
A Probabilistic Theory of Designs

Based on Distributions

Riccardo Bresciani and Andrew Butterfield⋆

Foundations and Methods Group,
Trinity College Dublin,

Dublin, Ireland
{bresciar,butrfeld}@scss.tcd.ie

Abstract. We present a theory of designs based on functions from the
state space to real numbers, which we term distributions. This theory uses
predicates, in the style of UTP, based on homogeneous relations between
distributions, and is richer than the standard UTP theory of designs
as it allows us to reason about probabilistic programs; the healthiness
conditions H1–H4 of the standard theory are implicitly accounted for in
the distributional theory we present. In addition we propose a Galois
connection linkage between our distribution-based model of probabilistic
designs, and the standard UTP model of (non-probabilistic) designs.

1 Introduction

The Unifying Theories of Programming (UTP) aims at a semantic framework
where programs and specifications can be modelled as alphabetised relational
predicates, capturing the semantic models normally used for their formal de-
scription [HJ98, DS06, But10, Qin10]: the advantage of this common framework
is that of enabling formal reasoning on the integration of the different languages.

UTP relies on untyped predicate calculus: programs are expressed by means
of logical predicates (programs are predicates! [Heh84, Hoa85]), and different
theories can be given a UTP semantics, and here we focus on the theory of
designs: this theory allows us to reason about the total correctness of programs
from the perspective of what preconditions must be met in order to reach some
given postconditions.

A challenging research question is how to add probability to the picture,
and in particular how to integrate it in a framework where non-determinism is
present: we use a framework based on distributions over the state space, where
the predicates used involve a homogeneous relation between before- and after-
distributions. This allows us to define a probabilistic theory of designs, which can
handle programs where both probabilistic and non-deterministic choice co-exist.

This paper is structured as follows: we describe the background to UTP,
with particular focus on the standard theory of designs in that framework (�2);

⋆ The present work has emanated from research supported by Science Foundation
Ireland grant 08/RFP/CMS1277 and, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero – the Irish Software Engineering Research Centre.

B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.): UTP 2012, LNCS 7681, pp. 105–123, 2013.
� Springer-Verlag Berlin Heidelberg 2013

106 R. Bresciani and A. Butterfield

introduce a probabilistic framework based on distributions over the state space
(�3); present a probabilistic theory of designs in this new framework (�4) and
discuss its application to a well-known example (�5); and conclude (�6).

2 Background

2.1 UTP

UTP uses second-order predicates to represent programs: they are used to ex-
press relations among a set of observable variables which constitute their alpha-
bet.

Observable variables usually occur as both undecorated and decorated with
a dash ′: the former refer to states before the program starts (before-states),
whereas the latter refer to the final states reached after the program has run
(after-states).

For example, a program using two variables x and y might be characterised
by having the set {x,x′, y, y′} as an alphabet, and the meaning of the assignment
x ∶= y + 3 would be described by the predicate

x′ = y + 3 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational
calculus for reasoning about programs.

In addition to observations of the values of program variables, often we need to
introduce observations of other aspects of program execution via so-called auxil-
iary variables. For example the theory of reactive programs uses three auxiliary
variables — namely ok ,wait , tr , ref — to keep track of information concerning
the current program run, such as termination, reach of a stable state, refusals, . . .

A key notion in UTP is that of healthiness conditions : they are usually char-
acterised as monotonic idempotent predicate transformers whose fixpoints char-
acterise sensible (healthy) predicates. In other words they outlaw all arbitrary
predicate calculus statements that describe predicates with no sense — an ex-
ample is ¬ok ⇒ ok′, which describes a “program” that must terminate when not
started.

This notion is closely related to that of refinement, defined as the universal
closure1 of reverse implication:

S ⊑ P ≙ [P ⇒ S]

Healthy predicates form a lattice under the ordering induced by the refinement
relation.

The refinement calculus enables the derivation of an implementation P from
a specification S: such derivation can be proven correct if P is a valid refinement
of S.

1 Square brackets denote universal closure, i.e. [P] asserts that P is true for all values
of its free variables.

A Probabilistic Theory of Designs Based on Distributions 107

Most UTP theories developed so far deal only with non-deterministic choice,
nevertheless the introduction of a probabilistic choice operator is beneficial to
many application requiring a quantitative approach, for example to evaluate
reliability of programs.

Nevertheless some lines of research are moving along this direction. In [HS06]
the authors present an approach to unification of probabilistic choice with stan-
dard constructs. They provide an example of how the laws of pGCL could be
captured in UTP as predicates about program equivalence and refinement. How-
ever only an axiomatic semantics was presented, and the laws were justified via
a Galois connection to an expectation-based semantic model.

The approach presented in [CS09] is that of decomposing non-deterministic
choice into a combination of pure probabilistic choice and a unary operator
that accounted for its non-deterministic behaviour . It is worth underlining a
comment of theirs, on how still unsatisfactory theories are with respect to the
issue of having probabilistic and demonic choice to coexist.

The UTP model described in [He10], which is used to give a UTP-style se-
mantics to a probabilistic BPEL-like language, relates an initial state to a final
probability distribution over states, rather than relating before-variables to cor-
responding after-variables of the same type.

We have previously presented an encoding of the semantics of the probabilistic
guarded command language (pGCL) in the UTP framework [BB11, BB12]. This
encoding captures pGCL programs as predicate-transformers, on predicates over
probability before- and after-distributions.

In �3 we will present the underlying distributional framework, which we sub-
sequently use in order to obtain a probabilistic theory of designs.

2.2 The Standard Theory of Designs

Now that we have given a general overview of the UTP framework, we are going
to focus on the theory of designs and present its UTP semantics.

The theory of designs patches the relational theory, in the sense that predicates
from the relational theory fail to satisfy the following equality:

true;P = true
In fact according to the relational theory true is a left identity of the sequential
composition operator:

true;P ≡∃vm ● true{v
m/v ′} ∧ P{v

m/v}

≡∃vm ● true ∧ P{v
m/v}

≡∃vm ●P{v
m/v}

Which reduces to true if v ∈ fv(P), or to P otherwise.
This has disastrous consequences, as this enables us to show that a program

can recover from a never-ending loop:

true ∗ skip ≡ μX ●X ≡ ≡ true
. . . which is surprising, to say the least.

108 R. Bresciani and A. Butterfield

The theory of designs uses an additional auxiliary variable ok (along with its

dashed version ok ′) to record start (and termination) of a program.
A design (specification) is made of a precondition Pre that has to be met when

the program starts, and if so the program establishes Post upon termination,
which is guaranteed:

ok ∧Pre ⇒ ok ′ ∧Post
for which we use the following shorthand:

Pre ⊢ Post

The semantics of the assignment x ∶= y + 3 in this theory is the following:

true ⊢ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value
of y plus three, with y unchanged).

The behaviour of true with respect to sequential composition is the desirable
one, as now we have:

true;(Pre ⊢ Post) ≡true;ok ∧Pre ⇒ ok ′ ∧ Post
≡∃ok m,vm ● true{ok m/ok ′}{vm/v ′} ∧ (ok m ∧ Pre{vm/v} ⇒ ok ′ ∧ Post)
≡∃ok m,vm ● true ∧ (ok m ∧ Pre{vm/v} ⇒ ok ′ ∧ Post)
≡∃ok m,vm ● ok m ∧ Pre{vm/v} ⇒ ok ′ ∧ Post
≡true

and therefore true is a left zero for sequential composition.
Designs form a lattice, whose bottom and top elements are respectively:

abort ≙ false ⊢ false ≡ false ⊢ true

and
miracle ≙ true ⊢ false ≡ ¬ok

It should be noted that miracle is a (infeasible) program that cannot be started.
Valid designs are predicates R which comply with four healthiness condi-

tions [HJ98]. The first one (unpredictability, H1) excludes from observation all
programs that have not started, and therefore restricts valid relations to those
such that:

R = (ok ⇒ R)

All H1-healthy predicates satisfy the left zero and left unit laws:

true;R = true and skip;R = R

The second one (possible termination, H2) states that a valid relation cannot
require nontermination:

R{false/ok ′} ⇒ R{true/ok ′}

A Probabilistic Theory of Designs Based on Distributions 109

The third one (dischargeable assumptions, H3) states that preconditions cannot
use dashed variables. All H3-healthy predicates satisfy the right unit law:

R;skip = R

The fourth one (feasibility or excluded miracle, H4) requires the existence of final
values for the dashed variables that satisfy the relation:

∃ok ′,v ′ ●R = true

H4 excludes miracle from the valid designs, and this implies that all H4-healthy
predicates satisfy the right zero law:

R;true = true

This condition cannot be expressed as an idempotent healthiness transformer,
and does not preserve the predicate lattice structure. It serves solely to identify
and/or eliminate predicates that characterise infeasible behaviour.

Through our distributional framework (�4) we obtain a richer theory where
corresponding healthiness conditions hold (�4.1), even without the introduction

of the auxiliary variables ok ,ok ′. Moreover the use of distributions enables us
to evaluate the probability both of termination and of meeting a set of arbitrary
postconditions as a function of the initial distribution (which determines the
probability of meeting any required precondition).

3 The Distributional Framework

In [BB11] we have presented a UTP framework to deal with demonic probabilistic
programs.

This framework relies on the concept of distributions over the state space: a
generic distribution is a real-valued function χ ∶ S → R that assigns a weight
xi (a real number) to each state σi in the state space S . The mathematics
we employ is valid provided the probabilities constitute what is known as a
measure space [Hal50]. If the state is not finite, then the limitation we face is
that property predicates (pre- and post-expectations, for example) can only talk
about probabilities associated with sets of observations, rather than single ones
— in effect χ has to be interpreted as a probability density function.

A state σ bundles all the information regarding program variables into a single
observation, in a style shared with many presentations of Circus-like languages:
program variable values are modelled with a single state observation σ ∶ V → W ,
which is treated as a finite map from variables (V) to values (W). This choice
simplifies the treatment of alphabets to a considerable degree.

The weight of a distribution is defined as:

∥χ∥ ≙ ∑
σ∈domχ

χ(σ)

110 R. Bresciani and A. Butterfield

This operation can be lifted to a set X of distributions:

∥X ∥ ≙ {∥χ∥ ∣ χ ∈ X }

Among all generic distributions, the following two sub-classes play important
roles in our framework:

– a weighting distribution π has the property that for every state σ we have
0 ≤ π(σ) ≤ 1 — we define two particular weighting distributions, ε and ι, as
the ones mapping every state to 0 and 1 respectively. There is no limit for
the distribution weight;

– a probability distribution δ is a weighting distribution with the additional
property that ∥δ∥ ≤ 1.

We will use the term sub-distribution to refer to a probability distribution where
∥δ∥ < 1 and the term full distribution to refer to a probability distribution where
∥δ∥ = 1.

Generally speaking, it is possible to operate on distributions by lifting point-
wise operators such as addition, multiplication and multiplication by a scalar.
Analogously we can lift pointwise all traditional relations and functions on real
numbers2.

In the case of pointwise multiplication, it is interesting to see it as a way of
“re-weighting” a distribution. We have a particular interest in the case when one
of the operands is a weighting distribution π, as we will use this operation to
give semantics to choice constructs. We opt for a postfix notation to write this
operation, as this is an effective way of marking when pointwise multiplication
happens in the operational flow: for example if we multiply the probability distri-
bution δ by the weighting distribution π, we write this as δ�π�. We use notation
ε and ι to denote the everywhere zero and unit distributions, respectively:

ε(σ) = 0 ∧ ι(σ) = 1, for all σ

Given a condition (predicate on state) c, we can define the weighting distribution
that maps every state where c evaluates to true to 1, and every other state to
0: as the value of each state can be seen as the boolean value of c in that state
multiplied by 1, we overload the above notation and note this distribution as
ι�c�. In general whenever we have the multiplication of a distribution by ι�c�,
we can use the postfix operator �c� for short, instead of using �ι�c��. It is worth
pointing out that if we multiply a probability distribution δ by ι�c�, we obtain
a distribution whose weight ∥δ�c�∥ is exactly the probability of being in a state
satisfying c.

3.1 Assignment

A challenge we have faced has been describing how assignment, which is very
much oriented towards individual variables, is given a semantics in terms of a

2 Distributions form a vector space, which we have explored elsewhere. We omit dis-
cussion of this aspect of our theory for clarity and brevity.

A Probabilistic Theory of Designs Based on Distributions 111

distribution that involves complete entanglement of those variables. In effect
an assignment statement x ∶= e involves a partial entanglement of variable x
with the variables mentioned in e. In general as we build up larger programs
using single assignment as the basic component we observe an increasing degree
of entanglement, which can often be captured as an appropriate simultaneous
assignment, so we shall work at this level here.

Given a simultaneous assignment v ∶= e, where underlining indicates that we
have lists of variables and expressions of the same length, we denote its effect on
an initial probability distribution δ by δ{∣e/v ∣}. The postfix operator {∣e/v ∣} reflects
the modifications introduced by the assignment — the intuition behind this,
roughly speaking, is that all states σ where the expression e evaluates to the
same value w = evalσ(e) are replaced by a single state σ′ = (v ↦ w) that maps
to a probability that is the sum of the probabilities of the states it replaces.

(δ{∣e/v ∣})(σ′) ≙ (∑ δ(σ) ∣ σ′ = σ � {v ↦ evalσ(e))

Here we treat the state as a map, where � denotes map override; this operator
essentially implements the concept of “push-forward” used in measure theory,
and is therefore a linear operator. An example is given in Figure 1.

Assignment preserves the overall weight of a probability distribution if e can
be evaluated in every state, and if not the assignment returns a sub-distribution,
where the “missing” weight accounts for the assignment failing on some states
(this failure prevents a program from proceeding and causes non-termination).

σ00

σ01

σ10

σ11

1/4

1/4

1/4

1/4

{∣y/x∣}

δ′ = δ{∣y/x∣}δ

σ00

σ01

σ10

σ11

1/2

0

0

1/2

Fig. 1. The assignment x ∶= y from an initial uniform distribution on the state space
S = {0,1} × {0,1}

112 R. Bresciani and A. Butterfield

abort ≙ ∥δ′∥ ≤ ∥δ∥

miracle ≙ (δ = ε) ∧ (δ′ = ε)
skip ≙ δ′ = δ

v ∶= e ≙ δ′ = δ{∣e/v ∣}
A;B ≙ ∃δm ●A(δ, δm) ∧B(δm, δ′)

choice(A,B,X) ≙ ∃π, δA, δB ● π ∈ X ∧A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB
c ∗A ≙ μX ● choice((A;X), skip,{ι�c�})

Fig. 2. UTP semantics for different programming constructs

3.2 Programming Constructs

The semantic definitions of various programming constructs are based on a ho-
mogeneous relation between distributions and are listed in Figure 2; we will now
proceed to discuss each one.

The failing program abort is represented by the predicate ∥δ′∥ ≤ ∥δ∥, which
captures the fact that it is maximally unpredictable, given that it cannot in-
crease distribution weight. Such an increase would describe a program whose
probability of termination was higher than that of it starting, and is infeasible.

The miraculous program miracle is defined as (δ = ε) ∧ (δ′ = ε): this is a
difference in comparison with the standard UTP theory, where it is simply false.
This definition coincides with the standard one for most pairs of before- and
after-distributions, with the exception of (ε, ε): this makes sure that miracle is
a unit for nondeterministic choice.

Program skip makes no changes and immediately terminates.
Assignment remaps the distribution as has already been discussed in �3.1.
Sequential composition is characterised by the existence of a “mid-point”

distribution that is the outcome of the first program, and is then fed into the
second. It should be noted at this juncture that we are quantifying over function
quantities, such as δ or π — this makes our logic at least second-order, even if
the state spaces are finite (the range [0,1] is not).

The choice operator is probably the strangest-looking element of the list: it
takes a weighting distribution π, uses it with its complementary distribution
π̄ = ι − π) to weigh the distributions resulting from the left- and right-hand
side respectively, and existentially quantifies it over the set of distributions X ⊆
Dw. We have termed this operator as the generic choice as it can emulate the
behaviour of all standard choices (and more):

– for X = {ι�c�} we have conditional choice:

A◁ c▷B = choice(A,B,{ι�c�})
= ∃δA, δB ●A(δ�c�, δA) ∧B(δ�¬c�, δB) ∧ δ′ = δA + δB

– for X = {p ⋅ ι} we have probabilistic choice:

A p⊕B = choice(A,B,{p ⋅ ι})

= ∃δA, δB ●A(p ⋅ δ, δA) ∧B((1 − p) ⋅ δ, δB) ∧ δ′ = δA + δB

A Probabilistic Theory of Designs Based on Distributions 113

– for X = Dw we have non-deterministic choice:

A ⊓B = choice(A,B,Dw)
= ∃π, δA, δB ●A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB

The usual notations for conditional, probabilistic and non-deterministic choice
will be used as syntactic sugar in the remainder of this document. Program
abort is a zero for non-deterministic choice, as entering ∥δ′∥ ≤ ∥δ∥ for B in the
definition, results in

∃π, δA, δB ●A(δ�π�, δA) ∧ ∥δB∥ ≤ ∥δ�π̄�∥ ∧ δ′ = δA + δB

which, after the one-point rule with δB = δ′ − δA reduces to

∃π, δA ●A(δ�π�, δA) ∧ ∥δ
′ = δA∥ ≤ ∥δ�π̄�∥

We can take π = ε as a witness, which forces δA = ε (by healthiness condition
Dist1, see Section 3.3) and we obtain

(A(ε, ε) ∧ ∥δ′ − ε∥ ≤ ∥δ∥) ∨ ∃π, δA ● . . .

A consequence of Dist1 is that A(ε, ε) is always true for healthy A so this reduces
to ∥δ′∥ ≤ ∥δ∥ in a disjunction with a predicate that it subsumes, and hence
equivalent to abort .

As commonly seen in UTP, disjunction of two programs is a kind of choice
(usually non-deterministic, in other theories), which here can be defined using
generic choice:

A ∨B = choice(A,B,{ε, ι}).

Disjunction is the usual semantics for non-deterministic choice, but here we see
that non-deterministic choice has a richer behaviour as it exhibits more variabil-
ity. Nevertheless with the appropriate definition of refinement we can introduce
a concept of equivalence (i.e. two programs mutually refine each other), that re-
stores the equivalence between disjunction and non-deterministic choice. [BB11]

Using the customary notation for conditional choice enlightens the definition
of while-loops, which can be rewritten in a more familiar fashion as:

c ∗A ≙ μX ● (A;X)◁ c▷ skip

They are characterized as fixpoints of the appropriate functional, with respect
to the ordering defined by the refinement relation, details of which can be found
in [MM04, BB11] and are beyond the scope of this paper.

These are the most significant elements and constructs that characterise our
framework: this has been a presentation from a fairly high level, and it should
have provided the reader with a working knowledge of the framework; a formal
and rigorous definition of the elements presented so far is beyond the scope of
this paper and can be found in [BB11], along with some soundness proofs.

114 R. Bresciani and A. Butterfield

3.3 Healthiness Conditions

Before moving further on, we are going to list quickly the healthiness conditions
that characterise this framework.

The first one (feasibility, Dist1) assures that for any program P (δ, δ′) the
probability of termination cannot be greater than that of having started:

∥δ′∥ ≤ ∥δ∥

Another healthiness condition (monotonicity, Dist2), states that, for any deter-
ministic program P , increasing δ implies that the resulting δ′ increases as well:

P (δ1, δ′1) ∧ P (δ2, δ′2) ∧ δ2 > δ1 ⇒ δ′2 ≥ δ′1

A third healthiness conditions is that multiplication by a (not too large and
non-negative3) constant distributes through commands (scaling, Dist3):

∀a ∈ R+ ∧ ∥a ⋅ δ∥ ≤ 1 ●P (δ, δ′) ⇔ P (a ⋅ δ, a ⋅ δ′)

Finally the purely random non-deterministic model adopted in the distributional
framework yields a fourth healthiness condition Dist4 (convexity):

(P1 ⊓P2)(δ, δ
′) ⇒ δ′ ≥min(P1(δ) ∪ P2(δ))

Here P1(δ) denotes the set of all δ′ that satisfy P1(δ, δ
′).

This poses restrictions on the space of possible program images, which is
strictly a subset of ℘D : this is analogous to the set HS from [MM04].

4 A Probabilistic Theory of Designs

A distinguishing characteristic of designs is the use of the auxiliary variables

ok and ok ′. They are not sufficient in a probabilistic setting, as we need to be
able to express quantitative information about the program also in terms of it
having started or finished. We argue that this information is embedded in the
distributions used to express programming constructs.

In fact the variable δ records implicitly if the program has started, as for each
state σ it gives a precise probability that the program is in that initial state.

If δ is a full distribution (i.e. ∥δ∥ = 1), then the program has started with
probability 1: in some sense we can translate the statement ok = true with
the statement ∥δ∥ = 1. Conversely a program for which δ = ε has not started.
Obviously there are all situations in between, where the fact of δ being a sub-
distribution accounts for the program having started with probability ∥δ∥ < 1.

Similarly if δ′ is a full distribution, then the program terminates with probabil-

ity 1: coherently we can translate the statement ok ′ = true with the statement
∥δ′∥ = 1. In general the weight of δ′ is the probability of termination: if the
program reaches an after-distribution whose weight is strictly less than 1, then
termination is not guaranteed (and in particular if δ′ = ε it is certain that it will
not terminate).

3 Mathematically the relation holds also if this is not met, but in that case a ⋅ δ is not
a probability distribution.

A Probabilistic Theory of Designs Based on Distributions 115

4.1 From Standard Designs to Probabilistic Designs

Given a standard design Pre ⊢ Post we can easily derive the corresponding
probabilistic design by using the observation above:

Pre ⊢ Post ≡ok ∧Pre ⇒ ok ′ ∧ Post
≡∥δ∥ = 1 ∧Pre ⇒ ∥δ′∥ = 1 ∧Post
≡∥δ�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1

This expression tells us that we have a valid design if whenever the before-
distribution δ is a full distribution which is null everywhere Pre is not satisfied
(and therefore δ = δ�Pre�), then the resulting after-distribution δ′ is a full distri-
bution which is null everywhere Post is not satisfied (and therefore δ′ = δ′�Post �).

We can easily redefine assignment, in the same style as it has been redefined
to make it a valid construct according to the theory of designs:

v ∶= e ≙true ⊢ δ′ = δ{∣e/v ∣}

≡ok ∧ true ⇒ ok ′ ∧ δ{∣e/v ∣}

≡∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ{∣e/v ∣}

This states that an assignment is a valid design only if the expression e is defined
everywhere in the state space: in fact undefinedness of e causes δ{∣e/v ∣} to be a
sub-distribution and therefore v ∶= e reduces to false.

We can redefine skip in a similar way:

skip ≙ true ⊢ δ′ = δ

≡ ok ∧ true ⇒ ok ′ ∧ δ

≡ ∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ

≡ ∥δ∥ = 1⇒ δ′ = δ

This new version of skip states that the after-distribution is the same as the
before-distribution (and therefore it does not alter the weight, so this can be left
implicit), but as any other design it reduces to true if δ is not a full distribution.

The bottom of the lattice is abort , which is again true as in the standard
theory:

abort ≙ false ⊢ false

≡ ok ∧ false ⇒ ok ′ ∧ false
≡ false ⇒ false
≡ true
≡ false ⇒ true

≡ ok ∧ false ⇒ ok ′ ∧ true
≡ false ⊢ true

116 R. Bresciani and A. Butterfield

The standard definition of the construct chaos is

chaos ≙ true ⊢ true
≡ ok ∧ true ⇒ ok ′ ∧ true
≡ ok ⇒ ok ′

≡ ∥δ∥ = 1⇒ ∥δ′∥ = 1

This is a program that guarantees termination, but in an unspecified state. It is
equivalent to:

chaos ≡ true ⊢ abortR ,

where the subscript R indicates that we are talking of the relational version of
abort , from Figure 2.

The top of the lattice is miracle:

miracle ≙ true ⊢ false

≡ ok ∧ true ⇒ ok ′ ∧ false
≡ ok ⇒ false
≡ ¬ok
≡ ¬(∥δ∥ = 1)

≡ ∥δ∥ < 1

This is equivalent to

miracle ≡ true ⊢ miracleR .

Healthiness Conditions These new definitions relying on the distributional
framework satisfy the healthiness conditions H1–H4 as well (�2.2).

We can in fact prove that the following laws hold:

– left unit law:

skip;Pre ⊢ Post ≡ (∥δ∥ = 1⇒ δ′ = δ);(∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1)

≡ ∃δm ● (∥δ∥ = 1⇒ δm = δ) ∧ (∥δm
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1)
≡ ∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1
≡ Pre ⊢ Post

– right unit law:

Pre ⊢ Post;skip ≡ (∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1);(∥δ∥ = 1⇒ δ′ = δ)

≡ ∃δm ● (∥δ
Pre�∥ = 1⇒ ∥δm
Post�∥ = 1) ∧ (∥δm∥ = 1⇒ δ′ = δm)

≡ ∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1
≡ Pre ⊢ Post

A Probabilistic Theory of Designs Based on Distributions 117

– left zero law:

true;Pre ⊢ Post ≡ true;(∥δ�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1)

≡ ∃δm ● true ∧ (∥δm�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1)

≡ ∃δm ● ∥δm�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1

≡ true

– right zero law:

Pre ⊢ Post;true ≡ (∥δ�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1);true
≡ ∃δm ● (∥δ�Pre�∥ = 1⇒ ∥δm�Post �∥ = 1) ∧ true
≡ ∃δm ● ∥δ�Pre�∥ = 1⇒ ∥δm�Post �∥ = 1

≡ true

4.2 Recasting Total Correctness

The reason that led to the standard theory of designs was that programs fail to
satisfy the left zero law in the relational theory.

In the distributional framework programming constructs do satisfy this law,
as for any programming construct P other than miracle it is never the case that
δ ∉ fv(P).

For this reason we have:

true;P (δ, δ′) ≡ ∃δm ● true ∧ P (δm, δ′)

≡ ∃δm ●P (δm, δ′)

≡ true

Similarly the right zero law is satisfied as well, along with the left and right unit
laws: healthiness conditions equivalent to H1–H4 hold here as well.

Following this observation it appears that restricting the reasoning to pro-
grams with guaranteed termination is somehow limiting, as guaranteed termina-
tion is not an actual real-world feature of programs: programsmust be reasonably
reliable, but failure is always a possibility.

The reason for this may be inherent to the fact that programs are run on
hardware which is susceptible of failure, as well as being imputable to the way a
program is designed (for example the implementation of a probabilistic algorithm
where termination is probabilistic as well).

We can fully exploit the potential of the distributional framework towards
modelling these situations by removing the constraints on the weights of the
before- and after-distributions — so we use the programming constructs in Fig-
ure 2 exactly with the semantics presented there.

The role of preconditions and postconditions is that of restricting the range
of acceptable before- and after-distributions (and therefore act as restrictions
to be applied to δ and δ′ respectively) — this allows us to express desirable
characteristics of a program in great detail, for example:

118 R. Bresciani and A. Butterfield

– P ∧ ∥δ′∥ = 1 requires P to guarantee termination;
– P ∧ ∥δ′∥ > 0.95 requires P to terminate with at least 95% probability;
– P ∧ ∥δ′�Post �∥ > 0.95 requires P to terminate with at least 95% probability

in a state satisfying Post ;
– Pre ⇒ P ∧ ∥δ′�Post �∥ > 0.95 requires P to terminate with at least 95%

probability in a state satisfying Post whenever it starts in a state satisfying
Pre;

– ∥δ�Pre�∥ > 0.98⇒ P ∧∥δ′�Post �∥ > 0.95 requires P to terminate with at least
95% probability in a state satisfying Post whenever the probability of Pre
being satisfied at the beginning is at least 0.98;

– . . .

All healthiness conditions deriving from the distributional framework (Dist1–
Dist4) obviously hold here as well; with a small modification we can recast the
notion of total correctness by restricting Dist1 to a variant Dist1-TC (which implies
Dist1), stating that:

∥δ∥ = ∥δ′∥

This requires a program to terminate with the same probability p with which it
has started:

∥δ∥ = p ∧Pre ⇒ ∥δ′∥ = p ∧Post

4.3 Link with the Standard Model

Standard designs have observations ok ,ok ′, σ, σ′.

ok ,ok ′ ∶ B
σ,σ′ ∶ S

A standard design is a predicate PS(σ,σ
′,ok ,ok ′) that states that a program

started (if ok is true) in the state σ ends (if ok ′ is true) in the state σ′.
Probabilistic designs have observations δ, δ′

δ, δ′ ∶ S → [0,1]

A probabilistic design is a predicate PD(δ, δ
′) stating that a before-distribution

δ will be transformed into the after-distribution δ′.
Informally we require the two approaches to yield the same results when we

are dealing with point distributions, i.e. when the probability of being in a given
state is 1.

In order to formalise the link between these two worlds, we define the linking
predicate L as:

L((δ, δ′), (σ,σ′,ok ,ok ′)) ≙ ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1)

∧δ = ησ ∧ δ′ = ησ′

Here the notation ησ denotes the point distribution returning 1 for state σ, and
0 elsewhere.

A Probabilistic Theory of Designs Based on Distributions 119

This linking predicate allows us to introduce the following Galois connections ;
first we define the weakest probabilistic design corresponding to a standard de-
sign PS :

∀σ,σ′,ok ,ok ′ ●L((δ, δ′), (σ,σ′,ok ,ok ′)) ⇒ PS(σ,σ
′,ok ,ok ′)

Analogously, the strongest standard design corresponding to a probabilistic de-
sign PD is:

∃δ, δ′ ●L((δ, δ′), (σ,σ′,ok ,ok ′)) ∧PD(δ, δ
′)

It is easy to see that all programming constructs from the probabilistic theory
that have homologue ones in the standard theory are linked to them, with the
restriction of operating only on point distributions, otherwise they reduce to
abort .

Weakening the Link. This linking predicate is a bit too strong, as it maps
many interesting program constructs to the aborting program: an example is
that of generic choice, which has no homologue in the standard theory. Ideally
a better option would be to relax some constraints and to map generic choice to
non-deterministic choice rather than to abort .

In other words we are aiming at a link that loses all probabilistic information
about the possible after-states and flattens it to a mere list of them.

This is not straightforward, as the linking predicate L in some sense verifies

consistency of δ with respect to σ,ok and of δ′ with respect to σ′,ok ′: when the
support4 of the distribution has more than one element, the relation between δ
and a state from its domain is too weak to be useful.

The situation is similar to that of a 3D-space, where dots are characterised
by their x, y, z coordinates: a transformation creates a space with coordinates
x′, y′, z′, whose relation with the undashed coordinates cannot in general be cap-
tured by a relation that mentions only one undashed and one dashed coordinate.

So far we have seen standard designs as relations:

PS ∶ S ×B→ S ×B

but in order to build a more useful link we turn to this other interpretation:

P℘S ∶ S × B→ ℘S ×B

which maps a state to what we may term its program image P (σ) (as it is a
similar concept to that of program image introduced in �3), which contains all
of the possible after-states reachable from a given before-state:

P (σ) = {σ′ ∣ PS(σ,σ
′)}

All deterministic standard constructs map a state to a singleton set, whereas
non-deterministic choice maps it to larger sets.

4 We remind the reader that the support of a function is the set of points where the
function is not zero-valued: supp(δ) ≙ dom(δ) ∖ ker(δ).

120 R. Bresciani and A. Butterfield

The interpretation of the predicate P℘S(σ,α′,ok ,ok ′) is therefore that P has

started (if ok is true) in the state σ and has ended (if ok ′ is true) in a state
σ′ ∈ α′:

P℘S(σ,α′,ok ,ok ′) ≡ ⋁
σ′∈α′

PS(σ,σ
′,ok ,ok ′)

With this in mind we can define the following linking predicate:

L
℘((δ, δ

′), (σ,α′,ok ,ok ′)) ≙ ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1)

∧δ = ησ ∧ supp(δ′) = α′

We can state the variants of the Galois connections above as:

∀σ,α′,ok ,ok ′●L℘((δ, δ′), (σ,α′,ok ,ok ′)) ⇒ P℘S(σ,α′,ok ,ok ′)

∃δ, δ′●L℘((δ, δ
′), (σ,α′,ok ,ok ′)) ∧ PD(δ, δ

′)

5 An Example: Interaction of Probabilistic and
Non-deterministic Choice

This brief classical example is meant to show the interaction and the difference
between probabilistic and non-deterministic choice: we will use this to show the
effect of projecting the probabilistic design on the space of standard designs.

Let us take these two simple programs:

A ≙ x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2

⊕ y ∶= 1

B ≙ x ∶= 0 1
2

⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

In Figure 3 we have worked out parametric expression for the final distribution
for each program — they are parametric in the weighting distribution π which
accounts for the non-deterministic choice performed in both programs:

δ′A(π) ≙ 1/2 ⋅ (δ�π�{∣0/x∣}{∣0/y∣} + δ�π̄�{∣1/x∣}{∣0/y∣} + δ�π�{∣0/x∣}{∣1/y∣} + δ�π̄�{∣1/x∣}{∣1/y∣})

δ′B(π) ≙ 1/2 ⋅ (δ{∣0/x∣}�π�{∣0/y∣} + δ{∣1/x∣}�π�{∣0/y∣} + δ{∣0/x∣}�π̄�{∣1/y∣} + δ{∣1/x∣}�π̄�{∣1/y∣})

The two after-distributions are very similar, but with one crucial difference: the
position of �π�, which clearly marks when the non-deterministic choice was made;
this is reflected in the different after-distributions reached by each program:

– ∀π ● ∥δ′A(π)�x = y�∥ = 1/2, i.e. regardless of the non-deterministic choice
and of the initial distribution program A terminates in a state satisfying
the condition x = y with probability 1/2, whereas in program B we cannot
remove the dependence on π so if we turn to a worst-case analysis (in the
non-deterministic choice the left-hand side y ∶= 0 is picked whenever x = 1,
i.e. π = ι�x = 1�) we have that ∥δ′B(ι�x = 1�)�x = y�∥ = 0 and therefore the
minimum guaranteed probability that x = y is 0;

A Probabilistic Theory of Designs Based on Distributions 121

A ≙ x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2
⊕ y ∶= 1

≡ ∃π ● δ′ = δ�π�{∣0/x∣} + δ�π̄�{∣1/x∣} ; δ′ = 1/2 ⋅ δ{∣0/y∣} + 1/2 ⋅ δ{∣1/y∣}
≡ ∃π, δm ● δm = δ�π�{∣0/x∣} + δ�π̄�{∣1/x∣} ∧ δ′ = 1/2 ⋅ δm{∣0/y∣} + 1/2 ⋅ δm{∣1/y∣}

≡ ∃π ● δ′ = 1/2 ⋅ (δ�π�{∣0/x∣} + δ�π̄�{∣1/x∣}){∣0/y∣}+

+1/2 ⋅ (δ�π�{∣0/x∣} + δ�π�{∣1/x∣}){∣1/y∣}
≡ ∃π ● δ′ = δ′A(π) ∧ δ′A(π) ≙ 1/2 ⋅ δ�π�{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δ�π̄�{∣1/x∣}{∣0/y∣}+

+1/2 ⋅ δ�π�{∣0/x∣}{∣1/y∣} + 1/2 ⋅ δ�π̄�{∣1/x∣}{∣1/y∣}

B ≙ x ∶= 0 1
2
⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

≡ δ′ = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ; ∃π ● δ′ = δ�π�{∣0/y∣} + δ�π̄�{∣1/y∣}
≡ ∃π, δm ● δm = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ∧ δ′ = δm�π�{∣0/y∣} + δm�π̄�{∣1/y∣}

≡ ∃π ● δ′ = (1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})�π�{∣0/y∣}+

+(1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})�π̄�{∣1/y∣}
≡ ∃π ● δ′ = δ′B(π) ∧ δ′B(π) ≙ 1/2 ⋅ δ{∣0/x∣}�π�{∣0/y∣} + 1/2 ⋅ δ{∣1/x∣}�π�{∣0/y∣}+

+1/2 ⋅ δ{∣0/x∣}�π̄�{∣1/y∣} + 1/2 ⋅ δ{∣1/x∣}�π̄�{∣1/y∣}

Fig. 3. Programs A and B

– viceversa for program B we can show that ∀π●∥δ′B(π)�x = 1�∥ = 1/2 similarly
as above, and so the probability that x = 1 after program B is 1/2, whereas
if we take program A we can see that if π = ι (i.e. in the non-deterministic
choice the left-hand side x ∶= 0 is always picked) than we have that ∥δ′A(ι)�x =
1�∥ = 0, so the minimum guaranteed probability that x = 1 is 0.

We are now going to derive the strongest standard design corresponding to A
and B using the linking predicate L℘:

∃δ, δ′ ●L℘((δ, δ
′), (σ,α′,ok ,ok ′)) ∧A(δ, δ′)

≡ Definition of L℘

∃δ, δ′ ● (ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1) ∧ δ = ησ ∧ supp(δ′) = α′) ∧A(δ, δ′)

≡ A and B return after-distributions with the same support

∃δ, δ′ ● (ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1) ∧ δ = ησ ∧ supp(δ′) = α′) ∧B(δ, δ′)

The last line of this derivation clearly shows the effect of the link, which flattens
out all probabilistic information and as a result the programs A and B are
mapped to the same program in the world of standard designs: such a program
records that a choice5 was made, but there is no discrimination among choices
of different kind. Moreover what matters is the set of possible after-states and
this is also not affected by altering the order in which the choices are made.

5 Conditional choice is excluded, as it is not really a choice but rather a different
evolution of the program which was determined by the current program state.

122 R. Bresciani and A. Butterfield

6 Conclusion

We have presented a probabilistic theory of designs, which relies on a UTP-style
framework based on distributions over the state space.

We have shown that we are able to embed the standard UTP theory by
requiring guaranteed termination from all program constructs, and treating them
as the aborting program otherwise.

We have later relaxed this constraint to be able to reason about probabilistic
programs: the advantages of this richer approach is that it allows us to express in
fine detail the desired behaviour of a program, including its probabilistic aspects.

References

[BB11] Bresciani, R., Butterfield, A.: Towards a UTP-style framework to deal
with probabilities. Technical Report TCD-CS-2011-09, FMG, Trinity College
Dublin, Ireland (August 2011)

[BB12] Bresciani, R., Butterfield, A.: A UTP Semantics of pGCL as a Homogeneous
Relation. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012.
LNCS, vol. 7321, pp. 191–205. Springer, Heidelberg (2012)

[But10] Butterfield, A. (ed.): UTP 2008. LNCS, vol. 5713. Springer, Heidelberg (2010)
[CS09] Chen, Y., Sanders, J.W.: Unifying Probability with Nondeterminism. In:

Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 467–482.
Springer, Heidelberg (2009)

[DS06] Dunne, S., Stoddart, B. (eds.): UTP 2006. LNCS, vol. 4010. Springer, Heidel-
berg (2006)

[Hal50] Halmos, P.R.: Measure Theory. University Series in Higher Mathematics. D.
Van Nostrand Company, Inc., Princeton (1950)

[He10] He, J.: A probabilistic bpel-like language. In: Qin [Qin10], pp. 74–100

[Heh84] Hehner, E.C.R.: Predicative programming part i& ii. Commun. ACM 27(2),
134–151 (1984)

[HJ98] Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall In-
ternational Series in Computer Science (1998)

[Hoa85] Hoare, C.A.R.: Programs are predicates. In: Proceedings of a Discussion Meet-
ing of the Royal Society of London on Mathematical Logic and Programming
Languages, pp. 141–155. Prentice-Hall, Upper Saddle River (1985)

[HS06] He, J., Sanders, J.W.: Unifying probability. In: Dunne and Stoddart [ds06],
pp. 173–199

[MM04] McIver, A., Morgan, C.: Abstraction, Refinement and Proof For Probabilistic
Systems. Monographs in Computer Science. Springer (2004)

[Qin10] Qin, S. (ed.): UTP 2010. LNCS, vol. 6445. Springer, Heidelberg (2010)

A Keisli Composition

Assume a semantic model of the form S → FS where F is a type constructor
(functor). The question that naturally arises is how to compose such functions,
i.e., given p ∶ S → FT and q ∶ T → FU , how do we compose these to get (p; q) ∶

A Probabilistic Theory of Designs Based on Distributions 123

S → FU? The standard solution for this is Kleisli lifting and composition which
involves two functions with the following signatures:

ηS ∶ S → FS ∗ ∶ (S → FT) → (FS → FT)

that obey the following laws:

η∗S = idFS p∗ ○ ηS = p (q∗ ○ p)∗ = q∗ ○ p∗

The intuition behind these is best understood in a diagram:

FS FT FU

S T U

ηS
p

ηT
q

p∗ q∗

ηU

The Kleisli composition of p and q is given by q∗ ○ p, where ○ denotes regular
function composition.

In this paper FS = C(S → [0,1]), and we do not use the full lifting (which
results in C(S → [0,1]) → C(S → [0,1])), but instead lift partway to get ((S →
[0,1]) → C(S → [0,1])). This “partway” lifting is one of the stages in giving an
explicit definition of the full lifting.

	A Probabilistic Theory of Designs Based on Distributions
	Introduction
	Background
	UTP
	The Standard Theory of Designs

	The Distributional Framework
	Assignment
	Programming Constructs
	Healthiness Conditions

	A Probabilistic Theory of Designs
	From Standard Designs to Probabilistic Designs
	Recasting Total Correctness
	Link with the Standard Model

	An Example: Interaction of Probabilistic and Non-deterministic Choice
	Conclusion
	References

