be
multiple candidate pairs of formulas (ψ1, ψ2). We thus follow the works on com-
positional reasoning for Hennessy-Milner logic [9], and reformulate the problem
into finding a function χ : L(PM ∪ PN )→ P(L(PM )× L(PN )) such that

(M N, (w, v)) |= φ iff ∃(ψ1, ψ2) ∈ χ(φ) : (M,w) |= ψ1 and (N, v) |= ψ2.

Note that this function χ returns a subset of L(PM ) × L(PN ). This motivates
the following definition, an auxiliary composition that we use to prove the main
decomposition result of this section (Th. 3.9).
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Definition 3.1 (Auxiliary Composition). Let M = (WM ,→M ,PM , VM )
and N = (WN ,→N ,PN , VN ) be two finite models. The auxiliary composition

of M and N is defined as the model M �N = (W,→,P, V ) (also written

(
M

N

)
)

with:

– W = WM ×WN , whose elements are also written

(
w

v

)
for (w, v) ∈ WM ×

WN ,

–

(
w

v

)
i→
(
w′

v′

)
iff w

i→M w′ and v
i→N v′, for

(
w

v

)
,

(
w′

v′

)
∈ W and i ∈ I,

– P = L(PM )× L(PN ), whose elements are also written

(
ψ1

ψ2

)
for (ψ1, ψ2),

– V ((w, v)) = {(ϕ, ψ) ∈ P | (M,w) |= ϕ and (N, v) |= ψ}.

As before, we may subscript the components with the model (such as by writing
PM�N for the set atomic propositions in M�N). The usual laws of multi-modal
logic apply when determining the truth of a formula Φ ∈ L(PM�N ) in a pointed
model. For example, from the definition of VM�N , we have, for (φ, ψ) ∈ PM�N ,
that (

M

N

)
,

(
w

v

)
|=
(
φ

ψ

)
iff (M,w) |= φ and (N, v) |= ψ,

and, given Φ ∈ L(PM�N ),(
M

N

)
,

(
w

v

)
|= 〈i〉Φ iff

(
M

N

)
,

(
w′

v′

)
|= Φ for some

(
w′

v′

)
with

(
w

v

)
i→
(
w′

v′

)
.

We may write

(
w

v

)
|= Φ for

(
M

N

)
,

(
w

v

)
|= Φ if the model is clear from context.

3.1 Relationship between � and �
Our first step is to compare the compositions � and . A primary difference
between these two is that � does not remove states that are considered incon-
sistent, while  does. We thus provide the following formulas in the language
L(PM�N ) that characterize inconsistency and consistency:

�M�N =
∨

p∈PM∩PN

((
p

¬p

)
∨
(
¬p
p

))
and �M�N = ¬ �M�N . (1)

Lemma 3.2. For two finite pointed models (M,w) and (N, v), we have(
M

N

)
,

(
w

v

)
|= �M�N iff (M,w) � (N, v),

with the notation on the right taken from Definition 2.4.

We now define a “meaning preserving” translation of formulas to be evaluated
on models composed using  to those evaluated on models composed using �.
The correctness of this translation is given in Theorem 3.4.
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Definition 3.3 (Translation Function). We define Z : L(PM ∪ PN ) →
L(PM�N ) as follows:

– Z(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
p

p

)
if p ∈ PM ∩ PN ,(

p

	

)
if p ∈ PM \ PN(

	
p

)
if p ∈ PN \ PM .

,

– Z(φ1 ∨ φ2) = Z(φ1) ∨ Z(φ2),
– Z(¬φ) = ¬Z(φ),
– Z(〈i〉φ) = 〈i〉(Z(φ) ∧ �).

Theorem 3.4. Let M = (WM ,→M ,PM , VM ) and N = (WN ,→N ,PN , VN ) be
finite models and φ ∈ L(PM ∪ PN ). Then for all (w, v) ∈ WM�N (i.e. such that
w � v)

M N, (w, v) |= φ iff

(
M

N

)
,

(
w

v

)
|= Z(φ).

Proof. We prove the statement by structural induction on φ. We only detail the
case when φ = 〈i〉φ1, for which Z(〈i〉φ1) = 〈i〉(Z(φ1)∧�). We proceed as follows:

(w, v) |= 〈i〉φ1 iff (by the definition of |=)

∃(w′, v′) ∈ WM�N : (w, v)
i→ (w′, v′) and (w′, v′) |= φ1 iff (by induction)

∃w′ ∈ WM , ∃v′ ∈ WN :

(
w

v

)
i→
(
w′

v′

)
, w′ � v′ and

(
w′

v′

)
|= Z(φ1) iff

(by Lemma 3.2)

∃w′ ∈ WM , ∃v′ ∈ WN :

(
w

v

)
i→
(
w′

v′

)
and

(
w′

v′

)
|= Z(φ1) ∧ � iff(

w

v

)
|= 〈i〉(Z(φ1) ∧ �). ��

3.2 Decomposing Formulas

Recall from Theorem 3.4 that we relate the formula φ with a formula Z(φ) from
L(PM�N ). We now proceed to show that any formula in L(PM�N ) is equivalent
on M �N to a disjunction of atomic propositions in PM�N .

Definition 3.5 (Disjunctive Normal Form in L(PM�N )). The set of Dis-
junctive Normal Forms in L(PM�N ), written D(PM�N ), is defined as the small-
est set such that:

– L(PM )× L(PN ) ⊆ D(PM�N );
– if Φ1, Φ2 ∈ D(PM�N ) then Φ1 ∨ Φ2 ∈ D(PM�N ).

Note the difference between this definition and the standard notion of disjunctive
normal form (DNF). The conjuncts that normally appear in a DNF are, in
our case, part of the pairs (elements of PM�N ), and similarly for the negation.
Moreover, this is a DNF for modal formulas, and similarly the modality is part
of the atomic pairs.. These are possible because of the following result.
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Lemma 3.6 (Equivalences). The following are valid on M �N .

¬
(
φ

ψ

)
↔
(
¬φ
	

)
∨
(
	
¬ψ

)
(
φ1

ψ1

)
∧
(
φ2

ψ2

)
↔
(
φ1 ∧ φ2

ψ1 ∧ ψ2

)
,

〈i〉
(
ψ1

ψ2

)
↔
(
〈i〉ψ1

〈i〉ψ2

)
.

Definition 3.7. We define a function d : L(PM�N ) → D(PM�N ) inductively
as follows:

– If Φ ∈ PM�N , then d(Φ) = Φ.
– If Φ1, Φ2 ∈ L(PM�N ), then d(Φ1 ∨ Φ2) = d(Φ1) ∨ d(Φ2).

– If Φ ∈ L(PM�N ) and d(Φ) =
∨
k∈K

(
φk
ψk

)
then

• d(〈i〉Φ) =
∨
k∈K

(
〈i〉φk
〈i〉ψk

)
,

• d(¬Φ) =
∨{( ¬

∨
i∈I φi

¬
∨
j∈K\I ψj

)
| I ⊆ K

}
.

The following result states that d preserves the semantics of the formulas.

Theorem 3.8. For all Φ ∈ L(PM�N ), w ∈ WM and v ∈WN ,(
w

v

)
|= Φ iff

(
w

v

)
|= d(Φ).

We are now ready for our main decomposition theorem.

Theorem 3.9. Let χ : L(PM∪PN )→ P(L(PM )×L(PN )) be defined by mapping
φ to the set of disjuncts in d(Z(φ)). Then

(M N, (w, v)) |= φ iff ∃(ψ1, ψ2) ∈ χ(φ) : (M,w) |= ψ1 and (N, v) |= ψ2.

Proof. This result immediately follows from Theorems 3.4 and 3.8, and the def-
inition of the semantics of disjunction. ��

4 Quotienting

In this section, we present our quotienting result, which we describe as follows.
Having a composed pointed model (M N, (w, v)) and a formula ϕ ∈ L(PM ∪
PN ), we build a new formula, denoted Q(N,v)(ϕ), that depends explicitly only
on one of the components, so that

(M N, (w, v)) |= ϕ iff M,w |= Q(N,v)(ϕ).
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If for our logic and our composition operation , the resulting quotient formula
is not significantly larger than the original formula and the component, then the
model checking task can be simplified [2].

We show how Q(N,v)(ϕ) can be derived, by beginning with the following for-
mula for consistency.

Definition 4.1 (Consistent with v). Given a finite model M = (WM ,→M
,PM , VM ) and a finite pointed model (N, v) = (WN ,→N ,PN , VN ) with v ∈WN ,
we define �v ∈ L(PM ∩ PN ) as:

�v =
∧
{p | p ∈ PM ∩ PN , (N, v) |= p}

∧
∧
{¬p | p ∈ PM ∩ PN , (N, v) |= ¬p}.

This definition essentially encodes the valuation of (N, v) over the common part
of the vocabularies. Before, e.g. in Definition 5.2, � was encoding all possible
valuations, because we did not know in advance the state v. The intuition now
is that if M,w |= �v then w and v are consistent in the same sense as before.
Again, we can observe that �v is a tautology when PM and PN are disjoint.

One can already see how for quotienting, the knowledge of one component
(N, v) is used to build the quotient formula Q(N,v)(ϕ); whereas before we were
taking all possibilities into account in the pairs of formulas.

Definition 4.2 (Modal Quotient Function). For some set of propositional
constants PM and a finite pointed model (N, v), we define the function Q(N,v) :
L(PM ∪ PN )→ L(PM ) by

– Q(N,v)(p) =

⎧⎨⎩p iff p ∈ PM \ PN , or both p ∈ PM ∩ PN and N, v |= p
	 iff p ∈ PN \ PM and N, v |= p
⊥ otherwise.

,

– Q(N,v)(φ1 ∨ φ2) = Q(N,v)(φ1) ∨Q(N,v)(φ2),
– Q(N,v)(¬φ) = ¬Q(N,v)(φ),
– Q(N,v)(〈i〉φ) = 〈i〉

∨
v

i→v′(Q(N,v′)(φ) ∧ �v′).

Theorem 4.3. For finite models M = (WM ,→M ,PM , VM ) and N = (WN ,→N
,PN , VN ), a formula ϕ ∈ L(PM ∪ PN ), and two consistent states w � v, we have

M N, (w, v) |= ϕ iff M,w |= Q(N,v)(ϕ).

Proof (sketch). We prove the theorem by structural induction on ϕ where the
base case for ϕ = p follows directly from the definition and the inductive cases
for ϕ = φ1 ∨ φ2 and ϕ = ¬φ1 use simple induction arguments.

For the case of ϕ = 〈i〉φ1 the following are equivalent:

1. M N, (w, v) |= 〈i〉φ1

2. ∃(w′, v′) ∈ W : (w, v)
i→ (w′, v′) and M N, (w′, v′) |= φ1

3. ∃(w′, v′) ∈ W : (w, v)
i→ (w′, v′) and M,w′ |= Q(N,v′)(φ1)
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4. there exists w′, such that w
i→ w′ and there exists v′, such that v

i→ v′ and
both M,w′ |= �v′ and M,w′ |= Q(N,v′)(φ1)

5. there exists w′, such that w
i→ w′ and M,w′ |=

∨
v

i→v′(Q(N,v′) ∧ �v′)
6. M,w |= 〈i〉(

∨
v

i→v′(Q(N,v′) ∧ �v′)). ��

An interesting corollary of Theorem 4.3 is that checking whether a pointed model
(M,w) satisfies a formula ϕ can always be reduced to an equivalent model-
checking question over the pointed model (E, v), where E is the left and right
unit for the composition operator  and v is the only state of E.

Corollary 4.4. For each finite model M = (WM ,→M ,PM , VM ), state w ∈ WM
and formula ϕ ∈ L(PM ), there is some formula ψ ∈ L(∅) such that

M,w |= ϕ iff E, v |= ψ .

Proof. Recall that, by Theorem 3 in [22], E is a left unit for  modulo total
bisimilarity. In fact, each state (v, w) in E M is bisimilar to the state w in
M . This means that the pointed models (E M, (v, w)) and (M,w) satisfy the
same formulas in L(PM ). By Theorem 4.3, we now have that, for each formula
ϕ ∈ L(PM ),

M,w |= ϕ iff E M, (v, w) |= ϕ iff E, v |= Q(M,w)(ϕ).

By the definition of quotienting, it is easy to see that Q(M,w)(ϕ) ∈ L(∅). We
may therefore take that formula as the ψ mentioned in the statement of the
theorem. ��

5 Related Results and Relationships

5.1 Composing with Disjoint Vocabularies

The results of this section show that the problem of determining the truth value
of a formula in the composition of models with arbitrary (overlapping) vocab-
ularies can be equivalently formulated in terms of composition of models with
disjoint vocabularies.

We first provide functions that transform the models.

Definition 5.1. For some model M = (W,→,PM , VM ) and i ∈ {1, 2}, we define
gi(M) = (W,→,PM × {i}, V ), where V (w) = VM (w)× {i}.

Given any two sets A and B, we define their disjoint union A + B to be (A ×
{1})∪ (B×{2}). We now define formulas in L(PM +PN ) that characterize when
two states are consistent or inconsistent.

Definition 5.2. Let PM and PN be finite vocabularies. We define the Boolean
formulas:

– � (PM + PN ) =
∨
p∈PM∩PN

(((p, 1) ∧ ¬(p, 2)) ∨ (¬(p, 1) ∧ (p, 2))).
– �(PM + PN ) = ¬ � (PM + PN ).
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When M and N are understood from context, we simply write � and � for
� (PM + PN ) and �(PM + PN ) respectively.

Note the similarity of the definition for �M�N and � (PM + PN ). Because of
the pairing of models and of formulas in the valuation VM�N , we did not need
the change of the common propositions, as we are doing here for � (PM + PN ).
Otherwise the definitions are the same.

Proposition 5.3. Let M = (WM ,→M ,PM , VM ) and N = (WN ,→N ,PN , VN )
be two finite models. For all w ∈ WM and v ∈ WN , we have

g1(M) g2(N), (w, v) |= � (PM + PN ) iff (M,w) � (N, v).

Note that, by negating both sides of the above “iff”, we have an equivalent
formulation of the proposition with � in place of � . We use the consistency
Boolean formula � to rewrite a multi-modal formula that is defined over two
possibly overlapping vocabularies, into a multi-modal formula over the two dis-
joint vocabularies of the corresponding models changed by the functions gi from
above.

Definition 5.4 (Function f(PM ,PN )). For two sets of propositional constants
PM ,PN , we define a function f(PM ,PN ) : L(PM ∪PN )→ L(PM +PN) as follows:

– f(PM ,PN )(p) =

⎧⎨⎩ (p, 1) ∧ (p, 2) p ∈ PM ∩ PN ,
(p, 1) p ∈ PM \ PN
(p, 2) p ∈ PN \ PM .

– f(PM ,PN )(¬φ) = ¬f(PM ,PN )(φ).

– f(PM ,PN )(φ1 ∨ φ2) = f(PM ,PN )(φ1) ∨ f(PM ,PN )(φ2).
– f(PM ,PN )(〈i〉φ) = 〈i〉(f(PM ,PN )(φ) ∧ �).

The functions g1(M) and g2(N) produce models with the same structure but
with disjoint vocabularies, thus the following is the result we are looking for.

Theorem 5.5. Given any finite pointed models (M,w) and (N, v), such that
w � v, and any formula ϕ ∈ L(PM ∪ PN ),

M N, (w, v) |= ϕ iff g1(M) g2(N), (w, v) |= f(PM ,PN )(ϕ).

Proof (sketch). We use induction on the structure of the formula ϕ. The base
case for ϕ = p follows from the definition of the satisfiability relation |=, the
definition of f , and the fact that w � v. The inductive cases for ϕ = φ1 ∨ φ2 and
ϕ = ¬φ1 use simple inductive arguments. The crux of the case of ϕ = 〈i〉φ is
the fact that f(〈i〉φ) = 〈i〉(f(φ)∧ �) is defined using the � formula inside the 〈i〉
modality. This ensures that the induction goes through. Essentially it guarantees
that in the composition of the transformed models g1(M) g2(N), we focus on
the consistent states (w′, v′) that are reached from (w, v) in MN , thus looking
only at states that correspond to those in M N . ��
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5.2 Special Instances and Extensions

In this section, we show that our quotienting result generalizes Theorem 16
from [22], and then we discuss how to extend our decomposition result (Th. 3.9)
to one involving a more general composition operator described in [22, Remark 2].

Corollary 5.6 (for Th.16 of [22]). Let (Mi, wi), for i ∈ {1, . . . , n}, be pointed
models such that the PMi are pairwise disjoint. Then for any ϕ ∈ L(PMi ), i ∈
{1, . . . , n}, we have that

(M1  · · · Mn), (w1, . . . , wn) |= ϕ iff Mi, wi |= ϕ .

Proof (sketch). This is an easy corollary of Theorem 4.3. Because  is commu-
tative and associative, we can assume without loss of generality that i = 1.
Let (N, v) be the pointed model ((M2  · · ·  Mn), (w2, . . . , wn). Note that
PM1 ∩ PN = ∅. Now, ϕ ∈ L(P1), and hence Q(N,v)(p) = p. The disjointness
of the vocabularies ensures that �v is always equivalent to 	. A simple induction
on the structure of the input formula shows that Q(N,v)(ϕ) is equivalent to ϕ
itself. The desired theorem then immediately results from Theorem 4.3. ��

Compositional Reasoning wrt. a Generalized  Composition: Our decomposition
method (and the proofs) can be easily adapted to other settings. One is the
application to compositional reasoning with respect to a generalization of the 
operator, remarked in [22, Remark 2].

Definition 5.7 (Generalized  Composition). The modal depth of a for-
mula ϕ is the maximum nesting of 〈i〉, i ∈ I , occurring in it. For each n ≥ 0, and
set of propositional constants P, we write Ln(P) for the collection of formulas in
L(P) whose modal depth is at most n.

Take the definition of �0 to be that of � from Definition 2.4. Define �n to be the
same as � only that instead of requiring agreement on the set of propositional
constants PM ∩ PN , we ask consistent states to satisfy the same formulas in
Ln(PM ∩PN ). Define the general composition operator n over finite models to
be the same as  in Definition 2.5 but with � replaced by �n.
Note that 0 is the same as . All the proofs from Section 3 work for any of
the generalized compositions n. We only need to adapt the definitions of the
� formulas to be in terms of the languages Ln(PM ∩ PN ). These languages are
infinite. However, since PM ∩ PN is finite, if we quotient Ln(PM ∩ PN ) by the
equivalence relation identifying every two formulas ϕ and ψ whenever ϕ↔ ψ is
valid, then we are left with a finite language. Therefore the formula �n can be
expressed in Ln(PM ∩ PN ).

Another application of the decomposition method is to dynamic epistemic
logic (DEL) [21]. One approach is to use reductions of DEL to the epistemic
logic that we treated (see e.g. [21]) and then our Theorem 3.9. Another inter-
esting way is to use the logical language of DEL directly in our decomposition
technique and use a result from [22, Th.18] (only for propositionally differenti-
ated action models). We leave for future work the development of decomposition
and quotienting results that apply directly to DEL.
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6 Complexity Issues

In this section, we investigate how the decomposition operator  affects size
(which we call dimension) of the models being composed, and how the trans-
formations Z and d affect the size (dimension) of the formulas. We also point
out some techniques for optimizing these, though we leave the pursuit of these
techniques for future work.

In what follows, for any finite set S, we denote the number of elements of
S by |S|. Let the dimension of a finite model M = (W,→,P, V ) be |W | +
|P | +

∑
i∈I |

i→ | +
∑
p∈P |V (p)|. Given two models M and N , if PM and PN

are disjoint, then the dimension of M  N is much larger than the sum of the
dimensions of the components. In this case, the sizes of the components of the
composed model M N are as follows:

– |WM�N | = |WM | × |WN |,
– | i→M�N | = | i→M | × | i→N |,
– |PM�N | = |PM |+ |PN |,
– |VM�N (p)| =

{
|VM (p)| × |WN | if p ∈ PM
|MN | × |VN (p)| if p ∈ PN

.

The first two equalities hold also with respect to the synchronous parallel com-
position between M and N . The other two are perhaps less familiar, and a bit
more complicated. But clearly, the dimension of the composition M N is much
larger than the sum of the dimensions of the M and N when the vocabularies
are disjoint. If the vocabularies of M and N are not disjoint or even coincide,
the situation is more complicated. It is possible that the formulas are the same
as above if the valuations of both models are uniform, providing each state with
the same valuation. But it is also possible that some or even all the states be
removed when eliminating the “inconsistent” states from the composition (such
as when M and N have uniform valuations, but disagree on each atomic propo-
sition), in which case the dimension of the composition can be much smaller.
The techniques of this paper are most useful when the dimension of the com-
position is much larger than the dimension of the parts, and where the formula
translations do not increase the complexity of the formula too much.

As usual, we consider the complexity of a formula ϕ to be the number of
occurrences of symbols in it, and call this its dimension. The formulas in the
decomposition result are built in two stages, first using the function Z in Defini-
tion 3.3 and then generating the DNF of the resulting formula using the function
d in Definition 3.7. For Z we use the Boolean formula �M�N from (1).

Proposition 6.1 (Dimension of �). The dimensions of �M�N and �M�N
from (1) are linear in the size of PM ∩PN . The dimension of the DNF of �M�N
is exponential in the size of PM ∩ PN .

Since the dimension of � depends only on the (propositional vocabularies of
the) models that are composed, we view it as a constant when calculating the
dimension of the formula generated by Z with respect to the input formula.
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Proposition 6.2 (Dimension of Z). The dimension of the formula Z(ϕ) from
Definition 3.3 is linear in the size of the input formula ϕ.

To calculate the dimension of the formulas in disjunctive normal form, resulting
from the function d in Definition 3.7, applied to formulas Z(ϕ), we involve a
notion of disjunctive dimension; this is the number of disjuncts in a DNF.

Definition 6.3 (Disjunctive Dimension). For a formula Φ in D(PM�N ), the
disjunctive dimension, denoted δ (Φ), is defined to be the number of occurrences
in Φ of elements from PM�N .

Note that the dimension of a formula in D(PM�N ) is at least as large as its
disjunctive dimension.

Proposition 6.4. Let Φ ∈ L(PM�N ) be a formula with a nesting of k+1 (k ≥ 0)
negation symbols. Then

δ (d(Φ)) ≥ 2.
. .

2 }
k occurrences of 2.

For calculating the disjunctive dimension of d applied to Z(ϕ) in terms of the
dimension of ϕ, observe that Z introduces, for every occurrence of a modal op-
erator 〈i〉 in ϕ, a conjunction symbol, which is an abbreviation for an expression
with negation symbols. Furthermore, for a nesting of k > 0 modal operators 〈i〉,
Z introduces a nesting of 2k negation operators, and hence by Proposition 6.4,
the disjunctive dimension of d(Z(ϕ)) is at least a tower of 2k− 1 exponents. As
the disjunctive dimension is a lower bound to the actual dimension, this means
that the dimension of d(Z(ϕ)) is at least a tower of 2k − 1 exponents.

To reduce these dimensions, one may investigate the use of term graphs (see
[12] or [3, Sec. 4.4]) to identify repeated subformulas. One may also consider
representing formulas as binary decision diagrams (see [7]). A direct method
could be to process ϕ or Z(ϕ), so as to remove double negations, or to identify
patterns of negation and disjunction that allow us to apply the conjunctive item
of Lemma 3.6. Furthermore, each step of the translation reduction methods in [2]
could be applied to eliminate redundant formulas by simple Boolean evaluations.
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Abstract. The name Generic Common Knowledge (GCK) was sug-
gested by Artemov to capture a state of a multi-agent epistemic sys-
tem that yields iterated knowledge I(ϕ): ‘any agent knows that any
agent knows that any agent knows. . .ϕ’ for any number of iterations.
The generic common knowledge of ϕ, GCK(ϕ), yields I(ϕ),

GCK(ϕ)→ I(ϕ)

but is not necessarily logically equivalent to I(ϕ). Modal logics with GCK
were suggested by McCarthy and Artemov. It has been shown that in
the usual epistemic scenarios, GCK can replace the conventional com-
mon knowledge. Artemov noticed that such epistemic actions as pub-
lic announcements of atomic sentences, generally speaking, yield GCK
rather than the conventional common knowledge. In this paper we intro-
duce logics with explicit GCK and show that they realize corresponding
modal systems, i.e., GCK, along with the individual knowledge modali-
ties, can be always made explicit.

Keywords: generic common knowledge, common knowledge, justifica-
tion logic, epistemic modal logic, realization.

1 Introduction

Common knowledge C is perhaps the most studied form of shared knowledge.
It is often cast as equivalent to iterated knowledge I, “everyone knows that
everyone knows that. . . ” [9,12]. However there is an alternate view of com-
mon knowledge, generic common knowledge (GCK), which has advantages. The
characteristic feature of GCK is that it implies, but not equivalent to, iterated
knowledge I. Logics with this type of common knowledge have already been seen
([7,14,15]) but this new term “GCK” clarifies this distinction ([3]). Generic Com-
mon Knowledge can be used in many situations where C has traditionally been
used ([2,5,3]) and has a technical asset in that the cut rule can be eliminated.1

Moreover, Artemov pointed out in [3] that public announcements of atomic
sentence – a prominent vehicle for attaining common knowledge – generally
speaking, leads to GCK rather than to the conventional common knowledge.
Artemov also argues in [5] that in the analysis of perfect information games in
the belief revision setting, Aumann’s “no irrationality in the system” condition

1 See details in [1] as to why the finitistic cut-elimination in traditional common knowl-
edge systems may be seen as unsatisfactory.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 16–28, 2013.
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is fairly represented by some kind of generic common knowledge rather than
conventional common knowledge, and that this distinction lies in the heart of
the well-known Aumann–Stalnaker controversy.

We assume that the aforementioned arguments provide sufficient motivation
for mathematical logical studies of the generic common knowledge and its dif-
ferent forms.

Another research thread we consider is Justification Logic. In the generative
justification logic LP, logic of proofs, knowledge and reasoning are made explicit
with proof terms representing evidence for facts and new logic atoms t : F are
introduced with the reading “t is (sufficient) evidence for knowing F” or simply
“t is a proof of F .”

In this paper we consider justification logic systems with multiple knowers
and generic common knowledge. As the standard example, we assume that all
knowers as well as their GCK system are confined to LP. We call the resulting
system LPn(LP) which symbolically indicates n LP-type agents with an LP-type
common knowledge evidence system.

Multi-agent justification logic systems were first considered in [18], but with-
out any common knowledge component. Systems with the explicit equivalent of
the traditional common knowledge were considered in [11,10]; capturing common
knowledge explicitly proved to be a serious technical challenge and the desirable
realization theorem has not yet been obtained.

Generic common knowledge in the context of modal epistemic logic, in which
individual agents’ knowledge is represented ‘implicitly’ by the standard epistemic
modalities was considered by Artemov in [7]. In the resulting modal epistemic
logic S4Jn, sentences may be known, but specific reasons are not. This is a multi-
agent logic augmented with a GCK operator J (previously termed justified com-
mon knowledge in [7] and elsewhere). Artemov reconstructed S4Jn-derivations in
S4nLP via a Realization algorithm which makes the generic common knowledge
operator J explicit, but does not realize individual knowledge modalities.

The current paper takes a natural next step by offering a realization of the
entireGCK system S4Jn in the corresponding explicit knowledge system LPn(LP),
In particular, all epistemic operators in S4Jn, not only J , become explicit in such
a realization.

2 Explicit Epistemic Systems with GCK

Here we introduce an explicit generic common knowledge operator into justifica-
tion logics in the context of a multi-agent logic of explicit justifications to form
a logic LPn(LP). The “(LP)” corresponds to GCK.

Definition 1. LLPn(LP), the language of LPn(LP), is an extension of the propo-
sitional language:

LLPn(LP) := {Var, pfVar, pfConst,∨,∧,→,¬,+, ·, !,Tm} .
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Var is propositional variables (p, q, . . . ). Justification terms Tm are built from
pfVar and pfConst, proof variables (x, y, z, . . . ) and constants (c, d, . . . ), by the
grammar

t := x | c | t+ t | t·t | !t .

Formulas (Fm) are defined by the grammar, for i ∈ {0, 1, 2, . . . , n},

ϕ := p | e | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ¬ϕ | t :iϕ .

The formulas t :iϕ have the intended reading of “t is a justification of ϕ for agent
i.” Index i = 0 is reserved for explicit generic common knowledge, for which we
will also use the alternative notation [t]ϕ for better readability.

Definition 2. The axioms and rules of LPn(LP):

classical propositional logic:
A. axioms of classical propositional logic
R. modus ponens

LP axioms for all n+ 1 agents, i ∈ {0, 1, 2, . . . , n}:
L1. t :i (ϕ→ ψ)→ (s :iϕ→ (t·s) :iψ)
L2. t :iϕ→ (t+ s) :iϕ and t :iϕ→ (s+ t) :iϕ
L3. t :iϕ→ ϕ
L4. t :iϕ→!t :i (t :iϕ)

connection principle:
C. [t]ϕ→ t :iϕ .

Term operators mirror properties of justifications: “·” is application for deduc-
tion; “+”, sum, maintains that justifications are not spoiled by adding (possibly
irrelevant) evidence; and “!” is inspection and stipulates that justifications them-
selves are justified. This last operator appears only in justification logics with
L4, whose corresponding modal logic contains the modal axiom 4 (�ϕ→ ��ϕ),
as shown in [6]. A multitude of justification logics of a single agent corresponding
to standard modal logics have been developed ([6]). Yavorskaya has investigated
versions of LP with two agents in which agents can check each other’s proofs
([18]).

Definition 3. A constant specification for each agent, i ∈ {0, 1, . . . , n}, CSi is
a set of sentences of sort c :iA where c is a constant and A an axiom of LPn(LP).
The intuitive reading of these sentences is ‘c is a proof of A for agent i.’ Let

CS = {CS1, . . . , CSn}

and CS0 ⊆ CSi for all i ∈ {1, 2, . . . , n}. By LPn,CS(LPCS0
) we mean the system

with the postulates A, R, L1–L4, C above, plus CS0 and CS as additional axioms.
As formulas in a constant specification are taken as axioms, they themselves may
be used to form other formulas in a CS so that it’s possible to have c :1 (d :2A) ∈
CS1 if d :2A ∈ CS2.
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The constant specification represents assumptions about proofs of basic postu-
lates that are not further analyzed. If CSi = ∅, agent i is totally skeptical; no
formulas are justified. If this is so for all agents, it would be denoted LPn,{∅}(LP∅).
Constant Specifications of different types have been studied: schematic, injec-
tive, full, etc. and have been defined with various closure properties. See [6] for
a fuller discussion of constant specifications. The total constant specification for
any agent, T CSi, is the union of all possible CSi. Henceforth we will assume
each agent’s constant specification is total and will abbreviate this to LPn(LP).

Definition 4. A modular model of LPn(LP) isM = (W,R0, R1, R2, . . . , Rn, ∗,�)
where

1. • W is a nonempty set,
• Ri ⊆ W ×W are reflexive for i ∈ {0, 1, 2, . . . , n}. R0 is the designated
accessibility relation for GCK.

• ∗ : W ×Var→ {0, 1} and ∗ : W × {0, 1, 2, . . . , n} × Tm→ 2Fm

i.e., for each agent i at node u, ∗(u, i, t) is a set of formulas t justifies.
We write t∗,iu for ∗(u, i, t). We assume that GCK evidence is everybody’s
evidence:

t∗,0u ⊆ t∗,iu , for i ∈ {0, 1, 2, . . . , n} .

2. For each agent i and node u, ∗ is closed under the following conditions:

Application: s∗,iu ·t∗,iu ⊆ (s·t)∗,iu
Sum: s∗,iu ∪ t∗,iu ⊆ (s+ t)∗,iu

Inspection: {t :iϕ | ϕ ∈ (t∗,iu )} ⊆ (!t)∗,iu

where s∗ ·t∗ = {ψ | ϕ→ ψ ∈ s∗ and ϕ ∈ t∗ for some ϕ}, the set of formulas
resulting from applying modus ponens to implications in s∗ whose antecedents
are in t∗.

3. For p ∈ Var, we define forcing � for atomic formulas at node u as u � p
if and only if ∗(u, p) = 1. To define the truth value of all formulas, extend
forcing � to compound formulas by Boolean laws, and define

u � t :iϕ ⇔ ϕ ∈ t∗,iu .

4. ‘justification yields belief ’ (JYB), i.e., for i ∈ {0, 1, 2, . . . , n}, u � t :iϕ yields
v � ϕ for all v such that uRiv.

Modular models, first introduced for the most basic justification logic in [4], are
useful for their clear semantical interpretation of justifications as sets of formulas.
For modular models of some other justification logics refer to [13]. For a detailed
discussion of the relationship between modular models and Mkrtychev–Fitting
models for justification logics, see [4].

A model respects CS0, . . . , CSn, if each c :i ϕ in these constant specifications
holds (at each world u) in the model.

Theorem 1 (soundness and completeness). LPn,CS(LPCS0
) � F iff F holds

in any basic modular model respecting CSi, i ∈ {0, 1, 2, . . . , n}.
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Proof. Soundness – by induction on the derivation of F , for i ∈ {0, 1, 2, . . . , n}.

• Constant Specifications: If c :iϕ ∈ CSi, then u � c :iϕ as the model respects
CSi.

• Boolean connectives: hold by definition of the truth of formulas.
• Application: Suppose u � s :i (F → G) and u � t :iF . Then by assumption,

(F → G) ∈ s∗,iu and F ∈ t∗,iu . Then G ∈ s∗,iu ·t∗,iu ⊆ (s·t)∗,iu ; thus u � (s·t) :iG.
• Sum: Suppose u � t :i F . Then F ∈ t∗,iu and so F ∈ s∗,iu ∪ t∗,iu ⊆ (s + t)∗,iu .

Thus u � (s+ t) :iF . Likewise, u � (t+ s) :iF .
• Modus Ponens: Suppose u � F → G. Then by the definition of the connec-

tives either u �� F or u � G. So if also u � F , then u � G.
• Factivity: Suppose u � t :i F . By the ‘justification yields belief’ condition,

v � F for all v such that uRiv. As each Ri is reflexive, uRiu, so also u � F .
Inspection: Suppose u � t :i F . Then F ∈ t∗,iu so t :i F ∈ (!t)∗,iu . Thus
u �!t :i (t :iF ).

• Connection Principle: Suppose u � t :0 F . Then F ∈ t∗,0u ⊆ t∗,iu so u � t :iF .

Completeness – by the maximal consistent set construction. For i ∈ {0, 1, 2,
. . . , n}, let

• W the set of all maximal consistent sets,
• ΓRiΔ iff Γ i,# ⊆ Δ where Γ i,# = {F | t :iF ∈ Γ},
• For p ∈Var, ∗(Γ, p) = 1 iff p ∈ Γ ,
• t∗,iΓ = {F | t :iF ∈ Γ} (i.e., for X = p, t :iF , Γ � X iff X ∈ Γ ) .

To confirm that these comprise a modular model, the Ri need to be reflexive,
the GCK and closure conditions must be checked, and the model must satisfy
‘justification yields belief’. As each world is maximally consistent Γ i,# ⊆ Γ ,
hence ΓRiΓ by L3, so each Ri is reflexive. The GCK conditions t∗,0Γ ⊆ t∗,iΓ for
i ∈ {0, 1, 2, . . . , n} follow from the C axiom t :0 F → t :i F for i ∈ {1, 2, . . . , n}.
Closure conditions for ·, +, and ! follow straightforwardly from the axioms L1,
L2, and L4. It remains to check the JYB condition, following the Truth Lemma.

Lemma 1 (Truth Lemma). Γ � X iff X ∈ Γ , for each Γ and X.

Proof. Induction on X . The atomic and Boolean cases are standard. The only
interesting cases are X = t :iF . Note that Γ � t :iF iff F ∈ t∗,iΓ by the definition
of modular models. Moreover, under the evaluation particular to this model,
F ∈ t∗,iΓ iff t :iF ∈ Γ . Thus Γ � t :iF iff t :iF ∈ Γ . ��

Now to see the JYB condition, suppose Γ � t :i F and consider an arbitrary Δ
such that ΓRiΔ. By the definition of this model, t :i F ∈ Γ , hence F ∈ Γ i,#,
hence F ∈ Δ. By the Truth Lemma, Δ � F .

To finish the proof of completeness, let LPn,CS(LPCS0
) �� G, hence {¬G} is

consistent and has a maximal consistent extension, Φ. Since G �∈ Φ, by the Truth
Lemma, Φ �� G. ��

Corollary 1. Modular models for LP(i.e., LP0(LP)) are M = (W,R, ∗,�) where
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1. • W is nonempty

• R is reflexive

• ∗ : W ×Var→ {0, 1}, ∗ : W × Tm→ 2Fm ;

2. ∗ closure conditions for ·, +, and !;

3. u � p ⇔ ∗(u, p) = 1 and forcing � extends a truth value to all formulas by
Boolean laws and u � t :F ⇔ F ∈ t∗u.

4. justification yields belief (JYB): u � t : F yields v � F for all v such that
uRv.

These modular models for LP differ from those by Kuznets and Studer in [13] as
no transitivity is required of R, which enlarges the class of modular models for
LP. Artemov suggests (personal communication) this modular model for LP∅
which satisfies Definition 4 and is not transitive and hence ruled out by the
formulation offered in [13]:

• W = {a, b, c}
• R = {(aa), (bb), (cc), (ab), (bc)}
• ∗ is arbitrary on propositional variables, t∗a, t

∗
b , t

∗
c are all empty.

Of course, one could produce more elaborate examples as well, e.g., on the same
non-transitive frame, fix a propositional variable p and have t1 : t2 : . . . : tn :p hold
for all proof terms t1, . . . , tn, for all n, at any node (in particular, make p true
at a, b, c).

While it does not appear to be justified to confine consideration a priori to
transitive modular models, the exact role of transitivity of accessibility relations
in modular models is still awaiting a careful analysis.

3 Realizing Generic Common Knowledge

We show that LPnLP, a logic of explicit knowledge using proof terms, has a
precise modal analog in the epistemic logic with GCK, S4Jn.

Definition 5. The axioms and rules of S4Jn:

classical propositional logic:
A. axioms of classical proposition logic
R1. modus ponens

S4-knowledge principles for each Ki, i ∈ {0, 1, . . . , n},
(J may be used in place of K0):

K. Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
T. Kiϕ→ ϕ
4. Kiϕ→ KiKiϕ

R2. � ϕ⇒ � Kiϕ
connection principle:

C1. Jϕ→ Kiϕ .
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In S4Jn, the common knowledge operator J is indeed generic as J(ϕ)→ C(ϕ)
while C(ϕ) �→ J(ϕ), as illustrated in [2]. McCarthy et al. provide Kripke models
for one of their logics in [15], see also [7]. In Kripke models, a distinction between
generic and conventional common knowledge is clear. The accessibility relation
for C, RC , is the exact transitive closure of the union of all other agents’ ac-
cessibility relations Ri. RJ , the accessibility relation for J is any transitive and
reflexive relation which contains the union of all other agents’ relations, thus

RGCK = RJ ⊇ RC .

This means that generally speaking, there is flexibility in choosing RJ while RC
is unique in each given model. Note that in the case where we have explicit proof
terms and not just modalities of implicit knowledge, we also have this multiplicity
of options for generic common knowledge: there may be many evaluations ∗ such
that t∗,0u that satisfiest t∗,0u ⊆ t∗,iu for all i.

We now have LPn(LP) and S4Jn, each is a multi-agent epistemic logic with
generic common knowledge, where all justifications are explicit in the former
and implicit in the latter. By proving the Realization Theorem, we will establish
that LPn(LP) is the exact explicit version of S4Jn.

Definition 6. The forgetful projection is a translation

◦ : LLPn(LP) → LS4Jn

defined inductively as follows:

• p◦ = p, for p ∈Var
• (¬ψ)◦ = ¬(ψ◦)
• ◦ commutes with binary Boolean connectives: (ψ∧ϕ)◦ = ψ◦∧ϕ◦ and (ψ ∨ ϕ)◦

= ψ◦ ∨ ϕ◦

• (t :iψ)
◦ = Ki(ψ

◦) for i ∈ {0, 1, . . . , n} .

Proposition 1. [LPn(LP)]
◦ ⊆ S4Jn.

Proof. The ◦ translations of all the LPn(LP) axioms and rules are easily seen to
be theorems of S4Jn. ��

We want to show that these two logics are really correspondences and that

S4Jn ⊆ [LPn(LP)]
◦

also holds. This is much more involved. Theorem 3 shows that a derivation of
any S4J2 theorem σ can yield an LP2(LP) theorem τ such that τ◦ = σ. This
process, the converse of the ◦-translation, is a Realization r.

Definition 7. A realization r is normal if all negative occurrences of modalities
(whether a Ki or J) are realized by distinct proof variables.

To provide an algorithm r for such a process, we first give the Gentzen system
for S4Jn and the Lifting Lemma (Proposition 2).
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Definition 8. S4JnG, the Gentzen version of S4Jn, is the usual propositional
Gentzen rules (i.e., system G1c in [16]) with addition of n+ 1 pairs of rules:

ϕ, Γ ⇒ Δ
(�,⇒)

�ϕ, Γ ⇒ Δ
and

JΓ,�Δ ⇒ ϕ
(⇒,�)

JΓ,�Δ ⇒ �ϕ

where � is J or some Ki. As usual, capital letters are multisets and �{ϕ1, . . . ,
ϕn} = {�ϕ1, . . . ,�ϕn}.

Theorem 2. S4JnG is equivalent to S4Jn and admits cut-elimination.

Proof. See Artemov’s proof in Section 6 of [7]. ��

Let Γ = {γ1, . . . , γm}, Σ = {σ1, . . . , σn} be finite lists of formulas, �y, �z fi-
nite lists of proof variables of matching length, respectively. Then [�y ]Γ =
[y1]γ1, · · · , [ym]γm and �z :iΣ = z1 :iσ1, · · · , zn :iσn, i ∈ {0, 1, 2, . . . , n}.

Proposition 2 (Lifting Lemma). In LPn(LP), for i ∈ {0, 1, 2, . . . , n} and
each Γ,Σ, �y, �z,

[�y ]Γ, �z :iΣ � ϕ

[�y ]Γ, �z :iΣ � f(�y, �z) :iϕ

for the corresponding proof term f(�y, �z).

Proof. By induction on the complexity of ϕ.

– ϕ is an axiom of LPn(LP), then as LPn(LP) has T CS, for any constant c,
c :iϕ so let f(�y, �z) = c. As �LPn(LP) c :iϕ, also [�y ]Γ, �z :iΣ �LPn(LP) c :iϕ.

– ϕ is [yj ]γj for some [yj ]γj ∈ [�y]Γ , then

[�y ]Γ, �z :iΣ �LPn(LP) [yj ]γj ,

hence
[�y ]Γ, �z :iΣ �LPn(LP) [!yj]([yj ]γj) ,

and
[�y ]Γ, �z :iΣ �LPn(LP)!yj :i ([yj ]γj) .

So,
[�y ]Γ, �z :iΣ �LPn(LP)!yj :iϕ ,

and we can put f(�y, �z) =!yj.
– ϕ is zj :iσj for some zj :iσj ∈ �z :iΣ , then as !zj :i (zj :iσj) is given,

[�y ]Γ, �z :iΣ �LPn(LP)!zj :iϕ .

So let f(�y, �z) =!zj .
– ϕ is derived by modus ponens from ψ and ψ → ϕ. By the Induction Hypoth-

esis, there exists t :iψ and u :i (ψ → ϕ) (where t = ft(�y, �z) and u = fu(�y, �z)).
Since u :i (ψ → ϕ) → (t :i ψ → (u·t) :i ϕ), by modus ponens (u·t) :i ϕ. So let
f(�y, �z) = (u·t).
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– ϕ is c :i A ∈ T CS. Since c :i A → !c :i (c :i A) and �LPn(LP) c :i A, also
�LPn(LP) !c :i (c :iA) thus

[�y ]Γ, �z :iΣ �LPn(LP)!c :iϕ.

So let f(�y, �z) =!c. ��

Theorem 3 (Realization Theorem). If S4Jn � ϕ, then LPn(LP) � ϕr for
some normal realization r.

Proof. The proof follows closely the realization proof from [8] with adjustments
to account for the Lifting Lemma.

If S4Jn � ϕ, then by Theorem 2 there is a cut-free derivation D of the sequent
⇒ ϕ in S4JnG. We now construct a normal realization algorithm r that runs on
D and returns an LPn(LP) theorem ϕr = ψ such that ψ◦ = ϕ.

In ϕ, positive and negative modalities are defined as usual. The rules of
S4JnG respect these polarities so that (⇒,�) introduces positive occurrences and
(�,⇒) introduces negative occurrences of �, where � is J or some Ki. Call the
occurrences of � related if they occur in related formulas in the premise and con-
clusion of some rule: the same formula, that formula boxed or unboxed, enlarged
or shrunk by ∧ or ∨, or contracted. Extend this notion of related modalities by
transitivity. Classes of related � occurrences in D naturally form disjoint fam-
ilies of related occurrences. An essential family is one which at least one of its
members arises from the (⇒,�) rule, these are clearly positive families.

Now the desired r is constructed by the following three steps so that negative
and non-essential positive families are realized by proof variables while essential
families will be realized by sums of functions of those proof variables.

Step 1. For each negative family and each non-essential positive family, replace
all � occurrence so that Jα becomes [x]α and Kiα becomes yi :iα. Choose new
and distinct proof variables x and yi for each of these families.

Step 2. Choose an essential family f . Count the number nf of times the (⇒,�)
rule introduces a box to this family. Replace each � with a sum of proof terms
so that for i ∈ {0, 1, 2, . . . , n}, Kiα becomes

(wi,1 + wi,2 + · · ·+ wi,nf ) :i α,

with each wi,j a fresh provisional variable. Do this for each essential family. The
resulting tree D′ is now labeled by LPn(LP)-formulas.

Step 3. Now the provisional variables need to be replaced, starting with the
leaves and working toward the root. By induction on the depth of a node in
D′ we will show that after the process passes a node, the sequent at that level
becomes derivable in LPn(LP) where

Γ ⇒ Δ

is read as provability of

Γ �LPn(LP)

∨
Δ.
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Note that axioms p ⇒ p and ⊥ ⇒ are derivable in LPn(LP). For each move
down the tree other than by the rule (⇒,�), the concluding sequent is LPn(LP)-
derivable if its premises are; for rules other that this one, do not change the
realization of formulas. For a given essential family f , for the occurrence num-
bered j of the (⇒,�) rule, the corresponding node in D′ is labeled

[�z]Γ, �q :iΣ ⇒ α

[�z]Γ, �q :iΣ ⇒ (u1 + · · ·+ unf ) :iα
, for � is Ki, for i ∈ {0, 1, 2, . . . , n}

where the z’s and q’s are proof variables and the u’s are evidence terms, with uj
a provisional variable. By the Induction Hypothesis, the premise is derivable in
LPn(LP). By the Lifting Lemma (Proposition 2), construct a justification term
f(�z, �q) for α where

[�z]Γ, �q :iΣ � f(�z, �q) :iα .

Now we will replace the provisional variable uj as follows

[�z]Γ, �q :iΣ � (u1 + · · ·+ uj−1 + f(�z, �q) + uj+1 + · · ·+ unf ) :iα .

Substitute each uj with f(�z, �q) everywhere in D′. There is now one fewer provi-

sional variable in the tree as f(�z, �q) has none. The conclusion to this jth instance
of the rule (⇒,�) becomes derivable in LPn(LP), completing the induction step.

Eventually all provisional variables are replaced by terms of non-provisional
variables, establishing that the root sequent of D, ϕr, is derivable in LPn(LP).
The realization constructed in this manner is normal. ��

Corollary 2. S4Jn is the forgetful projection of LPn(LP).

Proof. A straightforward consequence of Proposition 1 and Theorem 3. ��

We see that the common knowledge component of LPn(LP) indeed corresponds
to the generic common knowledge J and hence can be regarded as the explicit
GCK.

4 Realization Example

Here we demonstrate a realization of an S4J2 theorem in LP2(LP).

Proposition 3. S4J2 � J¬φ→ K2¬K1φ.

Proof. Here is an S4J2G derivation of the corresponding sequent.

φ ⇒ φ
(�,⇒)

K1φ ⇒ φ
(¬,⇒)

¬φ,K1φ ⇒
(⇒,¬)

¬φ ⇒ ¬K1φ
(�,⇒)

J¬φ ⇒ ¬K1φ
(⇒,�)

J¬φ ⇒ K2¬K1φ
(⇒, →)

⇒ J¬φ→ K2¬K1φ ��
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Now we follow the realization algorithm to end up with an LP2(LP) theorem.
In the sequent proof, the J in the conclusion is in negative position and all the
Js in this derivation are related and form a negative family. The occurrences of
the K1 modality are all related and they too form a negative family. The two
occurrences of K2 form an essential positive family with nf = 1 as there is one
use of the (⇒,�) rule.

Step 1. Replace all J occurrences with ‘[x]’ and K1 occurrences with ‘y :1’.

Step 2. Replace all K2 occurrences with a ‘w :2’ with w a provisional variable.
Since here nf = 1, a sum is not required. At this stage the derivation tree looks
like this, where ‘⇒’ is read as ‘�’ in LP2(LP):

φ ⇒ φ
(�,⇒)

y :1φ ⇒ φ
(¬,⇒)

¬φ, y :1φ ⇒
(⇒,¬)

¬φ ⇒ ¬y :1φ
(�,⇒)

[x]¬φ ⇒ ¬y :1φ
(⇒,�)

[x]¬φ ⇒ w :2 (¬y :1φ)
(⇒, →)

⇒ [x]¬φ→ w :2 (¬y :1φ)

Step 3. The one instance of the (⇒,�) rule calls for the Lifting Lemma to
replace w with f(x) so that

[x]¬φ � f(x) :2 (¬y :1φ)

in LP2(LP). The proof of the Lifting Lemma is constructive and provides a
general algorithm of finding such f . To skip some routine computations we will
use the trivial special case of Lifting Lemma: if F is proven from the axioms
of LP2(LP) by classical propositional reasoning, then there is a ground2 term
g such that g :i F is also derivable in LP2(LP) for each i ∈ {0, 1, 2}, without
specifying g.

Consider the following Hilbert-style derivation in LP2(LP), line 7 in particular.

1. y :1φ→ φ L3 axiom for agent 1
2. ¬φ→ ¬y :1φ from 1. by contraposition
3. [g](¬φ→ ¬y :1φ) for some ground term g
4. [g](¬φ→ ¬y :1φ)→ ([x]¬φ→ [g ·x]¬y :1φ) L1 axiom for GCK
5. [x]¬φ→ [g ·x]¬y :1φ from 3. and 4. by modus ponens
6. [g ·x]¬y :1φ→ (g ·x) :2 ¬y :1φ connection principle
7. [x]¬φ→ (g ·x) :2 ¬y :1φ from 5. and 6. by propositional reasoning

2 Ground proof terms are built from constants only and do not contain proof variables.
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So, it suffices to put f(x) = g ·x where g is a ground proof term from line 3.3

Note the forgetful projection of the LP2(LP) theorem line 7.,

[[x]¬φ→ (g ·x) :2 ¬y :1φ]◦ = Jφ→ K2¬K1φ ,

is the original S4Jn theorem which was Realized.

5 Conclusion

The family of Justification Logics offers a robust and flexible setting in which to
investigate explicit reasons for knowing: t :F , “F is know for reason t”, in con-
trast to a modal approach in which �F or KF represent implicit knowledge of
F , where reasons are not specified. The addition of generic common knowledge
opens these systems to numerous epistemic applications ([2,5,3]). The Realiza-
tion Theorem for S4Jn allows for all modalities, including GCK (J), to be made
explicit in LPn(LP), allowing reasoning to be tracked.

In the LPn(LP) case presented here all agent reasoning represents knowledge.
While it is useful to track the justifications, in the knowledge domain, each justi-
fication is a proof and so yields truth. However, in a belief setting, justifications
are not necessarily sufficient to yield truth. In these situations it may become
even more crucial, essential, to track specific evidence in order to analyze their
reliability and compare justifications arriving from different sources. Logics of
belief with GCK can be constructed: without factivity (L3) belief rather than
knowledge is modeled. Investigating multi-agent logics of belief with GCK will
likely also yield a rich source of models in which to analyze several traditional
epistemic scenarios and may also offer an entry to considering an explicit version
of common belief.

Generic common knowledge is a useful choice for modeling many epistemic
situations and here we have presented what has yet to be shown for conventional
common knowledge: that a modal epistemic logic with generic common knowl-
edge can be made fully explicit. This is done through the introduction of the
justification logic LPn(LP) with explicit GCK and the Realization algorithm.
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Abstract. Relational Hoare Logic is a generalization of Hoare logic that allows
reasoning about executions of two programs, or two executions of the same pro-
gram. It can be used to verify that a program is robust or (information flow)
secure, and that two programs are observationally equivalent. Product programs
provide a means to reduce verification of relational judgments to the verification
of a (standard) Hoare judgment, and open the possibility of applying standard
verification tools to relational properties. However, previous notions of product
programs are defined for deterministic and structured programs. Moreover, these
notions are symmetric, and cannot be applied to properties such as refinement,
which are asymmetric and involve universal quantification on the traces of the
first program and existential quantification on the traces of the second program.

Asymmetric products generalize previous notions of products in three direc-
tions: they are based on a control-flow graph representation of programs, they
are applicable to non-deterministic languages, and they are by construction asym-
metric. Thanks to these characteristics, asymmetric products allow to validate ab-
straction/refinement relations between two programs, and to prove the correctness
of advanced loop optimizations that could not be handled by our previous work.
We validate their effectiveness by applying a prototype implementation to verify
representative examples from translation validation and predicate abstraction.

1 Introduction

Program verification tools provide an effective means to verify trace properties of pro-
grams. However, many properties of interest are 2-properties, i.e. consider pairs of
traces, rather than traces; examples include non-interference and robustness, which
consider two executions of the same program, and abstraction/equivalence/refinement
properties, which relate executions of two programs. Relational Hoare logic [8] gener-
alizes Hoare logic by allowing to reason about two programs, and provides an elegant
theoretical framework to reason about 2-properties. However, relational Hoare logic is
confined to reason about universally quantified statements over traces, and only relates
programs with the same termination behavior. Thus, relational Hoare logic cannot cap-
ture notions of refinement, and more generally properties that involve an alternation
of existential and universal quantification. Moreover, relational Hoare logic is not tool
supported.

Product programs [20,4] provide a means to reduce verification of relational Hoare
logic quadruples to verification of standard Hoare triples. Informally, the product pro-
gram construction transforms two programs P1 and P2 into a single program P that
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soundly abstracts the behavior of P1 and P2, so that relational verification over P1 and
P2 can be reduced to verification of P . Product programs are attractive, because they al-
low reusing existing verification tools for relational properties. However, like relational
Hoare logic, the current definition of product program is only applicable to universally
quantified statements over traces. Moreover, the construction of product programs has
been confined to structured and deterministic programs written in a single language.
This article introduces asymmetric (left or right) product programs, which generalize
symmetric products from [20,4], and allow showing abstraction/refinement properties,
which are typically of the form: for all execution of the first program, there is a related
execution of the second program. Furthermore, asymmetric product are based on a flow-
graph representation of programs, which provides significant advantages over previous
works. In particular, asymmetric products can relate programs: 1. with different termi-
nation behaviors; 2. including non-deterministic statements; 3. written in two different
languages (provided they support a control flow graph representation). Finally, asym-
metric products allow justifying some loop transformations that where out of reach of
our previous work on translation validation. We evaluate our method on representative
examples, using a prototype implementation that builds product programs and sends the
verification task to the Why platform.

Section 2 motivates left products with examples of predicate abstraction and trans-
lation validation. Sections 3 and 4 introduce the notion of left product and show how
they can be used to reduce relational verification to functional verification. Section 5
introduces full products, a symmetric variant of left products that is used to validate
examples of translation validation that were not covered by [4]. Section 6 presents an
overview of our implementation.

2 Motivating Examples

In this section we illustrate our technique through some examples. The first two are
abstraction validation examples and for their verification we use the asymmetric frame-
work, while for the verification of the loop optimization, we use a stronger version of
the method, introduced in Section 5.

For both domains of application, we first provide an informal overview of the verifi-
cation technique. Throughout the rest of the paper, we refer back to these examples in
order to illustrate the technical concepts and results.

2.1 Abstraction Validation

The correctness of the verification methods based on program abstraction relies on the
soundness of its abstraction mechanism. Since such abstraction mechanisms are in-
creasingly complex it becomes desirable to perform a posteriori, independent validation
of their results.

In general, abstractions induce some loss of information, represented in the abstract
programs as non-deterministic statements. The extensions presented in this paper enable
our framework to cope with non-determinism.
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Predicate Abstraction. Predicate abstraction [1,12] reduces complexity of a program
verification to the analysis of a bounded-state program, by representing infinite-state
systems in terms of a finite set of user-provided predicates. The program on the left of
Figure 1, drawn from [1], partitions a singly linked list of integers into two lists: one
containing the elements with value greater than the parameter v and the other one con-
taining the cells with value less than or equal to v. The program on the right represents
the predicate abstraction of the program on the left, w.r.t. a set of user-provided boolean
predicates: {curr = null, prev = null, curr �→val > v, prev �→val < v}. The abstrac-
tion is performed by representing each boolean predicate with a boolean variable: e.g.,
curr represents the condition curr = null. The effect of the instructions of the orig-
inal program is captured by assignments and assert statements involving the boolean
variables of the abstraction: e.g. the effect of the assignment prev := null on the pred-
icate prev = null is reflected by the assignment prev := true on the right program.
Note that some of the abstract predicates will have an unknown value after some of the
concrete instructions, as is the case with the predicate curr=null after the assignment
curr:= ∗ l, reflected by the non-deterministic assignment curr:= ?.

We consider the problem of automatically validating abstractions that are expressed
as non-deterministic programs in some variant of the original programming language.
Our goal is to verify that the program on the right soundly abstracts the original one, i.e.
any execution path of the original program can be simulated by an execution path of the
abstracted program. In order to establish the correctness of the program abstraction, we
must verify a simulation relation between the execution traces of both programs. This
simulation is captured by a new program constructed from the original and abstract
programs, shown in Figure 4, providing a fixed control flow for the simulation relation.

The validation of the abstraction is carried over the product program in Fig. 4 by two
independent verification steps. One must first verify that the product program captures
correctly the synchronous executions of the original and abstract programs, i.e., that for
any trace on the left program there exists a trace on the right program. We say then that
the graph is a left product and it satisfies the properties stated in Lemma 2. In a second
step, one must check that the product program satisfies the given refinement relation,
stated as a relational invariant specification: (curr = null ⇔ curr) ∧ (prev = null ⇔
prev) ∧ (curr �→val<v ⇔ currV ) ∧ (prev �→val<v ⇔ prevV )

Numeric Abstraction. Numeric abstraction [14] is a similar program abstraction strat-
egy based on a shape analysis defined from user-provided size abstractions. The output
of this transformation is not necessarily a bounded-state program, but it can be used
to establish some properties of the original program, e.g., termination behavior, or re-
source consumption.

Figure 2 shows an example of a source and an abstract programs, drawn from [14].
The program on the left performs left to right, depth first traversal of the binary tree
pointed by its argument. It maintains a stack of nodes to be processed. On each iteration,
the top of the stack is removed and its children (if any) are added. The program on
the right of the figure is a numeric abstraction of the source program that explicitly
keeps track of the changes in data structure sizes. In the abstract program, tsizeroot
represents the number of nodes in the tree, slen the length of the list representing the
stack and ssize the number of nodes contained in the trees held within the stack. More
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curr:= ∗ l; prev:=null;
newl:= null;
while (curr �= null) do

nextCurr:= curr �→next;
if (curr �→val > v) then
if (prev �= null) then

prev �→next:=nextCurr;
if (curr = ∗l) then ∗l:=nextCurr;
curr �→next:=newl; newl:= curr;

else
prev:= curr;

curr:=nextCurr;

curr:= ?; prev:= true;
currV:= ?; prevV:= ?;
while (∗) do
assert(¬curr);
if (∗) then

assert(currV);
if (∗) then

assert(¬prev);
else

assert(currV = false);
prev:= curr;
prevV:= currV;

curr:= ?; currV:= ?;
assert(curr);

Fig. 1. Predicate abstraction

precisely, the user-provided abstractions are defined as inductive predicates over acyclic
heap structures, e.g.:

ListLength(null, 0)

ListLength(ls �→tail, n)

ListLength(ls, n+1)
ls �=null

TreeSize(null, 0)

TreeSize(t �→left, nl) TreeSize(t �→right, nr)

TreeSize(t, nl+nr+1)
t �=null

Note that upon entering the loop, we do not have information on the size of the first
tree contained in the stack, nor of the size of the trees in the rest of the stack. This is
represented in the abstraction by a non-deterministic assignment.

As in the previous example, we can verify a posteriori that the numeric program
soundly abstracts a heap manipulating program by constructing a product program that
fixes the control flow of the simulation to be verified. The product program shown
in Figure 5 is totally synchronized, in the sense that every program edge represents a
simultaneous execution of the program components.

The simulation relation is defined in terms of the user-provided size abstractions.
This relational specification makes explicit the correspondence between the abstract
numeric variables and the size predicates over the original data structures; these size
relations include, e.g., ListLength(st, slen) and TreeSize(root, tsizeroot), which must
hold whenever the variables are in scope.

We develop the notion of left product used for abstraction validation in Section 3.

2.2 Translation Validation

Translation validation [3,16] is a general method for ensuring the correctness of opti-
mizing compilation by means of a validator which checks, after each run of the com-
piler, that the source and target programs are semantically equivalent. In previous work,
we have used a notion of program products to formally verify the correctness of several
program optimizations [4]. An important limitation of our previous notion of program
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st:= push(root, 0);

while (st �= 0) do
tail:= st→next;

if (st→ tree=0) then
free(st); st:= tail;

else
tail:= push(st→ tree→right,tail);
tail:= push(st→ tree→ left, tail);
free(st);
st:= tail;

assert(0 ≤ tsizeroot);
slen:=1; ssize:= tsizeroot;
while (slen>0) do
tsize:= ?; ssizetail:= ?;
assert(0≤tsize ∧ 0≤ssizetail);
assert(ssize=tsize+ssizetail);
if (tsize=0) then

slen--;
else

tsizel:= ?; tsizer:= ?;
assert(0≤tsizel ∧ 0≤tsizer);
assert(tsize=tsizel+tsizer+1);
ssize:= tsizel+tsizer+ssizetail;
slen++;

Fig. 2. Numeric abstraction

a : x:= 0;
b : while (x<NM) do

a[x]:= f(x);
x++

0: i:=0;
1 : while (i<N) do

j:=0;
2 : while (j<M) do

A[i, j]:= f(iM+j); j++;
i++

Fig. 3. Loop tiling example

products is that they are required to be representable syntactically as structured code.
The extension provided in this work enables the verification of more complex loop op-
timizations that were not considered in previous work.

Loop tiling is an optimization that splits the execution of a loop into smaller blocks,
improving the cache performance. If the loop accesses a block of contiguous data during
its execution, splitting the block in fragments that fits the cache size can help avoiding
cache misses, depending on the target architecture. The program at the right of Fig. 3
shows the result of applying a loop tiling transformation to the code at the left. The
traversal of a block of size NM is split into N iterations accessing smaller blocks of
size M , by the introduction of an inner loop and new iteration variables i and j. It is
not hard to see that the iteration space of the outermost loops are equal and that the
relational invariant x = iM+j holds.

The structural dissimilarity of the original and transformed loop is a main obstacle
for the application of our previous relational verification method. However, the relaxed
notion of program product presented in this article can be used to validate this trans-
formation. Figure 6 shows a possible product of the two programs in Fig. 3. The loop
bodies (i.e., edges 〈2, 2〉 and 〈b, b〉) are executed synchronously, represented by edge
〈(b, 2), (b, 2)〉. Notice that asynchronous edges represents the transitions of the right
program that cannot be matched with transitions on the left program. We develop the
notion of full products for the validation of compiler optimizations in Section 5.
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3 Simulation by Left Products

We define a general notion of product program and prove that under mild conditions
they mimic the behavior of their constituents. We adopt a representation of programs
based on labeled directed graphs. Nodes correspond to program points, and include an
initial and a final node; for simplicity, we assume their unicity. Edges are labeled with
statements from the set Stmt.

Definition 1 (Program). A programP is a tuple 〈N , E , G〉, where 〈N , E〉 is a directed
graph with unique source in∈N and sink out∈N , and G : E → Stmt maps edges to
statements.

The semantics of statements is given by a mapping [[.]] : Stmt → P(S × S), where
S is a set of states. A configuration is a pair 〈l, σ〉, where l ∈ N and σ ∈ S; we let
〈l, σ〉 � 〈l′, σ′〉 stand for (σ, σ′) ∈ [[G〈l, l′〉]]. A trace is a sequence of configurations
s.t. the first configuration is of the form 〈in, σ〉, and (σ, σ′) ∈ [[G〈l, l′〉]] for any two
consecutive elements 〈l, σ〉 and 〈l′, σ′〉 of the sequence; we let Tr(P ) denote the set of
traces of P . Moreover, an execution is a trace whose last configuration is of the form
〈out, σ〉; we let Ex(P ) ⊆ Tr(P ) denote the set of executions of P . Finally, we write
(σ, σ′) ∈ [[P ]] if there exists an execution of P with initial state σ and final state σ′;
and we say that P is strongly terminating, written P ⇓�, iff for every t ∈ Tr(P ) there
exists t′ ∈ Ex(P ) such that t is a prefix of t′. For example, the abstract program in the
right of Fig. 1 is strongly terminating, since every execution trace can be extended to a
terminating trace by suitable choices when evaluating the non-deterministic guards.

3.1 Synchronized Products

Informally, a product of two programs is a program that combines their effects. We
begin with a weaker definition (Def. 3) which only guarantees that the behavior of
products is included in the behavior of their constituents. Then, we provide a sufficient
condition (Def. 4) for the behavior of products to coincide with the behavior of its
constituents.

One practical goal of this article is to be able to perform relational reasoning about
programs that are written in the same language, by using off-the-shelf verification tools
for this language. The embedding relies on separability; our conditions are inspired
from self-composition [5], and are reminiscent of the monotonicity and frame properties
of separation logic [19].

Assume given two functions π1, π2 : S → S s.t. for all σ, σ′∈S, σ = σ′ iff π1(σ) =
π1(σ

′) and π2(σ) = π2(σ
′). Given two states σ1, σ2 ∈ S, we define σ1�σ2 ∈ S to be

the unique, if it exists, state σ s.t. π1(σ) = σ1 and π2(σ) = σ2.

Definition 2 (Separable statements). A statement c is a left statement iff for all σ1, σ2

in S s.t. σ1�σ2 is defined:

1. for all σ′1∈S, if (σ1, σ
′
1)∈ [[c]], then σ′1�σ2 is defined and (σ1�σ2, σ

′
1�σ2)∈ [[c]];

2. for all σ′ ∈S, if (σ1� σ2, σ
′)∈ [[c]], then there exists σ′1 ∈S s.t. (σ1, σ

′
1)∈ [[c]] and

σ′1�σ2 = σ′.
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Right statements are defined symmetrically. Two statements c1 and c2 are separable iff
c1 is a left statement and c2 is a right statement. Finally, two programs P1 and P2 are
separable iff P1 is a left program, i.e. it only contains left statements, and P2 is a right
program, i.e. it only contains right statements. In this section, we let P1=〈N1, E1, G1〉
and P2=〈N2, E2, G2〉 be separable programs.

Example 1. The programs in Fig. 1 manipulate disjoint fragments of scalar state, thus
they are clearly separable. Dynamic memory manipulation may break separability if
both the left and right programs invoke a non-deterministic allocator. However, in this
particular example one of the product components does not manipulate the heap.

Definition 3 (Product). Let P = 〈N , E , G〉 be a program with statements in Stmt. P
is a product of P1 and P2, written P ∈P1×P2, iffN ⊆N1×N2, and (in1, in2)∈N and
for all (l1, l2)∈N l1=out1 iff l2=out2, and every edge e ∈ E is of one of the forms:

– left edge: (l1, l2)
l�→ (l′1, l2), with 〈l1, l′1〉 in E1, and [[Ge]] = [[G1 〈l1, l′1〉]];

– synchronous edge: (l1, l2) �⇒ (l′1, l
′
2), with edges 〈l1, l′1〉 in E1 and 〈l2, l′2〉 in E2, and

[[Ge]]=[[G1 〈l1, l′1〉]] ◦ [[G2 〈l2, l′2〉]]; or
– right edge: (l1, l2)

r�→ (l1, l
′
2), with 〈l2, l′2〉 in E2, and [[Ge]] = [[G2 〈l2, l′2〉]].

For simplicity, the notion of product program is defined for two programs of the same
language. However, the definition readily extends to 2-languages products, i.e. products
of programs written in two distinct languages. Alternatively, 2-languages products can
be encoded in our setting: given two programming languages with statements in Stmt1
and Stmt2 respectively, and with state spaces S1 and S2 respectively and semantics
[[.]]1 : Stmt1 → P(S1 × S1) and [[.]]2 : Stmt2 → P(S2 × S2), one can define Stmt =
Stmt1+Stmt2, and S = S1+S2, and [[.]] = [[.]]1+[[.]]2. Then, programs of the first and
second languages can be embedded in a semantic-preserving manner into the “sum”
language, and one can use the notion of product program the usual way.

Example 2. The definition of products ensures that every edge in E represents either an
execution step of program P1, an execution step of program P2, or a pair of simultane-
ous steps of both programs. The program product in Fig. 4 contains both synchronous
and left edges. In this particular example, the left edges represent portions of the origi-
nal program that are sliced out in the abstract program, since they do not have an effect
on the validity of the boolean predicates.

Products underapproximate the behavior of their constituents, i.e, every trace of P ∈
P1×P2 is a combination of a trace of P1 and a trace of P2. We formalize this fact
using left and right projections of traces. The left projection of an execution step in P

is defined by case analysis: 1. if 〈(l1, l2), σ〉� 〈(l′1, l′2), σ′〉 and either (l1, l2)
l�→(l′1, l

′
2)

or (l1, l2)�⇒(l′1, l
′
2), then the left projection is defined as 〈l1, π1(σ)〉 � 〈l′1, π1(σ

′)〉;
2. otherwise, the left projection is undefined. The left projection π1(t) of a trace t is
then defined as the concatenation of the left projections of its steps (steps with undefined
projections are omitted). The right projection π2(t) of a trace t is defined in a similar
way.

Lemma 1. Let P ∈P1×P2. For all t∈Tr(P ), π1(t)∈Tr(P1) and π2(t)∈Tr(P2).
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l1 l2
curr:= ∗l; curr:= ?
prev:= null;prev:= true;
newl:= null; currV:= ?;
prevV:= ?

l3

{curr �= null} ;
{¬curr} ;
nextCurr:= curr �→next

{curr �→val≤v ∧ ¬currV} ;
prev:= curr;
prev:= curr;
curr:=nextCurr;
prevV:= currV;
curr:= ?; currV:= ?

l4

{curr �→val>v} ;
{currV}

l5{prev=null}

{prev �=null ∧ ¬prev} ;
prev �→next:=nextCurr

l6

{c
u
rr
�=
∗l
}

{c
u
rr
=
∗l
};

∗l
:
=
n
ex

tC
u
rr

curr �→next:=newl
newl:= curr
curr:=nextCurr
curr:= ?; currV:= ?

l7

{curr}
{curr=null}

Fig. 4. Predicate abstraction example — Product program

l1

l2

{0≤tsizeroot} ;
st:= push(root, 0);
slen:=1;
ssize:= tsizeroot

l3{st �=0 ∧ slen>0} ;
tail:= st→next; tsize:= ?; ssizetail:= ?;
{0≤tsize ∧ 0≤ssizetail} ;
{ssize=tsize+ssizetail}

l4

{t
si
z
e
=
0
}

{s
t→

tr
ee
=
0}

free(st); st:= tail; slen--

l5 {
st→

tree�=
0}

{
tsiz

e�=
0}

tail:= push(st→ tree→right, tail);
tail:= push(st→ tree→ left, tail);
free(st); st:= tail; slen++; tsizel:= ?; tsizer:= ?;
{0≤tsizel ∧ 0≤tsizer} ; {tsize=tsizel+tsizer+1} ;
ssize:= tsizel+tsizer+ssizetail;

l6
{st=0 ∧ slen≤0}

Fig. 5. Numeric abstraction — Product Program

The notion of left product guarantees that some converse of Lemma 1 holds. Informally,
a programP is a left product of P1 and P2 if P can progress at any program point where
P1 can progress. More precisely, we informally want that for every node (l1, l2) such
that P1 can progress from l1 to l′1 and P2 is not stuck, there exists a left or synchronous
edge from (l1, l2) to (l′1, l

′
2). Since it would be clearly too strong to require this progress

property for arbitrary states, the definition is parametrized by a precondition.

Definition 4 (Left product). P ∈ P1×P2 is a left product w.r.t. a precondition ϕ,
written P ∈ P1�ϕ P2, iff for every trace t :: 〈(l1, l2), σ1�σ2〉 ∈ Tr(P ) with initial
state σ such that ϕ(σ), and for every nodes l′1 ∈ N1 and l′2 ∈ N2 such that σ1 ∈
dom([[G1〈l1, l′1〉]]) and σ2 ∈ dom([[G2〈l2, l′2〉]]), one of the following holds:

1. (l1, l2)
l�→ (l′1, l2) or (l1, l2)

r�→ (l1, l
′
2) belongs to P ;

2. there exists an edge (l1, l2) �⇒ (l′1, l′′2 ) in P s.t. σ2 ∈ dom([[G2〈l2, l′′2 〉]]);
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Example 3. One can verify that the product examples shown in Section 2 are left prod-
ucts. For the product in Fig. 4, one can deduce at node l2 the validity of the invariant
curr=null⇔ curr. In order to verify the leftness condition at node l2 one must check
that every feasible transition on the left program is eventually feasible in the product
program. In this particular case, the equivalent of the boolean guards holds by the in-
variant above.

Lemma 2 (Lifting left products). Assume P ∈P1�ϕ P2 with P2 ⇓�. Let t1 ∈ Tr(P1)
with initial state σ1, and let σ2∈S s.t. ϕ (σ1�σ2). Then there exists a trace t ∈ Tr(P )
with initial state σ1�σ2 s.t. π1(t) = t1.

The result above requires in general proving strong-termination of the right component
P2. However, it is often sufficient to perform a syntactic check over a program product
P ∈P1�ϕ P2 as suggested by the following result.

Lemma 3. Assume P ∈ P1�ϕ P2 has no asynchronous right loops, i.e., that for all
sequences of edges l1

r�→ l2, . . . , ln−1
r�→ ln we have l1 �= ln. Then P1 ⇓� implies P2 ⇓�.

It follows from the lemma above, and the fact that we are interesting in terminating
executions of P1, that it is enough to check for the absence of asynchronous right loops
in the product P .

4 Logical Validation

We now show how to check the correctness of product constructions and relational spec-
ifications using standard logical frameworks. Assuming that P1 and P2 are separable,
we cast the correctness of two programs P1 and P2 w.r.t. a relational specification Φ, in
terms of the functional correctness of a left product P ∈ P1�Φ(in) P2. If the statement
languages of P1 and P2 are amenable to verification condition generation, one can gen-
erate from a product program P a set of verification conditions that ensure that P is a
left product of P1 and P2, and that P1 and P2 are correct w.r.t. a relational specifica-
tion Φ. For clarity, we instantiate this section to the programming model used for the
examples in Section 2, and a weakest precondition calculus over first-order formulae.

Program correctness is usually expressed by a judgment of the form {ϕ}P {ψ},
where P = 〈N , E , G〉 is a program, and ϕ, ψ are assertions. A judgment is valid, writ-
ten � {ϕ}P {ψ}, iff for all states σ, σ′ ∈ S s.t. (σ, σ′) ∈ [[P ]], if ϕσ then ψ σ′. One
can prove the validity of triples using a variant of Hoare logic [2], or working with a
compositional flow logic [17]. However, the prominent means to prove that {ϕ}P {ψ}
is valid is to exhibit a partial specification Φ :N ⇀ φ s.t. all cycles in the graph of P go
through an annotated node, i.e. a node in dom(Φ); and in, out∈dom(Φ) with ϕ = Φ(in)
and ψ = Φ(out).

We adopt a simplified version of the memory model of Leroy and Blazy [13]—
locations are interpreted as integer values and field accesses as pointer offsets. We in-
troduce to the assertion language a variable h, and the non-interpreted functions load,
store, alloc, and free, and the predicateValid. We also introduce a suitable set of axioms,
including for instance:
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Valid(h, l) =⇒ load(store(h, l, v), l)=v
Valid(h, l) ∧ Valid(h, l′) ∧ l �= l′ =⇒ load(store(h, l′, v), l)= load(h, l)

alloc(h)=(h′, l) =⇒ Valid(h′, l)
Valid(h, l) ∧ l �= l′ ∧ free(h, l)=h′ =⇒ Valid(h′, l′)

The weakest precondition calculus is standard, with the exception perhaps of heap
operations:

wp(x:= [l] , φ)
.
= φ[load(h, l)/x] wp([l] :=x, φ)

.
= φ[store(h, l, x)/h]

wp(free(l), φ)
.
= φ[free(h, l)/h] wp(l:= alloc, φ)

.
= φ[h�/h] ∧ (h�, l) = alloc(h)

where h� stands for a fresh variable. One can use the weakest preconditions to generate a
specification Φ� that extends Φ to all nodes. Using the well-founded induction principle
attached to partial specifications, see e.g. [7], we set

Φ�(l)
.
=

∧
〈l,l′〉∈E

wp(G〈l, l′〉, Φ�(l′)) for all l �∈ dom(Φ)

The logical judgement � {ϕ}P {ψ} is verifiable if there is a specification Φ� with
ϕ

.
= γ(Γ (in)) and ψ

.
= γ(Γ (out)) such that the verification conditions Φ(l) ⇒

wp(G〈l, l′〉, Φ�(l′)) are valid for all 〈l, l′〉 ∈ E and l∈dom(Φ).
The leftness of a product can also be checked by logical means. We use a simple form

of path condition, which we call edge condition, to express leftness. Formally, the edge
condition ec(c) for a statement c is, if it exists, the unique (up to logical equivalence)
formula φ s.t. for all states σ ∈ S, σ ∈ [[φ]] iff σ ∈ dom([[c]]). We define for every

node (l1, l2) ∈ N and edges 〈l1, l′1〉 ∈ E1 and 〈l2, l′2〉 ∈ E2 s.t. (l1, l2) � l�→ (l′1, l2) and
(l1, l2) � r�→ (l1, l

′
2) the Φ-leftness condition as

Φ(l1, l2) ∧ ec(G1〈l1, l′1〉) ∧ ec(G2〈l2, l′2〉)⇒
∨

l′′2 :(l1,l2) �⇒ (l′1,l′′2 )

ec(G2〈l2, l′′2 〉)

and say that P is Φ-left iff all its Φ-leftness conditions are valid.
Weakest preconditions can be used to compute edge conditions. For instance one can

define ec(c) by the clauses:

ec(skip)
.
= true ec(x:= e)

.
= true

ec({b}) .
= b ec(c1; c2)

.
= ec(c1) ∧ wp(c1, ec(c2))

ec([l]:=x)
.
= Valid(h, l) ec(x:= [l])

.
= Valid(h, l)

ec(free(l))
.
= Valid(h, l) ec(l:= alloc)

.
= true

Example 4. In order to verify the leftness of the product program in Figure 4 it is suffi-
cient to check for every synchronous edge (l1, l2) �⇒ (l′1, l

′
2) that ec(G1〈l1, l′1〉) implies

ec(G2〈l2, l′2〉). Consider for instance the product edge 〈l2, l3〉. The edge condition of the
corresponding left edge is curr �=null whereas the edge condition of the corresponding
right edge is ¬curr. The validity of curr �= null ⇒ ¬curr follows trivially from the
strong invariant curr = null⇔ curr.

Let S1,S2 ⊆ S be sets of pairwise separable1 states. From the separability hypothesis,
one can embed relational assertions on P(S1 × S2) as assertions on the set {σ1�σ2 |

1 Two states σ1 and σ2 are separable if σ1�σ2 is defined.
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σ1 ∈ S1, σ2 ∈ S2}. Relational program correctness is formalized by refinement quadru-
ples of the form |= {ϕ}P1 �→P2{ψ}, where P1, P2 are programs, and ϕ, ψ are asser-
tions. Such refinement judgment is valid iff for all t1 ∈ Ex(P1) with initial state σ1 and
final state σ′1, and σ2 s.t. ϕ (σ1� σ2) and P2 ⇓�, there exists t2 ∈ Ex(P2) with initial
state σ2 and final state σ′2 s.t. ψ (σ′1�σ′2).

Theorem 1. Let P1, P2 be separable programs and let ϕ, ψ be assertions. Then the
judgement |= {ϕ}P1 �→P2{ψ} holds, provided there is a partial specification Φ s.t.
ϕ = Φ(in1, in2) and ψ = Φ(out1, out2), and a product program P ∈ P1×P2 that is
Φ-left and correct w.r.t. Φ.

Theorem 1 provides direct proofs of correctness for many common refinement steps,
e.g. replacing a non-deterministic assignment by an assignment (or a non-deterministic
choice by one of its substatements). Observe that by Lemma 3 it is enough to check
alternatively for the absence of right loops in the product program instead of requiring
the strong-termination of P2.

4.1 Completeness of Abstraction Validation

We briefly show that abstraction validation is relatively complete under a soundness
assumption of the program abstraction procedure. To this end, we use the framework of
abstract interpretation [11] to characterize sound program abstractions. Then we show
that the correctness of the abstract semantics w.r.t. the verification calculus implies
the verifiability of the resulting program abstraction using left products. For brevity,
we only consider forward abstract semantics; the adaptation to backward semantics is
straightforward.

In the rest of this section we let I = 〈A, [[.]]�〉 be an abstract semantics composed of

– an abstract domain A, that can be interpreted as assertions over states;
– an abstract interpretation function [[.]]� : Stmt → A → A for statements: [[c]]�

approximates the execution of statement c in the abstract domain;

We assume the existence of a concretization function γ from abstract values in A to
first order formulae. We need to assume also the soundness of the abstract semantics
I = 〈A, [[.]]�〉 w.r.t. the wp calculus, i.e. that for all c ∈ Stmt and a ∈ A, Φ

.
= γ(a) ⇒

wp(c, γ([[c]]
�
a)) is a verifiable formula. We also assume a standard characterization of

valid post-fixpoints: a labeling Γ : N → A is a post-fixpoint of the abstract semantics
I if for all 〈l, l′〉 ∈ E [[G〈l, l′〉]]Γ (l)  Γ (l′).

Let P = 〈N , E , G〉 and P̂ = 〈N , E , Ĝ〉 be separable programs, and assume that
the abstract domain A represents relations between the disjoint memories of P and P̂ .
We say that a P̂ is a sound abstraction of P w.r.t. a labeling Γ : N → A if for all
e = 〈l, l′〉 ∈ E we have

[[Ge; Ĝ e]]
�
Γ (l)  Γ (l′)

Lemma 4. Let P be a program, I = 〈A, [[.]]�〉 an abstract semantics, and P ′ a sound
abstraction of P w.r.t. a post-fixpoint Γ : N → A. Assume that γ a⇒ γ a′ is verifiable
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for all a, a′ ∈ A s.t. a  a′. If I is sound w.r.t the wp calculus then there exists
Q ∈ P �ϕ P ′ s.t. � {ϕ}Q {ψ} is a verifiable judgement, where ϕ

.
= γ(Γ (in)) and

ψ
.
= γ(Γ (out)).

It follows from the lemma above that, under mild conditions, if P ′ is an abstract pro-
gram computed from P using a sound abstract semantics, then one can verify that P is
correctly abstracted by P ′. Besides, in settings in which the abstract semantics is de-
fined as a strongest postcondition calculus, as in e.g. predicate abstraction, abstraction
validation is decidable. Indeed, it is sufficient that the decision procedure used for pro-
gram verification is as complete as the one used by the program abstraction algorithm.

5 Full Products

We introduce a symmetric variant of the notion of left product of Section 3, which al-
lows verifying one-to-one correspondences between traces of a source and transformed
program, as required by translation validation.

Definition 5 (Full product). P ∈ P1×P2 is a full product w.r.t. a precondition ϕ,
written P ∈ P1 ��ϕ P2, iff for every trace t :: 〈(l1, l2), σ1�σ2〉 ∈ Tr(P ) with initial
state σ such that ϕ(σ), and for every nodes l′1 ∈ N1 and l′2 ∈ N2 such that σ1 ∈
dom([[G1〈l1, l′1〉]]) and σ2 ∈ dom([[G2〈l2, l′2〉]]), one of the edges (l1, l2)

l�→ (l′1, l2),
(l1, l2)

r�→ (l1, l
′
2), or (l1, l2) �⇒ (l′1, l

′
2) belongs to P ;

Product fullness is a stronger property than being both left and right. Indeed, requir-
ing the existence of the edge (l1, l2) �⇒ (l′1, l′2) is stronger that requiring the existence
of (l1, l2) �⇒ (l′1, l

′′
2 ) or (l1, l2) �⇒ (l′′1 , l

′
2) for some l′′1 or l′′2 . In a deterministic setting,

however, a product program P is full iff P is left and right. Moreover, for deterministic
programs, left products and full products coincide: assume that P2 is deterministic, i.e.
if σ ∈ dom([[G〈l, l′〉]]) and σ ∈ dom([[G〈l, l′′〉]]) then l′ = l′′. Then P ∈ P1�ϕ P2 iff
P ∈ P1 ��ϕ P2. This has practical advantages when verifying deterministic programs,
since it is sufficient to discharge verification conditions for leftness to formally verify
the fullness of a program product.

Relational correctness is formalized by judgments of the form {ϕ}P1∼P2 {ψ},
where P1, P2 are separable programs, and ϕ, ψ are assertions. A relational judgment is
valid, written � {ϕ}P1∼P2 {ψ}, iff for all t1 ∈ Ex(P1) and t2 ∈ Ex(P2) with initial
states σ1 and σ2, and final states σ′1 and σ′2, ϕ (σ1�σ2) imply ψ (σ′1�σ′2). Full products
yield a symmetric variant of Theorem 1.

Theorem 2. Let P1, P2 be deterministic separable programs and let ϕ, ψ be assertions.
Then � {ϕ}P1∼P2 {ψ}, provided there is a partial specification Φ and a product pro-
gram P ∈P1×P2 s.t. ϕ = Φ(in1, in2), ψ = Φ(out1, out2), and P is Φ-left and correct
w.r.t. Φ.

Example 5. Figure 6 shows a full product for the validation of the loop tiling example
in Fig. 3. From Theorem 2, one can show that the product is full by proving that is
Φ-left, where Φ is shown in the figure. E.g. Φ-leftness at the node (b, 2) and for the
edges 〈b, b〉 and 〈2, 2〉 reduces to showing that Φ(b, 2) ∧ ec(2, 2) ∧ ec(b, b) implies
ec((b, 2) �⇒ (b, 2)).
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Product

a, 0

b, 1

x:=0; i:= 0

b, 2

{i<N} ; j:= 0
{x<NM∧ j<M} ;
a[x]:= f(x);
A[i, j]:= f(iM+j);
x++; j++

{M≤j} ;
i++

out

{NM≤x ∧N≤ i}

Specification
Φ(a, 0)

.
= true

Φ(b, 2)
.
= x= iM+j ∧ i<N ∧ j≤M ∧ ϕ(i) ∧ ∀r. 0≤r<j ⇒ A[i, r]=a[iM+r]

Φ(out)
.
= ϕ(N)

where ϕ(i)
.
= ∀l, r. 0≤ l<i∧ 0≤r<M ⇒ A[l, r]=a[lM+r]

Fig. 6. Loop tiling example — Product program

6 Implementation

We have implemented a proof of concept verification plugin in the Frama-C environ-
ment. We have used our this plugin to validate abstraction examples for list traversing
algorithms.

The plugin receives as input a file with a program, its abstraction, and a predicate
that describes the relation between the abstract and concrete states, using the ANSI C
Specification Language (ACSL). A product of the supplied programs is constructed by
following the program graphs and deciding at each branch statement whether to intro-
duce a right, left or synchronized edge, and generating additional program annotations.
Non-deterministic assignments are modeled in abstract programs with the use of unde-
fined functions, and assert statements were added to introduce hypotheses regarding the
non-deterministic output values. In order to deal with the weakness of the alias analysis,
we added some memory disjointness annotations manually.

The final annotated product program is fed into the Frama-C Jessie plugin, which
translates the C product program into Why’s intermediate language and discharges the
verification conditions using the available SMT solvers (AltErgo, Simplify, Z3, etc.).
Figure 7 depicts the interaction of the plugin with other components of the framework.

7 Related Work

Our technique builds upon earlier work on relational verification using product pro-
grams [4,20], and is closely related to relational logics [8,18] used to reason about
compiler correctness and program equivalence. Furthermore, there exist strong connec-
tions between abstraction validation and refinement proofs—refinement can be viewed
as a form of contextual approximation. In particular, developing connections between
our method and proof methods for program refinement, such as the refinement calcu-
lus [15], or refinement with angelic non-determinism [10] is left for future work.
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Original Abstraction
Spec

CIL Product construction JESSIE

WHYSIMPLIFY

ALT-ERGO

Z3

COQ

ISABELLE

FRAMA-C

Fig. 7. Tool architecture

Abstraction validation may be seen as an instance of result checking, i.e. of the a
posteriori validation of a computed result, in the context of program analysis and pro-
gram transformations algorithms. In this sense, it is closely related to translation vali-
dation [21] and abstraction checking for embedded systems [9].

8 Conclusion

Asymmetric products provide a convenient means to validate relational properties using
standard verification technology. They provide an automated method for reducing a re-
finement task to a functional verification task, and allow the validation of a broad set of
program optimizations. Their applicability has been illustrated with the implementation
a product construction prototype. In the future, we intend to used asymmetric products
for performing a certified complexity analysis of cryptographic games [6]. Another tar-
get for future work is to broaden the scope of relational validation to object-oriented
and concurrent programs.
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Abstract. We undertake a study of imperative computation. Beginning
with a philosophical analysis of the distinction between imperative and
functional language features, we define a (pure) imperative language as
one whose constructs are (inherently) referentially opaque. We then give
a definition of a computation language by identifying desirable properties
for such a language.
We present a new pure imperative computation language, Assignment

Calculus AC. The main idea behind AC is based on the insight of T.
Janssen that Montague’s modal operators of intension and extension,
developed for the study of natural language semantics, are also useful for
the semantics of programming language features such as assignments and
pointers. AC consists of only four basic constructs, assignment ‘X :=== t’,
sequence ‘t ; u’, procedure formation ‘¡t’ and procedure invocation ‘!t’.
Two interpretations are given for AC: an operational semantics and a
term-rewriting system; these interpretations turn out to be equivalent.

1 Introduction

What is a pure imperative language? This paper attempts to answer this question
by pursuing one possible definition: a pure imperative language is one whose
operators are fundamentally referentially opaque.

In Section 2 we give a discussion of this approach, involving referential trans-
parency and opacity, the substitutivity principle and intensionality, with natural-
language examples. We show that these problems are also present in imperative
programming languages, and introduce our imperative computation language
Assignment Calculus, AC .

Section 3 presents the syntax and operational semantics of AC , with a run-
ning example which will be used throughout the paper. We examine an important
aspect of AC : state backtracking.

In Section 4 a term rewriting system for AC is presented, and used with
our running example. We state the equivalence of the operational semantics and
rewriting system, and (without proof) a confluence theorem for this system. We
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conclude in Section 5 with a summary of the significance of the ideas presented
here, a brief examination of similar work, and possible lines of research.

A comment on notation: syntax is represented by bold text; the equivalence
of two syntactic entities is indicated by ‘≡’.

This paper is based on the thesis [Ben10], which contains full proofs of most
of the results stated here. The thesis also provides, among other things, a full
denotational semantics for AC , along with related results including the equiva-
lence of operational, denotational, and rewriting semantics. This paper extends
our work by presenting a stronger syntax-directed proof of equivalence between
the operational semantics and term rewriting system.

2 Imperative Computation

To program a computer, we must provide it with instructions to arrive at the de-
sired result. There are two types of instructions: commands (or statements) and
goals. The latter provide a “specification,” and the computer (or compiler) must
figure out how to arrive at a solution. Goals are generally written as declarations,
often presented in a “functional” style [Bac78].

This distinction between types of instructions forms the basis of the two types
of programming language: a language that is based on commands is called im-
perative, and one that is based on goals is called declarative.

This distinction can be traced back to two pioneers in computation theory,
Alan Turing and Alonzo Church. Turing’s analysis of computation [Tur36] is
via a machine that executes tasks sequentially, reading from and writing to a
storage device (the “tape”). Church’s system [Chu41] is more abstract, taking
the mathematical notion of function as basic, and employing only the operations
of (functional) abstraction and application to express computational goals. Tur-
ing proved that their systems have the same computational power, and argued
convincingly that they are universal (the Church-Turing Thesis).

The benefit of Turing’s approach is its suggestion of a real computer; a vari-
ant, due to von Neumann, lies at the core of virtually every computing device in
use today. Since computers are basically built on Turing’s idea, so are impera-
tive languages. Thus any imperative language contains operations for sequencing
(‘ ; ’) and reading from and writing to memory (assignments). Imperative lan-
guages are thus closely connected to practice. However, dealing with imperative
languages’ semantics can be tricky, and the Turing machine can be a clumsy
theoretical tool.

Church’s λ-calculus stems from research into the foundations of mathematics.
Its language of functional abstraction and application is small, elegant, and pow-
erful, and makes it immediately amenable to theoretical study [Bar84]. Many
“functional languages” have been designed around the λ-calculus. However, a
major drawback to functional languages is their lack of “machine intuition”,
which can make them difficult to implement.

Real computers are based on the imperative model, so compilers for functional
languages are needed to translate Church-style computation into Turing’s model.
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Conversely, for those working in denotational semantics, giving a mathematical
meaning to imperative programming languages means interpreting Turing-style
computation in a Church-style language.

Can we “short-circuit” these interpretations in either direction? In other
words, can we either (a) build a computer on Church’s notion, or (b) design
a formal language that embodies Turing’s conception? In this paper we focus on
question (b). In this regard, it is somewhat surprising that there is no accepted
canonical theoretical computation language that is fundamentally imperative in
character. Our goal is to present such a language. It is not presented as “the”
basic language for imperative computation, but simply as a potential candidate.
First, however, we must answer a pressing question: what, exactly, is “imperative
computation”?

2.1 What Is Imperative Computation?

A first attempt to define imperative computation could be made from the point
of view of machine behaviour. If functional features are seen as “high-level,” then
we should remain close to a machine-based intuition.

The problem is that this does not sufficiently restrict our definition: there
are many different machine architectures, instruction sets, abstractions from
machine to assembly languages, and implementations of control structures; in
short, there is too much freedom when working with machine intuition alone.

So we want an imperative language which is (a) as simple as possible, (b)
Turing complete, and (c) “pure”. How do we understand (c)? A good approach
is to take the concepts of pure imperative and pure functional as “orthogonal”
in some sense.

We begin by asking: what is functional purity?
Purely functional languages are referentially transparent [FH88]. This allows

for call-by-name or lazy evaluation, as in Haskell [HHJW07]. Referential trans-
parency as a concept goes back to Quine [Qui60, §30] and essentially embodies
Leibniz’s principle of substitutivity of equals :

e1 = e2 =⇒ e(· · · e1 · · · ) = e(· · · e2 · · · ).

The benefit of this is clear: “computation” proceeds by substituting expressions
for variables. This idea is taken to an extreme in the pure λ-calculus, which
reduces functional computation to its smallest possible core. Its (only!) operators
are λ-abstraction and application; its only atoms are variables. Syntactically,
application of a function to an argument is accomplished by substitution, taking
advantage of referential transparency.

In fact we take the λ-calculus as the paragon of theoretical computation lan-
guages: (a) it is small, elegant and intuitive; (b) its operators represent well-
understood, fundamental concepts; (c) we can rewrite its terms using simple
rules; and (d) it has multiple equivalent forms of semantics. Our aim is to de-
velop a formal language for imperative computation that has as many of the
above virtues as possible.
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Going back to our question: what is a pure imperative language? We now
propose: it is a language whose features are fundamentally non-transparent, or
opaque, i.e., substitutivity is the exception rather than the rule.

2.2 Referential Opacity

We begin with an example in natural language. Consider the sentence:

The temperature is twenty degrees and rising.

Formalizing this gives us

twenty(temp) ∧∧∧ rising(temp) (1)

Suppose the temperature is 20◦. Substituting this for temp in (1) (using sub-
stitutivity of equals) yields ‘twenty(20◦)’ for the first conjunct, which is fine,
but ‘rising(20◦)’ for the second, which is not even false, but nonsense: “tem-
perature” here means not its current value, but its value over time.

The problem is that although the predicate ‘twenty ’ introduces a transparent
context, the predicate ‘rising ’ creates an opaque context.

Such intensional phenomena abound in natural language, and have been stud-
ied by philosophers and linguists for some time [Fre92]. They can be recognized
by apparent violations of substitutivity as above. This is also the case for im-
perative programming languages, to which we now turn.

Consider the assignment statement X :=== X ++++++++ 1. Clearly, we can substitute
the current value of X for ‘X’ on the right-hand side, but not on the left-hand
side; attempting the latter gives a meaningless expression. Janssen [JvEB77,
Jan86] noticed that these are simple examples of transparent and opaque contexts
in programming languages; and he was able to develop a compositional semantics
for programming languages, dealing with assignments and pointers, comparable
to what Montague had done for natural languages. This penetrating insight of
Janssen’s was the starting point for a line of investigation continued in [Hun90,
HZ91], and further in [Ben10] and the present paper.

In fact, it turns out that opaque contexts are inherent in all the fundamental
imperative operations.

2.3 Intensions

Frege [Fre92] analyzed the substitutivity problem. He distinguished between two
kinds of meaning: sense (Sinn) and denotation (Bedeutung). He showed that,
in cases where substitutivity does not hold in terms of the denotations of ex-
pressions, it can be restored if we consider, not the denotation of the expression,
but its sense, which can be understood as a function from “contexts,” “states,”
“settings,” or (as in example (1)) “time instants” to values .

A formal system implementing Frege’s ideas was developed by Church [Chu51],
and a semantic interpretation by Carnap [Car47], who introduced the terms in-
tension and extension for sense and denotation. Kripke [Kri59] rounded out the
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semantic treatment by providing the setting of possible worlds for modal logic.
By combining his work with Carnap’s, we can treat intension as a function from
possible worlds to values.

The next major step was accomplished by Montague [Mon70, Mon73], who
developed a system IL of intensional logic for the mathematical treatment of
natural language. Next, Janssen and van Emde Boas [JvEB77, Jan86] applied
Montague’s techniques to imperative programming languages. By identifying
possible worlds with machine states, they provide a strikingly elegant treatment
of assignment statements and pointers.

A significant extension was accomplished by Hung and Zucker [Hun90, HZ91],
who provided compositional denotational semantics for quite intricate language
features such as blocks with local identifiers; procedure parameters passed by
value, by reference and by name; and pointers which can be dereferenced any-
where, including the left-hand side of assignment statements. Janssen’s system—
specifically, Hung’s version— is the genesis of Assignment Calculus AC , the
language to be presented in this paper.

2.4 Intentions

We begin with the observation that

the intension operator generalizes the (parameterless) procedure. (2)

A procedure is a function from states to states , and an intension is a function
from states to values . If we include states in the set of values, then the general-
ization is clear. The reason that it was not noticed by Janssen or Hung is that,
in Montague’s systems, states cannot be treated as values.

Another observation is that we can allow “storage” of intensions in the state.
Stored procedures are a well-known but difficult feature of imperative languages
[Sco70, SS71]. They allow general recursion, and also a generalization of the
treatment of pointers given by Janssen and Hung.

The resulting system is sufficiently interesting to be studied in “isolation”,
removing all the functional and logical components in DIL, such as variables,
abstraction and application. The resulting language AC is a case study in pure
imperative computation.

3 Assignment Calculus AC

In attempting to create a pure imperative computation language, it is important
to remain as close as possible to existing imperative languages.

An imperative programming language can perhaps be defined as a language
L with the following characteristics:

1. The interpretation of L depends on some form of computer memory (state)
through which data can be stored and retrieved.
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2. The state consists of contents of discrete memory locations that can be read
from or written to independently.

3. An L-program consists of a sequence of explicit commands or instructions
that fundamentally depend on (and often change) the state.

4. L contains some form of looping, branching or recursion mechanism to allow
for repeated execution of program parts.

The first three characteristics are common to all imperative languages. Therefore
AC includes them directly.

Characteristic 4 can be embodied in many ways: conditional branching, “goto”
statements; looping constructs (“while” etc.); and recursion.

AC ’s approach to 4 is to employ Montague’s intension operator as a gener-
alization of parameterless procedure, in accordance with our observation above.
In AC , intensions are treated as first-class values : they can be defined anony-
mously, assigned to locations, and invoked freely.

The goals of AC are twofold: first to continue the line of research initiated by
Janssen and continued by Hung and Zucker in applying Montague’s work to pro-
gramming languages, and secondly to attempt to provide a small, elegant, useful
core language for imperative-style computation—a pure imperative computation
language as defined in Section 2.

3.1 Introduction to AC

Term is the set of AC terms t, u, . . .. Before defining Term formally, we go
over the basic constructs of AC and their intuitive meanings.

1. Locations : X , Y , . . . correspond to memory locations. The collection of all
locations is the store.

2. Assignment : X :=== t. Overwrites the contents of location X with whatever
t computes. This operation computes the store that results from such an
update.

3. Sequence: t ; u. Interpreted as follows: first compute t, which returns a store,
then compute u in this new context.

4. Intension: ¡t. This is procedure formation. It “stops” evaluation of t so that
¡t is the procedure that, when invoked, returns whatever t computes.

5. Extension: !t. This is procedure invocation, that is, it “runs” the procedure
computed by t.

An easy way to remember our notation (different from Montague’s) for intension
and extension is that ‘¡’ looks like a lowercase ‘i’, for intension, and that ‘!’, an
exclamation mark, is used for extension.

This constitutes pure AC . For convenience, we can add supplementary oper-
ators : numerals n, . . . , booleans b, . . . and their standard operations.

We will use the following as a running example of an AC term:

P :=== ¡X; X :=== 1; !P . (3)

This term sets P to the procedure that returns X, then sets X to 1. Finally, P
is invoked thus returning the current value of X which is 1.
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3.2 Types and Syntax of AC

AC is a simply typed language in the sense of Church [Chu40].

Definition 3.1 (Types). The set Type of types τ , . . ., is generated by:

τ ::= B | N | S | S→→→τ ,

where B, N and S are the types of booleans, naturals and stores respectively, and
S→→→τ is that of intensions (procedures) which return values of type τ . (The base
types B and N are added only to handle the supplementary operators described
above; for pure AC, they can be removed.)

Now we define the set of terms Term of AC . For each type τ , the sets Termτ

of terms of type τ are defined by mutual recursion:

Definition 3.2 (Syntax of AC)

1. X ∈ Locτ ⇒ X ∈ Termτ

2. t ∈ Termτ ⇒ ¡t ∈ TermS→→→τ

3. t ∈ TermS→→→τ ⇒ !t ∈ Termτ

4. X ∈ Locτ , t ∈ Termτ ⇒ Xτ :=== tτ ∈ TermS

5. t ∈ TermS, u ∈ Termτ ⇒ t ; u ∈ Termτ

Supplementary operators are defined in a standard way [Ben10].

Notice that the intension of a term t of type τ is of type S→→→τ , and the extension
of an (intensional) term t of type S→→→τ is of type τ . The assignment construct
is (always) of type S. Most interestingly, the sequence operator allows terms of
type other than S to the right of assignments; for example we have the term
Xτ :=== X ++++++++1 ;X of type N. This is discussed further in §3.5.

Assignments are of type S due to the fact that they return stores, and the
type of the location (on the left-hand side) and the assigned term must be in
agreement. We do not allow locations of type S, but we do allow locations of
type S→→→τ for any τ . This amounts to storage of intensions in the store, which
accounts for much of AC ’s expressive power.

As an example, think of ¡t as representing the “text” of t, which, in an actual
computer, is the way that procedures and programs are stored. Now consider
the term

X :=== ¡!X,

which is read “store in X the procedure that invokes X”. Once this action is
performed, an invocation of X

X :=== ¡!X; !X

will proceed to invoke X again and again, leading to divergence.
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3.3 Operational Semantics of AC

We access the contents of X in a store ς by function application ς(X).
We will use the standard notion of function variant to update the contents

of a location, where the variant f [x/d] of a function f at x for d is defined by:
(f [x/d])(x) = d and (f [x/d])(y) = f(y) for y �= x.

We employ “big-step” operational semantics [Win93]. The rules define the
computation relation ⇓ ⊂ ((Term × Store) × (Term ∪ Store)). Really, since
a term can compute either a store (if the term is of type S) or another term
(if it is of any type other than S), the computation relation can be broken into
two disjoint relations ⇓c ⊂ ((TermS × Store) × Store) and ⇓v ⊂ ((Termτ ×
Store) × Term). However, since the rules are so simple, we choose instead to
use the metavariable d to range over both terms and stores, and give the rules
as follows:

Definition 3.3 (Operational semantics of AC). First, the rules for loca-
tions, assignment and sequence are standard [Win93]:

ς(X) = t

X, ς ⇓ t

t, ς ⇓ u

X :=== t, ς ⇓ ς [X/u]

t, ς ⇓ ς ′ u, ς ′ ⇓ d

t; u, ς ⇓ d

The interesting new rules are those for intension and extension:

¡t, ς ⇓ ¡t

t, ς ⇓ ¡u u, ς ⇓ d

!t, ς ⇓ d

The rules for supplementary operators are standard, and omitted here.

The intuition for the rules for intension and extension are as follows:

• intension “holds back” the computation of a term,
• extension “induces” computation.

Note that there are no side-effects in AC ; if a term is of type τ �= S then it
only results in a value. This is further discussed in §3.5.

Lemma 3.4. Computation is unique and deterministic, i.e., there is at most
one derivation for any t, ς.

We return to our running example (3). Its operational interpretation is as follows.
For any ς , ς ′ = ς [P /¡X] and ς ′′ = ς [P /¡X][X/1],

¡X, ς ⇓ ¡X

P :=== ¡X, ς ⇓ ς ′

1, ς ′ ⇓ 1

X :=== 1, ς ′ ⇓ ς ′′

ς ′′(P ) = ¡X

P , ς ′′ ⇓ ¡X

ς ′′(X) = 1

X, ς ′′ ⇓ 1

!P , ς ′′ ⇓ 1

X :=== 1; !P , ς ′′ ⇓ 1

P :=== ¡X; X :=== 1; !P , ς ⇓ 1
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3.4 Rigidity, Modal Closedness, and Canonicity

Definition 3.5 (Operational rigidity). A term t is called operationally rigid
iff there is a u s.t. all stores ς give t, ς ⇓ u. A term for which this is not the case
is called operationally non-rigid.

To provide a syntactic approximation to rigidity, we follow Montague and define
the set of modally closed terms as follows:

Definition 3.6 (Modal Closedness). The set of modally closed terms MC,
ranged over by mc, is generated by

mc ::= b | n | ¡t | mc1 ++++++++mc2 | . . .

with similar clauses for other arithmetic, comparison and boolean operators.

Lemma 3.7. t ∈MC =⇒ t is operationally rigid.

Modal closedness captures the intuitive notion of a completed imperative com-
putation, but it can leave arithmetic and boolean computations “unfinished”.
Terms in which all of these computations are also complete are called canonical
and are defined by:

Definition 3.8 (Canonical terms). The set of canonical terms Can, ranged
over by c, is generated by:

c ::= b | n | ¡t

Clearly, Can ⊆MC. Hence:

t ∈ Can ⇒ t ∈MC ⇒ t is operationally rigid.

Definition 3.9 (Properness of Stores). A store ς is proper if it maps loca-
tions only to canonical terms.

The main result of this section is that the operational semantics is well defined,
i.e., it only produces canonical terms or proper stores:

Theorem 3.10 (Properness of Operational Semantics). If ς is proper,
then for any t where t, ς converges:

1. If t is of type S then there is a proper store ς ′ s.t. t, ς ⇓ ς ′;
2. Otherwise, there is a (canonical) c s.t. t, ς ⇓ c.

Proof. By induction on derivations. Details in [Ben10].

3.5 State Backtracking

A significant difference between AC and traditional imperative languages is that
there are no side-effects. In AC , terms represent either stores (effects), if they
are of type S, or values if they are of some other type.
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In this respect, note that a language based on side-effects can easily be trans-
lated into AC . Further, the absence of side-effects in AC leads to an interesting
phenomenon: state backtracking.

State backtracking, or non-persistent or local state update, occurs when we
have terms of the form

t ;uτ where τ �= S (4)

because state changes caused by t are “lost,” “localized” or “unrolled” when the
value of u is returned. Consider the following example:

Y :=== (X :=== 1; X).

Changes to X are local to the computation of Y , so in fact the above term is
equivalent to ‘Y :=== 1’, a result which can be confirmed easily by the reader (for
details, see [Ben10]).

The inclusion of terms of the form (4), makes possible a clean rewriting system
for AC : it gives us a way to “push assignments into terms”. We discuss this
further in §4; for now, consider this example: X :=== 1; X :=== (X ++++++++ X). By
intuition and the operational semantics, we know that this term is equivalent
to X :=== 2. But how can it be possible, without overly complicated rules, to
rewrite the former to the latter? By admitting terms like (4), we can express
intermediate steps of the computation that could not otherwise be written. Using
the rewriting rules (Definition 4.1),

X :=== 1; X :=== (X ++++++++X) X :=== (X :=== 1; (X ++++++++X))

X :=== ((X :=== 1; X)++++++++ (X :=== 1; X))

X :=== (1++++++++ 1) X :=== 2

Thus, based on its usefulness and the simplicity of the resulting rewriting rules,
we believe that

State backtracking is a natural part of imperative computation.

4 Term Rewriting

In this section we exploreAC by examining meaning-preserving transformations
of terms. What we will develop is essentially the “calculus” part of Assignment
Calculus—a term rewriting system whose rules are meant to capture and exploit
its essential equivalences.1

4.1 Rewrite Rules and Properties

In order to make the rewriting definitions simpler, we adopt the convention that
terms are syntactically identical regardless of parenthesization of the sequencing

1 In developing these rules, we find significant guidance in Janssen’s [Jan86] and
Hung’s [Hun90] work on state-switcher reductions.



54 M. Bender and J. Zucker

operator; to wit, (t ;u) ; v ≡ t ; (u ; v) This convention makes it much easier to
express rewriting rules that govern the interaction of assignment operators.

The heart of the rewriting system is the rewriting function : Term →
Term. Recall the definition (3.6) of modally closed terms mc.

Definition 4.1. The rewriting function is given by

1. !¡t t
2. X :=== mc1; mc2 mc2
3. X :=== t; X t
4. X :=== mc; Y Y
5. X :=== mc; X :=== u X :=== (X :=== mc; u)
6. X :=== mc; Y :=== t Y :=== (X :=== mc; t); X :=== mc
7. X :=== mc; !t X :=== mc; !(X :=== mc; t)

Definition 4.2. The rewrite relation ⊂ (Term × Term) is defined by:
t u iff u results from applying to a subterm of t. If t · · · u (includ-
ing if t ≡ u), then we write t u; that is, is the reflexive-transitive closure
of .

Some brief remarks are in order to explain the rewrite rules. Rule 1 expresses a
basic property of Montague’s intension and extension operators. In our setting,
it embodies the execution of a procedure. Rule 7 is very important: it is the
recursion rule. It may be difficult to see immediately why we identify this rule
with recursion; the following special case, which combines the use of rules 7, 3
and 1, illustrates the concept more clearly:

X :=== ¡t ; !X X :=== ¡t ; t.

This amounts to simple substitution of a procedure body for its identifier, while
“keeping a copy” of the procedure body available for further substitutions.

Our first order of business is to show that the rewrite function does not change
the meaning of a term.

Theorem 4.3 (Validity of rewrite rules). t u =⇒ (t, ς ⇓ d ⇔ u, ς ⇓ d)

Proof. By cases on the rewrite rules. This proof also provides constructive “rules
of replacement” for parts of operational derivation trees: each rewrite rule cor-
responds to a transformation on derivation trees. �

We can gain some valuable insight into how to use the rewriting rules by using
them to interpret our running example (3):

P :=== ¡X; X :=== 1; !P X :=== 1; P :=== ¡X; !P

X :=== 1; P :=== ¡X; !(P :=== ¡X; P )

X :=== 1; P :=== ¡X; !¡X

X :=== 1; P :=== ¡X; X 1
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4.2 Equivalence of Interpretations

In this subsection we demonstrate that the rewriting system provided by the
relation is equivalent to the operational interpretation. Before stating this

theorem, however, we need to address some technicalities.
In order to use the rewriting rules to arrive at the same result as the oper-

ational semantics, we need to take into account the store. That means that we
need a way to take the required information from the store and actualize it as a
term. For example, take the term t ≡ X ++++++++X and a store ς that maps X to 1;
then, t, ς ⇓ 2. We can accomplish this in rewriting by prepending t with X :=== 1,
which gives X :=== 1; (X ++++++++X) 2 as needed. For technical convenience, we
take the set of locations Loc to be finite ([Ben10] extends the treatment to a
countable set).

Definition 4.4 (Store terms, store actualization and store abstraction).
The store-actualization of ς, assuming Loc = {X1, . . . ,Xn}, is defined as

〈ς〉 =
def

X1 :=== ς(X1) ; . . . ; Xn :=== ς(Xn).

Terms like those above we call store-terms. The set of store-terms STerm,
ranged over by s, is the set of terms of the form

X1 :=== c1 ; . . . ; Xn :=== cn

We also define an inverse to the store-actualization operator, store abstraction,
which takes a store term and returns the corresponding store, such that [〈ς〉] =
ς and 〈[s]〉 is s with its assignment statements reordered into some arbitrary
canonical ordering.

A convenient lemma shows the operational soundness of the above notions.

Lemma 4.5. t, ς ⇓ d ⇐⇒ ∀ς ′ · (〈ς〉 ; t), ς ′ ⇓ d. �
We now present the first part of the proof of equivalence between the operational
semantics and term rewriting.

Theorem 4.6 (Operational adequacy).

1. If t, ς ⇓ c, then 〈ς〉 ; t c;
2. If t, ς ⇓ ς ′, then 〈ς〉 ; t 〈ς ′〉.

Proof. By induction on derivations. Details can be found in [Ben10]. �

The above theorem only works in one direction, in that it only shows that the
rewriting system is at least as strong as the operational semantics. In fact it is
(syntactically speaking) even stronger; as a simple demonstration of this, con-
sider the term ¡(1++++++++ 1). Operationally, it is inert: it returns itself. However, the
rewrite rules allow us to “reach inside” the intension and rewrite it to ¡2.2

2 This was not an issue in [Ben10] because the equivalence proof there was stated in
terms of denotational semantics; here we strive for a stronger result about the syntax
itself.
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The operational semantics and rewriting system are therefore syntactically
equivalent only up to rewriting of unevaluated intensions. The following theorem
completes the equivalence result.

Theorem 4.7 (Rewriting adequacy).

1. If t c, then there is a c′ s.t. c c′ and for any ς ′, t, ς ′ ⇓ c′.
2. If t s, then there is a s′ s.t. s s′ and for any ς ′′, t, ς ′′ ⇓ [s′].

Proof. By induction on the length of the rewrite sequence t c or t s. The
inductive step consists roughly of identifying the affected parts of the operational
derivation tree and substituting a suitably modified tree (using Theorem 4.3);
or, if the rewrite step affects only an uninterpreted (i.e., bound by intension)
part of the term, to add the rewrite to c c′ or s s′ as applicable. �

By combining Theorems 4.6 and 4.7, using Lemma 4.5, we obtain our desired
equivalence result.

We conclude this section by mentioning that we have also attained a conflu-
ence result for our term rewriting system [Ben10, App. B]. It will be discussed
in detail in a forthcoming publication.

Theorem 4.8 (Confluence). If t u and t v, then there is a w s.t. u w
and v w.

5 Conclusion

We hope to have convinced the reader, in the last four sections, that AC does
indeed possess the desirable properties listed in §2.1. (a) It is small, elegant
and (hopefully) intuitive: as discussed in §2, AC ’s set of four basic operators is
simple and understandable; (b) its operators represent well-understood, funda-
mental concepts: by taking only assignment, sequence, procedure formation and
procedure invocation as basic, we remain close to practical imperative languages;
(c) we can rewrite its terms using simple rules: Definition 4.1 demonstrates this;
and (d) it has multiple forms of semantics that are equivalent: in this paper
we demonstrated this equivalence for operational semantics and term rewriting,
[Ben10] extends this equivalence to denotational semantics as well.

We believe that the above points show that Assignment Calculus is a realiza-
tion of our goal to develop a true imperative computation language.

5.1 Related Work

The final step in our presentation is to explore related and otherwise relevant
work. First, note that there has been no other attempt, as far as the authors
are aware, to define a pure imperative computation language as we have done.
Therefore all of the other work that we will examine is only indirectly related to
our aims; nevertheless there are certainly interesting connections to be explored.
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The first and perhaps most striking language of interest that can be found in
the literature is (unfortunately!) nameless; it is defined in the seminal report of
Strachey and Scott [SS71, §5]. Here we find a language that has features that
closely resemble those of AC : there are operators for referencing and dereferenc-
ing, and operators for treating a procedure as an expression and an expression as
a procedure. This language does not appear to have been revisited in subsequent
work.

Insofar as rewriting systems for imperative-style languages, the prime example
is the work of Felleisen [FH92]. He adds facilities for handling state and control
operators to Plotkin’s call-by-value λ-calculus, which results in a quite elegant
system. There could be a good deal of interesting work in comparing our work
with Felleisen’s; the main problem that we immediately encounter is that his
work depends fundamentally on the λ-calculus, which is precisely what we have
tried to avoid incorporating into AC .

5.2 Future Work

We now discuss interesting avenues of further research. First, we should like to
continue exploring, expanding, and improving the rewriting system of §4. Our
present goal was to arrive at a small set of rules that was sufficient to achieve
our equivalence proof; however, it would be useful to develop more powerful
rules that might be more intuitive in terms of real-world use. In fact we have
already made significant progress in this direction while developing the proof of
confluence in [Ben10, App. B]; the work will be elaborated in forthcoming work.

It would be interesting to examine more carefully the concept of state back-
tracking in AC . As mentioned in §3.5, we believe that state backtracking is a
fundamental part of imperative computation; therefore, we would like to provide
an improved analysis of what it comprises and how it takes part in and affects
imperative computation. Along these lines, it is important to explore connections
with Separation Logic [Rey02], particularly its interesting store model, and with
Felleisen’s work as mentioned above.

The aim of this paper was to provide an analysis of imperative computa-
tion. We have done this on multiple levels: from a philosophical dissection of
the concept of imperative computation in §2, to developing the actual types and
syntax of AC , and finally to AC ’s operational and rewriting-based meanings.
We believe that this broad approach leaves AC well-prepared for further inves-
tigations, and we hope that it will stimulate future work in what we consider to
be an exciting new approach to an old paradigm.
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Abstract. Multiplayer games with selfish agents naturally occur in the design
of distributed and embedded systems. As the goals of selfish agents are usually
neither equivalent nor antagonistic to each other, such games are non zero-sum
games. We study such games and show that a large class of these games, includ-
ing games where the individual objectives are mean- or discounted-payoff, or
quantitative reachability, and show that they do not only have a solution, but a
simple solution. We establish the existence of Nash equilibria that are composed
of k memoryless strategies for each agent in a setting with k agents, one main
and k − 1 minor strategies. The main strategy describes what happens when all
agents comply, whereas the minor strategies ensure that all other agents immedi-
ately start to co-operate against the agent who first deviates from the plan. This
simplicity is important, as rational agents are an idealisation. Realistically, agents
have to decide on their moves with very limited resources, and complicated strate-
gies that require exponential—or even non-elementary—implementations cannot
realistically be implemented. The existence of simple strategies that we prove in
this paper therefore holds a promise of implementability.

1 Introduction

The construction of correct and efficient computer systems (both hard- and software)
is recognised to be an extremely difficult task. Formal methods have been exploited
with some success in the design and verification of such systems. Mathematical logic,
automata theory [16], and model-checking [11] have contributed much to the success
of formal methods in this field. However, traditional approaches aim at systems with
qualitative specifications like LTL, and rely on the fact that these specifications are
either satisfied or violated by the system.

Unfortunately, these techniques do not trivially extend to complex systems, such as
embedded or distributed systems. A main reason for this is that such systems often con-
sist of multiple independent components with individual objectives. These components
can be viewed as selfish agents that may cooperate and compete at the same time. It is
difficult to model the interplay between these components with traditional finite state
machines, as they cannot reflect the intricate quantitative valuation of an agent on how
well he has met his goal. In particular, it is not realistic to assume that these components
are always cooperating to satisfy a common goal, as it is, e.g., assumed in works that
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distinguish between an environment and a system. We argue that it is more realistic to
assume that all components act like selfish agents that try to achieve their own objec-
tives and are either unconcerned about the effect this has on the other components or
consider this effect to be secondary. It is indeed a recent trend to enhance the system
models used in the classical approach of verification by quantitative cost and gain func-
tions, and to exploit the well established game-theoretic framework [20,21] for their
formal analysis.

The first steps towards the extension of computational models with concepts from
classical game theory were taken by advancing from boolean to general two-player
zero-sum games played on graphs [14]. Like their qualitative counter parts, those games
are adequate to model controller-environment interaction problems [23,24]. As usual
in control theory, one can distinguish between moves of a control player, who plays
actions to control a system to meet a control objective, and an antagonistic environment
player. In the classical setting, the control player has a qualitative objective—he might,
for example, try to enforce a temporal specification—whereas the environment tries
to prevent this. In the extension to quantitative games, the controller instead tries to
maximise its gain, while the environment tries to minimise it. This extension lifts the
controller synthesis problem from a constructive extension of a decision problem to a
classical optimisation problem.

However, this extension has not lifted the restriction to purely antagonist interactions
between a controller and a hostile environment. In order to study more complex systems
with more than two components, and with objectives that are not necessarily antagonist,
we resort to multiplayer non zero-sum games. In this context, Nash equilibria [20] take
the place that winning and optimal strategies take in qualitative and quantitative two-
player games zero-sum games, respectively. Surprisingly, qualitative objectives have so
far prevailed in the study of Nash equilibria for distributed systems. However, we argue
that Nash equilibria for selfish agents with quantitative objectives—such as reaching a
set of target states quickly or with a minimal consumption of energy—are natural objec-
tives that aught to be studied alongside (or instead of) traditional qualitative objectives.

Consequently, we study Nash equilibria for multiplayer non zero-sum games played
on graphs with quantitative objectives.

Our Contribution. In this paper, we study turn-based multiplayer non zero-sum games
played on finite graphs with quantitative objectives, expressed through a cost function
for each player (cost games). Each cost function assigns, for every play of the game, a
value that represents the cost that is incurred for a player by this play. Cost functions
allow to express classical quantitative objectives such as quantitative reachability (i.e.,
the player aims at reaching a subset of states as soon as possible), or mean-payoff objec-
tives. In this framework, all players are supposed to be rational: they want to minimise
their own cost or, equivalently, maximise their own gain. This invites the use of Nash
equilibria as the adequate concept for cost games.

Our results are twofold. Firstly, we prove the existence of Nash equilibria for a large
class of cost games that includes quantitative reachability and mean-payoff objectives.
Secondly, we study the complexity of these Nash equilibria in terms of the memory
needed in the strategies of the individual players in these Nash equilibria. More pre-
cisely, we ensure existence of Nash equilibria whose strategies only requires a number
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of memory states that is linear in the size of the game for a wide class of cost games,
including games with quantitative reachability and mean-payoff objectives.

The general philosophy of our work is as follows: we try to derive existence of
Nash equilibria in multiplayer non zero-sum quantitative games (and characterization
of their complexity) through determinacy results (and characterization of the optimal
strategies) of several well-chosen two-player quantitative games derived from the mul-
tiplayer game. These ideas were already successfully exploited in the qualitative frame-
work [15], and in the case of limit-average objectives [25].

Related Work. Several recent papers have considered two-player zero-sum games played
on finite graphs with regular objectives enriched by some quantitative aspects. Let us
mention some of them: games with finitary objectives [9], mean-payoff parity
games [10], games with prioritised requirements [1], request-response games where
the waiting times between the requests and the responses are minimized [17,27], games
whose winning conditions are expressed via quantitative languages [2], and recently,
cost-parity and cost-Streett games [12].

Other work concerns qualitative non zero-sum games. In [15], general criteria ensur-
ing existence of Nash equilibria and subgame perfect equilibria (resp. secure equilibria)
are provided for multiplayer (resp. 2-player) games, as well as complexity results. The
complexity of Nash equilibria in multiplayer concurrent games with Büchi objectives
has been discussed in [5]. [4] studies the existence of Nash equilibria for timed games
with qualitative reachability objectives.

Finally, there is a series of recent results on the combination of non zero-sum as-
pects with quantitative objectives. In [3], the authors study games played on graphs
with terminal vertices where quantitative payoffs are assigned to the players. In [18],
the authors provide an algorithm to decide the existence of Nash equilibria for concur-
rent priced games with quantitative reachability objectives. In [22], the authors prove
existence of a Nash equilibrium in Muller games on finite graphs where players have a
preference ordering on the sets of the Muller table. Let us also notice that the existence
of a Nash equilibrium in cost games with quantitative reachability objectives we study
in this paper has already been established in [6]. The new proves we provide are simpler
and significantly improve the complexity of the strategies constructed from exponential
to linear in the size of the game.

Organization of the Paper. In Section 2, we present the model of multiplayer cost games
and define the problems we study. The main results are given in Section 3. Finally, in
Section 4, we apply our general result on particular cost games with classical objectives.
Omitted proofs and additional materials can be found in [8, Appendix].

2 General Background

In this section, we define our model of multiplayer cost game, recall the concept of
Nash equilibrium and state the problems we study.

Definition 1. A multiplayer cost game is a tuple G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π)
where
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• Π is a finite set of players,
• G = (V,E) is a finite directed graph with vertices V and edges E ⊆ V × V ,
• (Vi)i∈Π is a partition of V such that Vi is the set of vertices controlled by player i,
• Costi : Plays→ R∪{+∞,−∞} is the cost function of player i, where Plays is the

set of plays in G, i.e. the set of infinite paths through G. For every play ρ ∈ Plays,
the value Costi(ρ) represents the amount that player i loses for this play.

Cost games are multiplayer turn-based quantitative non zero-sum games. We assume
that the players are rational: they play in a way to minimise their own cost.

Note that minimising cost or maximising gain are essentially1 equivalent, as max-
imising the gain for player i can be modelled by using Costi to be minus this gain
and then minimising the cost. This is particularly important in cases where two players
have antagonistic goals, as it is the case in all two-player zero-sum games. To cover
these cases without changing the setting, we sometimes refer to maximisation in order
to preserve the connection to such games in the literature.

For the sake of simplicity, we assume that each vertex has at least one outgoing edge.
Moreover, it is sometimes convenient to specify an initial vertex v0 ∈ V of the game.
We then call the pair (G, v0) an initialised multiplayer cost game. This game is played as
follows. First, a token is placed on the initial vertex v0. Whenever a token is on a vertex
v ∈ Vi controlled by player i, player i chooses one of the outgoing edges (v, v′) ∈ E
and moves the token along this edge to v′. This way, the players together determine an
infinite path through the graph G, which we call a play. Let us remind that Plays is the
set of all plays in G.

A history h of G is a finite path through the graph G. We denote by Hist the set of
histories of a game, and by ε the empty history. In the sequel, we write h = h0 . . . hk,
where h0, . . . , hk ∈ V (k ∈ N), for a history h, and similarly, ρ = ρ0ρ1 . . ., where
ρ0, ρ1, . . . ∈ V , for a play ρ. A prefix of length n + 1 (for some n ∈ N) of a play ρ =
ρ0ρ1 . . . is the history ρ0 . . . ρn, and is denoted by ρ[0, n].

Given a history h = h0 . . . hk and a vertex v such that (hk, v) ∈ E, we denote by hv
the history h0 . . . hkv. Moreover, given a history h = h0 . . . hk and a play ρ = ρ0ρ1 . . .
such that (hk, ρ0) ∈ E, we denote by hρ the play h0 . . . hkρ0ρ1 . . ..

The function Last (resp. First) returns, for a given history h = h0 . . . hk, the last
vertex hk (resp. the first vertex h0) of h. The function First naturally extends to plays.

A strategy of player i in G is a function σ : Hist→ V assigning to each history h ∈
Hist that ends in a vertex Last(h) ∈ Vi controlled by player i, a successor v = σ(h)
of Last(h). That is,

(
Last(h), σ(h)

)
∈ E. We say that a play ρ = ρ0ρ1 . . . of G is

consistent with a strategy σ of player i if ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that
ρk ∈ Vi. A strategy profile of G is a tuple (σi)i∈Π of strategies, where σi refers to a
strategy for player i. Given an initial vertex v, a strategy profile determines a unique
play of (G, v) that is consistent with all strategies σi. This play is called the outcome
of (σi)i∈Π and denoted by 〈(σi)i∈Π〉v . We say that a player deviates from a strategy
(resp. from a play) if he does not carefully follow this strategy (resp. this play).

A finite strategy automaton for player i ∈ Π over a game G = (Π,V, (Vi)i∈Π ,
E, (Costi)i∈Π) is a Mealy automatonAi = (M,m0, V, δ, ν) where:

1 Sometimes the translation implies minor follow-up changes, e.g., the replacement of lim inf
by lim sup and vice versa.
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– M is a non-empty, finite set of memory states,
– m0 ∈M is the initial memory state,
– δ : M × V →M is the memory update function,
– ν : M × Vi → V is the transition choice function, such that (v, ν(m, v)) ∈ E for

all m ∈M and v ∈ Vi.

We can extend the memory update function δ to a function δ∗ : M×Hist→M defined
by δ∗(m, ε) = m and δ∗(m,hv) = δ(δ∗(m,h), v) for all m ∈ M and hv ∈ Hist.
The strategy σAi computed by a finite strategy automatonAi is defined by σAi(hv) =
ν(δ∗(m0, h), v) for all hv ∈ Hist such that v ∈ Vi. We say that σ is a finite-memory
strategy if there exists2 a finite strategy automatonA such that σ = σA. Moreover, we
say that σ = σA has a memory of size at most |M |, where |M | is the number of states
ofA. In particular, if |M | = 1, we say that σ is a positional strategy (the current vertex
of the play determines the choice of the next vertex). We call (σi)i∈Π a strategy profile
with memory m if for all i ∈ Π , the strategy σi has a memory of size at most m. A
strategy profile (σi)i∈Π is called positional or finite-memory if each σi is a positional
or a finite-memory strategy, respectively.

We now define the notion of Nash equilibria in this quantitative framework.

Definition 2. Given an initialised multiplayer cost game (G, v0), a strategy profile
(σi)i∈Π is a Nash equilibrium in (G, v0) if, for every player j ∈ Π and for every
strategy σ′j of player j, we have:

Costj(ρ) ≤ Costj(ρ
′)

where ρ = 〈(σi)i∈Π〉v0 and ρ′ = 〈σ′j , (σi)i∈Π\{j}〉v0 .

This definition means that, for all j ∈ Π , player j has no incentive to deviate from
σj since he cannot strictly decrease his cost when using σ′j instead of σj . Keeping
notations of Definition 2 in mind, a strategy σ′j such that Costj(ρ) > Costj(ρ

′) is
called a profitable deviation for player j w.r.t. (σi)i∈Π .

Example 3. Let G = (Π,V, V1, V2, E,Cost1,Cost2) be the two-player cost game whose
graphG = (V,E) is depicted in Figure 1. The states of player 1 (resp. 2) are represented
by circles (resp. squares). Thus, according to Figure 1, V1 = {A,C,D} and V2 = {B}.
In order to define the cost functions of both players, we consider a price function
π : E → {1, 2, 3}, which assigns a price to each edge of the graph. The price function3

π is as follows (see the numbers in Figure 1): π(A,B) = π(B,A) = π(B,C) = 1,
π(A,D) = 2 and π(C,B) = π(D,B) = 3. The cost function Cost1 of player 1 ex-
presses a quantitative reachability objective: he wants to reach the vertex C (shaded
vertex) while minimising the sum of prices up to this vertex. That is, for every play
ρ = ρ0ρ1 . . . of G:

Cost1(ρ) =

{∑n
i=1 π(ρi−1, ρi) if n is the least index s.t. ρn = C,

+∞ otherwise.

2 Note that there exist several finite strategy automata such that σ = σA.
3 Note that we could have defined a different price function for each player. In this case, the

edges of the graph would have been labelled by couples of numbers.
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As for the cost function Cost2 of player 2, it expresses a mean-payoff objective: the cost
of a play is the long-run average of the prices that appear along this play. Formally, for
any play ρ = ρ0ρ1 . . . of G:

Cost2(ρ) = lim sup
n→+∞

1

n
·
n∑
i=1

π(ρi−1, ρi).

Each player aims at minimising the cost incurred by the play. Let us insist on the fact
that the players of a cost game may have different kinds of cost functions (as in this
example).

A B C

D

1

1

1

3

2 3

Fig. 1. A two-player cost game G

An example of a play in G can be given by ρ = (AB)ω , leading to the costs
Cost1(ρ) = +∞ and Cost2(ρ) = 1. In the same way, the play ρ′ = A(BC)ω induces
the following costs: Cost1(ρ) = 2 and Cost2(ρ) = 2.

Let us fix the initial vertex v0 at the vertex A. The play ρ = (AB)ω is the outcome of
the positional strategy4 profile (σ1, σ2) where σ1(A) = B and σ2(B) = A. Moreover,
this strategy profile is in fact a Nash equilibrium: player 2 gets the least cost he can
expect in this game, and player 1 has no incentive to choose the edge (A,D) (it does
not allow the play to pass through vertex C).

We now consider the positional strategy profile (σ′1, σ
′
2) with σ′1(A) = B and

σ′2(B) = C. Its outcome is the play ρ′ = A(BC)ω . However, this strategy profile is
not a Nash equilibrium, because player 2 can strictly lower his cost by always choosing
the edge (B,A) instead of (B,C), thus lowering his cost from 2 to 1. In other words,
the strategy σ2 (defined before) is a profitable deviation for player 2 w.r.t. (σ′1, σ

′
2).

The questions studied in this paper are the following ones:

Problem 1. Given a multiplayer cost game G, does there exist a Nash equilibrium in G?

Problem 2. Given a multiplayer cost game G, does there exist a finite-memory Nash
equilibrium in G?

Obviously enough, if we make no restrictions on our cost games, the answer to Prob-
lem 1 (and thus to Problem 2) is negative (see Example 4). Our first goal in this paper
is to identify a large class of cost games for which the answer to Problem 1 is positive.
Then we also positively reply to Problem 2 for subclasses of the previously identified
class of cost games. Both results can be found in Section 3.

4 Note that player 1 has no choice in vertices C and D, that is, σ1(hv) is necessarily equal to B
for v ∈ {C,D} and h ∈ Hist.
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Example 4. Let (G, A) be the initialised one-player cost game depicted below, whose
cost function Cost1 is defined by Cost1(A

nBω) = 1
n for n ∈ N0 and Cost1(A

ω) =
+∞. One can be convinced that there is no Nash equilibrium in this initialised game.

A B

In order to our class of cost games, we need the notions of Min-Max cost games,
determinacy and optimal strategies. The following two definitions are inspired by [26].

Definition 5. A Min-Max cost game is a tupleG = (V, VMin, VMax, E,CostMin,GainMax),
where

• G = (V,E) is a finite directed graph with vertices V and edges E ⊆ V × V ,
• (VMin, VMax) is a partition of V such that VMin (resp. VMax) is the set of vertices

controlled by player Min (resp. Max), and
• CostMin : Plays → R ∪ {+∞,−∞} is the cost function of player Min, that repre-

sents the amount that he loses for a play, and GainMax : Plays→ R ∪ {+∞,−∞}
is the gain function of player Max, that represents the amount that he wins for a
play.

In such a game, player Min wants to minimise his cost, while player Max wants to
maximise his gain. So, a Min-Max cost game is a particular case of a two-player cost
game. Let us stress that, according to this definition, a Min-Max cost game is zero-sum
if CostMin = GainMax, but this might not always be the case5. We also point out that
Definition 5 allows to take completely unrelated functions CostMin and GainMax, but
usually they are similar (see Definition 15). In the sequel, we denote by ΣMin (resp.
ΣMax) the set of strategies of player Min (resp. Max) in a Min-Max cost game.

Definition 6. Given a Min-Max cost game G, we define for every vertex v ∈ V the
upper value Val∗(v) as:

Val∗(v) = inf
σ1∈ΣMin

sup
σ2∈ΣMax

CostMin(〈σ1, σ2〉v) ,

and the lower value Val∗(v) as:

Val∗(v) = sup
σ2∈ΣMax

inf
σ1∈ΣMin

GainMax(〈σ1, σ2〉v) .

The game G is determined if, for every v ∈ V , we have Val∗(v) = Val∗(v). In this case,
we say that the game G has a value, and for every v ∈ V , Val(v) = Val∗(v) = Val∗(v).
We also say that the strategies σ�1 ∈ ΣMin and σ�2 ∈ ΣMax are optimal strategies for the
respective players if, for every v ∈ V , we have that

inf
σ1∈ΣMin

GainMax(〈σ1, σ
�
2〉v) = Val(v) = sup

σ2∈ΣMax

CostMin(〈σ�1 , σ2〉v) .

If σ�1 is an optimal strategy for player Min, then he loses at most Val(v) when playing
according to it. On the other hand, player Max wins at least Val(v) if he plays according
to an optimal strategy σ�2 for him.

Examples of classical determined Min-Max cost games can be found in Section 4.
5 For an example, see the average-price game in Definition 15.
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3 Results

In this section, we first define a large class of cost games for which Problem 1 can be
answered positively (Theorem 10). Then, we study existence of simple Nash equilib-
ria (Theorems 13 and 14). To define this interesting class of cost games, we need the
concepts of cost-prefix-linear and coalition-determined cost games.

Definition 7. A multiplayer cost game G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π) is cost-
prefix-linear if, for every player i ∈ Π , every vertex v ∈ V and history hv ∈ Hist, there
exists a ∈ R and b ∈ R+ such that, for every play ρ ∈ Plays with First(ρ) = v, we
have:

Costi(hρ) = a+ b · Costi(ρ) .

Let us now define the concept of coalition-determined cost games.

Definition 8. A multiplayer cost game G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π) is (positio-
nally/finite-memory) coalition-determined if, for every player i ∈ Π , there exists a gain
function GainiMax : Plays→ R ∪ {+∞,−∞} such that

– Costi ≥ GainiMax, and

– the Min-Max cost game Gi = (V, Vi, V \ Vi, E,Costi,Gain
i
Max), where player i

(player Min) plays against the coalition Π \ {i} (player Max), is determined and
has (positional/finite-memory) optimal strategies for both players. That is: ∃σ�i ∈
ΣMin, ∃σ�−i ∈ ΣMax (both positional/finite-memory) such that ∀v ∈ V

inf
σi∈ΣMin

GainiMax(〈σi, σ�−i〉v) = Vali(v) = sup
σ−i∈ΣMax

Costi(〈σ�i , σ−i〉v) .

Given i ∈ Π , note that Gi does not depend on the cost functions Costj , with j �= i.

Example 9. Let us consider the two-player cost game G of Example 3, where player 1
has a quantitative reachability objective (Cost1) and player 2 has a mean-payoff objec-
tive (Cost2). We show that G is positionally coalition-determined.

Let us set Gain1Max = Cost1 and study the Min-Max cost game G1 = (V, V1, V2,
E,Cost1,Gain

1
Max), where player Min (resp. Max) is player 1 (resp. 2) and wants

to minimise Cost1 (resp. maximise Gain1Max). This game is positionally determined
[26,13]. We define positional strategies σ�1 and σ�−1 for player 1 and player 2, re-
spectively, in the following way: σ�1(A) = B and σ�−1(B) = A. From A, their out-
come is 〈(σ�1 , σ�−1)〉A = (AB)ω , and Cost1((AB)ω) = Gain1Max((AB)ω) = +∞.
One can check that the strategies σ�1 and σ�−1 are optimal in G1. Note that the po-
sitional strategy σ̃�1 defined by σ̃�1(A) = D is also optimal (for player 1) in G1.
With this strategy, we have that 〈(σ̃�1 , σ�−1)〉A = (ADB)ω , and Cost1((ADB)ω) =

Gain1Max((ADB)ω)= +∞.
We now examine the Min-Max cost game G2 = (V, V2, V1, E,Cost2,Gain

2
Max),

where Gain2Max is defined as Cost2 but with lim inf instead of lim sup. In this game,
player Min (resp. Max) is player 2 (resp. 1) and wants to minimise Cost2 (resp. max-
imise Gain2Max). This game is also positionally determined [26,13]. Let σ�2 and σ�−2
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be the positional strategies for player 2 and player 1, respectively, defined as follows:
σ�2(B) = C and σ�−2(A) = D. From A, their outcome is 〈(σ�2 , σ�−2)〉A = AD(BC)ω ,
and Cost2(AD(BC)ω) = Gain2Max(AD(BC)ω) = 2. We claim that σ�2 and σ�−2 are the
only positional optimal strategies in G2.

Theorem 10 positively answers Problem 1 for cost-prefix-linear, coalition-determined
cost games.

Theorem 10. In every initialised multiplayer cost game that is cost-prefix-linear and
coalition-determined, there exists a Nash equilibrium.

Proof. Let (G = (Π,V, (Vi)i∈Π , E, (Costi)i∈Π), v0) be an initialised multiplayer cost
game that is cost-prefix-linear and coalition-determined. Thanks to the latter property,
we know that, for every i ∈ Π , there exists a gain function GainiMax such that the Min-
Max cost game Gi = (V, Vi, V \ Vi, E,Costi,Gain

i
Max) is determined and there exist

optimal strategies σ�i and σ�−i for player i and the coalition Π \ {i} respectively. In
particular, for j �= i, we denote by σ�j,i the strategy of player j derived from the strategy
σ�−i of the coalition Π \ {i}.

The idea is to define the required Nash equilibrium as follows: each player i plays
according to his strategy σ�i and punishes the first player j �= i who deviates from his
strategy σ�j , by playing according to σ�i,j (the strategy of player i derived from σ�−j in
the game Gj ).

Formally, we consider the outcome of the optimal strategies (σ�i )i∈Π from v0, and
set ρ := 〈(σ�i )i∈Π〉v0 . We need to specify a punishment function P : Hist→ Π ∪ {⊥}
that detects who is the first player to deviate from the play ρ, i.e. who has to be punished.
For the initial vertex v0, we define P (v0) = ⊥ (meaning that nobody has deviated from
ρ) and for every history hv ∈ Hist, we let:

P (hv) :=

⎧⎨⎩⊥ if P (h) = ⊥ and hv is a prefix of ρ,
i if P (h) = ⊥, hv is not a prefix of ρ, and Last(h) ∈ Vi,
P (h) otherwise (P (h) �= ⊥).

Then the definition of the Nash equilibrium (τi)i∈Π in G is as follows. For all i ∈ Π
and h ∈ Hist such that Last(h) ∈ Vi,

τi(h) :=

{
σ�i (h) if P (h) = ⊥ or i,
σ�i,P (h)(h) otherwise.

Clearly the outcome of (τi)i∈Π is the play ρ (= 〈(σ�i )i∈Π〉v0 ).
Now we show that the strategy profile (τi)i∈Π is a Nash equilibrium in G. As a con-

tradiction, let us assume that there exists a profitable deviation τ ′j for some player j ∈
Π . We denote by ρ′ := 〈τ ′j , (τi)i∈Π\{j}〉v0 the outcome where player j plays according
to his profitable deviation τ ′j and the players of the coalition Π \ {j} keep their strate-
gies (τi)i∈Π\{j}. Since τ ′j is a profitable deviation for player j w.r.t. (τi)i∈Π , we have
that:

Costj(ρ
′) < Costj(ρ). (1)

As both plays ρ and ρ′ start from vertex v0, there exists a history hv ∈ Hist such
that ρ = h〈(τi)i∈Π〉v and ρ′ = h〈τ ′j , (τi)i∈Π\{j}〉v (remark that h could be empty).
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Among the common prefixes of ρ and ρ′, we choose the history hv of maximal length.
By definition of the strategy profile (τi)i∈Π , we can write in the case of the outcome ρ
that ρ = h〈(σ�i )i∈Π〉v . Whereas in the case of the outcome ρ′, player j does not follow
his strategy σ�j any more from vertex v, and so, the coalition Π \ {j} punishes him by
playing according to the strategy σ�−j after history hv, and so ρ′ = h〈τ ′j , σ�−j〉v (see
Figure 2).

v0

h

v

ρ=h〈(σ�
i )i∈Π 〉vρ′ =h〈τ ′

j ,σ
�
−j〉v

Fig. 2. Sketch of the tree representing the unravelling of the game G from v0

Since σ�−j is an optimal strategy for the coalition Π\{j} in the determined Min-Max
cost game Gj , we have:

Valj(v) = inf
σj∈ΣMin

GainjMax(〈σj , σ�−j〉v)

≤ GainjMax(〈τ ′j , σ�−j〉v)
≤ Costj(〈τ ′j , σ�−j〉v) . (2)

The last inequality comes from the hypothesis Costj ≥ GainjMax in the game Gj .
Moreover, the game G is cost-prefix-linear, and then, when considering the history

hv, there exist a ∈ R and b ∈ R+ such that

Costj(ρ
′) = Costj(h〈τ ′j , σ�−j〉v) = a+ b · Costj(〈τ ′j , σ�−j〉v) . (3)

As b ≥ 0, Equations (2) and (3) imply:

Costj(ρ
′) ≥ a+ b · Valj(v) . (4)

Since h is also a prefix of ρ, we have:

Costj(ρ) = Costj(h〈(σ�i )i∈Π〉v) = a+ b · Costj(〈(σ�i )i∈Π〉v) . (5)

Furthermore, as σ�j is an optimal strategy for player j in the Min-Max cost game Gj , it
follows that:

Valj(v) = sup
σ−j∈ΣMax

Costj(〈σ�j , σ−j〉v)

≥ Costj(〈(σ�i )i∈Π〉v) . (6)
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Then, Equations (5) and (6) imply:

Costj(ρ) ≤ a+ b · Valj(v) . (7)

Finally, Equations (4) and (7) lead to the following inequality:

Costj(ρ) ≤ a+ b · Valj(v) ≤ Costj(ρ
′) ,

which contradicts Equation (1). The strategy profile (τi)i∈Π is then a Nash equilibrium
in the game G. ��

Remark 11. The proof of Theorem 10 remains valid for cost functions Costi : Plays→
K , where 〈K,+, ·, 0, 1,≤〉 is an ordered field. This allows for instance to consider non-
standard real costs and enjoy infinitesimals to model the costs of a player.

Example 12. Let us consider the initialised two-player cost game (G, A) of Example 3,
where player 1 has a quantitative reachability objective (Cost1) and player 2 has a mean-
payoff objective (Cost2). One can show that G is cost-prefix-linear. Since we saw in Ex-
ample 9 that this game is also positionally coalition-determined, we can apply the con-
struction in the proof of Theorem 10 to get a Nash equilibrium in G. The construction
from this proof may result in two different Nash equilibria, depending on the selection
of the strategies σ�1 /σ̃�1 , σ�−1, σ�2 and σ�−2 as defined in Example 9.

The first Nash equilibrium (τ1, τ2) with outcome ρ = 〈σ�1 , σ�2〉A = A(BC)ω is
given, for any history h, by:

τ1(hA) :=

{
B if P (hA) = {⊥, 1}
D otherwise

; τ2(hB) :=

{
C if P (hB) = {⊥, 2}
A otherwise

where the punishment function P is defined as in the proof of Theorem 10 and depends
on the play ρ. The cost for this finite-memory Nash equilibrium is Cost1(ρ) = 2 =
Cost2(ρ).

The strategy τ̃1 of the second Nash equilibrium (τ̃1, τ2) with outcome ρ̃ =
〈σ̃�1 , σ�2〉A = AD(BC)ω is given by τ̃1(hA) := D for all history h. The cost for
this finite-memory Nash equilibrium is Cost1(ρ̃) = 6 and Cost2(ρ̃) = 2, respectively.

Note that there is no positional Nash equilibrium with outcome ρ (resp. ρ̃).

The two following theorems provide results about the complexity of the Nash equilib-
rium defined in the latter proof. Applications of these theorems to specific classes of
cost games are provided in Section 4.

Theorem 13. In every initialised multiplayer cost game that is cost-prefix-linear and
positionally coalition-determined, there exists a Nash equilibrium with memory (at
most) |V |+ |Π |.

Theorem 14. In every initialised multiplayer cost game that is cost-prefix-linear and
finite-memory coalition-determined, there exists a Nash equilibrium with finite memory.

The proofs of these two theorems rely on the construction of the Nash equilibrium
provided in the proof of Theorem 10.
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4 Applications

In this section, we exhibit several classes of classical objectives that can be encoded in
our general setting. The list we propose is far from being exhaustive.

4.1 Qualitative Objectives

Multiplayer games with qualitative (win/lose) objectives can naturally be encoded via
multiplayer cost games; for instance via cost functions Costi : Plays → {1,+∞},
where 1 (resp. +∞) means that the play is won (resp. lost) by player i. Let us now
consider the subclass of qualitative games with prefix-independent6 Borel objectives.
Given such a game G, we have that G is coalition-determined, as a consequence of the
Borel determinacy theorem [19]. Moreover the prefix-independence hypothesis obvi-
ously guarantees that G is also cost-prefix-linear (by taking a = 0 and b = 1). By
applying Theorem 10, we obtain the existence of a Nash equilibrium for qualitative
games with prefix-independent Borel objectives. Let us notice that this result is already
present in [15].

When considering more specific subclasses of qualitative games enjoying a posi-
tional determinacy result, such as parity games [14], we can apply Theorem 13 and
ensure existence of a Nash equilibrium whose memory is (at most) linear.

4.2 Classical Quantitative Objectives

We here give four well-known kinds of Min-Max cost games and see later that they are
determined. For each sort of game, the cost and gain functions are defined from a price
function (and a reward function in the last case), which labels the edges of the game
graph with prices (and rewards).

Definition 15 ([26]). Given a game graph G = (V, VMin, VMax, E), a price function π :
E → R that assigns a price to each edge, a diverging7 reward function ϑ : E → R that
assigns a reward to each edge, and a play ρ = ρ0ρ1 . . . in G, we define the following
Min-Max cost games:

1. a reachability-price game is a Min-Max cost game G = (G,RPMin,RPMax) together
with a given goal set Goal ⊆ V , where

RPMin(ρ) = RPMax(ρ) =

{
π(ρ[0, n]) if n is the least index s.t. ρn ∈ Goal,
+∞ otherwise,

with π(ρ[0, n]) =
∑n
i=1 π(ρi−1, ρi);

6 An objective Ω ⊆ V ω is prefix-independent if only if for every play ρ = ρ0ρ1 . . . ∈ V ω , we
have that ρ ∈ Ω iff for every n ∈ N, ρnρn+1 . . . ∈ Ω.

7 For all plays ρ = ρ0ρ1 . . . in G, it holds that limn→∞ |
∑n

i=1 ϑ(ρi−1, ρi)| = +∞. This is
equivalent to requiring that every cycle has a positive sum of rewards.
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2. a discounted-price game is a Min-Max cost game G = (G,DPMin(λ),DPMax(λ))
together with a given discount factor λ ∈ ]0, 1[, where

DPMin(λ)(ρ) = DPMax(λ)(ρ) = (1− λ) ·
+∞∑
i=1

λi−1π(ρi−1, ρi) ;

3. an average-price game8 is a Min-Max cost game G = (G,APMin,APMax), where

APMin(ρ) = lim sup
n→+∞

π(ρ[0, n])

n
and APMax(ρ) = lim inf

n→+∞
π(ρ[0, n])

n
;

4. a price-per-reward-average game is a Min-Max cost game G = (G,PRAvgMin,
PRAvgMax), where

PRAvgMin(ρ) = lim sup
n→+∞

π(ρ[0, n])

ϑ(ρ[0, n])
and PRAvgMax(ρ) = lim inf

n→+∞
π(ρ[0, n])

ϑ(ρ[0, n])
,

with ϑ(ρ[0, n]) =
∑n
i=1 ϑ(ρi−1, ρi).

An average-price game is then a particular case of a price-per-reward-average game.
Let us remark that, in Example 3, the cost function Cost1 (resp. Cost2) corresponds
to RPMin with Goal = {C} (resp. APMin). The game G1 (resp. G2) of Example 9 is a
reachability-price (resp. average-price) game.

The following theorem is a well-known result about the particular cost games de-
scribed in Definition 15.

Theorem 16 ([26,13]). Reachability-price games, discounted-price games, average-
price games, and price-per-reward games are determined and have positional optimal
strategies.

This result implies that a multiplayer cost game where each cost function is RPMin,
DPMin, APMin or PRAvgMin is positionally coalition-determined. Moreover, one can
show that such a game is cost-prefix-linear. Theorem 17 then follows from Theorem 13.

Theorem 17. In every initialised multiplayer cost game G = (Π,V, (Vi)i∈Π , E,
(Costi)i∈Π) where the cost function Costi belongs to {RPMin,DPMin,APMin,
PRAvgMin} for every player i ∈ Π , there exists a Nash equilibrium with memory (at
most) |V |+ |Π |.

Note that the existence of finite-memory Nash equilibria in cost games with quantita-
tive reachability objectives has already been established in [6,7]. Even if not explicitly
stated in the previous papers, one can deduce from the proof of [7, Lemma 16] that
the provided Nash equilibrium has a memory (at least) exponential in the size of the
cost game. Thus, Theorem 17 significantly improves the complexity of the strategies
constructed in the case of cost games with quantitative reachability objectives.

8 When the cost function of a player is APMin, we say that he has a mean-payoff objective.
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4.3 Combining Qualitative and Quantitative Objectives

Multiplayer cost games allow to encode games combining both qualitative and quanti-
tative objectives, such as mean-payoff parity games [10]. In our framework, where each
player aims at minimising his cost, the mean-payoff parity objective could be encoded
as follows: Costi(ρ) = APMin(ρ) if the parity condition is satisfied, +∞ otherwise.

The determinacy of mean-payoff parity games, together with the existence of optimal
strategies (that could require infinite memory) have been proved in [10]. This result
implies that multiplayer cost games with mean-payoff parity objectives are coalition-
determined. Moreover, one can prove that such a game is also cost-prefix-linear (by
taking a = 0 and b = 1). By applying Theorem 10, we obtain the existence of a Nash
equilibrium for multiplayer cost games with mean-payoff parity objectives. As far as
we know, this is the first result about the existence of a Nash equilibrium in cost games
with mean-payoff parity games.

Remark 18. Let us emphasise that Theorem 10 applies to cost games where the players
have different kinds of cost functions (as in Example 3). In particular, one player could
have a qualitative Büchi objective, a second player a discounted-price objective, a third
player a mean-payoff parity objective,. . .
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Abstract. In this paper, we define an analogue of the Forward Chain-
ing (FC) algorithm due to Marek, Nerode, and Remmel [12] for Hybrid
Answer Set Programming (H-ASP). The FC algorithm for normal logic
programs takes as an input a well ordering ≺ of the non-Horn clauses of
a normal logic program P and produces a stable model D≺ for a subpro-
gram A≺ of P . It is the case that for every stable model M of P , there
is a well ordering ≺ such that D≺ = M and A≺ = P . Thus the search
for a stable model of P becomes a search for a well ordering ≺ such that
A≺ = P . We show that a similar result hold in case of FC for H-ASP.
H-ASP is an extension of normal logic programming or Answer Set Pro-
gramming (ASP), introduced by the authors in [2] that allows users to
combine ASP type rules and numerical algorithms. The MFC algorithm,
introduced by the authors in [1] is a Monte Carlo algorithm that com-
bines the FC algorithm and the Metropolis-Hastings algorithm to search
for stable models of normal logic programs. We shall briefly discuss how
one can produce an analogue of the MFC algorithm to search for stable
models of H-ASP programs.

1 Introduction

In previous paper [1], the authors developed a Monte Carlo type algorithm called
the Metropolized Forward Chaining (MFC) algorithm to solve the following two
problems.
(1) Given a finite propositional logic program P which has a stable model, find
a stable model M of P .
(2) Given a finite proposition logic program P which has no stable model, find a
maximal program P ′ ⊆ P which has a stable model and find a stable model M ′

of P ′.
The MFC algorithm combines the Forward Chaining algorithm of Marek,

Nerode, and Remmel [12] and the Metropolis algorithm introduced by Metropo-
lis, Rosenbluth, Rosenbluth, Teller, and Teller [13].

Marek, Nerode and Remmel [12] developed the Forward Chaining (FC) algo-
rithm to solve both problems 1 and 2. The basic idea of the FC algorithm was
to start with a finite normal logic program P and divide P into is its monotonic
part mon(P ), consisting of the set of Horn clauses in P , and its non-monotonic
part nmon(P ), consisting of those clauses in P which contain negations in its

� Currently at Google Inc.; this work was completed before the change in affiliation.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 74–88, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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body. Then for any ordering or permutation σ of nmon(P ), the FC algorithm
produces a subset mon(P ) ⊆ Aσ ⊆ P and a stable model Dσ of Aσ. Marek,
Nerode, and Remmel showed that for each stable model M of P , there is a per-
mutation σM of nmon(P ) such that AσM = P and DσM = M . Thus every stable
model can be computed by the FC algorithm relative to a suitable ordering of
the nonmonotonic rules in P . Marek, Nerode, and Remmel also noted that in the
case where P has no stable models, the FC algorithm automatically produces a
subprogram of P which does have a stable model.

The Metropolis algorithm is a widely applicable procedure for drawing sam-
ples from a specified distribution on large finite set. That is, let X be a finite set
and π(x) be a probability distribution on X . The algorithm requires that one
specifies a connected, aperiodic Markov chain K(x, y) on X . In the Metropolis
algorithm K (x, y) needs to be symmetric. However, the algorithm was later gen-
eralized to the Metropolis-Hastings algorithm by Hastings [8]. In the Metropolis-
Hastings algorithm K(x, y) need not be symmetric but it must be the case that
K(x, y) > 0 if and only if K(y, x) > 0. The chain K is then modified by an
auxiliary coin tossing procedure to create a new chain M with stationary dis-
tribution π. That is, if the chain is currently at x, one chooses y from K(x, y).
Then one defines an acceptance ratio by

A(x, y) =
π(y)K(y, x)

π(x)K(x, y)
(1)

If A(x, y) ≥ 1, then the chain moves to y. If A(x, y) < 1, then we flip a coin
with probability of heads equal to A(x, y). If the coin comes up heads, then we
move to y and, if the coin comes up tails, we stay at x. See the survey article
by Diaconis and Saloff-Coste [4] for a survey about what is known about the
Metropolis algorithm.

From the point of view of the FC algorithm, the search for a stable model
of a finite normal logic program P is a search through the set of possible well-
orderings of nmon(P ) until one finds a suitable well ordering ≺ such that FC
algorithm relative to ≺ produces a stable model of P . Thus the Metropolis
algorithm in MFC uses an appropriate Markov chainK(x, y) defined on the space
of permutations of nmon(P ). In [1], we defined several possible Markov chains
that could be employed and ran computer experiments to find good Markov
chains for certain classes of programs. We showed that in some cases, MFC could
find stable models of programs that were not found by ASP search engines clasp
[6] and smodels [14].

The main goal of this paper is to develop an analogue of the FC algorithm
for a far reaching extension of the logic programming called Hybrid Answer Set
Programming (H-ASP). H-ASP, introduced by the authors in [2], is an extension
of Answer Set Programming (ASP) that allows users to combine ASP type rules
and numerical algorithms. The goal of H-ASP is to allow users to reason about
dynamical systems that exhibit both discrete and continuous aspects. The unique
feature of H-ASP is that H-ASP rules can be thought of as general input-output
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devices. In particular, H-ASP programs allow users to include ASP type rules
that act as controls for when to apply a given algorithm to advance the system
to the next position.

FC for H-ASP programs is more complicated than FC for normal logic pro-
grams. First, H-ASP rules allow for nondeterministic outputs which is not com-
patible with FC. Thus, besides a well ordering ≺ of the nonmonotonic rules one
has to have an additional parameter F which specifies a selector function. F has
the effect of choosing a fixed deterministic output for each rule. Second, stable
models are dependent on fixing an initial condition I. Thus in the analogue of the
MFC algorithm of H-ASP programs, one has to define an appropriate Markov
chain on triples (≺, I, F ) or, if we fix an initial condition I, on pairs (≺, F ).

In this paper we will be considering a finite version of FC for H-ASP. That is
we will assume that every H-ASP program considered has a finite set of rules,
that every algorithm on every invocation produces a finite set as an output and
that every stable model of a program is finite.

The outline of this paper is as follows. In section 2, we shall give the basic
definitions for both normal logic programs and H-ASP programs. In section 3,
we shall review the FC algorithm of Marek, Nerode, and Remmel [12]. In section
4, we shall define the FC algorithm for H-ASP programs. In section 5, we shall
define a possible analogue of the MFC algorithm for H-ASP programs. Finally,
in section 6, we shall state conclusions and discuss directions for further research.

2 Hybrid ASP Programs

We will now give a brief overview of normal logic programs and then a brief
overview of H-ASP programs.

A normal propositional logic programming rule is an expression of the form

C = p← q1, . . . , qm, not r1, . . . , not rn (2)

where p, q1, . . . , qm, r1, . . . , rn are atoms from a fixed set of atoms At. The atom
p in the rule above is called the head of C (head(C)), and the expression
q1, . . . , qm, not r1, . . . , not rn, with ‘,’ interpreted as conjunction, is called the
body of C (body(C)). The set {q1, . . . , qm} is called the positive part of the body
of C (posBody(C)) (or premises of C) and the set {r1, . . . , rn} is called the
negative part of the body of C (negBody(C)) (or constraints of C). Given any
set M ⊆ At and atom a, we say that M satisfies a (not a), written M |= a
(M |= not a), if a ∈ M (a �∈ M). For a rule C of the form (2), we say that M
satisfies the body of C if M satisfies qi for i = 1, ...,m and M satisfies not rj for
j = 1, ..., n. We say that M satisfies C, written M |= C, if whenever M satisfies
the body of C, then M satisfies the head of C. A normal logic program P is a
set of rules of the form of (2). We say that M ⊆ At is a model of P , written
M |= P , if M satisfies every rule of P .

A propositional Horn rule is a logic programming rule of the form

H = p← q1, . . . , qm
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where p, q1, . . . , qm ∈ At . Thus in a Horn rule, the negative part of its body is
empty. A Horn program P is a set of Horn rules. Each Horn program P has
a least model under inclusion, LMP , which can be defined using the one-step
provability operator TP . For any set A, let P (A) denote the set of all subsets of
A. The one-step provability operator TP : P (At) → P (At) associated with the
Horn program P [15] is defined by setting

TP (M) = M ∪ {p : ∃C ∈ P (p = head(C) ∧M |= body(C))}

for any M ∈ P (A). We define T nP (M) by induction by setting T 0
P (M) = M ,

T 1
P (M) = TP (M) and T n+1

P (M) = TP (T
n
P (M)). Then the least model LMP can

be computed as LMP = TP (∅) ↑ ω =
⋃
n≥0 T

n
P (∅).

If P is a normal logic program and M ⊆ At , then the Gelfond-Lifschitz reduct
of P with respect to M [7] is the Horn program PM which results by eliminating
those rules C of the form (2) such that ri ∈ M for some i and replacing C by
p← q1, . . . , qn otherwise. We then say that M is a stable model for P if M equals
the least model of PM .

An answer set programming rule is an expression of the form (2) where
p, q1, . . . , qm, r1, . . . , rn are classical literals, i.e., either positive atoms or atoms
preceded by the classical negation sign ¬. Answer sets are defined in analogy to
stable models, but taking into account that atoms may be preceded by classical
negation.

Fig. 1. A cross section of the regions to be traversed by Secret Agent 00111

Next we shall present the basic definitions of Hybrid ASP programs and define
an analogue of stable models for such programs. To help motivate our definitions,
we shall consider the following toy example. Imagine that Secret Agent 00111
(the agent, for short) needs to move through a domain consisting of 3 areas:
Area I, Area II, and Area III. The domain’s vertical cross section is shown on
the diagram 1. Area I is a mountain, Area II is a lake, and Area III is a desert.
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The agent needs to descend down the mountain in his car until he reaches the
lake at which point the car can be reconfigured so that it can be used as a boat
that can navigate across the lake. We shall assume that the lake has a water
current moving with a constant speed and a constant direction. If the agent is
pursued by the evil agents, then he will attempt to travel through the lake as
fast as possible. If the agent is not pursued by the evil agents then he would like
to exit the lake at a point with a y-coordinate being close to the y-coordinate
of the point of his entrance into the lake. To accomplish this, the agent will be
able to steer the boat in directions which make various angles to the x-axis.

A H-ASP program P has an underlying parameter space S. Elements of S
are of the form p = (t, x1, . . . , xm) where t is time and xi are parameter values.
We shall let t(p) denote t and xi(p) denote xi for i = 1, . . . ,m. We refer to the
elements of S as generalized positions. For example, in our secret agent example,
a generalized position would naturally have continuous parameters such as time,
position, velocity, and acceleration as well as discrete parameters such as is the
car currently configured as a car or as a boat and a parameter to tell us whether
the agent is being pursed by evil agents or not. Let At be a set of atoms of P .
Then the universe of P is At× S.

If M ⊆ At × S, we let GP (M) = {p ∈ S : (∃a ∈ At)((a,p) ∈ M)}. For
I ∈ S let GPI (M) = GP (M) ∪ {I}. A block B is an object of the form
B = a1, . . . , an, not b1, . . . , not bm where a1, . . . , an, b1, . . . , bm ∈ At. Given
M ⊆ At × S and p ∈ S, we say that M satisfies B at the generalized posi-
tion p, written M |= (B,p), if (ai,p) ∈ M for i = 1, . . . , n and (bj ,p) /∈ M for
j = 1, . . . ,m. If B is empty, then M |= (B,p) automatically holds. We define
B− = not b1, . . . , not bm.

There are two types of rules in H-ASP.

Advancing rules are of the form

r =
B1;B2; . . . ;Bk : A,O

a
(3)

where A is an algorithm, for each i, Bi = a1,i, . . . , ani,i, not b1,i, . . . , not bmi,i

where a1,i, . . . , ani,i, b1,i, . . . , bmi,i are atoms, and O is a subset of Sk such that
if (p1, . . . ,pk) ∈ O, then t(p1) < · · · < t(pk) and A (p1, . . . ,pk) is a subset of
S such that for all q ∈ A (p1, . . . ,pk), t(q) > t(pk). Here and in the next rule,
we allow ni or mi to be equal to 0 for any given i. O is called the constraint
parameter set of the rule r and will be denoted by CPS(r). A is called the
advancing algorithm of the rule r and is denoted by alg(r). The constraint atom

set of r, CAS(r), is defined to be
⋃k
i=1{b1,i, . . . , bmi,i}. The arity of rule r, N (r),

is equal to k.
The idea is that if (p1, . . . ,pk) ∈ O and for each i, Bi is satisfied at the

generalized position pi, then the algorithm A can be applied to (p1, . . . ,pk) to
produce a set of generalized positions O′ such that if q ∈ O′, then t(q) > t(pk)
and (a,q) holds. Thus advancing rules are like input-output devices in that the
algorithm A allows the user do derive possible successor generalized positions as
well as certain atoms a which are to hold at such positions. Here the advancing
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algorithm A can be quite arbitrary in that it may involve algorithms for solving
differential or integral equations, solving a set of linear equations or linear pro-
gramming equations, solving an optimization problem, etc. For example, in [3],
we incorporated algorithms for Markov Decision Processes into our advancing
algorithms to construct H-ASP programs that can be used to create efficient,
robust representations of dynamic domains and to compute optimal finite hori-
zon policies for the agents acting in such domains.

Stationary rules are of the form

r =
B1;B2; . . . ;Bk : H,O

a
(4)

where for each i, Bi = a1,i, . . . , ani,i, not b1,i, . . . , not bmi,i where a1,i, . . . , ani,i,
b1,i, . . . , bmi,i are atoms, H is a Boolean algorithm, and O ⊆ Sk. As in advancing

rules, we let CPS(r) = O, alg(r) = H , CAS(r) =
⋃k
i=1{b1,i, . . . , bmi,i}, and

N (r) = k.
The idea is that if (p1, . . . ,pk) ∈ O and for each i, Bi is satisfied at the gen-

eralized position pi, and H((p1, . . . ,pk)) is true, then (a,pk) holds. Stationary
rules are much like normal logic programming rules in that they allow us to
derive new atoms at a given generalized position pk. The difference is that a
derivation with our stationary rules can be based on what happens at multiple
times in the past and the Boolean algorithm H can be any sort of algorithm
which gives either true or false as on output.

For a model M ⊆ At×S and an initial condition I ∈ S, a state corresponds to
a generalized position p ∈ GPI (M) together with the set of all the atoms that
hold at p relative to M , i.e. {a| ∃ (a,p) ∈M}. Given a generalized position p at
time t, we use advancing rules to generate the set of possible “next” generalized
positions at time t + Δ for some Δ > 0. For example, in the Secret Agent
example, if the agent is in the lake, then each “next” generalized position p′

would specify not only the position at t +Δ but also a different steering angle
to be used from time t to t+Δ. Then for such a “next” generalized position p′,
stationary rules can be applied to a pair (p,p′) to derive more atoms at p′ or
to enforce constraints.

A H-ASP program P is a collection of H-ASP advancing and stationary rules.
To define the notion of a stable model of P , we first must define the notion of
a H-ASP Horn program and the one-step provability operator for H-ASP Horn
programs.

A H-ASP Horn program is a H-ASP program which does not contain any
negated atoms. Let P be a Horn H-ASP program and I ∈ S be an initial
condition. Then the one-step provability operator TP,I is defined so that given
M ⊆ At× S, TP,I(M) consists of M together with the set of all (a, J) ∈ At× S
such that
(1) there exists a stationary rule r = B1;B2;...;Bk:H,O

a and (p1, . . . ,pk) ∈ O ∩
(GPI(M))

k
such that (a, J) = (a,pk), M |= (Bi,pi) for i = 1, . . . , k, and

H(p1, . . . ,pk) = 1 or
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(2) there exists an advancing rule r = B1;B2;...;Bk:A,O
a and (p1, . . . ,pk) ∈ O ∩

(GPI(M))
k
such that J ∈ A(p1, . . . ,pk) and M |= (Bi,pi) for i = 1, . . . , k.

The stable model semantics for H-ASP programs is defined as follows. Let
M ⊆ At×S and I be an initial condition in S. An H-ASP rule C = B1;...,Bk:A,O

a

is inapplicable for (M, I) if for all (p1, . . . ,pk) ∈ O∩ (GPI(M))
k
, either (i) there

is an i such that M �|= (B−i ,pi), (ii) A (p1, . . . ,pr) ∩ GPI(M) = ∅ if A is an
advancing algorithm, or (iii) A(p1, . . . ,pk) = 0 if A is a Boolean algorithm. Then
we form the Gelfond-Lifschitz reduct of P over M and I, PM,I as follows.
(1) Eliminate all rules which are inapplicable for (M, I).
(2) If the advancing rule r = B1;...,Bk:A,O

a is not eliminated by (1), then replace it

by
B+

1 ;...,B+
k
:A+,O+

a where for each i, B+
i is the result of removing all the negated

atoms from Bi, O
+ is equal to the set of all (p1, . . . ,pk) in O ∩ (GPI(M))k

such that M |= (B−i ,pi) for i = 1, . . . , k and A(p1, . . . ,pk) ∩GPI(M) �= ∅, and
A+(p1, . . . ,pk) is defined to be A(p1, . . . ,pk) ∩GPI(M).
(3) If the stationary rule r = B1;...,Bk:H,O

a is not eliminated by (1), then replace it

by
B+

1 ;...,B+
k :H|O+ ,O

+

a where for each i, B+
i is the result of removing all the negated

atoms from Bi, O
+ is equal to the set of all (p1, . . . ,pk) in O∩ (GPI(M))

k
such

that M |= (B−i ,pi) for i = 1, . . . , k and H(p1, . . . ,pk) = 1.
We then say that M is a stable model of P with initial condition I if

∞⋃
k=0

T kPM,I ,I (∅) = M.

3 The Forward Chaining Algorithm for Normal Logic
Programs

Let P be a normal logic program. We let H(P ) denote the Herbrand base of P ,
i.e. the underlying set of atoms of the program. We let mon(P ) denote the set
of all Horn clauses of P and nmon(P ) = P \mon(P ). The elements of nmon(P )
will be called nonmonotonic clauses. The Forward Chaining algorithm of [12]
applies to programs of arbitrary cardinality. It takes as an input a program
P and a well-ordering ≺ of nmon(P ). The principal output of the Forward
Chaining construction will be a subset D≺ of H (P ). Although such subset is
not, necessarily, a stable model of P , it will be a stable model of A≺ for a
subset A≺ ⊆ P . This subset, A≺, is also computed out of Forward Chaining
construction and is the maximal set of clauses for which D≺ is a stable model.

For any set S ⊆ H(P ), the monotonic closure of S relative of mon(P ),
clmon(S) is defined by

clmon(S) = Tmon(P )(S) ↑ ω. (5)

The general Forward Chaining algorithm is the following.

Forward Chaining Algorithm
Let P be a normal logic program and let ≺ be a well-ordering of nmon(P ).
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Two sequences of sets of atoms from H(P ), 〈Dξ〉ξ∈α+ and 〈Rξ〉ξ∈α+ are defined,
where α+ is the least cardinal greater than the ordinal α determined by the well
ordering ≺. The set Dξ is the set of atoms derived by stage ξ and Rξ is the set
of atoms rejected by the stage ξ.
1. Set D≺0 = clmon(∅) and R≺0 = ∅.

2. If γ = β + 1, then C ∈ nmon(P ) is an applicable clause at stage γ
if (a) posBody(C) ⊆ D≺β , (b) ({head(C)} ∪ negBody(C)) ∩ D≺β = ∅, and (c)

clmon(D
≺
β ∪ {head(C)}) ∩ (negBody(C) ∪R≺β ) = ∅.

If there is no applicable clause at stage γ, then let D≺γ = D≺β and R≺γ = R≺β .
Otherwise, let Cγ be the ≺-first applicable clause and set

D≺γ = clmon(D
≺
β ∪ {head(Cγ)}) R≺γ = R≺β ∪ negBody(Cγ).

3. If γ is a limit ordinal, then set D≺γ =
⋃
ξ<γ D

≺
ξ and R≺γ =

⋃
ξ<γ R

≺
ξ .

4. Finally let

D≺ = D≺α+ =
⋃
ξ∈α+

D≺ξ and R≺ = R≺α+ =
⋃
ξ∈α+

R≺ξ .

The sets D≺ and R≺ are called the sets of derived atoms and rejected atoms of
the Forward Chaining construction relative to ≺ respectively.

C is inconsistent relative to ≺ if ({head(C)} ∪ negBody(C)) ∩ D≺ = ∅,
posBody(C) ⊆ D≺, but clmon(D

≺ ∪ {head(C)}) ∩ (negBody(C) ∪ R≺) �= ∅.
We let I≺ = {C : C is inconsistent} and A≺ = P \ I≺.

Marek, Nerode, and Remmel [12] proved the following results.

Theorem 1. Let P be a normal propositional logic program.

1. Let ≺ be a well-ordering of nmon(P ). Then D≺ is a stable model of A≺.
Hence if I≺ = ∅, then D≺ is a stable model of P .

2. If M is a stable model of P , then there exists a well-ordering ≺ of nmon(P )
such that D≺ = M . In fact, for every well-ordering ≺ such that

NG(M,P ) = {C ∈ nmon(P ) : posBody(C) ⊆M, negBody(C) ∩M = ∅}

forms an initial segment of ≺, D≺ = M and A≺ = P .

For finite programs a well ordering of nmon(P ) is determined by taking a per-
mutation σ of nmon(P ).

Example 1. Let H = {a, b, c, d, e, f} and let P consist of the following clauses:

1. a← 2. b← c 3. c← a,¬d
4. d← b,¬c 5. e← c,¬f 6. f ← c,¬e.

Here, mon(P ) consists of clauses (1) and (2), whereas nmon(P ) consists of
clauses (3), (4), (5), and (6).
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Let ≺ of nmon(P ) be defined as (3) ≺ (4) ≺ (5) ≺ (6). Then the construction
of sets D≺n and R≺n is as follows:
Stage 0 D≺0 = clmon(∅) = {a}, R≺0 = ∅.
Stage 1 r1 = (3), D≺1 = clmon({a} ∪ {c}) = {a, b, c}, R≺1 = {d}.
Stage 2 r2 = (5), D≺2 = {a, b, c, e}, and R≺2 = {d, f}.
Stage 3 At this stage our construction stabilizes.
It is easy to see that I≺ = ∅ so D≺ = D≺2 is an stable model of P .

Now, let ≺′ be an ordering of nmon(P ) as follows: (4) ≺′ (3) ≺′ (6) ≺′ (5).
Here, the construction of D≺

′
produces these stages:

Stage 0 D≺
′

0 = clmon(∅) = {a}, R≺
′

0 = ∅.
Stage 1 r1 = (3), D≺

′
1 = clmon({a} ∪ {c}) = {a, b, c}, R≺

′
1 = {d}.

Stage 2 r2 = (6), D≺
′

2 = {a, b, c, f}, and R≺
′

2 = {d, e}.
Stage 3 At this stage our construction stabilizes.
Again, it is easy to see that I≺

′
= ∅ so D≺

′
= D≺

′
2 is a stable model of P . These

are the only stable models of P and one can check that the Forward Chaining
construction will produce one of these two stable models for any well-ordering
of nmon(P ). �

4 The Forward Chaining for Hybrid ASP Programs

In this section, we shall describe how one can adapt the FC algorithm to H-
ASP programs. The main difficulty is that advancing rules in H-ASP are inher-
ently nondeterministic because advancing algorithms are set-valued functions.
We have used this feature in applications where one wants to reason about all
possible trajectories of a dynamical system rather than a single trajectory; see
[3] for an example. Unfortunately, the FC algorithm requires that we do some-
thing deterministic at any given stage. To remedy this problem, we introduce
the notion of selector function F for an H-ASP program Π which essentially
makes a deterministic choice for each advancing rule. Then we can define a FC
algorithm relative to a selector function F .

Let Π be a H-ASP program whose underlying space of generalized positions
is S and whose underlying set of atoms is At. Let I ∈ S be an initial condition.

A selector function for Π is a map F which given any advancing rule r of the
form (3) and any k-tuple of generalized positions (p1, . . . ,pk) in O = CPS(r),
specifies a set F (r, (p1, . . . ,pk)) contained in A(p1, . . . ,pk) where A = adv(r).
The idea is that the selector function tells us exactly which pairs (a,q) we can
conclude if we apply rule r at the generalized positions (p1, . . . ,pk), namely, the
set of all (a,q) such that q ∈ F (r, (p1, . . . ,pk)).

The monotonic part of Π , mon(Π) consists of all stationary rules r ∈ Π
such that the constraint atom set of r, CAS(r), is empty. The nonmonotonic
part of Π , nmon(P ), is Π −mon(Π). Note that mon(Π) is always a Horn H-
ASP program so that we define the monotonic closure of a set M ⊆ At × S,
clmon,Π,I(M), relative to Π and an initial condition I to be

clmon,Π,I (M) = Tmon(Π),I (M) ↑ ω.
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The FC algorithm for H-ASP depends on the program Π and initial condition
I, a well ordering ≺ on

Z(Π) = {(r,−→p ) : r ∈ nmon(Π) & −→p ∈ CPS(r)},

and a selector function F for Π . The algorithm will generate three sequences of
sets 〈Dξ〉ξ∈α+ , 〈Rξ〉ξ∈α+ , and 〈Pξ〉ξ∈α+ where α+ is the least cardinal greater
than the ordinal α determined by the well ordering ≺. Here Dξ ⊆ At × S will
be the analogue of the derived atoms at stage ξ in the FC algorithm for normal
logic programs, Rξ ⊆ At×S will be the analogue of the rejected atoms at stage ξ
in the FC algorithm for normal logic programs, and Pξ ⊆ S is the set of rejected
generalized positions at stage ξ which has no analogue in the FC algorithm for
normal logic programs. At any given stage ξ, our construction will ensure that
Dξ ∩Rξ = ∅ and that GPI(Dξ) ∩ Pξ = ∅.

The FC algorithm for H-ASP is then defined as follows.
H-ASP Forward Chaining

1. Set D0 = clmon,Π,I (∅) and R0 = ∅, P0 = ∅.
2. We say that a pair (r,−→p ) where r = B1;B2;...;Bk:H,O

a is a stationary rule and
−→p = (p1, ...,pk) is applicable at stage ξ + 1 if (i) −→p ∈ (GPI (Dξ))

k ∩ O,
(ii) H

(−→p ) = 1, (iii) ∀i = 1, ..., k, Dξ |= (Bi,pi), (iv) (a,pk) /∈ Dξ, and (v) if

Q = clmon,Π,I (Dξ ∪ {(a,pk)}), then Q∩Rξ = ∅ and ∀i = 1, ..., k, Q |=
(
B−i ,pi

)
.

Thus (r,−→p ) is applicable at stage ξ + 1, if Dξ allows us to apply rule r at the
generalized position tuple −→p , we have not already derived (a,pk) and if adding
(a,pk) to Dξ and taking the monotonic closure with respect Π and I does not
generate any rejected pairs (b,p) and does stop us from applying rule r at −→p .

We say that a pair (r,−→p ) where r = B1;B2;...;Bk:A,O
a is an advancing rule

and −→p = (p1, ...,pk) is applicable at stage ξ + 1 if (i) −→p ∈ (GPI (Dξ))
k ∩ O,

(ii) ∀i = 1, ..., k, Dξ |= (Bi,pi), (iii) F (r,−→p ) ∩ Pξ = ∅, (iv) there is at least
one generalized position p ∈ F (r,−→p ) such that (a,p) /∈ Dξ, and (v) if Q =
clmon,Π,I

(
Dξ ∪ {(a,p) : p ∈ F (r,−→p )}

)
, then Q∩Rξ = ∅, GPI(Q)∩Pξ = ∅, and

∀i = 1, ..., k, Q |=
(
B−i ,pi

)
. Thus (r,−→p ) is applicable at stage ξ+1, if Dξ allows

us to apply rule r at the generalized position tuple −→p and if adding (a,p) to Dξ
for all p ∈ F (r,−→p ) and taking the monotonic closure with respect Π and I does
not generate any rejected pairs (b,p) or rejected generalized positions and does
not stop us from applying rule r at −→p .

(a) If there is no pair (r,−→p ) which is applicable at stage ξ +1, then set Dξ+1 =
Dξ, Rξ+1 = Rξ and Pξ+1 = Pξ.

(b) Otherwise, let (r,−→p ) =
(
rξ+1,

−→p ξ+1

)
(where −→p = (p1, ...,pk)) be the ≺-

least applicable pair at stage ξ + 1.
If r = B1;...;Bk:H,O

a is a stationary rule, set Pξ+1 = Pξ,
Dξ+1 = clmon,Π,I (Dξ ∪ {(a,pk)}), and
Rξ+1 = Rξ ∪ {(b,pi) |b ∈ B−i , i = 1, ..., k}.
If r = B1;...;Bk:A,O

a is an advancing rule, set Pξ+1 = Pξ ∪ (A
(−→p ) \F (r,−→p ),
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Dξ+1 = clmon,Π,I
(
Dξ ∪

{
(a,p) |p ∈ F

(
r,−→p
)})

, and

Rξ+1 = Rξ ∪ {(b,pi) |b ∈ B−i , i = 1, ..., k}.

Finally, we set D≺F,I =
⋃
ξ∈α+

Dξ, R
≺
F,I =

⋃
ξ∈α+

Rξ, P
≺
F,I =

⋃
ξ∈α+

Pξ. We shall call

D≺F,I the set of derived pairs relative to ≺, I, and F , R≺F,I the set of rejected

pairs relative to ≺, I, and F , and P≺F,I the set rejected generalized positions
relative to ≺, I, and F .

We say that a pair (r,−→p ) where r = B1;B2;...;Bk:H,O
a is a stationary rule and

−→p = (p1, ...,pk) is inconsistent relative to ≺, I, and F if (i) H
(−→p ) = 1,

(ii) −→p ∈
(
GPI

(
D≺F,I
))k

∩ O, (iii) ∀i = 1, ..., k, D≺F,I |= (Bi,pi), (iv) (a,pk) /∈

D≺F,I , and (v) if Q = clmonΠ,I

(
D≺F,I ∪ {(a,pk)}

)
, then either Q ∩ R≺F,I �= ∅ or

there is an i with 1 ≤ i ≤ k such that Q �|=
(
B−i ,pi

)
. Thus (r,−→p ) is inconsistent

if D≺F,I allows us to apply rule r at −→p and we have not already derived (a,pk),

but adding (a,pk) to D≺F,I and taking the monotonic closure with respect to Π
and I either generates a rejected pair (b,p) or stops us from applying rule r at
−→p .

We say that a pair (r,−→p ) where r = B1;B2;...;Bk:A,O
a is an advancing rule

and −→p = (p1, ...,pk) is inconsistent relative to ≺, I, and F if (i) −→p ∈(
GPI

(
D≺F,I
))k

∩O, (ii) ∀i = 1, ..., k, D≺F,I |= (Bi,pi), (iii) F (r,−→p ) ∩ P≺F,I = ∅,
(iv) there is at least one generalized position p ∈ F (r,−→p ) such that (a,p) /∈ D≺F,I ,

and (v) if Q = clmonΠ,I

(
D≺F,I ∪ {(a,p) : p ∈ F (r,−→p )}

)
then either Q∩R≺F,I �=

∅, GPI(Q) ∩ P≺F,I �= ∅, or there is an i such that 1 ≤ i ≤ k and Q �|=
(
B−i ,pi

)
.

Thus (r,−→p ) is inconsistent if D≺F,I allows us to apply rule r at −→p but adding

(a,p) to D≺F,I for all p ∈ F (r,−→p ) and taking the monotonic closure with respect
Π and I either generates a rejected pair (b,p) or a rejected generalized position
or stops us from applying rule r at −→p .

For each stationary rule r = B1;B2;...;Bk:H,O
a ∈ nmon(Π), we let RPos≺,I,F (r)

denote the set all −→p ∈ O such that (r,−→p ) is inconsistent relative to ≺, I, and
F . We then let new(r)≺,I,F = B1;B2;...;Bk:H

′,O′

a where
O′ = O − RPos≺,I,F (r) and H ′ equals H restricted to O′ if O′ �= ∅ and let
new(r)≺,I,F be empty if O′ = ∅.

For each advancing rule r = B1;B2;...;Bk:A,O
a ∈ nmon(Π), we let RPos≺,I,F (r)

denote the set all −→p ∈ O such that (r,−→p ) is inconsistent relative to ≺, I, and
F . We then let new(r)≺,I,F = B1;B2;...;Bk:A

′,O′
a where O′ = O − RPos≺,I,F (r)

and where for each −→p ∈ O′, A′(−→p ) = F (r,−→p ) if O′ �= ∅ and let new(r)≺,I,F be
empty if O′ = ∅. We define

A≺F,I = mon(Π) ∪ {new≺,I,F (r) : r ∈ nmon(Π) & new≺,I,F (r) �= ∅},

IP≺F,I = {
(
r,−→p
)
| r ∈ nmon(Π) & −→p ∈ RPos≺,I,F (r)}.
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Theorem 2. Let Π be a H-ASP program whose underlying set of generalized
positions is S.

1. For any selector function F relative to Π, any well ordering ≺ of Z(Π) and
an initial condition I ∈ S, D≺F,I is a stable model of A≺F,I with the initial
condition I.

2. For any stable model M of Π with the initial condition I, there is a well
ordering ≺ of Z(Π) and selector function F relative to Π such that D≺F,I =
M and A≺F,I = Π.

In fact if F
(
r,−→p
)
= alg (r)

(−→p ) ∩ GPI (M) and ≺ is any well ordering of
Z (Π) such that the set

{
(
r,−→p
)
|r =

B1; ...;Bk : A,O

a
and ∀i = 1, ..., k, M |=

(
Bi,
−→p i
)
and −→p ∈

(GPI (M))
k ∩ CPS (r) and if r is a stationary rule then A

(−→p ) = 1}

forms an initial segment of ≺, then D≺F,I = M .

5 The FC for H-ASP Based Monte Carlo Methods

In this section, we shall briefly review the Metropolis-Hastings algorithm and
then we will outline Metropolized Forward Chaining (MFC) algorithm to find
stable models of H-ASP programs. Our MFC algorithm for H-ASP programs will
be a modification of the MFC algorithm for normal logic programs described by
the authors in [1].

5.1 The Metropolis-Hastings Algorithm

The presentation in this section is based on the description of Markov Chains
and the Metropolis algorithm found in [5], [9], and [10].

A sequence of random variables x0, x1, x2, ... defined on a finite state space
X is called a Markov chain if it satisfies the Markov property:

∀t ≥ 0 (P (xt+1 = y| xt = x, ..., x0 = z) = P (xt+1 = y| xt = x)).

In this paper we are considering only Markov chains with the additional prop-
erty: P (xt+1 = y| xt = x) = P (xs+1 = y| xs = x) for all t, s ≥ 0. Hence, we can
record such probabilities as a transition function M (x, y) = P (x1 = y| x0 = x).
We let M (·, ·) denote the matrix which records this transition function and let
Mn (·, ·) denote the n-th power of the matrix M(·, ·) for any n ≥ 1. It then
follows that for all n ≥ 1, P (xn = y| x0 = x) = Mn (x, y).

A probability distribution on X is a function π : X → [0, 1] such that∑
x∈X π (x) = 1. We say that π is a stationary distribution for M if for all

x ∈ X ,
∑
y∈X π (y)M (y, x) = π (x) .
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Given a Markov chain K (·, ·), called the proposal chain, and a probability
distribution π (·), let G (x, y) = π (y)K (y, x) /π (x)K (x, y) . The Metropolis-
Hastings algorithm defines a new Markov chain M (·, ·), where the probability
M (x, y) is equal to the probability of drawing xt+1 = y given xt = x using the
following procedure:

1. given current state xt = x, draw y based on the Markov chain K (x, ·);
2. draw U from the uniform distribution on [0, 1];
3. set xt+1 = y if U ≤ G (xt, y) and set xt+1 = xt otherwise.
The key result about the Metropolis-Hasting algorithm is the following.

Proposition 1. Let X be a finite set and K (·, ·) be a proposal chain on X
such that ∀x, y ∈ X K (x, y) > 0 iff K (y, x) > 0. Let π (·) be a probability
distribution on X. Let M (·, ·) be the Metropolis-Hastings chain as defined above.
Then π (x)M (x, y) = π (y)M (y, x) for all x, y. In particular, for all x, y ∈ X
lim
n→∞Mn (x, y) = π (y).

5.2 Using FC for H-ASP with the Metropolis-Hastings Algorithm

The following is an outline of how FC for H-ASP can be combined with the
Metropolis-Hastings algorithm to solve the following problem: given a H-ASP
program Π which has a stable model with respect to the initial condition I, find
a stable model M of Π with the initial condition I.

To apply the Metropolis-Hastings algorithm it is necessary to specify the state
space X , the Markov chain K (·, ·) and the sampling distribution π (·).

In MFC algorithm for a finite normal propositional program P described in
[1], the state spaceX is the set perm (P ) of well-orderings of nmon (P ). To define
K (·, ·), an integer k is fixed with 2 ≤ k ≤ |nmon (P )|. For σ, τ ∈ perm (P ),
K (σ, τ) is the probability that starting with σ, τ is produced by picking k
elements 1 ≤ i1 < i2 < ... < ik ≤ |nmon (P )| uniformly at random, then
picking a permutation γ of i1,...,ik uniformly at random and then creating a new
permutation by replacing σi1 , ..., σik in σ by σγ(i1), ..., σγ(ik). Since K (σ, τ) =
K (τ, σ) the acceptance ratio for the Metropolis-Hastings algorithm is G (σ, τ) =
π(σ)
π(τ) . Finally, to define π (·) we let r (σ) equal |Iσ| - the number of inconsistent

rules produced by the FC algorithm when it is used on P with the well-ordering
σ. We then choose θ andm, with 0 < θ < 1 andm ≥ 1 independent of |perm (P )|
and set

π (σ) ∝ θr(σ)
m

Since the denominator of π (σ) is not needed for the computation of the accep-
tance ratio G (σ, τ), we only need to know θr(σ)

m

for the computational purposes.
A similar approach can be used to combine the FC algorithm for a H-ASP

program P and the Metropolis-Hasting algorithm, to produce an MFC algorithm
for H-ASP. Given a H-ASP program Π , let perm (Z (Π)) be the set of all the
well-orderings on Z (Π). Unlike MFC algorithm for normal logic programs where
only a well ordering has to be chosen in order to use the FC algorithm, for H-ASP
programs, we must also specify a selector function F as well as a well-ordering
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≺ to apply the FC algorithm. Thus our state space X will consist of pairs (F, σ)
where F is a selector function for Π and σ is a well-ordering on Z (Π).

Our Markov chain K (·, ·) will be defined analogously to that for MFC except
that now changes to the selector function will need to be considered. We will
choose integer parameters k with 2 ≤ k ≤ |Z (Π)| and s, t, u ≥ 1. For two selector
functions F and H and two well orderings on Z (Π), σ and τ , K ((F, σ) , (H, τ))
is the probability that starting with (F, σ), we produce (H, τ) by the following
procedure.

1. Choose s advancing rules r1, r2, ..., rs from nmon (Π) uniformly at random.
For each rule ri choose t elements −→p1, ...,

−→pt from CPS (ri) uniformly at
random. For each −→pj , choose an integer w uniformly at random where 0 ≤
w ≤ u and w elements p1, ...,pw from alg (ri)

(−→pj) uniformly at random.

For each pk chosen for a −→pj , if pk ∈ F
(
ri,
−→pj
)
, then pk /∈ H

(
ri,
−→pj
)
and if

pk /∈ F
(
ri,
−→pj
)
, then pk ∈ H

(
ri,
−→pj
)
. H is identical to F in all other cases.

2. Pick k elements 1 ≤ i1 < ... < ik ≤ |Z (Π)| of σ uniformly at random. Pick
a permutation γ of i1, ..., ik uniformly at random and create τ by replacing
σi1 , ..., σik with σγ(i1), ..., σγ(ik).

To specify π (·), we define r ((F, σ)) =
∣∣IP σF,I ∣∣. Choose a parameter θ where

0 < θ < 1 and a parameter m ≤ 1. As in MFC we set

π ((F, σ)) ∝ θr((F,σ))
m

It is the case that K ((F, σ) , (H, τ)) = K ((H, τ) , (F, σ)) and so the acceptance
ratio for the Metropolis-Hastings algorithm is

G ((F, σ) , (H, τ)) =
π ((F, σ))

π ((H, τ))
= θr((F,σ))

m−r((H,τ))m

The Metropolis-Hastings algorithm for K(·, ·) and π can thus be used to find a
pair (F, σ) that minimizes r ((F, σ)) =

∣∣IP σF,I ∣∣. In the case that Π has a stable
model Metropolis-Hastings algorithm will eventually find it (when r ((F, σ)) =
0). In the case that Π does not have a stable model, the Metropolis-Hastings
algorithm will eventually find a subprogram AσF,I with the minimal r ((F, σ))
that has a stable model DσF,I

6 Conclusions and Future Research

In this paper, we have defined an analogue of the Forward Chaining algorithm
for normal logic programs due to Marek, Nerode and Remmel [12] and discussed
an analogue of the Metropolized Forward Chaining Algorithm due to the authors
[1] for H-ASP programs.

There are several questions for future research. For example, Marek, Nerode
and Remmel [11] define an analogue of Rieter’s normal default theories for nor-
mal logic programs which are logic programs P where the FC algorithm produces
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a stable model for every well ordering of nmon(P ). There should be a similar
analogue of normal default theories for H-ASP programs. Also, there are several
issues that need to be resolved for our MFC algorithm for H-ASP programs to
be practical. For example, we must decide how one specifies a selector function
F and how one specifies a well-ordering σ on Q? The difficulty here lies in the
fact that Q may be too large to enumerate. One approach to resolving the above
two issues is to specify F and σ implicitly by providing a procedure that is
able to access specific elements of a well-ordering σ on Z (Π) without explicitly
enumerating σ. Such issues will be the subject of future research.
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14. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1-2), 181–234 (2002)

15. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. J. ACM 23(4), 733–742 (1976)



Effectivity Questions

for Kleene’s Recursion Theorem

John Case1, Sanjay Jain2,�, and Frank Stephan3,��

1 Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716-2586, USA

case@cis.udel.edu
2 Department of Computer Science

National University of Singapore, Singapore 117417
sanjay@comp.nus.edu.sg

3 Department of Mathematics and Department of Computer Science
National University of Singapore, Singapore 119076

fstephan@comp.nus.edu.sg

Abstract. The present paper explores the interaction between two re-
cursion-theoretic notions: program self-reference and learning partial re-
cursive functions in the limit. Kleene’s Recursion Theorem formalises the
notion of program self-reference: It says that given a partial-recursive
function ψp there is an index e such that the e-th function ψe is equal
to the e-th slice of ψp. The paper studies constructive forms of Kleene’s
recursion theorem which are inspired by learning criteria from inductive
inference and also relates these constructive forms to notions of learn-
ability. For example, it is shown that a numbering can fail to satisfy
Kleene’s Recursion Theorem, yet that numbering can still be used as
a hypothesis space when learning explanatorily an arbitrary learnable
class. The paper provides a detailed picture of numberings separating
various versions of Kleene’s Recursion Theorem and learnability.

Keywords: inductive inference, Kleene’s Recursion Theorem, Kolmo-
gorov complexity, optimal numberings.

1 Introduction

Program self-reference is the ability of a program to make use of its own source
code in its computations. This notion is formalized by Kleene’s Recursion
Theorem.1 Intuitively, this theorem asserts that, for each preassigned algorithmic

� Supported in part by NUS grant numbers R252-000-420-112 and C252-000-087-001.
�� Supported in part by NUS grant number R252-000-420-112.
1 Other “recursion theorems” do not so well capture the notion of program self-
reference. For example, consider the (quasi-fixed-point) recursion theorem as for-
malised by Rogers [Rog67, Theorem 11-I]. In contrast to Kleene’s Recursion Theo-
rem, Rogers’ recursion theorem is not strong enough to guarantee that a numbering
of partial-recursive functions satisfying it has a self-reproducing program which out-
puts its own index [CM09].
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task, there exists a program e that computes exactly the e-th slice of this algo-
rithmic task. The theorem is stated below, following some necessary definitions.

Let N be the set of natural numbers, {0, 1, 2, . . .}. Let P be the collection of
all partial recursive functions from N to N. Let 〈·, ·〉 be Cantor’s pairing func-
tion [Rog67, page 64]: 〈x, y〉 = (x + y)(x + y + 1)/2 + y, which is a recursive,
order preserving bijection N × N → N [Rog67, page 64]; here order preserving
means that x ≤ x′ ∧ y ≤ y′ ⇒ 〈x, y〉 ≤ 〈x′, y′〉. For each ψ ∈ P and p ∈ N, let
ψp be shorthand for ψ(〈p, ·〉). An effective numbering of P is a ψ ∈ P such that

(∀α ∈ P)(∃p ∈ N)[ψp = α]. (1)

For this paper, we shall be concerned only with numberings that are effective,
and that number the elements of P . Hence, we shall generally omit the phrases
“effective” and “of P”.

The following is the formal statement of Kleene’s Recursion Theorem.

Definition 1 (Kleene [Kle38]). For each numbering ψ, Kleene’s Recursion
Theorem holds in ψ ⇔

(∀p ∈ N)(∃e ∈ N)[ψe = ψp(〈e, ·〉)]. (2)

Equation (2) can be interpreted as follows: Suppose the ψ-program p represents
an arbitrary, algorithmic task to perform; then the equation says that there is a
ψ-program e such that ψe is equal to the e-th slice of this algorithmic task. This
is often used in diagonalizations by defining ψe in a way implicitly employing
parameter e (in effect, a self-copy of e) in some algorithmic task ψp.

The following constructive form of Kleene’s Recursion Theorem has been well-
studied. For reasons that will become apparent shortly, we call this form of the
theorem FinKrt.

Definition 2 (Kleene, see [Ric80, Ric81, Roy87]). A numbering ψ is called
a FinKrt-numbering ⇔

(∃ recursive r : N→ N)(∀p)[ψr(p) = ψp(〈r(p), ·〉)]. (3)

In (3), ψ-program r(p) plays the role played by e in (2). In this sense, the func-
tion r finds a ψ-program r(p) such that ψr(p) is equal to the r(p)-th slice of ψp.

In this paper, additional constructive forms of the theorem are considered.
Each is inspired by a Gold-style criterion for learning partial recursive functions
in the limit. The Gold-style criteria differ in when a learning device is consid-
ered to have learned a target partial recursive function. However, the following
is common to all. The learning device is fed the elements of the graph of a par-
tial recursive function α.2 After being fed each such element, the device outputs
either ‘?’ or a hypothesis, i.e., a program, possibly corresponding to the partial

2 The device may also be fed one or more instances of the pause symbol ‘#’. This
allows that graph of the target partial recursive function to be empty, i.e., in such a
case, the device is fed nothing but #.
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recursive function α. In the present paper, the device is expected to be algorith-
mic, that is, definable by a computer program.

For the finite (Fin) learning criterion, the device is considered to have learned
the target partial recursive function α iff the device outputs finitely many ‘?’ im-
mediately followed by a hypothesis corresponding to α. The constructive form of
Kleene’s Recursion Theorem, given in Definition 2, may be viewed in a similar
way. A device is fed a program p for a preassigned task. After finitely many steps,
that device outputs a program e that uses its own source code in the manner
prescribed by p.

A numbering ψ is said to be optimal for Fin-learning iff every Fin-learnable
class of partial recursive functions can be Fin-learned using ψ as the hypothesis
space. A numbering ψ is said to be effectively optimal for Fin-learning iff one
can effectively translate every Fin-learning device into a Fin-learning device that
uses ψ as its hypothesis space [JS10, Jai11].

Not every numbering is optimal for Fin-learning [JS10], let alone effectively
optimal. Similarly, not every numbering is a FinKrt-numbering [Ric80, Ric81].
Hence, one might ask: is every FinKrt-numbering optimal for Fin-learning? Con-
versely, if a numbering is optimal for Fin-learning, then is it necessarily a FinKrt
numbering?

Additional Gold-style learning criteria are introduced in Section 2 below and
will be familiar to most readers familiar with inductive inference. These crite-
ria, which are successively less stringent in when a learning device is considered
to have learned a target partial recursive function, are: single mind-change ex-
planatory (Ex1), explanatory (Ex), vacillatory (Vac) and behaviorally correct
(Bc). Section 2 also introduces additional constructive forms of Kleene’s Recur-
sion Theorem (ExKrt, VacKrt and BcKrt). Each is inspired by one of the just
mentioned learning criteria. Our results include the following.

– There is a numbering which does not satisfy Kleene’s Recursion Theorem,
but which is optimal for Fin-learning and effectively optimal for Ex, Vac and
Bc-learning (Theorem 7).

– There is a FinKrt-numbering which is not optimal for any of the learning
criteria Fin, Ex, Vac, Bc (Theorem 8).

– There is an ExKrt-numbering which is not a FinKrt-numbering and which
is effectively optimal for Ex-learning, but not optimal for Fin or Bc-learning
(Theorem 10).

– There is a VacKrt-numbering which is not an ExKrt-numbering and which
is effectively optimal for Vac-learning but not optimal for Fin, Ex or Bc-
learning (Theorem 11).

– There is a BcKrt-numbering which is not a VacKrt-numbering and which
is effectively optimal for Bc-learning, but not optimal for Fin, Ex or Vac-
learning (Theorem 13).

– There is a numbering satisfying Kleene’s Recursion Theorem which is not a
BcKrt-numbering and which is not optimal for any of the learning criteria
Fin, Ex, Vac, Bc (Theorem 14).
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– There is a numbering satisfying Kleene’s Recursion Theorem which is not
a BcKrt-numbering, but which is effectively optimal for Ex, Vac and Bc-
learning (Theorem 15).

The remainder of this paper is organized as follows. Section 2 covers prelimi-
naries. Section 3 presents our results concerning numberings that do not satisfy
Kleene’s Recursion Theorem. Section 4 presents our results concerning num-
berings that satisfy Kleene’s Recursion Theorem in an effective way. Section 5
presents our results concerning numberings that satisfy Kleene’s Recursion The-
orem, but not in an effective way.

2 Preliminaries

Recursion-theoretic concepts not covered below are treated as by Rogers [Rog67].
Lowercase math-italic letters (e.g., a, b, c) range over elements of N, unless

stated otherwise. Uppercase math-italic italicized letters (e.g., A, B, C) range
over subsets of N, unless stated otherwise. Lowercase Greek letters (e.g., α, β,
γ) range over partial functions from N to N, unless stated otherwise.

For each non-empty X , minX denotes the minimum element of X . We let
min ∅ def= ∞. For each non-empty, finite X , maxX denotes the maximum ele-
ment of X . We let max ∅ def= −1. D0, D1, D2, . . . denotes a recursive canonical
enumeration of all finite subsets of N.

The pairing function 〈·, ·〉 was introduced in Section 1. Note that 〈0, 0〉 = 0
and, for each x and y, max{x, y} ≤ 〈x, y〉.

For each one-argument partial function α and x ∈ N, α(x)↓ denotes that α(x)
converges; α(x)↑ denotes that α(x) diverges. We use ↑ to denote the value of a
divergent computation. So, for example, λx ↑ denotes the everywhere divergent
partial function.

N#
def= N ∪ {#} and N?

def= N ∪ {?}. For each partial function f (of arbitrary
type), rng(f) denotes the range of f . A text is a total (not necessarily recursive)
function of type N→ N#. For each text T and i ∈ N, T [i] denotes the initial seg-
ment of T of length i. Init denotes the set of all finite initial segments of all texts.
For each text T and partial function α, T is a text for α iff rng(T )−{#} is the
graph of α as coded by 〈·, ·〉, i.e., rng(T )−{#} = {〈x, y〉 | α(x) = y ∧ x, y ∈ N}.
For a total function f , we often identify f with its canonical text, that is, the
text T with T (i) = 〈i, f(i)〉. Thus, f [n] represents the initial segment of length
n of this canonical text.

A numbering ϕ is acceptable iff for each numbering ψ, there exists a recursive
function t : N→ N such that, for each p, ϕt(p) = ψp [Rog67, Ric80, Ric81, Roy87].
Let ϕ be any fixed acceptable numbering satisfying ϕ0 = λx ↑. For each p,
Wp def= {x | ϕp(x)↓}. K denotes the diagonal halting problem with respect to
ϕ, i.e., {x | x ∈ Wx}. Let pad : N2 → N be a recursive function such that, for
each e and y, ϕpad(e,y) = ϕe and pad(e, y) < pad(e, y + 1), where we assume
pad(0, 0) = 0.

The following are the Gold-style learning criteria considered in this paper.
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Definition 3. Let α be any partial recursive function. For each recursive func-
tion M : Init→ N? and each numbering ψ, (a)–(e) below.

(a) [Gol67] M Finψ-learns α iff for each text T for α, there exist i0 and e such
that

(∀i < i0)
[
M(T [i]) = ?

]
∧ (∀i ≥ i0)

[
M(T [i]) = e

]
∧ ψe = α. (4)

(b) [CS83] M Exψ,1-learns α iff for each text T for α, there exist i0, i1, e0 and
e1 such that

(∀i < i0)
[
M(T [i]) = ?

]
∧ (∀i ∈ {i0, . . . , i1 − 1})

[
M(T [i]) = e0

]
∧ (∀i ≥ i1)

[
M(T [i]) = e1

]
∧ ψe1 = α.

(5)

(c) [Gol67] M Exψ-learns α iff for each text T for α, there exist i0 and e such
that

(∀i ≥ i0)
[
M(T [i]) = e

]
∧ ψe = α. (6)

(d) [Cas99] M Vacψ-learns α iff for each text T for α, there exist i0 and a finite
set E such that

(∀i ≥ i0)
[
M(T [i]) ∈ E

]
∧ (∀e ∈ E)[ψe = α]. (7)

(e) [Bar74, OW82] M Bcψ-learns α iff for each text T for α, there exists an i0
such that

M(T [i0]) �=? and (∀i ≥ i0)(∀e)
[
M(T [i]) = e ⇒ ψe = α

]
. (8)

Let I ∈ {Fin,Ex1,Ex,Vac,Bc} and let S be a class of partial recursive functions.
M Iψ-learns S iffM Iψ-learns each partial recursive function in S. We say that S
is Iψ-learnable if some M Iψ-learns S. In above definitions, we omit the subscript
ψ when ψ is the fixed acceptable numbering ϕ.

Definition 4 (Jain & Stephan [JS10]). Let ϕ be an acceptable numbering.
For each I ∈ {Fin,Ex1,Ex,Vac,Bc} and each numbering ψ, (a) and (b) below.

(a) ψ is optimal for I-learning iff each Iϕ-learnable class is Iψ-learnable.
(b) ψ is effectively optimal for I-learning iff there exists a recursive function

t : N→ N such that, for each p and each class of partial recursive functions
S, if ϕp Iϕ-learns S, then ϕt(p) Iψ-learns S.

Note that while for learning criteria and the below constructive versions of KRT,
the implications Fin→ Ex1 → Ex→ Vac→ Bc hold, the corresponding implica-
tions do not always hold with respect to numberings being optimal or effectively
optimal for I-learning. For example, there are numberings which are optimal for
Vac-learning but not optimal for Bc-learning [JS10]. However, if a numbering is
effectively optimal for Fin-learning, then it is effectively optimal for Ex, Vac and
Bc-learning. Furthermore, if a numbering is effectively optimal for Ex-learning
then it is effectively optimal for Vac-learning [JS10].

The following are the constructive forms of Kleene’s Recursion Theorem con-
sidered in this paper. The reader will note the similarity to Definition 3.
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Definition 5. [Moe09] For each numbering ψ, (a)–(d) below.

(a) ψ is a FinKrt-numbering iff there exists a recursive function r : N→ N such
that, for each p,

ψr(p) = ψp
(
〈r(p), ·〉

)
. (9)

(b) ψ is an ExKrt-numbering iff there exists a recursive function f : N2 → N
such that, for each p, there exist i0 and e such that

(∀i ≥ i0)[f(p, i) = e] ∧ ψe = ψp(〈e, ·〉). (10)

(c) ψ is a VacKrt-numbering iff there exists a recursive function f : N2 → N
such that, for each p, there exist i0 and a finite set E such that

(∀i ≥ i0)[f(p, i) ∈ E] ∧ (∀e ∈ E)[ψe = ψp(〈e, ·〉)]. (11)

(d) ψ is a BcKrt-numbering iff there exists a recursive function f : N2 → N such
that, for each p, there exists an i0 such that

(∀i ≥ i0)(∀e)[f(p, i) = e ⇒ ψe = ψp(〈e, ·〉)]. (12)

Definition 6. For each numbering ψ, (a) and (b) below.

(a) ψ is Ex1-acceptable iff there exists a recursive function f : N2 → N such that,
for each p, there exist i0, e0 and e1 such that

(∀i < i0)[f(p, i) = e0] ∧ (∀i ≥ i0)[f(p, i) = e1] ∧ ψe1 = ϕp. (13)

(b) (Case, Jain and Suraj [CJS02]) ψ is Ex-acceptable iff there exists a re-
cursive function f : N2 → N such that, for each p, there exist i0 and e such
that

(∀i ≥ i0)[f(p, i) = e] ∧ ψe = ϕp. (14)

We use the convention that, for each y, log(y) def= min{x | 2x ≥ y}. So, for
example, log(0) = 0 and log(3) = 2. For each e, C(e) denotes the plain Kolmo-
gorov complexity of e [LV08, Nie09]. Note that there exists an approximation
λs, e Cs(e) such that, for each e, C(e) = lims Cs(e). Further note that, for each
1–1 recursive sequence e0, e1, e2, . . ., there exists a constant c such that, for each
i, C(ei+1) < C(ei) + c.

3 When Kleene’s Recursion Theorem Is Absent

This section presents our results concerning numberings that do not satisfy
Kleene’s Recursion Theorem. Note that every acceptable numbering is a FinKrt-
numbering [Kle38]. However, as the next result shows, this does not generalize
to other criteria of acceptability. In particular, there is an Ex1-acceptable num-
bering that does not satisfy Kleene’s Recursion Theorem.

Theorem 7. There exists a numbering ψ satisfying (a)–(d) below.
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(a) ψ does not satisfy Kleene’s Recursion Theorem.
(b) ψ is an Ex1-acceptable numbering.
(c) ψ effectively optimal for Ex, Vac and Bc-learning.
(d) ψ is optimal for Fin-learning.

Proof. Let ψ be such that, for each e and x,

ψe(x) =

{
ϕe(x), if rng(ϕe) �⊆ {e, e+ 1, e+ 2, . . .};
↑, if rng(ϕe) ⊆ {e, e+ 1, e+ 2, . . .}. (15)

The numbering ψ does not satisfy Kleene’s Recursion Theorem: There is no
e such that ψe = λx e; hence, there is no e such that ψe = α(〈e, ·〉) when
α = λ〈e, x〉 e.

To show that ψ is Ex1-acceptable: there exists a translator which behaves
as follows. On input e, the translator first conjectures 0 for ψ0 = ϕ0 = λx ↑.
Then, in the case that ϕe(x) = y, for some x and y, the translator outputs
pad(e, y). Note that y < pad(e, y). Hence, it follows from the definition of ψ that
ψpad(e,y) = ϕe.

To show that ψ is effectively optimal for Ex, Vac, and Bc-learning: given a Bc-
learner M , the new learner N first conjectures 0 for λx ↑. If, however, a datum
(x, y) is ever seen, then, from that point onward, N simulates M and translates
each conjecture e of M into pad(e, y).

To show that ψ is optimal for Fin-learning: suppose that M is a Fin-learner
for a class not containing λx ↑. Then, the new learner N waits for the first pair
(x, y); from that point onward, N simulates M and translates each conjecture
e of M into pad(e, y). On the other hand, suppose that M is a Fin-learner for
a class containing λx ↑. Then, this class contains no other partial functions.
Hence, N can just ignore all input and output 0 as ψ0 = λx ↑. Hence, ψ is
optimal for Fin-learning.3 � (Theorem 7)

4 When Kleene’s Recursion Theorem Is Effective

This section presents our results concerning numberings that satisfy Kleene’s
Recursion Theorem in an effective way. These results include the following.
First, a numbering can be a FinKrt-numbering, yet not be optimal for learn-
ing (Theorem 8). Second, there exists an ExKrt-numbering that is not a FinKrt-
numbering (Theorem 10). Third, there exists a VacKrt-numbering that is not an
ExKrt-numbering (Theorem 11). Finally, there exists a BcKrt-numbering that is
not a VacKrt-numbering (Theorem 13).

Theorem 8. There exists a numbering ψ satisfying (a) and (b) below.

(a) ψ is a FinKrt-numbering.
(b) ψ is not optimal for any of the learning criteria Fin, Ex, Vac, Bc.

3 Note that, as ψ is not acceptable, ψ cannot be effectively optimal for Fin-
learning [JS10]. Hence, the non-uniform case distinction in this proof is unavoidable.
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Proof. The construction of ψ is in two parts. First, we construct a numbering ϑ
such that the set {e : ϑe has finite domain} is dense simple relative to K, i.e.,
the function that maps n to the n-th index of a function with infinite domain
dominates every K-recursive function.4 From ϑ, we construct ψ.

For each e, s, let Fe,s(·) be a uniformly recursive sequence of recursive func-
tions such that, for Fe(x) = lims→∞ Fe,s(x),

(a) for all e, x, Fe,s(x) ≤ Fe,s+1(x);
(b) if ϕKe (x)↓, then Fe(x)↓ ≥ ϕKe (x).
(c) if ϕKe (x)↑, then Fe(x)↑.

Note that such Fe,s exist and are uniformly recursive from e, s. Furthermore,
each of F0, F1, F2, . . . is a partial K-recursive function. It should also be noted
that, for each e, ϕKe is majorized by Fe. Hence, the function n �→ max{Fe(n) :
e ≤ n ∧ Fe(n)↓} dominates every K-recursive function.

Let ϑ be such that, for each n, m and x,

ϑ〈n,m〉(x) =

⎧⎪⎪⎨⎪⎪⎩
ϕn(x), if (∃s > x)

[
(∃e ≤ n)[Fe,s(n) = m]

∧ (∀d ≤ n)[ Fd,s(n) ≤ m

∨ Fd,s(n) > Fd,x(n)]
]
;

↑, otherwise.

(16)

We show that, for each n and m, ϑ〈n,m〉 has infinite domain iff ϕn has infinite
domain and m = max{Fe(n) : e ≤ n ∧ Fe(n)↓}. To see this, let n and m be
given and consider the following four cases.

Case 1: ϕn has finite domain. Clearly, for each n and m, ϕn extends ϑ〈n,m〉.
Hence, if ϕn has finite domain, then so does ϑ〈n,m〉.

Case 2: {Fe(n) : e ≤ n ∧ Fe(n)↓} = ∅. Let w be so large that, for each e ≤ n,

Fe,w(n) > m. (17)

Then, for each x ≥ w, there is no s > x such that (∃e ≤ n)[Fe,s(n) = m]. Hence,
for almost all x, ϑ〈n,m〉(x)↑.

Case 3: {Fe(n) : e ≤ n ∧ Fe(n)↓} �= ∅ and m �= max{Fe(n) : e ≤
n ∧ Fe(n)↓} <∞. Let w be so large that, for each e ≤ n,

Fe(n)↓ > m ⇒ Fe,w(n) = Fe(n), (18)

and
Fe(n)↑ ⇒ Fe,w(n) > m. (19)

Then, for each x ≥ w, there is no s > x such that (∃e ≤ n)[Fe,s(n) = m] and
(∀d ≤ n)[Fd,s(n) ≤ m ∨ Fd,s(n) > Fd,x(n)]. Hence, for almost all x, ϑ〈n,m〉(x)↑.

Case 4: ϕn has infinite domain and m = max{Fe(n) : e ≤ n ∧ Fe(n)↓}. Then,
for each x, one can find an s > x such that (∃e ≤ n)[Fe,s(n) = m] and, for each
d ≤ n,

[Fd(n)↓ ⇒ Fd,s(n) = Fd(n)] ∧ [Fd(n)↑ ⇒ Fd,s(n) > Fd,x(n)]. (20)

4 The existence of such numberings is a well-known folklore result.
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Hence, for each x, if ϕn(x)↓, then ϑ〈n,m〉(x)↓.
From Case 4 it also follows that, ϑ is a numbering for P . As the function

λn max{Fe(n) : e ≤ n ∧ Fe(n)↓} dominates every K-recursive function, the
set of all pairs 〈n,m〉 where ϑ〈n,m〉 has a finite domain is dense simple relative
to K.

Now, let ψ be such that, for each p, i and x,

ψ〈p,0〉(x) = ϑp(x); (21)

ψ〈p,i+1〉(x) = ψ〈p,i〉(〈〈p, i+ 1〉, x〉) (22)

Note that ψ is defined such that ψ〈p,i+1〉 coincides with the 〈p, i+ 1〉-th row of
ψ〈p,i〉. Hence, ψ is a FinKrt-numbering.

To show that ψ is not optimal for any of the criteria Fin, Ex, Vac, Bc: consider
the class S = {f0, f1, f2, . . .} where, for each n and x, fn(x) = n + x. S is
Fin-learnable and, hence, is also Ex, Vac and Bc-learnable.

Note that, if ψ〈p,i〉 = fn, then, by induction over j for all j > i, rng(ψp,i) −
rng(ψp,j) is infinite and hence ψp,j �= fm for all m. Thus, the following claim
holds.

Claim 9. For each p, there exists at most one i such that ψ〈p,i〉 ∈ C.

We first show S is not Vacψ-learnable. Now a Vac-learner for C would, for any
n, output only finitely many indices while learning the function fn. Hence, there
exists an index e such that Fe is a K-recursive (i.e., total) function and, for each
n, Fe(n) is larger than all the indices output by the learner while learning fn. It
follows that Fe(n) is greater than at least one pair 〈p, i〉 such that ψ〈p,i〉 = fn.
Using Claim 9, it follows that ϑ has n+1 distinct indices of functions with infinite
domain below the value max{Fe(0), Fe(1), . . . , Fe(n)}. But this contradicts the
fact that ϑ is a numbering in which the set of indices of partial functions with
finite domain is dense simple relative to K. Hence, C is not Vacψ-learnable, and
thus neither Finψ nor Exψ-learnable.

Now, assume by way of contradiction that there exists a Bcψ-learner M for
C. By Claim 9, it follows that, for each p and n, M outputs only finitely many
different indices of the form 〈p, i〉 while learning fn. Furthermore, by an argument
similar to that of the previous paragraph, it can be shown that, for each n, the
set {p | (∃i ∈ N)[M outputs 〈p, i〉 while learning fn] } is finite. Hence, the overall
number of indices output by the learner while learning an fn is finite. It follows
that M is actually a Vacψ-learner for C. But such a learner does not exist as
shown in the previous paragraph. � (Theorem 8)

The next result shows, in part, that there exist ExKrt-numberings that are not
FinKrt-numberings.

Theorem 10. There exists a numbering ψ satisfying (a)–(e) below.

(a) ψ is an Ex-acceptable numbering.
(b) ψ is an ExKrt-numbering.
(c) ψ is not a FinKrt-numbering.
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(d) ψ is effectively optimal for Ex-learning.
(e) ψ is neither optimal for Fin nor for Bc-learning.

Proof. Let ψ be such that, for each e and x,

ψe(x) =

{
ϕe(x), if (∃s > x)(∃n)[n2 ≤ Cs(e) ≤ n2 + n];
↑, otherwise.

(23)

First, we show that the set of indices of partial functions with infinite domain
is immune. Let E be any infinite r.e. set of indices and let e0, e1, e2, . . . be any
ascending recursive sequence of elements of E. Then, there exists a constant c
such that, for each i, C(ei+1) < C(ei) + c. Let n be so large that n > C(e0)
and n > c. As there are only finitely many indices with Kolmogorov complexity
below n2 + n, there exists a largest i such that C(ei) ≤ n2 + n. Note that

n2 + n < C(ei+1) < C(ei) + c < n2 + 2n < (n+ 1)2. (24)

It follows that ψei+1 has a finite domain. Hence, the set of indices of partial
functions with infinite domain is immune.

To show that ψ is Ex-acceptable: let e be given. It follows by an argument
similar to that of the previous paragraph that there exist n and y such that
n2 ≤ C(pad(e, y)) ≤ n2 + n. Furthermore, one can find from e the least such y
in the limit. One then has that ψpad(e,y) = ϕe.

To show that ψ is an ExKrt-numbering: let E0, E1, E2, . . . be a uniformly r.e.
family of infinite sets such that, for each p and each e ∈ Ep, ϕe = ψp(〈e, ·〉). One
can construct a machine M to witness that ψ is an ExKrt-numbering as follows.
Given p, M finds (in the limit) the least e ∈ Ep for which there exists an n such
that n2 ≤ C(e) ≤ n2 + n. (The existence of such an e follows by an argument
similar to that of the first paragraph.) Then, ψe = ϕe = ψp(〈e, ·〉).

To show that ψ is not a FinKrt-numbering: assume by way of contradiction
otherwise. Let e0 be such that ψe0 = λx x. Then, enumerate e1, e2, e3, . . . such
that, for each n, ψen+1 = ψen(〈en+1, ·〉). One can show by induction that, for
each n, rng(ψen+1) is a proper subset of rng(ψen). Hence, {e0, e1, e2, . . .} is an
infinite r.e. set of ψ-indices of total functions. But this would contradict the fact
that the set of indices of partial functions with infinite domain is immune.

To show that ψ is optimal for Ex-learning: it was shown above that ψ is Ex-
acceptable. It is known that Ex-acceptable numberings are effectively optimal
for Ex-learning [JS10].

To show that ψ is not optimal for Fin-learning: consider the class of all constant
functions. This class of functions is Fin-learnable. However, if this class could be
Finψ-learned, then there would be an infinite r.e. set consisting only of indices
of total functions. Again, this would contradict the fact that the set of indices
of functions with infinite domain is immune.

In order to see that ψ is not optimal for Bc-learning, it can be shown that
every Bcψ-learner can be transformed into a Vacψ-learner. However, as there
are Bc-learnable classes of partial functions which are not Vac-learnable, the
numbering ψ cannot be optimal for Bc-learning. � (Theorem 10)
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Theorem 11. There exists a numbering ψ satisfying (a)–(d) below.

(a) ψ is a VacKrt-numbering.
(b) ψ is not an ExKrt-numbering.
(c) ψ is effectively optimal for Vac.
(d) ψ is not optimal for any of the learning criteria Fin, Ex, Bc.

Proof. For this proof, let (Cs)s∈N be a sequence of uniformly recursive approxi-
mations to CK , such that CK(d) = lim sups→∞ Cs(d). Here we assume that the
approximation is such that, for any s and any e, there are at most 2e many d
such that Cs(d) < e. Let, for all d, e,

ψ〈d,e〉(x) =
{
ϕe(〈〈d, e〉, x〉), if [log(d) ≤ e+ 1] and (∃s > x)[Cs(d) ≥ e];
↑, otherwise.

Let g, h be recursive functions such that, for all p, x, ϕg(e)(x) = ψe(x) and
ϕh(e)(〈p, x〉) = ϕe(x). Note that there exist such g, h.

Claim 12. (i) If CK(d) < e or log(d) > e + 1, then ψ〈d,e〉 is a finite function.
(ii) For all e, for all d such that, log(d) ≤ e+ 1 and CK(d) ≥ e, the following

holds: (∀x)[ψ〈d,e〉(x) = ϕe(〈〈d, e〉, x〉)].
Here, note that for all e, there exists a d such that log(d) ≤ e + 1 and
CK(d) ≥ e.

(iii) For all e, for all d such that, log(d) ≤ h(e) + 1 and CK(d) ≥ h(e), the
following holds: (∀x)[ψ〈d,h(e)〉(x) = ϕh(e)(〈〈d, h(e)〉, x〉) = ϕe(x)].

(iv) For all e, for all d such that log(d) ≤ g(e) + 1 and CK(d) ≥ g(e), the fol-
lowing holds: (∀x)[ψ〈d,g(e)〉(x) = ϕg(e)(〈〈d, g(e)〉, x〉) = ψe(〈〈d, g(e)〉, x〉)].

Parts (i) and (ii) follow immediately from the construction. Parts (iii) and (iv)
follow using part (ii) and definitions of g and h.

By part (ii) of Claim 12 it follows that ψ is a numbering of all the partial
recursive functions. We now show the different parts of the theorem.

(a) Let f(e, s) = 〈d, g(e)〉 such that log(d) ≤ g(e) + 1 and Cs(d) ≥ g(e). By
part (iv) of Claim 12, we have that f witnesses that ψ satisfies VacKrt.

(b) Suppose 〈d0, e0〉 is such that, for all x, ψ〈d0,e0〉(x) = x. Suppose by way
of contradiction that H witness ExKrt for ψ, that is, for all i, x, ψH(i)(x) =
ψi(〈H(i), x)〉. Then for each n, let 〈dn+1, en+1〉 = H(〈dn, en〉). Thus,

(∀n, x) [ψ〈dn+1,en+1〉(x) = ψ〈dn,en〉(〈〈dn+1, en+1〉, x〉)]. (25)

Now, for all n, ψdn,en is total. Furthermore, range(ψdn+1,en+1) ⊂ range(ψdn,en).
Thus, 〈dn, en〉 are pairwise different for different n. Thus, for each a ∈ N, one
can effectively find an na with dna ≥ a ∧ ena ≥ a. For sufficiently large a,
CK(dna) ≤ 2 log(a) and ena ≥ a. But then, for sufficiently large a, by Claim 12,
ψ〈dna ,ena 〉, would be finite function. A contradiction.

(c) To see that the numbering is effectively optimal for vacillatory learning
note that, by Claim 12 and definition of h, for all e, for all but finitely many s, for
the least d such that log(d) ≤ h(e) + 1 and Cs(d) ≥ h(e), we have ψ〈d,h(e)〉(x) =
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ϕe(x). Thus, one can just convert a Vac-learner M using ϕ as the hypothesis
space to a Vac-learner M ′ using ψ as the hypothesis space by having M ′(f [n]) =
〈d, h(M(f [n])〉, where d is least such that log(d) ≤ h(M(f [n]) + 1 and Cn(d) ≥
h(M(f [n]).

(d) Let S be a class of total functions which is Bc-learnable by some learner
M using ψ as the hypothesis space. For any total f , let Ef = {M(f [n]) : n ∈ N}.
We claim that Ef is finite for each f ∈ S. Suppose by way of contradiction that
for some f ∈ S, Ef is infinite. Note that Ef is an r.e. set. Let η(e) = de, for the
first pair 〈de, e〉 enumerated in Ef , if any. Now, η(e) is defined on infinitely many
e, and thus CK(de) ≤ 2 log(e) for infinitely many e in the domain of η. But then,
by Claim 12, ψ〈de,e〉 is a finite function for infinitely many e in the domain of
η, a contradiction to M Bc-learning f . Thus, M is also a Vac-learner for S. As
there are classes of total functions which are Bc-learnable but not Vac-learnable
[CS83], ψ is not optimal for Bc-learning.

Now, suppose by way of contradiction that M Ex-learns all constant functions
using the numbering ψ. Thus, for each a, there exists a constant c such that, for
some da, ea, for all but finitely many n, M(c∞[n]) = 〈da, ea〉, with min{da, ea} ≥
a. Note that one such pair of values da, ea can be computed using the oracle K.
Then, for almost all a, CK(da) ≤ 2 log(a) and ea ≥ a. Hence, by Claim 12, for
all but finitely many a, ψ〈da,ea〉 is a finite function. Thus, M does not Ex-learn
the class of all constant functions using the numbering ψ. It follows that ψ is
not optimal for Fin and Ex-learning. � (Theorem 12)

The final result of this section establishes, in part, that there exist BcKrt-
numberings that are not VacKrt-numberings.

Theorem 13. There exists a numbering ψ satisfying (a)–(d) below.

(a) ψ is a BcKrt-numbering.
(b) ψ is not a VacKrt-numbering.
(c) ψ is not optimal for any of the learning criteria Fin, Ex, Vac.
(d) ψ is effectively optimal for Bc-learning.

Proof. Let ψ be such that, for each e and x,

ψe(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕe(x), if
[

ϕe,x(0)↑
∨ |rng(ϕe)| ≥ 2
∨ [ϕe(0)↓ ∧ C(ϕe(0)) < log(ϕe(0))]
∨ [ϕe(0)↓ ∧ |Wlog(ϕe(0)),x| < e]

∨ [ϕe(0)↓ ∧ |Wlog(ϕe(0))| > x]
]
;

↑, otherwise.

(26)

To show that ψ is a BcKrt-numbering: let E0, E1, E2, . . . be a uniformly r.e.
family of infinite sets such that, for each p and each e ∈ Ep, ϕe = ψp(〈e, ·〉). One
can construct a machine M to witness that ψ is a BcKrt-numbering as follows.
Suppose that M is given p. Then, at stage s, M outputs the first element e in
some canonical enumeration of Ep such that
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ϕe,s(0)↑
∨ |rng(ϕe,s)| ≥ 2
∨ [ϕe,s(0)↓ ∧ Cs(ϕe,s(0)) < log(ϕe,s(0))]
∨ e > s.

(27)

Consider the following two cases.
Case 1: There exists an e ∈ Ep such that ϕe(0)↑, |rng(ϕe)| ≥ 2, or ϕe(0) = y

for some y with C(y) < log(y). Then, M converges to the first such e in the
canonical enumeration of Ep. Furthermore, for this e, it holds that ψe = ϕe =
ψp(〈e, ·〉).

Case 2: Not Case 1. Then, the set F = {ϕe(0) : M outputs e} has an empty
intersection with the simple set {d : C(d) < log(d)} and, hence, is finite. Let
c = max{|Wlog(d)| : d ∈ F ∧ |Wlog(d)| < ∞}. As F is finite, this maximum c
is taken over only finitely many numbers and, hence, c < ∞. Furthermore, as
Case 1 does not apply, M outputs each index in Ep only finitely often. Hence, M
outputs almost always some index e > c. If, for such an e, Wlog(ϕe(0)) is finite,
then, for each x, |Wlog(ϕe(0)),x| ≤ c < e. On the other hand, if Wlog(ϕe(0)) is
infinite, then, for each x, |Wlog(ϕe(0))| > x. Either way, M outputs almost always
an e such that ψe = ψp(〈e, ·〉).

It follows from the case distinction that M witnesses that ψ is a BcKrt-
numbering.

To show that ψ is not a VacKrt-numbering: assume by way of contradiction
otherwise, as witnessed by M . We show that, under this assumption, one can
decide membership in {x | Wx is finite} using an oracle for K (which is impos-
sible). It is known that, for almost all x, there exist distinct y and z such that
log(y) = log(z) = x, but C(y) ≥ x and C(z) ≥ x.5 Given x, one can find such
y and z using an oracle for K. One can then determine p such that, for each v
and w,

ϕp(〈v, w〉) =
{
y, if v is even;
z, if v is odd.

(28)

Note that |rng(ϕp)| = 2 and, hence, ψp = ϕp. One can then run M on input
p and, using the oracle for K, determine the largest e among the finitely many
indices output by M . Hence, for some v < e, ψv is either the constantly y
function, or the constantly z function. It follows that either |Wlog(ϕv(0))| < v or
|Wlog(ϕv(0))| is infinite. If the former, then

|Wx| = |Wlog(ϕv(0))| < v < e. (29)

If the latter, then
|Wx| = |Wlog(ϕv(0))| ≥ e. (30)

5 Recall from Section 2 that, for each y, log(y) def= min{x | 2x ≥ y}. For each x ≥ 1,
there are 2x−1 many numbers y with log(y) = x and only 2x−1+1 many numbers y
with C(y) < x. Furthermore, for sufficiently large x, there will exist three or more
programs less than 2x−1 + 1 that either produce no output, or produce the same
output as programs less than themselves. Hence, for sufficiently large x, such y and
z exist.
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Hence, Wx is finite iff |Wx| < e. As |Wx| < e can be decided using an oracle for
K, this allows one to determine whether Wx is finite. Since this is impossible,
it follows that M does not witness that ψ is a VacKrt-numbering and, more
generally, that ψ is not a VacKrt-numbering.

To show that ψ is not optimal for any of the learning criteria Fin, Ex, Vac:
note that the class of constant functions is Fin-learnable. But it can be shown
that this class is neither Finψ , Exψ nor Vacψ-learnable using a proof-idea similar
to that of the previous paragraph. Assume by way of contradiction otherwise,
as witnessed by M . Then, given x, one can use an oracle for K to find a y such
that log(y) = x and C(y) ≥ x. Then, when M is fed a text for the constantly
y function, M outputs finitely many indices whose maximum is some e. Using
this e and the oracle for K, one can determine whether Wx is finite as in the
previous paragraph (a contradiction). Hence, ψ is not optimal for any of the
learning criteria Fin, Ex, Vac.

To show that ψ is effectively optimal for Bc-learning: suppose that M is a
Bc-learner that uses ϕ as its hypothesis space. Further suppose that M is fed a
text for a partial recursive function α and that e0, e1, e2, . . . is the sequence of
indices output by M on this text. Without loss of generality, suppose that this
sequence is monotonically increasing, e.g., due to padding. We show that, for
almost all i, ψei = ϕei . Consider the following three cases.

Case 1: α(0)↑. Then, for almost all i, ϕei(0)↑ and, hence, ψei = ϕei .
Case 2: α(0)↓ and |Wlog(α(0))| is infinite. Then, for almost all i, |Wlog(ϕei

(0))|
is infinite and, hence, ψei = ϕei .

Case 3: α(0)↓ and |Wlog(α(0))| is finite. Then, as e0, e1, e2, . . . is monotonically
increasing, for almost all i, |Wlog(ϕei

(0))| < ei. Hence, for almost all i, ψei = ϕei .
This case distinction shows that Bcϕ-learners that output successively larger

indices are also Bcψ-learners. Hence, the numbering ψ is effectively optimal for
Bc-learning. � (Theorem 13)

5 When Kleene’s Recursion Theorem Is Ineffective

This section presents our results concerning numberings that satisfy Kleene’s
Recursion Theorem, but not in an effective way. Moelius [Moe09, Theorem 4.1]
showed that there exist numberings that are not BcKrt-numberings, but in which
Kleene’s Recursion Theorem holds. Hence, in such numberings, Kleene’s Recur-
sion Theorem is extremely ineffective. Theorems 14 and 15 expand on Moelius’s
result by showing that there exist such numberings that are optimal for learning
and such numberings that are not optimal for learning (respectively).

Theorem 14. There exists a numbering ψ satisfying (a)–(c) below.

(a) ψ satisfies Kleene’s Recursion Theorem.
(b) ψ is not a BcKrt-numbering.
(c) ψ is not optimal for any of the learning criteria Fin, Ex, Vac, Bc.

Theorem 15. There exists a numbering ψ satisfying (a)–(c) below.
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(a) ψ satisfies Kleene’s Recursion Theorem.
(b) ψ is not a BcKrt-numbering.
(c) ψ is effectively optimal for Ex, Vac and Bc-learning.

Acknowledgment. The authors would like to thank Samuel E. Moelius III for
discussions and support in writing this paper.
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Abstract. This paper defines a new notion of bounded pseudorandom-
ness for certain classes of sub-computable functions where one does not
have access to a universal machine for that class within the class. In par-
ticular, we define such a version of randomness for the class of primitive
recursive functions and a certain subclass of PSPACE functions. Our
new notion of primitive recursive bounded pseudorandomness is robust
in that there are equivalent formulations in terms of (1) Martin-Löf tests,
(2) Kolmogorov complexity, and (3) martingales.

Keywords: algorithmic randomness, complexity, computability.

1 Introduction

The study of algorithmic randomness has flourished over the past century. The
main topic of study in this paper is the randomness of a single real num-
ber which, for our purposes, can be thought of as an infinite sequence X =
(X(0), X(1), . . . ) from {0, 1}ω. Many interesting notions of algorithmic ran-
domness for real numbers have been investigated in recent years. The most
well-studied notion, Martin-Löf randomness [24] or 1-randomness, is usually de-
fined in terms of measure. A real X is 1-random if it is typical, that is, X
does not belong to any effective set of measure zero in the sense of Martin-Löf
[24]. A second definition of 1-randomness may be given in terms of informa-
tion content. X is 1-random if it is incompressible, that is, the initial segments
(X(0), X(1), . . . , X(n)) have high Kolmogorov [18] or Levin-Chaitin [10,20] com-
plexity. A third definition may be given in terms of martingales. X is 1-random
if it is unpredictable, that is, there is no effective martingale for which one can
obtain unbounded capital by betting on the values of X [27]. These three ver-
sions have been shown by Schnorr [26] to be equivalent. This demonstrates the
robustness of the concept of Martin-Löf randomness. Many other notions of algo-
rithmic randomness have been studied and in most cases, formulations are only
given for one or perhaps two versions. For a thorough study of the area of algo-
rithmic randomness, the reader is directed to three excellent recently published
books: Downey and Hirschfeldt [15], Nies [25] and Li and Vitanyi [21].
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In this paper we present a notion of bounded pseudorandomness for certain
classes of sub-computable functions where one does not have access to a universal
machine for that class within the class. We will first state our definitions for the
class of primitive recursive functions and define a new notion of bounded primitive
recursive pseudorandomness (BP randomness). We shall show that there are
three equivalent definitions of BP randomness, one in terms of measure, one
in terms of compressibility, and one in terms of martingales. For measure, a
bounded primitive recursive test will be a primitive recursive sequence of clopen
sets (Un)n≥0 such that Un has measure ≤ 2−n and we define X to be BP random
if it does not belong to

⋂
n≥0 Un for any such test. For compressibility, we say

that X is BP compressed by a primitive recursive machine M if there is a
primitive recursive function f such that CM (X � f(c)) ≤ f(c)− c for all c where
CM is a primitive recursive analogue of Kolomogrov complexity. We will show
that X is BP random if and only if X is not compressible by any primitive
recursive machine. For martingales, we say that a primitive recursive martingale
d succeeds on a sequence X if there is a primitive recursive function f such that
d(X � f(n)) ≥ 2n for each n. Thus d makes us rich betting on X and f tells us
how fast this happens. We will show that X is BP random if and only if there
is no primitive recursive martingale which succeeds on X . These definitions can
easily be adapted to define a notion of bounded pseudorandomness for other
classes of sub-computable functions. As an example, we will define a notion of
bounded PSPACE pseudorandomness.

The terms bounded randomness or finite randomness are sometimes used to
refer to versions of randomness given by tests in which the c.e. open sets are in
fact clopen. Thus our notion of BP randomness is “bounded” in this sense. The
term “finite” comes from the fact that any clopen set U is the finite union of
intervals U = [σ1] ∪ · · · ∪ [σk]. Kurtz randomness [19], also refered to as weak
randomness, falls into this category. A real X is Kurtz random if it does not
belong to any Π0

1class Q of measure zero. But any Π0
1class may be effectively

expressed as a decreasing intersection of clopen setsQ =
⋂
nQn where the clopen

sets Qn are unions of intervals of length n. If μ(Q) = 0, it is easy to find a
subsequence Ui = Qni with μ(Ui) ≤ 2−i and thus (Un)n≥0 is a bounded Martin-
Löf test. Another special type of bounded randomness was recently studied by
Brodhead, Downey and Ng [8].

As shown byWang [28], Kurtz random reals need not be stochastic in the sense
of Church. For example, it need not be the case that the number of occurrences of
0’s in a Kurtz random sequence X tends to 1/2 in the limit. In such a situation,
one often uses the term pseudorandom instead of randomness. Our BP random
reals are pseudorandom in this sense. That is, we will construct a recursive real
which is BP random but not stochastic. However, we will show that BP random
sets satisfy only a weak version of the stochastic property.

A lot of work has been done on various notions of resource-bounded random-
ness. One of the first approaches to resource-bounded randomness was via the
stochastic property of typical reals [12]. It is expected that for a random real,
the relative density of the occurrences of 0 and of 1 should be equal in the limit.
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We identify a set A of natural numbers with its characteristic function and in

those terms we expect that limn
card(A∩[[n]])

n = 1
2
where [[n]] = {0, 1, . . . , n} for

any n ∈ N. Levin [20] defined a notion of primitive randomness for a set A to
mean that for every primitive recursive set B, A ∩B is stochastic relative to B
and constructed a recursive set that is primitive random. Di Paola [13] studied
similar notions of randomness in the Kalmar hierarchy of elementary functions.
Wilber [29] defined a set A to be P -random if, for every PTIME set B, A and
B agree on a set of density 1

2
and constructed an exponential time computable

P -random set.
The literature of computational complexity contains many papers on ran-

dom number generators and cryptography which examine various notions of
pseudorandomness. For example, Blum and Micali [7] gave a weak definition of
pseudorandom sequences in which a randomly generated sequence is said to be
pseudorandom if it meets all PTIME statistical tests. Ko [17] gave definitions
of randomness with respect to polynomial time and space complexity which are
in the tradition of algorithmic randomness as established by Levin, Martin-Löf
and Chaitin. One of the notions of Ko has equivalent formulations in terms of
tests and in terms of compressibility and has bounds on the compressibility that
are similar in nature to those presented in this paper. Ko’s definitions are based
on computation from a universal machine M and, in particular, states that X
is (PSPACE) compressed with polynomial bounding function f if, for every k,
there exists infinitely many n such that KM (X � n) < n− (log n)k. In contrast,
our definitions are not based on the existence of a universal machine.

Lutz [22] defined an important notion of resource-bounded randomness in
terms of martingales. Here a real is, say, PSPACE random if there is no
PSPACE martingale which succeeds on X . One can also say that a set X of
reals has PSPACE measure one if there is no PSPACE martingale which suc-
ceeds on every element of X . Then almost every EXPSPACE real is random
and this can be used to study properties of EXPSPACE reals by examin-
ing whether the set of EXPSPACE reals with the property has measure one.
Buhrman and Longpre [9] gave a rather complicated equivalent formulation of
PSPACE randomness in terms of compressibility. Lutz’s notion of complexity
theoretic randomness concept has had great impact on complexity theory [1,2,3].
Shen et al. [11] have recently studied on-line complexity and randomness.

There are several important properties of Martin-Löf random reals that are re-
garded as fundamental such as Ville’s theoremwhich states that any effective sub-
sequence of a random sequence is also random.We will prove an analogue of Ville’s
theorem for BP randomness. Another fundamental property for random reals is
van Lambalgen’s theorem, which states that the join A⊕B of two random sets is
random if and only if A is random relative to B and B is random. We define a no-
tion of relative BP randomness which still has three equivalent formulations, and
prove an analogue of van Lambalgen’s theorem for this notion. Our formulation
is a type of truth-table reducibility similar to that of Miyabe [23].

For the case of bounded PSPACE randomness, we give two different notions,
one which has equivalent versions for compression and for measure and the other
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of which has equivalent versions for measure and for martingales. These notions
are actually a hybrid of polynomial time and space.

We note that we get a notion of bounded computable pseudorandomness by
replacing primitive recursive functions by computable functions in our defini-
tions. In such a case, our definitions are equivalent to Kurtz randomness which
has nice equivalent formulations in all three settings. This was previously shown
by Wang [28] for the martingale definition and by Downey, Griffiths and Reid
[14] and also Bienvenu and Merkle [6] for the compression definition.

Jockusch [16] showed that Kurtz random sets are immune, that is, they do
not have infinite c. e. subsets. We will consider an analogue of immunity for our
notion of bounded pseudorandom sets.

We will normally work with the usual alphabet Σ = {0, 1} and the corre-
sponding set {0, 1}∗ of finite strings and the Cantor space {0, 1}ω of infinite
sequences, but our results hold for any finite alphabet.

The outline of this paper is as follows. In section 2, we study BP randomness
and show the equivalence of our three versions. We construct a computable real
which is BP random. We prove an analogue of Ville’s theorem for primitive re-
cursive subsequences of BP random reals. We will also define a notion of relative
randomness and prove an analogue of van Lambalgen’s theorem. In section 3,
we consider two notions of bounded PSPACE pseudorandomness and give two
equivalent definitions for each notion. Finally, in section 4, we will state our
conclusions and some directions for further research.

2 Bounded Primitive Recursive Randomness

In this section, we will define the three notions of primitive recursive randomness,
Kolmogorov BP randomness, Martin-Löf BP randomness, and martingale BP
randomness and show their equivalence. Hence, we will say that a real X is BP
random if it satisfies one of these three definitions. We will then prove analogues
of Ville’s Theorem and van Lambalgen’s Theorem of BP random reals.

We will work with the family of primitive recursive functions M : Σ∗ → Σ∗,
where Σ is a finite alphabet (normally {0, 1}). Note that we can code finite
strings as numbers in order to define these primitive recursive functions and
that the coding and decoding functions are all primitive recursive.

Martin-Löf BP Randomness
In what follows, the code c(σ) of a finite sequence σ = σ1 . . . σn ∈ {0, 1}∗ is just
the natural number whose binary expansion is 1σ1 . . . σn. Given a nonempty
finite set S = {σ(1), . . . , σ(k)} of strings in {0, 1}∗ such that c(σ(1)) < · · · <
c(σ(k)), the code C(S) of S is defined be the natural number n whose ternary
expansion is 2c(σ(1))2 . . . 2c(σ(k)). We let 0 be the code of the empty set. We
say a sequence {Un : n ∈ N} of clopen sets is a primitive recursive sequence if
there is a primitive recursive function f such that for all n, f(n) is a code of
a finite set Gn = {σ1,n, . . . , σk(n),n} such that Un = [Gn]. Here for any string
σ ∈ {0, 1}∗ and X ∈ {0, 1}ω, we write σ � X if σ is an initial segment of X and
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we let [σ] = {X ∈ {0, 1}N such that σ � X}. For any set G of strings in {0, 1}∗,
we let [G] =

⋃
{[σ] : σ ∈ G}.

Since we can recover {σ1,n, . . . , σk(n),n} from f(n) in polynomial time, it is
easy to see that given any primitive recursive sequence {Un : n ∈ N}, we can
produce a primitive recursive function g such that g(n) is a code of a finite set
Gn = {τ1,n, . . . , τr(n),n}subseteq{0, 1}�(n) where Un = [Gn] and r and � are also
primitive recursive functions.

We define a primitive recursive test to be a primitive recursive sequence
(Un)n≥0 of clopen sets such that, for each n, μ(Un) ≤ 2−n. It follows that there
is a primitive recursive function m such that m(n) codes the measure μ(Un)
as a dyadic rational. Since the measures μ(Un) may be computed, one could
equivalently consider a primitive recursive sequence {Vn : n ∈ N} such that
limn μ(Vn) = 0 and there is a primitive recursive function f such that, for each
p, μ(Vf(p)) ≤ 2−p.

We observe here that
⋂
n Un will be a Π0

1 class of measure 0 so that any
primitive recursive test is a Kurtz test and, hence, is also a Schnorr test.

We say that an infinite sequence X ∈ {0, 1}ω is Martin-Löf BP random if X
passes every primitive recursive test, that is, for every primitive recursive test
(Un)n≥0, there is some n such that X /∈ Un.

By the remarks above, every Kurtz random real is Martin-Löf BP random.

Proposition 1. X is Martin-Löf BP random if and only if there is no primitive
recursive sequence (Un)n≥0 of clopen sets with μ(Un) = 2−n such that X ∈⋂
n Un.

Proof. The if direction is immediate. Now suppose that there is a primitive
recursive sequence (Vn)n≥0 such that μ(Vn) ≤ 2−n and X ∈

⋂
n Vn. Let Vn =⋃

σ∈Gn
[σ] where Gn ⊆ {0, 1}�(n) for some primitive recursive function �(n) where

�(n) ≥ n for all n ≥ 0. Then μ(Vn) =
card(Gn)

2�(n) ≤ 2−�(n). Now define Hn to be

Gn together with 2�(n)−n − card(Gn) additional strings of length �(n) and let
Un =

⋃
τ∈Hn

[τ ]. Then for each n, X ∈ Un and μ(Un) = 2−n.

We will also need the notion of a weak primitive recursive test. A weak primitive
recursive test (Un)n≥0 is a primitive recursive sequence (Gn)n≥0 of finite sets
of strings, where there is a primitive recursive function � such that for each n,
Un = [Gn] and, for all τ ∈ Gn, |τ | = �(n) and μ(Un+1 ∩ [τ ]) ≤ 1

2
μ([τ ]).

We can convert each primitive recursive test (Un)n≥0 into a weak primitive
recursive test as follows. First, we may assume that Un+1 ⊆ Un for each n,
since the sequence given by Wn =

⋂
i≤n Ui is also a primitive recursive test with

μ(Wn) ≤ μ(Un) ≤ 2−n. Next suppose Un = [τ1,n] ∪ · · · ∪ [τk(n),n] where there is
a primitive recursive function � such that |τi,n| = �(n) for 1 ≤ i ≤ k(n). Thus
each interval [τi,n] has measure exactly 2−�(n). Now the clopen set U�(n)+1 has

a total measure ≤ 2−�(n)−1, so that the relative measure of μ(U�(n)+1 ∩ [τi,n]) ≤
1
2
μ([τi,n]). Then we can define a primitive recursive weak test (Vn)n≥0 as follows.

Let h(0) = 0 and let V0 = U0. Then let h(1) = �(0)+1 and V1 = Uh(1). In general
for n > 1, we let h(n + 1) = �(h(n)) + 1 and let Vn+1 = Uh(n+1). Then the
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sequence V0, V1, . . . will be a weak primitive recursive test. Since the sequence
{Vn : n ∈ N} is a subsequence of the original sequence {Um : m ∈ N}, it follows
that
⋂
n Vn =

⋂
n Un, so that X passes the weak test {Vn : n ∈ N} if and only if

it passes the original test.
It follows that a real X passes every primitive recursive test, then it certainly

passes every weak primitive recursive test. Conversely, if X fails some primitive
recursive test, then the argument above shows that it also fails some weak test.
Hence we conclude the following.

Proposition 2. X is Martin-Löf BP random if and only if it passes every weak
primitive recursive test. ��

Kolmogorov BP Random
Let CM (τ) be the length |σ| of the shortest string σ such that M(σ) = τ ,
that is, the length of the shortest M -description of τ . Notice that we are using
plain and not prefix-free complexity. We say that X is primitive recursively
compressed by M if there exist primitive recursive functions M and f such that,
for every c ∈ N, CM (X � f(c)) ≤ f(c) − c. Our definition of primitive recursive
compression is a natural analogue for primitive recursive functions of the usual
definition of Kolmogorov compression which says that, for every c ∈ N, there
exists n such that CM (X � n) ≤ n − c. Of course, one defines Kolmogorov
randomness in terms of prefix-free complexity KM since there are no infinite
Kolmogorov random sequences for plain complexity. We use plain complexity
here since every primitive recursive function is total so that there are no prefix-
free primitive recursive machines.

We say that an infinite sequence X ∈ {0, 1}ω is Kolmogorov BP random if it
cannot be primitive recursively compressed by any primitive recursive machine
M . A notion of prefix-free complexity for primitive recursive functions may be
obtained by allowing primitive recursive functions M such that M(σ) may di-
verge. This can be done by introducing a new symbol ∞ as a possible output of
M(σ) to signify that M(σ) diverges. It is not hard to show that this makes no
difference.

Proposition 3. A real X is BP random if and only if it is prefix-free BP
random.

Martingale BP Random
A martingale d is a function d : {0, 1}∗ → Q∩ [0,∞] such that for all σ ∈ {0, 1}∗,
d(σ) =

∑
a∈{0,1} d(σ

�a)/2. Of course, any primitive recursive martingale is
also a computable martingale. We say that the martingale d succeeds primitive
recursively on X if there is a primitive recursive function f such that, for all
n, d(X � f(n)) ≥ 2n. (Of course, we could replace 2n here with any primitive
recursive function which is increasing to infinity.) In general, a martingale d is
said to succeed on X if lim supn d(X � n) =∞, that is, for every n, there exists
m such that d(X � m) ≥ 2n. Thus our definition is an effectivization of the usual
definition where there is a primitive recursive function f which witnesses that d
will return 2n at some point for every n. We say that X is martingale BP random
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if there is no primitive recursive martingale which succeeds primitive recursively
on X . If X is not martingale BP random, then there is a computable martingale
which succeeds primitive recursively on X and thus certainly succeeds on X , so
that X is not computably random. Hence every computably random real is also
a martingale BP random real.

Our definition of martingale BP random real has the following equivalent
formulations.

Proposition 4. The following are equivalent.

(1) X is martingale BP random.
(2) There do not exist a primitive recursive martingale d and a primitive re-

cursive function f such that, for every n, there exists m ≤ f(n) such that
d(X � m) ≥ 2n.

(3) There do not exist a primitive recursive martingale d and a primitive recur-
sive function f such that d(X � m) ≥ 2n for all n and all m ≥ f(n).

Proof. Our proof uses the idea of a savings account as formulated in [15,25].
That is, if we have a martingale and function as in (2), then we can modify the
martingale so that whenever d(τ) ≥ 2n+1 but d(σ) < 2n+1 for all proper initial
segments of τ , then we put aside 2n and only bet with the other half of our
capital. This means that we can never drop below 2n in the future. Thus if we
use the function f ′(n) = f(n+1), we will satisfy condition (3) and hence satisfy
(1) as well.

Our main result in this section is to show the three versions of BP random
described above are equivalent.

Theorem 1. The following statements are equivalent for X ∈ {0, 1}ω.

(1) X is Martin-Löf BP random.
(2) X is Kolmogorov BP random.
(3) X is martingale BP random.

Proof. We shall show the equivalence of (1) with both (2) and (3).

(1) implies (2): Suppose X is not Kolmogorov BP random. Then there ex-
ist primitive recursive M and f such that CM (X � f(c)) ≤ f(c)− c− 1 for every
c ∈ N.

Let Uc = {X : CM (X � f(c)) ≤ f(c) − c − 1}. This is certainly a uniformly
primitive recursive sequence of clopen sets. That is, given c, compute M(σ) for
all σ with |σ| ≤ f(c)− c− 1 and let

Gc = {M(σ) : σ ∈ {0, 1}≤f(c)−c−1} ∩ {0, 1}f(c)

and Uc =
⋃
τ∈Gc

[τ ]. Clearly, (Uc)c≥0 is a primitive recursive sequence of clopen
sets.

We claim that μ(Uc) ≤ 2−c. That is, fix c and let Uc = [τ1] ∪ [τ2] ∪ · · · ∪ [τk],
for distinct τi ∈ {0, 1}f(c). Thus there exist σ1, . . . , σk such that, for i = 1, . . . , k,
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|σi| ≤ f(c) − c − 1 and such that M(σi) = τi. Since there are only 2f(c)−c − 1
strings of length ≤ f(c) − c − 1, it follows that k ≤ 2f(c)−c. Since for each i,
μ([τi]) = 2−f(c), it follows that μ(Uc) = k · 2−f(c) ≤ 2f(c)−c · 2−f(c) = 2−c. By
assumption, X ∈ Uc for all c ≥ 0 so that X is not Martin-Löf BP random.

(2) implies (1): Suppose that X is not Martin-Löf BP random. Thus there
exist primitive recursive functions g, k, and f so that for all c ≥ 0, g(c) is a
code of a finite sets of strings {τi,c : 1 ≤ i ≤ k(c)} ⊆ {0, 1}f(c) such that if
Uc = [τ1,c] ∪ [τ2,c] ∪ · · · ∪ [τk(c),c], then μ(Uc) ≤ 2−c and X ∈

⋂
c≥0 Uc. We may

assume without loss of generality that for each c, f(c+ 1)− (c+ 1) > f(c)− c.
This is because we may always break each [τi] into [τi

�0] ∪ [τi
�1] to increase

f(c) by one, if necessary.
We will define a primitive recursive function M such that for all c ∈ N,

CM (X � f(c)) ≤ f(c) − c. Since μ(Uc) = k(c) · 2−f(c), it follows that k(c) ≤
2f(c)−c. Now take the lexicographically first k(c) strings σ1,c, . . . , σk(c),c of length
f(c) − c and define M(σi,c) = τi,c. To make M a total function, the remaining
strings of length f(c) − c may all be mapped to 0 and all strings not of length
f(c)− c for any c are also mapped to 0.

By assumption X ∈ Uc for every c ∈ N so that X � f(c) = τi,c for some
i. Hence M(σi,c) = τi,c = X � f(c). Since |σi,c| = f(c) − c, it follows that
CM (X � f(c)) = f(c)− c.

It remains to be checked that M is indeed a primitive recursive function.
Observe that since f(c + 1) − c − 1 > f(c) − c > 0 for all c ∈ N, we have by
induction that f(c)− c > c for all c. Thus, given a string σ of length m, we need
only check c < m to see whether m = f(c) − c for some c. This can be done
primitive recursively. That is, if m = f(c) − c, then it is a bounded search to
determine whether σ = σi,c where M(σi,c) = τi,c or not. If not, or if m �= f(c)−c
for any c, then we just let M(σ) = 0.

Hence, X is not Kolmogorov BP random.

(1) implies (3): Suppose that X is not martingale BP random. Then there
is a primitive recursive martingale d which succeeds primitive recursively on
X so that there is a primitive recursive function f such that, for all n, d(X �
f(n)) ≥ 2n. Let Gn = {τ ∈ {0, 1}f(n) : d(τ) ≥ 2n} and let Un =

⋃
τ∈Gn

[τ ].
Since d and f are primitive recursive, it follows that the sequence (Un)n≥0 is a
primitive recursive sequence of clopen sets. Certainly X ∈

⋂
n Un.

Recall that for all martingales with d(∅) = 1,
∑
|τ |=m d(τ) ≤ 2m. It follows

that there are at most 2f(n)−n strings τ ∈ {0, 1}f(n) such that d(τ) ≥ 2n. For
each such τ , μ([τ ]) = 2−f(n). Thus μ(Un) ≤ 2f(n)−n · 2−f(n) = 2−n.

Hence (Un)n≥0 is a primitive recursive test so that X is not Martin-Löf BP
random.

(3) implies (1): Suppose X is not Martin-Löf BP random. Then X ∈
⋂
n Un

where (Un)n≥0 is a weak primitive recursive test. We may assume that there are
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primitive recursive functions � and k such that Un = [τ1,n]∪ · · · ∪ [τk(n),n] where
|τi,n| = �(n). Let Gn = {τ1,n, . . . , τk(n),n}.

We recursively define our martingale d as follows. For n = 1, we let d(τi,1) =
2�(1)

k(1) for i = 1, . . . , k(1). If τ ∈ {0, 1}�(1)−{τ1,1, . . . , τk(1),1}, then we let d(τ) = 0.

Since μ(U1) ≤ 1
2
, it follows that k(1) ≤ 2�(1)−1 and therefore d(τi,1) ≥ 2 for each

i. Moreover,
∑
τ∈{0,1}�(1) d(τ) = k(1) · 2�(1)

k(1) = 2�(1). Now work backwards using

the martingale equation d(σ) = 1
2
(d(σ�0) + d(σ�1)) to define d(σ) for all σ of

length ≤ f(1). It follows by induction that for all j ≤ f(1),
∑
τ∈{0,1}j d(τ) = 2j

so that, in particular, d(∅) = 1.
Now suppose that we have defined d(τ) for all τ with |τ | ≤ �(n) so that

d(τ) ≥ 2n for all τ ∈ Gn. Then we will show how to extend d to strings of length
≤ �(n+ 1). For σ of length �(n), we will define d(στ), where στ = σ�τ , for all
τ of length �(n+ 1)− �(n). If d(σ) = 0, then we simply let d(στ) = 0 for all τ .
Now fix σ ∈ Gn with d(σ) ≥ 2n and consider G = {τ : στ ∈ Gn+1}. Since we
have begun with a weak test, it follows that μ([G]) ≤ 1

2
. Thus we may proceed

as in the first case where n = 1 to define a martingale m such that m(σ) = 1
and m(τ) ≥ 2 for all τ ∈ G. Now extend the definition of d to the strings below
σ by defining d(στ) = d(σ) ·m(τ). Since d(σ) ≥ 2n and, for τ ∈ G, m(τ) ≥ 2, it
follows that for στ ∈ Gn+1, d(στ) ≥ 2n+1. It is easy to see that this extension
obeys the martingale equality, since, for any τ ,

d(στ) = d(σ) ·m(τ) = d(σ) · 1
2
(m(τ�0)+m(τ�1)) =

1

2
· (d(στ�0)+ d(στ�1)).

Since X ∈
⋂
n Un, it follows that d(X � �(n)) ≥ 2n for each n and hence d

succeeds primitive recursively on X .
It is clear that from a given string σ, this defines a primitive recursive pro-

cedure to compute d(σ). The first step is to compute �(n) for n ≤ |σ| until we
find n so that |σ| ≤ �(n). Then we consider all extensions τ of σ of length �(n).
We can follow the procedure outlined above to compute d(σ � �(i)) for i ≤ n,
and, hence, compute d(τ) for all extensions τ of σ of length �(n). Finally we
backtrack using the martingale inequality to compute d(σ) from the values of
such d(τ). Thus d is a primitive recursive martingale so that X is not martingale
BP random. ��
We should note one could alternatively prove Theorem 1 by modifying proofs
that have already appeared in the literature. For example Downey, Griffiths and
Reid [14] proved the equivalence of parts (1) and (3) in the setting of Kurtz
randomness and their proof can be modified to give a proof of the equivalence
of parts (1) and (3) in Theorem 1. Similarly, Bienvenu and Merkle [6] gave a
proof the equivalence of parts (1) and (2) in the setting of Kurtz randomness
and their proof can easily be modified to give a proof of the equivalence of parts
(1) and (2) in Theorem 1.

Given Theorem 1, we define an X ∈ {0, 1}ω to be BP random if and only
if X is Martin-Löf BP random. Since every BP test is also a Kurtz test and a
computable test, it follows that all Kurtz random and all computably random
reals are BP random.
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It is clear that no primitive recursive set can be BP random. It was shown by
Jockusch [16] that Kurtz random sets are immune, that is, they do not include
any c.e. subsets. Here is a version of that result for BP randomness.

Proposition 5. If A is BP random, then for any increasing primitive recursive
function f , A does not contain the range of f .

Proof. Suppose for the contrapositive that A contains the range of f . For each
n, let Gn = {σ ∈ {0, 1}f(n) : (∀i < n)(σ(f(i)) = 1)}. Then let Un =

⋃
τ∈Gn

[τ ].
It is clear that μ([Un]) = 2−n so that (Un)n≥0 is a primitive recursive test. But
then A belongs to each Un so that A is not BP random.

Theorem 2. There is a recursive real which is BP random.

Proof. Let (ge, �e)e≥0 enumerate all pairs of primitive recursive functions. For
any e, let Gn,e = {σ1,n, . . . , σke(n),n} be the finite set whose code is ge(n) and
Un,e = [Ge,n].

Our goal is to construct an increasing recursive functions r and t and recursive
sequence X = (X(0), X(1), . . .) such that for all s, either
(I) it is not the case that for all 1 ≤ i ≤ r(e), μ(Ui,e) ≤ 2−i, |σ| = �e(i) for all
σ ∈ Gi,e, and U0,e ⊇ U1,e ⊇ · · · ⊇ Ur(e),e or
(II) (I) fails and (X(0), . . . , X(t(e)− 1)) �∈ Ur(e),e.
That is, either ge and �e do not specify a primitive recursive test of the proper
form or (X(0), . . . , X(s(e)− 1)) �∈ Ur(e),e. This will ensure that X is a recursive
real which is not BP random.

We construct r, t, and X in stages as follows.

Stage 0. Compute �0(1), G1,0 and U1,0. If it is not the case, that μ(U1,0) ≤ 1
2

and |σ| = �0(1) for all σ ∈ G1,0, then set r(0) = s(0) = 1 and X(0) = 0. Oth-
erwise let σ be the lexicographically least string τ of length �0(1) such that
τ �∈ U1,0. Note that σ must exists since μ(U1,0) ≤ 1

2
. Then set r(0) = 1,

(X(0), . . . , X(�0(1)− 1)) = σ, and t(0) = �0(1).

Stage s+1. Assume that we have defined r(0) < · · · < r(s), t(0) < · · · < t(s),
and (X(0), . . . , X(t(s)− 1)) such that either (I) or (II) hold for e ≤ s.

Then let r(s + 1) = t(s) + 2. If it is the case that for all 1 ≤ i ≤ r(s + 1),
μ(Ui,s+1) ≤ 2−i, |σ| = �s+1(i) for all σ ∈ Gi,s+1, and U0,s+1 ⊇ U1,s+1 ⊇ · · · ⊇
Ur(s+1),s+1, then we know that μ(Ur(s+1),s+1) ≤ 2−(t(s)+2) and �s+1(r(s+1)) ≥
t(s)+2. Thus there must exist an extension τ of (X(0), . . . , X(t(s)−1)) of length
�s+1(r(s + 1)) such that τ �∈ Ur(s+1),s+1. Then we let t(s + 1) = �s+1(r(s + 1))
and (X(0), . . . , X(t(s+1)− 1)) be lexicographically least such τ . Otherwise, we
let t(s+ 1) = t(s) + 1 and X(t(s+ 1)− 1) = 0.

It is easy to see that our construction is completely effective so that X =
(X(0), X(1), . . .) will be a computable real which is not BP random.

Next we show that BP random reals satisfy the following analogue of Ville’s
Theorem.
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Theorem 3. Let X ∈ {0, 1}n be BP random and let g be a primitive recursive
increasing function. Then the sequence (X(g(0)), X(g(1)), X(g(2)), . . .) is also
BP random.

Proof. Let Y (n) = X(g(n)) and suppose by way of contradiction that Y is not
BP random. Let (Un)n≥0 be a primitive recursive test such that Y ∈ Un for all
n. That is, suppose that there are primitive recursive functions a, b, and c such
that

1. Un+1 ⊆ Un for all n,
2. μ(Un), is ≤ 2−n for all n, and
3. for all n, a(n) is the code of a finite set Gn = {σ1,n, . . . , σb(n),n} of strings

such that Un = [Gn] and |σi,n| = c(n) for all 1 ≤ i ≤ b(n).

For any string τi,n = τ1 . . . τc(n) in Gn, let τ
(1)

i,n , . . . , τ
(2g(c(n))−c(n))

i,n be a list of

the 2g(c(n))−c(n) strings of length g(c(n)) such that (τ
(i)
g(1)τ

(i)
g(2) . . . τ

(i)
g(c(n))) = τi,n.

Then define

Vn = {X : (X(g(1), . . . , X(g(c(n)))} ∈ Un} =
b(n)⋃
i=1

2g(c(n))−c(n)⋃
j=1

[τ
(j)
i,n ].

It is easy to see that μ(Un) = μ(Vn) and the (Vn)n≥1 is a primitive recursive
test. But then X ∈

⋂
n≥1 Vn which would violate the fact that X is BP random.

Thus Y must be BP random.

2.1 Statistical Tests

It is important to see to what extent the BP random sets are statistically random.
We begin with a positive result.

Theorem 4. Let A be a BP random set. For any increasing primitive recursive

function f and any ε > 0, there is some n such that | card(A∩[[f(n)]])f(n) − 1
2
| ≤ ε.

Proof. This follows from the law of large numbers (Chernoff’s Lemma [21], p.61).

Corollary 1. For any BP random set A, if limn
card(A∩[[n]])

n exists, then it
equals 1

2
.

On the other hand, BP random sets do not have to be stochastic.

Theorem 5. There exists a computable BP random set A such that

limn
card(A∩[[n]])

n does not exist.

Proof. To construct such a set A, just modify the proof of Theorem 2 by adding
long strings of 0’s and long strings of 1’s (in alternation) after satisfying each re-
quirement. Then we can make the density go below 1

3
and then above 2

3
infinitely

often.
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2.2 Relative Randomness

Primitive recursive functions may be defined with inputs from N and also from
NN by simply adding the basic evaluation functional Ev where Ev(n,X) = X(n)
to the basic constant, successor, and projection functions and closing under com-
position and primitive recursion. If X is a fixed subset of N, then we obtain the
X-primitive recursive functions using the characteristic function of X as a fixed
oracle.

Relative Martin-Löf BP Randomness
We define a primitive recursive oracle test to consists of a primitive recursive
function g : N × NN → N and a primitive recursive function f such that for
all Z ∈ N, g(n, Z) = gZn is the code of a finite sequences of strings GZn =
{σZ1,n, . . . , σZkZ (n),n} ⊆ {0, 1}f(n) such that if UZn = [GZn ], then for all n, μ(UZn ) ≤
2−n. Thus a primitive recursive oracle test must uniformly give a Z-primitive
recursive test for all Z ⊆ N. Then we say that X is Martin-Löf BP random rel-
ative to Y ⊆ N if, for any primitive recursive oracle test G, X /∈ [GYn ] for some n.

Relative Kolmogorov BP Random
Let M : {0, 1}∗ × NN → {0, 1}∗ be a primitive recursive oracle function. Then
for any Y ⊆ N, we let CYM (τ) be the length |σ| of the shortest string σ such that
MY (σ) = τ , i.e., the length of the shortest MY -description of τ .

An infinite sequence X is Kolmogorov BP random relative to Y if it cannot
be primitive recursively compressed by any function MY which is primitive re-
cursive in Y . Here we say that X is primitive recursively compressed relative to
Y if there exist a primitive recursive oracle function M : {0, 1}∗×NN → {0, 1}∗
and a primitive recursive function f such that, for every c ∈ N , CYM (X � f(c)) ≤
f(c) − c. Notice that f is still primitive recursive although the function MY is
only primitive recursive in Y .

Relative Martingale BP Random
Let D : {0, 1}∗ × NN → Q ∩ [0,∞] be a primitive recursive oracle function.
We say that D is a primitive recursive oracle martingale if the function DZ :
{0, 1}∗ → Q ∩ [0,∞] is a martingale for all Z ⊆ N where for any σ ∈ {0, 1}∗,
DZ(σ) = D(σ, Z). Then X is BP random relative to Y if there is no primi-
tive recursive oracle martingale D such that DY succeeds primitive recursively
on X .

It is easy to see that we can simply relativize the proof of Theorem 1 to prove
that X is Kolmogorov BP random relative to Y if and only if X is Martin-Löf
BP random relative to Y if and only if X is martingale BP random relative
to Y .

With these definitions, we can modify the proof of van Lambalgen’s Theorem
to prove the following theorem. Recall that if A,B ⊆ N, then A⊕B = {2x : x ∈
A} ∪ {2x+ 1 : x ∈ B}.
Theorem 6. For any sets A,B ⊆ N, A ⊕ B is BP random if and only if B is
BP random relative to A and A is BP random.
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3 Polynomial-Space Bounded Pseudorandomness

In this section, we shall briefly outline how one might modify the definitons
of BP random to define a notion of random relative to PSPACE functions.
In particular, we shall define two possible analogues of BP random reals for
PSPACE. Let PSPACE∗ be the family of functions computable in polynomial
space where we include the space needed to write the output. Thus the output
of a PSPACE∗ function has length which is a polynomial of the length of the
input.

To obtain a robust analogue of primitive recursive randomness, we speci-
fied primitive recursive bounding functions f which, for example, specified that
d(X � f(n)) ≥ 2n for a primitive recursive martingale to succeed. The key to
versions of PSPACE random reals is that we require similar bounding func-
tions which are polynomial time functions f : {1}∗ → {1}∗. That is, we have the
following notions of PSPACE BP random reals.

Martin-Löf BPS Random
A PSPACE test (Un)n≥0 is specified by a pair of functions (G, f) such that
G : {1}∗ × {0, 1}∗ → {0, 1} is a PSPACE-function and f : {1}∗ → {1}∗ is a
strictly length increasing PTIME function such that for each n,

Gn,f = {τ ∈ {0, 1}≤|f(1
n)| : G(1n, τ) = 1} = {σ1,n, . . . , σk(n),n}

is a set of strings of length ≤ |f(1n)| such that Un = [σ1,n] ∪ · · · ∪ [σk(n),n] is a
clopen set with measure ≤ 2−n.

A weak PSPACE test (Un)n≥0 is specified by a pair (G, f) as above with
the additional property that for each n, μ(Un+1 ∩ [σi,n]) ≤ 1

2
μ([σi,n]).

We say that X is Martin-Löf BPS random if X passes every PSPACE test
and is weakly Martin-Löf BPS random if X passes every weak PSPACE test.

Kolmogorov BPS Random
An infinite sequence X is Kolmogorov BPS random if there do not exist a
PSPACE∗ function M : {0, 1}∗ → {0, 1}∗ and a PTIME function f : {1}∗ →
{1}∗ such that, for every n ∈ N, CM (X � |f(1n)|) ≤ |f(1n)| − n.

Martingale BPS Random
A PSPACE∗ martingale d : {0, 1} → Q ∩ [0,∞] succeeds on X if there is a
PTIME function f : {1}∗ → {1}∗ such that, for all n, there is some m ≤ |f(1n)|
such that d(X � m) ≥ 2n. Here we shall think of Q∩[0,∞] as the set of all strings
σ2τ where σ.τ is the binary expansion of a rational number r ∈ Q ∩ [0,∞]. We
say that X is martingale BPS random if no PSPACE∗ martingale succeeds
on X .

By suitably modifying the proof of Theorem 1, we can prove the following.

Theorem 7. For any X ∈ {0, 1}ω,
(1) X is Kolmogorov BPS random if and only if X is Martin-Löf BPS random

and
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(2) X is martingale BPS random if and only if X is weakly Martin-Löf BPS
random.

By modifying the proof of Theorem 2, we can prove the following.

Theorem 8. There is a DSPACE(22
n

) real which is Martin-Löf BPS random.

4 Conclusions and Future Work

In this paper, we defined a robust notion of primitive recursive and PSPACE
bounded pseudorandom reals in that each definition could be framed in at least
two of the three versions of algorithmically random reals via measure, Kol-
mogorov complexity, or martingales. We view the work of this paper as a possible
model for defining algorithmically random reals relative to several other classes
of sub-computable functions. In future work, we will define similar notions of
bounded pseudorandom reals for other classes of sub-computable functions such
as elementary, on-line, or EXPSPACE.

A theory of algorithmic randomness for trees and effectively closed sets was
developed in a series of papers by Barmpalias, Cenzer, Remmel et al [4,5]. One
can adapt our definitions of primitive recursive bounded pseudorandomness to
define similar notions of bounded pseudorandom trees and effectively closed sets
for various classes of sub-computable functions. This will appear in future papers.
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Abstract. We automate the construction of analytic sequent calculi and
effective semantics for a large class of logics formulated as Hilbert calculi.
Our method applies to infinitely many logics, which include the family
of paraconsistent C-systems, as well as to other logics for which neither
analytic calculi nor suitable semantics have so far been available.

1 Introduction

Non-classical logics are often introduced using Hilbert systems. Intuitionistic,
modal and paraconsistent logics are just a few cases in point. The usefulness of
such logics, however, strongly depends on two essential components. The first
is an intuitive semantics, which can provide insights into the logic. A desir-
able property of such semantics is effectiveness, in the sense that it naturally
induces a decision procedure for the logic. Examples of such semantics include
finite-valued matrices, and their generalizations: non-deterministic finite-valued
matrices (Nmatrices) and partial Nmatrices (PNmatrices) (see [5,6]). The second
component is a corresponding analytic calculus, i.e. a calculus whose proofs only
consist of concepts already contained in the result. Analytic calculi are useful
for establishing various properties of the corresponding logics, and are also the
key for developing automated reasoning methods for them.

In this paper we provide both methodologies and practical tools for an auto-
matic generation of analytic sequent calculi and effective semantics for a large
class H of Hilbert systems. This is a concrete step towards a systematization of
the vast variety of existing non-classical logics and the developement of tools for
designing new application-oriented logics, see e.g. [11].

The calculi in H are obtained (i) by extending the language of CL+, the
positive fragment of classical logic, to a language LU which includes also a finite
set U of unary connectives, and (ii) by adding to a Hilbert axiomatizationHCL+

of CL+ axioms over LU of a certain general form. H contains infinitely many
systems, which include well-known Hilbert calculi, the simplest and best known
of which is the standard calculus for classical logic, obtained by adding to HCL+

the usual axioms for negation. Another example of calculi in H is the family of
paraconsistent logics known as C-systems [8,10].
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Given a system H ∈ H, our algorithm proceeds in two steps. First we intro-
duce a sequent calculus G equivalent to H . This is done by suitably adapting the
procedure in [9], where certain Hilbert axioms are transformed into equivalent
(sequent and hypersequent) structural rules. In contrast to [9], however, here the
rules extracted from the axioms of H are logical rules in Gentzen’s terminology,
that is they introduce logical connectives. The analyticity of the resulting calcu-
lus depends on the interaction between these rules. This is not anymore a local
check and needs instead a “global view” on the obtained calculus, which is pro-
vided by the semantics constructed in the second step. This semantics is given in
the framework of PNmatrices – a generalization of usual many-valued matrices
in which each entry in the truth-tables of the logical connectives consists of a
possibly empty set of options (see [6]). This framework allows non-deterministic
semantics, and also, using empty sets of options makes it possible to forbid some
combinations of truth values. However, it is still effective, as it guarantees the
decidability of the corresponding sequent calculus. As a corollary it follows that
each system H ∈ H is decidable. Furthermore, we show that the PNmatrix con-
structed for H is an Nmatrix (i.e., it has no empty sets in the truth-tables) iff
G enjoys a certain generalized analyticity property.

Related Work: A semi-automated procedure to define semantics and analytic
calculi for the family of C-systems was introduced in [4]. A corresponding Nma-
trix was constructed there for each system in the family, and was then used for
introducing a corresponding analytic sequent calculus. However, the construc-
tion of Nmatrices out of the Hilbert calculi is done manually, and it requires
some ingenuity. In this paper we provide a full automation of the generation
of effective semantics and analytic calculi for all the systems considered in [4],
which have finite-valued semantics. Our method also applies to infinitely many
other extensions of CL+, which had so far no available semantics or adequate
calculi. These include some logics defined in [1], finding semantics for which was
left as an open problem. It should be noted that our algorithm reverses the steps
taken in [4]: it first extracts suitable sequent rules from the axioms of H, and
uses them to “read off” the semantics.

Implementation: Our method is implemented in the Prolog system Paralyzer,
available at www.logic.at/people/lara/paralyzer.html. For any set of ax-
ioms over LU of a certain general form Paralyzer (PARAconsistent (and other)
logics anaLYZER) outputs: (a) a set of corresponding sequent rules, and (b)
the associated PNmatrix. The user can choose whether to start as basic system
with HCL+ or with the system BK from [4], obtained by augmenting HCL+

with the axioms (n1), (b) and (k) (cf. Fig. 1). In the latter case, by exploiting
the invertibility of the sequent rules for ◦, (a) and (b) for the C-systems having
finite-valued semantics coincide with the results in [4].

2 Step 1: From Hilbert Systems to Sequent Calculi

The first step of our method consists of a mapping from a family H of Hilbert
systems into a family G of “well-behaved” sequent calculi.
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2.1 The Family H

In what follows, L denotes a propositional language, and wffL is its set of formulas.
We assume that the atomic formulas of L are {p1, p2, . . .}. L+

cl is the language of
CL+, the positive fragment of (propositional) classical logic, consisting of the bi-
nary connectives ∧,∨ and ⊃. We consider languages that extend L+

cl with finitely
many new unary connectives (such as ¬ and ◦). Henceforth U denotes an arbi-
trary finite set of unary connectives, and LU denotes the extension of L+

cl with the
connectives of U . For a Hilbert system H , we write Γ �H ϕ if ϕ is provable in H
from a finite set Γ of formulas.HCL+ denotes any Hilbert calculus for L+

cl, which
is sound and complete for CL+. H is a family of axiomatic extensions of HCL+,
each of which is in the language LU for some U . These systems are obtained by
augmenting HCL+ with axioms1 of the form defined below.

Definition 1. Let U = { 1, . . . ,  n}. AxU is the set of LU -formulas generated
by the following grammar (where S is the initial variable):

S = Rp | R1 | R2 P1 = (P1 � P1) |  p1 | p1 | p2 | . . .
Rp = (Rp � P1) | (P1 �Rp) |  p1 P2 = (P2 � P2) |  p1 |  p2 | p1 | p2 | p3 | . . .
R1 = (R1 � P1) | (P1 �R1) |   p1 � = ∧,∨,⊃
R2 = (R2 � P2) | (P2 �R2) |  (p1 � p2)  =  1 | . . . |  n

N : (n1) p1 ∨ ¬p1 (n2) p1 ⊃ (¬p1 ⊃ p2)
(c) ¬¬p1 ⊃ p1 (e) p1 ⊃ ¬¬p1
(nl

∧) ¬(p1 ∧ p2) ⊃ (¬p1 ∨ ¬p2) (nr
∧) (¬p1 ∨ ¬p2) ⊃ ¬(p1 ∧ p2)

(nl
∨) ¬(p1 ∨ p2) ⊃ (¬p1 ∧ ¬p2) (nr

∨) (¬p1 ∧ ¬p2) ⊃ ¬(p1 ∨ p2)

(nl
⊃) ¬(p1 ⊃ p2) ⊃ (p1 ∧ ¬p2) (nr

⊃) (p1 ∧ ¬p2) ⊃ ¬(p1 ⊃ p2)
C : (b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) (r) ◦(p1 � p2) ⊃ (◦p1 ∨ ◦p2)

(k) ◦p1 ∨ (p1 ∧ ¬p1) (i) ¬◦p1 ⊃ (p1 ∧ ¬p1)
(o1

) ◦p1 ⊃ ◦(p1 � p2) (o2
) ◦p2 ⊃ ◦(p1 � p2)

(a) (◦p1 ∧ ◦p2) ⊃ ◦(p1 � p2) (a¬) ◦p1 ⊃ ◦¬p1

Fig. 1. Examples of formulas in Ax{¬,◦} (� ∈ {∨,∧,⊃})

Definition 2. A Hilbert calculus H for a language LU is called a U-extension
of HCL+ if it is obtained by augmenting HCL+ with a finite set of axioms from
AxU . We denote by H the family of all U-extensions of HCL+ for some U .

The family H contains infinitely many systems, which include many well-known
Hilbert calculi. The most important member of H is the standard calculus for
(propositional) classical logic, obtained by adding (n1) and (n2) to HCL+ (cf.
Fig. 1). Other important examples include various systems for paraconsistent
logics [4,7,8,10].

Remark 1. Paraconsistent logics are logics which are tolerant of inconsistent
theories, i.e. there are some formulas ψ, ϕ, such that: ψ,¬ψ �� ϕ. One well-known

1 By axioms we actually mean axiom schemata.
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family of paraconsistent logics, formulated in terms of Hilbert calculi, is known as
C-systems [4,7,8,10]. In this family the notion of consistency is internalized into
the object language by employing a unary consistency operator ◦, the intuitive
meaning of ◦ψ being “ψ is consistent”. Clearly, a system which includes the
standard axiom for negation (n2) (Fig. 1) cannot induce a paraconsistent logic.
Many C-systems include instead the weaker axiom (b), and in addition also the
axiom (n1). Furthermore, different C-systems employ different subsets of the
axioms from the set C (Fig. 1), which express various properties of the operator
◦. For instance, axiom (a∨) says that the consistency of two formulas implies
the consistency of their disjunction. The axiom (o1

∨) expresses another form of
consistency propagation: the consistency of a formula implies the consistency of
its disjunction with any other formula. By adding toHCL+ various combinations
of axioms from Fig. 1, we obtain a wider family of systems (not all of them
paraconsistent), many of which are studied in [2,4].

2.2 The Family G

The sequent calculi we will consider, formulated label-style, are as follows:

Definition 3. 1. A labelled L-formula has the form b : ψ, where b ∈ {f, t}
and ψ ∈ wffL. An L-sequent is a finite set of labelled L-formulas. The
usual sequent notation ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm is interpreted as the set
{f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}.

2. An L-substitution is a function σ : wffL → wffL, such that σ(�(ψ1, . . . , ψn)) =
�(σ(ψ1), . . . , σ(ψn)) for every n-ary connective � of wffL. L-substitutions are
naturally extended to labelled L-formulas and L-sequents.

3. An L-rule is an expression of the form Q/s, where Q is a finite set of L-
sequents (called premises) and s is an L-sequent (called conclusion). An
application of an L-rule Q/s is any inference step inferring the L-sequent
σ(s) ∪ c from the set of L-sequents {σ(q) ∪ c | q ∈ Q}, where σ is an L-
substitution, and c is an L-sequent.

4. A sequent calculus G for L consists of a finite set of L-rules. We write S �G s
whenever the L-sequent s is derivable from the set S of L-sequents in G.

Example 1. Formulated according to Def. 3, the standard sequent calculus LK+

for CL+ is the set of L+
cl-rules consisting of the following elements:

(id) ∅/{f : p1, t : p1} (cut) {{f : p1}, {t : p1}}/∅
(W⇒) {∅}/{f : p1} (⇒W ) {∅}/{t : p1}
(∧ ⇒) {{f : p1, f : p2}}/{f : p1 ∧ p2} (⇒ ∧) {{t : p1}, {t : p2}}/{t : p1 ∧ p2}
(∨ ⇒) {{f : p1}, {f : p2}}/{f : p1 ∨ p2} (⇒ ∨) {{t : p1, t : p2}}/{t : p1 ∨ p2}
(⊃⇒) {{t : p1}, {f : p2}}/{f : p1 ⊃ p2} (⇒⊃) {{f : p1, t : p2}}/{t : p1 ⊃ p2}

G is a family of sequent calculi, each of which is in the language LU for some
U . These calculi are obtained by augmenting LK+ with simple rules:
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(⇒ ¬) {{f : p1}}/{t : ¬p1}
Γ, ϕ⇒ Δ

Γ ⇒ ¬ϕ,Δ

(◦ ⇒) {{t : p1}, {t : ¬p1}}/{f : ◦p1}
Γ ⇒ ϕ,Δ Γ ⇒ ¬ϕ,Δ

Γ, ◦ϕ⇒ Δ

(¬¬ ⇒) {{f : p1}}/{f : ¬¬p1}
Γ, ϕ⇒ Δ

Γ,¬¬ϕ⇒ Δ

(⇒ ¬∧)1 {{t : ¬p1}}/{t : ¬(p1 ∧ p2)}
Γ ⇒ ¬ϕ,Δ

Γ ⇒ ¬(ϕ ∧ ψ),Δ

Fig. 2. Examples of L{¬,◦}-rules and their applications forms

Definition 4. A Un-premise (n = 1, 2) is an LU -sequent of the form {b : pn}
or {b :  pn}, where b ∈ {f, t} and  ∈ U . An LU -rule Q/s is (b ∈ {f, t},  , ! ∈ U
and � ∈ {∧,∨,⊃}):

– primitive if s = {b :  p1} and Q consists only of U1-premises.
– onevar if s = {b :  ! p1} and Q consists only of U1-premises.
– twovar if s = {b :  (p1 � p2)} and Q consists only of U1-premises and U2-

premises.
– simple if it is either a primitive, a onevar or a twovar rule.

Example 2. (⇒ ¬) is primitive, (¬¬ ⇒) onevar, and (⇒ ¬∧)1 twovar (cf. Fig. 2).

Distinguishing between the types of rules above will be crucial for the semantic
definitions of Section 3.2. As we shall see, rules of different types will play dif-
ferent semantic roles: the primitive rules will determine the truth values in the
PNmatrices, while the onevar and twovar rules will dictate the truth-tables of
the unary and binary connectives respectively.

Definition 5. A sequent calculus G for LU is called a U-extension of LK+ if it
is obtained by augmenting LK+ with a finite set of simple LU -rules. We denote
by G the family of all U-extensions of LK+ for some U .

2.3 Mapping from H to G

Given a Hilbert system H ∈ H we show how to construct a sequent calculus
GH ∈ G which is equivalent in the following sense:

Definition 6. A sequent calculus G is equivalent to a Hilbert system H if for
every finite set Γ ∪ {ϕ} of formulas: Γ �H ϕ iff �G Γ ⇒ ϕ.

Fact 1. LK+ is equivalent to HCL+.

We denote by H ∪{ϕ} the Hilbert system obtained from H by adding the axiom
ϕ, and by G ∪R the sequent calculus extending G with the set R of rules.
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Definition 7. Let R and R′ be two sets of L-rules, and G be a sequent calculus
for L. R and R′ are equivalent in G if Q �G∪R′ s for every Q/s ∈ R, and
Q �G∪R s for every Q/s ∈ R′.

Definition 8. An LU -rule Q/s is invertible in G if s �G q for every q ∈ Q.

The key observations for our transformation procedure are: (i) the invertibility
of the rules for ∧,∨ and ⊃ in LK+, (ii) Lemma 1, known as Ackermann’s lemma
and used, e.g. in [9] for substructural logics, and (iii) Lemma 2, which allows the
generated rules to obey a (weaker form of) subformula property.

Lemma 1. Let G be a sequent calculus for L extending LK+. Let s be an L-
sequent, and γ be a labelled formula in s. The L-rule ∅/s is equivalent in G to
the rule r = {{b : ϕ} | b : ϕ ∈ s \ {γ}}/{γ} (where f = t and t = f).

Proof. {{b : ϕ} | b : ϕ ∈ s\{γ}} �G∪{∅/s} γ is obtained by applying the rule ∅/s
and then have multiple applications of (cut) (preceded by suitable applications
of (W⇒) and (⇒W )). To prove �G∪{r} s we first use (id) to obtain {f : ψ, t : ψ}
for every ψ ∈ {ϕ | b : ϕ ∈ s \ {γ}} followed by suitable applications of (W⇒)
and (⇒W ). The claim then follows by applying r. ��

Lemma 2. Let G be a sequent calculus for L extending LK+. Let s be an L-
sequent, and let s′ = s ∪ {b : p}, where b ∈ {f, t} and p is an atomic formula
that does not occur in s. Then, �G∪{∅/s′} Γ ⇒ ϕ iff �G∪{∅/s} Γ ⇒ ϕ, for every
sequent Γ ⇒ ϕ.

Proof. Clearly, �G∪{∅/s′}⊆�G∪{∅/s} (applications of ∅/s′ can be simulated using
(W⇒) or (⇒W ), and ∅/s). For the converse direction, we distinguish two cases
according to b. If b = f then every application of ∅/s deriving σ(s) can be
simulated in G ∪ {∅/s′} by using (cut) on σ(s) ∪ {f : p1 ⊃ p1} (obtained by
∅/s′ in which p is substituted with p1 ⊃ p1) and σ(s) ∪ {t : p1 ⊃ p1}, derivable
in LK+. If b = t we need a proof transformation: every application of ∅/s in
a derivation of Γ ⇒ ϕ is replaced with an application of ∅/s′, in which p is
substituted with ϕ. t : ϕ is then propagated till the end sequent. ��

Theorem 1. Every H ∈ H has an equivalent sequent calculus GH ∈ G.

Proof. Follows by repeatedly applying the following procedure (starting from
HCL+ and LK+). Let H ∈ H and G ∈ G be an equivalent sequent calculus for
LU and let ψ ∈ AxU . We show how to construct a finite (possibly empty) set
R′ of simple LU -rules such that H ∪ {ψ} is equivalent to G ∪R′.

First, it is easy to see that H ∪ {ψ} is equivalent to G ∪ {rψ}, where rψ is
the rule ∅/{t : ψ}. For the right-to-left direction consider a proof of a sequent
Γ ⇒ ϕ in G∪{rψ}, and transform it into a proof of Γ, ψ ⇒ ϕ in G, by replacing
every application of rψ with the identity axiom {f : ψ, t : ψ}, and propagating
f : ψ through the derivation till the end sequent. The equivalence of H and G
entails that Γ, ψ �H ϕ, and it immediately follows that Γ �H∪{ψ} ϕ.

Now, starting from rψ and using the invertibility of the rules for ∧,∨ and
⊃, we obtain a finite set of rules R, such that (i) R is equivalent to {rψ} in G,
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and (ii) each r ∈ R has the form ∅/s, where s has one of the following forms,
according to whether ψ is generated by Rp, R1 or R2 in the grammar of Def. 1:

1. s consists of at least one labelled formula of the form b :  p1 (b ∈ {f, t},
 ∈ U), and any number of labelled formulas b : pi (b ∈ {f, t}, i ≥ 1).

2. s consists of exactly one labelled formula of the form b :  ! p1 (b ∈ {f, t},
 , ! ∈ U), and any number of labelled formulas of the form b : pi or b :  p1
(b ∈ {f, t}, i ≥ 1, and  ∈ U).

3. s consists of exactly one labelled formula of the form b :  (p1 �p2) (b ∈ {f, t},
 ∈ U , � ∈ {∧,∨,⊃}), and any number of labelled formulas of the form b : pi,
b :  p1, or b :  p2 (b ∈ {f, t}, i ≥ 1, and  ∈ U).

Obviously, we can discard all rules ∅/s of R for which {f : pi, t : pi} ⊆ s for some
i ≥ 1. By Lemma 2, for each rule ∅/s left in R: if s has the form 1 or 2 above, we
can omit from s all labelled formulas of the form b : pi for i > 1, and similarly,
if s has the form 3, all labelled formulas of the form b : pi for i > 2. By Lemma
1 the resulting rules can be transformed into equivalent simple LU -rules. ��

The proof above is constructive, and induces an algorithm to extract simple
LU -rules out of axioms in AxU .

Example 3. Let (b) be the axiom p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)). Consider the rule
∅/{t : p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2))}. Using the invertibility of (⇒⊃) we obtain
an equivalent rule ∅/{f : p1, f : ¬p1, f : ◦p1, t : p2}. By Lemma 2 we get
∅/{f : p1, f : ¬p1, f : ◦p1}. The primitive rule {{t : p1}, {t : ¬p1}}/{f : ◦p1} (or
{{t : p1}, {t : ◦p1}}/{f : ¬p1}) then follows by Lemma 1.

3 Step 2: Extracting Semantics

We define finite-valued semantics, using partial non-deterministic matrices, for
every calculus in G.

3.1 Partial Non-deterministic Matrices

Partial non-deterministic matrices were introduced in [6] in the context of la-
belled sequent calculi. They generalize the notion of non-deterministic matrices
by allowing empty sets of options in the truth-tables of the logical connectives.
This feature makes it possible to semantically characterize every G ∈ G. Below
we shortly reproduce and adapt to our context the basic definitions from [6].

Definition 9. A partial non-deterministic matrix (PNmatrix)M for L consists
of: (i) a set VM of truth values, (ii) a subset DM ⊆ VM (designated truth values),
and (iii) a truth-table �M : VMn → P (VM) for every n-ary connective � of L.

Definition 10. Let M be a PNmatrix for L, and W be a set of L-formulas
closed under subformulas.
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1. A W-valuation is a function v from W to some set V (of truth values). A
wffL-valuation is also called an L-valuation.

2. A W-valuation v is called M-legal if its range is VM, and it respects the
truth-tables of M, i.e. v(�(ψ1, . . . , ψn)) ∈ �M(v(ψ1), . . . , v(ψn)) for every
compound formula �(ψ1, . . . , ψn) ∈ W.

3. A W-valuation v satisfies an L-sequent s for M (denoted by v |=M s) if
either v(ϕ) ∈ DM for some t : ϕ ∈ s, or v(ϕ) �∈ DM for some f : ϕ ∈ s.

4. Given an L-sequent s, �WM s if v |=M s for every M-legal W-valuation v.

We write �M s instead of �wffL
M s.

Clearly, every (ordinary) matrix can be identified with a PNmatrix, in which all
truth-tables take only singletons.

Example 4. The (positive fragment of the) standard classical matrix can be iden-
tified with the PNmatrix MLK+ defined as:

1. VMLK+ = {f, t}, DMLK+ = {t}.
2. ∧M

LK+
, ∨M

LK+
, and ⊃M

LK+
are defined according to the classical truth-

tables (singletons are used instead of values, e.g. ∧MLK+ (t, f) = {f}).

Fact 2. MLK+ is sound and complete for LK+ (i.e. �LK+ s iff �MLK+ s).

3.2 PNmatrices for U-extensions of LK+

Until the end of this section, let G be some U-extension of LK+. The main
idea behind the construction of a PNmatrix MG for G is to use truth values as
“information carriers” (along the lines of [1]) in the following sense. In addition to
determining whether ϕ is “true”, the truth value of ϕ contains also information
about the “truth/falsity” of all the formulas of the form  ϕ for  ∈ U . To this end,
instead of using the truth values {f, t}, we use extended truth values, which are
tuples over {f, t} of size |U|+1. The first element of each such a tuple u, denoted
by u0, is reserved for representing the “truth/falsity” of ϕ. Each connective  ∈ U
is then (arbitrarily) allocated one of the remaining elements. We shall denote
by u� the element of u allocated for  ∈ U . Thus whenever ϕ is assigned the
truth value u, ϕ is “true” iff u0 = t, and for each  ∈ U ,  ϕ is “true” iff u� = t.
However, in constructing MG not all the possible tuples will be used as truth
values: only those that “respect” the primitive rules of G (cf. Def. 4). This is
formalized as follows:

Notation 1. We denote by VU the set of all (|U|+ 1)-tuples over {f, t}.

Definition 11. A tuple u ∈ VU satisfies a U1-premise q, if either q = {u0 : p1},
or q = {u� :  p1} for some  ∈ U . u respects a primitive rule Q/{b :  p1} if
u� = b whenever u satisfies every q ∈ Q.

Definition 12. VMG (the set of truth values of the PNmatrix MG) is the set
of all tuples in VU which respect all primitive rules of G. In addition, the set of
designated truth values DMG is {u ∈ VMG | u0 = t}.
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Example 5. Suppose that U = {¬}, and that the only primitive rule of G is
{{f : p1}}/{t : ¬p1}. A pair u ∈ VMG respects (⇒ ¬) iff u¬ = t whenever
u0 = f . Thus we obtain VMG = {〈f, t〉, 〈t, f〉, 〈t, t〉} (here u¬ is the second
component of each pair). The designated values are: DMG = {〈t, f〉, 〈t, t〉}.

Having defined the truth values of MG, we proceed to providing a truth-table
!MG for each (unary) connective ! ∈ U . This is done according to the onevar
rules of G of the form Q/{b :  ! p1}.

Definition 13. Let ! ∈ U . For every u1 ∈ VMG , !MG(u1) is the set of all tuples
u ∈ VMG such that: (i) u0 = u�1; and (ii) for every onevar rule of G of the form
Q/{b :  ! p1}, if u1 satisfies every q ∈ Q then u� = b.

Intuitively, condition (i) forces the information about the “truth/falsity” of !ϕ
carried in the truth value of !ϕ (in the first bit of this tuple) to be equal to the
one carried in the truth value of ϕ.

Example 6. Following Example 5, suppose that G’s only onevar rule of the form
Q/{b :  ¬p1} is {{f : p1}}/{f : ¬¬p1}. Let us explain, e.g., how ¬MG(〈t, f〉) is
obtained. The only tuple from VMG = {〈f, t〉, 〈t, f〉, 〈t, t〉} satisfying condition (i)
(that is, whose first component is 〈t, f〉¬ = f) is u = 〈f, t〉. Condition (ii) holds
trivially for u, as 〈t, f〉 does not satisfy the premise {f : p1} of the above rule.
Thus we obtain: ¬MG(〈t, f〉) = {〈f, t〉}. Similarly, we get ¬MG(〈f, t〉) = {〈t, f〉},
and ¬MG(〈t, t〉) = {〈t, f〉, 〈t, t〉}.

To complete the construction of MG, we provide the truth-tables of the binary
connectives, using the twovar rules.

Definition 14. A pair of tuples 〈u1, u2〉 ∈ VU 2 satisfies a U1-premise q, if u1

satisfies q. 〈u1, u2〉 satisfies a U2-premise q, if u2 satisfies q.

Definition 15. Let � ∈ {∧,∨,⊃}. For every u1, u2 ∈ VMG , �MG(u1, u2) is the
set of all tuples u ∈ VMG satisfying: (i) u0 ∈ �M

LK+
(u0

1, u
0
2); and (ii) for every

twovar rule of G of the form Q/{b :  (p1 � p2)}, if 〈u1, u2〉 satisfies every q ∈ Q
then u� = b.

Intuitively, condition (i) ensures that � behaves as the corresponding classical
connective, and condition (ii) provides the correspondence between the truth-
table of � and the twovar rules that involve �.

Example 7. Following Example 5, suppose that G’s only twovar rule of the form
Q/{b :  (p1 ∧ p2)} is (⇒ ¬∧)1 (see Fig. 2). A pair of values 〈u1, u2〉 ∈ VMG

2

satisfies the premise of (⇒ ¬∧)1 iff u¬1 = t. In this case we require that for every
u ∈ ∧MG(u1, u2) we have u¬ = t. Thus we obtain the following table for ∧:

∧̃ 〈f, t〉 〈t, f〉 〈t, t〉
〈f, t〉 {〈f, t〉} {〈f, t〉} {〈f, t〉}
〈t, f〉 {〈f, t〉} {〈t, f〉, 〈t, t〉} {〈t, f〉, 〈t, t〉}
〈t, t〉 {〈f, t〉} {〈t, t〉} {〈t, t〉}
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3.3 Soundness and Completeness

We turn to prove the correctness of the construction ofMG. We establish strong
forms of soundness and completeness, to be used later in the characterization of
analyticity of G. The main idea is to maintain a correlation between the formulas
used in the derivation, and the formulas from the domain of the valuations. In
what followsW is an arbitrary set of LU -formulas closed under subformulas. We
use the following additional notations and definitions:

Notation 2. Let s be an LU -sequent.

1. sub[s] denotes the set of subformulas of all LU -formulas occurring in s.

2. s is called a W-sequent if sub[s] ⊆ W.

3. We write �WG s if there exists a proof of s in G consisting only ofW-sequents.

Definition 16. The sets U+(W) and U−(W) are defined as follows:
U−(W) =W\{ ψ ∈ W |  ∈ U ,  ψ is not a proper subformula of a formula inW}
U+(W) =W ∪ { ψ |  ∈ U , ψ ∈ U−(W)}

Example 8. For U = {¬} and W = {p1, p2,¬p1,¬p2, p1 ∨ p2,¬p1 ∨ p2,¬(p1 ∨
p2)}, we have U−(W) = {p1, p2,¬p1, p1 ∨ p2,¬p1 ∨ p2}, and U+(W) = W ∪
{¬¬p1,¬(¬p1 ∨ p2)}.

Remark 2. Note that ψ ∈ U−(W) whenever  ψ ∈ U+(W) for some  ∈ U .

The weaker notion of satisfaction, introduced in the following definition, is
needed later to characterize (a generalized form of) analyticity.

Definition 17. A U−(W)-valuation v : U−(W) → VU w-satisfies a U+(W)-
sequent s if there exists some labelled formula b : ψ ∈ s, such that either (i) ψ
does not have the form  ϕ and v(ψ)0 = b; or (ii) ψ =  ϕ (for some  ∈ U and
ϕ ∈ U−(W)) and v(ϕ)� = b.

Theorem 2 (Soundness). Let s be aW-sequent. If �U
+(W)

G s, then everyMG-
legal U−(W)-valuation w-satisfies s.

Proof. It suffices to show that whenever an MG-legal U−(W)-valuation w-
satisfies the premises of some application of an LU -rule r = Q/s of G consisting
solely of formulas from U+(W), it also w-satisfies its conclusion. Consider such
an application of r inferring σ(s) ∪ c from the set {σ(q) ∪ c | q ∈ Q}, where c
is an LU -sequent, and σ is an LU -substitution. Assume that σ(p1) = ψ1 and
σ(p2) = ψ2. Let v be an MG-legal U−(W)-valuation, and suppose that v w-
satisfies σ(q) ∪ c for every q ∈ Q. We prove that v w-satisfies σ(s) ∪ c. Clearly,
if v w-satisfies c, then we are done. Suppose otherwise. Then our assumption
entails that it w-satisfies σ(q) for every q ∈ Q. We show that in this case v
w-satisfies σ(s) (and so it w-satisfies σ(s) ∪ c). For r ∈ LK+ the claim is easy
and left for the reader. Otherwise, r is a simple rule. Three cases can occur:
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– Suppose that r = Q/{b : !p1} is a primitive rule. Note that since we only
consider applications of r consisting solely of formulas from U+(W), we have
that !ψ1 ∈ U+(W) and so ψ1 ∈ U−(W). The fact v w-satisfies σ(q) for every
q ∈ Q implies that v(ψ1) satisfies every q ∈ Q. To see this, consider the
following cases:
• Assume that q = {b : p1}, and ψ1 does not have the form  ϕ. Since v
w-satisfies σ(q), v(ψ1)

0 = b.
• Assume that q = {b : p1}, and ψ1 has the form  ϕ. Since v w-satisfies
σ(q), v(ϕ)� = b. Since v is MG-legal, v( ϕ)

0 = b.
• Assume that q = {b :  p1}. Since v w-satisfies σ(q), v(ψ1)

� = b.
In all cases, we obtain that v(ψ1) satisfies q. Now, since v(ψ1) ∈ VMG , v(ψ1)
respects r, and so v(ψ1)

� = b. Thus v w-satisfies {b : !ψ1}.
– Suppose that r = Q/{b :  ! p1} is a onevar rule. As in the previous case,

v(ψ1) satisfies every q ∈ Q. Thus, since v(!ψ1) ∈ !MG(v(ψ1)), we have
v(!ψ1)

� = b. It follows that v w-satisfies {b :  ! ψ1}.
– Suppose that r = Q/{b :  (p1�p2)} is a twovar rule. Similarly to the previous

cases, we have 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. Thus, since v(ψ1 � ψ2) ∈
�MG(v(ψ1), v(ψ2)), we have that v(ψ1 �ψ2)

� = b. It follows that v w-satisfies
{b :  (ψ1 � ψ2)}. ��

Theorem 3 (Completeness). If everyMG-legal U−(W)-valuation w-satisfies

a W-sequent s0, then �U
+(W)

G s0.

Proof. Suppose that ��U
+(W)

G s0. We construct an MG-legal U−(W)-valuation
v that does not w-satisfy s0. Call a set Ω of labelled LU -formulas maximal if
it satisfies the following conditions: (i) Ω consists of labelled LU -formulas of

the form b : ψ for ψ ∈ U+(W); (ii) ��U
+(W)

G s for every LU -sequent s ⊆ Ω;
and (iii) For every formula ψ ∈ U+(W) and b ∈ {f, t}, if b : ψ �∈ Ω then

�U
+(W)

G s ∪ {b : ψ} for some LU -sequent s ⊆ Ω. It is straightforward to construct
a maximal set Ω that extends s0.

Note that the availability of the cut rule implies that for every ψ ∈ U+(W),

either f : ψ ∈ Ω or t : ψ ∈ Ω (otherwise, we would have �U
+(W)

G s1 ∪ {f : ψ}
and �U

+(W)

G s2 ∪ {t : ψ} for s1, s2 ⊆ Ω, and by applying weakenings (the rules

(W ⇒) and (⇒W )) and (cut) we could obtain �U
+(W)

G s1 ∪ s2). Similarly, the
availability of the identity axiom implies that for every ψ ∈ U+(W), either

f : ψ �∈ Ω or t : ψ �∈ Ω (otherwise, the fact that �U
+(W)

G {f : ψ, t : ψ} would
contradict Ω’s properties).

Let v : U−(W) → VU be a U−(W)-valuation defined by: v(ψ)0 = t iff
f : ψ ∈ Ω, and for every  ∈ U : v(ψ)� = t iff f :  ψ ∈ Ω. Thus we have that for
every ψ ∈ U−(W) and b ∈ {f, t}, v(ψ)0 = b iff b : ψ �∈ Ω, and for every  ∈ U
v(ψ)� = b iff b :  ψ �∈ Ω. We show that v does not w-satisfy s0. Let b : ψ ∈ s0
such that ψ does not have the form  ϕ. Thus ψ ∈ U−(W), and since s0 ⊆ Ω,
v(ψ)0 �= b. Similarly, let b : ψ ∈ s0 such that ψ does have the form ψ =  ϕ (for
some  ∈ U and LU -formula ϕ). Thus ϕ ∈ U−(W), and since s0 ⊆ Ω, v(ϕ)� �= b.

To show that v is MG-legal, we use the following properties:
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(∗) Let σ be an LU -substitution, such that σ(p1) ∈ U−(W). If v(σ(p1)) satisfies

a U1-premise q then �U
+(W)

G s ∪ σ(q) for some LU -sequent s ⊆ Ω.

To see this, note that if v(σ(p1)) satisfies q then one of the following holds:

– q = b : p1 and v(σ(p1))
0 = b. Thus b : σ(p1) �∈ Ω, and since σ(p1) ∈ U+(W),

we obtain that �U
+(W)

G s ∪ {b : σ(p1)} for some LU -sequent s ⊆ Ω.
– q=b :  p1 and v(σ(p1))

�=b. Thus b :  σ(p1) �∈Ω, and since  σ(p1) ∈ U+(W),

we obtain that �U
+(W)

G s ∪ {b :  σ(p1)} for some LU -sequent s ⊆ Ω.

Similarly, we have the following:

(∗∗) Let q be a U1-premise or a U2-premise, and σ be an LU -substitution, such
that σ(p1), σ(p2) ∈ U−(W). If 〈v(σ(p1)), v(σ(p2))〉 satisfies q, then �U

+(W)

G

s ∪ σ(q) for some LU -sequent s ⊆ Ω.

We show that VMG is the range of v. Let ψ ∈ U−(W). To prove that v(ψ) ∈ VMG ,
we show that v(ψ) respects all primitive rules of G. Consider a primitive rule
of G, r = Q/{b :  p1}. Suppose that v(ψ) satisfies every q ∈ Q. We show that
v(ψ)� = b. Let σ be any LU -substitution, assigning ψ to p1. By (∗), for every

q ∈ Q, there exists some LU -sequent sq ⊆ Ω such that �U
+(W)

G sq ∪ σ(q). By

applying weakenings and the rule r, we obtain that �U
+(W)

G

⋃
q∈Q sq ∪ {b :  ψ}

(here we use the fact that  ψ ∈ U+(W) since ψ ∈ U−(W)). This implies that
b :  ψ �∈ Ω, and so v(ψ)� = b.

Finally, we show that v respects the truth-tables of MG:

(1) Let !ψ ∈ U−(W) (where ! ∈ U). We show that v(!ψ) ∈ !MG(v(ψ)). By the
construction of !MG , it suffices to show: (i) v(!ψ)0 = v(ψ)�; and (ii) v(!ψ)� = b
for every onevar rule r = Q/{b :  ! p1} of G for which v(ψ) satisfies every
q ∈ Q. (i) trivially holds using the definition of v. For (ii), let r = Q/{b :  ! p1}
be a onevar rule of G, and suppose that v(ψ) satisfies every q ∈ Q. We prove
that v(!ψ)� = b. Let σ be any LU -substitution, assigning ψ to p1. By (∗) (note
that ψ ∈ U−(W) since U−(W) is closed under subformula), for every q ∈ Q,

there exists some LU -sequent sq ⊆ Ω such that �U
+(W)

G sq ∪ σ(q). By applying

weakenings and the rule r, we obtain that �U
+(W)

G

⋃
q∈Q sq ∪ {b :  ! ψ} (note

that  ! ψ ∈ U+(W) since !ψ ∈ U−(W)). This implies that b :  ! ψ �∈ Ω, and so
v(!ψ)� = b.

(2) Let ψ1 � ψ2 ∈ U−(W) for � ∈ {∧,∨,⊃}. We show that v(ψ1 � ψ2) ∈
�MG(v(ψ1), v(ψ2)). Here it suffices to show: (i) v(ψ1 � ψ2)

� = b for every twovar
rule r = Q/{b :  (p1 � p2)} of G for which 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q;
and (ii) v(�(ψ1, ψ2))

0 ∈ �MLK+ (v(ψ1)
0, v(ψ2)

0). We prove (i) and leave (ii) to
the reader. Let r = Q/{b :  (p1 � p2)} be a twovar rule of G, and suppose that
〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. We prove that v(ψ1 � ψ2)

� = b. Let σ be
any LU -substitution, assigning ψ1 to p1, and ψ2 to p2. By (∗∗), for every q ∈ Q,

there exists some LU -sequent sq ⊆ Ω such that �U
+(W)

G sq ∪ σ(q). By applying

weakenings and the rule r, we obtain that �U
+(W)

G

⋃
q∈Q sq ∪ {b :  (ψ1 � ψ2)}
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(note that  (ψ1 � ψ2) ∈ U+(W) since ψ1 � ψ2 ∈ U−(W)). This implies that
b :  (ψ1 � ψ2) �∈ Ω, and so v(ψ1 � ψ2)

� = b. ��

Corollary 1. For every LU -sequent s, �G s iff �MG s.

Proof. The claim follows by choosing W = wffLU in Thm. 2 and Thm. 3 (in this
case U+(W) = U−(W) =W). Note that anMG-legal LU -valuation v w-satisfies
an LU -sequent iff v |=MG s (since v( ψ)0 = v(ψ)� for every LU -formula  ψ). ��

4 Semantics at Work

Let us take stock of what we have achieved so far. Given a Hilbert calculus
H ∈ H we introduced an equivalent sequent calculus GH ∈ G and extracted a
suitable semantics out of it (the PNmatrix MGH ). In this section we show how
to useMGH to prove the decidability of H and to check whether GH is analytic
(in the sense defined below). If GH is not analytic, MGH is used to define a
family of cut-free calculi for H .

Corollary 2 (Decidability). Given a Hilbert system H ∈ H and a finite set
Γ ∪ {ϕ} of formulas, it is decidable whether Γ �H ϕ or not.

Proof. Follows by the soundness and completeness of MGH for GH , Thm. 1,
and the fact, proved in [6], that each logic characterized by a finite PNmatrix is
decidable. ��

Roughly speaking, a sequent calculus is analytic if whenever a sequent s is prov-
able in it, it can also be proven using only the “syntactic material available
within s”. Usually this “material” is taken to consist of all subformulas occur-
ring in s (in this case ‘analyticity’ is just another name for the global subformula
property). However, weaker variants have also been considered in the literature,
especially in modal logic. In this paper we use the following:

Definition 18. A U-extension G of LK+ is U-analytic if for every LU -sequent
s: �G s implies that �U

+(sub[s])
G s.

Next, we show that MG can be easily used to check whether G is U-analytic.

Definition 19. A PNmatrix M for L is called proper if VM is non-empty and
�M(x1, . . . , xn) �= ∅ for every n-ary connective � of L and x1, . . . , xn ∈ VM.

Theorem 4. A U-extension G of LK+ is U-analytic iff MG is proper.

Proof. (⇒) Suppose thatMG is not proper. First, if VMG is empty, then �MG ∅,
and so (by Cor. 1), �G ∅. But, U+(∅) = ∅, and clearly there is no derivation in G
that does not contain any formula. It follows that G is not U-analytic in this case.
Otherwise, there exist either some ! ∈ U and u ∈ VMG such that !MG(u) = ∅,
or some � ∈ {∧,∨,⊃} and u1, u2 ∈ VMG such that �MG(u1, u2) = ∅. We con-
sider here only the first case and leave the second to the reader. Define the
LU -sequent s = {u0 : p1} ∪ {u� :  p1 |  ∈ U} (where t = f and f = t).
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We first prove that �G s. By Cor. 1 it suffices to show �MG s. Suppose oth-
erwise, and let v be an MG-legal LU -valuations such that v �|=MG s. Then,
v(p1)

0 = u0 and v( p1)
0 = u� for every  ∈ U . Since v is MG-legal, we have

that v(p1)
� = u� for every  ∈ U . It follows that v(p1) = u. Since v isMG-legal,

we have v(!p1) ∈ !MG(v(p1)). Clearly, this is not possible under the assumption

that !MG(u) = ∅. Next we claim that ��U
+(sub[s])
G s (and so G is not U-analytic).

To see this, note that the {p1}-valuation defined by v(p1) = u is an MG-legal

U−(sub[s])-valuation that does not w-satisfy s. By Thm. 2, ��U
+(sub[s])
G s.

(⇐) Assume that MG is proper and ��U
+(sub[s])
G s for some LU -sequent s. We

prove that ��G s. By Thm. 3, there exists an MG-legal U−(sub[s])-valuation v
that does not w-satisfy s. BeingMG proper, it is straightforward to extend v to
a (full) MG-legal LU -valuation v′. Note that v′ �|=MG s (since v( ψ)0 = v′(ψ)�

for every LU -formula  ψ). Cor. 1 then entails that ��G s. ��

There are, however, calculi in G which are not U-analytic. This is the case, e.g.,
for the extension of HCL+ by axioms (n1), (n

r∧), (b) and (o1∧) (cf. Fig. 1). Its
corresponding sequent calculus induces a PNmatrix which is not proper (this
can be verified in the system Paralyzer), hence it is not {¬, ◦}-analytic. When
G ∈ G is not U-analytic, we start by transforming MG into a finite family of
proper PNmatrices, which satisfy the following property:

Definition 20. ([6]) Let M and N be PNmatrices for L. We say that N is a
simple refinement of M if VN ⊆ VM, DN = DM ∩ VN , and �N (x1, . . . , xn) ⊆
�M(x1, . . . , xn) for every n-ary connective � of L and x1, . . . , xn ∈ VN .

Theorem 5. For every finite PNmatrixM for L, there existsM1 . . .Mn, finite
proper simple refinements of M, such that �M=�∩Mi for i = 1, . . . , n.

Proof (Outline). Let M be a PNmatrix for L. Choose M1, . . . ,Mn to be all
simple refinements of M which are proper PNmatrices. Based on the results in
[6], we show that �M=�∩Mi . (⇒) By Prop. 1 in [6], �M⊆�N for every simple
refinement N of M. Therefore, �M⊆�∩Mi.

(⇐) Suppose that ��M s. Thus v �|=M s for some M-legal L-valuation v.
Thm. 1 in [6] ensures that there exists some Mi, such that v is Mi-legal. The
fact that v �|=M s easily entails that v �|=Mi s, and so ��Mi s. ��

We can now apply the method of [3], which produces a cut-free sequent cal-
culus G which is sound and complete for any proper PNmatrix M, whose set
of designated truth values (DM) is a non-empty proper subset of the set of
its truth values (VM), provided that its language satisfies the following slightly
reformulated condition of [3]:

Definition 21. LetM be a proper PNmatrix for L. We say that L is sufficiently
expressive for M if for any x ∈ VM, there exists a set S of L-sequents, each of
which has the form {b : ψ}, for some b ∈ {f, t} and ψ ∈ wffL in which p1 is the
only atomic variable, such that the following condition holds:
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– For any M-legal L-valuation v and ϕ ∈ wffL, v(ϕ) = x iff v satisfies every
L-sequent in σ(S) for M for any L-substitution σ such that σ(p1) = ϕ.

Corollary 3. Let G ∈ G be a U-extension of LK+ that is not U-analytic. We
can construct a family of cut-free sequent calculi FG, such that for every sequent
s: �G s iff �G′ s for every G′ ∈ FG.

Proof. We start by constructing MG. If DMG = ∅ or DMG = VMG , MG has a
trivial corresponding cut-free calculus. For the rest of the cases, the claim follows
by Thm. 5 using the method of [3]. Note that LU is sufficiently expressive for
any simple refinement ofMG. Indeed, for x ∈ VMG , define Sx = {x0 : p1}∪{x� :
 p1 |  ∈ U}. Let M be a simple refinement of MG and let v be an M-legal
LU -valuation. The required condition is met by the fact that for every  ∈ U
and θ ∈ wffLU , v( θ)

0 = v(θ)� (by condition (i) in Def. 13). ��
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Abstract. The logic of Bunched implications (BI) and its variants or extensions
provide a powerful framework to deal with resources having static properties. In
this paper, we propose a modal extension of BI logic, called DBI, which allows
us to deal with dynamic resource properties. After defining a Kripke semantics
for DBI, we illustrate the interest of DBI for expressing some dynamic properties
and then we propose a labelled tableaux calculus for this logic. This calculus is
proved sound and complete w.r.t. the Kripke semantics. Moreover, we also give a
method for countermodel generation in this logic.

1 Introduction

The notion of resource is an important notion in computer science. The location, owner-
ship, access to and, indeed, consumption of, resources are central concerns in the design
of systems, such as networks, and in the design of programs, which access memory and
manipulate data structures like pointers. We are interested in studying such notions on
resources through logics with an emphasis on usable semantics and proof-theory. In this
context we can mention Linear Logic (LL) [5] that focuses on resource consumption
and the logic of Bunched Implications (BI) [13] that mainly focuses on resource sharing
and separation. The BI logic and its variants, like Boolean BI (BBI) [11,13], can be seen
as the logical kernel of so-called separation logics, that provides a concrete way of un-
derstanding the connectives in the context of program verification [7,14]. Some recent
results on BI and BBI concern new semantics [4], proof-search with labelled tableaux
and resource graphs [3,4] and (un)decidability of these logics [4,9]. Some extensions
or refinements have led to separation logics, like BI’s pointer logic (PL) [7] that allows
us to express properties on pointers or BiLoc [1] that is based on resource trees and
captures the notion of place. In this context MBI logic [12] extends BI with modalities
and a calculus à la Hennessy-Milner [10] dealing with processes and resources.

We can remark that two kinds of dynamic are captured by BI, BBI and their exten-
sions. On the one hand, there are logics that transform resources into other resources,
which is a first kind of dynamic. On the other hand, there are logics where properties of
resources can change (called here dynamic properties) or not (called here static prop-
erties). For example, in BI logic the resource properties are static because if a resource
satisfies a property, it will always satisfies this property. The dynamic, that corresponds
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Update Logics (project no. ANR-11-BS02-011).
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to the transformation of resources, is captured in LL by proofs and in PL by a calculus
à la Hoare [6]. Moreover in MBI, the dynamic is also based on resource transformation
because of a calculus à la Hennessy-Milner with judgements of the form R,E

a→ R′,E ′,
which means that a process E performs an action a on a resource R in order to obtain
a resource R′ and then becomes a process E ′. But the modalities à la Hennessy-Milner
can only express properties on R′ and E ′, directly at the next state, but not on any reach-
able resource and process (or state), knowing that reachable means after performing any
action.

In this paper, we are interested in expressing some dynamic properties on resources
directly at level of formulae, on future states (and not only on the next ones) and in
dealing with interacting systems. Then we define a modal extension of BI, called DBI
(Dynamic Bunched Implications logic), in order to model some dynamic properties of
resources. We define a Kripke semantics for this logic, which is an extension of Kripke
semantics for BI with state constraints (a set of states with a preorder) introduced in
addition to resource constraints. We also give a labelled tableaux calculus in the spirit
of works on BI logic [3,4] but dealing with both resource graphs and state graphs.
This calculus is proved sound and complete w.r.t. this semantics, with generation of
countermodels in case of non-validity in DBI.

2 The DBI logic

BI logic is a logic that expresses sharing and separation properties on resources [11,13].
We present here a modal extension of BI, called DBI, which allows us to express some
dynamic properties on resources. The language L of DBI is obtained by adding two
modalities � and ♦ to the BI language [13].

Let Prop be a countable set of propositional symbols, the language L of DBI is
defined as follows, where p ∈ Prop:

X ::= p | 	 | ⊥ | I | X ∧X | X ∨X | X → X | X ∗X | X−∗X | ♦X |�X

The negation is defined by:¬X ≡X →⊥. We now define a Kripke semantics that can be
seen as an extension of the Kripke semantics of BI [4] based on a resource monoid. In
the case of DBI we consider a dynamic resource monoid with an explicit inconsistency,
and also a preorder set of states with an accessibility relation between states.

Definition 1 (Dynamic resource monoid). A dynamic resource monoid is a structure
M = (R,•,e,π, ,S,1) such that:

– R is a set of resources and S is a set of states
– e ∈ R and π ∈ R
– • : R×R→ R such that:

- Neutral element: ∀r ∈ R, r • e = e• r = r
- Associativity: ∀r1,r2,r3 ∈ R, r1 • (r2 • r3) = (r1 • r2)• r3
- Commutativity: ∀r1,r2 ∈ R, r1 • r2 = r2 • r1

–  ⊆ R×R is a preorder (on resources):
- Reflexivity: ∀r ∈ R, r  r
- Transitivity: ∀r1,r2,r3 ∈ R, if r1  r2 and r2  r3 then r1  r3
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– π ∈ R is the greatest element: ∀r ∈ R, r  π and ∀r ∈ R, r •π = π.
– 1 ⊆ S× S is a preorder (on states)
– Compatibility (P): ∀r1,r2,r3 ∈ R, if r1  r2 then r1 • r3  r2 • r3

We note P(E) the powerset of the set E , namely the set of sets built from E . We call
e the unit resource (empty resource), π the inconsistent resource and • the resource
composition. A preordered set (S,1) is added to the Kripke’s BI semantics with S that
can be viewed as the states of a system and 1 as the accessibility (through transitions)
of states of the system.

Definition 2 (Dynamic interpretation). A dynamic interpretation is a function �·� :
Prop→ P(R× S), that verifies the following properties, for any s ∈ S and p ∈ Prop:

– Monotonicity (K): ∀r,r′ ∈ R such that r  r′, if (r,s) ∈ �p� then (r′,s) ∈ �p�
– Inconsistency (BC): ∀r ∈ R such that π r, (r,s) ∈ �p�

As we see the dynamic interpretation makes the resource properties non static: the in-
terpretation of a propositional symbol is not only a set of resources (as BI), but a set of
pairs of resources and states.

Definition 3 (Dynamic resource model). A dynamic resource model is a triple K =
(M ,�·�, �K ) such that M is a dynamic resource monoid, �·� is a dynamic interpretation
and �K is a forcing relation on R× S×L defined as follows:

– r,s �K p iff (r,s) ∈ �p�
– r,s �K I iff e r
– r,s �K 	 always
– r,s �K ⊥ iff π r
– r,s �K φ∧ψ iff r,s �K φ and r,s �K ψ
– r,s �K φ∨ψ iff r,s �K φ or r,s �K ψ
– r,s �K φ→ ψ iff ∀r′ ∈ R · (r  r′ and r′,s �K φ)⇒ r′,s �K ψ
– r,s �K φ∗ψ iff ∃r′,r′′ ∈ R · r′ • r′′  r and r′,s �K φ and r′′,s �K ψ
– r,s �K φ−∗ψ iff ∀r′ ∈ R · r′,s �K φ⇒ r • r′,s �K ψ
– r,s �K ♦φ iff ∃s′ ∈ S · s1 s′ and r,s′ �K φ
– r,s �K �φ iff ∀s′ ∈ S · s1 s′ ⇒ r,s′ �K φ

The definition of the forcing relation is an extension of the BI forcing relation with the
cases for � and ♦. For instance r,s �K ♦φ means that a resource r at state s satisfies
♦φ if a state s′ can be reached from the state s (s 1 s′) such that r in state s′ satisfies φ
(r,s′ �K φ). Now we define the notion of validity.

Definition 4 (Validity). A formula φ is valid, denoted � φ, if and only if e,s �K φ for
all dynamic resource models K (and all states s ∈ S).

The notation φ � ψ means that for all resources r and all states s of any dynamic
resource model K , if r,s �K φ then r,s �K ψ.

We give two lemmas that hold for all dynamic resource models K , all formulae φ, all
resources r,r′ ∈ R and all states s′ ∈ S.

Lemma 1 (Monotonicity). If r,s �K φ and r  r′ then r′,s �K φ.

Lemma 2 (Inconsistency). We have π,s �K φ.
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3 Expressiveness of DBI

We have previously introduced a semantics for modelling resources having dynamic
properties. In this section we emphasize the interest of this modal extension of BI by
illustrating it through some simple examples.

The first example deals with the management of resources with dynamic properties.
In BI logic the propositional symbols are considered as static descriptions/properties of
resources. But, we know that resource properties are not always static. For example, if
we consider the price of gold and silver, it is a dynamic property depending not only on
the resource. Let us denote rg the resource ”one ounce of gold” and rs the resource ”one
ounce of silver”. Propositional symbols Pgy and Psy are prices of rg and rs on January
1st of the year y. Moreover, sy denotes the state of the market on January 1st of the year
y. With DBI we are able to express the evolution of the silver and gold price:

rg • rs,s1970 �K (Pg1970 ∗Ps1970)∧♦(Pg2012 ∗Ps2012)

It means that on January 1st of the year 1970 (s1970), a resource composed by one ounce
of gold and one ounce of silver (rg • rs) has two properties: it could be decomposed into
two resources respectively satisfying the properties Pg1970 and Ps1970 (Pg1970 ∗Ps1970) and,
in a future state, it could be decomposed into two resources respectively satisfying the
properties Pg2012 and Ps2012 (Pg2012 ∗Ps2012).

The second example illustrates how with DBI and a dynamic resource monoid we
can deal with properties on interacting systems. A dynamic resource monoid can be
viewed as two interacting systems. Indeed a resource monoid can model a first system,
where resources are states of this system and the preoder on resources is the state reach-
ability of this system [2]. Furthermore, the dynamic part of a dynamic resource monoid
(set of states with a preorder), can be viewed as an automaton and easily models a sec-
ond system. Moreover, the dynamic interpretation can be viewed as the result of the
interaction of these systems. For example, (r,s) ∈ �p� can express that, if a first system
is in state r and a second system is in state s then their interaction satisfies the property
p. Here the word interaction does not mean that one of these systems influences the
second one: the preorder on resources does not depend on states and the preorder on
states does not depend on resources. Then the interaction (r,s) ∈ �p� means that there
are two free (non influencing) systems which can perform together an action, which
satisfies the property p if the first system is in state r and the second system is in state s.

Let us consider a message sent in a network and modelled with a resource monoid.
We consider only five states (resources) R = {e,msent ,mpassing,mdelivered ,π}, where e is
the state with no message, π is the state with an error that occurs in the system, msent is
the state where the message is sent, mpassing is the state where the message is passing in
transit and mdelivered is the state where the message is delivered. The relation  , where
reflexivity and transitivity are not represented, is:

e

msentmpassingmdelivered

π
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In a first step, there is no message (e). Then the message is created and sent (msent).
In a third step, it is passing in transit (mpassing) and then, in a fourth step, it is delivered
(mdelivered). As we can remark, mpassing  msent , but mpassing is the next state of msent

and it is not a mistake. As msent can reach mpassing then we aim the properties of mpassing

to be satisfied by the resource msent . In other words, if a resource r satisfies a property
p, then all resources that can reach r satisfy p. This is the property (K) of Definition 2.
In this example, we only consider one message and then we define • by (e• r = r) and
(r • r′ = π if r �= e and r′ �= e), but it is possible to consider states composed by more
than one message. We remark that π is the biggest resource (by definition of dynamic
resource monoid), so when an error occurs (π), all states are reachable: it is considered
that when an error occurs, it is impossible to predict the behavior of the system.

Now we define the following service as a second system, where reflexivity and tran-
sitivity of 1 are not represented. It contains four states S = {s0,s1,s2,s3} with s0 as
initial state and in the state s3 our service reads the delivered messages.

s0 s1

s2

s3

Having defined a dynamic resource monoid we are able to express that when the
message is sent, it is possible that our service read this message, that is: msent ,s0 �K
♦Pmread , where Pmread is the propositional symbol ”message read” that occurs when m is
delivered and the service is in state s3: �Pmread � = {(r,s3) | mdelivered  r}.

We have mdelivered ,s3 �K Pmread . As s0 1 s3 then mdelivered ,s0 �K ♦Pmread (the DBI
modalities encode the reachability of states). As msent can reach mdelivered (mdelivered  
msent ) then msent ,s0 �K ♦Pmread (DBI monotonicity encodes the resource reachability).

4 A proof System for DBI

In this section, we propose a proof system for DBI, in the spirit of previous works on
labelled proof system for BI with resource graphs [4]. We introduce some rules to deal
with modalities and also the notions of state labels and constraints, in order to capture
some dynamic aspects.

4.1 Labels for Resources and States

In labelled tableaux method for BI [4], there are labels and constraints in order to
capture some semantic information inside the proof system. Labels are related to the
resource set (R), a label composition is related to the resource composition (•) and rela-
tions on labels named label constraints are related to  . In DBI, the resource monoids
are dynamic and then there are two sets (for resources and states) and two relations (on
resources and states). Thus we introduce a new kind of labels and constraints to deal
with states. Let us now define labels and constraints for DBI.
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Definition 5 (Resource labels). Lr is a set of resource labels built from a constant 1,
an infinite countable set of constants γr = {c1,c2, ...} and a function denoted ◦,

X ::= 1 | ci | X ◦X

where ci ∈ γr. Moreover ◦ is a function on Lr that is associative, commutative and 1
is its unit. A resource constraint is an expression of the form x ≤ y where x and y are
resource labels.

For example the resource label c1 ◦ 1 ◦ c2 ◦ c1 is equal to the resource label c1 ◦ c1 ◦ c2.
We denote xy the resource label x◦ y. Moreover we say that x is a resource sub-label of
y if and only if there exists z such that x ◦ z = y. The set of resource sub-labels of x is
denoted E(x).

Definition 6 (State labels). Ls is an infinite countable set of state labels (Ls={l1, l2, ...}).
A state constraint on such labels is an expression of the form x 	 y, where x and y are
state labels.

Definition 7 (Domain). Let Cr be a resource constraints set, the domain of Cr, denoted
Dr(Cr), is the set of all resource sub-labels appearing in Cr. In particular: Dr(Cr) =⋃

x≤y∈Cr
(E(x)∪E(y)).

Definition 8 (Alphabet). The alphabet of a set of resource / state constraints is the set
of all label constants appearing in Cr / Cs.

In particular we have Ar(Cr) = γr ∩Dr(Cr) and As(Cs) =
⋃

u�v∈Cs
{u,v}.

We can remark that  is reflexive, transitive and compatible. Moreover, 1 is reflexive
and transitive. These properties have to be captured by the constraint sets. For that we
introduce a notion of closure of constraints.

Definition 9 (Closure of resource constraints). Let Cr be a set of resource constraints,
the closure of Cr (denoted Cr) is the least relation closed under the following rules such
that Cr ⊆ Cr

x≤ y y≤ z
〈tr〉

x≤ z
xy≤ xy

〈dr〉
x≤ x

ky≤ ky x≤ y
〈cr〉

kx≤ ky
x≤ y

〈lr〉
x≤ x

x≤ y
〈rr〉

y≤ y

We can remark that as these rules do not introduce new resource label constants, then
Ar(Cr) = Ar(Cr).

Definition 10 (Closure of state constraints). Let Cs be a set of state constraints, the
closure of Cs (denoted Cs) is the least relation closed under the following rules such
that Cs ⊆ Cs:

x 	 y
〈ls〉x 	 x

x 	 y
〈rs〉y 	 y

x 	 y y 	 z
〈ts〉x 	 z

As illustration we consider Cs = {l1 	 l2, l2 	 l3, l3 	 l4}. We have l1 	 l2 ∈ Cs because
Cs ⊆ Cs and we have l1 	 l4 ∈ Cs because

l1 	 l2 l2 	 l3 〈ts〉
l1 	 l3 l3 	 l4 〈ts〉

l1 	 l4
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Proposition 1. Let Cr be a set of resource constraints, the following properties hold:

1. If kx≤ y ∈ Cr then x≤ x ∈ Cr

2. If x≤ ky ∈ Cr then y≤ y ∈ Cr

Corollary 1. Let Cr be a set of resource constraints, x ∈Dr(Cr) iff x≤ x ∈ Cr.

Lemma 3 (Compactness). Let Cr (resp. Cs) be a (possibly infinite) set of resource
constraints (resp. state constraints). If x≤ y ∈ Cr (resp. u 	 v ∈ Cs) then there exists a
finite set C f such that C f ⊆ Cr (resp. C f ⊆ Cs) and x≤ y ∈ C f (resp. u 	 v ∈ C f ).

4.2 A Labelled Tableaux Method for DBI

We now define a labelled tableaux method for DBI in the spirit of previous works for
BI [4] and BBI [8].

Definition 11 (Labelled formula / CSS). A labelled formula is a 4-uplet (S,φ,x,u) ∈
{T,F}×L×Lr×Ls written Sφ : (x,u). A constrained set of statements (CSS) is a triple
〈F ,Cr,Cs〉, where F is a set of labelled formulae, Cr is a set of resource constraints
and Cs is a set of state constraints, such that the following property, called (Pcss), holds:
if Sφ : (x,u) ∈ F then x≤ x ∈ Cr and u 	 u ∈ Cs.

A CSS 〈F ,Cr,Cs〉 is a representation of a branch in which the formulae are the labelled
formulae of F and the constraints on labels are the elements of Cr and Cs. Our calculus
extends some principles of BI calculus by adding a second kind of labels (state labels)
and a set of constraints (Cs) for state labels.

A CSS 〈F ,Cr,Cs〉 is finite iff F , Cr and Cs are finite. We define the relation 
 by:
〈F ,Cr,Cs〉 
 〈F ′,C ′r ,C ′s〉 iff F ⊆ F ′ and Cr ⊆ C ′r and Cs ⊆ C ′s . Moreover we denote
〈F f ,Cr f ,Cs f 〉 
 f 〈F ,Cr,Cs〉 when 〈F f ,Cr f ,Cs f 〉 
 〈F ,Cr,Cs〉 holds and 〈F f ,Cr f ,Cs f 〉
is finite.

Definition 12 (Inconsistent label). Let 〈F ,Cr,Cs〉 be a CSS and x be a resource label.
x is inconsistent if there exist two resource labels y and z such that yz ≤ x ∈ Cr and
T⊥ : (y,u) ∈ F . A label is consistent if it is not inconsistent.

Proposition 2. Let 〈F ,Cr,Cs〉 be a CSS. The following properties hold:

1. If y≤ x ∈ Cr and x is a consistent label then y is a consistent label.
2. If xy ∈Dr(Cr) is a consistent label then x and y are consistent labels.

Figure 1 presents rules of labelled tableaux method for DBI. Let us remark that ”ci

and c j are new label constants” means ci �= c j ∈ γr \Ar(Cr) and that ”li is a new label
constant” means li ∈ Ls \As(Cs). We note ⊕ the concatenation of lists. For example
[e1;e2;e4]⊕ [e4;e3] = [e1;e2;e4;e4;e3].

Definition 13 (DBI-tableau). A DBI-tableau for a finite CSS 〈F0,Cr0 ,Cs0〉 is a list of
CSS (branches), built inductively according the following rules:

1. The one branch list [〈F0,Cr0 ,Cs0〉] is a DBI-tableau for 〈F0,Cr0 ,Cs0〉
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Tφ∧ψ : (x,u) ∈ F
〈T∧〉

〈{Tφ : (x,u),Tψ : (x,u)}, /0, /0〉
Fφ∧ψ : (x,u) ∈ F

〈F∧〉
〈{Fφ : (x,u)}, /0, /0〉 | 〈{Fψ : (x,u)}, /0, /0〉

Tφ∨ψ : (x,u) ∈ F
〈T∨〉

〈{Tφ : (x,u)}, /0, /0〉 | 〈{Tψ : (x,u)}, /0, /0〉
Fφ∨ψ : (x,u) ∈ F

〈F∨〉
〈{Fφ : (x,u),Fψ : (x,u)}, /0, /0〉

TI : (x,u) ∈ F
〈TI〉

〈 /0,{1 ≤ x}, /0〉

Tφ→ ψ : (x,u) ∈ F and x≤ y ∈ Cr 〈T→〉
〈{Fφ : (y,u)}, /0, /0〉 | 〈{Tψ : (y,u)}, /0, /0〉

Fφ→ ψ : (x,u) ∈ F
〈F→〉

〈{Tφ : (ci,u),Fψ : (ci,u)},{x ≤ ci}, /0〉

Tφ∗ψ : (x,u) ∈ F
〈T∗〉

〈{Tφ : (ci,u),Tψ : (c j,u)},{cic j ≤ x}, /0〉
Fφ∗ψ : (x,u) ∈ F and yz≤ x ∈ Cr 〈F∗〉

〈{Fφ : (y,u)}, /0, /0〉 | 〈{Fψ : (z,u)}, /0, /0〉

Tφ−∗ψ : (x,u) ∈ F and xy≤ xy ∈ Cr 〈T−∗〉
〈{Fφ : (y,u)}, /0, /0〉 | 〈{Tψ : (xy,u)}, /0, /0〉

Fφ−∗ψ : (x,u) ∈ F
〈F−∗〉

〈{Tφ : (ci,u),Fψ : (xci,u)},{xci ≤ xci}, /0〉

T♦φ : (x,u) ∈ F
〈T♦〉

〈{Tφ : (x, li)}, /0,{u � li}〉
F♦φ : (x,u) ∈ F and u≤ v ∈ Cs 〈F♦〉

〈{Fφ : (x,v)}, /0, /0〉

T�φ : (x,u) ∈ F and u≤ v ∈ Cs 〈T�〉
〈{Tφ : (x,v)}, /0, /0〉

F�φ : (x,u) ∈ F
〈F�〉

〈{Fφ : (x, li)}, /0,{u � li}〉

Note: ci, c j and li are new label constants.

Fig. 1. Tableaux rules for DBI

2. If the list Tm⊕ [〈F ,Cr,Cs〉]⊕Tn is a DBI-tableau for 〈F0,Cr0 ,Cs0〉 and

cond(〈F ,Cr,Cs〉)
〈F1,Cr1 ,Cs1〉 | ... | 〈Fk,Crk ,Csk〉

is an instance of a rule of Figure 1 for which cond(〈F ,Cr,Cs〉) is fulfilled, then
the list Tm⊕ [〈F ∪F1,Cr ∪Cr1 ,Cs ∪Cs1〉; ...;〈F ∪Fk,Cr ∪Crk ,Cs ∪Csk〉]⊕Tn is a
DBI-tableau for 〈F0,Cr0 ,Cs0〉.

A DBI-tableau for a formula φ is a DBI-tableau for 〈{Fφ : (1, l1)},{1≤ 1},{l1 	 l1}〉.

It is possible to prove, by observing rules of the tableaux method for DBI, that new
CSS, obtained by applying a rule, respect the condition (Pcss) of Definition 11. Then,
for all branches 〈F ,Cr,Cs〉 of a DBI-tableau for a formula φ, as Fφ : (1, l1) ∈ F , then
1≤ 1 ∈ Cr and 1 ∈Dr(Cr).

A first kind of rules concerns 〈TI〉, 〈F→〉, 〈T∗〉, 〈F−∗〉, 〈T♦〉 and 〈F�〉. These rules
introduce new constraints and also new label constants (ci, c j and li), except for 〈TI〉
that only introduces a new constraint. Let us illustrate the 〈T♦〉 rule. To apply this rule
on a CSS 〈F ,Cr,Cs〉 on a labelled formula T♦φ : (c1, l3) ∈ F , we choose a new label
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which does not appear in Cs. For example, we say that l10 �∈ Cs. Thus, by choosing l10,
we can apply the rule, getting the new CSS 〈F ∪{Tφ : (c1, l10)},Cr,Cs∪{l3 	 l10}〉. We
notice the new state constraint l3 	 l10 added to the set of constraints. Let us observe
that the 〈T∗〉 rule introduces two new resource labels. Concerning the rule 〈F−∗〉, as
Fψ : (xci,u) is added to the set of labelled formulae, xci has to belong to Cr in order to
satisfy the condition (Pcss) of Definition 11. By adding xci ≤ xci to Cr, xci belongs to Cr

and so (Pcss) is satisfied.
A second kind of rules concerns 〈T→〉, 〈F∗〉, 〈T−∗〉, 〈F♦〉 and 〈T�〉. These rules

have a condition on a closure of label constraints. In order to apply one of these rules
we have to choose an existing label which satisfies the condition and then apply the rule
using it. Otherwise, we cannot apply such rules. We illustrate the 〈T�〉 rule: let a CSS
〈F ,Cr,Cs〉 such that T�φ : (c1, l1) ∈ F . To apply this rule, we have to choose a state
label l such that l1 	 l ∈ Cs. If we consider that l1 ≤ l2 ∈ Cs then we can decide to apply
the rule using l2, getting the CSS 〈F ∪{Tφ : (c1, l2)},Cr,Cs〉. Let us observe that 〈F∗〉
rule needs to choose two labels y and z such that yz≤ x ∈ Cr.

Definition 14 (Closure condition). A CSS 〈F ,Cr,Cs〉 is closed if one of the following
conditions holds:

1. Tφ : (x,u) ∈ F , Fφ : (y,u) ∈ F and x≤ y ∈ Cr

2. FI : (x,u) ∈ F and 1≤ x ∈ Cr

3. F	 : (x,u) ∈ F
4. Fφ : (x,u) ∈ F and x is inconsistent

A CSS is open if it is not closed. A DBI-tableau is closed if all its branches are closed.

Definition 15 (DBI-proof). A DBI-proof for a formula φ is a DBI-tableau for φ which
is closed.

Let us recall that we deal with labelled formulae with two kinds of labels: resource
labels and state labels. Each CSS (branch) contains two sets of constraints, one for
resources and another for states. Moreover the closure of such constraints can be repre-
sented by graphs. There are rules which modify constraint sets (graphs) and introduce
new labels. Other rules have a set of conditions that must be satisfied, by finding labels
satisfying it and then to solve constraints on the constraint graphs.

Let us now consider the formula φ≡ (�(P→♦Q)∧♦P)−∗♦Q and give a DBI-proof
for it. By Definition 13, the following DBI-tableau [〈{Fφ : (1, l1)} ,{1≤ 1} ,{l1 	 l1}〉]
is a DBI-tableau for φ. We introduce a new representation for a DBI-tableau, which is

[F ]

F(�(P→ ♦Q)∧♦P)−∗♦Q : (1, l1)

[Cr]

1≤ 1

[Cs]

l1 	 l1

We can observe that there are three columns, one for the labelled formula sets of the
CSS of the DBI-tableau ([F ]), one for the resource constraint sets of the CSS of the
DBI-tableau ([Cr]) and one for the state constraint sets of the CSS of the DBI-tableau
([Cs]). By applying some rules, we obtain the following DBI-tableau:
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[F ]√
1 F(�(P→ ♦Q)∧♦P)−∗♦Q : (1, l1)

√
2 T�(P→ ♦Q)∧♦P : (c1, l1)√

7 F♦Q : (c1, l1)

√
4 T�(P→ ♦Q) : (c1, l1)√

3 T♦P : (c1, l1)

TP : (c1, l2)

√
5 TP→ ♦Q : (c1, l2)

FP : (c1, l2)
√

6 T♦Q : (c1, l2)

× TQ : (c1, l3)

FQ : (c1, l3)

×

[Cr]

1≤ 1

c1 ≤ c1

[Cs]

l1 	 l1

l1 	 l2

l2 	 l3

We decorate a labelled formula with
√

i to show that we apply a rule on this formula at
step i. We remark that columns ([F ], [Cr] and [Cs]) are trees that contain two branches.
There are two branches because there are two CSS in the DBI-tableau. The branches
on the left (resp. right) contain the elements of the first (resp. second) CSS. We also
remark that all CSS are closed (denoted ×). The CSS of the left is closed because
TP : (c1, l2) ∈ F , FP : (c1, l2) ∈ F and c1 ≤ c1 ∈ Cr. Thus, by definition, this DBI-
tableau is a DBI-proof of (�(P→ ♦Q)∧♦P)−∗♦Q.

5 Soundness and Completeness Results

The soundness proof uses similar techniques than the ones used in BI for a labelled
tableaux method [4]. The key point is the notion of realizability of a CSS 〈F ,Cr,Cs〉,
that means there exists a dynamic model K and embeddings from resource labels to the
resource set (3·4) and state labels to the state set (5·6) of K such that if Tφ : (x,u) ∈ F
then 3x4,5u6 �K φ and if Fφ : (x,u) ∈ F then 3x4,5u6 ��K φ.

Definition 16 (Realization). Let 〈F ,Cr,Cs〉 be a CSS. A realization of it is a triple
(K ,3.4,5.6) such that K =(M ,�·�,�K ) is a dynamic resource model, M =(R,•,e,π, 
,S,1), 3.4 : Dr(Cr)→ R and 5.6 : As(Cs)→ S, such that:

– 314= e
– 3x◦ y4= 3x4 • 3y4
– If Tφ : (x,u) ∈ F then 3x4,5u6 �K φ
– If Fφ : (x,u) ∈ F then 3x4,5u6 ��K φ
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– If x≤ y ∈ Cr then 3x4  3y4
– If u 	 v ∈ Cs then 5u6 1 5v6

We say that a CSS/branch is realizable if there exists a realization of it. We say that a
tableau is realizable if it contains a realizable CSS/branch.

Lemma 4. Let 〈F ,Cr,Cs〉 be a CSS and (K ,3.4,5.6) a realization of it. For all x≤ y ∈
Cr, 3x4  3y4 and for all u 	 v ∈ Cs, 5u6 1 5v6.

Lemma 5. The closed DBI-tableaux are not realizable.

Lemma 6. The expansion rules preserve realizability, i.e., if a rule of the DBI-tableau
method is applied on a labelled formula of a realizable CSS then one of the obtained
CSS is realizable.

Theorem 1 (Soundness). Let φ be a formula, if there exists a DBI-proof of φ then φ is
valid.

Proof. Let T be a DBI-proof of φ. Let us assume that φ is not valid. Then there exits a
dynamic resource model K such that e,s ��K φ. If we consider 314= e and 5l16= s we
obtain a realisation (K ,3.4,5.6) of the initial CSS 〈{Fφ : (1, l1)},{1 ≤ 1},{l1 	 l1}〉.
Thus, by Lemma 6, one branch of T is realizable. But by Lemma 5 it is contradictory,
because as T is a DBI-proof, then T is closed. Thus φ is valid.

Before to study completeness we consider the countermodel extraction for DBI tableaux
method. The main idea consists in transforming resource and state constraints into a
dynamic resource monoid, from a branch 〈F ,Cr,Cs〉 which is not closed.

In order to obtain a countermodel, this transformation has to verify two properties:
if Tφ : (x,u) ∈ F then x,u �K φ and if Fφ : (x,u) ∈ F then x,u ��K φ. In order to satisfy
them, our method needs to saturate labelled formulae (to obtain a Hintikka CSS), that
means, for instance, if T�φ : (x,u) ∈ F then we want that x,u �K �φ, so for all state
labels v such that u 	 v ∈ Cs, Tφ : (x,v) ∈ F has to be verified.

Definition 17 (Hintikka CSS). A CSS 〈F ,Cr,Cs〉 is a Hintikka CSS if for any formula
φ,ψ ∈ L and any label x,y ∈ Lr and u,v ∈ Ls:

1. Tφ : (x,u) �∈ F or Fφ : (y,u) �∈ F or x≤ y �∈ Cr

2. FI : (x,u) �∈ F or 1≤ x �∈ Cr

3. F	 : (x,u) �∈ F
4. Fφ : (x,u) �∈ F or x is consistent
5. If TI : (x,u) ∈ F then 1≤ x ∈ Cr

6. If Tφ∧ψ : (x,u) ∈ F then Tφ : (x,u) ∈ F and Tψ : (x,u) ∈ F
7. If Fφ∧ψ : (x,u) ∈ F then Fφ : (x,u) ∈ F or Fψ : (x,u) ∈ F
8. If Tφ∨ψ : (x,u) ∈ F then Tφ : (x,u) ∈ F or Tψ : (x,u) ∈ F
9. If Fφ∨ψ : (x,u) ∈ F then Fφ : (x,u) ∈ F and Fψ : (x,u) ∈ F

10. If Tφ→ψ : (x,u)∈F then ∀y∈ Lr, x≤ y∈ Cr ⇒ Fφ : (y,u)∈ F or Tψ : (y,u) ∈F
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11. If Fφ→ψ : (x,u)∈F then ∃y∈ Lr, x≤ y∈ Cr and Tφ : (y,u) ∈F and Fψ : (y,u)∈
F

12. If Tφ ∗ψ : (x,u) ∈ F then ∃y,z ∈ Lr, yz ≤ x ∈ Cr and Tφ : (y,u) ∈ F and Tψ :
(z,u) ∈ F

13. If Fφ∗ψ : (x,u)∈F then ∀y,z∈ Lr, yz≤ x∈ Cr ⇒ Fφ : (y,u)∈F or Fψ : (z,u)∈F
14. If Tφ−∗ψ : (x,u) ∈F then ∀y∈ Lr, xy∈Dr(Cr)⇒ Fφ : (y,u) ∈F or Tψ : (xy,u)∈

F
15. If Fφ−∗ψ : (x,u) ∈ F then ∃y ∈ Lr, xy ∈ Dr(Cr) and Tφ : (y,u) ∈ F and Fψ :

(xy,u) ∈ F
16. If T♦φ : (x,u) ∈ F then ∃v ∈ Ls, u 	 v ∈ Cs and Tφ : (x,v) ∈ F
17. If F♦φ : (x,u) ∈ F then ∀v ∈ Ls, u 	 v ∈ Cs ⇒ Fφ : (x,v) ∈ F
18. If T�φ : (x,u) ∈ F then ∀v ∈ Ls, u 	 v ∈ Cs ⇒ Tφ : (x,v) ∈ F
19. If F�φ : (x,u) ∈ F then ∃v ∈ Ls, u 	 v ∈ Cs and Fφ : (x,v) ∈ F

The conditions (1), (2), (3) and (4) of Definition 17 certify that a Hintikka CSS is
not closed. Others conditions certify that all labelled formulae of a Hintikka CSS are
saturated. Let us now define a function Ω that allows us to extract a countermodel from
a Hintikka CSS.

Definition 18 (Function Ω). Let 〈F ,Cr,Cs〉 be a Hintikka CSS and Crω be the restric-
tion of Cr to constraints including only consistent labels. The function Ω associates to
〈F ,Cr,Cs〉 a triple Ω(〈F ,Cr,Cs〉) = (M ,�·�,�K ) where M = (R,•,e,π, ,S,1), such
that:

– R = Dr(Crω)∪{π}, with π �∈Dr(Cr)
– S = As(Cs)
– e = 1

– • is defined by: ∀r1,r2 ∈ R

{
r1 • r2 = r1 ◦ r2 if r1 ◦ r2 ∈Dr(Crω)
r1 • r2 = π otherwise

– r1  r2 iff r1 ≤ r2 ∈ Crω or r2 = π
– s1 1 s2 iff s1 	 s2 ∈ Cs
– (r,s) ∈ �P� iff (r = π) or (∃r′ ∈ R,r′  r and TP : (r′,s) ∈ F )

Let 〈F ,Cr,Cs〉 be a CSS and x∈Dr(Cr). We remark that x is a consistent label resource
if and only if x ∈Dr(Crω). Indeed, if x ∈Dr(Cr) then by Corollary 1, x≤ x ∈ Cr. Thus,
as x is consistent, all resource labels and sub-labels of x are consistent by Proposition 2.
Thus x ≤ x ∈ Crω and x ∈ Dr(Crω). Now, if x ∈ Dr(Crω) then there exist xy≤ z ∈ Crω
or z≤ xy ∈ Crω. Therefore x is consistent otherwise xy≤ z �∈ Crω or z≤ xy �∈ Crω.

Lemma 7. Let 〈F ,Cr,Cs〉 be a Hintikka CSS and Ω(〈F ,Cr,Cs〉) = (M ,�·�,�K ) where
M = (R,•,e,π, ,S,1). (M ,�·�,�K ) is a dynamic resource model.

Lemma 8. Let 〈F ,Cr,Cs〉 be a Hintikka CSS. Let Ω(〈F ,Cr,Cs〉) = (M ,�·�,�K ) where
M = (R,•,e,π, ,S,1). For any formula φ the following properties hold:

1. π,s �K φ
2. If Fφ : (r,s) ∈ F and r consistent then r,s ��K φ
3. If Tφ : (r,s) ∈ F and r consistent then r,s �K φ
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Lemma 9. Let 〈F ,Cr,Cs〉 be a Hintikka CSS such that Fφ : (1,s) ∈ F . φ is not valid.

Proof. If the resource label 1 is inconsistent, then it is contradictory because Fφ :
(1,s) ∈ F and by condition (4) of Definition 17. Thus 1 is consistent. By Lemma 7,
Ω(〈F ,Cr,Cs〉) is a dynamic resource model. By Lemma 8, e,s ��K φ in this model.
Thus Ω(〈F ,Cr,Cs〉) is a countermodel of φ and then φ is not valid.

The proof of completeness consists in building a Hintikka CSS from a CSS which
cannot be closed, in the spirit of the proof developed for BBI [8]. Then we need a fair
strategy and a oracle which contains all finite consistent (not closed but saturated) CSS.

Definition 19 (Fair strategy). A fair strategy is a labelled formulae sequence (SiFi :
(xi,ui))i∈N in {T,F}× L × Lr × Ls such that any labelled formula occurs infinitely
many times in this sequence, that is {i ∈ N | SiFi : (xi,ui) ≡ SF : (x,u)} is infinite for
any SF : (x,u) ∈ {T,F}×L×Lr×Ls.

Proposition 3. There exists a fair strategy.

The main argument is that the set of labelled formulae is countable.

Definition 20. Let P be a set of CSS.

1. P is 
-closed if 〈F ,Cr,Cs〉 ∈ P holds whenever 〈F ,Cr,Cs〉 
 〈F ′,C ′r ,C ′s〉 and
〈F ′,C ′r ,C ′s〉 ∈ P hold.

2. P is of finite character if 〈F ,Cr,Cs〉 ∈ P holds whenever 〈F f ,Cr f ,Cs f 〉 ∈ P holds
for every 〈F f ,Cr f ,Cs f 〉
 f 〈F ,Cr,Cs〉.

3. P is saturated if for any 〈F ,Cr,Cs〉 ∈ P and any instance

cond(F ,Cr,Cs)

〈F1,Cr1,Cs1〉 | ... | 〈Fk,Crk,Csk〉

of a rule of Figure 1, if cond(F ,Cr,Cs) is fulfilled then 〈F ∪Fi,Cr∪Cri,Cs∪Csi〉 ∈
P for at least one i ∈ {1, ...,k}.

Definition 21 (Oracle). An oracle is a set of non closed CSS which is 
-closed, of finite
character and saturated.

Lemma 10. There exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau.

This oracle is the set of all CSS such that there exists no closed DBI-tableau for their
finite sub-CSS (
). Let us assume that there exists no DBI-proof of formula ϕ and
show that ϕ is not valid by constructing a Hintikka CSS. Let us note that ϕ denotes the
formula for which we are constructing a Hintikka CSS and φ denotes any formula. Let
T0 a initial DBI-tableau for ϕ, we have

1. T0 = [〈{Fϕ : (1, l1)},{1≤ 1},{l1 	 l1}〉]
2. T0 cannot be closed
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By Lemma 10, there exists an oracle which contains every finite CSS for which there
exists no closed DBI-tableau. Let P be such an oracle. By hypothesis we have 〈{Fϕ :
(1, l1)},{1 ≤ 1},{l1 	 l1}〉 ∈ P . By Proposition 3, there exists a fair strategy. Let S
be such a strategy. We denoted SiFi : (xi,ui) the ith formula of S . We built a sequence
〈Fi,Cri,Csi〉0�i as follows:

– 〈F0,Cr0,Cs0〉= 〈{Fϕ : (1, l1)},{1≤ 1},{l1 	 l1}〉
– If 〈Fi∪{SiFi : (xi,ui)},Cri,Csi〉 �∈ P then 〈Fi+1,Cri+1,Csi+1〉= 〈Fi,Cri,Csi〉
– If 〈Fi∪{SiFi : (xi,ui)},Cri,Csi〉 ∈P then 〈Fi+1,Cri+1,Csi+1〉= 〈Fi∪{SiFi : (xi,ui)}∪

Fe,Cri∪Cre,Csi∪Cse〉 such that Fe, Cre and Cse are determined by:

Si Fi Fe Cre Cse

F φ→ ψ {Tφ : (a,ui),Fψ : (a,ui)} {xi ≤ a} /0
T φ∗ψ {Tφ : (a,ui),Tψ : (b,ui)} {ab≤ xi} /0
F φ−∗ψ {Tφ : (a,ui),Fψ : (xia,ui)} {xia≤ xia} /0
T I /0 {1≤ xi} /0
T ♦φ {Tφ : (xi,c)} /0 {ui 	 c}
F �φ {Fφ : (xi,c)} /0 {ui 	 c}
Otherwise /0 /0 /0

with a = c2i+1, b = c2i+2 and c = li+2.

Proposition 4. For any i ∈ N, the following properties hold:

1. Fϕ : (1, l1) ∈ Fi, 1≤ 1 ∈ Cri and l1 	 l1 ∈ Csi

2. Fi ⊆ Fi+1, Cri ⊆ Cri+1 and Csi ⊆ Csi+1

3. 〈Fi,Cri,Csi〉0�i ∈ P
4. Ar(Cri)⊆ {1,c1,c2, ...,c2i}
5. As(Csi)⊆ {l1, l2, ..., li+1}

We now consider the limit CSS 〈F∞,Cr∞,Cs∞〉 of the sequence 〈Fi,Cri,Csi〉0�i defined
by:

F∞ =
⋃

i

Fi and Cr∞ =
⋃

i

Cri and Cs∞ =
⋃

i

Csi

Proposition 5. We have 〈F∞,Cr∞,Cs∞〉 ∈ P and for all labelled formulae Sφ : (x,u), if
〈F∞∪{Sφ : (x,u)},Cr∞,Cs∞〉 ∈ P then Sφ : (x,u) ∈ F∞

Lemma 11. The limit CSS is a Hintikka CSS.

Theorem 2 (Completeness). Let ϕ be a formula, if ϕ is valid then there exists a DBI-
proof for ϕ.

Proof. We suppose that there is no DBI-proof of ϕ and show that ϕ is not valid. Our
method allows us to build a limit CSS that is a Hintikka CSS, by Lemma 11. By property
1 of Proposition 4, Fϕ : (1, l1) ∈ Fi. By Lemma 9, ϕ is not valid.
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6 Conclusion

We have defined and studied a modal extension of BI, called DBI, that allows us to
express dynamic properties about resources. We propose a Kripke semantics for DBI
and a labelled tableaux method that is proved sound and complete w.r.t. this semantics.
Compared to previous works on proof-theory in BI, the labelled tableaux method for
DBI deals not only with a so-called resource graph but also with a state graph. Moreover
we show how we can generate countermodels in case of non-validity.

Future works will be devoted to the study of other extensions of BI with other modal-
ities such that fragments of SCRP/MBI [12], in order to mix dynamic resources and
processes, and also of the semantics based on Petri nets for such extensions.
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Abstract. Probabilistic Automata (PAs) are a widely-recognized mathematical
framework for the specification and analysis of systems with non-deterministic
and stochastic behaviors. In a series of recent papers, we proposed Abstract Prob-
abilistic Automata (APAs), a new abstraction framework for representing possi-
bly infinite sets of PAs. We have developed a complete abstraction theory for
APAs, and also proposed the first specification theory for them. APAs support
both satisfaction and refinement operators, together with classical stepwise de-
sign operators.

One of the major drawbacks of APAs is that the formalism cannot capture PAs
with hidden actions – such actions are however necessary to describe behaviors
that shall not be visible to a third party. In this paper, we revisit and extend the
theory of APAs to such context. Our first main result takes the form of proposal
for a new probabilistic satisfaction relation that captures several definitions of
PAs with hidden actions. Our second main contribution is to revisit all the oper-
ations and properties defined on APAs for such notions of PAs. Finally, we also
establish the first link between stochastic modal logic and APAs, hence linking
an automata-based specification theory to a logical one.

1 Introduction

Nowadays, systems are tremendously big and complex and mostly result from the as-
sembling of several components. These components are usually designed by teams
working independently but with a common agreement on what the interface of each
component should be. These interfaces, also called specifications, precise the behaviors
expected from each component as well as the environment in which they can be used,
but do not impose any constraint on how the components are implemented.

Instead of relying on Word/Excel text documents or modeling languages such as
UML/XML, as is usually done in practice, a series of recent works recommend re-
lying most possibly on mathematically sound formalisms. Mathematical foundations
that allow to reason at the abstract level of interfaces, in order to infer properties of
the global implementation, and to design or to advisedly (re)use components is a very
active research area, known as compositional reasoning [18]. Any good specification
theory shall be equipped with a satisfaction relation (to decide whether an implemen-
tation satisfies a specification), a refinement relation (to compare sets of implementa-
tions), a logical conjunction (to compute intersection of sets of implementations), and
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c, ϕc

{{coffee}, {tea}}{ready} c, .4

r, ϕr{coffee}

{tea}

ϕr ≡ μ(I) = 1
ϕc ≡ μ(C) = 1

Fig. 1. Implementation PA (left) and specification APA (right) of a coffee machine

a structural composition (to combine specifications). Additionally, properties such as
precongruence of composition with respect to refinement [18] shall also be satisfied.

Building good specification theories has been the subject of intensive studies among
which one finds classical logical specifications, various process algebrae such as CSP,
or Input/Output automata/interfaces (see [19,7,24]). Recently, a new series of works has
concentrated on modal specifications [20], a language theoretic account of a fragment
of the modal mu-calculus logic which is known to admit a more flexible and easy-to-use
compositional refinement method than those carried out in CSP [20,29,3].

As soon as systems include randomized algorithms, probabilistic protocols, or inter-
act with physical environment, probabilistic models are required to reason about them.
This is exacerbated by requirements for fault tolerance, when systems need to be ana-
lyzed quantitatively for the amount of failure they can tolerate, or for the delays that may
appear. As Henzinger and Sifakis [18] point out, introducing probabilities into design
theories allows assessing dependability of IT systems in the same manner as commonly
practiced in other engineering disciplines.

In recent works [5,10,6], we proposed Constraint Markov Chains (CMCs), a com-
plete specification theory for pure stochastic systems, namely Markov Chains (MCs).
Roughly speaking, a CMC is a MC equipped with a constraint on the next-state prob-
abilities from any state. An implementation for a CMC is thus a MC, whose next-state
probability distribution satisfies the constraint associated with each state. Contrary to In-
terval Markov Chains where sets of distributions are represented by intervals, CMCs are
closed under both composition and conjunction. Later, in [8], the CMC approach was
extended to handle those systems that combine both stochastic and non-deterministic
behaviors, i.e., Probabilistic Automata (PA). APAs, whose theory is implemented in
the APAC toolset [9], is the result of combining Modal Automata and CMCs – the ab-
stractions for labelled transition systems and Markov Chains, respectively. Like other
modal-based specification theories, our formalism can be used in various areas, includ-
ing abstract model checking and compositional reasoning.

The specification theory induced by APAs is more expressive than any classical spec-
ification theories where both implementations and specifications are represented by the
same object. As an example, Segala’s theory assumes that both specifications and im-
plementations are represented with PAs [31,26]. Such an approach does not permit to
represent an infinite set of non-deterministic behaviors in a finite way. On the other hand,
while satisfaction relation between PAs[25] can be expressed with classical notions of
(stochastic) simulations [31], ours requires the use of a rather more complex definition
of equivalence relation. Consider the implementation (left) and specification (right) of
a coffee machine given in Figure 1. The specification specifies that there are two pos-
sible transitions from initial state I: a may transition labeled with action r (reset) and a
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must transition labeled with action c (coin). May transitions, which may not be imple-
mented, are represented with dashed arrows. Must transitions, which shall be present in
any implementation of the specification, are represented with plain arrows. The proba-
bility distributions associated with these actions are specified by the constraints ϕr and
ϕc, respectively. One can see that the implementation gives a more precise behavior
of the coffee machine: action r loops back to initial state i with probability 1, while
coin leads to state a (coffee) with probability .6 and to state b (tea) with probability
.4. Satisfaction between implementation and specification lifts the classical notion of
simulation for PAs to APAs as follows: (1) all must transitions of the specification must
be matched with transitions in the implementations, and (2) all transitions in the imple-
mentation must be matched with may transitions in the specification. Additionally, we
have to check that the probability distributions in the implementation are matched with
probability distributions in the specification that satisfy the given constraints.

Contribution. In the process of incremental design (as well as for other applications), it
may be necessary to incrementally widen the scope of implementations. Usually, the lat-
ter is done by permitting the addition of hidden actions also called stutter steps [31,4] in
the implementation. Introducing such actions is known to complicate the definition and
the computation of operations such as bisimulation/simulation [31]. Moreover, it may
break up some properties such as precongruence of refinement with respect to com-
position [31]. The objective of this paper is to extend the APA specification theory by
considering implementations with stuttering steps. Our first contribution is the definition
of a new stochastic satisfaction relation for APAs. This relation generalizes stochastic
simulation to the APA level. We then study various notions of stuttering and compare
their expressivity. We also study the impact of adding stuttering on various properties
such as precongruence of refinement with respect to composition. Finally, we define
and study ML-(A)PA that is a new modal logic for APAs and stuttering PAs. ML-(A)PA
generalizes the PML logic [22,21] of Larsen et al. from PAs to APAs and stuttering PAs.

Related Work. A wide spectrum of different approaches study stuttering for non
stochastic systems [32] and stochastic ones [28,1,2]. In [2], the authors define weak
bisimulation for fully probabilistic processes. This is in contrast with our model that
combines both probabilistic and non-deterministic aspects. In [28,1], weak bisimula-
tion is extended to strictly alternating systems that combine both non-determinism and
probabilities. Although such systems are similar to PAs, it is known that weak (branch-
ing) bisimulation for alternating systems is incomparable to weak bisimulation for non-
alternating systems [30]. Moreover, it is worth mentioning that above mentioned works
report on computing and checking weak bisimulation between probabilistic systems,
while our aim is to propose a notion of weak simulation (satisfaction) between a proba-
bilistic system and a probabilistic specification that represents a possibly infinite set of
implementations.

In [14], the author defines a notion of constraints on states to represent sets of prob-
ability distributions. Although this formalism resembles the one of constraints used
in APAs, the constraints in [14] are used in a different context. Indeed, while we use
constraints to represent sets of probabilistic transitions, [14] uses them to replace the
non-deterministic choice between internal transitions by probability distributions.
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Finally we mention that the problem of defining compositionality in the probabilistic
setting with hidden steps has also been addressed in various settings [30,27,23,15,14,16].
In particular [15] defines a general parallel composition operator for CSP that deals with
hidden steps, and [16] suggests the removal of hidden steps through a transformation of
CSP models. In both papers, the systems considered are strictly alternating and results
are obtained with respect to a ready-trace notion of equivalence on processes, which
makes it incomparable to our notion of stuttering satisfaction between specifications
and implementations.

2 A Probabilistic Satisfaction for Abstract Probabilistic Automata

2.1 Abstract Probabilistic Automata

Let Dist(S) denote a set of all discrete probability distributions over a finite set S and
B2 = {	,⊥}.

Definition 1. A PA[31] is a tuple (S,A, L,AP, V, s0), where S is a finite set of states
with the initial state s0 ∈ S, A is a finite set of actions, L: S × A × Dist(S) → B2

is a (two-valued transition) function, AP is a finite set of atomic propositions and V :
S → 2AP is a state-labeling function.

Consider a state s, an action a, and a probability distribution μ. The value of L(s, a, μ)
is set to 	 in case there exists a transition from s under action a to a distribution μ on
successor states. In other cases, we have L(s, a, μ) = ⊥.

We now switch to Abstract Probabilistic Automata (APA)[8], that is a specification
theory for PAs. Let S be a finite set. We define C(S) to be the set of constraints defined
over discrete probability distributions on S. Each element ϕ ∈ C(S) describes a set
of distributions: Sat(ϕ) ⊆ Dist(S). Let B3 = {	, ?,⊥}. APAs are formally defined as
follows.

Definition 2. An APA[8] is a tuple (S,A, L,AP, V, s0), where S is a finite set of states,
s0 ∈ S, A is a finite set of actions, and AP is a finite set of atomic propositions.
L : S × A × C(S) → B3 is a three-valued distribution-constraint function, and V :

S→22
AP

maps each state in S to a set of admissible labelings.

APAs play the role of specifications in our framework. An APA transition abstracts tran-
sitions of a certain unknown PA, called its implementation. Given a state s, an action
a, and a constraint ϕ, the value of L(s, a, ϕ) gives the modality of the transition. More
precisely the value	means that transitions under a must exist in the PA to some distri-
bution in Sat(ϕ); ? means that these transitions are allowed to exist; ⊥ means that such
transitions must not exist. Again L may be partial. A lack of value for given argument
is equivalent to the ⊥ value, so we will sometimes avoid defining⊥-value rules in con-
structions to avoid clutter, and occasionally will say that something applies if L takes
the value of⊥, meaning that it is either taking this value or it is undefined. The function
V labels each state with a subset of the powerset of AP , which models a disjunctive
choice of possible combinations of atomic propositions.
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2.2 A Probabilistic Satisfaction for APA

We now study the notion of satisfaction that relates a probabilistic automata
P = (SP , A, LP , AP, VP , s

P
0 ) to its corresponding APA specification N =

(S,A, L,AP, V, s0), The notion of satisfaction proposed in [8] directly relates distri-
butions in P to distributions in N . As in the notion of probabilistic forward simulation
presented in [25], we now extend this notion to account for linear combinations of dis-
tributions in N , hence generalizing results in [8].

Definition 3. Let S and S′ be non-empty sets, and μ, μ′ be distributions; μ ∈ Dist(S)
and μ′ ∈ Dist(S′). We say that μ is simulated by μ′ with respect to a relation R ⊆
S × S′ and a correspondence function δ : S → (S′→ [0, 1]) iff

1. for all s ∈ S, δ(s) is a distribution on S′ if μ(s) > 0,
2. for all s′ ∈ S′,

∑
s∈S μ(s) · δ(s)(s′) = μ′(s′), and

3. whenever δ(s)(s′) > 0 then (s, s′) ∈ R.

We write μ �δR μ′ meaning that μ is simulated by μ′ with respect to R and δ, and we
write μ �R μ′ iff there exists a function δ such that μ �δR μ′.

We then define probabilistic satisfaction as follows.

Definition 4 (Probabilistic Satisfaction). Let P = (SP , A, LP , AP, VP , s
P
0 ) be a

PA and N = (S,A, L,AP, V, s0) be an APA. A binary relation R ⊆ SP × S is a
probabilistic satisfaction relation iff, for any (s, s′) ∈ R, the following conditions hold:

– for all a ∈ A and ϕ′ ∈ C(S) such that L(s′, a, ϕ′) = 	, there exists a distribution
μP ∈ Dist(SP ) such that LP (s, a, μP ) = 	 and there exists μ′ ∈ Sat(ϕ′) such
that μP �R μ′,

– for all a ∈ A and μP ∈ Dist(SP ) such that LP (s, a, μP ) = 	, there exists
ϕ1, . . . ϕn ∈ C(S) such that for all i, L(s′, a, ϕi) �= ⊥ and there exists μi ∈
Sat(ϕi) and ρi ∈ [0, 1] such that

∑
i ρi = 1 and μP �R (

∑
i ρiμi), and

– VP (s) ∈ V (s′).

We say that P probabilistically satisfies N , written P |=P N iff there exists a proba-
bilistic satisfaction relation R such that sP0 R s0. The set of probabilistic implementa-
tions of APA N is defined by [[N ]]P = {P | P |=P N}.

It is easy to see that this extension of satisfaction is conservative with respect to all
the good properties presented in [8]. In the rest of this paper, we study the impact of
adding stuttering to the specification theory.

3 Stuttering for Abstract Probabilistic Automata

We now study an extension of the APAs specification theory where implementations
may have stutter steps. In the rest of this section, we first introduce various notions of
stuttering for PAs and then we extend the satisfaction relation to them. Later, we shall
study the impact of stuttering on refinement and structural/logical composition.
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3.1 Introducing Stutter Actions

Consider a PA P = (SP , A, LP , AP, VP , s
P
0 ). We must assume that any state s′ that

can be reached from a state s by following a sequence of hidden actions H ⊆ AP
cannot be distinguished from s, i.e., have the same valuation as s.

Definition 5 (Consistent set of hidden actions). Let P = (SP , AP , LP , AP, VP , s
P
0 )

and let H ⊆ AP . We say that H is a consistent set of hidden actions regarding P if
∀s ∈ SP and ∀a ∈ H, if there exists μ ∈ Dist(SP ) such that LP (s, a, μ) = 	, then
∀s′ ∈ S, we have μ(s′) > 0⇒ VP (s

′) = VP (s).

The following example shows that, as it is the case for other specifications theories (see
e.g. [13]), there are various ways to formally define a stuttering transition.

Example 1. Consider the stuttering PA P given in Figure 2, and whose set of consistent
hidden action is given by {m, e}. P represents a coffee machine that has two modes.
Action m allows choosing between the two modes. In mode A, represented by state 2
and its successors, the action c leads to states labeled with tea and coffee with proba-
bility .5 each. From states 4 and 5, either the coffee machine can be reset with action r,
but will stay in the same mode, or can suffer an error (action e) that leads to deadlock
states 8 and 9. In mode B, one can again choose a sub-mode with action m, leading to
states 6 and 7 that deliver tea and coffee with different probabilities.

Considering different notions of stuttering will lead to different sets of executions for
the PA P . As an example, stuttering could be restricted to happen only before visible
actions. The execution presented in Figure 4 represents a stuttering execution 1

c−→∗μ∗0
(informally, one can reach distribution μ∗0 from state 1 by following action c interleaved
with hidden actions), where the internal action m happens before the visible action c,
leading to a distribution μ∗0. Remark that such an execution could not be considered if
we restricted stuttering to happen only after a visible action. The unfolding of P given
in Figure 5 presents two stuttering executions 1

r−→∗μ∗1 and 2
c−→∗μ∗2 where in both
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cases stuttering only happens after the visible action. Again, such executions could not
be considered if we restricted stuttering to happen only before a visible action. Finally,
the execution presented in Figure 3 represents a stuttering transition 1

c−→ ∗μ∗ in P

where stuttering happens both before and after the visible action c.

As illustrated in the example above, the choice made in the definition of stuttering will
have a strong impact on the executions allowed in PAs. In order to be as general as
possible, we choose to allow stuttering to happen both before and after visible actions.
The only restriction we make is that stuttering cannot happen independently of visible
actions, that is, for each stuttering transition, a visible action must be taken. This leads
to the following definition.

Definition 6 (Stuttering transitions for PAs). Let P = (SP , AP , LP , AP, VP , s
P
0 ) be

a PA, and let H ⊆ AP be a consistent set of hidden actions. We define the notion of
H-stuttering recursively as follows:

Base case: For all s ∈ SP , a ∈ AP and μ ∈ Dist(SP ), we say that s
a−→
H

1μ iff

L(s, a, μ) = 	. As a shortcut, we write s
τ−→
H

1μ if there exists b ∈ H such that

s
b−→
H

1μ.

Recursion: For all s ∈ SP , k > 1, a ∈ AP and μ∗ ∈ Dist(SP ), we say that
s
a−→
H
kμ∗ iff

1. either a /∈ H and there exists μ1 ∈ Dist(SP ) and b ∈ H such that
L(s, b, μ1) = 	 and the following conditions hold:
• for all states r ∈ SP such that μ1(r) > 0, there exists k′ < k and μr ∈
Dist(SP ) such that r

a−→
H
k′μr, and

• for all s′ ∈ SP ,
μ∗(s′) =

∑
r∈SP

μ1(r)μr(s
′)
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2. or there exists μ1 ∈ Dist(SP ) such that L(s, a, μ1) = 	 and a subset R ⊆ SP
such that the following conditions hold:
• for all states r ∈ R, we have μ1(r) > 0 and there exists k′ < k and
μr ∈ Dist(SP ) such that r

τ−→
H
k′μr, and

• for all s′ ∈ SP ,

μ∗(s′) =

{∑
r∈R μ1(r)μr(s

′) if s′ ∈ R

μ1(s
′) +
∑
r∈R μ1(r)μr(s

′) otherwise.

We say that s
a−→
H
∗μ∗ if there exists k > 0 such that s

a−→
H
kμ∗.

Informally stuttering can happen either before (case 1) or after (case 2) taking the visible
action a. Remark that both cases are not exclusive and can interleave. If stuttering occurs
before action a, then all successor states r must admit a stuttering transition involving
a. In such case, the overall probability of reaching a state s′ is the sum through all
stuttering paths. If stuttering occurs after action a, then we denote by R the set of
successor states from which we stutter, and by SP \ R the set of states in which we
stop. Remark that the set R is dynamic in the sense that a different set R may be chosen
for each step of a stuttering transition. In this case the overall probability of going to
a state s′ ∈ R is the sum through all stuttering paths, while the overall probability of
going to a state s′ /∈ R is the addition of the probabilities of going to s′ directly (without
stutter) with the the sum through all stuttering paths.

In the rest of the paper, we denote by
a−→
H
∗
A (resp.

a−→
H
∗
B) stuttering transitions where

stuttering only happens after (resp. before) the visible action a, obtained by removing
item 1. (resp. 2.) from the recursive part of Definition 6.

Example 2. Consider the PA P = (SP , AP , LP , AP, VP , 1) given in Figure 2, and a
distribution μ∗ such that μ∗(5) = μ∗(8) = μ∗(10) = μ∗(11) = .25.

The situation is represented in Figure 3. Let us see how to derive that 1
c−→{e,m}

3μ∗.
We follow the following description.

1. for [1
c−→{e,m}

3μ∗]., we have c /∈ {e,m} and LP (1,m, μ1) = 	 with m ∈ {e,m}
(case 1). states 2 and 3 are the only states for which μ1 gives a non-zero probability,
and 2

c−→{e,m}
2μ2 and 3

c−→{e,m}
2μ3, with μ∗(s′) = μ1(2)μ2(s

′) + μ1(3)μ3(s
′).

2. for [2
c−→{e,m}

2μ2]., we have LP (2, c, μ
′
2) = 	 (case 2) and there exists R = {4} ⊆

SP such thatμ′2(4) > 0 and 4
τ−→{e,m}

1μ4. In addition, we obtain after simplifications:

μ2 :

{
8 �→ μ′2(4)μ4(8) = .5

5 �→ μ′2(5) + 0 = .5

We observe that [4
τ−→{e,m}

1μ4] is a base case.

3. [3
c−→{e,m}

2μ3]. We have c /∈ {e,m} and LP (3,m, μ′3) = 	 with m ∈ {e,m} (case

1). states 6 and 7 are the only states for which μ′3 gives a non-zero probability, and
6

c−→{e,m}
1μ6 and 7

c−→{e,m}
1μ7 with μ3(s

′) = μ′3(6)μ6(s
′) + μ′3(7)μ7(s

′). We observe

that [6
c−→{e,m}

1μ6] and [7
c−→{e,m}

1μ7] are base cases.
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Finally, we obtain the following result:

µ∗(5) = μ1(2)(μ
′
2(5)) = .25 µ∗(10) = μ1(3)(μ

′
3(6)μ6(10) + μ′

3(7)μ7(10)) = .25

µ∗(8) = μ1(2)(μ
′
2(4)μ4(8)) = .25 µ∗(11) = μ1(3)(μ

′
3(6)μ6(11) + μ′

3(7)μ7(11)) = .25

3.2 On Stutter Satisfaction

We now introduce the notion of stutter satisfaction, that is an extension of Definition 4
for stuttering PAs.

Definition 7 (Stutter Satisfaction). Let P = (SP , AP , LP , AP, VP , s
P
0 ) be a PA, let

N = (S,A, L,AP, V, s0) be an APA such that A ⊆ AP andH = AP \A is a consistent
set of hidden actions for P . A binary relation R ⊆ SP × S is a stutter satisfaction
relation iff, for any (s, s′) ∈ R, the following conditions hold:

1. for all a ∈ A and ϕ′ ∈ C(S), if L(s′, a, ϕ′) = 	, then there exists a distribution
μ∗ ∈ Dist(SP ) such that s

a−→
H

∗μ∗ and there exists μ ∈ Sat(ϕ′) such that

μ∗ �R μ,
2. for all μ∗ ∈ Dist(SP ) and a ∈ A such that s

a−→
H
∗μ∗, there exist constraints

ϕ1, . . . ϕn ∈ C(S) such that for all i, L(s′, a, ϕi) �= ⊥ and there exist ρi ∈ [0, 1]
and μi ∈ Sat(ϕi) such that

∑
i ρi = 1 and μ∗ �R (

∑
i ρiμi), and

3. VP (s) ∈ V (s′).

We say that P = (SP , AP , LP , AP, VP , s
P
0 ) stutter-satisfies N = (S,A, L,AP, V, s0),

written P |=∗ N , iff A ⊆ AP ,H = AP \A is a consistent set of hidden actions for P ,
and there exists a stutter satisfaction relationR such that sP0 R s0. The set of stuttering
implementations of APA N is given by [[N ]]∗ = {P | P |=∗ N}. Algorithms to decide
such satisfaction relation can be obtained directly from those proposed in [10,11] for
the case where there exists no stuttering loops. Otherwise, the problem is still open.

Example 3. The PA P given in Figure 2 satisfies the specification of the coffee machine
of Figure 1 with the notion of stuttering satisfaction given above. The stuttering satis-
faction relationR is as follows:R = {({1, 2, 3, 6, 7}, I), ({4, 5, 8, 9, 10, 11}, C)}. We
show how state 1 of P satisfies state I of the specification and leave it to the reader to
verify that the rest of the relationR satisfies the axioms of Definition 7 above.

– In the specification, we have L(I, c, ϕc) = 	. There exists a matching distribution
in P : we have 1

c−→{e,m}
3μ∗, with μ∗ defined in Example 2, and μ∗ �R μc with

μc : C �→ 1 ∈ Sat(ϕc),
– in the implementation, we can verify that for all a ∈ {r, c} and μ∗P such that
1

a−→{e,m}
∗μ∗P , we have a matching constraint and distribution in the specification:

either ϕr or ϕc, and
– VP (1) = {ready} ∈ V (I) = {{ready}}.
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Remark that the choice we made on the definition of stutter transitions by allowing
stuttering to happen both before and after the visible action strongly influences the
notion of stuttering satisfaction. We denote by |=∗A (resp. |=∗B) the notion of satisfaction
obtained by replacing the general notion of stutter transition

a−→
H
∗ with the restricted

notion
a−→
H
∗
A (resp.

a−→
H
∗
B). The following theorem states that the different notions of

stutter satisfaction |=∗, |=∗A and |=∗B cannot be compared in general.

Theorem 1. There exists PAs P , PA and PB and an APA N such that (1) P |=∗A N ,
P |=∗B N , and P |=∗ N ; (2) PA |=∗A N , PA �|=∗B N , and PA �|=∗ N ; (3) PB �|=∗A N ,
PB |=∗B N , and PB |=∗ N .

Refinement. We now consider Refinement that is a relation that allows us to compare
APAs in terms of sets of implementations. In Segala’s theory, refinement boils down
to (stochastic) simulation. In the context of APAs, refinement usually extends the def-
inition of satisfaction. Extending Definition 7 would require to consider stuttering in
the specification itself, which is not the topic of this paper. For this reason, we use the
refinement relation proposed in [11].

Definition 8 (Refinement([11])). Let N = (S,A, L,AP, V, s0) and N ′ =
(S′, A, L′, AP,
V ′, s′0) be APAs. R ⊆ S × S′ is a refinement relation if and only if, for all
(s, s′) ∈ R, the following conditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S′), if L′(s′, a, ϕ′) = 	, then ∃ϕ ∈ C(S) : L(s, a, ϕ) = 	 and
∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) such that μ �R μ′,

2. ∀a ∈ A, ∀ϕ ∈ C(S), if L(s, a, ϕ) �= ⊥, then ∀μ ∈ Sat(ϕ), ∃ϕ′ ∈ C(S′) :
L′(s′, a, ϕ′) �= ⊥ and ∃μ′ ∈ Sat(ϕ′) such that μ �R μ′, and

3. V (s) ⊆ V ′(s′).

We say that N refines N ′, denoted N 1W N ′, if and only if there exists a refinement
relation relating s0 and s′0. In [11], it is shown that for two given APAs N1 and N2, we
have N1 1W N2 ⇒ [[N1]] ⊆ [[N2]], where [[Ni]] represent PAs without stuttering steps.
The following theorem extends this result to the case of PAs with stuttering steps.

Theorem 2. Let P be a PA and let N and N ′ be APAs. If P |=∗ N and N 1W N ′,
then P |=∗ N ′.

Conjunction. We now turn our attention to the interaction between stuttering and con-
junction. Due to space limitations, the definition of conjunction is given in [12]. As
proven in [11], conjunction is the greatest lower bound with respect to refinement [11],
i.e. for all APAs N1, N2 and N3, (N1 1W N2) ∧ (N1 1W N3) ⇐⇒ N1 1W
(N2 � N3). Furthermore, it coincides with the intersection of sets of (non-stuttering)
implementations: for all N1 and N2, [[N1]] ∩ [[N2]] = [[N1 � N2]]. In the following, we
show that this result is preserved with the new notion of stuttering implementation.

Theorem 3. Given two APAs N1 and N2, it holds that [[N1]]
∗ ∩ [[N2]]

∗ = [[N1 � N2]]
∗.
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PA Semantics APA Semantics

ψ s[|=∗ ψ ⇐⇒ s[|= ψ ⇐⇒

Vval VP (s) ∈ Vval V (s) ⊆ Vval

ψ1 ∧ ψ2 s[|=∗ ψ1 and s[|=∗ ψ2 s[|= ψ1 and s[|= ψ2

〈a〉�pψ′
∃μ∗ ∈ Dist(SP ) s.t. s

a−→
H

∗μ∗ and(∑
{s′ | s′[|=∗ψ′} μ

∗(s′)  p
) ∃ϕ ∈ C(S) s.t. L(s, a, ϕ) = � and(

∀μ ∈ Sat(ϕ) :
∑

{s′ | s′[|=ψ′} μ(s
′)  p

)

[a]�pψ
′
∀μ∗ ∈ Dist(SP ), if s

a−→
H

∗μ∗, then(∑
{s′ | s′[|=∗ψ′} μ

∗(s′)  p
) ∀ϕ ∈ C(S), if L(s, a, ϕ) �= ⊥, then(

∀μ ∈ Sat(ϕ) :
∑

{s′ | s′[|=ψ′} μ(s
′)  p

)

Fig. 6. Semantics of ML-(A)PA for PAs and APAs

4 Logical Characterization

We now turn our attention to proposing a modal logic ML-(A)PA for PAs and APAs. This
logic resembles the Probabilistic Modal Logic PML [22,21]. The main differences be-
tween PML and ML-(A)PA are that (1) ML-(A)PA is designed to specify properties for
both PAs and APAs, while PML is restricted to PAs, (2) The semantics of ML-(A)PA for
PAs considers stuttering transitions, while PML does not, and finally (3) unlike PML,
ML-(A)PA is disjunction and negation-free. We first give the syntax of ML-(A)PA and
semantics for PAs and APAs, then we study its soundness and completeness.

ψ ::= Vval | ψ1 ∧ ψ2 | 〈a〉�pψ′ | [a]�pψ
′,

where Vval ∈ 22
AP

, a ∈ A, ! ∈ {≥, >}, and p ∈ [0, 1]. Let F (A,AP ) be the set of
formulas over A and AP .

We define the semantics of ML-(A)PA for both PAs and APAs. Let P = (SP , AP ,
LP , AP, VP , s

P
0 ) be a PA and let N = (S,A, L,AP, V, s0) be an APA. Assume that

A ⊆ AP is a set of actions such that H = AP \ A is a consistent set of hidden actions
for P . We define the satisfaction relation between states of P (resp. N ) and formulas
in F (A,AP ) by induction as in Figure 6. We say that P satisfies ψ, written P [|=∗ ψ iff
AP \A is a consistent set of hidden actions for P and sP0 [|=∗ ψ. We say that N satisfies
ψ, written N [|= ψ iff s0[|= ψ. The logic ML-(A)PA and its relation to PAs/APAs is
illustrated in the following example.

Example 4. Consider the specification of a coffee machine N given in Figure 1 and
the implementation P of the coffee machine given in Figure 2. Let A = {r, c} and
AP = {ready, tea, coffee} and consider the following formulas in F (A,AP ):

ψ1 ::=[c]≥1{{coffee}, {tea}} ψ3 ::=〈c〉≥.5{{coffee}}
ψ2 ::=[r]≥1 ([c]≥1{{coffee}, {tea}}) ψ4 ::={{ready}} ∧ 〈c〉≥1 ([r]≥1{{ready}})

One can verify that N [|= ψ1, N [|= ψ2 and N [|= ψ4 and that N does not satisfy ψ3.
Indeed, state C of N does not satisfy the formula {{coffee}}. However, one can ver-
ify that P [|=∗ ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4. In particular, the satisfaction of ψ3 is ensured by
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A

C

B

{{α}}

{{α}}

{{α}, {β}}

a, ϕ,	
μ ∈ Sat(ϕ) ⇐⇒

(μ(B) = .5) ∧ (μ(C) = .5)

Fig. 7. APA N≤ such that N≤[|= ψ5

1 2
a, 1

{α} {α}

Fig. 8. PA P≤ such that P≤ |=∗ N≤ and P≤[�|=∗ ψ5

the existence of a distribution μ∗ given in Figure 3 such that 1
c−→{e,m}

∗μ∗ in P and

μ∗({coffee}) = .5.

We now show that ML-(A)PA is sound and complete with respect to stutter satisfaction.
We start with soundness.

Theorem 4 (Soundness). Let N = (S,A, L,AP, V, s0) be an APA and ψ ∈
F (A,AP ) be a formula. If N [|= ψ, then for all PA P = (SP , AP , LP , AP, VP , s

P
0 )

such that P |=∗ N , it holds that P [|=∗ ψ.

It is worth mentioning that soundness would not hold if ML-(A)PA was equipped with
negation or with the comparison operators {<,≤}. This is illustrated in the following
example.

Example 5. Assume that ML-(A)PA is equiped with the dual comparison operator ≤.
Consider the formula ψ5 ::= [a]≤.5{{α}}.

Consider APA N≤ given in Figure 7. Since {{α}, {β}} �⊆ {{α}}, we have that
state C of N≤ does not satisfy {{α}}. It thus follows that N≤[|= ψ5. Now consider PA
P≤ given in Figure 8. One can verify that P≤ |=∗ N≤. However, since state 2 of P≤
satisfies {{α}}, we have that P≤[�|=∗ ψ5. A similar example can be produced to prove
that ML-(A)PA would not be sound if equiped with negation.

We now show that ML-(A)PA is complete with respect to stutter satisfaction.

Theorem 5 (Completeness). Let N = (S,A, L,AP, V, s0) be a consistent APA and
let ψ ∈ F (A,AP ). It holds that (∀P ∈ [[N ]]∗, P [|=∗ ψ) =⇒ N [|= ψ.

This theorem is proved using an induction technique on the structure of the formula.
Due to space limitations, the proof is reported to [12]. It is worth mentioning that com-
pleteness would not hold if ML-(A)PA was equiped with disjunction. This is illustrated
in the following example, adapted from [3].

Example 6. LetN∨ = ({A,B}, {a}, L∨, {α, β}, V∨, A) be an APA such that V∨(A) =
V∨(B) = {{α}} and L(A, a, ϕ) =? with μ ∈ Sat(ϕ) iff μ(B) = 1. Assume that ML-
(A)PA is extended with disjunction and consider the formula ψ6 ::= 〈a〉≥1{{α}} ∨
[a]≥1{{β}}. Since state A does not have any must transition, we have that N∨[�|=
〈a〉≥1{{α}}. Moreover, since V∨(B) �⊆ {{β}}, we have that N∨[�|= [a]≥1{{β}}. As a
consequence, N∨[�|= ψ6. However, any implementation of N∨ either contains no tran-
sition at all, thus satisfying [a]≥1{{β}}, or it contains a transition leading to {α} with
probability 1, thus satisfying 〈a〉≥1{{α}}. As a consequence, ∀P ∈ [[N∨]]∗, P [|=∗ ψ6.
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In addition to being sound and complete with respect to stutter satisfaction, ML-(A)PA
also matches the notion of conjunction of APAs, as shown in the following theorem.

Theorem 6. Let N1 and N2 be two APAs and let ψ1 and ψ2 be two formulas. If N1[|=
ψ1 and N2[|= ψ2 then (N1 � N2)[|= (ψ1 ∧ ψ2).

5 On Composition of APAs and Stuttering

We now show that the notion of structural composition that allows to combine APAs
does not preserve precongruence of refinement. Consider the classical notion of com-
position between PAs, originally proposed by Segala [31] and extended to the setting
of APAs [8]. This notion of composition allows to synchronize on a common set of
actions Ā while allowing independent progress on the complement of Ā. When com-
posing APAs, the resulting constraint represents products of distributions satisfying the
original constraints. Due to space limitations, the formal definition is given in [12].
Unfortunately, the notion of stuttering satisfaction as presented in Section 3 is not com-
patible with composition. This is formalized in the following theorem. Due to space
limitations, the detailed proof is given in [12].

Theorem 7. There exists two compatible (in the sense of composition) PAs P1 and P2

and two compatible (in the sense of composition) APAsN1 andN2 such thatP1 |=∗ N1,
P2 |=∗ N2 and P1 ‖Ā P2 �|=∗ N1 ‖Ā N2.

The reason for this setback is the well known problem of distributed scheduling [17].
When composing two stuttering PAs, one allows interleaving of atomic stuttering steps
from both sides, which generates extra behaviors. Our solution is to transform a PA P
with a consistent set of hidden actionsH into a non-stuttering PA P̂H that satisfies the
same APA specifications as P . This transformation removes stuttering by computing
all the distributions that can be reached with stuttering in P and inserting them in the
transition function of P̂H.

Definition 9. Let P = (SP , AP , LP , AP, VP , s
P
0 ) be a PA and let H be a consistent

set of hidden actions for P . Define the PA P̂H = (SP , AP \ H, L̂HP , AP, VP , s
P
0 ) such

that

∀s ∈ S, a ∈ AP \ H, μ ∈ Dist(S), L̂HP (s, a, μ) = 	 ⇐⇒ s
a−→
H
∗μ in P.

By construction, P̂H is such that for all APA N = (S,AP \ H, L,AP, V, s0), we have

P |=∗ N ⇐⇒ P̂H |= N.

We have the following theorem.

Theorem 8. Let P1 = (S1
P , A

1
P , L

1
P , AP

1, V 1
P , s
P1
0 ) and P2 = (S2

P , A
2
P , L

2
P , AP

2,
V 2
P , [4]s

P2
0 ) be two PAs such that AP 1∩AP 2 = ∅. Let N1 = (S1, A1, L1, AP 1, V 1, s10)

and N2 = (S2, A2, L2, AP 2, V 2, s20) be APAs such that H1 = A1
P \ A1 and H2 =

A2
P \A2 are consistent sets of hidden actions forP1 andP2 respectively, withH1∩A2 =
H2 ∩A1 = ∅. For all Ā ⊆ A1 ∩A2, we have the following:

if P1 |=∗ N1 and P2 |=∗ N2 then P̂1

H1 ‖Ā P̂2

H2 |= N1 ‖Ā N2.
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6 Future Work

In the future, we will study specifications with stuttering. This is complex as one will
have to define a notion of may/must stutter transition in the specification APAs. The
main problem is the constraints on distributions: the recursive step in the stutter transi-
tions will have to take into account and propagate that the stutter remains valid for any
solution of the constraints. Finally, all the work should also be implemented in APAC.
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Call-by-Value Non-determinism

in a Linear Logic Type Discipline
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Abstract. We consider the call-by-value λ-calculus extended with a
may-convergent non-deterministic choice and a must-convergent parallel
composition. Inspired by recent works on the relational semantics of lin-
ear logic and non-idempotent intersection types, we endow this calculus
with a type system based on the so-called Girard’s second translation of
intuitionistic logic into linear logic. We prove that a term is typable if
and only if it is converging, and that its typing tree carries enough infor-
mation to give a bound on the length of its lazy call-by-value reduction.
Moreover, when the typing tree is minimal, such a bound becomes the
exact length of the reduction.

Keywords: λ-calculus, linear logic, non-determinism, call-by-value.

1 Introduction

The intersection type discipline provides logical characterisations of operational
properties of λ-terms, namely of various notions of termination, like head-, weak-
and strong-normalisation (see [10,22], and [16] as a reference). The basic idea is
to look at types as the set of terms having a given computational property — the
type α ∩ β being the set of those terms enjoying both properties α and β. With
this intuition in mind, the intersection is naturally idempotent (α ∩ α = α).

Another way to understand the intersection type discipline is as a deductive
system for presenting the compact elements of a specific reflexive Scott domain
(see e.g. [1, §3.3]). The set of types assigned to a closed term captures the inter-
pretation of such a term in the associated domain. Intersection types are then
a powerful tool for enlightening the relations between denotational semantics,
syntactical types and computational properties of programs.

Intersection types have been recently revisited in the setting of the relational
semantics Rel of Linear Logic (LL). Rel is a semantics providing a more quanti-
tative interpretation of the λ-calculus than Scott domains. Loosely speaking, the
relational interpretation of a λ-term M not only tells us whether M converges
on an argument, but in case it does, it also provides information on the number
of times M needs to call1 its argument to converge. Just like the intersection

� Partially supported by grants from DIGITEO and Région Île-de-France.
1 The notion of calling an argument should be made precise by specifying an opera-
tional semantics, which is usually achieved through an evaluating machine.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 164–178, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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type discipline captures Scott domains, non-idempotent intersection type sys-
tems represent relational models. In this framework the type α1 ∩ · · · ∩ αk may
be more accurately represented as the finite multiset [α1, . . . , αk]. The lack of
idempotency is the key ingredient to model the resource sensitiveness of Rel —
while in the usual systems M : α ∩ β stands for “M can be used either as data
of type α or as data of type β”, when the intersection is not idempotent the
meaning of M : [α, β] becomes “M will be called once as data of type α and
once as data of type β”. Hence, types should no longer be understood as sets of
terms, but rather as sets of calls to terms.

The first intersection type system based on Rel has been presented in [11],
where de Carvalho introduced system R, a type discipline capturing the re-
lational version of Engeler’s model. More precisely, he proved that system R,
beyond characterising converging terms, carries information on the evaluation
sequence as well — the size of a derivation tree typing a term is a bound on
the number of steps needed to reach a normal form. Similar results are obtained
in [6] for a variant of system R characterising strong normalisation and giving a
bound to the longest β-reduction sequence. More recently, Ehrhard introduced
a non-idempotent intersection type system characterising the convergence in the
call-by-value λ-calculus [14]. Also in this case, the size of a derivation tree bounds
the length of the lazy (i.e. no evaluation under λ’s) call-by-value β-reduction se-
quence. Our goal is to extend Ehrhard’s system with non-determinism.

Our starting point is [9], where it is shown that the relational model D of the
call-by-name λ-calculus provides a natural interpretation of both may and must
non-determinism. Since Rel interprets λ-terms as relations, the may-convergent
non-deterministic choice can be expressed in the model as the set-theoretical
union. Themust -convergent parallel composition, instead, is interpreted by using
the operation D⊗D� D obtained by combining the mix rule D⊗D� D`D
with the contraction rule D`D� D, this latter holding since the call-by-name
model D has shape ?A for A = DN �⊥. We will show that the same principle
(may-convergence as union of interpretations and must -convergence as mix rule
plus contraction) still works in the call-by-value setting.

Ehrhard’s call-by-value type system is based on the so-called “second Girard’s
translation” of intuitionistic logic into LL [15,19]. The translation of a type α
is actually given by two mutually defined mappings (α �→ αv and α �→ αc)
reflecting the two sorts (values and computations) at the basis of the call-by-
value λ-calculus:

ιv = ι, (α→ β)v = αc � βc, αc = !αv,

where ι is an atom. Hence, the relational model described by Ehrhard’s typing
system yields a solution to the equation V 9 !V � !V in Rel. Since in this
semantics � is interpreted by the cartesian product and ! by finite multisets,
a functional type for a value in this system is a pair (p, q) of types for compu-
tations, and a type for a computation is a multiset [α1, . . . , αn] of value types
(representing n calls to a single value that must behave as α1, . . . , αn).
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In order to deal with the must non-determinism, namely the parallel composi-
tion, we must add to the translation considered by Ehrhard a further exponential
level, called here the parallel sort :

ιv = ι, (α→ β)v = αc � β‖, αc = !αv, α‖ = ?αc. (1)

This translation enjoys the nice property of mapping the call-by-value λ-calculus
into the polarised fragment of LL, as described by Laurent in [17]. Then, our typ-
ing system is describing an object in Rel satisfying the equation V 9 !V � ?!V ,
where the ? connective is interpreted by the finite multiset operator. In this
setting a value type is a pair (p, [q1, . . . , qn]) of a computational type p and a
parallel type, that is a multiset of computations q1, . . . , qn. Intuitively, a value
of that type needs a computation of type p to create a parallel composition
of n computations of types q1, . . . , qn, respectively. Notice that, following [9],
the composition of the mix rule and the contraction one yields an operation
?!V ⊗ ?!V � ?!V which is used to interpret the parallel composition.

To avoid a clumsy notation with multisets of multisets, we prefer to denote a
!-multiset [α1, . . . , αm] (the type of a computation) with the linear logic multi-
plicative conjunction α1⊗· · ·⊗αm, a ?-multiset [q1, . . . , qn] (the type of a parallel
composition of computations) with the multiplicative disjunction q1 ` · · · ` qn,
and finally a pair (p, [q1, . . . , qn]) with the linear implication p � (q1` · · ·` qn).
Such a notation stresses the fact that the non-idempotent intersection type sys-
tems issued from Rel are essentially contained in the multiplicative fragment of
LL (modulo the associativity, commutativity and neutrality equivalences).

Contents. Several non-deterministic extensions of the λ-calculus have been pro-
posed in the literature, both in the call-by-name (e.g. [9,12]) and in the call-by-
value setting (e.g. [7,13]). In the present paper we focus on the call-by-value
λ-calculus, first introduced in [21], endowed with two binary operators + and ‖
representing non-deterministic choice and parallel composition, respectively. The
resulting calculus, denoted here Λ+‖, is quite standard and its operational seman-
tics is given in Section 2 through a machine performing lazy call-by-value reduc-
tion. Following [9], we model non-deterministic choice as may non-determinism
and parallel composition as must. This is reflected in our reduction and in our
notion of convergence. Indeed, every time the machine encounters M + N in
active position it actually performs a choice, while encountering M ‖ N it in-
terleaves reductions in M and in N ; finally a term M converges when there is a
reduction of the machine from M to a normal form.

Section 3 is devoted to provide the type discipline for Λ+‖, based on the
multiplicative fragment of LL (as discussed above), and to define a measure | · |
associating a number with every type derivation. Such a measure “extracts” from
the information present in the typing tree of a term, a bound on the length of its
evaluation. In Section 4 we show that our type system satisfies good properties
like subject reduction and expansion. We also prove that the measure associated
with the typing tree of a term decreases by 1 at every reduction step, giving thus
a proof of weak normalisation in ω for typable terms. From these properties it
ensues directly that a term is typable if and only if it converges. Moreover, thanks



Call-by-Value Non-determinism in a Linear Logic Type Discipline 167

βv-reduction +-reductions ‖-reductions
(λx.M)V →M [V/x] M +N →M

M +N → N
(M ‖ N)P →MP ‖ NP
V (M ‖ N)→ VM ‖ V N

Contextual rules

M → M ′

M ‖ N → M ′ ‖ N

N → N ′

M ‖ N →M ‖ N ′
M →M ′ (∗)

MN →M ′N

M →M ′ (∗)

VM → VM ′

Fig. 1. Reduction semantics for Λ+‖. The condition (∗) stands for “M �= P ‖ Q”.

to the resource consciousness of our type system, we are able to strengthen such a
result — we prove that, wheneverM converges, there is a type derivation �M : α
(with α satisfying a suitable minimality condition) such that the associated
measure provides the exact number of steps reducing M to a normal form.

Finally, in Section 5 we discuss the properties of the model in Rel underlying
our system. As expected, the interpretation turns out to be adequate, i.e. a term
converges if and only if its interpretation is non-empty. On the other hand such a
model is not fully abstract — there are terms having different interpretations and
that cannot be (semi-)separated using applicative contexts. Our counterexample
does not rely on the presence of + and ‖ .

2 The Call-by-Value Non-deterministic Machine

We consider the call-by-value λ-calculus [21], extended with non-deterministic
and parallel operators in the spirit of [9]. The set Λ+‖ of terms and the set
V+‖ of values are defined by mutual induction as follows (where x ranges over
a countable set Var of variables):

Terms: M,N,P,Q ::= V |MN |M +N |M ‖ N Λ+‖
Values: V ::= x | λx.M V+‖

Intuitively,M+N denotes the non-deterministic choice betweenM andN , while
M ‖ N stands for their parallel composition. Such operators are not required to
be associative nor commutative. As usual, we suppose that application associates
to the left and λ-abstraction to the right. Moreover, to lighten the notation, we
assume that application and λ-abstraction take precedence over + and ‖ .

The α-conversion and the set FV(M) of free variables of M are defined as
usual in λ-calculus [5, §2.1]. A term M is closed whenever FV(M) = ∅.

Given M ∈ Λ+‖ and V ∈ V+‖, we denote by M [V/x] the term obtained by
simultaneously substituting the value V for all free occurrences of x inM , subject
to the usual proviso about renaming bound variables in M to avoid capture of
free variables in V . Hereafter terms are considered up to α-conversion.
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Definition 1 (Operational semantics). The operational semantics of Λ+‖ is
given in Figure 1. We denote by →∗ the transitive and reflexive closure of →.

The side condition (∗) on the context rules for the application avoids critical
pairs with the ‖-rules: this is not actually needed but it simplifies some proofs.
A term M is called a normal form if there is no N ∈ Λ+‖ such that M → N .
In particular, all (parallel compositions of) values are normal forms. Note that
when M is closed then either it is a parallel composition of values or it reduces.

Definition 2. A closed term M ∈ Λ+‖ converges if and only if there exists a
reduction M →∗ V1 ‖ · · · ‖ Vn for some Vi ∈ V+‖.

The intuitive idea underlying the above notion of convergence is the following:

– The non-deterministic choice M +N is treated as may-convergent, either of
the alternatives may be chosen during the reduction and the sum converges
if either M or N does.

– The parallel composition M ‖ N is modelled as must -convergent, the reduc-
tion forks and the parallel composition converges if both M and N do.

Let us provide some examples. We set I = λx.x, Δ = λx.xx and we denote
by Ω the paradigmatic non-converging term ΔΔ, which reduces to itself as
Δ is a value. The reduction is lazy, i.e. it does not reduce under abstractions,
so for example λy.Ω is a normal form. In fact, when considering closed terms,
the parallel compositions of values are exactly the normal forms, thus justifying
Definition 2. We would like to stress that our system is designed in such a
way that a parallel composition of values is not a value. As a consequence,
the term P = λk.Δ ‖ Δ is not a value, so the term (λx.xIx)P is converging.
Indeed, it reduces to (λx.xIx)(λk.Δ) ‖ (λx.xIx)Δ →∗ Δ ‖ Δ. Notice that, if
we consider P as a value, then (λx.xIx)P would diverge since it would reduce
to P IP →∗ (Δ ‖ I)P →∗ ΔP ‖ P and one can check easily that ΔP diverges.

The presence of the non-deterministic choice + enlightens a typical feature
of the call-by-value λ-calculus: application is bilinear (i.e. it commutes with +)
while abstraction is not linear. Indeed, one can prove that (M+M ′)(N+N ′) and
MN+MN ′+M ′N+M ′N ′ are operationally indistinguishable, while λx.(M+N)
and λx.M + λx.N , in general, are not. For example, take S = λx.(x + I), S′ =
λx.x + λx.I, EI = λx.I, EΩ = λx.Ω, and F = λb.bEΩ(bEIEΩ)I. Now observe
that FS is converging to the value I, while FS′ diverges. Indeed, remarking that
SEIEΩ reduces non-deterministically to I and to EΩ, we have:

FS SEΩ(SEIEΩ)I (EΩ + I)(SEIEΩ)I

EΩ(SEIEΩ)I

EΩII

EΩEΩI

ΩI

I(SEIEΩ)I

III I

IEΩI Ω

∗

∗

∗ ∗

∗ ∗

while FS′ has two reducts, either F I reducing to ΩI, or FEI reducing to Ω.
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ax
x : τ � x : τ

Δi, x : τi �M : αi 1 ≤ i ≤ n
�I n ≥ 0

n⊗
i=1

Δi � λx.M :
n⊗

i=1

(τi � αi)

Δ �M :
ķ

i=1

ni⊗
j=1

(τij � αij) Γi � N :
ni̧

j=1

τij 1 ≤ i ≤ k

�E
k ≥ 1
ni ≥ 1

Δ⊗
k⊗

i=1

Γi �MN :
ķ

i=1

ni̧

j=1

αij

Δ �M : α
+


Δ �M +N : α

Δ � N : α
+r

Δ �M +N : α

Δ �M : α1 Γ � N : α2

‖I
Δ⊗ Γ �M ‖ N : α1 ` α2

Fig. 2. Type system: the inference rules

Finally, we give two examples mixing + and ‖ . The term (λx.(x ‖ x))(V +V ′)
converges either to V ‖ V or to V ′ ‖ V ′, while the term (λx.(x + x))(V ‖ V ′)
converges to V ‖ V ′, only.

3 Linear Logic Based Type System

In this section we introduce our type system based on linear logic. The set T
of (parallel) types and the set C of computational types are generated by the
following grammar:

parallel-types: α, β ::= α` β | τ T
computational-types: τ, ρ ::= 1 | τ ⊗ ρ | τ � α C

For the sake of simplicity, types are considered up to associativity and commuta-
tivity of the tensor ⊗ and the par `. The type 1, which is the only atomic type,
represents the empty tensor and is therefore its neutral element (i.e. τ ⊗ 1 = τ).
Accordingly, we write ⊗ni=1τi for τ1⊗· · ·⊗τn when n ≥ 1, and for 1 when n = 0.
Similarly, when n ≥ 1, `ni=1αi stands for α1 ` · · ·` αn.

As mentioned in the introduction, τ1⊗ · · ·⊗ τn and α1 ` · · ·`αk are actually
notations representing two different kinds of multisets, namely the !- and ?-
multisets (respectively). Under this correspondence, 1 represent the empty !-
multiset. We do not allow the empty par as it would correspond to an empty
sum of terms, that would be delicate to treat operationally (cf. [4]).

Note that neither ⊗ nor ` are supposed idempotent.

Definition 3. A context Γ is a total map from Var to C, such that dom(Γ ) =
{x | Γ (x) �= 1} is finite. The tensor of two contexts Γ and Δ, written Γ ⊗Δ, is
defined pointwise.
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As a matter of notation, we write x1 : τ1, . . . , xn : τn for the context Γ such that
Γ (xi) = τi and Γ (y) = 1 for all y /∈ �x. The context mapping all variables to 1 is
denoted by ∅; note that Γ ⊗ ∅ = Γ .

Definition 4. – The type system for Λ+‖ is defined in Figure 2. Typing
judgements are of the form Γ �M : α; when Γ = ∅ we simply write �M : α.
Derivation trees will be denoted by π.

– A term M ∈ Λ+‖ is typable if there exist α ∈ T and a context Γ such that
Γ �M : α.

The rules for typing non-deterministic choice and parallel composition reflect
their operational behaviour. Non-deterministic choice is may-convergent, thus it
is enough to ask that one of the terms in a sum is typable; on the other hand
parallel composition is must-convergent, we therefore require that all its compo-
nents are typable. Intuitively, when dealing with closed terms, the ` operator
can be only introduced to type a parallel composition, and gives an account
of the number of its components. In fact, for closed regular λ-terms, the type
system looses the `-level and collapses to the one presented in [14].

The �E rule reflects the distribution of the parallel operator over the applica-
tion. For example, take M = x ‖ x′ and N = y ‖ y′ in the premises of �E , then
we have k = 2 and n1 = n2 = 2 so that the type of the term MN is a ` of four
types, which is in accordance with (x ‖ x′)(y ‖ y′)→∗ (xy ‖ xy′) ‖ (x′y ‖ x′y′).

Remark 1. For every V ∈ V+‖ we can derive � V : 1. Indeed, if V is a variable,
then the derivation follows by ax; if V is an abstraction, then it follows by �I
using n = 0. As a simple consequence we get � V1 ‖ · · · ‖ Vk : 1 ` · · · ` 1
(k times) for all V1, . . . , Vk ∈ V+‖.

Concerning the possible types of values, the next more general lemma holds.

Lemma 1. Let V ∈ V+‖. If Δ � V : α then α ∈ C.

Proof. A proof of Δ � V : α ends in either a ax or a �I rule. In both cases α
is a computational-type. ��

To help the reader to get familiar with the type system, we provide some exam-
ples of typable and untypable terms.

Example 1. Recall that I = λx.x, Δ = λx.xx and Ω = ΔΔ.

1. � I :
⊗n
i=1(τi � τi) and � λx.I :

⊗n
i=1(1 �

⊗ki
j=1(τij � τij)).

2. �Δ :
⊗n
i=1((τi � αi)⊗ τi) � αi.

3. Ω is not typable. By contradiction, suppose � Ω : α. By (�E) and (2) there
is a type τ such that � Δ : τ � α and � Δ : τ . Let us choose such a τ
with minimal size. Applying (2) to �Δ : τ � α, we get τ = (τ ′ � α) ⊗ τ ′,
from which one can deduce (see Lemma 2, below) that � Δ : τ ′ � α and
�Δ : τ ′, thus contradicting the minimality of τ .

4. However, � λx.Ω : 1, so � λx.Ω+Ω : 1, but λx.Ω ‖ Ω is not typable.
5. From (1) and (4) we get: � I ‖ λx.Ω : (

⊗n
i=1(τi � τi))` 1.
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We now define a measure associating a natural number with every derivation
tree. In Section 4.1 we prove that such a measure decreases along the reduction.
In the next definition we follow the notation of Figure 2, in particular in the
�E-case the parameter ni refers to the arity of the

˙
in the conclusion of πi.

Definition 5. The measure |π| of a derivation tree π is defined inductively as:

π = ax
S

|π| = 0

π =
π1 · · · πn �I

S
|π| =

∑n
i=1 |πi|

π =
π0 π1 . . . πk �E

k ≥ 1
ni ≥ 1S

|π| =
∑k
i=0 |πi|+ (

∑k
i=1 2ni)− 1

π =
π′

+�
S

or π =
π′

+r
S

|π| = |π′|+ 1

π =
π1 π2

‖I
S

|π| = |π1|+ |π2|

Hereafter, we may slightly abuse the notation and write π = Γ �M : α to refer
to a derivation tree π ending by the sequent Γ �M : α.

The measure of a derivation only depends on its rules of type �E , +� and +r.
These are in fact the kinds of rules that can type a redex (βv and ‖ redexes are
typed by �E rules, + redexes by +�, +r rules). Each occurrence of a +� or
+r rule counts for one, because a +-reduction does not create new rules in the
derivation typing the contractum (see the proof of Theorem 2 for more details).
An occurrence of a �E counts for the number of “active” connectives appearing
in the principal premise, i.e. the number of the connectives that are underlined
in the left-most premise of the �E rule in Figure 2, indeed

k∑
i=1

ni︸ ︷︷ ︸
�’s

+

k∑
i=1

(ni − 1)︸ ︷︷ ︸
⊗’s

+(k − 1)︸ ︷︷ ︸
`’s

= (

k∑
i=1

2ni)− 1.

Such a weight is needed since the ‖-reduction creates two new �E rules in the
derivation typing the contractum. The measure decreases however, since the sum
of the weight of the two new rules is less than the weight of the eliminated rule.

For example, let us consider the derivation tree π in Figure 3, which types the
‖-redex Δ(I ‖ λxy.Ω) with 1` 1, and has three �E rules — one of weight 1 in
each subtree π1, π2, and one of weight 3 giving the conclusion, so that |π| = 5.
Now, the �E-rule ending π splits into two �E -rules in the derivation tree π′

typing the contractum ofΔ(I ‖ λxy.Ω), namely π′ = �ΔI ‖Δ(λxy.Ω) : 1`1.
However, |π′| = |π|−1 since the number of the active connectives of the �E-rule
concluding π is greater than the sum of the number of the active connectives of
its “residuals” in π′.

Finally, note that the term Δ(I ‖ λxy.Ω) reduces to the value I ‖ λy.Ω in
5 = |π| steps. As we will show in Theorem 4 this does not happen by chance.
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π=

π1 = x : τ � xx : 1 π2 = x : τ � xx : 1
�I

�Δ : (τ � 1)⊗ (τ � 1)

� I : τ � λxy.Ω : τ
‖I

� I ‖ λxy.Ω : τ ` τ
�E

�Δ(I ‖ λxy.Ω) : 1` 1

π′=

π1 = x : τ � xx : 1
�I

�Δ : τ � 1 � I : τ
�E

�ΔI : 1

π2 = x : τ � xx : 1
�I

�Δ : τ � 1 � λxy.Ω : τ
�E

�Δ(λxy.Ω) : 1
‖I

ΔI ‖Δ(λxy.Ω) : 1` 1

Fig. 3. Derivation trees typing, respectively, the ‖-redex Δ(I ‖ λxy.Ω) and its
contractum ΔI ‖Δ(λxy.Ω), taking τ = (1 � 1) = (1 � 1)⊗ 1

4 Properties of the Type System

We prove that the set of types assigned to a term is invariant under →, in
a non-deterministic setting. More precisely, Theorem 2 states that if N is the
contractum of a {βv, ‖}-redex in M , then any type of M is a type of N , and if
N and N ′ are the two possible contracta of a +-redex in M , then any type of M
is either a type of N or of N ′ (subject reduction). On the other hand Theorem 3
shows the converse, namely that whenever M → N , any type of N is a type of
M (subject expansion).

Moreover, the two theorems combined prove that the measure associated with
the typing tree of a term decreases (resp. increases) of exactly one unit at each
typed step of reduction (resp. expansion). This is typical of non-idempotent
intersection type systems, as discussed in the introduction. As a consequence,
any typable term M is normalising and the measure of specific derivation trees
of M gives the length of a converging reduction sequence.

4.1 Subject Reduction

In order to prove subject reduction we first need some preliminary lemmas. Their
proofs are lengthy but not difficult, therefore we write explicitly only the most
interesting cases.

Lemma 2. We have that π = Δ � V :
⊗n
i=1 τi if and only if Δ =

⊗n
i=1 Δi and

πi = Δi � V : τi for all i = 1, . . . , n. Moreover, |π| =
∑n
i=1 |πi|.

Proof. We only prove (⇒), the other direction being similar. Since V is a value,
the last rule of π is either ax or �I . The first case is trivial. In the second
case, V = λx.M and the premises of the �I -rule are m ≥ n, say π′j = Δj , x :
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ρj � M : αj for j ≤ m, and τ1 =
⊗m1

j=1 ρj � αj and Δ1 =
⊗m1

j=1 Δj , . . . ,

τn =
⊗mn

j=mn−1+1 ρj � αj and Δn =
⊗mn

j=mn−1+1 Δj , with m1 + · · ·+mn = m.

Notice |π| =
∑m
j=1 |π′j |. Then, for every i ≤ n, a �I -rule with premises

π′mi−1+1, . . . , π
′
mi

yields πi = Δi � λx.M : τi, with |πi| =
∑mi

j=mi−1+1 |π′i|,
therefore |π| =

∑n
i=1 |πi|. ��

Lemma 3 (Substitution lemma). If π1 = Δ,x : τ � M : α and π2 = Γ �
V : τ , then there is π3 = Δ⊗ Γ �M [V/x] : α. Moreover |π3| = |π1|+ |π2|.

Proof. By structural induction on M . We only treat the most interesting case,
namely M = NP . In this case, the last rule of π1 is a �E -rule with k + 1
premises, say π0

1 = Δ0, x : τ0 � N :
˙k
i=1

⊗ni
j=1(ρij � αij), and for i =

1, . . . , k, πi1 = Δi, x : τi � P :
˙ni
j=1 ρij , where Δ =

⊗k
i=0 Δi, τ =

⊗k
i=0 τi,

α =
˙k
i=1

˙ni
j=1 αij and |π1| =

∑k
i=0 |πi1| + (

∑k
i=1 2ni) − 1. By Lemma 2, we

can split π2 into k + 1 derivations πi2 = Γi � V : τi, for i = 0, . . . , k, such

that Γ =
⊗k
i=0 Γi and |π2| =

∑k
i=0 |πi2|. By the induction hypothesis, there are

π0
3 = Δ0⊗Γ0 � N [V/x] :

˙k
i=1

⊗ni
j=1(ρij � αij), with |π0

3 | = |π0
1 |+ |π0

2 |, and for

i = 1, . . . , k, πi3 = Δi ⊗ Γi � P [V/x] :
˙ni
j=1 ρij , with |πi3| = |πi1| + |πi2|. Hence,

by rule �E , we have

π3 = (Δ0 ⊗ Γ0)⊗
k⊗
i=1

(Δi ⊗ Γi) � N [V/x]P [V/x] :
ķ

i=1

ni̧

j=1

αij

Notice that (Δ0⊗Γ0)⊗
⊗k
i=1(Δi⊗Γi) = Δ⊗Γ andN [V/x]P [V/x] = (NP )[V/x].

Moreover, |π3| =
∑k
i=0 |πi3|+(

∑k
i=1 2ni)− 1 =

∑k
i=0(|πi1|+ |πi2|) +(

∑k
i=1 2ni)−

1 = (
∑k
i=0 |πi1|+ (

∑k
i=1 2ni)− 1) +

∑k
i=0 |πi2| = |π1|+ |π2|. ��

We now prove the subject reduction property, which ensures that the type is
preserved during reduction, while the measure of the typing is strictly decreasing.

As a matter of terminology, we say that a term M reduces to a term N using
+-reductions, if M → N is derivable as a direct consequence of a +-reduction
and (possibly) some contextual rules. In the following proof, given a set S, we
denote by �S its cardinality.

Theorem 2 (Subject reduction). Let π = Δ �M : α.

– If M → N without using +-reductions, then there is π′ = Δ � N : α.
– If M → N1 and M → N2 using +-reductions, then there is π′ such as either

π′ = Δ � N1 : α or π′ = Δ � N2 : α.

Moreover, in both cases we have |π′| = |π| − 1.

Proof. We proceed by induction on the length of the derivation of M → N . We
only treat the most interesting cases.

– (λx.M ′)V → M ′[V/x]. Then, the last rule of π is a �E-rule with k + 1

premises, say π0 = Δ′ � λx.M ′ :
˙k
i=1

⊗ni
j=1(ρij � αij) and for every
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i = 1, . . . , k, πi = Γi � V :
˙ni
j=1 ρij , with moreover Δ = Δ′ ⊗

⊗k
i=1 Γi,

α =
˙k
i=1

˙ni
j=1 αij , and |π| =

∑k
i=0 |πi| + (

∑k
i=1 2ni) − 1. However, since

Lemma 1 entails that k = n1 = 1 we get |π| = |π0| + |π1| + 1. In addition,
the only possibility for π0 is to come from π′0 = Δ′, x : ρ � M ′ : α, where
|π0| = |π′0|. By Lemma 3, π′ = Δ′ ⊗ Γ � M ′[V/x] : α, where |π′| = |π′0| +
|π1| = |π0|+ |π1| = |π| − 1. We conclude since Δ′ ⊗ Γ = Δ.

– Let V (M ‖ N) → VM ‖ V N . Then π = Δ ⊗
⊗k
i=1 Γi � V (M ‖ N) :˙k

i=1

˙ni
j=1 αij ends in a �E rule having as premises π0 = Δ � V :˙k

i=1

⊗ni
j=1(ρij � αij) and, for i = 1, . . . , k, πi = Γj � M ‖ N :

˙ni
j=1 ρij .

Thus, we have |π| =
∑k
j=0 |πi|+(

∑k
i=1 2ni)−1. However, by Lemma 1, k = 1,

so we omit the index i where it is not needed, and |π| = |π0|+ |π1|+2n− 1.
Then π1

1 = Γ1 � M :
˙
j∈S ρj and π2

1 = Γ2 � N :
˙
j∈S̄ ρj , where

Γ = Γ1⊗Γ2, ∅ �= S � {1, . . . , k} and S̄ = {1, . . . , k}\S with |π1| = |π1
1 |+|π2

1 |.
By Lemma 2, we can split π0 into two derivations, πS0 =

⊗
j∈S Δj � V :⊗

j∈S(ρj � αj) and πS̄0 =
⊗
j∈S̄ Δj � V :

⊗
j∈S(ρj � αj), with |πS0 | +

|πS̄0 | = |π0|. By rule �E , we have π1 =
⊗
j∈S Δj ⊗Γ1 � VM :

˙
j∈S αj and

π2 =
⊗
j∈S̄ Δj⊗Γ2 � V N :

˙
j∈S̄ αj , where |π1| = |πS0 |+ |π1

1 |+2�S−1, and

|π2| = |πS̄0 | + |π2
1 | + 2�S̄ − 1. By rule ‖I , π′ =

⊗n
j=1 Δi ⊗ Γ1 ⊗ Γ2 � VM ‖

V N :
˙n
j=1 αj , where |π′| = |π1| + |π2| = (|πS0 |+ |π1

1 | + 2�S − 1) + (|πS̄0 | +
|π2

1 |+2�S̄−1) = |π0|+ |π1|+2�S+2�S̄−2 = |π0|+ |π1|+2n−2 = |π|−1. ��

4.2 Subject Expansion

The proof of the fact that our system enjoys subject expansion follows by
straightforward induction, once one has proved the commutation of abstraction
with abstraction, application, non-deterministic choice and parallel composition.

Theorem 3 (Subject expansion). If M → N and π = Δ � N : α, then there
is π′ = Δ �M : α, such that |π′| = |π|+ 1.

Proof. By induction on the length of the derivation of M → N , splitting into
cases depending on its last rule. We only consider the most interesting case,
i.e. (λx.M ′)V → M ′[V/x] where M ′ = PQ. One first needs to establish, by
induction on π, a claim about the commutation of abstraction with application.

Claim. If π = Δ � ((λx.P )V )((λx.Q)V ) : α, where the last rule of π is a �E
rule having k + 1 premises, then there exists π′ = Δ � (λx.PQ)V : α such that
|π′| = |π| − k.

By definition we haveN = (PQ)[V/x] = P [V/x]Q[V/x]. So, π = Δ � N : α ends

in a �E-rule with k + 1 premises π0 = Δ′ � P [V/x] :
˙k
i=1

⊗ni
j=1 (τij � αij)

and πi = Γi � Q[V/x] :
˙ni
j=1 τij for i = 1, . . . , k, with Δ = Δ′ ⊗

⊗k
i=1 Γi,

α =
˙k
i=1

˙ni
j=1 αij and |π| =

∑k
i=0 πi + (

∑k
i=1 2ni) − 1. Then, by the induc-

tion hypothesis, we get π′0 = Δ′ � (λx.P )V :
˙k
i=1

⊗ni
j=1(τij � αij), and
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π′i = Γi � (λx.Q)V :
˙ni
j=1 τij , with |π′i| = |πi| + 1. Hence by rule �E

we obtain π′′ = Δ′ ⊗
⊗k
i=1 Γi � ((λx.P )V )((λx.Q)V ) :

˙k
i=1

˙ni
j=1 αij , with

|π′′| =
∑k
i=0 |π′i|+(

∑k
i=1 2ni)−1. By the above claim, we get π′ = Δ′⊗

⊗k
i=1 Γi �

(λx.PQ)V :
˙k
i=1

˙ni
j=1 αij such that |π′| = |π′′| − k = |π|+ 1. ��

4.3 Convergence

From our “quantitative” versions of subject reduction and subject expansion
one easily obtains that our type system captures exactly the weakly normalising
terms, and that the size |π| of a derivation tree π = � M : α decreases along
the reduction of M . However, when α satisfies in addition a suitable minimality
condition (namely the fact that α is of shape 1` · · ·` 1), then we can be more
precise and say that there exists a reduction from M to a normal form, having
length exactly |π|.

In the following `k1, with k > 0, stands for 1` · · ·` 1 (k times).

Theorem 4. Let M be a closed term, and k > 0. There is a typing tree π for
� M : `k1 iff there are values V1, . . . , Vk and a reduction M →∗ V1 ‖ · · · ‖ Vk
of length |π|.

Proof. (⇒) Suppose π = � M : `k1. We proceed by induction on |π|. If
M = V1 ‖ · · · ‖ Vk′ , then π must start with a tree of k′ − 1 rules ‖, and then k′

rules �I with conclusion, respectively, � V1 : 1, . . . , � Vk′ : 1. We then have
k = k′, and M trivially converges to V1 ‖ · · · ‖ Vk′ in |π| = 0 steps.

Otherwise, sinceM is closed, there existsN such thatM → N . By Theorem 2,
such an N can be chosen in such a way π′ = � N : `k1, with |π′| = |π|−1. From
the induction hypothesis we know that N converges in |π′| steps to V1 ‖ · · · ‖ Vk.
Therefore, M converges in |π′|+ 1 = |π| steps to V1 ‖ · · · ‖ Vk.

(⇐) Suppose that M →∗ V1 ‖ · · · ‖ Vk. By Remark 1, there is π = � V1 ‖
· · · ‖ Vk : `k1 and |π| = 0. Therefore, by the subject expansion (Theorem 3)
there is π′ = � M : `k1 and |π′| is equal to the length of the reduction M →∗
V1 ‖ · · · ‖ Vk. ��

Corollary 1. Let M be closed, then M is typable if and only if M converges.

5 Adequacy and (Lack of) Full Abstraction

The choice of presenting a model through a type discipline or a reflexive object
is more a matter of taste rather than a technical decision. (Compare for instance
the type system of [20] and the interpretation of [9]). The model V associated
with our type system lives in the category Rel of sets and relations (refer to [14]
for more details) and is defined by V =

⋃
n∈N Vn, with

V0 = ∅, Vn+1 =Mf(Vn)×Mf(Mf(Vn)),

where Mf(X) denotes the set of finite multisets over a set X . In fact, Mf(X)
interprets in Rel the exponentials !X and ?X , whilst the cartesian product is
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the linear implication �, so that V is the minimal solution of the equation V 9
!V � ?!V . Recalling Equation 1 in the introduction, this means that the object
V represents “value types”, while computational types C will be represented by
elements of C = !V = Mf(V) and parallel-types T as elements of T = ?C =
Mf(C). This intuition can be formalized by defining two injections (·)◦ : T→ T
and (·)• : C→ C by mutual induction, as follows: τ◦ = [τ•], (α` β)◦ = α◦ � β◦,
1• = [], (τ ⊗ ρ)• = τ• � ρ• and (τ � α)• = [(τ•, α◦)].

It is beyond the scope of the present paper to give the explicit inductive
definition of the interpretation of terms. For our purpose it is enough to know
that such an interpretation can be characterised (up to isomorphism) as follows.

Definition 6. The interpretation of a closed term M is defined by �M � = {α |
�M : α} ⊆ T.

The interpretations of terms are naturally ordered by set-theoretical inclusion;
an interesting problem is to determine whether there is a relationship between
this ordering and the following observational preorder on terms.

Definition 7 (Observational preorder). Let M,N ∈ Λ+‖ be closed. We set

M  N iff for all closed terms �P , M �P converges implies that N �P converges.

A model is called adequate if �M � ⊆ �N � entails M  N ; it is called fully abstract
if in addition the converse holds.

The adequacy of the model V follows easily from Theorem 4 and the mono-
tonicity of the interpretation.

Corollary 2 (Adequacy). For all M,N closed, if �M � ⊆ �N � then M  N .

On the contrary, V is not fully abstract. This is due to the fact that the call-by-
value λ-calculus admits the creation of an ‘ogre’ that is able to ‘eat’ any finite
sequence of arguments and converge, constituting then a top of the call-by-value
observational preorder. Following [7], we define the ogre as Y� = Δ�Δ� where
Δ� = λxy.xx. The ogre Y� converges since Y� → λy.Y� and remains convergent
when applied to every sequence of values, by discarding them one at time.

Lemma 4. For all closed terms M we have M  Y�.

Proof. Given a term M and a sequence �P = P1 · · ·Pk of closed terms it is easy
to check that M �P can converge only when �P converges. In that case we have
Y� �P →∗ (λy.Y�)(V1 ‖ · · · ‖ Vn)P2 · · ·Pk →∗ Y�P2 · · ·Pk ‖ · · · ‖ Y�P2 · · ·Pk →∗
λy.Y� ‖ · · · ‖ λy.Y�. Therefore Y� is maximal with respect to  . ��

It is easy to check that 1 and (1 � 1) ⊗ (1 � (1 � 1)) are valid types for
Y�, and thus belong to its interpretation. The following lemma gives a precise
characterisation of �Y��.

Lemma 5. α ∈ �Y�� iff α =
⊗n
i=0(1 � αi) with n ≥ 0 and αi ∈ �Y�� for all

i ≤ n. In particular, we have that �I� �⊆ �Y��.
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Proof. The crucial point is to remark that Y� → λy.Y�, so by Theorem 2 and 3,
we get �Y�� = �λy.Y��. Therefore we have the following chain of equivalences:

α ∈ �Y�� iff α ∈ �λy.Y��

iff α = ⊗ni=0(τi � αi) ∈ �λy.Y�� by Lemma 1, n ≥ 0

iff α = ⊗ni=0(τi � αi) and ∀i, τi � αi ∈ �λy.Y�� by Lemma 2

iff α = ⊗ni=0(τi � αi) and ∀i, τi = 1 and αi ∈ �Y�� since y /∈ FV(Y�).

We have that �I� �⊆ �Y�� as, for instance, (1 � 1) � (1 � 1) ∈ �I� \ �Y��. ��

Summing up, get that I  Y�, while �I� �⊆ �Y��.

6 Conclusion and Future Work

We introduced a call-by-value non-deterministic λ-calculus with a type system
ensuring convergence. We proved that such a type system gives a bound on the
length of the lazy call-by-value reduction sequences, which is the exact length
when the typing is minimal. Finally, we show that the relational model V cap-
turing our type system is adequate, but not fully abstract.

As our counterexample to full abstraction contains no non-deterministic op-
erators, it also holds for the standard call-by-value λ-calculus and the relational
model described in [14]. This is a notable difference with the call-by-name case,
where the relational model is proven to be fully abstract for the pure call-by-name
λ-calculus [18], while other counterexamples (see [9,8]) break full abstraction in
presence of may or must non-deterministic operators. An open problem is to find
a relational model fully abstract for the call-by-value λ-calculus.

Various fully abstract models of may and must non-determinism are known
in the setting of Scott domain based semantics and idempotent intersection
types. In particular, for the call-by-value case we mention [7,13]. Comparing
these models and type systems with the ones issued from the relational semantics
is a research direction started in [14] with some notable results. It would be
interesting to reach a better understanding of the role played by intersection
idempotency in the question of full abstraction.

Another axis of research is to generalize our approach to study the convergence
in (call-by-name and call-by-value) λ-calculi with richer algebraic structures than
simply may/must non-deterministic operators, such as [23,4]. In these calculi
the choice operator is enriched with a weight, i.e. sums of terms are of the form
α.M + β.N , where α, β are scalars from a given semiring, pondering the choice.
We would like to design type systems characterizing convergence properties in
these systems. First steps have been done in [2,3].

Acknowledgements. We wish to thank Thomas Ehrhard and Simona Ronchi
Della Rocca for interesting discussions, and the anonymous reviewers for their
careful reading.
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Abstract. We describe the Wadge hierarchy of the ω-languages recog-
nized by deterministic Petri nets. This is an extension of the celebrated
Wagner hierarchy which turned out to be the Wadge hierarchy of the ω-
regular languages. Petri nets are an improvement of automata. They may
be defined as partially blind multi-counter automata. We show that the

whole hierarchy has height ωω2

, and give a description of the restrictions
of this hierarchy to every fixed number of partially blind counters.

1 Introduction

The languages of infinite words – also called ω-languages – that are accepted
by finite automata were first studied by Büchi in order to prove the decidability
of the monadic second order theory of one successor over the integers. Since
then, the regular ω-languages have been intensively studied, mostly for applica-
tions to specification and verification of non-terminating systems. See [29, 40, 41]
for many results and references. Following this trend, the acceptance of infinite
words by other types of finite machines, such as pushdown automata, multi-
counter automata, Petri nets, or even Turing machines, were later considered
[4, 9, 20, 32, 40].

Since the set of infinite words over a finite alphabet becomes a topological
space once equipped with the Cantor topology, a way to study the complexity
of the languages of infinite words accepted by finite machines is to study their
topological complexity. This consists in providing their precise localization inside
the projective hierarchy, the Borel hierarchy, or even the Wadge hierarchy (a
great refinement of the Borel hierarchy). This work was conducted through [9,
25, 33, 35, 37, 38, 39, 40, 41].

It is well known that every ω-language accepted by a deterministic Büchi au-
tomaton is a Π0

2-set, and that an ω-language accepted by a non-deterministic
Büchi (or Muller) automaton is a Δ0

3-set. The Borel hierarchy of regular ω-
languages is then determined. Moreover, Landweber proved that one can effec-
tively determine the Borel complexity of a regular ω-language accepted by a
given Muller or Büchi automaton, see [24, 29, 40, 41]. Elaborating on this re-
sult, Klaus Wagner completely described the Wadge hierarchy of the ω-regular
languages [44]. It is nowadays called the Wagner hierarchy, and its length is the

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 179–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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ordinal ωω. Wagner gave an automaton-like characterization of this hierarchy,
based on the notions of chain and superchain, together with an algorithm to
compute the Wadge (Wagner) degree of any given ω-regular language. Later,
Wilke and Yoo proved that the Wadge degree of an ω-regular language may be
computed in polynomial time [45]. This hierarchy was thouroughly studied by
Carton and Perrin in [2, 3], and by Victor Selivanov in [31, 34].

Since there are various classes of finite machines recognizing ω-languages,
each of them yields a countable sub-hierarchy of the Wadge hierarchy. Since the
1980’s it has been an endeavor to describe these sub-hierarchies. It started with
the work of Klaus Wagner on the ω-regular languages – although Wagner was
unaware at the time of the connections between the Wadge hierarchy and his
own work. The Wadge hierarchy of deterministic context-free ω-languages was
determined, together with its length: ω(ω2) [6, 7]. The problem whether this hi-
erarchy is decidable remains open. The Wadge hierarchy induced by the subclass
of deterministic one blind counter automata was determined in an effective way
[11], and other partial decidability results were obtained [12]. It was then proved
that the Wadge hierarchy of context-free ω-languages is the same as the one
of effective analytic sets1 [15, 20]. Intriguingly, the only Wadge class for which
one can decide whether a given context-free ω-language belongs to or not, is
the rudimentary singleton {∅}, see [12, 13, 14]. In particular, one cannot decide
whether a non-deterministic pushdown automaton is universal or not. This lat-
ter decision problem is actually Π1

2 -complete, hence located at the second level
of the analytical hierarchy and “highly undecidable”, [18]. Moreover the second
author proved that the topological complexity of some context-free ω-languages
may be subject to change from one model of set theory to another [17]. (Similar
results hold for ω-languages accepted by 2-tape Büchi automata [16, 17].) Fi-
nally, the Wadge hierarchy of ω-languages of deterministic Turing machines was
determined by Victor Selivanov, [32].

Petri nets are among the many accepting devices that aremore powerful than fi-
nite automata in that they recognizemoreω-languages that finite automata. They
apply to the description of distributed systems. A Petri net is a directed bipartite
graph, in which the nodes represent transitions and places. The distributions of
tokens over the places define the configurations of the net. Petri nets work as an im-
provement of automata, since they may be defined as partially blind multicounter
automata [21]. Petri nets have been extensively examined, particularly in concur-
rency theory (see for instance [10, 30]). The infinite behavior of Petri nets was first
studied by Valk [42], and the one of deterministic Petri nets, by Carstensen [1].

In this paper, we first consider deterministic blind multicounter automata
(corresponding to deterministic Petri nets) and the ω-languages that they accept
when they are equipped with a Muller acceptance condition. This forms the class
of deterministic Petri net ω-languages denoted L3

ωdt in [1].
We describe the Wadge hierarchy of the ω-languages recognized by deter-

ministic Petri nets. This is an extension of the celebrated Wagner hierarchy of

1 The class of all effective analytic sets (denoted Σ1
1) is the class of all the ω-languages

recognized by (non-deterministic) Turing machines.
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the ω-regular languages. We show that the whole hierarchy has height ωω
2

, and
give a description of the restrictions of this hierarchy to some fixed number of
partially blind counters.

2 Recalls on ω-Languages, Automata and Petri Nets

We assume the reader to be familiar with the theories of formal languages and
ω-regular languages (see [22, 29, 41]).

Through along the paper, we assume Σ to be any finite set, called the al-
phabet. A finite word (string) over Σ is any sequence of the form u = a1 . . . ak,
where k ∈ IN and ai ∈ Σ holds for each i ≤ k. Notice that when k = 0, u is
the empty word denoted by ε. We denote by |u| the length of the word u (here
|u| = k). We write u(i) = ai and u[i] = u(1) . . . u(i) for i ≤ k and u[0] = ε. The
set of all finite words over Σ is denoted Σ∗.

An infinite word over Σ is some sequence of the form x = a1a2 . . . an . . . where
ai ∈ Σ holds for all non-zero integers i. These infinite words are called ω-words
for their length corresponds to ω: the first infinite ordinal. An infinite word x
over Σ can be viewed as a mapping x : IN −→ Σ, so we write x = x(1)x(2) . . .
and x[n] = x(1)x(2) . . . x(n) for its prefix of length n2. We write Σω for the set
of all ω-words over the alphabet Σ, so that an ω-language over the alphabet Σ
is nothing but a subset of Σω.

As usual, the concatenation of two finite words u and v is denoted uv. It
naturally extends to the concatenation of a finite word u and an ω-word x to
give the ω-words y = ux defined by: y(k) = u(k) if k ≤ |u| , and y(k) = x(k−|u|)
if k > |u|. Given any finite word u, and any finite or infinite word x, u is a prefix
of x (denoted u  x) if u(i) = x(i) holds for every non-zero integer i ≤ |u|.
Finally, for V ⊆ Σ∗, V ω = {σ = u1 . . . un . . . ∈ Σω | ui ∈ V, ∀i ≥ 1}.

A finite state machine (FSM) is a quadruple M = (Q,Σ, δ, q0), where Q is a
finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial state and δ is
a mapping from Q×Σ into 2Q . It is deterministic (DFSM) if δ : Q×Σ −→ Q.

Given an infinite word x, the infinite sequence of states ρ = q1q2q3 . . . is called
an (infinite) run of M on x starting in state p, if both q1 = p and qi+1 ∈ δ(qi, ai)
(∀i ≥ 1) hold. In case p is the initial state of M (p = q0), then ρ is simply called
an infinite run of M on x.

We denote by In(ρ) = {q ∈ Q | ∀m ∃n > m qn = q} the set of states that
appear infinitely often in ρ.

Equipped with an acceptance condition F , a finite state machine becomes
a finite state automaton M = (Q,Σ, δ, q0, F ). It is a Büchi automaton (BA)
when F ⊆ Q, and a Muller automaton (MA) when F ⊆ 2Q. A Büchi automaton
(respectively a Muller automaton) accepts x if for some infinite run of M on x,
In(ρ)∩F is not empty (respectively In(ρ) ∈ F holds). The ω-language accepted
by an automaton is the set of all the infinite words it accepts. The classical result
of R. Mc Naughton [28] establishes that non-deterministic Büchi automata, and

2 Note that the enumeration x = x(1)x(2) . . . does not start at 0 so that we recover
the empty word as x[0].
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both deterministic and non-deterministic Muller automata recognize the exact
same ω-languages known as the ω-regular languages3.

A partially blind multicounter automaton is a finite automaton equipped with
a finite number (k) of partially blind counters. The content of any such counter
is a non-negative integer. A counter is said to be partially blind when the mul-
ticounter automaton cannot test whether the content of the counter is zero.
This means that if a transition of the machine is enabled when the content of a
counter is zero then the same transition is also enabled when the content of the
same counter is a non-zero integer. In order to get a partially blind multicounter
automaton – simply called a blind multicounter automaton – which accepts the
same language as a given Petri net, one can distinguish between the places of a
Petri net by dividing them into the bounded ones (the number of tokens in such
a place at any time is uniformly bounded) and the unbounded ones. Then each
unbounded place may be seen as a blind counter, and the tokens in the bounded
places determine the state of the blind multicounter automaton. The transitions
of the Petri net may then be seen as the finite control of the blind multicounter
automaton and the labels of these transitions are then the input symbols.

Contrary to what happens with non-deterministic Petri nets, allowing ε-
transitions does not increase the expressive power of deterministic Petri nets
which read ω-words [1]. For this reason, we restrict ourselves to the sole real
time – i.e., ε-transition free – blind multicounter automata. Also, without loss
of generality we may assume that every transition, for every counter, either
increases or decreases its content by 1 or leaves it untouched.

Definition 1. For k any non-zero integer, A (real time) deterministic k-blind-
counter machine (k-BCM) is of the formM = (Q,Σ, δ, q0) where Q is a finite set
of states, Σ is a finite input alphabet, q0 ∈ Q is the initial state, and the transition
relation δ is a partial mapping from Q×Σ × {0, 1}k into Q× {0, 1,−1}k.

If the machine M is in state q, and for each i, ci ∈ N is the content of the
counter Ci, then the configuration (or global state) of M is the (k + 1)-tuple
(q, c1, . . . , ck).

Given any a ∈ Σ, q, q′ ∈ Q, and (c1, . . . , ck) ∈ Nk, if both δ(q, a, i1, . . . , ik) =
(q′, j1, . . . , jk), and jl ∈ E = {l ∈ {1, . . . , k} | cl = 0} ⇒ jl ∈ {0, 1} hold, then
we write a : (q, c1, . . . , ck) �→M (q′, c1+ j1, . . . , ck+ jk). Thus the transition rela-
tion must verify: if δ(q, a, i1, . . . , ik) = (q′, j1, . . . , jk), and im = 0 holds for some
m ∈ {1, . . . , k}, then we must have jm = 0 or jm = 1 (but jm = −1 is prohibited).
Moreover the k counters ofM are blind, i.e., if δ(q, a, i1, . . . , ik) = (q′, j1, . . . , jk)
holds, and im = 0 for m ∈ E ⊆ {1, . . . , k}, then δ(q, a, i′1, . . . , i

′
k) = (q′, j1, . . . , jk)

holds also whenever im = i′m for m /∈ E, and i′m = 0 or i′m = 1 for m ∈ E.
For any finite word u = a1a2 . . . an over Σ, a sequence of configurations

ρ = (qi, c
i
1, . . . c

i
k)1≤i≤n+1 is a run of M on u, starting in configuration

(p, c1, . . . , ck) iff (q1, c
1
1, . . . , c

1
k) = (p, c1, . . . , ck), and ai : (qi, c

i
1, . . . c

i
k) �→M

3 The class of all the ω-regular languages is also characterized as the “ω-Kleene clo-
sure” of the class REG of all the (finitary) regular languages. Where given any
class of finitary languages L, the ω-Kleene closure of L is the class of ω-languages
{
⋃

1≤i≤n Ui.V
ω
i | Ui, Vi ∈ L}.
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(qi+1, c
i+1
1 , . . . ci+1

k ) (all 1 ≤ i ≤ n). This notion extends naturally to infinite
words: for x = a1a2 . . . an . . . any ω-word over Σ, an ω-sequence of configura-
tions (qi, c

i
1, . . . c

i
k)i≥1 is called a complete run of M on x, starting in configura-

tion (p, c1, . . . , ck) iff (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck), and ai : (qi, c

i
1, . . . c

i
k) �→M

(qi+1, c
i+1
1 , . . . ci+1

k ) (for all 1 ≤ i).
A complete run ρ of M on x, starting in configuration (q0, 0, . . . , 0), is simply

called “a run of M on x”.

Definition 2. A Büchi (resp. Muller) deterministic k-blind-counter automaton
is some k-BCM M′ = (Q,Σ, δ, q0), equipped with an acceptance condition F :
M = (Q,Σ, δ, q0, F ). It is a Büchi (resp. Muller4) k-blind-counter automaton
when F ⊆ Q (resp. F ⊆ 2Q), and it accepts x if the infinite run of M′ on x
verifies In(ρ) ∩ F �= ∅ (respectively In(ρ) ∈ F ).

We write L(M) for the ω-language accepted by M, and BC(k) for the class
of ω-languages accepted by Muller deterministic k-blind-counter automata.

3 Borel and Wadge Hierarchies

We assume the reader to be familiar with basic notions of topology that may be
found in [23, 25, 27], and of ordinals (in particular the operations of multiplica-
tion and exponentiation) that may be found in [36].

For any given finite alphabet X – that contains at least two letters – we
consider Xω as the topological space equipped with the Cantor topology5. The
open sets of Xω are those of the form WXω, for some W ⊆ X∗. The closed sets
are the complements of the open sets. The class that contains both the open
sets and the closed sets, and is closed under countable union and intersection is
the class of Borel sets. It is nicely set up in a hierarchy but counting how many
times these latter operations are needed.

This defines the Borel Hierarchy: Σ0
1 is the class of open sets , and Π0

1 is the
class of closed sets. For any non-zero integer n, Σ0

n+1 is the class of countable
unions of sets inside Π0

n, while Π0
n+1 is the class of countable intersections of

sets inside Σ0
n. More generally, for any non-zero countable ordinal α, Σ0

α is the
class of countable unions of sets in ∪γ<αΠ0

γ , and Π0
α is the class of countable

intersections of sets in ∪γ<αΣ0
γ .

The Borel rank of a subset A of Xω is the least ordinal α ≥ 1 such that A
belongs to Σ0

α∪Π0
α. By ways of continuous pre-image, the Borel hierarchy turns

into the refined Wadge Hierarchy.

Definition 3 (≤w,≡w, <w). We let X,Y be two finite alphabets, and A ⊆
Xω, B ⊆ Y ω, A is said Wadge reducible to B (denoted A ≤W B) iff there
exists some continuous function f : Xω −→ Y ω that satisfies ∀x ∈ Xω (x ∈
A⇔ f(x) ∈ B).

4 The Muller acceptance condition was denoted 3-acceptance in [24, 1], and (inf,=)
in [40].

5 The product topology of the discrete topology on X.



184 J. Duparc, O. Finkel, and J.-P. Ressayre

We write A ≡w B for A ≤w B ≤w A, and A <w B for A ≤w B �≤w A. A set
A ⊆ Xω is self dual if A ≡w Xω �A (denoted A�) is verified. It is non-self dual
otherwise 6.

It is easy to verify that the relation ≤w is both reflexive and transitive, and
that ≡w is an equivalence relation. Given any set A, the class of all its continuous
pre-images forms a topological7 class Γ called a Wadge class. A set is Γ-complete
if it both belongs to Γ, and (Wadge) reduces every element in it8. It turns out
that Σ0

α (resp. Π0
α) is a Wadge class and any set in Σ0

α �Π0
α (resp. Π0

α �Σ0
α)

is Σ0
α-complete (resp. Π0

α-complete). Both Σ0
n-complete and Π0

n-complete sets
(any 0 < n < ω) are examined in [38].

Wadge reducibility participates in game theory for continuous functions may
be regarded as strategies for a player in a two-player game of perfect information
and infinite length:

Definition 4. Given any mapping f : Xω −→ Y ω, the game G(f) is the two-
player game where players take turn picking letters in X for I and Y for II,
player I starting the game, and player II being allowed in addition to pass her
turn, while player I is not.

I

II

:

:

x0 x2

x3

x4

x5x1

x2n

x2n+1

x2n+2

x2n+3

After ω-many moves, player I and player II have respectively constructed x ∈
Xω and y ∈ Y ∗ ∪ Y ω. Player II wins the game if y = f(x), otherwise player I
wins.

So, in the game G(f), a strategy for player I is a mapping σ : (Y ∪{s})� −→ X ,
where s is a new letter not in Y that stands for II ’s moves when she passes her
turn9. A strategy for player II is a mapping f : X+ −→ Y ∪ {s}. A strategy is
called winning if it ensures a win whatever the opponent does.

This game was designed to characterize the continuous functions. Wadge
found out that given f : Xω −→ Y ω, f is continuous ⇐⇒ II has a winning
strategy in G(f). This is an easy exercise (see [23, 27]).

Definition 5. For A ⊆ Xω and B ⊆ Y ω, the Wadge game W (A,B) is the
same as G(f), except that II wins iff y ∈ Y ω and (x ∈ A ⇐⇒ y ∈ B) hold.10

6 Non-self dual sets are precisely those that verify A �≤w A�.
7 A topological class is a class that is closed under continuous pre-images.
8 It follows that two sets are complete for the same topological class iff they are Wadge
equivalent.

9 “s” stands for “skips”.
10 One sees immediately that a winning strategy for II inW (A,B) yields a continuous
mapping f : Xω −→ Y ω that guaranties that A ≤w B holds, whereas any continuous
function f that witnesses the reduction relation A ≤w B gives rise to some winning
strategy for II in G(f) which is also winning for II in W (A,B). This shows that
for A ⊆ Xω and B ⊆ Y ω, A ≤w B ⇐⇒ II has a winning strategy in W (A,B) .
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In 1975, Martin proved Borel determinacy [23, 26], whose consequence is that
for every Wadge game W (A,B), either player I or II has a winning strategy as
long as both A and B are Borel. As immediate consequences, Wadge obtained
that for any Borel A,B ⊆ Xω, there are no three ≤w-incomparable Borel sets.
Moreover, if A �≤w B and B �≤w A, then A ≡w B�. Later on, Martin and
Monk proved that there is no sequence (Ai)i∈ω of Borel subsets of Xω such that
A0 >w A1 >w A2 >w . . . An >w An+1 >w . . . holds [23, 43]. We recall that a set
S is well ordered by the binary relation < on S iff < is a linear order on S such
that there is no strictly infinite <-decreasing sequence of elements from S.

It follows that up to complementation and ≡w, the class of Borel subsets of
Xω, is well-ordered by <w. Therefore, there is a unique ordinal |WH | isomorphic
to this well-ordering, together with a mapping d0W from the Borel subsets of Xω

onto |WH |, such that for all Borel subsets A,B: d0WA < d0WB ⇔ A <w B, and

d0WA = d0WB ⇔ (A ≡w B or A ≡w B�).
This well-ordering restricted to the Borel sets of finite ranks11 has length the

first ordinal that is a fixpoint of the operation α −→ ω1
α [5, 43], where ω1 is the

first uncountable ordinal.
In order to study the Wadge hierarchy of the class BC(k) of ω-languages

accepted by Muller deterministic k-blind-counter automata, we concentrate on
the non-self dual sets as in [5], and slightly modify the definition of the Wadge
degree. For A ⊆ Xω, such that A >w ∅, we set dw(∅) = dw(∅�) = 1, dw(A) =
sup{dw(B) + 1 | B non-self dual and B <W A}.

Every ω-language which is accepted by a deterministic Petri net – more gen-
erally by a deterministic X-automaton in the sense of [9] or by a deterministic
Turing machine – is a boolean combination of Σ0

2-sets thus its Wadge degree
inside the whole Wadge hierarchy of Borel sets is located below ωω1 . Moreover,
every ordinal 0 < α < ωω1 admits a unique Cantor normal form of base ω1 [36],
i.e., it can be written as α = ω

nj
1 .δj+ω

nj−1

1 .δj−1+ · · ·+ωn11 .δ1 where 0 < j < ω,
0 ≤ n1 < . . . < nj < ω, and δj , δj−1, . . . , δ1 are non-zero countable ordinals.

From Wagner’s study, such an ordinal is the Wadge degree of an ω-regular
language iff δj , δj−1, . . . , δ1 are all integers. It is also known that such an ordinal
is the Wadge degree of a deterministic context-free ω-language if and only if
these multiplicative coefficients are all below ωω [6]. We add to this picture the
following results that exhibits the Wadge hierarchy of BC(k):

1. for every non-null ordinal α whose Cantor normal form of base ω1 is

α = ω
nj
1 .δj + ω

nj−1

1 .δj−1 + · · ·+ ωn11 .δ1

where, for some integer k ≥ 1, δ1, . . . , δj are (non-null) ordinals < ωk+1,
there exists some ω-language L ∈ BC(k) whose Wadge degree is α.

2. Non-self dual ω-languages in BC(k) have Wadge degrees of the above form.

Next section is dedicated to operations that will be needed in the proof.

11 The Borel sets of finite ranks are those in
⋃

n∈IN

Σ0
n =

⋃
n∈IN

Π0
n.
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4 Operations over Sets of ω-Words

4.1 The Sum

Definition 6. For {X+, X−} a partition in non-empty sets of XB � XA with
XA ⊆ XB, A ⊆ XωA, and B ⊆ XωB, B +A = A ∪ X∗AX+B ∪ X∗AX−B

�.

A player in charge of B + A in a Wadge game is like a player who begins the
play in charge of A, and at any moment may also decide to start anew but being
in charge this time of either B or of B� 12.

Proposition 7 (Wadge). For non-self dual Borel sets A and B,

dw(B +A) = dw(B) + dw(A).

Notice that for any non-self dual Borel sets A,B,C, we have both A+(B+C) ≡w
(A+B) +C, and (B +A)� ≡w B+A�. Although the class BC(k) is not closed
under complementation, and B+A was defined as A ∪ X∗AX+B ∪ X∗AX−B

�,
we may however use of the formulation B + A ∈ BC(k) for A,B ∈ BC(k) if
some C ∈ BC(k) verifies C ≡w B�.

4.2 The Countable Multiplication

We first need to define the supremum of a countable family of sets.

Definition 8. For any bijection f : IN −→ I, any family (Ai)i∈I of non-self
dual Borel subsets of Xω, we fix some letter e ∈ X to define

sup
i∈I

Ai =
⋃
n∈IN

(X � {e})neAf(n).

Proposition 9. (See [5, 6].) For (Ai)i∈I any countable family of non-self dual
Borel subsets of Xω such that ∀i ∈ I ∃j ∈ I Ai <w Aj, then

1. supi∈I Ai is a non-self dual Borel subset of Xω, and
2. dw(supi∈I Ai) = sup{dw(Ai) | i ∈ I}.

By combining sum and supremum, we get multiplication by countable ordinals.

Definition 10. For A ⊆ Xω, and 0 < α < ω1, A • α is inductively defined by
A • 1 = A, A • (ν + 1) = (A • ν) +A, and A • β = supδ∈β A • δ, for β limit.

12 The first letter in XB �XA that is played decides the choice of B or B�. Notice that
given any finite alphabets X, Y which contain at least two letters, and any B ⊆ Xω,
there exists B′ ⊆ Y ω such that B ≡w B′. Moreover, if for some integer k ≥ 0 we
have B ∈ BC(k), then B′ can be taken in BC(k). So that we may write B + A
whatever space B is a subset of, simply meaning B′ + A where B′ is any set that
satisfies both B′ ≡w B and B′ ⊆ Xω for some X that contains the alphabet from
which A is taken from, and strictly extends it with at least two new letters.
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By Propositions 7 and 9, this operation verifies the following.

Proposition 11. Let A ⊆ Xω be some non-self dual Borel set, and 0 < α < ω1,

dw(A • α) = dw(A) · α.

For a player in charge of A•α in a Wadge game, everything goes as if (s)he could
switch again and again between being in charge of A or A� – starting anew every
time (s)he does so – but restrained from doing so infinitely often by having to
construct a decreasing sequence of ordinals < α on the side every time (s)he
switches.

4.3 The Multiplication by ω1

Definition 12. For A ⊆ Xω, and a, b /∈ X two different letters, Y = X∪{a, b},
A • ω1 ⊆ (X ∪ {a, b})ω is defined13 by A • ω1 = A ∪ Y ∗aA ∪ Y ∗bA�.

Inside a Wadge game, a player in charge of A•ω1 may switch indefinitely between
being in charge of A or its complement, deleting what (s)he has already played
each time.

Proposition 13. (See [5].) For any non-self dual Borel A ⊆ Xω, A • ω1 is
non-self dual Borel, and dw(A • ω1) = dw(A) · ω1.

The following property will be very useful.

Proposition 14. If A ⊆ Xω is regular, then A • ω1 is also regular.

Proof. Immediate from the closure of the class REGω under finite union, com-
plementation, and left concatenation by finitary regular languages [7]. ��

4.4 Canonical Non-self Dual Sets

The empty set, considered as an ω-language over a finite alphabet is a Borel set
of Wadge degree 1, i.e., dw(∅) = 1. It is a non-self dual set and its complement
has the same Wadge degree14. On the basis of the emptyset or its complement,
the operations defined above provide non-self dual Borel sets for every Wadge
degree < ωω1 . For notational purposes, given any A ⊆ Xω we define A • ωn1 by
induction on n ∈ IN by: A • ω0

1 = A, and A • ωn+1
1 = (A • ωn1 ) • ω1.

Clearly, by Proposition 13, dw(A • ωn1 ) = dw(A) · ωn1 holds for every non-self
dual Borel A ⊆ Xω. It follows that the ω-language ∅•ωn1 is a non-self dual Borel
set whose Wadge degree is precisely ωn1 .

Every non-null ordinal α < ωω1 admits a unique Cantor normal form of base
ω1: α = ω

nj
1 · δj + ω

nj−1

1 · δj−1 + · · ·+ ωn11 · δ1.
where ω > j > 0, ω > nj > nj−1 > . . . > n1 ≥ 0, and δj , δj−1, . . . , δ1 are
non-zero countable ordinals [36].

As in [5, 6], we set Ω(α) := (∅•ωnj1 )•δj+(∅•ωnj−1

1 )•δj−1+ · · ·+(∅•ωn11 )•δ1.
By Propositions 7, 11, and 13 dw(Ω(α)) = α holds.

13 This operation was denoted A −→ A.̂∞ in [7], and A −→ A� in [6].
14 i.e., dw(∅) = dw(X

ω) = 1.
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5 A Hierarchy of BC(k)

From now on, we restrain ourselves to the sole ordinals α < ωω1 whose Cantor nor-
mal form of base ω1 contains only multiplicative coefficients strictly below ωk+1,
and we construct for every such α some Muller deterministic k-blind-counter au-
tomata Mα and M−

α such that both L(Mα) ≡w Ω(α) and L(M−
α ) ≡w Ω(α)�

hold.
To start with, notice that for every integer n since ∅ • ωn ∈ REGω is veri-

fied, there exist deterministic Muller automata On = (Qn, Xn, δn, q
0
n,Fn), where

Fn ⊆ 2Qn is the collection of designated state sets, such that L(On) = ∅ • ωn.
We prove the following results:

Proposition 15. For any ω-regular language A, any integer j ≥ 1 there exist
ω-languages B,C ∈ BC(j) such that B ≡w (A • ωj) and C ≡w (A • ωj)�.

A careful generalization of the ideas of the proofs of Proposition 15 leads to:

Proposition 16. For any ω-regular A, integer k, and ordinal ωk ≤ α < ωk+1,
there exist B,C ∈ BC(k) such that both B ≡w (A • α) and C ≡w (A •α)� hold.

Theorem 17. Let α < ωω1 be any ordinal of the form

α = ω
nj
1 · δj + ω

nj−1

1 · δj−1 + · · ·+ ωn01 · δ0

where ω > j ≥ 0, ω > nj > nj−1 > . . . > n0 ≥ 0, and ωω > δj , δj−1, . . . , δ0 > 0.
Let k be the least integer such that ∀i ≤ j δi < ωk+1. Then there exist

ω-languages B,C ∈ BC(k) such that B ≡w Ω(α) and C ≡w Ω(α)�.

We recall that Ω(α) := (∅ •ωnj1 ) • δj + (∅ •ωnj−1

1 ) • δj−1 + · · ·+ (∅ •ωn01 ) • δ0.

6 Localisation of BC(k)

This section is dedicated to proving that there is no other Wadge class generated
by some non-self dual ω-language in BC(k) than the ones described in Theorem
17. Prior to this we need a technical result about the Wadge hierarchy together
with a few others on ordinal combinatorics, and notations.

For some A ⊆ Xω and u ∈ X∗, we write u−1A for the set {x ∈ Xω | ux ∈ A}.
We say that A is initializable if player II has a w.s. in the Wadge game W (A,A)
even though she is restricted to positions u ∈ X∗ that verify u−1A ≡w A.

Lemma 18. For A ⊆ Xω any initializable set, B ⊆ Y ω, and δ, θ any countable
ordinals,

A • (θ + 1) ≤w B ≤w A • δ =⇒ ∃u ∈ Y ∗

⎧⎨⎩
u−1B ≡w A • (θ + 1)

or

u−1B ≡w (A • (θ + 1))�.
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Lemma 19. We let B ⊆ Y ω, A ⊆ Xω be any initializable set, and δ, θ be any
countable ordinals. We consider any set of the form

C = A • ωn1 • νn + · · ·+A • ωn−1
1 • νn−1 + · · ·+A • ω1 • ν1

for any non-zero integer n, and countable coefficients νn, νn−1, . . . , ν1 with at
least one of them being non-null.

C+A•(θ+1) ≤w B ≤w C+A•δ =⇒ ∃u ∈ Y ∗

⎧⎨⎩
u−1B ≡w C +A • (θ + 1)

or

u−1B ≡w (C +A • (θ + 1))�.

We recall that for any set of ordinals O, its order type – denoted ot(O) – is the
unique ordinal that is isomorphic to O ordered by membership.

Definition 20. The function H : ωω × ωω −→ On is defined by

H(α, β) = ωk · (lk +mk) + ωk−1 · (lk−1 +mk−1) + · · ·+ ω0 · (l0 +m0).

Where (a variation of the) the Cantor normal form of base ω of α (resp. β) is
α = ωk · lk+ωk−1 · lk−1+ · · ·+ω0 · l0, β = ωk ·mk+ωk−1 ·mk−1 + · · ·+ω0 ·m0,
with lk,mk, lk−1,mk−1, . . . , l0,m0 ∈ IN. (Some of these integers may be null15.)

Lemma 21. Let H : ωω × ωω −→ On, 0 < α′, α, β′β < ωω with α′ ≤ α, β′ ≤ β
but either α′ < α or β′ < β, then H(α′, β′) < H(α, β).

We make use of the mapping H to prove the following combinatorial result.

Lemma 22. Let α, β, γ be non-null ordinals with α, β < ωω, and f : γ −→
{0, 1}. If both α = ot(f−1[0]) and β = ot(f−1[1]) hold, then γ ≤ H(α, β).

Corollary 23. Let k, n be non-null integers, γ be any ordinal, 0 ≤ α0, . . . , αk <
ωn, and f : γ −→ {0, . . . , k}. If ∀i ≤ k αi = ot(f−1[i]) holds, then γ < ωn.

Lemma 24. Let k be some non-null integer, (INk,) be a well-ordering such
that for every k-tuples (a0, . . . , ak−1), (b0, . . . , bk−1) ∈ INk the following holds:

(a0, . . . , ak−1)  (b0, . . . , bk−1) =⇒

⎧⎨⎩
∀i < k ai ≤ bi

or
∃i, j < k such that ai < bi and aj > bj.

Then, the order type of (INk,) is at most ωk.

Lemma 25. We let k be any non-null integer, B ∈ BC(k), A ⊆ Xω be any
initializable set, and δ any countable ordinal.

B ≤w A • δ =⇒ B ≤w A • α for some α < ωk+1.

15 In particular, lk, lk−1, . . . mk,mk−1, . . . might be null, but since α, β > 0 holds, at
least one of the li’s, and one of the mi’s are different from zero.
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An immediate consequence is that B ≡w A • δ holds only for ordinals δ < ωk+1.

Proof. First notice that for every B ⊆ Xω, and every u ∈ X∗, if B ∈ BC(k)
holds, then u−1B ∈ BC(k) holds too.

Towards a contradiction, we assume that A • α <w B ≤w A • δ holds for
all α < ωk+1. We let B be a k-blind counter automaton that recognizes B. By
Lemma 18, for each successor ordinal α < ωk+1 there exists some uα ∈ X∗

such that u−1
α B ≡w A • α or u−1

α B ≡w (A • α)�. For each such uα, we form
(qα, cα,0, cα,1, . . . , cα,k−1) where qα denotes the control state that B is in after
having read uα, and cα,i the height of its counter number i (any i < k).

Now there exists necessarily some control state q such that the order type
of the set S = {α < ωk+1 | α successor and qα = q} is ωk+1. By Lemma
24 there exist α, α′ ∈ S such that α′ < α holds together with cα,i ≤ c′α,i
(any i < k). (Without loss of generality, we may even assume that ω ≤
α′ < α holds.) Let us denote Bα′ the k-blind counter automaton B that
starts in state (qα′ , cα′,0, cα′,1, . . . , cα′,k−1), and Bα the one that starts in state
(qα, cα,0, cα,1, . . . , cα,k−1). Notice that since cα,i ≤ c′α,i holds for all i < k, Bα′

performs exactly the same as Bα except when the latter crashes for it tries to
decrease a counter that is already empty. But it is then not difficult to see that
given the above assumption – that ω ≤ α′ < α holds – u−1

α B ≤w u−1
α′ B holds

which leads to either A • α ≤w A • α′ or (A • α)� ≤w A • α′. In both cases, it
contradicts α′ < α. ��

Notice that ∅ • ωn1 being initializable, we have in particular the following result.

Lemma 26. For k, n any integers, A any non-self dual ω-language in BC(k),
and any non-zero countable ordinal α, A or A� ≡w (∅ • ωn1 ) • α =⇒ α < ωk+1.

In a similar way, we may now state the following lemma.

Lemma 27. We let k be any non-null integer, B ∈ BC(k), A ⊆ Xω be any
initializable set, δ be any countable ordinal, and C be any set of the form

C = A • ωn1 • νn + · · ·+A • ωn−1
1 • νn−1 + · · ·+A • ω1 • ν1

for any non-zero integer n, and countable multiplicative coefficients νn, νn−1,
. . . , ν1 with at least one of them being non-null. Then we have

B ≤w C +A • δ =⇒ B ≤w C +A • α for some α < ωk+1.

Theorem 28. Let k be any non-null integer, B ⊆ Xω be non-self dual. If B ∈
BC(k), then either B or B� is Wadge equivalent to some

Ω(α) = (∅ • ωnj1 ) • δj + (∅ • ωnj−1

1 ) • δj−1 + · · ·+ (∅ • ωn01 ) • δ0.

where j ∈ IN, nj > nj−1 > . . . > n0 and ωk+1 > δj , δj−1, . . . , δ0 > 0.

Proof. This is an almost immediate consequence of Lemmas 25 and 27. ��
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This settles the case of the non-self dual ω-languages in BC(k). For the self-dual
ones, it is enough to notice the easy following:

1. Given any A ⊆ Xω, if A ∈ BC(k) is self dual, then there exists two non-self
dual sets B,C ⊆ Xω such that both B and C belong to BC(k), B ≡w C�,
and A ≡w X0B ∪ X1C, where {X0, X1} is any partition of X in two non-
empty sets.

2. If A ⊆ Xω and B ⊆ Xω are non-self dual, verify A ≡w B�, and both belong
to BC(k), then, given any partition of X in two non-empty sets {X0, X1},
X0A ∪X1B is self-dual, and also belongs to BC(k).

If we set d◦(A) = sup{d◦(B) + 1 | B <W A}(any A ⊆ Xω), then we obtain that
there exists an ω-language B ⊆ Xω recognized by some deterministic Petri net,
such that A ≡w B holds iff d◦A is of the form α = ωn1 · δn + · · · + ω0

1 · δ0 for
some n ∈ IN, and ωω > δn, . . . , δ0 ≥ 0. Finally, an easy computation provides
(ωω)

ω
= ωω

2

as the height of the Wadge hierarchy of ω-languages recognized by
deterministic Petri nets.

7 Conclusions

We provided a description of the extension of the Wagner hierarchy from au-
tomata to deterministic Petri Nets with Muller acceptance conditions. The re-
sults are rigorously the same if we replace Muller acceptance conditions with
parity acceptance conditions. But with Büchi acceptance conditions instead, it
becomes even simpler since the ω-languages are no more boolean combinations
of Σ0

2-sets, but Π
0
2-sets. So, the whole hierarchy comes down to the following:

Corollary 29. For any A ⊆ Xω, there exists an ω-language B ⊆ Xω recognized
by some deterministic Petri net with Büchi acceptance conditions, such that
A ≡w B iff either d◦A = ω1, and A is Π0

2-complete, or d◦A < ωω.

Deciding the degree of a given ω-language in BC(k), for k ≥ 2, recognized by
some deterministic Petri net – either with Büchi or Muller acceptance condi-
tions, remains an open question. Notice that for k = 1 this decision problem has
been shown to be decidable by the second author in [11].

Another rather interesting open direction of research is to go from determin-
istic to non-deterministic Petri nets. It is clear that this step forward brings
new Wadge classes – for instance there exist ω-languages recognized by non-
deterministic Petri nets with Büchi acceptance conditions that are not Δ0

3 [19]
– but the description of this whole hierarchy still requires more investigations.
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Abstract. We introduce a class of set-theoretic operators on a toler-
ance space that models the process of minimal belief contraction, and
therefore a natural process of iterated contraction can be defined. We
characterize the class of contraction operators and study the properties
of the associated iterated belief contraction.

1 Introduction

Vagueness can be generated in several ways, but among them, distinguishability
— i.e., our observational power of telling whether two objects are distinct —
is the most cited. Its complement, the relation of indistinguishability has long
been used in logic to model a variety of systems. Most notably, the accessi-
bility relation of Kripke models is often interpreted as an indistinguishability.
Indistinguishability is often assumed to be an equivalence, like the accessibility
relation of the modal logic S5. However, a more interesting view arises when
we drop transitivity and assume that indistinguishability is only reflexive and
symmetric, that is, a tolerance [1,2].

When indistinguishability is an equivalence, then the objects form a partition.
When indistinguishability is a tolerance, then a more refined situation appears
where the objects form a graph. In particular, the graph comes equipped with a
natural notion of distance based on the shortest path called geodesic. We have
argued that we can use the geodesic distance to measure similarity. Our idea ([3])
rests on the following maxim: two objects are similar when there is a context
within which they are indistinguishable. Therefore, similarity can be measured
with degrees of indistinguishability.

For example, when two houses appear indistinguishable from a certain dis-
tance x, then it is safe to say that those houses are similar. For, if we get closer,
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an inspection might reveal differences but their similarity will persist. Thus, in-
distinguishability at distance x implies similarity. The smaller the distance x,
the more similar the objects are.

Now consider the following problem: assume that our view of the world —
that is, the set of states we consider possible — is A and we are asked to add
to A at least one element from a subset B. In other words, we are asked to
change our view to allow for the possibility that B holds. It seems natural to
pick the elements of B that are most similar to those of A. In our framework,
similarity is measured by the geodesic distance; that is, it is measured by degrees
of indistinguishability, and therefore we would pick those elements of B that are
closest to A. Making B possible is equivalent to contract its complement Bc so
this process will be called contraction.

Contraction by minimization over a geodesic is straightforward. We illustrate
the process with the following example (edges represent the reflexive symmetric
tolerance relation).

�

a

�

b

�

c

�

d

�

e

�

f

�

g

Fig. 1.

In Figure 1, let A = {d} and B = {a, b, f, g} then A⊕B the contraction of A
with B equals the subset {d, b, f}. This is because the distance of d from b and
f is 2 while the distance of d from a and g is 3. So b and f are closest to A and
we choose to augment A with both of them.

Let C = {a, f, g}. Then A⊕ C = {d, f}.
Now, let D = {a, f} and G = {b, g}. We have A ⊕ D = {d, f} and A ⊕

G = {d, b}. The global character of the geodesic metric allows us to iterate the
contraction operator. So, we have (A ⊕D) ⊕G = {d, f, g} and (A ⊕G) ⊕D =
{d, b, a}. Therefore this example is also a counterexample to commutativity.

The main result of this paper is a characterization of the contraction oper-
ator ⊕ on subsets of the elements of the tolerance space. This result appears
in Section 4 (Proposition 4). However the geodesic revision postulates can be
translated to propositional language and we will conclude by discussing this
translation while comparing it with earlier literature.

2 Tolerance Spaces and Their Geodesic

We will use a reflexive and symmetric relation to model indistinguishability.
A set equipped with such a relation is frequently called a tolerance space. In
addition, we will assume that the space is connected:

Definition 1. Let X be a set and R ⊆ X × X a relation on X. Then (X,R)
is called a (connected) tolerance space when R is reflexive, symmetric, and
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(X is) connected, i.e., for all x, y ∈ X there is a non negative integer n such
that xRny.

In the above definition, we assume R0 = 1X , R
n = Rn−1 ◦R for n > 0.

Given a tolerance space (X,R) we can define a metric called geodesic with a
map d from X ×X to Z+ (the set of non-negative integers) where

d(x, y) = min{n | xRny}.

Note that a geodesic metric is not any integer metric. The values of the geodesic
metric are determined by adjacency. The results of this paper depend heavily on
this property which can be described with: for all x, y ∈ X such that d(x, y) = n
with 1 < n <∞ there is z ∈ V with z �= x, y such that d(x, y) = d(x, z)+d(z, y).
In particular we can choose z so that d(x, z) = 1. Note here that a geodesic
metric is a topological metric, that is, it satisfies identity, symmetry and triangle
inequality.

The geodesic distance extends to distance between non-empty subsets with

d(A,B) = min{d(x, y) | x ∈ A, y ∈ B}.

We shall also write d(x,A) for d({x}, A). Similarly for d(A, x). We will write Ac

for the complement of A.

Lemma 1. If A and Ac are non-empty, we have d(A,Ac) = 1.

Proof. Suppose dG(A,A
c) = n with n > 1 (it cannot be 0). Then there exists a

minimal path of length n between A and Ac: x1 ∈ A, x2, . . . , xn+1 ∈ Ac where
xiRxi+1. However, either x2 ∈ A or x2 ∈ Ac and a shorter path arises in both
cases, which is a contradiction.

3 Contraction Based on a Geodesic

Contraction with ameans to augment our belief state with the possibility of a be-
cause removal of beliefs translates to the addition of possible states. Apart from
this semantic view, such addition could be achieved syntactically in a language
where possibility can be expressed (e.g. modal logic).

Definition 2. Given a tolerance space (X,R) and A,B ⊆ X with A �= ∅ then
the (induced) contraction of A with B is defined with

A⊕R B =

{
A ∪ {y ∈ B | d(A, y) = d(A,B)} if B �= ∅
A otherwise.

Contraction is just one of the interesting operators one can define on tolerance
spaces. In [4,5], we studied conditioning and revision operators. The following
lemma holds.

Lemma 2. 1. d(A, x) = 1 if and only if x ∈ (A⊕R Ac) ∩Ac
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Table 1. Geodesic Contraction Rules

1. A ⊆ A⊕B
2. If A ∩ B �= ∅, then A⊕B = A
3. If B �= ∅, then A⊕B ∩B �= ∅.
4. If B = ∅ then A⊕B = A
5. If A ⊆ Bc then A⊕B = ((A⊕ Ac)⊕B) ∩ (A ∪B)
6. If A⊕ C ∩ B �= ∅ and B ⊆ C, then A⊕B = (A⊕C) ∩ (A ∪B)
7. If A ⊆ B then A⊕Bc ⊆ B ⊕Bc

8. If A⊕ Ac ⊆ Bc then B ⊕Bc ⊆ Ac

2. d(A, x) = n, for n > 1, if and only if, d(A⊕R Ac, x) = n− 1.

Proof. Part 1 is straightforward.
For 2, d(A, x) = n implies that there exists y ∈ A such that d(y, x) = n. Since

n > 1, this implies that there exists z ∈ V such that d(y, z) + d(z, x) = (y, x)
with d(y, z) = 1. Therefore, d(z, x) = n − 1 which implies that z �∈ A (for if
not the distance of x from A would be less than n). Therefore d(A, z) = 1 and
from above z ∈ A⊕RAc. This implies that d(A⊕RAc, x) ≤ n− 1. Now suppose
that d(A ⊕R Ac, x) = k < n − 1. Then there would be z′ ∈ A ⊕R Ac with
d(z′, x) = k. By Lemma above d(A, z′) = 1. This implies that there is y′ ∈ A
such that d(y′, z′) = 1. Hence, d(y′, x) < d(y′, z′)+d(z′, x) = k+1 ≤ n−1 which
contradicts d(A, x) = n.

Definition 3. An operator that satisfies 1–8 of the Table 1 will be called geodesic
contraction.

A few words about the rules appearing in Table 1: Rule 1 implies reflexivity for
the underlying relation of indistinguishability and corresponds to AGM postulate
of Inclusion (see Table 4), Rule 2 to Vacuity, Rule 3 to Success. Rule 4 determines
how the operator acts when we contract with the empty set (there is no effect).
Rule 5 is the inductive step for contraction. Rule 6 is a weak form of monotonicity
in the first argument and similarly Rule 7 for the second argument. Finally,
Rule 8 implies symmetry for the underlying relation of indistinguishability.

Proposition 1. The contraction operator defined in a tolerance space (see Def-
inition 2) is geodesic.

Proof. We show soundness for selected rules.
Rule 1 holds by definition.
For 2, observe that A∩B �= ∅ implies that d(A,B) = 0 and therefore A⊕B =

A ∪ {x ∈ B | d(A, x) = 0} = A ∪ (A ∩B) = A.
For Rule 5, assume A ⊆ Bc. If B = ∅ then A ⊕ B = A = (A ⊕ Ac) ∩ A. If

not assume d(A,B) = n > 0. By Lemma 2, we have d(A ⊕ Ac, B) = n − 1 and
therefore

{x ∈ B | d(A, x) = n} = {x ∈ B | d(A⊕Ac, x) = n− 1},
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Table 2. Geodesic Contraction Properties

1. A⊕B ⊆ A ∪ B
2. (A⊕B) ∩Bc = A
3. If (A⊕ C) ∩B �= ∅ and B ⊆ C, then A⊕B ⊆ A⊕ C
4. If (A⊕B ∪ C) ∩ B �= ∅, then A⊕B ⊆ A⊕ (B ∪ C)
5. If A ⊆ B then A⊕ Ac ⊆ B ⊕Bc

6. A⊕ (B ∪ C) ⊆ A⊕B ∪A⊕ C
7. If A⊕B ∩ C �= ∅ then A⊕ C ⊆ A⊕B
8. If B ⊆ Ac, then (A⊕ Ac) ∩ B �= ∅ iff (B ⊕Bc) ∩A �= ∅
9. If A⊕B ∩ C �= ∅ then A⊕B ⊕ C ⊆ A⊕B

again using Lemma 2. We have

((A⊕Ac)⊕B)∩ (A∪B) = ((A⊕Ac)∪{x ∈ B | d(A⊕Ac, x) = n−1})∩ (A∪B).

If d(A,B) = 1 then

(A⊕Ac) ∩ (A ∪B) = A ∪ (Ac ∩B) = A ∪ {x ∈ B | d(A, x) = 1}

and

{x ∈ B | d(A⊕Ac, x) = 0} ∩ (A ∪B) = {x ∈ B | d(A, x) = 1}.

If d(A,B) > 1 then

(A⊕Ac) ∩ (A ∪B) = A

and

{x ∈ B | d(A⊕Ac, x) = n− 1} ∩ (A ∪B) = {x ∈ B | d(A, x) = n}

In both cases we have ((A ⊕Ac)⊕B) ∩ (A ∪B) = A⊕B.

Proposition 2. A geodesic contraction operator satisfies the properties of
Table 2.

Proof. (selected) Property 1 follows from Rules 2 and 5.
Property 2 follows from Property 1.
Property 3 follows from Rule 6.
Property 4 follows from Property 3 because B ⊆ B ∪ C.
Property 5 follows from Rules 6 and 7.

Proposition 3. The properties of Table 3 do not hold for the class of geodesic
contraction operators.

Proof. (selected) We employ Proposition 1. All counterexamples are based on
the tolerance space of Figure 1.
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Table 3. Non-valid Properties

1. If A⊕ C ⊆ Bc, then (A⊕ C)⊕B ⊆ (A⊕B) ∪ (A⊕C)
2. If A⊕ C ⊆ Bc and B ⊆ C, then (A⊕ C)⊕B ⊆ (A⊕B) ∪ (A⊕ C)
3. (A⊕B)⊕ C = (A⊕ C)⊕B
4. If A⊕ C ⊆ Bc and A⊕B ⊆ Cc, then (A⊕B)⊕ C = (A⊕ C)⊕B
5. If (A⊕B) ∩ C �= ∅ and (A⊕ C) ∩ B �= ∅ then A⊕B = A⊕ C
6. If A ⊆ Bc then C ⊕B ⊆ (A⊕B) ∪ C
7. If A ∪ B ⊆ C then (A⊕ C) ∪B = (B ⊕ C) ∪A
8. If A ⊆ C ⊆ Bc then A⊕B ⊆ C ⊕B
9. If A ⊆ B then A⊕ C ⊆ B ⊕ C
10. If A ∪ C ⊆ Bc, then A ⊆ (A⊕B) ∩D iff C ⊆ (C ⊕B) ∩D

For Property 1, let A = {d}, B = {a, f} and C = {b, g}. We have A ⊕ B =
{d, f} and A ⊕ C = {d, b}. So, we have (A ⊕ B) ∪ (A ⊕ C) = {d, b, f} and
(A⊕ C)⊕B = {d, b, a}.

For Property 4, let A = {d}, B = {a, f} and C = {b, g} as above. We have
(A⊕B)⊕ C = {d, f, g} and (A⊕ C)⊕B = {d, b, a}.

For Property 6, let A = {d}, B = {a, f} and C = {b, g} again as above. We
have C ⊕B = {a, b, f, g} and (A⊕B) ∪C = {b, d, f, g}.

4 The Tolerance Space Generated by Contraction

Next, we study the conditions under which a geodesic contraction operator de-
fines a tolerance. We shall show that this correspondence is bijective (Proposi-
tion 4). To this end, suppose X is a set and ⊕ is an operation on its subsets.
Define a relation R⊕ on X with (x, y) ∈ R⊕ if and only if y ∈ {x} ⊕ {x}c.

Lemma 3. Suppose ⊕ is a geodesic contraction. Then, R⊕ is reflexive and
symmetric.

Proof. Reflexivity holds because, by Rule 1, {x} ⊆ {x}⊕{x}c so x ∈ {x}⊕{x}c.
For symmetry, suppose (x, y) ∈ R⊕ we have y ∈ {x}⊕{x}c therefore {y}∩{x}⊕
{x}c �= ∅ which implies by Rule 8 that {x} ∩ {y} ⊕ {y}c �= ∅. The latter implies
that x ∈ {y} ⊕ {y}c, i.e. (y, x) ∈ R⊕.

We will write d for the geodesic distance generated by R⊕.

Lemma 4. Suppose ⊕ is geodesic. Then,

{x | d(A, x) ≤ 1} = A⊕Ac.

Proof. For the left to right inclusion, let A ⊆ X such that x ∈ A. Since {x} ⊆ A,
we have {x} ⊕ {x}c ⊆ A⊕Ac by Property 5.

For the other direction, suppose x ∈ A ⊕ Ac. If x ∈ A then d(A, x) = 0.
Assume x �∈ A, Since x ∈ A⊕ Ac implies A⊕ Ac ∩ {x} �= ∅, Rule 8 applies and
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we have {x} ⊕ {x}c ∩ A �= ∅. So, there exists y ∈ A with y ∈ {x} ⊕ {x}c which
implies (x, y) ∈ R⊕, and by symmetry (y, x) ∈ R⊕ i.e. d(y, x) = 1 which implies
d(A, x) = 1.

Now we can show that a geodesic generates a connected tolerance space.

Lemma 5. If ⊕ is a geodesic contraction then (X,R⊕) is connected.

Proof. Suppose (X,R⊕) is not connected. Then place the (at least two) con-
nected components of X in two subsets A and Ac. Since Ac �= ∅ then, by Rule 3,
A⊕Ac ∩Ac �= ∅. Let x ∈ A⊕Ac ∩Ac. By Lemma 4, d(A, x) = 1 which implies
that there exits y ∈ A such that yR⊕x, a contradiction.

Lemma 6. Suppose ⊕ is a geodesic contraction. Then we have, for all n > 1,
d(A, x) = n iff d(A⊕Ac, x) = n− 1.

Proof. Using Lemma 4 the proof is similar to Lemma 2.2.

Next we show that all geodesic contraction operators are induced by a tolerance
space (using Definition 2) .

Proposition 4. Given a geodesic contraction ⊕, we have

⊕ = ⊕R⊕ .

Proof. Pick A,B ⊆ X . We shall show that A ⊕ B = A ⊕R⊕ B by induction on
the geodesic distance d(A,B) of A and B in the space (X,R⊕).

Assume A,B �= ∅. Let d(A,B) = 0 then there exists x ∈ A ∩ B therefore
A∩B �= ∅ so by Rule 2 (satisfied by both ⊕ and ⊕R⊕) we have A⊕B = A∩B =
A⊕R⊕ B.

Let d(A,B) = 1. We have A⊕R⊕B = A∪{x ∈ B | d(A, x) = 1}. By Lemma 4,
the latter set is exactly A⊕Ac ∩ (A ∪ B). We have A⊕B = A ⊕Ac ∩ (A ∪B)
by Rules 2 and 5.

Assume that is true for all k where 1 ≤ k < n and let d(A,B) = n. By
definition,

A⊕R⊕ B = A ∪ {x ∈ B | d(A, x) = n}.
We have,

A⊕R⊕ B = ((A⊕R⊕ Ac)⊕R⊕ B) ∩ (A ∪B)

by Rule 5. Because of the same rule,

A⊕B = ((A⊕Ac)⊕B) ∩ (A ∪B).

So it suffices to prove

(A⊕R⊕ Ac)⊕R⊕ B = (A⊕Ac)⊕B.

By the induction hypothesis, we have

A⊕R⊕ Ac = A⊕Ac,
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so it remains to show

(A⊕Ac)⊕R⊕ B = (A⊕Ac)⊕B

which follows from Induction hypothesis because d(A ⊕ Ac, B) = n − 1 using
Lemma 6.

Finally assume B = ∅. Then A⊕B = A⊕R⊕ B = A using Rule 4.

The above proposition shows that the set of rules of Table 1 characterizes the
class of geodesic metrics. Note that it also implies that the given tolerance space
(X,R) equals the tolerance space generated by ⊕R.

5 Comparison with Previous Approaches

Our notion of similarity based on the geodesic distance is novel (introduced
in [3]). We do not regard similarity as a basic notion but rather one that is derived
from the more fundamental concept of indistinguishability. Our models should
be thought of as graphs or Kripke models with an accessibility relation. The
geodesic distance that leads to similarity is a byproduct of this basic structure.

Nevertheless, our approach ultimately employs minimization of a similarity
relation and, therefore, it is part of a traditional approach of performing belief
change using similarity. One of the first uses of similarity was Lewis’s evaluation
of counterfactuals ([6]): a > b holds when b is true at the most similar a-world(s)
to the current one. Lewis used a reflexive and symmetric relation of similarity
indexed with propositions.

Non-indexed global similarity relations have been mostly identified with met-
ric distances. A non-metric approach satisfying Williamson’s axioms ([7]) for
a quaternary comparative similarity relation appears in [8] where correspon-
dence results are shown between properties of selection functions (that can be
used to define contraction) and global similarity relations based on the subset
difference between theories. This study is syntactic because the similarity rela-
tion is imposed on theories rather than models, and is confined to properties of
the selection function rather than the properties of the associated contraction
operation.

The metric approach to belief change has been studied in detail in [9]. Al-
though the characterization results of [9] are confined to belief revision operators,
it is certain that corresponding postulates for distance-based contraction will all
be valid in our framework. However, as we have noted in [4], this correspondence
is not bijective, as two distance metrics may generate the same belief revision
operator; that is, logical operations are too coarse to tell the difference between
two distance metrics. Other results relating metrics and geodesic metrics to non-
prioritized belief revision (or merge) operators (as in [10,11]) will appear in a
future paper.

Now, we will attempt to place geodesic contraction among the numerous con-
traction proposals. Using geodesic contraction, one can define the traditional
contraction operation : with

A:B = A⊕Bc.
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Table 4. AGM Contraction Postulates

K ÷ p = Cn(K ÷ p) Closure
K÷ ⊆ K Inclusion
If p �∈ K, then K ÷ p = K Vacuity
If p �∈ Cn(∅), then p �∈ Cn(K ÷ p) Success
If p↔ q ∈ Cn(∅), then K ÷ p = K ÷ q Extensionality
K ⊆ Cn((K ÷ p) ∪ {p}) Recovery
K ÷ p ∩K ÷ q ⊆ K ÷ (p ∧ q) Intersection
If p �∈ K ÷ (p ∧ q), then K ÷ (p ∧ q) ⊆ K ÷ p Conjunction

As our approach is semantic and our rules are set theoretic, we will assume that
there is a way to turn the rules using subsets and set operations to rules about
theories. This happens when the operator Mod, turning a theory to the set of its
models, is surjective (every subset is represented by a theory), and the operator
Th, turning a set of models to the corresponding closed theory are inverses
of each other (on closed theories). For example, such a correspondence appears
when we use a finite language, classical propositional logic for syntax, and binary
valuations for models. Assuming such a translation, we are able to compare our
rules and framework to those appearing in the majority of contraction literature.
Our presentation is informal.

We start with the basic AGM contraction postulates ([12]). Closure and
Extensionality are assured by our framework. As we noted earlier, Inclusion
corresponds to reflexivity with Rule 1. Vacuity corresponds to Rule 2. Success
corresponds to connectedness with Rule 3. Recovery is satisfied by geodesic con-
traction and corresponds to Property 2. Many authors have identified cases where
recovery is not appropriate ([13,14,15]). A desirable feature of our framework is
that it allows us to define a variety of contraction operators, including some
where recovery does not hold. The semantics, or rather, the underlying knowl-
edge representation structure is what guides the formation of the contraction
rules.

As an example, suppose that the speed limit is 65 miles per hour and our
tachometer reads 64 miles per hour. If we allow the possibility of speeding, then,
using contraction, we reach the state 64,66. However, we might want, as usually
the case is, to consider intervals, or more general, convex sets as epistemic states.
So an alternative would be to include 65 and instead reach the state {64, 65, 66}.
This is achieved by defining a withdrawal (see [13]) operator with:

A⊕R B =

{
{y | d(A, y) ≤ d(A,B)} if B �= ∅
A otherwise.

If now we receive information that we did not speed after all, then the final state
according to our framework should be {64, 65} rather than the initial {64}.
Therefore, recovery fails.
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We will now turn to verifying contraction postulates governing successive
contraction. First, consider the following rule

If q �∈ K ÷ p, then K ÷ p÷ q = K ÷ p

which follows from the AGM postulates and corresponds to Property 9. The
following postulate is called Insertion in [16]

If q ∈ K ÷ p, then K ÷ p÷ q = (K ÷ p) ∩ (K ÷ q)

and is not valid in our framework. It corresponds to the invalid property 1.
Insertion is a property of Hansson’s Unified Global Specified Meet contraction
([17]) so geodesic contraction does not belong in this class of operators. Moreover,
there is no rule that reduces geodesic contraction to a single-step contraction.
The slightly weaker property

If q ∈ K ÷ p and p � q, then K ÷ p÷ q = (K ÷ p) ∩ (K ÷ q)

is not valid either (see non-valid Property 2). This property was introduced in
[16] and is satisfied by the class of Principled Iterated contraction operators,
so geodesic contraction does not belong in this class. Lexicographic contrac-
tion ([18]) is a Principled Iterated contraction, so geodesic contraction is not
lexicographic.

Geodesic operators are not commutative; that is the following property

K ÷ p÷ q = K ÷ q ÷ p

is not valid in the geodesic class. Its counterpart is non-valid Property 3. In
contrast, commutativity is valid in the Finite State contraction operators of
[19]. Even the following weaker form of commutativity

If q ∈ K ÷ p and p ∈ K ÷ q, then K ÷ p÷ q = K ÷ q ÷ p

fails (non-valid Property 4).
Geodesic contractions are global in the sense of Hansson, as they are defined

for every non-empty subset. However they violate almost all rules suggested in
[20]. In particular, the following four:

If p ∈ K1, then (K1 ÷ p) ∩K2 ⊆ K2 ÷ p Non-addition
If p ∈ K1 ∩K2, then (K1 ÷ p) ∩K2 = (K2 ÷ p) ∩K1 Symmetric inclusion
If p ∈ K1 ⊆ K2, then K1 ÷ p ⊆ K2 ÷ p Contractive monotonicity
For all z and all p ∈ K1 ∩K2:
K1 ⊆ K1 ÷ p+ z iff K2 ⊆ K2 ÷ p+ z Recovery equivalence

are all not valid (they correspond to invalid Properties 6, 7, 8 and 10,
respectively).
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6 Conclusion

We have introduced a semantic framework based on a view that similarity can be
measured with degrees of indistinguishability. The framework consists of toler-
ance spaces and their associated geodesic metrics. Then, we defined a contraction
operator through the minimization of the geodesic metric. We presented a simple
set of properties that characterize the class of geodesic contraction and proper-
ties that are valid and not valid for this class. We translated those properties into
the usual postulates of contraction and iterated contraction. Although geodesic
contraction satisfies all AGM postulates, it violates the majority of postulates
in the iterated contraction literature.

The fact that geodesic contraction fails to satisfy the suggested logical pos-
tulates can only be regarded as negative, both for geodesic contraction and said
postulates. Geodesic contraction appears to be weak. Although geodesic con-
traction has firm, easily comprehensible semantics, those semantics can easily
produce counterexamples. Similarly, it seems that suggested iterated contrac-
tion operators fail to include a restricted but useful source of contraction: error.
In addition, geodesic metrics are easily generated as thresholds of distance met-
rics, so we believe that further research towards applications may be useful.
Theoretical directions can include the study of other useful operators such as
the withdrawal operator of the previous section as well as formal logical systems
whose semantics include minimization of a metric on a tolerance space.

Acknowledgments. I am grateful to the anonymous referees whose comments
helped improve this paper. This work was supported by the PSC-CUNY award
64599-0042.
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Abstract. Any intermediate logic with the disjunction property admits
the Visser rules if and only if it has the extension property. This equiv-
alence restricts nicely to the extension property up to n. In this paper
we demonstrate that the same goes even when omitting the rule ex falso
quod libet, that is, working over minimal rather than intuitionistic logic.
We lay the groundwork for providing a basis of admissibility for minimal
logic, and tie the admissibility of the Mints–Skura rule to the extension
property in a stratified manner.
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extensions of Kripke models.

The admissible rules of a theory are those rules under which the theory is
closed. Derivable rules are admissible. For classical propositional logic, this is
the whole story. For intuitionistic propositional logic (IPC) — and minimal logic
— it is not.

Friedman [7, Problem 40] conjectured admissibility for IPC to be decidable,
as has been confirmed by Rybakov [25]. De Jongh and Visser conjectured that
the Visser rules form a basis of admissibility for IPC, that is to say, all admis-
sible rules of IPC become derivable after adjoining the Visser rules. Rozière [24]
and Iemhoff [13] independently confirmed this. Again independently, Skura [27]
demonstrated that IPC is the sole intermediate logic that admits a restricted
form of the Visser rules.

At the Pisa Proof Theory workshop of 2012 George Metcalfe gave a tutorial on
admissible rules. As has become standard practice, Metcalfe mentioned Lorenzen
[20] as the first place where admissible rules where studied an sich. Jan von Plato
objected that Johansson [18] already discussed them. Odintsov and Rybakov [23]
proved admissibility for minimal logic to be decidable. In this paper we lay the
groundwork for studying all admissible rules of Johansson’s minimal logic, with
the eventual goal of providing an explicit basis of admissibility.

This paper aims to provide uniformity to some of the literature regarding
admissible rules for logics above minimal logic. We make several observations,
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many of which not elsewhere available in the generality stated here. Although
this paper contains novel results, most notably the semantic characterization of
admissibility for an adaptation of the rules studied by Skura, its main purpose
is to provide a unified approach to the study of admissible rules over minimal
logic.

1 Preliminaries

We first fix some basic notation. Many definitions are fairly straightforward
adaptations of their well-known intuitionistic counterparts.

Definition 1 (Propositional Language). The language of propositional for-
mulae is defined as follows, starting from a fixed countably infinite set of propo-
sitional variables Var. A formula is said to be atomic if it consists solely of a
variable or falsum, the set of atomic formulae is denoted as Atom.

L ::= Var | ⊥ | L ∧ L | L ∨ L | L → L.

We will denote formulae by captital Latin letters at the beginning of the alpha-
bet, and use greek capitals to refer exclusively to finite sets of formulae. For
greater convenience we write Γ ⇒ Δ to mean

∧
Γ →

∨
Δ, that is to say, the

conjunction of all formulae in Γ implies the disjunction of all formulae in Δ. We
will only use this notation when both Γ and Δ are non-empty. This definition of
a Kripke model differs in one important regard from the standard definition as
given for instance by Troelstra and van Dalen [29]. The difference is in that a val-
uation can determine whether ⊥ is to hold, analogous to the definition of Došen
[5], whereas in a Kripke model of IPC this is fixed. This to ensure completeness
for minimal logic, in which ⊥ does not derive everything.

Definition 2 (Kripke Model). A Kripke model is a pair K = 〈K, v〉 where
K is a partial order and v (the valuation) is a monotone map v : K → P(Atom).
We define a relation � (forces) between K and L inductively as follows

k � A := k ∈ v(A) for atomic A
k � A ∧B := k � A and k � B
k � A ∨B := k � A or k � B
k � A→ B := l � B whenever l � A for all k ≤ l

The model K is said to be rooted if K has a least element, and K is strict when
k � ⊥ holds for no k ∈ K. We say that K is finite when K is finite and v maps
but finitely many atoms to a non-empty upset. As usual, we write K � A to
mean that k � A for all k ∈ K. For convenience we also write K � x when
x ⊆ L to mean that K � A for all A ∈ x. The theory of K, written ThK, equals
the set of formulae A such that K � A.

Kripke models can be endowed with a topology, the Alexandroff topology,
where opens are exactly upsets. Using the thus inherited topology we can define
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a sensible notion of maps as follows. These kinds of maps have been called p-
morphisms and bounded morphisms, we will simply call them maps (of Kripke
models). From the definition it naturally follows that for any map f : K → L
we have ThL ⊆ ThK.

Definition 3 (Maps of Kripke Models). A map f : 〈K, v〉 → 〈L,w〉 between
Kripke models is an open and continuous function such that w ◦ f = v.

We often place models next to one another, below a formal definition.

Definition 4. Given a set of Kripke models K = {K = 〈K, vK 〉 | K ∈ K} we
define their disjoint union as

∐
K :=

〈∐
K,
⋃
K∈K

vK

〉
.

In order to be as generic as possible, and to not get involved with the intricacies
of axiomatizations of the logics at hand, we use the notion of a consequence
relation. Rybakov [26] already used consequence relations in the context of ad-
missible rules, we shall do the same. We will use the formulation of Cintula and
Metcalfe [3], where a consequence relation is concerned with multi-conclusion
rules.1 Multi-conclusion rules allow for a more succinct notation of the rule
schemes we will use later on, and help us steer clear of some obstacles concern-
ing the disjunction property, see Citkin [4].

First, a rule is an ordered pair of finite sets of formulae, written Γ/Δ. A
consequence relation is simply a set of rules satisfying certain sensible properties.
When reading the following definition, think of the relation � defined as Γ � Δ
iff there is a (minimal logic) proof of some A ∈ Δ with assumptions in Γ .

Definition 5 (Consequence Relation). A consequence relation (or logic)
consists of a relation called derivability, denoted �, between finite sets of for-
mulae subject to the following axioms, where A is a formula and Γ,Θ,Δ,Π are
finite sets of formulae.

reflexivity A � A;
monotonicity if Γ � Δ, then Γ,Θ � Δ,Π;
transitivity if Γ � Δ,A and A,Θ � Π, then Γ,Θ � Δ,Π;
structurality if Γ � Δ, then σ (Γ ) � σ (Δ).

We extend the notation to infinite sets on the left by defining x � Δ to mean
that there exists a finite Γ ⊆ x such that Γ � Δ. When one of the sets is a
singleton we omit braces, and if it is empty we omit it entirely. A formulae A
is said to be a theorem of this consequence relation if � A. A logic is consistent
when not all formulae are theorems.

Given any set of formulae x and any consequence relation � one can form
a new consequence relation �x where Γ �x Δ holds if and only if x + Γ � Δ.

1 Note that they call the definition below a “finitary structural multi-conclusion con-
sequence relation”. We call this simply a consequence relation or logic.
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Γ � A Γ � B
Γ � A ∧B

Γ � A ∧ B
Γ � A

Γ � A ∧B
Γ � B

Γ � A
Γ � A ∨B

Γ � B
Γ � A ∨B

Γ � A ∨ B A,Γ � C B,Γ � C

Γ � C
Γ,A � B

Γ � A→ B

Γ � A→ B Γ � A
Γ � B

Fig. 1. Closure properties of �

We say that x is a theory if it contains all theorems of �x. Moreover, given a
consequence relation � one can form the consequence relation of admissibility.
Roughly said, a rule is admissible when for each substitution we know that if its
assumptions are theorems under the substitution, then one of the conclusions
must be a theorem under the same substitution.

Definition 6 (Admissible Rule). Let � be a consequence relation and Γ/Δ a
rule. We say that Γ/Δ is admissible, denoted Γ |∼ Δ when for each substitution
σ, if � σ (A) for all A ∈ Γ , then � σ (A) for some A ∈ Δ.

The thus defined relation |∼ of admissibility is a consequence relation. By
structurality, |∼ contains �, so reflexivity is clear. All other properties are a
simple matter of verification. A rule is said to be admissible for x whenever it is
admissible for �x.

It is important to keep in mind that a logic need not satisfy the deduction
theorem, that is, Γ + A � B need not be equivalent to Γ � A → B, even when
the logic is an extension of minimal logic. Likewise, when a rule is admissible
for a given logic, it need not be admissible for an extension. In the following, we
will let � stand for any logic which contains minimal logic, satisfying the close
properties of Fig. 1, satisfying the deduction theorem.

2 Extensions of Models

An extension of a Kripke model is that same model, adjoined with a least element
and a choice of valuation there. In this section we investigate when a given model
of a theory has an extension satisfying the same theory. This is interesting in and
of itself, but it also has applications for admissible rules. The characterization
that is to be given at the end of this section suggests a particularly nice schema of
admissible rules, namely the de Jongh rules. With some additional bookkeeping
one can use this characterization to prove, for instance, that the de Jongh rules
form a basis of the Gabbay–de Jongh logics of Gabbay and de Jongh [8], as has
been done in Goudsmit and Iemhoff [11]. Here we show how these results are
actually more general, in that they help towards providing a basis of admissibility
of minimal logic. As we do not attain this goal here, we omit the bookkeeping
to make the material more digestible.

Let us now first introduce notation for extensions. What the following defini-
tion comes down to is that the model K/x is K with a node (named x) placed
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below it, which forces precisely the atomics x contains. For greater convenience
we will often write K/x even when x contains non-atomic formulae, this is un-
derstood to denote K/ (x ∩ Atom).

Definition 7 (Extension). Let K = 〈K, v〉 be a Kripke model and x ⊂ ThK
be a set of atoms. We define the extension of K over x, denoted K/x, as follows.

K/x =
〈
Kx,
(
k ∈ Kx �→ v(A) if k ∈ K and x otherwise

)〉
Here Kx is the partial order with underlying set K+ {x} ordered by k ≤ l if and
only if k ≤ l holds in K or k = x.

The following characterization is fairly straightforward and can be proven with
almost no effort at all. It does look fairly familiar to the inductive characteriza-
tion of the Aczel Slash as given in Smoryński [28, Theorem 5.1.18], and this is
no coincidence. When we take K to be the canonical model of some theory x as
in Definition 9, then this characterization is identical, as is can be readily seen in
the presence of Lemma 2. Another observation: if K � A→ B but K �� A then
K/x � A → B, which clarifies the importance of Definition 11 below. Later on
we will formulate some constraints on theories x given models K under which
ThK/x actually equals x. We will give an exact characterization when given a
model K and a theory x there exists some extension K/y such that ThK/y ⊇ x.

Lemma 1 (Forcing of Extensions). Let K be any Kripke model and let x ⊆
ThK be arbitrary. The following hold:

K/x � C iff x ; C for atomic C
K/x � A ∧B iff K/x � A and K/x � B
K/x � A ∨B iff K/x � A or K/x � B
K/x � A→ B iff K � A→ B and if K/x � A then K/x � B

A logic is said to have the disjunction property when each derivable disjunction
has a derivable disjunct. See [2] for a wonderful and comprehensive survey of
intermediate logics and the disjunction property. The above characterization
shows that the theory of each extension satisfies this disjunction property. So
when we seek theories x such that ThK/x = x holds, x had better satisfy the
disjunction property too.

To smoothen proofs we use a generalized form of the disjunction property, the
idea of being saturated in something else. Note that a set of formulae has the
disjunction property if it is saturated in itself, in which case we call it saturated.
This is one of the many places where one could introduce further bookkeeping
by restricting the formulae considered to some set, for instance the set of atomic
formulae. For details regarding this one can consult [11], this is the last we speak
of it.

Definition 8 (Saturated Set). Let x ⊆ y be sets or formulae. We say that x
is saturated in y, written x 
 y, whenever

x �
∨

Δ entails y ∩Δ �= ∅ for all non-empty finite Δ.
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Each theory can be extended to a saturated set, avoiding a chosen formula
outside of this set. This is akin to a basic fact of lattices: given a filter and an
ideal with empty intersection, there exists an extension of the filter to a prime
filter, which does not intersect the ideal (see e.g. [19, section 2.3]). Let us mention
three small results. The first is an immediate corollary of Lemma 3 and 4 of [11],
the other two follow from the first. The final corollary comes in handy in proving
that our canonical model works well, and it is also crucial in Lemma 4.

Corollary 1. Let x be saturated in z. There exists a saturated set y such that
x ⊆ y ⊆ z.

Corollary 2 (Negative Saturation Lemma). Let x and Δ be sets of for-
mulae such that x ��

∨
Δ. Now there exists a saturated set extending x not

intersecting Δ.

Corollary 3. Let x be a set of formulae and let A and B be formulae such that
x �� A→ B. There exists a saturated set extending x such that z ; A and z �; B.

Let us now define the canonical model. Not to prove completeness, although
it is a natural byproduct, but to link the disjunction property to a semantic
property. Our canonical model is analogous to that of Došen [5, Definition 9]. It
is also similar to the model of Aczel [1], but it differs in several regards, most
importantly in that his model is strict.

A theory is said to be consistent when its associated logic is. This notion
of consistency is sufficient to ensure the existence of (consistent) saturated sets
above a consistent theory due to the Negative Saturation Corollary 2, which we
need to make the model a bona fide model. When the logic at hand would be
some intermediate logic, then any theory must contain ⊥ → A for any A. This
ensures that a consistent theory does not contain ⊥, so the canonical model
under intermediate logics would always be strict, as desired.

Definition 9 (Canonical Model). Let x be a consistent theory. The canonical
model of x, denoted by canx, is defined as the Kripke model

canx :=
〈
{ y ⊇ x | y saturated } , y �→ y ∩ Atom

〉
.

Lemma 2. For any theory x we have Th canx = x.

Proof. If x � C then every saturated extension contains C. Conversely, if x �� C
there is a saturated extension which does not contain C. By structural induction
along C we prove that for any y ∈ canx we have y � C if and only if y ; C. For
atomic formulae this holds by definition. The conjunction and disjunction cases
follow readily from induction and saturation. We are left with the implication
case, where C = A→ B.

From right to left, suppose that y ; A→ B and let z ⊇ y be a saturated set.
If z � A then z ; A by induction, whence y ⊆ z ; B by saturation, induction
now finished the job. To prove the converse, suppose that y �; A → B. This
yields a saturated z ⊇ y such that z ; A but z �; B by Corollary 3. The desired
follows by induction.



212 J. Goudsmit

Corollary 4 (Completeness). For any theory x, if K � A for all models K
with x ⊆ ThK then x � A.

We can characterize the disjunction property via the following semantic property.
This has already been proven by Maksimova [21, Theorem 1 and 2]. The proof
below is quite similar, in that it uses the same core idea, and it nicely illustrates
how little changes when moving to minimal logic.

Theorem 1. A theory x has the disjunction property if and only if for every
model K � x there is a rooted model L � x and a map K → L.

Proof. The implication from right to left is fairly straightforward. Suppose x
does not have the disjunction property. This gives some Δ such that x �

∨
Δ

but for no A ∈ Δ we have x � A. Via completeness this ensures us models
KA � x such that KA �� A. Consider then K :=

∐
A∈ΔKA, by assumption we

have a rooted model L � x and a map K → L. This entails that ThL ⊆ ThK.
Observe that L � x �

∨
Δ, whence L � A for some A ∈ Δ because L is rooted.

This in turn entails that K � A and so KA � A, a clear contradiction.
Let us now focus on the other implication. Let K be a Kripke model of x.

Now consider the model L := (K + canx) /x, and see that the inclusion from
K to L is a map. We will prove that x ; C if and only if L � C. We proceed
via Lemma 1, and there is only some work to be done in the implicative case.
Note that L � A → B iff K + canx � A → B and if L � A then L � B. It is
clear that Th canx+K = Th canx = x. By induction we know that L � A and
L � B to be equivalent to x � A and x � B. The burden of proof has completely
dissolved, keeping in mind modes ponens.

Consider again a model K of a particular theory x. When we can find a theory
y ⊇ x such that ThK/y = y holds we know that an extension of K forcing x
exists. Such a theory y is, in a way, a saturated approximation of the model K
containing x. We are interested in the “best” such approximation, that is to say,
a saturated extension containing x such that every larger saturated extension
overshoots K. This idea is captured by the notion of a tight predecessor. The
definition first took form in Iemhoff [13, Section 2.1.1] where it pertained to
models, and was later adopted by Jeřábek [17, Definition 3.2] to suit modal
logic. Goudsmit and Iemhoff [11, Definition 11] adapted the idea to theories,
and it is this definition we use here.

Definition 10 (Tight Predecessor). Let x and z and be sets of formulae. We
say that x is a tight predecessor of z when x is saturated, x ⊆ z and for each
saturated set y ⊃ x we have z ⊆ y.

Definition 11 (Vacuous Implications and Assumptions). Let x be a set
of formulae. Define the following:

I (x) :=
{
A→ B

∣∣ for formulae A and B such that x ; A→ B but x �; A
}

xa :=
{
A
∣∣ for some B we have x ; A→ B

}
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Lemma 3. Let K be a Kripke structure, let x ⊆ ThK be arbitrary and let y be a
set of implications. If ya does not intersect ThK and y ⊆ ThK then K/x � y.
In particular, I (ThK ) ⊆ ThK/x.

We can now show that a tight predecessor of a model contains all informa-
tion of the theory of the extension. In [11, Lemma 9] the intermediate case was
treated, here we consider any extension of minimal logic. The proof below uses
the characterization of extensions, which makes it a little smoother than the
original. Note that to prove the equivalence for a formulae C, one needs only
knowledge of structurally smaller formulae. The additional constraint about con-
taining I (ThK ) may be dropped, as it can be shown to always hold.

Lemma 4 (Extension Lemma). Let K be any model, and let x be a tight
predecessor of ThK containing I (ThK ). Now ThK/x = x holds.

Proof. We prove that K/x � C iff x ; C by structural induction along C. Only
the implication case is interesting, the other cases are either immediate or follow
from induction and the rules under which we assumed � to be closed. We know
that K/x � A→ if and only if K/x � B whenever both K � A and K/x � A.

Let us first go from right to left. If x ; A→ B and K/x � A then x ; A by
induction, so x ; B by assumption. Induction yields K/x � B as desired.

Now for the other direction, suppose that K � A → B and that if K/x � A
then K/x � B. Furthermore assume that x �; A → B. We will derive a contra-
diction from these assumptions. By Corollary 3, there is a saturated extension
y ⊇ x such that y ; A and y �; B. There are two cases, either y = x or y ⊃ x.

In the former case we know x ; A and x �; B, so induction yields K/x � A
and K/x �� B.

In the latter case first observe that ThK ⊆ y. If K � A then K � B whence
y ; B. On the other hand, if K �� A then A → B ∈ I (ThK ) ⊆ x. Both cases
thus yield a contradiction, proving the desired.

Below we cite one of the main results of [11, Theorem 1]. The main point is that
this perfectly characterizes when a model has an extension satisfying a given
theory, and that this characterization works for logics extending minimal logic.

Theorem 2. Let K be a Kripke model, let x be a subset of ThK. The following
are equivalent:

1. the set x ∪ I (ThK ) is saturated in ThK;
2. there is a tight predecessor of ThK containing x and I (ThK );
3. there is a y ⊆ ThK such that x ⊆ y = ThK/y.

3 Extension Properties and Projectivity

Every model of minimal logic has an extension, and the same goes for models of
IPC (in both cases, forcing nothing at all will do). In the nth Gabby–de Jongh
logic one can give an extension to any juxtaposition of n+ 1 many models, but
more might fail. This property is of particular interest to us.
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Definition 12 (Extension Properties). A theory x is said to have the nth

extension property when for each set K of n rooted models of x there exists an
extension of

∐
K forcing x. Given another theory y, we say that y has extensions

over x if for each model K � y such that there is an extension forcing x, there
is an extension forcing y.

The property of having extensions over a given base theory is quite interesting.
First, there is a nice correspondence with projectivity in the sense of Ghilardi
[10]. Projectivity and projective formulae in particular play a role in unification
theory and in characterizing admissible rules, see for instance [9] and [6]. Sec-
ondly, when y has extensions over x and x has the nth extension property, so
does y.

The definition below is a modest generalization of projectivity in the sense of
that paper. Note that a formula would be called projective there precisely if it
were projective over the theorems of IPC.

Definition 13 (Projectivity). A set of formulae y is said to be projective
over x when there is a substitution σ (called the projective unifier) such that

x � σ (A) for all y ; A and y � σ (A)↔ A for all A

We can readily prove that projectivity over x entails extensions over x. This
specializes to the intermediate case in that projectivity over IPC entails the nth

extension property for all n.

Lemma 5. Let x ⊆ y be theories. Assume that y is projective over x. Then y
has extensions over x.

Proof. Take some Kripke modelK � y and assume that there exists an extension
forcing x. By Theorem 2, this means that x + I (K ) 
 ThK. Per the same
theorem, it suffices to prove that y+I (K ) 
 ThK. So suppose y+I (K ) �

∨
Δ

for some finite non-empty Δ ⊆ L. This gives a finite Γ ⊆ I (K ), which we can
assume to be non-empty, such that y � Γ ⇒ Δ. Because y is projective over x
we have a σ such that x � σ (A) for all A ∈ y and y � σ (A) ≡ A for all A, fix
this σ. Transitivity ensures that x � σ (Γ )⇒ σ (Δ).

Observe that σ (Γ ) ⊆ I (K ), because if A → B ∈ I (K ) then K �� A and
K � A→ B. Now as y ⊆ ThK it follows that K �� σ (A) and K � σ (A→ B).

We now know x � σ (Γ )⇒ σ (Δ) and x+ I (K ) � σ (C) for all C ∈ Γ , so the
deduction theorem and transitivity ensures x+I (K ) �

∨
σ (Δ). The assumption

x + I (K ) 
 ThK now proves K � σ (A) for some A ∈ Δ, whence K � A is
readily derived. This proves the desired.

Do note that the above proof is basically the same as that of [10, Theorem 5, (ii)
entails (iii)], it is slightly rephrased in terms of our characterization of extensions,
and isolates the bare necessities. The proof in the other direction unfortunately
does not generalize as readily, this is still work in progress. We solely cite the
easily generalizable part without proof.
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Lemma 6. Assume that the logic at hand is an intermediate logic. Let x be a
theory with the finite model property and let A be a formula such that x+A has
extensions over x. Now x+A is projective over x.

We end this section with one observation on the use of projectivity towards
providing bases of admissible rules. The nice property of projective formulae A
is that A |∼ B if and only if A � B.2 When x +A admits all admissible rules of
x, that is to say, when each rule is admissible with respect to �x+A whenever it
is admissible with respect to �x, we get the same nice property. Below we prove
this, and moreover show that when y is projective over x, it follows that y admits
all rules of x. This is interesting, as y also “inherits nth extension properties”
from x as stated above.

Lemma 7. Let x be closed under substitution. Suppose that A is such that all
rules that are admissible for x are admissible for x+A too. Now A |∼x B if and
only if x+A � B.

Proof. From left to right, assume that A |∼x B. Now A |∼x+A B follows from as-
sumption, whence the desired is immediate by monotonicity. Conversely, suppose
that x+A � B. Let σ be arbitrary and additionally assume that x � σ (A). We
now see that x+ σ (A) ⊇ σ (x) + σ (A) � σ (B), so transitivity yields x � σ (B)
as desired.

Lemma 8. Let x ⊆ y be sets of formulae. If y is projective over x then y admits
all rules that x admits.

Proof. Let ρ be the projective unifier of y over x. Assume that Γ |∼x Δ, and
suppose that σ is such that y � σ (A) for all Γ ; A. Because ρ unifies y under x
we get x � ρ (A) for all y ; A, so by transitivity, x � ρσ (A) for all A ∈ Γ . Now
note that as Γ |∼x Δ, we obtain a A ∈ Δ such that x � ρσ (A). As x ⊆ y we
obtain y � σ (A) as desired.

4 Admissible Rules

The interesting scheme of admissible rules of choice are the Visser rules. They
have been shown to be a basis of admissibility for IPC, and they correspond
nicely to the extension property. To neatly restrict the above result to the nth

extension property the de Jongh rules were introduced in [11]. With the ma-
chinery available here we can quite smoothly prove that the de Jongh rules are
admissible in any of the logics at hand that satisfy the disjunction property. Let
us first define these rules. As an auxiliary definition, say that a non-empty set
U is an n-cover of another set X if

⋃
U = X , ∅ �∈ U and |U| ≤ n. Per natural

2 This must be very well-known as it is re-proven quite often, see for instance Cintula
and Metcalfe [3, Lemma 2.3], Iemhoff [14, Section 2.6], Iemhoff and Metcalfe [15,
Lemma 1.a], Iemhoff and Metcalfe [16, Lemma 6], Jeřábek [17, Theorem 4.1] and
Dzik [6, Corollary 6].
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number n, finite non-empty set of implications Γ , non-empty finite set Δ and
n-cover U of Γ a, the nth de Jongh rule determined by Γ , Δ and U is defined as
below.

Γ ⇒Δ U is a n-cover of Γ a

{Γ ⇒Θ | Θ ∈ U ∪Δ}

Lemma 9. Assume that x has the disjunction property and the nth extension
property. Now x admits the nth de Jongh rule.

Proof. Suppose we have non-empty finite Γ (with only implications) and Δ
(arbitrary) and an n-cover U of Γ a such that x � Γ ⇒Δ but x �� Γ ⇒Θ for any
Θ ∈ U ∪Δ. Completeness provides us with rooted models KU for each U ∈ U
such that KU � x + Γ but KU ��

∨
U . Furthermore, we have models KA for

each A ∈ Δ such that KA � x+ Γ but KA �� A.
By the nth extension property we have a model KU extending

∐
u∈U KU such

that KU � x. The disjunction property of x ensures us a rooted model K � x
of which KU and all of KA for A ∈ Δ are open subsets.

Suppose that A→ B ∈ Γ . If K � A then pick some A ∈ U ∈ U and note that
KU � A �

∨
U , a contradiction. This entails that K � x + Γ . As x + Γ � Δ

we know that K �
∨
Δ. This gives a A ∈ Δ such that K � A, which entails

KA � A, quod non. Hence all nth de Jongh rules are admissible.

The de Jongh rules have quite a lot of parameters, it would be nice if these could
be restricted in number. A nice source of inspiration can be found in the rule
below, which has been studied in several incarnations before. Its admissibility
for singleton covers with n = 2 in IPC was discussed by Mints [22]. Skura [27]
considered this rule, also with only singleton covers but for arbitrary n, and
proved that IPC is the sole intermediate logic which admits them all. Per natural
number n, non-empty finite set of implications Γ and n-cover U of Γ a we define
the nth Mints–Skura rule as below.

Γ ⇒ Γ a

U is a n-cover of Γ a

{Γ ⇒Θ | Θ ∈ U}

The rule clearly is a special case of the de Jongh rule, so it holds in the presence
of the nth extension property due to Lemma 9. We prove the the converse below.

Lemma 10. Assume that x has the disjunction property and assume that x
admits the nth Mints–Skura rule. Now x has the nth extension property.

Proof. Consider a set K of n rooted models of x. Due to Theorem 2, the model
L :=

∐
K has an extension precisely if x + I (ThL) 
 ThL. We reason by

contradiction, so suppose that x+I (ThL) �
∨
Δ yet ThL∩Δ is empty for some

finite non-empty Δ. The latter ensures that Δ ⊆ I (ThL)
a
, the former ensures

some finite non-empty Γ ⊆ I (ThL) such that x + Γ �
∨
Δ. Monotonicity

ensures that we can assume that Δ ⊆ Γ a without loss of any generality. We thus
know that x+Γ �

∨
Γ a. Construct the cover U as below, clearly of size at most
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n. It does not contain the empty set by construction, and its union equals Γ a,
so U is not empty as well.

U := {ΘK = Γ a − ThK | K ∈ K} − {∅}

Due to the nth Mints–Skura rule at U we now know that x � Γ ⇒ΘK for some
K ∈ K. Now see that as L � x and L � I (ThL) ⊇ Γ we know that L �

∨
ΘK .

This ensures that K �
∨
ΘK , whence ThK must have a non-empty intersection

with ΘK = Γ a − ThK, utter nonsense of course.

The above two lemmas immediately entail the theorem below. Iemhoff [12,
Lemma 3.3] argued that any intermediate logic with the nth extension prop-
erty for all n must be IPC. So the theorem below re-proves the main result
of Skura [27], namely that IPC is the sole intermediate logic which admits all
Mints–Skura rules.

Theorem 3. Each logic above minimal logic with the disjunction property ad-
mits the nth Mints–Skura rule if and only if it has the nth extension property.
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Abstract. Correspondence theory regarding the bimodal language for
subset spaces can be based on a certain pseudo-monadic second-order
language arising from the relevant semantics. Since the latter language
is reducible to a two-sorted language of first-order predicate logic, one can
apply well-established model-theoretic techniques to studying expressiv-
ity issues. In this way, a subset space analogue to a popular definability
result of ordinary modal logic is proved first in this paper. On the other
hand, subset spaces can easily be related to usual Kripke models, for
which we have a (one-sorted) relational first-order correspondence lan-
guage. Both of the concurrent correspondents are then used in the main
part of the paper, where, among other things, some Goldblatt-Thomason
style results as related to subset frames are proved.

Keywords: subset spaces, topology and knowledge, correspondence
theory, subset frames, definability.

1 Introduction

Modal languages count as specification languages in many respects, e.g., in the
case of distributed or multi-agent scenarios. The scope of formal description
of such kind is usually measured with respect to a well-known correspondence
language encompassing properly the semantics involved. At least two facets are
inherent in this setting. First, which properties of data structures can be specified
by corresponding formulas? In basic modal logic, for example, those properties
(of Kripke models, there) are, with reference to a suitable first-order language L,
identified as the bisimulation-invariant fragment of L. This is the content of the
famous van Benthem Characterization Theorem; see [4], Theorem 2.68. Second,
and equally important, which classes of data structures can be determined by
formulas of the specification language? This question as well has been answered
in the case of basic modal logic; see [4], Theorem 2.75, and Theorem 3.19 (the
Goldblatt-Thomason Theorem). The aim of this paper is to study the second
topic in connection with Moss and Parikh’s bimodal language for subset spaces,
L, originating from the paper [15]. (The first aspect has been treated in [14].)

One may become acquainted with Moss and Parikh’s approach connecting
knowledge and topology by taking a first look at the semantics of L. The basic
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semantic units are composed of two ingredients, to wit, the actual state x of the
world and a ‘neighborhood’ U of x. In knowledge-theoretic contexts, which serve
us as an example here, U may be viewed as the current epistemic state of an
agent under discussion, i.e., the set of those states that cannot be distinguished
by what the agent topically knows. The two modalities of the language, K and
�, quantify across all elements of U and ‘downward’ over all neighborhoods con-
tained in U , respectively. Thus K captures the idea of knowledge as usual (see
[8]), and � reflects effort to acquire knowledge since gaining knowledge goes hand
in hand with a shrinkage of the epistemic state. In fact, knowledge acquisition
is reminiscent of a topological procedure in this way. The appropriate logic for
‘real’ topological spaces was first determined by Georgatos in his thesis [10].
Meanwhile, a considerable amount of work was involved in the development of
the L-based theory of subset spaces and, in particular, topological spaces; see
Ch. 6 of the handbook [2] for a guide to the literature up to 2006. Summing
all this and the more recent achievements up, one may state that the emerg-
ing system embodies a solid toolkit for reasoning about knowledge as well as
topological reasoning, with the two-valued semantics involving both states and
ambient sets making up its distinctive feature.

Modal correspondence theory should take its course via the relevant semantics
in any case. The exposition in the last paragraph indicates that the right corre-
spondent to L coincides with the language L2 for so-called weak structures that
has been introduced by Flum and Ziegler in the monograph [9]. Seeing that L2 is
a first-order language in essence, the machinery of first-order model theory (cf.,
e.g., [6]) should be applicable to our problem. In fact, we shall make significant
use of this in due course.

The outcome of this paper can be summarized as follows. First, the L-definable
classes of subset spaces are characterized in model-theoretic terms. And second,
some important L-definable classes of subset frames are determined by certain
invariances, i.e., validity-preserving operations on frames. Both results will, in
particular, indicate the need for more expressive power.

It should be mentioned that the subjects covered here (and in [14]) have
turned out to several active branches of applied logic of importance. Concerning
some hints to the relevant literature, we refer the reader to the notes to Chap. 2
and 3 of the textbook [4] instead of giving a more or less exhaustive listing here.
But the recent paper [5] should be quoted separately, which proves a certain
sublanguage of L2 a perfect match for the classical topological interpretation of
(mono-)modal logic (see [1]) in the sense of the above questioning.

The subsequent technical part of the paper is organized as follows. In the
next section, we supply the basic definitions from [7] needed later on, and we
define a standard translation of the set of all L-formulas which is induced by
the semantics of L. The main topic of Section 3 is definability for subset spaces.
Some first-order model theory comes into play here, and the ubiquitous notion
of bisimulation, tuned to our context appropriately, plays a key role at this
stage. In Section 4, four validity-preserving operations on subset spaces emerge,
which turn out to be relevant to the definability problem for subset frames. Two



Subset Space vs Relational Semantics of Bimodal Logic 221

corresponding characterization results for classes of subset frames are obtained
in Section 5. What’s more, the title of this paper will become really clear there.
Finally, we sum up and add some further comments. – All proofs had to be
omitted here due to the restrictions regarding space.

2 The Various Languages We Consider

In this section, we first fix the language L for subset spaces and extract a trans-
lation into first-order logic from that. Afterwards, we recall the language L2

before connecting L to it. Finally, we assign Kripke models to subset spaces and
mention the appropriate correspondence language L1.

To begin with, we define the syntax of L. Let Prop = {p, q, . . .} be a denumer-
ably infinite set of symbols called proposition variables (which should represent
the basic facts about the states of the world). Then, the set Form of all L-
formulas over Prop is defined by the rule α ::= p | ¬α | α ∧ α | Kα | �α. Later
on, the boolean connectives that are missing here are treated as abbreviations,
as needed. The dual operators of K and � are denoted by L and �, respectively;
K is called the knowledge operator and � the effort operator.

We now turn to the semantics of L. For a start, we define the relevant domains.
Let P(X) designate the powerset of a given set X .

Definition 1 (Semantic Domains)

1. Let X be a non-empty set (of states) and O ⊆ P(X) a set of subsets of X.
Then, the pair S = (X,O) is called a (subset) frame.

2. Let S = (X,O) be a subset frame. Then the set NS := {(x, U) | x ∈
U and U ∈ O} is called the set of neighborhood situations of S.

3. Let S = (X,O) be a subset frame. An S-valuation is a mapping V : Prop→
P(X).

4. Let S = (X,O) be a subset frame and V an S-valuation. Then, M :=
(X,O, V ) is called a subset space (based on S).

The term ‘neighborhood situation’ has been introduced just to denominate the
semantic atoms of our modal language. Note that the first component of such
a situation indicates the actual state of the world while the second reflects the
uncertainty of the respective agent about it. Note also that S-valuations only
depend on states (and are independent of sets thus). This is in accordance with
the common practice of modelling; cf. [8].

For a given subset spaceM, we now define the relation of satisfaction, |=M ,
between neighborhood situations of the underlying frame and formulas from
Form. Based on that, we define the notion of validity of L-formulas in subset
spaces and in subset frames. In the following, neighborhood situations are often
written without parentheses.

Definition 2 (Satisfaction and Validity). Let S = (X,O) be a subset frame.
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1. Let M = (X,O, V ) be a subset space based on S, and let x, U ∈ NS be a
neighborhood situation. Then

x, U |=M p :⇐⇒ x ∈ V (p)
x, U |=M ¬α :⇐⇒ x, U �|=M α
x, U |=M α ∧ β :⇐⇒ x, U |=M α and x, U |=M β
x, U |=M Kα :⇐⇒ ∀ y ∈ U : y, U |=M α
x, U |=M �α :⇐⇒ ∀U ′ ∈ O : [x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α] ,

where p ∈ Prop and α, β ∈ Form. In case x, U |=M α is true we say that α
holds in M at the neighborhood situation x, U.

2. Let M = (X,O, V ) be a subset space based on S. An L-formula α is called
valid in M iff it holds in M at every neighborhood situation of S.

3. An L-formula α is called valid in S iff it is valid in every subset space M
based on S; in this case, we write S |= α.

Note that the idea of knowledge and effort described in the introduction is made
precise by Item 1 of this definition. In particular, knowledge is defined as validity
at all states that are indistinguishable to the agent; cf. [8]. – Obviously, subset
spaces are on the same level of language as are Kripke models in normal modal
logic (while subset frames correspond to Kripke frames).

The defining clauses on the right-hand side of the double arrows in Definition
2.1, give rise to a translation of L-formulas into a two-sorted language of predi-
cate logic. The target language should obviously contain state variables v, v′, . . .,
set variables Υ, Υ ′, . . ., and a binary relation symbol ε of the sort (state, set).
(A binary relation symbol of the sort (set , set) is superfluous since inclusion of
sets is definable.) Moreover, a unary predicate symbol Pp of the sort (state) is
associated with every proposition variable p ∈ Prop. Then, after fixing a state
variable v, p is translated to Pp(v), and this assignment is extended to a function
on the set Form of all L-formulas in a way described in a minute.

Before doing so, the language L2 from [9], Part I, § 1 is recapitulated. The set
At of all atomic L2-formulas consists of all equations v = v′, where v, v′ are state
variables, all predicate expressions Pp(v), where p is a proposition variable and
v a state variable, and all membership expressions v ε Υ , where v is as above and
Υ a set variable. More complex formulas are obtained from At through (iterated)
negation, conjunction, and universal quantification ‘∀ v.’ and ‘∀Υ.’ over state and
set variables, respectively. (All the other common connectives and quantifiers are
again treated as abbreviations.) Let Fml 2 be the resulting set of formulas. With
that, the standard translation announced above is given in the next definition.

Definition 3 (Standard Translation). Let v be a state variable and Υ a set
variable. Then, a mapping ST v,Υ : Form→ Fml 2 is defined recursively by

ST v,Υ (p) := Pp(v)
ST v,Υ (¬α) := ¬ST v,Υ (α)
ST v,Υ (α ∧ β) := ST v,Υ (α) ∧ ST v,Υ (β)
ST v,Υ (Kα) := ∀ v′. (v′ ε Υ → ST v′,Υ (α))
ST v,Υ (�α) := ∀Υ ′. (v ε Υ ′ ∧ ∀ v. (v ε Υ ′ → v ε Υ )→ ST v,Υ ′(α)) ,
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where p ∈ Prop, α, β ∈ Form, and v′, Υ ′ are variables that have not been used so
far in applying ST.

In the following lemma, the intimate correlation between modal and first-order
satisfaction is delineated. For that, note that any subset space M = (X,O, V )
induces an L2-structureM′ =

(
X,O, {VPp | p ∈ Prop}

)
, where Pp is interpreted

with V (p): VPp = V (p), for every p ∈ Prop. (L2-structures are called weak
structures in [9].) Therefore, we may identify M and M′, and we shall do so
after the lemma. – A sort-respecting function mapping variables to values is
called a look-up table.

Lemma 1. LetM = (X,O, V ) be a subset space based on S = (X,O). Then we
have, for all formulas α ∈ Form, neighborhood situations x, U ∈ NS , and look-up
tables b evaluating v to x and Υ to U , [x, U |=M α ⇐⇒ M′ |= ST v,Υ (α) (b)].

One might want to look at subset spaces from a different point of view. Let
S = (X,O) be a subset frame and M = (X,O, V ) a subset space based on it.
Take S := NS as a set of worlds, and define two accessibility relations R (be-
longing to K) and R′ (belonging to �) on S by [(x, U)R (x′, U ′) :⇐⇒ U = U ′]
and [(x, U)R′ (x′, U ′) :⇐⇒ (x = x′ ∧ U ′ ⊆ U)], for all (x, U), (x′, U ′) ∈ S. The
emerging Kripke frame FS := (S, {R,R′}) is called the frame induced by S. For
every p ∈ Prop, let V ′(p) := {x, U ∈ S | x ∈ V (p)}. Then, a bimodal Kripke
model MS := (S, {R,R′}, V ′) results, which is equivalent to M in the following
sense. For all α ∈ Form and x, U ∈ NS = S, formula α holds inM at the neigh-
borhood situation x, U iff α is valid in MS at the world (x, U). Note that the
first-order correspondence language arising in this case, L1, is evidently different
from L2 since it is one-sorted and contains two additional binary relation symbols
(representing R and R′). Thus, although we shall have a notion of invariance of
formulas in each case (see Section 4 below) and can relate the respective classes
of models in a sense, we cannot switch the particular correspondents offhand.
This is the first point where the present paper meets up with its title. – We con-
sider L2 the right language into which formulas from Form should be translated,
due to the subset space semantics. Nevertheless, the traditional bimodal point
of view will turn out to be helpful here and there.

3 Definability for Subset Spaces

One of the crucial notions we need for the definability result claimed in this
section is that of bisimulation. As is known, the idea of invariance of formulas
is captured by this concept in many cases, not least with respect to the most
common semantics of modal logic; cf. [4], Ch. 2.2. Bisimulations for subset spaces
were introduced in the paper [3]. For convenience, we repeat the definition and
state a related lemma. Then, after introducing some notation, we get on to
saturated models, which as well are crucially applied here.

Definition 4 (Subset Space Bisimulation). For i = 1, 2, let Si = (Xi,Oi)
be subset frames and Mi = (Xi,Oi, Vi) subset spaces based on Si. Moreover, let
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R ⊆ NS1 ×NS2 be a non-empty binary relation. Then R is called a subset space
bisimulation (betweenM1 andM2) iff the following five conditions are satisfied
whenever (x1, U1)R (x2, U2) is valid for any (x1, U1) ∈ NS1 and (x2, U2) ∈ NS2 :

1. For all p ∈ Prop,
[
x1 ∈ V1(p) ⇐⇒ x2 ∈ V2(p)

]
.

2. For all x′1 ∈ U1 there exists x′2 ∈ U2 such that (x′1, U1)R (x′2, U2).
3. For all x′2 ∈ U2 there exists x′1 ∈ U1 such that (x′1, U1)R (x′2, U2).
4. If x1 ∈ U ′1 for any U ′1 ∈ O1 such that U ′1 ⊆ U1, then there exists U ′2 ∈ O2

satisfying x2 ∈ U ′2 ⊆ U2 and (x1, U
′
1)R (x2, U

′
2).

5. If x2 ∈ U ′2 for any U ′2 ∈ O2 such that U ′2 ⊆ U2, then there exists U ′1 ∈ O1

satisfying x1 ∈ U ′1 ⊆ U1 and (x1, U
′
1)R (x2, U

′
2).

Due to the presence of two modalities, K and �, we have two so-called forth
conditions as well as two back conditions here, given by 4.2, 4.4 and 4.3, 4.5,
respectively. Note that the notion of bisimulation considered in Sect. 2.3 of the
paper [7] is translated to subset spaces by Definition 4. There, a class of bimodal
Kripke models called cross axiom models is concerned, which includes those
considered at the end of the previous section. – The next lemma shows that
subset space bisimulations really entail the invariance of L-formulas.

Lemma 2 (Subset Space Invariance of Formulas). For i = 1, 2, let Mi =
(Xi,Oi, Vi) be subset spaces based on Si = (Xi,Oi), and let R ⊆ NS1 × NS2

be a subset space bisimulation. Furthermore, assume that (x1, U1) ∈ NS1 and
(x2, U2) ∈ NS2 satisfy (x1, U1)R (x2, U2). Then, for all L-formulas α ∈ Form,
we have [x1, U1 |=M1 α ⇐⇒ x2, U2 |=M2 α].

Let i, Si, Mi, and (xi, Ui), be as above. We stipulate some notations that
follow analogous ones from ordinary modal logic. A triple like (M1, x1, U1)
is called a situated subset space. Two situated subset spaces (M1, x1, U1) and
(M2, x2, U2) are called modally equivalent iff, for all α ∈ Form, it is true that
[x1, U1 |=M1 α ⇐⇒ x2, U2 |=M2 α]; we write (M1, x1, U1) � (M2, x2, U2) in
this case. Moreover, if there exists a subset space bisimulationR betweenM1 and
M2 such that (x1, U1)R (x2, U2), then we write (M1, x1, U1) ↔ (M2, x2, U2).
With that, Lemma 2 can be reformulated as follows.

Lemma 3. For i = 1, 2, letMi = (Xi,Oi, Vi) be situated subset spaces. Then we
have that (M1, x1, U1) � (M2, x2, U2) whenever (M1, x1, U1) ↔ (M2, x2, U2).

A class of models satisfying the opposite assertion, i.e., that (modal) equiva-
lence implies bisimilarity, is usually called a Hennessy-Milner class; see [4], 2.52.
Identifying a suitable Hennessy-Milner class of subset spaces, which will be sup-
ported by first-order model theory, is a key intermediate step towards the main
theorem of this section.

For this purpose, note again that the L2-logic of subset spaces is reducible to
a two-sorted first-order logic L′′ based on the same signature. This is to be made
a little more precise now. First, we observe that a subset space M = (X,O, V )
is equivalent to a two-sorted first-order structure M′ = ((X,O), Vε, V ), where
(X,O) is the pair of carrier sets of the respective sorts, and Vε indicates the
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canonical interpretation of the relation symbol ‘ε’; moreover, ‘equivalent’ means
that for every formula φ ∈ Fml 2 having, for some n ∈ N, its free (state or set)
variables among those from the set {χ1, . . . , χn}, and for all look-up tables b, it is
true that [M |= φ[χ1, . . . , χn] (b) ⇐⇒ M′ |= φ[χ1, . . . , χn] (b)]. And vice versa,
a two-sorted structure M = ((X,Y ), Vε, V ) with Vε interpreting ‘ε’ somehow,
gives rise to an equivalent subset space M′ = (X,O′, V ) by letting O′ := {U ′ |
U ∈ Y }, where, for given state and set variables v respectively Υ , U ′ := {b(v) ∈
X | b a look-up table satisfying Υ �→ U and M |= v ε Υ (b)}.

Now, ultraproducts (and ultrapowers) of subset spaces can be obtained by
making a detour via the two-sorted first-order models associated with subset
spaces according to this reduction, in the following way. Let I �= ∅ be an in-
dex set and (Mι)ι∈I = (Xι,Oι, Vι)ι∈I a family of subset spaces. Moreover, let
(M′
ι)ι∈I = ((Xι,Oι), (Vε)ι, Vι)ι∈I be the family of induced L′′-equivalents. Fi-

nally, let
∏
ι∈I(Xι,Oι) := {f : I →

⋃
ι∈I(Xι∪Oι) | f(ι) ∈ Xι∪Oι for all ι ∈ I},

and let U be an ultrafilter over I. Take the usual notion of U-equivalence of func-
tions from

∏
ι∈I(Xι,Oι) (i.e., f ∼U g : ⇐⇒ {ι ∈ I | f(ι) = g(ι)} ∈ U ), and let∏

U(Xι,Oι) := {fU | f ∈
∏
ι∈I(Xι,Oι)} be the set of all corresponding equiv-

alence classes.
∏

U(Xι,Oι) should serve us as the carrier set of an appropriate
L′′-structure. Thus, we must identify X∗ and O∗, the intended sets of states and
‘encoded opens’ of a subset space M∗, within

∏
U(Xι,Oι). Clearly, we define[

fU ∈ X∗ :⇐⇒ {ι | f(ι) ∈ Xι} ∈ U
]
and
[
fU ∈ O∗ :⇐⇒ {ι | f(ι) ∈ Oι} ∈ U

]
,

for all fU ∈
∏

U(Xι,Oι). This assignment makes perfect sense, since we have[
fU /∈ X∗ ⇐⇒ {ι | f(ι) ∈ Xι} /∈ U ⇐⇒ {ι | f(ι) /∈ Xι} ∈ U ⇐⇒
{ι | f(ι) ∈ Oι} ∈ U ⇐⇒ fU ∈ O∗

]
due to the closure of ultrafilters under

complements; in other words, variables can be interpreted in a sort-respecting
way. As the definitions of the relation V ∗ε and the mapping V ∗ are as usual,
we finally arrive at a subset space (M∗)′ = (X∗, (O∗)′, V ∗) via the structure
M∗ = ((X∗,O∗), V ∗ε , V ∗). We call (M∗)′ the ultraproduct (modulo U ) of the
family (Mι)ι∈I = (Xι,Oι, Vι)ι∈I . In case the factors Mι coincide for all ι ∈ I,
we speak of an ultrapower. Note that these notions are straightforwardly ex-
tendable to situated subset spaces. – Below, we omit inverted commas when
designating ultraproducts of given subset spaces.

We need a number of facts about ultraproducts and ultrapowers of subset
spaces. All these are straightforward adjustments of basic model-theoretic results
of (one-sorted) first-order logic to the present context. Their validity can easily be
seen from the correspondences just established. First, the well-known Theorem
of �Loś holds for subset spaces as well. Second, subset spaces are elementarily
embeddable into ultrapowers of themselves by means of the diagonal mapping d;
we write d :M 
M∗ in this case, as usual.

At this point, we should say a few words about related neighborhood situations
in case of ultrapowers. Let M = (X,O, V ) be given. Then, d : M 
 M∗ =
(X∗,O∗, V ∗) means, in particular, that O∗ contains the set {U∗ | U ∈ O}, where
each U∗ is obtained from the original U via the detour described above, thus
satisfies d [U ] = U∗∩d [X ]. Regarding satisfaction of formulas, the neighborhood
situation x∗, U∗ is the right image of a given situation x, U under the elementary
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embedding therefore, where x∗ = d(x). This applies, in particular, to formulas
from Form so that we get (M, x, U) � (M∗, x∗, U∗).

In order to state the third of the issues needed subsequently, we now introduce
ω-saturated models. We follow the usual manner of speaking in doing so. Let
M = (X,O, V ) be a subset space. Furthermore, let A ⊆ X and Q ⊆ O be any
subsets of X and O, respectively, and let L2[A,Q] be the language obtained by
extending L2 with new constants a for all elements a ∈ A and U for all members
U ∈ Q. The correspondingly expanded structure derived from M is denoted by
MA,Q. Finally, a set Φ(χ) ⊆ Fml 2 of L2-formulas having at most the (state or
set) variable χ occurring free, is called a type. Then,M is called ω-saturated iff,
for every pair (A,Q) of finite sets A ⊆ X and Q ⊆ O, and every type Φ(χ) that
is consistent with the L2-theory of MA,Q, there exists a realization of Φ(χ) in
MA,Q, i.e., an element x ∈ X or a subset U ∈ O (depending on the sort of χ)
such that MA,Q |= φ (b) for all φ ∈ Φ and all look-up tables b mapping χ to x
respectively U . – It can be shown that ω-saturated ultrapowers of subset spaces
really exist.

Lemma 4. LetM be a subset space. Then there exists an ω-saturated ultrapower
M∗ of M.

For a proof in the case of ordinary first-order logic (which uses �Loś’s Theorem,
among other things), see [6], Theorem 6.1.1. – Finally, we obtain the following
analogue to [4], Theorem 2.74.

Theorem 1. Two situated subset spaces (M1, x1, U1) and (M2, x2, U2) are mo-
dally equivalent iff they have bisimilar ultrapowers.

So far, we have provided all the facts that are needed for proving the first of the
main results of this paper, which is stated immediately after the next definition.

Definition 5 (Definable Classes of Subset Spaces). Let K be a class of
situated subset spaces.

1. K is called closed under bisimulations iff (M1, x1, U1) ↔ (M2, x2, U2) and
(M1, x1, U1) ∈ K implies (M2, x2, U2) ∈ K.

2. K is called closed under ultraproducts iff, for every family (Mι, xι, Uι)ι∈I
of situated subset spaces such that (Mι, xι, Uι) ∈ K for all ι ∈ I, it follows
that any ultraproduct

∏
U (Mι, xι, Uι) of (Mι, xι, Uι)ι∈I is in K.

3. K is called L-definable iff there exists a set Σ ⊆ Form of L-formulas such
that, for any situated subset space (M, x, U), the following is true:

(M, x, U) ∈ K ⇐⇒ x, U |=M α for all α ∈ Σ.

The following result characterizing L-definable classes of subset spaces should
be compared with Theorem 2.75 of the textbook [4].

Theorem 2. A class K of situated subset spaces is L-definable, iff it is closed
under both bisimulations and ultraproducts, and the complementary class K is
closed under ultrapowers.
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Clearly, we have a result on definability by single formulas, too, as a counterpart
to [4], Theorem 2.76 (not formulated here). We shall get back to these findings
in the final section of this paper.

4 Definability for Subset Frames: Necessary Conditions

Turning now to definability questions for classes of subset frames, we consider
the following validity preserving operations: adding isolated points, and taking
special subframes, disjoint unions, and images under bounded morphisms. We
first exemplify how these principles work. Then, we introduce modally definable
classes of subset frames and prove that all such classes are closed under applying
any of these operations to arbitrary members. Finally in this section, we give
some examples of definable and non-definable classes of subset frames. – For a
start, we define subframes of subset frames.

Definition 6 (Subframes). Let S = (X,O) be a subset frame. Then, a subset
frame S ′ = (X ′,O′) is called a subframe of S, iff X ′ ⊆ X and O′ = {U ′ ∈ O |
U ′ ⊆ X ′}.

Note that S is a subframe of itself. – We have a very natural lemma.

Lemma 5. Let M = (X,O, V ) be a subset space based on S = (X,O), S ′ =
(X ′,O′) a subframe of S, V ′ : Prop→ P(X ′) defined by V ′(p) := V (p) ∩X ′ for
all p ∈ Prop, and M′ := (X ′,O′, V ′). Then we have, for all formulas α ∈ Form
and neighborhood situations x, U ∈ NS′ , [x, U |=M′ α ⇐⇒ x, U |=M α].

A point of a subset frame S = (X,O) is called isolated, iff it is not contained in
any U ∈ O. Letting IS be the set of all isolated points of S, Lemma 5 applies,
in particular, to the subset frame S ′ := (X \ IS ,O). If, on the other hand, Y
is a set of points that is disjoint from X , then the frame S ′′ = (X ∪ Y,O) is
said to be obtained from S by adding isolated points. – The counterparts to the
generated subframes of ordinary modal logic (see, e.g., [4], Def. 3.13) are called
special subframes here.

Definition 7 (Special Subframes). Let S = (X,O) be a subset frame. A
subframe S ′ = (X ′,O′) of S is called special, iff X ′ = U for some non-empty
set U ∈ O.

Obviously, S (considered as a subframe of itself) is special iff X ∈ O. In this
case, we call the frame S itself special. Note that special subframes are, in the
bimodal Kripke view introduced in Section 2, exactly those which are generated
by a situation (x, U) in the usual sense.

We now address disjoint unions. The proceeding is similar in this case, as the
definition is given first and a relevant lemma afterwards.

Definition 8 (Disjoint Unions). Let I be an index set, and let (Sι)ι∈I =
(Xι,Oι)ι∈I be a family of disjoint subset frames; i.e., for all κ, λ ∈ I we have

Xκ ∩ Xλ = ∅ whenever κ �= λ. Then, the frame
⊎
ι∈I Sι :=

(⋃
ι∈I Xι,

⋃
ι∈I Oι

)
is called the disjoint union of the family (Sι)ι∈I .
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Lemma 6. Let (Sι)ι∈I = (Xι,Oι)ι∈I be a family of disjoint subset frames.
Furthermore, let Mι = (Xι,Oι, Vι) be a subset space based on Sι, for every
ι ∈ I, and let V : Prop → P

(⋃
ι∈I Xι

)
be defined by V (p) :=

⋃
ι∈I Vι(p) for

all p ∈ Prop. Finally, let
⊎
ι∈IMι :=

(⋃
ι∈I Xι,

⋃
ι∈I Oι, V

)
. Then we have, for

all formulas α ∈ Form, indices ι ∈ I, and neighborhood situations x, U ∈ NSι ,[
x, U |=Mι α ⇐⇒ x, U |=⊎

ι∈IMι
α
]
.

The fourth topic to be investigated is images under bounded morphisms. The
standard notion (see [4], 2.10) is adapted to subset frames in the following way.

Definition 9 (Bounded (Subset Frame) Morphisms). For i = 1, 2, let
Si = (Xi,Oi) be subset frames, and let f : X1 → X2 be a mapping. Then f is
called a bounded (subset frame) morphism, iff, for all x ∈ X1 and U1 ∈ O1 such
that x ∈ U1, and for every U2 ∈ O2, we have

1. f [U1] ∈ O2, and
2. if f(x) ∈ U2 ⊆ f [U1], then there exists U ′ ∈ O1 such that x ∈ U ′ ⊆ U1 and

f [U ′] = U2.

In this case, we write f : S1 → S2; and we write f : S1 � S2 if f is additionally
surjective.

Note that the first condition of Definition 9 defines the open mappings between
S1 and S2 in case of topological spaces with Oi being the respective sets of
opens (i = 1, 2). While the continuity of f is required instead of 9.2 in that
case, see [5], this must be modified here since we do not generally have the
subset systems closed under intersections. – The semantic lemma associated
with bounded subset frame morphisms reads as follows.

Lemma 7. Let Si = (Xi,Oi) be subset frames and Mi = (Xi,Oi, Vi) subset
spaces based on Si, where i = 1, 2. Moreover, let f : S1 → S2 be a bounded
morphism satisfying [x ∈ V1(p) ⇐⇒ f(x) ∈ V2(p)] for all p ∈ Prop. Then we
have, for all formulas α ∈ Form and neighborhood situations x, U ∈ NS1 ,
[x, U |=M1 α ⇐⇒ f(x), f [U ] |=M2 α].

Connecting the notions fixed so far in this section, we show that every subset
frame without isolated points is the image of the disjoint union of (isomorphic
copies of) all its special subframes under a bounded morphism.

Lemma 8. Let S = (X,O) be a subset frame without isolated points. For every
U ∈ I := O\{∅}, let SU := (XU ,OU ), where XU := {(x, U) | x ∈ U} and OU :=
{{(x, U ′) | x ∈ U ′} | U ′ ∈ O, U ′ ⊆ U}. Then, (SU )U∈I is a family of disjoint
subset frames. Moreover, the mapping f :

⋃
U∈I XU → X defined by projecting

onto the first component is a surjective bounded morphism, f :
⊎
U∈I SU � S.

Another simple application of bounded morphisms is that we may forget the
empty subset without semantic loss, which is to be made precise as follows. Let
a subset frame S = (X,O) be given. Consider the frame S ′ := (X,O \ {∅}).
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Then S ′ is a bounded morphic image of S (and vice versa), namely by means of
the identical mapping. Now, apply Lemma 7.

In the following, we consider L-definable classes of subset frames. The corre-
sponding definition is similar to Definition 5.3.

Definition 10 (Definable Classes of Subset Frames). Let K be a class
of subset frames. K is called L-definable iff there exists a set of L-formulas
Σ ⊆ Form such that, for any subset frame S, [S ∈ K ⇐⇒ S |= α for all α ∈ Σ].

Having Definition 5.1 and 5.2 in mind, it should be clear what is meant when
we say that K is closed under adding isolated points or under taking special
subframes, disjoint unions, or bounded morphic images, so that it is no more
necessary to give an explicit definition here. Instead, we may proceed to the
following theorem directly.

Theorem 3. If a class K of subset frames is L-definable, then it is closed under
adding isolated points, and under taking special subframes, disjoint unions, and
bounded morphic images.

It follows from Theorem 3 that, respectively, various classes and many L2-
definable properties of subset frames (X,O) are not modally definable. We give
some examples.

– The non-existence of isolated points (∀x ∈ X . ∃U ∈ O . x ∈ U). Clearly,
this property cannot be L-definable because of the first closure property of
a definable class of subset frames.

– The class of all topological spaces. This class is not closed under forgetting the
empty subset (which implies the non-closure under taking bounded morphic
images; see above).

– The class of all formally connected subset frames (∃U,U ′ ∈ O . (U ∩ U ′ =
∅ and U ∪ U ′ = X)). One can easily construct a formally connected subset
frame having special subframes which fail to share this property.

– Dichotomy (∀U,U ′ ∈ O . (U ⊆ U ′ or U ′ ⊆ U)). This property is obviously
violated by forming disjoint unions.

– The class of all weakly separated subset frames (∀x, y ∈ X . (x �= y ⇒ ∃U ∈
O . (x ∈ U and y /∈ U))). A counterexample is yielded by the three-element
frame ({x, y, z}, {{x, z}, {y, z}, {x}, {y}}) and its bounded morphic image
({u, v}, {{u, v}, {u}}), where the bounded morphism is mediated by x, y �→ u
and z �→ v.

But there are positive examples as well. Trivially, the class of all subset frames
is definable, viz by its logic. We add two further simple examples. Call a subset
frame (X,O) quasi-discrete iff every U ∈ O is a singleton. The class of all
quasi-discrete subset frames is defined by the formula schema α → Kα. And
call a subset frame (X,O) flat iff any two distinct non-empty U,U ′ ∈ O are
incomparable with respect to inclusion. This class is defined by the schema
α → �α. – All this indicates that there is substantial need for extending the
expressive power of L; see the discussion in Section 6 below.
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5 Definability for Subset Frames: Sufficient Conditions

The aim of this section is to show that, altogether, the four closure properties
of classes of frames considered in the previous section are not only necessary,
but also sufficient for modal definability in some cases. First, we consider finite
frames. To this end, we should be able to find appropriate Jankov-Fine formulas;
cf. [4], Sect. 3.4.

Let a finite special subset frame S = (X,O) satisfying ∅ /∈ O be given. Sup-
pose that X = {x0, . . . , xn} and O = {U0, . . . , Um}, where U0 = X . Then, the
Jankov-Fine formula αS associated with S is the conjunction of the following five
formulas respectively schemata involving pairwise distinct proposition variables
p0, . . . , pn ∈ Prop.

1. K (p0 ∨ · · · ∨ pn)
2. K (pi → ¬pj), for all i, j satisfying 0 ≤ i, j ≤ n and i �= j

The reader will realize in a minute that this is all we must express about the set
of states of S seen individually.

We now turn to O. Let {U0, . . . , Um, Um+1, . . . , U2·(2n−1)} be the set of all
non-empty subsets of X . If, for any j ∈ {1, . . . , 2 · (2n − 1)}, the set Uj equals

{xj0 , . . . , xjkj }, then let αUj :=

( ∧
l∈{j0,...,jkj }

Lpl

)
∧
( ∧
l∈{0,...,n}\{j0,...,jkj }

K¬pl
)
;

in addition, let αU0 := Lp0 ∧ · · · ∧ Lpn. Evidently, every αUj corresponds to the
subset Uj in the given model. With that, we get the subsequent description of
the structure of O, among other things, in terms of permitted and forbidden
inclusions.

3. αU0

4. �
(
αUi → L�αUj

)
, for all i, j satisfying 0 ≤ i �= j ≤ m and Uj ⊆ Ui

5. �
(
αUi → K�¬αUj

)
, for all i, j satisfying 0 ≤ i �= j ≤ 2·(2n−1) and Uj �⊆ Ui

Let V be any S-valuation satisfying V (pi) = {xi} for every i = 0, . . . , n, and
let M := (X,O, V ). Then, we clearly have that x0, U0 |=M αS . We now show
that αS constitutes a unique characteristic of the class of all finite subset frames
of which a special subframe is mapped onto S by a bounded morphism, in the
following way.

Lemma 9. Let S = (X,O) be a finite special subset frame satisfying ∅ /∈ O,
and let αS be the Jankov-Fine formula associated with S. Then, for any finite
subset frame S̃ =

(
X̃, Õ
)
, the following two conditions are equivalent.

1. There exist a special subframe S ′ = (X ′,O′) of S̃, an S ′-valuation V ′, and
a point x′ ∈ X ′, such that x′, X ′ |=M′ αS , where M′ := (X ′,O′, V ′).

2. For some special subframe S ′ of S̃, there exists a bounded morphism
f : S ′ � S.

The previous lemma puts us in a position to get on to the desired characterization
of definable classes of finite subset frames.
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Theorem 4. Let K be a class of finite subset frames. Then, K is L-definable
iff it is closed under adding isolated points, and under taking special subframes,
disjoint unions, and bounded morphic images.

Our considerations in the second part of this section revolve around the Goldblatt-
Thomason Theorem (see Section 1 above). As is known, ultrafilter extensions of
Kripke models are involved herein in the case of basic modal logic. So, striving
for a corresponding subset space analogue seems to require an appropriate idea
of ultrafilter extension. But it is by no means clear how to define this notion in
a way that sufficiently saturated structures result, to which an adjusted proof
could make recourse. Thus, we try to circumvent this difficulty by taking the
bimodal Kripke point of view.

Given a class K of subset frames, let K1 denote the class of all bimodal Kripke
frames that are induced by the members of K as desribed in Section 2. Every ele-
ment of K1 is an L1-structure pretty much as every S ∈ K is an L2-structure. We
actually obtain that K1 is L1-definable in case K is the class of all subset frames.

Proposition 1. Let Ka be the class of all subset frames. Then (the closure of)
Ka1 (under taking isomorphic copies) is an L1-definable class of bimodal Kripke
frames.

Let Kca1 be the class of all cross axiom frames; see the corresponding definition
in [7], Sect. 2.3, and cf. the remark right before Lemma 2 above. We get as
a consequence of Proposition 1 that L1 can distinguish between Ka1 and Kca1
whereas bimodal logic cannot.

Corollary 1. The L1-logics of Ka1 and Kca1 are different, while the respective
bimodal logics are equal. In particular, the class Ka1 is not modally definable.

The Goldblatt-Thomason Theorem states under which circumstances first-order
definable classes of frames are modally definable. As we now have the choice
between the languages L1 and L2, we must decide which one to take. It has
already been indicated by the introductory text above that we should consider
classes K of subset frames for which K1 is L1-definable here. In any case, we have
that modal definability is transferred from Kripke to subset frames.

Lemma 10. Let K be a class of subset frames such that the associated class K1

of bimodal Kripke frames is modally definable. Then K itself is modally definable.

Note that Corollary 1 shows that the converse of Lemma 10 is not true. – We
now turn to some transfer results concerning the separate conditions of the
Goldblatt-Thomason Theorem.

Lemma 11. Let K be any class of subset frames and K1 its associated class of
bimodal Kripke frames.

1. If K is closed under taking special subframes, then K1 is closed under taking
generated subframes.

2. If K is closed under taking disjoint unions, then the same is true of K1.
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Note that a corresponding property is missing for taking images under bound-
ed morphisms since applying this operation may destroy some of the L1-charac-
teristics of the members of Ka1 .

A class K′ of Kripke frames is said to reflect ultrafilter extensions iff, whenever
the ultrafilter extension of any frame F is contained in K′, then F itself is in K′.
As opposed to bounded morphisms, this property seems to be satisfied by most
classes of induced bimodal Kripke frames because of the particular form of the
accessibility relations on ultrafilter extensions. Anyway, applying the classical
Goldblatt-Thomason Theorem yields the following lemma.

Lemma 12. Let K be any class of subset frames and K1 its associated class of
bimodal Kripke frames. Assume that K1 is L1-definable and closed under taking
generated subframes, disjoint unions, and bounded morphic images, and reflects
utrafilter extensions. Then K1 is L-definable.

Putting the outcomes of Lemma 10, Lemma 11, and Lemma 12, together, we
obtain the subsequent Goldblatt-Thomason style result for subset frames.

Theorem 5. Let K be a class of subset frames such that the associated class K1

is first-order definable, closed under taking bounded morphic images, and reflects
ultrafilter extensions. Then, K is L-definable iff it is closed under adding isolated
points, and under taking special subframes and disjoint unions.

6 Concluding Remarks

We have investigated the expressive power of Moss and Parikh’s bimodal lan-
guage for knowledge and topology with regard to definability matters. It turned
out that we could obtain fully satisfying results (i.e., complete analogues to the
case of basic modal logic) on the level of subset spaces, which correspond to usual
Kripke models. Following the philosophy voiced at the end of Sect. 2.6 of the
textbook [4], the reason for this success lies in the fact that we have a standard
translation of L into a language which is intrinsically first-order. The relevant
methods, however, had to be adapted to the present context due to the different
semantics, which, in particular, entails the presence of more than one sort.

Concerning frame definability, we have identified four necessary closure prop-
erties of classes of subset frames, which in case of finite frames have proved
to be also sufficient. Furthermore, the question whether we can do without the
finiteness assumption was answered affirmatively in case the class of associated
bimodal Kripke frames is first-order definable and closed under some operations
on frames that are studied in common modal logic: bounded morphisms and ul-
trafilter extensions. And while the closure under taking bounded morphic images
restricts the possible classes drastically, this seems to be hardly true of reflecting
ultrafilter extensions.

Going beyond that, the proof of a Goldblatt-Thomason analogue for subset
frames referring to L2-definable classes must be postponed to future research.
Maybe an essential difference of the correspondence languages L1 and L2 re-
garding this will appear, though.
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The expressivity results obtained in this paper underpin the early statement
that L is a rather weak language; concerning this, see the discussion in the paper
[7]. Therefore, it comes as no surprise in retrospect that expressive power has
been added to L in this or that way. For example, hybridizations of L have been
considered (see, e.g., [12]), or extra relations have been added (see [11] and [13]).
As a consequence, more complex properties of subset frames can be captured
then, in particular, some of those mentioned as negative examples in Section 4
(and even ‘real’ connectedness can be defined when interpretation is restricted to
the class of all topological spaces). – It is an interesting task of future research to
establish corresponding definability results in these cases as well; cf. [5], Sect. 5.
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Abstract. We combine quantified differential dynamic logic (QdL) for
reasoning about the possible behavior of distributed hybrid systems
with temporal logic for reasoning about the temporal behavior dur-
ing their operation. Our logic supports verification of temporal and
non-temporal properties of distributed hybrid systems and provides a
uniform treatment of discrete transitions, continuous evolution, and dy-
namic dimensionality-changes. For our combined logic, we generalize the
semantics of dynamic modalities to refer to hybrid traces instead of fi-
nal states. Further, we prove that this gives a conservative extension of
QdL for distributed hybrid systems. On this basis, we provide a mod-
ular verification calculus that reduces correctness of temporal behav-
ior of distributed hybrid systems to non-temporal reasoning, and prove
that we obtain a complete axiomatization relative to the non-temporal
base logic QdL. Using this calculus, we analyze temporal safety proper-
ties in a distributed air traffic control system where aircraft can appear
dynamically.

1 Introduction

Ensuring correct functioning of cyber-physical systems is among the most chal-
lenging and most important problems in computer science, mathematics, and en-
gineering. Hybrid systems are common mathematical models for cyber-physical
systems with interacting discrete and continuous behavior [6,13]. Their behavior
combines continuous evolution (called flow) characterized by differential equa-
tions and discrete jumps. However, not all relevant cyber-physical systems can
be modeled as hybrid systems. Hybrid systems cannot represent physical control
systems that are distributed or form a multi-agent system, e.g., distributed car
control systems [15] and distributed air traffic control systems [8]. Such systems
form distributed hybrid systems [7,16,21,22] with discrete, continuous, structural,
and dimension-changing dynamics. Distributed hybrid systems combine the chal-
lenges of hybrid systems and distributed systems. Correctness of safety-critical
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real-time and distributed hybrid systems depends on a safe operation through-
out all states of all possible trajectories, and the behavior at intermediate states
is highly relevant [1,4,6,11,13].

Temporal logics (TL) use temporal operators to talk about intermedi-
ate states [1,9,10,23]. They have been used successfully in model check-
ing [1,3,13,14,18] of finite-state system abstractions. State spaces of distributed
hybrid systems, however, often do not admit equivalent finite-state abstrac-
tions [13,18]. Instead of model checking, TL can also be used deductively to
prove validity of formulas in calculi [5,6]. Valid TL formulas, however, only ex-
press very generic facts that are true for all systems, regardless of their actual
behavior. Hence, the behavior of a specific system first needs to be axiomatized
declaratively to obtain meaningful results. Then, however, the correspondence
between actual system operations and a declarative temporal representation may
be questioned.

Very recently, a dynamic logic, called quantified differential dynamic logic
(QdL) has been introduced as a successful tool for deductively verifying
distributed hybrid systems [21,22]. QdL can analyze the behavior of actual dis-
tributed hybrid system models, which are specified operationally. Yet, opera-
tional distributed hybrid system models are internalized within QdL formulas,
and QdL is closed under logical operators. However, QdL only considers the
behavior of distributed hybrid systems at final states, which is insufficient for
verifying safety properties that have to hold all the time.

We close this gap of expressivity by combining QdL with temporal
logic [9,10,23]. In this paper, we introduce a logic, called quantified differen-
tial temporal dynamic logic (QdTL), which provides modalities for quantifying
over traces of distributed hybrid systems based on QdL. We equip QdTL with
temporal operators to state what is true all along a trace or at some point dur-
ing a trace. In this paper, we modify the semantics of the dynamic modality [α]
to refer to all traces of α instead of all final states reachable with α (similarly
for 〈α〉). For instance, the formula [α]�φ expresses that φ is true at each state
during all traces of the distributed hybrid system α. With this, QdTL can also
be used to verify temporal statements about the behavior of α at intermediate
states during system runs. As in our non-temporal dynamic logic QdL [21,22],
we use quantified hybrid programs as an operational model for distributed hy-
brid systems, since they admit a uniform compositional treatment of interacting
discrete transitions, continuous evolutions, and structural/dimension changes in
logic.

As a semantical foundation for combined temporal dynamic formulas, we in-
troduce a hybrid trace semantics for QdTL. We prove that QdTL is a con-
servative extension of QdL: for non-temporal specifications, trace semantics is
equivalent to the non-temporal transition semantics of QdL [21,22].

As a means for verification, we introduce a sequent calculus for QdTL that
successively reduces temporal statements about traces of quantified hybrid pro-
grams to non-temporal QdL formulas. In this way, we make the intuition for-
mally precise that temporal safety properties can be checked by augmenting
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proofs with appropriate assertions about intermediate states. Like in [21,22],
our calculus works compositionally. It decomposes correctness statements about
quantified hybrid programs structurally into corresponding statements about its
parts by symbolic transformation.

Our approach combines the advantages of QdL in reasoning about the be-
haviour of operational distributed hybrid system models with those of TL to
verify temporal statements about traces. We show that QdTL is sound and
relatively complete. We argue that QdTL can verify practical systems and demon-
strate this by studying temporal safety properties in distributed air traffic con-
trol. Our primary contributions are as follows:

– We introduce a logic for specifying and verifying temporal properties of dis-
tributed hybrid systems.

– We present a proof calculus for this logic, which, to the best of our knowledge,
is the first verification approach that can handle temporal statements about
distributed hybrid systems.

– We prove that this compositional calculus is a sound and complete axioma-
tization relative to differential equations.

– We verify temporal safety properties in a collision avoidance maneuver in
distributed air traffic control, where aircraft can appear dynamically.

2 Related Work

Multi-party distributed control has been suggested for car control [15] and air
traffic control [8]. Due to limits in verification technology, no formal analysis of
temporal statements about the distributed hybrid dynamics has been possible
for these systems yet. Analysis results include discrete message handling [15] or
collision avoidance for two participants [8].

The importance of understanding dynamic/reconfigurable distributed hybrid
systems was recognized in modeling languages SHIFT [7] and R-Charon [16].
They focused on simulation/compilation [7] or the development of a seman-
tics [16], so that no verification is possible yet.

Other process-algebraic approaches, like χ [27], have been developed for mod-
eling and simulation. Verification is still limited to small fragments that can be
translated directly to other verification tools like PHAVer or UPPAAL, which
do not support distributed hybrid systems.

Our approach is completely different. It is based on first-order structures
and dynamic logic. We focus on developing a logic that supports temporal and
non-temporal statements about distributed hybrid dynamics and is amenable to
automated theorem proving in the logic itself.

Our previous work and other verification approaches for static hybrid systems
cannot verify distributed hybrid systems. Distributed hybrid systems may have
an unbounded and changing number of components/participants, which cannot
be represented with any fixed number of dimensions of the state space.

Based on [24], Beckert and Schlager [2] added separate trace modalities to
dynamic logic and presented a relatively complete calculus. Their approach only
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handles discrete state spaces. In contrast, QdTL works for hybrid programs with
continuous and structural/dimensional dynamics.

Davoren and Nerode [6] extended the propositional modal μ-calculus with a
semantics in hybrid systems and examine topological aspects. In [5], Davoren
et al. gave a semantics in terms of general flow systems for a generalisation of
CTL∗ [10]. In both cases, the authors of [6] and [5] provided Hilbert-style calculi
to prove formulas that are valid for all systems simultaneously using abstract
actions.

The strength of our logic primarily is that it is a first-order dynamic logic: it
handles actual hybrid programs rather than only abstract actions of unknown
effect. Our calculus directly supports verification of quantified hybrid programs
with continuous evolution and structural/dimensional changes. First-order dy-
namic logic is more expressive and calculi are deductively stronger than other
approaches [2,17].

3 Syntax of Quantified Differential Temporal Dynamic
Logic

As a formal logic for verifying temporal specifications of distributed hybrid sys-
tems, we introduce quantified differential temporal dynamic logic (QdTL). QdTL
extends dynamic logic for reasoning about system runs [12] with many-sorted
first-order logic for reasoning about all (∀i :A φ) or some (∃i :A φ) objects of a
sort A, e.g., the sort of all aircraft, and three other concepts:

Quantified hybrid programs. The behavior of distributed hybrid systems can be
described by quantified hybrid programs [21,22], which generalize regular pro-
grams from dynamic logic [12] to distributed hybrid changes. The distinguishing
feature of quantified hybrid programs is that they provide uniform discrete tran-
sitions, continuous evolutions, and structural/dimension changes along quanti-
fied assignments and quantified differential equations, which can be combined
by regular control operations.

Modal operators. Modalities of dynamic logic express statements about all pos-
sible behavior ([α]π) of a system α, or about the existence of a trace (〈α〉π),
satisfying condition π. Unlike in standard dynamic logic, α is a model of a dis-
tributed hybrid system. We use quantified hybrid programs to describe α as
in [21,22]. Yet, unlike in standard dynamic logic [12] or quantified differential
dynamic logic (QdL) [21,22], π is a trace formula in QdTL, and π can refer to
all states that occur during a trace using temporal operators.

Temporal operators. For QdTL, the temporal trace formula �φ expresses that
the formula φ holds all along a trace selected by [α] or 〈α〉. For instance, the
state formula 〈α〉�φ says that the state formula φ holds at every state along at
least one trace of α. Dually, the trace formula ♦φ expresses that φ holds at some
point during such a trace. It can occur in a state formula 〈α〉♦φ to express that
there is such a state in some trace of α, or as [α]♦φ to say that, along each trace,
there is a state satisfying φ. In this paper, the primary focus of attention is on
homogeneous combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.
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3.1 Quantified Hybrid Programs

QdTL supports a (finite) number of object sorts, e.g., the sort of all aircraft,
or the sort of all cars. For continuous quantities of distributed hybrid systems
like positions or velocities, we add the sort R for real numbers. Terms of QdTL
are built from a set of (sorted) function/variable symbols as in many-sorted
first-order logic. For representing appearance and disappearance of objects while
running QHPs, we use an existence function symbol E(·) that has value E(o) = 1
if object o exists, and has value E(o) = 0 when object o disappears or has not
been created yet. We use 0, 1,+,−, · with the usual notation and fixed semantics
for real arithmetic. For n ≥ 0 we abbreviate f(s1, . . . , sn) by f(s) using vectorial
notation and we use s = t for element-wise equality.

As a system model for distributed hybrid systems, QdTL uses quantified
hybrid programs (QHP) [21,22]. The quantified hybrid programs occurring in
dynamic modalities of QdTL are regular programs from dynamic logic [12] to
which quantified assignments and quantified differential equation systems for dis-
tributed hybrid dynamics are added. QHPs are defined by the following grammar
(α, β are QHPs, θ a term, i a variable of sort A, f is a function symbol, s is
a vector of terms with sorts compatible to f , and χ is a formula of first-order
logic):

α, β ::= ∀i :A f(s) := θ | ∀i :A f(s)′ = θ & χ | ?χ | α ∪ β | α;β | α∗

The effect of quantified assignment ∀i :A f(s) := θ is an instantaneous discrete
jump assigning θ to f(s) simultaneously for all objects i of sort A. The QHP ∀i :
C a(i) := a(i)+1, for example, expresses that all cars i of sort C simultaneously
increase their acceleration a(i). The effect of quantified differential equation ∀i :
A f(s)′ = θ & χ is a continuous evolution where, for all objects i of sort A,
all differential equations f(s)′ = θ hold and formula χ holds throughout the
evolution (the state remains in the region described by χ). The dynamics of
QHPs changes the interpretation of terms over time: f(s)′ is intended to denote
the derivative of the interpretation of the term f(s) over time during continuous
evolution, not the derivative of f(s) by its argument s. For f(s)′ to be defined,
we assume f is an R-valued function symbol. For simplicity, we assume that f
does not occur in s. In most quantified assignments/differential equations s is
just i. For instance, the following QHP expresses that all cars i of sort C drive by
∀i :C x(i)′′ = a(i) such that their position x(i) changes continuously according
to their respective acceleration a(i).

The effect of test ?χ is a skip (i.e., no change) if formula χ is true in the
current state and abort (blocking the system run by a failed assertion), oth-
erwise. Nondeterministic choice α ∪ β is for alternatives in the behavior of the
distributed hybrid system. In the sequential composition α;β, QHP β starts after
α finishes (β never starts if α continues indefinitely). Nondeterministic repetition
α∗ repeats α an arbitrary number of times, possibly zero times.

Structural dynamics of distributed hybrid systems corresponds to quantified
assignments to function terms and we model the appearance of new participants
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in the distributed hybrid system, e.g., new aircraft appearing into the local flight
scenario, by a program n := new A (see [21,22] for details).

3.2 State and Trace Formulas

The formulas of QdTL are defined similarly to first-order dynamic logic plus
many-sorted first-order logic. However, the modalities [α] and 〈α〉 accept trace
formulas that refer to the temporal behavior of all states along a trace. Inspired
by CTL and CTL∗ [9,10], we distinguish between state formulas, which are true
or false in states, and trace formulas, which are true or false for system traces.

The state formulas of QdTL are defined by the following grammar (φ, ψ are
state formulas, π is a trace formula, θ1, θ2 are terms of the same sort, i is a
variable of sort A, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀i :A φ | ∃i :A φ | [α]π | 〈α〉π

We use standard abbreviations to define ≤, >,<,∨,→. Sorts A �= R have no
ordering and only θ1 = θ2 is allowed. For sort R, we abbreviate ∀x :R φ by ∀xφ.

The trace formulas of QdTL are defined by the following grammar (π is a
trace formula and φ is a state formula):

π ::= φ | �φ | ♦φ

Formulas without � and ♦ are non-temporal QdL formulas. Unlike in CTL,
state formulas are true on a trace if they hold for the last state of a trace, not
for the first. Thus, [α]φ expresses that φ is true at the end of each trace of α.
In contrast, [α]�φ expresses that φ is true all along all states of every trace
of α. This combination gives a smooth embedding of non-temporal QdL into
QdTL and makes it possible to define a compositional calculus. Like CTL, QdTL
allows nesting with a branching time semantics [9], e.g., [α]�((∀i : C x(i) ≥
2) → 〈β〉♦(∀i : C x(i) ≤ 0)). In the following, all formulas and terms have
to be well-typed. For short notation, we allow conditional terms of the form
if φ then θ1 else θ2 fi (where θ1 and θ2 have the same sort). This term evaluates
to θ1 if the formula φ is true and to θ2 otherwise. We consider formulas with
conditional terms as abbreviations, e.g., ψ(if φ then θ1 else θ2) for (φ → ψ(θ1)) ∧
(¬φ→ ψ(θ2)).

Example 1. Let C be the sort of all cars. By x(i), we denote the position of car
i, by v(i) its velocity and by a(i) its acceleration. Then the QdTL formula

(∀i :C x(i) ≥ 0)→ [∀i :C x(i)′ = v(i), v(i)′ = a(i) & v(i) ≥ 0]�(∀i :C x(i) ≥ 0)

says that, if all cars start at a point to the right of the origin and we only
allow them to evolve as long as all of them have nonnegative velocity, then they
always stay up to the right of the origin. In this case, the QHP just consists
of a quantified differential equation expressing that the position x(i) of car i
evolves over time according to the velocity v(i), which evolves according to its
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acceleration a(i). The constraint v(i) ≥ 0 expresses that the cars never move
backwards, which otherwise would happen eventually in the case of braking
a(i) < 0. This formula is indeed valid, and we would be able to use the techniques
developed in this paper to prove it.

4 Semantics of Quantified Differential Temporal Dynamic
Logic

In standard dynamic logic [12] and the logic QdL [21,22], modalities only refer
to the final states of system runs and the semantics is a reachability relation on
states: State τ is reachable from state σ using α if there is a run of α which
terminates in τ when started in σ. For QdTL, however, formulas can refer to
intermediate states of runs as well. Thus, the semantics of a distributed hybrid
system α is the set of its possible traces, i.e., successions of states that occur
during the evolution of α.

4.1 Trace Semantics of Quantified Hybrid Programs

A state σ associates an infinite set σ(A) of objects with each sort A, and it
associates a function σ(f) of appropriate type with each function symbol f ,
including E(·). For simplicity, σ also associates a value σ(i) of appropriate type
with each variable i. The domain of R and the interpretation of 0, 1,+,−, · is
that of real arithmetic. We assume constant domain for each sort A: all states
σ, τ share the same infinite domains σ(A) = τ(A). Sorts A �= C are disjoint:
σ(A)∩σ(C) = ∅. The set of all states is denoted by S. The state σei agrees with
σ except for the interpretation of variable i, which is changed to e. In addition,
we distinguish a state Λ to denote the failure of a system run when it is aborted
due to a test ?χ that yields false. In particular, Λ can only occur at the end of
an aborted system run and marks that there is no further extension.

Distributed hybrid systems evolve along piecewise continuous traces in multi-
dimensional space, structural changes, and appearance or disappearance of agents
as time passes. Continuous phases are governed by differential equations, whereas
discontinuities are caused by discrete jumps. Unlike in discrete cases [2,24], traces
are not just sequences of states, since distributed hybrid systems pass through
uncountably many states even in bounded time. Beyond that, continuous changes
are more involved than in pure real-time [1,14], because all variables can evolve
along different differential equations. Generalizing the real-time traces of [14],
the following definition captures hybrid behavior by splitting the uncountable
succession of states into periods νi that are regulated by the same control law.
For discrete jumps, some periods are point flows of duration 0.

The (trace) semantics of quantified hybrid programs is compositional, that is,
the semantics of a complex program is defined as a simple function of the trace
semantics of its parts.

Definition 1 (Hybrid Trace). A trace is a (non-empty) finite or infinite se-
quence ν = (ν0, ν1, ν2, . . .) of functions νk : [0, rk]→ S with respective durations
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rk ∈ R (for k ∈ N). A position of ν is a pair (k, ζ) with k ∈ N and ζ in the
interval [0, rk]; the state of ν at (k, ζ) is νk(ζ). Positions of ν are ordered lexico-
graphically by (k, ζ) ≺ (m, ξ) iff either k < m, or k = m and ζ < ξ. Further, for
a state σ ∈ S, σ̂ : 0 �→ σ is the point flow at σ with duration 0. A trace termi-
nates if it is a finite sequence (ν0, ν1, . . . , νn) and νn(rn) �= Λ. In that case, the
last state νn(rn) is denoted by last ν. The first state ν0(0) is denoted by first ν.

Unlike in [1,14], the definition of traces also admits finite traces of bounded
duration, which is necessary for compositionality of traces in α;β. The semantics
of quantified hybrid programs α as the set μ(α) of its possible traces depends on
valuations σ�·� of formulas and terms at intermediate states σ. The valuation of
formulas will be defined in Definition 3. Especially, we use σei �·� to denote the
valuations of terms and formulas in state σei , i.e., in state σ with i interpreted
as e.

Definition 2 (Trace Semantics of Quantified Hybrid Programs). The
trace semantics, μ(α), of a quantified hybrid program α, is the set of all its
possible hybrid traces and is defined inductively as follows:

1. μ(∀i : A f(s) := θ) = {(σ̂, τ̂ ) : σ ∈ S and state τ is identical to σ except
that at each position o of f : if σei �s� = o for some object e ∈ σ(A), then
τ(f)(σei �s�) = σei �θ�.}

2. μ(∀i : A f(s)′ = θ & χ) = {(ϕ) : 0 ≤ r ∈ R and ϕ : [0, r] → S is a
function satisfying the following conditions. At each time t ∈ [0, r], state
ϕ(t) is identical to ϕ(0), except that at each position o of f : if σei �s� = o
for some object e ∈ σ(A), then, at each time ζ ∈ [0, r]:
– The differential equations hold and derivatives exist (trivial for r = 0):

d(ϕ(t)ei �f(s)�)
dt

(ζ) = (ϕ(ζ)
e
i �θ�)

– The evolution domains is respected: ϕ(ζ)
e
i �χ� = true.}

3. μ(?χ) = {(σ̂) : σ�χ� = true} ∪ {(σ̂, Λ̂) : σ�χ� = false}
4. μ(α ∪ β) = μ(α) ∪ μ(β)
5. μ(α;β) = {ν ◦ ς : ν ∈ μ(α), ς ∈ μ(β) when ν ◦ ς is defined}; the composition

of ν = (ν0, ν1, ν2, . . .) and ς = (ς0, ς1, ς2, . . .) is

ν ◦ ς =

⎧⎨⎩
(ν0, . . . , νn, ς0, ς1, . . .) if ν terminates at νn and last ν = first ς
ν if ν does not terminate
not defined otherwise

6. μ(α∗) =
⋃
n∈N μ(αn), where αn+1 := (αn;α) for n ≥ 1, as well as α1 := α

and α0 := (?true).

4.2 Valuation of State and Trace Formulas

Definition 3 (Valuation of Formulas). The valuation of state and trace for-
mulas is defined respectively. For state formulas, the valuation σ�·� with respect
to state σ is defined as follows:
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1. σ�θ1 = θ2� = true iff σ�θ1� = σ�θ2�; accordingly for ≥.
2. σ�φ ∧ ψ� = true iff σ�φ� = true and σ�ψ� = true; accordingly for ¬.
3. σ�∀i :A φ� = true iff σei �φ� = true for all objects e ∈ σ(A).
4. σ�∃i :A φ� = true iff σei �φ� = true for some object e ∈ σ(A).
5. σ�[α]π� = true iff for each trace ν ∈ μ(α) that starts in first ν = σ, if ν�π�

is defined, then ν�π� = true.
6. σ�〈α〉π� = true iff there is a trace ν ∈ μ(α) starting in first ν = σ such that

ν�π� is defined and ν�π� = true.

For trace formulas, the valuation ν�·� with respect to trace ν is defined as follows:

1. If φ is a state formula, then ν�φ� = last ν�φ� if ν terminates, whereas ν�φ�
is not defined if ν does not terminate.

2. ν��φ� = true iff νk(ζ)�φ� = true for all positions (k, ζ) of ν with νk(ζ) �= Λ.
3. ν�♦φ� = true iff νk(ζ)�φ� = true for some position (k, ζ) of ν with νk(ζ) �= Λ.

As usual, a (state) formula is valid if it is true in all states. Further for (state)
formula φ and state σ we write σ |= φ iff σ�φ� = true. We write σ �|= φ iff σ�φ�
= false. Likewise, for trace formula π and trace ν we write ν |= π iff ν�π� = true
and ν �|= π iff ν�π� = false. In particular, we only write ν |= π or ν �|= π if ν�π� is
defined, which it is not the case if π is a state formula and ν does not terminate.

4.3 Conservative Temporal Extension

The following result shows that the extension of QdTL by temporal operators
does not change the meaning of non-temporal QdL formulas. The trace seman-
tics given in Definition 3 is equivalent to the final state reachability relation
semantics [21,22] for the sublogic QdL of QdTL.

Proposition 1. The logic QdTL is a conservative extension of non-temporal
QdL, i.e., the set of valid QdL formulas is the same with respect to transition
reachability semantics of QdL [21,22] as with respect to the trace semantics of
QdTL (Definition 3).

5 Safety Properties in Distributed Air Traffic Control

In air traffic control, collision avoidance maneuvers [8,26] are used to resolve
conflicting flight paths that arise during free flight. We consider the roundabout
collision avoidance maneuver for air traffic control [26]. In the literature, formal
verification of the hybrid dynamics of air traffic control focused on a fixed num-
ber of aircraft, usually two. In reality, many more aircraft are in the same flight
corridor, even if not all of them participate in the same maneuver. However,
they may be involved in multiple distributed maneuvers at the same time. Per-
fect global trajectory planning quickly becomes infeasible then. The verification
itself also becomes much more complicated for three aircraft already. Explicit
replication of the system dynamics n times is computationally infeasible for
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larger n. Yet, collision avoidance maneuvers need to work for an (essentially)
unbounded number of aircraft. Because global trajectory planning is infeasi-
ble, the appearance of other aircraft into a local collision avoidance maneuver
always has to be expected and managed safely. See Fig. 1 for a general illus-
tration of roundabout-style collision avoidance maneuvers and the phenomenon
of dynamic appearance of some new aircraft z into the horizon of relevance.

Fig. 1. Roundabout colli-
sion avoidance maneuver
with new appearance

The resulting flight control system has several char-
acteristics of hybrid dynamics. But it is not a hybrid
system and does not even have a fixed finite number of
variables in a fixed finite-dimensional state space. The
system forms a distributed hybrid system, in which all
aircraft fly at the same time and new aircraft may ap-
pear from remote areas into the local flight scenario.
Let A be the sort of all aircraft. Each aircraft i has
a position x(i) = (x1(i), x2(i)) and a velocity vector
d(i) = (d1(i), d2(i)). We model the continuous dynam-
ics of an aircraft i that follows a flight curve with
an angular velocity ω(i) by the (function) differential
equation:

x1(i)
′
= d1(i), x2(i)

′
= d2(i), d1(i)

′
= −ω(i)d2(i), d2(i)′ = ω(i)d1(i) (Fω(i)(i))

This differential equation, which we denote by Fω(i)(i), is the standard equa-
tion for curved flight from the literature [26], but lifted to function symbols
that are parameterized by aircraft i. Now the quantified differential equation
∀i : A Fω(i)(i) characterizes that all aircraft i fly along their respective (func-
tion) differential equation Fω(i)(i) according to their respective angular veloci-
ties ω(i) at the same time. This quantified differential equation captures what
no finite-dimensional differential equation system could ever do. It characterizes
the simultaneous movement of an unbounded, arbitrary, and even growing or
shrinking set of aircraft.

Two aircraft i and j have violated the safe separation property if they falsify
the following formula

P(i, j) ≡ i = j ∨ (x1(i)− x1(j))
2 + (x2(i)− x2(j))

2 ≥ p2

which says that aircraft i and j are either identical or separated by at least
the protected zone p (usually 5mi). For the aircraft control system to be safe,
all aircraft have to be safely separated, i.e., need to satisfy ∀i, j :A P(i, j). It is
crucial that this formula holds at every point in time during the system evolution,
not only at its beginning or at its end. Hence, we need to consider temporal
safety properties. For instance, QdTL can analyze the following temporal safety
properties of a part of the distributed roundabout collision avoidance maneuver
for air traffic control:

∀i, j :A P(i, j) ∧ ∀i, j :A T (i, j)→ [∀i :A Fω(i)(i)]�∀i, j :A P(i, j) (1)
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∀i, j :A P(i, j) ∧ ∀i, j :A T (i, j)→
[∀i :A t := 0;∀i :A Fω(i)(i), t

′ = 1 & ∀i :A t ≤ T ; ?(∀i :A t = T )]�∀i, j :A P(i, j)
(2)

where T (i, j) ≡ d1(i) − d1(j) = −ω(x2(i) − x2(j)) ∧ d2(i) − d2(j) = ω(x1(i) −
x1(j)), t is a clock variable, and T is some bounded time.

The temporal safety invariant in (1) expresses that the circle phase of round-
about maneuver always stays collision-free indefinitely for an arbitrary number
of aircraft. That is the most crucial part because we have to know the air-
craft always remain safe during the actual roundabout collision avoidance circle.
The condition ∀i, j :A T (i, j) characterizes compatible tangential maneuvering
choices. Without a condition like T (i, j), roundabouts can be unsafe [20]. For a
systematic derivation of how to construct T (i, j), we refer to the work [20]. As a
variation of (1), the temporal safety property in (2) states that, for an arbitrary
number of aircraft, the circle procedure of roundabout maneuver cannot produce
collisions at any point in its bounded duration T . This variation restricts the
continuous evolution to take exactly T time units (the evolution domain region
restricts the evolution to t ≤ T and the subsequent test to ?(∀i : A t = T ))
and no intermediate state is visible as a final state anymore. Thus, the temporal
modality � in (2) is truly necessary. We will use the techniques developed in this
paper to verify these temporal safety properties in the distributed roundabout
flight collision avoidance maneuver.

6 Proof Calculus for Temporal Properties

In this section, we introduce a sequent calculus for verifying temporal spec-
ifications of distributed hybrid systems in QdTL. With the basic idea being
to perform a symbolic decomposition, the calculus transforms quantified hy-
brid programs successively into simpler logical formulas describing their effects.
Statements about the temporal behavior of a quantified hybrid program are
successively reduced to corresponding non-temporal statements about the inter-
mediate states.

6.1 Proof Rules

In Fig. 2, we present a proof calculus for QdTL that inherits the proof rules
of QdL from [21,22] and adds new proof rules for temporal modalities. We use
the sequent notation informally for a systematic proof structure. A sequent is
of the form Γ → Δ, where the antecedent Γ and succedent Δ are finite sets of
formulas. The semantics of Γ → Δ is that of the formula

∧
φ∈Γ φ →

∨
ψ∈Δ ψ

and will be treated as an abbreviation. As usual in sequent calculus, the proof
rules are applied backwards from the conclusion (goal below horizontal bar) to
the premises (subgoals above bar).

Inherited Non-temporal Rules. The QdTL calculus inherits the (non-
temporal) QdL proof rules. For propositional logic, standard rules ax–cut are
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(ax)
φ → φ

(¬r)
φ →

→ ¬φ
(¬l)

→ φ

¬φ →
(∧r)

→ φ → ψ

→ φ ∧ ψ
(∧l)

φ, ψ →

φ ∧ ψ →
(cut)

→ φ φ →

→

([; ])
[α][β]φ

[α;β]φ
(〈; 〉)

〈α〉〈β〉φ

〈α;β〉φ
([∪])

[α]φ ∧ [β]φ

[α ∪ β]φ
(〈∪〉)

〈α〉φ ∨ 〈β〉φ

〈α ∪ β〉φ
([?])

χ → φ

[?χ]φ
(〈?〉)

χ ∧ φ

〈?χ〉φ

([′])
∀t ≥ 0((∀0 ≤ t̃ ≤ t[∀i :A S(t̃)]χ) → [∀i :A S(t)]φ)

[∀i :A f(s)′ = θ & χ]φ

1 (〈′〉)
∃t ≥ 0((∀0 ≤ t̃ ≤ t〈∀i :A S(t̃)〉χ) ∧ 〈∀i :A S(t)〉φ)

〈∀i :A f(s)′ = θ & χ〉φ
1

([:=])
if ∃i :A s = [A]u then ∀i :A (s = [A]u → φ(θ)) else φ(f([A]u)) fi

φ([∀i : A f(s) := θ]f(u))

2

(〈:=〉)
if ∃i :A s = 〈A〉u then ∃i :A (s = 〈A〉u ∧ φ(θ)) else φ(f(〈A〉u)) fi

φ(〈∀i :A f(s) := θ〉f(u))

2

(skip)
Υ ([∀i :A f(s) := θ]u)

[∀i :A f(s) := θ]Υ (u)

3 ([:∗])
∀j :A φ(θ)

[∀j :A n := θ]φ(n)
(〈:∗〉)

∃j :A φ(θ)

〈∀j :A n := θ〉φ(n)
(ex)

true

∃n :A E(n) = 0

(∀r)
Γ → φ(f(X1, . . . , Xn)), Δ

Γ → ∀xφ(x),Δ
4 (∃r)

Γ → φ(θ), ∃xφ(x),Δ

Γ → ∃xφ(x),Δ
5 (∀l)

Γ, φ(θ),∀xφ(x) → Δ

Γ, ∀xφ(x) → Δ

5 (∃l)
Γ, φ(f(X1, . . . , Xn)) → Δ

Γ, ∃xφ(x) → Δ

4

(i∀)
QE(∀X,Y (if s = t thenΦ(X) → Ψ(X) elseΦ(X) → Ψ(Y ) fi))

Φ(f(s)) → Ψ(f(t))

6 (i∃)
QE(∃X

∧
i
(Φi → Ψi))

Φ1 → Ψ1 . . . Φn → Ψn

7

([]gen)
φ → ψ

Γ, [α]φ → [α]ψ,Δ
(〈〉gen)

φ → ψ

Γ, 〈α〉φ → 〈α〉ψ,Δ
(ind)

φ → [α]φ

Γ, φ → [α∗]φ,Δ
(con)

v > 0 ∧ ϕ(v) → 〈α〉ϕ(v − 1)

Γ, ∃v ϕ(v) → 〈α∗〉∃v ≤ 0ϕ(v), Δ

8

(DI)
χ → [∀i :A f(s)′ := θ]D(φ)

φ → [∀i :A f(s)′ = θ & χ]φ

9 (DC)
φ → [∀i :A f(s)′ = θ & χ]ψ φ → [∀i :A f(s)′ = θ & χ ∧ ψ]φ

φ → [∀i :A f(s)′ = θ & χ]φ

([∪]�)
[α]π ∧ [β]π

[α ∪ β]π

10 (〈∪〉)
〈α〉π ∨ 〈β〉π

〈α ∪ β〉π
10 ([; ]�)

[α]�φ ∧ [α][β]�φ

[α;β]�φ
(〈; 〉)

〈α〉♦φ ∨ 〈α〉〈β〉♦φ

〈α;β〉♦φ

([?]�)
φ

[?χ]�φ
(〈?〉)

φ

〈?χ〉♦φ

([:=]�)
φ ∧ [∀i :A f(s) := θ]φ

[∀i :A f(s) := θ]�φ
(〈:=〉)

φ ∨ 〈∀i :A f(s) := θ〉φ

〈∀i :A f(s) := θ〉♦φ

([′]�)
[∀i :A f(s)′ = θ & χ]φ

[∀i :A f(s)′ = θ & χ]�φ
(〈′〉)

〈∀i :A f(s)′ = θ & χ〉φ

〈∀i :A f(s)′ = θ & χ〉♦φ

([∗n]�)
[α;α∗]�φ

[α∗]�φ
(〈∗n〉)

〈α;α∗〉♦φ

〈α∗〉♦φ
([∗]�)

[α∗][α]�φ

[α∗]�φ
(〈∗〉)

〈α∗〉〈α〉♦φ

〈α∗〉♦φ

1
t, t̃ are new variables, ∀i :A S(t) is the quantified assignment ∀i :A f(s) := ys(t) with solutions ys(t) of the

(injective) differential equations and f(s) as initial values. See [21, 22] for the definition of a injective quantified

assignment or quantified differential equation.
2

Occurrence f(u) in φ(f(u)) is not in scope of a modality (admissible substitution) and we abbreviate assignment

∀i :A f(s) := θ by A, which is assumed to be injective.
3

f �= Υ and the quantified assignment ∀i :A f(s) := θ is injective. The same rule applies for 〈∀i :A f(s) := θ〉
instead of [∀i :A f(s) := θ].

4
f is a new (Skolem) function and X1, . . . , Xn are all free logical variables of ∀xφ(x).

5
θ is an abbreviate term, often a new logical variable.

6
X,Y are new variables of sort R. QE needs to be applicable in the premises.

7
Among all open branches, the free (existential) logical variable X of sort R only occurs in the branch Φi → Ψi.

QE needs to be defined for the formula in the premises, especially, no Skolem dependencies on X occur.
8

logical variable v does not occur in α.
9

The operator D, as defined in [21, 22], is used to computer syntactic total derivations of formulas algebraically.
10

π is a trace formula, whereas φ and ψ are (state) formulas. Unlike φ and ψ, the trace formula π may thus

begin with a temporal modality � or ♦.

Fig. 2. Rule schemata of the proof calculus for quantified differential temporal dynamic
logic

listed in Fig. 2. Rules [; ]–〈?〉 work similar to those in [12]. Rules [′], 〈′〉 handle
continuous evolutions for quantified differential equations with first-order defin-
able solutions. Rules [:=]–〈:∗〉 handle discrete changes for quantified assignments.
Axiom ex expresses that, for sort A �= R, there always is a new object n that has
not been created yet (E(n) = 0), because domains are infinite. The quantifier
rules ∀r–i∃ combine quantifier handling of many-sorted logic based on instan-
tiation with theory reasoning by quantifier elimination (QE) for the theory of
reals. The global rules []gen, 〈〉gen are Gödel generalization rules and ind is an
induction schema for loops with inductive invariant φ [12]. Similarly, con gen-
eralizes Harel’s convergence rule [12] to the hybrid case with decreasing variant
ϕ [19]. DI and DC are rules for quantified differential equations with quantified
differential invariants [21,22]. Notice that [∪], 〈∪〉 can be generalized to apply
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to formulas of the form [α ∪ β]π where π is an arbitrary trace formula, and not
just a state formula as in QdL. Thus, π may begin with � and ♦, which is why
the rules are repeated in this generalized form as [∪]� and 〈∪〉� in Fig. 2.

Temporal Rules. The new temporal rules in Fig. 2 for the QdTL calculus suc-
cessively transform temporal specifications of quantified hybrid programs into
non-temporal QdL formulas. The idea underlying this transformation is to de-
compose quantified hybrid programs and recursively augment intermediate state
transitions with appropriate specifications.

Rule [; ]� decomposes invariants of α;β (i.e., [α;β]�φ holds) into an invariant
of α (i.e., [α]�φ) and an invariant of β that holds when β is started in any final
state of α (i.e., [α]([β]�φ)). Its difference with the QdL rule [; ] thus is that the
QdTL rule [; ]� also checks safety invariant φ at the symbolic states in between
the execution of α and β, and recursively so because of the temporal modality
�. Rule [:=]� expresses that invariants of quantified assignments need to hold
before and after the discrete change (similarly for [?]�, except that tests do not
lead to a state change, so φ holding before the test is all there is to it). Rule [′]�
can directly reduce invariants of continuous evolutions to non-temporal formu-
las as restrictions of solutions of quantified differential equations are themselves
solutions of different duration and thus already included in the continuous evolu-
tions of ∀i :A f(s)′ = θ. The (optional) iteration rule [∗n]� can partially unwind
loops. It relies on rule [; ]�. The dual rules 〈∪〉�,〈; 〉�,〈:=〉�,〈?〉�,〈′〉�,〈∗n〉� work
similarly. Rules for handling [α]♦φ and 〈α〉�φ are discussed in Section 8.

The inductive definition rules [∗]� and 〈∗〉� completely reduce temporal prop-
erties of loops to QdTL properties of standard non-temporal QdLmodalities such
that standard induction (ind) or convergence (con) rules, as listed in Fig. 2, can
be used for the outer non-temporal modality of the loop. Hence, after applying
the inductive loop definition rules [∗]� and 〈∗〉�, the standard QdL loop invariant
and variant rules can be used for verifying temporal properties of loops without
change, except that the postcondition contains temporal modalities.

6.2 Soundness and Completeness

The following result shows that verification with the QdTL calculus always pro-
duces correct results about the safety of distributed hybrid systems, i.e., the
QdTL calculus is sound.

Theorem 1 (Soundness of QdTL). The QdTL calculus is sound, i.e., every
QdTL (state) formula that can be proven is valid.

The verification for temporal safety ([α]�φ or 〈α〉♦φ), temporal liveness ([α]♦φ
or 〈α〉�φ), and non-temporal ([α]φ or 〈α〉φ) fragments of distributed hybrid sys-
tems has three independent sources of undecidability. Thus, no verification tech-
nique can be effective. Hence, QdTL cannot be effectively axiomatizable. Both
its discrete and its continuous fragments alone are subject to Gödel’s incomplete-
ness theorem [19]. The fragment with only structural and dimension-changing
dynamics is not effective either, because it can encode two-counter machines.
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QdL has been proved to be complete relative to quantified differential equa-
tions [21,22]. Due to the modular construction of the QdTL calculus, we can lift
the relative completeness result from QdL to QdTL. We essentially show that
QdTL is complete relative to QdL, which directly implies that QdTL calculus
is even complete relative to an oracle for the fragment of QdTL that has only
quantified differential equations in modalities. Again, we restrict our attention
to homogeneous combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

Theorem 2 (Relative Completeness of QdTL). The calculus in Fig. 2 is
a complete axiomatization of QdTL relative to quantified differential equations.

This result shows that both temporal and non-temporal properties of distributed
hybrid systems can be proven to exactly the same extent to which properties of
quantified differential equations can be proven. It also gives a formal justifica-
tion that the QdTL calculus reduces temporal properties to non-temporal QdL
properties.

7 Verification of Distributed Air Traffic Control Safety
Properties

Continuing the distributed air traffic control study from Section 5, the QdTL
proofs of the temporal safety invariant in (1) and the temporal safety property
in (2) are presented in Fig. 3 and Fig. 4, respectively (for the purpose of simpli-
fying the presentation, we ignore typing information A for aircraft in the proof,
because it is clear from the context). Note that temporal and non-temporal prop-
erties of the maneuver cannot be proven using any hybrid systems verification
technique, because the dimension is parametric and unbounded and may even
change dynamically during the remainder of the maneuver. The single proof in
Fig. 3 or Fig. 4 corresponds to infinitely many proofs for systems with n aircraft
for all n.

true
R

∀i, j T (i, j) → ∀i, j(2(x1(i) − x1(j))(−ω(x2(i) − x2(j))) + 2(x2(i) − x2(j))ω(x1(i) − x1(j)) ≥ 0)
R

∀i, j T (i, j) → ∀i, j(0 = 0 ∧ 2(x1(i) − x1(j))(d1(i) − d1(j)) + 2(x2(i) − x2(j))(d2(i) − d2(j)) ≥ 0)
[:=]

∀i, j T (i, j) → [∀iL(i)]∀i, j(i′ = j′ ∧ 2(x1(i) − x1(j))(x1(i)
′ − x1(j)

′) + 2(x2(i) − x2(j))(x2(i)
′ − x2(j)

′) ≥ 0)

true
R

∀i, j(−ωd2(i) − (−ωd2(j)) = −ω(d2(i) − d2(j)) ∧ ωd1(i) − ωd1(j) = ω(d1(i) − d1(j)))
[:=]

[∀iL(i)]∀i, j(d1(i)
′ − d1(j)

′ = −ω(x2(i)
′ − x2(j)

′) ∧ d2(i)
′ − d2(j)

′ = ω(x1(i)
′ − x1(j)

′))

�
���

�
�
�
�
���

· · ·
[:=]

[∀iL(i)](∀i, j T (i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i)]∀i, j T (i, j)

· · ·
[:=]

∀i, j T (i, j) → [∀iL(i)](∀i, jP(i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i) & ∀i, j T (i, j)]∀i, jP(i, j)

DC
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i)]∀i, jP(i, j)

[′]�
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iFω(i)]�∀i, jP(i, j)

Abbreviation: L(i) ≡ x1(i)
′ := d1(i), x2(i)

′ := d2(i), d1(i)
′ := −ωd2(i), d2(i)

′ := ωd1(i)

Fig. 3. Proof for temporal collision freedom of roundabout collision avoidance
maneuver circle
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true
R

χ ∧ ∀i, j T (i, j) → ∀i, j(2(x1(i) − x1(j))(−ω(x2(i) − x2(j))) + 2(x2(i) − x2(j))ω(x1(i) − x1(j)) ≥ 0)
R

χ ∧ ∀i, j T (i, j) → ∀i, j(0 = 0 ∧ 2(x1(i) − x1(j))(d1(i) − d1(j)) + 2(x2(i) − x2(j))(d2(i) − d2(j)) ≥ 0)
[:=]

χ ∧ ∀i, j T (i, j) → [∀iK(i)]∀i, j(i′ = j′ ∧ 2(x1(i) − x1(j))(x1(i)
′ − x1(j)

′) + 2(x2(i) − x2(j))(x2(i)
′ − x2(j)

′) ≥ 0)

true
R

χ → ∀i, j(−ωd2(i) − (−ωd2(j)) = −ω(d2(i) − d2(j)) ∧ ωd1(i) − ωd1(j) = ω(d1(i) − d1(j)))
[:=]

χ → [∀iK(i)]∀i, j(d1(i)
′ − d1(j)

′ = −ω(x2(i)
′ − x2(j)

′) ∧ d2(i)
′ − d2(j)

′ = ω(x1(i)
′ − x1(j)

′))

��� �
�
�
�
���

· · ·
[:=]

χ → [∀iK(i)](∀i, j T (i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, j T (i, j)

· · ·
[:=]

χ ∧ ∀i, j T (i, j) → [∀iK(i)](∀i, jP(i, j))′

DI
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ ∧ ∀i, j T (i, j)]∀i, jP(i, j)

DC
∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, jP(i, j)

�
���

�
���

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, jP(i, j)
[′]�,[:=]

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ]�∀i, jP(i, j)

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀iM(i) & χ]∀i, jP(i, j)
[?]�,[:=]

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ][?η]�∀i, jP(i, j)
[; ]�

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ; ?η]�∀i, jP(i, j)

true
ax

∀i, jP(i, j), ∀i, j T (i, j) → ∀i, jP(i, j)
∧l

∀i, jP(i, j) ∧ ∀i, j T (i, j) → ∀i, jP(i, j)

true
ax

∀i, jP(i, j), ∀i, j T (i, j) → ∀i, jP(i, j)
[:=],∧l

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0]∀i, jP(i, j)
[:=]�

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0]�∀i, jP(i, j)

��� �
�
�
�
�
�
��

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0]�∀i, jP(i, j)

· · ·

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0][∀iM(i) & χ; ?η]�∀i, jP(i, j)
[; ]�

∀i, jP(i, j) ∧ ∀i, j T (i, j) → [∀i t := 0; ∀iM(i) & χ; ?η]�∀i, jP(i, j)

Abbreviations: M(i) ≡ Fω(i)(i), t
′ = 1

χ ≡ ∀i t ≤ T
η ≡ ∀i t = T

K(i) ≡ x1(i)
′ := d1(i), x2(i)

′ := d2(i), d1(i)
′ := −ωd2(i), d2(i)

′ := ωd1(i), t
′ := 1

Fig. 4. Proof for temporal collision freedom of roundabout collision avoidance
maneuver circle in bounded time

Our proofs show that the distributed roundabout maneuver always safely
avoids collisions for arbitrarily many aircraft (even with dynamic appearance
of new aircraft). The above maneuver still requires all aircraft in the horizon
of relevance to participate in the collision avoidance maneuver. In fact, we can
show that this is unnecessary for aircraft that are far enough away and that may
be engaged in other roundabouts. Yet, this is beyond the scope of this paper.

8 Liveness by Quantifier Alternation

Liveness specifications of the form [α]♦φ or 〈α〉�φ are sophisticated (Σ1
1 -hard

because they can express infinite occurrence in Turing machines). Beckert and
Schlager [2], for instance, note that they failed to find sound rules for a discrete
case that corresponds to [α;β]♦φ.

For finitary liveness semantics, we can still find proof rules. In this section,
we modify the meaning of [α]♦φ to refer to all terminating traces of α. Then,
the straightforward generalization [; ]� in Fig. 5 is sound, even in the hybrid
case. But [; ]� still leads to an incomplete axiomatization as it does not cover
the case where, in some traces, φ becomes true at some point during α, and
in other traces, φ only becomes true during β. To overcome this limitation, we
use a program transformation approach. We instrument the quantified hybrid
program to monitor the occurrence of φ during all changes: In [α]�, α̌ results from
replacing all occurrences of ∀i :A f(s) := θ with ∀i :A f(s) := θ; ?(φ → t = 1)
and ∀i :A f(s)′ = θ & χ with ∀i :A f(s)′ = θ & χ ∧ (φ → t = 1). The latter is
a continuous evolution restricted to the region that satisfies χ and φ → t = 1.
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The effect is that t detects whether φ has occurred during any change in α. In
particular, t is guaranteed to be 1 after all runs if φ occurs at least once along
all traces of α.

([; ]�) → [α]♦φ, [α][β]♦φ
→ [α;β]♦φ ([α]�) φ ∨ ∀t :R [α̌]t = 1

[α]♦φ

Fig. 5. Transformation rules for alternating temporal path and trace quantifiers

9 Conclusions and Future Work

For reasoning about distributed hybrid systems, we have introduced a tempo-
ral dynamic logic, QdTL, with modal path quantifiers over traces and temporal
quantifiers along the traces. It combines the capabilities of quantified differen-
tial dynamic logic to reason about possible distributed hybrid system behavior
with the power of temporal logic in reasoning about the behavior along traces.
Furthermore, we have presented a proof calculus for verifying temporal safety
specifications of quantified hybrid programs in QdTL.

Our sequent calculus for QdTL is a completely modular combination of tempo-
ral and non-temporal reasoning. Temporal formulas are handled using rules that
augment intermediate state transitions with corresponding sub-specifications.
Purely non-temporal rules handle the effects of discrete transitions, continuous
evolutions, and structural/dimension changes. The modular nature of the QdTL
calculus further enables us to lift the relative completeness result from QdL to
QdTL. This theoretical result shows that the QdTL calculus is a sound and
complete axiomatization of the temporal behavior of distributed hybrid systems
relative to differential equations. As an example, we demonstrate that our logic
is suitable for reasoning about temporal safety properties in a distributed air
traffic control system.

We are currently extending our verification tool for distributed hybrid sys-
tems, which is an automated theorem prover called KeYmaeraD [25], to cover the
full QdTL calculus. Future work includes extending QdTL with CTL∗-like [10]
formulas of the form [α](ψ∧�φ) to avoid splitting of the proof into two very sim-
ilar sub-proofs for temporal parts [α]�φ and non-temporal parts [α]ψ arising in
[; ]�. Our combination of temporal logic with dynamic logic is more suitable for
this purpose than the approach in [2], since QdTL has uniform modalities and
uniform semantics for temporal and non-temporal specifications. This extension
will also simplify the treatment of alternating liveness quantifiers conceptually.
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Abstract.We consider the complexity of validity in ε-logic, a probability
logic introduced by Terwijn. We prove that the set of valid formulas is
Π1

1-hard, improving a previous undecidability result by Terwijn.

1 Introduction

Over the years, there have been many attempts at combining logic and probab-
ility through so-called probability logics. We study the computational aspects of
a probability logic introduced by Terwijn in [4]. This logic has two main charac-
teristics whose combination sets it apart from earlier attempts: first, the logic is
closely related to probabilistic induction and Valiant’s pac-model; and second, it
is a probabilistic interpretation of first-order logic instead of a probability logic
with an entirely new syntax. Terwijn’s probability logic depends on a fixed error
parameter ε and is hence called ε-logic.

Valiant [6] also introduced a probability logic related to his pac-model. Non-
etheless, the logic most closely related to ε-logic is the logic LωP introduced
by Keisler, surveyed in Keisler [2]. This logic contains quantifiers of the form
(Px ≥ r) which should be read as “holds for at least measure r many x”.
However, Keisler’s logic does not contain the classical universal and existential
quantifiers and does not attempt to model probabilistic induction in any way.
Nevertheless, it turns out we can adapt some of the ideas used to prove res-
ults about LωP to obtain similar results for ε-logic. For a discussion of more
probability logics related to ours, we refer to the introduction of Kuyper and
Terwijn [3].

Unfortunately, it turns out that ε-logic is computationally quite hard. Previ-
ously, Terwijn [5] has shown that the set of ε-tautologies is undecidable. This
should not be too surprising, because this is of course also the case for classical
first-order logic. For LωP , Hoover [1] has shown that validity is Π1

1-complete
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(i.e. of the same complexity as first-order arithmetic with second-order universal
quantifiers), which is computationally much harder than first-order logic. In this
paper, we will combine some of his ideas with our own to show that ε-logic is
Π1

1-hard. This shows that ε-logic is computationally much harder than first-order
logic and that we cannot hope to find an effective calculus for it.

In the next section we will briefly recall the definition of ε-logic and some
elementary facts. After that, we will prove in section 3 that there exist many-
one reductions between ε0-logic and ε1-logic for ε0 �= ε1. Finally, in section 4 we
will prove that ε-logic is Π1

1-hard by utilising these reductions.

2 ε-Logic

As mentioned above, ε-logic was introduced in Terwijn [4]. Afterwards, the defin-
ition has gone through a few minor modifications. We use the definition from
Kuyper and Terwijn [3]. For a discussion of this definition and more information
about ε-logic, we refer to the same paper.

Definition 2.1. Let L be a first-order language, possibly containing equality,
of a countable signature. Let ϕ = ϕ(x1, . . . , xn) be a first-order formula in the
language L, and let ε ∈ [0, 1]. Furthermore, letM be a classical first-order model
for M and let D be a probability measure on M. Then we inductively define
the notion of ε-truth, denoted by (M,D) |=ε ϕ, as follows (where we leave the
parameters implicit).

(i) For every atomic formula ϕ:

(M,D) |=ε ϕ if M |= ϕ.

(ii) We treat the logical connectives ∧ and ∨ classically, e.g.

(M,D) |=ε ϕ ∧ ψ if (M,D) |=ε ϕ and (M,D) |=ε ψ.

(iii) The existential quantifier is treated classically as well:

(M,D) |=ε ∃xϕ(x)

if there exists an a ∈M such that (M,D) |=ε ϕ(a).
(iv) The case of negation is split into sub-cases as follows:

(a) For ϕ atomic, (M,D) |=ε ¬ϕ if (M,D) �|=ε ϕ.
(b) ¬ distributes in the classical way over ∧ and ∨, e.g.

(M,D) |=ε ¬(ϕ ∧ ψ) if (M,D) |=ε ¬ϕ ∨ ¬ψ.

(c) (M,D) |=ε ¬¬ϕ if (M,D) |=ε ϕ.
(d) (M,D) |=ε ¬(ϕ→ ψ) if (M,D) |=ε ϕ ∧ ¬ψ.
(e) (M,D) |=ε ¬∃xϕ(x) if (M,D) |=ε ∀x¬ϕ(x).
(f) (M,D) |=ε ¬∀xϕ(x) if (M,D) |=ε ∃x¬ϕ(x).

(v) (M,D) |=ε ϕ→ ψ if (M,D) |=ε ¬ϕ ∨ ψ.
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(vi) Finally, we define (M,D) |=ε ∀xϕ(x) if

Pr
D
[
a ∈M | (M,D) |=ε ϕ(a)

]
≥ 1− ε.

Thus, the crucial change is that the universal quantifier is not treated classically:
instead of saying that we have (M,D) |=ε ϕ(a) for all elements a ∈ M, we
merely say that it holds for “many” of the elements, where “many” depends on
the error parameter ε.

The main reason for this change is that we want our logic to be learnable, in
the sense defined in Terwijn [4] (whose definition of learning is closely related to
Valiant’s pac-model). We do not want to add the classical universal quantifier
to our logic, since it is impossible to decide if a universal quantifier holds from
just a finite amount of information. Therefore we take special care in defining
our negation: we do not want (M,D) |=ε ¬∃xϕ(x) to mean (M,D) �|=ε ∃xϕ(x),
because the latter is equivalent to saying that (M,D) |=ε ϕ(x) holds classically
for all x ∈ M, which is exactly what we wanted to avoid. We define our negation
in such a way that it still behaves in a classical way on the propositional level,
while it interchanges the existential and universal quantifiers.

One other important point is that both (M,D) |=ε ∀xϕ(x) and (M,D) |=ε
∃x¬ϕ(x) may hold simultaneously, i.e. both a formula and its negation might
hold at the same time. Thus, ε-logic is paraconsistent. For our current work this
has one important implication: it is no longer the case that ϕ is satisfiable if
and only if its negation ¬ϕ is not a tautology, as demonstrated in Example 2.4
below.

To make sure that all necessary sets are measurable, we need to restrict
ourselves to the right set of models.

Definition 2.2. Let L be a first-order language of a countable signature, pos-
sibly containing equality, and let ε ∈ [0, 1]. Then an ε-model (M,D) for the
language L consists of a classical first-order L-model M together with a prob-
ability distribution D over M such that:

(i) For all formulas ϕ = ϕ(x1, . . . , xn) and all a1, . . . , an−1 ∈ M, the set

{an ∈M | (M,D) |=ε ϕ(a1, . . . , an)}

is D-measurable (i.e. all definable sets of dimension 1 are measurable).
(ii) All relations of arity n are Dn-measurable (including equality, if it is in

L) and all functions of arity n are measurable as functions from (Mn,Dn)
to (M,D) (where Dn denotes the n-fold product measure). In particular,
constants are D-measurable.

A probability model is a pair (M,D) that is an ε-model for every ε ∈ [0, 1].

Definition 2.3. A formula ϕ(x1, . . . , xn) is an ε-tautology or is ε-valid (nota-
tion: |=ε ϕ) if for all probability models (M,D) and all a1, . . . , an ∈M it holds
that (M,D) |=ε ϕ(a1, . . . , an). Similarly, we say that ϕ is ε-satisfiable if there
exists a probability model (M,D) and there exist a1, . . . , an ∈ M such that
(M,D) |=ε ϕ.
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We remark that, for satisfiability, it would be equivalent to use the more satisfy-
ing definition of letting ϕ be ε-satisfiable if there exists just an ε-model (M,D)
such that (M,D) |=ε ϕ, as follows directly from Kuyper and Terwijn [3, Pro-
position 5.1 and Theorem 5.9]. Unfortunately, we do not know of a similar result
for validity. Our proof below needs our models to be probability models, hence
our choice for this definition of an ε-tautology.

Example 2.4. Let Q be a unary predicate. Then ϕ = ∀xQ(x) ∨ ∀x¬Q(x) is a
1
2
-tautology. Namely, in every probability model, either the set on which Q holds

or its complement has measure at least 1
2
. However, ϕ is not an ε-tautology for

ε < 1
2
. Furthermore, both ϕ and ¬ϕ are classically satisfiable and hence ε-

satisfiable for every ε; in particular we see that ϕ can be an ε-tautology while
simultaneously ¬ϕ is ε-satisfiable.

The next result will be used below.

Proposition 2.5. (Terwijn [4]) Every formula ϕ is semantically equivalent to
a formula ϕ′ in prenex normal form; i.e. (M,D) |=ε ϕ⇔ (M,D) |=ε ϕ′ for all
ε ∈ [0, 1] and all ε-models (M,D).

Note that 1-logic is fairly trivial: every formula in prenex normal form containing
a universal quantifier is trivially true, so the only interesting fragment is the
existential fragment, which is just the classical fragment. It turns out that 0-
validity also does not contain much interesting information.

Proposition 2.6. (Terwijn [5, Proposition 3.2]) The 0-valid formulas coincide
with the classically valid formulas.

That the 0-tautologies and classical tautologies coincide does not mean that 0-
logic is the same as classical logic, because in a fixed 0-model (M,D) it might
be the case that some statement ϕ(x) holds for almost all elements of the model,
but not for all; hence (M,D) |=ε ∀xϕ(x) but not M |= ∀xϕ(x).

Thus, 0-logic and 1-logic have been taken care of from a computational point
of view (the first is computably enumerable, while the second is decidable). This
paper will deal with rational ε ∈ (0, 1).

3 Many-One Reductions between Different ε

In this section we will show that for rational ε0, ε1 ∈ (0, 1), the ε0-tautologies
many-one reduce to the ε1-tautologies. Not only does this show that we only
need to consider one fixed ε for our hardness results (we will take ε = 1

2
below),

but in our proof of the Π1
1-hardness of ε-validity these reductions will also turn

out to be useful in a different way.
We will begin with reducing to bigger ε1. To do this, we refine the argument

by Terwijn [5], where it is shown that the 0-tautologies many-one reduce to the ε-
tautologies for ε ∈ [0, 1). Our argument is similar to the one given in Kuyper and
Terwijn [3], where we discuss reductions for satisfiability instead of for validity.
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Theorem 3.1. Let L be a countable first-order language not containing equality.
Then, for all rationals 0 ≤ ε0 ≤ ε1 < 1, the ε0-tautologies many-one reduce to
the ε1-tautologies.

Proof. We can choose integers n and 0 < m ≤ n so that mn = 1−ε1
1−ε0 . Let

ϕ(y1, . . . , yk) be a formula in prenex normal form (see Proposition 2.5). For
simplicity we write �y = y1, . . . , yk. Also, for a function π we let π(�y) denote
the vector π(y1), . . . , π(yk). We use formula-induction to define a computable
function f such that for every formula ϕ,

ϕ is an ε0-tautology if and only if f(ϕ) is an ε1-tautology. (1)

For propositional formulas and existential quantifiers, there is nothing to be done
and we use the identity map. Next, we consider the universal quantifiers. Let
ϕ = ∀xψ(�y, x). The idea is to introduce new unary predicates, that can be used
to vary the strength of the universal quantifier. We will make these predicates
split the model into disjoint parts. If we split it into just the right number of
parts (in this case n), then we can choose m of these parts to get just the right
strength.

So, we introduce new unary predicates X1, . . . , Xn. We define the sentence
n-split by:

∀x

⎛⎝(X1(x) ∨ . . . ∨Xn(x)) ∧
∧

1≤i<j≤n
¬ (Xi(x) ∧Xj(x))

⎞⎠ .

Then one can verify that in any model, ¬n-split does not hold if and only if the
sets Xi disjointly cover the entire model.

Now define f(ϕ) to be the formula

¬n-split ∨
∨

i1,...,im

∀x
(
(Xi1(x) ∨ · · · ∨Xim(x)) ∧ f(ψ)(�y, x)

)
where the disjunction is over all subsets of size m from {1, . . . , n}. (It will be
clear from the construction that f(ψ) has the same arity as ψ.) Thus, f(ϕ)
expresses that for some choice of m of the n parts, f(ψ)(x) holds often enough
when restricted to the resulting part of the model.

We will now prove claim (1) above. For the implication from right to left, we
will prove the following strengthening:

For every formula ϕ(�y) and every probability model (M,D) there exists a probab-
ility model (N , E) together with a measure-preserving surjective measurable func-
tion π : N →M (i.e. for all D-measurable A we have that E(π−1(A)) = D(A))
such that for all �y ∈ N we have that

(N , E) �|=ε1 f(ϕ)(�y) if and only if (M,D) �|=ε0 ϕ(π(�y)).

In particular, if f(ϕ) is an ε1-tautology, then ϕ is an ε0-tautology. We prove this
by formula-induction over the formulas in prenex normal form. For propositional
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formulas, there is nothing to be done (we can simply take the models to be equal
and π the identity). For the existential quantifier, let ϕ = ∀xψ(x) and apply the
induction hypothesis to ψ to find a model (N , E) and a mapping π. Then we can
take the same model and mapping for ϕ, as easily follows from the fact that π
is surjective.

Next, we consider the universal quantifier. Suppose ϕ = ∀xψ(�y, x) and let
(M,D) be a probability model. Use the induction hypothesis to find a model
(N , E) and a measure-preserving surjective measurable function π : N → M
such that for all �y, x ∈ N we have that

(N , E) �|=ε1 f(ψ)(�y, x) if and only if (M,D) �|=ε0 ϕ(π(�y), π(x)).

Now form the probability model (N ′, E ′) which consists of n disjoint copies
N1, . . . ,Nn of (N , E), each with weight 1

n . That is, E ′ is the sum of n copies of
1
nE . Let π′ : N ′ → M be the composition of the projection map σ : N ′ → N
with π. Relations in N ′ are defined just as on N , that is, for a t-ary relation R we
define RN

′
(x1, . . . , xt) by RN (σ(x1), . . . , σ(xt)). Observe that this is the same

as defining RN
′
(x1, . . . , xt) by RM(π′(x1), . . . , π

′(xt)). We interpret constants
cN

′
by embedding cN into the first copy N1. For functions f of arity t, first note

that we can see fN as a function from N t → N ′ by embedding its codomain N
into the first copy N1. We now interpret fN

′
as the composition of this fN with

π′. Finally, we let each Xi be true exactly on the copy Ni.
Then π′ is clearly surjective. To show that it is measure-preserving, it is

enough to show that σ is measure-preserving. If A is E-measurable, then σ−1(A)
consists of n disjoint copies of A, each having measure 1

nE(A), so π−1(A) has
E ′-measure exactly E(A).

Now, since (N ′, E ′) does not satisfy ¬n-split (because the Xi disjointly cover
N ′), we see that

(N ′, E ′) �|=ε1 f(ϕ)(�y) (2)

is equivalent to the statement that for all 1 ≤ i1 < · · · < im ≤ n we have

Pr
E′

[
x ∈ N ′ | (N ′, E ′) �|=ε1 (Xi1(x) ∨ · · · ∨Xim(x)) ∧ f(ψ)(�y, x)

]
> ε1. (3)

By Lemma 3.2 below we have that (N ′, E ′) |=ε1 f(ψ)(�y, x) holds if and only if
(N , E) |=ε1 f(ψ)(σ(�y), σ(x)) holds. In particular, we see for every 1 ≤ i ≤ n that

Pr
E′

[
x ∈ N ′ | (N ′, E ′) |=ε1 Xi(x) and (N ′, E ′) �|=ε1 f(ψ)(�y, x)

]
=

1

n
Pr
E
[
x ∈ N | (N , E) �|=ε1 f(ψ)(σ(�y), x)

]
.

It follows that (3) is equivalent to

n−m

n
+

m

n
Pr
E
[
x ∈ N | (N , E) �|=ε1 f(ψ)(σ(�y), x)

]
> ε1.

The induction hypothesis tells us that this is equivalent to

n−m

n
+

m

n
Pr
E
[
x ∈ N | (M,D) �|=ε0 ψ(π(σ(�y)), π(x))

]
> ε1
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and since π is surjective and measure-preserving, this is the same as

Pr
D
[
x ∈M | (M,D) �|=ε0 ψ(π(σ(�y)), x)

]
>

n

m

(
ε1 −

n−m

n

)
=

n

m
(ε1 − 1) + 1 = ε0.

This proves that we have (N ′, E ′) �|=ε1 f(ϕ)(�y) if and only if (M,D) �|=ε0
ϕ(π′(�y)).

To prove the left to right direction of (1) we will use induction to prove the
following stronger statement:

If (M,D) is a probability model and �y ∈ M are such that (M,D) �|=ε1 f(ϕ)(�y),
then we also have (M,D) �|=ε0 ϕ(�y).

In particular, if ϕ is an ε0-tautology, then f(ϕ) is an ε1-tautology. The only
interesting case is the universal case, so let ϕ = ∀xψ(�y, x). Let �y ∈ M be such
that (M,D) �|=ε1 f(ϕ)(�y). Assume, towards a contradiction, that (M,D) |=ε0
ϕ(�y). Then

Pr
D
[
x ∈M | (M,D) |=ε0 ψ(�y, x)

]
≥ 1− ε0

and by the induction hypothesis we have

Pr
D
[
x ∈M | (M,D) |=ε1 f(ψ)(�y, x)

]
≥ 1− ε0. (4)

Because (M,D) �|=ε1 ¬n-split, the Xi disjointly cover M, as discussed above.
Now, by taking those m of the Xi (say Xi1 , . . . , Xim) which have the largest
intersection with this set we find that

Pr
D
[
x ∈M | (M,D) |=ε1 (Xi1 ∨ · · · ∨Xim) ∧ f(ψ)(�y, x)

]
≥ m

n
(1− ε0)

= 1− ε1

which contradicts our choice of (M,D). ��
Lemma 3.2. (Kuyper and Terwijn [3, Lemma 7.3]) Let (N ′, E ′) and (N , E) be
as in the proof of Theorem 3.1 above. Then for every formula ζ(x1, . . . , xt) in
the language of M, for every ε ∈ [0, 1] and all x1, . . . , xt ∈ N ′: (N ′, E ′) |=ε
ζ(x1, . . . , xt) if and only if (N , E) |=ε ζ(σ(x1), . . . , σ(xt)).

Proof. By induction on the structure of the formulas in prenex normal form.
The base case holds by definition of the relations in N ′. The only interesting
induction step is the one for the universal quantifier. So, let ζ = ∀x0ζ

′(x0, . . . , xt)
and let x1, . . . , xt ∈ N ′. Using the induction hypothesis, we find that the set
A = {x0 ∈ N ′ | (N ′, E ′) |=ε ζ′(x0, . . . , xt)} is equal to the set {x0 ∈ N ′ |
(N , E) |=ε ζ′(σ(x0), . . . , σ(xt))}, which consists of n disjoint copies of the set
B = {x0 ∈ N | (N , E) |=ε ζ′(x0, σ(x1), . . . , σ(xt))}; denote the copy of B living
inside Ni by Bi. Then

D(A) =
n∑
i=1

E ′(Bi) =
n∑
i=1

1
nE(B) = E(B)
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from which we directly see that (N ′, E ′) |=ε ζ(x1, . . . , xt) if and only if (N , E) |=ε
ζ(σ(x1), . . . , σ(xt)). ��

Theorem 3.3. Let L be a countable first-order language not containing equality.
Then, for all rationals 0 < ε1 ≤ ε0 ≤ 1, the ε0-tautologies many-one reduce to
the ε1-tautologies.

Proof. We can choose integers n and m < n such that mn = ε0−ε1
ε0

. We construct
a many-one reduction f such that for all formulas ϕ,

ϕ is an ε0-tautology if and only if f(ϕ) is an ε1-tautology.

Again, we only consider the nontrivial case where ϕ is a universal formula
∀xψ(�y, x). We define f(ϕ) to be the formula

¬-n-split ∧
∨

i1,...,im

∀x
(
Xi1(x) ∨ · · · ∨Xim(x) ∨ f(ψ)(�y, x)

)
where the disjunction is over all subsets of size m from {1, . . . , n}.

The proof is almost the same as for Theorem 3.1. In the proof for the implic-
ation from right to left, follow the proof up to (2), i.e.

(N ′, E ′) �|=ε1 f(ϕ)(�y).

This is equivalent to the statement that for all 1 ≤ i1 < · · · < im ≤ n we have

Pr
E′

[
x ∈ N ′ | (N ′, E ′) �|=ε1 Xi1(x) ∨ · · · ∨Xim(x) ∨ f(ψ)(�y, x)

]
> ε1.

Similar as before, using Lemma 3.2, we find that this is equivalent to

n−m

n
Pr
E
[
x ∈ N | (N , E) �|=ε1 f(ψ)(σ(�y), x)

]
> ε1.

Again, using the induction hypothesis and the fact that π is measure-preserving
we find that this is equivalent to

Pr
D
[
x ∈ M | (M,D) �|=ε0 ψ(π(σ(�y)), x)

]
>

n

n−m
ε1 =

ε0
ε1

ε1 = ε0.

This proves that (N ′, E ′) |=ε1 f(ϕ)(�y) if and only if (M,D) |=ε0 ϕ(�y).
For the converse implication, we also need to slightly alter the proof of The-

orem 3.1. Assuming that (M,D) �|=ε1 f(ϕ)(�y), follow the proof up to (4), where
we obtain

Pr
D
[
x ∈M | (M,D) |=ε1 f(ψ)(�y, x)

]
≥ 1− ε0. (5)

Define
η = Pr

D
[
x ∈M | (M,D) |=ε1 f(ψ)(�y, x)

]
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and take those m of the Xi (say Xi1 , . . . , Xim) which have the smallest intersec-
tion with this set. Note that by (5) we have η ≥ 1− ε0. Then we find that

Pr
D
[
x ∈ M | (M,D) |=ε1 Xi1 ∨ · · · ∨Xim ∨ f(ψ)(�y, x)

]
≥ m

n
+
(
1− m

n

)
η =

ε0 − ε1
ε0

+
ε1
ε0

η

≥ ε0 − ε1
ε0

+
ε1
ε0

(1− ε0) = 1− ε1.

which contradicts our choice of (M,D). ��

Observe that, because of the inductive nature of the reductions above, we can
perform these reductions per quantifier. In particular, we can talk about what
it means for a formula with variable ε (that is, a separate ε for each quantifier)
to be a tautology. This way, we get something like Keisler’s probability logic
mentioned in the introduction; however, remember that we still have our non-
classical negation (unlike Keisler). This idea will be crucial in our hardness proof.

4 Validity Is Π1
1-hard

To show that the set of ε-tautologies is indeed Π1
1-hard, we adapt a proof by

Hoover [1] which shows that LωP is Π1
1-complete. We will show that, to a certain

extent, we can define the natural numbers within probability logic.

Definition 4.1. Let ϕ be a formula in prenex normal form and N a unary
predicate. Then ϕN , or ϕ relativised to N , is defined as the formula where
each ∀xψ(x) is replaced by ∀x(N(x) → ψ(x)) and each ∃xψ(x) is replaced by
∃x(N(x) ∧ ψ(x)).

Theorem 4.2. Let L be the language consisting of a constant symbol 0, a unary
relation N(x), binary relations x = y,1 S(x) = y and R(x, y), and ternary
relations x + y = z and x · y = z. Furthermore, let f be the reduction from 0-
tautologies to 1

2
-tautologies from Proposition 3.1. Then there exists finite theories

T, T ′ in the language L such that, for every first-order sentence ϕ containing a
new predicate symbol Q, the following are equivalent:

(i) |= 1
2
f(¬(
∧

T )) ∨ ¬ (
∧
T ′) ∨ f

(
¬ϕN
)
;

(ii) N |= ∀Q¬ϕ(Q).2

Proof. We will prove the contrapositives of the implications (i)→ (ii) and (ii)→
(i). During the entire proof, one should mainly think about what it means for a
formula ψ that its negation ¬ψ does not hold. Note that we have that (M,D) �|=0

1 Here we do not mean true equality, but rather a binary relation that we will use to
represent equality.

2 We denote by ∀Q¬ϕ(Q) the second-order formula ∀X¬ϕ(X/Q), where ϕ(X/Q) is
the formula where the predicate symbol Q is replaced by a second-order variable X.
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¬ψ if and only if all universal quantifiers hold classically and all existential
quantifiers hold on a set of strictly positive measure. Likewise, (M,D) �|= 1

2
¬ψ

holds if and only if all universal quantifiers hold classically and all existential
quantifiers hold on a set of measure strictly greater than 1

2
.

Inspired by this, we form the theories T and T ′. T consists of Robinson’s Q
relativised to N , axioms specifying that the arithmetical relations only hold on
N , and some special axioms for N and R. That is, we put the following axioms
in T (keeping in mind that we are mostly interested in what happens when the
negation of these formulas does not hold, i.e. one should read the ∀ as a classical
universal quantifier and the ∃ as saying that the statement holds on a set of
strictly positive measure):

All equality axioms. For example:

∀x(x = x)

∀x∀y((N(x) ∧ x = y)→ N(y))

We should guarantee that 0 is in N :

N(0)

We now give the axioms for the successor function:

∀x∀y(S(x) = y → (N(x) ∧N(y)))

(∀x∃yS(x) = y)N

(∀x∀y∀u∀v((S(x) = y ∧ S(u) = v ∧ x = u)→ y = v))N

(∀x¬S(x) = 0)N

(∀x(x = 0 ∨ ∃yS(y) = x))N .3

In the axioms below, we will leisurely denote by ψ(S(x)) the formula ∀y(S(x) =
y → ψ(y)) and similarly for x + y and x · y. We proceed with the inductive
definitions of + and ·:

(∀x∀y∀z(x+ y = z → (N(x) ∧N(y) ∧N(z))))

(∀x(x + 0 = x))N

(∀x∀y(x + S(y) = S(x+ y)))N

(∀x∀y∀z(x · y = z → (N(x) ∧N(y) ∧N(z))))N

(∀x(x · 0 = 0))N

(∀x∀y(x · S(y) = (x · y) + x))N .

3 We do not really need this last axiom, but we have added it anyway so that all
axioms of Robinson’s Q are in T .
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Finally, we introduce a predicate R. This predicate is meant to function as a
sort of ‘padding’. The goal of this predicate is to force the measure of a point
Sn(0) to be larger than the measure of {x | N(x) ∧ x > Sn(0)} (the precise use
will be made clear in the proof below).

(∀x∀y¬R(x, y))N

The last two axioms will be in T ′ instead of in T , because these need to be
evaluated for ε = 1

2
while the rest will be evaluated for ε = 0. So, because we

will be looking at when the negation does not hold, the existential quantifier
should be read as “strictly more than measure 1

2
many”.

∀x(N(x)→ ∃y(R(x, y) ∨ x = y))

∀x(N(x)→ ∃y¬(R(x, y) ∨ x < y))

Here, x < y is short for f(∃z(x + S(z) = y)), i.e. the usual definition of x < y
evaluated for ε = 0.

Note that for universal formulas it does not matter if they are in T or T ′

because in both cases the negation of the formula does not hold if and only if
the formula holds classically.

We will now show that these axioms indeed do what we promised. First, we
show that (i) implies (ii). So, assume N �|= ∀Q(¬ϕ(Q)). Fix a predicate QN such
that N �|= ¬ϕ(Q). Now take the model M = ω × {0, 1} to be the disjoint union
of two copies of ω, where we define S,+, ·,≤, 0 on the first copy ω × {0} of ω as
usual, and let these be undefined elsewhere. Let

N := ω × {0} and R :=
{
((a, 0), (b, 1)) | μk

[
2k+1 > 3a+1

]
�= b
}
.

We let QM(a, 0) hold if QN(a) and we never let it hold on the second copy of ω.
Finally, define D by

D(a, 0) = D(a, 1) := 1

3a+1
.

Then it is directly verified that

(M,D) �|=0 ¬
(∧

T
)
∨ ¬ϕN ,

i.e. all formulas in T∪
{
ϕN
}
hold in (M,D) if universal quantifiers are interpreted

classically and existential quantifiers as expressing that there exists a set of
positive measure. Note that because all points have positive measure this is
equivalent to the classical existential quantifier, so all we are really saying is
that T and ϕN hold classically in M.

Furthermore, if we let a ∈ ω and denote b for μk[2k+1 > 3a+1] then we have
that

Pr
D
[
y ∈M | (M,D) |= 1

2
R((a, 0), y) ∨ (a, 0) = y

]
=

1

2
− 1

2b+1
+

1

3a+1

>
1

2
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while we also have that

Pr
D
[
y ∈M | (M,D) |= 1

2
¬(R((a, 0), y) ∨ (a, 0) < y)

]
= 1−

(
1

2
− 1

2b+1
+

∞∑
i=a+2

3−i
)

= 1− 1

2

(
1− 1

2b
+

1

3a+1

)
>

1

2

where the last inequality follows from the fact that b is the smallest k ∈ ω such
that 2k+1 > 3a+1, so that 2b ≤ 3a+1. Thus, we see that (M,D) �|= 1

2
¬(
∧

T ′). But
then we see from (the proof of) Theorem 3.1, together with the remark below
Theorem 3.3 that there is a probability model (N , E) such that

(N , E) �|= 1
2
f
(
¬
(∧

T
))
∨ ¬
(∧

T ′
)
∨ f
(
¬ϕN
)
,

i.e. (i) does not hold.
Conversely, assume that statement (i) does not hold. Without loss of gener-

ality, we may assume the equality relation onM to be true equality; otherwise,
because (i) does not hold and all equality axioms are in T we could look atM/=
instead.

Again, from (the proof of) Theorem 3.1 we see that

(M,D) �|=0 ¬
(∧

T
)
∨ ¬ϕN and (M,D) �|= 1

2
¬
(∧

T ′
)
.

We will now use the three axioms involving R. Let m ∈ M with M |= N(m).
Then {a ∈ M | M |= a = m} ⊆ NM by the equality axioms, and similarly
{a ∈ M | m < a} ⊆ NM. So the axiom (∀x∀y¬R(x, y))N tells us that these two
sets are disjoint from {a ∈M | M |= R(m, a)}. Therefore, from the two axioms
in T ′ it now follows that

Pr
D
[
a ∈M | M |= m = a

]
>

1

2
− Pr
D
[
a ∈M | M |= R(m, a)

]
> Pr
D
[
a ∈M | M |= m < a

]
.

Thus,

Pr
D
[
M
]
>

1

2
Pr
D
[
a ∈ M | m ≤ a

]
(6)

We now claim that, if we denote S(x) for the unique y such that S(x) = y (as
guaranteed to exist and be unique by T ):

Pr
D

[{
0, . . . , Sk(0)

}]
>

(
1− 1

2k+1

)
Pr
D
[
N
]
.
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For k = 0 this is clear: from the axioms in T it follows that for all elements
a ∈ N different from 0 we have a > 0, and therefore PrD

[
{0}
]
> 1

2
PrD
[
N
]
by

(6). Similarly, assume this holds for k ∈ ω. Then we have by (6):

Pr
D

[{
0, . . . , Sk+1(0)

}]
> Pr
D

[{
0, . . . , Sk(0)

}]
+

1

2

(
Pr
D
[
N
]
− Pr
D

[{
0, . . . , Sk(0)

}])
so from the induction hypothesis we obtain

>

(
1− 1

2k+1

)
Pr
D
[
N
]
+

1

2k+2
Pr
D
[
N
]

=

(
1− 1

2k+2

)
Pr
D
[
N
]
.

Because this converges to PrD
[
N
]
if k goes to infinity, we see that all weight of

N rests on X := {Sn(0) | n ∈ ω} ⊆ N . Now, if some universal quantifier holds
when relativised to N , it certainly holds when restricted to X . Furthermore, if
some existential quantifier holds with positive measure in N , then it also has to
hold with positive measure in X because X ⊆ N has the same measure as N .
Therefore, we see that (M,D) �|=0 ¬ϕN implies that also (M�X,D�X) �|=0 ¬ϕX
(see the discussion at the beginning of the proof about what it means for the
negation of a formula to not hold).

However, we can directly verify that M�X is isomorphic to the standard
natural numbers N = (ω, S,+, ·, 0). So, by transferring the predicate Q from
M to N (i.e. letting QN(k) hold if QM(Sk(0)) holds) we find that indeed N �|=
∀Q¬ϕ(Q). ��

Putting this together, we reach our conclusion.

Theorem 4.3. For rational ε ∈ (0, 1), the set of ε-tautologies is Π1
1-hard.

Proof. From Theorem 3.1, Theorem 3.3 and Theorem 4.2. ��

In fact, we have shown that even for languages not containing function symbols
or equality, ε-validity is already Π1

1-hard. Our proof above uses one constant: 0.
However, we could also replace 0 by a unary relation representing 0 = x and
modify the proof to show that the relational fragment of ε-validity is Π1

1-hard.
We do not yet know of an upper bound for the complexity of ε-validity. While

we have developed methods for proving upper bounds for ε-satisfiability, which
will be discussed in a future paper, these methods do not seem to work for
proving any results about ε-validity. Thus, the exact complexity of ε-validity is
still an open problem.
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Abstract. We introduce a justification logic with a novel constructor
for evidence terms, according to which the new information itself serves
as evidence for believing it. We provide a sound and complete axiom-
atization for belief expansion and minimal change and explain how the
minimality can be graded according to the strength of reasoning. We also
provide an evidential analog of the Ramsey axiom.

1 Introduction

Like modal logics, justification logics are epistemic logics that provide means to
formalize properties of knowledge and belief. Modal logics use formulas �A to
state that A is known (or believed), where the modality � can be seen as an
implicit knowledge operator since it does not provide any reason why A is known.
Justification logics operate with explicit evidence for an agent’s knowledge using
formulas of the form t : A to state that A is known for reason t. The evidence
term t may represent a formal mathematical proof of A or an informal reason
for believing A such as a public announcement or direct observation of A.

Artemov developed the first justification logic, the Logic of Proofs, to give a
classical provability semantics for intuitionistic logic [2–4]. In the area of formal
epistemology, justification logics provide a novel approach to certain epistemic
puzzles and problems of multiagent systems [5–7, 9, 13].

The study of dynamic justification logics took off with Renne’s PhD thesis [21]
and his work on eliminating unreliable evidence [22]. He also investigated the
expressive power of certain justification logics with announcements [23]. In a
series of papers [12, 14, 15] we examined two alternative justification counterparts
of Gerbrandy–Groeneveld’s public announcement logic [18]. Last but not least,
Baltag et al. [10] introduced a justification logic for belief change, soft evidence,
and defeasible knowledge.

In the present paper we introduce the justification logic JUPCS that provides
a sound and complete axiomatization for belief expansion and minimal change.
Our logic includes a new evidence term construct up(A) that represents the
update with A. Hence, after an update with A, the term up(A) becomes a reason

to believe A. Formally, this is modeled by the axiom [A]
(
up(A) :A

)
.

� Supported by Swiss National Science Foundation grant PZ00P2–131706.
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c© Springer-Verlag Berlin Heidelberg 2013
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In addition, the presence of explicit evidence makes it possible to axiomatize
the principle of minimal change within the object language. For instance, in
Lemma 20 we prove that for each term t that does not contain up(A) as a
subterm,

JUPCS � t :B ↔ [A](t : B) .

The direction from left to right is the persistence principle saying that we deal
only with belief expansion. The direction from right to left states that if after
an update with A an agent believes B for a reason that is independent from
the update, then before the update the agent already believed B for the same
reason. Note that a principle of this kind cannot be formulated in a purely
modal language. When [A]�B holds, it is not clear whether �B should be the
case since it is not known whether the belief in B depends on the update or is
due to another, unrelated reason.

2 The Logic JUPCS

We start with countably many constants ci, countably many variables xi, and
countably many atomic propositions Pi. The (evidence) terms and formulas of
the language of JUP are defined as follows:

– Evidence terms.
• Every constant ci and every variable xi is an atomic term. If A is a
formula, then up(A) is an atomic term. Every atomic term is a term.

• If t and s are terms and A is a formula, then (t ·A s) is a term.
– Formulas.

• Every atomic proposition Pi is a formula.
• If A and B are formulas, Γ is a finite set of formulas, and t is a term,
then ¬A, (A→ B), t :A, and [Γ ]A are formulas.

We write [A1, . . . , An]B instead of [{A1, . . . , An}]B, usually assuming all Ai’s to
be pairwise distinct.

ATm, Prop, Tm, and Fml denote the set of atomic terms, the set of atomic
propositions, the set of evidence terms, and the set of formulas respectively. A
formula t : A means that A is believed for reason t and [Γ ]A stands for A holds
after an update with all formulas in Γ . As usual, we define (A∧B) := ¬(A→ ¬B)
and (A ↔ B) := ((A → B) ∧ (B → A)). We employ the standard conventions
on the omission of brackets and postulate that both the colon operator in t : A
and the update operator in [Γ ]A bind stronger than any Boolean connective.

The set of axioms of JUP can be found in Fig. 1. Note that Γ ∪Δ in the ax-
iom (It) is a finite set of formulas whenever Γ and Δ are. The axioms (Taut) and
(App) become the usual axioms of the justification logic J (see [6]) if (App) is for-
mulated as an implication instead of the equivalence above. The present version
with the equivalence yields a justification logics with minimal evidence. Later,
when we define the semantics, this will correspond to the fact that the evidence
relation is the least fixed point. This also explains why we need to annotate the
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application operator · by a formula: otherwise we would not be able to formu-
late the direction from right to left. Renne [22] was the first to use this kind of
annotation. Axioms (Red.1)–(Red.3) are called reduction axioms. They make it
possible to reduce the situation after an update occurred to the situation before
the update. For instance, (Red.1) states that atomic facts are not affected by
updates. Axiom (Pers) postulates that beliefs are persistent, i.e., that no con-
traction takes place because of an update and, consequently, the belief set can
only be expanded. The update axiom (Up) claims that updates are introspec-
tively successful : after an update with a formula A, the agent believes A and the
term up(A) represents a reason for that belief, which is the update itself. The ax-
iom (Init) postulates the special status of terms up(A), which initially, i.e., before
any updates, cannot serve as a basis for belief in anything. Axioms (MC.1) and
(MC.2) formalize the principle of minimal change: an update should only lead
to the smallest necessary change in the belief set. That means only those beliefs
should be added that “logically” follow from the update and from what is al-
ready believed before. An interesting feature of our system is that the strength of
the logic used for the deductive closure can be regulated. Finally, the axiom (It)
explains how to deal with iterated updates.

1. All propositional tautologies (Taut)
2. t : (A→ B) ∧ s :A ↔ t ·A s : B (App)
3. [Γ ]P ↔ P (Red.1)
4. [Γ ]¬B ↔ ¬[Γ ]B (Red.2)
5. [Γ ](B → C) ↔ ([Γ ]B → [Γ ]C) (Red.3)
6. t :B → [Γ ]t : B (Pers)
7. ¬up(A) :B (Init)
8. [Γ ]up(A) :A if A ∈ Γ (Up)
9. [Γ ]t :A → t :A

if t ∈ ATm and either t �= up(A) or A /∈ Γ (MC.1)
10. [Γ ]t ·A s : B ↔ [Γ ]t : (A→ B) ∧ [Γ ]s : A (MC.2)
11. [Γ ][Δ]A ↔ [Γ ∪Δ]A (It)

Fig. 1. Axioms of JUP

A constant specification CS (for JUP) is any subset

CS ⊆ {(c, c1 : c2 : . . . : cn : A) |
n ≥ 0, c, c1, c2, . . . , cn are constants, and A is an axiom of JUP}.

For a constant specification CS the deductive system JUPCS is the Hilbert sys-
tem given by the axioms of JUP and by the rules modus ponens and axiom
necessitation:

A A→ B
B

(MP) ,
(c, B) ∈ CS

c :B
(AN) .

We write JUPCS � A if the formula A is derivable in JUPCS.
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We are now going to introduce a semantics for JUPCS that uses basic modular
models. Artemov [8] introduced them for the basic justification logic J in order
to provide an ontologically transparent semantics for justifications. Kuznets and
Studer [19] later extended this construction to all justification counterparts of
the logics from the modal cube between K and S5. The very first semantics of
this kind, however, was presented by Mkrtychev [20].

Definition 1 (Evidence closure). Let B ⊆ ATm × Fml. For an arbitrary set
X ⊆ Tm× Fml we define clB(X) by:

1. if (t, A) ∈ B, then (t, A) ∈ clB(X);
2. if (s, A) ∈ X and (t, A→ B) ∈ X, then (t ·A s,B) ∈ clB(X).

Note that clB is a monotone operator on Tm× Fml, that is

X ⊆ Y implies clB(X) ⊆ clB(Y )

for all X,Y ⊆ Tm× Fml. Hence, clB has a least fixed point, which is shown as
usual, see, e.g., [11].

Lemma 2 (Least fixed point). There is a unique R ⊆ Tm× Fml such that

1. clB(R) = R,
2. for any S ⊆ Tm× Fml, if clB(S) ⊆ S, then R ⊆ S.

Proof. Let C := {S ⊆ Tm × Fml | clB(S) ⊆ S}. Since Tm× Fml ∈ C, we know
that C is non-empty. Let R :=

⋂
C. The second claim now holds by definition.

And the uniqueness of R is an easy corollary of the second claim.
It remains to establish clB(R) = R. Let S ∈ C. Since R ⊆ S and clB is

monotone, we find clB(R) ⊆ clB(S). We also have clB(S) ⊆ S, so clB(R) ⊆ S.
Since S is an arbitrary element of C and R =

⋂
C, this implies clB(R) ⊆ R.

To show R ⊆ clB(R), we first observe that since clB(R) ⊆ R, we have
clB(clB(R)) ⊆ clB(R) by monotonicity. Thus clB(R) ∈ C, yielding R ⊆ clB(R)
because R =

⋂
C. ��

Definition 3 (Evidence relation). Let B ⊆ ATm× Fml. We define the mini-
mal evidence relation E(B) as the least fixed point of clB.

It follows directly from the definition of clB that

Lemma 4 (Properties of fixed points of clB). For any B ⊆ ATm×Fml and
any fixed point F of clB, e.g., for F = E(B):

1. (t, A) ∈ F iff (t, A) ∈ B for any t ∈ ATm.
2. (t ·A s,B) ∈ F iff (t, A→ B) ∈ F and (s, A) ∈ F .

Further, we get the following lemma.

Lemma 5 (Monotonicity of E). E(B) ⊆ E(B ∪ C) for B, C ⊆ ATm× Fml.
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Proof. By induction on the construction of t we show (t, A) ∈ E(B) implies
(t, A) ∈ E(B ∪ C) for all formulas A. Assume (t, A) ∈ E(B). We have one of the
following cases.

1. t ∈ ATm. Then (t, A) ∈ B by Lemma 4.1. Since (t, A) ∈ B∪C, it follows from
the same lemma that (t, A) ∈ E(B ∪ C).

2. t = r ·B s. Then {(s,B), (r, B → A)} ⊆ E(B) by Lemma 4.2. By IH we find
{(s,B), (r, B → A)} ⊆ E(B ∪ C). We get (t, A) = (r ·B s, A) ∈ E(B ∪ C) by
Lemma 4.2. ��

Definition 6 (Model, initial model, updated model). A model is a pair
M = (v,B) where v ⊆ Prop and B ⊆ ATm×Fml. For a constant specification CS,
the model M is called a CS-model if CS ⊆ B. The model M is called initial if
(up(A), B) /∈ B for any formulas A and B.

For a finite set Γ of formulas, the updated model MΓ := (v,BΓ ) is defined
by BΓ := B ∪ UΓ with UΓ := {(up(A), A) | A ∈ Γ}. For a singleton set Γ = {A}
we write MA and BA instead of M{A} and B{A} respectively.

Remark 7. Note that our definition of a model update is independent of which
formulas are true, unlike Plaza-style, Gerbrandy–Groeneveld-style, or action-
model-style updates, where the definitions of model update and truth in the
model have to be given by simultaneous induction. This ontological separation
of reasons for belief from truth is inherent in Artemov’s semantics of modular
models [8], which we adopt and adapt in this paper.

Lemma 8 (Properties of updated models)

1. M∅ =M,

2. (MΓ )Δ =MΓ∪Δ,
3. For any constant specification CS, any CS-model M, and any finite set Γ of

formulas, the model MΓ is a CS-model.

Proof. Immediately follows from U∅ = ∅, UΓ ∪ UΔ = UΓ∪Δ, and B ⊆ BΓ
respectively. ��

Definition 9 (Truth). Let M = (v,B) be a model and D be a formula. We
define the relation M � D by

1. M � P iff P ∈ v

2. M � ¬A iff M � A

3. M � A→ B iff M � A or M � B

4. M � t : A iff (t, A) ∈ E(B)
5. M � [Γ ]A iff MΓ � A.

A formula D is valid with respect to a constant specification CS if M � D for
all initial CS-models M.
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3 Soundness

For this section and the next one, we assume CS to be a fixed but arbitrary
constant specification. In later sections, the use of soundness and completeness
with respect to models with no CS specified should be understood as sound-
ness and completeness with respect to initial ∅-models because any model is an
∅-model.

Theorem 10 (Soundness). For all formulas D,

JUPCS � D implies D is valid with respect to CS.

Proof. As usual the proof is by induction on the length of the derivation of D.
Let M = (v,B) be an initial CS-model.

1. (Taut). All instances of propositional tautologies hold under M.
2. (App).M � t:(A→ B)∧s:A iff {(t, A→ B), (s, A)} ⊆ E(B). By Lemma 4.2,

this is equivalent to (t ·A s,B) ∈ E(B), in other words to M � t ·A s :B.
3. (Red.1). M � [Γ ]P iff MΓ � P iff P ∈ v iff M � P .
4. (Red.2).M � [Γ ]¬B iffMΓ � ¬B iffMΓ � B iffM � [Γ ]B iffM � ¬[Γ ]B.
5. (Red.3). Similar to the previous case.
6. (Pers). Follows immediately from Lemma 5.
7. (Init). (up(A), B) /∈ B since M is initial. (up(A), B) /∈ E(B) by Lemma 4.1.

Thus, M � ¬up(A) :B.
8. (Up). If A ∈ Γ , then (up(A), A) ∈ UΓ ⊆ BΓ , and (up(A), A) ∈ E(BΓ ) by

Lemma 4.1. It follows that MΓ � up(A) :A and M � [Γ ]up(A) : A.
9. (MC.1). Assume M � [Γ ]t : A for t ∈ ATm such that either t �= up(A)

or A /∈ Γ . Then MΓ � t : A and (t, A) ∈ E(BΓ ). Since t ∈ ATm, we get
(t, A) ∈ BΓ = B ∪UΓ by Lemma 4.1. Clearly, (t, A) /∈ UΓ . Hence, (t, A) ∈ B,
and (t, A) ∈ E(B) by Lemma 4.1. Therefore, we conclude that M � t :A.

10. (MC.2). Similar to Case 2 but for MΓ .
11. (It). M � [Γ ][Δ]A iff MΓ � [Δ]A iff (MΓ )Δ � A. Then (MΓ )Δ =MΓ∪Δ

by Lemma 8. The equivalence continues as MΓ∪Δ � A iff M � [Γ ∪Δ]A.
12. (MP). It is trivial to see that modus ponens preserves truth in a model.
13. (AN). For any (c, B) ∈ CS, we have (c, B) ∈ B by definition of a CS-model.

Further, (c, B) ∈ E(B) by Lemma 4.1, and M � c : B. ��

4 Completeness

Definition 11 (Consistency). A set Φ of formulas, finite or infinite, is called
consistent if JUPCS � ¬(A1 ∧ · · · ∧ An) for any finite subset {A1, . . . , An} ⊆ Φ.

A set Φ is called maximal consistent if it is consistent whereas no proper
superset of Φ is.

Definition 12 (Induced model). Let Φ be a maximal consistent set of for-
mulas. The model MΦ = (vΦ,BΦ) that is induced by Φ is given by
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1. P ∈ vΦ iff P ∈ Φ ∩ Prop.
2. (t, A) ∈ BΦ iff t ∈ ATm and t : A ∈ Φ.

MΦ is an initial CS-model. Indeed, by the maximal consistency of Φ, we have

– (c, B) ∈ BΦ since c :B ∈ Φ since JUPCS � c :B for every (c, B) ∈ CS;
– (up(A), B) /∈ BΦ since up(A) : B /∈ Φ since ¬up(A) : B ∈ Φ because we have

JUPCS � ¬up(A) :B for arbitrary A and B.

Lemma 13 (Canonical evidence). Let Φ be a maximal consistent set. Then

t : A ∈ Φ ⇐⇒ (t, A) ∈ E(BΦ) .

Proof. By induction on the construction of t.

1. t ∈ ATm. We have t :A ∈ Φ iff (by definition) (t, A) ∈ BΦ iff (by Lemma 4.1)
(t, A) ∈ E(BΦ).

2. t = r ·B s. We have r ·B s :A ∈ Φ iff (by (App) and the maximal consistency
of Φ) {s : B, r : (B → A)} ⊆ Φ iff (by IH) {(s,B), (r, B → A)} ⊆ E(BΦ) iff
(by Lemma 4.2) (r ·B s, A) ∈ E(BΦ). ��

Definition 14 (Rank). We inductively define the rank of a term by

1. rk(t) := 1 if t ∈ ATm;
2. rk(s ·A t) := max(rk(s), rk(t)) + 1;

and the rank of a formula by

1. rk(P ) := 1 if P ∈ Prop;
2. rk(¬A) := rk(A) + 1;
3. rk(A→ B) := max(rk(A), rk(B)) + 1;
4. rk(t :A) := rk(t);
5. rk([Γ ]B) := 2 · rk(B).

We immediately get the following properties of rk.

Lemma 15 (Reduction)

1. rk([Γ ]A) > rk(A).
2. rk([Γ ]¬B) > rk(¬[Γ ]B).
3. rk([Γ ](A→ B)) > rk([Γ ]A→ [Γ ]B).
4. rk([Γ ]r ·C s :B) > rk([Γ ]r : (C → B)) and

rk([Γ ]r ·C s :B) > rk([Γ ]s : C).
5. rk([Γ ][Δ]A) > rk([Γ ∪Δ]A).

Lemma 16 (Truth lemma). Let Φ be a maximal consistent set of formulas.
Then

A ∈ Φ ⇐⇒ MΦ � A .

Proof. By induction on rk(A).
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1. A ∈ Prop. We have A ∈ Φ iff (by definition) A ∈ vΦ iff (by definition)
MΦ � A.

2. A = ¬B. We have ¬B ∈ Φ iff (by the maximal consistency of Φ) B /∈ Φ iff
(by IH) MΦ � B iff MΦ � ¬B.

3. A = B → C. We have B → C ∈ Φ iff (by the maximal consistency of Φ)
B /∈ Φ or C ∈ Φ iff (by IH) MΦ � B or MΦ � C iff MΦ � B → C.

4. A = t:B. We have t:B ∈ Φ iff (by Lemma 13) (t, B) ∈ E(BΦ) iff (by definition)
MΦ � t : B.

5. A = [Γ ]P . We have [Γ ]P ∈ Φ iff (by (Red.1) and the maximal consistency
of Φ) P ∈ Φ iff (by IH)MΦ � P iff (by (Red.1) and soundness)MΦ � [Γ ]P .

6. A = [Γ ]¬B. Then [Γ ]¬B ∈ Φ iff (by (Red.2) and the maximal consistency
of Φ) ¬[Γ ]B ∈ Φ iff (by IH) MΦ � ¬[Γ ]B iff (by (Red.2) and soundness)
MΦ � [Γ ]¬B.

7. A = [Γ ](B → C). We have [Γ ](B → C) ∈ Φ iff (by (Red.3) and the maximal
consistency of Φ) [Γ ]B → [Γ ]C ∈ Φ iff (by IH) MΦ � [Γ ]B → [Γ ]C iff
(by (Red.3) and soundness) MΦ � [Γ ](B → C).

8. A = [Γ ]t : B. We distinguish the following cases for t.
(a) t ∈ ATm. There are two possibilities:

– t = up(B) and B ∈ Γ . In this case, A = [Γ ]up(B) : B is an axiom.
Therefore, we have A ∈ Φ by the maximal consistency of Φ and
MΦ � A by soundness;

– either t �= up(B) or B /∈ Γ . We have that [Γ ]t :B ∈ Φ iff (by (Pers),
(MC.1), and the maximal consistency of Φ) t : B ∈ Φ iff (by IH)
MΦ � t : B iff (by (Pers), (MC.1), and soundness) MΦ � [Γ ]t :B.

(b) t = r ·C s. We have [Γ ]r ·C s : B ∈ Φ iff (by (MC.2) and the maximal
consistency of Φ) {[Γ ]r : (C → B), [Γ ]s : C} ⊆ Φ iff (by IH) we have
MΦ � [Γ ]r : (C → B) ∧ [Γ ]s : C iff (by (MC.2) and soundness) we have
MΦ � [Γ ]r ·C s : B.

9. A = [Γ ][Δ]B. Then [Γ ][Δ]B ∈ Φ iff (by (It) and the maximal consistency
of Φ) [Γ ∪Δ]B ∈ Φ iff (by IH) MΦ � [Γ ∪Δ]B iff (by (It) and soundness)
MΦ � [Γ ][Δ]B. ��

Theorem 17 (Completeness). For all formulas D,

D is valid with respect to CS implies JUPCS � D .

Proof. Assume JUPCS � D. Then {¬D} is consistent and, hence, contained in a
maximal consistent set Φ. By the previous lemma we find MΦ � ¬D. Thus, we
conclude MΦ � D, which means that D is not valid with respect to CS since
MΦ is an initial CS-model.

We now show that the update with the empty set Γ = ∅, i.e., the update with
no additional information, has no effect.

Lemma 18 (Uninformative update). JUPCS � [∅]A↔ A.

Proof. Follows from M∅ =M (Lemma 8) and completeness. ��
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We show the following principle of minimal change: an update with A has no
effect on beliefs that are justified without reference to that update.

Definition 19 (Subterms). Subterms of a term t are defined by induction as
follows. Sub(t) := {t} if t ∈ ATm.

Sub(t ·A s) := Sub(t) ∪ Sub(s) ∪ {t ·A s} .

Lemma 20 (Minimal change). Let Γ be a finite set of formulas and t be a
term that does not contain up(A) as a subterm for any A ∈ Γ . Then

JUPCS � [Γ ]t : B ↔ t : B .

Proof. The direction from right to left follows from (Pers). To show the other
direction, let M = (v,B) be an initial CS-model with M � [Γ ]t : B. We prove
M � t : B by induction on the construction of t.

1. t ∈ ATm. Then, (t, B) ∈ BΓ = B ∪ {(up(A), A) | A ∈ Γ} by Lemma 4.1.
Since t �= up(A) for any A ∈ Γ , we find (t, B) ∈ B. Thus, (t, B) ∈ E(B) by
Lemma 4.1, and M � t :B follows.

2. t = r ·C s. Then M � [Γ ]s : C ∧ [Γ ]r : (C → B) by (MC.2) and soundness.
By IH we find M � s : C ∧ r : (C → B). Thus, we conclude by (App) and
soundness that M � t :B.

The claim follows by completeness. ��

5 AGM Postulates

In the now classic paper [1], Alchourrón, Gärdenfors, and Makinson introduced
their famous postulates for belief contraction and revision where the underly-
ing principle is that of minimal change. Later Gärdenfors [17] added postulates
for belief expansion. We are going to show that the update operator of JUPCS

satisfies these postulates for expansion, see Lemma 27.
Before we can state and prove Gärdenfors’s postulates, we need to introduce

the notion of belief set and of belief set induced by a model.

Definition 21 (Belief set). A belief set is a set X ⊆ Fml of formulas that
satisfies

if A ∈ X and A→ B ∈ X, then B ∈ X.

Definition 22 (Induced beliefs). Let M be a model. We define the beliefs
�M induced by M as

�M := {A ∈ Fml | M � t : A for some t ∈ Tm} .

Lemma 23 (Induced beliefs). Let M be a model. Then �M is a belief set.
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Proof. We have to show the condition of Definition 21. Assume that A ∈ �M
and A → B ∈ �M. Then there are terms s and t such that M � t : A and
M � s : (A→ B). Therefore, M � s ·A t :B and hence B ∈ �M. ��

Definition 24 (Expansion). LetM be a model and A be a formula. We define

�M ⊕A := �MA .

Definition 25 (Appropriate constant specification). A constant specifica-
tion CS is called

– propositionally appropriate if for every A that is a propositional tautology
there exists a constant c such that (c, A) ∈ CS;

– axiomatically appropriate if for every A that is an axiom of JUP there exists
a constant c such that (c, A) ∈ CS;

– JUPCS-appropriate if it is axiomatically appropriate and also for every pair
(c, B) ∈ CS there exists a constant c′ such that (c′, c : B) ∈ CS.

Lemma 26 (CS appropriateness as a measure of reasoning strength).
LetM be an initial CS-model. If CS is propositionally appropriate (axiomatically
appropriate, JUPCS-appropriate), belief sets �M and �M ⊕ A are closed with
respect to reasoning in classical propositional logic (in JUP∅, in JUPCS).

Proof. What we need to prove is that whenever C ∈ �M (C ∈ �M ⊕ A) and
C �Th D, it follows that D ∈ �M (D ∈ �M ⊕ A), where Th stands for clas-
sical propositional logic in the language of JUP in the case of a propositionally
appropriate CS, for JUP∅ in the case of an axiomatically appropriate CS, and
for JUPCS in the case of a JUPCS-appropriate CS. This can be easily demonstrated
by induction on the derivation in the respective logic.

Lemma 27 (Postulates for expansion). LetM = (v,B) be a model and A be
a formula. Then X = �M ⊕A satisfies the following properties:

1. X is a belief set.
2. A ∈ X.
3. �M ⊆ X.

Moreover, �M ⊕A is the smallest set satisfying Properties 1–3:

4. for any set X ⊆ Fml satisfying Properties 1–3 we have �M ⊕A ⊆ X.

Proof. 1. Since Lemma 23 holds for arbitrary models, we immediately obtain
that �M ⊕A = �MA is a belief set.

2. By (Up) and soundness we haveM � [A]up(A) :A, in other words, we have
MA � up(A) :A. Thus we get A ∈ �MA , i.e., A ∈ �M ⊕A.

3. Assume B ∈ �M. There exists a term t such that M � t :B. By (Pers) and
soundness, we haveM � [A]t :B, in other words,MA � t :B. Thus, we get
B ∈ �MA , i.e., B ∈ �M ⊕A.
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4. Let X satisfy Properties 1–3. We have to show �M ⊕ A ⊆ X . By the defi-
nition of �M ⊕A, this amounts to showing

MA � t : B implies B ∈ X . (1)

Let MA = (v,BA). To establish (1) it is enough to show

(t, B) ∈ E(BA) implies B ∈ X . (2)

We prove (2) by induction on the construction of t. Assume (t, B) ∈ E(BA).
We have one of the following cases:

(a) t ∈ ATm. By Lemma 4.1, (t, B) ∈ BA = B ∪ {(up(A), A)}. If (t, B) ∈ B,
then (t, B) ∈ E(B) by Lemma 4.1, thus, M � t : B, i.e., B ∈ �M. By
Property 3 for X , we find B ∈ X .
If (t, B) = (up(A), A), then B = A, and B ∈ X follows by Property 2
for X .

(b) t = r ·C s. Then {(s, C), (r, C → B)} ⊆ E(BA) by Lemma 4.2. By IH we
find {C,C → B} ⊆ X . By Property 1 for X we know that C ∈ X and
C → B ∈ X imply B ∈ X . Hence, we conclude that B ∈ X . ��

Remark 28. Gärdenfors [17] presented two more postulates that in our context
read as

1. if A ∈ �M, then �M = �M ⊕A
2. if �M ⊆ �M′ , then �M ⊕A ⊆ �M′ ⊕A.

It is standard [16] to show that these two additional postulates follow from the
properties established in Lemma 27.

6 Ramsey Axiom

The Ramsey axiom makes it possible to express the beliefs after an update in
terms of the beliefs before the update. In dynamic doxastic logic, for example,
Segerberg [24] formulates the Ramsey axiom as

[A]�B ↔ �(A→ B) . (3)

Thus, it states that an agent believes B after an update with A if and only if
the agent believes that A implies B before the update.

We can establish an explicit analog of the Ramsey axiom in JUPCS for propo-
sitionally appropriate constant specifications.

We show the two implications of the Ramsey axiom separately. First, the
direction from right to left.

Lemma 29 (Ramsey I). JUPCS � t : (A→ B)→ [A]t ·A up(A) : B.

Proof. Let M be an initial CS-model. Assume M � t : (A → B) for some
term t. By the axiom (Pers) and soundness, M � [A]t : (A → B). Moreover,
using the axiom (Up) we find M � [A]up(A) : A and by (MC.2) we obtain
M � [A]t ·A up(A) : B. The claim follows by completeness. ��
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The direction from left to right of (3) need not hold in general. Here is a simple
counter-example. By (Up) we have JUPCS � [A]up(A):A. However, if the constant
specification CS is not propositionally appropriate, e.g., for CS = ∅, any model
M = (v,∅) is an initial ∅-model. It is easy to see that E(∅) = ∅ andM � t :B
for any term t and any formula B. Now JUP∅ � t : (A→ A) by completeness.

For a propositionally appropriate constant specification, we do have an explicit
version of the direction from left to right.

Lemma 30 (Ramsey II). Let CS be a propositionally appropriate constant
specification. For each term t there exists a term s such that

JUPCS � [A]t : B → s : (A→ B) . (4)

Proof. By induction on the construction of t we show that there exists a term s
such thatM � s : (A→ B) for any initial CS-modelM wheneverM � [A]t :B.
Then (4) follows by completeness. We distinguish the following cases for t:

1. t ∈ ATm. There are two possibilities:
– t �= up(B) or A �= B. Since CS is propositionally appropriate, there exists

a constant c such that JUPCS � c : (B → (A→ B)) and we set s := c ·B t.
IfM � [A]t :B, thenM � t :B by the axiom of minimal change (MC.1).
Hence, we conclude M � c ·B t : (A→ B).

– t = up(B) and A = B. Since CS is propositionally appropriate, there is
a constant c such that JUPCS � c : (A → B) and we set s := c. Then,
M � c : (A→ B)

2. t = r ·C s. By IH there are terms r′ and s′ such thatM � r′ :
(
A→ (C → B)

)
wheneverM � [A]r : (C → B) andM � s′ : (A→ C) wheneverM � [A]s :C
for any initial CS-modelM. AssumeM � [A]r ·C s :B. It follows by (MC.2)
that M � [A]r : (C → B) and M � [A]s : C. Since CS is propositionally
appropriate, there exists a constant c such that

JUPCS � c :
((

A→ (C → B)
)
→
(
(A→ C)→ (A→ B)

))
.

Then for s := (c ·A→(C→B) r
′) ·A→C s′ we have M � s : (A→ B). ��

7 Conclusion

We have introduced JUPCS, a justification logic for belief expansion. The explicit
evidence terms in JUPCS keep track of the effect an update has on an agent’s
beliefs, which makes it possible to axiomatize in the object language the principle
of minimal change and establish soundness and completeness.

There are two directions for further research. One is to study belief contraction
and revision in the context of justification logic. This is closely related to [22]
where evidence elimination is studied.

A second line of research is to consider introspective agents. It is straightfor-
ward to add positive introspection to JUPCS since semantically this corresponds
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to a positive operator and, therefore, the least fixed point construction of the evi-
dence relation still works. However, the properties with respect to belief sets and
the Ramsey axiom will be different and, not surprisingly, the Moore’s paradox
will reappear. Adding negative introspection is also possible. The non-monotone
inductive definitions used in the model constructions [25] for negative introspec-
tion provide a short preview of its belief dynamics.
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Abstract. Varieties of the Fan Theorem have recently been developed
in reverse constructive mathematics, corresponding to different continu-
ity principles. They form a natural implicational hierarchy. Some of the
implications have been shown to be strict, others strict in a weak context,
and yet others not at all, using disparate techniques. Here we present a
family of related Kripke models which suffices to separate all of the as
yet identified fan theorems.
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1 Introduction

To be able to talk about fans, Cantor space, and similar objects properly, we will
start by introducing some notation. The space of all infinite binary sequences,
endowed with the usual metric, will be denoted by 2N; the space of all finite
binary sequences will be denoted by 2∗. The concatenation of u, v ∈ 2∗ will be
denoted by u ∗ v. The length of a finite sequence u ∈ 2∗ will be denoted by |u|.
For α ∈ 2N and n ∈ N, the first n elements of α form a finite sequence denoted
by αn. A subset B ⊂ 2∗ is called a bar if

∀α ∈ 2N∃n ∈ N(αn ∈ B),

and a bar is called uniform if

∃n ∈ N∀α ∈ 2N∃m � n(αm ∈ B).

Notice that if a bar B is closed under extensions, that is if

∀u ∈ 2∗(u ∈ B =⇒ ∀w ∈ 2∗u ∗ w ∈ B),

then it is uniform if and only if

∃n ∈ N∀α ∈ 2N(αn ∈ B).

Not all of the bars we consider will be so closed.
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There are currently four versions of Brouwer’s fan theorem in common use.
All of them enable one to conclude that a given bar is uniform. The differences
among them lie in the required complexity of the bar, which ranges from the
very strongest requirement to no restriction on the bar at all. A bar C ⊂ 2∗ is
decidable if it is decidable as a set:

∀u ∈ 2∗ u ∈ C ∨ u �∈ C.

A bar C ⊂ 2∗ is called a c-bar if there exists a decidable set C′ ⊂ 2∗ such that

u ∈ C ⇐⇒ ∀w ∈ 2∗ (u ∗ w ∈ C′) .

A bar B ⊂ 2∗ is called a Π0
1-bar if there exist a decidable set S ⊂ 2∗ × N such

that

u ∈ B ⇐⇒ ∀n(u, n) ∈ S .

We can now state four commonly used versions of the fan theorem.

FANΔ: Every decidable bar is uniform.
FANc: Every c-bar is uniform.
FANΠ0

1
: Every Π0

1 -bar is uniform.

FANfull: Every bar is uniform.

Notice that every decidable bar can be taken to be closed under extensions; that
is, the closure of a decidable bar under extension is still decidable. If there is
no restriction on the definability of a bar, then every bar can be taken to be so
closed, by working with the closure of any given bar. Every c-bar is already closed
under extension. In contrast, Π0

1 -bars seemingly cannot be replaced by their
closures while remaining Π0

1 . These principles were developed within reverse
constructive mathematics, because they are equivalent with certain continuity
principles [2, 5, 7].

The following implications hold trivially [2, 4]:

FANfull =⇒ FANΠ0
1

=⇒ FANc =⇒ FANΔ.

One naturally wonders whether any of the implications can be reversed, including
whether FANΔ is outright provable in constructive set theory. Some such non-
implications have already been determined. It is well-known (see [1] for instance)
that FANΔ is not provable, via recursive realizability. Berger [3] shows that
FANΔ does not imply FANc over a very weak base system. Fourman and Hyland
[6] present a Heyting-valued, almost topological, model in which FANfull fails;
we show below that FANΠ0

1
holds in their model, separating the left-most pair of

principles in the diagram above. We are not aware of any prior proofs separating
FANc and FANΠ0

1
.

The goal of this paper is to separate all of these principles via a uniform
technique, based on Kripke models. To build a tree we could control, along with
its paths, over full set theory, we turned to forcing. (Because of space limitations,
we assume familiarity with forcing, including standard notation, and refer the
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reader to any standard text for this background.) In order to have the trees
be decidable, yet not completely pinned down, as required by the theories in
question, we were forced to use non-standard integers, to provide non-standard
levels on the trees.

2 The Fan Theorem in Heyting-Valued Models

Fourman and Hyland show that:

Proposition 1. (Fourman-Hyland [6]) In any topological model FANfull holds.

Their proof suggests that if we are looking for models in which some form of
the fan theorem fails we need to “delete points”. This was done in [6], section
4, where they consider K(T ), the coperfect open sets of a topological space T .
This can be viewed as the equivalence classes of the open sets of T , under which
an open set is identified with its smallest coperfect superset. In this setting,
removing a point from an open set does not change the set.

Definition 1. A Heyting algebara is connected if A ∨ B = 	 and A ∧ B = ⊥
implies that either A = 	 or A = ⊥.
Let Ω be K([0, 1]× [0, 1]). It is easy to see that Ω is connected.

Proposition 2. If H is a connected Heyting algebra, then H � FANΠ0
1
.

Proof. Suppose H � “B is a Π0
1 -bar, given say by S : u ∈ B iff ∀n ∈ N (u, n) ∈

S.” Since H � “S is decidable,” for any u ∈ 2∗ and n ∈ N,

H � “(u, n) ∈ S ∨ (u, n) �∈ S.”

By the connectedness of H either H � “(u, n) ∈ S” or H � “(u, n) �∈ S.” So
define a set B̃ ⊂ 2∗ in the metatheory by

u ∈ B̃ ⇐⇒ ∀n ∈ N H � “(u, n) ∈ S.”

B̃ is itself a bar: for let α ∈ 2N be arbitrary. If αn /∈ B̃ for all n ∈ N then for all
n there exist in such that �(αn, in) ∈ B� = ⊥. Thus

�∀m ∈ N (αn,m) ∈ B� = ⊥
for any n ∈ N, and therefore

�∃n ∈ N∀m ∈ N (αn,m) ∈ B� = ⊥ ;

a contradiction to B being a bar internally. Hence B̃ is bar externally, and
therefore, working with a classical metatheory (or simply the Fan Theorem), it
is uniform. So there exists N such that for all u ∈ 2N some initial segment of u
is in B̃. Then it is easy to see, that this same N witnesses the uniformity of B
internally.

Corollary 3. FANΠ0
1
does not imply FANfull (over IZF).

Proof. In [6] it shown that Ω �� FANfull.
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3 FANΔ Is Not Provable

We will build a Kripke model, working within ZFC. To construct a bar, it will
be crucial to control what paths exist. This is most easily done with a generic.

Definition 2. Let the forcing partial order P be the set of appropriate labelings
of finitely many nodes from 2∗. A labeling of nodes assigns to each one either
IN, OUT, or ∞, with the following restrictions. Any node labeled IN has no
descendant, the idea being that once a node gets into the eventual bar so are all
of its descendants automatically, so nothing more need be said. Any descendant
of a node labeled OUT must labeled IN or OUT. Finally, for any node labeled
∞, if both children are labeled, then at least one of them must be labeled ∞.

Let G be a generic through the condition that labels 〈〉 with ∞. By straightfor-
ward density arguments, any node labeled OUT by G has a uniform bar above
(resp. below) it all labeled IN, and every node labeled ∞ has a path through it
always labeled ∞, in fact a perfect set of such.

Let B = {α ∈ 2∗| for some n G(α � n) = IN}. B ∈M [G] is the interpretation
σGB of the term σB = {〈p, α̂〉 | for some n p(α � n) = IN}. (As usual, the
function .̂ is the canonical injection of the ambient universe into the terms:
x̂ = {〈∅, ŷ〉 | y ∈ x}.) Because of these latter ∞-paths, B is not a bar. However,
we might reasonably think that if we no longer had access to the distinction
between the OUT and the ∞ nodes, we might no longer be able to build a path
avoiding B. This intuition is confirmed by the next lemma.

Definition 3. The shadow forcing Q is the set of functions from finite subtrees of
2∗ to {IN, OUT} such that any node labeled IN has no descendant. Equivalently,
Q is the sub-p.o. of P beneath the condition labeling 〈〉 with OUT (together with
the condition which labels 〈〉 IN, which has no extension). The canonical projec-
tion projQ of P onto Q replaces all occurrences of ∞ with OUT. The canonical
projection of the terms of P ’s forcing language to those of Q’s, ambiguously also
called projQ, acts by applying projQ to the conditions that appear in the terms,
hereditarily. (Notice that Q term are also P terms.)

Notice that a P -filter projects to a Q-filter. If G is a generic P -filter, then
projQ(G) will not be Q-generic, because in Q the terminal conditions are dense.
Still, projQ(G) induces an interpretation σprojQ(G) of the terms σ of Q. These
interpretations are in M [G], as they are easily definable from σ and G; alterna-
tively, σprojQ(G) = (proj−1′′

Q σ)G.

For any P -filter G, projQ(σB)
projQ(G) = B: the induced interpretation of the

projection of B is just B itself. Effectively, B as a P -term is already a Q-term.

Proposition 4. If σ is a Q-term and p �P “proj−1′′
Q σ is an infinite branch

through 2∗,” then p �P “proj−1′′
Q σ goes through σB .”

Proof. By standard forcing technology, it suffices to extend p to some condition
forcing “proj−1′′

Q σ goes through σB,” as then it will be dense beneath p to force
as much, and so will happen generically.
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First extend p so that every sequence in 2∗ of length 2n−1 for some n either
is labeled OUT or ∞ or has a proper initial segment labeled IN. Then extend
again by adjoining both children to all nodes of length 2n−1, and labeling them
∞ whenever possible (otherwise IN or OUT). For a technical reason soon to
become clear, we must extend yet again. This time have the domain include all
length k descendants of the length n nodes not labeled IN, and label them so
that every length n node labeled ∞ has a unique descendant of length k labeled
∞, and, most importantly, for each pair of nodes α and β of length k labeled
∞, there is some i with α(i) = 1 and β(i) = 0. One way of doing this is to let s
be the number of nodes of length n labeled ∞, to let k be n + s, and to build
the ∞-labeled descendant of the jth such node by adjoining to it j − 1 0’s, a 1,
and then s− j 0’s, all other descendants of length k being labeled OUT.

Extend one last time to q � proj−1′′
Q σ(k̂) = α̂ for some fixed α, where as usual

x̂ is the standard term for the internalization of the set x. Moreover, q should
force the equality in the strong sense that for each j < k there is a term τ and
a condition r ≥ q with 〈r, τ〉 ∈ proj−1′′

Q σ and q � τ = 〈ĵ, α̂(ĵ)〉; even further, if
α(j) = 1 then q forces a particular element to be in τ ’s second component.

If q labels some initial segment of α IN then we’re done.
If q labels α OUT then it is dense beneath q that all descendants of α of some

fixed length are labeled IN, and again we’re done.
If q labels α ∞ then let qalt be identical to q except that all descendants of

α � n labeled ∞ by q are labeled OUT by qalt. Observe first that qalt extends p.
Then note that, because projQ(qalt) = projQ(q), the strong forcing facts posited
of q hold for qalt as well: for the same τ and j as above, qalt � τ ∈ proj−1′′

Q σ and

qalt � “τ is an ordered pair with first component ĵ,” and if q forced τ ’s second
component to be non-empty, qalt also forces it to be non-empty, containing the
same term as for q. The difference between q and qalt, from σ’s point of view, is
that qalt has more extensions than q: there are conditions extending qalt which
bar the tree beneath α, which is not so for q. That means that it is possible
for extensions of qalt to force sets into Q-terms that no extension of q could.
In the case of proj−1′′

Q σ(k̂), though, such opportunities are limited. That term
is already forced by p to be a function with domain k; for each j < k there is
already a fixed term forced to stand for 〈j, (proj−1′′

Q σ(k̂))(j)〉; if that function
value at j was forced by q to be 1 then it must retain a member and so is also
forced by qalt to be 1. The only change possible is that something formerly forced
to be empty (i.e. be 0) could now be forced by some extension to have an element

(i.e. be 1). Recall, though, the construction of q on level k: if proj−1′′
Q σ(k̂) is ever

forced by some r ≤ qalt to be some β �= α by flipping some 0’s to 1’s, by α’s
distinguished 1 r cannot label β ∞. So r can be extended so that all extensions
of β of a certain length are labeled IN, forcing proj−1′′

Q σ to hit σB. Of course,

any extension of qalt forcing proj−1′′
Q σ(k̂) to be α works the same way as such

an r does, since qalt already labels α OUT. In either case we have an extension
of p forcing proj−1′′

Q σ go through σB .

Even though we have just seen that B is a bar relative to the Q-paths, we will
perhaps surprisingly have occasion to consider weaker situations, where B is
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larger and hence even easier to hit. The case of interest is if we were to change
some ∞’s in G to OUTs, thereby allowing uniform bars above those nodes.
Notice that if α’s sibling is not labeled ∞, then α’s label could not consistently
be changed from∞, as then α’s parent, labeled∞, would then have both children
not labeled ∞. Such considerations do not apply when α = 〈〉.
Definition 4. H is a legal weakening of G if H can be constructed by choosing
finitely many nodes labeled∞ by G, changing those labels (to either IN or OUT),
also changing the labeling of finitely many descendants of those nodes from ∞
or OUT to OUT or IN in such a way that each node labeled OUT has a uniform
bar above it labeled IN, and then eliminating all descendants of nodes labeled IN.
Furthermore, this must be done in such a manner that H is a filter through P
(avoiding, for instance, the problem posed just before this definition).

Notice that the difference between H and G can be summarized in one condition
p, which contains the new bars, all labeled IN, and all of their ancestors. Hence
we use the notation Gp to stand for this H : to build Gp, make the minimal
change to each condition in G in order to be consistent with p.

Lemma 5. If Gp is a legal weakening of G then Gp is generic through p.

Remark 6. Notice that if p labels the empty sequence IN or OUT then p = Gp
is a terminal condition in P , trivially satisfying the lemma.

Proof. Let D be dense beneath p. Notice that G � dom(p) is a condition in
P contained in G. It is not hard to define the notion of projection beneath p,
projp, by making the minimal changes in a condition necessary to be compatible
with p. We claim that proj−1′′

p D is dense beneath G � dom(p). To see this,
let q ≤ G � dom(p). Extend projp(q) to r ∈ D. The only way r can extend
projp(q) is by labeling extensions α of nodes which are unchanged by projp: if
α ∈ dom(r)\dom(projp(q)) then, for α � n ∈ dom(q), q(α � n) = projp(q)(α �
n). Extend q to qr by labeling those same extensions the same way: for α ∈
dom(r)\dom(projp(q)) qr(α) = r(α). We have that projp(qr) = r, hence qr ∈
proj−1′′

p D. So proj−1′′
p D is dense beneath G � dom(p), hence contains a member

of G, say q. Then projp(q) is in both D and Gp.

We can now start to describe the ultimate Kripke model. Recall that G is generic
for P over M and labels the empty sequence with∞. The bottom node ⊥ of the
Kripke model consists of the Q-terms, with membership (not equality!) as inter-
preted by projQ(G). Let N be an ultrapower of M [G] using any non-principal
ultrafilter on ω, with elementary embedding f : M [G] → N . This necessarily
produces non-standard integers. Let H be the set of legal weakenings of f(G),
as defined in N , which induce the same B on the standard levels of 2∗, which
restriction is definable only in M [G]. That is, any standard node labeled∞ by G
can only be changed to OUT by the legal weakening. H will index the successors
of ⊥. At the node indexed by f(G)p, the universe will be the Q-terms of N as
interpreted by projQ(f(G)p). Regarding the embeddings from ⊥, for a Q-term
σ ∈M , f(σ) is an f(Q)-term in N , so send σ to f(σ). If f(G)p is a terminal con-
dition in P , then the node indexed by f(G)p is terminal in the Kripke ordering.
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Else iterate. That is, suppose f(G)p is non-terminal. The structure at its node
can be built inN . As an ultrapower ofM [G], N internally looks like f(M)[f(G)];
internally, f(G) is f(P )-generic over the ground model f(M). The structure at
node f(G)p could be built in f(M)[f(G)p], where, by the previous lemma, f(G)p
is generic through f(P ), and also non-terminal. Hence the construction just de-
scribed, using an ultrapower and legal weakenings to get additional nodes, can be
performed in f(M)[f(G)p] just as above. Continue through ω-many levels. We
will ambiguously use f to stand for any of the elementary embeddings, includ-
ing compositions of such (making f a sort-of polymorhpic transition function).
Notice that the construction relativizes: the Kripke structure from node f(G)p
onwards is definable in f(M)[f(G)p] just as the entire structure is definable in
M [G].

This defines a Kripke structure interpreting membership. Equality at any node
can now be defined as extensional equality beyond that node in this structure,
inductively on the ranks of the terms, even though the model is not well-founded,
thanks to the elementarity present. That is, working at ⊥, suppose σ and τ are
terms of rank at most α, and we have defined equality at ⊥ for all terms of rank
less than α. Moreover, suppose (strengthening the inductive assumption here)
that this definability was forced in M by the empty condition ∅. At node f(G)p
the structure is definable over f(M)[f(G)p], and, by elementarity, in f(M),
∅ � “Equality in the Kripke model is unambiguously definable for all terms of
rank less that f(α).” So at that node we can see whether there is a witness to
f(σ) and f(τ) being unequal. If there is such a witness at any node f(G)p, then
σ and τ are unequal at ⊥, else they are equal at ⊥. This extends the definability
of equality to all terms of rank α. Hence inductively equality is definable for all
terms.

Proposition 7. ⊥ �� FANΔ.

Proof. It is immediate that B is a bar: any node is internally of the form
f(M)[f(G)p]; by the lemma, f(G)p is always f(P )-generic; by the proposition,
no path given by a Q-term can avoid the B as given by an f(P )-generic. More-
over, B is decidable, as f(G)p agrees with G on the standard part of 2∗, the only
part that exists at ⊥, and that argument relativizes to all nodes. However, B
is not uniform at any non-terminal node, since f(G)p, when non-terminal, has
labels of ∞ at every level.

What remains to show is that our model satisfies IZF. In order to do this, we will
need to get a handle on internal truth in the model. This is actually unnecessary
for most of the IZF axioms, but for Separation in particular we will have to deal
with truth in the model. When forcing, this is done via the forcing and truth
lemmas: M [G] |= φ iff for some p ∈ G p � φ, where � is definable in M . Since
our Kripke model is built in M [G], statements about it are statements within
M [G], and so are forced by conditions in G. The problem is that the Kripke
model internally does not have access to G, but only to B. In detail, Separation
for M [G] is proven as follows: given φ and σ, it suffices to consider {〈q, τ〉 | for
some 〈p, τ〉 ∈ σ q ≤ p and q � φ(τ)}. The problem we face is that that set seems
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not to be in the Kripke model, even if σ is. What we need to show is that if σ
and φ’s parameters are Q-terms then that separating set is given by a Q-term.

Recall that projQ operates by replacing all occurrences of ∞ by OUT.

Definition 5. p ∼ p′ if projQ(p) = projQ(p
′).

Definition 6. p �∗ φ, for φ in the language of the Kripke model, i.e. when φ’s
parameters are Q-terms, inductively on φ :

– p �∗ σ ∈ τ if for some 〈q, ρ〉 ∈ τ q ≥Q projQ(p) and p �∗ σ = ρ.
– p �∗ σ = τ if for all p′′ ≤P p′ ∼ p and 〈q, ρ〉 ∈ σ if projQ(p

′′) ≤Q q then
there is a p′′′ ≤P p′′ such that p′′′ �∗ ρ ∈ τ , and symmetrically.

– p �∗ φ ∧ θ if p �∗ φ and p �∗ θ.
– p �∗ φ ∨ θ if p �∗ φ or p �∗ θ.
– p �∗ φ→ θ if for all p′′ ≤P p′ ∼ p if p′′ �∗ φ then there is a p′′′ ≤P p′′ such

that p′′′ �∗ θ.
– p �∗ ∃x φ(x) if for some Q-term σ p �∗ φ(σ).
– p �∗ ∀x φ(x) if for all p′′ ≤P p′ ∼ p and Q-term σ there is a p′′′ ≤P p′′ such

that p′′′ �∗ φ(σ).

Lemma 8. If p ∼ p′ then p �∗ φ iff p′ �∗ φ.

Proof. For the cases ∈,=,→, and ∀, that is built right into the definition of �∗.
The other cases are a trivial induction.

Lemma 9. If q ≤P p �∗ φ then q �∗ φ.

Proof. Inductively on φ. For ∈, use that projQ is monotone. The cases ∧,∨, and
∃ are trivial inductions. For the remaining cases, suppose q′′ ≤P q′ ∼ q ≤P p.
Then q′′ ≤P q′ � dom(p) ∼ p, and use that p �∗ φ.

Proposition 10. ⊥ |= φ iff for some p ∈ G p �∗ φ.

Proof. Inductively on φ. We give only a typical case, equality.
Suppose G ; p �∗ σ = τ . By taking p′ equal to p in the definition of �∗,

for every member ρ of either σ or τ , it is dense to ∗-force ρ to be in the other
set. By the genericity of G some such p′′′ will be in G, and so inductively ρ will
end up in the other set. This shows that σ and τ have the same members at ⊥.
Regarding a future node f(G)p′′ , because f(G)p′′ is a legal weakening of f(G),
p′′ � dom(p) ∼ p, so again it is dense for any member of σ or τ to be forced into
the other, so they have the same members at node f(G)p′′ . Hence ⊥ �∗ σ = τ.

Conversely, suppose for all p ∈ G p ��∗ σ = τ. That means there are p′′ ≤P
p′ ∼ p and ρ forced by p′′ into σ (without loss of generality), but p′′ has no
extension ∗-forcing ρ into τ . For every natural number n the set Dn = {q | for
some k > n dom(q) ⊆ 2k and all binary sequences of length k either are labeled
∞ by q or some initial segment is labeled IN by q} is dense. Hence cofinally
many levels of G are in D0. Observe that if q is in D0 ∩G and q′ ∼ q then any
extension of q′ can be extended again to induce a legal weakening of G. In N , by
overspill choose p ∈ f(G) to be in f(D0). Choose p′′ ≤P p′ ∼ p and ρ as given
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by the case hypothesis. Extend p′′ to p′′′ so that f(G)p′′′ is a legal weakening of
f(G). Since p′′′ has no extension ∗-forcing ρ into τ , inductively at node f(G)p′′′

ρ is not a member of τ . Hence ⊥ �|= σ = τ.

Theorem 11. ⊥ |= IZF

Proof. Most axioms are easy. For ε-Induction, use the elementarity of the tran-
sition functions f . For Separation, given φ and σ, let Sepφ,σ be {〈projQ(p), τ〉 |
for some 〈q, τ〉 ∈ σ with p ≤ q we have p �∗ φ(σ)}. By lemmas 8 and 10, this
works.

4 FANΔ Does Not Imply FANc

We will need a tree similar to that of the last proof. In fact, we will need two
trees: the c−bar C, and the decidable set C′ from which C is defined. (Both can
be viewed as 2∗ with labels or as subtrees of 2∗.) Mostly we will focus on C.
Because FANc refers to eventual membership in a tree, the difference between
IN and OUT nodes is no longer relevant: the bar is uniform beneath any OUT
node. So we can describe the forcing in terms similar to those before, and with
some simplifications introduced. The forcing partial order P will be the set of
appropriate labelings of finitely many nodes from 2∗. A labeling of nodes assigns
to each one either IN or ∞, with the following restrictions. Any node labeled
IN has no descendant, the idea being that once a node gets into the eventual
bar so are all of its descendants automatically, so nothing more need be said.
For any node labeled ∞, if both children are labeled, then at least one of them
must be labeled∞. Let G be P-generic through the condition labeling the empty
sequence with ∞.

As before, we will need to look at weaker trees, ones with bigger bars.

Definition 7. H is a legal weakening of G if H can be constructed by choosing
finitely many nodes labeled ∞ by G, whose siblings are also labeled ∞ by G, and
changing those labels to IN and eliminating all descendants.

As before, each legal weakening H can be summarized by one forcing condition
p, which consists of those nodes changed by H and their ancestors, labeled as in
G. H is then the set of conditions in G each minimally changed to be consistent
with p. Hence we refer to H as Gp.

Lemma 12. If Gp is a legal weakening of G then Gp is generic through p.

Proof. As in the corresponding lemma in the previous section.

Definition 8. Terms are defined inductively (through the ordinals) as sets of
the form {〈Bi, σi〉 | i ∈ I}, where I is any index set, σi a term, and Bi a finite
set of truth values. A truth value is a symbol of the form b+ or b′ or ¬b′, for
b ∈ 2∗ a finite binary sequence.
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Definition 9. Let C be the term {〈{b+}, b̂〉 | b ∈ 2∗}, and C′ be {〈{b′}, b̂〉 |
b ∈ 2∗}.

In our final model, (the interpretation of) C will be the c-bar induced by (the
interpretation of) C′, and C will not be uniform, thereby falsifying FANc. Fur-
thermore, we will show that FANΔ holds in this model.

We can now start to describe the ultimate Kripke model. Recall that G is
generic for P over M and labels the empty sequence with ∞. The bottom node
⊥ of the Kripke model consists of the terms. At ⊥, b+ counts as true iff G(b)
= IN, b′ always counts as true, and ¬b′ never counts as true. Later nodes will
have different ways of counting the various literals as true. At any node, for
σ = {〈Bi, σi〉 | i ∈ I}, if each member of some Bi counts as true, then at that
node σi ∈ σ. This induces a notion of extensional equality among the terms. One
way of viewing this is at any node to remove from a term σ any pair 〈Bi, σi〉 if
some member of Bi is not true at that node. Then each remaining 〈Bi, σi〉 can
be replaced by σi. Equality is then as given by the Axiom of Extensionality as
interpreted in the model.

As for what the other nodes in the model are, there are two different kinds.
As in the last section, let N be an ultrapower of M [G] using any non-principal
ultrafilter on ω, with elementary embedding f : M [G] → N . This necessarily
produces non-standard integers. In N , any forcing condition p which induces a
legal weakening of f(G) will index a successor node to ⊥. At the node indexed by
p, the universe will be the terms of N as interpreted by f(G)p. That is, b

+ is true
if f(G)p(b) = IN, b′ is always true, and ¬b′ never. Regarding the embeddings
from ⊥, for a term σ ∈M , f(σ) is a term in N , so send σ to f(σ). In addition,
definably over M [G], any non-standard c ∈ 2∗ with f(G)(c) =∞ also indexes a
node. At such a node c, b′ counts as true iff b �= c, ¬b′ counts as true iff b = c,
and b+ counts as true iff b �⊆ c (b is not an initial segment of c). Note that at ⊥
any b′ refers only to a standard b; for some b′ to be declared false at a later node
c, b would have to equal c, and c indexes a node only if c is non-standard. Hence
there is no conflict with the Kripke structure: once b′ is deemed true, it remains
true. Similarly with b+: Gp is a fattening of G. Hence membership, being based
on finitely many truth values, is monotone.

Any node indexed by such a c ∈ 2∗ is terminal in the Kripke ordering. Also,
among nodes of the other kind, there is one trivial condition p, the one with
p(〈〉) = IN. This is also a terminal node, where each b+ and each b′ is true. At
any other node, iterate. That is, suppose p is not the preceding condition. The
model at p can be built in N . As an ultrapower of M [G], N internally looks
like f(M)[f(G)]. The structure at node p could be built in f(M)[f(G)p], where
f(G)p is generic through f(P ) (and non-trivial). Hence the construction just
described, using an ultrapower and legal weakenings and non-standard binary
strings to get additional nodes, can be performed in f(M)[f(G)p] just as above.
This provides immediate successors to nodes indexed by (non-trivial) p’s. Iterate
ω-many times.

The picture is that at ⊥ C looks like G, that is, those nodes G assigns to be
IN. This tree gets fatter at later nodes that are legal weakenings. At terminal
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nodes c, C is everything but the branch up to c. At most nodes C′ looks like
everything; at node c, where c is non-standard relative to its predecessor, we find
the one thing not in C′, namely c.

It is easy to see that C is the c−set induced by C′: once b is forced into C,
none of its descendants index terminal nodes, so no descendant is forced out of
C′; similarly, if b is not forced into C, say at node p, then Gp(b) =∞, and in N
some non-standard extension c of b will also be labeled ∞ by f(G)p, and that c
will index a node at which c is not in C′. Clearly, C is not uniform, and C′ is
decidable.

What remains to show is that C is bar, that FANΔ holds, and that IZF holds.

Lemma 13. ⊥ |= C is a bar.

Proof. Suppose σ is forced to be an infinite binary path at some node. If that
node is a terminal node, C contains cofinitely many members of 2∗, and so
certainly intersects σ. Else without loss of generality we can assume the node
is ⊥. Then for some p ∈ G p � “⊥ |= σ is an infinite binary path.” If it is
not dense beneath p to force the standard part of σ (that is, σ applied to the
standard integers) to be in the ground model, then extensions q and r of p force
incompatible facts about σ. The only incompatible facts about σ are of the form
b�0 ∈ σ and b�1 ∈ σ. The positive parts of q and r (that is, q−1(IN) and
r−1(IN)) induce a legal weakening of G. That is, there is a canonical condition
inpart(q, r), with domain dom(q) ∪ dom(r), that returns IN on any node that
either q or r returns IN on, as well as on any node if inpart(q, r) returns IN on
both children, else OUT. Because terms use only positive (i.e. IN) information,
at the node f(G)inpart(q,r), both b�0 and b�1 are in σ. (More coarsely and
perhaps more simply, at the node induced by the trivial condition sending the
empty sequence to IN, the same conclusion holds for the same reason.) Hence
⊥ could not have forced σ to be a path in the first place. Therefore p forces σ
on the standard binary tree to be in the ground model. It is easy to see that
generically G labels some node in σ IN.

Lemma 14. ⊥ |= FANΔ

Proof. If a set of nodes B is forced by p to be decidable, then no extensions of p
can force incompatible facts about B. Hence B is in the ground model. If B were
not a bar in the ground model, there would be a ground model path missing B.
This path would also be in the Kripke model. Hence B is a bar in the ground
model, which is taken to be classical, so B is uniform.

Regarding getting IZF to be true, as above, the problem is that truth in the
Kripke model is on the surface determined by forcing conditions in the ground
model, to which the Kripke model has no access. The essence is to capture truth
at a node using those truth values that are allowed in the building of terms.

Definition 10. For a forcing condition p, Bp = {b+ | for some initial segment
c of b p(c) = IN}. For a set of truth values B, B+ = B ∩ {b+ | b ∈ 2∗}. Also, B
is positive if B contains no truth value of the form ¬b′.
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Definition 11. 1. ¬b′ �∗ B iff c+ ∈ B → c+ �⊆ b′, c′ ∈ B → c �= b, and
¬c′ ∈ B → c = b.

2. σ¬b
′
= {σ¬b′i | for some 〈Bi, σi〉 ∈ σ ¬b′ �∗ Bi}.

3. For φ(σ1, ...σn) in the language of the Kripke model, φ¬b
′
= φ(σ¬b

′
1 , ...σ¬b

′
n ).

4. ¬b′ �∗ φ, for φ in the language of the Kripke model, if φ¬b
′
is true (i.e. in

V .) Note that φ¬b
′
is a formula with set parameters.

Definition 12. q ≤W p (q is a weakening of p as conditions) if for b ∈ dom(p)
either p(b) =∞ or for some initial segment c of b q(c) = IN.

The idea behind this definition is the q may change some ∞’s to IN’s, as well
as add other stuff (extend the domain). Notice that ≤W is a partial order, and
inpart(p, q), from lemma 14, is the glb of p and q.

Definition 13. p �∗ φ, for φ in the language of the Kripke model, i.e. when φ’s
parameters are terms, inductively on φ :

– p �∗ σ ∈ τ if for some 〈Bi, τi〉 ∈ τ with Bi positive, B+
i ⊆ Bp and p �∗

σ = τi.
– p �∗ σ = τ if

i) for all 〈Bi, σi〉 ∈ σ (resp. τ) and q ≤W p if Bi is positive and B+
i ⊆ Bq

then there is an r ≤ q such that r �∗ σi ∈ τ (resp. σ), and
ii) for all b �∈ dom(p), if for no initial segment c of b is c+ in Bp, then
¬b′ �∗ σ = τ .

– p �∗ φ ∧ θ if p �∗ φ and p �∗ θ.
– p �∗ φ ∨ θ if p �∗ φ or p �∗ θ.
– p �∗ φ→ θ if

i) for all q ≤W p if q �∗ φ then there is an r ≤ q such that r �∗ θ, and
ii) for all b �∈ dom(p), if for no initial segment c of b is c+ in Bp, then
¬b′ �∗ φ→ θ.

– p �∗ ∃x φ(x) if for some term σ p �∗ φ(σ).
– p �∗ ∀x φ(x) if

i) for all terms σ and q ≤W p there is an r ≤ q such that r �∗ φ(σ), and
ii) for all b �∈ dom(p), if for no initial segment c of b is c+ in Bp, then
¬b′ �∗ ∀x φ(x).

Lemma 15. If q ≤W p �∗ φ then q �∗ φ, and ⊥ |= φ iff for some p ∈ G p �∗ φ.

Lemma 16. ⊥ |= IZF

Proof. As above, most of the axioms have soft proofs. For Separation, given φ and
σ, let Sepφ,σ be {〈B, τ〉 | for some 〈B′, τ〉 ∈ σ with B ⊇ B′ either B = Bp � φ(σ)
or (¬b′ ∈ B and ¬b′ �∗ φ)}. By lemma 15, this works.

5 FANc Does Not Imply FANΠ0
1

Let G be P -generic as above. By convention, we say that if G(α) = IN then G
applied to any extension of α is also IN. Our goal is to hide G a bit better than
before, so FANc remains true, but not too well, so that FANΠ0

1
is false.
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Let N be an ultrapower of M [G] using a non-principal ultrafilter on ω. The
Kripke model has a bottom node ⊥, and the successors of ⊥ are indexed by
the labels 〈n, α〉, where n is a non-standard integer, and α ∈ 2∗ either has
non-standard length or G(α) =∞.

Definition 14. A truth value is a symbol of the form 〈n, α〉, ¬〈n, α〉, or 〈∀n, α〉,
for n a natural number (in the first two cases) and α ∈ 2∗. Admittedly truth
values of the first kind are also used to index nodes; whether truth values or nodes
are intended in any particular case should be clear from the context. Terms are
defined inductively (through the ordinals) as sets of the form {〈Bi, σi〉 | i ∈ I},
where I is any index set, σi a term, and Bi a finite set of truth values.

The sets at ⊥ will be the terms in M . The sets at any other node will be analo-
gous, that is, the terms in whatN thinks is the groundmodel, i.e.

⋃
κ∈ORD f(Mκ).

At ⊥, 〈n, α〉 will always be true, ¬〈n, α〉 always false, and 〈∀n, α〉 true exactly
when G(α) = IN. At node 〈m,β〉, 〈n, α〉 is true exactly when 〈n, α〉 �= 〈m,β〉,
¬〈n, α〉 is true exactly when 〈n, α〉 = 〈m,β〉, and 〈∀n, α〉 true exactly when
α �= β. This interpretation of the truth values induces an interpretation of the
terms at all nodes.

Let Tn be the term {〈{〈n, α〉}, α̂〉 | α ∈ 2∗}. Let C be a term naming the
function that on input n returns Tn. Tn at ⊥ and at 〈m,α〉, m �= n, looks like
the full tree 2∗, and Tn at 〈n, α〉 looks like everything except α. The term for⋂
n C(n) is given by {〈{〈∀n, α〉}, α̂〉 | α ∈ 2∗}, and is interpreted as {α | G(α) =

IN } at ⊥ and 2∗\{α} at 〈n, α〉.
It is clear that Tn is decidable, and so

⋂
n C(n) is on the face of it Π0

1 . So to
show that

⋂
n C(n) is a counter-example to FANΠ0

1
, the next lemma suffices.

Lemma 17. ⊥ � “
⋂
n C(n) is a bar.”

Proof. Let ⊥ |= “Br is a branch through 2∗.” Work beneath a condition forcing
that, so we can assume Br consists of sets of the form 〈Bi, α̂〉, for various α ∈ 2∗.
If the standard part of Br, the part visible at ⊥, is in the ground model M , then
by the genericity of G Br will hit G (i.e. for some α ∈ Br G(α) = IN), which
is how ⊥ interprets

⋂
n C(n). If the standard part of Br were not in M , then

contradictory facts about Br would be forced by different forcing conditions. In
particular, we would have p, q, and α with p � “⊥ |= α�0 ∈ Br” and q � “⊥ |=
α�1 ∈ Br.” That means there are 〈Bp, α̂�0〉 ∈ Br and 〈Bq, α̂�1〉 ∈ Br, with
Bp and Bq consisting only of truth values automatically true at ⊥ save for some
of the form 〈∀n, α〉. But at some node 〈n, α〉 with α non-standard, all of those

latter truth values will be true. Hence 〈n, α〉 |= “α̂�0, α̂�1 ∈ Br, ” so ⊥ could
not force Br to be a path.

In order to finish, we will need to deal with truth at ⊥.

Definition 15. For a forcing condition p, let | p |, the length of p, be the length
of the longest α ∈ dom(p). Let Bp be {〈n, α〉 | n, length(α) ≤| p |} ∪ {〈∀n, α〉 |
length(α) ≤| p | and for some initial segment β of α p(β) = IN}.
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Definition 16. 1. ¬〈n, α〉 �∗ B iff 〈n, α〉 �∈ B, 〈∀n, α〉 �∈ B, and the only
truth value of the form ¬〈m,β〉 in B is ¬〈n, α〉 itself.

2. σ¬〈n,α〉 = {σ¬〈n,α〉i | for some 〈Bi, σi〉 ∈ σ ¬〈n, α〉 �∗ Bi}.
3. For φ(σ1, ...σn) in the language of the Kripke model, that is, with parameters

(displayed) terms, φ¬〈n,α〉 = φ(σ
¬〈n,α〉
1 , ...σ

¬〈n,α〉
n ).

4. ¬〈n, α〉 �∗ φ, for φ in the language of the Kripke model, if φ¬〈n,α〉 is true
(i.e. in V .) Note that φ¬〈n,α〉 is a formula with set parameters.

Definition 17. p �∗ φ, for B a finite set of truth values and φ in the language
of the Kripke model, i.e. when φ’s parameters are terms, inductively on φ :

– p �∗ σ ∈ τ if for some 〈Bi, τi〉 ∈ τ , Bi ⊆ Bp and p �∗ σ = τi.
– p �∗ σ = τ if

i) for all 〈Bi, σi〉 ∈ σ and q ≤ p if Bi ⊆ Bq then there is an r ≤ q such that
r �∗ σi ∈ τ , and symmetrically between σ and τ , and
ii) if n >| p |, and if either length(α) >| p | or for no initial segment β of α
do we have p(β) = IN, then ¬〈n, α〉 �∗ σ = τ .

– p �∗ φ ∧ θ if p �∗ φ and p �∗ θ.
– p �∗ φ ∨ θ if p �∗ φ or p �∗ θ.
– p �∗ φ→ θ if

i) for all q ≤ p if q �∗ φ then there is an r ≤ q such that r �∗ θ, and
ii) if n >| p |, and if either length(α) >| p | or for no initial segment β of α
do we have p(β) = IN, then ¬〈n, α〉 �∗ φ→ θ.

– p �∗ ∃x φ(x) if for some term σ p �∗ φ(σ).
– p �∗ ∀x φ(x) if

i) for all terms σ and q ≤ p there is an r ≤ q such that r �∗ φ(σ), and
ii) if n >| p |, and if either length(α) >| p | or for no initial segment β of α
do we have p(β) = IN, then ¬〈n, α〉 �∗ ∀x φ(x).

Lemma 18. If q ≤ p �∗ φ then q �∗ φ, and ⊥ |= φ iff for some p ∈ G p �∗ φ.

Lemma 19. ⊥ |= IZF

Proof. As before, all of the axioms have soft proofs, save for Separation. Given φ
and σ, let Sepφ,σ be {〈Bi∪Bp, τ〉 | 〈Bi, τ〉 ∈ σ and p �∗ φ(τ)}∪{〈B, τ〉 | for some
¬〈n, α〉 ∈ B and some Bi, 〈Bi, τ〉 ∈ σ, ¬〈n, α〉 �∗ Bi, and ¬〈n, α〉 �∗ φ(τ)}. By
the previous lemma, this works.

Lemma 20. ⊥ |= FANc

Proof. Suppose that at ⊥ we have a decidable set C ⊆ 2∗ inducing a c-bar. We
would like to show that at ⊥ the c-bar is uniform, which means that for some
k C contains every sequence of length at least k (in notation, C ⊇ 2≥k).

Say that α ∈ 2∗ is good if there is a natural number k such that, whenever
n ≥ k and β ⊇ α has length at least k, ¬〈n, β〉 � “C ⊇ 2≥k.” Observe that if
α�0 and α�1 are good then so is α (by taking k sufficiently large). So if the
empty sequence 〈〉 is bad (i.e. not good) then there is a branch Br0 of bad nodes.
For each α ∈ Br0, by the definition of badness, taking k to be the length | α | of
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α, we have some β ⊇ α and n ≥| α | and γ ∈ 2≥k such that ¬〈n, β〉 � “γ �∈ C.”
By choosing α’s of increasing length, we can get infinitely many γ’s of increasing
length, in particular infinitely many distinct γ’s. Hence there is a branch Br1
such that each node in Br1 has infinitely many γ’s as extensions.

That was all in M . Now in N , pick some non-standard α ∈ Br0 such that with
regard to the induced fact that ¬〈n, β〉 � “γ �∈ C, ” γ extends some non-standard
node in Br1. Since β ⊇ α and n ≥| α |, and α is non-standard, 〈n, β〉 indexes a
node in the model. But at ⊥, C induces a c-bar, so ⊥ |= “there is a node δ in
Br1 such that every extension of δ is in C.” This contradicts the choice of γ.

We conclude from this that 〈〉 is good. Fix k witnessing this goodness. It is
worth noting that, by the decidability of C, if α has standard length at least k
then ⊥ |= “α ∈ C.” So all that needs to be checked to show ⊥ |= “C ⊇ 2≥k”
is the finitely many α’s not covered by 〈〉’s goodness. Namely, for those α’s of
length less than k such that G(α) =∞, we need to show that for all non-standard
n 〈n, α〉 |= “C ⊇ 2≥k”. For that, it suffices to show in M that there is a finite n
such that for all m ≥ n ¬〈m,α〉 �∗ “C ⊇ 2≥k”.

Toward that end, suppose not. Then for infinitely many m there is a γ of
length at least k such that ¬〈m,α〉 �∗ “γ �∈ C”. If those γ’s are of bounded
length then one occurs infinitely often. For that fixed γ, by overspill there is a
non-standardm such that ¬〈m,α〉 �∗ “γ �∈ C”. But 〈m,α〉 is a Kripke node, and
that contradicts the decidability of C. Hence there are infinitely many different
γ’s. That means there is a branch Br2 such that every node on Br2 has infinitely
many different γ’s as extensions. Pick a non-standard m such that the induced
γ extends a non-standard node of Br2. But again, at ⊥ C induces a c-bar, so
⊥ |= “there is a node δ in Br2 such that every extension of δ is in C.” This
contradicts the choice of γ.

6 FANΠ0
1
Does Not Imply FANfull

Let G be generic as above. In M [G], the Kripke model will have bottom node ⊥,
and successor nodes labeled by those α ∈ 2∗ with G(α) =∞. To define the full
Kripke model with nodes any partial order 〈P,<〉, at node p ∈ P a term σ is any
function of domain P≥p with σ(q) a set of terms at node q; furthermore, with
transition function fqr for q < r, if τ ∈ σ(q) then fqr(τ) ∈ σ(r); finally, fpq is
extended to σ by restriction: fpq(σ) = σ � P≥q. For the current construction, we
will take a sub-model of the full model by imposing one additional restriction: a
term at any node α other than ⊥ must be in the ground model M .

Let C be the term such that ⊥ |= “β̂ ∈ C” iff for some initial segment β � n
of β G(β � n) = IN, and at node α �= ⊥ α |= “β̂ ∈ C” iff β is not an initial
segment of α.

Lemma 21. ⊥ |= FANΠ0
1

Proof. If ⊥ |= “B ⊆ 2∗ is decidable” then for any β ∈ 2∗ ⊥ |= “β̂ ∈ B” iff

for some node α �= ⊥ α |= “β̂ ∈ B” iff the same holds for all α �= ⊥. Hence
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⊥ |= “B = B̂M” for some set BM ∈M . So if ⊥ |= “Bn is a sequence of decidable
trees,” then that sequence is the image of a sequence of sets from M . Hence their
intersection internally is the image of a set from M . So if

⋂
nBn is internally a

bar, it is the image of a bar, and by the Fan Theorem in M is uniform.

Lemma 22. ⊥ �|= FANfull

Proof. At ⊥, C is not uniform, so it suffices to show ⊥ |= “C is a bar”. If
⊥ |= “P is a path through 2∗” then ⊥ |= “P is decidable”, and as above P is
then the image of a ground model path. Generically, for some β along that path,
G(β) = IN. For that β, ⊥ |= “P goes through β̂ and β̂ ∈ C.”

Lemma 23. ⊥ |= IZF
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Abstract. In Artemov’s Justification Logic, one can make statements
interpreted as “t is evidence for the truth of formula F .” We propose a
variant of this logic in which one can say “I have degree r of confidence
that t is evidence for the truth of formula F .” After defining both an
axiomatic approach and a semantics for this Logic of Uncertain Justifi-
cations, we will prove the usual soundness and completeness theorems.

Keywords: Justification Logic, Epistemic Logic, Proof Theory.

1 Introduction

Although Artemov’s semantics ([1], [2]) for the Logic of Proofs, his first foray
into Justification Logic, make clear its origins in Proof Theory and answering a
question left open by Gödel’s ([11]), the broad applicability of Justification Logic
to nearly in which normal modal logics have application soon became apparent
([3], [5], [6], [7], [8], [20], [21], [23], [22]). In an epistemic context, Justification
Logic takes us from simply �F , “F is known/believed,” to t : F , “Reason t
provides justification for knowledge/belief that F .”

However, not all justifications for belief are equal. One might read about the
president’s policy speech in the New York Times and hear about it from an irate
caller on a radio talk show. Each might provide some degree of justification for
believing that the president was about to undertake a certain change in policy,
but one should put much more credence in the Times than in a random caller.
We can reflect this by noting the degree p to which a piece of evidence t can
serve as justification for the belief that F , which we will notate t :p F .

Note that this does not reflect my degree of belief in F . I might have heard the
same thing from both the irate caller on the radio and from the Times and the
fact that one wouldn’t consider the caller a reliable source on this matter doesn’t
cause one to believe it any less. This distinguishes both our intention and ap-
proach from that of logics dealing with the probability that certain propositions
are true. (See [12] and the many books and papers referenced in its bibliography.)

We will begin with a very short presentation of the basics of Justification
Logic, then present the syntax and a Kripke-style semantics for the Logics of
Uncertain Justifications, followed by a short discussion of some alternatives to
the definitions proposed in the main body of the paper.

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 296–306, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Justification Logic: A Brief Synopsis

Both to orient the reader and to draw a distinction between what is established
and what is new to the present paper, we will begin with a brief overview of the
syntax and semantics of (Basic) Justification Logic J, the explicit counterpart of
the epistemic logic K of belief in the absence of introspection. The presentation
of definitions and results of this section will be drawn from [4], although the
syntax goes back to [2] and the semantics and associated proofs to [9].

The language of J is built out of:

– propositional variables P , Q,. . . (possibly with subscripts)
– justification variables x, y,. . . (possibly with subscripts)
– justification constants c0, c1, c2,. . .

– the propositional constant ⊥
– the logical connective →
– the binary functions · and +, operating on justification terms, and
– an operator of the type 〈term〉 : 〈formula〉, producing formulas.

Justification terms are built up from justification variables and constants by
means of the functions · and +; formulas are built up from propositional variables
and ⊥ using → (with other connectives defined in the standard way), plus the
rule that if t is a justification term and F is a formula, then t : F is a formula.

Intuitively, the formula t : F is to be read as “t represents a justification for
believing F .” The function · represents the believer’s internal application of the
justification of belief in the premise of an implication to the justification of belief
in the implication itself to justify belief in the consequent of that implication.
That is, if s justifies belief in F → G and t justifies belief in F , then s · t justifies
belief in G. The function + combines justifications in the sense that s+t justifies
belief in all the things that s justifies belief in as well as in all the things that t
justifies belief in.

We will treat constants a little later, but the intuition is that constants justify
belief in axiomatically true statements.

Definition 1. The Basic Logic of Justifications J0 consists of the following ax-
iom schemes:

A0. Classical propositional axioms
A1. s : (F → G)→ (t : F → (s · t) : G) (The application axiom scheme)
A2. s : F → (s + t) : F and t : F → (s + t) : F (The monotonicity axiom

schemes)

along with the rule of inference modus ponens.

Although there can be much subtlety in the treatment of constants ([4], [15], [18]
and many others), they will not be central to our discussion and we will simply
extend J0 to J by adding the following rule:
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Definition 2. The Axiom Internalization Rule states that from any axiom A
which is an instance of axiom scheme A0, A1, or A2, for any n ≥ 1 and for any
constants c1, c2, . . . , cn we may infer cn : cn−1 : · · · : c2 : c1 : A.

We will state here only one important syntactic theorem:

Theorem 1. Justification logic J enjoys internalization. That is,

If � F then � t : F for some justification term t.

We now move on to a definition of the standard semantics, due largely to Fitting
([9]), building on concepts from Kripke ([13]) and Mkrytychev ([19]). We follow
[4] very closely here.

Definition 3. A Kripke-Fitting J-Model M = (W,R, E ,�) is a Kripke model
(W,R,�) together with an admissible evidence function E such that E(t, F ) ⊆W
for any justification term t and any J-formula F . Informally, E(t, F ) specifies
the set of possible worlds where t is considered to constitute evidence for the belief
in F .

Any admissible evidence function E must satisfy the following closure
conditions:

– Application: E(s, F → G) ∩ E(t, F ) ⊆ E(s · t, G)
– Monotonicity: E(s, F ) ∪ E(t, F ) ⊆ E(s+ t, F ).

Given our particular treatment of constants, we require further of E that for any
instance A of an axiom scheme A0, A1, or A2, any n ≥ 1, and any justification
constants c1, c2, . . . , cn, E(cn, cn−1 : cn−2 : · · · : c2 : c1 : A) = W .

Given a model M = (W,R, E ,�), we extend the forcing relation � from sen-
tence variables to formulas as follows, for each u ∈W :

1. u � ⊥
2. u � F → G if and only if either u � F or u � G
3. u � t : F if and only if both u ∈ E(t, F ) and v � F for every v with uRv.

Fitting ([9]) proved:

Theorem 2. J is sound and complete for the class of all Kripke-Fitting J-
models.

The canonical model constructed in the standard proof of the completeness the-
orem satisfies two desirable properties:

– The Strong Evidence property: If u ∈ E(t, F ) then u � t : F .
– The Fully Explanatory property: If v � F for every v with uRv, then u � t :

F for some justification term t.

Mkrtychev semantics ([19]) are a predecessor of Kripke-Fitting semantics. Mkr-
tychev J-models are Kripke-Fitting J-models consisting of a single world and
an empty accessibility relation. It turns out that J is also sound and complete
with respect to Mkrtychev J-models, but since the relation R on the singleton
world is empty, the Strong Evidence property is free but the Fully Explanatory
property is impossible unless belief in every formula is justified.
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3 Uncertain Justifications

What I propose as a potentially useful variant of J is the logic of uncertain justi-
fications, wherein we are able to say that “I have at least degree r of confidence
in the reliability of t as evidence for belief in F .” (The reason for the “at least”
will be clear, or at least clearer, shortly.)

3.1 Syntax

The only change necessary in the languagewill be the replacement of the : operator
with a family of operators :r where r is a rational number with 0 < r ≤ 1.

We modify the deductive system as follows:

A0. Classical propositional axioms
A1. s :p (F → G)→ (t :q F → (s · t) :p·q G) (The application axiom scheme)
A2. s :r F → (s + t) :r F and s :r F → (t + s) :r F (The monotonicity axiom

schemes)
A3. s :q F → s :p F where p ≤ q (The confidence weakening axiom)

along with the rule of inference modus ponens and the Axiom Internalization
Rule: from any axiom A which is an instance of axiom scheme A0, A1, A2, or
A3 for any n ≥ 1 and for any justification constants c1, c2, . . . , cn we may infer
cn :1 cn−1 :1 · · · : c2 :1 c1 :1 A.

There are a few things worth noting here:

– The most substantive choice we have made in modifying our rules is to con-
sider degrees of confidence to compound multiplicatively in axiom scheme
A1. This has the advantage of working well with our intuitions about prob-
ability, although it is worth bearing in mind that we are not talking about
the probabilities that various formulas are true, just the degrees to which
certain pieces of evidence can be trusted. Nevertheless, if I have half-reliable
evidence for A → B and independent half-reliable evidence for A, it makes
intuitive sense that the combination would be one-quarter-reliable evidence
for B. Independence is a difficult issue and I will return to it in the conclu-
sion, though I do not promise much by way of resolution.

– The confidence weakening axiom is clearly bound up with the “at least” in
the “I have at least degree r of confidence” interpretation of :r. My moti-
vation for this lies in the following example: If I have either 90% reliable
evidence for A or 80% reliable evidence for B, then I’d certainly like to say
that I have evidence for A or B, but without confidence weakening, we can-
not deduce (s1 :0.9 A ∨ s2 :0.8 B) → t :r (A ∨ B) for any justification term
t and rational number r. In the presence of confidence weakening, we can
deduce (s1 :0.9 A ∨ s2 :0.8 B) → ((c1 · s1) + (c2 · s2)) :0.8 (A ∨ B) (where
c1 :1 A→ A ∨B and c2 :1 B → A ∨B).

– It is conceivable that under some circumstances we would want a broader
Axiom Internalization Rule, allowing us to infer cn :1 cn−1 :rn−1 · · · : c2 :r2
c1 :r1 A for r1, . . . , rn−1 ≤ 1, but I do not see the need for such a rule at this
point.
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We will prove only one theorem before moving on to the semantics.

Theorem 3. The Logic of Uncertain Justifications enjoys internalization. That
is,

If � F then � t :1 F for some justification term t.

Proof. The proof is entirely standard and dates back to some of the earliest
versions of justification logic (e.g. [1]). Proceed by induction on the length of the
derivation. If F is an axiom itself or was deduced by the Axiom Internalization
Rule, then by the Axiom Internalization Rule, c :1 F Otherwise, F was the result
of an application of modus ponens to formulas G → F and G. In this case, we
can assume by our inductive hypothesis that there are justification terms s1 and
s2 such that s1 :1 (G→ F ) and s2 :1 G, which yield (s1 · s2) :1 F .

Note that all internalized deductions enjoy 100% confidence.

3.2 Semantics

While Mkrtychev-Fitting evidence functions E have domain {Terms} ×
{Formulas} and codomain 2W , we could very easily reformulate them to have
domain W×{Terms}×{Formulas} and codomain {0, 1}, with E(u, t, F ) = 1 in
this reformulation if and only if u ∈ E(t, f) in the more traditional formulation.

This slightly altered perspective on evidence functions, seeing them as yes/no
on triples of (world, term, formula), makes the extension to uncertain justifica-
tions almost immediate. We can simply alter the codomain from the two-element
set {0, 1} to downward-closed nonempty subsets of the rational interval [0, 1].

I will explain a little more about the choice of downward-closed nonempty
subsets (i.e. intervals of the form [0, r) or [0, r] for some r ∈ [0, 1]) in Section 4.

Definition 4. A Kripke-Fitting Model with uncertain justificationsM = (W,R,
E ,�) is a Kripke model (W,R,�) together with an admissible evidence func-
tion E such that for each u ∈ W , any justification term t and any formula
F , E(u, t, F ) = [0, r) or [0, r] for some rational number r ∈ [0, 1]. Informally,
E(u, t, F ) specifies the degree of confidence in t as evidence for the belief in F at
world u.

Any admissible evidence function E must satisfy the following conditions:

– Application: {p · q|p ∈ E(u, s, F → G), q ∈ E(u, t, F )} ⊆ E(u, s · t, G)
– Monotonicity: E(u, s, F ) ∪ E(u, t, F ) ⊆ E(u, s+ t, F ).

Given our particular treatment of constants, we require further of E that for
u ∈ W , any instance A of an axiom scheme from among A0, A1, A2, and A3,
any n ≥ 1, and any justification constants c1, c2, . . . , cn, E(u, cn, cn−1 :1 cn−2 :1
· · · : c2 :1 c1 :1 A) = [0, 1].

Given a model M = (W,R, E ,�), we extend the forcing relation � from sen-
tence variables to formulas as follows, for each u ∈W :
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1. u � ⊥
2. u � F → G if and only if either u � F or u � G
3. u � t :r F if and only if both r ∈ E(u, t, F ) and v � F for every v with uRv.

We now state and prove the central theorem of the paper, closely following
Fitting’s proof from [9] as presented in [4].

Theorem 4. JU is sound and complete for Kripke-Fitting models with uncer-
tain justifications.

Proof. Soundness is straightforward. Let us check each of the axioms:

A0. Propositional axioms are valid due to the standard treatment of ⊥ and →
in the semantics.

A1. Application axioms of the form: s :p (F → G) → (t :q F → (s · t) :p·q G).
Assume that u � s :p (F → G) and that u � t :q F . Then we know that:

– p ∈ E(u, s, F → G)
– For each v such that uRv, v � F → G
– q ∈ E(u, t, F )
– For each v such that uRv, v � F .

Because p ∈ E(u, s, F → G) and q ∈ E(u, t, F ), our Application inequality
condition on E guarantees that (p · q) ∈ E(u, s · t, G). And because for each
v such that uRv, v � F → G and v � F , we know that v � G for all such
v as well. Thus, u � (s · t) :p·q G.

A2. Monotonicity axioms of the form: s :r F → (s+t) :r F and s :r F → (t+s) :r
F . Let us treat the first form; the treatment of the second is identical. Let us
assume that u � s :r F . Since we know that r ∈ E(u, s, F ), our Monotonicity
inequality condition on E guarantees that r ∈ E(u, s+ t, F ) as well. And of
course for every v such that uRv, v � F . Thus, u � (s+ t)r : F .

A3. Confidence weakening axioms of the form: s :q F → s :p F where p ≤ q.
If u � s :q F , it is immediate that p ∈ E(u, s, F ) since p ≤ q ∈ E(u, s, F )
and the codomain of E consists of downward-closed intervals. And since
u � s :q F , v � F for any world v with uRv. So u � s :p F as well.

As for the rules of inference, the soundness of modus ponens is immediate from
our treatment of→, but the soundness of the Axiom Internalization Rule requires
a very straightforward induction on n, the :-depth of the instance of the rule.
Only in the base case, n = 1, do we use the fact that axioms are, indeed, valid
in all worlds.

Completeness uses a standard canonical model construction. The canonical
model M = (W,R, E ,�) for JU is defined as follows:

– W is the set of all maximally consistent sets in JU . Tradition urges us to
denote these by capital Greek letters Γ , Δ, etc.

– ΓRΔ iff {F |t :r F ∈ Γ for some justification term t and some r > 0} ⊆ Δ
– E(Γ, t, F ) = {0} ∪ {r|t :r F ∈ Γ}.
– For propositional atom P , Γ � P iff P ∈ Γ , and for all Γ , Γ � ⊥.
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We claim the usual Truth Lemma, that for all formulas F and for all worlds Γ ,
Γ � F if and only if F ∈ Γ .

We prove the Truth Lemma by induction on the construction of F . If F is a
propositional atom or ⊥, the lemma follows from the definition of �. For cases
of the form G1 → G2, it follows from the fact that � respects→. The interesting
case is that when F is of the form t :r G for r > 0.

If t :r G ∈ Γ , then by the definition of R, G ∈ Δ for all Δ such that ΓRΔ. By
induction, Δ � G. Furthermore, since E(Γ, t,G) = {0} ∪ {p|t :p G ∈ Γ}, clearly
r ∈ E(Γ, t,G). Hence, Γ � t :r G.

If t :r G /∈ Γ , then by the definition of E , r /∈ E(Γ, t,G), which immediately
implies that Γ � t :r G.

This finishes the Truth Lemma. We must also prove that E as defined in the
canonical model satisfies the Application and Monotonicity conditions as well as
the condition on constants.

– Application: Let p ∈ E(Γ, s, F → G) and let q ∈ E(Γ, t, F ). We know that s :p
(F → G) ∈ Γ and t :q F ∈ Γ . Since maximally closed sets are deductively
closed, we use the Application Axiom Scheme to conclude that (s · t) :p·q
G ∈ Γ , and thus (p · q) ∈ E(Γ, s · t, G).

– Monotonicity: Let p ∈ E(Γ, s, F ). We know that s :p F ∈ Γ . Again, since
Γ is maximally consistent and hence deductively closed, we may use the
Monotonicity Axiom Scheme to conclude that (s + t) :p F ∈ Γ , and thus
p ∈ E(Γ, s+ t, F ). The case for p ∈ E(Γ, t, F ) is identical.

– The presence of the Axiom Internalization Rule, and thus the presence of all
of its consequences in every maximally consistent set of JU -formulas, guar-
antees that for any axiom A which is an instance of axiom scheme A0, A1,
A2, or A3 for any n ≥ 1 and for any justification constants c1, c2, . . . , cn,
cn :1 cn−1 :1 · · · : c2 :1 c1 :1 A ∈ Γ . Thus, by the definition of E ,
E(u, cn, cn−1 :1 cn−2 :1 · · · : c2 :1 c1 :1 A) = [0, 1].

So we know that our canonical model really is a model for JU .
From here, the argument is entirely standard. Let F not be derivable in JU ,

making {¬F} consistent. Then by Lindenbaum’s Lemma ([10]) we can extend
{¬F} to a maximally consistent set Γ such that ¬F ∈ Γ . Since F /∈ Γ , Γ � F
and so F is not valid in JU .

Just as for the logic J, the canonical model satisfies the Strong Evidence and
Fully Explanatory properties, and the proof is identical to that originating in
[9] as presented in [4]. (The proof involving the Fully Explanatory property uses
the fact that JU enjoys internalization.) Similarly, the deductive system we have
defined is also sound and complete for the Mkrtychev (one-world) version of the
semantics, and again the proof is identical to those found in the above-mentioned
sources.

4 Variations

There are three variants worth mentioning here, of increasing intricacy. (1) We
could extend our degrees of confidence to include real numbers as well as rational
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numbers; (2) we could limit our degrees of confidence to a finite subset of the
rational numbers; (3) we could alter our semantics to assign each justification
to a single rational number rather than to an interval.

The first of these does not merit much discussion in the present paper since
all of the arguments presented above go through without difficulty for the real
numbers, except that an extension of the Lindenbaum Lemma to uncountable
languages would be needed.

4.1 Discrete Degrees of Confidence

The first and most obvious change to the system if we were to move from a
dense set of degrees of confidence to a finite and discrete set would be to the
Application Axiom Scheme. s :p (F → G) → (t :q F → (s · t) :p·q G) makes no
sense if the set of degrees of confidence is not closed under multiplication. The
obvious choice, at least to me, is to replace p · q with min(p, q); “Every chain of
evidence is precisely as strong as its weakest link.”

We could make simplifications to the semantics in this case. Evidence func-
tions could take on a single value for a degree of confidence (this single value
representing the maximum p such that s :p F would be considered true). The
Application condition on evidence functions would need to be changed to reflect
the use of minima rather than products, but this is straightforward.

The great advantage to this approach is that it tames the complexity of de-
termining the satisfiability of JU formulas. I have not yet established an upper
bound on the complexity of the satisfiability problem for JU as defined above,
but in this variation, a slight modification of the usual proof for J ([14], [16])
shows that the complexity stays at the Σp2 -level, the same as for J. (One linear
term becomes quadratic.)

4.2 Single-Valued Semantics

Another variation, one which requires no changes in the syntax, is to let E(u, s, F )
= r instead of letting it be [0, r] or [0, r). Saying “I have 0.8 confidence that this
piece of evidence justifies belief in F” feels much more intuitive to me than saying
“I have every degree of confidence between 0 and 0.8 that this piece of evidence
justifies belief in F.”

However, there is a problem here: Under our chosen deductive system, {s :p
F |p < 0.8}∪{¬s :0.8 F} is consistent. I can have every degree of confidence that
s justifies belief in F up to but not including 0.8. What single number should I
assign to this degree of confidence? The only possible answer is 0.8, but of course
this creates difficulties.

This approach was my initial one, and I was loath to give it up. In fact,
one need not give it up because our axiom system is also sound and complete
for this semantics! However, the proof is quite awkward and inelegant, and this
semantics furthermore has the quite serious flaw that not every consistent set of
formulas has a model.
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However, one can use a version of the Lindenbaum construction with ad-
ditional constraints to show that any finite consistent set of formulas can be
extended to a maximally consistent set of formulas which does happen to have
a model. In brief, if one ever finds that s :p F is consistent with the maximally
consistent set under construction, one also adds the condition, inexpressible in
the language of JU , that for some r ≥ p, s :q F will be in our maximally consis-
tent set if and only if q ≤ r. This has the effect of making sure that all maximally
consistent sets have degrees of confidence living in closed intervals rather than
open intervals.

Part of me still feels that this might have been the correct approach, since
single-valued semantics accord so much better with my intuition than interval-
valued semantics, but the fact that some consistent sets of formulas lack models
persuaded me to present the interval-valued approach as primary.1 There is
clearly room for more investigation here.

4.3 Other Justification Logics

There is not space in this paper to talk with any thoroughness about other logics
of justified belief for which uncertain justification is appropriate, but the obvious
candidate is J4, which is J with the addition of positive introspection. I see no
problem with considering positive introspection a 100% degree of confidence,
so the transition from J4 to J4U would parallel exactly the transition from J
to JU . As far as I can tell, there are no issues related to positive introspection
that differ in this context from the standard context. (See [2], [9], [4] and many
other sources for the relationship of positive introspection to justification logic.)
I suspect, but have not worked out the details, that the same is true of the 5
axiom, negative introspection.

The axiom scheme D which mandates consistent belief ((t : ⊥) → ⊥) is also
unproblematic in this context, although I think that a system without this axiom
scheme might be of more interest, since t :0.005 ⊥ for a compound justification
term t might be acceptable while t :0.9 ⊥ would indicate a serious problem with
one of the components of t. This opens the door to the use of the Logic of
Uncertain Justifications in belief revision.

By contrast, I see the axiom scheme T ((t :r F )→ F ) as incompatible with the
motivation behind uncertain justifications, at least if näıvely extended. If we are
considering some formulas to be only weakly justified, then treating all formulas,
regardless of level of justification, as true strikes me as counterintuitive.

5 Conclusions

As this paper is introducing a new extension of justification logic, there is clearly
much more to be done to explore both the technicalities and potential applica-
tions of this system. Most obvious to me are questions related to the decidability

1 Thanks to several colleagues who consulted with me on which approach to take.
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and complexity of satisfiability, and if this complexity is high (as I would ex-
pect), what can be done to tame it besides limiting to a finite set of degrees of
confidence.

The other central problem is dealing with independence. If a single source in
which one has 50% confidence tells us both that F and F → G, we find that
s :0.5 (F → G) and s :0.5 F together imply only (s · s) :0.25 G, or 25% confidence
that s combined with itself justifies belief in G. Under some circumstances, that
might be appropriate. If s is designating anything I learn from Wikipedia, then
two unrelated pieces of information from Wikipedia might well be independent.
But in other circumstances, the use of some other s to justify belief in F and
F → G would certainly not be independent.

One way around this is to rely on the source only once, for a justification
of F ∧ (F → G). If s :0.5 (F ∧ (F → G)), then there are constants c1, . . . cn
(depending on one’s propositional axiomatization) such that ((c1 · · · · · cn) ·s) :0.5
G. If we “go to the source” only once for all information to be taken from that
source, then conclusions drawn from that source will have the same reliability
as the original facts.

This is just a hint of some of the considerations which would need to be
addressed in a serious treatment of the independence of justifications.
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Abstract. The paper introduces a new kind of models for the logic of
proofs LP, the group justification models. While being an elaboration of
Fitting models, the group justification models are a special case of the
models of general awareness. Soundness and completeness results of LP
with respect to the new semantics are established. The paper also offers
an interpretation of the group models, which pertains to awareness and
group epistemic dynamics.

1 Introduction

Recent developments in justification logic include contributions to what may
be called foundational research. This line of research stems from the fact that
the usual kinds of semantics for justification logic [6,11,13] do not provide a
specific interpretation of justification terms (let us call this ‘the interpretation
problem’). An interesting solution to the interpretation problem are Artemov’s
modular models [5], where terms are interpreted as sets of formulas.

This paper treats the issue along different lines. It offers a solution to the
interpretation problem that utilises the notion of awareness and pertains to in-
formation dynamics as well. From our viewpoint, justification terms describe
epistemic actions within specific groups of agents. As such, these actions result
in alternations of awareness and explicit knowledge of the agents in the group.
Justification formulas [t]F describe outcomes of such actions: the action corre-
sponding to t results in F being explicitly known in the group corresponding to
t. More specifically, justification formulas are seen as instructions for obtaining
universal explicit knowledge in a group of agents.

The connection with awareness has been there for a long time: the Fitting
semantics for justification logic [11] bears a strong resemblance to the semantics
of the logic of general awareness [9].1 The connection with information dynam-
ics stems from the fact that justification operations have an obvious dynamic
flavour. You can see the operations as types of actions that create complex jus-
tifications from simpler ones.

1 This fact has been pointed out many times in the justification logic literature (most
notably in [12]). However, a closer analysis of the connection between these two
branches of epistemic logic remains to be carried out.
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The paper is organised as follows. Section 2 outlines the necessary basics of
justification logic and offers a brief summary of awareness models. Section 3
builds upon the connection between justification models and awareness models.
Group justification models are defined and soundness and completeness results
with respect to LP are established. Section 4 gives an interpretation of the group
justification models.

2 Justification Logic and General Awareness

This section provides background for the main parts of the paper, Sects. 3 and 4.
We shall be dealing with the logic of proofs LP throughout the paper. Hence, the
language and axiom system of LP are described first (2.1). After that, the basics
of Fitting semantics for LP are outlined (2.2). Third, we sketch the essentials of
the semantics of general awareness (2.3).

2.1 LP, Syntactically

Justification logic started as the logic of proofs [1,2] but it soon evolved into a
broader epistemic project [3,4]. However, the original logic of proofs LP keeps
its central position in the justification logic family. We shall begin by describing
its syntax.

The language of justification logic extends the boolean propositional language
by a set of justification terms Tm. These allow to express statements of the form
‘t is a justification of F ’, where t is a justification term and F is a formula. The set
Tm is given by the set of basic terms bTm and a number of operations on terms.
The set bTm contains countably many justification variables x1, . . . , y1, . . . and
constants a1, . . . , b1, . . . (x, y, z etc. are used as metavariables ranging over jus-
tification variables and a, b, c etc. as metavariables ranging over constants).
We shall be working with two binary operations on terms +, · and a unary
operation !. The operations allow to construct structured terms, which in turn
represent complex justifications.

Formally, the sets of terms Tm and formulas Fm of the justification language
are defined as follows:

Tm ::= ti | s+ t | s · t | !t
Fm ::= pi | ¬F | F → G | [t]F

Here, ti belongs to bTm and pi to Φ, a countable set of propositional variables.
[t]F is read ‘t justifies F ’ (or ‘t is a justification of F ’).

Two auxiliary notions will be useful. STm(t) is a set of subterms of t and g(t)
is the intersection of bTm and STm(t), i.e. the set of basic subterms of t.

The operation · (application) corresponds to applying modus ponens: it takes
the justifications s and t and produces a justification s · t such that if [s](F → G)
and [t]F , then [s · t]G. The operation + (sum) corresponds to a monotonic
combination of justifications. Hence, if [s]F , then [s + t]F and [t + s]F . The
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operation ! is a proof-checker (or justification-checker): if t justifies F , then !t
justifies [t]F , i.e. !t justifies the fact that t justifies F .

Axiomatically, the logic LP consists of:

(A1) Classical Propositional tautologies
(A2) Factivity [t]F → F
(A3) Application [s](F → G)→ ([t]F → [s · t]G)
(A4) Sum [s]F → [s+ t]F , [s]F → [t+ s]F
(A5) Checker [t]F → [!t][t]F

To provide justifications of axioms, a constant specification CS is usually intro-
duced. Formally, CS is a function from the set of constants to sets of axioms. If
F ∈ CS(c) for some c, then we say that F has a constant. A CS is axiomatically
appropriate for LP iff it is exactly the instances of axioms (A1) - (A5) that have
constants.

In addition to the axioms we have the following rules:

(R1) Modus ponens If � F and � F → G, then � G
(R2) CS axiom necessitation � [c]F if F is an axiom and

F ∈ CS(c) for some c and
an axiomatically appropriate CS.

If CS is an axiomatically appropriate constant specification, then F is CS-
provable in LP (LP �CS F ) iff it is provable from (A1) - (A5) using (R1) and
(R2), while CS is used in applications of (R2).

2.2 Fitting Models

A Fitting model (called a weak LP model in [11]) for LP is a quadruple

M = (W,R,E, V )

where W is a non-empty set (‘points’ of M), R is a reflexive transitive binary
relation on W , E is a function from W × Tm to 2Fm (the evidence function)
and V is a function from Φ to 2W (a valuation).

The evidence function E obeys the following conditions:

(E1) Application If F → G ∈ E(w, s) and F ∈ E(w, t),
then G ∈ E(w, s · t)

(E2) Monotonicity If Rwv, then E(w, s) ⊆ E(v, s)
(E3) Checker If F ∈ E(w, s), then [s]F ∈ E(w, !s)
(E4) Sum E(w, s) ∪ E(w, t) ⊆ E(w, s+ t)

The truth-conditions of formulas are as follows:

w � p iff w ∈ V (p)
w � ¬F iff w �� F
w � F → G iff w �� F or w � G
w � [t]F iff i) v � F , for all v s.t. Rwv and

ii) F ∈ E(w, t)



310 I. Sedlár

F is valid in M iff F holds at every point of M (M � F ). A Fitting model M
respects a constant specification CS iff CS(c) ⊆ E(w, c) for all w. It is known
[11] that if CS is an axiomatically appropriate constant specification, then F is
CS-provable in LP iff it is valid in every Fitting model respecting CS.

2.3 General Awareness

The logic of general awareness [9] has been introduced to overcome the notorious
problem of logical omniscience. The basic idea is this: to get rid of the fact that
every valid formula is known and that knowledge is closed under consequence,
one has to modify the definition of knowledge as truth in all accessible points.
The logic of general awareness does this by introducing awareness: in order to
know F , the agent has to be aware of F in addition to F being true in every
accessible point.2

An awareness model for n agents is a quadruple

M = (W, {Ri}, {Ai}, V )1≤i≤n

where W and V are as before, Ri is a binary relation on W and Ai is a function
from W to sets of formulas of the awareness language. Relations Ri represent
epistemic accessibility between states w ∈W relative to agents i and are used to
define implicit knowledge. Riwv is usually interpreted as ‘The information that
i has at w is consistent with what holds at v’. Hence, F holds at every v that is
consistent with the information i has at w if and only if i knows F ‘implicitly’.
It is no surprise that implicit knowledge has the omniscience properties, i.e. it
is closed under consequence and every tautology is implicitly known.

But this is not the everyday notion of ‘explicit’ knowledge. More is needed
to formalise explicit knowledge. This is provided by the functions Ai which give
for every w ∈ W a set of formulas of which the agent i is aware at w. Hence,
i is aware of F at w iff F ∈ Ai(w). Explicit knowledge is defined as implicit
knowledge plus awareness: i knows F explicitly at w iff F holds at every v such
that Riwv and F ∈ Ai(w).

It is plain that the properties of explicit knowledge in awareness models de-
pend on the assumed properties of awareness functions. For example, if we allow
for states w such that a tautology is not a member of Ai(w), then not every tau-
tology is explicitly known by i at w. One can avoid closure under consequence
similarly.

3 Group Justification Models

This section is the technical core of the paper. First, we point out a familiar
fact – Fitting models bear a striking resemblance to awareness models and,
consequently, justification formulas [t]F are close to statements about explicit

2 ‘Awareness’ is understood in a somewhat general fashion here. For possible interpre-
tations see [9].



Justifications, Awareness and Epistemic Dynamics 311

knowledge (3.1). Only a minor modification of Fitting models is needed to pro-
vide awareness models for LP - group justification models are introduced (3.2)
and LP is shown to be sound and complete with respect to the group justification
semantics (3.3).

3.1 Justifications and Explicit Knowledge

The similarity of Fitting models to awareness models is striking. It becomes even
more obvious if we replace the evidence function E by a family of functions Es
for every s ∈ Tm. This yields a modified truth-condition for [s]F :

w � [s]F iff i) v � F , for all v s.t. Rwv and
ii) F ∈ Es(w)

The functions Es may be seen as awareness functions and, consequently, terms
s as denoting agents. Hence, [s]F behaves similarly to explicit knowledge in
awareness models: [s]F iff F is known implicitly and s is aware of F .

However, there are two problems. First, if terms are seen as denoting agents,
then complex terms should denote ‘complex agents’. But what are these? Second,
the interpretation of R is a little unclear. If R is an epistemic accessibility relation
and terms s denote agents, ‘whose’ accessibility relation is R? There is no obvious
answer, since R is not linked to a specific term s nor to a specific set of terms.
But there might be a way to dispense with a single R. Perhaps we can assign to
every s its own awareness function as well as its own accessibility relation Rs.

3.2 The Basic Definitions

A small modification of Fitting models yields a special class of awareness models:

Definition 1. A group justification model for the justification language is a
quadruple

M = (W, {Rs}, {As}, V )s∈Tm

where W is a non-empty set, V is a valuation, every Rs is a binary relation on
W such that

– Every Rs is reflexive and transitive
– Rs+t, Rs·t = Rs ∩Rt
– R!t = Rt

and every As is an awareness function such that:

– If F ∈ As(w) and Rswv, then F ∈ As(v)
– If F → G ∈ As(w) and F ∈ At(w), then G ∈ As·t(w)
– If F ∈ As(w), then F ∈ As+t(w) and F ∈ At+s(w)
– If F ∈ At(w), then [t]F ∈ A!t(w)

A group justification model respects a CS iff CS(c) ⊆ Ac(w) for all w.
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Definition 2. Truth of formulas of the justification language in points of group
justification models is defined in the usual way. Just to be sure, here is the clause
for [t]F :

– w � [t]F iff v � F for all v such that Rtwv and F ∈ At(w)

Validity in M (M � F ) and CS-validity are defined in the usual way.

It is plain that group justification models are special cases of awareness models
for Tm as the set of agents. Hence their name. A more detailed interpretation
is provided in Sect. 4.

3.3 Soundness and Completeness of LP

Every Fitting model M = (WM, R,E, VM) can be ‘transformed’ into a group
model MM = (W, {Rs}, {As}, V )s∈Tm:

– WM = W
– VM = V
– R = Rs for every s
– F ∈ As(w) iff F ∈ E(w, s)

(Note that MM is indeed a group justification model, since the relations Rs
defined as above obey the conditions of Def. 1) In a sense, M and MM are the
same model.

Theorem 1. Let CS be an axiomatically appropriate constant specification. If F
is not CS-provable in LP, then there is a group justification model M respecting
CS such that F is not valid in M.

Proof. It is plain that if M respects CS then so does MM. Then it is sufficient
to show that for everyM and MM:

M � F iff MM � F

This is trivial for propositional atoms and boolean combinations of formulas.
The case for [s]F is equally simple: F ∈ E(w, s) may be replaced by F ∈ As(w)
and Rwv by Rswv for every s.

Theorem 2. Let CS be an axiomatically appropriate constant specification. If
F is CS-provable in LP, then M � F for every group justification model M
respecting CS.

Proof. Obvious induction on the length of proofs. The only interesting cases
are the specific justification axioms. (A2) is CS-valid since extended models are
reflexive.

Ad (A3): assume that w � [s](F → G) and w � [t]F . Then F → G holds in
every Rs-accessible point and F holds in every Rt-accessible point. Hence, by
the definition of Rs·t, G holds in every Rs·t-accessible point. Moreover, by the
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definition of As·t, G ∈ As·t(w). Hence, w � [s ·t]G. The proof for the sum axioms
is similar.

Ad (A5): Assume that w � [t]F and w �� [!t][t]F . The latter means that
either i) [t]F �∈ A!t(w), or ii) there is a R!t-accessible point v such that v �� [t]F .
Case i) is ruled out by the assumption that if F ∈ At(w), then [t]F ∈ A!t(w).
Case ii) implies that either iii) F �∈ At(v) or iv) there is a v′ such that Rvv′

and v′ �� F . Case iii) is ruled out by the definition of R!t and the fact that
F ∈ At(w) and Rtwv imply F ∈ At(v). Case iv) is ruled out by the same facts
and the transitivity of Rt.

Hence, every axiom is CS-valid. Consequently, every formula derivable by
(R2) is also CS-valid.

Corollary 1. LP is sound and complete with respect to group justification mod-
els: F is CS-provable in LP iff F is valid in every group justification model
respecting CS.

Proof. Theorems 1 and 2.

Hence, LP is sound and complete with respect to a special class of awareness
models, the group justification models. But the mathematics involved is quite
simple. Group models are rather close to the original Fitting models and, there-
fore, Corollary 1 is not a surprising result. However, considering group models
may be quite useful. They help to explain that several notions pertaining to
group epistemic dynamics are at the heart of justification logic. We expand on
this idea in the following section.

4 An Interpretation of the Group Justification Models

This section outlines an interpretation of group justification models. The inter-
pretation utilises the notion of awareness and notions pertaining to epistemic
dynamics. Basic justification terms are seen as denoting agents and the corre-
sponding justification formulas as claims about explicit knowledge of the agents
(4.1). Complex terms are explained in terms of groups of agents and the link
between the corresponding justification formulas and distributed knowledge is
made explicit (4.2). Next, it is explained that complex terms encode specific
epistemic actions that result in change of awareness in the corresponding groups
(4.3). In general, justification formulas are explained as specific instructions for
obtaining universal explicit knowledge within groups of agents (4.4). The section
concludes by pointing out that the dynamic epistemic interpretation of group
justification models provides a specific angle on epistemic closure principles (4.5).

4.1 Agents, Awareness and Explicit Knowledge

First, basic terms i ∈ bTm may be seen as denoting agents (cf. Sect. 3.1). Hence,
relations Ri for i ∈ bTm are the respective epistemic accessibility relations.
These correspond to implicit knowledge: i knows F implicitly at w iff Riwv
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implies v � F for all v. The sets Ai(w) for i ∈ bTm correspond to awareness
sets of agents i. Hence, i is aware of F at w iff F ∈ Ai(w). Thus, formulas [i]F
for i ∈ bTm correspond to claims pertaining to explicit knowledge: w � [i]F iff
i explicitly knows F at w.

Note that special features of group models imply certain interesting features
of awareness and implicit knowledge. For example, the condition that F ∈ At(w)
and Rtwv imply F ∈ At(v) entails that if an agent is aware of F , then the agent
implicitly knows that she is aware of F .

A simple epistemic scenario might be helpful, cf. Fig. 1. The agent x explicitly

w
F,G,H

v1
F,G,¬H

v2
¬F,¬G,H

v3
F,¬G,¬H

x, y

y

x

Fig. 1. A simple epistemic scenario involving agents x, y. The reflexive arrows are not
drawn. Assume that Ax(w) = Ax(v1) = Ax(v2) = {F → G} and Ay(w) = Ay(v1) =
Ay(v3) = {F}.

knows F → G at w, since F → G holds at w, v1, v2 and, importantly, F → G ∈
Ax(w). Similarly, the agent y explicitly knows F at w since F holds at w, v1, v3
and F ∈ Ay(s).

4.2 Groups and Distributed Knowledge

However, the simple scenario in Fig. 1 contains more information. For example,
observe that [!y][y]F and [x · y]G hold at w. But complex terms, such as !y and
x · y might seem a bit problematic. If terms denote agents, then complex terms
should denote ‘complex agents’. But what are the latter?

By Def. 1, Rx·y = Rx ∩Ry. Hence, the epistemic accessibility relation of the
‘agent’ x · y is Rx ∩ Ry, the intersection of the accessibility relations of x and
y. Note that, in standard epistemic logic, intersections of accessibility relations
of agents in a group are used to define distributed implicit knowledge of the
group [7,8,10]. Therefore, the following interpretation emerges quite naturally.
The formula [x·y]G implies that G is distributed implicit knowledge in the group
{x, y}.

In general, the set g(t) of basic subterms of tmay be seen as the group of agents
corresponding to t. Accordingly, justification formulas [t]F imply information
about distributed knowledge in g(t): [t]F implies that F is distributed knowledge
in g(t).
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There is also a dynamic angle on the matter. Distributed knowledge in a
group may be seen as knowledge that results from ‘information sharing’ within
the group. In our example scenario, relations Rx, Ry are given by the implicit
information available to agents x, y. If the agents share their respective informa-
tion, then no longer Rxwv2 (since the information available to y excludes the
point v2 as possible), nor Rywv3 (since x excludes v3). After sharing their in-
formation, both agents consider only w and v1 as possible. In other words, their
accessibility relations are reduced to Rx ∩Ry.

Hence, Rt for complex t may be seen as the epistemic accessibility relation
of agents in g(t) after a complete sharing of information within g(t). Therefore,
complex terms t, such as x · y, are better not seen as denoting ‘complex agents’,
but as denoting the epistemic state of the agents in g(t) that results from a
specific epistemic action – sharing of implicit information.

However, at least two points need further comment. First, the interpretation
in terms of distributed knowledge does not seem to apply to terms of the form !t.
The reason is that R!t = Rt. However, Rt = Rt∩Rt. Hence, for example, [!y][y]F
may be seen as implying that [y]F is distributed knowledge in the ‘group’ {y}.

Second, the meaning of formulas [t]F is not completely described by the above
interpretation. Note that g(x · y) = g(y · x) but, obviously, [y ·x]G does not hold
at w in our example. The structure matters.

4.3 Dynamics of Information and Awareness

Observe that Ai(w) for i ∈ BTm may be seen as the awareness set of agent
i at w. However, the interpretation of the functions Ax·y and A!y seems a bit
unclear: If complex terms correspond to groups of agents, what are awareness
sets of groups of agents?

However, a simple explanation may be provided. It has been argued that x · y
and !y may be seen as related to specific epistemic actions within {x, y} and {y}
respectively. Now assume that these actions involve not only sharing of implicit
information, but also specific adjustments of awareness sets of agents in the
respective groups. Outputs of these actions are specific awareness sets, common
for every agent in the group.

These outputs are described in Def. 1. For example, the action related to x · y
outputs a set that contains every F ′ such that the awareness set of x contains
F → F ′ and the awareness set of y contains F . Note that the terms x · y and
y · x plainly correspond to different actions. Hence, they might output different
awareness sets. Moreover, observe that the resultant awareness set might not
contain some elements of the sets of x and y. In other words, the action related
to x · y might involve ‘forgetting’.

On the other hand, the action related to x+ y outputs an awareness set that
contains the awareness sets of both x and y unreduced. Hence, this corresponds
to a monotonic ‘awareness gain’. Interestingly, the action related to !y outputs
an ‘introspective’ awareness set. Therefore, the action itself is ‘introspective’: if y
is aware of F , then y ‘becomes aware’ of [y]F after performing the introspective
action related to !y.
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In general, the group epistemic actions related to complex terms make the
respective groups epistemically united. To see this, note that both the relation
Rt and the awareness set given by At for complex t are seen as applying to
the whole group g(t) uniformly. Hence, in a sense, complex terms correspond to
‘group-agents’.

4.4 Terms as Recipes for Explicit Knowledge

Hence, the following picture emerges. Basic terms denote agents and formulas
[i]F for i ∈ BTm may be read in the familiar way as ‘i knows explicitly that F ’.
Complex terms t correspond to specific epistemic actions within the group g(t).
Consequently, formulas [t]F for complex terms t describe hypothetical explicit
knowledge of (all) agents in the group g(t). They may be read as ‘every agent in
g(t) will explicitly know that F , provided that the action corresponding to t takes
place’. In a sense, justification formulas [t]F for complex t provide instructions
for obtaining explicit knowledge of F within g(t).3

The actions corresponding to terms have a twofold nature. First, they involve
sharing of implicit information. Distributed implicit knowledge in a group be-
comes universal implicit knowledge (‘every agent implicitly knows that...’) if the
agents share their implicit information. Second, they involve specific adjustments
of awareness sets of the agents in the group. These adjustments are encoded by
the structure of the respective terms.

4.5 A Note on Closure Principles

The interpretation given above provides a specific perspective on epistemic clo-
sure principles. In standard awareness models, the closure properties of explicit
knowledge are given somewhat arbitrarily by the respective awareness functions.
Group justification models allow for a more natural explanation.

For sake of brevity, let us consider only a single agent a, where ‘a’ is a constant.
Epistemic closure principles of the form

[a]F1 ∧ . . . ∧ [a]Fn → [a]G (1)

(where F1 ∧ . . . ∧ Fn → G is a tautology) are in general not valid in group
justification models. However, dynamic variants of these principles are valid
once knowledge of the corresponding tautologies is assumed.

The simplest example is closure under known implication. The ‘static’ version

([a](F → G) ∧ [a]F )→ [a]G (2)

is, of course, not valid. However, a ‘dynamic variant’ of (2)

([a](F → G) ∧ [a]F )→ [a · a]G (3)

3 The hypothetical reading of [t]F may be applied to cases where t is basic as well:
the action involved is simply the null action ‘do nothing’.
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is valid. To obtain knowledge of G, the agent has to do something: she has to
perform an epistemic action and extend her knowledge dynamically.

Another example is closure under ∧–elimination. This closure principle holds
only for agents that know that the according logical principle holds. In other
words, we have to assume that the agent knows F ∧G→ F . In general:

([a](F ∧G→ F ) ∧ [a](F ∧G))→ [a · a]F (4)

Again, this is a dynamic closure principle.
In general, assume that a knows that F1 ∧ . . . ∧ Fn → G is a tautology, i.e.

[a](F1 ∧ . . . ∧ Fn → G) (5)

Moreover, assume that the agent knows that (5) may be reformulated as a nested
conditional, i.e.

[a] ((F1 ∧ . . . ∧ Fn → G)→ (F1 → (. . . (Fn → G) . . .))) (6)

Then the following general dynamic closure principle holds:

[a]F1 ∧ . . . ∧ [a]Fn → [an+2]G (7)

where a1 = a and an+1 = (an · a).

5 Conclusion

We have defined a new version of models for justification logic, the group justifi-
cation models. These are a simple modification of the usual Fitting models, while
the connection with awareness models of Fagin and Halpern has been made ex-
plicit. In fact, group justification models are a specific case of awareness models.
Next, soundness and completeness results for LP with respect to group justifica-
tion models have been obtained. This simple technical result may be seen as a
step towards a better understanding of the connections between justification logic
and other branches of epistemic logic. Moreover, an interpretation of the group
justification models has been provided. This interpretation explains justification
terms as corresponding to structured epistemic actions within specific groups of
agents. In general, justification formulas [t]F may be seen as instructions for ob-
taining universal explicit knowledge in specific groups of agents. Consequently,
the paper suggests that justification logic absorbs the usual epistemic themes of
awareness, group agency and dynamics in a natural way.
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Normal Forms for Multiple Context-Free

Languages and Displacement Lambek Grammars

Alexey Sorokin

Moscow State University, Faculty of Mechanics and Mathematics

Abstract. We introduce a new grammar formalism, the displacement
context-free grammars, which is equivalent to well-nested multiple
context-free grammars. We generalize the notions of Chomsky and
Greibach normal forms for these grammars and show that every lan-
guage without the empty word generated by a displacement context-free
grammar can be also generated by displacement Lambek grammars.

1 Introduction

It is well-known, that context-free grammars are insufficient for linguistic pur-
poses. They are unable to capture numerous linguistic phenomena (discontinuous
idioms, VP ellipsis, medial extraction, etc.) or, even when they generate correct
sentences, their derivation trees do not represent the syntactic structure in a
proper way. Also, in some sense, it seems unnatural that a particular grammar
formalism generates the language {anbn | n ∈ IN}, but is unable to generate
{anbncn | n ∈ IN}. All that gave birth to different grammar formalisms, such as
multiple context-free grammars (MCFGs)([16], [17]), tree-adjoining grammars
(TAGs) ([15], [19]), coupled context-free grammars ([4]) and many others, which
all generate some context-sensitive languages. They preserve basic properties of
context-free grammars, such as polynomial processing and context-freeness of
the derivation (that means that whether a particular nonterminal does generate
a particular string, doesn’t depend on the position of this nonterminal in the
derivation), but extend their generative power by generalizing the notions of
context, rule and string.

If we regard context-free rules of the form A → B1 . . . Bn from the logical
point of view, they can be understood as instructions of the form “if for every i
from 1 to n a string wi satisfies a condition Bi (which is expressed in the form
Bi �G wi), then their concatenation w1 . . . wn satisfies some predicate A”. In
fact, context-free grammars can be named “the grammars of concatenation”.
So it is interesting to add some other operation, for example, intercalation, and
investigate the properties of the resultant formalism. We take inspiration from
the categorial grammars, where standard Lambek calculus (which is a “logic of
concatenation”) was enriched with the operation of intercalation and its residuals
to obtain the displacement Lambek calculus ([11], [12]). Also our approach is a
generalization of the one used by Pollard in Head Grammars ([14]).

In our work we introduce the displacement context-free grammars. They turn
out to be equivalent to well-nested multiple context-free grammars ([9], [7]).

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 319–334, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Then we prove normal form theorems for the grammars introduced and show
how these normal forms can help us to connect some context-sensitive formalisms
with categorial grammars and Lambek grammars (as was done in [2] and [13] for
context-free grammars and Lambek grammars), proving that every displacement
context-free language can be generated by some displacement Lambek gram-
mar (we prove this result only for 1-displacement context-free grammars and
1-displacement Lambek grammars and give the idea of the proof in a general
case).

2 Preliminaries

Let k be some natural number (possibly zero). We denote by Opk the set
{·,+1, . . . ,+k}. Let N be some ranked set of variables, such that for every
variable its rank is a natural number not greater than k. The notion of rank
is extended from variables to terms, defining inductively rk(α · β) = rk(α) +
rk(β), rk(α +i β) = rk(α) + rk(β) − 1, i ∈ 0, k. We denote by Tmk(N) the set
of terms, built from variables in N with the help of operations in Opk, that do
not contain subterms of rank greater than k.

We write the terms from Tmk(N) in infix notation and assume that all the
connectives from Opk are left-associative. Also we assume that · has greater
priority than all the +i and we will sometimes omit ·-s in terms. For example
AB +1 CD +2 A means ((A · B) +1 (C ·D)) +2 A.

Definition 1. A k-displacement context-free grammar (k-DCFG) is a quadru-
ple G = 〈Σ,N, S, P 〉, where Σ is a finite alphabet, N is a finite ranked set of
nonterminals and Σ ∩N = ∅, S ∈ N is a start symbol such that rk(S) = 0 and
P is a set of rules of the form A → α. Here A is a nonterminal, α is a term
from TmK(Σ ∪ N ∪ ε, 1), where ε is a symbol for the empty word and 1 is a
metalinguistic separator. Neither ε nor 1 belong to Σ ∪N . We set the ranks of
alphabet symbols and ε to zero, and the rank of 1 to 1. For each rule in P the
ranks of its left and right side must coincide.

We denote Σ′ = Σ ∪ 1. For every word w over this alphabet we define its
rank rk(w) as the number of 1-s it contains. For any two words u, v and every
number i not greater than the rank of u we define the operation u +i v which
is merely the result of replacing the i-th separator in u by v. For example,
a1b1cd+1 a1d = aa1db1cd. This operation is extended from words to languages
in a natural way.

Definition 2. For every term α from TmK(Σ∪N ∪ε, 1) the set of words W (α)
generated by α is the smallest set satisfying the following conditions:

1) W (a) = {a}, a ∈ Σ′ ∪ {ε},
2) W (α ∗ β) = W (α) ∗W (β), ∗ ∈ Opk,
3) If (A→ α) is a rule from P , then W (α) ⊆W (A).

It is easy to see that nonterminals of rank i can generate only words of rank i.
For every k-DCFG G = 〈Σ,N, S, P 〉 the language L(G) it generates is W (S).
Below we give some examples of DCFG-s.
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Example 1. For every positive integer i we define i-DCFG Gi = 〈{a, b}, {S, T },
S, Pi〉. Here Pi is the following set of rules (the notation A → α|β stands for
A→ α,A→ β):

S → aT +1a . . .+1 a︸ ︷︷ ︸
i times

| bT +1b . . .+1 b︸ ︷︷ ︸
i times

T → aT +1 1a+2 . . .+i 1a | bT +1 1b+2 . . .+i 1b | 1i

The grammar Gi generates the language {wi+1 | w ∈ {a, b}+}. For example, this
is the derivation of the word (aba)3 in G2: abaabaaba = aba1ba1ba+1 a+1 a =
a(b(a1a1a+11b)+21b)+1a+1a = a((b((a11+11a)+21a)+11b)+21b)+1a+1a =
a((b((aT +11a)+21a)+11b)+21b)+1a+1a ∈ W (a((bT +11b)+21b)+1a+1a) ⊆
W (a((bT +1 1b) +2 1b) +1 a+1 a) ⊆W (aT +1 a+1 a) ⊆W (S).

We will not recall the definition of well-nested multiple context-free grammar,
because it does not play any role in the further, the interested reader may con-
sult [7]. Well-nested MCFG-s were also studied in recent works of Kanazawa
and Salvati ([6], [8]). They generate a proper subclass of multiple context-free
languages and seem to be a reasonable formalization of the informal notion of
“mildly context-sensitive language”([5]).

It is not difficult to see that they are equivalent to k−1-displacement context-
free grammars. Let G be a well-nested k-MCFG, then for every nonterminal B
and every tuple of strings w1, . . . wr we must create a corresponding nonterminal
B′ of a desired k − 1-DCFG such that B(w1, . . . , wr) holds if and only if the
word w11 . . . 1wr belongs to W (B′). It is easy because all well-nested rules can
be modeled using concatenation and intercalation only (also we must be able to
remove superfluous separators, but that is also simulated by intercalation). The
opposite translation is also straightforward.

The main difference between DCFG-s and other similar formalisms is that
it uses only unary predicates (or nonterminals), like context-free grammars do.
Here we follow the Head Grammars [14], where the predicates are also unary. As
we show in the next sections, DCFG-s are also convenient to use the standard
machinery of context-free grammars.

3 Normal Forms for DCFGs

3.1 Chomsky Normal Form

In this section we adapt the notion of Chomsky normal form to DCFG. Also we
introduce the notion of Greibach normal form for 1-DCFG and explain, how it
should be modified for k-DCFG in the case of k > 1.

Definition 3. A DCFG G = 〈Σ,N, S, P 〉 is called direct, if all rules in P have
the form A → a, A → B,A → B ∗ C or A → ε, where a ∈ Σ′, B ∈ N, ∗ ∈ Opk
and C ∈ N .

Proposition 1. Every k-DCFG is equivalent to some direct k-DCFG.
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We want to remove all ε-rules (recall that an ε-rule is a rule of the form A→ ε).

Definition 4. A nonterminal B is called 1-generating if 1i ∈ W (B) for some
natural i. A nonterminal B is called strictly 1-generating if W (B) = {1i} for
some natural i.

Definition 5. A direct DCFG is called disjoint, if it does not contain ε-rules,
every 1-generating nonterminal is also strictly 1-generating and for every i there
is at most one strictly 1-generating nonterminal of rank i.

Lemma 1. Every k-DCFG which does not generate an empty word is equivalent
to some disjoint k-DCFG.

Proof. The proof is analogous to removing ε-rules from a context-free grammar,
but is a bit more complicated. Firstly, we find all 1-generating symbols the same
way we do it for ε-generating symbols in the case of context-free grammars. Then
for every i ≤ k we introduce a new nonterminal Xi and enrich the grammar with
the rules Xi → X1Xi−1, i > 1 and X1 → 1, X0 → ε.

We want to “divide” each 1-generating nonterminal B into two new nonter-
minals: B′, which generates only non-empty words generated by B, and Xrk(B),

which generates only the word 1rk(B). To achieve this goal we replace every rule
A → B ∗ C, ∗ ∈ Opk by the rule A′ → B′ ∗ C′. Also, if C is 1-generating,
we add the rule A′ → B′ ∗ Xrk(C) and if B is 1-generating, we add the rule
A′ → Xrk(B) ∗ C′. It is easy to prove that for every nonterminal B we have
W (B′) = W (B) − 1∗. So we can remove all 1-generating nonterminals except
the Xi-s. If we denote the initial grammar by G = 〈Σ,N, S, P 〉, then for the
resulting grammar G = 〈Σ,N1, S

′, P ′〉 we have W (S′) = W (S)− ε = W (S).
Now all 1-generating symbols are strictly 1-generating and we should remove

ε-generating symbols (in fact, one symbolX0). In the rules of the form A→ BX0

this is easy, but we need some more sophisticated algorithm in the case of the
rules A→ B+iX0. For each nonterminal A we must introduce its “i-th bridge”: a
new nonterminalAi such thatW (Ai) = {w1w2 | w11w2 ∈W (A), rk(w1) = i−1}.
This is done by tracing the position of i-th separator for A in the derivation tree:
for example, if a nonterminal A is of rank 3 and occurs in the rules A→ BC and
A → D +2 E, rk(B) = rk(D) = rk(E) = 2, rk(C) = 1, then we must add the
rules A1 → B1C, A1 → D1 +1E, A2 → B2C, A2 → D+2E1, A3 → BC1, A3 →
D +2 E2. We must also take into account that (Xi)j = Xi−1. After repeating
this procedure k − 1 times (it is also applied to new nonterminals) with every
nonterminal the set N of nonterminals also contains all its bridges.

Now we replace all the rules A → B +i X0 by the rules A → Bi. All this
changes do not affect the language generated by nonterminals, so they do not
affect the language generated by the whole grammar. The lemma is proved.

Since this moment we will assume that for every disjoint k-DCFG its set of
nonterminals contains the symbols X1, . . .Xk, which occur in the left side only
in rules of the form Xi → X1Xi−1 and X1 → 1.

Definition 6. A disjoint k-DCFG is called specialized if the symbols Xj can
occur in the right side only in the rules of the form A→ B ·Xj or A→ Xj · C.
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Proposition 2. Every k-DCFG which does not generate the empty word is
equivalent to some specialized k-DCFG.

Proof. We can assume that the original grammar G = 〈Σ,N, S, P 〉 is already
disjoint. Then for every nonterminal B of rank i > 0, j ≤ i and l ≤ (k − i) +
1 we introduce a new nonterminal Bj,l. We want to augment the grammar with
additional rules so that W (Bj,l) = {w11

lw2 | w11w2 ∈ W (B), rk(w1) = j −
1} (the words in W (Bj,l) are exactly the words in W (B) after replacing the i-th
separator by l consecutive separators). The procedure is analogous to removing
ε-rules, but instead of removing the separator we replace it by l new separators.
For example,Xj,li = Xi+l−1. After repeating this procedure k−1 times with every
nonterminal B the set of nonterminals also contains all the nonterminals Ai,l.

Now we can replace every rule of the form A→ Xi+jB with the pair of rules
A→ Xj−1A

′, A′ → BXi−j (A′-s are different for different rules) and every rule
of the form A → B +j Xi with the rule A → Bi−j+1 (if i = 1 we just add the
rule A → B). So the resulting grammar is specialized and equivalent to initial
grammar.

Definition 7. A k-DCFG grammar G = 〈Σ,N, S, P 〉 is said to be in Chomsky
normal form, when all the rules in P are in one of the following forms (here
X = {Xi | i ≤ k}):
1) A→ B · C,A ∈ N −X, B ∈ N − {S}, C ∈ N − {S},
2) A→ B +j C, j ≤ k,A ∈ N − {S} −X, B ∈ N − {S} −X, C ∈ N − {S} −X,
3) A→ a, A ∈ N − {Xi|i ≤ rk(G)}, a ∈ Σ,
4) S → ε,
5) X1 → 1,
6) Xi → X1 ·Xi−1, i ≥ 2.

Theorem 1. Every k-DCFG grammar G = 〈Σ,N, S, P 〉 is equivalent to some
k-DCFG grammar in Chomsky normal form.

Proof. As in the case of context-free grammars, the case where G generates the
empty word obviously reduces to the case where it does not generate such a word.
Then we can assume that G is specialized. To reduce it to Chomsky normal form
we should only remove the starting nonterminal from the right sides of the rules
and remove all productions of the form A→ B. This is done in exactly the same
way as in the case of context-free grammars. The theorem is proved.

The existence of Chomsky normal form for DCFG allows us to use the obvi-
ous CYK-style algorithm for their processing. For fixed k-DCFG, k > 1, this
algorithm works in time O(n2k+4) in the worst case.

3.2 Greibach Normal Form

Greibach normal form ([3]) is very important for the theory of formal grammars.
It provides a weak lexicalization of the corresponding grammar formalism and
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shows the connection between generative grammars and categorial grammar for-
malisms. For example, Greibach normal form for context-free grammars offers a
natural proof of the fact that every context-free language can be generated by
a basic categorial grammar and, hence, by a Lambek grammar. In this section
we introduce Greibach normal form for k-DCFG and formulate the reduction
theorem. We give a detailed proof for 1-DCFG and draw a sketch of it for k > 1.

Let us concern ourselves only with 1-displacement context-free grammars.
In this case the set of connectives equals Op1 = {·,+1}, so we will omit the
subscript of the intercalation operation and write A + B for A +1 B. Also we
will denote the separated 1-generating nonterminal X1 by X . We assume that
all grammars in this chapter are in Chomsky normal form if the opposite is not
explicitly postulated. To prove the Greibach normal form theorem we need some
auxiliary definitions.

Definition 8. A 1-DCFG G = 〈Σ,N, S, P 〉 is called a fixed-intercalation-
position-1-DCFG(fip-1-DCFG), if for every nonterminal B of rank 1 one of
the following facts holds: 1)W (B)⊆ 1Σ+, 2)W (B)⊆Σ+1Σ+, 3)W (B)⊆Σ+1,
4)W (B) = {1} and B = X.

Proposition 3. Every 1-DCFG is equivalent to some fip-1-DCFG.

Proof. For every nonterminal B �= X of rank 1 we introduce three new nontermi-
nals Bl, Bc, Br, where the subscript shows the position of the separator. Then we
trace this position through the derivation (for example, the rule B → CD in the
case of rk(C) = 1 transforms to rules Bl → ClD,Bc → CcD,Bc → CrD, etc.).

For every fip-1-DCFG we denote by Nl the set of nonterminals generating the
words from 1Σ+. The denotations Nc, Nr are understood in the same way.

Definition 9. A fip-1-DCFG G = 〈Σ,N, S, P 〉 is called central if in the rules
of the form B → C +D either rk(B) = 1 or C ∈ Nc and for all the rules of the
form (B → C ·D) C does not belong to Nl and D does not belong to Nr.

Lemma 2. Every 1-DCFG G = 〈Σ,N, S, P 〉 is equivalent to some central
1-DCFG.

Proof. We may assume that G is already a fip-1-DCFG. For every nonterminal
B ∈ N1

l we introduce a new nonterminal X\B. For every nonterminal D and
every term α, such that the rules B → X ·D and D → α are in P we add a new
rule (X\B)→ α. We add the rule (X\B)→ (X\C) ·D for every rule B → C ·D
and the rule (X\B) → (X\D) · (X\C) for every rule B → C · D . Now we
remove from P all the rules with B in left side and add the rule B → X · (X\B).
For the nonterminals from N1

r the procedure is symmetrical (we introduce new
nonterminals B/X and so on). The equivalence between the grammar built and
the initial grammar follows from the proposition below (here G′ = 〈Σ,N ′, S, P ′〉
is a new grammar):
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Proposition 4
1) For every nonterminal B ∈ N1

l and every word w ∈ Σ+ the word 1w belongs
to the set WG(B) iff w is in the set WG′(X\B).
2) For every nonterminal B ∈ N1

r and every word w ∈ Σ+ the word w1 belongs
to the set WG(B) iff w is in the set WG′(B/X).
3) For every nonterminal B ∈ N WG(B) = WG′(B).

Definition 10. A 1-DCFG is said to be in Greibach normal form if all its rules
have one of the following forms:

1) B → a, where B ∈ N − {X}, a ∈ Σ,
2) B → aD or B → Ca, where B ∈ N − {X}, C ∈ N,D ∈ N, a ∈ Σ,
3) B→CaD,B→CDa or B→aCD, where B ∈ N−{X}, C ∈N,D ∈N, a ∈ Σ,
4) B → C+(Da), B → C+(aD) or B → C+a, where B ∈ N−{X}, C ∈ N−
{X}, D ∈ N, a ∈ Σ,
5) B → CX or B → XD, where B ∈ N, a ∈ Σ,
6) S → ε or X → 1.

Theorem 2. Every 1-DCFG G = 〈Σ,N, S, P 〉 is equivalent to some 1-DCFG
in Greibach normal form.

Proof. We may assume that G is central. We may also assume that every non-
terminal A from the rules A→ a, where a ∈ Σ, does not stand in the left sides
of other rules (we call such nonterminals alphabetical and denote the set of all
alphabetical symbols by NΣ). We use denote a rank of a nonterminal by the su-
perscript(for example, B1), if there is no superscript, then the rank is arbitrary
or is recovered from the context, for the symbols of rank 1 a subscript shows,
whether they belong to the setN1

l , N
1
c orN

1
r . Alphabet letters will be denoted by

symbols a and e, which are in the right side only in the rules A→ a and E → e.
At first we add to N all the nonterminals A\B for B ∈ N −N1

l and B/A for
B ∈ N − N1

r and define a new set P ′ of rules as a minimal set satisfying the
following conditions:

1) For each rule (A→ a) ∈ P the rule (A→ a) belongs to P ′.
2) For all nonterminals A ∈ NΣ and B ∈ N−N1

l the rule B → A(A\B) is in P ′.
For all nonterminals A ∈ NΣ and B ∈ N−N1

r the rule B → (B/A)A is in P ′.
3) For each nonterminal A ∈ NΣ the rules A\A→ ε and A/A→ ε belong to P ′.
4) For each pair of letters a, e and each rule (B0 → CD) ∈ P the rules
(A\B)→ (A\C)(D/E)e and (B/A)→ e(E\C)(D/A) belong to P ′.
5) For each pair of letters a, e and each rule (B1 → C1D) ∈ P the rules
(A\B)→ (A\C)e(E\D) and (B/A)→ e(E\C)(D/A) belong to P ′.
6) For each pair of letters a, e and each rule (B1 → C0D1) ∈ P the rules
(A\B)→ (A\C)(D/E)e and (B/A)→ e(E\C)(D/A) belong to P ′.
7) For each pair of letters a, e and each rule (B0 → C1 +D0) ∈ P the rules
(A\B)→ (A\C) + (e(E\D)) and (B/A)→ (C/A) + (e(E\D)) belong to P ′.
8) For each letter a and each rule (B1

l → XD)∈P the rule (B/A) → X(D/A)
is in P ′.
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9) For each letter a and each rule (B1
r → CX)∈P the rule (A\B) → (A\C)X

is in P ′.
10) For each pair of letters a, e and each rule (B1 → C1 + D1

l ) ∈ P the rules
(A\B)→ (A\C) + ((D/E)e) and (B/A)→ (C/A) + ((D/E)e) belongs to P ′.
11) For each pair of letters a, e and each rule of the form (B1 → C1 + D1

c)
or (B1 → C1 + D1

r) fr the rules (A\B) → (A\C) + (e(E\D)) and (B/A) →
(C/A) + (e(E\D)) belong to P ′.
12) The rule X → 1 belongs to P .
13) If the rule S → ε belongs to P , it also belongs to P ′.

Let us mention that removing ε-rules from the grammar built leads to a grammar
in Greibach normal form. Hence to prove the theorem it is sufficient to show that
the grammar G′ = 〈Σ,N ∪ {A\B | A ∈ NΣ, B ∈ (N −N1

l − {X})} ∪ {B/A |
A ∈ NΣ, B ∈ (N −N1

r −{X})}, 1, P ′, S〉 is equivalent to the initial grammar G.
Let us prove some auxiliary propositions.

Proposition 5. 1) For every letter a, every nonterminal B ∈ N −N1
l − {X}

and every word w ∈ Σ′∗ the fact that w is in WG′(A\B) implies that aw is in
WG(B). 2) For every letter a, every nonterminal B ∈ N −N1

r −{X} and every
word w ∈ Σ′∗ the fact that w is in WG′(B/A) implies that wa is in WG(B).

Proof. It suffices to prove the first proposition. We use induction on derivation
length. In the base this length equals 1, so the only possible case is w = ε and
A = B. In this case (A→ a) ∈ P and a ∈ WG(A). The basis is proved.

In the induction step we should consider all the possible rules A\B → α in P ′

which can start the derivation of the word w from A\B. We should also consider
all original rules from P which were transformed to place the rule A\B → α
to P ′. For example, let α = (A\C) · e · (E D) and this rule was created from
the rule B → C ·D. Then w = w1ew2, w1 ∈ WG′(A\C), w2 ∈ WG′(E\D). By
the induction hypothesis aw1 ∈ WG(C), ew2 ∈ WG(D), hence aw1ew2 = aw ∈
WG(C ·D) ⊆WG(B), which was required.

Let us consider the variant α = A\C + (e · (E\D)) and this rule was created
from the rule B → C +D. In this case w = w1ew2w3, w11w3 ∈ WG′(A\C),
w2 ∈WG′(E\D). By the induction hypothesis aw11w3 ∈WG(C), ew2 ∈ WG(D),
hence aw1ew2w3 = aw ∈ WG(C+D) ⊆WG(B). Other cases are analogous. The
proposition is proved.

Proposition 6. 1) For any two letters a, e, every nonterminal B ∈ N −N1
l −

N1
r − {X} and every word w ∈ Σ′+ the fact, that w = aw1 = w2e ∈ W (B)

implies, that w1 ∈ WG′(A\B) and w2 ∈ WG′(B/E).
2) For any two letters a, e, every nonterminal B ∈ N1

l and every word w ∈ Σ′+

the fact, that w = ua ∈ W (B) implies that u ∈WG′(B/A).
3) For any two letters a, every nonterminal B ∈ N1

r and every word w ∈ Σ′+

the fact, that w = au ∈ W (B) implies that u ∈WG′(A\B).

Proof. It suffices to prove the first statement, the two others are analogous.
We use induction on derivation length (and suppose the induction hypothesis is
proved for all the three cases). In the base the length equals 1. It is possible only
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in the case of the rule A→ a (in this case A = B). Because the rules (A\A→ ε)
and (A/A→ ε) are in P ′, it holds, that ε ∈W (A\A), ε ∈ W (A/A). The base is
proved.

In the induction step we should consider all the rules B → α, which start the
derivation of the word w from B. Let α = C · D,C �= X,D �= X . Then w =
w1w2, w1 = au1 ∈ WG(C), w2 = u2e ∈ WG(D), then by induction hypothesis
u1 ∈WG′(A\C), u2 ∈WG′(D/E) (and a �= 1, e �= 1 because G is central). Then
u1u2e ∈ WG′(A\C ·D/E ·E) ⊆WG′(A\B), which was required. The case of the
right slashed nonterminal B/E is analogous.

Now let α = C1 + D1
c . Then w = w1w2w3, w11w3 ∈ WG(C), w2 ∈ WG(D).

Let w1 = au1, w2 = eu2, then by induction hypothesis u11w3 ∈WG′(A\C), u2 ∈
WG′(E\D). Hence, u1eu2w3 ∈ WG′(A\C + (e · (E\D))) ⊆ WG′(A\B), and this
was required. The case of the right slashed nonterminal B/E is analogous. Other
variants are proved in a similar way. The proposition is proved.

It remains to proveWG(S) = WG′(S). Indeed, let w = au ∈ WG(S), then by the
proposition 6 u ∈WG′(A\S), consequently au ∈ WG′(A ·(A\S)) ⊆WG′(S). One
inclusion is proved. The proof of the opposite one: let w = au = ve ∈ WG′(S),
then by the construction either u ∈ WG′(A\S), or v ∈ WG′(S/E). Then by the
proposition 5 either au ∈ WG′(S), or ve ∈ WG′(S), which was required. The
case ε ∈ WG(S) is trivial. The theorem is completely proved.

The notion of Greibach normal form can be modified for k-DCFG in the case
of arbitrary k. We will not prove the equivalence theorem, because it requires
some technical constructions, but only formulate the result.

Definition 11. A k-DCFG is said to be in modified Greibach normal form if
all its rules have one of the following forms:

1) B → Xja,B ∈ N − {X}, a ∈ Σ, j ∈ IN,
2) B → XjaD or B → CXja, B ∈ N − {X}, C ∈ N,D ∈ N, a ∈ Σ, j ∈ IN,
3) B → CXjaD, B ∈ N − {X}, C ∈ N,D ∈ N, a ∈ Σ, j ∈ IN,
4) B → C +i (X

jaD) or B → C + (Xja), B ∈ N − {X}, C ∈ N − {X}, D ∈
N, a ∈ Σ, i ∈ IN, j ∈ IN,
5) B → CXj or B → XjD, B ∈ N, j ∈ IN,
6) S → ε or X → 1.

Theorem 3. Every k-DCFG is equivalent to some k-DCFG in modified Greibach
normal form.

4 Displacement Lambek Calculus and Lambek Grammars

4.1 Discontinuous Lambek Calculus

The basic Lambek calculus was introduced in [10]. It is a pure logic of concatena-
tion, which possessesmany useful properties, such as decidability, cut-elimination,
the subformula property, etc. But, as proved in [13], Lambek grammars cannot
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generate non-context free languages (the opposite inclusion was proved in [2]) and
therefore are insufficient to capture linguistic phenomena. There were several at-
tempts to enrich Lambek calculus with additional connectives. The most interest-
ing and powerful approach is the displacement calculus of Morrill. He adds to the
standard product operation and its residuation laws the discontinuous product op-
eration (or intercalation), with the corresponding family of residuation laws. The
resulting calculus inherits useful properties of Lambek calculus and allows one to
generate some non-context-free languages, as proved in [11]. We strengthen this
result by proving that every k-DCFG-language is generated by some displacement
Lambek grammar (in fact, k-displacement Lambek grammar).

The types of discontinuous Lambek calculus are made from the basic types
with the help of continuous connectives \, /, · and discontinuous connectives
↓k, ↑k,�k, k ∈ IN+. For every type A we define its sort sA which means that the
language of this type can contain only strings of sort sA (the sort of a string is
what we previously called its rank: the number of separators it contains). The
complex types and their sorts are defined in the following way:

1) If A and B are types and sA ≥ sB then A/B and B\A are types and
s(A/B) = s(B\A) = sA− sB.
2) For all types A,B their product A · B is a type and s(A · B) = sA+ sB.
3) For all types A,B such that sA ≥ sB − 1 B ↓k A is a type and s(B ↓k A) =
sA− sB + 1.
4) If A and B are types and sA ≥ sB then for every k ≤ sA− sB +1 A ↑k B is
a type of the sort sA− sB + 1.
5) For all types A,B such that sA ≥ 1 and for every k ≤ sA A �k B is a type
and s(A�B) = sA+ sB − 1.
6) I is a type called product unit and sI = 0, J is a type called discontinuous
product unit and sJ = 0.

Let Fi denote the set of the types of the sort i, Λ be the empty string and [] be
a metalinguistic separator. Then the set of hyperconfigurations is defined by the
following grammar:
O ::== Λ|[]|F0|Fi{O, . . . ,O︸ ︷︷ ︸

iO′s

}|O,O.

The sort of a hyperconfiguration s(Γ ) is the number of separators it con-
tains and is defined inductively: s(Λ) = 0, s([]) = 1; s(A) = i for A ∈
Fi; s(A{Γ1, . . . , Γs(A)} = s(Γ1) + . . . + s(Γs(A)); s(Γ,Δ) = s(Γ ) + s(Δ). The
sequents are of the form Γ → A, where s(Γ ) = s(A). For every type A we

define its vector
−→
A , which is A if sA = 0 and A{[], . . . , []︸ ︷︷ ︸

sA[]′s

} in the other case.

For any two configurations Γ,Δ we define by Γ |kΔ the result of replacing the
k-th separator in Γ by Δ (it is valid only if k ≤ s(Γ )). If Γ is a configura-
tion of sort i then we denote by Γ ⊗ 〈Δ1, . . . , Δi〉 the result of simultaneous
replacement of all the separators in Γ by the hyperconfigurations Δ1, . . . , Δi. If
Δ,Δ1, . . . , Δi are continuous hyperconfigurations and Γ is a hyperconfiguration
of sort i, then a distinguished hyperoccurence Δ〈Γ 〉 abbreviates a distinguished
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occurrence Δ(Γ (Δ1, . . . , Δi)). Now we can formulate the rules of discontinuous
Lambek calculus (we denote it by D):

A→ A (ax)
Γ → A Δ〈−→A 〉 → B

Δ〈Γ 〉 → B
(cut)

−→
A,Γ → C
Γ → A\C (→ \) Γ → A Δ〈−→C 〉 → D

Δ〈Γ,−−→A\C〉 → D
(\ →)

Γ,
−→
A → C

Γ → C/A
(→ /)

Γ → A Δ〈−→C 〉 → D

Δ〈−−→C/A, Γ 〉 → D
(/→)

Γ → A Δ→ B
Γ,Δ→ A · B (→ ·) Δ〈−→A,

−→
B 〉 → D

Δ〈−−−→A ·B〉 → D
(· →)

Λ→ I (→ I)
Δ〈Λ〉 → A
Δ〈I〉 → A

(I →)
−→
A |kΓ → C
Γ → A ↓k C (→↓) Γ → A Δ〈−→C 〉 → D

Δ〈Γ |k
−−−−→
A ↓k C〉 → D

(↓→)

Γ |k
−→
A → C

Γ → C ↑k A (→↑) Γ → A Δ〈−→C 〉 → D

Δ〈−−−−→C ↑k A|kΓ 〉 → D
(↑→)

Γ → A Δ→ B
Γ |kΔ→ A�k B (→ �) Δ〈−→A |k

−→
B 〉 → D

Δ〈−−−−−→A�k B〉 → D
(� →)

[]→ J
(→ J)

Δ〈[]〉 → A
Δ〈J〉 → A

(I →)

4.2 Discontinuous Lambek Grammars

Discontinuous Lambek grammars are categorial grammars based on discontin-
uous Lambek calculus. Here we follow [11]. A lexical assignment α is a pair,
comprising a type A and a finite language over the alphabet V = Σ∪1 (the lan-
guage should not contain 1sA), containing some words of the sort sA. A lexicon
is a finite set of lexical assignments. A lexicon Lex and a hyperconfiguration Δ
given, we define a correct labelling σ as a function sending each occurrence of
a type A in Δ to some word in Lex(A) (the words may differ for different oc-
currences). When a lexicon is not clear from the context we add “correct w.r.t.
Lex”. Then we continue the labelling from type occurrences to hyperconfigura-
tions and denote the extended labelling by yield(Δσ):

1) yield(Λσ) = Λ, yield([]σ) = 1, yield(Aσ) = σ(A), A is a type of sort 0.
2) yield((Γ1, Γ2)

σ) = yield(Γ 1)σ · yield(Γ 2)σ.
3) yield(A{Γ1, . . . , ΓsA}) = a0 · yield(Γ1)

σ · a1 · yield(Γ1)
σ · . . . · asA, where

σ(A) = a01a11 . . . asA.

For a lexicon Lex and a type A the language L(Lex,A) is defined as L(Lex,A) =
{yield(Δ)σ | Δ → A is a theorem of D and σ is a correct labelling w.r.t Lex}.
A grammar G is a pair of a lexicon Lex and a distinguished type B called the
target type. Its language L(G) is defined as L(G) = L(Lex,B). Sometimes we
will define displacement Lambek grammars not in terms of a lexicon Lex and a
labelling σ but in terms of a relation ! which sends every element of an alphabet
Σ to a finite set of zero-sorted types.
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Example 2 (Morrill, Valent́ın). Let the assignment ! be a!A\C, b!J\B, J\(A ↓1
B), c ! B\C, where sA = sB = sC = 1 and the distinguished type be A �1 I.
Then this grammar generates the language {anbncn | n > 0}.
A displacement Lambek grammar (DLG) is called a k-DLG if the sort of all
types and hyperconfigurations used in its derivations cannot be greater than k.
As proved in [11], 1-DLGs generate all permutation closures of regular languages.
The applications of DLG-s to natural language syntax can be found in [12].

For our purposes we need to consider some subclass of displacement Lambek
grammars, which corresponds to the subclass of AB-grammars in the class of
usual Lambek grammars. We define a set of simple types as a smallest set sat-
isfying the conditions below. For every simple type we also define its head.

1) All basic types and the type 1 are simple types (called basic simple types)
The head of such a type is the type itself.
2) If A �= 1 is a simple type and B is a basic simple type, then B\A,A/B,B ↓k
A,A ↑K B are simple types (if their sort is correctly defined). The head of such
types coincides with the head of type A.

The notion of a simple hyperconfiguration is analogous to the notion of a hyper-
configuration except we use only simple types. We denote by DL the calculus
which considers only simple hyperconfigurations and types and is obtained from
D by omitting all product and right-hand rules. We define DL-grammars exactly
as D-grammars are defined except for the basic calculus and the fact that the
target type should be basic and of the sort 0. The lemma below easily follows
from the subformula property, which implies that righthand and product rules
are useless for simple hyperconfigurations.

Lemma 3. Given a DL-grammar (G), the languages LD(G) and LDL(G)
coincide.

So it suffices to show that every DCFG-language without the empty word is gen-
erated by some DL-grammar to prove that every such language is also generated
by some displacement Lambek grammar. The statements below are proved by
induction on derivation and play a basic role in proving the main theorem.

Proposition 7. Let Δ→ A be a theorem of DL. Then A is a subtype of some
type occurrence in Δ.

Lemma 4 (Unfolding lemma). Let Δ→ A be a theorem of DL. Then one of
the following properties holds:

1) Δ =
−→
A .

2) Δ = Δ1, Δ2 and there are simple types A/B and B such that Δ1 → A/B and
Δ2 → B are theorems of DL.
3) Δ = Δ1, Δ2 and there are simple types B and B\A such that Δ1 → B and
Δ2 → B\A are theorems of DL.
4) Δ = Δ1|kΔ2 and there are simple types A ↑k B and B such that Δ1 → A ↑k B
and Δ2 → B are theorems of DL.
5) Δ = Δ1|kΔ2 and there are simple types B and B ↓k A such that Δ1 → B
and Δ2 → B ↓k A are theorems of DL.
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5 Greibach Normal Form and Displacement Lambek
Grammars

In this section we prove that every 1-MCFG which does not generate the empty
word is equivalent to some DL-grammar. Also we formulate the corresponding
theorem for k-MCFG but do not prove it because of the lack of space and its
technical difficulty. We will omit the subscript 1 near the connectives ↓, ↑ and |.

Definition 12. Let G = 〈Σ,N, S, P 〉 be a 1-DCFG in Greibach normal form.
Then its corresponding DL-grammar G = 〈!, S〉 is defined as follows (we identify
the nonterminal X and the type 1 because they play the same role):

1) The set of basic types is N . The rank of each type is inherited from G.
2) For every rule (B → a) ∈ P it holds that a ! B.
3) For every rule (B → Ca) ∈ P it holds that a ! C\B. For every rule (B →
aD) ∈ P it holds that a ! B/D.
4) For every rule (B → CDa) ∈ P it holds that a ! D\(C\B). For every rule
(B → CaD) ∈ P it holds that a ! C\(B/D). For every rule (B → aCD) ∈ P it
holds that a ! C\(D\B).
5) For every rule (B → C+Da) ∈ P it holds that a!D\(C ↓ B). For every rule
(B → C+aD) ∈ P it holds that a! (C ↓ B)/D. For every rule (B → C+a) ∈ P
it holds that a ! C ↓ B.
6) For every rule B → CX and for every assignment a!A, where C is a head of
A we add to the lexicon the assignment a!C′, where C′ is the result of replacing
the head of A to 1\B.
7) For every rule B → XD and for every assignment a!A, where D is a head of
A we add to the lexicon the assignment a!C′, where B′ is the result of replacing
the head of A to D/1.

Note that only the types of rank 1 can be replaced in the head, so in every type
the replacement took place at most once. That means that all the types in the
lexicon contain at most four basic types.

Lemma 5. Let G be a 1-DCFG in Greibach normal form and G be the corre-
sponding DL-grammar. Then L(G) ⊆ L(G).

Proof. We prove a stronger statement: for every word in Σ′ and every nonter-
minal B the fact that w ∈ W (B) implies that w ∈ L(Lex,B), where Lex is the
lexicon of G. This is proved by induction on derivation, the basis is obvious. In
the induction step we consider all the rules that could start the derivation.

Let the derivation start with the ruleB → C+Da. Then if w = w1uaw2, where
w11w2 ∈W (C) and u ∈W (D). By induction hypothesis w11w2 ∈ L(Lex,C)
and u ∈ L(Lex,D), but the sequent C|(D,D\(C ↓ B)) → B is derivable and
yields exactly the word w = w1uaw2.

Let the derivation start with the rule B → CX . Then w = u1, by induction
hypothesis u ∈ L(Lex,C). Replacing the head occurrences of C by B/1 (we can
do it by the construction), we obtain that also u ∈ L(Lex,B/1). But the sequent
(B/1), 1→ B is derivable, so w ∈ L(Lex,B). All other cases are similar.
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The proof of the converse inclusion extensively uses the unfolding lemma.

Lemma 6. Let G be a 1-DCFG in Greibach normal form and G be the corre-
sponding DL- grammar. Then L(G) ⊆ L(G).

Proof. We prove a stronger statement: for every word in (Σ ∪ 1)+ and every
nonterminal B the fact that w ∈ L(Lex,B) implies that w ∈W (B), where Lex
is the lexicon of G. The proof uses induction on derivation length. The basis is
the case of axiom, it is obvious. In the inductive step we examine which unfolding
starts the derivation.

Let it be the unfolding C|(C ↓ B) → B. Then w = u1vu2, where u =
u11u2 ∈ L(Lex,C). By the induction hypothesis u ∈ W (C), but we cannot
apply the hypothesis to the type (C ↓ B), because it is not from N , so we
continue the unfolding. Let the next unfolding be ((C ↓ B)/D)D → (C ↓ B).
But by proposition 7 the type (C ↓ B)/D must be a subtype of some type from
the lexicon. It could be so only if a ! (C ↓ B)/D for some letter a. Applying
the induction hypothesis to the type D we deduce that v = av′, v′ ∈ W (D). By
construction there is a rule B → C+aD in P , so the word u+av′ = u1av

′u2 = w
belongs toW (B). Other cases are similar, because all the unfoldings should reach
the type from the lexicon in a bounded number of steps. The lemma is proved.

It is not hard to see that the grammar G is in fact a 1-DLG, so we have proved
the following theorem.

Theorem 4. Every 1-DCFG language that does not contain the empty word is
generated by some 1-displacement Lambek grammar.

Applying an analogous construction to the modified Greibach normal form, we
obtain the general theorem:

Theorem 5. Every k-DCFG language that does not contain the empty word is
generated by some k-displacement Lambek grammar.

6 Further Research

We have adapted the notion of Greibach normal form to displacement context-
free grammars and proved, that every language that does not contain the empty
word and is generated by some k-displacement context-free grammar is also
generated by some k-displacement Lambek grammar. On the contrary to usual
Lambek grammars, the converse is not true. As proved in [8], the language
MIX = {w||w|a = |w|b = |w|c} cannot be generated by well-nested 2-MCFG
and, hence, by 1-DCFG. But in [12] MIX is proved to be generated by 1-DLG
as a permutation closure of a regular language. If the conjecture of Kanazawa
and Salvati that MIX is not a well-nested multiple context-free language holds,
than the class of displacement context-free languages is properly included to the
class of the languages generated by some displacement Lambek grammar. Since
the proof of the equivalence of context-free languages and Lambek grammars
is based on interpolation and conjoinability properties of Lambek calculus, it is
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also interesting to study the corresponding properties of displacement Lambek
calculus. Also it seems interesting to establish some nontrivial upper bounds for
the generative power of displacement Lambek grammars and their variants, for
example, if a displacement Lambek grammar generates non-multiple context-free
languages.
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Abstract. The synchronous paradigm provides a logical abstraction of
time for reactive system design which allows automatic synthesis of em-
bedded programs that behave in a predictable, timely and reactive man-
ner. According to the synchrony hypothesis, a synchronous model reacts
to input events and generates outputs that are immediately made avail-
able. But even though synchrony greatly simplifies design of complex sys-
tems, it often leads to rejecting models when data dependencies within
a reaction are ill-specified, leading to causal cycles. Constructivity is a
key property to guarantee that the output during each reaction can be
algorithmically determined. Polychrony deviates from perfect synchrony
by using a partially ordered or relational model of time. It captures
the behaviors of (implicitly) multi-clocked data-flow networks and can
analyze and synthesize them to GALS systems or to Kahn process net-
works (KPNs). In this paper, we provide a unified constructive semantic
framework, using structural operational semantics, which captures the
behavior of both synchronous modules and multi-clocked polychronous
processes. Along the way, we define the very first operational semantics
of Signal.

1 Introduction

Languages such as Esterel [1], Quartz [2] or Lustre [3] are based on the
synchrony hypothesis. Synchrony is a logical abstraction of time which greatly
facilitates verification and synthesis of safety-critical embedded systems. In par-
ticular, it enforces deterministic concurrency, which has many advantages in
system design, e.g. avoiding Heisenbugs (i.e. bugs that disappear when one tries
to simulate/test them), predictability of real-time behavior, as well as provably
correct-by-construction software synthesis [4].

It is also the key to generate deterministic single-threaded code from multi-
threaded synchronous programs so that synchronous programs can be directly
executed on simple micro-controllers without using complex operating systems.
Another advantage is the straightforward translation of synchronous programs to
hardware circuits [5,6]. Furthermore, the concise formal semantics of synchronous
languages allows one to formally reason about program properties [7], compiler
correctness and worst-case execution time [8,9].
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Under the synchrony hypothesis, computation progresses through totally or-
dered synchronized execution steps called reactions. The computation involved
in reacting to a particular input combination starts by reading the inputs, com-
puting the intermediate values as well as the outputs, and the next state of the
system. Each reaction is referred to as a macro-step. Computations during the re-
action are called micro-steps. A reaction is said to happen at a logical instant. A
logical instant abstracts the duration of a reaction to a single point in a discrete
totally ordered timeline.

Consequently, and from a semantic point of view which postulates that a
reaction is atomic, neither communication nor computation therefore takes any
time in a synchronous instant. Even though this zero-time assumption does not
correspond to reality, it is where the power of the synchronous abstraction lies
– zero delay is compatible to predictability. If (1) the minimum arrival time of
two consecutive values on all inputs is long enough, and if (2) all micro-steps in
a reaction (macro-step) are executed according to their data dependencies, then
the behaviors under the zero-time assumption are the same as behaviors of the
same system in reality.

However, the synchronous abstraction of time also has a drawback. Since out-
puts are generated in zero-time, and since synchronous systems can typically read
their own outputs, there may be cyclic dependencies due to actions modifying their
own causes within the same reaction. These issues lead to programs having incon-
sistent or ambiguous behaviors. In the context of synchronous programs, they are
known as causality problems, and various solutions have been proposed over the
years to tackle them. The most obvious and pragmatic one is to syntactically for-
bid cyclic data dependencies. It is simple to check but rules out many valid pro-
grams. For example, the synchronous language Lustre follows this approach.

Clearly, this is a conservative approach that hardly scales to mapping models
on platforms or composing models as this often introduces cycles [10]. Therefore,
other synchronous languages, such as Esterel [1], opted for a more sophisticated
but costly solution. Their semantics is given in terms of a constructive logic, and
compilers perform a causality analysis [11,12,13,14] based on the computation of
fixpoints in a three-valued logic similar to Brzozowski and Seger’s ternary simu-
lation of asynchronous circuits [15]. Thereby, cyclic dependencies are allowed as
long as they can be constructively resolved. This definition of causality does not
only show parallels to hardware circuit analysis but also to many other areas.

In contrast to synchronous languages, the polychronous language Signal [16]
follows a different model of computation. Execution is not aligned to a totally
ordered set of logical instants but to a partial order. This allows one to directly
express (abstractions of) asynchronous computations which possibly synchronize
intermittently. The lack of a global reference of time offers many advantages for
the design of embedded software architectures. First, it is closer to reality since
at the system level, integrated components are typically designed based on differ-
ent clock domains or different paces, which is a desirable feature especially with
the advent of, e.g., multi-core embedded processors. Second, polychrony avoids un-
necessary synchronization, thereby offering additional optimization opportunities.
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Polychrony gives developers the possibility to refine the system in different ways,
and compilers can choose from different schedules according to non-functional
mapping constraints, which are ubiquitous in embedded systems design. Due to
these advantages, Signal is particularly suited as a coordination layer on top of
synchronous components to describe a globally asynchronous locally synchronous
(GALS) network.

As Signal makes use of the synchronous abstraction of time, it faces the same
problems as other synchronous languages. One way to overcome the causality
problem is to syntactically forbid cyclic dependencies but as stated before that
is not always possible, especially when composing separately specified processes.
The Signal compiler uses a so-called conditional dependence graph [17,18] to
model dependencies between equations and check that all equations in a syn-
tactic cycle cannot happen at the same logical instant. As discussed above, the
synchronous languages are all based on slightly varying notions of causality.

This mismatch makes it unnecessarily hard (if not impossible) to integrate,
e.g., a set of reactive Quartz modules with a Signal data-flow network: should
the integration of modules and processes be limited/approximated by syntac-
tically causal data-flow networks, instead of constructive ones ? There is no
fundamental reason why a common notion of constructivity should not exist for
these languages. So, instead of an approach to causality analysis based on cycle
detection, we want to endow Signal with a constructive semantics compatible
to that of languages like Quartz, which is exactly what this paper presents.

Contribution. Our work is rooted in a collaborative project, Polycore, in which
we aim at combining the expressive capabilities of the imperative synchronous
language Quartz and the data-flow polychronous language Signal towards the
goal of synthesizing executable GALS systems from the specification of poly-
chronous networks of synchronous modules. This goal demands a common un-
derstanding of (i) constructivity and synchronous determinism, best known and
studied in the context of imperative synchronous languages, and (ii) endochrony
and asynchronous determinism, better developed in the context of relational
synchronous languages (yet applicable to imperative ones). This paper tries to
bridge the mathematical gap between constructivity and clock/causality analysis
in order to show to what extent the former can be explained with the latter.

Our approach consists in the definition of a constructive semantics for poly-
chronous processes that works for synchronous modules as well, so as to share
existing notions, theorems and methods. This semantics is of interest on its
own: it allows us to better understand the relationship between synchrony and
polychrony, between constructivity and endochrony, and to model causality as a
formal verification problem. We provide a unified structured operational seman-
tics framework which both captures the synchronous behavior of reactive mod-
ules and the multi-clocked behavior of polychronous data-flow networks. This
framework allows us to formulate a constructivity theory which captures deter-
minism for both synchronous modules and asynchronous networks. Its expressive
capability defines an effective framework in which embedded systems can be de-
signed by combining the best of both styles: imperative modules to describe
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system functions and polychronous data-flow networks to describe high-level ab-
stractions of their software architecture. Along the way, we give the very first
executable semantics (i.e. an interpreter) of Signal.

Related Work. Causal cycles may be real or may be induced by the syn-
chronous abstraction of time. They were first considered in hardware circuits in
the early seventies [19,20]. However, causality issues are not only related to the
stability analysis of hardware circuits. Berry pointed out that causality analy-
sis is equivalent to theorem proving in intuitionistic (constructive) propositional
logic and introduced the notion of constructive programs [11]. Finally, Edwards
reformulates the problem such that the existence of dynamic schedules must
be guaranteed for the execution of mutually dependent microsteps [13]. Hence,
causality analysis is a fundamental algorithm that has already found many ap-
plications in computer science. Malik [21] was first to show that this problem in
general is NP-hard [21] and used the embedding of Boolean algebra in ternary
algebra as proposed by Bryant for the simulation of switch-level circuits [22].
More details about causality analysis for synchronous programs may be found
in [21,12,14,23]. In the domain of polychronous programs, causal cycle detection
using SMT solvers has been reported in [24,25].

2 Constructive Synchronous Systems

In general, cyclic systems might have no behavior (loss of reactivity), more than
one behavior (loss of determinism) or a unique behavior. However, having a
unique behavior is generally not sufficient, since there are programs whose unique
behavior can only be found by trial and error (or large lookup-tables for all
inputs and states, alternatively) – which obviously does not lead to an efficient
computation. For this reason, one is usually interested in whether a program
has a unique behavior that can be constructively determined by the operational
semantics. Such a constructive semantics is based on fixpoint iteration, which
repeatedly execute iterations in order to infer the clocks and values of all signals
at every logical instant, i.e., during every reaction.

Embedding Clocks and Values in a Complete Lattice. We shall first
define some of the essential concepts of fix-point theory used in this paper [26].

Definition 1 (Complete Lattice). A partial order (D,�) is a lattice, if every
pair {x, y} ⊆ D has a supremum

⊔{x, y} and an infimum
�{x, y} in D. It is

complete if
⊔

M and
�

M exist for all M ⊆ D. A function f : D → D is
monotonic, if for all x, y ∈ D s.t. x � y, f(x) � f(y). It is continuous, if
f(
⊔

M) =
⊔

f(M) and f(
�

M) =
�

f(M) holds for all directed sets M ⊆ D.

To define a constructive semantics, we need to embed the set of data values into
a lattice. We achieve this by adding new elements D′ = D ∪ {?,⊥,�, �} to the
domain D, the domain of values taken by a variable (see Figure 1).

Starting from D′, we define a partial order � ⊆ D′ × D′. Intuitively, the
greater a value is, the more information we have about it. The error value � is
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the greatest element since inconsistent values should never become consistent,
while the opposite may occur. We can lift every operator g : Dn → Dm to g′ :
D′n → D′m to evaluate g′ in the lattice D′ under the conditions (1) the extended
operator g′ comply with the original one on D, i. e. ∀x ∈ Dn. g′(x) = g(x) and
(2) g′ is monotonic w. r. t. � (for finite D′ this also implies continuity of g′).

? signal status is unknown
⊥ signal is absent or inhibited
� signal is present or activated
� signal is inconsistent (e. g. runtime error)

⊥
��������

? ��

��������������� � ��

����
��

��
� 0 �� �

...

���������

Fig. 1. Embedding a value domain D in a complete lattice

These conditions predetermine some values of the extension. For the remaining
ones, we prefer values x ∈ D in order to accept as many programs as possible,
and hence choose to use the maximal extension of g w. r. t. � [23]. As an
example, Figure 2, consider Boolean conjunction ∧ : B2 → B. Its extension ∧′

is extended from the original function ∧ on Booleans by choosing the greatest
value that satisfies condition 2 above. For example, � ∧′ 0 must be less than or
equal 0 ∧′ 0 = 0 and 1 ∧′ 0 = 0 (since � � 0 and � � 1). As both results are 0,
we can also set �∧′ 0 = 0. Now consider �∧′ 1, it must be less than or equal to
0 ∧′ 1 = 0 and 1 ∧′ 1 = 1. Again, we must set � ∧′ 1 = �. All the other values
in the table can be determined in the same way.

∧′ ? ⊥ � 0 1 �

? ? ⊥ � 0 � �

� � � � � � �

∧′ ? ⊥ � 0 1 �

⊥ ⊥ ⊥ � � � �

� � � � 0 � �

∧′ ? ⊥ � 0 1 �

0 0 � 0 0 0 �

1 � � � 0 1 �

Fig. 2. Embedding conjunction into B′

We obtain an embedding of all operators into continuous functions over our
extended domain D′. As monotonic functions are closed under function compo-
sition, the entire system model also yields a monotonic function. Hence, from
the Tarski-Knaster theorem 1, it follows that the extensions of all monotonic
operators in lattice D′ have fixpoints and, more interestingly, that they have
uniquely defined least and a greatest fixpoints. Our framework only needs one
half of this theorem, namely the existence and computability of a least fix-point,
which requires a complete semi-lattice with an infimum but not necessarily a
supremum. Hence, our constructive semantics start with known input variables
and local/output variables. If the least fix-point does no longer have unknown
values, the program has a unique behavior, it is constructive.

Theorem 1 (Fixpoints in Lattices [26]). Let (D,�) be a complete lattice
and f : D → D be a monotonic function. Then, f has fixpoints and the set of
fixpoints even has a minimum and a maximum. If f is moreover continuous, then
the least fixpoint of f can be computed by the iteration p0 := �D, pi+1 := f(pi),
and the greatest fixpoint of f by q0 := �D, qi+1 := f(qi).
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Constructive Synchronous Guarded Actions. In this article, we repre-
sent imperative Quartz modules using synchronous guarded actions [27,28], as
defined in Figure 3 and in the spirit of guarded commands [29,30,31], a well-
established formalism for the description of concurrent systems. However, our
guarded actions follow the synchronous abstraction of time. A reactive system is
represented by a set of synchronous guarded actions of the form 〈γ ⇒ α〉 defined
over a set of variables V . The Boolean condition γ is called the guard and α is
called the action of the guarded action. An immediate assignment x = τ writes
the evaluated value of τ immediately to the variable x. A delayed assignment
next(x) = τ stores it until the next execution step.

p, q::= init(x) = τ (initial)
| γ ⇒ next(x) = τ (delayed)

| γ ⇒ x = τ (immediate)
| var x : p default v (block)

| p || q (compose)
| done p (done)

Fig. 3. Synchronous Guarded Actions

Immediate assignments define a causal dependency within the instant from
all the variables read (i. e. variables in the guard γ and on the right-hand side τ)
to the written variable x. In contrast, a delayed assignment does not, because
they set a values for the following instant. Guarded actions are composed by the
operator p || q and grouped by the operator var x : p default v to locate all actions
defining a variable x. If none of these guarded actions apply, x is set to its default
value v. Immediate variables E ⊆ V are reset to their default values (like wires
in hardware circuits), while delayed variables M ⊆ V are reset to their previous
value (like registers in hardware circuits).

As guarded actions manipulate signal (timed) values, we have to keep track of
the status and value of each signal. To this end, we use a store s ∈ S = X → D′,
defined by a function from signal names to status, to evaluate the program
expression φ with respect to the values stored in s as s, φ ⇀ v. For � ∈ {and, or},
we assume that s, x � y ⇀ v is defined iff v = s(x)�s(y) ∈ B and, for � ∈ {not, id},
that s, � x ⇀ v iff v = �s(x) ∈ B. Notice that the relation s, φ ⇀ v evaluates
φ to the value v ∈ D only if all its free variables are defined on D in s: it is
a synchronous expression (which explains why ⊥ and � will not be needed in
Figure 4). Additionally, an update operation � sets the status of x in s as follows:
s � (x, v) = s ∪ {(x, sup(s(x), v))}. This definition sets the status of x to � if a
status v is assigned that conflicts with that stored in s.

Figure 4 defines transition rules s, p ⇀ s′, q for synchronous guarded actions
(we assume v, w, u ∈ D). If the guard γ of an immediate action γ ⇒ x = τ
evaluates to 1 and its action τ to a value v ∈ D, the store s is updated with
s� (x, v). In the case of a delayed action, the additional initial action init(x) = v
is added to be applied in the following instant. The rule for composition p || q
defines the possible evaluation schedules of concurrent statements. The marker
done indicates that a guarded action has been executed and is propagated by
composition and blocks var x : p default v, allowing one to reset the default value
of a variable x in that block.
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s′ = (s(x) ∈ D)?s, s � (x, v) w = (x ∈ M)?s′(x), v
s, var x : done (p) default v ⇀ s′, done (var x : p default w)

s, p ⇀ s′, p′

s, q || p ⇀ s′, q || p′

s, γ ⇀ 1 s, τ ⇀ v
s, γ ⇒ next(x) = τ ⇀ s, done (init(x) = v || γ ⇒ next(x) = τ )

s, p ⇀ s′, p′

s, p || q ⇀ s′, p′ || q
s, γ ⇀ 1 s, τ ⇀ v

s, γ ⇒ x = τ ⇀ s � (x, v), done (γ ⇒ x = τ ) s, done p || done q ⇀ s, done (p || q)
s, γ ⇀ 0

s, γ ⇒ next(x) = τ ⇀ s, done (γ ⇒ next(x) = τ )

s, γ ⇀ 0
s, γ ⇒ x = τ ⇀ s, done (γ ⇒ x = τ )

s, init(x) = v ⇀ s � (x, v), ()

Fig. 4. Rules for Synchronous Guarded Actions

3 Polychronous Systems

In contrast to synchronous systems, polychronous specifications [32,16] are based
on a partially ordered model of time to express asynchronous computations which
possibly need to synchronize sporadically. As the name suggests, polychronous
systems use multiple clocks, which means that signals do not need to be present
in all instants. Here, the clock of a signal is encoded by its status, present or
absent. The value of a signal can only be computed if it is known to be present.

Signal Specifications. In the remainder, we use Signal programs to represent
polychronous specifications. A Signal program, Figure 5, consists of the compo-
sition of several nodes. Each node has an interface consisting of input and output
signals and, possibly, local signals. Its body is the composition of equations built
from primitive � ∈ {and, or, not, $init, when, default} operators.

p, q, r ::= · · ·
| x := y � z (equation)

s(x, y, z) ⇀� (a, b, c)
s, x := y � z ⇀ s � (x, a)(y, b), (z, c), x := y � z

(op)

s(x, y), a ⇀$init (b, c, d)
s, x := y $init a ⇀ s � (x, b)(y, c), x := y $init d

(pre)

Fig. 5. Small-step operational semantics of polychronous equations

Figure 5 gives the main transition rule for a polychronous equation x := y � z.
It relies on the relation ⇀� to check progress from the current status s(x, y, z)
of its inputs and output to an hypothetical triple (a, b, c). If so, a transition
occurs and the status of (x, y, z) signals is updated. Let us first consider the case
of a functional equation such as x := y and z, Figure 6. From an initial status
s(x, y, z), there are three possible ways to progress. First, (1) is when one of the
inputs or the outputs is known to be absent, and the others are either unknown
or absent (written ?/⊥). In that case, all three parameters can be deemed absent
altogether (right) as they need to occur synchronously. As a result, information
on absence may flow backwards from outputs to inputs and possibly inhibits
further signals in the environment. A second case is (2) when one of the inputs
or the outputs is known to be present, and others either unknown or present
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(written ?/�). In this case all three parameters can be deemed present (right).
As a result information on presence may again flow from outputs to inputs and
possibly trigger further input signals in the environment. At last, (3), the values
a, b ∈ B of inputs are known and the result a ∧ b of the equation is computed.

⇀and

s(x) s(y) s(z) a b c

⊥ ?/⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ?/⊥ ⊥ ⊥ ⊥ ⊥
� ?/� ?/� � � �

?/� � ?/� � � �
?/� ?/� � � � �
?/� a ?/� � a �
?/� ?/� a � � a
?/� b a a∧b b a

(1)

(2)

(3)

⇀when

s(x) s(y) s(z) a b c

⊥ ?/⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ?/⊥ ⊥ ⊥ ⊥ ⊥
?/⊥ X 0 ⊥ X 0

� ?/� a � � a � 1
?/� a 1 a a 1

(1)

(2)

Fig. 6. Small-step relations of polychronous equations

The same evaluation principle can be applied to the downsampling operator
x := y when z, Figure 6, the rules are the same for propagating absence (1) and
there is only one possible way to propagate presence: when that of the output is
already known, for any positive progress a, b ∈ {?,�, 0, 1} of the inputs. When
z = 0, we "don’t care" the first input: X ∈ D′, and issue the output as absent.
Again, there is only one way to propagate presence (2): when that of the output
is already known and for any positive progress a ∈ {?,�, 1} of the inputs. Also,
there is only one case where the output can possibly have a value a ∈ B, when
z = 1 (supremum a � 1).

⇀default

s(x) s(y) s(z) a b c

⊥ ?/⊥ ?/⊥ ⊥ ⊥ ⊥
?/⊥ ⊥ ⊥ ⊥ ⊥ ⊥
? � X � � X

? X � � X �
?/� a X a a X

?/� ⊥ a a ⊥ a

(1)

(2)

(3)

⇀$init

s(x) s(y) a b c d

⊥ ?/⊥ a ⊥ ⊥ a
?/⊥ ⊥ a ⊥ ⊥ a

� ?/� a a � a
?/� � a a � a

?/⊥ b a a b b
a b a a b b

(1)

(2)

(3)

Fig. 7. Small-step relations of polychronous equations

The merge operator x := y default z works in a way opposite to sampling,
Figure 6, there is only one way its result (or its inputs) can be ruled absent (1).
There are many ways merge can make positive progress from the knowledge of
either of its inputs, "regardless" of the (don’t care) value X ∈ D′ of the other
(2). Finally, merge gives a value a ∈ D to its output if y holds a or when it is
absent and z does (3). The case of the delay equation x := y $inita is a little
trickier and first requires a specific rule (pre) to take care of the fact that its
third argument, the state, is a value a, d ∈ D. Apart from that, it mainly acts
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as a synchronous operation between its input and output signals. Once again,
absence can be propagated both ways in the data-flow to either inhibit or trigger
signals in the environment (1). However, as soon as one of the input or output
is known to be present, delay forwards its stored value a ∈ D to the output (2).
Last, once the input value b ∈ D has been calculated (3), it can be stored in
place of the old one (here a, the output).

Example. We consider the specification of a polychronous counter of input n and
output o. Every time its execution is triggered, its purpose is to provide the value
of a count along with its output signal o. When that count reaches 0, the counter
synchronizes with the input signal n to reset the count with a new value. Clock
synchronization n sync y is rewritten by an equation (z := ((y = y) = (n = n)))/z
that forces y and n to have the same status.

counter(n, o) Δ=
(c := o $init 0 || o := n default x ||x := (c − 1) ||n sync y || y := 1 when (c = 0))) /cxy

In the remainder, and referring to both a Quartz module or a Signal process
〈s, p〉, we note V (p) for all signals of p, O(p) for its output signals, I(p) for
its inputs and L(p) for its locals. The counter has input n, output o and locals
{c, x, y}. The local signals c defines the current count, x its decrement, and y the
reset condition. The synchronous execution of the counter is modeled by a series
of steps (changes are marked with a•). First, the environment of the counter
triggers execution by setting the output signal o to present (“I want a count”).
This forces the current count c evaluate (⇀$init). Then, its decrement x and the
reset condition y can both be evaluated (⇀sub and ⇀eq). Next, the status of
the input n can be defined from that of y (⇀sync). Since it is absent and c is
present with the count, the output o can now be output (⇀default) and its value
is stored in place of the previous one (⇀$init). As the example shows, we obtain
a constructive and executable operational semantics that captures the behavior
of synchronous Quartz modules, as well as of polychronous Signal processes
and for the first time in the literature.

(c, ?)(n, ?)(o,�•)(x, ?)(y, ?)⇀(c, 1•) (n, ?) (o,�) (x, ?) (y, ?) from ⇀$init

⇀(c, 1) (n, ?) (o,�)(x, 0•) (y, ?) from ⇀sub

⇀(c, 1) (n, ?) (o,�) (x, 0) (y,⊥•) from ⇀when

⇀(c, 1) (n,⊥•)(o,�) (x, 0) (y,⊥) from ⇀sync

⇀(c, 1) (n,⊥) (o, 0•) (x, 0) (y,⊥) from ⇀default

⇀(c, 1) (n,⊥) (o, 0) (x, 0) (y,⊥) from ⇀$init

From Synchrony to Asynchrony. Our next step is to embed this semantics
in its execution environment of asynchronous streams in order to reason about
networked processes. Towards this goal, we first need to interface the small step
operational semantics with an environment of asynchronous streams. We repre-
sent a stream by a word w ∈ S = D∗ of values a and define the operation of
reading a from a stream as a.w and writing onto it as w.a in order to reflect a
first-in-first-out protocol. The environment or trace of a process p in a network
is represented by a finite map E ∈ T = X �→ S that associates signal names x
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and streams w. Since a module p owns a local store s, we shall note 〈s, p〉 its
embedding in a network P constructed by asynchronous composition.

w ::= ε | a.w | w.a (FIFO) P, Q ::= 〈s, p〉 | P ‖ Q (network)

Then, we simply lift the transition relation s, p ⇀ t, q to further account for
the way a process p interacts with asynchronous environment and construct
the small-step semantics E, P ⇀ F, Q to define this interaction between local,
synchronous, steps of execution and shared, asynchronous, FIFO streams, i.e.,

s, p ⇀ t, q

E, 〈s, p〉 ⇀ E, 〈t, q〉 .

Interfacing Polychronous Processes. The execution of a Signal process
p is locally triggered by activating the status of one or several of its signals,
by setting them present (Figure 8, top-left). We call these signals T (p) – the
triggers of p. Once a trigger is enabled, other signals can be and, when an input
x is, its value can be loaded from the environment E (right). The output of
a process onto streams is performed when computation within the process is
completed (Figure 8, bottom) in order to respect the synchronous step paradigm.
The “flush” relation E, 〈s, p〉 ⇁ F, 〈s, p〉 models this very step. It is defined by
pulling computed output values from the local store to the shared streams. It
delimits the temporal barriers of a synchronous instant or reaction and filters
inputs which have been read and signals which are absent.

x ∈ T (p)
E, 〈s � (x, ?), p〉⇀E, 〈s � (x,�), p〉

x ∈ I(p)
E � (x, a.w), 〈s � (x,�), p〉⇀E � (x, w), 〈s � (x, a), p〉

x �∈ O(p) ∨ a �∈ D
E, 〈s � (x, a), p〉 ⇁ E, 〈s � (x, ?), p〉

x ∈ O(p) ∧ a ∈ D
E � (x, w), 〈s � (x, a), p〉 ⇁ E � (x,w.a), 〈s � (x, ?), p〉

Fig. 8. Interface semantics of polychronous equations p

Interfacing Synchronous Modules. The asynchronous interface of a syn-
chronous Quartz module is simpler. It only requires rules for the ⇁ relation
to handle writing the computed output values and reading the next values of
inputs (Figure 9, sx stands for s without x).

E � (x, w), 〈s � (x, a), p〉⇁E � (x, w.a), 〈sx � (x, ?), p〉 x ∈ O(p)
E � (x, a.w), 〈s, p〉⇁E � (x, w), 〈sx � (x, a), p〉 x ∈ I(p)

E, 〈s, p〉⇁E, 〈sx � (x, ?), p〉 x ∈ L(p)
E, 〈s, done p〉⇁E, 〈s, p〉

Fig. 9. Interface semantics of synchronous modules p
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E, P ⇀ F, Q
E, P → E,Q

E, 〈s, p〉 ⇁∗ F, 〈s′, q〉
E, 〈s, p〉 → F, 〈s′, q〉

E, P → E′, P ′

E, P ‖ Q → E′, P ′ ‖ Q
E,P → E′, P ′

E, P ‖ Q → E′, P ′ ‖ Q

Fig. 10. Interface semantics of synchronous modules p

A Constructive GALS Semantics. Finally, the GALS semantics E, P →
E, Q, Figure 10, can be defined for synchronous modules and polychronous pro-
cesses. It comprises of local synchronous execution steps E, P ⇀ E, Q (left)
during which inputs are read, outputs are computed, and a synchronization step
E, P ⇁∗ F, Q (middle), during which outputs are registered in the environment.
and the local store is reset to start a new step of execution. Interleaving or
scheduling is again defined by parallel composition (right).

Communication from a process to another is assumed to be point-to-point.
Multiple writers on a single stream are not allowed as per the synchronous
paradigm. Broadcast communication can be simulated by multiplexing the out-
put of the writer to multiple readers: for any x ∈ dom(E) such that x ∈
O(P ) and x ∈ I(Q) and x ∈ I(R), we can rewrite P ‖ Q ‖ R as P ‖
(Q[y/x] ‖ R[z/x] ‖ 〈(), y := x || z := x〉) /yz using any y, z not in Q, R.

4 Determinism and Constructivity

The layered constructive semantics allows us to formulate classical properties
of polychronous processes, as stated in the trace or logical settings of [33], yet
in a constructive operational semantics framework. We first state the property
of reactivity pertaining to the correctness of Quartz programs. A synchronous
module p is reactive iff for any combination of input values, its transition function
always terminates by producing a combination of output values.

Definition 2 (Reactivity). A module p is reactive iff, for all valuation s0 =
{(x, a) |x ∈ I(p), a ∈ D} ∪ {(y, ?) | y ∈ V (p) \ I(p)}, there exists s0, p ⇀∗ s, q
with s defined on D.

Synchronous determinism relates to reactivity. However, while reactivity assumes
that the values of all inputs are known, synchronous determinism also applies
to the case of a Signal process, whose inputs may not all be read: a process p
is synchronously deterministic iff for any initial status s, its step relation always
converges to a unique fixpoint.

Definition 3 (Synchronous Determinism). A process p is synchronously
deterministic iff for all store s and derivations s, p ⇀∗ t, q and s, p ⇀∗ u, r we
have t = u and q = r.

Now, once embedded in an asynchronous environment of streams E, determin-
ism becomes endochrony or asynchronous determinism. A process P is asyn-
chronously deterministic iff for every input trace E, it yields a unique output
trace F and unique final state Q.
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Definition 4 (Asynchronous Determinism). A process p is asynchronously
deterministic iff for all input traces E and derivations E, 〈s, p〉 ⇀∗ F, 〈t, q〉 ⇁∗

G, 〈u, r〉 and E, 〈s, p〉 ⇀∗ F ′, 〈t′, q′〉 ⇁∗ G′, 〈u′, r′〉, G = G′ and r = r′.

Notice that, in the case of a deterministic process, equality G = G′ is defined
over finite maps between variables and values and that, in r = r′, syntactic
congruence is taken care of by the rules of synchronous composition i.e. G = G′

and r = r′ denote canonical configurations).

Constructivity. So far, and thanks to the definition of a complete domain of
clocked signals, we have defined the very first, executable, structured operational
semantics for the polychronous data-flow language Signal. Its purpose starts to
unveil as we consider the fixpoint theoretic implication of its definition on that
continuous domain and try to formulate the property of constructivity. Originally,
constructivity was defined as a property of an imperative synchronous module
that pertains to the reachability of a stable state in its electrical semantics [12].
In the operational setting of the Quartz language, this means that, given any
combination of input values, a synchronous module p should always define unique
output values.

Definition 5 (Synchronous constructivity). A module p is synchronous
constructive iff for all initial valuations s0 = {(x, a) |x ∈ I(p), a ∈ D}∪{(y, ?) | y ∈
V (p) \ I(p)}, s0, p ⇀∗ s, q and s is defined on D (i.e. s = lfp⇀p(s0)).

Thanks to the fidelity level of our small-step operational framework, the formu-
lation of constructivity matches that of reactivity and determinism as stated in
the previous section.

Proposition 1. If p is synchronously constructive then p is reactive and syn-
chronously deterministic

We shall now formulate constructivity in the context of a polychronous process p.
However, it is clear from the example of the counter that a polychronous process
not necessarily is constructive in the sense as Quartz: it may not be reactive.

counter(n, o) Δ=
(c := o $init 0 || o := n default x ||x := (c − 1) ||n sync y || y := 1 when (c = 0))) /cxy

Unlike a Quartz module, the counter triggers a sequence of execution steps
every time its trigger o is activated. It only loads an input from n when c is 0.
Hence, it is not reactive w. r. t. its input signals, but it is reactive w. r. t. its input
streams. This observation yields a more general (asynchronous) formulation of
constructivity: a process p is asynchronously constructive iff for any combination
of values available from its input streams, it always produces an output.

Definition 6 (Asynchronous constructivity). A process p is asynchronously
constructive iff for any environment E of non-empty streams defined on V (p) and
s0 = {(x, ?) |x ∈ V (p)}, we have E, 〈s0, p〉 ⇀∗ F, 〈s, q〉 with s defined on D⊥

(i.e. (F, s) = lfp⇀∗
p(E, s0)).
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Notice that the transitive closure ⇀∗ F of a constructive process always yields
a unique valuation on D⊥ (it is a continuous domain). If a process isn’t con-
structive, it either blocks (e.g. x = y || y = x) and yields values below D⊥ or
conflicts (e.g. x = 0 ||x = 1) and yields value �. Again, asynchronous constructiv-
ity corresponds to the property of asynchronous determinism in the logical and
denotational frameworks of Signal [33,34].

Proposition 2. If p is asynchronously constructive then p is asynchronously
deterministic

Case of Isochronous Systems. Definition 6 of asynchronous constructivity is
formulated in a way that may seem to coincide with a class of systems which can
deterministically be executed starting from a singleton trigger T (p). This case in-
deed characterizes so called endochronous systems [33] whose input/output signal
status can all be decided from that of a single one, “the master clock”. A larger
class of deterministic systems can be captured by considering processes p that de-
terministically execute from several, independent, concurrent triggers: so-called
weakly endochronous systems [34]. In our framework, a weakly endochronous pro-
cess p is characterized by a set of multiple, independent triggers T (p), each of them
triggers execution of independent computations and yields a confluent state. To al-
low this, however, we additionally need to allow some of these triggers to possibly
(non-deterministically) be chosen to be absent during a given execution step (all
computations depending of that trigger would then evaluate to absent). This can
be done by choosing the following inhibition rule, instead of the triggering one:

x ∈ T (p)
E, 〈s � (x, ?), p〉⇀E, 〈s � (x,⊥), p〉

While a weakly endochronous process may have several triggers, it is addition-
ally required to be stuttering invariant: an inhibited process shall not react to
absence.

Definition 7 (Stuttering). p is stuttering iff for s = {(x,⊥) |x ∈ T (p)} ∪
{(x, ?) |x ∈ V (p) \ T (p)}, we have 〈s, p〉 ⇀∗ 〈s′, p〉 and s′ = {(x,⊥) |x ∈ V (p)}
Notice that Definition 6 accommodates the case of weakly endochronous systems
with the above additions of a rule and of a definition for stuttering.

5 Summary

In this article, we defined a constructive operational semantics to unite the syn-
chronous imperative language Quartz and the polychronous data-flow language
Signal in a common framework. This model is of interest on its own, since it al-
lows us to better understand the relationship between synchrony and polychrony,
between constructivity and endochrony. It additionally allows us to model the
causality problem as a formal verification problem. We formulated a construc-
tivity theory which captures the behavior of correct synchronous modules and
deterministic asynchronous/polychronous networks. Along the way, we provided
the very first truly executable operational semantics of Signal.
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Abstract. Aumann’s Rationality Theorem claims that in perfect infor-
mation games, common knowledge of rationality yields backward induc-
tion (BI). Stalnaker argued that in the belief revision setting, BI does not
follow from Aumann’s assumptions. However, as shown by Artemov, if
common knowledge of rationality is understood in the robust sense, i.e., if
players do not forfeit their knowledge of rationality even hypothetically,
then BI follows. A more realistic model would bound the number of hy-
pothetical non-rational moves by player i that can be tolerated without
revising the belief in i’s rationality on future moves. We show that in
the presence of common knowledge of rationality, if n hypothetical non-
rational moves by any player are tolerated, then each game of length less
than 2n+3 yields BI, and that this bound on the length of model is tight
for each n. In particular, if one error per player is tolerated, i.e., n = 1,
then games of length up to 4 are BI games, whereas there is a game of
length 5 with a non-BI solution.

1 Introduction

Aumann proved that in games of perfect information, common knowledge of
rationality yields backward induction [3]. Stalnaker showed that if players are
allowed to revise their beliefs in each other’s rationality in response to surprising
information, this is not the case [10]. In [7], Halpern showed that the differ-
ence between the two lies in how they interpret the following counterfactual
statement: “If the player were to reach vertex v, then she would be rational at
vertex v.”

Let us consider the game in Figure 1 which is due to Stalnaker and which
Halpern uses to point out the difference in Aumann’s and Stalnaker’s arguments.
Assume that it is common knowledge that the actual state is (dda). This means
that Ann plays down (d) in vertex v1, Bob plays down (d) in vertex v2, and
Ann plays across (a) in vertex v3, and that all of this is common knowledge
between Ann and Bob. To say that some fact F is common knowledge between
Ann and Bob means that Ann knows F , Bob knows F , Ann knows that Bob
knows F , Bob knows that Ann knows F and so on. So if we assume that the
state (dda) is common knowledge, this means that all moves are known right
at the beginning of the game. The question is whether (dda), which is different
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than the backward induction solution (aaa), can be the solution of the game in
the presence of common knowledge of rationality.

Here it should also be noted that Stalnaker has no problem with the formal
correctness of Aumann’s proof. Aumann’s framework does not allow belief revi-
sion. Stalnaker, on the other hand, allows players to revise their beliefs after a
non-rational move by another player, even if that mentioned non-rational move
is hypothetical.

Let us look at the game in Figure 1 from Stalnaker’s perspective: At (dda),
Ann is rational at v1, because Bob is playing d at v2. At v2, Bob revises his
belief on Ann’s rationality, due to her hypothetical non-rational move (or the
surprising information) a at v1, and considers Ann’s playing d at v3 also possible
as a result of this belief revision. He plays d and he is rational. Ann is rational
at v3 by playing a.

While Halpern layed out the differences in Aumann’s and Stalnaker’s argu-
ments, Artemov in [2] showed that in perfect information games with Stalnaker-
style belief revision setting, if players maintain their beliefs in each other’s
rationality in all, even hypothetical situations, i.e., if there is so-called robust
knowledge of rationality in the game, then the only solution of the game is the
backward induction. That is, if Bob does not revise his beliefs on Ann’s rational-
ity at v2, (dda) cannot be the solution of the game in the presence of common
knowledge of rationality.

Other works on epistemic foundations for backward induction include [1], [4],
[5], [8] and [9].

(2, 2)

•

��

Ann

v1

a

d

(1, 1)

•

��

Bob

v2

a

d

��

(0, 0)

•

��

Ann

v3

a

d

�� (3, 3)��

Fig. 1. 3-move game

In this paper, we will investigate the case where it is common knowledge that
players are rational (in Stalnaker’s sense) at all vertices of the game tree, and
they tolerate n hypothetical non-rational moves of other players. If n = 0, we end
up with Stalnaker’s framework where after 1 error, players revise their beliefs.

2 Game Models and Rationality

Halpern extends Aumann models to represent N -player extensive form games
with perfect information where players can revise their beliefs [7]. An extended
model is a tuple
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M = (Ω,K1, ...,KN , s, f)

where Ω is a set of states of the world, Ki is the information partition of player
i, and s maps each state ω ∈ Ω to a strategy profile s(ω) = (s1, ..., sN) where
si is player i’s strategy at state ω. Function f , called selection function, maps
state-vertex pairs to states. Informally, f(ω, v) = ω′ means that ω′ is the closest
state to ω where vertex v is reached. Let hvi (s) denote player i’s payoff if strategy
profile s is played starting at vertex v. Let P be the function that maps non-
terminal nodes to players to indicate the player moving at a given node.

Definition 1. Player i is Aumann-rational, or A-rational, at vertex v in state
ω if for all strategies si such that si �= si(ω), h

v
i (s(ω

′)) ≥ hvi (s−i(ω
′), si) for some

ω′ ∈ Ki(ω) where s−i(ω′) denotes the strategy profile of the players other than
i at state ω′.

Note that according to this definition, a player is rational as long as her
strategy in the current state ω yields her a payoff at least as good as any of her
other strategies in some state that she considers possible at ω.

Definition 2. Player i is Stalnaker-rational, or S-rational, at vertex v in state
ω if i is A-rational at v in state f(ω, v).

Substantive rationality is rationality (A-rationality or S-rationality, depend-
ing on which framework we are working with) at all vertices of the game tree.

The formalization of selection functions is due to Halpern [7], and the main
idea of a selection function f is for each state ω and vertex v to indicate the
epistemically closest state f(ω, v) to ω in which v is reached. Halpern assumes
that the selection function f satisfies the following requirements:

– F1. Vertex v is reached in f(ω, v).
– F2. If v is reached in ω, then f(ω, v) = ω.
– F3. s(f(ω, v)) and s(ω) agree on the subtree below v.

3 Tolerating Hypothetical Errors

Our model extends Halpern’s so that the selection function now satisfies an
additional requirement F4n (given below) in order to represent the n-tolerance
of the players. We will give the definitions of an error-vertex and the condition
F4n simultaneously.

The following definition extends Aumann’s rationality to hypothetical moves.

Definition 3. We say that a move m at v in ω is rational if player i = P (v)
is Aumann-rational at v in some state ω′ which has the same profile as some
ω̃ ∈ Ki(ω) except, possibly, for the move m which is plugged into v.

Definition 4. Given a state ω, a vertex v is an n-error vertex, if n is the least
natural number ≥ 0 such that each player makes not more than n non-rational
moves (possibly hypothetical) at vertices v′ from the root to v in states f(ω, v′).
Obviously, the root vertex is always 0-error. If there are 2k moves from the root
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to v, then each player makes ≤ k moves there and v is at most a k-error vertex.
Other examples will be discussed later in this section.

The following condition reflects the idea of n-tolerance which is built-in into
the selection function: sets of future scenarios are not revised after ≤ n (possibly
hypothetical) non-rational moves of each player.

Condition F4n. For each state ω and k-error vertex v with k ≤ n and
i = P (v), if ω′ ∈ Ki(f(ω, v)), then there exists a state ω′′ ∈ Ki(ω) such
that s(ω′) and s(ω′′) agree on the subtree below v.

Halpern uses a similar condition to model Aumann’s framework, which says
that players consider at least as many strategies possible at ω as at f(ω, v); and
this applies to all vertices in the game tree. Our condition F4n says the same
thing for ≤ n-error vertices, hence limiting the tolerance level in the game to
n (possibly hypothetical) non-rational moves per player. In other words, in an
n-tolerance game, players will not revise their beliefs about rationality for the
first n hypothetical non-rational moves of those players.

Example 1. Consider the game in Figure 1. The following extended model is
from [7]

The strategy profiles are as follows:

– s1 = (dda)
– s2 = (ada)
– s3 = (add)
– s4 = (aaa): this is the BI solution.
– s5 = (aad)

The extended model is M1 = (Ω,KAnn,KBob, s, f) where

– Ω = {ω1, ω2, ω3, ω4, ω5}
– KAnn = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}}
– KBob = {{ω1}, {ω2, ω3}, {ω4}, {ω5}}
– s(ωj) = sj for j = 1− 5
– f(ω1, v2) = ω2, f(ω1, v3) = ω4, f(ω2, v3) = ω4, f(ω3, v3) = ω5, and f(ω, v) =

ω for all other ω and v.

It is assumed that the actual state is ω1 with s(ω1) = (dda), and this is commonly
known to players. Let us check which vertices are erroneous:

– v1 is a 0-error vertex.
– v2 is a 1-error vertex since Ann’s move from v1 to v2 is not rational in ω1.

She only considers (dda) possible at this node and changing the move at v1
to a results in (ada), which would make Ann non-rational at v1.

– v3 is a 1-error vertex, by an easy combinatorial argument. Ann was not
rational at v1, so v3 is at least 1-error vertex. However, it is at most 1-error,
since the move at v2 is made by Bob, and it cannot change the maximum of
error counts at v3. However, let us check that Bob is rational in moving from
v2 to v3 at f(ω1, v2) = ω2 = ada. In (ada), Bob considers both (ada) and
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(add) possible, and plugging the hypothetical move a into vertex v2 would
result in strategy profile (aaa) that corresponds to state ω4 in which Bob is
rational at v2.

4 Belief Revision with Tolerance

Example 2. Let us consider the game in Figure 1 again. Note that in this
game, with the model M1, in the presence of common knowledge of substantive
rationality the realized strategy profile, i.e., (dda), is different than the backward
induction solution (aaa). We will also assume common knowledge of substantive
rationality, and show that (dda) cannot be the solution of the 1-tolerant version
of this game.

Since players are 1-tolerant, the selection function f should satisfy the con-
dition F4n with n = 1. This means that the first hypothetical error for each
player is tolerated. In particular, even if Ann and Bob make one hypothetical
error each, those will be tolerated and beliefs in rationality will not be revised.

Therefore in a 1-tolerance game, if we assume that the state (dda) is common
knowledge, we need to consider only three strategy profiles:

– s1 = (dda): This is the original strategy profile which is commonly known.
– s2 = (ada): This is the revised state at v2.
– s3 = (aaa): This is the revised state at v3.

The extended 1-tolerance game model is M2 = (Ω,KAnn,KBob, s, f) where

– Ω = {ω1, ω2, ω3}
– KAnn = KBob = {{ω1}, {ω2}, {ω3}}
– s(ωj) = sj for j = 1− 3
– f(ω1, v2) = ω2, f(ω1, v3) = ω3, f(ω2, v3) = ω3.

The actual state is ω1 with s(ω1) = (dda). Let us count the number of errors in
this model.

– v1 is 0-error.
– v2 is 1-error, since in order to (hypothetically) get from v1 to v2, Ann has

to make a non-rational move, by the same reasoning as in Example 1.
– v3 is again 1-error by trivial combinatorial reasons, as before. Moreover,

Bob’s move from v2 to v3 is rational at ω2, by the same reasoning as before.

Condition F41 is obviously met, so this is a 1-tolerant model in which strategy
profile (dda) is common knowledge. We’ll see, however, that the substantive S-
rationality condition is violated in this model, namely, Bob is not rational at v2.
Indeed, S-rationality in ω1 at v2 reduces to (Aumann-)rationality in f(ω1, v2) at
v2, i.e., in ω2 at v2. Since s(ω2) = (ada), the real move at v2 is down which is
not rational because of the better alternative across.

Example 3. Figure 2 shows an extensive form 1-tolerance game of length 5.
Assuming common knowledge of substantive rationality, we will show that there
exists a non-BI solution, namely (dddda).

The strategy profiles are as follows:
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Fig. 2. 5-move game

– s1 is the strategy profile (dddda)
– s2 is the strategy profile (addda)
– s3 is the strategy profile (aadda)
– s4 is the strategy profile (aaada)
– s5 is the strategy profile (aaaaa)
– s6 is the strategy profile (aaaad)
– s7 is the strategy profile (aaadd).

Consider the extended model A = (Ω,KAnn,KBob, s, f) where

– Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7}
– KAnn = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω7}}
– KBob = {{ω1}, {ω2}, {ω3}, {ω4, ω7}, {ω5}, {ω6}}
– s(ωj) = sj for j = 1− 7
– f(ω1, v2) = ω2, f(ω1, v3) = ω3, f(ω1, v4) = ω4, f(ω1, v5) = ω5,

f(ω2, v3) = ω3, f(ω2, v4) = ω4, f(ω2, v5) = ω5,
f(ω3, v4) = ω4, f(ω3, v5) = ω5,
f(ω4, v5) = ω5,
f(ω7, v5) = ω6.

The actual state is (dddda). Let us count the number of errors.

– v1 is 0-error.
– Ann is not rational moving from v1 to v2 in state f(ω1, v2) = ω2. Indeed,

s(ω2) = (addda), hence Ann moves across at v1 while knowing that Bob will
play down at v2. Hence v2 is 1-error.

– Bob, is not rational when moving from v2 to v3 in state f(ω1, v3) = ω3.
Indeed, s(ω3) = (aadda), hence Bob moves across at v2 while knowing that
Ann will play down at v3. Hence v3 is 1-error by both Ann’s and Bob’s
accounts.

– Ann is not rational moving from v3 to v4 in state f(ω1, v4) = ω4. Indeed,
s(ω4) = (aaada), hence Ann moves across at v3 while knowing that Bob will
play down at v4. Hence v4 is 2-error on Ann’s account.

– v5 is 2-error by trivial combinatorial reasons. However, it is worth mentioning
that Bob is rational when moving across from v4 to v5.



356 Ç. Taşdemir

To secure 1-tolerance, we have to check the conclusion of F41 at all 0-error and
1-error vertices, in this case at vertices v1, v2, and v3 which is quite straightfor-
ward. Indeed, selection function f does not add new indistinguishable states at
these vertices, but just makes the corresponding vertex accessible in the revised
state.

Since KAnn(ω1) = KBob(ω1) = {ω1}, everything that is true at ω1 will be
common knowledge to Ann and Bob at that state. To check substantive ratio-
nality at ω1, we need to check players’ rationality in the following situations:

S = {(ω1, v1), (ω2, v2), (ω3, v3), (ω4, v4), (ω5, v5)}

– Ann is rational at (ω1, v1). Since Bob plays d at vertex v2, d is the rational
move for Ann at (ω1, v1).

– Bob is rational at (ω2, v2). At (ω2, v2), Bob thinks Ann was not rational at v1
but since we assume that each player tolerates one error, he does not revise
his beliefs on her future rationality. So he looks at node v3. Seeing that Ann
is playing d at that node, he himself chooses to play d at v2, which is the
rational thing to do. So we can conclude that Bob is rational at (ω2, v2).

– Ann is rational at (ω3, v3). At (ω3, v3), Ann thinks Bob was not rational at
node v2. This time Ann tolerates Bob’s error and does not revise her beliefs
about his future rationality. She looks at node v4. Seeing that Bob is playing
d at that node, she chooses to play d at v3, which is the rational thing to do.

– Bob is rational at (ω4, v4). At (ω4, v4), Bob thinks that Ann was not rational
at node v3. Since he will not tolerate one more error, he revises his beliefs
and takes into the account the possibility of Ann’s playing d at v5. In this
case, it is rational for him to play d.

– Ann is rational at (ω5, v5) regardless of her beliefs about Bob.

If we count the length of the game as the number of moves in its longest path
in the game tree, this example shows that, assuming common knowledge of
rationality and 1-tolerance, there exists a game of length 5, where a non-BI
solution is realized.

Theorem 1. In perfect information games with common knowledge of rationality
and of n-tolerance, each game of length less than 2n+ 3 yields BI.

Sketch of Proof: Let m ≤ 2n+ 2. We will show that all m-tolerant games are
BI-games. At a vertex that at which the last move of a given path is made (such
vertex is reachable from the root in ≤ 2n + 1), Aumann-rationality yields the
move that is dictated by the backward induction solution. Any other vertex v is
reachable from the root in ≤ 2n steps. So there are at most 2n previous nodes
prior to reaching v. Since no player makes two moves in a row, each player makes
at most n moves prior to v, and even if all of these moves were erroneous, player
i = P (v) will tolerate them and do not revise his assumption of the common
belief of rationality till the end of the game. By Artemov’s argument in [2], this
yields BI solution for the rest of the game.
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Theorem 2. The upper bound 2n+3 from Theorem 1 is tight. Namely, for each
n, there exists a perfect information game with common knowledge of rationality
and of n-tolerance of length 2n+ 3 which does not yield BI.

Proof: Consider the straightforward generalization of Example 3 (which has
length 5 = 2 × 1 + 3, i.e., corresponds to n = 1) to an arbitrary n in Figure 3.
In particular, the profile

(dd . . . da)

is assumed to be commonly known and players to be n-tolerant.
The same reasoning as in Example 3 shows that this profile (dd . . . da) is both

rational and not BI. Since the strategy profile (dd . . . da) is commonly known,
and players are n-tolerant, Ann and Bob will not revise their beliefs in each
other’s rationality during the first 2n moves. The move at v2n+1 belongs to Ann.
She is playing d according to the strategy profile (dd . . . da) and she is rational
(because Bob is playing d at v2n+2). However, in order to decide whether Bob is
rational at v2n+2, we need to take into account Ann’s hypothetical non-rational
moves a to reach v2n+2, and there are n + 1 such moves. Therefore Bob may
revise his beliefs on her rationality, consider Ann’s playing d possible at v2n+3,
and this makes Bob’s move d at v2n+2 rational. At the very last vertex, Ann is
also rational since she plays a.

first 2n moves︷ ︸︸ ︷
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d

��Ann
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d

��(2n+ 3,
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Fig. 3. Game of length 2n+ 3

5 Conclusion and Future Work

We see a conceptual contribution of this work in stressing the role of tolerance in
the analysis of perfect information games in the belief revision setting that ac-
commodates both Aumann’s and Stalnaker’s paradigms. Stalnaker’s players are
zero-tolerant and give up their “knowledge of rationality” in hypothetical rea-
soning after the first hypothetical non-rational move of other players. Aumann’s
players are infinitely tolerant, and never give up their knowledge of rationality
even when confronted, hypothetically, with strong evidence of the contrary. A
natural problem of what happens in between, when the level of tolerance to
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hypothetical errors is a parameter of the game is addressed is this paper. Our
findings indicate that for a given tolerance level n, short games, up to length
2n+2 are Aumann’s games, i.e., yield backward induction solutions only. Longer
games of length 2n+ 3 and greater can show Stalnaker’s behavior based on the
revision of player’s belief of each other’s rationality.

What does it say about games with human players who can be tolerant to some
limited degree? One more parameter intervenes here: the nested epistemic depth
of reasoning, which is remarkably limited for humans ([6]) to small numbers like
one – two. In order to calculate BI, players have to possess the power of nested
epistemic reasoning of the order of the length of the game. So, realistically, the
BI analysis of human players applies to rather short games, say, of length three –
four. According to Theorem 1, assuming 1-tolerance of players (which we regard
as a meaningful assumption for humans) the only solution is backward induction.

In this game, with the given definition of rationality of hypothetical moves
and common knowledge of a non-BI strategy profile as the actual state, we see
no way to interpret the hypothetical errors as a move (signal) where the player is
trying to reach the pareto-optimal payoff pair, which is the BI solution. A next
logical step could be to look into this direction.
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Abstract. Timed Modal Epistemic Logic, tMEL, is a newly introduced
logical framework for reasoning about the modeled agent’s knowledge.
The framework, derived from the study of Justification Logic, is adapted
from the traditional Modal Epistemic Logic, MEL, to serve as a logi-
cally non-omniscient epistemic logic and dealing with problems where
the temporal constraint is an unavoidable factor. In this paper we will
give a semantic proof for the formal connection between MEL and tMEL,
the Temporalization Theorem, which states that every MEL theorem can
be turned into a tMEL theorem if suitable time labels can be found for
each knowledge statement involved in the MEL theorem. As a result, the
proof also gives us a better understanding of the semantics on the both
sides of the theorem.

Keywords: Epistemic Logic, Agent Theory, Modal Logic, Reasoning
Time, Timed Modal Epistemic Logic, Temporalization Theorem, Justi-
fication Logic, Realization Theoremn.

1 Introduction

Contemporarily, the modal approach of epistemic logic, MEL, with its possi-
ble world semantics is the standard logical framework for reasoning about the
mental qualities of agents [11, 8, 20]. But it is also well-noticed that the setting
is defective. The modeled agents are able to know, say, all the logical conse-
quences of their knowledge, a reasoning ability categorizing only ideal agents.
Not surprisingly, approaches has been proposed to deal with the problem (e.g.
[16, 13, 12, 7]). Based on the analysis that the problem is due to the agents’
knowing too much, different apparatuses have been suggested to restrict the
modeled agent’s reasoning ability (awareness function, impossible world, incom-
plete set of rules, etc.). However, these restrictions have been argued to be ad
hoc, and the rationality of the agency appears absent in these approaches [4]. Al-
ternatively, it has been suggested that the problem can’t be solved by proposing
weaker logical frameworks, as what these approaches are trying to do. Instead,
to solve the problem, a logical framework toward the epistemic foundation of
agent theory should reveal the dynamic feature of agents’s reasoning such that
the propositions that are hard to know can be distinguished from the ones that
are easy to.
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Several logical setting can be counted as falling into this later group of ap-
proaches, which include Step Logic (later Active Logic) [6, 15], Algorithmic Logic
[4, 5], Justification Logic [1, 2, 9], and timed Modal Epistemic Logic tMEL
[17, 18], to name some of them. Among them, tMEL is distinct in the way that
it is built up on the foundation of the original MEL logical framework, so keep-
ing the flavor of possible world semantics, serves as a logically non-omniscient
epistemic logic, so the modeled agents don’t assume to possess the reasoning
ability beyond the reach of human beings, and is capable of dealing with prob-
lems where deadline constraint is a factor, such as The Nell & Dudley Problem
[14, 10, 3]. Roughly speaking, syntactically, each MEL formula of the form Kφ
will be accompanied with a natural number i to form a formula Kiφ in tMEL,
purported to mean φ is known at the time i; and semantically, each world of a
tMEL structure will be equipped with a syntactical device, called an awareness
function, to capture when the agent is aware of a formula by the deductive pro-
cedure that the model designers assume the agent to possess. Then for example
the MEL theorem K(φ→ψ)→(Kφ→Kψ), which can be interpreted as saying
that the agent is able to perform modus ponens, has temporal counterparts in
tMEL, Ki(φ→ψ)→(Kjφ→Kkψ), for numbers i, j<k, saying further that the
rule takes time to apply. This temporalization of an MEL theorem into a tMEL
theorem is in fact not an isolated result. One of the important metatheorems
concerning tMEL, the Temporalization Theorem, making the formal connection
between MEL and tMEL, states that every MEL theorem can be turned into a
tMEL theorem if suitable time labels can be found for each knowledge statement
(formula of the form Kφ) involved in the MEL theorem.

This Temporalization Theorem renders such a fact that there is indeed a tem-
poral aspect hidden in our all familiar Modal Epistemic Logic, with its temporal
information revealed in the setting of tMEL. And with such a connection result,
it moreover suggests that it is possible for the future study to turn whatever
technical results established based on MEL in the context that temporal rela-
tions are not relevant, to more refined consequences in which the time that the
modeled agents is taken for reasoning plays an essential role. The goal of this
paper is thus to supply a semantic proof for such a connection metatheorem. Al-
though a syntactic proof of the Temporalization Theorem has been given in the
context of studying the proof relations between MEL, tMEL, and Justification
Logic [19], a semantic proof of a logical result is always of its own interests. In
particular, the generalization of the proof-theoretical method is restricted, for it
needs to take cut-free Gentzen style proofs into consideration, and, as we can
see, besides its promise of generalization, the semantic proof provided here shed
light on both the tMEL and MEL semantics.

2 MEL and tMEL Logics

2.1 Modal Epistemic Logic

We begin with a presentation of the semantics, together with the axiom systems
for reference, of the logics on the both sides of the main result. We first review
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the possible world semantics, which is the foundation of tMEL semantics. The
language of MEL is built up from a nonempty set of primitive propositions P ,
boolean connectives, and a modal operator K. To simplify the arguments, only
cases of boolean connectives negation (∼) and implication (→) will be explicitly
discussed. A well-formed MEL formula is defined according to the following
grammar φ := p|∼φ|φ→φ|Kφ, where p ∈ P .

A structure or a model for MEL is a tuple 〈W,R,V〉, whereW is a set of worlds
or epistemic alternatives, R is a binary relation defined on W , normally called
accessibility relation, and V is a function assigning possible worlds to primitive
propositions. The satisfaction relation in a structure M is recursively defined as
follows:

M,w � p⇔ w ∈ V(p),
M,w � ∼φ⇔M,w � φ,
M,w � φ→ ψ ⇔M,w � φ or M,w � ψ,
M,w � Kφ⇔M,w′ � φ for all w′ ∈ W with wRw′.

A formula is valid in a structure if it is satisfied in every world of the structure.
Formulas which are valid in all structures compose the smallest MEL logic K,
and its corresponding complete and sound axiom system is:

Axioms

Classical propositional axiom schemes
K(φ→ ψ)→ (Kφ→ Kψ)

Inference Rules

if � φ→ ψ and � φ, then � ψ
if � φ, then � Kφ

Several extensions of K are often discussed in the literature. The following is
a table of some well studied modal logical axioms, especially in the epistemic
context, and their correpsponding conditions on the binary relation R:

Axiom R
T Kφ→φ Truth Axiom reflexive
4 Kφ→K(Kφ) Positive Introspection Axiom transitive
5 ∼Kφ→K(∼Kφ) Negative Introspection Axiom euclidean

Let Λ be a subset of {T, 4, 5}. A KΛ-structure is a structure whose binary
relation satisfies conditions corresponding to the axioms mentioned in Λ. We
call a formula KΛ-valid if it is valid in all KΛ structures. KΛ logic contains all
KΛ-valid formulas, and its complete and sound axiomatic counterpart is exactly
the axiom system K plus axioms in Λ. For example K45 is the logic of all
formulas valid in transitive and euclidean structures, and K45 axiom system is
K plus axioms 4 and 5. Notice that the KT 4 logic in our terminology is the
familiar S4, and KT 45 is S5. All the logics listed here are the targets of this
paper. We will show at once that theorems in these logics can be temporalized
into their counterparts in tMEL logics.
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2.2 Timed Modal Epistemic Logic

Semantics Basics. The language of tMEL is similar to the language of MEL
except that the natural numbers are now part of the formula constructors. Nat-
ural Numbers are used to denote the passage of time, that is, in tMEL a simple
structure of time, discrete, linear, with a beginning point, is considered. The
grammar of well-formed tMEL formulas is: φ := p|∼φ|φ→φ|Kiφ, where p ∈ P
and i ∈ N a natural number. Kiφ is read as the formula φ is known at time i.

A tMEL base is a tuple A = 〈A, f〉, where A is a set of tMEL formulas and
f :A→ N. Given a base A = 〈A, f〉, we call a partial function α that associates
tMEL formulas with natural numbers an A-awareness function, if it satisfies the
following condition:

If A ∈ A, then α(A) ≤ f(A). (Initial Condition)

Furthermore, we will call an A-awareness function normal if it satisfies two more
conditions (α(φ)↓ means α(φ) is defined):

If α(φ→ψ)↓ and α(φ)↓, then
α(ψ)≤max(α(φ→ψ), α(φ))+1. (Deduction by Modus Ponens)

If A ∈ A and f(A) ≤ i, then
α(KiA) ≤ i + 1. (Deduction by A-Epistemization)

Basically, an agent modeled by a tMEL logic is assumed to employ some kind
of axiomatic method for reasoning, and the aim of an awareness function is to
record the reasoning process of the modeled agent. Formulas in the set A of
a base are supposed to be the formulas of which the truths are acceptable by
the agent through non-deductive methods, such as perceiving some self-evident
logical truths inherently or conveyed by others, and f indicate when these non-
deductive methods takes place. Then those conditions for awareness function
just reflect the rules that the agent can apply, and for an awareness function α,
α(φ) = i indicates that the first time when the agent accepts the truth of φ is i.

Given a base A = 〈A, f〉, a tMEL A-structure is a tuple M= 〈W,R,A,V〉,
where 〈W,R,V〉 is an MEL structure and A = {αw} is a collection ofA-awareness
functions with one for each world w ∈ W . Then the satisfaction relation in a
tMEL structure M is the same as that in MEL structure except that the rule
for modal formulas is changed to the following:

M,w � Kiφ⇔M,w′ � φ for all w′ ∈W with wRw′,
and αw(φ) ≤ i.

It says that in the world w ∈W the agent knows a formula at the time i if and
only if the formula is true in all possible worlds accessible from w and the agent
accepts the truth of the formula before or equal to i.

A formula is valid in a tMEL structure if the formula is satisfied at all worlds in
the structure. Given a base A, a structure M= 〈W,R,A,V〉 is a tK(A)-structure
if A consists of normal A-awareness functions, and the logic of tK(A) is the set
of formulas valid in all tK(A)-structures.
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Similar to MEL logics, several extensions of tK(A) are defined based on sub-
classes of tK(A) structures. But now subclasses are determined not only by the
binary relation R but also by the collection of awareness functions A, and its
relation to the structure.

Given two awareness functions α, β, we write β ≤ α to mean that β(φ) ≤ α(φ)
for every formula φ with α(φ)↓. Let M= 〈W,R,A,V〉 be a tMEL structure, and
here are some more conditions on awareness functions:

If αw(φ) ≤ i, then αw(K
iφ) ≤ i+ 1 (Inner Positive Introspection)

If αw(φ) 	 i, then αw(K
iφ) 	 i+ 1 (Inner Negative Introspection)

For any wRw′, αw′ ≤ αw (Monotonicity)

For any wRw′, αw ≤ αw′ (Anti-Monotonicity)

If M,w � Kiφ, then αw(K
iφ) ≤ i+ 1. (Outer Positive Introspection)

If M,w � Kiφ, then αw(K
iφ) 	 i+ 1. (Outer Negative Introspection)

Within a given structure, an awareness function is positive regular (with respect
to the structure) if it satisfies the monotonicity and both inner and outer positive
introspection, and negative regular (with respect to the structure) if it satisfies
the anti-monotonicity and both inner and outer negative introspection. Some
tMEL axioms and their corresponding conditions on the awareness functions in
A are listed in the following table:

Axiom A
tT Kiφ→φ none
t4 Kiφ→Kj(Kiφ) i < j positive regular
t5 ∼Kiφ→Kj(∼Kiφ) i < j negative regular

Let Λ be a subset of {T, 4, 5}, and A be a base. A tK(A)-structure 〈W,R,A,V〉 is
a tKΛ(A)-structure if 〈W,R,V〉 is a KΛ-structure and every awareness function
in A also satisfies the conditions corresponding the tMEL axioms in Λ. A formula
is tKΛ(A) valid if it is valid in all tKΛ(A)-structures. tKΛ(A) logic contains
all tKΛ(A) valid formulas. So a tK45(A) valid formula is valid in all tK(A)-
structures whose binary relation is transitive and euclidean and its awareness
functions are all both positive and negative regular.

Logical Bases and Axiomatization. Till now, there is no restriction on
the base that is employed for the definition of tMEL semantics. But it will be
more interesting if a base consists of logical truths, since it means the agent
modeled by a tMEL logic with respect to the base have basic logical knowledge
which will function like axioms in axiom systems in the agent’s reasoning. Given
bases A= 〈A, f〉 and B= 〈B,g〉, we will write B ⊆ A to mean B ⊆ A and
f(B) ≤ g(B) for all B ∈ B. A set of bases {Ai(= 〈Ai, fi〉)}i∈N is an ascending
chain if A1 ⊆ A2 ⊆ . . ., and a base A is the limit of the chain if A =

⋃
Ai,

i.e., A =
⋃
Ai and f(A) = min{fi(A) : fi(A)↓}. The following is the definition

of such bases:
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Definition 1. A base A is tKΛ-logical if one of following is true:
(1) A is empty,
(2) A consists of tKΛ(B)-valid formulas with B tKΛ-logical,
(3) A is the limit of an ascending chain of tKΛ-logical bases {Ai}i∈N

where Ai+1 consists of tKΛ(Ai)-valid formulas for every i ∈ N.

Lemma 1. If A= 〈A, f〉 is a tKΛ logical base, every formula in A is tKΛ(A)
valid.

Given a tK-logical base A= 〈A, f〉, there is a corresponding axiom system of the
logic of tK(A):
Axioms

Classical propositional axiom schemes

Ki(φ→ ψ)→ (Kjφ→ Kkψ) i, j < k (Deduction by Modus Ponens)

KiA→ Kj(KiA) i < j if A ∈ A and f(A) ≤ i (Deduction by A-Epistemization)

Kiφ→ Kjφ i < j (Monotonicity)

Inference Rules

if � φ→ ψ and � φ, then � ψ (Modus Ponens)

if A ∈ A and f(A) ≤ i, then � KiA (A-Epistemization)

Let A be a tKΛ-logical base. For the logic of tKΛ(A), the sound and complete
corresponding axiom system is tK plus the tMEL axioms in Λ (more precisely,
tK plus tX axioms with X∈Λ).
Theorem 1. Given a tKΛ-logical base A, a tMEL formula φ is tKΛ(A)-valid
if and only if it is provable in the tKΛ(A) axiom system.

So for a given tKΛ logic, there is actually a collection of corresponding tKΛ(A)
logics introduced. The logical bases A are capturing the basic logical truths that
agents are assumed to be aware of, and hence different tKΛ(A) logics manifest
different logical strengths. For example, if A is the empty base, then no formula
of form Kiφ is tKΛ(A) valid. In [18], it is shown that there exists comprehensive
tKΛ-logical bases A such that every tKΛ(A) valid formula is in the base A. One
type of logical bases lying between the above two deserves additional attention.
A full tKΛ-logical base A is such that for any tKΛ valid formula φ, though φ
might not be in the base, Kiφ is tKΛ valid for some i. This feature of a full
logical base is a desirable one, since it indicates that the agent modeled by a
tKΛ logic with respect to a full logical base has enough basic logical knowledge
to derive to know all valid formulas.

Another good and natural feature that we would like a logical base to possess
is schematic. By a schematic logical base A= 〈A, f〉, we mean that suppose φ ∈ A
and f(φ) = i , then if we add a fixed number n to every number labels in φ to
form a new tMEL formula ψ, then ψ ∈ A and f(ψ) = i, too. This property
suggests that the agent modeled by a tKΛ logic with respect to a schematic
logical bases is aware of the formula in A by schema, and hence for formulas
falling into the same schema the agent is aware of them at the same time.

Fixing a Λ ⊆ {T, 4, 5}, our main goal is just to show that every KΛ theorem
can be temporalized to a theorem of a tKΛ logic with respect to a schematic full
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logical base A, that is, every KΛ theorem can be turned into a tKΛ(A) theorem
by finding suitable number labels for knowledge statements involved in the KΛ
theorem, and equivalently, due to the completeness theorem, to show that every
KΛ valid formula can be temporalized to a tKΛ(A) valid formula.

However, the route we take to prove the result will take several stages. First
we need the following lemma proved in [18] (for simplication, all the logical bases
are taken to be schematic in the following discussions):

Lemma 2. A tKΛ-logical base A is full if and only if there is a comprehensive
tKΛ-logical base B such that for every tMEL formula φ, φ is tKΛ(A) valid if
and only if φ is tKΛ(B) valid.

We call a logical base A= 〈A, f〉 principal if f is the constant function 0, that
is, f(φ) = 0 for all φ ∈ A. Let A be a principal comprehensive KΛ-logical base,
and B an arbitrary comprehensive KΛ-logical base. In the next section we will
show that a KΛ valid formula can be temporalized to a tKΛ(A) valid formula
if and only if it can be temporalized to a tKΛ(B) valid formula. This result
together with the previous lemma shows that a tKΛ logic with the principal
comprehensive logical base and that with a full logical base have the same logical
strength to temporalize KΛ valid formulas. Then in the section after, we will
prove that a tKΛ logic with the principal comprehensive logical base indeed can
temporalize every KΛ valid formula to conclude our main theorem.

3 Comprehensive Bases

Before continuing, we need some notations and terminology for our discussions
in this and the next section. For simplicity, we will use subformulas to mean
subformula occurrences of a formula in this paper. According to their positions
in a formula, subformulas can be categorized either positive or negative: for
a formula φ, φ is a positive subformula of itself and if θ→ψ, Kψ or ∼θ is a
positive subformula, or if ψ→θ, Kθ, or ∼ψ is a negative subformula, ψ and
θ are positive and negative subformula of φ respectively. Let φ be an MEL
formula. We use O(φ) to denote the set of all subformulas of φ with the form
Kψ, andO+(φ) andO−(φ) to denote the subsets ofO(φ) of positive and negative
subformulas respectively. Given a function τ :O(φ)→ N, it will induce a natural
translation, also denoted as τ , on φ such that φτ is a tMEL formula and τ fixes
the primitive propositions, commutes with boolean connectives, and (Kψ)τ =
Ki(ψτ ) with i = τ(Kψ). We will call τ :O(φ) → N a temporalization function
on φ or a t-function on φ. For each MEL formula φ and a t-function τ on φ
there is a corresponding tMEL formula φτ , and for each tMEL formula ψ there
is a corresponding unique MEL formula φ (the resulting formula from removing
number labels from ψ) and a unique t-function on φ such that ψ = φτ . So in the
following we will simply write a tMEL formula as φτ with φ an MEL formula
and τ a t-function on φ. Given a t-function τ on φ, τ + n is the t-function on φ
such that (τ + n)(Kψ) = τ(Kψ) + n for every subformula Kψ ∈ O(φ), and we
will call φτ+n the n-shift of φτ .
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With these notations we can define a schematic logical base A(= 〈A, f〉) as
that if φτ ∈ A, φτ+n ∈ A for every n and f(φτ+n) = f(φτ ), and we can define
a temporalization of a KΛ valid formula φ as that there is a t-function τ on φ
such that φτ is a tKΛ valid formula with respect to a logical base.

We call a set S of tMEL formulas tKΛ(A)-satisfiable if all the formulas are
satisfiable in a world of a tKΛ(A) structure, and tKΛ(A)-finitely satisfiable
if every finite subset of S is satisfiable. The compactness theorem holds for
all tKΛ(A) with A a logical base. The proof is basically by constructing the
tKΛ(A)-structure M= 〈W,R,A,V〉 composed of all maximal tKΛ(A)-finitely
satisfiable set Γ of formulas, where ΓRΓ ′ if and only if Γ � ⊆ Γ ′ for Γ � =
{ψ | Kψi ∈ Γ}, and αΓ and V are defined as αΓ (ψ)=min{i | Kψi ∈ Γ} and
V(P )={Γ | P ∈ Γ}, respectively. In the following discussions, this model will
be referred to as the canonical tKΛ(A) model. We will leave the qualification of
this structure as a tKΛ(A)-structure and the Truth Lemma: M,Γ � φ if and
only if φ ∈ Γ , for the readers to check.

Theorem 2 (Compactness Theorem). Given a tKΛ-logical base A, a set
of tMEL formulas is tKΛ(A)-satisfiable if and only if it is tKΛ(A)-finitely
satisfiable.

For a function f :A→ N, we write f |B to mean the restriction of f to the subset
B of A.

Corollary 1. Given a tKΛ-logical base A = 〈A, f〉, a tMEL formula φτ is
tKΛ(A) valid if and only if there is a A′ = 〈A′, f ′〉 where A′ is a finite subset
of A and f ′ is f |A′ such that φτ is tKΛ(B) valid.
We call an awareness function β an n-backshift of an awareness function α pro-
viding for every φ if α(φτ+n)↓, then β(φτ )↓, and β(φτ ) = max{0, α(φτ+n)−n}.
A structure M ′ = 〈W ′, R′,A′,V ′〉 is an n-backshift of M = 〈W,R,A,V〉 if
〈W,R,V〉 = 〈W ′, R′,V ′〉 and every awareness function βw in A′ is an n-backshift
of αw in A. We have the following lemma.

Lemma 3. If a tMEL structure M ′= 〈W ′, R′,A′,V ′〉 is an n-backshift of M=
〈W,R,A,V〉, M,w � φτ+n if and only if M ′, w � φτ for any tMEL formulas φτ .

The proof is simply by induction on the complexity of formulas. Finally, we also
need the following:

Lemma 4. For any tKΛ-logical bases A, if φτ is tKΛ(A) valid, then for any
number n, φτ+n is also tKΛ(A) valid.

Proof. The syntactical proof of this lemma is straightforward (take a look at
the axiom systems); however we give a semantic proof here to investigate the
tMEL semantics and to render some skills and techniques that might be use-
ful for the future work. Suppose that there is an n and a tKΛ(A)-structure
M= 〈W,R,A,V〉 such that M,w � (∼φ)τ+n. Let M ′ be the n-backshift of M ,
then by Lemma 3, M ′, w � (∼φ)τ . Now we have to prove that M ′ is also a
tKΛ(A)-structure to finish the proof. That is, we have to show whatever condi-
tions that are listed above are satisfied by αw ∈M , are also satisfied by βw ∈M ′.
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The proof is straightforward. We only check the case for the initial condition.
Since φτ ∈ A, φτ+n ∈ A (logical bases are supposed to be schematic). Then
β(φτ ) = max{0, α(φτ+n)−n} ≤ f(φτ+n) = f(φτ ). So βw is also an A-awareness
function.

Theorem 3. A tMEL formula φτ is a valid formula of a tKΛ logic with re-
spect to a comprehensive logical base if and only if there is a t-function τ ′ on
φ such that φτ

′
is a valid formula of a tKΛ logic with respect to the principal

comprehensive logical base.

Proof. Given a logical base A = 〈A, f〉, we first assign a rank to every tKΛ(A)
valid formula. Let S be the set of all tKΛ(A) valid formulas, and ∅ be the empty
logical base. If φτ ∈ S is tKΛ(∅) valid, the rank is 1. Suppose we have assigned
formulas in S with rank less than k. Let B be the set of formulas in A whose
ranks less than k, and B = 〈B, f |B〉. Then for formulas in S whose ranks are
undefined and which are also tKΛ(B) valid, their ranks are k. Now according
to Corollary 1, every formula in S is of a finite rank. Since for a comprehensive
logical base every valid formula of the tKΛ logic with the base is in the base, so
every formula in the base has a rank.

We first prove the if-part of the theorem. LetA(= 〈A, 0〉) be the principal com-
prehensive tKΛ-logical base, and B(= 〈B,g〉) be a comprehensive tKΛ-logical
base. We will actually show that if φτ is tKΛ(A) valid, then there is a n ∈ N
such that for any m ≥ n, φτ+m is tKΛ(B) valid, by induction on the rank of
φτ ∈ A. When φτ ’s rank is 1, which means φ is tKΛ(∅) valid, so φ is tKΛ(B)
valid. Then by Lemma 4, φτ+n is tKΛ(B) valid, too, for every n. So φτ+n ∈ B.
The base case holds. Now suppose φτ ’s rank is k>0, then there is a finite base
A′ = 〈A′, 0〉 such that φτ is tKΛ(A′)-valid, where A′ = {φτ11 , . . . , φτss } and for
each i the rank of φτii is less than k. Then by IH, there is an ni for each i such
that φτi+nii is tKΛ(B)-valid, and hence g(φτi+nii ) ↓.

Now picking m large enough such that m > ni and m > g(φτi+nii ) for each i,
we are going to show φτ+m is tKΛ(B)-valid, and then finish the proof. Suppose
φτ+m is not tKΛ(B)-valid, ∼φτ+m is satisfiable in a tKΛ(B)-structure M . Let
M ′ be the m-backshift of M . Then ∼φτ is satisfiable in M ′, by Lemma 3. So
all we need to show is that M ′ is a tKΛ(A′)-structure. Everything is similar
to the proof in the previous Lemma 4, except that we have to show that every
m-backshift awareness function βw in M ′ of the awareness function αw in M is
an A′-awareness function. Since φτi+mi is in B, αw(φτi+mi )↓ and hence βw(φ

τi
i ) is

defined. By the definition of m-backshift βw(φ
τi
i ) = max{0, αw(φτi+mi )−m} = 0.

Hence every βw in M ′ is tKΛ(A′) valid and M ′ is a tKΛ(A′)-structure.
For the only-if-part, let Ai= 〈Ai, 0〉, where Ai={φτ∈A | the rank of φ is equal

to or less than i}, and Bi= 〈Bi,gi〉, where Bi={φτ∈B | the rank of φ is equal to
or less than i} and gi=g|Bi

. We will prove that for every i, Bi ⊆ Ai. and hence
B ⊆ A. We prove it by induction on the index. For the base case, both A1 and
B1 are the collection of tKΛ(∅) valid formulas, so B1 ⊆ A1. Suppose Bi ⊆ Ai,
then every tKΛ(Ai)-awareness function is a tKΛ(Bi)-awareness function, and
hence every tKΛ(Ai)-structure is a tKΛ(Bi)-structure, so every tKΛ(Bi) valid
formula is a tKΛ(Ai) valid formula. This completes the proof.
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4 Temporalization Theorem

So in this section we will complete the semantic proof of Temporalization The-
orem. We first prove several interesting theorems about the tMEL semantics,
which will lead us to the main result. In this section we fix an MEL logic KΛ
and its tMEL counterpart tKΛ(A) with A the principal comprehensive logical
base. All discussions will be relative to these fixed logics. We will omit the logic
name. From the context it should be clear which logic (KΛ or tKΛ(A)) is under
discussion. We write � φτ to mean φτ is tKΛ(A) valid. Notice that the most
important feature of the principal comprehensive logical base is that if � φτ then
� K0(φτ ).

Definition 2. Let φ be an MEL formula and τ and τ ′ two t-functions on φ,

1. τ < τ ′ if for any Kψ ∈ O(φ), τ(Kψ) < τ ′(Kψ).

2. τ ≺ τ ′ if for any Kψ ∈ O+(φ), τ(Kψ) < τ ′(Kψ), and for any Kψ ∈ O−(φ),
τ ′(Kψ) < τ(Kψ).

Lemma 5. If τ ≺ τ ′ on φ, then � φτ → φτ
′
.

Proof. The proof is by induction on the complexity of formula φ. The base case is
trivial. Suppose φ≡∼ψ, then τ ′ ≺ τ on ψ, and by the Induction Hypothesis (IH),
� ψτ

′→ψτ , so � ∼(ψτ )→∼(ψτ ′), and hence � (∼ψ)τ→(∼ψ)τ ′ . We skip to check
the case for φ≡ψ→θ. Suppose φ≡Kψ, then τ ≺ τ ′ on ψ. By IH, � ψτ→ψτ

′
. Since

� K0(ψτ→ψτ
′
), � Ki(ψτ )→Kj(ψτ

′
) for i < j and hence � (Kψ)τ→(Kψ)τ

′
. The

case for implication is similar. This completes the proof.

Theorem 4. Let φ be an MEL formula. If for every t-function τ , φτ is satisfi-
able, then the set S composed of formulas φτ for all τ is satisfiable.

Proof. Suppose the set S is not satisfiable, then there is a finite subset
{φτ1 , . . . , φτs} of S which is not satisfiable. So � ∼(φτ11 ∧ . . .∧φτss ). By Lemma 4,
for any n ∈ N, � ∼(φτ1+n1 ∧ . . . ∧ φτs+ns ). Hence we can pick a larger number n
and a τ such that τ ≺ τi + n for each i. Then � ∼φτ . A contradiction. So S is
satisfiable.

Definition 3. Let φ be an MEL formula.

φ is t-satisfiable if there is a τ on φ such that φτ is satisfiable, and t-refutable
if there is a τ on φ such that ∼φτ is satisfiable.

φ is unboundedly t-satisfiable (t-refutable) if there is a τ on φ such that for
every τ ′ > τ on φ there is a τ ′′ > τ ′ on φ such that φτ

′′
is satisfiable (refutable).

φ is upward-closedly t-satisfiable (t-refutable) if there is a τ on φ such that for
every τ ′ > τ , φτ

′
is satisfiable (refutable).

Definition 4. A configurational structure M= 〈W,R,A,V〉 is such that Kφ is
unboundedly t-satisfiable at w, provided for every w′ with wRw′, φ is unboundedly
t-satisfiable at w′ then.
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Theorem 5. Every satisfiable set is satisfied in a configurational structure.

Proof. We will prove the canonical structure is configurational, and it is sufficient
to prove the following lemma. Let [φτ ] = {φτ ′ |τ ′ > τ}.

Lemma 6. Let Γ be a maximal finitely-satisfiable set of tMEL formulas. If for
an MEL formula ∼Kφ there is a τ on ∼Kφ such that [(∼Kφ)τ ] ⊆ Γ , then
Γ � ∪ [(∼φ)τ ′ ] is satisfiable, for τ ′ > τ on ∼φ.

Proof. We will prove this theorem by contraposition. Suppose for an τ ′ > τ ,
Γ � ∪ [(∼φ)τ ′ ] is not satisfiable. Then there are finitely many formulas Fi ∈ Γ �,
and finitely many formulas (∼φj)τj ∈ [(∼φ)τ ′ ] such that the set {Fi}∪{(∼φj)τj}
is not satisfiable, and hence � ∼((

∧
Fi)∧(

∧
(∼φj)τj )) (i and j belong to some

finite index sets which we do not mention here). It follows that � (
∧

Fi)→(
∨
φ
τj
j ).

Define τ ′′ on φ such that for any Kψ ∈ O+(φ), τ ′′ = max{τj(Kψ)}+ 1, and for
any Kψ ∈ O−(φ), τ ′′(Kψ) = τ ′(Kψ). Then τj ≺ τ ′′ and τ < τ ′′ on φ. Since

� (
∧

Fi)→(
∨
φ
τj
j ) and � φτj→φτ

′′
for all j, then � (

∧
Fi)→φτ

′′
. Since Fi ∈ Γ �,

then
∧
Fi ∈ Γ � and Kk(

∧
Fi) ∈ Γ for some k. Since � (

∧
Fi)→φτ

′′
, then

� K0((
∧

Fi)→φτ
′′
), so � K(

∧
Fi)
k→K(φτ

′′
)l, for l > k, and hence � K(φτ

′′
)l.

Then let τ ′′′ on Kφ such that τ ′′′(Kψ) = τ ′′(Kψ) for all Kψ ∈ O(φ), and
τ ′′′(Kφ) = max{τ(Kφ), l} + 1, so τ ′′′ > τ on Kφ and � (Kφ)τ

′′′
. It follows

(Kφ)τ
′′′ ∈ Γ . So the lemma holds.

(Proof of Theorem 5 Continued) Suppose the canonical structure is not configu-
rational, then there is a formulaKφ, and a maximal finitely satisfiable set Γ such
that Kφ is not unboundedly t-satisfiable at Γ but φ unboundedly t-satisfiable
at all maximal finitely satisfiable set Γ ′ ⊇ Γ �. Then ∼Kφ is upward-closedly
t-satisfiable at Γ , and hence there is a τ on ∼Kφ such that [(∼Kφ)τ ] ⊆ Γ ,
by Truth Lemma. By the previous lemma, there is a τ ′ > τ on ∼φ such that
Γ � ∪ [(∼φ)τ ′ ] is satisfiable. Then φ is not unboundedly t-satisfiable at some Γ ′.
A contradiction. So the canonical structure is configurational.

Given a tKΛ structure M= 〈W,R,A,V〉, we will call 〈W,R,V〉 the underlying
KΛ structure of M and denote it as M◦.

Theorem 6. Let φ be an MEL formula, M= 〈W,R,A,V〉 be a configurational
structure and w ∈W .

1. If φ is upward-closedly t-satisfiable at (M,w) then φ is satisfiable at (M◦, w),
2. If φ is upward-closedly t-refutable at (M,w) then φ is refutable at (M◦, w),

Proof. We will prove this by induction on the complexity of φ. The basic case
is trivial. Suppose φ≡∼ψ is upward-closedly t-satisfiable at (M,w), then ψ is
upward-closedly t-refutable at (M,w). So ψ is refutable at (M◦, w), and φ is
satisfiable at (M◦, w). The proof for the second condition is similar.

Suppose at (M,w), φ≡ψ→θ is upward-closedly t-satisfiable, we will show
that either ψ is upward-closedly refutable or θ is upward-closedly satisfiable at
(M,w). Suppose not, then for every τ on ψ there is a τ ′ > τ on ψ such that
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ψτ is satisfiable, and for every τ on θ there is a τ ′ > τ on θ such that θτ
′
is

refutable. Then for every τ on φ, we can always establish a τ ′ > τ on φ such that
ψτ

′
is satisfiable and θτ

′
is refutable, and hence φ≡ψ→θ is not upward-closedly

satisfiable. A contradiction. Then either ψ is upward-closedly refutable or θ is
upward-closedly satisfiable at (M,w). So, by IH, ψ is refutable at (M,w) or θ is
satisfiable at (M,w), and hence ψ → θ is satisfiable at (M,w). The other part
for this case is straightforward. We skip the proof here.

Finally we deal with the modal case. Suppose φ ≡ Kψ, and φ is upward-
closedly satisfiable at (M,w), then for every wRw′, ψ is upward-closedly satis-
fiable at (M,w′), so ψ is satisfiable at (M◦, w′), and hence Kψ is satisfied at
(M◦, w). Now we suppose φ is upward-closedly refutable at (M,w), then suppose
for every wRw′, ψ is unboundedly satisfiable at (M,w′), thenKψ is unboundedly
satisfiable at (M,w), sinceM is configurational. ThenKψ is not upward-closedly
refutable at (M,w). This contradicts to our assumption. So there is a w′ with
wRw′ such that ψ is upward-closedly refutable at (M,w′), and hence ψ is not
satisfiable at (M◦, w′), so φ is not satisfiable at (M◦, w). This completes the
proof.

Let Λ be a subset of {T, 4, 5}. Here is our main result:

Theorem 7. Given the principal comprehensive tKΛ-logical base A, φ is KΛ
valid if and only if there is a temporalization function τ on φ such that φτ is
tKΛ(A) valid.

Proof. We first prove the direction from right to left. Suppose φ is satisfiable in a
world w of a KΛ structure M= 〈W,R,V〉. Let M+= 〈W,R,A,V〉, where A is the
collection of awareness functions αw such that αw(φ

τ ) = 0 for all tMEL formulas
φτ . Then all αw are tKΛ(A)-awareness function, and hence M+ is a tKΛ(A)-
structure. It can then be checked by induction that for any MEL formula φ and
any t-function τ on φ, M,w � φ if and only if M+, w � φτ for any w ∈M . This
completes the proof. Now suppose there is no τ such that φτ is tKΛ-valid, then
for all τ on φ, ∼φτ is satisfiable. By Theorem 4, there is a structure M and a
world w of the structure such that for all τ , ∼φτ is satisfiable at (M,w). And
then by Theorem 5, we can assume M is configurational. At last, by Theorem 6,
∼φ is satisfied at (M◦, w). A contradiction. So the other direction and the whole
theorem is proved.

Corollary 2. Given a full tKΛ-logical base A, φ is KΛ valid if and only if there
is temporalization function τ on φ such that φτ is tKΛ(A) valid.

5 Conclusion

In this paper we render a semantic proof to the Temporalization Themorem,
and the proof itself, which includes several lemmas and theorems, also gives us
a closer look of the tMEL secmantics and its relation to the MEL semantics.
Taken as an example, the Theorem 6 gives us the idea that the pattern of
the truth-values of the formulas in the tail of such a sequence: {φτi}i∈N with
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τi < τi+1 in a world of a tMEL structure is an indication of the truth value of
φ in the same world of the underlying MEL structure. For the future work, we
hope we can extend the method used here to provide a semantic proof for the
Realization Theorem in Justification Logic, which is varied from tMEL in the
way that, briefly, it is the proof terms, which enjoy a more complicated structure,
that plays the roles in Justification Logic as that played by natural numbers in
tMEL.
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Abstract. This paper defines the contextual natural deduction calculus
NDc for the implicational fragment of intuitionistic logic. NDc extends
the usual natural deduction calculus (here called ND) by allowing the
implication introduction and elimination rules to operate on formulas
that occur inside contexts. In analogy to the Curry-Howard isomorphism
between ND and the simply-typed λ-calculus, an extension of the λ-
calculus, here called λc-calculus, is defined in order to provide compact
proof-terms for NDc proofs. Soundness and completeness of NDc with
respect toND are proven by defining translations of proofs between these
calculi. Furthermore, some NDc-proofs are shown to be quadratically
smaller than the smallest ND-proofs of the same theorems.

1 Introduction

Natural deduction was introduced by Gentzen in [10] and one of its distinguishing
features is that the meaning of a logical connective is determined by elimination
and introduction rules, and not by axioms. As a result, formal natural deduction
proofs are considered to be similar in structure to their informal counterparts
and hence more natural. This subjective claim is corroborated by the observation
that widely used proof assistants1 follow a natural deduction style.

However, as exemplified in Section 2.1, the inference rules of natural deduction
style calculi can be inconvenient, lengthy and ultimately unnatural for formaliz-
ing reasoning steps that modify a deeply located subformula of a formula, such
as: skolemization, double negation elimination, quantifier shifting, prenexifica-
tion. . . Because these deep reasoning steps are commonly used by automated
deduction tools during preprocessing of the theorem to be proved, the result-
ing proofs may contain deep inferences [8]. Therefore, automatically replaying
(i.e. reproving) these proofs in proof assistants (e.g. when an automated deduc-
tion tool is integrated within a proof assistant [2]) can be inefficient in terms of
proving time and size of the generated shallow proof.

These issues serve as long-term practical and technological motivations for the
contextual natural deduction calculus presented here, which is a simple extension
of the usual natural deduction calculus allowing introduction and elimination
rules to operate on formulas occurring inside contexts. The goals of the cur-
rent paper, however, are purely theoretical. In particular, it is shown that the

1 e.g. Isabelle (www.cl.cam.ac.uk/research/hvg/Isabelle/) and Coq (http://coq.inria.fr).

S. Artemov and A. Nerode (Eds.): LFCS 2013, LNCS 7734, pp. 372–386, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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proposed calculus is sound and complete, that proofs can be normalized, and
that some proofs can be quadratically smaller than corresponding proofs in the
usual natural deduction calculus. For the sake of succintness, only minimal logic
(intuitionistic logic with only the implication connective) is considered, since it
is straightforward to extend the techniques described here to natural deduction
calculi containing inference rules for other connectives as well.

Related Work. The related idea of deep inference has been intensively inves-
tigated in the last decade, especially for classical logic (e.g. [3,6,5,12]). More
recently, the techniques and calculi originally developed for classical logic have
been adapted for intuitionisitc logic. In Tiu’s calculus [16], inferences are not only
deep but also local (i.e. only a fixed amount of information needs to be checked
when applying a rule). Brünnler and McKinley [4] proposed another calculus
with an algorithmic interpretation inspired by the Curry-Howard isomorphism.
And in Guenot’s calculus [11], it is possible to encode lambda terms with explicit
substitutions as formulas in such a way that computation corresponds to proof-
search. Although these calculi differ significantly from each other, they adher to
the original deep inference methodology of avoiding branching inference rules.
The calculus presented here, on the other hand, does utilize branching, since the
aim is a minimal modification of the usual branching natural deduction calculus.

2 Deep Natural Deduction

Figure 1 presents the inference rules of a standard natural deduction calculus
ND for the implicational fragment of intuitionistic logic. An ND-derivation is
a tree of inferences (instances of the inference rules) and a derivation ψ is an
ND-proof of a theorem T if and only if its leaves are axiom inferences and
it ends in � t : T , for some term t of type T of the simply typed λ-calculus.
This term t is called the proof-term of ψ and denoted I(ψ). As indicated in the
figure, the implication introduction rule corresponds to abstraction while the
implication elimination rule corresponds to application in the λ-calculus. I is
thus an isomorphism (Curry-Howard [7]) between ND-proofs and simply typed
λ-terms and between (implicational intuitionistic) theorems and types.

Figure 2 shows the inference rules of NDc, the contextual natural deduction
calculus that aims at extending ND in a simple, minimal, straightforward and
yet general way by allowing the inference rules to operate on subformulas located
deeply inside the premises. The notation Cπ[F ] indicates a formula that has the
subformula F in position π. Cπ[ ] is called the context of F in the formula Cπ[F ].
Concretely in this paper, a position π is encoded as a binary string indicating
the path from the root of Cπ[F ] to F in the tree structure of Cπ[F ]; thus, a
subformula at position π of a formula P , denoted Atπ(P ), can be retrieved by
traversing the formula according to the following inductive definition:

Atε(A) = A At0π(A→ B) = Atπ(B) At1π(A→ B) = Atπ(A)
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Γ, a : A � a : A

Γ, a : A � b : B →I

Γ � λaA.b : A→ B

Γ � f : A→ B Γ � a : A →E
Γ � (f a) : B

Fig. 1. The natural deduction calculus ND

A position is said to be positive (negative) if and only if it contains an even (odd)
number of digits 1. In other words, in the tree structure of a formula, a node
and its left (right) child always occupy positions with opposite (same) polarities,
and the root position is positive. Moreover, a position is strongly positive if and
only if it does not contain any digit 1.

Note: π, π1 and π2 must be positive positions.

Γ, a : A � a : A

Γ, a : A � b : Cπ[B] →I (π)
Γ � λπa

A.b : Cπ[A→ B]

Intuitionistic Contextual Soundness Condition:
a is allowed to occur in b only if π is strongly positive.

Γ � f : C1
π1
[A→ B] Γ � a : C2

π2
[A]

→⇀
E (π1;π2)

Γ � (f a)⇀(π1;π2)
: C1

π1
[C2

π2
[B]]

Γ � f : C1
π1
[A→ B] Γ � a : C2

π2
[A]

→↼
E (π1;π2)

Γ � (f a)↼(π1;π2)
: C2

π2
[C1

π1
[B]]

Fig. 2. The contextual natural deduction calculus NDc

The contextual natural deduction calculus NDc has two implication elimina-
tion rules, because the implication elimination rule of ND is extendable in two
different ways, depending on the order in which the contexts are combined.

The proof-term of an NDc-proof ψ is denoted Ic(ψ). As shown in Figure 2,
proof terms for NDc-proofs, here called λc-terms (contextual λ-terms), must be
modified accordingly: the positions in which applications and abstractions are
performed are indicated as subscripts, and the superscript arrows on applications
inform the order in which the contexts are combined. In case at least one of the
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contexts is empty, the order does not matter, and hence the superscript arrow can
be omitted. Likewise, if all positions are empty (ε), the subscript can be omitted.
By these omission conventions, contextual applications and abstractions with
empty positions can be written like ordinary ones.

No special parenthesis or precedence convention is used for λ- and λc-terms
in this paper. As indicated in the construction rules in Figures 1 and 2, appli-
cations are always surrounded by parentheses, and parentheses are not used for
abstractions. It follows that a term of the form (λx.t u) should be understood
as the function λx.t applied to the argument u.

2.1 Comparing ND and NDc

Many preprocessing techniques change deeply occurring subformulas. In classical
first-order resolution theorem proving, for example, the formula

¬¬∃x.P (x) ∨ ∀y.Q(y)

would be first transformed into the following formula in clause form

P (c) ∨Q(v)

where c is a new Skolem constant, and v is a free-variable.
All three steps used in this transformation (double negation elimination,

skolemization, and the dropping of universal quantifiers) perform deep modi-
fications in the formula. As the following examples show, formalizing these deep
steps in ND is lengthy, inefficient and unnatural. The reason is that many in-
troduction and elimination rules must be performed in order to decompose a
formula until the subformula that has to be modified is reached. In contrast, in
NDc a deep modification can be done with a single inference, independently of
the depth at which the target subformula occurs.

Example 1. Skolemization can be simulated in ND and NDc by assuming the
axiom schema

sk : ∃x.F [x]→ F [fsk(x1, . . . , xn)]

where x1, . . . , xn are the free-variables of F and fsk must be a globally new2

(Skolem) function symbol.
Given the formula (A → B) → ∃x.P (x), Skolemization replaces the sub-

formula ∃x.P (x) at position 0 in the given formula by P (c), for some Skolem
constant c. In NDc, this can be formalized with a single implication elimination
inference deriving (A→ B) → P (c) from (A → B)→ ∃x.P (x) and an instance
of the Skolemization axiom schema:

� sk : ∃x.P (x)→ P (c) a : . . . � a : (A→ B)→ ∃x.P (x) →↼
E (ε; 0)

a : (A→ B)→ ∃x.P (x) � (sk a)↼(ε;0) : (A→ B)→ P (c)

2 The only leaf of the proof in which fsk should occur is the leaf where fsk is introduced
by a skolem axiom instance.
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In ND, on the other hand, the proof is larger and arguably less natural:

� sk : ∃x.P (x)→ P (c)
c : . . . � c : A→ B a : . . . � a : (A→ B)→ ∃x.P (x) →E
a : (A→ B)→ ∃x.P (x), c : A→ B � (a c) : ∃x.P (x) →E

c : A→ B, a : (A→ B)→ ∃x.P (x) � (sk (ac)) : P (c) →I

a : (A→ B)→ ∃x.P (x) � λcA→B.(sk (a c)) : (A→ B)→ P (c)

�
Example 2. Double negation elimination can be simulated in ND and NDc by
assuming the axiom schema

dne : ¬¬F → F

Given the formula (¬¬A → B) → C, double negation elimination replaces the
subformula ¬¬A at position 11 in the given formula by A. In NDc, this can be
formalized with a single implication elimination inference deriving (A→ B)→ C
from the given formula and an instance of the double negation elimination axiom
schema:

� dne : ¬¬A→ A a : . . . � a : (¬¬A→ B)→ C →↼
E (ε; 11)

a : (¬¬A→ B)→ C � (dne a)↼(ε;11) : (A→ B)→ C

In ND, on the other hand, the proof is again larger and less natural:

a : . . . � a : (¬¬A → B) → C

c : . . . � c : A → B

� dne : ¬¬A → A d : . . . � d : ¬¬A →E
d : . . . � (dne d) : A →E

d : . . . , c : . . . � (c (dne d)) : B →I
c : . . . � λd¬¬A.(c (dne d)) : ¬¬A → B →E

a : . . . , c : . . . � (a λd.(c (dne d))) : C →I
a : (¬¬A → B) → C � λcA→B.(a λd.(c (dne d))) : (A → B) → C

�

3 Soundness and Completeness

In order to prove that NDc is sound and complete with respect to ND, it must
be shown that a formula is provable in NDc iff it is provable in ND. This can
be done by defining a translation of proofs from one calculus into the other.
In order to do so more compactly, the next two subsections will show how to
translate not proofs themselves but rather their proof terms.

3.1 Translating λ-terms into λc-terms

The translation of λ-terms into λc-terms of the same type is trivial, since λ-terms
can be regarded as λc-terms with empty positions.

Definition 1. The translation function ζ, from λ-terms to λc-terms of the same
type, is defined inductively on the structure of λ-terms:

– ζ[v] = v (for a variable v).
– ζ[λvT .t] = λεv

T .ζ[t]
– ζ[(m n)] = (ζ[m] ζ[n])(ε;ε)
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3.2 Translating λc-terms into λ-terms

The translation of λc-terms into λ-terms of the same type can be done by means
of the function ξ defined below.

Definition 2. The translation function ξ, which maps a λc-term t into a shallow
λ-term of the same type, is defined inductively on the structure of t:

– If t is a variable, then ξ[t] = t
– If t is an abstraction of the form λπa

A.b, the translation is defined by induc-
tion on the position π, according to the cases below:
• If π = 0π′, it is the case that t matches λ0π′a

A.bC→D, and then

ξ[t] = λcC .ξ[λπ′a
A.(bc)]

• If π = 1π′, then there is at least one occurrence of the digit 1 in π′, since
π is positive and π′ is negative. Therefore, π is necessarily of the form
10 . . . 01π′′ and t matches λ10...01π′′a

A.b(C1→...Cn→(Tπ′′ [B]→D1))→D2 . Then

ξ[t] = λk
C1→...Cn→(T

π′′ [A→B]→D1).(b λc
C1
1 . . . c

Cn
n .λh

T
π′′ [B]

.(k c1 . . . cn ξ[λπ′′aA.h])

Note that, if a occurred in b, then this occurrence would become un-
bound after the translation. This undesirable effect, which would jeopar-
dize soundness as shown in Example 3, is prevented by the intuitionistic
contextual soundness condition described in Figure 2.

• If π = ε, it is the case that t matches λεa.b, and then

ξ[t] = λa.ξ[b]

– If t is an (⇀)-application of the form (f a)⇀(π1;π2), the translation is defined by

two successive inductions, firstly on the position π1 and then (when π1 = ε)
on π2, according to the cases below:
• If π1 = 0π, it is the case that t matches (fC→D a)⇀

(0π;π2)
, and then

ξ[t] = λcC .ξ[((f c) a))⇀(π;π2)]

• If π1 = 1π′, then there is at least one occurrence of the digit 1 in π′, since
π1 is positive and π′ is negative. Therefore, π1 is necessarily of the form
10 . . . 01π and t matches (f (C1→...Cn→(Tπ[A→B]→D1))→D2 a)⇀

(10...01π;π2)
.

Then

ξ[t] = λk
C1→...Cn→(Tπ [B]→D1).(f λc

C1
1 . . . c

Cn
n .λh

Tπ[A→B]
.(k c1 . . . cn ξ[(h a)

⇀
(π;π2)])

• If π1 = ε and π2 = 0π, it is the case that t matches (f aC→D)⇀(ε;0π), and
then

ξ[t] = λcC .ξ[(f (a c))⇀(ε;π)]

• If π1 = ε and π2 = 1π′, then there is at least one occurrence of the digit 1
in π′, since π2 is positive and π′ is negative. Therefore, π2 is of the form
10 . . . 01π and t matches (fA→B a(C1→...Cn→(Tπ [A]→D1))→D2)⇀

(ε;10...01π).

Then

ξ[t] = λk
C1→...Cn→(Tπ [B]→D1).(a λc

C1
1 . . . c

Cn
n .λh

Tπ [A]
.(k c1 . . . cn ξ[(f h)

⇀
(ε;π)]))
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• If π1 = π2 = ε, it is the case that t matches (f a)⇀
(ε;ε), and then

ξ[t] = (ξ[f ] ξ[a])

– If t is an (↼)-application of the form (f a)↼
(π1;π2)

, the translation is analogous

to the previous case for (f a)⇀
(π1;π2)

, but the induction is made firstly on the

position π2 and only then (when π2 = ε) on π1.

3.3 Soundness and Completeness of NDc Relative to ND

With the translation functions defined in the previous subsections, soundness
and completeness can be proved shortly, as shown in Theorems 1 and 2 below.

Theorem 1 (Completeness).
If T is provable in ND, then T is provable in NDc.

Proof. Let ψ be an ND-proof of T , then I−1
c (ζ[I(ψ)]) is an NDc-proof of the

same theorem T . �

Theorem 2 (Soundness).
If T is provable in NDc, then T is provable in ND.

Proof. Let ψ be an NDc-proof of T , then I−1(ξ[Ic(ψ)]) is an ND-proof of the
same theorem T . �
Example 3. The importance of the intuitionistic contextual soundness condition
can be illustrated with the following incorrect NDc-proof. Its lowermost infer-
ence violates the condition in order to derive Peirce’s Law, which should not be
intuitionistically derivable.

g : (B → A), a : A � a : A →I (ε)
a : A � λg(B→A).a : (B → A)→ A →I (11)

� λ11aA.λg(B→A).a : ((A→ B)→ A)→ A

Translating the proof-term using ξ results in the following λ-term, where a has
become unbound: λk((A→B)→A).((λg(B→A).a) (λhB .(k λaA.h))). As a is un-
bound, there is no closed ND-proof corresponding to this λ-term. The intuition-
istic contextual soundness condition guarantees that there will be no variable a
becoming unbound in this manner. �

4 Normalization

In λ-calculus, a term t of the form (λaA.f t′) is a redex with respect to β-
reduction, and is β-reducible to f [a\t′]. Correspondingly, the proof I−1(t) is said
to contain a detour (cut). The normalization rules for eliminating detours corre-
spond to β-reduction and the ND-proof I−1(t) can be rewritten to I−1(f [a\t′]).
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The purpose of this section is to extend this notion of normalization to NDc

and to the corresponding λc-calculus. As the relation between NDc-proofs and
λc-terms is given by the bijection Ic, it suffices to consider the λc-calculus.

Unfortunately, the notion of β-redex is more complicated in λc-calculus. Con-
sider, for example, the following λc-term:

(λ0a
A.f t′)(0;ε)

Its form is very similar to the redex form described above, except for the fact that
abstraction and application are now contextual. Therefore, it is intuitively clear
(and it could be shown by using the translation function ξ) that this term could
be reduced to f [a\t′], and hence ought to be considered a redex. Nevertheless,
it would not be sufficient to extend β-reduction to λc-terms of this form. The
λc-term below, for example, is not of this form, but it is also clear (again by
using ξ) that it could be reduced to λbB.(f [a\t′] b):

(λbB.λaA.(f b) t′)(0;ε)

As the term above exemplifies, the issue is that the abstraction (in this case, λaA)
that ought to be eliminated together with the outermost contextual application
can occur arbitrarily deep inside the left subterm of the application (in this
case, λbB.λaA.(f b)). Generalizing β-reduction so that it could directly handle
all such potential redexes formed by pairs of contextual applications and deeply
occurring abstractions would not be easy. Therefore, instead of generalizing the
β-reduction rule, an alternative approach is considered in the next subsection.

4.1 Unfolding

For redexes made of contextual abstractions and applications with empty posi-
tions (which, by the position omission convention, can be written like ordinary
abstractions and applications), β-reduction can be applied normally. The prob-
lem lies only in the presence of contextual applications and abstractions with
non-empty positions, which may block β-reduction. This problem can be solved
by translating the λc-term only partially, in order to remove the blocking contex-
tual applications and abstractions. To this aim, a term rewriting system based
on the translation function ξ is defined in Figure 3. The rewriting of a term t to
a term t′ using one of the rules of this term rewriting system is denoted t �δ t′;
and it is said that the term t unfolds to t′.

Example 4. Consider the term (λ0a
A.(λ0b

B.h a) t′)(0;ε). Even though it is clear
that this term is a deep redex, β-reduction alone is not capable of producing the
desired result (λ0b

B.h t′). As shown in the rewriting sequence below, the un-
folding of the outermost contextual application and of the outermost contextual
abstraction enables the use of β-reduction.
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λ0πa
A.bC→D

λcC .λπa
A.(bc)

λ10...01πa
A.f (C1→...Cn→(Tπ [B]→D1))→D2

λkC1→...Cn→(Tπ [A→B]→D1).(f λcC1
1 . . . cCn

n .λhTπ [B].(k c1 . . . cn λπa
A.h)

(fC→D a)⇀(0π;π2)

λcC .((f c) a))⇀(π;π2)

(f aC→D)↼(π1;0π)

λcC .(f (a c))↼(π1;π)

(f (C1→...Cn→(Tπ [A→B]→D1))→D2 a)⇀(10...01π;π2)

λkC1→...Cn→(Tπ [B]→D1).(f λcC1
1 . . . cCn

n .λhTπ [A→B].(k c1 . . . cn (h a)⇀(π;π2)
)

(f a(C1→...Cn→(Tπ [A]→D1))→D2)↼(π1;10...01π)

λkC1→...Cn→(Tπ [B]→D1).(a λcC1
1 . . . cCn

n .λhTπ [A].(k c1 . . . cn (f h)↼(π1;π)))

(fA→B a(C1→...Cn→(Tπ [A]→D1))→D2)⇀(ε;10...01π)

λkC1→...Cn→(Tπ [B]→D1).(a λcC1
1 . . . cCn

n .λhTπ [A].(k c1 . . . cn (f h)⇀(ε;π)))

(f (C1→...Cn→(Tπ [A→B]→D1))→D2 a)↼(10...01π;ε)

λkC1→...Cn→(Tπ [B]→D1).(f λcC1
1 . . . cCn

n .λhTπ [A→B].(k c1 . . . cn (h a)↼(π;ε))

(f aC→D)⇀(ε;0π)

λcC .(f (a c))⇀(ε;π)

(fC→D a)↼(0π;ε)

λcC .((f c) a)↼(π;ε)

Fig. 3. Term Rewriting Rules for Unfolding

(λ0a
A.(λ0b

B.h a) t′)(0;ε) �δ (λbB1 .λa
A.((λ0b

B.h a) b1) t
′)(0;ε)

�δ λbB2 .((λb
B
1 .λa

A.((λ0b
B.h a) b1) b2) t

′)

�β λbB2 .(λa
A.((λ0b

B.h a) b2) t
′)

�β λbB2 .((λ0b
B.h t′) b2)

=η (λ0b
B.h t′) �

The following theorems show that unfolding is terminating and confluent.
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Definition 3. The size s(π) of a position π is the number of digits in π.

Theorem 3. �δ is strongly terminating.

Proof. Let μ be a function that counts the total size of all positions in an λc-term,
inductively defined as follows:

– μ(v) = 0 (for a variable v)
– μ(λπa.b) = s(π) + μ(b)
– μ((f a)⇀

(π1;π2)
) = s(π1) + s(π2) + μ(f) + μ(a)

– μ((f a)↼
(π1;π2)

) = s(π1) + s(π2) + μ(f) + μ(a)

Note that, for all rules in Figure 3, if t �δ t′, then μ(t′) < μ(t). Since there can
be no infinite decreasing chain of natural numbers, there cannot be an infinite
�δ reduction sequence either. Therefore �δ is strongly terminating. �
Theorem 4. �δ is confluent.

Proof. (Sketch) Note that there are no critical pairs. Therefore, by the criti-
cal pair theorem (Theorem 6.2.4 in [1]), �δ is locally confluent. By Newman’s
Lemma (Lemma 2.7.2 in [1]), a terminating and locally confluent term rewriting
system must be confluent.

If the shallow β-reduction rule is added to the term rewriting rules shown in
Figure 3, a new higher-order term rewriting system is obtained. The rewriting
of a term t to a term t′ according to this term rewriting system is denoted
t �βδ t′; and it is said that the term t beta-unfolds to t′. Formally:

�βδ = �δ ∪�β
The combined term-rewriting system also enjoys termination and confluence.

Theorem 5. �βδ is terminating.

Proof. (Sketch) The traditional approach of proving termination of combined
terminating term rewriting systems via commutation lemmas [9] does not work
here, because the conditions required by those lemmas do not hold for �β and
�δ. Their combination is nevertheless terminating. For the sake of contradic-
tion, assume that there could be an infinite �βδ reduction sequence. Since �β
and �δ are both terminating, this infinite sequence would need to contain alter-
nations of �β and �δ steps in such a way that �δ generates β-redexes and �β
generates δ-redexes. However, by inspection of the unfolding and β-reduction
rules, this is not possible. β-reduction never creates new δ-redexes (although
it can duplicate existing ones). Unfolding never duplicates existing β-redexes.
And although it can create new β-redexes, reducing them does not cause any
duplication, because the abstractions introduced by unfolding are all linear (i.e.
the abstracted variables k, c, c1,. . . , cn occur only once in the respective term’s
body). Hence, in any �βδ reduction sequence, duplications of �δ-redexes are
finite, limited by the non-linear abstractions (which may participate in dupli-
cating β-reductions) already occuring in the initial term. Therefore, no infinite
reduction sequence is possible and thus �βδ is terminating. �
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Theorem 6. �βδ is confluent.

Proof. The term rewriting system for unfolding is a first-order term rewriting
system. β-reduction is a particular kind of higher-order rewriting rule known as
pattern rewriting rule [14]. Therefore, their combination is a pattern rewriting
system (PRS). Since there are no critical pairs in the combined system, a gen-
eralization of the critical pair theorem for PRSs (Theorem 4.7 in [14]) can be
used to conclude that �βδ is locally confluent. Therefore, as �βδ is terminating,
Newman’s Lemma allows to conclude that �βδ is confluent. �

5 Sizes of Proofs in ND and NDc

As seen in Examples 1 and 2, NDc-proofs can be significantly smaller than ND-
proofs. In order to measure how much smaller they can be, the notion of size
must first be precisely defined. This is done below for types and terms, essentially
by counting the number of symbols they contain. The size s(ψ) of a ND-proof
ψ is simply defined as the size s(I(ψ)) of its corresponding proof-term I(ψ).
Likewise, the size s(ψ) of a NDc-proof ψ is s(Ic(ψ)).

Definition 4. The size s(T ) of a type T is inductively defined as follows:

– s(A) = 1 (if A is an atomic type)
– s(T1 → T2) = 1 + s(T1) + s(T2)

Definition 5. The size s(t) of a λ-term t is inductively defined as follows:

– s(v) = 1 (if v is a variable)
– s(λvT .t′) = 1 + s(v) + s(T ) + s(t′) = 2 + s(T ) + s(t′)
– s((m n)) = 1 + s(m) + s(n)

Definition 6. The size s(t) of a λc-term t is inductively defined as follows:

– s(v) = 1 (if v is a variable)
– s(λπv

T .t′) = 1 + s(π) + s(v) + s(T ) + s(t′) = 2 + s(π) + s(T ) + s(t′)
– s((m n)⇀π1;π2) = 1 + s(m) + s(n) + s(π1) + s(π2)
– s((m n)↼π1;π2) = 1 + s(m) + s(n) + s(π1) + s(π2)

The next theorem shows that, in the best cases, quadratic compression can in
principle be achieved by translating ND-proofs to NDc-proofs.

Theorem 7. There is a sequence of theorems Fn whose smallest ND-proofs ψn
are such that s(ψn) ∈ Ω(n2), while there are NDc-proofs ψcn of Fn such that
s(ψcn) ∈ O(n).

Proof. Let Fn = T n(A→ B)→ (A→ T n(B)) where:

T 0(F ) = F T n(F ) = (T n−1(F )→ D2n−1)→ D2n

and D1, . . . , D2n are distinct atomic formulas.
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Let ψcn = I−1
c (tcn) and ψn = I−1(tn) where:

tcn = λfT
n(A→B).λaA.(f a)(11 . . . 1︸ ︷︷ ︸

2n

;ε) tn = ξ(tcn)

Any ND-proof of Fk must decompose Fk until the subformulas A → B and A
are obtained and then apply A→ B to A. ψk does exactly this and nothing more.
ψk could not be further compressed by introducing detours, because D1, . . . , D2k

are all distinct and hence ψk does not contain repeated subproofs3. Therefore,
ψk is a smallest ND-proof of Fk.

By definition, s(ψcn) = s(tcn), and as shown below, s(tcn) ∈ O(n).

s(tcn) = s(λfTn(A→B).λaA.(f a)(11 . . . 1︸ ︷︷ ︸
2n

;ε)) = 11 + 6n

By definition, s(ψn) = s(tn), and s(tn) is computed below:

s(tn) = s(ξ(λfTn(A→B).λaA.(f a)(11 . . . 1︸ ︷︷ ︸
2n

;ε)))

= s(λfTn(A→B).λaA.ξ((f a)(11...1;ε)))

= 8 + 4n+ s(ξ((f a)(11 . . . 1︸ ︷︷ ︸
2n

;ε)))

Let q(n) = s(ξ((f a)(11 . . . 1︸ ︷︷ ︸
2n

;ε))). Then:

q(0) = s(ξ((f a)(ε;ε))) = 3

q(n) = s(ξ((f a)(1111 . . . 1︸ ︷︷ ︸
2n

;ε)))

= s(λkTn−1(B)→D2n−1 .(f λhTn−1(A→B).ξ((h a)(11 . . . 1︸ ︷︷ ︸
2n−2

;ε))))

= 4 + 8n+ s(ξ((h a)(11 . . . 1︸ ︷︷ ︸
2n−2

;ε))) = 4 + 8n+ q(n− 1)

Solving the recurrence relation above gives the following closed-form for q:

q(n) = 4n2 + 8n+ 3

Therefore, s(tn) = 8 + 4n+ q(n) = 4n2 + 12n+ 11 and hence s(ψn) ∈ Ω(n2). �
3 For a term to be compressible by the introduction of detours, it must contain repe-
titions. An example is ((f t) t), having size 3 + 2s(t) and compressible (by a detour
with a non-linear abstraction) to (λx.((f x) x) t), whose size (8 + s(t)) is smaller
when s(t) > 5). On the other hand, a detour with a linear abstraction always just
adds 4 to a term’s size.
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6 Proof Compression

The fact that NDc-proofs can be quadratically smaller than the smallest ND-
proofs suggests that a ND-proof ψ could be compressed by first translating it
to the NDc-proof ζ[ψ] and then folding it (i.e. applying the rewriting rules for
unfolding in the opposite direction). The purpose of this section is to remark a
few obstacles that make the use of this idea non-trivial in practice.

The first obstacle is the fact that, even though �−1
δ is clearly terminating

(since the size of terms decreases), it is not confluent. Indeed, assuming f : A→
B and a : (A → D) → E, the term λkB→D.(a λhA.(k (f h))) can be rewritten
to both terms below:

(f a)(ε;11) λkB→D.(a (k f)(ε;0))

and this critical pair is clearly not joinable, since both terms are already normal
forms with respect to �−1

δ . As a consequence of the non-confluence, the choice
of which rewriting rule to apply matters: bad choices may lead to compressed
proof-terms that are not optimally small (e.g. the second term above).

The second, and more problematic, obstacle can be illustrated with the fol-
lowing term t, where hab : A→ B, hbc : B → C and hade : (A→ D)→ E:

λhC→Dcd .(hade λh
A
a .(hcd (hbc (hab ha)))) : (C → D)→ E

It would be very desirable for a proof compression method to be able to obtain
one of the smaller λc-terms (of the same type and also constructed using hab,
hbc and hade) below:

(hbc (hab hade)(ε;11))(ε;11) ((hbc hab)(ε;0) hade)(ε;11)

However these terms cannot be obtained by folding t, simply because t is already
in normal form w.r.t. �−1

δ (it is easy to verify that no rewriting rule from �−1
δ

is applicable to t). As shown below, in order to be able to obtain the terms above
from t, not only folding but also β-expansion must be used:

t = λhC→Dcd .(hade λh
A
a .(hcd (hbc (hab ha))))

�−1
β λhC→Dcd .(hade λh

A
a .(λk

B
b .(hcd (hbc kb)) (hab ha)))

�−1
β λhC→Dcd .(λkB→Dbd .(hade λh

A
a .(kbd (hab ha))) λk

B
b .(hcd (hbc kb)))

�−1
δ (hbc λk

B→D
bd .(hade λh

A
a .(kbd (hab ha))))(ε;11)

�−1
δ (hbc (hab hade)(ε;11))(ε;11)

t = λhC→Dcd .(hade λh
A
a .(hcd (hbc (hab ha))))

�−1
β λhC→Dcd .(hade λh

A
a .(hcd (λk

A
a .(hbc (hab ka)) ha)))

�−1
δ (λkAa .(hbc (hab ka)) hade)(ε;11)

�−1
δ ((hbc hab)(ε;0) hade)(ε;11)
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The introduction of detours by β-expansion brings the term to a form to which
folding rules can be applied. Unfortunately, it is generally unclear which detours
need to be introduced and where they should be introduced; the possibilities are
numerous, since β-expansion is non-terminating and can be applied to almost any
sub-term, thus greatly enlarging the search space. Furthermore, as noticeable in
the examples above, β-expansion can momentarily increase the size of the term,
rendering strategies that greedily minimize the size ineffective.

It is also interesting to note that the introduction of detours in natural de-
duction calculi is closely related to the introduction of cuts in sequent calculi,
another notoriously difficult problem in proof compression [17,13].

7 Conclusions

The main contribution of this paper was the development of NDc, a sound and
complete simple extension of natural deduction that allows inference rules to
operate on deeply occurring subformulas. Formalizations of intrinsically deep
reasoning steps then become more convenient and more natural, and the result-
ing proofs can be significantly smaller. Indeed, it has been shown (in Theorem 7)
that NDc-proofs can be quadratically smaller than ND-proofs in the best cases.
Therefore,NDc might be especially useful in application scenarios where the size
of proofs and the proof-checking time are important.NDc has been implemented
in the Skeptik system (https://github.com/Paradoxika/Skeptik), and cur-
rent research is focusing on designing an experiment to complement the best-case
asymptotic analysis of Theorem 7 with empirical data about the average-case.

Surprisingly, if the intuitionistic contextual soundness condition is dropped,
a natural deduction calculus for classical logic is obtained. This is particularly
interesting because classical principles (e.g. Peirce’s law) do not need to be as-
sumed - they can be derived; and because the calculus uses single conclusion
sequents, and thus is distinct from other assumption-free natural deduction cal-
culi for classical logic, such as Parigot’s [15]. A deeper investigation of such a
classical contextual natural deduction calculus will be pursued in the near future.
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Abstract. In the study of computable functions on the Cantor space
2N, it is well-known that the image of such a function is an effectively
closed set, or Π0

1 class and in fact a decidable closed set. Here a closed
subset Q of the Cantor space is decidable if the set of finite strings w
which have an extension in Q is a computable set. It was shown recently
by Cenzer, Dashti and King that the set of itineraries of a computable
function is also a decidable closed set. Now the set of itineraries of a
continuous function is always a subshift, meaning that it is closed under
prefixes. It was also shown that any decidable shift is the set of itineraries
of some computable function on 2N. This paper defines the new notion of
a conservatively approximable function on the Cantor space in order to
have a family of functions whose images, and itineraries, can be arbitrary
Π0

1 classes.

Keywords: computability, computable analysis, effectively closed sets,
effective symbolic dynamics.

1 Introduction

There is a long history of interaction between computability and dynamical
systems. A Turing machine may be viewed as a dynamical system which produces
a sequence of configurations or words before possibly halting. The reverse notion
of using an arbitrary dynamical system for general computation has generated
much interesting work. See for example [2,11]. In this paper we will consider
computable aspects of certain dynamical systems over the Cantor space 2N and
the related space 2Z.

The study of computable dynamical systems is part of the Nerode program to
study the effective content of theorems and constructions in analysis. Weihrauch
[21] has provided a comprehensive foundation for computability theory on vari-
ous spaces, including the space of compact sets and the space of continuous real
functions.

Computable analysis is related as well to the so-called reverse mathematics
of Friedman and Simpson [18], where one studies the proof-theoretic content of
various mathematical results. The study of reverse mathematics is related in
turn to the concept of degrees of difficulty. Here we say that P ≤M Q if there
is a Turing computable functional F which maps Q into P ; thus the problem of
finding an element of P can be uniformly reduced to that of finding an element
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of Q, so that P is less difficult than Q. See Medvedev [14] and Sorbi [20] for
details. The degrees of difficulty of effectively closed sets (also known as Π0

1

classes) have been intensively investigated in several recent papers, for example
Cenzer and Hinman [8] and Simpson [17].

The computability of Julia sets in the reals has been studied by Cenzer [4]
and Ko [13]. The computability of complex dynamical systems has been inves-
tigated by Rettinger and Weihrauch [16] and by Braverman and Yampolsky [3].
The study of the computability of dynamical systems has received increasing at-
tention in recent years; see for example papers of Delvenne et al [11], Hochman
[12], Miller [15] and Simpson [19].

The connection between dynamical systems and subshifts is the following.
Certain dynamical systems may be given by a continuous function F on a
symbolic space X (one with a basis of clopen sets). For each X ∈ X , the se-
quence (X,F (X), F (F (X)), . . . ) is the trajectory of X . Given a fixed partition
U0, . . . , Uk−1 of X into clopen sets, the itinerary ITF (X) of a point X is the
sequence (a0, a1, . . . ) ∈ kN where an = i iff Fn(X) ∈ Ui. Let IT[F ] = {ITF (X) :
X ∈ X}. Note that IT[F ] will be a closed set. We observe that, for each point X
with itinerary (a0, a1, . . . ), the point F (X) has itinerary (a1, a2, . . . ). Now the
shift operator σ on kN is defined by σ(a0, a1, . . . ) = (a1, a2, . . . ). It follows that
IT[F ] is closed under the shift operator, that is, IT[F ] is a subshift.

Computable subshifts and the connection with effective symbolic dynamics
were investigated by Cenzer, Dashti and King [5] in a recent paper. A total,
Turing computable functional F : 2N → 2N is always continuous and thus will be
termed computably continuous or just computable. Effectively closed sets (also
known as Π0

1 classes) are a central topic in computability theory and they arise
in many applications of computability theory. For example, the set of zeroes
of a computable function F : 2N → 2N is always a Π0

1 class, and conversely
every Π0

1 class is the set of zeroes of some computable function F . Nonempty
decidable Π0

1 classes always have a computable member and are often of less
interest than arbitrary Π0

1 classes, but they play an important role in effective
symbolic dynamics. See [9,10] for many other applications of Π0

1 classes.
It was shown in [5] that, for any computably continuous function F : 2N → 2N,

IT[F ] is a decidable Π0
1 class and, conversely, any decidable Π0

1 subshift P is
IT[F ] for some computable map F . In [6], Π0

1 subshifts are constructed in 2N

and in 2Z which have no computable elements and are not decidable. Thus there
is a Π0

1 subshift with non-trivial Medvedev degree. J. Miller [15] showed that
every Π0

1 Medvedev degree contains a Π0
1 subshift. Simpson [19] studied Π0

1

subshifts in two dimensions and showed that everyΠ0
1 Medvedev degree contains

a Π0
1 subshift of finite type which is a stronger result than just containing a Π0

1

subshift.
Now every nonempty countable Π0

1 class contains a computable element, so
that all countable Π0

1 classes have Medvedev degree 0, and many uncountable
classes also have degree 0. The paper [7] considers more closely the structure of
countable subshifts, using the Cantor-Bendixson derivative to compare and con-
trast countable subshifts of finite rank with Π0

1 subshifts of finite rank as well as
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with arbitraryΠ0
1 classes of finite rank. It is shown that if Q is a subshift of rank

two, then every member of Q is eventually periodic (and therefore computable)
and furthermore if Q ⊆ 2Z, then the members of rank two are periodic and Q is
a decidable closed set. However, there are rank two subshifts in 2N of arbitrary
Turing degree and rank two Π0

1 subshifts of arbitrary c. e. degree, so that rank
two undecidable Π0

1 subshifts exist in 2N. Π0
1 subshifts of rank three contain

only computable elements, but Π0
1 subshifts of rank four may contain members

of arbitrary c. e. degree. For any given Π0
1 class P of rank two, there is a subshift

Q of rank four such that the degrees of the members of P and the degrees of the
members of Q are identical. More generally, for any Π0

1 class P ⊆ 2N, there is a
Π0

1 subshift Q ⊆ 2N such that the non-computable degrees of the members of Q
are identical with the non-computable degrees of the member of P .

In the present paper1, we investigate the correspondence between continuous
functions and Π0

1 classes. We first give definitions and preliminary material in
section 2. In section 3, we give the definition for and investigate properties of
conservatively approximable functions. We demonstrate some properties of this
class of functions and show that the Π0

1 classes are exactly the images of these
functions. In section 4, we refine the notion of conservatively approximable to
give a characterization of the Π0

1 subshifts. We give a general lemma which aids
in such characterizations and investigate other related notions.

2 Preliminaries

We begin with some basic definitions. Let N = {0, 1, 2, ...} denote the set of
natural numbers. Let Σ be any finite alphabet (typically an initial segment of ω).
Then ΣN denotes the set of countable sequences from Σ and Σ∗ denotes the set
of finite sequences or words from Σ. For a string w = (w(0), w(1), . . . , w(n− 1)),
|w| denotes the length n of w. The reverse of a string w = (w(0), . . . , w(n− 1))
is the string w− = (w(n− 1), . . . , w(0)). The shift function on strings is defined
by σ(w) = (w(1), . . . , w(|w| − 1)). For X ∈ 2N, σ(X) = (X(1), X(2), . . . )–the
result of deleting the initial entry of X . For Z ∈ 2Z, Y = σ(Z) is defined so that
Y (i) = Z(i + 1). The empty string has length 0 and will be denoted by ε. For
n ∈ N and X ∈ ΣN, let X5n = X(0)X(1) · · ·X(n− 1) and for any word w ∈ Σ∗

let w5n = w if |w| < n and w5n = w(0)w(1) · · ·w(n− 1) otherwise.
The space ΣN is a compact metric space with a basis of clopen sets of the

form I[σ] = [σ] = {X ∈ ΣN : σ � X}. For a sequence (wn)n∈ω of unbounded
length from Σ∗ and X ∈ ΣN, we say that limn wn = X if, for every M there is
an N so that if n ≥ N then wn5M = X5M . We define the (length-)lexicographic
ordering <L on ΣN (Σ∗). For u, v ∈ Σ∗, u <L v if |u| < |v| or u(n) < v(n)
where n ∈ N is the least such that u(n) �= v(n). For X,Y ∈ ΣN, X <L Y if
X(n) < Y (n) where n ∈ N is the least such that X(n) �= Y (n).

Given two strings v and w, the concatenation v�w is defined by

v�w = (v(0), v(1), . . . , v(m− 1), w(0), w(1), . . . , w(n− 1)),

1 This work was done under the supervision of my advisor Douglas Cenzer.



390 S. Wyman

where |v| = m and |w| = n. For a ∈ Σ, we write w�a (or just wa) for w�(a)
and we write a�w (or just aw) for (a)�w. We say w is an initial segment or
prefix of v (written w � v) if v = w�x for some x; this is equivalent to saying
that w = v5m for some m; w is a suffix of v if v = x�w for some x; w is a factor
of v if v = x�w�y for some x and y.

A tree T over Σ∗ is a set of finite strings from Σ∗ which contains the empty
string ε and which is closed under initial segments. We say that w ∈ T is an
immediate successor of v ∈ T if w = va for some a ∈ Σ.

For any tree T , (X(0), X(1), . . .) is said to be an infinite path through T if
X5n ∈ T for all n. We let [T ] denote the set of infinite paths through T . It is
well-known that a subset Q of 2N is closed if and only if Q = [T ] for some tree
T . A subset P of 2N is a Π0

1 class (or effectively closed set) if P = [T ] for some
computable tree T . For any closed set P , define the tree TP to be {w ∈ N∗ such
that P ∩ [w] �= ∅}. For any tree T , we say that a node w ∈ T is extendible if
there exists X ∈ [T ] such that w � X . If P = [T ], then TP will equal the set of
extendible nodes of T and will not depend on T . If T is computable, then the set
of extendible nodes is a tree which is a co-c. e. subset of Σ∗ but is not in general
computable. P is said to be decidable (or computable) if TP is a computable set.

The closed set P is subsimilar (or a subshift) if TP is subsimilar. (Thus being
closed is a part of our definition of a subshift.)

Define the coding 〈X0, X1, X2, . . .〉 = X0(0)X0(1)X1(0)X0(2)X1(1)X2(0) . . ..
Note that if X = 〈X0, X1, X2, . . .〉 and u � X then Ci(X) = Xi and Ci(u),the
largest prefix of Xi encoded in u, are computable. On the other hand, h(n, i) is
a strictly increasing computable function giving the bit of X corresponding to
Xn(i).

Given F : A → A and a partition {Ii} of A, the itinerary of X , ITF (X) =
a0a1a2 . . . where an = i if and only if Fn(X) ∈ Ii and define IT[F ] = {ITF (X) :
X ∈ A}.

3 Conservatively Approximable Functions and Images
on ΣN

In this section, we define the notion of a conservatively approximable function
on ΣN for a finite set Σ and prove the first main theorem, that Q is a Π0

1 class
if and only if Q is the image of a conservatively approximable function.

For comparison, computable functions on ΣN can be characgterized as follows.

Definition 1. A function F : ΣN → ΣN is computable iff there is a computable
function f : Σ∗ → Σ∗ so that

1. For every X ∈ ΣN,
(
|f(X5n)|

)
is unbounded and

⋃
n f(X5n) = F (X).

2. If w � u ∈ Σ∗, then f(w) � f(u).

We say that f as described above is a representation of F . We may assume
without loss of generality that |f(w)| ≤ |w| for all w. It follows from (1) and
compactness that, for a computable function F with representation f there is a
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computable function g such that, for every n and every w with length |w| ≥ g(n),
|f(w)| ≥ n. It then follows that the image ImF is a decidable Π0

1 class, since to
see whether a word w of length n has an extension in ImF , we simply compute
g(n), and then compute f(u) for all u of length g(n); w will have an extension
in ImF if and only for one of those u of length g(n), w � f(u). This proves one
direction of the following fact.

Proposition 1. A subset Q of ΣN is a decidable Π0
1 class if and only if it is

the image of some computable function F : ΣN → ΣN.

Proof. One direction is shown above. We will sketch the other direction since
our result for computably approximable functions will use a modification of this
construction. Let Q = [T ] where T is a computable tree with no dead ends.
We recursively define a computable representing function f : Σ∗ → T so that
Q = ImF for the computable function represented by f . Let f(∅) = ∅ and for
each w ∈ Σ∗ and each a ∈ Σ, define f(w�a) in two cases. If f(w)�a ∈ T ,
then f(w�a) = f(w)�a. If f(w)�a /∈ T , then let i be the least in Σ such that
f(w)�i ∈ T and let f(w�a) = f(w)�i. Observe that |f(w)| = |w| for all w,
that f(ew) ∈ T for all w, and that for all w ∈ T , f(w) = w. It follows that
ImF = [T ] = Q.

The general notion of an approximable function is a limit of computable func-
tions. Such a function will have a Π0

2 image.

Definition 2. A function F : ΣN → ΣN is conservatively approximable if there
is a computable function f : Σ∗ → Σ∗ and a function g : N→ N so that

1. For every X ∈ ΣN,
(
|f(X5n)|

)
is unbounded and limn f(X5n) = F (X).

2. If w � u ∈ Σ∗ and |w| ≥ g(n), then f(u)5n = f(w)5n.
3. For every w ∈ Σ∗ and i ∈ Σ, there is a u ∈ Σ∗ with |u| = |w| so that

f(u) � f(w�i).

Note that, without loss of generality, we may (and will) always assume g(n) > n.
Also, note that if |w| ≥ g(m) then |f(w)| ≥ m. For let Y � w. Then since
|f(Y 5n)| is unbounded, there is n > |w| with |f(Y 5n)| > m but by (2), f(w)5m =
f(Y 5n)5m.

It follows from this definition that any conservatively approximable function
will be approximable.

Proposition 2. If F is conservatively approximable then F is continuous.

Proof. Let f and g be as in definition 2, w ∈ Σ∗ and X ∈ F−1(I[w]). Then
if u � X5g(|w|), f(u)5|w| = w hence if Y � X5g(|w|) then F (Y ) � w. Thus
F (I[X5g(|w|)]) ⊂ I[w] so X ∈ I[X5g(|w|)] ⊂ F−1(I[w]) hence F is continuous.

The following property of conservatively approximable functions will be useful.

Proposition 3. If F is conservatively approximable and H is computable, then
F ′ = H ◦ F is conservatively approximable.
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Proof. Let f and g be approximation functions for F as in definition 2 and h be
an approximation function for H . We define f ′ and g′ for F ′ by f ′ = h ◦ f and
g′ = g ◦ h′ where h′(n) = min{m : (∀w ∈ Σm)(|h(w)| ≥ n)}. Note that h′ is well
defined by compactness. We need to show that f ′ and g′ satisfy definition 2

2. Let u � w and n be given. Where |w| ≥ g′(n). Since |w| ≥ g(h′(n)), we
have v = f(w)5h′(n) = f(u)5h′(n). So, |h(v)| ≥ n, h(f(w)) � h(v) and
h(f(u)) � h(v). Thus, h(f(w))5n = h(v)5n = h(f(u))5n.

1. Clearly
(
|f ′(X5n)|

)
n
is unbounded as both

(
|f(X5n)|

)
n
and
(
|h(X5n)|

)
n

are. Further, (2) shows that
(
|f ′(X5n)|

)
n
converges and the continuity of

F and H shows that the limit is F ′(X).
3. Let w�i be given. There is a u so that f(u) � f(w�i). Therefore, h(f(u)) �

h(f(w�i)) so we have f ′(u) � f ′(w�i) as desired.

Part (3) in the definition of a computably approximable function is designed to
make the image a Π0

1 class and indeed this is true.

Proposition 4. If F is conservatively approximable then ImF is a Π0
1 class.

Proof. Let f and g be as in definition 2 and let Un =
⋃
{I[f(w)5n] : w ∈ Σn}.

Then (Un) is a computable sequence of clopen sets and so P =
⋂
n Un is a Π0

1

class. We will show that ImF = P .
Suppose X ∈ P . Then there is a sequence (wn) with |wn| = n and f(wn)5n �

X . Choose Yn � wn and consider the sequence (Yg(n)). Then F (Yg(n))5n =
f(wg(n))5n = X5n since g(n) > n and so limn F (Yn) = X . Since F is continuous

and ΣN is compact, ImF is compact. In particular, ImF is closed, thus X ∈
ImF .

Supose X ∈ ImF so there is a Y with F (Y ) = X and so limn f(Y 5n) = X .
Now, given k, f(Y 5g(k))5k = X5k. We show by induction n− k that for w ∈ Σ∗

with |w| = n > k there is a u ∈ Σ∗ with |u| = k and f(u) � f(w). Thus
f(u)5k � f(Y 5g(n))5n � X and so, X ∈ Uk for any k.

The induction proceeds as follows: If n − k = 1, then the statement is clear
by property (3) in definition 2. If n − k = i + 1 and the statement holds when
n− k = i, then there is a u with |u| = k + 1 and f(u) � f(w). Again, property
(3) gives a u′ with |u′| = k and f(u′) � f(u) and so f(u′) � f(w).

Next we see that the image of a conservatively approximable fuction need not
be decidable.

Proposition 5. For any non-empty Π0
1 class P there is a conservatively ap-

proximable function F with P = ImF .

Proof. Let LP be the leftmost element in P and for any X let XP be the nearest
element of P left of X . I.e. XP ∈ P , X ≤L XP , and if X ≤L Y ≤L XP then
Y �∈ P . Note that if X ∈ P then XP = X and otherwise, XP exists since P is
closed. Then the function given by

F (X) =

{
LP X ≤L LP

XP X �≤L LP
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is such a function. Clearly, ImF = P since F (X) = X for X ∈ P and LP , XP ∈
P for every X . To see that F is conservatively approximable, we must find f and
g satisfying the three properties in definition 2. First let T be a computable tree
so that P = [T ] and define f as follows. Given w, if possible, find u ∈ T ∩Σ|w|

nearest to w so that also u ≤L w; f(w) = u. Otherwise f(w) is the leftmost in
T ∩Σ|w|. Using the above notation, we might write this as

f(w) =

{
lT�|w| w ≤L lT�|w|

wT�|w| w �≤L lT�|w|
.

Then f is computable, since T is computable. Also, let g(n) be the least k so
that any u of length k which has an extension of length n in T has an infinite
extension in [T ].

1. For any X ,
(
|f(X5n)|

)
is unbounded since |f(X5n)| = n. Additionally,

F (X) = limn f(X5n).
2. If w � u and |w| ≥ g(n), then f(u)5n = f(w)5n.
3. Finally, since for w ∈ T , f(w) = w and f(w) ∈ T for all w, f(f(w)5|w|−1) �

f(w).

And so F is conservatively approximable.

The function defined above has the property that f(f(w)) = f(w) for every
w. This property implies (3) in definition 2. Thus, we can restrict the class of
functions using this stronger property and still have every image be a Π0

1 class
and every Π0

1 class be an image.
We now have our first main result.

Theorem 1. For any finite set Σ and any subset Q of ΣN, Q is a Π0
1 class if

and only if Q = ImF for some conservatively approximable function.

While this theorem shows that the notion of conservatively approximable is in
some sense the right notion for images and Proposition 3 is nice, the following
example shows that the notion of conservatively approximable is not entirely
satisfactory.

Example 1. There is a conservatively approximable function F so that ImF 2 is
not a Π0

1 class. Thus F 2 is not conservatively approximable.
Let
(
Te
)
e
be a computable enumeration of primitive recursive trees so that(

[Te]
)
e
enumerates all Π0

1 classes (see [10]). We will focus on prefixes of four
types of sequences:

He = 0e+110ω,

Ie = 10e+110ω,

Je = 110e+110ω, and

Xe = 110e+1110ω.
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Our goal is that if Xe �∈ [Te] then F (Ie) = Je and F (Je) = Xe hence Xe ∈ ImF 2;
otherwise Xe �∈ ImF 2. We use He to seemingly remove Xe from ImF 2 while
preserving the conservative approximability of F and the ability to add Xe to
ImF 2 when it leaves [Te]. Prefixes of He are never in Im f , however, they always
map to prefixes of Xe. We define f inductively on words of length n. First define
f(0) = f(1) = 1. If |w�i| = n, define f(w�i) as follows:

f(w�i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xe5n w�i = He5n
Je5n w�i = Ie5n ∨ w�i = Xe5n
Je5n w�i = Je5n ∧ (X5n ∈ Te ∩ {0, 1}n ∨ e+ 5 > n)

Xe5n w�i = Je5n ∧ X5n �∈ Te ∩ {0, 1}n ∧ e+ 5 ≤ n

f(w)�i otherwise

We first check that there is a g satisfying (2) in definition 2. We claim that
for every X and n there is an MX,n so that if u � X5MX,n then f(u)5n =
f(X5MX,n)5n.

Let X and n be given and note that |f(u)| = |u|. There several cases:

1. If X � w where

w ∈ {0, 10, 111, 110k1, 110e+1111, 110e+110k1, 110e+1111, 110e+1110 : e, k ∈ N}.

Then if u � v � w we have f(u) � f(v). Hence, if M = max{n, |w|}, we
have that u � X5M implies f(u)5n = f(X5M )5n.

2. If X = Je and Xe ∈ [Te], then for every m, f(Je5m) = Je5m. So for M =
max{n, e+5} we have u � v � X5M then f(u) � f(v). Hence, we have that
u � X5M implies f(u)5n = f(X5M )5n.

3. If X = Je and Xe �∈ [Te] then for some k, X5k �∈ Te ∩ {0, 1}k. So for
M = max{k, e + 5, n} we have u � v � X5M then f(u) � f(v). Hence, we
have that u � X5M implies f(u)5n = f(X5M )5n.

4. If X = limeXe = lime Je = 110ω then for every m and for e > m X5m =
Xe5m = Je5m so f(X5m) = X5m. Let M = n. If u � X5M either u � Xe, Je
in which case f(u)5n = Xe5n = Je5n or for v � u, f(v) � f(u) and so
f(u)5n = f(X5M )5n.

Now, consider the open cover {[X5MX,n ] : X ∈ 2N}. By compactness, there is
a finite cover {[Xi5MXi,n

] : i = 1, . . . , kn}. Define g(n) = max{MXi,n : i =
1, . . . , kn}. Then if |w| > g(n) and u � w, we have u � w � Xi5MXi,n

for some
i hence f(u)5n = f(w)5n = f(Xi5MXi,n

)5n.
It is clear that f satisfies (1) and (3) in definition 2 and is computable. Thus

F defined by F (X) = limn f(X5n) is conservatively approximable. We need to
show that [Te] �= ImF 2 for any e so ImF 2 is not a Π0

1 class and F 2 is not
conservatively approximable. To see this, suppose Xe �∈ [Te]. Then for some N ,
f(Ie5n) = Je5n and f(Je)5n) = Xe5n for every n > N . Thus F 2(Ie) = F (Je) =
Xe so Xe ∈ ImF 2. On the other hand if Xe ∈ [Te], then F (Y ) = Xe only if
Y = He and He �∈ ImF so Xe �∈ ImF 2.
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For computable functions, the image of a decidable Π0
1 class is still decidable.

We can use the example above to show that a similar result does not hold for
conservatively approximable functions.

Example 2. There is a decidable Π0
1 class P and conservatively approximable

function F so that F [P ] is not Π0
1 .

In the notation of the previous example, let F be as above, and let P =
{110ω}∪{Je : e ∈ N}. Then Xe ∈ F [P ] if and only if e /∈ [Te] and so F [P ] �= [Te]
for any e, hence F [P ] is not a Π0

1 class.

4 Symbolic Dynamics for Conservatively Approximable
Functions

In this section, we consider the set of itineraries IT [F ] associated with a conser-
vatively approximable function. We see that every Π0

1 class will equal IT [F ] for
some conservatively approximable function. We present a converse result with
some additional restrictions on the function F .

Lemma 1. If Q ⊂ ΣN is a subshift and G is a function with Q = ImG such
that G5Q is the identity on Q and G(X)(0) = X(0) then, for F = σ ◦G, we have
that IT[F ] = Q, where the itineraries are with respect to the natural partition of
ΣN into {I[a] : a ∈ Σ}.

Proof. Let X ∈ Q. Then F (X) = σ(G(X)) = σ(X) ∈ Q since G is fixed on Q
and Q is a subshift. Thus, Fn(X) = σn(X) and so Fn(X)(0) = X(n). Thus we
have X = ITF (X) ∈ IT[F ].

Let Y ∈ IT[F ] so Y = ITF (X) for someX . By induction, Fn(X) = σn(G(X))
for n ≥ 1. Since F (X) = σ(G(X)) and using the inductive hypothesis,
Fn+1(X) = σ(G(σn(G(X)))) = σn+1(G(X)) since σn(G(X)) ∈ Q. So for
n ≥ 1, Y (n) = Fn(X)(0) = G(X)(n). Now, since G(X)(0) = X(0) = Y (0),
Y = G(X) ∈ Q.

Theorem 2. If Q is a Π0
1 subshift with Q∩I[i] �= ∅ for every i ∈ Σ then there is

a conservatively approximable function F and a partition Ii so that IT[F ] = Q.

Proof. Fix Ii = I[i]. Since Q ∩ I[i] �= ∅ for every i ∈ Σ, the function

Gi(X) =

{
LQi X ≤L LQi

XQi X �≤L LQi

where Qi = {X : i�X ∈ Q} is a Π0
1 class since Q is. Since Q ∩ I[i] �= ∅

for every i ∈ Σ, the function G(i�X) = Gi(X) has G(X)(0) = X(0) and
satisfies all the above properties so, by Lemma 1, F = σ ◦ G has ITF = Q. F
is also conservatively approximable with approximations fF (w) = σ(fG(Ww))
and gF (n) = gG(n+ 1).
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When trying to show the converse, the proof runs into trouble in the same place
as it does when trying to demonstrate closure under composition. Consider the
following example.

Example 3. There is a conservatively approximable function F so that IT[F ] is
not a Π0

1 class.
Let I0 = [0] and I1 = [1] and let

(
Te
)
e
be a computable enumeration of

primitive recursive trees so that
(
[Te]
)
e
enumerates all Π0

1 classes (see [10]).

ConsiderXe = 10e+11ω and Ye = 0e+110ω. Our goal is to define f approximating
F so that if Xe �∈ [Te] then F (σn(Xe)) = σn+1(Xe) and so Xe ∈ IT[F ]. If
Xe ∈ [Te], then for no X is ITF (X) = Xe. Ye will be used as a place holder. We
do this by emulating σ as much as possible. That is, for most X , F (X) = σ(X),
but F (Xe) = σ(Ye) when ever Xe ∈ [Te].

Define f inductively on words of length n. If n ≤ 2 then f(w) = σ(w). If
|w�i| = n, define f by:

f(w�i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ(Ye5n) w�i = Xe5n ∧ (Xe5n ∈ Te ∩ {0, 1}n ∨ e+ 3 ≥ n)

σ(Xe5n) w�i = Xe5n ∧ X5n �∈ Te ∩ {0, 1}n ∧ e+ 3 < n

f(w)�0 w�i � u10e+11 ∧ |u| > 0, minimal

f(w)�i otherwise

To show that there is a g satisfying (2) in definition 2, we claim, as in the
previous proof, that for every X and n there is an MX,n so that if u � X5MX,n

then f(u)5n = f(X5MX,n)5n.
Let X and n be given. Note that for all u, |f(u)| = |u| − 1. There are two

cases.

1. If X5n+1 �= Xe5n+1 for all e < n + 4, then for all u � X5n+1, f(u) �
f(X5n+1) by the second two cases in the definition of f so let M = n+ 1.

2. Suppose X5n+1 = Xe5n+1 for some e < n + 4. If Xe ∈ [Te] define ke = 0,
otherwise, ke = (μk)(Xe5k �∈ Te ∩ {0, 1}k). Let M = max{ke, n : e < n+ 4},
then for every u � X5M , either u5m = Xe5m for some m and some e ≥ n+3
or not. In the first case, u5n = X5n = 0n so f(u)5n = f(X5M)5n = 0n. In
the second case, if u � X5M then f(u) � f(X5M ).

As in the previous argument, compactness allows us to define g(n) and to see
that if we let F (X) = limn f(X5n) then F is conservatively approximable. Now,
we can compute F (X) and ITF (X).

1. If X ∈ {0ω, 0n+11ω, 0n+11m+10ω, 1n+20ω, 1ω : n,m ∈ N}, then F (X) =
σ(X) and so ITF (X) = X .

2. If X ∈ {10n+11ω, 10n+11m+10ω, 10n+11m+10k+11Y : n,m, k ∈ N, Y ∈ 2N}
and Xn ∈ [Tn], then F (X) = σ(0n+110ω) and so ITF (X) = 10n10ω.

3. If X ∈ {10n+11ω = Xn, 10
n+11m+10ω : n,m ∈ N} and Xn �∈ [Tn], then

F (X) = σ(X) and ITF (X) = X .
4. If X � w0k+11 and w ∈ {0n+11m+1, 1n+2, 10e+11m+1, n,m ∈ N, Xe �∈ [Te]},

then F (X) = σ(w0ω) and so ITF (X) = w0ω.



Conservatively Approximable Functions 397

In each case, we can calculate ITF (X) by noting that for every X , F (X) falls
under the first case. Thus for n > 2, we have Fn(X) = σn−1(F (X)).

From this we can see that Xe ∈ IT[F ] if and only if Xe �∈ [Te]. Since [Te] is
the e-th Π0

1 class, IT[F ] is not a Π0
1 class.

In the example above, we have that Fn+1(X) = σn(F (X)). This rules out at
least one possible strengthening of the notion of conservative approximability.
Here is another possible notion.

Definition 3. A function F : ΣN → ΣN is strongly conservatively approx-
imable if the function F ∗ defined by F ∗(X) =

〈
X,F (X), F 2(X), F 3(X), . . .

〉
is

conservatively approximable.

Unfortunately we have the following.

Proposition 6. If F is strongly conservatively approximable, then F is
computable.

Proof. Since F ∗ is conservatively approximable, F ′ : X �→ 〈X,F (X)〉 is conser-
vatively approximable. Thus, ImF ′ is a Π0

1 class. However, ImF ′ = GraphF
hence, F is computable.

Here is a better idea.

Definition 4. A function F : ΣN → ΣN is locally conservatively approximable
if, for every w ∈ Σ∗, the function Fw, defined by Fw(X) = F (w�X), is conser-
vatively approximable.

Combining this idea with Lemma 1 above, we have the following partial converse
to Theorem 2.

Theorem 3. Suppose F is a locally conservatively approximable function such
that F 2 = H ◦F for some computable function H. Then IT[F ] is a Π0

1 subshift.

Proof. Let Ii be a partition of ΣN into finitely many clopen sets and let Ai the
the corresponding partition of Σm for some appropriate m. We first note that
Fn+1 = H ◦ Fn so by induction, Fn+1 = Hn ◦ F . So

IT[F ] =
⋃
i

⋃
w∈Ai

[w]∩ImF �=∅

i� ITH [ImFw].

Now, since H is computable, so is ITH and since Fw is conservatively approx-
imable, ImFw is a Π0

1 class. Thus, ITH [ImFw] is a Π0
1 class and so the above

finite union is also a Π0
1 class. Notice that we use the local condition for only

finitely many intervals determined from the partition given.

Conversely:

Proposition 7. Fix the partion Ii = [i] of 2N and let Q be Π0
1 subshift Q so that

[i]∩Q �= ∅ for each i. There is a locally conservatively approximable function F
so that F 2 = H ◦ F for some computable function H with IT[F ] = Q.



398 S. Wyman

Proof. By Lemma 1 and Proposition 3 we need only find a suitable function
G with ImG = Q and Gw conservatively approximable for each w. Now, let
Q = [T ] for some computable tree T and define f(w) inductively as follows:

f(w)(0) = w(0)

f(w)(n+ 1) =

{
w(n+ 1) (∃v ∈ T ∩ 2|w|)(f(w)5n+1

�
w(n+ 1) � v)

1− w(n+ 1) otherwise
.

Note the for each n < |w|, f(w)5n+1 has an extension in T ∩ 2|w|.
We now define G(X) = limn f(X5n). We know limn f(X5n) exists as: if v �

f(w), v ∈ ext(T ), and u � w then v � f(u) and, by compactness, for each n
there is an m so that if |u| = n and u � v ∈ T ∩ 2m for some v, then u ∈ ext(T ).
Additionally, notice that if w ∈ T , f(w) = w and so clearly, G is conservative.

To show that Gw is conservatively approximable, we define fw(u) in a similar
way. First, find vw ∈ ext(T ), |vw| = |w|:

vw(0) = w(0)

vw(n+ 1) =

{
w(n + 1) (∃v ∈ ext(T ) ∩ 2|w|)(vw5n+1

�
w(n+ 1) � v)

1− w(n + 1) otherwise
.

Of course vw is not computable from w. Then, we can compute fw(u) by:

fw(u)5|w| = vw

fw(u)(n+ |w|) =
{
u(n) ∃v ∈ [vw] ∩ T ∩ 2|w|(fw(u)5n+|w|�u(n) � v)

1− u(n) otherwise
.

Again, by compactness, there is an m so that if |u| > m, f(wu) � vw hence
fw(u) = f(wu) and so Fw(X) = F (wX) = limn f(wX5n) = limn fw(X5n) and
Fw(X) is conservative since, if vwu ∈ T we have fw(u) = vwu.

The following example shows that not every conservatively approximable func-
tion is locally conservatively approximable.

Example 4. There is a conservatively approximable function F so that F0(X) :=
F (0�X) is not conservatively approximable.

Let Xe = 1e+10e+11ω. We construct F so that Xe ∈ ImF0 if and only if
e ∈ ∅′ . Thus, ∅′ ≤1 TImF0 so F0 is not conservatively approximable, as its image
is not a Π0

1 class. To do this, let An be a computable approximation of ∅′ and,
for |u�i| = n, define

f(u�i) =

⎧⎪⎨⎪⎩
Xe5n u�i � 0�Xe ∧ e ∈ An

σ(u�i) 1 � u�i

f(u)�1 otherwise
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Thus, F (X) = limn f(X5n) is conservatively approximable and has

F (0�1e+10e+1X) =

{
Xe e ∈ ∅′

1ω otherwise
,

while F (00X) = 1ω and F (1X) = X for every X in 2N. Thus, F has the property
desired.

Nor can we ask that Fw be approximable uniformly, for then F is computable.

Proposition 8. If F is conservatively approximable and Fw(X) = F (wX) is
also conservatively approximable via fw(u) = f(wu) for every w, then F is
computable.

Proof. By assumption, we have that for every w and every u�i, there is a v
with |u| = |v| and fw(v) � fw(u

�i) and so f(wv) � f(wu�i). In particular, if
u = ε, the empty string, then also v = ε and we have f(w) � f(w�i). Thus, F
is computable.

5 Conclusion and Future Research

In this paper, we defined the conservatively approximable functions. We showed
that images of conservatively computable functions are exactly the Π0

1 classes
but that images of decidable Π0

1 classes need not be Π0
1 in general. We showed

that the class of conservatively approximable functions is closed under compo-
sition with computable function, but not under composition in general. Moving
to symbolic dynamics, we constructed a conservatively approximable function
whose itineraries do not form a Π0

1 class. However, locally conservative function
whose iterates are given by composition with computable functions have exactly
the Π0

1 subshifts for itineraries.
Possible extensions for this work include classifying the complexity of images

of decidable and arbitrary Π0
1 classes under conservatively approximable func-

tions. General properties of locally conservative functions should be studied. We
are also interested in finding an analog in functions on Cantor space for the
semi-computable reals, studying their images and symbolic dynamics.

The notion of conservatively computable also translates to the reals. Here
images of continuous functions are intervals, disallowing much of the diagonal-
ization used in this paper. We would like to study the symbolic dynamics of
these and computable functions of the unit interval, as well as other weakenings
of the computability notion proposed by Bauer, Weihrauch, Zheng ([1], [22]).
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Abstract. The intended provability semantics of Intuitionistic Propo-
sitional Logic IPC (also called Brouwer–Heyting–Kolmogorov semantics)
has been formalized within Gödel-Artemov’s framework. According to
this approach, IPC is embedded in modal logic S4 by Gödel embedding
and S4 is realized in Artemov’s Logic of Proofs LP which has a prov-
ability interpretation in Peano Arithmetic. Artemov’s realization of S4
in LP uses self-referential LP-formulas of the form t:φ(t), namely, ‘t is
a proof of a formula φ containing t itself.’ Kuznets showed that this is
not avoidable by offering S4-theorems that cannot be realized without
using self-referential LP-formulas. This paper extends Kuznets’ method
to find IPC-theorems that call for direct self-referentiality in LP. Roughly
speaking, examples include double-negations of tautologies that are not
IPC-theorems, e.g., ¬¬(¬¬p → p), and there are also examples in the
purely implicational fragment IPC→. This suggests that the Brouwer–
Heyting–Kolmogorov semantics of intuitionistic logic is intrinsically self-
referential.

1 Introduction

The Brouwer–Heyting–Kolmogorov (BHK) semantics of Intuitionistic Proposi-
tional Logic IPC follows the reading of intuitionistic truth as provability. This
was initially suggested by Brouwer and then stipulated informally by Heyting
and Kolmogorov. Gödel [7] contributed to this by introducing a modal calcu-
lus of provability that is essentially S4, and suggesting a possible embedding of
IPC in his calculus. The suggested embedding, prefixing each subformula with
the provability modality �, 1 reflects the intuitionistic view of logical truth as
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Graduate Center and NSF award 0830450 Justification Logic and Applications.

1 To be exact, in [7], Gödel suggested the embedding “prefixing each subformula with
a �” along with some of its S4-equivalent simplifications. We will consider Gödel-
style modal embeddings in a general setting and get results that are not sensitive to
the choice of embedding.
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provability. Gödel’s embedding of IPC in S4 was shown to be faithful by McK-
insey and Tarski [9] and hence transformed the problem of finding a provability
semantics for IPC to finding a provability semantics for S4. Artemov [1,2] filled
the gap by introducing the Logic of Proofs LP with completeness w.r.t. formal
arithmetical provability and establishing an embedding, called realization, of S4
in LP. A detailed description of the approach of formalizing BHK semantics of
IPC can be found in [2].

Definition 1 (The Logic of Proofs LP [2]). In the language of LP: formulas
are defined by φ ::= ⊥ | p |φ→ φ | t : φ, where t ::= c |x | t · t | t+t | !t is called a
term, c is a constant, x is a (proof) variable, and p is a propositional letter.

LP has the following axiom schemes

(A0) A finite set of classical propositional axiom schemes

(A1) t :φ→φ

(A2) t1 : (φ→ψ)→(t2 :φ→t1 ·t2 :ψ)
(A3) t :φ→!t : t :φ

(A4) t1 :φ→t1+t2 :φ and t2 :φ→t1+t2 :φ

and rules

(MP ) Modus Ponens

(AN)
c :A

where c is a constant and A is an axiom.

A constant specification, denoted by CS, is a set of formulas of the form c :A
where c is a constant and A is an axiom. A constant specification CS is injective
if for each constant c, at most one axiom A satisfies c :A ∈ CS. LP(CS) is the
fragment of LP with only formulas from CS being allowed by rule (AN). Each
LP-proof calls for a constant specification, namely the set of formulas introduced
by rule (AN) in this proof. Clearly, an LP-proof that calls for CS is an LP(CS)-
proof.

LP can be seen as the “explicit counterpart” of S4, as indicated by the following
definition and theorem from [2].

Definition 2 (Realization [2]). For a modal formula φ, a realization of φ
consists of an assignment of LP-terms to all �-occurrences2 in φ and a constant
specification which indicates axioms associated to constants that occur in those
terms. We denote the image of φ under a realization r by φr.

A realization is normal if it assigns to each negative � a distinct variable and
the constant specification associated to this realization is injective.

Theorem 1 (Realization Theorem [2]). S4 � φ iff LP(CS) � φr for some
normal realization r with an injective constant specification CS.
2 We assume that ♦ is defined as ¬�¬.
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Artemov’s proof of Theorem 1 in [2] employs a cut-free Gentzen-style formulation
of S4, along with the “Lifting Lemma” of LP, which actually displays the ability
of LP to internalize its own proofs. This realization theorem, together with the
arithmetical completeness of LP in [2], gives an explicit provability semantics
of S4, and then of IPC via Gödel embedding. Artemov mentioned in [2] that
the realization procedure used there may involve constant specifications that
contain self-referential formulas of the form c :A(c), and asked whether this kind
of formulas are avoidable. Other proofs of the realization theorem (e.g., [5], [6])
offer possibilities of assigning terms in other ways, but Kuznets showed in [3]
that self-referentiality is intrinsic in the realization of S4 in LP, as presented
below.

Definition 3 (Self-referentiality of Constant Specification [8]). A con-
stant specification is self-referential, if it has a subset of the form

{ c1 :A1(c2), · · · , cn−1 :An−1(cn), cn :An(c1) }.

If n = 1, then this constant specification is directly self-referential.

Theorem 2 (Direct Self-referentiality of S4 [3]). Any realization of the
S4-theorem

¬�¬(p→ �p) (1)

calls for a directly self-referential constant specification.

By Theorem 2, we know that the provability semantics of S4 is intrinsically
self-referential. The proof of Theorem 2 in [3] employs the Mkrtychev model
(M-model) of LP from [10]. The idea is, for any possible realization of (1), we
construct a counter M-model that admits the largest non-directly self-referential
constant specification.3 We do not present Kuznets’ proof used in [3], but will
employ a similar proof for Theorem 4 in Section 2.4

Theorem 2 answered Artemov’s question on the S4 layer negatively, but left
this question open on the IPC layer, since (1) is not the image of an IPC-theorem
under known Gödel-style modal embeddings of IPC in S4 (cf. [7], [4], and [12]).
In Section 2, we will answer Artemov’s question on the IPC layer negatively.

At the end of this introduction section, we present the definition and some
facts about M-models. We generally follow [10], with some modifications.

Definition 4 (Mkrtychev Model [10]). A function ∗(·) from LP-terms to the
power set of LP-formulas is called an evidence function if it satisfies:⎧⎨⎩ψ ∈ ∗(t) implies (t :ψ) ∈ ∗(!t),

τ→φ ∈ ∗(t1) and τ ∈ ∗(t2) implies φ ∈ ∗(t1 · t2),
∗(t1) ∪ ∗(t2) ⊆ ∗(t1+t2).

(2)

3 In this paper, by a “non-directly self-referential constant specification,” we mean a
constant specification that is not directly self-referential.

4 The idea of Kuznets’ proof used in [3] was extended to the “∗-calculus” in [8], where
M-model was replaced by its multi-state version, the Fitting model from [5]. We will
follow the approach in [3], which is sufficient for our goal.
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An evidence function ∗ is called a CS-evidence function if it satisfies A ∈ ∗(c)
for any c :A ∈ CS.

A Mkrtychev model is M = (∗, v) where ∗ is an evidence function and v is
a propositional valuation (from the set of propositional letters to the set {0, 1}).
If ∗ is a CS-evidence function, then M = (∗, v) is called a CS-model.

For M = (∗, v), M � φ means M satisfies φ. This is defined by⎧⎪⎪⎨⎪⎪⎩
M 
 ⊥,
M � p iff v(p) = 1,
M � φ→ψ iff M 
 φ or M � ψ,
M � t :φ iff φ ∈ ∗(t) and M � φ.

Lemma 1 ([10]). For any set X of formulas of form t :φ, there is a smallest5

evidence function ∗X that satisfies

t :φ ∈ X ⇒ φ ∈ ∗X(t). (3)

Moreover, ∗X can be constructed from {φ ∈ ∗X(t) | t :φ ∈ X} by using conditions
in (2) of Definition 4.

We call X the initial set of ∗X .

Theorem 3 (Completeness of LP w.r.t. M-models [10]). LP(CS) � φ iff
M � φ for any CS-model M.

2 Self-referentiality of IPC

In this section, we have the following notations and conventions.

Convention 1. We take ⊥,→ as primitive connectives in classical logic; other
connectives like 	,¬,∧,∨,↔ are considered as abbreviations defined in the stan-
dard way.

By φ = ψ, we mean φ and ψ are syntactically identical. For instance, we may
write ¬φ = φ→⊥, but ⊥ �= ⊥ ∧⊥.

By s� φ (or s� t), we mean term s occurs in formula φ (or term t, resp.).

By �iφ, we mean � · · ·�︸ ︷︷ ︸
i

φ for any natural number i. �0φ = φ.

By CS ��, we mean the set {c : A |A is an axiom and c � A}, which is the
largest non-directly self-referential constant specification.

In the following Theorem, we adapt Kuznets’ method from [3], and find a natural
class of S4-theorems that call for direct self-referentiality in LP.

5 Smallest in the sense that ∗X(s) ⊆ ∗′X(s) for any evidence function ∗′X that satisfies
(3), and any term s.
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Theorem 4. For any modal formula σ s.t. S4 � σ:

(1) For any modal formula θ, any propositional formula ζ s.t. S4 � ζ, any
realization of

�u(�w(�xσ→θ)→�zζ) (w, x > 0)

has a counter CS ��-model.6

(2) If S4 � ♦�σ, then any realization of S4-theorem

�u(�w(�xσ→�y⊥)→�z⊥) (w, x > 0)

calls for a directly self-referential constant specification.

(3) If S4 � ♦�σ, then any realization of ♦�σ calls for a directly self-referential
constant specification.

Proof. (1) We first show this with a further assumption that σ is a prime
formula7 or an implication, and will eliminate this assumption afterwards.

Any possible realization of �u(�w(�xσ→θ)→�zζ) has the form (note that
ζ is �-free, which implies ζr = ζ)

t0u : · · · : t01 : (t1w : · · · : t11 : (t2x : · · · : t21 :σr→θr)→t4z : · · · : t41 :ζ).

We have the following abbreviations:

δ stands for t2x : · · · : t21 :σr→θr ,

X stands for {t11 :δ, t12 : t11 :δ, ... , t1w : · · · : t11 :δ} ,

X− stands for {δ, t11 :δ, ... , t1w−1 : · · · : t11 :δ} ,

∗′ stands for ∗CS �� ,

∗ stands for ∗CS ��∪X .

Some remarks here: w > 0 ensures that X �= ∅, and hence by the definition of
X−, we have:

for any ψ, t :ψ ∈ X for some t iff ψ ∈ X−. (4)

We also have
δ is a subformula of ψ for any ψ ∈ X ∪X−. (5)

The existence of ∗′ and ∗ is guaranteed by Lemma 1.

Since S4 � ζ and ζ is �-free, there is some propositional valuation that falsifies
ζ. Take such a valuation v, the desired counter model is Mr = (∗, v). For any
constant c, axiom A s.t. c : A ∈ CS ��, we have c : A ∈ CS �� ∪ X , and then by
Lemma 1, A ∈ ∗CS ��∪X(c) = ∗(c). So Mr is indeed a CS ��-model. It is now
sufficient to show that

Mr 
 t0u : · · · : t01 : (t1w : · · · : t11 :δ→t4z : · · · : t41 :ζ).
6 The counter model we will construct also works when S4 � �u(�w(�xσ→θ)→�zζ).
7 By a prime formula, we mean ⊥, or a propositional letter (p, q, etc.). Note that �
is defined as ⊥→⊥, and is not a prime formula.
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Since x > 0, the term t21 does exist. Suppose that σr ∈ ∗(t21). If σr ∈ ∗′(t21),
then by Lemma 2 (forthcoming), LP(CS ��) � σr, hence S4 � σ. This contradicts
our assumption. If σr ∈ ∗(t21) \ ∗′(t21), then by Lemma 2, σr is not a prime
formula, and hence σ is not a prime formula. By our further assumption, σ is an
implication, and hence so is σr. By Lemma 2,

σr = δ = t2x : · · · : t21 :σr→θr,

a contradiction. Neither case is possible, hence σr /∈ ∗(t21).
Thus, we have Mr 
 t21 : σ

r, hence Mr 
 t2x : · · · : t21 : σr. Then Mr � δ. By
the definition of ∗ and of X , δ ∈ ∗(t11), t11 :δ ∈ ∗(t12), ... , t1w−1 : · · · : t11 :δ ∈ ∗(t1w).
Thus Mr � t1w : · · · : t11 :δ.

Since ζ is �-free and v falsifies ζ, Mr 
 ζ, which implies Mr 
 t4z : · · · : t41 : ζ.
By the observation in last paragraph, Mr 
 t1w : · · · : t11 : δ → t4z : · · · : t41 : ζ.
Therefore,Mr 
 t0u : · · · : t01 : (t1w : · · · : t11 :δ→t4z : · · · : t41 :ζ), and what is constructed
is actually a counter CS ��-model.

We eliminate the further assumption by induction on the structure of σ. If σ
is a prime formula or an implication, then our further assumption is true, and
the claimed result is verified by what presented above. Suppose σ = �σ0 for
some σ0. Since S4 � σ, S4 � σ0. Since

�u(�w(�xσ→θ)→�zζ) = �u(�w(�x+1σ0→θ)→�zζ),
it is sufficient to show that any realization of �u(�w(�x+1σ0→θ)→�zζ) has a
counter CS ��-model. This model is given by applying IH on σ0.

(2) Since S4 � ♦�σ = ¬�¬�σ = �(�σ→⊥)→⊥ and S4 � �i⊥↔⊥ for any
i, we have S4 � �(�σ→�y⊥)→�z⊥. By S4 � �φ↔��φ for any φ, we have
S4 � �w(�xσ→�y⊥)→�z⊥ since w, x > 0. By applying necessitation u-times,
S4 � �u(�w(�xσ→�y⊥)→�z⊥).

Employing (1) in the sense that θ = �y⊥ and ζ = ⊥ gives a counter CS ��-
model Mr for any possible realization of �u(�w(�xσ→�y⊥)→�z⊥).

To see that any realization of �u(�w(�xσ→�y⊥)→�z⊥) calls for direct self-
referentiality, suppose that we were able to realize it with a constant specification
CS ′ that is not directly self-referential. That is, we have an LP(CS ′)-proof of the
realized formula, denoted temporally by κ. By Definition 3, for any c :A ∈ CS ′,
c � A. That is to say, CS ′ ⊆ CS �� and hence the proof is also an LP(CS ��)-proof.
By Theorem 3, M � κ for any CS ��-model M, which contradicts the existence
of the counter CS ��-model Mr.

(3) A trivial case of (2) where w = x = 1 and u = y = z = 0. ��

Now we state and prove Lemma 2, with all notations and abbreviations from
Theorem 4.

Lemma 2. For any subterm s of t21, any modal formula φ:

(1) If φ ∈ ∗′(s), then
(i) LP(CS ��) � φ,

(ii) t21 � φ;
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(2) If φ ∈ ∗(s) \ ∗′(s), then
(iii) t21 � φ,

(iv) φ is not prime, and φ = δ if φ is an implication,

(v) φ /∈ {t21 :σr, t22 : t21 :σr , ... , t2x : · · · : t21 :σr}.

Proof. Induction on s. We need to consider the reason why a term-formula pair
(e.g., t-ψ) is, or is not, added to an evidence function. By Lemma 1, aside from the
initial set CS �� or CS ��∪X , all possibilities are given by closure conditions in (2)
of Definition 4. In each possibility, the corresponding condition sets restrictions
on forms of t and ψ. Based on these restrictions on forms, we get subterm-
subformula pairs which enjoy useful properties by IH.

Case 1. s is a constant c:

(1) If φ ∈ ∗′(c), then c : φ ∈ CS �� (closure conditions in (2) of Definition
4 only add formulas for composite terms). So φ is an axiom, hence (i) holds.
Suppose that t21 � φ, then c� φ since c is a subterm of t21, hence CS �� is directly
self-referential, a contradiction. Thus, (ii) holds.

(2) If φ ∈ ∗(c) \ ∗′(c), then c : φ ∈ X (precisely, (CS �� ∪ X) \ CS ��, which is
a subset of X), which implies φ ∈ X− by (4) in the proof of Theorem 4. By
(5) in the proof of Theorem 4, δ occurs in each formula in X−. Since t21 � δ,
we have t21 � φ, (iii) holds. There is no prime formula in X−, and δ is the only
implication in X−, therefore (iv) holds. To see that (v) holds, suppose that
φ ∈ {t21 : σr, ... , t2x : · · · : t21 : σr}, which implies φ is a proper subformula of δ.
Since φ ∈ X− and δ is a subformula of any element of X−, δ is a subformula of
φ. Thus we have δ as a proper subformula of δ itself, a contradiction. Note that
independently of assumptions of this case,

all of (iii,iv,v) follow from φ ∈ X−, (6)

which will be useful in later cases.

Case 2. s is a variable x:

(1) If φ ∈ ∗′(x), then x : φ ∈ CS ��, which is impossible, since x is not a
constant.

(2) If φ ∈ ∗(x) \ ∗′(x), then x :φ ∈ X , which implies φ ∈ X− (by (4)). From
(6), all of (iii,iv,v) hold.

Case 3. s is !s1 for some term s1:

(1) Suppose φ ∈ ∗′(!s1). Since !s1 is not a constant, !s1 : φ /∈ CS ��, thus this
pair is added by the closure condition for ! . According to (2) of Definition 4,
φ = s1 :ψ for some ψ ∈ ∗′(s1). Since s1 is a subterm of t21, by IH, LP(CS ��) � ψ.
For any CS ��-modelM, by Theorem 3, M � ψ. Since ψ ∈ ∗′(s1) where ∗′ is the
smallest CS ��-evidence function,M � s1 :ψ. By Theorem 3, LP(CS ��) � s1 :ψ, (i)
holds. Also by IH, t21 � ψ. Since s1 is a proper subterm of t21, we know t21 � s1.
Hence, t21 � s1 :ψ, (ii) holds.

(2) Suppose φ ∈ ∗(!s1) \ ∗′(!s1). Subcase (a), via the initial set. Then we have
!s1 : φ ∈ X , which implies φ ∈ X− with the help of (4). Now (6) ensures all
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of (iii,iv,v). Subcase (b), via the closure condition. Then φ = s1 : ψ for some
ψ ∈ ∗(s1) \ ∗′(s1). By IH, t21 � ψ, hence t21 � s1 : ψ, (iii) holds. Since s1 : ψ is
neither a prime formula nor an implication, (iv) holds in a vacuous way. By
IH, ψ /∈ {t21 : σr, t22 : t21 : σr, ... , t2x : · · · : t21 : σr}, from which we can derive that
s1 : ψ /∈ {t22 : t21 : σr, ... , t2x : · · · : t21 : σr}. Moreover, s1 is a proper subterm
of t21, which implies s1 : ψ �= t21 : σ

r. Therefore, we know that (v) holds, since
s1 :ψ /∈ {t21 :σr, t22 : t21 :σr, ... , t2x : · · · : t21 :σr}.

Case 4. s is s1 ·s2 for some terms s1 and s2:

(1) Suppose φ ∈ ∗′(s1 ·s2). Since s1 ·s2 is not a constant, s1 ·s2 : φ /∈ CS ��,
thus this pair is added by the closure condition for · , hence there is some τ
s.t. τ → φ ∈ ∗′(s1) and τ ∈ ∗′(s2). Both s1 and s2 are subterms of t21, by
IH, LP(CS ��) � τ → φ and LP(CS ��) � τ , so LP(CS ��) � φ, (i) holds. By IH,
t21 � τ→φ, which implies t21 � φ, (ii) holds.

(2) Suppose φ ∈ ∗(s1 ·s2) \ ∗′(s1 ·s2). Subcase (a), via the initial set. Then
s1 · s2 : φ ∈ X , which implies φ ∈ X− with the help of (4). All of (iii,iv,v)
are ensured by (6). Subcase (b), via the closure condition. Then there is some
τ s.t. τ → φ ∈ ∗(s1), τ ∈ ∗(s2). Subcase (b.1), τ → φ ∈ ∗(s1) \ ∗′(s1) and
τ ∈ ∗′(s2). By IH, t21 � τ . Since τ → φ is an implication, by IH, τ → φ = δ,
i.e., τ = t2x : · · · : t21 : σr. Note that t21 � τ ; we have a contradiction. Subcase
(b.2), τ → φ ∈ ∗(s1) \ ∗′(s1) and τ ∈ ∗(s2) \ ∗′(s2). By IH, we know that
τ /∈ {t21 : σr, t22 : t21 : σr, ... , t2x : · · · : t21 : σr}. As in subcase (b.1), by applying IH
on τ → φ, we have τ = t2x : · · · : t21 : σr ∈ {t21 : σr, t22 : t21 : σr, ... , t2x : · · · : t21 : σr},
a contradiction. Subcase (b.3), τ → φ ∈ ∗′(s1) and τ ∈ ∗(s2) \ ∗′(s2). By IH,
t21 � τ→φ. But also by IH, t21 � τ , hence t21 � τ→φ, a contradiction. Subcase
(b.4), τ → φ ∈ ∗′(s1) and τ ∈ ∗′(s2). The closure condition for · in (2) of
Definition 4 gives φ ∈ ∗′(s1·s2) and violates the assumption of (2). In summary,
Subcase (b) is impossible.

Case 5. s is s1+s2 for some terms s1 and s2:

(1) If φ ∈ ∗′(s1+s2), then w.l.o.g., φ ∈ ∗′(s1), hence both (i) and (ii) hold by
IH.

(2) Suppose φ ∈ ∗(s1+ s2) \ ∗′(s1+ s2). Subcase (a), via initial set. Then
s1+s2 :φ ∈ X , which implies φ ∈ X−. From (6), we have all of (iii,iv,v). Subcase
(b), via the closure condition. That is, φ /∈ ∗′(s1), φ /∈ ∗′(s2), and w.l.o.g.,
φ ∈ ∗(s1). Thus φ ∈ ∗(s1) \ ∗′(s1), which, by IH, gives all of (iii,iv,v). ��

Theorem 4 gives a natural class of self-referential S4-theorems.8 We now try to
find corresponding classes of IPC-theorems.

8 Instances of self-referential theorems in modal logics T, K4, and D4 (w.r.t. realiza-
tions in their explicit counterparts, JT, J4, and JD4, respectively) are given in [8],
where T and D4 share the same instance with S4 (i.e., formula (1) in Theorem 2),
and the instance in K4 is ¬�⊥→ ¬�¬(p→�p), which is also a T-theorem. Note
that S4 � σ implies T � ♦�σ, and hence Theorem 4(3) gives a natural class of self-
referential modal instances that are not T-theorems. For example, the S4-theorem
♦�(♦�p→�p), which is not provable in T, calls for direct self-referentiality in any
possible realizations in LP.
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There are several ways to faithfully embed IPC in S4, with minor differences
between them (cf. [7], [9], [4], and [12]). Three of them are presented in Table 1,
where (·)◦ and (·)� are contained in [12], and (·) is the well-known Gödel’s “�
each subformula” embedding.9

Table 1. Three Faithful Embeddings of IPC in S4

(·)◦ (·)� (·)�
⊥ ⊥ ⊥ �⊥
p p �p �p

α ∧ β α◦ ∧ β◦ α� ∧ β� �(α� ∧ β�)
α ∨ β �α◦ ∨�β◦ α� ∨ β� �(α� ∨ β�)
α→ β �α◦ → β◦ �(α� → β�) �(α� → β�)

Fact 1 ([12]). Embeddings in Table 1 are all faithful, since IPC � φ iff S4 � φ×

for any embedding (·)× ∈ {(·)◦, (·)�, (·) }. Differences between these embeddings
are minor, since by induction, we see that S4 � φ� ↔ φ and S4 � �φ× ↔ �φ+

for any propositional formula φ, any (·)×, (·)+ ∈ {(·)◦, (·)�, (·) }.

In the following theorem, we show that (·)◦ gives an easy description of IPC-
theorems that fit the requirement of Theorem 4(3). By CPC, we mean the clas-
sical propositional calculus.

Theorem 5. For any propositional formula α s.t. CPC � α and IPC � α, we
have IPC � ¬¬α and any realization of (¬¬α)◦ calls for a directly self-referential
constant specification.

Proof. By Glivenko’s Theorem (cf. [11]), IPC � ¬¬α follows from CPC � α. Since
IPC � α and IPC � ¬¬α, we have S4 � α◦ and S4 � (¬¬α)◦. Now

(¬¬α)◦ = ((α→⊥)→⊥)◦ = �(α→⊥)◦→⊥◦

= ¬�(�α◦→⊥◦) = ¬�¬�α◦ = ♦�α◦

implies S4 � ♦�α◦.
By Theorem 4(3), any realization of ♦�α◦ calls for a directly self-referential

constant specification. We are done since (¬¬α)◦ = ♦�α◦. ��

There is a well-known formula that satisfies conditions of Theorem 5.

9 In [7], Gödel presented a version of embedding along with some alternative options,
say, whether or not to add �’s in the ∧ case. The version Gödel presented has ¬,
but not ⊥, as a primitive connective, and hence looks slightly different. Except for
this, if we take the alternative option that adds �’s in the ∧ case, then the only
difference between the resulting version and (·)� is the outermost �.
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Example 1. CPC � ¬¬p→p and IPC � ¬¬p→p.

Though differences between embeddings (·)◦, (·)�, and (·) are minor, they can
affect realizations in LP. In a realization, each � is replaced by a term, hence the
result of realization is quite sensitive to the exact syntactical form of the modal
formula (cf. [2]). It is therefore reasonable to consider possible embeddings of
IPC in S4 other than (·)◦ to see whether or not they are good at avoiding self-
referentiality. In what follows, we consider the class of “basic” embeddings.

Definition 5 (Basic Embedding). A potential embedding of IPC in S4, de-
noted by (·)×, is basic if it satisfies:⎧⎨⎩p× = �hp,

⊥× = �i⊥,
(φ⊕ ψ)× = �j⊕(�k⊕φ× ⊕�l⊕ψ×) for ⊕ ∈ {∧,∨,→}.

We abbreviate j→, k→, l→ by j, k, l, respectively. By saying (·)× is a basic (poten-
tial) embedding, it is assumed that notations h, i, j, k, l, j∧, k∧, l∧, j∨, k∨, l∨ are
all reserved for the eleven parameters, in the way indicated above.

A potential embedding (·)× is an embedding if it is actually a faithful embed-
ding, i.e., if it satisfies: IPC � φ iff S4 � φ×.

Fact 2. The three embeddings in Table 1 are all basic embeddings. Actually,

in (·)◦, k=k∨= l∨=1;

in (·)�, h=j=1;

in (·) , h= i=j=j∧=j∨=1;

other parameters not mentioned here (for each of them, respectively) are all 0.

We present some macros that will be useful later.

Fact 3. For any basic potential embedding (·)×:

(¬φ)× = (φ→⊥)× = �j(�kφ×→�l⊥×) = �j(�kφ×→�i+l⊥),
(¬¬φ)× = �j(�k(¬φ)×→�i+l⊥) = �j(�k�j(�kφ×→�i+l⊥)→�i+l⊥)

= �j(�j+k(�kφ×→�i+l⊥)→�i+l⊥),
((φ→q)→q)× = �j(�k(φ→q)×→�lq×) = �j(�k�j(�kφ×→�lq×)→�h+lq)

= �j(�j+k(�kφ×→�h+lq)→�h+lq).

Some basic potential embeddings are not faithful embeddings. We have the fol-
lowing lemma, which provides a necessary condition on parameters:

Lemma 3. If (·)× is a basic (faithful) embedding, then j + k > 0.
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Proof. Let (·)× be a potential embedding that satisfies j = k = 0. By Fact 3,

(¬¬φ)× = �0(�0+0(�0φ×→�i+l⊥)→�i+l⊥) = (φ×→�i+l⊥)→�i+l⊥.

Since S4 � ⊥↔�i+l⊥, S4 � (¬¬φ)×↔ ((φ×→⊥)→⊥), so S4 � (¬¬φ)×↔φ×.
Let φ be ¬¬p→p, we have S4 � (¬¬(¬¬p→p))×↔(¬¬p→p)×.

Note that IPC � ¬¬(¬¬p → p) and IPC � ¬¬p → p. If (·)× is a faithful
embedding, then S4 � (¬¬(¬¬p→ p))× and S4 � (¬¬p→ p)×. Thus we have a
contradiction. ��

We are now ready to show the following:

Theorem 6 (Direct Self-referentiality of IPC). For any propositional for-
mula α s.t. CPC � α and IPC � α:

(1) IPC � ¬¬α.
(2) If α is an implication,10 then for any basic embedding (·)×, any realization

of (¬¬α)× calls for a directly self-referential constant specification.

(3) There is a propositional formula β s.t. IPC � α↔ β and for any basic
embedding (·)×, any realization of (¬¬β)× calls for a directly self-referential
constant specification.

(4) For any basic embedding (·)× that satisfies k+ j∧ > 0 and k+ j∨ > 0, any
realization of (¬¬α)× calls for a directly self-referential constant specification.

(5) Any realization of (¬¬α) calls for a directly self-referential constant
specification.

Proof. (1) IPC � ¬¬α follows from CPC � α by Glivenko’s Theorem (cf. [11]).

(2) Take any basic (faithful) embedding (·)×. Since α is an implication, we
assume α = α1→α2, which implies α× = (α1→α2)

× = �j(�kα×1 →�lα×2 ).
Let σ = �kα×1 →�lα×2 . We have

α× = �jσ. (7)

By Fact 3, (¬¬α)× = �j(�j+k(�kα×→�i+l⊥)→�i+l⊥). Thus

(¬¬α)× = �j(�j+k(�j+kσ→�i+l⊥)→�i+l⊥). (8)

Since IPC � α, S4 � α×. By (7), S4 � �jσ, which implies

S4 � σ. (9)

Since IPC � ¬¬α, S4 � (¬¬α)×, then S4 � �j(�j+k(�j+kσ→�i+l⊥)→�i+l⊥)
follows from (8), which implies S4 � �j+k(�j+kσ → �i+l⊥) → �i+l⊥. Since
S4 � �i+l⊥ ↔ ⊥, we have S4 � �j+k(�j+kσ → ⊥) → ⊥. According to the
assumption, (·)× is a faithful embedding. By Lemma 3,

j + k > 0, (10)

10 Note that the existence of such α is instanced by ¬¬p→p.
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which implies S4 � �j+kφ↔�φ for any φ. Therefore,

S4 � �(�σ→⊥)→⊥ = ♦�σ. (11)

Having (9) and (11), from Theorem 4(2) we know that for any w, x > 0, any
realization of �u(�w(�xσ→ �y⊥)→ �z⊥) calls for a directly self-referential
constant specification.

Let u=j, y=z= i+l, w=x=j+k (note that w, x > 0 by (10)), we know that

�j(�j+k(�j+kσ→�i+l⊥)→�i+l⊥)

calls for direct self-referentiality. Then by (8), any realization of (¬¬α)× calls
for a directly self-referential constant specification.

(3) Let β = 	→α, which is an implication. IPC � β and CPC � β follow from
assumptions and the fact that IPC � α↔β and CPC � α↔β. Now, β satisfies
all requirements of (2).

(4) Take any basic (faithful) embedding (·)× that satisfies k + j∧ > 0 and
k + j∨ > 0. Since CPC � α, α is not a prime formula. The case that α is an
implication follows from (2). Thus it is sufficient to prove with the assumption
that α = α1 ⊕ α2 for ⊕ ∈ {∧,∨}. Now α× = �j⊕(�k⊕α×1 ⊕ �l⊕α×2 ). Let
σ = �k⊕α×1 ⊕�l⊕α×2 , we have α× = �j⊕σ.

Since IPC � α, S4 � α×, hence S4 � σ. Since IPC � ¬¬α, S4 � (¬¬α)×. By
Fact 3 and our definition of σ,

(¬¬α)× = �j(�j+k(�kα×→�i+l⊥)→�i+l⊥)
= �j(�j+k(�k+j⊕σ→�i+l⊥)→�i+l⊥),

hence S4 � �j(�j+k(�k+j⊕σ→�i+l⊥)→�i+l⊥). Lemma 3 says j+k > 0 while
k + j⊕ > 0 is given, which implies S4 � �(�σ→⊥)→⊥ = ♦�σ.

In the sense that u= j, w= j + k > 0, x=k + j⊕ > 0, y=z= i + l, Theorem
4(2) states that any realization of �j(�j+k(�k+j⊕σ→ �i+l⊥)→ �i+l⊥) calls
for a directly self-referential constant specification. This finishes our proof since
(¬¬α)× = �j(�j+k(�k+j⊕σ→�i+l⊥)→�i+l⊥).

(5) A consequence of (4), since in (·) , j∧=j∨=1.11 ��

By Theorem 6(2), we cannot embed-and-realize the IPC-theorem

¬¬(¬¬p→p)

without direct self-referentiality. Since ¬ is defined on⊥ and→, this IPC-theorem
involves⊥. In Theorem 7, we will give a directly self-referential example in IPC→,
i.e., the purely implicational fragment of IPC.12

11 Actually, (·)◦ has parameter k=1, and hence it also follows from (4) that any real-
ization of (¬¬α)◦ calls for a directly self-referential constant specification, although
we have proved this in Theorem 5. Also note that (·)� has k=j∧=j∨=0, and hence
does not fit the requirements of (4).

12 The question whether there is a self-referential example in IPC→ was raised byMelvin
Fitting.
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Theorem 7 (Direct Self-referentiality of IPC→). Let γ be the IPC-theorem

((((p→q)→p)→p)→q)→q.

For any basic embedding (·)×, any realization of γ× calls for a directly self-
referential constant specification.

Proof. Let χ = ((p→q)→p)→p, then γ = ((((p→q)→p)→p)→q)→q can be
abbreviated as (χ→q)→q.

Take any basic (faithful) embedding (·)×. By Lemma 3, j+k > 0. By Fact 3,
((χ→q)→q)× = �j(�j+k(�kχ×→�h+lq)→�h+lq).

Note that χ× = (((p→ q)→ p)→ p)× = �j(�k((p→ q)→ p)×→�lp×). Let
σ = �k((p→q)→p)×→�lp×, we have χ× = �jσ, and hence

γ× = ((χ→q)→q)× = �j(�j+k(�j+kσ→�h+lq)→�h+lq). (12)

Since IPC � χ, S4 � χ× = �jσ, and hence S4 � σ.

Note that q is a propositional formula, and S4 � q. Employing Theorem 4(1)
in the sense that u= j, w= x= j+k > 0, z = h+ l, θ = �h+lq, and ζ = q, we
know that any realization of �j(�j+k(�j+kσ→�h+lq)→�h+lq) has a counter
CS ��-model. By (12), any realization of γ× has a counter CS ��-model.

Suppose we were able to realize γ× in LP without calling for a directly self-
referential constant specification, then we must have an LP(CS ��)-proof of that
realization, say κ. By Theorem 3, M � κ for any CS ��-model M, which contra-
dicts the existence of the counter CS ��-model given by Theorem 4(1). ��

Theorem 7 indicates that the BHK semantics of intuitionistic implication in-
volves direct self-referentiality.

3 Conclusions

In this work, we generalize Kuznets’ method from [3] and find a natural class of
S4-theorems that call for direct self-referentiality in realization. Then we consider
Gödel-style basic provability embeddings of IPC in S4 and find IPC-theorems that
call for direct self-referentiality under each of these embeddings. This suggests
that the BHK semantics of intuitionistic logic (even its purely implicational
fragment) is intrinsically self-referential. In particular, this could explain the
well-known difficulties with formalizing the BHK semantics prior to the Logic
of Proofs: any system of proof terms sufficient for realizing IPC is necessarily
self-referential and hence requires some kind of fixed-point construction for its
provability interpretation.
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