
Circus Time with Reactive Designs

Kun Wei, Jim Woodcock, and Ana Cavalcanti

Department of Computer Science, University of York, York, YO10 5GH, UK
{kun.wei,jim.woodcock,ana.cavalcanti}@york.ac.uk

Abstract. The UTP theories for CSP and Circus can be built by the
combination of the theories of designs and reactive processes. Defining
the CSP operators using reactive design provides a more concise, read-
able and uniform UTP semantics, and, more importantly, exposes the
pre-postcondition semantics of the operators. For Circus Time, a few op-
erators have been defined as reactive designs, but some important opera-
tors are still be considered. In this paper, we develop the reactive design
semantics of sequential composition, hiding and recursion within Circus
Time, and show how to prove some subtle laws using the new semantics.

Keywords: Circus Time, UTP, reactive designs.

1 Introduction

Circus [3,17,18] is a comprehensive combination of Z [15], CSP [5,10] and Mor-
gan’s refinement calculus [8], so that it can define both data and behavioural as-
pects of a system. Over the years, Circus has developed into a family of languages
for specification, programming and verification. Circus Time is an extension of a
subset of Circus with some time operators added to the notion of actions in Cir-
cus. The semantics of Circus Time is defined using the UTP by introducing time
observation variables. The Circus Time UTP theory is a discrete time model,
and time operators are very similar to that in Timed CSP [11]. Compared to
the original Circus Time [12] and Timed CSP, we have recently developed a new
version of Circus Time [13] that provides more time operators such as deadlines.
Using various languages in the Circus family, we have proposed an approach in [1]
for stepwise development of safety-critical Java programs [7]. In the new Circus
Time theory, besides some new time operators, each action is expressed as a
reactive design for a more concise, readable and uniform UTP semantics. In the
UTP, Hoare and He provide many sub-theories by adopting different healthiness
conditions. For example, the theory of designs can describe some sequential pro-
gramming languages, and the theory of reactive processes allows communications
between processes. The theory of CSP is traditionally built upon the theory of
reactive processes by imposing extra healthiness conditions. However, there is no
uniform pattern of the semantics for CSP primitive processes and various opera-
tors. Hoare and He have, however, proposed an approach to generate the theory
of CSP by embedding the theory of designs in the theory of reactive processes.
This means that each process in CSP can be expressed as a reactive design. The
importance of this semantics is that it exposes the pre-postcondition semantics.

B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.): UTP 2012, LNCS 7681, pp. 68–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Circus Time with Reactive Designs 69

The work in [2,9] have provided the reactive design semantics to some oper-
ators in CSP. On the other hand, sequential composition, recursion, hiding and
so on are still to be considered. In this paper, based on our new Circus Time
model, we develop the reactive design semantics of these operators in a timed
environment, and also demonstrate how we can easily to prove some very tricky
laws using the new semantics. This paper has the following structure. Section
2 gives a brief introduction to Circus Time and related UTP theories. We show
how to deduce the reactive design semantics of those operators from their orig-
inal UTP definitions in Section 3. We then give a demonstration to show how
to prove some algebraic laws using the new semantics in Section 4. Finally in
Section 5 we present some conclusions and summarize future work. We assume
knowledge of CSP.

2 UTP and Circus Time

In the UTP, a relation P is a predicate with an alphabet αP , composed of
undashed variables (a, b, ...) and dashed variables (a′, x ′, ...). The former, written
as inαP , stands for initial observations, and the latter, outαP , for intermediate
or final observations. The relation is then called homogeneous if outαP = inαP ′,
where inαP ′ is simply obtained by putting a dash on all the variables of inαP .
A condition has an empty output alphabet.

The program constructors in the theory of relations include sequential compo-
sition (P ; Q), conditional (P � b � Q), assignment (x := e), non-determinism
(P � Q) and recursion (μX • C (X)). The correctness of a program P with
respect to a specification S is denoted by S � P (P refines S), and is defined as
follows:

S � P iff [P ⇒ S]

where the square bracket is universal quantification over all variables in the al-
phabet. In other words, the correctness of P is proved by establishing that every
observation that satisfies P must also satisfy S . Moreover, the set of relations
with a particular alphabet is a complete lattice under the refinement order-
ing. Its bottom element is the weakest relation true, which behaves arbitrarily
([true � P]), and the top element is the strongest relation false, which behaves
miraculously and satisfies any specification ([P � false]). The bottom and top
elements in this complete lattice are usually called CHAOS and Miracle re-
spectively.

2.1 Designs

A design in the UTP is a relation that can be expressed as a pre-postcondition
pair in combination with a boolean variable, called ok . In designs, ok records that
the program has started, and ok ′ records that it has terminated. If a precondition

70 K. Wei, J. Woodcock, and A. Cavalcanti

P and a postcondition Q are predicates, a design with P and Q , written as
P � Q , is defined as follows:

P � Q =̂ ok ∧ P ⇒ ok ′ ∧ Q

which means that if a program starts in a state satisfying P , then it must ter-
minate, and whenever it terminates, it must satisfy Q .

Healthiness conditions of a theory in the UTP are a collection of some funda-
mental laws that must be satisfied by relations belonging to the theory. These
laws are expressed in terms of monotonic idempotent functions. The healthy
relations are the fixed points of these functions. There are four healthiness con-
ditions identified by Hoare and He in the theory of designs and here we introduce
only two of them.

H1 P = ok ⇒ P H2 [P [false/ok ′] ⇒ P [true/ok ′]]

The first healthiness means that observations of a predicate P can only be made
after the program has started. H2 states that a design cannot require non-
termination, since if P is satisfied when ok ′ is false, it must also be satisfied
when ok ′ is true. A predicate is H1 and H2 if, and only if, it is a design; the
proof is in [6]. A useful law about designs, which is used later, is given as below.

Law 1. Suppose P and Q are predicates and b is a condition,

((P1 � P2) � b � (Q1 � Q2)) = ((P1 � b � Q1) � (P2 � b � Q2))

This states that conditionals distribute through designs. A proof of this law can
be found in [6].

The purpose of the theory of designs is to exclude relations that do not satisfy
the zero laws, true ; P = true = P ; true. For example, the relations that satisfy
the equation true ; P = P should not be included in the theory of designs. The
program true behaves arbitrarily. For instance, the least fixed-point semantics of
a non-terminating loop in the theory of relations is true, and it, when followed by
an assignment like x := c, behaves like the assignment. In practice, it means that
a program can recover from the non-terminating loop. For a tutorial introduction
to designs, the reader is referred to [6,16].

2.2 Reactive Processes

A reactive process in the UTP is a program whose behaviour may depend on
interactions with its environment. To represent intermediate waiting states, a
boolean variable wait is introduced to the alphabet of a reactive process. For
example, if wait ′ is true, then the process is in an intermediate state. If wait
is true, it denotes an intermediate observation of its predecessor. Thus, we are
able to represent any states of a process by combining the values of ok and
wait . If ok ′ is false, the process diverges. If ok ′ is true, the state of the process

Circus Time with Reactive Designs 71

depends on the value of wait ′. If wait ′ is true, the process is in an intermediate
state; otherwise it has successfully terminated. Similarly, the values of undashed
variables represent the states of a process’s predecessor.

Apart from ok , ok ′, wait and wait ′, another two pairs of observational vari-
ables, tr and ref , and their dashed counterparts, are introduced. The variable
tr records the events that have occurred until the last observation, and tr ′ con-
tains all the events until the next observation. Similarly, ref records the set of
events that could be refused in the last observation, and ref ′ records the set of
events that may be refused in the next observation. The reactive identity, IIrea ,
is defined as follows:

IIrea =̂ (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref)

As a result, a reactive process must satisfy the following healthiness conditions:

R1 P = P ∧ tr ≤ tr ′

R2 P(tr , tr ′) = P(〈〉, tr ′ − tr)

R3 P = IIrea � wait � P

If a relation P describes a reactive process behaviour, R1 states that it never
changes history, or the trace is always increasing. The second, R2, states that
the history of the trace tr has no influence on the behaviour of the process. The
final, R3, requires that a process should leave the state unchanged (IIrea) if it is
in a waiting state (wait = true) of its predecessor. A reactive process is a relation
whose alphabet includes ok , wait , tr and ref , and their dashed counterparts, and
that satisfies the composition R where R =̂ R1 ◦ R2 ◦ R3. In other words, a
process P is a reactive process if, and only if, it is a fixed point of R. Since
each of Ri is idempotent and any two of them commuted, R is also idempotent.
For a more detailed introduction to the theory of reactive designs, the reader is
referred to the tutorial [2].

2.3 CSP Processes

In the UTP, the theory of CSP is built by applying extra healthiness conditions
to reactive processes. For example, a reactive process is also a CSP process if
and only if, it satisfies the following healthiness conditions:

CSP1 P = P ∨ (¬ ok ∧ tr ≤ tr ′) CSP2 P = P ; J

where J = (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref . The first
healthiness condition requires that, in case of divergence of the predecessor, the
extension of the trace and should be the only guaranteed property. The second
one means that P cannot require non-termination, so that it is always possible
to terminate. The CSP theory introduced in the UTP book is different from
any standard models of CSP [5,10] which have more restrictions or satisfy more
healthiness conditions. There are more healthiness conditions, CSP3-CSP5,
given in UTP to further restrict behaviours of reactive processes.

72 K. Wei, J. Woodcock, and A. Cavalcanti

A CSP process can also be obtained by applying the healthiness condition R
to a design. This follows from the theorem in [6], that, for every CSP process

P , P = R(¬ P f
f � P t

f). This theorem gives a new style of specification for CSP
processes in which a design describes the behaviour when its predecessor has
terminated and not diverged, and the other situations of its behaviour are left
to R. Note that Pa

b is an abbreviation of P [a, b/ok ′,wait], and it is often used in
this paper. Motivated by the above theorem, the work in [2,9] provide reactive
design definitions for some constructs of CSP such as STOP , SKIP , CHAOS ,
external choice, and so on. The reactive design definitions of more operators,
such as sequential composition, hiding and recursion, will be developed in this
paper.

2.4 Circus Time

We give a brief introduction to Circus Time because the reactive design semantics
is developed within this timed model presented in this paper. In Circus Time, an
action is described as an alphabetised predicate whose observational variables
include ok , wait , tr , ref , state and their dashed counterparts.

• ok , ok ′ : Boolean
• wait ,wait ′ : Boolean
• state, state ′ : N �→ Value
• tr , tr ′ : seq+(seq Event)
• ref , ref ′ : seq+(PEvent)

Here, ok , ok ′, wait and wait ′ are the same variables used in the theory of reactive
processes. The traces, tr and tr ′, are defined to be non-empty (seq+), and each
element in the trace represents a sequence of events that have occurred over one
time unit. Also, ref and ref ′ are non-empty sequences where each element is a
refusal at the end of a time unit. Thus, time is actually hidden in the length
of traces. In addition, state and state ′ records a set of local variables and their
values. N is a set of names of these variables.

Both the original Circus Time and Timed CSP use the concept of failures,
each of which consists of a trace and a refusal. This structure, however, is hard
to manipulate: a trace is no longer a sequence of events, but a sequence of pairs
containing a sequence of events and a refusal set. In the new Circus Time model,
we split a failure as shown above to record sequences of traces and a refusals,
and use their indices (which start at 1) to match related pairs. However, the
decomposition of the failures results in a little bit inconvenience, since we have
to ensure the equality of the lengths of tr and ref , or tr ′ and ref ′. This is achieved
by imposing an extra constraint on the healthiness conditions.

Although a trace in the new model is a sequence of sequences, the standard op-
erations on sequences defined in Z can still be used here such as head , tail , front ,

last , #(length), �(concatenation), �/(flattening), −(difference) and ≤(prefix).
Additionally, it is unnecessary that last(tr) = tr ′(#tr). An expanding relation
between traces is defined as follows, requiring that front(tr) and last(tr) are the
prefixes of tr ′ and tr ′(#tr) respectively.

Circus Time with Reactive Designs 73

tr � tr ′ =̂ front(tr) ≤ tr ′ ∧ last(tr) ≤ tr ′(#tr) (1)

An action in Circus Time must satisfy the healthiness conditions, R1t-R3t and
CSP1t-CSP5t. These healthiness conditions have similar meanings as those in
the CSP theory, but are changed to accommodate discrete time. For the sake of
a simpler proof, we focus on the healthiness conditions, R1t and R3t, as follows
(the properties including other healthiness conditions are usually straightforward
to be proven). The detailed introduction to other healthiness conditions can be
found in [13].

R1t(X) =̂ X ∧ RT R3t(X) =̂ IIt � wait � X

where the predicate RT , II−ok (the identity without ok) and the timed reactive
identity IIt are given as

RT =̂ tr � tr ′ ∧ front(ref) ≤ ref ′ ∧ #diff (tr ′, tr) = #(ref ′ − front(ref))

II−ok =̂
(

tr ′ = tr ∧ front(ref ′) = front(ref) ∧ wait ′ = wait ∧ state ′ = state
)

IIt =̂ (¬ ok ∧ RT) ∨ (ok ′ ∧ II−ok)

Note that we impose a restriction, #ref ′ = #tr ′ and #ref = #tr , to ensure
that the lengths of ref and ref ′ are always the same as those of tr and tr ′

respectively. This is a consequence of splitting traces and refusals as already
explained. Rather than recording the refusals only at the end of traces in CSP,
Circus Time records the refusals at the end of each time unit. In other words, we
need to keep the history of refusals. However, we are usually not interested in
the refusals of the last time unit after an action terminates. Therefore, we use
front(ref) ≤ ref ′ and front(ref ′) = front(ref) in these healthiness conditions,
instead of ref ≤ ref ′ and ref ′ = ref because we have to maintain the consistency
among Rt =̂ R1t ◦R2t ◦R3t and CSP1t-CSP5t. In addition, by means of a
result in [13], each action in Circus Time can also be described as a reactive
design.

Theorem 1. For every action P in Circus Time,

P = Rt(¬ P f
f � P t

f)

Another useful law about R1t, which is used later, is given and its detailed proof
can be found in [13].

Law 2

R1t(P ∨ Q) = R1t(P) ∨ R1t(Q)

The full syntax, definitions and detailed explanations of Circus Time can be found
in [13]. Here, we briefly introduce some operators that are used in the following
sections. The action Skip terminates immediately without changing anything,

74 K. Wei, J. Woodcock, and A. Cavalcanti

Chaos is the worst action (the bottom element in the refinement ordering) whose
behaviour is arbitrary, but satisfies Rt. The action Miracle is the top element
that expresses an unstarted process. This action is not included in the standard
failures-divergences model of CSP. The definition and properties of Miracle are
discussed in Section 4. The delay action Wait d does nothing except that it
requires d time units to elapse before it terminates. The sequential composition
P ; Q behaves like P until P terminates, and then behaves as Q . The prefix
action c.e → P is usually constructed by a composition of a simple prefix and
P itself, written as (c.e → Skip) ; P . The hiding action P \ CS will behave
like P , but the events within the set CS become invisible. The recursive action
μX • P behaves like P with every occurrence of the variable X in P representing
a recursive invocation. The recursive call takes no time.

3 Reactive Designs for Circus Time

In this section, we calculate the reactive design semantics of sequential composi-
tion, hiding and recursion from their original UTP semantics (which have been
slightly changed to contain time) in terms of Theorem 1.

3.1 Sequential Composition

The definition of sequential composition in the UTP is given as follows:

P ; Q =̂ ∃ obs0 • P [obs0/obs
′] ∧ Q [obs0/obs]

To deduce the reactive design of sequential composition, we first give some aux-
iliary laws that have been proven in [13].

Law 3. Suppose P is R1t and CSP1t,

R1t(¬ ok) ; P = R1t(¬ ok)

Law 4. Suppose P is a predicate and Q is R1t and R3t,

R3t(P) ; Q = R3t(P ; Q)

Below, we characterise the behaviour of the sequential composition of two R1t-
healthy predicates.

Law 5. Suppose P, Q, R and S are predicates (ok,ok ′ are not in αP, αQ, αR
and αS),

R1t(P � Q) ; R1t(R � S) =

R1t

⎛

⎝

¬ (R1t(¬ P) ; R1t(true)) ∧ ¬ (R1t(Q) ; R1t(¬ R))
�

R1t(Q) ; R1t(S)

⎞

⎠

Circus Time with Reactive Designs 75

Proof

R1t(P � Q) ; R1t(R � S) [def of design]

=R1t(¬ ok ∨ ¬ P ∨ (ok ′ ∧ Q)) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))
[Law 2 and rel. cal.]

=R1t(¬ ok) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S)) ∨ [Law 3]

R1t(¬ P) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S)) ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S)) ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))
[def of ; and case split on ok]

=R1t(¬ ok) ∨ [propositional calculus]

R1t(¬ P)[false/ok ′] ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))[false/ok] ∨
R1t(¬ P)[true/ok ′] ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))[true/ok] ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [rel. calculus and Law 2]

R1t(¬ P) ; R1t(¬ R ∨ (ok ′ ∧ S)) ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [propositional calculus]

R1t(ok
′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [rel. calculus and Law 2]

R1t(ok
′ ∧ Q) ; R1t(¬ ok ∨ (ok ∧ ¬ R) ∨ (ok ∧ ok ′ ∧ S))

=R1t(¬ ok) ∨ [def of ;]

R1t(¬ P) ; R1t(true) ∨ R1t(ok
′ ∧ Q) ; R1t(¬ ok) ∨

R1t(ok
′ ∧ Q) ; R1t(ok ∧ ¬ R) ∨ R1t(ok

′ ∧ Q) ; R1t(ok ∧ ok ′ ∧ S)

=R1t(¬ ok) ∨ [Law 2 and prop. calculus]

R1t(¬ P) ; R1t(true) ∨ R1t(ok
′ ∧ Q) ; R1t(¬ ok) ∨

R1t(Q) ; R1t(ok ∧ ¬ R) ∨ R1t(Q) ; R1t(ok ∧ ok ′ ∧ S)

=R1t(¬ ok) ∨ [def of ;]

R1t(¬ P) ; R1t(true) ∨ R1t(ok
′ ∧ Q) ; R1t(¬ ok) ∨

R1t(Q) ; R1t(¬ R) ∨ R1t(Q) ; R1t(ok
′ ∧ S)

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ false ∨ [rel. calculus]

R1t(Q) ; R1t(¬ R) ∨ R1t(Q) ; R1t(ok
′ ∧ S)

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [def of design]

R1t(Q) ; R1t(¬ R) ∨ (ok ′ ∧ (R1t(Q) ; R1t(S)))

=R1t

(¬ (R1t(¬ P) ; R1t(true)) ∧ ¬ (R1t(Q) ; R1t(¬ R)) �
R1t(Q) ; R1t(S)

)

76 K. Wei, J. Woodcock, and A. Cavalcanti

However, the timed reactive identity IIt is not a design, and hence R3t(P)
is not, even if P is a design. Therefore, Woodcock in [14] introduces a new
healthiness condition to replace R3, in order to make a design behave like the
identity design when waiting. And here we have a similar healthiness condition,
R3jt(P) =̂ IID � wait � P where IID = true � II . We also have a useful law
about the new healthiness condition whose proof can be found in [13].

Law 6

R1t ◦R3jt = R1t ◦R3t

Finally, we are ready to deduce the reactive design of sequential composition
from its original definition.

Theorem 2. Suppose P and Q are two Circus Time actions,

P ; Q = Rt

⎛

⎝

¬ (R1t(P
f
f) ; R1t(true)) ∧ ¬ (R1t(P

t
f) ; R1t(¬ wait ∧ Q f

f))

�
R1t(P

t
f) ; R1t(II � wait � Q t

f)

⎞

⎠

Proof

P ; Q [Theorem 1]

=Rt(¬ P f
f � P t

f) ; Rt(¬ Q f
f � Q t

f) [def of Rt]

=R3t ◦R1t(¬ P f
f � P t

f) ; R1t ◦R3t(¬ Q f
f � Q t

f) [Law 4]

=R3t ◦ (R1t(¬ P f
f � P t

f) ; R1t ◦R3t(¬ Q f
f � Q t

f)) [Law 6]

=R3t ◦ (R1t(¬ P f
f � P t

f) ; R1t ◦R3jt(¬ Q f
f � Q t

f)) [def of R3jt]

=R3t ◦ (R1t(¬ P f
f � P t

f) ; R1t(IID � wait � ¬ Q f
f � Q t

f)) [def of IID]

=R3t ◦ (R1t(¬ P f
f � P t

f) ; R1t(true � II � wait � ¬ Q f
f � Q t

f)) [Law 1]

=R3t ◦ (R1t(¬ P f
f � P t

f) ; R1t((true � wait � ¬ Q f
f) � (II � wait � Q t

f)))

[rel. cal.]

=R3t ◦ (R1t(¬ P f
f � P t

f) ; R1t((wait ∨ ¬ Q f
f) � (II � wait � Q t

f)))

[Law 5]

=R3t ◦R1t

⎛
⎝

¬ (R1t(P
f
f) ; R1t(true)) ∧ ¬ (R1t(P

t
f) ; R1t(¬ wait ∧ Q f

f))

�
R1t(P

t
f) ; R1t(II � wait � Q t

f)

⎞
⎠

[def of Rt]

=Rt

⎛
⎝

¬ (R1t(P
f
f) ; R1t(true)) ∧ ¬ (R1t(P

t
f) ; R1t(¬ wait ∧ Q f

f))

�
R1t(P

t
f) ; R1t(II � wait � Q t

f)

⎞
⎠

This theorem shows that, if P does not diverge and Q does not diverge after P
terminates, P ; Q behaves like the sequential composition of the terminations of
P and Q .

Circus Time with Reactive Designs 77

3.2 Hiding

Similar to the CSP hiding operator in the UTP [6], the hiding operator in Circus
Time is defined as follows:

P \ CS =̂ Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt) ; Skip

Lt =̂ diff (tr ′, tr) = diff (s , tr) ↓t (Σ−CS) ∧
r−front(ref) = ((ref ′−front(ref)) ∪t CS)

diff (tr ′, tr) =̂ 〈tr ′(#tr)− last(tr)〉� tail(tr ′ − front(tr)) (2)

where diff is the difference of two traces, and two special operators, ↓t and ∪t ,
are defined to restrict timed traces and complement refusals respectively.

tr1 = (tr2 ↓t CS) ⇔ ∀ i : 1..#tr1 • tr1(i) = (tr2(i) ↓ CS) ∧ #tr1 = #tr2

ref1 = (ref2 ∪t CS) ⇔ ∀ i : 1..#ref1 • ref1(i) = (ref2(i) ∪CS) ∧ #ref1 = #ref2

Clearly, this definition is not a reactive design. As usual, three useful laws are
given and their proof can be found in [13].

Law 7

Skipf = R1t(¬ ok)

Law 8

Skipt = R1t(¬ ok) ∨ (ok ∧ II)

Law 9

R1t(∃ s , r • Lt) = ∃ s , r • Lt

Law 10 Suppose P is a Circus Time action,

(P \ CS)ff = (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true)

Proof

(P \ CS)ff [def of \]
=(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt) ; Skip)

f
f [relational calculus]

=(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; Skip
f [Law 7]

=(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; R1t(¬ ok) [case split on ok ′]

=((Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))
f
f ; R1t(¬ ok)) ∨ [relational calculus]

((Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))
t
f ; R1t(¬ ok))

=((Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))
f
f ; R1t(¬ ok)) ∨ false

[R3t and wait is false]

78 K. Wei, J. Woodcock, and A. Cavalcanti

=(R1t(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))
f
f ; R1t(¬ ok)

[P and Lt , Law 9 and predicate calculus]

=(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt)
f
f ; R1t(¬ ok) [relational calculus]

=(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt)
f
f ; R1t(true) [predicate calculus]

=(∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true)

Law 11. Suppose P is a Circus Time action,

(P \ E)tf =

(

(∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true)

∨ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

)

Proof

(P \ E)tf [def of \]
= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt) ; Skip)

t
f [relational calculus]

= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; Skip
t [Law 8]

= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; (R1t(¬ ok) ∨ (ok ∧ II)) [relational cal.]

= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; R1t(¬ ok) ∨ [Step 4 in Law 10]

(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; (ok ∧ II)

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ [P is R1t and wait is false]

(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; (ok ∧ II)

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ [relational calculus]

(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt)f ; (ok ∧ II)

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ [unit law]

(∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt) ; II

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

Now, the reactive design of hiding can be deduced in terms of the above laws.

Theorem 3. Suppose P is a Circus Time action,

P \ CS = Rt

(¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true))

� (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

)

Proof.

P \ CS [Theorem 1]

= Rt(¬ (P \ CS)ff � (P \ CS)tf) [def of design]

= Rt(ok ∧ ¬ (P \ CS)ff ⇒ ok ′ ∧ (P \ CS)tf) [Law 10 and Law 11]

= Rt

⎛

⎜

⎝

ok ∧ ¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true)) ⇒
ok ′ ∧

(

(∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true)

∨ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

)

⎞

⎟

⎠ [prop. cal.]

Circus Time with Reactive Designs 79

= Rt

(

ok ∧ ¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true)) ⇒
ok ′ ∧ (∃ s , r • P t

f [s , r/tr
′, ref ′] ∧ Lt)

)

[def-design]

= Rt

(¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true))

� (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

)

Note that R1t(true) in the precondition captures the observation that leads to
a divergence.

3.3 Recursion

The semantics of recursion is the same as that in the UTP [6]: weakest fixed
point. Given a monotonic function F , the semantics of recursion is the weakest
fixed point of F .

μX • F (X) =̂
�

{X | F (X) � X } (3)

The strongest fixed point of F (X) is defined as the dual of the weakest.

νF =̂ ¬ μX • ¬ F (¬ X) (4)

To express a recursion as a reactive design, we have to calculate the precondi-
tion and postcondition of a recursively defined design. For that, we can use the
definition of a recursive design and some theorems on linking theories in [6]. In
the theory of designs, any monotonic function of designs can be expressed in
terms of a pair of function that apply separately to the precondition and the
postcondition, for example

F (P ,Q) � G(P ,Q)

Here, P and Q are predicates representing the precondition and postcondition of
a design, F is monotonic in P and antimonotonic in Q , whereas G is monotonic
in Q and antimonotonic in P . Thus, as described in the theory of designs, the
weakest fixed point is given by a mutually recursive formula, that we reproduce
below.

Law 12

μ(X ,Y) • (F (X ,Y) � G(X ,Y)) = P(Q) � Q

where P(Y) = νX • F (X ,Y)

and Q = μY • (P(Y) ⇒ G(P(Y),Y))

As shown in Theorem 1, if X is a reactive design, X = ¬ X f
f � X t

f . Hence, based
on Law 12, we have the following theorem for recursively reactive designs.

Theorem 4

μ(X ,Y) • (Rt(F (X ,Y) � G(X ,Y))) = Rt(μ(X ,Y) • (F (X ,Y) � G(X ,Y))

80 K. Wei, J. Woodcock, and A. Cavalcanti

To prove Theorem 4, we directly adopt an important theorem from the linking
theories of the UTP book, which can be described here.

Theorem 5. Let D and E be monotonic functions. If there exists a function R
such that R ◦D = E ◦R, then R(μD) = μE.

As a result, the proof of Theorem 4 can be established as follows.

Proof

Let D(X � Y) = F (X ,Y) � G(X ,Y) and

E (Rt(X � Y)) = Rt(F (X ,Y) � G(X ,Y))

then E ◦Rt(X � Y) [def of E]

=Rt(F (X ,Y) � G(X ,Y)) [def of D]

=Rt(D(X � Y) [def of composition]

=Rt ◦D(X � Y)

therefore μ(X ,Y) • E (Rt(X � Y)) = Rt(μ(X ,Y) • D(X � Y))

4 Applications of Reactive Designs

The reactive design semantics can help us understand the exact behaviours of
some complex processes. For example, the reactive design of a simple prefix,
which is based on the semantics in [2], has been worked out in [13].

c.e → Skip =̂ Rt(true � wait com(c) ∨ terminating com(c.e)) (5)

wait com(c) =̂ wait ′ ∧ possible(ref , ref ′, c) ∧ �/tr ′ = �/tr (6)

possible(ref , ref ′, c) =̂ ∀ i : #ref ..#ref ′ • c /∈ ref ′(i) (7)

term com(c.e) =̂

(¬ wait ′ ∧ diff (tr ′, tr) = 〈〈c.e〉〉
∧ front(ref ′) = front(ref)

)

(8)

terminating com(c.e) =̂

(

wait com(c) ; term com(c.e)
∨ term com(c.e)

)

(9)

Such a process never diverges since its precondition is true, and, as described by
its postcondition, behaves in three different ways: it waits for interaction from
its environment, or it waits for a while and then terminates with a fired event,
or it simply executes the event immediately. The action Miracle, expressed as
Rt(true � false), has miraculous behaviour that simply denotes an unstarted
action. Therefore, it should never appear during an execution of a process. The
exact behaviour of the combination of the two actions can be easily figured out
using our newly established reactive design of sequential composition.

Circus Time with Reactive Designs 81

Theorem 6

c.e → Miracle = Rt(true � wait ′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c))

Proof

c.e → Miracle [def of prefix]

= (c.e → Skip) ; Miracle [def 5 and Miracle]

= Rt(true � wait com(c) ∨ terminating com(c.e)) ; Rt(true � false)
[Theorem 2]

= Rt

⎛

⎜

⎜

⎝

¬ (R1t(false) ; R1t(true)) ∧
¬ (R1t((wait com(c) ∨ terminating com(c.e))tf) ; R1t(¬ wait ∧ false))

�
R1t(wait com(c) ∨ terminating com(c.e)) ; R1t(II � wait � false)

⎞

⎟

⎟

⎠

[rel. cal.]

= Rt(true � R1t(wait com(c) ∨ terminating com(c.e)) ; R1t(II ∧ wait))
[rel. cal.]

= Rt

(

true �
(

R1t(wait com(c)) ; R1t(II ∧ wait) ∨
R1t(terminating com(c.e)) ; R1t(II ∧ wait)

))

[def 9]

= Rt

⎛

⎝true �
⎛

⎝

R1t(wait com(c)) ; R1t(II ∧ wait) ∨
(

R1t(wait com(c) ; term com(c.e)
∨ term com(c.e)

)

; R1t(II ∧ wait)

⎞

⎠

⎞

⎠

[wait ′ in term com is false]

= Rt(true � (R1t(wait com(c)) ; R1t(II ∧ wait) ∨ false)) [def 6]

= Rt(true � R1t(wait
′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c)) ; R1t(II ∧ wait)

[rel. cal.]

= Rt(true � R1t(wait
′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c))

[R1t is idempotent]

= Rt(true � wait ′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c))

This theorem states that, if this action starts, it waits for interaction with its
environment, but never actually perform any event even if the event c.e has
been offered. This process is different from that of the standard CSP failures-
divergences model in which one of the assumptions requires that, if an event is
not in the refusal set, the process is always willing to execute the event.

There is a very subtle law in the CSP theory about hiding and recursion as
(μX • c → X) \ {c} = Chaos , which is difficult to be proved using their original
UTP definitions. However, the reactive designs of the two operators allow us to
prove this law straightforwardly. To prove this law, we use the Kleene theorem
rather than the traditional definition of the weakest fixed point to calculate the
recursive design in the recursively reactive design.

82 K. Wei, J. Woodcock, and A. Cavalcanti

Theorem 7 (Kleene fixed point theorem)
If F is continuous 1, then μX • F (X) =

⊔∞
n=0 F

n(true) where F 0(X) =̂ true,
and Fn+1 =̂ F (Fn(X)).

This theorem states a normal form for programs that contain recursion. First of
all, the behaviour of a recursive program is expressed as an infinite sequence of
predicates {F i | i ∈ N} and each F i is a finite normal form. Since each F i+1 is
defined by its previous expression, F i+1 is potentially stronger if F i � F i+1. If
i is large enough, the exact behaviour of the program can be captured by the
least upper bound of the infinite sequence, written

⊔∞
n=0 F

n(true).
In addition, we are able to prove a similar theorem for the strongest fixed

point of F .

Theorem 8. If F is continuous, νX • F (X) =
�∞

n=0 F
n(false)

Proof

νX • F (X) [def of ν]

=¬ μX • ¬ F (¬ X) [Theorem 7]

=¬
∞
⊔

n=0

(λX • ¬ F (¬ X))n(true) [relational calculus]

=

∞�

n=0

¬ (λX • ¬ F (¬ X))n(true) [predicate calculus]

=

∞�

n=0

Fn(false)

Now, firstly, we calculate the reactive design of a single call of μX • c → X .
The procedure is similar to Theorem 6, and the proof can be found in [13].

Law 13

c → X = Rt

⎛

⎝

¬ (terminating com(c) ; R1t(¬ wait ∧ X f
f))

�
wait com(c) ∨ (terminating com(c) ; R1t(X

t
f))

⎞

⎠

Secondly, in terms of Theorem 4 and Law 13, we let

X = ¬ X f
f and Y = X t

f , then (10)

F (X ,Y) = ¬ (terminating com(c) ; R1t(¬ wait ∧ ¬ X)) (11)

G(X ,Y) = wait com(c) ∨ (terminating com(c) ; R1t(Y)) (12)

As a result, the weakest fixed point of (μX • c → X) \ {c} can be calculated
by the following law.

1 A function is continuous only if its value at a limit point can be determined from
its values on a sequence converging to that point. Also, a continuous function is
monotonic.

Circus Time with Reactive Designs 83

Law 14

μ(X ,Y) • E (Rt(X � Y)) = Rt((νX • F (X ,Y)) � Q)

Proof

μ(X ,Y) • E (Rt(X � Y)) [Theorem 4]

=Rt(μ(X ,Y) • D(X � Y)) [Law 12]

=Rt((νX • F (X ,Y)) � Q)

Note that, since the postcondition ofD has no influence on the final result, we here
simply use Q to denote the postcondition and never unfold it in the later proof.

Next, we calculate the strongest fixed point of F by means of the Kleene
theorem. Before starting to prove the law before, we give some useful properties.
Some proofs can be found in [13], and some leave to the reader.

Property 1

L1. R1t(terminating com(c)) = terminating com(c)

L2. terminating com(c); R1t(true) ∧ terminating com(c)2; R1t(true)

= terminating com(c)2; R1t(true)

L3. terminating com(c)n � term com(c)n

L4. diff (tr ′, tr) = 〈〈c〉〉 ⇔ front(tr ′) = front(tr) ∧ last(tr ′)− last(tr) = 〈c〉
L5. ((front(ref ′) = front(ref)); (front(ref ′) = front(ref)))

⇔ front(ref ′) = front(ref)

Law 15

ν(X) • F (X ,Y) = ¬
⎛

⎝

R1t

(

front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′

∧ front(ref) ≤ ref ′

)

∨ (terminating com(c)n ; R1t(true))

⎞

⎠

Proof

ν(X) • F (X ,Y) [Theorem 8]

=

∞�

n=0

Fn(false) [unfold
�
]

= F 0(false) � F 1(false) � F 2(false)... � Fn(false) [unfold F (def 11)]

= false � ¬ (terminating com(c) ; R1t(¬ wait ∧ ¬ false))...

� ¬
⎛

⎝

terminating com(c)
;

R1t(¬ wait ∧ (terminating com(c) ; R1t(¬ wait ∧ ¬ false)))

⎞

⎠ ...

� Fn(false) [relational calculus (¬ wait is absorbed by terminating com)]

84 K. Wei, J. Woodcock, and A. Cavalcanti

= false � ¬ (terminating com(c) ; R1t(true))

� ¬ (terminating com(c) ; R1t((terminating com(c) ; R1t(true)))...

� Fn(false) [Property 1-L1 and R1t is idempotent and rel. cal.]

= false � ¬ (terminating com(c) ; R1t(true)) [property of
�
]

� ¬ (terminating com(c)2 ; R1t(true))...

� ¬ (terminating com(c)n ; R1t(true))

=

∞�

n=1

(¬ (terminating com(c)n ; R1t(true))) [property of
⊔

]

= ¬
∞
⊔

n=1

(terminating com(c)n ; R1t(true)) [unfold
⊔

]

= ¬

⎛

⎜

⎜

⎝

(terminating com(c) ; R1t(true)) ∧
(terminating com(c)2 ; R1t(true)) ∧
.... ∧
(terminating com(c)n ; R1t(true))

⎞

⎟

⎟

⎠

[Property 1-L2 and Induction]

= ¬ (terminating com(c)n ; R1t(true)) [def 9]

= ¬ ((wait com(c) ; term com(c) ∨ term com(c))n ; R1t(true))
[Property 1-L3]

= ¬
((

(wait com(c) ; term com(c) ∨ term com(c))n

∨ term com(c)n

)

; R1t(true)

)

[def 9]

= ¬ ((term com(c)n ∨ terminating com(c)n) ; R1t(true)) [def 8]

= ¬
⎛

⎝

⎛

⎝

(¬ wait ′ ∧ diff (tr ′, tr) = 〈〈c〉〉
∧ front(ref ′) = front(ref)

)n

∨ terminating com(c)n

⎞

⎠ ; R1t(true)

⎞

⎠ [Property 1-L4]

= ¬
⎛

⎝

⎛

⎝

(¬ wait ′ ∧ last(tr ′)− last(tr) = 〈c〉
∧ front(tr ′) = front(tr) ∧ front(ref ′) = front(ref)

)n

∨ terminating com(c)n

⎞

⎠ ; R1t(true)

⎞

⎠

[Property 1-L5 and Induction]

= ¬
⎛

⎝

⎛

⎝

(¬ wait ′ ∧ (last(tr ′)− last(tr) = 〈c〉)n ∧
front(tr ′) = front(tr) ∧ front(ref ′) = front(ref)

)

∨ terminating com(c)n

⎞

⎠ ; R1t(true)

⎞

⎠

[rel. cal.]

= ¬
⎛

⎝

(¬ wait ′ ∧ diff (tr ′ − tr) = 〈〈c〉n〉
∧ front(ref ′) = front(ref)

)

; R1t(true)

∨ terminating com(c)n ; R1t(true)

⎞

⎠

[def of 2 and relational calculus]

= ¬

⎛

⎜

⎜

⎝

⎛

⎝

¬ wait ′ ∧
〈tr ′(#tr)− last(tr)〉� tail(tr ′ − front(tr)) = 〈〈c〉n〉

∧ front(ref ′) = front(ref)

⎞

⎠ ; R1t(true)

∨ terminating com(c)n ; R1t(true)

⎞

⎟

⎟

⎠

[relational calculus]

Circus Time with Reactive Designs 85

= ¬
(

R1t(front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′ ∧ front(ref) ≤ ref ′)
∨ terminating com(c)n ; R1t(true)

)

Finally, we are ready to prove the law, (μX • c → X) \ {c} = Chaos , and the
proof is simply the combination of the laws and theorems above.

Theorem 9

(μX • c → X) \ {c} = Chaos

Proof

(μX • c → X) \ {c} [Theorem 3]

= Rt(¬ ((∃ s , r • (μX • c → X)ff [s , r/tr
′, ref ′] ∧ Lt); R1t(true)) � EE2)

[def of � and merge unused proof]

= Rt(((∃ s , r • (μX • c → X)ff [s , r/tr
′, ref ′] ∧ Lt); R1t(true)) ∨ EE)

[Theorem 4]

= Rt

(

((∃ s , r • (μ(X ,Y) • E (Rt(X � Y)))ff [s , r/tr
′, ref ′] ∧ Lt); R1t(true))

∨ EE

)

[Law 14]

= Rt

(

((∃ s , r • (¬ νX • F (X ,Y))[s , r/tr ′, ref ′] ∧ Lt); R1t(true))
∨ EE

)

[Law 15]

= Rt

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎝∃ s , r •
⎛

⎝

R1t

(

front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′

∧ front(ref) ≤ ref ′

)

∨ terminating com(c)n ; R1t(true)

⎞

⎠[s , r/tr ′, ref ′] ∧ Lt

⎞

⎠

; R1t(true)
∨ EE

⎞

⎟

⎟

⎟

⎟

⎠

[merge (terminating com(c)n ; R1t(true)) to EE]

= Rt

⎛

⎜

⎜

⎝

(

∃ s , r •R1t

(

front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′

∧ front(ref) ≤ ref ′

)

[s , r/tr ′, ref ′] ∧ Lt

)

; R1t(true)
∨ EE

⎞

⎟

⎟

⎠

[only tr ′ = tr ∧ front(ref) ≤ ref ′ can satisfy Lt]

= Rt((R1t(tr
′ = tr ∧ front(ref) ≤ ref ′) ; R1t(true)) ∨ EE) [rel. calculus]

= Rt(R1t(true) ∨ EE) [prop. calculus]

= Rt(true) [def of design]

= Rt(false � true) [def of Chaos]

= Chaos

2 We simply use EE to denote the unused part of the proof. This abbreviation con-
tinuously collects unused parts during the proof and it is changing at each step of
this proof.

86 K. Wei, J. Woodcock, and A. Cavalcanti

The proof of the above law shows one of the cases to result in Chaos . If c happens
immediately at each call, the hiding operator is able to make this recursion
become divergent at once when it starts.

5 Conclusion

In this paper we develop the reactive design semantics of three important CSP
operators, sequential composition, hiding and recursion; this complements the
early work in [2,9]. Compared to the original CSP semantics in UTP, the reactive
designs provides us with a more concise, readable and uniform semantics, which
can help us to exactly understand the behaviours of some subtle processes. In
addition, this reactive design semantics is developed in a timed context, Circus
Time, and the full version can be found in [13]. So far, this semantics and related
laws have been proved by hand. In our short-term goal, we will mechanise them
in a new Circus tool, Isabelle/Circus [4], to underpin their correctness.

Acknowledgments. This work was fully supported by hiJaC project funded
by EPSRC(EP/H017461/1).

References

1. Cavalcanti, A., Wellings, A., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical Java
in Circus. In: Proceedings of the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES 2011, pp. 20–29. ACM, New York
(2011)

2. Cavalcanti, A., Woodcock, J.: A Tutorial Introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

3. Cavalcanti, A., Sampaio, A., Woodcock, J.: A Refinement Strategy for Circus.
Formal Aspects of Computing 15(2-3), 146–181 (2003)

4. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: a Process Specification and
Verification Environment. Technical Report 1547, LRI, Université Paris-Sud XI
(November 2011), http://www.lri.fr/Rapports-internes

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
(1985)

6. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall Inter-
national (1998)

7. Locke, D., et al.: Safety Critical Java Specification. First Release 0.76, The Open
Group, UK (2010)

8. Morgan, C.: Programming from specifications. Prentice-Hall, Inc., Upper Saddle
River (1990)

9. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP Semantics for Circus. Formal
Aspects of Computing 21(1), 3–32 (2007)

10. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional (1998)

11. Schneider, S.A.: Concurrent and real-time systems: the CSP approach. John Wiley
& Sons (1999)

http://www.lri.fr/Rapports-internes

Circus Time with Reactive Designs 87

12. Sherif, A., Cavalcanti, A.L.C., Jifeng, H., Sampaio, A.C.A.: A process algebraic
framework for specification and validation of real-time systems. Formal Aspects of
Computing 22(2), 153–191 (2010)

13. Wei, K., Woodcock, J., Cavalcanti, A.: New Circus Time. Technical report, De-
partment of Computer Science, University of York, UK (March 2012),
http://www.cs.york.ac.uk/circus/hijac/publication.html

14. Woodcock, J.: The Miracle of Reactive Programming. In: Butterfield, A. (ed.) UTP
2008. LNCS, vol. 5713, pp. 202–217. Springer, Heidelberg (2010)

15. Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice-
Hall, Inc., Upper Saddle River (1996)

16. Woodcock, J., Cavalcanti, A.: A Tutorial Introduction to Designs in Unifying The-
ories of Programming. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004)

17. Woodcock, J., Cavalcanti, A.: A concurrent language for refinement. In: Butterfield,
A., Pahl, C. (eds.) IWFM 2001: 5th Irish Workshop in Formal Methods, BCS
Electronic Workshops in Computing, Dublin, Ireland (July 2001)

18. Woodcock, J., Cavalcanti, A.: The Semantics of $Circus$. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272,
pp. 184–203. Springer, Heidelberg (2002)

http://www.cs.york.ac.uk/circus/hijac/publication.html

	Circus Time with Reactive Designs
	Introduction
	UTP and Circus Time
	Designs
	Reactive Processes
	CSP Processes
	Circus Time

	Reactive Designs for Circus Time
	Sequential Composition
	Hiding
	Recursion

	Applications of Reactive Designs
	Conclusion
	References

