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Preface

These proceedings contain the papers presented at UTP 2012, the 4th
International Symposium on Unifying Theories of Programming, held during
August 27–28, 2012, in Paris. It was co-located with the 18th International Sym-
posium on Formal Methods, FM 2012.

UTP 2012 was the fourth in a series of symposia that have been successful
in bringing together innovators and practitioners working on unifying theories
of programming. Previous editions of the Symposium on Unifying Theories of
Programming include UTP 2006 (County Durham, UK), UTP 2008 (Dublin,
Ireland), and UTP 2010 (Shanghai, China).

The UTP 2012 symposium was organized by the ForTesSE research group
of the LRI and Paris-Sud XI University. There were 13 submissions. Each sub-
mission was reviewed by at least 3, and on average 3.3, Program Committee
members. The committee decided to accept eight papers. The program also in-
cluded two invited speakers and one invited lecture. We gratefully thank the
council of the Région Île de France, the Digiteo Research Cluster, the Conser-
vatoire National des Arts et Métiers (CNAM), of course our Laboratoire de
Recherche en Informatique (LRI), and last but not least Microsoft Research for
their generous support in the organization of this scientific event. We also appre-
ciated EasyChair in managing the scientific evaluation process and generating
this conference volume; over the years it has become a powerful and extremely
valuable tool helping in the organization of various scientific events.

October 2012 Burkhart Wolff
Marie-Claude Gaudel

Abderrahmane Feliachi
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Unifying Theories of Undefinedness in UTP

Jim Woodcock and Victor Bandur

The University of York

Abstract. In previous work, based on an original idea due to Saaltink,
we proposed a unifying theory of undefined expressions in logics used for
formally specifying software systems. In our current paper, we instantiate
these ideas in Hoare and He’s Unifying Theories of Programming, with
each different treatment of undefinedness formalized as a UTP theory. In
this setting, we show how to use classical logic to prove facts in a mono-
tonic partial logic with guards, and we describe the guards for several
different UTP theories. We show how classical logic can be used to prove
semi-classical facts. We apply these ideas to the COMPASS Modelling
Language (CML), which is an integration of VDM and CSP in the Circus
tradition. We link CML, which uses McCarthy’s left-to-right expression
evaluation, and to VDM, which uses Jones’s three-valued Logic of Partial
Functions.

1 Introduction

We consider the problem of potentially undefined expressions, which arise from
two language constructs: partial function application and definite description.

A simple example of the problem is in the expression (y = 1/0). Here, the
division operator is a partial function that is not defined for a zero divisor: it is
being applied outside its domain of definition. So what should we make of the
expression (1/0)? Does it denote a value? If so, then which value? If not, then
what do we make of the containing predicate (y = 1/0)? Is this defined? Does
it denote a truth value or not?

More generally, if we choose a specific treatment of undefined expressions,
then is it possible to use verification tools that employ different treatments?
For example, there are two different treatments of undefined expressions for
VDM: Jones’s VDM uses the Logic of Partial Functions (LPF), which has been
implemented in Isabelle [1], whilst Larsen’s VDM in Overture uses left-to-right
evaluation [8]. What is the relationship between these? Formal verification in
the increasingly popular setting of heterogeneous systems of systems demands
an answer to this question. In our own context of the COMPASS Modelling Lan-
guage (CML), the nature of the language suggests the use of several verification
tools, where the treatment of undefinedness must be taken into account. For
example, in the FDR implementation of CSPM [5], undefinedness is handled by
a combination of arithmetic overflow and boolean short-circuit expressions. In
the Circus tools, undefinedness is handled through the use of classical logic and
arbitrary undefined values. Furthermore, if CML is used for a system of systems

B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.): UTP 2012, LNCS 7681, pp. 1–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J. Woodcock and V. Bandur

with heterogeneous constituents using different formalisms with different solu-
tions to the undefined problem, this combination of tools must be able to cope
with these differences, for the sake of correctness as well as efficiency.

One possible solution to all these problems is to adopt a single treatment
of undefinedness, such as the one used in UTP [7], where the basic relational
calculus is classical: there is no undefinedness and every expression denotes a
value. There is an outline of a more specific treatment of undefined expressions
in UTP, but this is explored only briefly in the book by Hoare & He [7, Sect. 9.3].
There are several other possible treatments, and in this section we describe some
of them. In doing so we develop a unifying theory for monotonic partial logics
(we explain this term fully below).

This work is based on original ideas due to Mark Saaltink in his underpinnings
for the Z/Eves theorem prover [10]. Together we have published joint papers at
Marktoberdorf [11] and ICECCS 2007 [12].

In Sect. 2, we augment UTP’s alphabetised relational calculus with a basic
treatment of three-valued logic with possibly undefined expressions and predi-
cates. In Sect. 3, we give a treatment of first-order theories for monotonic partial
logics and prove a theorem about construct monotonicity (Theorem 1). In Sect. 4,
we formalise three theories of undefinedness: strict logic, McCarthy’s left-to-right
logic, and Kleene’s three-valued logic. In Sect. 5, we describe a theory of guard
systems for generating verification conditions for the definedness of expressions
and predicates. We present our main theorem that allows us to trade theorems
between different logics by proving facts about the guard in a stronger system
and guaranteeing that the construct is defined in a weaker logic (Theorem 2).
We also present a guard system for the definite McCarthy logic and state its
soundness (Theorem 3). Finally in Sect. 6, we draw some conclusions and plan
future work.

2 Three-Valued Logic in UTP

In this section we illustrate our approach to undefinedness by describing a re-
stricted semi-classical three-valued logic in UTP. The logic has a distinguished
semantic value for undefined expressions and predicates. Operators of the pred-
icate calculus are Bochvar’s strict internal operators [4], but equality is classical
(Bochvar’s external ≡ operator), allowing a fine control of undefinedness.

2.1 Basic Sets and Constructors

The set of boolean values is B = {true, false}. The universe of values, disjoint
from B, is U. We introduce a specific semantic undefined value: ⊥. Any set not
already equipped with an undefined value can be lifted to include it: X⊥ = X ∪
{⊥}. Notice that ⊥ is neither a tuple, nor a function, nor is it a designated value
from B or U.

For k , a natural number, X k is the set of k -tuples over X , with X 0 having
the single element: the 0-tuple (). X ∗ is the union of all X k s.
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As usual, we have two kinds of function space: X → Y , the set of total
functions, and X �→ Y , the set of partial functions.

We take inspiration from Rose’s standard encoding of three-valued logic [9],
which is reminiscent of Hoare & He’s UTP designs [7, Chap. 3], in modelling three
logical values using just a pair of predicates: (P ,Q). The intuitive meaning is that
P describes the region where the predicate (P ,Q) is true and Q describes the
region where (P ,Q) is defined. Just like Hoare & He designs, we can combine
the pair of predicates into a single predicate by introducing an observational
variable, in this case def : the observation that the predicate is defined. This
gives us a model for the pair.

Definition 1 (TVL predicate pair). The observation def is true exactly when
the pair is defined (Q) and, providing it is defined, then P determines whether
it is true or not.

(P ,Q) =̂ (def ⇒ P) ∧ (Q = def )

�

The next example demonstrates that this definition accounts for all three logical
values.

Example 1 (TVL extreme points). Consider the four extreme points for the pair:

R = true = (true, true) = def
R = false = (false, true) = false

R = ⊥ =
{

(true, false)
(false, false)

}

= ¬ def

�

It is noteworthy that if def and Q do not agree then the entire TVL predicate
is false, as expected.

Two lemmas follow immediately from Definition 1. The first shows how we
can make use of the definedness condition in the pair.

Lemma 1 (Definedness trading). The definedness condition can be traded
back and forth in a TVL predicate pair:

(P ∧ Q ,Q) = (P ,Q)

Proof

(P ∧ Q ,Q)
= (def ⇒ P ∧ Q) ∧ (Q = def )
= (def ⇒ P) ∧ (Q = def )
= (P ,Q)

�
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The second lemma shows that every three-valued predicate can be expressed
as a TVL pair.

Lemma 2 (Canonical form of TVL predicates). Every three-valued predi-
cate has a canonical form:

R = (Rt ,¬ Rf ), where Rb = R[b/def ], and t and f abbreviate true and
false, respectively.

Proof

((P ,Q)t ,¬ (P ,Q)f )

= (((def ⇒ P) ∧ (Q = def ))t ,¬ ((def ⇒ P) ∧ (Q = def ))f )
= ((true ⇒ P) ∧ (Q = true),¬ ((false ⇒ P) ∧ (Q = false)))
= (P ∧ Q ,¬ (true ∧ ¬ Q))
= (P ∧ Q ,Q)

�

Example 2 (Definedness of partial expressions). Consider the predicate (z = x/y)
interpreted as a three-valued predicate. It is defined exactly when (y 	= 0), and
when it is defined, it is true when (x = y ∗ z ), where ( ∗ ) is the total multi-
plication operator. So the three-valued predicate (z = x/y) is modelled by the
pair:

((x = y ∗ z ), (y 	= 0))

We can consider three examples with specific values for x , y, and z .

(3 = 6/2)
= ((6 = 2 ∗ 3), (2 	= 0))
= (true, true)
= def

(2 = 6/2)
= ((6 = 2 ∗ 2), (2 	= 0))
= (false, true)
= false

(2 = 6/0)
= ((6 = 0 ∗ 2), (0 	= 0))
= (false, false)
= ¬ def

�

The model that we have chosen for three-valued predicates is not closed under
any of the propositional operators, so we must choose particular definitions for
them. There are plenty of choices: for two operands of three values, there are
nine possible results, each of three values, making a total of: 39 � 20, 000 combi-
nations, although as Bergstra et al. point out, only a very small number of these
are desirable [3]. In this section we choose strict interpretations of each operator.

2.2 Conjunction

The strict conjunction of two three-valued predicates is defined as follows.
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Definition 2 (TVL conjunction). T ∧3 U is defined exactly when both T
and U are defined; it is true exactly when both T and U are true.

(P ,Q) ∧3 (R,S ) =̂ (P ∧ R,Q ∧ S )

It is useful to see the truth table for conjunction:

∧3 def ¬ def false
def def ¬ def false
¬ def ¬ def ¬ def ¬ def
false false ¬ def false

This truth table looks a little better if we replace the values in the model by the
three truth values themselves:

∧3 true3 ⊥ false3

true3 true3 ⊥ false3

⊥ ⊥ ⊥ ⊥
false3 false3 ⊥ false3

�

An example of the conjunction of the two three-valued predicates (y = 3) and
(z = x/y) helps clarify the separation between a predicate’s truth and defined-
ness conditions.

Example 3 (Partial conjunction).

(y = 3) ∧3 (z = x/y)
= ((y = 3), true) ∧3 ((x = y ∗ z ), (y 	= 0))
= ((y = 3) ∧ (x = y ∗ z ), true ∧ (y 	= 0))
= ((y = 3) ∧ (x = 3 ∗ z ), (y 	= 0))

�

2.3 Negation

The strict negation of a three-valued predicate is defined as follows.

Definition 3 (TVL negation). The negation of a three-valued predicate R is
defined exactly when R is defined, and is true exactly when R is false:

¬3 (P ,Q) = (¬ P ,Q)

The truth table is:

¬3

def false
¬ def ¬ def
false def

¬3

true3 false3

⊥ ⊥
false3 true3

�

An example illustrates how the negation of a three-valued predicate can be
simply pushed into the underlying representation.
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Example 4 (Partial negation).

¬3 (z = x/y)
= ¬3 ((x = y ∗ z ), (y 	= 0))
= ((x 	= y ∗ z ), (y 	= 0))

�

2.4 Disjunction

The strict disjunction of two three-valued predicates is defined as follows.

Definition 4 (TVL disjunction). The disjunction of two three-valued predi-
cates T ∨3 U is defined exactly when both T and U are defined; it is true when
either of them is true.

(P ,Q) ∨3 (R,S ) =̂ (P ∨ R,Q ∧ S )

The truth tables are:

∨3 def ¬ def false
def def ¬ def def
¬ def ¬ def ¬ def ¬ def
false def ¬ def false

∨3 true3 ⊥ false3

true3 true3 ⊥ true3

⊥ ⊥ ⊥ ⊥
false3 true3 ⊥ false3

�

Example 5 (Partial disjunction). Define P ⇒3 Q as ¬3 (P ∨3 Q). Now suppose
that f is a partial function symbol, such that

(y = f (x )) = ((y = f (x )), x ∈ dom f )

Now consider the predicate (x ∈ dom f ⇒3 (y = f (x ))), which is reminiscent of a
precondition guarding the application of the partial function f . When interpreted
as a three-valued predicate we have,

x ∈ dom f ⇒3 (y = f (x ))
= ¬3 (x ∈ dom f ) ∨3 (y = f (x ))
= ¬3 (x ∈ dom f , true) ∨3 (y = f (x ))
= (x /∈ dom f , true) ∨3 (y = f (x ))
= (x /∈ dom f , true) ∨3 ((y = f (x )), x ∈ dom f )
= (x /∈ dom f ∨ (y = f (x )), true ∧ x ∈ dom f )
= (x ∈ dom f ⇒ (y = f (x )), x ∈ dom f )
= ((y = f (x )), x ∈ dom f )

It is defined exactly when (x ∈ dom f ), and when it is defined, it is true exactly
when (y = f (x )). �
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2.5 Equality

There is nothing special about equality in our treatment of undefined values: it
is just the existing classical equality in UTP. So, two three-valued predicates are
equal exactly when their representation as pairs are equal. This is the symmetric
closure of the following rules:

(def =3 ¬ def ) = false
(def =3 false) = false

(¬ def =3 false) = false

(true3 =3 ⊥) = false
(true3 =3 false3) = false

(⊥ =3 false3) = false

Equality over the lifted domain U
⊥ behaves similarly.

Example 6 (Partial equality). One of the definitions that we use later is a condi-
tional containing five equations between three-valued predicates and expressions:

(f (x , y) =3 ⊥)�(x = ⊥) ∨ (y = ⊥)�(f (x , y) =3 (x = y))

Each equation is by definition either true or false: it cannot be undefined. In this
way, UTP equality contains the use of three-valued logic. We also restrict our
use of quantifiers to avoid undefinedness. �

A very simple lemma is a consequence of these definitions.

Lemma 3 (Normality of TVL operators). When they are defined, the TVL
propositional operators behave exactly like their classical counterparts (sometimes
called “normality” [2]).

1. Q ⇒ (¬3 (P ,Q) = ¬ P)
2. Q ∧ S ⇒ ((P ,Q) ∧3 (R,S ) = P ∧ R)
3. Q ∧ S ⇒ ((P ,Q) ∨3 (R,S ) = P ∨ R)

�

This justifies UTP with three-valued logic, and allows the definition of theories
in which definedness is elegantly available as a predicate, rather than appealing
to obtrusive comparison with an explicitly designated undefined value. What is
more, we will not introduce definite description or partial functions as funda-
mental concepts, so that it remains impossible to manufacture undefined values
at the level of the logical calculus of the UTP. But we can build logics that do
have these features, as we show later.

3 First-Order Theories

With the groundwork laid for a three-valued logical landscape in UTP, in this
section we develop theories for various types of three-valued logics encountered
in the literature and in the field. These theories depart from the classical world of
UTP by making use of the lifted domain U

⊥ and the lifted set of boolean values
B
⊥, soundly admitting the undefined value ⊥ through the approach presented

above.
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3.1 Contexts for First-Order Theories

We introduce a context theory CXT for our first-order theories, which will all
be subtheories of it. The alphabet of CXT contains two observational variables:

PShape : P((U⊥)∗ �→ B
⊥)

FShape : P((U⊥)∗ �→ U
⊥)

and its signature is:

=3 : U
⊥ × U

⊥ → B
⊥

¬3 : B
⊥ → B

⊥

∨3 : B
⊥ × B

⊥ → B
⊥

∀3 : (U �→ B
⊥) → B

⊥

ι3 : (U �→ B
⊥) → U

⊥

PShape describes all the possible denotations for the predicate symbols of this
theory. Every denotation is a partial function from some number of parameters,
each of which could be drawn from U or could be undefined, to a boolean result,
which could also be undefined. The purpose of PShape is to constrain all the the-
ory’s predicate symbols in a uniform way. FShape does the same job as PShape,
except that it describes the possible denotations of function symbols. The op-
erators =3, ¬3 , and ∨3 give the syntax for equality, negation, and disjunction,
respectively. Since they operate over lifted domains, they allow the construction
of TVL predicates.

The ∀3 function takes as its argument a function U �→ B
⊥ that describes a

binding for the universal quantifier that characterises the predicate that must be
universally true. The function considers each element of its domain in turn and
assigns to it one of the three logical values. The ∀3 function takes this binding
function and decides whether the universally quantified predicate is true, false, or
undefined. Notice that the binding function ranges only over defined values. This
means that we are excluding logics where bound variables may be undefined, as
is the case in LCF [6].

The ι3 function also takes a binding function as its argument. It decides
whether this binding is a definite description of a value in U or is undefined.
Once more, the bound variable must be everywhere defined.

We add a single healthiness condition to constrain the definite description
function:

CXT (P) = P ∧ (∀ f : U �→ B
⊥ • f 	= ∅ ⇒ ι3(f ) ∈ dom f ⊥)

This requires that the definite description of a non-empty binding function re-
turns either an undefined value or an element from the domain of the binding.
We require this result in Lemma 6, where we prove that theories are closed under
constructs over their signature.

Example 7 (Context). Consider a context with no predicate symbols and only
monadic and dyadic function symbols.

X1(P) = P ∧ (PShape = ∅) ∧ (FShape = (U⊥ ∪ (U⊥)2 �→ U
⊥))
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PShape and FShape are used to add type information: we use them to restrict
how predicate and function symbols behave, particularly, as we shall see later,
with respect to undefinedness. �

3.2 First-Order Theories

A first-order theory (FOT) is an enrichment of a particular context and acts
as its model. We add to the context six more alphabetical variables and three
healthiness conditions. The set of names A is partitioned into three sets: vari-
ables, predicate symbols, and function symbols.

〈Var ,Pred ,Fun〉 partition A

The set Dom : P U describes the domain of values for the first-order theory.
Finally, the rank function ρ : Pred∪Fun → N describes the number of parameters
that each predicate and function symbol can take.

The first healthiness condition requires that every variable is defined and has
a value drawn from Dom:

DV (P) = P ∧ (∀ v : Var • v ∈ Dom)

The second and third healthiness conditions require that every predicate and
function symbol ranges over arguments taken from Dom⊥ and produces results
in B

⊥ and U
⊥, respectively:

DP(P) = P ∧ (∀ p : Pred • p ∈ ((Dom⊥)ρ(p) → B
⊥) ∩ PShape)

DF (P) = P ∧ (∀ f : Fun • f ∈ ((Dom⊥)ρ(f ) → U
⊥) ∩ FShape)

Example 8 (First-order theory). Consider a theory T1 with context X1 that has
just a single function symbol for integer division:

T1(P) =
X1(P)
∧ Var = ∅
∧ Pred = ∅
∧ Fun = { / }
∧ Dom = N

∧ ρ = { / �→ 2}
∧ / ∈ (N⊥ × N

⊥ → N
⊥) ∩ FShape

�

3.3 Information-Theoretic Ordering

Our whole approach to unifying the treatment of undefinedness in different log-
ics is built on a rather flat information-theoretic ordering. The goal is to allow
for the comparison of logics that are more or less discriminant in the presence
of undefinedness. This means that the undefined value is considered to be worse
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than every other value; these other values are themselves incomparable with each
other in this sense. The notion is captured below.

Definition 5 (Information-theoretic ordering). The information-theoretic
ordering � is defined as follows.
Elements: for any set X with a, b ∈ X

a � b =̂ (a 	= ⊥) ⇒ (a = b)

Pointwise extension to tuples: for x , y ∈ X k

x � y =̂ ∀ i : 1 . . k • xi � yi

Pointwise extension to functions: for f , g ∈ X → Y

f � g =̂ (dom f = dom g) ∧ (∀ x : dom f • f (x ) � g(x ))

Comparing sets of functions: for A,B : P X , the Hoare preorder is defined:

A �H B =̂ ∀ a : A • ∃ b : B • a � b

�

These definitions are illustrated in the following set of examples.

Example 9 (Ordering).

1. On elements:

⊥ � 1
1 � 1

¬ (1 � 2)

2. On tuples:

(0,⊥, 2) � (0, 1, 2)
() � ()

(1, 2) � (1, 2)
¬ ((1, 2) � (2, 2))

3. On functions:

(λ x , y : N • ⊥�(y = 0)� x/y) � (λ x , y : N • 0�(y = 0)� x/y)
(λ n : N • ⊥�(n mod 2 = 0)�n) � (λ n : N • n)

4. On sets of functions:

{(λ x , y : N • ⊥�(y = 0)� x/y),
(λn : N • ⊥�(n mod 2 = 0)�n),
(λn : N • n)}

�H

{(λ x , y : N • 0�(y = 0)� x/y),
(λn : N • n)}

�
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We further generalise the ordering by lifting it to contexts.

Definition 6 (Ordering on contexts).

S �H T = ∀P : S; Q : T • P �H Q
where
P �H Q =

PShapeS �H PShapeT

∧ FShapeS �H FShapeT

∧ (=S) � (=T)
∧ (¬ S) � (¬ T)
∧ (∨S) � (∨T)
∧ (∀

S
) � (∀

T
)

∧ (ιS) � (ιT)

�

Intuitively it can be seen that all functions and predicates admissible in S are
less discriminant of the undefined value than those admissible in T . We say that
undefinedness is more contagious in S.

Example 10 (Subtheory). Consider X2 , a subtheory of X1 , where the following
holds:

∀ f : FShapeX1 • zero ◦ f ∈ FShapeX2

and where the total function zero is defined:

zero(x ) =̂ (0�(x = ⊥)� x )

All other components remain unchanged. Then PX1 �H PX2 , since

f � zero ◦ f
= (dom f = dom(zero ◦ f )) ∧ ∀ x : dom f • f (x ) � zero ◦ f (x )

and so we have FShapeX1 �H FShapeX2.
�

In the following sections, we introduce the three important notions of strictness,
definiteness, and monotonicity.

3.4 Strictness

The notion of strictness is a familiar one from the definition of programming
languages. A function f is strict if f (⊥) = ⊥, and it is usually used to denote
that a function loops forever or performs an illegal operation, such as division by
zero. Generally no distinction is made if the function in fact delivers a useable
result before this happens. We can interpret a strict function operationally as
one that always evaluates all of its arguments. A restricted notion considers
functions that are strict in one or more arguments.
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Definition 7 (Strict). Function f : (X⊥)ρ(f ) → Y ⊥ is strict if, whenever at
least one of its arguments is undefined, then the result is undefined:

strict(f ) = ∀ x : (X⊥)ρ(f ) • (∃ i : 1 . . ρ(f ) • (xi = ⊥)) ⇒ (f (x ) = ⊥)

�

Example 11 (Strict function). Suppose that ∗ is the standard multiplication
operator on natural numbers: ∗ : N × N → N. We can define a strict version
of the operator:

∗3 : N
⊥ × N

⊥ → N
⊥

x ∗3 y = ⊥�(x = ⊥) ∨ (y = ⊥)� x ∗ y

�

We can extend the notion of strictness to a context, where every predicate has
only strict denotations for its predicate and function symbols. We find it useful
to define a healthiness function strict() that is applied to a context (which of
course is a set of predicates).

Definition 8 (Strict contexts). We make a context T strict:

strict(T) = {P : T • strict(P) }
where strict(P) = ∃PShape0,FShape0 •

PShape = { p : PShape0 | strict(p) }
∧ FShape = { f : FShape0 | strict(f ) }
∧ P [PShape0,FShape0/PShape,FShape]

�
3.5 Definiteness

Definiteness is, in a sense, a dual notion to strictness. If a function is definite,
then it cannot manufacture undefinedness. That is, if the function produces an
undefined result, then it must have had an undefined argument.

Definition 9 (Definite). Function f : (X⊥)ρ(f ) → Y ⊥ is definite:

definite(f ) = ∀ x : (X⊥)ρ(f ) • (f (x ) = ⊥) ⇒ (∃ i : 1 . . ρ(f ) • (xi = ⊥))

�

Example 12 (Definite function). The function ∗3 above is definite. �

As for strictness, we define a healthiness function for contexts.

Definition 10 (Definite contexts). Making a context definite:

definite(T) = {P : T • definite(P) }
where definite(P) =

∃PShape0,FShape0 •
PShape = { p : PShape0 | definite(p) }
∧ FShape = { f : FShape0 | definite(f ) }
∧ P [PShape0,FShape0/PShape,FShape]

�
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3.6 Monotonicity

A monotonic function on ordered sets is one that preserves that order. In our
unifying theory, we are interested in defined-monotonic functions, that is, ones
that preserve the definedness ordering.

Definition 11 (Monotonic). Function f : (X⊥)ρ(f ) → Y ⊥ is monotonic:

monotonic(f ) = ∀ x1, x2 : (X⊥)ρ(f ) • x1 � x2 ⇒ f (x1) � f (x2)

�

Example 13 (Monotonic operator). The TVL negation operator ¬3 from Sect. 3
is monotonic:

¬3

true3 false3

⊥ ⊥
false3 true3

�

Here also it is convenient to define a predicate that is true if a context is mono-
tonic.

Definition 12 (Monotonic contexts). T is a monotonic context:

monotonic(T) = ∀P : T • monotonic(P)
where monotonic(P) =

(∀ p : PredT • monotonic(p))
∧ (∀ f : FunT • monotonic(f ))
∧ monotonic(=T)
∧ monotonic(¬ T)
∧ monotonic(∨T)
∧ monotonic(∀

T
)

∧ monotonic(ιT)

�

The following simple lemma is useful.

Lemma 4 (Strict monotonic). Every strict function is monotonic. �

3.7 Comparing First-Order Theories

In Definition 6, we lifted our information-theoretic ordering up to contexts; now
we lift it to first-order theories. This makes sense only if the two FOTs in question
have the same domain of values.

Definition 13 (Comparing FOTs). Comparing FOTs U and V: for P : U
and Q : V

P �H Q = DomU = DomV ∧ PredU �H PredV ∧ FunU �H FunV

�
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Using this definition, we can state an important lemma. If S and T are two
contexts, such that S is less defined than (or equal to) T , and we have a FOT
that models S , then there will also be a FOT that models T .

Lemma 5 (Models). Suppose that we have two CXTs S and T, where S �H T.
Suppose further that U is a FOT extending S. Then there is a FOT V extending
T such that U � V. �

The proof of this lemma is quite straightforward. The relationship between S
and T shows where undefined values in the former have been replaced by defined
values in the latter. This is used as a guide to construct an appropriate model.

Example 14 (Application of Models lemma). Suppose that we have two contexts
S and T . Suppose further that S has only a single monadic function symbol
inc : U

⊥ �→ U
⊥. Define a simple model U for S that instantiates inc as a rather

trivial increment operation on binary digits. This operation is easy to define on
the argument 0, it returns the result 1. It is undefined otherwise. The context
T , on the other hand produces only defined results inc : U

⊥ �→ U. There must
be a model V for T , such that U � V . This is easy to construct. The domain of
values has to be the same as for U . The inc can return an arbitrary value for any
argument that returns ⊥. Note that this makes it non-strict: it must produce a
defined value for the argument ⊥. All this is summarised in the following table:

S T
PShape ∅ ∅
FShape strict(U⊥ �→ U

⊥) U
⊥ �→ U

U V
Dom {0, 1} {0, 1}

ρ {inc �→ 1} {inc �→ 1}
A inc(⊥) = ⊥

inc(0) = 1
inc(1) = ⊥

inc(⊥) = 0
inc(0) = 1
inc(1) = 1

�

We state another important lemma about the closure of a FOT under the syntax
of expressions.

Lemma 6 (Expression consistency). Suppose that e is an expression over a
FOT U, then every U-healthy predicate P ensures:

P ⇒ e ∈ Dom⊥
U

�

This lemma is proved by syntactic induction.
A third important result is the following theorem that states that constructs

(expressions or predicates) are monotonic.



Unifying Theories of Undefinedness in UTP 15

Theorem 1 (Construct monotonicity). Suppose S �H T, that U extends S,
V extends T, and that either S or T is monotonic. Then, for any construct c,
we have

cU � cV

Proof (Construct monotonicity). The proof of the theorem is by induction on
the syntax of the construct c. To illustrate the proof, we consider only the second
induction case: application of a function symbol to actual parameters. This is
enough to demonstrate the role of monotonicity in one of the two contexts.

The induction hypothesis is that xS � xT.

Case 2.1: S is monotonic

(f (x ))U { interpretation }
= fU(xU) { hypothesis xU � xV + S monotonic, and so fU is monotonic }
� fU(xV) { assumption: PU � QV, and so FunU � FunV and so fU � fV }
� fV(xV) { interpretation }
= (f (x ))V

Case 2.2: T is monotonic

(f (x ))U { interpretation }
= fU(xU) { assumption: PS � PT }
� fV(xU) { hypothesis + V monotonic }
� fV(xV) { interpretation }
= (f (x ))V

�

4 Specific First-Order Theories

In this section we consider three different theories of logic with undefined-
ness: strict logic, McCarthy’s logic and Kleene’s logic. In our definitions, we
demonstrate the differences between these three; in our theorems, we demon-
strate the similarities.

4.1 Strict Logic

Strict logic treats undefinedness as extremely contagious: whenever an undefined
value appears in an expression or predicate, the overall construct collapses to
become undefined. As we saw in Definition 7, this is strictness. First of all, every
predicate in this theory is strict (see Definition 8). This means that PShape and
FShape both contain only strict denotations.

S1(P) = strict(P)
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Next, equality is strict:

(=s(x , y) =3 ⊥)�(x = ⊥) ∨ (y = ⊥)�(=s(x , y) =3 (x = y))

Recall Example 6 for an explanation of the definedness of this definition. If either
argument is undefined, then the equality is undefined: otherwise, strict equality
depends on the underlying UTP equality.

Definite description is strict:

(ιs(f ) = x )�⊥ /∈ ran f ∧ (dom(f � {true}) = {x})�(ιs(f ) = ⊥)

The argument to ιs is a function f that binds elements of its domain to one of
three truth values. If this binding is everywhere defined and there is only one
element of f ’s domain that satisfies f ’s characteristic predicate, then the definite
description is exactly this element. Otherwise, it is undefined.

The universal quantifier is strict. Once more, the argument to ∀
s

is a bind-
ing. If this binding is anywhere undefined, then the universal quantifier is itself
undefined. Otherwise, it depends on whether every element evaluates to true or
not.

(∀
s
(f ) =3 ⊥)�⊥ ∈ ran f �(∀

s
(f ) = (ran f =3 {true}))

Negation is strict and is modelled by the underlying strict UTP operator:

¬s(P) = ¬3 P

Similarly, disjunction is strict and is modelled by the underlying UTP strict
operator:

∨s (P ,Q) = P ∨3 Q

These are the two operators introduced in Sect. 2. Their definitions are perhaps
more appealing as truth tables.

¬ s

true3 false3

⊥ ⊥
false3 true3

∨s true3 ⊥ false3

true3 true3 ⊥ true3

⊥ ⊥ ⊥ ⊥
false3 true3 ⊥ false3

4.2 Kleene System

Kleene’s system makes the logical connectives as defined as possible, whilst still
being monotonic. So, every function is monotonic:

K1 (P) = P ∧ (∀ f : PShapek ∪ FShapek • monotonic(f ))

Equality and definite description are both strict:

(=k) = (=s)
(ιk) = (ιs)
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If the binding function f for the universal quantifier evaluates anywhere to false,
then this is enough information to constitute a counterexample, and so ∀

k
(f )

is also false. Otherwise, if it evaluates everywhere to true, then clearly it is
universally satisfied. Otherwise, it is undefined.

((∀
k
(f ) =3 false3)� false ∈ ran f �
((∀

k
(f ) =3 true3)�(ran f = {true})�(∀

k
(f ) =3 ⊥)))

Negation is strict:

¬k = ¬s

If either operand of a disjunction is true, then the disjunction is also true, re-
gardless of whether the other operand is defined or not. If both are false, then so
is the disjunction. Otherwise the disjunction is undefined. We end up with the
following refinement to the initial definition of strict disjunction.

((∨k(P ,Q) =3 true3)�(P =3 true3) ∨ (Q =3 true3)�
((∨k(P ,Q) =3 false3)�(P =3 false3) ∧ (Q =3 false3)�

(∨k(P ,Q) =3 ⊥)))

As usual, the truth table paints a clearer picture:

∨k true3 ⊥ false3

true3 true3 true3 true3

⊥ true3 ⊥ ⊥
false3 true3 ⊥ false3

4.3 McCarthy System

McCarthy’s system is very operational in flavour: it is assumed that there is an
interpreter working through the text of logical constructs from left to right. The
left-hand operand is evaluated first. The right-hand operand is evaluated only if
it is needed. Function and predicate symbols are monotonic, just like in Kleene’s
system.

M1 = K1

Equality and definite description are both strict.

(=m) = (=k)
ιm = ιk

In general, universal quantification in McCarthy’s system is just the same as in
Kleene’s system. However, Overture [8] uses a variant of McCarthy logic where
the binding function itself is executed from left to right, which distinguishes it
from Kleene logic.

∀
m

= ∀
k
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Negation is the same as Kleene’s.

¬m = ¬k

Finally, disjunction has a short-circuit semantics which induces the distinguish-
ing left-to-right evaluation order:

((∨m (P ,Q) =3 true3)�(P =3 true3) ∨ ((P =3 false3) ∧ (Q =3 true3))�
((∨m (P ,Q) =3 ⊥)�(P =3 ⊥) ∨ (Q =3 ⊥)�(∨m (P ,Q) =3 false3)))

The truth table has the following structure:

∨m true3 ⊥ false3

true3 true3 true3 true3

⊥ ⊥ ⊥ ⊥
false3 true3 ⊥ false3

All three systems are monotonic.

Lemma 7 (Strict-Kleene-McCarthy monotonicity).

1. The strict system is monotonic
2. The Kleene system is monotonic
3. The McCarthy system is monotonic

�

There exists an interesting definedness order between the three systems. It shows
the relative resilience of the three logics to undefinedness:

Lemma 8 (Strict-McCarthy-Kleene ordering). For ρs = ρm = ρk and
Doms = Domm = Domk we have

FOTs � FOTm � FOTk

�

This lemma allows us to relate theorems proved in the different systems. Suppose
that P is a theorem in the strict system; then it would also be true in the
McCarthy and Kleene systems. More concretely, if we prove a theorem in VDM
in Overture, then it would still be a theorem if we interpreted it in LPF, since
the former is a McCarthy system and the latter is a Kleene system.

5 Guard Systems

We turn our attention now to the proof obligations that different systems can
use to demonstrate the definedness of constructs.
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5.1 Validity

Suppose T is a CXT and P is a predicate. Then define P is valid in T :

T |= P =̂ for all U ,T �H U implies PU = true

That is, any construct that is valid in a given logical system will also be valid in
a logical system that refines it in the definedness order.

5.2 Guards

Suppose that c is a construct. Then predicate G is a guard for c in CXTT

(denoted by G �T c) iff for every FOT V that extends CXTT we have

1. (GV 	= ⊥)
2. (GV = true) ⇒ (cV 	= ⊥)

G is a tight guard if we also have

3. (GV = false) ⇒ (cV = ⊥)

Now we are ready to state and prove our main result, which is due originally to
Saaltink.

Theorem 2 (Main theorem (Saaltink)). Suppose that CXTS � CXTT, that
either one is monotonic, and that G is a guard for P in CXTS. Then, if (T |= G)
and (T |= P), we have that (S |= P). �

The significance of this result is in trading theorems between provers, as shown
in the next example.

Example 15 (Trading theorems). Suppose that we want a proof of P in Larsen’s
VDM, as implemented in the Overture toolset [8], but the only theorem prover
we have is for Jones’s VDM. Overture uses a form of McCarthy’s logic, whilst
Jones’s VDM uses LPF, a form of Kleene’s logic. By Lemma 8, we have Overture
� LPF. We could find a guard G for P in Overture (McCarthy logic), and then
can carry out the proof of both G and P in Jones’s logic (Kleene). Our Main
Theorem then tells us that P is a theorem in Overture. All proofs are carried
out in the stronger logic, but hold in weaker one. Perhaps more interestingly, a
similar theorem holds for using classical logic instead of Kleene’s logic. In this
way, classical logic could be used to prove results in Overture. �

Proof (Main theorem).

1. From the Models Lemma 5, since CXTS � CXTT and FOTU extends CXTS ,
then there exists FOTV that extends CXTT and for which we have FOTU �
FOTV .

2. Since G �S P , know that (GU 	= ⊥) ∧ ((GU = true) ⇒ (PU 	= ⊥)) from the
definition of a guard.
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3. Now, from construct monotonicity (since S is monotonic) we have that
GU � GV . But because (GU 	= ⊥), it must be that (GU = GV ). We are
assuming that G is valid in T (T |= G), so we have that (GV = true) and
so (GU = true). Now, from the definition of a guard, we must have that
(PU 	= ⊥)

4. We now repeat this argument for P . By construct monotonicity, (S mono-
tonic), we have PU � PV , therefore (PU = PV ). But T |= P , so (PV = true)
and therefore (PU = true).

�
5.3 Definedness Guards

Suppose that e is an expression. We use the notation De to define the circum-
stances under which e is defined.
Example 16 (Definedness guard)

D((x + y)/z ) = z 	= 0

�

The definedness guards that we are interested in are all first order; that is, the
guards themselves are always defined.
Definition 14 (First-order definedness). The definedness function is first
order:

D1(DΦ) =̂ DΦ ∧ D(DΦ)

�

If we define a system of guards for every construct in our language, then we can
use this system inductively to generate verification conditions for the definedness
of all constructs. In the next section we demonstrate this for the case of the
definite McCarthy system.

5.4 Guards for Definite McCarthy System

Assuming we have a theory T of McCarthy logic, we can develop the following
recursive definedness conditions for constructs c of that theory.

Dmx = true
Dm(p(e)) = ∀ i : 1 . . ρ(P) • Dmei
Dm(f (e)) = ∀ i : 1 . . ρ(f ) • Dmei

Dm(e1 = e2) = Dme1 ∧ Dme2

Dm(¬ P) = DmP
Dm(P ∨ Q) = DmP ∧ (P ∨ DmQ)
Dm(∀ x • P) = ∀ x • DmP
Dm(ιx • P) = (∀ x • DmP) ∧ (∃1 x • P)

A theorem follows immediately, which has a Kleene analogue and (trivially) a
strict analogue as well.
Theorem 3 (McCarthy guards). If c is a construct, then Dm(c) is a guard
for c in definite(T), and a tight guard for c in strict(definite(T)). �
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No analogue of this theorem exists for indefinite systems, but the partitioning
of predicates into TVL pairs (P ,Q) allows us to extract the guard condition
immediately from Q . The advantage is that Q may be tailored to be either a
plain or a tight guard, depending on the application.

6 Conclusions

The notion of undefinedness has played a prominent role in the study of logic,
and continues to be a relevant research problem. With tools emerging that em-
ploy more than simple classical logic, and their use being adopted for verification
in the heterogeneous landscape of systems of systems, a treatment of the rela-
tionships among different logics becomes necessary. In this section we summarize
our specific contributions and prospects in this direction.

6.1 Contributions

We have presented a unifying theory for monotonic partial logics with unde-
fined expressions, as a foundation for exploring the formal basis for migrat-
ing theorems between tools and methods that employ different types of logic
and treatments of undefinedness. The aim is to support the forthcoming COM-
PASS Modelling Language. Based closely on Saaltink’s original work, but cast
in Hoare & He’s Unifying Theories of Programming, we have demonstrated an
information-theoretic unification for three logical systems: strict, McCarthy, and
Kleene. Other approaches are possible and are under investigation.

6.2 Future Work

In this paper we have told only part of the story, since CML is not restricted
to definite constructs: precondition predicates are needed for handling indefinite
expressions and predicates. Our next step will be to extend our work in this way,
thus developing a comprehensive treatment of undefined expressions for CML.

Fortunately we see many avenues of research starting here. Can our unify-
ing theory cope with every treatment of undefinedness, such as (i) the Alloy
paradigm, where there is no function application; (ii) the logic of LCF, where
quantifiers also range over undefined values; (iii) second-order undefinedness;
(iv) logics with more than three values. These are all important contemporary
logical treatments of undefinedness that can not be excluded from such an uni-
fication effort.
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Abstract. The combination of probabilistic and nondeterministic choice
in program calculi is a notoriously tricky problem, and one with a long
history. We present a simple functional programming approach to this
challenge, based on algebraic theories of computational effects. We make
use of the powerful abstraction facilities of modern functional languages,
to introduce the choice operations as a little embedded domain-specific
language rather than having to define a language extension; we rely on
referential transparency, to justify straightforward equational reasoning
about program behaviour.

1 Introduction

Hoare and He’s Unifying Theories of Programming [17] presents a coherent
model of a number of programming idioms—imperative, nondeterministic, con-
current, reactive, higher-order, and so on. The approach follows Hoare’s own
earlier “programs are predicates” [16] slogan: rather than separate domains of
syntax and semantics, and a translation from one to the other, there is just one
domain of discourse; programming notations like sequencing and choice are de-
fined as operations on predicates like composition and disjunction, rather than
being interpreted as such. The result is a simple and streamlined framework for
reasoning about programs, without the clumsiness and noise imposed by ubiq-
uitous semantic brackets.

Another streamlined vehicle for reasoning about programs is provided by
pure functional programming. This too allows one to elide the distinction be-
tween syntax and semantics, on account of referential transparency: familiar
equational reasoning works as well for expressions denoting programs as it does
for expressions denoting numbers. Again, we do not need two distinct domains
of discourse—a programming notation in which to express computations, and
a logic in which to reason about them—because the same language works for
both.

Functional programming also conveniently allows one to discuss a variety of
programming idioms within the same unifying framework. Moggi [36] showed
how “notions of computation” such as mutable state, exceptions, nondetermin-
ism, and probability can be elegantly encapsulated as monads, and safely em-
bedded within an otherwise pure functional language. It may seem that purity
rules out interesting computational effects, such as update, exception handling,
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and choice; after all, if coin denotes the computation modelling a fair coin toss—
a 50–50 choice between heads and tails—then do not two occurrences of coin
denote possibly different outcomes, thereby destroying referential transparency?
The apparent problem is eliminated by distinguishing between types that rep-
resent values, such as ‘true’ or ‘heads’, and those that represent computations,
such as coin . Two occurrences of coin denote the same computation, and it is
the executions of these computations that may yield different outcomes. Each
class of effects, such as probabilistic choice, determines a notion of computation,
in this case of probability distributions; coin denotes not a single outcome, but a
distribution of outcomes. The operations and axioms of a notion of computation
can be precisely and elegantly abstracted via the categorical notion of a monad.
Equivalently, the operations and axioms can be captured as an algebraic theory,
and equational reasoning can be safely conducted within such a theory.

One advantage that functional programming offers over the “programs are
predicates” approach is the facilities it provides for defining new abstractions
‘within the language’, rather than requiring one to step out into the meta-
language in order to define a new feature. Our chosen language Haskell does not
itself provide constructs for specific notions of computation such as probabilis-
tic choice, but that is no obstacle: instead, it provides the necessary abstraction
mechanisms that allow us to define those constructs ourselves. Rather than a
new language ‘probabilistic Haskell’, we can define probabilistic choice within
standard Haskell; one might characterize the result as an embedded domain-
specific language for probabilistic programming.

We believe that the UTP and FP communities have much in common, and
perhaps much to learn from each other. In this paper, we make a step towards
bringing the two communities closer together, by way of unifying theories of
nondeterminism and probability expressed in a functional style. The paper is
intended as a tutorial and a manifesto, rather than presenting any new results.
We start with a brief introduction to pure functional programming and to the use
of monads to capture computational effects (Section 2)—readers familiar with
functional programming in general, and Haskell in particular, may wish to skip
this section. We then introduce theories of nondeterministic choice (Section 3)
and probabilistic choice (Section 4) separately, and in combination (Section 5).
Section 6 presents an extended example based on the infamous Monty Hall
problem. In Section 7 we consider the possibility of failure and the effect of
exceptions, which gives rise to conditionally probabilistic computations; and in
Section 8 we look at recursive definitions. Section 9 concludes with a discussion
of related work and some thoughts about future developments.

2 Effectful Functional Programming

Pure functional programming languages constitute a very appealing model of
computation: simple, due to abstraction from the details of computer architec-
ture, yet still expressive, allowing concise specification of complex constructions.
These strengths derive from referentially transparency: as far as the semantics is
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concerned, the only relevant aspect of any expression is the value it denotes. In
particular, expressions have no side-effects; so any subexpression can be replaced
by any other having the same value, without affecting the surrounding context.
Expressions therefore behave like ordinary high-school algebra, and reasoning
about programs can be conducted using ordinary high-school equational reason-
ing, substituting one subexpression for another with equal value. Consequently,
one’s language for programming is simultaneously one’s language for reason-
ing about those programs—there is no need to step outside the programming
notation to a different logical domain such as predicate calculus.

2.1 Functional Programming

The essence of functional programming is that programs are equations and func-
tions are values. For example, the squaring function on integers might be defined:

square :: Int → Int
square x = x × x

or equivalently

square :: Int → Int
square = λx → x × x

As well as specifying an action, namely how to compute squares, this program
also serves as an equation: for any x , the expression square x is equivalent to the
expression x × x , and either may be replaced anywhere by the other (taking due
care over bound variables); similarly, the identifier square itself may be replaced
by the lambda expression λx → x × x denoting the squaring function. Likewise,
function composition (◦) is a value, just like any other, albeit a higher-order one:

(◦) :: (b → c)→ (a → b)→ a → c
(f ◦ g) x = f (g x )

Functional programmers restrict themselves to manipulating expressions, rather
than statements. So in order to regain the expressivity provided by statements
in imperative languages, functional programming must provide an enriched ex-
pression language. Higher-order operators like functional composition go some
way towards this. Another powerful tool is to allow complex data structures to
be denotable as expressions; for example, the datatype [a ] of lists of elements
each of type a might be defined as follows:

data [a ] = [ ] | a : [a ]

With this device, a data structure such as the list of three elements 1 : (2 : (3 : [ ]))
can be denoted as an expression; in contrast, in conventional imperative lan-
guages, complex data structures such as lists and trees can generally be con-
structed only via a sequence of side-effecting assignment statements acting on a
mutable heap.
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Functions over such data structures can conveniently be defined by pattern
matching. For example, here is the standard function foldr to fold a list to a
value:

foldr :: (a → b → b)→ b → [a ]→ b
foldr f e [ ] = e
foldr f e (x : xs) = f x (foldr f e xs)

This is another higher-order function, since it takes a function as its first argu-
ment. One instance of foldr is the function sum that sums a list of integers:

sum :: [Int ]→ Int
sum = foldr (+) 0

Another is the higher-order function map that applies an argument f to each
element of a list:

map :: (a → b)→ ([a ]→ [b ])
map g = foldr (λx ys → g x : ys) [ ]

Lists are a polymorphic datatype; the polymorphism is expressed precisely by
map. Polymorphic functions such as reverse :: [a ] → [a ] are those that depend
only on the structure of a datatype, oblivious to the elements; their polymor-
phism is expressed precisely by a corresponding naturality property [52], stating
that they commute with the appropriate map function—for example,

reverse ◦map f = map f ◦ reverse

2.2 Equational Reasoning

Referential transparency means that plain ordinary equational reasoning suffices
for proving properties of programs. For example, one very important property
of the foldr function is the fusion law :

h ◦ foldr f e = foldr f ′ e ′ ⇐= h (f x y) = f ′ x (h y) ∧ h e = e ′

One way of proving this law is by induction over lists (which we assume here to
be finite). For the base case, we have:

h (foldr f e [ ])
= [[ definition of foldr ]]
h e

= [[ assumption ]]
e ′

= [[ definition of foldr ]]
foldr f ′ e ′ [ ]
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For the inductive step, we assume that the result holds on xs , and calculate for
x : xs as follows:

h (foldr f e (x : xs))
= [[ definition of foldr ]]
h (f x (foldr f e xs))

= [[ assumption ]]
f ′ x (h (foldr f e xs))

= [[ inductive hypothesis ]]
f ′ x (foldr f ′ e ′ xs)

= [[ definition of foldr ]]
foldr f ′ e ′ (x : xs)

A simple consequence of the fusion law is the fold–map fusion law, when h is
itself an instance of foldr , and follows a map over lists, which is another instance
of foldr . In this case, the fusion result

foldr f e ◦map g = foldr f ′ e ′

follows from the fusion conditions

foldr f e (g x : ys) = f ′ x (foldr f e ys) ∧ foldr f e [ ] = e ′

These in turn are satisfied if e ′ = e and f ′ = λx z → f (g x ) z = f ◦ g; that is,

foldr f e ◦map g = foldr (f ◦ g) e

For most of the paper we will work within SET—that is, with total functions
between sets. In this setting, arbitrary recursive definitions do not in general
admit canonical solutions; we restrict attention to well-founded recursions such
as that in foldr , and correspondingly to finite data structures. We only have to
relax this restriction in Section 8, moving to CPO—continuous functions between
complete partial orders.

2.3 Effects in Pure Functional Languages

Equational reasoning about pure computations is all very well, but to be use-
ful, computations must have some observable effects. It may seem at first that
equational reasoning must then be abandoned. After all, as soon as one al-
lows state-mutating statements such as x := x + 1 in a programming language,
the high-school algebra approach to reasoning no longer works; and similarly
for other classes of effect, such as input/output, nondeterminism, probabilistic
choice, exceptions, and so on.

Moggi [36] famously showed how the well-understood concept of a monad
from category theory provides exactly the right interface to an abstraction of
computational effects such as mutable state, allowing the development of an
elegant yet expressive computational lambda calculus for modelling programming
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languages with effects. Wadler [54] popularized this approach within functional
programming, and it quickly became the technology of choice for integrating
effects into lazy functional programming languages such as Haskell.

With the monadic approach to computational effects, purely functional ex-
pressions are classifed into two kinds: those that denote values like integers and
strings, and those that denote computations with possible effects. However, both
are represented as pure data—the computations are represented as pure terms
in a certain abstract syntax, rather than some kind of impure action. When the
run-time system of a language encounters the first kind of expression, it evaluates
it and prints it out; when it encounters the second kind, it evaluates it, interprets
the term as the effectful computation it encodes, and executes that computa-
tion. Consequently, evaluation remains pure, and any impurities are quarantined
within the run-time system.

The abstract syntax needed to capture effectful computations is very simple.
There is a general framework consisting of just two operators, which in a sense
model the compositional structure of computations; then for each class of effect,
there is an extension to the general framework to model the primitives specific
to that class. (In fact, the general framework and a specific extension together
represent the free term algebra for the signature corresponding to the primitives
for a particular class of effects. It is no coincidence that monads turn out to be
useful for modelling such term algebras, because they were developed precisely
as a categorical expression of universal algebra [30]. We return to this point in
Section 9.3.)

The general framework can be expressed as a type class in Haskell:

class Monad m where
return :: a → m a
(>>=) ::m a → (a → m b)→ m b
fmap :: (a → b)→ (m a → m b)
join ::m (m a)→ m a

p >>= k = join (fmap k p)
join pp = pp >>= id
fmap f p = p >>= (return ◦ f )

This declaration states that the type constructor (that is, operation on types)
m is in the type class Monad if we can provide suitable definitions of the four
methods return, (>>=), fmap, and join , with the given types. In fact, the methods
are interdefinable, and some have default definitions in terms of others; it is
necessary to define return, but it suffices to define either (>>=) or both fmap
and join . (We have chosen this presentation allowing alternative definitions for
flexibility; it is different from but equivalent to the Monad class in the Haskell
standard libraries.)

Technically, the methods should also satisfy some laws, although these cannot
be stated in the Haskell type class declaration:

return x >>= k = k x -- left unit
p >>= return = p -- right unit
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(p >>= h) >>= k = p >>= (λx → h x >>= k) -- associativity

fmap id = id -- map–identity
fmap (f ◦ g) = fmap f ◦ fmap g -- map–composition

join ◦ return = id -- left unit
join ◦ fmap return = id -- right unit
join ◦ fmap join = join ◦ join -- associativity

(Throughout the paper, we make the following naming conventions: p, q, r de-
note monadic terms or ‘programs’, h, k denote functions yielding monadic terms,
x , y, z denote polymorphic variables, a, b, c denote booleans, l ,m, n denote inte-
gers, and u, v ,w denote probabilities.) Informally, the type m a denotes compu-
tations that may have some effect, and that yield results of type a. The function
return lifts plain values into pure computations. The operator >>=, pronounced
‘bind’, acts as a kind of sequential composition; the second computation may
depend on the result returned by the first, and the overall result is the result of
the second. The first three laws can be seen as unit and associativity properties
of this form of sequential composition. The function join flattens a computation
that yields computations that yield results into a computation that yields results
directly, and the function fmap modifies each of the results of a computation;
together with return, these two give an alternative (equivalent) perspective on
sequential composition.

Two shorthands turn out to be quite convenient. We write skip for the pure
computation that returns the sole element () of the unit type, also written ():

skip :: Monad m ⇒ m ()
skip = return ()

and>> for the special case of >>= in which the second computation is independent
of the result returned by the first:

(>>) :: Monad m ⇒ m a → m b → m b
p >> q = p >>= (λ → q)

These two shorthands more obviously form analogues of the ‘skip’ and ‘sequential
composition’ operators of imperative programming languages. For example, with
these we can form the sequential composition of a sequence of unit-returning
computations, discarding all the unit results and returning unit overall. (This
is actually a type specialization of the corresponding function in the Haskell
standard library, but it is sufficient for our purposes.)

sequence ::Monad m ⇒ [m ()]→ m ()
sequence = foldr (>>) skip

This function reveals one of the beauties of pure and lazy functional program-
ming: if a useful control construct is missing from the language, it is usually
possible to define it as an ordinary value rather than having to extend the syntax
and the compiler. Another famous example is the conditional; if Haskell didn’t
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already provide the if ... then ... else... construct, something entirely equivalent
(except for the concrete syntax) could be defined—the same cannot be said of a
language providing only eager evaluation. And because conditional would be an
ordinary value, the ordinary principles of reasoning would apply; for example,
function application distributes leftwards and rightwards over conditional:

f (if b then x else y) = if b then f x else f y
(if b then f else g) x = if b then f x else g x

These laws can easily be verified by considering the two cases b = True and
b = False. (In fact, the first law as stated only holds in SET. Once one moves to
CPO, one also needs to consider the case that b is undefined; then the first law
only holds when f is strict. The second law is still unconditional, provided that
λx → ⊥ = ⊥; this is the case with flat function spaces, the usual presentation
in CPO, but not in fact in Haskell with the seq operator, which distinguishes
between ⊥ and λx → ⊥.) In particular, letting f be (>>=k) and (p>>=) in turn,
we deduce from the first law that composition distributes respectively leftwards
and rightwards over conditional:

(if b then p else q)>>= k = if b then p >>= k else q >>= k
p >>= (if b then k else k ′) = if b then p >>= k else p >>= k ′

(Again, these laws hold unconditionally in SET; in CPO, they require >>= to be
strict in its left and right argument, respectively.)

2.4 State

So much for the general framework; here is an extension to capture mutable
state—for simplicity, a single mutable value—as a class of effects. Just two addi-
tional operations are required: get , to read the state, and put , to update it. We
declare a subclass MonadState of Monad ; type constructor m is a member of the
class MonadState if it is a member of Monad and it supports the two additional
methods get and put . (To be precise, the subclass is MonadState s for some fixed
state type s , and it encompasses type constructors m that support mutable state
of type s ; the vertical bar precedes a ‘functional dependency’, indicating that m
determines s .)

class Monad m ⇒ MonadState s m | m → s where
get ::m s
put :: s → m ()

As with the two methods of the Monad interface, it is not sufficient simply to
provide implementations of get and put that have the right types—they should
also satisfy some laws:

get >>= λs → get >>= λs ′ → k s s ′ = get >>= λs → k s s -- get–get
get >>= put = skip -- get–put
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put s >> put s ′ = put s ′ -- put–put
put s >> get >>= λs ′ → k s ′ = put s >> k s -- put–get

Informally: two consecutive gets will read the same value twice; getting a value
then putting it back is has no effect; two consecutive puts are equivalent to just
the second one; and a get immediately after putting a value will yield that value.

For example, here is a simple expression denoting a computation on a mutable
integer state, which reads the current state, increments it, writes the new value
back, and then returns the parity of the original value.

incrodd ::MonadState Int m ⇒ m Bool
incrodd = get >>= (λn → put (n + 1)>>= (λ()→ return (odd n)))

There is an obvious simulation of mutable state in terms of state-transforming
functions. A computation that acts on a state of type s , and yields a result of
type a, can be represented as a function of type s → (a, s):

type State s a = s → (a, s)

Now, State s forms a type of computations, and so we should be able to make
it an instance of the type class Monad . To do so, for return a we use the state-
transforming function that yields x and leaves the state unchanged; fmap f
applies f to the output value without touching the output state; and join col-
lapses a state-transformer that yields a state-transformer by applying the output
state-transformer to the output state:

instance Monad (State s) where
return x = λs → (x , s)
fmap f p = λs → let (x , s ′) = p s in (f x , s ′)
join p = λs → let (p′, s ′) = p s in p′ s ′

The reader may enjoy deriving from this the corresponding definition

p >>= k = λs → let (x , s ′) = p s in k x s ′

of bind, which chains state transformations together. (For technical reasons, this
instance declaration is not quite in Haskell syntax: rather than a type synonym,
State ought to be a newtype or datatype, with a constructor and deconstructor.
But what is shown is morally correct.)

Of course, by design, State s supports the features of mutable state—get
yields a copy of the state, and put overwrites it:

instance MonadState s (State s) where
get = λs → (s , s)
put s ′ = λs → ((), s ′)

As it happens, the datatype State s is (isomorphic to) the free term algebra on
the MonadState s signature, modulo the four laws of get and put [42].
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2.5 Imperative Functional Programming

Wadler also observed [53] that the methods of the Monad interface are sufficient
to implement a notation based on the set comprehensions of Zermelo–Fraenkel
set theory. This too has found its way into Haskell, as the ‘do notation’ [25],
which is defined by translation into Monad methods as follows:

do {p} = p
do {x ← p ; qs } = p >>= λx → do {qs }
do {p ; qs } = p >> do {qs }
do {let decls ; qs } = let decls in do {qs }

In particular, instead of having to write functions (typically lambda expressions)
as the second argument of >>=, with the do notation we can write a generator
x ← p to bind a new variable x that is in scope in all subsequent qualifiers.
Using this notation, we can rewrite the incrodd program above more elegantly
as follows:

incrodd ::MonadState Int m ⇒ m Bool
incrodd = do {n ← get ; put (n + 1) ; return (odd n)}

The three monad laws appear in the do notation as follows:

do {x ← return e ; k x } = do {k e }
do {x ← p ; return x } = do {p}
do {y ← do {x ← p ; h x } ; k y } = do {x ← p ; y ← h x ; k y }

(where, implicitly in the third law, x is not free in k). The operators fmap and
join can be expressed in do notation like this:

fmap f p = do {x ← p ; return (f x )}
join pp = do {p ← pp ; x ← p ; return x }

Distribution of composition leftwards and rightwards over conditional looks like
this:

do {x ← if b then p else q ; k x } = if b then do {x ← p ; k x }
else do {x ← q ; k x }

do {x ← p ; if b then h x else k x } = if b then do {x ← p ; h x }
else do {x ← p ; k x }

(where, implicitly in the second law, x is not free in b). The four laws of state
become:

do {s ← get ; s ′ ← get ; k s s ′} = do {s ← get ; k s s } -- get–get
do {s ← get ; put s } = do {skip } -- get–put
do {put s ; put s ′} = do {put s ′} -- put–put
do {put s ; s ′ ← get ; k s ′} = do {put s ; k s } -- put–get

The do notation yields a natural imperative programming style, as we hope the
rest of this paper demonstrates; indeed, it has been said that “Haskell is the
world’s finest imperative programming language” [40].
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2.6 An Example of Simple Monadic Equational Reasoning

To summarize: the Monad class provides an interface for sequencing computa-
tions; one should program to that interface where appropriate, making subclasses
of Monad for each specific class of effects; and the interface ought to specify
laws as well as signatures for its methods. We have recently argued [10] that
this perspective on monads is precisely the right one for equational reasoning
about effectful programs—contrary to popular opinion, the impurities of com-
putational effects offer no insurmountable obstacles to program calculation, at
least when they are properly encapsulated. To illustrate this claim, we present
a simple example of reasoning with stateful computations.

Here is a simple stateful computation to add an integer argument to an integer
state:

add ::MonadState Int m ⇒ Int → m ()
add n = do {m ← get ; put (m + n)}

We claim that adding each element of a list in turn to an integer state is the
same as adding their sum all at once:

addAll = add ◦ sum

where addAll turns each integer in a list into an integer-adding computation,
then sequences this list of computations:

addAll ::MonadState Int m ⇒ [Int ]→ m ()
addAll = sequence ◦map add

Because sequence is an instance of foldr , we can combine the two phases of
addAll into one, using the fold–map fusion law:

addAll = foldr (λn p → do {add n ; p}) skip

Now, since sum and addAll are both instances of foldr , the claim is an instance
of the standard fusion law, and follows from two simple fusion properties:

add 0 = skip
add (n + n ′) = do {add n ; add n ′}

For the first of these, we have:

add 0
= [[ add ]]
do { l ← get ; put (l + 0)}

= [[ arithmetic ]]
do { l ← get ; put l }

= [[ get–put ]]
skip
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And for the second, starting from the more complicated right-hand side, we have:

do {add n ; add n ′}
= [[ add ]]
do {do {m ← get ; put (m + n)} ; do { l ← get ; put (l + n ′)}}

= [[ associativity ]]
do {m ← get ; put (m + n) ; l ← get ; put (l + n ′)}

= [[ put–get ]]
do {m ← get ; put (m + n) ; put ((m + n) + n ′)}

= [[ associativity of addition ]]
do {m ← get ; put (m + n) ; put (m + (n + n ′))}

= [[ put–put ]]
do {m ← get ; put (m + (n + n ′))}

= [[ add ]]
add (n + n ′)

which completes the proof.
Of course, sum and addAll are two rather special functions, both being in-

stances of the easily manipulated foldr pattern. However, that is incidental to
our point: if we had picked an example involving a more complicated pattern of
computation, then the reasoning would certainly have been more complicated
too, but it would still have been plain ordinary equational reasoning—reasoning
about the computational effects would pose no more of a problem.

3 An Algebraic Theory of Nondeterministic Choice

Let us now turn to a different class of effects. Nondeterministic programs are
characterized by the ability to choose between multiple results. We model this
as a subclass of Monad .

class Monad m ⇒ MonadAlt m where
(�) ::m a → m a → m a

We stipulate that � is associative, commutative, and idempotent:

(p � q) � r = p � (q � r)
p � q = q � p
p � p = p

and that composition distributes leftwards over it:

do {x ← (p � q) ; k x } = do {x ← p ; k x } � do {x ← q ; k x }
However, we do not insist that composition distributes rightwards over choice:
in general,

do {x ← p ; (h x � k x )} 	= do {x ← p ; h x } � do {x ← p ; k x }
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This is in order to accommodate both angelic and demonic interpretations of
nondeterminism. One distinction between the two is in terms of the number
of branches of a choice that an implementation might choose to follow: angelic
choice will explore both branches, whereas demonic choice is free to pick either
branch but will not follow both. In particular, consider the case that computa-
tion p has some non-idempotent effects in addition to nondeterminism, such as
writing output. If � is angelic, then these effects happen once on the left-hand
side of the equation, and twice on the right; whereas if � is demonic, just one
branch of each choice will be picked, and the two sides of the equation are indeed
equal.

On account of the associativity, commutativity, and idempotence of choice, the
essential—indeed, the initial, in the categorical sense—semantics of a nondeter-
ministic computation amounts to a finite nonempty set of alternative results. In
other words, we can simulate a computation that exploits just the effect of choice
as a function that returns a finite nonempty set of results. A pure computation
amounts to returning a singleton set, fmap f applies f to each element of a set,
and a computation of computations can be flattened by taking the union of the
resulting set of sets. (The operational behaviour of an implementation will differ,
depending on the interpretation of choice: an angelic implementation will deliver
the whole set of results; a demonic implementation will pick one arbitrarily. But
either way, the semantics is represented as a set-valued function.)

A convenient approximate implementation of finite nonempty sets is in terms
of nonempty lists—‘approximate’ in the sense that we consider two lists to rep-
resent the same set of results if they are equal up to reordering and duplication
of elements.

instance Monad [ ] where
return a = [a ]
fmap f p = [f x | x ← p ]
join = concat

Naturally, we implement the nondeterministic choice as concatenation:

instance MonadAlt [ ] where
(�) = (++)

In some other contexts, we might not want such a strong collection of laws for
nondeterministic choice. For example, if we are modelling search strategies [14],
we might want to treat as significant the order in which results are found, and so
we might want to drop the commutativity axiom; and to keep track of nesting
depth in search trees [47], we might want to drop associativity.

3.1 Example: Subsequences of a List

As an example of reasoning with nondeterministic programs, here is a rendition
in terms of choice of the function subs that nondeterministically chooses a sub-
sequence of a list. Of course, interpreted in the nonempty-list implementation of
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nondeterminism, subs returns the usual nonempty list of lists; but this definition
supports other implementations of nondeterminism too, such as bags and sets.

subs ::MonadAlt m ⇒ [a ]→ m [a ]
subs [ ] = return [ ]
subs (x : xs) = fmap (x :) xss � xss where xss = subs xs

Informally, the empty list has a unique subsequence, the empty list itself; and a
subsequence of a non-empty list x : xs can be obtained by either prefixing x to
or excluding it from a subsequence xss of xs.

Here is a simple property that we might wish to prove—that subs distributes
over list concatenation:

subs (xs ++ ys) = do {us ← subs xs ; vs ← subs ys ; return (us ++ vs)}

Using the laws of nondeterminism, this property of an effectful program can be
proved by induction over xs, using plain ordinary equational reasoning. For the
base case xs = [ ], we have:

do {us ← subs [ ] ; vs ← subs ys ; return (us ++ vs)}
= [[ definition of subs ]]
do {us ← return [ ] ; vs ← subs ys ; return (us ++ vs)}

= [[ left unit ]]
do {vs ← subs ys ; return ([ ] ++ vs)}

= [[ definition of ++ ]]
do {vs ← subs ys ; return vs }

= [[ right unit ]]
subs ys

= [[ by assumption, xs = [ ] ]]
subs (xs ++ ys)

For the inductive step, we assume the result for xs, and calculate for x : xs as
follows:

do {us ← subs (x : xs) ; vs ← subs ys ; return (us ++ vs)}
= [[ definition of subs ; let xss = subs xs ]]
do {us ← (fmap (x :) xss � xss) ; vs ← subs ys ; return (us ++ vs)}

= [[ composition distributes leftwards over � ]]
do {us ← fmap (x :) xss ; vs ← subs ys ; return (us ++ vs)} �
do {us ← xss ; vs ← subs ys ; return (us ++ vs)}

= [[ fmap and do notation ]]
do {us ′ ← xss ; vs ← subs ys ; return ((x : us ′) ++ vs)} �
do {us ← xss ; vs ← subs ys ; return (us ++ vs)}

= [[ definition of ++; do notation ]]
fmap (x :) (do {us ′ ← xss ; vs ← subs ys ; return (us ′ ++ vs)}) �
do {us ← xss ; vs ← subs ys ; return (us ++ vs)}

= [[ by assumption, xss = subs xs ; inductive hypothesis, twice ]]
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fmap (x :) (subs (xs ++ ys)) � subs (xs ++ ys)
= [[ definition of subs ]]
subs (x : (xs ++ ys))

= [[ definition of ++ ]]
subs ((x : xs) ++ ys)

Again, plain ordinary equational reasoning suffices, using programs as equations
together with the axioms of nondeterminism.

4 An Algebraic Theory of Probabilistic Choice

Here is another class of effects. Probabilistic computations are characterized by
the ability to make a probabilistic choice between alternatives.We suppose a type
Prob of probabilities (say, the rationals in the closed unit interval), and define
a Monad subclass for computations drawing from finitely supported probability
distributions, that is, distributions in which only a finite number of elements
have positive probabilities:

class Monad m ⇒ MonadProb m where
choice :: Prob → m a → m a → m a

The idea is that choice w p q behaves as p with probability w and as q with
probability 1−w . From now on, we will write ‘w ’ for 1−w , and following Hoare’s
convention [15], write choice in infix notation, ‘p �w � q’, because this makes the
laws more legible. We have two identity laws:

p � 0 � q = q
p � 1 � q = p

a quasi-commutativity law:

p � w � q = q � w � p

idempotence:

p � w � p = p

and quasi-associativity:

p � u � (q � v � r) = (p � w � q) � x � r ⇐= u = w × x ∧ x = u × v

As informal justification for quasi-associativity, observe that the likelihoods of
p, q, r on the left are u, u × v , u × v , and on the right are w × x ,w × x , x , and a
little algebra shows that these are pairwise equal, given the premise.

As a final pair of laws, we stipulate that bind distributes both leftwards and
rightwards over choice:

do {x ← (p � w � q) ; k x } = do {x ← p ; k x } � w � do {x ← q ; k x }
do {x ← p ; (h x � w � k x ) = do {x ← p ; h x } � w � do {x ← p ; k x }
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where, in the second law, x is assumed not to occur free in w . (In contrast to
nondeterministic choice, we have both distributivities here. This means that, op-
erationally, an implementation may take either branch of a probabilistic choice,
but not both—like demonic choice, and unlike angelic.)

For example, a fair coin can be modelled as a 50–50 probabilistic choice be-
tween heads and tails (represented as booleans here):

coin ::MonadProb m ⇒ m Bool
coin = return True � 1/2 � return False

One obvious representation to pick as an implementation of MonadProb uses
probability-weighted lists of values; thus, coin might be represented as the list
[(True, 1/2), (False,

1/2)].

type Dist a = [(a,Prob)] -- weights sum to 1

A pure computation is represented as a point distribution, mapping applies a
function to each element, and a distribution of distributions can be flattened by
taking a kind of weighted cartesian product:

instance Monad Dist where
return x = [(x , 1)]
fmap f p = [(f x ,w) | (x ,w)← p ]
join p = concat [scale w x | (x ,w)← p ]

where

scale :: Prob → [(a,Prob)]→ [(a,Prob)]
scale v p = [(x , v × w) | (x ,w)← p ]

On the other hand, � � is a kind of weighted sum:

instance MonadProb Dist where
p � w � q = scale w p ++ scale w q

Probability-weighted lists are not quite the initial model, because the identity,
idempotence, quasi-commutativity, and quasi-associativity laws of � � do not
hold. In fact, the initial model of the specification consists of finite mappings
from elements to probabilities, collected from these weighted lists in the obvious
way—at least, for an element type in the type class Eq , supporting the equality
operation needed by finite maps, we can define:

collect :: Eq a ⇒ Dist a → (a → Prob)
collect p y = sum [w | (x ,w)← p, x y ]

That is, equivalences on Dist ought to be taken modulo permutations, zero-
weighted elements, and repeated elements (whose weights should be added).
Nevertheless, the datatype Dist itself provides a convenient approximation to
the initial model.
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Quasi-associativity can make the arithmetic of weights rather complicated,
especially when choices are nested. Inspired by Morgan’s distribution compre-
hensions [38], we sometimes make use of a flat notation for nested choices. For
example, instead of (p � 1/2 � q) � 1/3 � (r � 1/4 � s) we allow ourselves to write
〈p@1/6, q@

1/6, r@
1/6, s@

1/2〉, multiplying out all the probabilities.

4.1 Example: Uniform Distributions

Extending the fair coin example, we might define uniform distributions

uniform ::MonadProb m ⇒ [a ]→ m a -- nonempty list
uniform [x ] = return x
uniform (x : xs) = return x � 1/length (x :xs) � uniform xs

so that coin = uniform [True,False ], and uniform [1, 2, 3] = return 1 � 1/3 �
(return 2 � 1/2 � return 3).

Choices drawn from uniform distributions but never used are free of side-
effects, and so can be discarded: it is a straightforward proof by induction over
xs that

do {x ← uniform xs ; p} = p

when p does not depend on x . Similarly, uniform distributes over concatenation:

uniform (xs ++ ys) = uniform xs � m/m+n � uniform ys

where m = length xs and n = length ys . As a consequence of these proper-
ties of uniform , we can conclude that consecutive choices drawn from uniform
distributions are independent; that is, choosing consecutively from two uniform
distributions is equivalent to choosing in one step from their cartesian product:

do {x ← uniform xs ; y ← uniform ys ; return (x , y)} = uniform (cp xs ys)

where

cp :: [a ]→ [b ]→ [(a, b)]
cp xs ys = [(x , y) | x ← xs , y ← ys ]

We can prove this property by induction over xs, using equational reasoning
with the laws of MonadProb . For the base case of singleton lists, we have:

uniform (cp [x ] ys)
= [[ definition of cp ]]
uniform [(z , y) | z ← [x ], y ← ys ]

= [[ comprehensions: [f z | z ← [x ], p ] = [f x | p ] ]]
uniform [(x , y) | y ← ys ]

= [[ comprehensions: [f x | x ← xs ] = map f xs ]]
uniform (map (λy → (x , y)) ys)
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= [[ naturality: uniform ◦map f = fmap f ◦ uniform ]]
do {y ← uniform ys ; return (x , y)}

= [[ left unit ]]
do {z ← return x ; y ← uniform ys ; return (z , y)}

= [[ definition of uniform ]]
do {z ← uniform [x ] ; y ← uniform ys ; return (z , y)}

and for the inductive step, assuming the result for xs, we have:

uniform (cp (x : xs) ys)

= [[ definition of cp ]]

uniform [(z , y) | z ← x : xs , y ← ys ]

= [[ comprehensions distribute over ++ ]]

uniform ([(z , y) | z ← [x ], y ← ys ] ++ [(z , y) | z ← xs , y ← ys ])

= [[ as above; definition of cp ]]

uniform (map (λy → (x , y)) ys ++ cp xs ys)

= [[ uniform distributes over ++; let n = length ys, l = length (cp xs ys) ]]

uniform (map (λy → (x , y)) ys) � n/n+l � uniform (cp xs ys)

= [[ let m = length xs, so l = m × n ]]

uniform (map (λy → (x , y)) ys) � 1/1+m � uniform (cp xs ys)

= [[ base case, inductive hypothesis ]]

do {z ← uniform [x ] ; y ← uniform ys ; return (z , y)} � 1/1+m �

do {z ← uniform xs ; y ← uniform ys ; return (z , y)}
= [[ composition distributes leftwards over � � ]]

do {z ← uniform [x ] � 1/1+m � uniform xs ; y ← uniform ys ; return (z , y)}
= [[ definition of uniform ]]

do {z ← uniform (x : xs) ; y ← uniform ys ; return (z , y)}

The second step uses the property

[f z | z ← zs ++ zs ′, p ] = [f z | z ← zs , p ] ++ [f z | z ← zs ′, p ]

Yet again, simple equational reasoning suffices.

5 Combining Algebraic Theories

We have seen algebraic theories separately characterizing nondeterministic and
probabilistic choice. It is relatively straightforward to combine these two separate
algebraic theories into one integrated theory incorporating both nondeterminis-
tic and probabilistic choice. No new operations are required; the operations of
MonadAlt and MonadProb together suffice:

class (MonadAlt m,MonadProb m)⇒ MonadAltProb m

This Haskell type class declaration is complete; it has an empty collection of ad-
ditional methods, beyond those inherited from the superclasses MonadAlt and
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MonadProb. Implicitly, the laws of MonadAlt and MonadProb are also inher-
ited; the only effort required is to consider the behaviour of interactions between
the methods of the two superclasses. We stipulate that probabilistic choice dis-
tributes over nondeterministic:

p � w � (q � r) = (p � w � q) � (p � w � r)

(This is not an uncontentious decision—some authors [55,39] impose the oppo-
site distributivity, of nondeterministic choice over probabilistic; we discuss this
further in Sections 5.2 and 9.1.)

It turns out that there is a simple implementation of the combined interface,
as finite non-empty sets of distributions. Again, we approximate finite sets by
lists, for simplicity:

type Dists a = [Dist a ] -- nonempty lists

But the justification for this implementation is a little involved. The composition
as functors F G of two monads F ,G does not necessarily yield a monad: it is
straightforward to provide appropriate definitions of return and fmap, but not
always possible to define join (or, equivalently, >>=). However, it is a standard
result [2] that the composite F G does form a monad if there is a ‘distributive law
of G over F ’—that is, a natural transformation swap : G F → F G satisfying
certain coherence conditions. Given swap, it is also straightforward to define
join : F G F G → F F G G → F G; that join satisfies the monad laws then
follows from the coherence conditions on swap.

In programming terms, we have to provide a distributive law of distributions
over lists

swap ::Dist [a ]→ [Dist a ] -- nonempty lists

satisfying the following four coherence conditions:

swap ◦ fmapD returnL = returnL

swap ◦ returnD = fmapL returnD

swap ◦ fmapD joinL = joinL ◦ fmapL swap ◦ swap
swap ◦ joinD = fmapL joinD ◦ swap ◦ fmapD swap

(where, to be explicit about typing, we have subscripted each use of return, fmap,
and join with L or D to indicate the list and distribution instances, respectively).
Then we can declare that the composite datatype Dists forms a monad, following
the standard construction [2]:

instance Monad Dists where
return x = return (return x )
fmap f p = fmap (fmap f ) p
join pp = fmap join (join (map swap pp))

A suitable definition of swap is as follows:
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swap = foldr 1 pick ◦map split where
split (xs,w) = [[(x ,w)] | x ← xs ]
pick xds yds = [xd ++ yd | xd ← xds , yd ← yds ]

(Here, foldr 1 is a variant of foldr for non-empty lists, taking only a binary op-
erator and no starting value.) Informally, swap takes a distribution of nondeter-
ministic choices to a nondeterministic choice of distributions, multiplying out all
the possibilities; for example,

swap ([([1, 2], 1/3), ([3, 4],
2/3)]) = [[(1, 1/3), (3,

2/3)], [(1,
1/3), (4,

2/3)],
[(2, 1/3), (3,

2/3)], [(2,
1/3), (4,

2/3)]]

The composite monad Dists inherits MonadAlt and MonadProb functionality
straightforwardly from its two component parts:

instance MonadAlt Dists where
p � q = p ++ q

instance MonadProb Dists where
p � w � q = [xd � w � yd | xd ← p, yd ← q ]

It is therefore an instance of the integrated theory of nondeterministic and prob-
abilistic choice:

instance MonadAltProb Dists

Of course, we should check distributivity too; we return to this point in Sec-
tion 5.2 below.

5.1 Example: Mixing Choices

Analogous to the fair coin, here is a biased coin:

bcoin ::MonadProb m ⇒ Prob → m Bool
bcoinw = return True � w � return False

(we write the parameter w as a subscript) and an arbitrary nondeterministic
choice between booleans:

arb ::MonadAlt m ⇒ m Bool
arb = return True � return False

And here are two programs that each make an arbitrary choice and a probabilistic
choice and compare them, but do so in different orders [12,31]:

arbcoin , coinarb ::MonadAltProb m ⇒ Prob → m Bool
arbcoin w = do {a ← arb ; c ← bcoinw ; return (a c)}
coinarb w = do {c ← bcoinw ; a ← arb ; return (a c)}
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Intuitively, because the probabilistic choice happens ‘first’ in coinarb, the nonde-
terministic choice can depend on it; whereas in arbcoin , the probabilistic choice
happens ‘last’, so the nondeterministic choice cannot depend on it—and more-
over, the probabilistic choice cannot be affected by the nondeterministic either,
because it would not follow the distribution if it did so. We can justify this intu-
ition calculationally, using the equational theory of the two kinds of choice. On
the one hand, we have:

arbcoin w
= [[ definition of arbcoin ]]
do {a ← arb ; c ← bcoinw ; return (a c)}

= [[ definition of arb ]]
do {a ← (return True � return False) ; c ← bcoinw ; return (a c)}

= [[ composition distributes leftwards over � ]]
do {a ← return True ; c ← bcoinw ; return (a c)} �
do {a ← return False ; c ← bcoinw ; return (a c)}

= [[ left unit, booleans ]]
do {c ← bcoinw ; return c} � do {c ← bcoinw ; return (¬ c)}

= [[ right unit; definition of bcoinw ]]
bcoinw � bcoinw

On the other hand,

coinarb w
= [[ definition of coinarb ]]
do {c ← bcoinw ; a ← arb ; return (a c)}

= [[ definition of bcoinw ]]
do {c ← (return True � w � return False) ; a ← arb ; return (a c)}

= [[ composition distributes leftwards over � � ]]
do {c ← return True ; a ← arb ; return (a c)} � w �
do {c ← return False ; a ← arb ; return (a c)}

= [[ left unit, booleans ]]
do {a ← arb ; return a } � w � do {a ← arb ; return (¬ a)}

= [[ right unit; definition of arb ]]
(return True � return False) � w � (return False � return True)

= [[ commutativity of � ]]
(return True � return False) � w � (return True � return False)

= [[ idempotence of � � ]]
return True � return False

= [[ definition of arb ]]
arb

That is, the nondeterminism in arbcoin can be resolved only by choosing the
distribution provided by bcoinw itself, or its opposite—the nondeterministic
choice happens first, and depending on whether True or False is chosen, the
probabilistic choice has chance either w or w of matching it. In particular, if
w = 1/2, then the nondeterministic choice cannot influence the final outcome.
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But in coinarb, the probabilistic choice happens first, and the subsequent non-
deterministic choice has complete freedom to enforce any outcome.

5.2 Convex Closure

At the start of Section 5, we said that collections of distributions form a model
of the combined theory MonadAltProb. In fact, this is not quite right: strictly
speaking, there is no distributive law of distributions over sets [49], so the com-
position of the two monads is not a monad. Indeed, distribution of � � over �
and idempotence of � � together imply a convexity property:

p � q
= [[ idempotence of � �; arbitrary w ]]
(p � q) � w � (p � q)

= [[ distributing � � over � ]]
(p � w � p) � (q � w � p) � (p � w � q) � (q � w � q)

That is, if any two distributions p and q are possible outcomes, then so is any
convex combination p � w � q of them. As a consequence, we should consider
equivalence of collections of distributions up to convex closure. In particular, for
coinarb we have:

coinarb v
= [[ calculation in previous section ]]
return True � return False

= [[ � � distributes over � , as above; arbitrary w ]]
(return True � w � return False) � (return False � w � return False) �
(return True � w � return True) � (return False � w � return True)

= [[ commutativity and idempotence of � �; definition of bcoinw ]]
bcoinw � return False � return True � bcoinw

and so the possible outcomes of coinarb v include all convex combinations bcoinw

of the two extreme distributions return False and return True, which as it
happens encompasses all possible distributions of the booleans.

This convexity intuition is computationally reasonable, if one considers re-
peated executions of a computation such as bcoin1/2 � bcoin1/3. If the nondeter-
minism is always resolved in favour of the fair coin, the result will be heads half
the time; if the nondeterminism is always resolved in favour of the biased coin,
the result will be heads one third of the time. But if resolution of the nondeter-
minism alternates evenly between the two, the result will be heads five-twelfths
of the time. Over repeated executions, any distribution between the two extremes
can be obtained by some long-term strategy for resolving the nondeterminism;
but no strategy will yield a distribution outside the two extremes.

One might wonder why one distributive law (of probabilistic choice over non-
deterministic) should hold, while the other (of nondeterministic choice over prob-
abilistic) need not. It turns out that the latter does not match intuitions about
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behaviour; for example, adopting the opposite distributive law, it is straightfor-
ward to calculate as follows:

p � w � q
= [[ idempotence of � ]]
(p � w � q) � (p � w � q)

= [[ assuming that � distributes over � � ]]
((p � p) � w � (p � q)) � w � ((q � p) � w � (q � q))

= [[ idempotence and commutativity of � ]]
(p � w � (p � q)) � w � ((p � q) � w � q)

= [[ flattened choices, as a distribution comprehension ]]
〈p@w2, (p � q)@2w w , q@w2〉

= [[ rearranging and renesting choices ]]

(p � w2

/w2+w2 � q) � w2 + w2 � (p � q)

Informally, any straight probabilistic choice is inherently polluted with some
taint of nondeterministic choice too. For example, letting w = 1/2 and w = 1/3
respectively, we can conclude that

p � 1/2 � q = (p � 1/2 � q) �
1/2 � (p � q)

p � 1/3 � q = (p � 1/5 � q) �
5/9 � (p � q)

This seems quite an unfortunate consequence, and so we do not require that
nondeterministic choice distributes over probabilistic.

6 Monty Hall

As an extended example, we turn to the so-called Monty Hall Problem [45], which
famously caused a controversy following its discussion in Marilyn vos Savant’s
column in Parade magazine in 1990 [50]. Vos Savant described the problem as
follows, quoting a letter from a reader, Craig F. Whitaker:

Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say
No. 1, and the host, who knows what’s behind the doors, opens another
door, say No. 3, which has a goat. He then says to you, “Do you want to
pick door No. 2?” Is it to your advantage to switch your choice?

Implicit in the above statement, the car is equally likely to be behind each of the
three doors, the car is the prize and the goats are booby prizes, the host always
opens a door, which always differs from the one you pick and always reveals a
goat, and you always get the option to switch.

We might model this as follows. There are three doors:

data Door = A | B | C
doors :: [Door ]
doors = [A,B ,C ]
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First, Monty hides the car behind one of the doors, chosen uniformly at random:

hide ::MonadProb m ⇒ m Door
hide = uniform doors

Second, you pick one of the doors, also uniformly at random:

pick ::MonadProb m ⇒ m Door
pick = uniform doors

Third, Monty teases you by opening one of the doors—not the one that hides
the car, nor the one you picked—to reveal a goat, choosing randomly among the
one or two doors available to him:

tease ::MonadProb m ⇒ Door → Door → m Door
tease h p = uniform (doors \\ [h, p ])

(Here, the expression xs \\ ys denotes the list of those elements of xs absent
from ys .) Fourth, Monty offers you the choice between two strategies—either to
switch to the door that is neither your original choice nor the opened one:

switch ::MonadProb m ⇒ Door → Door → m Door
switch p t = return (head (doors \\ [p, t ]))

or to stick with your original choice:

stick ::MonadProb m ⇒ Door → Door → m Door
stick p t = return p

In either case, you know p and t , but of course not h.
Here is the whole game, parametrized by your strategy, returning whether

you win the car:

monty ::MonadProb m ⇒ (Door → Door → m Door )→ m Bool
monty strategy

= do {h ← hide ; -- Monty hides the car behind door h
p ← pick ; -- you pick door p
t ← tease h p ; -- Monty teases you with door t (	= h, p)
s ← strategy p t ; -- you choose, based on p and t but not h
return (s h) -- you win iff your choice s equals h
}

We will show below that the switching strategy is twice as good as the sticking
strategy:

monty switch = bcoin2/3

monty stick = bcoin1/3

The key is the fact that separate uniform choices are independent:
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do {h ← hide ; p ← pick ; return (h, p)}
= [[ definitions of hide and pick ]]
do {h ← uniform doors ; p ← uniform doors ; return (h, p)}

= [[ independent choices ]]
uniform (cp doors doors)

and so we have

monty strategy = do {(h, p)← uniform (cp doors doors) ;
t ← tease h p ;
s ← strategy p t ;
return (s h)}

Naturally, the doors h and p independently chosen at random will match one
third of the time:

do {(h, p)← uniform (cp doors doors) ; return (p h)}
= [[ fmap and do notation ]]
do {b ← fmap (uncurry ( )) (uniform (cp doors doors)) ; return b}

= [[ right unit ]]
fmap (uncurry ( )) (uniform (cp doors doors))

= [[ naturality of uniform ]]
uniform (map (uncurry ( )) (cp doors doors))

= [[ definitions of doors , cp, ]]
uniform [True,False,False,False,True,False,False,False,True ]

= [[ simplifying: three Trues, six Falses ]]
uniform [True,False,False ]

= [[ definitions of uniform , bcoinw ]]
bcoin1/3

Therefore we calculate:

monty stick
= [[ definition of monty, independent uniform choices ]]
do {(h, p)← uniform (cp doors doors) ;

t ← tease h p ; s ← stick p t ; return (s h)}
= [[ definition of stick ]]
do {(h, p)← uniform (cp doors doors) ;

t ← tease h p ; s ← return p ; return (s h)}
= [[ left unit ]]
do {(h, p)← uniform (cp doors doors) ; t ← tease h p ; return (p h)}

= [[ t unused, and uniform side-effect-free, so tease can be eliminated ]]
do {(h, p)← uniform (cp doors doors) ; return (p h)}

= [[ matching choices, as above ]]
bcoin1/3

and



48 J. Gibbons

monty switch
= [[ definition of monty, independent uniform choices ]]
do {(h, p)← uniform (cp doors doors) ; t ← tease h p ;

s ← switch p t ; return (s h)}
= [[ definition of switch ]]
do {(h, p)← uniform (cp doors doors) ; t ← tease h p ;

s ← return (head (doors \\ [p, t ])) ; return (s h)}
= [[ left unit ]]
do {(h, p)← uniform (cp doors doors) ; t ← tease h p ;

return (h head (doors \\ [p, t ]))}
= [[ case analysis on h = p—see below ]]
do {(h, p)← uniform (cp doors doors) ;

if h p then return False else return True }
= [[ booleans ]]
do {(h, p)← uniform (cp doors doors) ; return (h 	= p)}

= [[ analogously, mismatching choices ]]
bcoin2/3

Now for the two branches of the case analysis. For the case h = p, we have:

do {t ← tease h p ; return (h head (doors \\ [p, t ]))}
= [[ using assumption h p ]]
do {t ← tease h p ; return (h head (doors \\ [h, t ]))}

= [[ h is not in doors \\ [h, t ] ]]
do {t ← tease h p ; return False }

= [[ t unused, and uniform side-effect-free ]]
return False

And for the case h 	= p, we have:

do {t ← tease h p ; return (h head (doors \\ [p, t ]))}
= [[ definition of tease ]]

do {t ← uniform (doors \\ [h, p ]) ; return (h head (doors \\ [p, t ]))}
= [[ h �= p, so doors \\ [h, p ] is a singleton; uniform [a ] = return a ]]

do {t ← return (head (doors \\ [h, p ])) ; return (h head (doors \\ [p, t ]))}
= [[ left unit ]]

do {let t = head (doors \\ [h, p ]) ; return (h head (doors \\ [p, t ]))}
= [[ h �= p, and t �= h, p; so t , h, p distinct ]]

do {let t = head (doors \\ [h, p ]) ; return (h h)}
= [[ t unused ]]

return True

So when you and Monty make uniform probabilistic choices according to the
rules of the game, switching wins two thirds of the time and sticking only one
third.
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6.1 Nondeterministic Monty

Perhaps a more faithful model of the Monty Hall problem is to allow Monty to
make nondeterministic rather than probabilistic choices [31]—nobody said that
Monty has to play fair. That is, Monty’s two moves in the game, hiding the
car and teasing you, involve a nondeterministic rather than probabilistic choice
among the available alternatives:

hiden ::MonadAlt m ⇒ m Door
hiden = arbitrary doors

teasen ::MonadAlt m ⇒ Door → Door → m Door
teasen h p = arbitrary (doors \\ [h, p ])

where

arbitrary ::MonadAlt m ⇒ [a ]→ m a
arbitrary = foldr 1 (�) ◦map return

Then we define the game just as before, but with Monty behaving nondetermin-
istically:

montyn ::MonadAltProb m ⇒ (Door → Door → m Door)→ m Bool
montyn strategy = do {h ← hiden ;

p ← pick ;
t ← teasen h p ;
s ← strategy p t ;
return (s h)}

As it happens, making this change has no effect on the outcome. The first
two choices—Monty’s choice of where to hide the car, and your initial choice
of door—can still be combined, because composition distributes leftwards over
nondeterministic choice:

do {h ← hiden ; p ← pick ; return (h, p)}
= [[ let k h = do {p ← pick ; return (h, p)} ]]
do {h ← hiden ; k h }

= [[ definition of hiden, arbitrary ]]
do {h ← (return A � return B � return C ) ; k h }

= [[ composition distributes leftwards over � ]]
do {h ← return A ; k h } � do {h ← return B ; k h } �
do {h ← return C ; k h }

= [[ left unit ]]
k A � k B � k C

= [[ definition of k ]]
do {p ← pick ; return (A, p)} � do {p ← pick ; return (B , p)} �
do {p ← pick ; return (C , p)}
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The remainder of the reasoning proceeds just as before. It is still the case that
doors h and p will match one third of the time, even though h is now chosen
nondeterministically rather than probabilistically. For brevity, let

try d = do {p ← pick ; return (d , p)}
Then we have

fmap (uncurry ( )) (try d)
= [[ definition of try; fmap and do notation ]]
do {p ← pick ; return (d p)}

= [[ definition of pick ]]
do {p ← 〈return A@1/3, return B@1/3, return C@1/3〉 ; return (d p)}

= [[ composition distributes leftwards over � �; right unit ]]
〈return (d A)@1/3, return (d B)@1/3, return (d C )@1/3〉

= [[ d :: Door , and so d is one of A,B ,C ]]
〈return True@1/3, return False@1/3, return False@1/3〉

= [[ definition of bcoinw ]]
bcoin1/3

and therefore

do {h ← hiden ; p ← pick ; return (h p)}
= [[ fmap and do notation ]]
fmap (uncurry ( )) (do {h ← hiden ; p ← pick ; return (h, p)})

= [[ combining first two choices, as above ]]
fmap (uncurry ( )) (try A � try B � try C )

= [[ naturality: fmap f (p � q) = fmap f p � fmap f q ]]
fmap (uncurry ( )) (try A) � fmap (uncurry ( )) (try B) �
fmap (uncurry ( )) (try C )

= [[ matching choices, above ]]
bcoin1/3 � bcoin1/3 � bcoin1/3

= [[ idempotence of � ]]
bcoin1/3

and the conclusion is still that

montyn switch = bcoin2/3

montyn stick = bcoin1/3

Combining two classes of effect—here, probability and nondeterminism—did not
make the reasoning any more difficult that in was with a single such class.

7 Failure Is an Option

Computations that may fail, and whose failures can be handled, are characterized
by two operations for throwing and catching exceptions:
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class Monad m ⇒ MonadExcept m where
throw ::m a
catch ::m a → m a → m a

For simplicity, we suppose that there is only a single exception, just as we as-
sumed a single updatable location for stateful computations; the model is easily
extended to cover multiple exceptions. The intuition is that throw is the com-
putation that immediately fails, and that p ‘catch‘ q represents the computation
that behaves like p, except if this fails, in which case it continues as the exception
handler q. (In Haskell, backquotes turn a prefix function into an infix operator;
so p ‘catch‘ q = catch p q.) We stipulate that throw is a left zero of composition,
so that a failure discards the subsequent part of a computation:

do {x ← throw ; k x } = throw

We do not stipulate that throw is a right zero of composition; that would require
that a failure also discards the preceding part of the computation, and so that
any effects of that part would have to be rolled back—quite a strong condition.
Neither do we stipulate that composition distributes over catch; in general,

do {x ← (p ‘catch‘ q) ; k x } 	= do {x ← p ; k x } ‘catch‘ do {x ← q ; k x }
because the right-hand side brings exceptions raised by the first k under the
influence of the handler q, whereas exceptions of k on the left are not handled.
We do stipulate that return is a left zero of catch, so that pure computations
never fail:

return x ‘catch‘ p = return x

Finally, throw and catch form a monoid:

p ‘catch‘ throw = p
throw ‘catch‘ p = p
p ‘catch‘ (q ‘catch‘ r) = (p ‘catch‘ q) ‘catch‘ r

That is: an exception handler that immediately propagates the exception has no
effect; failures are indeed caught and handled; and exception handlers can be
chained in sequence, with control passing along the chain as failures happen.

One obvious implementation of exceptions is via lifting:

data Maybe a = Just a | Nothing
Values are lifted into pure computations via Just and passed along by composi-
tion, whereas Nothing forms a left zero of composition:

instance Monad Maybe where
return x = Just x
Just x >>= k = k x
Nothing >>= k = Nothing
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Of course, Nothing represents failure; Just and Nothing partition computations
into entirely pure ones and entirely failing ones, which form a left zero and a left
unit of catch, respectively.

instance MonadExcept Maybe where
throw = Nothing
Just x ‘catch‘ q = Just x
Nothing ‘catch‘ q = q

The names Maybe , Just , and Nothing were coined by Spivey [46], and he gives
a number of examples of equational reasoning about term rewriting operations
that might fail. (In ML, the datatype analogous to Maybe a is written ′a option .)

7.1 Combining Probability with Exceptions

Just as we did for nondeterministic and probabilistic choice, we can quite easily
combine the theories of probability and exceptions. We simply combine the two
interfaces, adding no new operations:

class (MonadExcept m,MonadProb m)⇒ MonadProbExcept m

The laws of exceptions and of probability are inherited; the only effort required
is to consider the interaction between the two theories. In this case, we have one
additional distributivity law, which intuitively states that making a probabilistic
choice cannot of itself cause a failure, so catch distributes over it:

(p � w � q) ‘catch‘ r = (p ‘catch‘ r) � w � (q ‘catch‘ r)

The same representation works as for plain probability distributions, but now
we allow the weights to sum to less than one, and the list of weighted elements to
be empty—these are sometimes called subdistributions [31] or evaluations [20]:

weight :: Dist a → Prob
weight p = sum [w | (x ,w)← p ]

instance MonadExcept Dist where
throw = [ ]
p ‘catch‘ q = p ++ scale (1−weight p) (q)

instance MonadProbExcept Dist

Operationally, the exceptions are represented by the ‘missing’ bits of the distri-
bution; for example, the subdistribution [(True, 1/2), (False,

1/4)] has weight
3/4,

and represents a computation that fails the remaining 1/4 of the time. The cor-
rectness of this implementation depends on the congruences we have imposed on
distributions, specifically to ignore reordering and zero-weighted elements, and
to coalesce duplicates.

For example, here is an attempt to simulate the biased bcoin2/3 using two fair
coin tosses, motivated by Knuth and Yao’s trick [23] for simulating a fair die
with three coins:
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coins23 ::MonadProbExcept m ⇒ m Bool
coins23 = return True � 1/2 � (return False � 1/2 � throw)

We might illustrate the process as follows:

•
head
�����

��� tail

���
��

��
�

True •
head

����
��
� tail

���
���

��

False throw

This does indeed yield True exactly twice as often as False. However, a quarter
of the time it will fail to yield any result at all, and throw an exception instead;
so the attempt was not entirely successful. We will pick up this example again
in Section 8 below.

7.2 Forgetful Monty

Let us return to the purely probabilistic version of the Monty Hall game, but
this time suppose that Monty is becoming increasingly forgetful in his old age—
he can never remember where he has hidden the car [45, Chapter 3]. Therefore,
when it comes to teasing you, he uniformly at random opens one of the two
doors different from the door you picked. Of course he might accidentally reveal
the car in doing so; we treat this as a failure in the protocol:

teasef ::MonadProbExcept m ⇒ Door → Door → m Door
teasef h p = do {t ← uniform (doors \\ [p ]) ;

if t h then throw else return t }
montyf ::MonadProbExcept m ⇒ (Door → Door → m Door)→ m Bool

montyf strategy = do {h ← hide ;

p ← pick ;
t ← teasef h p ;
s ← strategy p t ;
return (s h)}

Investigating teasef in the case that h = p, we have:

teasef h p
= [[ definition of teasef ]]
do {t ← uniform (doors \\ [p ]) ; if t h then throw else return t }

= [[ h = p, so h is not in doors \\ [p ] and hence t 	= h ]]
do {t ← uniform (doors \\ [p ]) ; return t }

= [[ right unit ]]
uniform (doors \\ [p ])

—so if you happen to pick the car initially, Monty cannot accidentally reveal
it. In the case that h 	= p, let d = head (doors \\ [h, p ]), so that h, p, d are all
distinct; then we have:
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teasef h p

= [[ definition of teasef ]]

do {t ← uniform (doors \\ [p ]) ; if t h then throw else return t }
= [[ by assumption, doors \\ [p ] = [h, d ] ]]

do {t ← uniform [h, d ] ; if t h then throw else return t }
= [[ definition of uniform ]]

do {t ← return h � 1/2 � return d ; if t h then throw else return t }
= [[ composition distributes leftwards over � � ]]

do {t ← return h ; if t h then throw else return t } � 1/2 �

do {t ← return d ; if t h then throw else return t }
= [[ left unit ]]

(if h h then throw else return h) � 1/2 � (if d h then throw else return d)

= [[ by assumption, d �= h; conditionals ]]

throw � 1/2 � return d

—that is, if you initially picked a goat, Monty has a 50–50 chance of accidentally
revealing the car. Putting these together, we have:

teasef h p = if h p then uniform (doors \\ [p ])
else (throw � 1/2 � return (head (doors \\ [h, p ])))

Clearly, in the ‘else’ case, teasef is no longer necessarily side-effect-free—even
if its result is not used, it cannot be discarded, because it might fail—and so
the calculations for the purely probabilistic version of the game do not apply.
Instead, we have:

montyf stick

= [[ definition of montyf ]]

do {(h, p)← uniform (cp doors doors) ;

t ← teasef h p ; s ← stick p t ; return (s h)}
= [[ definition of stick ; left unit ]]

do {(h, p)← uniform (cp doors doors) ; t ← teasef h p ; return (p h)}
= [[ case analysis in teasef , as above; let d = head (doors \\ [h, p ]) ]]

do {(h, p)← uniform (cp doors doors) ;

t ← if h p then uniform (doors \\ [p ]) else (throw � 1/2 � return d) ;

return (p h)}
= [[ conditionals ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then do {t ← uniform (doors \\ [p ]) ; return (p h)}
else do {t ← throw � 1/2 � return d ; return (p h)}}

= [[ first t is unused and uniform is side-effect-free; p h = True ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then return True

else do {t ← throw � 1/2 � return d ; return (p h)}}
= [[ composition distributes over � � ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then return True
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else do {t ← throw ; return False } � 1/2 �

do {t ← return d ; return False }}
= [[ throw is a left zero of composition, and return a left unit ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then return True else throw � 1/2 � return False }
= [[ matching choices, as in Section 6 ]]

do {b ← bcoin1/3 ; if b then return True else throw � 1/2 � return False }
= [[ composition distributes over � � ]]

do {b ← return True ;

if b then return True else throw � 1/2 � return False } � 1/3 �

do {b ← return False ;

if b then return True else throw � 1/2 � return False }
= [[ left unit; conditionals ]]

return True � 1/3 � (throw � 1/2 � return False)

= [[ flattening choices ]]

〈True@1/3, throw@1/3,False@
1/3〉

On the other hand:

montyf switch

= [[ definition of montyf ]]

do {(h, p)← uniform (cp doors doors) ; t ← teasef h p ;

s ← switch p t ; return (s h)}
= [[ definition of switch ]]

do {(h, p)← uniform (cp doors doors) ; t ← teasef h p ;

s ← return (head (doors \\ [p, t ])) ; return (s h)}
= [[ left unit ]]

do {(h, p)← uniform (cp doors doors) ; t ← teasef h p ;

return (h head (doors \\ [p, t ]))}
= [[ case analysis in teasef , as above; let d = head (doors \\ [h, p ]) ]]

do {(h, p)← uniform (cp doors doors) ;

t ← if h p then uniform (doors \\ [p ]) else throw � 1/2 � return d ;

return (h head (doors \\ [p, t ]))}
= [[ composition distributes leftwards over conditional ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then do {t ← uniform (doors \\ [p ]) ;
return (h head (doors \\ [p, t ]))}

else do {t ← throw � 1/2 � return d ;

return (h head (doors \\ [p, t ]))}}
= [[ in then branch, h = p, so h is not in doors \\ [p, t ] ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then do {t ← uniform (doors \\ [p ]) ; return False }
else do {t ← throw � 1/2 � return d ;

return (h head (doors \\ [p, t ]))}}
= [[ composition distributes over � � ]]

do {(h, p)← uniform (cp doors doors) ;
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if h p then do {t ← uniform (doors \\ [p ]) ; return False }
else do {t ← throw ; return (h head (doors \\ [p, t ]))} � 1/2 �

do {t ← return d ; return (h head (doors \\ [p, t ]))}}
= [[ in then branch, t is unused and uniform is side-effect-free ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then return False

else do {t ← throw ; return (h head (doors \\ [p, t ]))} � 1/2 �

do {t ← return d ; return (h head (doors \\ [p, t ]))}}
= [[ throw is left zero, return is left unit ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then return False

else throw � 1/2 � (return (h head (doors \\ [p, d ])))}
= [[ h, p, d are distinct, so head (doors \\ [p, d ]) = h ]]

do {(h, p)← uniform (cp doors doors) ;

if h p then return False else throw � 1/2 � (return True)}
= [[ matching choices ]]

do {b ← bcoin1/3 ; if b then return False else throw � 1/2 � return True }
= [[ composition distributes over � � ]]

do {b ← return True ;

if b then return False else throw � 1/2 � return True } � 1/3 �

do {b ← return False ;

if b then return False else throw � 1/2 � return True }
= [[ left unit; conditionals ]]

return False � 1/3 � (throw � 1/2 � return True)

= [[ flattening choices ]]

〈False@1/3, throw@1/3,True@
1/3〉

So, somewhat surprisingly, both the sticking and switching strategies are equiva-
lent in the face of Monty’s forgetfulness: with either one, you have equal chances
of winning, losing, or of the game being aborted.

montyf stick = montyf switch = 〈True@1/3,False@
1/3, throw@1/3〉

7.3 Conditional Probability

We have so far presented the combination of probability and exceptions as mod-
elling computations that make probabilistic choices but that might fail. An al-
ternative reading is in terms of conditional probability. In probability theory, the
conditional probability P (A | B) is the probability of event A occurring, given
that event B is known to have occurred; it is defined to be the probability of
both events A and B occurring, divided by the probability of B alone:

P (A |B) =
P (A ∧ B)

P (B)

Operationally, a subdistribution p with weight w > 0 represents the distribution
of outcomes drawn from the normalized distribution scale (1/w ) p, conditioned by
the non-occurrence of the outcomes outside the support of p.



Unifying Theories of Programming with Monads 57

normalize :: Dist a → Dist a

normalize p = scale (1/weight p) p

For example, the subdistribution

coins23 = [(True , 1/2), (False,
1/4)]

from Section 7.1 has weight 3/4, and so represents the distribution of outcomes

[(True , 1/2 ÷ 3/4 = 2/3), (False,
1/4 ÷ 3/4 = 1/3)] = bcoin2/3

given that one does not toss two tails—so the attempt to simulate the biased
bcoin2/3 using two fair coin tosses was not so far off after all. Similarly, one
could say that playing against forgetful Monty using either the switching or
the sticking strategy yields a 50–50 chance of winning, assuming that Monty
successfully bluffs his way through his amnesia.

As a more extended example, consider the canonical ‘wet grass’ Bayesian
reasoning problem [21]. Suppose that with probability 3/10 it is raining; and when
it rains, with probability 9/10 it does so heavily enough to make the grass wet.
Also, there is a lawn sprinker, operating with probability 1/2; when this operates,
with probability 8/10 it has high enough water pressure to make the grass wet.
Finally, with probability 1/10 the grass is wet for some other unknown reason.

rain ::MonadProb m ⇒ m Bool

rain = bcoin3/10

sprinkler ::MonadProb m ⇒ m Bool

sprinkler = bcoin1/2

grassWet ::MonadProb m ⇒ Bool → Bool → m Bool

grassWet r s = do {x ← bcoin9/10 ; y ← bcoin8/10 ; z ← bcoin1/10 ;

return ((x ∧ r) ∨ (y ∧ s) ∨ z)}

What is the probability that it is raining, given that the grass is observed to be
wet?

experiment ::MonadProbExcept m ⇒ m Bool

experiment = do {r ← rain ; s ← sprinkler ; g ← grassWet r s ;

if g then return r else throw }

We simply return whether it is raining, conditioned on whether the grass is wet:

normalize experiment = [(False, 1610/3029), (True,
1419/3029)]

—that is, it is raining with probability 1419/3029 
 0.47.
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8 Recursion

It is very tempting to write recursive programs in the style we have shown above.
For example, here is a simple Markov model of the coins23 attempt in Section 7.1:

•
head

�����
��� tail

���
��

��
�

True •
head

����
��
�

tail
��

False

This depicts a process that recurses instead of failing. We can represent it sym-
bolically with a recursive definition:

thirds ::MonadProbExcept m ⇒ m Bool

thirds = coins23 ‘catch ‘ thirds

In fact, we can inline the exception and its handler, on account of the various
laws of � �: for any p,

coins23 ‘catch ‘ p

= [[ definition of coins23 ]]

(return True � 1/2 � (return False � 1/2 � throw )) ‘catch ‘ p

= [[ catch distributes over � �, twice ]]

(return True ‘catch ‘ p) � 1/2 �

((return False ‘catch ‘ p) � 1/2 � (throw ‘catch ‘ p))

= [[ return is left zero of catch, and throw is left unit ]]

return True � 1/2 � (return False � 1/2 � p)

So we could have defined instead

thirds ::MonadProb m ⇒ m Bool

thirds = return True � 1/2 � (return False � 1/2 � thirds)

Note that this definition can be given a more specific type, because it no longer
exploits the ability to fail.

8.1 Recursive Definitions

But what might the semantics of such a recursive definition be? Up until now,
we have implicitly assumed a setting of sets and total functions, in which there
is no guarantee that an arbitrary recursive definition has a canonical solution.
And indeed, with the implementation ofMonadProb in terms of finite probability-
weighted lists from Section 4, the recursive equation defining thirds has no solu-
tion.

The usual response to this problem is to switch the setting from total functions
between sets to continuous functions between complete partial orders; then all
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recursive definitions have a least solution. In this case, the least solution to the
recursive definition of thirds above is the infinite probability-weighted list

[(True , 1/2), (False ,
1/4), (True,

1/8), (False,
1/16), (True,

1/32), (False,
1/64), ... ]

One might see this as a reasonable representation of bcoin2/3: the weights of fi-
nite initial segments of the list converge to one; and two thirds of the weight is
associated with True, one third with False. Moreover, if one samples from this
distribution in the obvious way, with probability 1 one obtains an appropriate
result—only in the measure-zero situation in which one tries to sample the dis-
tribution at precisely 1.0 does the computation not terminate. In fact, one can
show that bcoin2/3 is a solution to the same recursive equation as thirds:

return True � 1/2 � (return False � 1/2 � bcoin2/3)

= [[ definition of bcoinw ]]

return True � 1/2 � (return False � 1/2 � (return True � 2/3 � return False))

= [[ flattening choices ]]

〈return True@1/2, return False@1/4, return True@1/6, return False@1/12〉
= [[ combining collisions ]]

〈return True@2/3, return False@1/3〉
= [[ definition of bcoinw ]]

bcoin2/3

However, the nice behaviour in this case is a happy accident of the rather spe-
cial form of the recursive definition. Had we written the ostensibly equivalent
definition

thirds = (thirds � 1/2 � return False) � 1/2 � return True

instead, the least solution would be ⊥, the least-defined element in the infor-
mation ordering, because the definition of � � on weighted lists is strict in its
left argument. In fact, the codatatype of possibly-infinite, possibly-partial lists
fails to satisfy all the necessary axioms: choice is not quasi-commutative when
it involves undefined arguments, because lists are left-biased.

8.2 A Free Monad for Choice

As we have seen, one obvious implementation of MonadProb uses probability-
weighted lists of values; thus, coin is represented as [(True , 1/2), (False,

1/2)]. How-
ever, an arguably more natural representation is in terms of the free monad—
‘more natural’ in the sense that it arises directly from the signature of the � �

operation:

data DistT a = Return a | Choice Prob (DistT a) (DistT a)

This being a free monad, return and bind have simple definitions arising from
substitution:
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instance Monad DistT where

return x = Return x

Return x >>= k = k x

Choice w p q >>= k = Choice w (p >>= k) (q >>= k)

and by design, � � is trivial to implement:

instance MonadProb DistT where

p � w � q = Choice w p q

Again, because this is the free monad, the monad laws necessarily hold—the left
unit law holds directly by construction, and the right unit and associativity laws
are easily shown by induction over the structure of the left-hand argument. This
is not quite the initial model of the MonadProb specification, though, because the
remaining identity, idempotence, quasi-commutativity, and quasi-associativity
laws of � � do not hold. Indeed, as we have already argued, the initial model
of the specification consists of finite mappings from elements to probabilities,
collected from the choice tree in the obvious way:

collectT :: Eq a ⇒ DistT a → (a → Prob)

collectT (Return x) y = if x y then 1 else 0

collectT (Choice w p q) y = w × collectT p y + w × collectT q y

and equivalences on DistT ought again to be taken modulo permutations, zero-
weighted elements, and repeated elements (whose weights should be added).
Nevertheless, the datatype DistT itself provides another convenient approxima-
tion to the initial model.

In order to guarantee solutions to arbitrary recursive definitions, we still have
to accept the CPO setting rather than SET; so really, we mean to take the
codatatype interpretation of DistT , including partial and infinite values as well
as finite ones. (Which means that the inductive proofs of the monad laws need
to be strengthened to cover these cases.)

The benefit we gain from this extra complication is that the representation is
now symmetric, and so the laws of choice hold once more. Recursive definitions
like those of thirds above give rise to regular choice trees—possibly infinite trees,
but with only finitely many different subtrees. Moreover, � � is non-strict in both
arguments, so the semantics of a recursive definition is much less sensitive to the
precise form of the recursion.

But of course, not all recursive equations give productive solutions. Clearly
anything is a solution of the equation p = p, or, thanks to the monad laws, of
p = (p>>= return). Even some equations that completely determine proper choice
trees do not define productive sampling behaviour; for example,

p = p � 1 � return True

does not, and even when restricting attention to weights strictly between 0 and
1, one can try
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p = p � 1/2 � p

We believe that for a recursive definition to define a choice tree with a productive
interpretation as a sampling function, it is sufficient for recursive occurrences
of the variable being defined to be guarded by a � �, and for each such � � to
devote positive weight to a non-recursive subcomputation. But it seems rather
unsatisfactory to have to consider specific implementations such as DistT of the
MonadProb specification at all; in the rest of the paper, we have managed to
conduct all our reasoning in terms of the algebraic theory rather than one of its
models.

9 Conclusions

We have presented an approach to reasoning about effectful functional programs,
based on algebraic theories. We have focussed in this paper on the effects of non-
determinism and probabilism and their combination, together with exceptions,
but the approach works for any class of effects; our earlier paper [10] also dis-
cusses counting, generating fresh names, and mutable state. The problem of
reasoning about effectful programs was an open one in the functional program-
ming community before this point; for example, our work was inspired by a (not
formally published) paper concerning a relabelling operation on trees [18], which
resorted to unrolling the obvious stateful program into a pure state-transforming
function in order to conduct proofs.

One strength of functional programming is the support it provides for reason-

ing about programs: the techniques of simple high-school algebra suffice, and one
can reason directly in the language of programs, rather than having to extract
verification conditions from the programs and then reason indirectly in predi-
cate calculus. In that respect, functional programming has a similar motivation
to Hoare’s “programs are predicates” work [16], Hehner’s predicative program-
ming [13], and Morgan’s refinement calculus [37]—namely, to avoid where pos-
sible the distinction between syntax and semantics, and to remove the layer of
interpretation that translates from the former to the latter.

The other main strength of functional programming is the tools it provides for
abstraction: for defining ‘embedded domain-specific languages’ in terms of exist-
ing language constructs such as algebraic datatypes, higher-order functions, and
lazy evaluation, rather than having to step outside the existing language to de-
fine a new one. In that respect, functional programming goes beyond predicative
programming and refinement calculus, which are not expressive enough to sup-
port such extension. (Of course, embedded DSLs have their limits. Sometimes
a desired feature cannot be defined conveniently, if at all, in terms of existing
constructs; then the best approach is to relent and to define a new language after
all.)

9.1 Nondeterminism and Probability in Program Calculi

Dijkstra [6] argued forcefully for the centrality of nondeterminism in program-
ming calculi, particularly in order to support underspecification and program
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development by stepwise refinement. That impetus led to the development of
the refinement calculus [37,1] for imperative programming. However, although
functional programming is an excellent setting in which to calculate with pro-
grams, it does not support refinement well—for that, one has to make the step
from functions to relations [3]. Nevertheless, functional programming is very
convenient for manipulating collections of elements, and collection types such
as lists and sets form monads; so collection-oriented programming does fit the
functional view well [51,4].

Lawvere [27,11] pointed out that probability distributions form a monad too;
this has led to a slow but steady stream of functional programming approaches
to probabilistic computation [20,44,9,21]. Independently, Kozen [24] presented a
semantics for while-programs with probabilistic choice; but it was a longstand-
ing challenge to integrate this semantics with nondeterministic choice. There
was a flurry of work in the early 1990s addressing this issue within the pro-
cess algebra setting [55,29,39]. He et al. [12] used Jones’ probabilistic power-
domain construction to provide a semantics for a guarded command language
with both probabilistic and nondeterministic choice; in fact, they defined two
semantics—one like ours, in which, operationally speaking, demonic nondeter-
minism is resolved at run-time whenever a nondeterministic choice is executed,
and another in which nondeterminism is resolved at compile-time, but which
sacrifices idempotence of conditional. The first of He et al.’s semantics is the ba-
sis of the ‘demonic/probabilistic’ approach taken by Morgan [31]. Varacca [49],
citing a personal correspondence with Gordon Plotkin, shows that although the
composition of the powerset and probability distribution monads do not directly
form a monad, this is fixed by taking the convex closure—giving rise to essen-
tially the model we have in Section 5.2.

The combination of nondeterminism and probability and the selection of dis-
tributivity properties that we have presented here are not new; they are fairly
well established in work on program calculi [12,31,32,34]. Curiously, however,
not all authors settle on the same distributivity properties; some [55,39] have
nondeterministic choice distributing over probabilistic, the opposite of the ap-
proach we take. Choosing this law sacrifices the intuitively reasonable arbcoin

example; by the same line of reasoning as in Section 5.2, one can show under
this alternative distributivity regime that, for arbitrary w ,

arbcoin v = (arb � w � return False) � w � (return True � w � arb)

That is, with probability w2+w2 (independent of v !) the outcome is an arbitrary
choice, and otherwise it is determined probabilistically. Worse, having nondeter-
ministic choice distribute over probabilistic is inconsistent with idempotence—by
similar reasoning again, using idempotence and commutativity of � and of � �,
and distributivity of � over � �, one can show that

coin = coin � 1/2 � arb

which seems a most unwelcome property: even a fair coin can be subverted. One
might argue (as Mislove [35] does) that idempotence is a fundamental property
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of nondeterminism, and that this consequence for coin is untenable, and that
therefore the alternative distributivity property should be avoided.

Similarly, Deng et al. [5] show that taking the perspective of testing equiva-
lences on a probabilistic version of CSP—that is, attempting to distinguish two
CSP processes by exhibiting different outcomes when they are each run in par-
allel with a common test process—eliminates many of the otherwise reasonable
equivalences; in particular, they give counterexamples to either distributivity
property between nondeterministic (‘internal’) and probabilistic choice; how-
ever, distributivity of CSP’s ‘external’ choice over probabilistic choice does still
survive.

However, we emphasize that our approach is agnostic as to the particular ax-
iomatization. It is perfectly possible to impose distributivity of nondeterministic
over probabilistic choice, obtaining the consequences for arbcoin and coin above;
or to impose no distributivity law at all, in which case there are simply fewer
program equivalences. The approach still works; whether it faithfully models
intuition or reality is a separate question.

9.2 Beyond Finite Support

The approach we have presented here really only tells the story for finitely sup-
ported probability distributions. By exploiting recursive definitions, one might
hope to be able to build distributions with infinite support; for example, with

naturals ::MonadProb m ⇒ Integer → m Integer

naturals n = return n � 1/2 � naturals (n + 1)

one might hope that naturals 0 returns result i with probability 1/2i+1, possibly
returning any of the naturals. This works in a lazy language like Haskell, provided
that the definition of � � is non-strict in its right argument; for example, for an
implementation based on possibly infinite weighted lists as in Section 8.1, it
yields

[(0, 1/2), (1,
1/4), (2,

1/8), (3,
1/16), (4,

1/32), (5,
1/64), ... ]

as expected. We are optimistic that the ‘free monad’ technique from Section 8.2
might be extended to give a more disciplined explanation of such cases. In re-
lated work [41], we have been using free monads to model a generic framework
for tracing execution. In the case of nonterminating computations, one will in
general get an infinite trace; to account for that case, one needs a coalgebraic
rather than an algebraic reading of the tracing datatype. Perhaps this can all be
conveniently captured in a ‘strong functional programming’ [48] or constructive
type theory [33] setting, carefully distinguishing between terminating functions
from algebraic datatypes and productive functions to coalgebraic codatatypes
(in which case the constructions are technically no longer ‘free’ monads), or
perhaps it really requires a shift from SET to CPO.

But none of these extensions will help when it comes to dealing with con-
tinuous probability distributions—say, a uniform choice among reals in the unit
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interval. Any particular real result will have probability zero; if represented us-
ing the free monad DistT , all the leaves will have to be infinitely deep in the
tree, and no useful computation can be done. There is no fundamental reason
why one cannot deal with such distributions; after all, continuous probability
distributions form a monad too [27,11,20]. But it requires an approach based on
measure theory and Lebesgue integrals rather than point masses: distributions
must be represented as mappings from measurable sets of outcomes to probabil-
ities, rather than from individual outcomes. We leave this for future work.

For both reasons—possible nontermination and continuous distributions—the
lightweight, embedded approach of unifying the ‘syntactic’ programming nota-
tion with the ‘semantic’ reasoning framework, which is one of the great appeals
of functional programming, has its limitations. An approach that separates syn-
tax and semantics pays the cost of two distinct domains of discourse, but does
not suffer from the same limitation.

9.3 Lawvere Theories

The axiomatic approach to reasoning about effectful functional programs that
we have used here derives from our earlier paper [10]. It should come as no
surprise that algebraic theories—consisting of a signature for the operations,
together with laws that the operations are required to satisfy, but abstracting
away from specific models of the theory—are convenient for equational reasoning
about programs; after all, algebraic specifications have long been espoused as a
useful technique for isloating the interface of a module from its possible imple-
mentations, separating the concerns of the module provider and consumer [7].

What did come as a surprise, at least to us, was that computational effects
such as nondeterminism and probabilistic choice are amenable to algebraic spec-
ifications. But history [19] tells us that this is only to be expected: algebraic
theories were introduced in Lawvere’s PhD thesis [26] as a category-theoretic
formulation of universal algebra; Linton [28] showed the equivalence between
such ‘Lawvere theories’ and monads (every Lawvere theory has a category of
models that is isomorphic to the category of algebras of some monad, unique up
to isomorphism), which arise as adjoint pairs of functors [8,22]; and Moggi [36]
and Wadler [54] showed that monads are precisely what is needed to encapsulate
effects in pure functional languages. Indeed, this is precisely how impure effects
are implemented in a pure functional programming language such as Haskell:
pure evaluation is used to construct a term in the algebraic theory, which is sub-
sequently interpreted—with possible side-effects—by the impure run-time sys-
tem. In some ways, the algebraic theory approach to effects is more appealing
than the monadic approach, since it places the additional operations and their
properties front and centre; nevertheless, monads and Haskell’s do notation do
provide a rather elegant programming notation.

On the other hand, not all the additional operations we have discussed tech-
nically fit into the algebraic theory framework. Specifically, the bind operator
>>= should distribute over every such operation [42], as for example it does over
probabilistic choice:



Unifying Theories of Programming with Monads 65

do {x ← (p � w � q) ; k x } = do {x ← p ; k x } � w � do {x ← q ; k x }

But as we saw in Section 7, bind does not distribute over catch. Plotkin and
Pretnar [43] call operations like catch ‘effect handlers’; they are not ‘algebraic
effects’, and need a different treatment.
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Abstract. The UTP theories for CSP and Circus can be built by the
combination of the theories of designs and reactive processes. Defining
the CSP operators using reactive design provides a more concise, read-
able and uniform UTP semantics, and, more importantly, exposes the
pre-postcondition semantics of the operators. For Circus Time, a few op-
erators have been defined as reactive designs, but some important opera-
tors are still be considered. In this paper, we develop the reactive design
semantics of sequential composition, hiding and recursion within Circus
Time, and show how to prove some subtle laws using the new semantics.

Keywords: Circus Time, UTP, reactive designs.

1 Introduction

Circus [3,17,18] is a comprehensive combination of Z [15], CSP [5,10] and Mor-
gan’s refinement calculus [8], so that it can define both data and behavioural as-
pects of a system. Over the years, Circus has developed into a family of languages
for specification, programming and verification. Circus Time is an extension of a
subset of Circus with some time operators added to the notion of actions in Cir-
cus. The semantics of Circus Time is defined using the UTP by introducing time
observation variables. The Circus Time UTP theory is a discrete time model,
and time operators are very similar to that in Timed CSP [11]. Compared to
the original Circus Time [12] and Timed CSP, we have recently developed a new
version of Circus Time [13] that provides more time operators such as deadlines.
Using various languages in the Circus family, we have proposed an approach in [1]
for stepwise development of safety-critical Java programs [7]. In the new Circus
Time theory, besides some new time operators, each action is expressed as a
reactive design for a more concise, readable and uniform UTP semantics. In the
UTP, Hoare and He provide many sub-theories by adopting different healthiness
conditions. For example, the theory of designs can describe some sequential pro-
gramming languages, and the theory of reactive processes allows communications
between processes. The theory of CSP is traditionally built upon the theory of
reactive processes by imposing extra healthiness conditions. However, there is no
uniform pattern of the semantics for CSP primitive processes and various opera-
tors. Hoare and He have, however, proposed an approach to generate the theory
of CSP by embedding the theory of designs in the theory of reactive processes.
This means that each process in CSP can be expressed as a reactive design. The
importance of this semantics is that it exposes the pre-postcondition semantics.
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The work in [2,9] have provided the reactive design semantics to some oper-
ators in CSP. On the other hand, sequential composition, recursion, hiding and
so on are still to be considered. In this paper, based on our new Circus Time
model, we develop the reactive design semantics of these operators in a timed
environment, and also demonstrate how we can easily to prove some very tricky
laws using the new semantics. This paper has the following structure. Section
2 gives a brief introduction to Circus Time and related UTP theories. We show
how to deduce the reactive design semantics of those operators from their orig-
inal UTP definitions in Section 3. We then give a demonstration to show how
to prove some algebraic laws using the new semantics in Section 4. Finally in
Section 5 we present some conclusions and summarize future work. We assume
knowledge of CSP.

2 UTP and Circus Time

In the UTP, a relation P is a predicate with an alphabet αP , composed of
undashed variables (a, b, ...) and dashed variables (a′, x ′, ...). The former, written
as inαP , stands for initial observations, and the latter, outαP , for intermediate
or final observations. The relation is then called homogeneous if outαP = inαP ′,
where inαP ′ is simply obtained by putting a dash on all the variables of inαP .
A condition has an empty output alphabet.

The program constructors in the theory of relations include sequential compo-
sition (P ; Q), conditional (P � b � Q), assignment (x := e), non-determinism
(P � Q) and recursion (μX • C (X )). The correctness of a program P with
respect to a specification S is denoted by S  P (P refines S ), and is defined as
follows:

S  P iff [P ⇒ S ]

where the square bracket is universal quantification over all variables in the al-
phabet. In other words, the correctness of P is proved by establishing that every
observation that satisfies P must also satisfy S . Moreover, the set of relations
with a particular alphabet is a complete lattice under the refinement order-
ing. Its bottom element is the weakest relation true, which behaves arbitrarily
([true  P ]), and the top element is the strongest relation false, which behaves
miraculously and satisfies any specification ([P  false]). The bottom and top
elements in this complete lattice are usually called CHAOS and Miracle re-
spectively.

2.1 Designs

A design in the UTP is a relation that can be expressed as a pre-postcondition
pair in combination with a boolean variable, called ok . In designs, ok records that
the program has started, and ok ′ records that it has terminated. If a precondition
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P and a postcondition Q are predicates, a design with P and Q , written as
P � Q , is defined as follows:

P � Q =̂ ok ∧ P ⇒ ok ′ ∧ Q

which means that if a program starts in a state satisfying P , then it must ter-
minate, and whenever it terminates, it must satisfy Q .

Healthiness conditions of a theory in the UTP are a collection of some funda-
mental laws that must be satisfied by relations belonging to the theory. These
laws are expressed in terms of monotonic idempotent functions. The healthy
relations are the fixed points of these functions. There are four healthiness con-
ditions identified by Hoare and He in the theory of designs and here we introduce
only two of them.

H1 P = ok ⇒ P H2 [P [false/ok ′]⇒ P [true/ok ′]]

The first healthiness means that observations of a predicate P can only be made
after the program has started. H2 states that a design cannot require non-
termination, since if P is satisfied when ok ′ is false, it must also be satisfied
when ok ′ is true. A predicate is H1 and H2 if, and only if, it is a design; the
proof is in [6]. A useful law about designs, which is used later, is given as below.

Law 1. Suppose P and Q are predicates and b is a condition,

((P1 � P2) � b � (Q1 � Q2)) = ((P1 � b � Q1) � (P2 � b � Q2))

This states that conditionals distribute through designs. A proof of this law can
be found in [6].

The purpose of the theory of designs is to exclude relations that do not satisfy
the zero laws, true ; P = true = P ; true. For example, the relations that satisfy
the equation true ; P = P should not be included in the theory of designs. The
program true behaves arbitrarily. For instance, the least fixed-point semantics of
a non-terminating loop in the theory of relations is true, and it, when followed by
an assignment like x := c, behaves like the assignment. In practice, it means that
a program can recover from the non-terminating loop. For a tutorial introduction
to designs, the reader is referred to [6,16].

2.2 Reactive Processes

A reactive process in the UTP is a program whose behaviour may depend on
interactions with its environment. To represent intermediate waiting states, a
boolean variable wait is introduced to the alphabet of a reactive process. For
example, if wait ′ is true, then the process is in an intermediate state. If wait
is true, it denotes an intermediate observation of its predecessor. Thus, we are
able to represent any states of a process by combining the values of ok and
wait . If ok ′ is false, the process diverges. If ok ′ is true, the state of the process
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depends on the value of wait ′. If wait ′ is true, the process is in an intermediate
state; otherwise it has successfully terminated. Similarly, the values of undashed
variables represent the states of a process’s predecessor.

Apart from ok , ok ′, wait and wait ′, another two pairs of observational vari-
ables, tr and ref , and their dashed counterparts, are introduced. The variable
tr records the events that have occurred until the last observation, and tr ′ con-
tains all the events until the next observation. Similarly, ref records the set of
events that could be refused in the last observation, and ref ′ records the set of
events that may be refused in the next observation. The reactive identity, IIrea ,
is defined as follows:

IIrea =̂ (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref )

As a result, a reactive process must satisfy the following healthiness conditions:

R1 P = P ∧ tr ≤ tr ′

R2 P(tr , tr ′) = P(〈〉, tr ′ − tr)

R3 P = IIrea � wait � P

If a relation P describes a reactive process behaviour, R1 states that it never
changes history, or the trace is always increasing. The second, R2, states that
the history of the trace tr has no influence on the behaviour of the process. The
final, R3, requires that a process should leave the state unchanged (IIrea) if it is
in a waiting state (wait = true) of its predecessor. A reactive process is a relation
whose alphabet includes ok , wait , tr and ref , and their dashed counterparts, and
that satisfies the composition R where R =̂ R1 ◦ R2 ◦ R3. In other words, a
process P is a reactive process if, and only if, it is a fixed point of R. Since
each of Ri is idempotent and any two of them commuted, R is also idempotent.
For a more detailed introduction to the theory of reactive designs, the reader is
referred to the tutorial [2].

2.3 CSP Processes

In the UTP, the theory of CSP is built by applying extra healthiness conditions
to reactive processes. For example, a reactive process is also a CSP process if
and only if, it satisfies the following healthiness conditions:

CSP1 P = P ∨ (¬ ok ∧ tr ≤ tr ′) CSP2 P = P ; J

where J = (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref . The first
healthiness condition requires that, in case of divergence of the predecessor, the
extension of the trace and should be the only guaranteed property. The second
one means that P cannot require non-termination, so that it is always possible
to terminate. The CSP theory introduced in the UTP book is different from
any standard models of CSP [5,10] which have more restrictions or satisfy more
healthiness conditions. There are more healthiness conditions, CSP3-CSP5,
given in UTP to further restrict behaviours of reactive processes.
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A CSP process can also be obtained by applying the healthiness condition R
to a design. This follows from the theorem in [6], that, for every CSP process

P , P = R(¬ P f
f � P t

f ). This theorem gives a new style of specification for CSP
processes in which a design describes the behaviour when its predecessor has
terminated and not diverged, and the other situations of its behaviour are left
to R. Note that Pa

b is an abbreviation of P [a, b/ok ′,wait ], and it is often used in
this paper. Motivated by the above theorem, the work in [2,9] provide reactive
design definitions for some constructs of CSP such as STOP , SKIP , CHAOS ,
external choice, and so on. The reactive design definitions of more operators,
such as sequential composition, hiding and recursion, will be developed in this
paper.

2.4 Circus Time

We give a brief introduction to Circus Time because the reactive design semantics
is developed within this timed model presented in this paper. In Circus Time, an
action is described as an alphabetised predicate whose observational variables
include ok , wait , tr , ref , state and their dashed counterparts.

• ok , ok ′ : Boolean
• wait ,wait ′ : Boolean
• state, state ′ : N �→ Value
• tr , tr ′ : seq+(seq Event)
• ref , ref ′ : seq+(PEvent)

Here, ok , ok ′, wait and wait ′ are the same variables used in the theory of reactive
processes. The traces, tr and tr ′, are defined to be non-empty (seq+), and each
element in the trace represents a sequence of events that have occurred over one
time unit. Also, ref and ref ′ are non-empty sequences where each element is a
refusal at the end of a time unit. Thus, time is actually hidden in the length
of traces. In addition, state and state ′ records a set of local variables and their
values. N is a set of names of these variables.

Both the original Circus Time and Timed CSP use the concept of failures,
each of which consists of a trace and a refusal. This structure, however, is hard
to manipulate: a trace is no longer a sequence of events, but a sequence of pairs
containing a sequence of events and a refusal set. In the new Circus Time model,
we split a failure as shown above to record sequences of traces and a refusals,
and use their indices (which start at 1) to match related pairs. However, the
decomposition of the failures results in a little bit inconvenience, since we have
to ensure the equality of the lengths of tr and ref , or tr ′ and ref ′. This is achieved
by imposing an extra constraint on the healthiness conditions.

Although a trace in the new model is a sequence of sequences, the standard op-
erations on sequences defined in Z can still be used here such as head , tail , front ,

last , #(length), �(concatenation), �/(flattening), −(difference) and ≤(prefix).
Additionally, it is unnecessary that last(tr) = tr ′(#tr). An expanding relation
between traces is defined as follows, requiring that front(tr) and last(tr) are the
prefixes of tr ′ and tr ′(#tr) respectively.
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tr � tr ′ =̂ front(tr) ≤ tr ′ ∧ last(tr) ≤ tr ′(#tr) (1)

An action in Circus Time must satisfy the healthiness conditions, R1t-R3t and
CSP1t-CSP5t. These healthiness conditions have similar meanings as those in
the CSP theory, but are changed to accommodate discrete time. For the sake of
a simpler proof, we focus on the healthiness conditions, R1t and R3t, as follows
(the properties including other healthiness conditions are usually straightforward
to be proven). The detailed introduction to other healthiness conditions can be
found in [13].

R1t(X ) =̂ X ∧ RT R3t(X ) =̂ IIt � wait � X

where the predicate RT , II−ok (the identity without ok) and the timed reactive
identity IIt are given as

RT =̂ tr � tr ′ ∧ front(ref ) ≤ ref ′ ∧ #diff (tr ′, tr) = #(ref ′ − front(ref ))

II−ok =̂
(
tr ′ = tr ∧ front(ref ′) = front(ref ) ∧ wait ′ = wait ∧ state ′ = state

)
IIt =̂ (¬ ok ∧ RT ) ∨ (ok ′ ∧ II−ok)

Note that we impose a restriction, #ref ′ = #tr ′ and #ref = #tr , to ensure
that the lengths of ref and ref ′ are always the same as those of tr and tr ′

respectively. This is a consequence of splitting traces and refusals as already
explained. Rather than recording the refusals only at the end of traces in CSP,
Circus Time records the refusals at the end of each time unit. In other words, we
need to keep the history of refusals. However, we are usually not interested in
the refusals of the last time unit after an action terminates. Therefore, we use
front(ref ) ≤ ref ′ and front(ref ′) = front(ref ) in these healthiness conditions,
instead of ref ≤ ref ′ and ref ′ = ref because we have to maintain the consistency
among Rt =̂ R1t ◦R2t ◦R3t and CSP1t-CSP5t. In addition, by means of a
result in [13], each action in Circus Time can also be described as a reactive
design.

Theorem 1. For every action P in Circus Time,

P = Rt(¬ P f
f � P t

f )

Another useful law about R1t, which is used later, is given and its detailed proof
can be found in [13].

Law 2

R1t(P ∨ Q) = R1t(P) ∨ R1t(Q)

The full syntax, definitions and detailed explanations of Circus Time can be found
in [13]. Here, we briefly introduce some operators that are used in the following
sections. The action Skip terminates immediately without changing anything,
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Chaos is the worst action (the bottom element in the refinement ordering) whose
behaviour is arbitrary, but satisfies Rt. The action Miracle is the top element
that expresses an unstarted process. This action is not included in the standard
failures-divergences model of CSP. The definition and properties of Miracle are
discussed in Section 4. The delay action Wait d does nothing except that it
requires d time units to elapse before it terminates. The sequential composition
P ; Q behaves like P until P terminates, and then behaves as Q . The prefix
action c.e → P is usually constructed by a composition of a simple prefix and
P itself, written as (c.e → Skip) ; P . The hiding action P \ CS will behave
like P , but the events within the set CS become invisible. The recursive action
μX • P behaves like P with every occurrence of the variable X in P representing
a recursive invocation. The recursive call takes no time.

3 Reactive Designs for Circus Time

In this section, we calculate the reactive design semantics of sequential composi-
tion, hiding and recursion from their original UTP semantics (which have been
slightly changed to contain time) in terms of Theorem 1.

3.1 Sequential Composition

The definition of sequential composition in the UTP is given as follows:

P ; Q =̂ ∃ obs0 • P [obs0/obs
′] ∧ Q [obs0/obs ]

To deduce the reactive design of sequential composition, we first give some aux-
iliary laws that have been proven in [13].

Law 3. Suppose P is R1t and CSP1t,

R1t(¬ ok) ; P = R1t(¬ ok)

Law 4. Suppose P is a predicate and Q is R1t and R3t,

R3t(P) ; Q = R3t(P ; Q)

Below, we characterise the behaviour of the sequential composition of two R1t-
healthy predicates.

Law 5. Suppose P, Q, R and S are predicates (ok,ok ′ are not in αP, αQ, αR
and αS),

R1t(P � Q) ; R1t(R � S ) =

R1t

⎛⎝¬ (R1t(¬ P) ; R1t(true)) ∧ ¬ (R1t(Q) ; R1t(¬ R))
�

R1t(Q) ; R1t(S )

⎞⎠
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Proof

R1t(P � Q) ; R1t(R � S ) [def of design]

=R1t(¬ ok ∨ ¬ P ∨ (ok ′ ∧ Q)) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))
[Law 2 and rel. cal.]

=R1t(¬ ok) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S )) ∨ [Law 3]

R1t(¬ P) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S )) ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S )) ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))
[def of ; and case split on ok ]

=R1t(¬ ok) ∨ [propositional calculus]

R1t(¬ P)[false/ok ′] ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))[false/ok ] ∨
R1t(¬ P)[true/ok ′] ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))[true/ok ] ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [rel. calculus and Law 2]

R1t(¬ P) ; R1t(¬ R ∨ (ok ′ ∧ S )) ∨
R1t(ok

′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [propositional calculus]

R1t(ok
′ ∧ Q) ; R1t(¬ ok ∨ ¬ R ∨ (ok ′ ∧ S ))

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [rel. calculus and Law 2]

R1t(ok
′ ∧ Q) ; R1t(¬ ok ∨ (ok ∧ ¬ R) ∨ (ok ∧ ok ′ ∧ S ))

=R1t(¬ ok) ∨ [def of ;]

R1t(¬ P) ; R1t(true) ∨ R1t(ok
′ ∧ Q) ; R1t(¬ ok) ∨

R1t(ok
′ ∧ Q) ; R1t(ok ∧ ¬ R) ∨ R1t(ok

′ ∧ Q) ; R1t(ok ∧ ok ′ ∧ S )

=R1t(¬ ok) ∨ [Law 2 and prop. calculus]

R1t(¬ P) ; R1t(true) ∨ R1t(ok
′ ∧ Q) ; R1t(¬ ok) ∨

R1t(Q) ; R1t(ok ∧ ¬ R) ∨ R1t(Q) ; R1t(ok ∧ ok ′ ∧ S )

=R1t(¬ ok) ∨ [def of ;]

R1t(¬ P) ; R1t(true) ∨ R1t(ok
′ ∧ Q) ; R1t(¬ ok) ∨

R1t(Q) ; R1t(¬ R) ∨ R1t(Q) ; R1t(ok
′ ∧ S )

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ false ∨ [rel. calculus]

R1t(Q) ; R1t(¬ R) ∨ R1t(Q) ; R1t(ok
′ ∧ S )

=R1t(¬ ok) ∨ R1t(¬ P) ; R1t(true) ∨ [def of design]

R1t(Q) ; R1t(¬ R) ∨ (ok ′ ∧ (R1t(Q) ; R1t(S )))

=R1t

(¬ (R1t(¬ P) ; R1t(true)) ∧ ¬ (R1t(Q) ; R1t(¬ R)) �
R1t(Q) ; R1t(S )

)
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However, the timed reactive identity IIt is not a design, and hence R3t(P)
is not, even if P is a design. Therefore, Woodcock in [14] introduces a new
healthiness condition to replace R3, in order to make a design behave like the
identity design when waiting. And here we have a similar healthiness condition,
R3jt(P) =̂ IID � wait � P where IID = true � II . We also have a useful law
about the new healthiness condition whose proof can be found in [13].

Law 6

R1t ◦R3jt = R1t ◦R3t

Finally, we are ready to deduce the reactive design of sequential composition
from its original definition.

Theorem 2. Suppose P and Q are two Circus Time actions,

P ; Q = Rt

⎛⎝¬ (R1t(P
f
f ) ; R1t(true)) ∧ ¬ (R1t(P

t
f ) ; R1t(¬ wait ∧ Q f

f ))

�
R1t(P

t
f ) ; R1t(II � wait � Q t

f )

⎞⎠
Proof

P ; Q [Theorem 1]

=Rt(¬ P f
f � P t

f ) ; Rt(¬ Q f
f � Q t

f ) [def of Rt]

=R3t ◦R1t(¬ P f
f � P t

f ) ; R1t ◦R3t(¬ Q f
f � Q t

f ) [Law 4]

=R3t ◦ (R1t(¬ P f
f � P t

f ) ; R1t ◦R3t(¬ Q f
f � Q t

f )) [Law 6]

=R3t ◦ (R1t(¬ P f
f � P t

f ) ; R1t ◦R3jt(¬ Q f
f � Q t

f )) [def of R3jt]

=R3t ◦ (R1t(¬ P f
f � P t

f ) ; R1t(IID � wait � ¬ Q f
f � Q t

f )) [def of IID ]

=R3t ◦ (R1t(¬ P f
f � P t

f ) ; R1t(true � II � wait � ¬ Q f
f � Q t

f )) [Law 1]

=R3t ◦ (R1t(¬ P f
f � P t

f ) ; R1t((true � wait � ¬ Q f
f ) � (II � wait � Q t

f )))

[rel. cal.]

=R3t ◦ (R1t(¬ P f
f � P t

f ) ; R1t((wait ∨ ¬ Q f
f ) � (II � wait � Q t

f )))

[Law 5]

=R3t ◦R1t

⎛
⎝¬ (R1t(P

f
f ) ; R1t(true)) ∧ ¬ (R1t(P

t
f ) ; R1t(¬ wait ∧ Q f

f ))


R1t(P

t
f ) ; R1t(II � wait � Q t

f )

⎞
⎠

[def of Rt]

=Rt

⎛
⎝¬ (R1t(P

f
f ) ; R1t(true)) ∧ ¬ (R1t(P

t
f ) ; R1t(¬ wait ∧ Q f

f ))


R1t(P

t
f ) ; R1t(II � wait � Q t

f )

⎞
⎠

This theorem shows that, if P does not diverge and Q does not diverge after P
terminates, P ; Q behaves like the sequential composition of the terminations of
P and Q .
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3.2 Hiding

Similar to the CSP hiding operator in the UTP [6], the hiding operator in Circus
Time is defined as follows:

P \ CS =̂ Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ) ; Skip

Lt =̂ diff (tr ′, tr) = diff (s , tr) ↓t (Σ−CS ) ∧
r−front(ref ) = ((ref ′−front(ref )) ∪t CS )

diff (tr ′, tr) =̂ 〈tr ′(#tr)− last(tr)〉� tail(tr ′ − front(tr)) (2)

where diff is the difference of two traces, and two special operators, ↓t and ∪t ,
are defined to restrict timed traces and complement refusals respectively.

tr1 = (tr2 ↓t CS )⇔ ∀ i : 1..#tr1 • tr1(i) = (tr2(i) ↓ CS ) ∧ #tr1 = #tr2

ref1 = (ref2 ∪t CS )⇔ ∀ i : 1..#ref1 • ref1(i) = (ref2(i) ∪CS ) ∧ #ref1 = #ref2

Clearly, this definition is not a reactive design. As usual, three useful laws are
given and their proof can be found in [13].

Law 7

Skipf = R1t(¬ ok)

Law 8

Skipt = R1t(¬ ok) ∨ (ok ∧ II )

Law 9

R1t(∃ s , r • Lt ) = ∃ s , r • Lt

Law 10 Suppose P is a Circus Time action,

(P \ CS )ff = (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt ) ; R1t(true)

Proof

(P \ CS )ff [def of \]
=(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ) ; Skip)

f
f [relational calculus]

=(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))f ; Skip
f [Law 7]

=(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))f ; R1t(¬ ok) [case split on ok ′]

=((Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))
f
f ; R1t(¬ ok)) ∨ [relational calculus]

((Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))
t
f ; R1t(¬ ok))

=((Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))
f
f ; R1t(¬ ok)) ∨ false

[R3t and wait is false]
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=(R1t(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))
f
f ; R1t(¬ ok)

[P and Lt , Law 9 and predicate calculus]

=(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt)
f
f ; R1t(¬ ok) [relational calculus]

=(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt)
f
f ; R1t(true) [predicate calculus]

=(∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt ) ; R1t(true)

Law 11. Suppose P is a Circus Time action,

(P \ E )tf =

(
(∃ s , r • P f

f [s , r/tr
′, ref ′] ∧ Lt ) ; R1t(true)

∨ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt )

)
Proof

(P \ E )tf [def of \]
= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ) ; Skip)

t
f [relational calculus]

= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))f ; Skip
t [Law 8]

= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))f ; (R1t(¬ ok) ∨ (ok ∧ II )) [relational cal.]

= (Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt ))f ; R1t(¬ ok) ∨ [Step 4 in Law 10]

(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; (ok ∧ II )

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ [P is R1t and wait is false]

(Rt(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt))f ; (ok ∧ II )

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ [relational calculus]

(∃ s , r • P [s , r/tr ′, ref ′] ∧ Lt )f ; (ok ∧ II )

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ [unit law]

(∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt) ; II

= (∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true) ∨ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

Now, the reactive design of hiding can be deduced in terms of the above laws.

Theorem 3. Suppose P is a Circus Time action,

P \ CS = Rt

(¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt ) ; R1t(true))

� (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt )

)
Proof.

P \ CS [Theorem 1]

= Rt(¬ (P \ CS )ff � (P \ CS )tf ) [def of design]

= Rt(ok ∧ ¬ (P \ CS )ff ⇒ ok ′ ∧ (P \ CS )tf ) [Law 10 and Law 11]

= Rt

⎛⎜⎝ok ∧ ¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt ) ; R1t(true))⇒
ok ′ ∧

(
(∃ s , r • P f

f [s , r/tr
′, ref ′] ∧ Lt) ; R1t(true)

∨ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt)

) ⎞⎟⎠ [prop. cal.]
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= Rt

(
ok ∧ ¬ ((∃ s , r • P f

f [s , r/tr
′, ref ′] ∧ Lt) ; R1t(true))⇒

ok ′ ∧ (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt )

)
[def-design]

= Rt

(¬ ((∃ s , r • P f
f [s , r/tr

′, ref ′] ∧ Lt) ; R1t(true))

� (∃ s , r • P t
f [s , r/tr

′, ref ′] ∧ Lt )

)
Note that R1t(true) in the precondition captures the observation that leads to
a divergence.

3.3 Recursion

The semantics of recursion is the same as that in the UTP [6]: weakest fixed
point. Given a monotonic function F , the semantics of recursion is the weakest
fixed point of F .

μX • F (X ) =̂
�
{X | F (X )  X } (3)

The strongest fixed point of F (X ) is defined as the dual of the weakest.

νF =̂ ¬ μX • ¬ F (¬ X ) (4)

To express a recursion as a reactive design, we have to calculate the precondi-
tion and postcondition of a recursively defined design. For that, we can use the
definition of a recursive design and some theorems on linking theories in [6]. In
the theory of designs, any monotonic function of designs can be expressed in
terms of a pair of function that apply separately to the precondition and the
postcondition, for example

F (P ,Q) � G(P ,Q)

Here, P and Q are predicates representing the precondition and postcondition of
a design, F is monotonic in P and antimonotonic in Q , whereas G is monotonic
in Q and antimonotonic in P . Thus, as described in the theory of designs, the
weakest fixed point is given by a mutually recursive formula, that we reproduce
below.

Law 12

μ(X ,Y ) • (F (X ,Y ) � G(X ,Y )) = P(Q) � Q

where P(Y ) = νX • F (X ,Y )

and Q = μY • (P(Y )⇒ G(P(Y ),Y ))

As shown in Theorem 1, if X is a reactive design, X = ¬ X f
f � X t

f . Hence, based
on Law 12, we have the following theorem for recursively reactive designs.

Theorem 4

μ(X ,Y ) • (Rt(F (X ,Y ) � G(X ,Y ))) = Rt(μ(X ,Y ) • (F (X ,Y ) � G(X ,Y ))
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To prove Theorem 4, we directly adopt an important theorem from the linking
theories of the UTP book, which can be described here.

Theorem 5. Let D and E be monotonic functions. If there exists a function R
such that R ◦D = E ◦R, then R(μD) = μE.

As a result, the proof of Theorem 4 can be established as follows.

Proof

Let D(X � Y ) = F (X ,Y ) � G(X ,Y ) and

E (Rt(X � Y )) = Rt(F (X ,Y ) � G(X ,Y ))

then E ◦Rt(X � Y ) [def of E ]

=Rt(F (X ,Y ) � G(X ,Y )) [def of D ]

=Rt(D(X � Y ) [def of composition]

=Rt ◦D(X � Y )

therefore μ(X ,Y ) • E (Rt(X � Y )) = Rt(μ(X ,Y ) • D(X � Y ))

4 Applications of Reactive Designs

The reactive design semantics can help us understand the exact behaviours of
some complex processes. For example, the reactive design of a simple prefix,
which is based on the semantics in [2], has been worked out in [13].

c.e → Skip =̂ Rt(true � wait com(c) ∨ terminating com(c.e)) (5)

wait com(c) =̂ wait ′ ∧ possible(ref , ref ′, c) ∧ �/tr ′ = �/tr (6)

possible(ref , ref ′, c) =̂ ∀ i : #ref ..#ref ′ • c /∈ ref ′(i) (7)

term com(c.e) =̂

(¬ wait ′ ∧ diff (tr ′, tr) = 〈〈c.e〉〉
∧ front(ref ′) = front(ref )

)
(8)

terminating com(c.e) =̂

(
wait com(c) ; term com(c.e)

∨ term com(c.e)

)
(9)

Such a process never diverges since its precondition is true, and, as described by
its postcondition, behaves in three different ways: it waits for interaction from
its environment, or it waits for a while and then terminates with a fired event,
or it simply executes the event immediately. The action Miracle, expressed as
Rt(true � false), has miraculous behaviour that simply denotes an unstarted
action. Therefore, it should never appear during an execution of a process. The
exact behaviour of the combination of the two actions can be easily figured out
using our newly established reactive design of sequential composition.
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Theorem 6

c.e → Miracle = Rt(true � wait ′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c))

Proof

c.e → Miracle [def of prefix]

= (c.e → Skip) ; Miracle [def 5 and Miracle]

= Rt(true � wait com(c) ∨ terminating com(c.e)) ; Rt(true � false)
[Theorem 2]

= Rt

⎛⎜⎜⎝
¬ (R1t(false) ; R1t(true)) ∧

¬ (R1t((wait com(c) ∨ terminating com(c.e))tf ) ; R1t(¬ wait ∧ false))

�
R1t(wait com(c) ∨ terminating com(c.e)) ; R1t(II � wait � false)

⎞⎟⎟⎠
[rel. cal.]

= Rt(true � R1t(wait com(c) ∨ terminating com(c.e)) ; R1t(II ∧ wait))
[rel. cal.]

= Rt

(
true �

(
R1t(wait com(c)) ; R1t(II ∧ wait) ∨

R1t(terminating com(c.e)) ; R1t(II ∧ wait)

))
[def 9]

= Rt

⎛⎝true �
⎛⎝R1t(wait com(c)) ; R1t(II ∧ wait) ∨(

R1t(wait com(c) ; term com(c.e)
∨ term com(c.e)

)
; R1t(II ∧ wait)

⎞⎠⎞⎠
[wait ′ in term com is false]

= Rt(true � (R1t(wait com(c)) ; R1t(II ∧ wait) ∨ false)) [def 6]

= Rt(true � R1t(wait
′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c)) ; R1t(II ∧ wait)

[rel. cal.]

= Rt(true � R1t(wait
′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c))

[R1t is idempotent]

= Rt(true � wait ′ ∧ �/tr ′ = �/tr ∧ possible(tr , tr ′, c))

This theorem states that, if this action starts, it waits for interaction with its
environment, but never actually perform any event even if the event c.e has
been offered. This process is different from that of the standard CSP failures-
divergences model in which one of the assumptions requires that, if an event is
not in the refusal set, the process is always willing to execute the event.

There is a very subtle law in the CSP theory about hiding and recursion as
(μX • c → X ) \ {c} = Chaos , which is difficult to be proved using their original
UTP definitions. However, the reactive designs of the two operators allow us to
prove this law straightforwardly. To prove this law, we use the Kleene theorem
rather than the traditional definition of the weakest fixed point to calculate the
recursive design in the recursively reactive design.
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Theorem 7 (Kleene fixed point theorem)
If F is continuous 1, then μX • F (X ) =

⊔∞
n=0 F

n(true) where F 0(X ) =̂ true,
and Fn+1 =̂ F (Fn(X )).

This theorem states a normal form for programs that contain recursion. First of
all, the behaviour of a recursive program is expressed as an infinite sequence of
predicates {F i | i ∈ N} and each F i is a finite normal form. Since each F i+1 is
defined by its previous expression, F i+1 is potentially stronger if F i  F i+1. If
i is large enough, the exact behaviour of the program can be captured by the
least upper bound of the infinite sequence, written

⊔∞
n=0 F

n(true).
In addition, we are able to prove a similar theorem for the strongest fixed

point of F .

Theorem 8. If F is continuous, νX • F (X ) =
�∞

n=0 F
n(false)

Proof

νX • F (X ) [def of ν]

=¬ μX • ¬ F (¬ X ) [Theorem 7]

=¬
∞⊔

n=0

(λX • ¬ F (¬ X ))n(true) [relational calculus]

=

∞�
n=0

¬ (λX • ¬ F (¬ X ))n(true) [predicate calculus]

=

∞�
n=0

Fn(false)

Now, firstly, we calculate the reactive design of a single call of μX • c → X .
The procedure is similar to Theorem 6, and the proof can be found in [13].

Law 13

c → X = Rt

⎛⎝ ¬ (terminating com(c) ; R1t(¬ wait ∧ X f
f ))

�
wait com(c) ∨ (terminating com(c) ; R1t(X

t
f ))

⎞⎠
Secondly, in terms of Theorem 4 and Law 13, we let

X = ¬ X f
f and Y = X t

f , then (10)

F (X ,Y ) = ¬ (terminating com(c) ; R1t(¬ wait ∧ ¬ X )) (11)

G(X ,Y ) = wait com(c) ∨ (terminating com(c) ; R1t(Y )) (12)

As a result, the weakest fixed point of (μX • c → X ) \ {c} can be calculated
by the following law.

1 A function is continuous only if its value at a limit point can be determined from
its values on a sequence converging to that point. Also, a continuous function is
monotonic.
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Law 14

μ(X ,Y ) • E (Rt(X � Y )) = Rt((νX • F (X ,Y )) � Q)

Proof

μ(X ,Y ) • E (Rt(X � Y )) [Theorem 4]

=Rt(μ(X ,Y ) • D(X � Y )) [Law 12]

=Rt((νX • F (X ,Y )) � Q)

Note that, since the postcondition ofD has no influence on the final result, we here
simply use Q to denote the postcondition and never unfold it in the later proof.

Next, we calculate the strongest fixed point of F by means of the Kleene
theorem. Before starting to prove the law before, we give some useful properties.
Some proofs can be found in [13], and some leave to the reader.

Property 1

L1. R1t(terminating com(c)) = terminating com(c)

L2. terminating com(c); R1t(true) ∧ terminating com(c)2; R1t(true)

= terminating com(c)2; R1t(true)

L3. terminating com(c)n  term com(c)n

L4. diff (tr ′, tr) = 〈〈c〉〉 ⇔ front(tr ′) = front(tr) ∧ last(tr ′)− last(tr) = 〈c〉
L5. ((front(ref ′) = front(ref )); (front(ref ′) = front(ref )))

⇔ front(ref ′) = front(ref )

Law 15

ν(X ) • F (X ,Y ) = ¬
⎛⎝R1t

(
front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′

∧ front(ref ) ≤ ref ′

)
∨ (terminating com(c)n ; R1t(true))

⎞⎠
Proof

ν(X ) • F (X ,Y ) [Theorem 8]

=

∞�
n=0

Fn(false) [unfold
�
]

= F 0(false) � F 1(false) � F 2(false)... � Fn(false) [unfold F (def 11)]

= false � ¬ (terminating com(c) ; R1t(¬ wait ∧ ¬ false))...

� ¬
⎛⎝ terminating com(c)

;
R1t(¬ wait ∧ (terminating com(c) ; R1t(¬ wait ∧ ¬ false)))

⎞⎠ ...

� Fn(false) [relational calculus (¬ wait is absorbed by terminating com)]
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= false � ¬ (terminating com(c) ; R1t(true))

� ¬ (terminating com(c) ; R1t((terminating com(c) ; R1t(true)))...

� Fn(false) [Property 1-L1 and R1t is idempotent and rel. cal.]

= false � ¬ (terminating com(c) ; R1t(true)) [property of
�
]

� ¬ (terminating com(c)2 ; R1t(true))...

� ¬ (terminating com(c)n ; R1t(true))

=

∞�
n=1

(¬ (terminating com(c)n ; R1t(true))) [property of
⊔
]

= ¬
∞⊔

n=1

(terminating com(c)n ; R1t(true)) [unfold
⊔
]

= ¬

⎛⎜⎜⎝
(terminating com(c) ; R1t(true)) ∧
(terminating com(c)2 ; R1t(true)) ∧
.... ∧
(terminating com(c)n ; R1t(true))

⎞⎟⎟⎠ [Property 1-L2 and Induction]

= ¬ (terminating com(c)n ; R1t(true)) [def 9]

= ¬ ((wait com(c) ; term com(c) ∨ term com(c))n ; R1t(true))
[Property 1-L3]

= ¬
((

(wait com(c) ; term com(c) ∨ term com(c))n

∨ term com(c)n

)
; R1t(true)

)
[def 9]

= ¬ ((term com(c)n ∨ terminating com(c)n ) ; R1t(true)) [def 8]

= ¬
⎛⎝⎛⎝(¬ wait ′ ∧ diff (tr ′, tr) = 〈〈c〉〉

∧ front(ref ′) = front(ref )

)n

∨ terminating com(c)n

⎞⎠ ; R1t(true)

⎞⎠ [Property 1-L4]

= ¬
⎛⎝⎛⎝( ¬ wait ′ ∧ last(tr ′)− last(tr) = 〈c〉

∧ front(tr ′) = front(tr) ∧ front(ref ′) = front(ref )

)n

∨ terminating com(c)n

⎞⎠ ; R1t(true)

⎞⎠
[Property 1-L5 and Induction]

= ¬
⎛⎝⎛⎝( ¬ wait ′ ∧ (last(tr ′)− last(tr) = 〈c〉)n ∧

front(tr ′) = front(tr) ∧ front(ref ′) = front(ref )

)
∨ terminating com(c)n

⎞⎠ ; R1t(true)

⎞⎠
[rel. cal.]

= ¬
⎛⎝(¬ wait ′ ∧ diff (tr ′ − tr) = 〈〈c〉n〉

∧ front(ref ′) = front(ref )

)
; R1t(true)

∨ terminating com(c)n ; R1t(true)

⎞⎠
[def of 2 and relational calculus]

= ¬

⎛⎜⎜⎝
⎛⎝ ¬ wait ′ ∧
〈tr ′(#tr)− last(tr)〉� tail(tr ′ − front(tr)) = 〈〈c〉n〉

∧ front(ref ′) = front(ref )

⎞⎠ ; R1t(true)

∨ terminating com(c)n ; R1t(true)

⎞⎟⎟⎠
[relational calculus]
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= ¬
(
R1t(front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′ ∧ front(ref ) ≤ ref ′)

∨ terminating com(c)n ; R1t(true)

)
Finally, we are ready to prove the law, (μX • c → X ) \ {c} = Chaos , and the
proof is simply the combination of the laws and theorems above.

Theorem 9

(μX • c → X ) \ {c} = Chaos

Proof

(μX • c → X ) \ {c} [Theorem 3]

= Rt(¬ ((∃ s , r • (μX • c → X )ff [s , r/tr
′, ref ′] ∧ Lt); R1t(true)) � EE2)

[def of � and merge unused proof ]

= Rt(((∃ s , r • (μX • c → X )ff [s , r/tr
′, ref ′] ∧ Lt ); R1t(true)) ∨ EE )

[Theorem 4]

= Rt

(
((∃ s , r • (μ(X ,Y ) • E (Rt(X � Y )))ff [s , r/tr

′, ref ′] ∧ Lt ); R1t(true))

∨ EE

)
[Law 14]

= Rt

(
((∃ s , r • (¬ νX • F (X ,Y ))[s , r/tr ′, ref ′] ∧ Lt); R1t(true))
∨ EE

)
[Law 15]

= Rt

⎛⎜⎜⎜⎜⎝
⎛⎝∃ s , r •

⎛⎝R1t

(
front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′

∧ front(ref ) ≤ ref ′

)
∨ terminating com(c)n ; R1t(true)

⎞⎠[s , r/tr ′, ref ′] ∧ Lt

⎞⎠
; R1t(true)
∨ EE

⎞⎟⎟⎟⎟⎠
[merge (terminating com(c)n ; R1t(true)) to EE ]

= Rt

⎛⎜⎜⎝
(
∃ s , r •R1t

(
front(tr)� 〈last(tr)� 〈c〉n〉 � tr ′

∧ front(ref ) ≤ ref ′

)
[s , r/tr ′, ref ′] ∧ Lt

)
; R1t(true)
∨ EE

⎞⎟⎟⎠
[only tr ′ = tr ∧ front(ref ) ≤ ref ′ can satisfy Lt ]

= Rt((R1t(tr
′ = tr ∧ front(ref ) ≤ ref ′) ; R1t(true)) ∨ EE ) [rel. calculus]

= Rt(R1t(true) ∨ EE ) [prop. calculus]

= Rt(true) [def of design]

= Rt(false � true) [def of Chaos ]

= Chaos

2 We simply use EE to denote the unused part of the proof. This abbreviation con-
tinuously collects unused parts during the proof and it is changing at each step of
this proof.
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The proof of the above law shows one of the cases to result in Chaos . If c happens
immediately at each call, the hiding operator is able to make this recursion
become divergent at once when it starts.

5 Conclusion

In this paper we develop the reactive design semantics of three important CSP
operators, sequential composition, hiding and recursion; this complements the
early work in [2,9]. Compared to the original CSP semantics in UTP, the reactive
designs provides us with a more concise, readable and uniform semantics, which
can help us to exactly understand the behaviours of some subtle processes. In
addition, this reactive design semantics is developed in a timed context, Circus
Time, and the full version can be found in [13]. So far, this semantics and related
laws have been proved by hand. In our short-term goal, we will mechanise them
in a new Circus tool, Isabelle/Circus [4], to underpin their correctness.

Acknowledgments. This work was fully supported by hiJaC project funded
by EPSRC(EP/H017461/1).
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Abstract. We survey the well-known algebraic laws of sequential pro-
gramming, and propose some less familiar laws for concurrent program-
ming. On the basis of these laws, we derive a general calculus of program
execution. The basic judgment of the theory is a quintuple, and we de-
duce its rules by algebraic reasoning. The general calculus can be spe-
cialised to obtain more familiar operational calculi, such as the structural
operational semantics of Plotkin, process calculus semantics of Milner,
reduction semantics with evaluation contexts of Felleisen and Hieb, and
the natural semantics of Kahn. The algebra unifies these calculi, as it is
simpler than each calculus derived from it, and stronger than all of them
put together.

1 Introduction

The purpose of an operational calculus is to demonstrate an abstract imple-
mentation of a programming language, and thereby provide guidance on its
practical implementations. There are many flavours of operational calculi, also
known as operational semantics, that have been successfully applied in human
and mechanical reasoning about program execution. Examples include struc-
tural operational semantics [1], natural semantics [2], and reduction semantics
with evaluation contexts [3]. This paper derives the central rules of these and
several other operational calculi from a handful of algebraic laws that abstractly
characterize program behaviour.

The basic ideas and content of the algebraic laws of sequential programming
are familiar [4]. That paper treated the main program structuring operators,
including sequential composition, choice, and recursion. This paper introduces
additional laws to deal with concurrency. The formulation is purely algebraic
and lacks negative statements, so all the earlier axioms and theorems survive
the introduction of additional laws.

The variables (P,Q,R, s) that occur in our algebraic laws may stand for com-
putational states, assertions about the state, programs, program designs, and
program specifications. We regard them all as descriptions of the events that
occur in and around a computer that is executing a program. The program itself
is the most precise description of its own execution. The most abstract descrip-
tion is the user specification, which mentions only aspects of execution that are
observable and controllable by the user. A computational state can be regarded
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as a description of all executions that end in that state. An assertion describes
a set of states that satisfy it, i.e., the union of all executions ending in such a
state. Each of these examples has a different role in program development and
execution, and they are usually expressed in different notations. But we ignore
the distinctions between them, because they all obey the same algebraic laws.

The main novel content of the paper is a unifying treatment of a varied collec-
tion of programming calculi, which have been proposed as formalisations of the
operational meaning of sequential and concurrent programming languages. To
this end, we first outline a general operational calculus whose basic judgement
is defined in terms of the algebra. The inference rules of the general calculus all
follow as theorems from the algebraic laws. Other operational calculi can then
be derived by specialising the general calculus. Such a specialisation involves
defining the judgement(s) of the calculus in terms of the general judgment, and
deriving its rules from a subset of the general rules. We claim that the algebra
unifies operational calculi because of its simplicity and its strength, i.e. its ability
to elegantly describe and explain a range of operational calculi.

We make no claims that our algebraic laws are actually true of the operators
of any particular programming language. We rely on the readers’ good will to
check the individual laws against their intuitive understanding and experience of
the essential concepts of programming. The demonstration that these properties
are true of many historic programming calculi gives some independent evidence
that the algebra is potentially useful, and that it corresponds to a widely held
common understanding of the meaning of programs.

All theorems of the paper have been formally checked with Isabelle/HOL. A
proof script is available online [5].

Outline. Section 2 surveys the algebraic laws of programming. Section 3 proposes
a general operational calculus whose rules all follow as theorems from the laws.
Section 4 shows that various familiar operational calculi are specialisations of
the general calculus. Section 5 concludes the presentation.

2 Laws of Programming

The descriptions of program behaviour are clearly propositions, and they may be
connected by the normal operators and relations of the propositional calculus.
They are ordered by logical implication, often called refinement: P ⊆ Q indicates
that P refines Q. This refinement has several meanings. For example, it can say
that the program P is more determinate than program Q (i.e. all behaviours
of P are also behaviours of Q) or that the specification P is stronger than the
specification Q (i.e. P implies Q). Generally, a description is more abstract or
general compared to the descriptions that refine it. Refinement obeys three laws
that make it a partial order:

• P ⊆ P
• P ⊆ Q & Q ⊆ R ⇒ P ⊆ R
• P ⊆ Q & Q ⊆ P ⇒ P = Q
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The simplest terms of an algebra are its constants, in this case skip, ⊥ and�. The
constant skip is a basic program that does nothing but terminate successfully.
Bottom ⊥ represents the False predicate: it describes no execution. Considered
as a program, ⊥ describes the meaning of a program containing a fault like a
syntax violation, which the implementation is required to detect, and to prevent
the program from running. Top � is a program containing a generic error like
subscript overflow, which the implementation is not required to detect, and which
may have unbounded consequences. As a proposition, it can be identified with
the predicate True. It is the programmer’s responsibility to avoid submitting
such a program for execution.

Apart from the constant descriptions, there are operators for forming descrip-
tions in terms of others. The operators are likewise drawn from programming
languages and propositional logic. For example, sequential composition (;) and
concurrent composition (‖) are binary operators from programming: the for-
mula P ;Q describes the sequential composition of P and Q, while P ‖ Q is a
description of their concurrent behaviour. In each case, their execution involves
execution of both the operands.

Conjunction (∧) and disjunction (∨) are operators from propositional logic.
Considered as a program, P ∨ Q is the nondeterministic choice between the
program components P and Q. The choice may be determined at some later
stage in the design trajectory of the program, or by a specified condition tested
at run time; failing this, it may be determined by an implementation of the
language at compile time, or even nondeterministically at run time. It satisfies
the following laws:

• P ⊆ P ∨Q and Q ⊆ P ∨Q.
• Whenever P ⊆ R and Q ⊆ R, then P ∨Q ⊆ R.

These laws say that (∨) is the least upper bound with respect to the refinement
order. Conjunction is its dual and corresponds to the greatest lower bound.

The logical operators, or connectives, satisfy familiar algebraic laws. For in-
stance, conjunction and disjunction are both associative and commutative. Pro-
gramming operators enjoy similar algebraic properties. For example, saying that
(P ;Q) ;R and P ; (Q ;R) describe the same computation is the same as stat-
ing that sequential composition is associative. The properties of most of the
operators considered here are described and intuitively justified in [4]. Table 1
summarizes how the binary operators behave in isolation from each other.

In addition to such laws, distribution laws state the relationships between two
(or more) operators. All the binary operators in the table distribute leftward and
rightward through (∨), i.e. for ◦ ∈ {∨,∧, ;, ‖} we have:

• P ◦ (Q ∨R) = (P ◦Q) ∨ (P ◦R)
• (P ∨Q) ◦R = (P ◦R) ∨ (Q ◦R)

The most unfamiliar law reported in this paper is analogous to the exchange
law of category theory. It specifies how sequential and concurrent composition
interact:
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Table 1. Basic properties of the operators

∨ ∧ ; ‖
Commutative yes yes no yes
Associative yes yes yes yes
Idempotent yes yes no no
Unit ⊥ � skip skip
Zero � ⊥ ⊥ ⊥

.

• (P ‖ Q) ; (R ‖ S) ⊆ (P ;R) ‖ (Q ;S)

This is a form of mutual distribution between the two operators, where different
components of each operand distribute through to different components of the
other operand. The refinement in the law reflects the fact that concurrency
introduces nondeterminism, whereas sequential composition does not. It says
that the program (P ‖ Q) ; (R ‖ S) has fewer behaviours than (P ;R) ‖ (Q ;S).

But is the law in fact true of implementations of concurrency in real comput-
ers and in usable programming languages? Yes, it is true for all implementations
which interleave the independent actions from the constituent threads; or imple-
mentations which are sequentially consistent, in that they successfully simulate
such an interleaving. Here is an informal proof. The right-hand side of the in-
clusion describes all interleavings of an execution of (P ;R) with an execution of
(Q ;S). The left hand side describes all interleavings which synchronise at the
two semicolons displayed in (P ;R) and (Q ;S). Thus the left hand side contains
<p1, q, p2, r1, s, r2>, but it does not contain <p1, q, s, p2, r1, r2>, which is an
interleaving of the right side (here the lower case letters denote sub-executions
of the executions of the corresponding upper case programs).

The exchange law can be exploited in a divide-and-conquer algorithm to com-
pute one (or all) of the interleavings of two strings. If one of the arguments is
empty, deliver the other argument as result. Otherwise, split each string arbi-
trarily into two parts P ;R and Q ;S. Then (recursively) find an interleaving of
P with Q and an interleaving of R with S. Concatenate the two results.

Iteration is another common programming construct. This unary operator is
typically written as a postfix Kleene star: P ∗ describes the iteration where P
is performed zero or more times in sequence. Iteration interacts with the other
operators according to laws from Kleene algebra [6]:

• skip ∨ (P ;P ∗) ⊆ P ∗

• P ∨ (Q ;R) ⊆ R ⇒ Q∗ ;P ⊆ R
• skip ∨ (P ∗ ;P ) ⊆ P ∗

• P ∨ (R ;Q) ⊆ R ⇒ P ;Q∗ ⊆ R

The first law says that P ∗ has more behaviours than skip, and more behaviours
than P ;P ∗. A valid implementation of an iteration can therefore start by
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unfolding it into two cases, one of which does no iterations, and the other of
which does at least one iteration. The second law implies that iteration is the
least solution of the first inequation. It permits inductive proofs of the properties
of an iteration. The last two laws simply swap the arguments of (;).

2.1 Theorems

A binary operator that distributes through (∨) is monotone in both arguments.
So for ◦ ∈ {∨,∧, ;, ‖}:

P ⊆ P ′ & Q ⊆ Q′ ⇒ P ◦Q ⊆ P ′ ◦Q′(◦Monotone)

Also, the exchange law has several consequences that can be proved as theorems
with the help of the properties in Table 1. In particular, two small exchange
laws hold, and sequential composition refines concurrent composition (i.e. it is
a special case thereof):

P ; (Q ‖ R) ⊆ (P ;Q) ‖ R(SmallExchange1)

(P ‖ Q) ;R ⊆ P ‖ (Q ;R)(SmallExchange2)

P ;Q ⊆ P ‖ Q(SeqRefinesConc)

Although exchange is a less familiar form of distribution law, there are also other
cases where operators exchange. For example, it follows as a theorem that (;)
exchanges with (∧):1

(P ∧Q) ; (R ∧ S) ⊆ (P ;R) ∧ (Q ;S)(ConjExchange)

An interesting property of all our algebraic laws is that (like many laws in
physics) they remain true when the direction of time is reversed. In other words,
they preserve the symmetry of time-reversal. Formally expressed, each law re-
mains valid when sequential composition is replaced by backward sequential
composition (̆;), defined

P ;̆Q
def
= Q ;P

As a consequence, every theorem of our algebra also respects time-reversal: swap-
ping the arguments of every (;) in a theorem yields another theorem for free.
Swapping the arguments of (;) once again will result in the original theorem, so
time-reversal is a duality.

Of course, there are useful and realistic laws that do not respect time-reversal.
For example, if abort stands for a program that never terminates and never has
any interaction with its environment, it could realistically be stated to satisfy:

P 	= ⊥ ⇒ abort ;P = abort

1 The same theorem holds when (;) is replaced by (‖) or any other monotonic operator.
The dual property, where (∨) replaces (∧) and the refinement order is reversed, also
holds.
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Such a law could be added to our algebra, but it would not respect time-reversal.
The algebra embodies other algebraic structures used in computer science.

For example, if D is the set of descriptions, then:

• (D,∨, ;, ∗,⊥, skip) is a Kleene algebra [6].
• (D,∨, ;,⊥, skip) is an idempotent semiring.
• (D,∨,∧,⊥,�) is a bounded lattice.
• When the lattice is complete and (;) and (‖) distribute through arbitrary
suprema, then (D,∨,⊥, ‖, ;, skip) is a concurrent Kleene algebra [7].

3 A General Operational Calculus

The general operational calculus uses a quintuple 〈P, s〉 Q−→ 〈P ′, s′〉 as the basic
judgement. It says that the configuration 〈P, s〉 can evolve to 〈P ′, s′〉 in a single
step by performing the action Q. Here P and s describe the initial program and
computational state respectively, and P ′ describes the remaining program and
s′ the resulting computational state. Formally:

〈P, s〉 Q−→ 〈P ′, s′〉 def
= Q ∈ Actions & P ⊇ Q ;P ′ & s ;Q ⊇ s′

The set Actions contains descriptions of primitive actions. Since actions are exe-
cuted in a single step, an operational semantics can choose a step size by defining
Actions appropriately. For example, a big-step calculus can put everything in
the Actions set, while a small-step calculus can confine the set to atomic actions
such as skip, communications, tests and assignments. Our only requirement is
that Actions shall include skip.

The second conjunct in the definition says that it is possible to refine a pro-
gram P into a pair consisting of the prefix action Q and remainder program P ′.
Hence one possible way of executing P is by doing Q first and then executing P ′.
The direction of refinement reflects the fact that execution may reduce or resolve
the nondeterminism in a program under execution.

The third conjunct says that if s describes a machine state before doing Q,
then s′ describes a possible state thereafter. We have associated a state with an
execution history, or more generally, a set of possible execution histories. Then
s ;Q describes the full set of possible execution histories that result from doing
Q in state s. A state s′ describes a possible final state of the execution when it
is contained in s ;Q, i.e. every execution history that s′ describes as possible is
indeed possible for s ;Q.

The conjuncts in the definition of the general quintuple embody an important
separation of concerns. The second conjunct describes how an action relates
before/after programs, and the third conjunct describes how an action relates
before/after states. Combining these notions in a single judgement makes it
straightforward later on to derive the rules of familiar calculi from the general
ones.
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The inference rules of the general calculus all follow from the algebraic laws
and are therefore theorems. Some rules are shared among the small-step and
big-step calculi that we treat in the next section, for example:

P ∈ Actions ⇒ 〈P, s〉 P−→ 〈skip, s ;P 〉(Gaction)

〈skip, s〉 skip−→ 〈skip, s〉(Gskip)

〈P, s〉 Q−→ 〈P ′, s′〉 ⇒ 〈P ∨ P ′′, s〉 Q−→ 〈P ′, s′〉(Gchoice1)

〈P ′, s〉 Q−→ 〈P ′′, s′〉 ⇒ 〈P ∨ P ′, s〉 Q−→ 〈P ′′, s′〉(Gchoice2)

〈P ∗, s〉 skip−→ 〈skip, s〉(Giter)

Small-step calculi use several additional rules, such as:

〈P, s〉 Q−→ 〈P ′, s′〉 ⇒ 〈P ;P ′′, s〉 Q−→ 〈P ′ ;P ′′, s′〉(GSseq1)

〈P, s〉 Q−→ 〈skip, s′〉 ⇒ 〈P ;P ′, s〉 Q−→ 〈P ′, s′〉(GSseq2)

〈P ∨ P ′, s〉 skip−→ 〈P, s〉(GSchoice1)

〈P ∨ P ′, s〉 skip−→ 〈P ′, s〉(GSchoice2)

〈P ∗, s〉 skip−→ 〈P ;P ∗, s〉(GSiter)

〈P, s〉 Q−→ 〈P ′, s′〉 ⇒ 〈P ‖ P ′′, s〉 Q−→ 〈P ′ ‖ P ′′, s′〉(GSconc1)

〈P, s〉 Q−→ 〈skip, s′〉 ⇒ 〈P ‖ P ′, s〉 Q−→ 〈P ′, s′〉(GSconc2)

Rules for executing the second operand of a concurrent composition follow
from (GSconc1) and (GSconc2) by the commutativity of (‖).

Big-step calculi such as Kahn’s natural semantics have judgements that ex-
ecute programs to completion. This behaviour is captured by general rules

that only use judgements of the form 〈P, s〉 Q−→ 〈skip, s′〉. The following ex-

amples of big-step rules all have as additional premisses 〈P, s〉 Q−→ 〈skip, s′〉 and
Q ;Q′ ∈ Actions:

〈P ′, s′〉 Q′
−→ 〈skip, s′′〉 ⇒ 〈P ;P ′, s〉 Q;Q′

−→ 〈skip, s′′〉(GBseq)

〈P ∗, s′〉 Q′
−→ 〈skip, s′′〉 ⇒ 〈P ∗, s〉 Q;Q′

−→ 〈skip, s′′〉(GBiter)

〈P ′, s′〉 Q′
−→ 〈skip, s′′〉 ⇒ 〈P ‖ P ′, s〉 Q;Q′

−→ 〈skip, s′′〉(GBconc1)

〈P ′, s′〉 Q′
−→ 〈skip, s′′〉 ⇒ 〈P ′ ‖ P , s〉 Q;Q′

−→ 〈skip, s′′〉(GBconc2)

4 Specialisations

Various familiar operational calculi follow from the general calculus. Each derived
calculus bases its judgement(s) on the general quintuple, and uses a subset of
the general rules.
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4.1 Structural Operational Semantics

The structural operational semantics2 of Plotkin [1] is a small-step semantics
that leaves computer actions implicit. An existential quantifiers hides the action
in its fundamental judgement:

〈P, s〉 −→ 〈P ′, s′〉 def
= ∃Q : 〈P, s〉 Q−→ 〈P ′, s′〉

For the special case where a program is executed to completion in a single step,
it uses a judgement with three arguments:

〈P, s〉 −→ s′ def
= ∃Q : 〈P, s〉 Q−→ 〈skip, s′〉

Using these definitions, it is simple to show that the inference rules of structural
operational semantics follow from general rules and hence hold as theorems. For
example:

〈skip, s〉 −→ s(Pskip)

〈P, s〉 −→ 〈P ′, s′〉 ⇒ 〈P ;P ′′, s〉 −→ 〈P ′ ;P ′′, s′〉(Pseq1)

〈P, s〉 −→ s′ ⇒ 〈P ;P ′, s〉 −→ 〈P ′, s′〉(Pseq2)

〈P ∨ P ′, s〉 −→ 〈P, s〉(Pchoice1)

〈P ∨ P ′, s〉 −→ 〈P ′, s〉(Pchoice2)

〈P ∗, s〉 −→ s(Piter1)

〈P ∗, s〉 −→ 〈P ;P ∗, s〉(Piter2)

〈P, s〉 −→ 〈P ′, s′〉 ⇒ 〈P ‖ P ′′, s〉 −→ 〈P ′ ‖ P ′′, s′〉(Pconc1)

〈P, s〉 −→ s′ ⇒ 〈P ‖ P ′, s〉 −→ 〈P ′, s′〉(Pconc2)

4.2 Process Calculus Semantics

This style of operational semantics was introduced by Milner for CCS in [8], and
has also been used to specify the operational meaning of other process calculi.
It uses small execution steps to accommodate concurrency, and hides machine
states in its fundamental judgement:

P
Q−→ P ′ def

= ∀s : ∃s′ : 〈P, s〉 Q−→ 〈P ′, s′〉

An alternative but equivalent characterization of P
Q−→ P ′ says that one pos-

sible way of executing the program P is by doing the action Q first and then
executing the program P ′:

P
Q−→ P ′ ⇔ Q ∈ Actions & P ⊇ Q ;P ′

2 Also called transition semantics.
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The next theorem shows that the state components can equivalently be made
implicit with existential quantifiers:

P
Q−→ P ′ ⇔ ∃s, s′ : 〈P, s〉 Q−→ 〈P ′, s′〉

By using this equivalence, it is simple to see that operational inference rules of
process calculi follow as theorems from general operational rules.

P ∈ Actions ⇒ P
P−→ skip(Maction)

The judgement P
Q−→ skip says that P can be completely executed in a single

step by doing Q, since it remains to do nothing (skip). This is sometimes written

P
Q−→ √ in process calculi (e.g. [9]), so the above rule states that P

P−→ √ holds
when P ∈ Actions .

P
Q−→ P ′ ⇒ P ;P ′′ Q−→ P ′ ;P ′′(Mseq1)

P
Q−→ skip ⇒ P ;P ′ Q−→ P ′(Mseq2)

CCS uses prefixing – a restricted form of sequential composition in which the first
operand must be an action. Combining (Maction) and (Mseq2) gives Milner’s
rule:

P ∈ Actions ⇒ P ;P ′ P−→ P ′(Mprefixing)

A judgement P
skip−→ P ′ says that without doing real work, the program P can

be validly rearranged/rewritten as P ′, which is then executed instead. The no-

tation P −→ P ′ abbreviates P
skip−→ P ′ and is equivalent to P ⊇ P ′. Hence rear-

rangement is simply refinement – a reduction in the program’s nondeterminism.
Resolving a nondeterministic choice and unfolding an iteration are example re-
arrangements.

P ∨ P ′ −→ P(Mchoice1)

P ∨ P ′ −→ P ′(Mchoice2)

P ∗ −→ skip(Miter1)

P ∗ −→ P ;P ∗(Miter2)

P
Q−→ P ′ ⇒ P ‖ P ′′ Q−→ P ′ ‖ P ′′(Mconc1)

P
Q−→ skip ⇒ P ‖ P ′ Q−→ P ′(Mconc2)

Almost all process calculi include features for communication. A communication
in CCS combines actions from two or more concurrent processes in a single
action. Since the participating actions must happen together, the communication
achieves a rendezvous among the processes. For example, CCS allows a process
performing an input action a and a concurrent process performing output action
a to communicate, and doing so yields the internal action τ :
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P
a−→ P ′ & R

a−→ R′ ⇒ P ‖ R τ−→ P ′ ‖ R′

By requiring that τ ⊆ a ‖ a, it is generalized by the theorem:

P
Q−→ P ′ & R

Q′
−→ R′ & Q′′ ∈ Actions & Q′′ ⊆ Q ‖ Q′

⇒ P ‖ R Q′′
−→ P ′ ‖ R′

Note that the participating actions are combined in a concurrent composition
that forms the basis of the communication action. Instead of requiring τ ⊆ a ‖ a,
the calculus can define τa as a ‖ a and adopt the convention that τ stands for
τa for some a. However, such choices fall outside the scope of the current paper,
which does not treat specific basic actions apart from skip.

4.3 Reduction Semantics with Evaluation Contexts

This flavour of operational semantics was originally presented by Felleisen and
Hieb [3] for a functional language, but is readily adapted to imperative settings
(see e.g. [10]). It combines the notion of an explicit evaluation context with as-
pects of Milner and Plotkin semantics to provide a compact operational calculus.
It uses two judgements: the P −→ P ′ reduction/rearrangement judgement of the
Milner calculus, and Plotkin’s judgement 〈P, s〉 −→ 〈P ′, s′〉.

The idea of an explicit evaluation context is central to the calculus. There are
two kinds of evaluation context: program contexts and configuration contexts. A
program context is a program with a hole where another program can be plugged
in. An execution step of any plugged-in program must also be a step of the
context plus program combination, so holes indicate which program components
may be executed next. Formally, a program context is any function pc ∈ D→ D

(where D is the set of all descriptions) such that

P
Q−→ P ′ ⇒ pc(P )

Q−→ pc(P ′)

The identity function is the empty program context, and it is evident from the
Milner rules that λx. (x ;P ), λx. (x ‖ P ) and λx. (P ‖ x) are also valid program
contexts. The last two show that there might be more than one way to factor a
program into a context-program pair, i.e. it is possible that two or more of its
components are ready for execution.

The functional composition of two program contexts is again a program con-
text, so e.g. λx. ((P ‖ (x ‖ P ′)) ;P ′′) is also a program context.

The second kind of evaluation context is a configuration context. A config-
uration context is a construct of the form 〈pc, s〉 which maps descriptions to
configurations: 〈pc, s〉(P ) = 〈pc(P ), s〉. In summary, an evaluation context ec is
a function in D → (D ∪ Configurations) that is either a program context or a
configuration context.
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In contrast to the Plotkin and Milner calculi, the calculus has only one infer-
ence rule with a premise. It states that if a program P reduces to P ′, then this
reduction is valid inside any evaluation context:

P −→ P ′ ⇒ ec(P ) −→ ec(P ′)(Rmain)

Apart from specifying contexts and this rule, the calculus has a small set of rules
of the form P −→ P ′ and a small set of rules of the form 〈P, s〉 −→ 〈P ′, s′〉. By
using (Rmain), it becomes possible to derive more complicated judgements of
the form P −→ P ′ and additional judgements of the form 〈P, s〉 −→ 〈P ′, s′〉.

Reduction rules of the form P −→ P ′ that the calculus adopts as axioms
include the Milner rules for nondeterministic choice and iteration, as well as
trivial rules for sequential composition and concurrency:

skip ;P −→ P(Rseq)

skip ‖ P −→ P(Rconc1)

P ‖ skip −→ P(Rconc2)

Here are examples of how (Rmain) and these rules support reasoning about
program execution. Since λx. 〈(P ‖ (x ‖ P ′)) ;P ′′, s〉 is a valid evaluation con-
text, one can use (Rmain) with (Mchoice1), (Miter2) and (Rseq) respectively to
deduce the judgements:

• 〈(P ‖ ((P1 ∨ P2) ‖ P ′)) ;P ′′, s〉 −→ 〈(P ‖ (P1 ‖ P ′)) ;P ′′, s〉
• 〈(P ‖ ((P1

∗) ‖ P ′)) ;P ′′, s〉 −→ 〈(P ‖ ((P1 ;P1
∗) ‖ P ′)) ;P ′′, s〉

• 〈(P ‖ ((skip ;P1) ‖ P ′)) ;P ′′, s〉 −→ 〈(P ‖ (P1 ‖ P ′)) ;P ′′, s〉
The calculus typically includes one or more rules of the form 〈P, s〉 −→ 〈P ′, s′〉
for each action. If Q is an action, and s′ faithfully records the effect of Q on s,
i.e. Plotkin’s judgement 〈Q, s〉 −→ s′ holds, then it is justified to adopt the rule:

〈pc, s〉(Q) −→ 〈pc, s′〉(skip)
which can also be written as:

〈pc(Q), s〉 −→ 〈pc(skip), s′〉

As Milner triples are available in our setting, and Q
Q−→ skip for all actions Q,

the idea is generalized by the theorem:

P
Q−→ P ′ & 〈Q, s〉 −→ s′ ⇒ 〈pc(P ), s〉 −→ 〈pc(P ′), s′〉

which in turn follows from the equivalence:

P
Q−→ P ′ & 〈Q, s〉 −→ s′ ⇔ (∀pc : 〈pc(P ), s〉 Q−→ 〈pc(P ′), s′〉)
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Because its right side is equivalent to 〈P, s〉 Q−→ 〈P ′, s′〉, the theorem illustrates
the reversible decomposition of a quintuple into a Milner transition and a state
transformation:

〈P, s〉 Q−→ 〈P ′, s′〉 ⇔ P
Q−→ P ′ & 〈Q, s〉 −→ s′

4.4 A Small-Step Semantics with Implicit States and Implicit
Actions

In [11], Plotkin considers Milner’s presentation of operational rules for CCS,
and observes that “for an imperative language, one could also leave the state
component implicit”. He also gives an example of such a rule:

P → P ′ ⇒ P ;P ′′ → P ′ ;P ′′(Oseq1)

This calculus is based on structural operational semantics, so it uses small ex-
ecution steps. The state components of the Plotkin judgement are hidden by
quantifiers:

P → P ′ def
= ∀s : ∃s′ : 〈P, s〉 −→ 〈P ′, s′〉

The next theorem shows that the state components can equivalently be made
implicit with existential quantifiers:

P → P ′ ⇔ ∃s, s′ : 〈P, s〉 −→ 〈P ′, s′〉
There is also a direct relationship with the Milner judgement:

P → P ′ ⇔ ∃Q : P
Q−→ P ′

Using the first equivalence, it is simple to derive additional rules of the calcu-
lus from the Plotkin ones. The same is true for the second equivalence and the
Milner rules. For example:

P → skip ⇒ P ;P ′ → P ′(Oseq2)

P ∨ P ′ → P(Ochoice1)

P ∗ → P ;P ∗(Oiter2)

P → P ′ ⇒ P ‖ P ′′ → P ′ ‖ P ′′(Oconc1)

If a rule of the Milner calculus had the same action in its premise and conclusion
judgements, then it is justified to think that in its implicit action counterpart
here, the effect on the implicit state in the premise judgement may also be
attributed to the conclusion judgement. In (Oconc1), for example, if evolving
P into P ′ has a certain effect on the implicit state, then evolving P ‖ P ′′ into
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P ′ ‖ P ′′ can have the same effect on the implicit state. Of course, (Oconc1) also
says that evolving P ‖ P ′′ into P ′ ‖ P ′′ is valid if P can evolve to P ′.

4.5 The Chemical Abstract Machine

The chemical abstract machine (cham) of Berry and Boudol [12] uses a chemical
metaphor to specify the operational semantics of concurrent languages. Accord-
ing to [12]:

Unlike some other models, the Γ and cham models are operational in
character and handle (true) concurrency as the primitive built-in notion.

A chemical solution is the fundamental structuring concept that models con-
currency in a cham. It abbreviates the concurrent composition of its comprising
molecules (descriptions):

{|P1, . . . , Pn|} def
= P1 ‖ · · · ‖ Pn

Cham postulates that chemical solutions behave like multisets, i.e. that con-
currency is commutative, associative and has a unit. These assumptions are
validated by our algebraic laws. Thus the multiset union � of chemical solutions
is (‖), and the unit of �, the empty solution {| |}, is skip. These facts can be used
together with the rules of our general operational theory to derive the cham rules
as theorems.

Chemical solutions encapsulate molecules and can be structured hierarchi-
cally. To interact with its environment, a nested solution can expose one of its
molecules in a reversible way with an airlock operator. We define a generalized
airlock operator3, whose second argument is a program context, as follows:

P � pc
def
= pc(P )

The cham’s standard airlock is defined in terms of the general one:

P � P ′ def
= P � λx. (x ‖ P ′)

Cham has three judgements: a heating judgement ⇀, a cooling judgement ⇁,
and a reaction judgement→. Heating and cooling differ only conceptually – both

are defined as the Milner judgement P
skip−→ P ′:

P ⇀ P ′ def
= P −→ P ′

P ⇁ P ′ def
= P −→ P ′

The symbol � abbreviates a heating/cooling judgement pair:

P � P ′ def
= P ⇀ P ′ & P ′ ⇁ P

3 The definition and use of the general airlock operator was inspired by the treatment
in [10] and the manipulation of heavy ions in [12].
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Such pairs express manipulations that do not alter a solution or molecule in a
fundamental way: P � P ′ is equivalent to P = P ′.

Reaction judgements are unlabeled transitions that can specify real work. The
reaction judgement P → P ′ was defined in the previous section and is equivalent

to ∃Q : P
Q−→ P ′. Heating and cooling are special kinds of reactions.

Cham has only two rules with premisses: the chemical rule and the solution
rule4. For � in {⇀,⇁,�,→}:

P � P ′ ⇒ P � P ′′ � P ′ � P ′′(Cchemical)

P � P ′ ⇒ {|pc(P )|}� {|pc(P ′)|}(Csolution)

The other cham rules are premise-free and also hold as theorems:

{|pc(P )|}� {|P � pc|}(CgeneralAirlock)

{|P |} � P ′ � {|P � P ′|}(Cairlock)

{|(P ;P ′) � P ′′|}� {|P � λx. ((x ;P ′) � P ′′)|}(Cseq)

{|P ‖ P ′|}� {|P, P ′|}(Cconc)

{|(P ∨ P ′) � pc|} → {|P � pc|}(Cchoice1)

{|(P ∨ P ′) � pc|} → {|P ′ � pc|}(Cchoice2)

{|P ∗ � pc|} → {|skip � pc|}(Citer1)

{|P ∗ � pc|} → {|(P ;P ∗) � pc|}(Citer2)

{|(skip ;P ) � pc|} → {|P � pc|}(Cdropskip)

{|skip|}⇀ {| |}(Cskip)

Here is an example computation with cham showing that (Q ;P ) ‖ P ∗ can re-
duce to P under the assumption {|Q � pc|} → {|skip � pc|}:

{|(Q ;P ) ‖ P ∗|}
⇀ (Cconc)
{|Q ;P, P ∗|}

⇀ (Cairlock)
{|(Q ;P ) � {|P ∗|}|}

⇀ (Cseq)
{|Q � λx. ((x ;P ) � {|P ∗|})|}
→ (Csolution) with (Citer1)
{|Q � λx. ((x ;P ) � {|skip|})|}
→ Assumption
{|skip � λx. ((x ;P ) � {|skip|})|}

⇁ (Cseq)
{|(skip ;P ) � {|skip|}|}
→ (Cdropskip)

4 The solution rule is called the membrane rule in [12]. The membrane operator
{| , . . . , |} corresponds to iterated concurrent composition. Applying a membrane
to molecules results in a chemical solution.
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{|P � {|skip|}|}
⇁ (Cairlock)
{|P, skip|}

⇀ (Cchemical) with (Cskip)
{|P |}

This example and the ones in [12] chain simple judgements to show a reduc-
tion. However, the solution and chemical rules makes cham a “truly concurrent”
calculus according to [12]:

A cham is an intrinsically parallel machine: one can simultaneously apply
several rules to a solution provided that their premisses are not conflict-
ing, i.e. that no molecule is involved in more than one rule; one can also
transform subsolutions in parallel.

Berry and Boudol do not adopt a particular evaluation scheme, and state that
“a nonconflicting parallel application of rules is equivalent, up to permutations,
to any sequence of the individual rules” [12].

True concurrency can be made explicit by allowing concurrent actions, i.e.
closing Actions under (‖):
Q ∈ Actions & Q′ ∈ Actions ⇒ Q ‖ Q′ ∈ Actions

and generalizing a program context to be any n-ary function pc ∈ Dn → D that
satisfies:

P1
Q1−→ P ′

1 & . . . & Pn
Qn−→ P ′

n ⇒ pc(P1, . . . , Pn)
Q1‖...‖Qn−→ pc(P ′

1, . . . , P
′
n)

This also suggests the possibility of adapting other operational calculi to imple-
ment the cham notion of true concurrency.

4.6 Natural Semantics

The natural semantics5 of Kahn [2] was originally presented for a functional lan-
guage. The idea is readily adapted to imperative settings (see e.g. [13]), where
the fundamental judgement involves a program, an input and an output state.
The calculus allows arbitrarily big execution steps by including every description
in the set Actions. All programs are executed to completion and machine actions
are left implicit.

〈P, s〉 −→ s′ def
= ∃Q : 〈P, s〉 Q−→ 〈skip, s′〉

As expected, 〈P, s〉 −→ s′ asserts that s′ describes a possible final machine state
after program P has been executed in initial state s:

〈P, s〉 −→ s′ ⇔ s ;P ⊇ s′

5 Also called evaluation semantics.
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The inference rules of natural semantics follow from the general rules and are
therefore theorems. For instance:

〈skip, s〉 −→ s(Kskip)

〈P, s〉 −→ s′ & 〈P ′, s′〉 −→ s′′ ⇒ 〈P ;P ′, s〉 −→ s′′(Kseq)

〈P, s〉 −→ s′ ⇒ 〈P ∨ P ′, s〉 −→ s′(Kchoice1)

〈P ∗, s〉 −→ s(Kiter1)

〈P, s〉 −→ s′ & 〈P ∗, s′〉 −→ s′′ ⇒ 〈P ∗, s〉 −→ s′′(Kiter2)

〈P, s〉 −→ s′ & 〈P ′, s′〉 −→ s′′ ⇒ 〈P ‖ P ′, s〉 −→ s′′(Kconc1)

〈P ′, s〉 −→ s′ & 〈P, s′〉 −→ s′′ ⇒ 〈P ‖ P ′, s〉 −→ s′′(Kconc2)

The rules for concurrency are trivial and not very interesting. As Nielson and
Nielson remark [13, p. 50], “in a natural semantics the execution of the immediate
constituents [of a parallel composition] is an atomic entity so we cannot express
interleaving of computations”. In contrast to this, the small-step calculi can
easily express interleaving.

Because of this problem, a big-step version of Milner semantics (where Actions

contain all descriptions and all judgements have the form P
Q−→ skip, i.e. pro-

grams are executed to completion) is not very useful for process calculi with
concurrency. We do not pursue such a calculus further here, and leave its con-
struction to interested readers.

5 Conclusion

This paper concentrates on the unification of a wide range of existing opera-
tional calculi by a simple algebra. The same algebraic laws form the basis of
other calculi of programming such as Hoare logic, Dijkstra’s weakest precondi-
tion calculus, the Back/Morgan refinement calculus and Jones’ rely-guarantee
calculus - see for example [14,7]. This provides additional evidence that the al-
gebra corresponds to a widely held common understanding of the meaning of
programs, and that it can serve as a foundation for more ambitious unification.

The algebraic laws that a calculus needs provide a succinct summary of the
properties of programs it relies on. This can form the basis for investigating the
differences and commonalities of various calculi. For example, none of the calculi
in this paper uses the distribution law P ; (P ′ ∨ P ′′) = (P ;P ′) ∨ (P ;P ′′). They
rely at most on the weaker property that (;) is monotone in its second argument,
i.e. P ; (P ′∨P ′′) ⊇ (P ;P ′)∨(P ;P ′′). This commonality between the operational
calculi contrasts sharply with the deductive Hoare calculus, which requires the
law P ; (P ′ ∨P ′′) ⊆ (P ;P ′)∨ (P ;P ′′) for its rule for nondeterministic choice [7]:

P {Q}R & P {Q′}R ⇒ P {Q ∨Q′}R
Algebra is simple, elegant and abstract. One can specify properties of interest
without commitment to a particular model. This generality enables reuse in
different settings and encourages an incremental style of formalisation, where
additional operators and laws are introduced when and if needed. The study of
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algebra has made an immense contribution to the advancement of mathematics
and engineering; and there is now a good prospect that it may also assist in
reasoning about the execution and correctness of computer programs.
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Abstract. We present a theory of designs based on functions from the
state space to real numbers, which we term distributions. This theory uses
predicates, in the style of UTP, based on homogeneous relations between
distributions, and is richer than the standard UTP theory of designs
as it allows us to reason about probabilistic programs; the healthiness
conditions H1–H4 of the standard theory are implicitly accounted for in
the distributional theory we present. In addition we propose a Galois
connection linkage between our distribution-based model of probabilistic
designs, and the standard UTP model of (non-probabilistic) designs.

1 Introduction

The Unifying Theories of Programming (UTP) aims at a semantic framework
where programs and specifications can be modelled as alphabetised relational
predicates, capturing the semantic models normally used for their formal de-
scription [HJ98, DS06, But10, Qin10]: the advantage of this common framework
is that of enabling formal reasoning on the integration of the different languages.

UTP relies on untyped predicate calculus: programs are expressed by means
of logical predicates (programs are predicates! [Heh84, Hoa85]), and different
theories can be given a UTP semantics, and here we focus on the theory of
designs: this theory allows us to reason about the total correctness of programs
from the perspective of what preconditions must be met in order to reach some
given postconditions.

A challenging research question is how to add probability to the picture,
and in particular how to integrate it in a framework where non-determinism is
present: we use a framework based on distributions over the state space, where
the predicates used involve a homogeneous relation between before- and after-
distributions. This allows us to define a probabilistic theory of designs, which can
handle programs where both probabilistic and non-deterministic choice co-exist.

This paper is structured as follows: we describe the background to UTP,
with particular focus on the standard theory of designs in that framework (�2);
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03/CE2/I303 1 to Lero – the Irish Software Engineering Research Centre.
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introduce a probabilistic framework based on distributions over the state space
(�3); present a probabilistic theory of designs in this new framework (�4) and
discuss its application to a well-known example (�5); and conclude (�6).

2 Background

2.1 UTP

UTP uses second-order predicates to represent programs: they are used to ex-
press relations among a set of observable variables which constitute their alpha-
bet.

Observable variables usually occur as both undecorated and decorated with
a dash ′: the former refer to states before the program starts (before-states),
whereas the latter refer to the final states reached after the program has run
(after-states).

For example, a program using two variables x and y might be characterised
by having the set {x,x′, y, y′} as an alphabet, and the meaning of the assignment
x ∶= y + 3 would be described by the predicate

x′ = y + 3 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational
calculus for reasoning about programs.

In addition to observations of the values of program variables, often we need to
introduce observations of other aspects of program execution via so-called auxil-
iary variables. For example the theory of reactive programs uses three auxiliary
variables — namely ok ,wait , tr , ref — to keep track of information concerning
the current program run, such as termination, reach of a stable state, refusals, . . .

A key notion in UTP is that of healthiness conditions : they are usually char-
acterised as monotonic idempotent predicate transformers whose fixpoints char-
acterise sensible (healthy) predicates. In other words they outlaw all arbitrary
predicate calculus statements that describe predicates with no sense — an ex-
ample is ¬ok ⇒ ok′, which describes a “program” that must terminate when not
started.

This notion is closely related to that of refinement, defined as the universal
closure1 of reverse implication:

S ⊑ P ≙ [P ⇒ S]

Healthy predicates form a lattice under the ordering induced by the refinement
relation.

The refinement calculus enables the derivation of an implementation P from
a specification S: such derivation can be proven correct if P is a valid refinement
of S.

1 Square brackets denote universal closure, i.e. [P ] asserts that P is true for all values
of its free variables.
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Most UTP theories developed so far deal only with non-deterministic choice,
nevertheless the introduction of a probabilistic choice operator is beneficial to
many application requiring a quantitative approach, for example to evaluate
reliability of programs.

Nevertheless some lines of research are moving along this direction. In [HS06]
the authors present an approach to unification of probabilistic choice with stan-
dard constructs. They provide an example of how the laws of pGCL could be
captured in UTP as predicates about program equivalence and refinement. How-
ever only an axiomatic semantics was presented, and the laws were justified via
a Galois connection to an expectation-based semantic model.

The approach presented in [CS09] is that of decomposing non-deterministic
choice into a combination of pure probabilistic choice and a unary operator
that accounted for its non-deterministic behaviour . It is worth underlining a
comment of theirs, on how still unsatisfactory theories are with respect to the
issue of having probabilistic and demonic choice to coexist.

The UTP model described in [He10], which is used to give a UTP-style se-
mantics to a probabilistic BPEL-like language, relates an initial state to a final
probability distribution over states, rather than relating before-variables to cor-
responding after-variables of the same type.

We have previously presented an encoding of the semantics of the probabilistic
guarded command language (pGCL) in the UTP framework [BB11, BB12]. This
encoding captures pGCL programs as predicate-transformers, on predicates over
probability before- and after-distributions.

In �3 we will present the underlying distributional framework, which we sub-
sequently use in order to obtain a probabilistic theory of designs.

2.2 The Standard Theory of Designs

Now that we have given a general overview of the UTP framework, we are going
to focus on the theory of designs and present its UTP semantics.

The theory of designs patches the relational theory, in the sense that predicates
from the relational theory fail to satisfy the following equality:

true;P = true
In fact according to the relational theory true is a left identity of the sequential
composition operator:

true;P ≡∃vm ● true{v
m/v ′} ∧ P{v

m/v}

≡∃vm ● true ∧ P{v
m/v}

≡∃vm ●P{v
m/v}

Which reduces to true if v ∈ fv(P ), or to P otherwise.
This has disastrous consequences, as this enables us to show that a program

can recover from a never-ending loop:

true ∗ skip ≡ μX ●X ≡  ≡ true
. . . which is surprising, to say the least.
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The theory of designs uses an additional auxiliary variable ok (along with its

dashed version ok ′) to record start (and termination) of a program.
A design (specification) is made of a precondition Pre that has to be met when

the program starts, and if so the program establishes Post upon termination,
which is guaranteed:

ok ∧Pre ⇒ ok ′ ∧Post
for which we use the following shorthand:

Pre ⊢ Post

The semantics of the assignment x ∶= y + 3 in this theory is the following:

true ⊢ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value
of y plus three, with y unchanged).

The behaviour of true with respect to sequential composition is the desirable
one, as now we have:

true;(Pre ⊢ Post) ≡true;ok ∧Pre ⇒ ok ′ ∧ Post
≡∃ok m,vm ● true{ok m/ok ′}{vm/v ′} ∧ (ok m ∧ Pre{vm/v} ⇒ ok ′ ∧ Post)
≡∃ok m,vm ● true ∧ (ok m ∧ Pre{vm/v} ⇒ ok ′ ∧ Post)
≡∃ok m,vm ● ok m ∧ Pre{vm/v} ⇒ ok ′ ∧ Post
≡true

and therefore true is a left zero for sequential composition.
Designs form a lattice, whose bottom and top elements are respectively:

abort ≙ false ⊢ false ≡ false ⊢ true

and
miracle ≙ true ⊢ false ≡ ¬ok

It should be noted that miracle is a (infeasible) program that cannot be started.
Valid designs are predicates R which comply with four healthiness condi-

tions [HJ98]. The first one (unpredictability, H1) excludes from observation all
programs that have not started, and therefore restricts valid relations to those
such that:

R = (ok ⇒ R)

All H1-healthy predicates satisfy the left zero and left unit laws:

true;R = true and skip;R = R

The second one (possible termination, H2) states that a valid relation cannot
require nontermination:

R{false/ok ′} ⇒ R{true/ok ′}
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The third one (dischargeable assumptions, H3) states that preconditions cannot
use dashed variables. All H3-healthy predicates satisfy the right unit law:

R;skip = R

The fourth one (feasibility or excluded miracle, H4) requires the existence of final
values for the dashed variables that satisfy the relation:

∃ok ′,v ′ ●R = true

H4 excludes miracle from the valid designs, and this implies that all H4-healthy
predicates satisfy the right zero law:

R;true = true

This condition cannot be expressed as an idempotent healthiness transformer,
and does not preserve the predicate lattice structure. It serves solely to identify
and/or eliminate predicates that characterise infeasible behaviour.

Through our distributional framework (�4) we obtain a richer theory where
corresponding healthiness conditions hold (�4.1), even without the introduction

of the auxiliary variables ok ,ok ′. Moreover the use of distributions enables us
to evaluate the probability both of termination and of meeting a set of arbitrary
postconditions as a function of the initial distribution (which determines the
probability of meeting any required precondition).

3 The Distributional Framework

In [BB11] we have presented a UTP framework to deal with demonic probabilistic
programs.

This framework relies on the concept of distributions over the state space: a
generic distribution is a real-valued function χ ∶ S → R that assigns a weight
xi (a real number) to each state σi in the state space S . The mathematics
we employ is valid provided the probabilities constitute what is known as a
measure space [Hal50]. If the state is not finite, then the limitation we face is
that property predicates (pre- and post-expectations, for example) can only talk
about probabilities associated with sets of observations, rather than single ones
— in effect χ has to be interpreted as a probability density function.

A state σ bundles all the information regarding program variables into a single
observation, in a style shared with many presentations of Circus-like languages:
program variable values are modelled with a single state observation σ ∶ V → W ,
which is treated as a finite map from variables (V ) to values (W ). This choice
simplifies the treatment of alphabets to a considerable degree.

The weight of a distribution is defined as:

∥χ∥ ≙ ∑
σ∈domχ

χ(σ)
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This operation can be lifted to a set X of distributions:

∥X ∥ ≙ {∥χ∥ ∣ χ ∈ X }

Among all generic distributions, the following two sub-classes play important
roles in our framework:

– a weighting distribution π has the property that for every state σ we have
0 ≤ π(σ) ≤ 1 — we define two particular weighting distributions, ε and ι, as
the ones mapping every state to 0 and 1 respectively. There is no limit for
the distribution weight;

– a probability distribution δ is a weighting distribution with the additional
property that ∥δ∥ ≤ 1.

We will use the term sub-distribution to refer to a probability distribution where
∥δ∥ < 1 and the term full distribution to refer to a probability distribution where
∥δ∥ = 1.

Generally speaking, it is possible to operate on distributions by lifting point-
wise operators such as addition, multiplication and multiplication by a scalar.
Analogously we can lift pointwise all traditional relations and functions on real
numbers2.

In the case of pointwise multiplication, it is interesting to see it as a way of
“re-weighting” a distribution. We have a particular interest in the case when one
of the operands is a weighting distribution π, as we will use this operation to
give semantics to choice constructs. We opt for a postfix notation to write this
operation, as this is an effective way of marking when pointwise multiplication
happens in the operational flow: for example if we multiply the probability distri-
bution δ by the weighting distribution π, we write this as δ�π�. We use notation
ε and ι to denote the everywhere zero and unit distributions, respectively:

ε(σ) = 0 ∧ ι(σ) = 1, for all σ

Given a condition (predicate on state) c, we can define the weighting distribution
that maps every state where c evaluates to true to 1, and every other state to
0: as the value of each state can be seen as the boolean value of c in that state
multiplied by 1, we overload the above notation and note this distribution as
ι�c�. In general whenever we have the multiplication of a distribution by ι�c�,
we can use the postfix operator �c� for short, instead of using �ι�c��. It is worth
pointing out that if we multiply a probability distribution δ by ι�c�, we obtain
a distribution whose weight ∥δ�c�∥ is exactly the probability of being in a state
satisfying c.

3.1 Assignment

A challenge we have faced has been describing how assignment, which is very
much oriented towards individual variables, is given a semantics in terms of a

2 Distributions form a vector space, which we have explored elsewhere. We omit dis-
cussion of this aspect of our theory for clarity and brevity.
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distribution that involves complete entanglement of those variables. In effect
an assignment statement x ∶= e involves a partial entanglement of variable x
with the variables mentioned in e. In general as we build up larger programs
using single assignment as the basic component we observe an increasing degree
of entanglement, which can often be captured as an appropriate simultaneous
assignment, so we shall work at this level here.

Given a simultaneous assignment v ∶= e, where underlining indicates that we
have lists of variables and expressions of the same length, we denote its effect on
an initial probability distribution δ by δ{∣e/v ∣}. The postfix operator {∣e/v ∣} reflects
the modifications introduced by the assignment — the intuition behind this,
roughly speaking, is that all states σ where the expression e evaluates to the
same value w = evalσ(e) are replaced by a single state σ′ = (v ↦ w) that maps
to a probability that is the sum of the probabilities of the states it replaces.

(δ{∣e/v ∣})(σ′) ≙ (∑ δ(σ) ∣ σ′ = σ � {v ↦ evalσ(e))

Here we treat the state as a map, where � denotes map override; this operator
essentially implements the concept of “push-forward” used in measure theory,
and is therefore a linear operator. An example is given in Figure 1.

Assignment preserves the overall weight of a probability distribution if e can
be evaluated in every state, and if not the assignment returns a sub-distribution,
where the “missing” weight accounts for the assignment failing on some states
(this failure prevents a program from proceeding and causes non-termination).

σ00

σ01

σ10

σ11

1/4

1/4

1/4

1/4

{∣y/x∣}

δ′ = δ{∣y/x∣}δ

σ00

σ01

σ10

σ11

1/2

0

0

1/2

Fig. 1. The assignment x ∶= y from an initial uniform distribution on the state space
S = {0,1} × {0,1}
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abort ≙ ∥δ′∥ ≤ ∥δ∥

miracle ≙ (δ = ε) ∧ (δ′ = ε)
skip ≙ δ′ = δ

v ∶= e ≙ δ′ = δ{∣e/v ∣}
A;B ≙ ∃δm ●A(δ, δm) ∧B(δm, δ′)

choice(A,B,X ) ≙ ∃π, δA, δB ● π ∈ X ∧A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB
c ∗A ≙ μX ● choice((A;X), skip,{ι�c�})

Fig. 2. UTP semantics for different programming constructs

3.2 Programming Constructs

The semantic definitions of various programming constructs are based on a ho-
mogeneous relation between distributions and are listed in Figure 2; we will now
proceed to discuss each one.

The failing program abort is represented by the predicate ∥δ′∥ ≤ ∥δ∥, which
captures the fact that it is maximally unpredictable, given that it cannot in-
crease distribution weight. Such an increase would describe a program whose
probability of termination was higher than that of it starting, and is infeasible.

The miraculous program miracle is defined as (δ = ε) ∧ (δ′ = ε): this is a
difference in comparison with the standard UTP theory, where it is simply false.
This definition coincides with the standard one for most pairs of before- and
after-distributions, with the exception of (ε, ε): this makes sure that miracle is
a unit for nondeterministic choice.

Program skip makes no changes and immediately terminates.
Assignment remaps the distribution as has already been discussed in �3.1.
Sequential composition is characterised by the existence of a “mid-point”

distribution that is the outcome of the first program, and is then fed into the
second. It should be noted at this juncture that we are quantifying over function
quantities, such as δ or π — this makes our logic at least second-order, even if
the state spaces are finite (the range [0,1] is not).

The choice operator is probably the strangest-looking element of the list: it
takes a weighting distribution π, uses it with its complementary distribution
π̄ = ι − π) to weigh the distributions resulting from the left- and right-hand
side respectively, and existentially quantifies it over the set of distributions X ⊆
Dw. We have termed this operator as the generic choice as it can emulate the
behaviour of all standard choices (and more):

– for X = {ι�c�} we have conditional choice:

A◁ c▷B = choice(A,B,{ι�c�})
= ∃δA, δB ●A(δ�c�, δA) ∧B(δ�¬c�, δB) ∧ δ′ = δA + δB

– for X = {p ⋅ ι} we have probabilistic choice:

A p⊕B = choice(A,B,{p ⋅ ι})

= ∃δA, δB ●A(p ⋅ δ, δA) ∧B((1 − p) ⋅ δ, δB) ∧ δ′ = δA + δB
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– for X = Dw we have non-deterministic choice:

A ⊓B = choice(A,B,Dw)
= ∃π, δA, δB ●A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB

The usual notations for conditional, probabilistic and non-deterministic choice
will be used as syntactic sugar in the remainder of this document. Program
abort is a zero for non-deterministic choice, as entering ∥δ′∥ ≤ ∥δ∥ for B in the
definition, results in

∃π, δA, δB ●A(δ�π�, δA) ∧ ∥δB∥ ≤ ∥δ�π̄�∥ ∧ δ′ = δA + δB

which, after the one-point rule with δB = δ′ − δA reduces to

∃π, δA ●A(δ�π�, δA) ∧ ∥δ
′ = δA∥ ≤ ∥δ�π̄�∥

We can take π = ε as a witness, which forces δA = ε (by healthiness condition
Dist1, see Section 3.3) and we obtain

(A(ε, ε) ∧ ∥δ′ − ε∥ ≤ ∥δ∥) ∨ ∃π, δA ● . . .

A consequence of Dist1 is that A(ε, ε) is always true for healthy A so this reduces
to ∥δ′∥ ≤ ∥δ∥ in a disjunction with a predicate that it subsumes, and hence
equivalent to abort .

As commonly seen in UTP, disjunction of two programs is a kind of choice
(usually non-deterministic, in other theories), which here can be defined using
generic choice:

A ∨B = choice(A,B,{ε, ι}).

Disjunction is the usual semantics for non-deterministic choice, but here we see
that non-deterministic choice has a richer behaviour as it exhibits more variabil-
ity. Nevertheless with the appropriate definition of refinement we can introduce
a concept of equivalence (i.e. two programs mutually refine each other), that re-
stores the equivalence between disjunction and non-deterministic choice. [BB11]

Using the customary notation for conditional choice enlightens the definition
of while-loops, which can be rewritten in a more familiar fashion as:

c ∗A ≙ μX ● (A;X)◁ c▷ skip

They are characterized as fixpoints of the appropriate functional, with respect
to the ordering defined by the refinement relation, details of which can be found
in [MM04, BB11] and are beyond the scope of this paper.

These are the most significant elements and constructs that characterise our
framework: this has been a presentation from a fairly high level, and it should
have provided the reader with a working knowledge of the framework; a formal
and rigorous definition of the elements presented so far is beyond the scope of
this paper and can be found in [BB11], along with some soundness proofs.
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3.3 Healthiness Conditions

Before moving further on, we are going to list quickly the healthiness conditions
that characterise this framework.

The first one (feasibility, Dist1) assures that for any program P (δ, δ′) the
probability of termination cannot be greater than that of having started:

∥δ′∥ ≤ ∥δ∥

Another healthiness condition (monotonicity, Dist2), states that, for any deter-
ministic program P , increasing δ implies that the resulting δ′ increases as well:

P (δ1, δ′1) ∧ P (δ2, δ′2) ∧ δ2 > δ1 ⇒ δ′2 ≥ δ′1

A third healthiness conditions is that multiplication by a (not too large and
non-negative3) constant distributes through commands (scaling, Dist3):

∀a ∈ R+ ∧ ∥a ⋅ δ∥ ≤ 1 ●P (δ, δ′) ⇔ P (a ⋅ δ, a ⋅ δ′)

Finally the purely random non-deterministic model adopted in the distributional
framework yields a fourth healthiness condition Dist4 (convexity):

(P1 ⊓P2)(δ, δ
′) ⇒ δ′ ≥min(P1(δ) ∪ P2(δ))

Here P1(δ) denotes the set of all δ′ that satisfy P1(δ, δ
′).

This poses restrictions on the space of possible program images, which is
strictly a subset of ℘D : this is analogous to the set HS from [MM04].

4 A Probabilistic Theory of Designs

A distinguishing characteristic of designs is the use of the auxiliary variables

ok and ok ′. They are not sufficient in a probabilistic setting, as we need to be
able to express quantitative information about the program also in terms of it
having started or finished. We argue that this information is embedded in the
distributions used to express programming constructs.

In fact the variable δ records implicitly if the program has started, as for each
state σ it gives a precise probability that the program is in that initial state.

If δ is a full distribution (i.e. ∥δ∥ = 1), then the program has started with
probability 1: in some sense we can translate the statement ok = true with
the statement ∥δ∥ = 1. Conversely a program for which δ = ε has not started.
Obviously there are all situations in between, where the fact of δ being a sub-
distribution accounts for the program having started with probability ∥δ∥ < 1.

Similarly if δ′ is a full distribution, then the program terminates with probabil-

ity 1: coherently we can translate the statement ok ′ = true with the statement
∥δ′∥ = 1. In general the weight of δ′ is the probability of termination: if the
program reaches an after-distribution whose weight is strictly less than 1, then
termination is not guaranteed (and in particular if δ′ = ε it is certain that it will
not terminate).

3 Mathematically the relation holds also if this is not met, but in that case a ⋅ δ is not
a probability distribution.
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4.1 From Standard Designs to Probabilistic Designs

Given a standard design Pre ⊢ Post we can easily derive the corresponding
probabilistic design by using the observation above:

Pre ⊢ Post ≡ok ∧Pre ⇒ ok ′ ∧ Post
≡∥δ∥ = 1 ∧Pre ⇒ ∥δ′∥ = 1 ∧Post
≡∥δ�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1

This expression tells us that we have a valid design if whenever the before-
distribution δ is a full distribution which is null everywhere Pre is not satisfied
(and therefore δ = δ�Pre�), then the resulting after-distribution δ′ is a full distri-
bution which is null everywhere Post is not satisfied (and therefore δ′ = δ′�Post �).

We can easily redefine assignment, in the same style as it has been redefined
to make it a valid construct according to the theory of designs:

v ∶= e ≙true ⊢ δ′ = δ{∣e/v ∣}

≡ok ∧ true ⇒ ok ′ ∧ δ{∣e/v ∣}

≡∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ{∣e/v ∣}

This states that an assignment is a valid design only if the expression e is defined
everywhere in the state space: in fact undefinedness of e causes δ{∣e/v ∣} to be a
sub-distribution and therefore v ∶= e reduces to false.

We can redefine skip in a similar way:

skip ≙ true ⊢ δ′ = δ

≡ ok ∧ true ⇒ ok ′ ∧ δ

≡ ∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ

≡ ∥δ∥ = 1⇒ δ′ = δ

This new version of skip states that the after-distribution is the same as the
before-distribution (and therefore it does not alter the weight, so this can be left
implicit), but as any other design it reduces to true if δ is not a full distribution.

The bottom of the lattice is abort , which is again true as in the standard
theory:

abort ≙ false ⊢ false

≡ ok ∧ false ⇒ ok ′ ∧ false
≡ false ⇒ false
≡ true
≡ false ⇒ true

≡ ok ∧ false ⇒ ok ′ ∧ true
≡ false ⊢ true



116 R. Bresciani and A. Butterfield

The standard definition of the construct chaos is

chaos ≙ true ⊢ true
≡ ok ∧ true ⇒ ok ′ ∧ true
≡ ok ⇒ ok ′

≡ ∥δ∥ = 1⇒ ∥δ′∥ = 1

This is a program that guarantees termination, but in an unspecified state. It is
equivalent to:

chaos ≡ true ⊢ abortR ,

where the subscript R indicates that we are talking of the relational version of
abort , from Figure 2.

The top of the lattice is miracle:

miracle ≙ true ⊢ false

≡ ok ∧ true ⇒ ok ′ ∧ false
≡ ok ⇒ false
≡ ¬ok
≡ ¬(∥δ∥ = 1)

≡ ∥δ∥ < 1

This is equivalent to

miracle ≡ true ⊢ miracleR .

Healthiness Conditions These new definitions relying on the distributional
framework satisfy the healthiness conditions H1–H4 as well (�2.2).

We can in fact prove that the following laws hold:

– left unit law:

skip;Pre ⊢ Post ≡ (∥δ∥ = 1⇒ δ′ = δ);(∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1)

≡ ∃δm ● (∥δ∥ = 1⇒ δm = δ) ∧ (∥δm
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1)
≡ ∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1
≡ Pre ⊢ Post

– right unit law:

Pre ⊢ Post;skip ≡ (∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1);(∥δ∥ = 1⇒ δ′ = δ)

≡ ∃δm ● (∥δ
Pre�∥ = 1⇒ ∥δm
Post�∥ = 1) ∧ (∥δm∥ = 1⇒ δ′ = δm)

≡ ∥δ
Pre�∥ = 1⇒ ∥δ′
Post �∥ = 1
≡ Pre ⊢ Post
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– left zero law:

true;Pre ⊢ Post ≡ true;(∥δ�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1)

≡ ∃δm ● true ∧ (∥δm�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1)

≡ ∃δm ● ∥δm�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1

≡ true

– right zero law:

Pre ⊢ Post;true ≡ (∥δ�Pre�∥ = 1⇒ ∥δ′�Post �∥ = 1);true
≡ ∃δm ● (∥δ�Pre�∥ = 1⇒ ∥δm�Post �∥ = 1) ∧ true
≡ ∃δm ● ∥δ�Pre�∥ = 1⇒ ∥δm�Post �∥ = 1

≡ true

4.2 Recasting Total Correctness

The reason that led to the standard theory of designs was that programs fail to
satisfy the left zero law in the relational theory.

In the distributional framework programming constructs do satisfy this law,
as for any programming construct P other than miracle it is never the case that
δ ∉ fv(P ).

For this reason we have:

true;P (δ, δ′) ≡ ∃δm ● true ∧ P (δm, δ′)

≡ ∃δm ●P (δm, δ′)

≡ true

Similarly the right zero law is satisfied as well, along with the left and right unit
laws: healthiness conditions equivalent to H1–H4 hold here as well.

Following this observation it appears that restricting the reasoning to pro-
grams with guaranteed termination is somehow limiting, as guaranteed termina-
tion is not an actual real-world feature of programs: programsmust be reasonably
reliable, but failure is always a possibility.

The reason for this may be inherent to the fact that programs are run on
hardware which is susceptible of failure, as well as being imputable to the way a
program is designed (for example the implementation of a probabilistic algorithm
where termination is probabilistic as well).

We can fully exploit the potential of the distributional framework towards
modelling these situations by removing the constraints on the weights of the
before- and after-distributions — so we use the programming constructs in Fig-
ure 2 exactly with the semantics presented there.

The role of preconditions and postconditions is that of restricting the range
of acceptable before- and after-distributions (and therefore act as restrictions
to be applied to δ and δ′ respectively) — this allows us to express desirable
characteristics of a program in great detail, for example:
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– P ∧ ∥δ′∥ = 1 requires P to guarantee termination;
– P ∧ ∥δ′∥ > 0.95 requires P to terminate with at least 95% probability;
– P ∧ ∥δ′�Post �∥ > 0.95 requires P to terminate with at least 95% probability

in a state satisfying Post ;
– Pre ⇒ P ∧ ∥δ′�Post �∥ > 0.95 requires P to terminate with at least 95%

probability in a state satisfying Post whenever it starts in a state satisfying
Pre;

– ∥δ�Pre�∥ > 0.98⇒ P ∧∥δ′�Post �∥ > 0.95 requires P to terminate with at least
95% probability in a state satisfying Post whenever the probability of Pre
being satisfied at the beginning is at least 0.98;

– . . .

All healthiness conditions deriving from the distributional framework (Dist1–
Dist4) obviously hold here as well; with a small modification we can recast the
notion of total correctness by restricting Dist1 to a variant Dist1-TC (which implies
Dist1), stating that:

∥δ∥ = ∥δ′∥

This requires a program to terminate with the same probability p with which it
has started:

∥δ∥ = p ∧Pre ⇒ ∥δ′∥ = p ∧Post

4.3 Link with the Standard Model

Standard designs have observations ok ,ok ′, σ, σ′.

ok ,ok ′ ∶ B
σ,σ′ ∶ S

A standard design is a predicate PS(σ,σ
′,ok ,ok ′) that states that a program

started (if ok is true) in the state σ ends (if ok ′ is true) in the state σ′.
Probabilistic designs have observations δ, δ′

δ, δ′ ∶ S → [0,1]

A probabilistic design is a predicate PD(δ, δ
′) stating that a before-distribution

δ will be transformed into the after-distribution δ′.
Informally we require the two approaches to yield the same results when we

are dealing with point distributions, i.e. when the probability of being in a given
state is 1.

In order to formalise the link between these two worlds, we define the linking
predicate L as:

L((δ, δ′), (σ,σ′,ok ,ok ′)) ≙ ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1)

∧δ = ησ ∧ δ′ = ησ′

Here the notation ησ denotes the point distribution returning 1 for state σ, and
0 elsewhere.
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This linking predicate allows us to introduce the following Galois connections ;
first we define the weakest probabilistic design corresponding to a standard de-
sign PS :

∀σ,σ′,ok ,ok ′ ●L((δ, δ′), (σ,σ′,ok ,ok ′)) ⇒ PS(σ,σ
′,ok ,ok ′)

Analogously, the strongest standard design corresponding to a probabilistic de-
sign PD is:

∃δ, δ′ ●L((δ, δ′), (σ,σ′,ok ,ok ′)) ∧PD(δ, δ
′)

It is easy to see that all programming constructs from the probabilistic theory
that have homologue ones in the standard theory are linked to them, with the
restriction of operating only on point distributions, otherwise they reduce to
abort .

Weakening the Link. This linking predicate is a bit too strong, as it maps
many interesting program constructs to the aborting program: an example is
that of generic choice, which has no homologue in the standard theory. Ideally
a better option would be to relax some constraints and to map generic choice to
non-deterministic choice rather than to abort .

In other words we are aiming at a link that loses all probabilistic information
about the possible after-states and flattens it to a mere list of them.

This is not straightforward, as the linking predicate L in some sense verifies

consistency of δ with respect to σ,ok and of δ′ with respect to σ′,ok ′: when the
support4 of the distribution has more than one element, the relation between δ
and a state from its domain is too weak to be useful.

The situation is similar to that of a 3D-space, where dots are characterised
by their x, y, z coordinates: a transformation creates a space with coordinates
x′, y′, z′, whose relation with the undashed coordinates cannot in general be cap-
tured by a relation that mentions only one undashed and one dashed coordinate.

So far we have seen standard designs as relations:

PS ∶ S ×B→ S ×B

but in order to build a more useful link we turn to this other interpretation:

P℘S ∶ S × B→ ℘S ×B

which maps a state to what we may term its program image P (σ) (as it is a
similar concept to that of program image introduced in �3), which contains all
of the possible after-states reachable from a given before-state:

P (σ) = {σ′ ∣ PS(σ,σ
′)}

All deterministic standard constructs map a state to a singleton set, whereas
non-deterministic choice maps it to larger sets.

4 We remind the reader that the support of a function is the set of points where the
function is not zero-valued: supp(δ) ≙ dom(δ) ∖ ker(δ).
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The interpretation of the predicate P℘S(σ,α′,ok ,ok ′) is therefore that P has

started (if ok is true) in the state σ and has ended (if ok ′ is true) in a state
σ′ ∈ α′:

P℘S(σ,α′,ok ,ok ′) ≡ ⋁
σ′∈α′

PS(σ,σ
′,ok ,ok ′)

With this in mind we can define the following linking predicate:

L
℘((δ, δ

′), (σ,α′,ok ,ok ′)) ≙ ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1)

∧δ = ησ ∧ supp(δ′) = α′

We can state the variants of the Galois connections above as:

∀σ,α′,ok ,ok ′●L℘((δ, δ′), (σ,α′,ok ,ok ′)) ⇒ P℘S(σ,α′,ok ,ok ′)

∃δ, δ′●L℘((δ, δ
′), (σ,α′,ok ,ok ′)) ∧ PD(δ, δ

′)

5 An Example: Interaction of Probabilistic and
Non-deterministic Choice

This brief classical example is meant to show the interaction and the difference
between probabilistic and non-deterministic choice: we will use this to show the
effect of projecting the probabilistic design on the space of standard designs.

Let us take these two simple programs:

A ≙ x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2

⊕ y ∶= 1

B ≙ x ∶= 0 1
2

⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

In Figure 3 we have worked out parametric expression for the final distribution
for each program — they are parametric in the weighting distribution π which
accounts for the non-deterministic choice performed in both programs:

δ′A(π) ≙ 1/2 ⋅ (δ�π�{∣0/x∣}{∣0/y∣} + δ�π̄�{∣1/x∣}{∣0/y∣} + δ�π�{∣0/x∣}{∣1/y∣} + δ�π̄�{∣1/x∣}{∣1/y∣})

δ′B(π) ≙ 1/2 ⋅ (δ{∣0/x∣}�π�{∣0/y∣} + δ{∣1/x∣}�π�{∣0/y∣} + δ{∣0/x∣}�π̄�{∣1/y∣} + δ{∣1/x∣}�π̄�{∣1/y∣})

The two after-distributions are very similar, but with one crucial difference: the
position of �π�, which clearly marks when the non-deterministic choice was made;
this is reflected in the different after-distributions reached by each program:

– ∀π ● ∥δ′A(π)�x = y�∥ = 1/2, i.e. regardless of the non-deterministic choice
and of the initial distribution program A terminates in a state satisfying
the condition x = y with probability 1/2, whereas in program B we cannot
remove the dependence on π so if we turn to a worst-case analysis (in the
non-deterministic choice the left-hand side y ∶= 0 is picked whenever x = 1,
i.e. π = ι�x = 1�) we have that ∥δ′B(ι�x = 1�)�x = y�∥ = 0 and therefore the
minimum guaranteed probability that x = y is 0;
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A ≙ x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2
⊕ y ∶= 1

≡ ∃π ● δ′ = δ�π�{∣0/x∣} + δ�π̄�{∣1/x∣} ; δ′ = 1/2 ⋅ δ{∣0/y∣} + 1/2 ⋅ δ{∣1/y∣}
≡ ∃π, δm ● δm = δ�π�{∣0/x∣} + δ�π̄�{∣1/x∣} ∧ δ′ = 1/2 ⋅ δm{∣0/y∣} + 1/2 ⋅ δm{∣1/y∣}

≡ ∃π ● δ′ = 1/2 ⋅ (δ�π�{∣0/x∣} + δ�π̄�{∣1/x∣}){∣0/y∣}+

+1/2 ⋅ (δ�π�{∣0/x∣} + δ�π�{∣1/x∣}){∣1/y∣}
≡ ∃π ● δ′ = δ′A(π) ∧ δ′A(π) ≙ 1/2 ⋅ δ�π�{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δ�π̄�{∣1/x∣}{∣0/y∣}+

+1/2 ⋅ δ�π�{∣0/x∣}{∣1/y∣} + 1/2 ⋅ δ�π̄�{∣1/x∣}{∣1/y∣}

B ≙ x ∶= 0 1
2
⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

≡ δ′ = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ; ∃π ● δ′ = δ�π�{∣0/y∣} + δ�π̄�{∣1/y∣}
≡ ∃π, δm ● δm = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ∧ δ′ = δm�π�{∣0/y∣} + δm�π̄�{∣1/y∣}

≡ ∃π ● δ′ = (1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})�π�{∣0/y∣}+

+(1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})�π̄�{∣1/y∣}
≡ ∃π ● δ′ = δ′B(π) ∧ δ′B(π) ≙ 1/2 ⋅ δ{∣0/x∣}�π�{∣0/y∣} + 1/2 ⋅ δ{∣1/x∣}�π�{∣0/y∣}+

+1/2 ⋅ δ{∣0/x∣}�π̄�{∣1/y∣} + 1/2 ⋅ δ{∣1/x∣}�π̄�{∣1/y∣}

Fig. 3. Programs A and B

– viceversa for program B we can show that ∀π●∥δ′B(π)�x = 1�∥ = 1/2 similarly
as above, and so the probability that x = 1 after program B is 1/2, whereas
if we take program A we can see that if π = ι (i.e. in the non-deterministic
choice the left-hand side x ∶= 0 is always picked) than we have that ∥δ′A(ι)�x =
1�∥ = 0, so the minimum guaranteed probability that x = 1 is 0.

We are now going to derive the strongest standard design corresponding to A
and B using the linking predicate L℘:

∃δ, δ′ ●L℘((δ, δ
′), (σ,α′,ok ,ok ′)) ∧A(δ, δ′)

≡ Definition of L℘

∃δ, δ′ ● (ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1) ∧ δ = ησ ∧ supp(δ′) = α′) ∧A(δ, δ′)

≡ A and B return after-distributions with the same support

∃δ, δ′ ● (ok ⇔ (∥δ′∥ = 1) ∧ ok ′⇔ (∥δ′∥ = 1) ∧ δ = ησ ∧ supp(δ′) = α′) ∧B(δ, δ′)

The last line of this derivation clearly shows the effect of the link, which flattens
out all probabilistic information and as a result the programs A and B are
mapped to the same program in the world of standard designs: such a program
records that a choice5 was made, but there is no discrimination among choices
of different kind. Moreover what matters is the set of possible after-states and
this is also not affected by altering the order in which the choices are made.

5 Conditional choice is excluded, as it is not really a choice but rather a different
evolution of the program which was determined by the current program state.
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6 Conclusion

We have presented a probabilistic theory of designs, which relies on a UTP-style
framework based on distributions over the state space.

We have shown that we are able to embed the standard UTP theory by
requiring guaranteed termination from all program constructs, and treating them
as the aborting program otherwise.

We have later relaxed this constraint to be able to reason about probabilistic
programs: the advantages of this richer approach is that it allows us to express in
fine detail the desired behaviour of a program, including its probabilistic aspects.
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A Keisli Composition

Assume a semantic model of the form S → FS where F is a type constructor
(functor). The question that naturally arises is how to compose such functions,
i.e., given p ∶ S → FT and q ∶ T → FU , how do we compose these to get (p; q) ∶
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S → FU? The standard solution for this is Kleisli lifting and composition which
involves two functions with the following signatures:

ηS ∶ S → FS ∗ ∶ (S → FT ) → (FS → FT )

that obey the following laws:

η∗S = idFS p∗ ○ ηS = p (q∗ ○ p)∗ = q∗ ○ p∗

The intuition behind these is best understood in a diagram:

FS FT FU

S T U

ηS
p

ηT
q

p∗ q∗

ηU

The Kleisli composition of p and q is given by q∗ ○ p, where ○ denotes regular
function composition.

In this paper FS = C(S → [0,1]), and we do not use the full lifting (which
results in C(S → [0,1]) → C(S → [0,1])), but instead lift partway to get ((S →
[0,1]) → C(S → [0,1])). This “partway” lifting is one of the stages in giving an
explicit definition of the full lifting.
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Abstract. U·(TP)2 is a theorem prover developed to support the Uni-
fying Theories of Programming (UTP) framework. Its primary design
goal was to support the higher-order logic, alphabets, equational rea-
soning and “programs as predicates” style that is prevalent in much of
the UTP literature, from the seminal work by Hoare & He onwards.
In this paper we focus on the underlying logic of the prover, empha-
sising those aspects that are tailored to support the style of proof so
often used for UTP foundational work. These aspects include support
for alphabets, type-inferencing, explicit substitution notation, and ex-
plicit meta-notation for general variable-binding lists in quantifiers. The
need for these features is illustrated by a running example that develops
a theory of UTP designs. We finish with a discussion of issues regard-
ing the soundness of the proof tool, and linkages to existing “industrial
strength” provers such as Isabelle, PVS or CoQ.

1 Introduction

Unifying Theories of Programming (UTP) [HH98], is a framework that uses
alphabetised predicates to define language semantics in a relational calculus
style, in a way that facilitates the unification of otherwise disjoint semantic
theories, either by merging them, or using special linking predicates that form
a Galois connection. The framework is designed to cover the spectrum from
abstract specifications all the way down to near-machine level descriptions, and
as a consequence the notion of refinement plays a key role.

Typically the development of a UTP theory involves determining the key ob-
servational variables, so fixing the alphabet, then defining healthiness conditions
to characterise the predicates that describe feasible behaviour, introducing the
language under study as a signature, and giving meaning to that signature using
healthy predicates. Algebraic laws of the language can then be developed.

In [But10] we gave an overview of the Unifying Theories of Programming
Theorem Prover (U·(TP)2) that we are developing to support such theory devel-
opment work1. The prover is an interactive tool, with a graphical user-interface,

∗
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from Science Foundation Ireland, as well as partial support from Lero, the Irish
Software Engineering Research Centre.

1 In that paper it was called Saoith́ın, but the name has since changed to U·(TP)2.
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designed to make it easy to define a UTP theory and to experiment and per-
form the key foundational proofs. The motivation for developing this tool, rather
than using an existing one has been discussed in some detail in [But10]. We do
not repeat it here in the introduction, but this paper effectively gives a techni-
cal underpinning to that motivation. In this paper we describe the logic behind
U · (TP)2, starting from 1st-order equational logic [Tou01], and gradually ex-
posing the extensions required to facilitate the kind of reasoning we require for
foundational work. In effect this paper explores the proof infrastructure needed
to reason about a theory of a simple imperative language (While), built upon
a theory of “Designs”, itself layered on top of a generic UTP base theory. We
start at the bottom looking at the logic and work up until we can see what is
needed for the While language.

This paper assumes that the reader is familiar with the basic ideas behind
UTP, and does not give an introduction to the subject. A good introduction is
the key textbook written by C.A.R. Hoare and He Jifeng [HH98], which is free
to download from unifyingtheories.org.

In the rest of this paper, we use the term “user” to refer to a UTP practitioner
involved in the development of new UTP theories, and not a software developer
who might want to employ a formal method whose underlying semantics derive
from UTP.

1.1 Structure of This Paper

Section 2 talks about theories, and gives a visual outline of much of this paper
in Figure 1. Section 3 introduces the logic of U·(TP)2, and Section 4 gives us an
introduction to definitions common to most theories. In Section 5, and Section
6, we describe how Theorys can be layered up to present a UTP Theory of
Designs, as well as a theory for a simple While programming language built as
an extension on top of Designs. Section 7 and Section 8 discuss issues to do with
the trustworthiness and usefulness of U·(TP)2, and finally, Section 9 concludes.
A collection of relevant rules can be found in Appendix A.

2 Theories

A UTP theory is a coherent collection of the following items: an alphabet defining
the observations that can be made; a set of healthiness conditions that charac-
terise predicates that describe realistic/feasible systems; a signature that defines
the abstract syntax of the language being defined; definitions of the language
constructs as healthy predicates; and laws that relate the behaviours of the vari-
ous language components. In U·(TP)2 we use the term “Theory” to refer to such
collections, along with various other pieces of ancillary information, as well as
subsets of a full theory. The ancillary information includes components to sup-
port language parsing, local and temporary definitions, as well as proof support
in the form of conjectures, theorems and laws. In effect a UTP theory may be
constructed in U·(TP)2 as a layering of Theory “slices”, each looking at a small
part of the whole.
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Circus

While CSP

Design Reactive

UTP

Base

ROOT

Fig. 1. A Hierarchy of Theorys

As an example, consider Figure 1. Here we see theory slices organised as an
acyclic directed graph, where each slice inherits material from those below it.
At the bottom we have the ROOT Theory (slice), which is hardwired in2, and
simply contains just the axioms of the underlying logic. On top of this a full
set of laws of predicate calculus are built (by positing conjectures and proving
them), as well as useful theories about equality, and various datatypes, such
as numbers, sets and sequences. In U ·(TP)2 these are presented as a layer of
Theory slices, but here we simply imagine them all encapsulated into the Base

Theory, that sits on top of ROOT. On top of this we construct a slice (UTP) that
presents the language constructs that are common to most UTP theories, e.g.
sequential composition, and non-deterministic choice. We then branch: a theory
of Designs is implemented by building a Design Theory slice on top of UTP, and
hence incorporating Base and ROOT. Similarly, we can define, independently of
Design, a Reactive Theory slice over UTP. It is this ability to re-use common
material that motivates the splitting of UTP theories into U · (TP)2 Theory
slices. Figure 1 also shows how further slices allow us to build a theory of a
simple imperative language (While) on top of Design, as well as fusing Design

and Reactive to get CSP [Ros97]. A similar fusing of While with CSP gives
Circus[OCW09].

In the sequel we shall no longer distinguish between “proper” UTP theories
and U·(TP)2’s Theory slices, simply referring to them all as “theories”. We do
not give details of the contents of a theory here, but instead elucidate these
details as we go through the paper.

2 ROOT is the only thing hardwired—all other slices and their hierarchy can be custom-
built to suit the user.
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3 Logic

The logic of U · (TP)2 is an adaptation of the first-order equational logic de-
scribed by Tourlakis [Tou01], that fully formalises the logic of Dijkstra, Gries
and Schneider [GS93].

3.1 U·(TP)2 Logic Syntax

We define our logic syntax over a collection of given sets characterising different
name-spaces:

x , y, z ∈ Var (given) Obs. Variables
k ∈ Const (given) Constants
f , g, h ∈ Name (given) (Function) Names
E ,F ,G ∈ EName (given) Expression Metavariable Names
P ,Q ,R ∈ PName (given) Predicate Metavariable Names

Variables, constants and function names are as one would expect in a logic
with associated equational theories, but we also have explicit meta-variables for
expressions and predicates, in the object logic, as many UTP laws are expressed
using such.

Expressions and Predicates are defined by mutual induction, because both
may contain instances of the other. Expressions denote values in the “world
of discourse” (observations) and are typed. Expressions whose type is boolean
(c ∈ Expr) form the class of atomic predicates :

c, e ∈ Expr ::= k | x Expressions
| f e Applications
| λ x • e Obs. Abstraction
| ΛE • e E-var. Abstraction
| ΛP • e P-var. Abstraction
| {x | p • e} Comprehension
| E Explicit Metavariable

Predicates are defined much as expected:

p, q, r ∈ Pred ::= True | False Constant Predicates
| e Atomic Predicate (Boolean-valued Expr.)
| ¬ p Negation
| p�q Composites, � ∈ {∧,∨,⇒,≡}
| P Explicit Metavariable
| 	x • p 1st-order Quantifiers, 	 ∈ {∀, ∃, ∃!}
| 	P • p higher-order Quantifiers, 	 ∈ {∀, ∃}
| 	E • p higher-order Quantifiers, 	 ∈ {∀, ∃}
| [p] Universal Closure (over observations)
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The axioms of the logic are shown in Appendix A (A.1, A.3). The axioms are
stored in the hardwired ROOT theory, in the laws component of the theory, which
maps law-names to laws, where a law is a predicate and a side-condition. Side-
conditions are a conjunction of zero or more basic conditions, which typically
capture relationships between given variables and the free variables (fv) of given
predicates.

Theory = record

laws : Name 
 Law

. . . end

Law = Pred × Side

Side = x /∈ fv.P | {x , y, . . .} = fv.P | {x , y, . . .} ⊇ fv.P | . . .

Here the notation A 
 B denotes a partial finite function from A to B , and so
is effectively a table using a key of type A to lookup a value of type B .

The inference rules (A.2) are implemented, in the main, by a pattern match-
ing mechanism that takes a current proof goal and sees which laws can apply,
and a process that allows the user to select and apply the desired one, storing
the changed goal in a list that is assumed to be chained together by logical
equivalence. The basic structural match has a judgement Γ � P ‡ T | β that
asserts that, given matching environment Γ , test predicate T matches pattern
predicate P , with resulting bindings β. Bindings map variables to well-formed
expressions or predicates, as appropriate. If we ignore Γ for now, then a repre-
sentative collection of structural matching rules are:

Γ � x ‡ e | {x �→ e} �match-var 

Γ � Pi ‡ Ti | βi β1
∼= β2

Γ � P1 ∧ P2 ‡ T1 ∧ T2 | β1 � β2
�match-∧ 

P ‡Q | β1 xs ‡ ys | β2 β1
∼= β2

∀ xs • P ‡ ∀ ys • P | β1 � β2
�match-∀ 

The ∼= predicate asserts that two bindings do not map the same variable to
different things. The � operator merges two bindings, provided they satisfy ∼=.
An attempted match of T against P fails if no rules apply, or an attempt is
made to apply � to two bindings that do not satisfy ∼=.

In order to facilitate proof, the theory has two components, one for conjec-
tures, which can be viewed as aspirant laws (posited, hopefully true, but not yet
proven), and theorems, which are conjectures with proofs:
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Theory = record . . .

conjs : Name 
 Law

thms : Name 
 Proof

. . .end

Proof = record

goal : Pred

sc : Side

done : B

. . .end

The workflow is as follows: conjectures can be entered by the user and accu-
mulated in conjs . A proof can then be started by selecting a conjecture, which
creates a corresponding entry in thms , with goal , sc set to match the conjectured
law, and the done flag set to false. More than one proof can be active at any
one time. A proof is carried out using all the laws accessible from the theory.
Once a proof is complete, the done flag is set true, the corresponding conjecture
is deleted, and, usually, a corresponding entry is made into laws .

The mechanism as described so far is adequate for proving all and any con-
jectures based on propositional logic. However it needs extensions to cater for
non-propositional logic, and the datatype theories. We will address the non-
propositional extensions in the next section on generic UTP. Here we discuss
briefly some practical issues with datatype theories. We can define a theory of
natural number arithmetic using Peano axioms, for example—the tool supports
the creation of a new named empty theory, and the addition of appropriate
axiomsby the user into the laws table. Operations on natural numbers can be
defined axiomatically by adding further laws as required. From this it is possible
to prove a range of theorems about natural number operations, e.g. m +0 = m.
A similar exercise can be done for sets, and sequences, resulting in laws like
S ∪ ∅ = S and s � 〈〉 = s . The problem is that we do not just match against
whole laws, but can also match against just the lefthand or righthand sides of
an equality or equivalence—so the righthand sides of all three laws above will
match an arbitrary expression e, offering e+0, e∪∅ and e � 〈〉 as replacements.
To prevent such spurious matches, we introduce a type system for expressions,
and a type-inference engine, that uses context information to deduce the types
of expressions like e, and serves to reduce spurious matches to a considerable
degree. A theory contains tables to support this feature:

Theory = record . . .

type : Name 
 Type

. . . end

t ∈ Type ::= B | Z | τ | Pt | . . .

The Names in type are typically names of variables or functions.
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4 UTP

Some key concepts are common to most UTP theories, namely sequential compo-
sition (o9), non-deterministic choice (�), refinement () and conditional (� c �).
Importantly, in most theories these all have the same definition:

P o
9 Q =̂= ∃Obsm • P [Obsm/Obs ′] ∧ Q [Obsm/Obs ]

P �Q =̂= P ∨ Q

P  Q =̂= [Q ⇒ P ]

P � c � Q =̂= c ∧ P ∨ ¬ c ∧ Q

The definitions for �,  and � c � are unproblematical, and are easily handled
by the existing machinery, with one key extension. The definition of o

9 not only
makes use of explicit substitution notation, but also raises the question of how to
interpret Obsm , Obs ′ and Obs . Clearly they stand for the obervational variables
of a UTP theory along with appropriate decorations, but how do we support
this? In particular, how can we arrange matters so that we only define o

9 once, in
such a way that it can be used by many different theories? We will first address
the key extension alluded to above, and then return to the problem of sequential
composition.

4.1 Defining Your Own Language in U·(TP)2

A key aspect of a UTP theory is the signature that captures the abstract syntax
of the language being defined. This means that U·(TP)2 needs to support user-
defined languages. This is achieved by having a table-driven parser for entering
predicates, and providing a facility for the user to add new entries to the relevant
tables:

Theory = record . . .

precs : Name 
 Precedence

lang : Name 
 LangSpec

. . . end

The precs table maps the name of an infix operator to information about its pars-
ing precedence and its associativity. The lang table maps a language construct
name to a language specification (LangSpec) that describes the concrete syntac-
tical structure of that construct. A language specification is a mix of keywords
denoting syntactical components like variables (V) , expressions (E) , predicates
(P), or various lists of such, interspersed with concrete syntax symbols. We won’t
give a full definition here but present some examples to give the idea:

– Refinement: we specify this as “P |= P”, which states that |= is an infix
operator between two predicates. When this is entered into the lang table, a
corresponding entry is automatically created in the precs table with default
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values (mid-range precedence, non-associative) which can then be edited by
the user to suit. Also entered is a dummy definition for the construct into
the laws table, which itself then needs to be edited.

– Assignment: specified as “V := E”, stating that := is an infix operator in-
between a variable and expression, resulting in a predicate.

In general defining a language construct (resulting in a predicate) involves adding
entries to the lang and laws tables, and possibly also to the types and precs ta-
bles, depending on the precise nature of the construct. Infix expression operators
do not have lang entries but require laws , precs and types entries.

When we talk about developing a theory of Designs (Section 5), we shall give
a worked-out example of a language definition.

4.2 The Problem with o
9

The definition of sequential composition,

P o
9 Q =̂= ∃Obsm • P [Obsm/Obs ′] ∧ Q [Obsm/Obs ]

says in effect that for each observation, x , say, in Obs , we replace any free
occurrence of x ′ in p by xm and any free occurrence of x in q by Obsm , and
use existential quantification to hide xm . In effect the rule above is really a
rule-schema, characterising an infinite number of rules, one for each possible
alphabet represented by Obs . However, we don’t want to repeatedly instantiate
this rule and reason about its consequences for each specific alphabet we use. In
fact, we want to use the definition in cases where only part of the alphabet is
known (Designs again, Section 5). We would prefer to be able to do proofs with
the definition as given above, only instantiating Obs where necessary, and then
perhaps only partially. In fact, we want to support the following proof (of the
associativity of o

9) which does not require any instantation of Obs :

P ; (Q ; R)

≡ ∃Obsm • P [Obsm/Obs ′] ∧ (Q ; R)[Obsm/Obs]

≡ ∃Obsm • P [Obsm/Obs ′] ∧ (∃Obsn • Q [Obsn/Obs ′] ∧ R[Obsn/Obs])[Obsm/Obs]

≡ ∃Obsm ,Obsn • P [Obsm/Obs ′] ∧ Q [Obsn/Obs ′][Obsm/Obs] ∧ R[Obsn/Obs][Obsm/Obs]

≡ ∃Obsm ,Obsn • P [Obsm/Obs ′][Obsn/Obs ′] ∧ Q [Obsn ,Obsm/Obs ′,Obs] ∧ R[Obsn/Obs]

≡ ∃Obsn • (∃Obsm • P [Obsm/Obs ′][Obsn/Obs ′] ∧ Q [Obsm/Obs][Obsn/Obs ′])

∧ R[Obsn/Obs]

≡ ∃Obsn • (∃Obsm • P [Obsm/Obs ′] ∧ Q [Obsm/Obs])[Obsn/Obs ′] ∧ R[Obsn/Obs]

≡ ∃Obsn • (P ; Q)[Obsn/Obs ′] ∧ R[Obsn/Obs]

≡ (P ; Q); R

In effect we want to reason within our logic about “schematic” variables like
Obs and treat the substitution notation as part of the object logic, rather than
meta-notation describing the behaviour of an inference rule.
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To achieve this we have to add another linguistic innovation to the logic. A
common shorthand in most presentations of logic is to view ∀ x , y, z • p (say)
as a shorthand for ∀ x • ∀ y • ∀ z • p. Our innovation is not only to add the
former as a full part of the logic syntax, but also a further extension. We want to
be able to have quantifier variables (e.g. Obs) that represent lists of “ordinary”
quantifier variables. We do this by splitting the list into two parts, separated
by a semi-colon, with those in the first part being ordinary, whilst those in the
second part denote lists of variables. The revised syntax of ∀ is now:

∀ x1, . . . , xm ; xs1, . . . , xsm • P m ≥ 0, n ≥ 0,m + n ≥ 1

Other observation (1st-order) quantifiers are modified similarly. The xi and xsj
above are “quantifier variables”, and will be disambiguated were necessary by
referring to the xi (before the ; sysmbol) as “single variables” and the xsj (after
; as “list variables”). A list where m = 0 is referred to as an “ordinary list”. The
meaning of a quantifier variable list of the form x1, . . . , xm ;xs1, . . . , xsm is that it
matches an ordinary list of the form y1, . . . , ym+k , k ≥ 0 where each xi binds to
one yj , each xsi binds to zero or more yj , and every yj is bound exactly once. In
principle the bindings associated with a variable like xsi are non-deterministic,
albeit they must be consistent with bindings derived from the match as a whole,
i.e. the wider context in which that variable occurs. In practice, heuristics are
used in the implementation to select a binding that is hopefully as “good” as
possible.

As our proof above largely depended on properties of (explicit) substitution,
we have to add it into our logic as well. So we revise our syntax for predicates:

p, q, r ∈ Pred ::= . . .
| 	qvs • p 1st-order Quantifiers, 	 ∈ {∀, ∃, ∃!}
| p[e/x ] Explicit Obs. Substitution
| p[e/E ] Explicit E-var. Substitution
| p[p/P ] Explicit P-var. Substitution

qvs ∈ QVars Quantifier Variable lists
::= x1, . . . , xm ; xs1, . . . , xsm m ≥ 0, n ≥ 0,m + n ≥ 1

Explicit substitutions are also added to expressions as well. Laws regarding ex-
plicit substitutions also need to be developed, e.g.

p[e/x ][f /y] = p[e, f /x , y], x 	= y, y /∈ fv.e

but we do not list these here.
This extension allows us to introduce axioms like:

(∀ x ; xs • p)⇒ (∀ ;xs • p[e/x ]) �Ax-∀ x -inst 

rather than relying on a simple single quantifier axiom and the usual conventions
regarding the ∀ x , y, z shorthand. In essence what we have done is to formalise
and automate this convention.
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To support the definition of o
9 we need one further step. The list variable Obs

does not stand for an arbitrary list of single variables, but is instead intended to
stand for precisely those un-dashed variables that are present in the alphabet of
the current theory, even if that alphabet has not been fully described. Similarly,
Obs ′ stands for all the dashed variables, and Obsm denotes the decoration of
all the Obs variables. In effect we designate certain list variables (like Obs) as
having a special meaning.

The basic matcher described in Section 3, has to be enhanced to perform
appropriate matching where non-ordinary quantifier lists are present. To make
this work, we need to extend theories to have a table that records the theory
alphabet:

Theory = record . . .

obs : Name 
 Type

. . .end

The obs table needs to become part of the matching context Γ , and we introduce
rules for matching quantifier lists:

Γ � ;Obs ‡ ;Obs | ε
Obs(Γ ) = {o1, . . . , on}

Γ � ;Obs ‡ {o1, . . . , on} | {Obs �→ {o1, . . . , on}}
The first rule allows Obs to match itself, and so we can do proofs that do not
require it to be expanded to an ordinary list. Note also that in this case an
empty binding (ε) is returned. Other matching rules not shown here, take care
of decorations, ensuring thatObs matches x , y, z , if appropriate, but not x ′, y ′, z ′.

We can now define sequential composition in our revised logic as:

P o
9 Q =̂= ∃ ;Obsm • P [Obsm/Obs ′] ∧ Q [Obsm/Obs ]

and produce a proof as shown earlier. There is an additional extension required
to the logic to do this, but we shall motivate and introduce it in the section on
Designs (Section 5).

5 Designs

The UTP theory of Designs [HH98, Chp 3] introduces two boolean observation
variables (ok , ok ′) to model program start and termination, and new notation
P � Q to represent a predicate with pre and post-conditions:

ok , ok ′ : B

P � Q =̂= ok ∧ P ⇒ ok ′ ∧ Q , ok , ok ′ /∈ fv.P ∪ fv.Q
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A key feature to note is that in this theory we do not specify the entire alphabet,
but only stipulate that whatever it is, it must contain ok and ok ′. In this light we
see an even stronger need for special list-variables like Obs as already introduced.

We can already capture this with our theories as described so far:

obs(ok) = B

obs(ok ′) = B

lang(�) = P � P

prec(�) = (n,NonAssoc), n is desired precedence

laws(�−DEF ) = (P � Q ≡ ok ∧ P ⇒ ok ′ ∧ Q , ok , ok ′ /∈ fv.P ∪ fv.Q)

Here we see some side-conditions that assert that neither P nor Q should men-
tion either ok or ok ′. These are important side-conditions, without which we
do not obtain the desired behaviours (algebraic laws) for designs. However, in
proving properties of designs in UTP, we find that the side-conditions play a
more active role than encountered in more traditional presentations of logic. In
many logics, side-conditions about free variables are syntactic in nature and can
always be checked/discharged when applying a rule to a predicate in the logic.
In particular, when applying a rule like the one above, both P and Q will have
been instantiated to concrete predicates, and so it will be easy to establish the
truthfulness of these side-conditions. However in a UTP proof about the prop-
erties of designs, we work with explicit meta-variables P and Q for which it is
not possible to compute side-condition rules at rule-application time.

Instead, we have to add a post processing stage to law matching. Assuming
that a target predicate match involving a law has succeeded returning a binding,
We use that binding to translate any side-condition with the law to a correspond-
ing one in the target world. We then need to show that the translated law-side
condition is a consequence of any side-conditions associated with the conjecture
goal.

In effect, in addition to a syntax for side-conditions, we have to implement
a side-condition inference engine that can deduce when one side-condition im-
plies another. Let psc denote the translated pattern side-condition, and tsc de-
note the side-condition associated with the conjecture being proven. We have to
demonstrate that tsc ⇒ psc. As side-conditions are a conjunction of a few basic
primitive side-conditions, we simply take both tsc and tsc ∧ psc, reduce both to
a canonical normal form, and check for equality.

To illustrate all of this, here is a proof that R � S ≡ R � R ∧ S , given that
ok , ok ′ /∈ fv.R ∪ fv.S . Here we deliberately state our conjecture using different
meta-variables to those used to define designs, to show the translation aspect at
work. Our proof strategy will be to take the lefthand side and transform it into
the righthand side3.

The first step proceeds when a match of R � S succeeds against pattern
P � Q returning the binding [P �→ R,Q �→ S ]. However, we need to discharge
the side-condition ok , ok ′ /∈ fv.P ∪ fv.Q . We use the bindings to translate this

3 The strategy in play is noted in the Proof record.
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to ok , ok ′ /∈ fv.R ∪ fv.S . This then has to be implied by our conjecture side-
condition, which in this case is identical to the law condition, so we can deduce
that it holds. The proof then proceeds as follows:

R � S

≡ “ as just discussed above ”

ok ∧ R ⇒ ok ′ ∧ S

≡ ok ⇒ (R ⇒ ok ′ ∧ S )

≡ ok ⇒ (R ⇒ R ∧ ok ′ ∧ S )

≡ ok ∧ R ⇒ ok ′ ∧ S ∧ R

≡ “ see below ”

R � R ∧ S

The last step up is similar to the first, as the matching of righthand sides suc-
ceeds, and the bindings and translation are the same. This raises a new and
important issue to do with observational variables. The variables ok and ok ′

mentioned above are not arbitrary, but denote specific observations, and so it is
important for UTP that they only match themselves in laws, unlike general vari-
ables that can match arbitrary expressions (including other variables). This leads
to the need to indicate that certain variables in patterns stand for themselves.
Such variables are described as being “known”. All obs variables are known, and
there is also a facility for a user to give names to constants and expressions,
and so those names would also be considered “known”. We will not give further
details here.

The structural matching rule for variable patterns needs to be modified, using
the context Γ to check if a variable is known, here written as x ∈ Γ :

x ∈ Γ

Γ � x ‡ x
x /∈ Γ

Γ � x ‡ v | {x �→ v}
x /∈ Γ

Γ � x ‡ e | {x �→ e}
Note that when a known variable matches against itself, no binding entry is
produced.

At this point, given the hierarchy of Figure 1, we have a theory called Design,
which has access to the laws of logic, equality, arithmetic and sets, as well as the
definitions and associated laws of o

9, �, , � c � and �, as well as the known
observation variables ok and ok ′. In particular, we stress that by being linked
in the hierarchy shown, the Design theory inherits all the material defined in
UTP, and all its ancestors. This is quite abstract at this point, so now we move
to ground it all a little more.
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5.1 Healthiness Conditions

A key feature of UTP is the use of healthiness conditions, expressed typically
as monotonic idempotent predicate transformers. To support this in U ·(TP)2

we need to extend the predicate syntax to include notation for functions over
predicates, and the application of those to predicates, and appropriate axioma-
tisation:

p, q, r ∈ Pred ::= . . .

| ΛP • p, Predicate Abstraction

| p(q), Predicate Application

(ΛP • p)(r) ≡ p[r/P ]

It is at this point that we definitely leave 1st-order logic behind and move up
towards 2nd- and higher-orders of logic. At this point it is useful to have a
facility to give names to frequently used constructs like healthiness conditions
or common predicate fragments, such as the predicates called II , B and J used
in the definition of the Reactive theory [HH98, Chp. 8]. In effect we want to give
definitions like the following (not necessarily from the theory of Designs):

H1 =̂= ΛP • ok ⇒ P

J =̂= (ok ⇒ ok ′) ∧ wait = wait ∧ tr ′ = tr ∧ ref ′ = ref

We achieve this by adding in tables into a theory that allow us to write such
definitions, and modifying the matching algorithm to treat all names in those
tables as “known”:

Theory = record . . .

preds : Name 
 Pred

exprs : Name 
 Expr

. . . end

So, for example, in this theory of Designs we have preds(H1) = ΛP • ok ⇒ P .
The rest of the U·(TP)2 machinery can then be used to reason about and use
these healthiness conditions in the normal way, so for example, H1(q) can be
converted into ok ⇒ q, and vice-versa.

6 Programs

To get concrete, we are now going to define the semantics for a simple imperative
programming language (a.k.a. While), as a UTP Design. To keep things simple
for now, we assume the language has exactly three program variables: x, y, and
z (we look at the issue of many variables below in Section 6.1).
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u,w ∈While ::= Skip do nothing
| v := e Assignment, v ∈ {x , y, z}, fv.e ⊆ {x , y, z}
| u o

9 w Sequential Composition
| u � c � w Conditional, fv.c ⊆ {x , y, z}
| c � w While-loop, fv.c ⊆ {x , y, z}

The alphabet of this theory now contains x , y, z , x ′, y ′, z ′ in addition to ok , ok ′

inherited from the Design theory. Also inherited are the definitions of o
9 and

� c �, where now Obs can bind to ok , x , y, z , ok ′, x ′, y ′, z ′ in pattern matching.
We can use the language specification facility to introduce the syntax to U·(TP)2,
so in While.lang we have:

Skip �→ Skip

:= �→ V := E

whl �→ E ** P

6.1 The U·(TP)2 Semantics of Skip and x := e

We start to define the semantics of Skip, and we could immediately write:

Skip =̂= True � x ′ = x ∧ y ′ = y ∧ z ′ = z

While correct, we may worry about what happens if the number of variables
increases, or if we want to have some dynamism regarding the number and names
of program variables. While we discuss another possible approach to program
variables later, for now let’s see what we can do to improve things. We could try
to use special list variable Obs , to get

Skip =̂=? True � Obs ′ = Obs

but this is not satisfactory, as Obs (Obs ′) includes ok (ok ′) and these cannot
occur in the design predicates, as per the side-condition used in the Design
theory.

The solution here is realise that in many UTP theories we actually have
two classes of observations: those associated with the values of variables in the
program text under consideration (here x , y and z ), and those that capture
overall program properties, independent of any program variable (here ok and
ok ′, denoting termination). We shall refer to the former as script variables and
the latter as model variables, and add in two new special list-variables called Scr
andMdl to match against the two classes. So in this theory, Scr can match x , y, z ,
while Mdl matches ok . Also Obs can now match Scr ,Mdl , or combinations such
as Scr , ok . This requires us to modify the obs table in a theory slightly as we
must now record observation class, as well as its type:

Theory = record . . .

obs : Name 
 Type ×OClass

. . .end

OClass ::= Model | Script
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So, for example, in theory Design we have obs(ok) = (B,Model), while in theory
While we have obs(x ) = (t , Script), where t is some type. We can now define
the semantics of Skip as:

Skip =̂= True � Scr ′ = Scr

This definition will now work in a range of theories, provided the observations
are classified appropriately. However it does also require a further extension of
the law matching algorithm. This has to be modified to allow a pattern like
Scr ′ = Scr , given bindings Scr �→ x , y, z and Scr ′ �→ x ′, y ′, z ′, to match against
a predicate fragment like x ′ = x ∧ y ′ = y ∧ z ′ = z . This feature is quite easily
implemented as part of the structural matcher.

We now turn our attention to the definition of assignment. The following is
not satisfactory:

x := e =̂=? True � x ′ = e ∧ Scr ′ = Scr

First, as x is known, this rule will only match assignments whose variable is x ,
so we would need a different definition for each program variable—not a good
idea! Secondly, Scr ′ = Scr will match x ′ = x ∧ y ′ = y ∧ z ′ = z as already
described, and so we can match x ′ = e ∧ x ′ = x which reduces to x = e, and
then probably False. We could try to make the matching of Scr ′ = Scr against
x ′ = x ∧ y ′ = y ∧ z ′ = z “context sensitive”, only matching an equality if both
sides do not appear “elsewhere”, but it is currently very unclear if this is at all
feasible. Instead, we extend the list-variable notation to allow modifiers, so we
can write the following satisfactory definition for assignment:

v := e =̂= True � v ′ = e ∧ (Scr ′ \ v ′) = (Scr \ v)

The law/pattern variable v is not known, so it will match any of x , y or z , and
even ok . However as ok cannot appear in the predicates in a design, any matching
of v to ok will lead to a proof that eventually freezes up because the side-
condition defining � won’t be satisfiable. Imagine we are matching the righthand
side of the above definition with y ′ = f ∧ x ′ = x ∧ z ′ = z . The matching
algorithm will attempt match y ′ against v ′, returning a binding v ′ �→ y ′. This
binding gives us enough information to be able to match (Scr ′ \ v ′) = (Scr \ v)
against x ′ = x ∧ z ′ = z .

A further complication arises when we try to prove laws such as:

(v := e o
9 v := f ) ≡ (v := f [e/v ])

(u := e o
9 v := f ) ≡ (v := f [e/u] o

9 u := e), v /∈ fv.e

We will not elaborate on details here, but we find the need to use special list
variables like Scr and Scr ′ in substitutions, so the matching algorithm needs to
handle those cases as well.
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6.2 Merging Program Variables

Another way to handle program variables is to group them together into an
environment, a mapping from variable names to values:

ρ ∈ Env = Var 
 Val

We can then introduceModel variables called state and state ′. This simplifies the
alphabet handling, as it is now fixed, and we can model variable declarations
with map extensions. In effect we have no script variables, just model ones,
with the consequence that the theory of the alphabet is now independent of the
program script. The added complexity now emerges in the type system, because
Val needs to include all types in Type, and the definition of assignment now
requires an eval function of type Env → Expr 
 Val (here ⊕ denotes map
override):

v := e =̂= True � state ′ = state ⊕ {v �→ eval(state)(e)}

U ·(TP)2 can support either style of program variable handling, although the
environment-based approach requires a theory of finite maps, and laws defining
eval for every expression construct, with an added complication of having to
handle explicit expression syntax in laws. However, the provision of such an eval
function is not quite as onerous as it sounds as laws providing the meaning of
all expression constructs are required in any case.

We are not going to elaborate too much on how to give a semantics to the
while-loop construct here, apart from noting that it requires a fixpoint construct
in the logic syntax, and an appropriate axiomatisation of fixpoint theory. Then
the loop can be defined as the least fixed point of the appropriate functional.

p, q, r ∈ Pred ::= . . .

| μP • F (P) Fixpoint Operator

c � w =̂= μW • (w o
9 W ) � c � Skip

7 Soundness

Is U·(TP)2 sound? For now, the simple answer is no, due mainly to two reasons.
Firstly, users can add their own laws (axioms), and this always leads to the

risk of defining a theory that is inconsistent. As we consider the typical user
to be a UTP practitioner with experience in logic and axiomatics, developing
foundational theories, we feel it is reasonable to expect such (power) users to
be able to use their judgement to avoid such pitfalls. Having said that, it will
probably make sense in future versions of the tool to support users at different
levels of experience, with the more advanced and dangerous features disabled
for novices.
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Secondly, the underlying proof engine is very complex, reflecting the com-
plexity of the logic required. At present we are not in a position to guarantee
soundness of every action that can be invoked. However, in mitigation, we do
point out that the outcome of each basic proof step is highly visible in the tool’s
GUI. It is clear that eventually we will have to pay serious attention to ensur-
ing the prover is sound (modulo any inconsistencies introduced via user-defined
axioms). We envisage two possible approaches:

1. Identifying a very small core from which the whole logic can be developed
conservatively, and producing a small piece of prover kernel code that can
then be verified. This is the LCF approach adopted for prover systems like
HOL[NPW02] and Coq[The08].

2. Developing an encoding of the U · (TP)2 logic into the logic of a system
with a verified kernel, such as HOL or CoQ, and using those systems to do
automated proof checks, possibly even for each proof step as it is done.

8 Exploitation

Assuming that we have addressed the soundness of the implementation of U ·
(TP)2, and have used it to develop a nice theory of an interesting language,
how useful will the results be if we try to apply them to a real problem? In
principle, we could use U · (TP)2 to prove properties of a program written in
the language described by our theory. In fact some work has already been done
exploring a feature that allows us to take a predicate-transformer theory (e.g.
weakest precondition, as per [HH98, Chp. 2, p66]), and a program, and auto-
matically generate proof obligations. However, U·(TP)2 is an interactive proof
assistant, designed to support UTP theory development, rather than theory use.
In practise, there is no way that U·(TP)2 can realistically compete with exist-
ing industrial-strength tools that can both generate and discharge such proof
obligations with a high degree of efficiency.

However what does seem to be feasible, is to develop a facility whereby a UTP
theory, once complete, can be translated and exported as a theory useable by
just such industrial-strength provers. We are currently exploring building such
a theorem-prover link to HOL, as recent work has looked at encoding UTP in
ProofPower/HOL[OCW06, ZC08], or Isabelle/HOL [FGW10, FGW12]. We hope
to be able to make use of these results to build such a U·(TP)2-to-HOL bridge.

9 Conclusions

We can, in effect, summarise the paper by giving a requirements list summaris-
ing all the special logic features we desire for U ·(TP)2: predicate and expres-
sion meta-variables; user language definitions; quantifier list variables, with spe-
cials to identify alphabets; explicit substitutions; “semantic” side-conditions; and
predicate transformers.
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All the above could be implemented using Isabelle, or CoQ, or PVS, or pretty
much any higher-order theorem prover. However any algorithm can, in principle,
be written in the pure lambda calculus, or expressed as a Turing machine, but
this does not make it feasible, desirable or practical to use those notations.
Similarly we feel that encoding our requirements into one of the above higher-
order systems, at least to the extent that it would be visible to the user, is not the
way to meet our requirement for machine-assisted support for UTP foundational
reasoning.

The resulting logic is quite large, and space limitations have prevented us
from giving a complete description here. More details can be found in a draft of
the U·(TP)2 Reference Manual [But12].
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A Rules

A.1 Propositional Axioms

((P ≡ Q) ≡ R) ≡ (P ≡ (Q ≡ R))�Ax-≡-assoc 
P ≡ Q ≡ Q ≡ P �Ax-≡-symm 
true ≡ Q ≡ Q �Ax-≡-id 
false ≡ ¬true �Ax-false-def 
¬(P ≡ Q) ≡ ¬P ≡ Q �Ax-¬-≡-distr 
P ∨Q ≡ Q ∨ P �Ax-∨-symm 
(P ∨Q) ∨R ≡ P ∨ (Q ∨ R) �Ax-∨-assoc 
P ∨ P ≡ P �Ax-∨-idem 
P ∨ (Q ≡ R) ≡ P ∨Q ≡ P ∨ R �Ax-∨-≡-distr 
P ∨ ¬P �Ax-Excl-Mdl 
P ∧Q ≡ P ≡ Q ≡ P ∨Q �Ax-Golden-Rule 
P ⇒ Q ≡ P ∨Q ≡ Q �Ax-⇒-def 

A.2 Inference Rules

P

P [Q := R]
−−−−−−−−−− (Substitution)

P ≡ Q

R[S := P ] ≡ R[S := Q ]
−−−−−−−−−−−−−−−−−−−−−− (Leibniz)

P ,P ≡ Q

Q
−−−−−−−−− (Equanimity)
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A.3 Non-propositional Axioms

p ∨ (∀ ;xs , ys • q) �Ax-∨-∀ x -scope 
≡ (∀ ;xs • p ∨ (∀ ;ys • q)), xs /∈ p
p ∨ (∀ ;Es ,Fs • q) �Ax-∨-∀E -scope 
≡ (∀ ;Es • p ∨ (∀ ;Fs • q)), Es /∈ p
p ∨ (∀ ;Ps ,Qs • q) �Ax-∨-∀P-scope 
≡ (∀ ;Ps • p ∨ (∀ ;Qs • q)), Ps /∈ p

(∀ ;xs • p ∧ q) ≡ (∀ ;xs • p) ∧ (∀ ;xs • q) �Ax-∀ x -distr 
(∀ ;Es • p ∧ q) ≡ (∀ ;Es • p) ∧ (∀ ;Es • q) �Ax-∀E -distr 
(∀ ;Ps • p ∧ q) ≡ (∀ ;Ps • p) ∧ (∀ ;Ps • q) �Ax-∀P-distr 

(∀ x ; xs • p)⇒ (∀ ;xs • p[e/x ]) �Ax-∀ x -inst 
(∀E ;Es • p)⇒ (∀ ;Es • p[e/E ]) �Ax-∀E -inst 
(∀P ;Ps • p)⇒ (∀ ;Ps • p[q/P ]) �Ax-∀P-inst 

(∃ ;xs • p) ≡ ¬ (∀ ;xs • ¬ p) �Ax-∃ x -def 
(∃ ;Es • p) ≡ ¬ (∀ ;Es • ¬ p) �Ax-∃E -def 
(∃ ;Ps • p) ≡ ¬ (∀ ;Ps • ¬ p) �Ax-∃P-def 
∃! ; xs • p �Ax-∃!x -def 
≡ (∃ ;xs • p) ∧ ∃ ;ys • p[ys/ ; xs ]⇒ ys = xs

e = e �Ax-=-refl 
(e = θx • p) �Ax-θ-Def 
≡ p[e/x ] ∧ (∀ y • p[y/x ]⇒ y = e), x /∈ e

(λ x ; xs • e)f = (λ ;xs • e)[f /x ] �Ax-β-OReduce 
(ΛE ;Es • q)e ≡ (Λ ;Es • q)[e/E ] �Ax-β-EReduce 
(ΛP ;Ps • q)r ≡ (Λ ;Ps • q)[r/P ] �Ax-β-PReduce 

(
∧n

i=1 xi = ei)⇒ (p ≡ p[e/x ]), xi distinct,�Ax-Leibniz 
xi distinct

p[x := e] ≡ p[e/x ] �Ax-OSubst 
p[e/Es ] ≡ p[Es := e] �Ax-ESubst 
p[q/Ps ] ≡ p[Ps := q] �Ax-PSubst 
true[e/x ] ≡ true �Ax-true-OSubst 
true[e/Es ] ≡ true �Ax-true-ESubst 
true[q/Ps ] ≡ true �Ax-true-PSubst 
false[e/x ] ≡ false �Ax-false-OSubst 
false[e/Es ] ≡ false �Ax-false-ESubst 
false[q/Ps ] ≡ false �Ax-false-PSubst 
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Abstract. We define a new class of UTP homogeneous binary rela-
tions called conscriptions, which like prescriptions provide a general-
correctness model of sequential computations. Their novelty is that the
skip conscription is a right unit of sequential composition for all conscrip-
tions, including even those whose assumptions refer to the after-state as
well as before-state; they thus improve on prescriptions by providing
a less restricted, and hence more expressive, general-correctness model
for sequential computations. We also exploit our conscription concept
to derive two new enriched sequential models, extended conscriptions
and timed conscriptions, which differentiate between aborting and non-
terminating computations.

1 Introduction

Existing models of sequential programs in Unifying Theories of Programming
(UTP), such as designs [7, chap. 2] or prescriptions [1], characterise such pro-
grams as homogeneous binary relations which can be structurally decomposed
into subrelation pairs, whose first subrelation is known as its assumption and
second as its commitment. We contend that any realistic model of sequential
computation must provide that its skip program is both a left and right unit of
sequential composition.

In this paper we define a new class of UTP homogeneous binary relations called
conscriptions which, like prescriptions, provide a general-correctness model of se-
quential computations. Their advantage over prescriptions is that the skip con-
scription is structurally guaranteed to be a right unit of sequential composition
for the entire class of conscriptions without placing any restriction on the form of
their assumptions. Conscriptions therefore exhibit all the usual algebraic proper-
ties we would wish, but without the restrictions on expressive power which are the
price of securing the skip right-unit property in other UTP sequential models such
as designs or prescriptions. They also provide a basis for richer sequential mod-
els analogous to extended and timed designs [5,6], but with fewer restrictions on
their expressive capabilities, and therefore able to express a wider range of com-
putational behaviours in their respective domains.

The rest of the paper is organised as follows. In §2 we summarise our notion
of an alphabetised relation together with its associated operators and proper-
ties. In §3 we outline Möller’s linear-algebra approach to reasoning about UTP

B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.): UTP 2012, LNCS 7681, pp. 144–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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designs and prescriptions which represents them as matrices. In §4 we introduce
conscriptions and employ matrix algebra to establish their properties. In §5 we
address sequential programming models which distinguish between abortion and
non-termination, in the process introducing extended conscriptions. In §6 we ad-
dress timed sequential programming models, in the process introducing timed
conscriptions and showing that these provide greater expressivity than timed
designs. Finally, in §7 we summarise the various conscription-based models we
have presented.

2 Alphabetised Relations

Each of the UTP models we present in this paper comprises a characteristic
family of alphabetised homogeneous binary relations on a given alphabet of
variables, which is closed under relational union and relational composition. In
this preliminary section we describe the relational concepts and properties which
our work relies. We begin by defining our hierarchy of relation types.

Definition 1 (Alphabetised Relation). An alphabetised relation is charac-
terised by a pair (p,A) where A is an alphabet of variables and p is a predicate
all of whose free variables belong to A.

When the alphabet A of an alphabetised relation P = (p,A) can be inferred
from the context we will often use its predicate p as a proxy for the relation P
itself.

Definition 2 (Binary Relation). An alphabetised relation (p,A) is binary if
its alphabet A is partitioned into subalphabets inA and outA, called respectively
its input and output alphabets.

Definition 3 (Homogeneous Binary Relation). A binary relation is homo-
geneous if its output alphabet comprises dashed versions of the variables of its
input alphabet. Thus such a relation is of the form (p, {w ,w ′}), where w and w ′

are corresponding lists of undashed and dashed variables.

We note that to determine the alphabet of a homogeneous binary relation only
its input alphabet need be given, since its output alphabet is then derived by
systematic dashing of its input variables.

We next define two important relational operators: union and composition. A
key principle of UTP is that relational union always expresses the nondetermin-
istic choice between computations, and relational composition their sequential
composition.

Definition 4 (Relational Union). The relational union P �Q of alphabetised
relations P = (p,A) and Q = (q,A) over the same alphabet A, is defined as

P �Q =̂ (p ∨ q,A) .
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Definition 5 (Relational Composition). The relational composition of ho-
mogeneous binary relations (p, {w ,w ′}) and (q, {w ,w ′}) over the same alphabet
{w ,w ′} is the relation (p ; q , {w ,w ′}), in which

p ; q =̂ ∃w ′′ . p[w ′′/w ′] ∧ q[w ′′/w ]

where w ′′ is the list of fresh variables obtained by systematically double-dashing
those of w .

We give relational composition a lower precedence than relational union. Thus
for example, P �Q ; R means the same as (P �Q) ; R and P ;Q �R means
the same as P ; (Q � R) .

Relational composition distributes through relational union in either of its
arguments. That is to say, for any homogeneous binary relations p, q, r , s over
the same alphabet, we have that

p ; (r ∨ s) = (p ; r) ∨ (p ; s) , (1)

(p ∨ q) ; r = (p ; r) ∨ (q ; r) . (2)

Certain homogeneous binary relations are idempotent with respect to relational
composition. For example, the maximal relation T = (true , {w ,w ′}) is such that

T ; T = T . (3)

By virtue of relational composition’s distributive properties T is absorptive,
in the sense that for any homogeneous binary relations P = (p , {w ,w ′}) and
Q = (q , {w ,w ′}) we have that

(p ; T) ∨ (p ; q) = p ; T . (4)

The identity relation ((w = w ′) , {w ,w ′}) is a left and right unit of relational
composition. Thus for any homogeneous binary relation P = (p , {w ,w ′}) we
have that

p ; (w = w ′) = p = (w = w ′) ; p . (5)

Similarly, the vacuous relation F = (false , {w ,w ′}) is a left and right zero of rela-
tional composition. Thus for any homogeneous binary relation P = (p , {w ,w ′})
we have that

p ; F = F = F ; p . (6)

Finally, the extreme relations F and T have their obvious logical properties
with respect to relational union. Thus for any homogeneous binary relation
P = (p , {w ,w ′}) we have that

p ∨ F = p and p ∨ T = T . (7)

Whenever we express properties of our models by logical formulae denoting pred-
icates, these should be understood as being universally quantified over all their
free variables.
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3 Linear Algebra of UTP

UTP designs [7, chap. 2] express sequential computations from a total-correctness
perspective, whereby those circumstances admitting abortive or non-terminating
behaviour are always deemed to admit otherwise-arbitrary terminating behaviour
too. The philosophy embodied by total correctness is that abortive or non-
terminating behaviour is the worst of all behaviours, so that wherever a speci-
fication allows this there is no point in its excluding any other behaviour. The
UTP design with assumption p and commitment r is denoted by p � r , where

p � r =̂ ok ∧ p ⇒ r ∧ ok ′ .

The predicate on the right-hand side of the definition can be informally inter-
preted as saying that if the program’s execution starts and satisfies its assump-
tion p then it must terminate in a final state satisfying its commitment r .

Möller [8] represents UTP designs as 2× 2 matrices by partitioning them into
the four subrelations corresponding to each of the possible value-combinations
of the boolean variables ok and ok ′. Thus, for example, the design p � r is
represented by the matrix

¬ ok ′ ok ′

¬ ok T T

ok ¬ p ¬ p ∨ r

(8)

The T entries in the top rows of matrix (8) are entirely dictated by the defi-
nition of a UTP design, and are therefore known as structural entries. On the
other hand, the entry ¬ p in the bottom of the left-hand column of the matrix
characterises all this design’s possible aborting/non-terminating behaviour; like-
wise, the entry ¬ p ∨ r in the bottom of the right-hand column characterises all
its possible terminating behaviour. We note that the left-hand ¬ p is contained
in the right-hand ¬ p ∨ r , reflecting the total-correctness perspective of UTP
designs.

Möller’s crucial insight was that by representing UTP designs in this way,
matrix algebra can then be employed to model program combinators such as
non-deterministic choice and sequential composition. For example, the non-
deterministic choice of two designs is modelled by “matrix addition” and the
sequential composition of two such designs by “matrix multiplication”, in which
the underlying component addition is interpreted as relational union (disjunc-
tion) and component multiplication as relational composition. By this means it
is straightforward to show that

(p � r) ; (q � s) = ¬ (¬ p ; T) ∧ ¬ (r ; ¬ q) � (r ; s) . (9)

Prescriptions [1] are the general-correctness analogue of UTP designs. The phi-
losophy underlying general correctness is that requirements concerning abortive
or non-terminating behaviour are separate from those concerning terminating
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behaviour. The prescription with assumption p and commitment r is denoted
by p �� r , where

p �� r =̂ (ok ∧ p ⇒ ok ′) ∧ (ok ′ ⇒ r ∧ ok) .

The predicate on the right-hand side of this definition can be informally inter-
preted as saying that if the program’s execution starts and satisfies its assump-
tion p then it must terminate, and if it terminates it must do so in a final state
satisfying its commitment r and it must have started.

Neither UTP designs nor prescriptions discriminate between abortion and
non-termination, each of these behaviours being signified by the same observa-
tion ¬ ok ′ in both models. Prescriptions, like designs, can be represented by 2×2
matrices: the prescription p �� r is represented by the matrix

¬ ok ′ ok ′

¬ ok T F

ok ¬ p r

(10)

We note in matrix (10) that the entry ¬ p in the bottom of the left-hand
column, which characterises the aborting or non-terminating behaviour of the
prescription, is independent of the entry r in the bottom of the right-hand
column which characterises its terminating behaviour.

Matrix algebra can be used to establish that prescriptions are closed under
sequential composition, by showing that

(p �� r) ; (q �� s) = ¬ (¬ p ; T) ∧ ¬ (r ; ¬ q) �� (r ; s) . (11)

The term ¬ (¬ p ; T) which occurs in the right-hand sides of both (9) and (11)
prevents skip being a right unit of composition for either designs or prescriptions
in general. However, if p refers only to the before-state then ¬ (¬ p ; T) reduces
to p. Only such restricted designs and prescriptions (known as H3 designs and
normal prescriptions) have skip as a right unit of composition.

4 Conscriptions

Wecan derive a newUTP relationalmodel of sequential computations by strength-
ening prescriptions with an extra conjunct ¬ ok ⇒ v ′ = v requiring that if the
computation does not start then it must conserve the existing values of the regular
programvariables.We call such a strengthened versionof a prescriptiona conscrip-
tion –for conserving prescription– andwe denote the conscriptionwith assumption
p and commitment r by p ��� r .

Definition 6 (Conscription). A conscription is a homogeneous binary rela-
tion with input alphabet {v , ok}, which is characterised by the following predicate,
where p and r can each refer to {v , v ′} :

p ��� r =̂ (ok ∧ p ⇒ ok ′) ∧ (ok ′ ⇒ r ∧ ok) ∧ (¬ ok ⇒ v ′ = v) .
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The predicate on the right-hand side of Definition 6 can be informally interpreted
as saying that if the program’s execution satisfies its assumption p then it must
terminate, and if it terminates it must satisfy its commitment r and it must
have started; on the other hand, if it fails to execute at all then the values of the
regular program variables v will be unchanged.

Like designs and prescriptions, conscriptions do not discriminate between
abortion and non-termination, and can be represented by 2 × 2 matrices: for
example, the conscription p ��� r is represented by the matrix

¬ ok ′ ok ′

¬ ok v = v ′ F

ok ¬ p r

(12)

The two following lemmas establish that conscriptions have the necessary closure
properties for an effective sequential model.

Lemma 1 (Nondeterministic Choice of Conscriptions). Conscriptions
are closed under nondeterministic choice. For arbitrary conscriptions p ��� r
and q ��� s over the same alphabet we have that

( p ��� r ) � ( q ��� s ) = p ∧ q ��� r ∨ s .

Proof. We note that q ��� s is represented by the matrix

¬ ok ′ ok ′

¬ ok v = v ′ F

ok ¬ q s

(13)

To derive the matrix representation of ( p ��� r )� ( q ��� s ) we therefore disjoin
corresponding entries of matrices (12) and (13) to obtain

¬ ok ′ ok ′

¬ ok v = v ′ F

ok ¬ p ∨ ¬ q r ∨ s

which is the matrix representation of the conscription

p ∧ q ��� r ∨ s .

Lemma 2 (Sequential Composition of Conscriptions). Conscriptions are
closed under sequential composition. For arbitrary conscriptions p ��� r and
q ��� s over the same alphabet we have that

( p ��� r ) ; ( q ��� s ) = p ∧ ¬ (r ; ¬ q) ��� (r ; s) .
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Proof. To derive the matrix representation of ( p ��� r ) ; ( q ��� s ) we multiply
matrix (12) by matrix (13) in that order to obtain the product matrix

¬ ok ′ ok ′

¬ ok (v = v ′ ; v = v ′) ∨ (F ; ¬ q) (v = v ′ ; F) ∨ (F ; s)

ok (¬ p ; v = v ′) ∨ (r ; ¬ q) (¬ p ; F) ∨ (r ; s)

which simplifies by properties (5) and (6) to

¬ ok ′ ok ′

¬ ok v = v ′ F

ok ¬ p ∨ (r ; ¬ q) r ; s

which is the matrix representation of the conscription

p ∧ ¬ (r ; ¬ q) ��� (r ; s) .

Extreme Conscriptions. The following special cases of conscriptions are of
interest :

skipc =̂ true ��� v = v ′

abortc =̂ false ��� false

anarchyc =̂ false ��� true

magicc =̂ true ��� false

chaosc =̂ true ��� true .

Our operational interpretations of these are as follows:

– skipc terminates with unchanged program variables;
– abortc aborts or fails to terminate;
– anarchyc either aborts or fails to terminate, or else terminates with uncon-

strained program variables;
– magicc is the everywhere-miraculous prescription, which is infeasible;
– chaosc terminates with unconstrained program variables.

The next lemma reveals that conscriptions have a remarkably simple algebraic
characterisation.

Lemma 3 (Algebraic Characterisation of Conscriptions). A
homogeneous binary relation A with input alphabet {v , ok} is a conscription if
and only if it satisfies

abortc ; A = abortc (14)

and in that case we have that

A = ¬ Atf ��� Att

where Atf is A[true, false/ok , ok ′] and Att is A[true, true/ok , ok ′] .
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Proof. Let A be an arbitrary homogeneous binary relation with input alphabet
{v , ok} . Then A is represented by the matrix

¬ ok ′ ok ′

¬ ok Aff Aft

ok Atf Att

(15)

We also have that abortc is represented by the matrix

¬ ok ′ ok ′

¬ ok v ′ = v F

ok T F

(16)

Multiplying matrix (16) by matrix (15) in that order yields the product matrix

¬ ok ′ ok ′

¬ ok (v = v ′ ; Aff) ∨ (F ; Atf) (v = v ′ ; Aft) ∨ (F ; Att)

ok (T ; Aff) ∨ (F ; Atf) (T ; Aft) ∨ (F ; Att)

which simplifies by properties (5) and (6) to

¬ ok ′ ok ′

¬ ok Aff Aft

ok T ; Aff T ; Aft

(17)

Thus (14) holds if and only if matrix (17) is equal to matrix (16), which is the
case if and only if Aff is v ′ = v and Aft is F . In that case that A’s matrix (15)
can be re-written as

¬ ok ′ ok ′

¬ ok v ′ = v F

ok Atf Att

(18)

which is the matrix representation of the conscription ¬ Atf ��� Att . This con-
cludes the proof of Lemma 3 .

The next lemma shows that the skip conscription is both a left and right unit
of sequential composition for all conscriptions, including even those whose as-
sumptions refer to dashed program variables:

Lemma 4 (Conscription Unit of Composition). For any conscription A

skipc ; A = A = A ; skipc .
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Proof. Since skipc is true ��� v ′ = v , its matrix representation is

¬ ok ′ ok ′

¬ ok v ′ = v F

ok F v ′ = v

which is clearly both a left and right identity of matrix multiplication.

4.1 Why Not Condesigns?

Given how conscriptions are derived from prescriptions, one might reasonably
ask whether the same could be done for UTP designs: that is, could UTP designs
be strengthened with the conjunct ¬ ok ⇒ v = v ′ so as to obtain “condesigns”
(conserving designs)?

In fact, if we strengthen for example the design p � r in such a way, we obtain
a relation whose matrix represntation is

¬ ok ′ ok ′

¬ ok v = v ′ v = v ′

ok ¬ p ¬ p ∨ r

(19)

Unfortunately, as can readily by shown by matrix algebra, the form of (19) is not
closed under sequential composition. An obvious way to remedy this deficiency
is to strengthen the extra conjunct to ¬ ok ⇒ v = v ′ ∧ ¬ ok ′ , which yields a
relation whose matrix representation is

¬ ok ′ ok ′

¬ ok v = v ′ F

ok ¬ p ¬ p ∨ r

(20)

whose form is indeed closed under sequential composition. But we recognise (20)
as the matrix representation of the conscription p ��� (p ⇒ r) , so our attempt
to devise an effective conserving design has merely led us back to a conscription.

5 Abortion versus Non-termination

Extended designs [5,6] were proposed by Hayes et al to provide a relational
model of sequential programs which distinguishes between abortion and non-
termination. It does so by employing a second boolean auxiliary variable term
in addition to ok , to record whether or not a non-aborting computation termi-
nates (term ′ = true) or runs forever (term ′ = false). Extended designs are there-
fore a class of homogeneous binary relations with input alphabet {v , term, ok} .



Conscriptions: A New Relational Model for Sequential Computations 153

The extended design with assumption p and commitment r , where p can refer
only to {v} and r to {v , v ′, term ′}, is denoted by p �X r , where

p �X r =̂ (ok ∧ term ∧ p ⇒ r ∧ ok ′) ∧ (term ′ ⇒ term)
∧ (¬ term ⇒ ok) ∧ (¬ term ′ ⇒ ok ′) . (21)

Furthermore, p and r must satisfy

p ∧ ¬ term ′ ⇒ (r ⇔ ∀ v ′ . r) (22)

which ensures that the after-values v ′ of the regular program variables are un-
constrained under under non-termination.

The first conjunct ok ∧ term ∧ p ⇒ r ∧ ok ′ on the right-hand side of
(21) asserts that if its predecessor has terminated normally and thus allowed the
current program to start from an initial state in which its assumption p holds,
then it will establish its commitment r and will not abort. The second conjunct
term ′ ⇒ term asserts that if the current program terminates its predecessor
must have done so too. The third conjunct ¬ term ⇒ ok asserts that if the
predecessor does not terminate then it does not abort, and the fourth conjunct
¬ term ′ ⇒ ok ′ makes a corresponding assertion about the current program.

Guttmann [3,4,2] has characterised extended designs algebraically by means
of matrix algebra. An extended design can specify the circumstances in which
non-termination is allowed or even required, and also those when abortion is
allowed, but it can never actually require the computation to abort.

We can analogously define another class of homogeneous binary relations with
input alphabet {v , term, ok} , which we call extended conscriptions. We denote
the extended conscription with assumption p and commitment r by p ���X r .

Definition 7 (Extended Conscription). An extended conscription is a ho-
mogeneous binary relation with input alphabet {v , ok , term} , which is charac-
terised by the following predicate, where p can refer to {v , v ′}, and r can refer
to {v , v ′, term ′} and is such that ¬ term ′ ⇒ (r ⇔ ∀ v ′ . r) :

p ���X r =̂ (ok ∧ term ∧ p ⇒ ok ′) ∧ (ok ′ ∧ term ⇒ r ∧ ok)
∧ (¬ ok ⇒ v = v ′ ∧ term = term ′) ∧ (term ′ ⇒ term)
∧ (¬ term ⇒ ok) ∧ (¬ term ′ ⇒ ok ′) .

We note that the assumption p of the extended conscription p ���X r , unlike that
of an extended design, can refer to the after-values v ′ of the program variables
as well as their before-values v . The healthiness condition

¬ term ′ ⇒ (r ⇔ ∀ v ′ . r) (23)

on r ensures that the after-values v ′ of the regular program variables are un-
constrained under non-termination.

The predicate on the right-hand side of Definition 7 can be interpreted as fol-
lows. The first conjunct ok ∧ term ∧ p ⇒ ok ′ asserts that if its predecessor has
terminated and the current program’s execution satisfies p then it cannot abort.
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The second conjunct ok ′ ∧ term ⇒ r ∧ ok asserts that if its predecessor termi-
nated and the current program executes without aborting then it must satisfy
r and it must have started. The third conjunct ¬ ok ⇒ v = v ′ ∧ term = term ′

asserts that if the current program fails to start at all then the regular program
variables v and the auxiliary variable term remain unchanged. The fourth con-
junct term ′ ⇒ term asserts that that if the current program has terminated
then its predecessor must have done so too. The fifth conjunct ¬ term ⇒ ok
asserts that if the predecessor does not terminate then it does not abort, and
the sixth conjunct ¬ term ′ ⇒ ok ′ makes a corresponding assertion about the
current program.

An extended conscription can be represented by a 3×3 matrix1. For example,
p ���X r is represented by the matrix

¬ ok ′ ∧ term ′ ok ′ ∧ ¬ term ′ ok ′ ∧ term ′

¬ ok ∧ term v = v ′ F F

ok ∧ ¬ term F T F

ok ∧ term ¬ p r f r t

(24)

where r f is r [false/term ′] and r t is r [true/term ′] . We note that all the entries
in the first and second rows of matrix (24) are structural, while the three non-
structural entries in its bottom row are mutually independent.

The next two lemmas, whose proofs are given in Appendix A, establish that
extended conscriptions have the appropriate closure properties for a sequential
model.

Lemma 5 (Nondeterminstic Choice of Extended Conscriptions). Ex-
tended conscriptions are closed under nondeterministic choice. For arbitrary ex-
tended conscriptions p ���X r and q ���X s over the same alphabet, we have that

(p ���X r) � (q ���X s) = p ∧ q ���X r ∨ s .

Lemma 6 (Composition of Extended Conscriptions). Extended conscrip-
tions are closed under sequential composition. For arbitrary extended conscrip-
tions p ���X r and q ���X s over the same alphabet, we have that

(p ���X r) ; (q ���X s) = p ∧ ¬ (r t ; ¬ q) ���X r f ∨ (r t ; s) .

Extreme Extended Conscriptions. The following special cases of extended
conscriptions are of interest:

skipxc =̂ true ���X v = v ′ ∧ term ′

abortxc =̂ false ���X false

1 A fourth row and column, corresponding to the respective combinations
(¬ ok ∧ ¬ term) and (¬ ok ′ ∧ ¬ term ′), are omitted from the matrix since all their
entries are Fs and thus invariant under matrix addition and multiplication.
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anarchyxc =̂ false ���X true

magicxc =̂ true ���X false

chaosxc =̂ true ���X true

terminatexc =̂ true ���X term ′

foreverxc =̂ true ���X ¬ term ′

mortalxc =̂ false ���X term ′

notermxc =̂ false ���X ¬ term ′ .

Our operational interpretations of these are as follows:

– skipxc terminates with the program variables unchanged;
– abortxc aborts;
– anarchyxc either aborts, or runs forever, or terminates with unconstrained

program variables;
– magicxc is the everywhere-miraculous extended conscription which cannot

be implemented;
– chaosxc either runs forever or else terminates with unconstrained program

variables;
– terminatexc terminates with unconstrained program variables;
– foreverxc runs forever;
– mortalxc either aborts or terminates with unconstrained program variables;
– notermxc either aborts or runs forever.

Corollary 1 (Algebraic properties of extended conscriptions). Every
extended conscription A satisfies the following algebraic properties:

skipxc ; A = A = A ; skipxc

abortxc ; A = abortxc

foreverxc ; A = foreverxc .

Proof. From Lemma 6 and the definitions of skipxc , abortxc and foreverxc .

6 Sequential Models Incorporating Time

The timed-design model [5,6] was introduced by Hayes et al as a further refine-
ment of their extended-design model, wherein an observation τ recording the
current time replaces the term observation. The domain of time values can be
either natural numbers or real numbers, in each case supplemented by infin-
ity (∞) to represent non-termination. The timed design with assumption p and
commitment r , where p can to refer to {v , τ, τ ′} and r to {v , v ′, τ, τ ′}, is denoted
by p �T r where

p �T r =̂ (ok ∧ τ <∞ ∧ p ⇒ ok ′ ∧ r) ∧ (τ ≤ τ ′)
∧ (τ =∞⇒ ok) ∧ (τ ′ =∞⇒ ok ′) .
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Furthermore, p and r must satisfy the following conditions:

τ 	=∞ ∧ p ∧ τ ′ =∞⇒ (r ⇔ ∀ v ′ . r) , (25)

τ ≤ τ ′′ < τ ′ ∧ p ⇒ p[τ ′′/τ ′] . (26)

Condition (25) ensures that the after-values v ′ of the program variables are
unconstrained under non-termination. Condition (26) requires that if the com-
putation is safe from risk of aborting at time τ ′ it must also be safe at all prior
times τ ′′ from the start τ of its execution (τ ≤ τ ′′ < τ ′). This is necessary to
ensure that timed designs satisfy the skip-right-unit law A ; skipxc = A , but
unfortunately it precludes constructions such as

τ < τ ′ �T τ ′ =∞ (27)

by which we might wish to specify the computation which may abort immedi-
ately (τ ′ = τ being outside its assumption), but which, providing it manages to
avoid succumbing to that immediate risk, is thereafter guaranteed to run forever
(commitment τ ′ =∞).

We can analogously define the notion of a timed conscription, denoting the
timed conscription with assumption p and commitment r by p ���T r , as follows:

Definition 8 (Timed Conscription). A timed conscription is a homogeneous
binary relation with input alphabet {v , ok , τ}, which is characterised by the fol-
lowing predicate, where p and r can both refer to {v , v ′, τ, τ ′} and r is such that
τ < τ ′ =∞ ⇒ (r ⇔ ∀ v ′ . r) :

p ���T r =̂ (ok ∧ τ <∞ ∧ p ⇒ ok ′) ∧ (ok ′ ∧ τ <∞ ⇒ r ∧ ok)
∧ (¬ ok ⇒ v = v ′ ∧ τ = τ ′) ∧ (τ ≤ τ ′)
∧ (τ =∞ ⇒ ok) ∧ (τ ′ =∞ ⇒ ok ′) .

The healthiness condition

τ < τ ′ =∞ ⇒ (r ⇔ ∀ v ′ . r) (28)

on r ensures that the after-values v ′ of the regular program variables are uncon-
strained under non-termination. We note, however, that there is no healthiness
condition for timed conscriptions which corresponds to (26) on the assumption
of a timed design.

The predicate on the right-hand side of Definition 8 can be interpreted as
follows. The first conjunct ok ∧ τ < ∞ ∧ p ⇒ ok ′ asserts that if its prede-
cessor has terminated and the current program’s own execution satisfies p then
it cannot have aborted. The second conjunct ok ′ ∧ τ < ∞ ⇒ r ∧ ok asserts
that if its predecessor terminated and the current program has executed with-
out aborting then that execution must have started and must satisfy r . The
third conjunct ¬ ok ⇒ v = v ′ ∧ τ = τ ′ asserts that if the current program fails
to execute at all then the program variables v and the time auxiliary variable
τ remain unchanged. The fourth conjunct τ ≤ τ ′ asserts that time must run
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forwards. The fifth conjunct τ = ∞ ⇒ ok asserts that if the predecessor does
not terminate then it does not abort, and the sixth conjunct τ ′ = ∞ ⇒ ok ′

makes the corresponding assertion for the current program.
A timed conscription can be represented by a 3 × 3 matrix2. For example,

p ���T r is represented by the following matrix:

¬ ok ′ ∧ τ ′ <∞ ok ′ ∧ τ ′ =∞ ok ′ ∧ τ ′ <∞
¬ ok ∧ τ <∞ v = v ′ ∧ F F

τ = τ ′ <∞
ok ∧ τ =∞ F τ = τ ′ =∞ F

ok ∧ τ <∞ ¬ p ∧ r ∧ r ∧
τ ≤ τ ′ <∞ τ < τ ′ =∞ τ ≤ τ ′ <∞

(29)

The next two lemmas, whose proofs are given in Appendix B, show that timed
conscriptions have the necessary closure properties for a sequential model.

Lemma 7 (Nondeterministic Choice of Timed Conscriptions). For ar-
bitrary timed conscriptions p ���T r and q ���T s over the same alphabet,

(p ���T r) � (q ���T s) = p ∧ q ���T r ∨ s .

To express the next lemma succinctly, we first define the following special variant
of relational composition for homogeneous binary relations whose input alphabet
includes the time variable τ .

Definition 9 (Timed Composition). For homogeneous binary relations A
and B whose input alphabet includes τ , we define their timed composition A ;τ B
by

A ;τ B =̂ A ∧ τ ≤ τ ′ <∞ ; B ∧ τ ≤ τ ′ .

Lemma 8 (Composition of Timed Conscriptions). For arbitrary timed
conscriptions p ���T r and q ���T s over the same alphabet, we have that

(p ���T r) ; (q ���T s) = p ∧ ¬ (r ;τ ¬ q) ���T (r ∧ τ ′ =∞) ∨ (r ;τ s) .

Extreme Timed Conscriptions. The following special cases of timed con-
scriptions are of interest:

skiptc =̂ true ���T v = v ′ ∧ τ = τ ′

idletc =̂ true ���T v = v ′ ∧ τ ′ <∞
boneidletc =̂ true ���T τ ′ <∞⇒ v = v ′

2 Once again, a fourth row and column, this time corresponding to the respective
combinations (¬ ok ∧ τ = ∞) and (¬ ok ′ ∧ τ ′ = ∞), are omitted from the
matrix since all their entries are Fs and are thus invariant under matrix addition
and multiplication.
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eageraborttc =̂ τ < τ ′ ���T false

lazyaborttc =̂ false ���T false

anarchytc =̂ false ���T true

magictc =̂ true ���T false

chaostc =̂ true ���T true

terminatetc =̂ true ���T τ ′ <∞
forevertc =̂ true ���T τ ′ =∞
mortaltc =̂ false ���T τ ′ <∞
notermtc =̂ false ���T τ ′ =∞ .

Our operational interpretations of these are as follows:

– skiptc terminates immediately with unchanged program variables;
– idletc terminates eventually with unchanged program variables;
– boneidletc either terminates eventually with unchanged program variables

or else runs forever;
– eageraborttc aborts immediately;
– lazyaborttc aborts eventually;
– anarchytc aborts eventually, or runs forever, or terminates eventually with

unconstrained program variables;
– magictc is the everywhere-miraculous timed conscription which cannot be

implemented;
– chaostc either runs forever or else terminates eventually with unconstrained

program variables;
– terminatetc terminates eventually with unconstrained program variables;
– forevertc runs forever;
– mortaltc either aborts eventually or terminates eventually with

unconstrained program variables;
– notermtc either aborts eventually or else runs forever.

Corollary 2 (Algebraic proerties of timed conscriptions). Every timed
conscription A satisfies the following algebraic properties:

skiptc ; A = A = A ; skiptc

eageraborttc ; A = eageraborttc

lazyaborttc ; A = lazyaborttc

forevertc ; A = forevertc .

Proof. From Lemma 8 and the definitions of skiptc , eageraborttc , lazyaborttc
and forevertc .

Timed conscriptions enable us to express a wider range of timed sequential
computations than timed designs. For example, the legitimate timed conscription

τ < τ ′ ���T τ ′ =∞
expresses precisely the computation we originally sought to express with (27).
That is to say, it specifies a computation which may either abort immediately
(τ ′ = τ being outside its assumption) or else run forever (commitment τ ′ =∞).
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7 Conclusion

We have introduced conscriptions as a new homogeneous binary relational model
of sequential programs which upholds all the expected algebraic properties of
such a model, and moreover does so without needing to restrict their assumptions
for the sake of the skip-right-unit property. In this way conscriptions are an
improvement on both designs and prescriptions. We have also shown how this
basic conscription model can be extended into one which distinguishes between
abortion and non-termination in a similar way to the extended-design model of
Hayes et al . Likewise, we have developed timed conscriptions as the conscription
counterpart of Hayes et al’s timed designs, and we have shown how these are
more expressive than the latter in permitting a wider range of behaviours to be
specified.

Definitions 7 (Extended Conscriptions) and 8 (Timed Conscriptions) are each
elaborate enough to prompt the question: how can we be certain that we have
defined them appropriately? In response, we would contend that the proper-
ties we have deduced from these definitions, as represented by the lemmas and
corollaries we have presented, are precisely what one should expect of these two
models, and this gives us our confidence in them. In short, they work!

Acknowledgements. I thank the anonymous referees for their valuable com-
ments on the original draft of this paper.
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A Proofs of Lemmas 5 and 6

Lemma 5 (Nondeterministic Choice of Extended Conscriptions).
Extended conscriptions are closed under nondeterministic choice. For arbitrary
extended conscriptions p ���X r and q ���X s over the same alphabet, we have that

(p ���X r) � (q ���X s) = p ∧ q ���X r ∨ s .

Proof. We note that q ���X s is represented by the matrix

¬ ok ′ ∧ term ′ ok ′ ∧ ¬ term ′ ok ′ ∧ term ′

¬ ok ∧ term v = v ′ F F

ok ∧ ¬ term F T F

ok ∧ term ¬ q s f s t

(30)

To derive the matrix representation of (p ���X r)� (q ���X s) we therefore disjoin
corresponding entries of matrices (24) and (30) to obtain the matrix

¬ ok ′ ∧ term ′ ok ′ ∧ ¬ term ′ ok ′ ∧ term ′

¬ ok ∧ term v = v ′ F F

ok ∧ ¬ term F T F

ok ∧ term ¬ p ∨ ¬ q r f ∨ s f r t ∨ s t

which can be re-expressed as

¬ ok ′ ∧ term ′ ok ′ ∧ ¬ term ′ ok ′ ∧ term ′

¬ ok ∧ term v = v ′ F F

ok ∧ ¬ term F T F

ok ∧ term ¬ (p ∧ q) (r ∨ s)f (r ∨ s)t

which is the matrix representation of the extended conscription

p ∧ q ���X r ∨ s .

Lemma 6 (Composition of Extended Conscriptions).
Extended conscriptions are closed under sequential composition. For arbitrary
extended conscriptions p ���X r and q ���X s over the same alphabet, we have
that

(p ���X r) ; (q ���X s) = p ∧ ¬ (r t ; ¬ q) ���X r f ∨ (r t ; s) .



Conscriptions: A New Relational Model for Sequential Computations 161

Proof. Multiplying matrix (24) by matrix (30) in that order yields the product
matrix

¬ ok ′ ∧ term ′ ok ′ ∧ ¬ term ′ ok ′ ∧ term ′

¬ ok ∧ term (v = v ′ ; v = v ′) (v = v ′ ; F) (v = v ′ ; F)
∨ (F ; F) ∨ (F ; T) ∨ (F ; F)
∨ (F ; ¬ q) ∨ (F ; s f) ∨ (F ; s t)

ok ∧ ¬ term (F ; v = v ′) (F ; F) (F ; F)
∨ (T ; F) ∨ (T ; T) ∨ (T ; F)
∨ (F ; ¬ q) ∨ (F ; s f) ∨ (F ; s t)

ok ∧ term (¬ p ; v = v ′) (¬ p ; F) (¬ p ; F)
∨ (r f ; F) ∨ (r f ; T) ∨ (r f ; F)
∨ (r t ; ¬ q) ∨ (r t ; s f) ∨ (r t ; s t)

which simplifies by properties (3), (5), (6) and healthiness condition (23) to

¬ ok ′ ∧ term ′ ok ′ ∧ ¬ term ′ ok ′ ∧ term ′

¬ ok ∧ term v = v ′ F F

ok ∧ ¬ term F T F

ok ∧ term ¬ p ∨ (r t ; ¬ q) r f ∨ (r t ; s f) r t ; s t

which, by (r t ; s f) = (r t ; s)f and (r t ; s t) = (r t ; s)t , is a matrix representation
of the extended conscription

p ∧ ¬ (r t ; ¬ q) ���X r f ∨ (r t ; s) ,

which concludes the proof of Lemma 6 .

B Proofs of Lemmas 7 and 8

Lemma 7 (Nondeterministic Choice of Timed Conscriptions).
For arbitrary timed conscriptions p ���T r and q ���T s over the same alphabet,
we have that

(p ���T r) � (q ���T s) = p ∧ q ���T r ∨ s .

Proof. We note that q ���T s is represented by the matrix

¬ ok ′ ∧ τ ′ <∞ ok ′ ∧ τ ′ =∞ ok ′ ∧ τ ′ <∞
¬ ok ∧ τ <∞ v = v ′ ∧ F F

τ = τ ′ <∞
ok ∧ τ =∞ F τ = τ ′ =∞ F

ok ∧ τ <∞ ¬ q ∧ s ∧ s ∧
τ ≤ τ ′ <∞ τ < τ ′ =∞ τ ≤ τ ′ <∞

(31)
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To derive the matrix representation of (p ���T r)� (q ���T s) we therefore disjoin
corresponding entries of matrices (29) and (31) to obtain the matrix

¬ ok ′ ∧ τ ′ <∞ ok ′ ∧ τ ′ =∞ ok ′ ∧ τ ′ <∞
¬ ok ∧ τ <∞ v = v ′ ∧ F F

τ = τ ′ <∞
ok ∧ τ =∞ F τ = τ ′ =∞ F

ok ∧ τ <∞ (¬ p ∨ ¬ q) ∧ (r ∨ s) ∧ (r ∨ s) ∧
τ ≤ τ ′ <∞ τ < τ ′ =∞ τ ≤ τ ′ <∞

which is the matrix representation of the timed conscription

p ∧ q ���T r ∨ s .

Lemma 8 (Composition of Timed Conscriptions).
For arbitrary timed conscriptions p ���T r and q ���T s over the same alpha-
bet, we have that

(p ���T r) ; (q ���T s) = p ∧ ¬ (r ;τ ¬ q) ���T (r ∧ τ ′ =∞) ∨ (r ;τ s) .

Proof. Multiplying matrix (29) by matrix (31) in that order yields a product
matrix whose entries are as follows:

– (row 1, col 1) is
(v = v ′ ∧ τ = τ ′ <∞ ; v = v ′ ∧ τ = τ ′ <∞) ∨ (F ; F)
∨ (F ; ¬ q ∧ τ ≤ τ ′ <∞)

which simplifies by properties (6), (7) and Definition 5 to

v = v ′ ∧ τ = τ ′ <∞ .

– (row 1, col 2) is
(v = v ′ ∧ τ = τ ′ <∞ ; F) ∨ (F ; τ = τ ′ =∞) ∨ (F ; q ∧ τ < τ ′ =∞)

which simplifies by properties (6) and (7) to F .

– (row 1, col 3) is
(v = v ′ ∧ τ = τ ′ <∞ ; F) ∨ (F ; F) ∨ (F ; s ∧ τ ≤ τ ′ <∞)

which simplifies by properties (6) and (7) to F .

– (row 2, col 1) is
(F ; v = v ′ ∧ τ = τ ′ <∞) ∨ (τ = τ ′ =∞ ; F) ∨ (F ; ¬ q ∧ τ ≤ τ ′ <∞)

which simplifies by properties (6) and (7) to F .

– (row 2, col 2) is
(F ; F) ∨ (τ = τ ′ =∞ ; τ = τ ′ =∞) ∨ (F ; s ∧ τ < τ ′ =∞)

which simplifies by properties (5), (6) and (7) to τ = τ ′ =∞ .

– (row 2, col 3) is
(F ; F) ∨ (τ = τ ′ =∞ ; F) ∨ (F ; s ∧ τ ≤ τ ′ <∞)

which simplifies by properties (6) and (7) to F .
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– (row 3, col 1) is
(¬ p ∧ τ ≤ τ ′ <∞ ; v = v ′ ∧ τ = τ ′ <∞) ∨ (r ∧ τ < τ ′ =∞ ; F)
∨ (r ∧ τ ≤ τ ′ <∞ ; ¬ q ∧ τ ≤ τ ′ <∞)

which reduces by properties (5), (6), (7) and Definition 9 to

(¬ p ∨ (r ;τ ¬ q)) ∧ τ ≤ τ ′ <∞ .

– (row 3, col 2) is
(¬ p ∧ τ ≤ τ ′ <∞ ; F) ∨ (r ∧ τ < τ ′ =∞ ; τ = τ ′ =∞)
∨ (r ∧ τ ≤ τ ′ <∞ ; s ∧ τ < τ ′ =∞)

which simplifies by properties (5), (6), (7) and Definition 9 to

(r ∨ (r ;τ s)) ∧ τ ≤ τ ′ =∞ .

– (row 3, col 3) is
(¬ p ∧ τ ≤ τ ′ <∞ ; F) ∨ (r ∧ τ < τ ′ =∞ ; F)
∨ (r ∧ τ ≤ τ ′ <∞ ; s ∧ τ ≤ τ ′ <∞)

which simplifies by properties (6), (7) and Definition 9 to

(r ;τ s) ∧ τ ≤ τ ′ <∞ .

The product matrix we obtain is thus

¬ ok ′ ∧ τ ′ <∞ ok ′ ∧ τ ′ =∞ ok ′ ∧ τ ′ <∞
¬ ok ∧ τ <∞ v = v ′ ∧ F F

τ = τ ′ <∞
ok ∧ τ =∞ F τ = τ ′ =∞ F

ok ∧ τ <∞ (¬ p ∨ (r ;τ ¬ q)) (r ∨ (r ;τ s)) (r ;τ s) ∧
∧ τ ≤ τ ′ <∞ ∧ τ < τ ′ =∞ τ ≤ τ ′ <∞

which is the matrix representation of the timed conscription

p ∧ ¬ (r ;τ ¬ q) ���T (r ∧ τ ′ =∞) ∨ (r ;τ s) .
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Abstract. Verilog is a hardware description language (HDL) that has
been standardized and widely used in industry. It contains interesting fea-
tures such as event-driven computation and shared-variable concurrency.
This paper considers how the algebraic semantics links with the opera-
tional semantics for Verilog. Our approach is to apply the equational and
rewriting logic system Maude in exploring the linking theories. Firstly
we present the algebraic semantics for Verilog. We introduce the concept
of head normal form and every program is expressed as a guarded choice
with location status. Secondly we present the strategy of deriving op-
erational semantics from algebraic semantics. Our mechanical approach
using Maude can visually show the head normal form of each program,
as well as the execution steps of a program based on the derivation strat-
egy. Finally we also mechanize the derived operational semantics. The
results mechanized from the second and third exploration indicate that
the transition system of the derived operational semantics is the same as
the one based on the derivation strategy.

1 Introduction

Modern hardware design typically uses a hardware description language (HDL)
to express designs at various levels of abstraction. An HDL is a high level pro-
gramming language with the usual programming constructs such as assignments,
conditionals, iterations, together with the appropriate extensions for real-time,
concurrency and data structures suitable for modelling hardware. Verilog is an
HDL that has been standardized and widely used in industry [9, 10].

Verilog programs can exhibit a rich variety of behaviours, including event-
driven computation, shared-variable concurrency and simulator-based interpre-
tation. Verilog also has real-time features [17], through the time delay statement
and the event-driven computation feature.

The semantics for Verilog is very important because it is widely used in in-
dustry. The denotational semantics [22] has been investigated using Duration
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Calculus [19] in order to describe its real-time features. Various operational se-
mantics have also been studied [5, 6, 11]. Besides the operational and denota-
tional semantics, a set of algebraic laws can also represent the meaning of a
language. These three semantics should provide the same understanding of the
language from different viewpoints and they should be consistent. Therefore, the
linking of these three semantics is a challenging task. Below is the diagram for
linking Verilog semantics.

Denotational Semantics

Algebraic Semantics

Operational Semantics

1

2
5

6

3

4

(1) The aim of this step is to generate a set of algebraic laws. These laws can be
proved via the achievement of the denotational semantics for Verilog [22].

(2) The aim of this step is also to generate a set of algebraic laws. Compared
with step (1), the approach here is based on the operational semantics via
bisimulation [15, 16].

(3) Denotational and operational semantics give the meaning for the same lan-
guage. How can we prove the equivalence and consistency of these two seman-
tics? This step is to derive the denotational semantics from the operational
semantics for Verilog.

(4) This aim of this step is to derive the operational semantics from the deno-
tational semantics for Verilog. This gives another way for considering the
equivalence and consistency of denotational and operational semantics.

(5) Algebraic semantics also represents the meaning of programs. The aim of
this step is to derive the operational semantics from the algebraic semantics.

(6) This step is to derive the denotational semantics back from the algebraic
semantics.

Regarding the above linking work of Verilog semantics. Some of them have al-
ready been achieved (shown as step (1) to (4), and step (6) in the above diagram).
The algebraic laws for Verilog has been verified via the denotational semantics
in [22]. These algebraic laws can also be validated based on the operational
semantics via bisimulation [6, 11]. Further studies have investigated how the op-
erational semantics relates with denotational semantics for Verilog [20, 21, 23].
We have already investigated the derivation of denotational semantics from op-
erational semantics and algebraic semantics for Verilog respectively [21, 23]. We
also derived the operational semantics for Verilog from its denotational semantics
[20].

This paper studies how the algebraic semantics for Verilog links with its op-
erational semantics (shown as step (5) in the above diagram). Our approach is
to derive Verilog operational semantics from its algebraic semantics, which can
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show that the operational semantics is sound and complete with respect to the
algebraic laws. We apply the mechanical method to support the semantic link-
ing by using the equational and rewriting logic system Maude [1, 2]. Firstly we
present the algebraic semantics for Verilog. We introduce the concept of head
normal form and every program is expressed as a guarded choice with location
status. In order to investigate the parallel expansion laws, a sequence is intro-
duced, which can indicate an instantaneous action is due to which exact parallel
component. Secondly we provide a strategy for deriving operational semantics
from algebraic semantics for Verilog. From this strategy, we can achieve a tran-
sition system (i.e., an operational semantics). Our mechanical approach using
Maude can visually show the head normal form of each program, as well as the
execution steps of a program based on the derivation strategy. Finally we also
mechanize the derived operational semantics. The results mechanized from the
second and third exploration indicate that the transition system of the derived
operational semantics is the same as the one based on the derivation strategy.

The remainder of this paper is organized as follows. Section 2 introduces Hard-
ware Description Language Verilog and, as well as Equation and Rewriting Logic
system Maude. Section 3 presents a set of algebraic laws, where every program
can be represented as a guarded choice with location status. In section 4, we in-
troduce the concept of head normal form and we encode the head normal form of
each program in Maude. Section 5 investigates the derivation of the operational
semantics from the algebraic semantics. We mechanize the derivation strategy in
Maude system. Every program can be executed based on the derivation strategy.
For the derived operational semantics, we also explore its mechanical approach.
The mechanical approaches from the derivation strategy and the derived oper-
ational semantics support the claim that the transition system of the derived
operational semantics is the same as the one based on the derivation strategy.
Section 6 concludes the paper and provides some future work.

2 Hardware Description Language Verilog and Equational
and Rewriting Logic System Maude

2.1 Hardware Description Language Verilog

The Verilog Hardware Description Language (Verilog HDL) became as an IEEE
standard in 1995 as IEEE std 1364-1995 [9, 10]. It has many interesting features,
such as event-driven computation, shared-variable concurrency and simulator-
based interpretation. The syntax of Verilog is expressed in a way that is closer to
the syntax of a traditional programming language. Verilog contains the following
categories of syntactic elements and is similar to the one introduced by Gordon
[3, 4].

P ::= PC | P ; P | if b then P else P | while b do P

| c P | P ‖ P
where:



Mechanical Approach to Linking Operational Semantics 167

• PC ranges over primitive commands.

PC ::= x := e | Skip | @(x := e), where

x := e is the assignment, which is executed exactly once. Skip behaves the
same as x := x. x := e (also Skip ) is not considered as an atomic action,
which is a fragment of an atomic action (i.e., a statement of an atomic
action).

On the other hand, @(x := e) is considered as an atomic action, which is
called as atomic assignment.

• P ; Q is the sequential composition.

• P ‖ Q is the parallel composition, where its mechanism is an interleaving
shared-variable concurrency model. The parallel composition can not only
be at the outside level, but also can appear at any place.

• c P denotes a timing control statement, and c is a time control used for
scheduling.

c ::= #n | @(g)

where, g ::= η | g or g | g and g | g and ¬g
η ::= v |↑ v |↓ v, n ≥ 1

(1) Time delay #n suspends the execution for exactly n time units, where
n is treated as an integer in this paper.

(2) An event guard @(↑ v) is fired by the increase of the value of v, whereas
@(↓ v) is triggered by a decrease in v. Any change of v awakes the guard
@(v).

(3) @(g1 or g2) becomes enabled if @(g1) or @(g2) is fired.

(4) @(g1 and g2) is triggered if both @(g1) and @(g2) are awakened simul-
taneously.

(5) @(g1 and ¬g2) becomes fired if @(g2) remains idle and @(g1) is awakened.

2.2 Equational and Rewriting Logic System Maude

Rewriting logic has been introduced as a general semantic and logical framework
[12–14, 18]. Many applications are implemented in the Maude system [1] and
have revealed inspiring results.

In Maude, the fundamental unit can be a functional module or a system mod-
ule. They can be declared by the following syntax: fmod NAME is ... endfm (or

mod NAME is ... endm) . Here the dots denote the declarations of importing op-
tions, sorts, subsorts, operations, equations and rules (only in system modules).
First, we take the Peano notation of natural numbers as an example to show the
structure of functional modules.

fmod PEANO-NATURAL is including BOOL .
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sorts NzNat Nat .
subsort NzNat < Nat .
op 0 : -> Nat [ctor] .
op s(_) : Nat -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat .
vars N M : Nat .
eq 0 + N = N .
eq s(M) + N = s(M + N) .
op _>_ : Nat Nat -> Bool .
eq s(N) > 0 = true .
ceq s(N) > s(M) = true if N > M .
eq N > M = false [owise] .

endfm

Defined modules can be reused, as the precluded module BOOL is imported into

the PEANO-NATURAL. Two sorts NzNat and Nat are declared to represent non-zero
natural numbers and natural numbers, and NzNat is declared as a subsort of
Nat. ops are keywords to define operators on defined sorts. Here, 0 is defined with
no operands thus it can be treated as a constant of sort Nat. s(_) is an operator
to define the successor of a natural number, so the result is of sort NzNat. We
associate the attribute ctor (abbreviated for constructor) with these two oper-
ators, which means that they are the fundamental operations for defining the
canonical forms of the resulting sort. However the operator + is not defined as a
constructor, because it is not necessary for defining natural numbers. Attributes
such as assoc and comm can also be attached to ops, representing that the op-
erator satisfies associative and commutative laws. Variables are declared using
the keyword var(s) with the sort following behind the name. Equations are
defined as simplification rules towards a canonical form. They are declared using
the keywords eq (i.e., equation) and ceq (i.e., conditional equation). We can use
the command red(uce) to compute the canonical form simplified by equations.
When typing in Maude red s(0) + s(s(0)), the result will be s(s(s(0))).

In system modules, rewriting rules are declared by keyword rl (crl for condi-
tional one). Rewriting rules reflect nondeterministic and concurrent transitions
of systems. Suppose we define a list of natural numbers as following:
mod MY-LIST is including PEANO-NATURAL .

sorts Elt List .
subsort Nat < Elt < List .
op null : -> List [ctor] .
op _ _ : List List -> List [ctor assoc id: null] .
vars A B : Elt .
crl [swap] : A B => B A if A > B .

endm

The rule swap will make the smaller numbers swap to the left. Any part of the

list satisfying this rule will do the transition concurrently. Using the command
rew(rite) we can see the result of the transitions. rew s(s(0)) s(s(s(0)))

s(0) 0 shows the result as 0 s(0) s(s(0)) s(s(s(0))).
As rules in system modules can be nondeterministic and concurrent, rewrite

command only shows one of the possible multiple results. Maude provides search
and show path commands to display all possible results. We can see how to use
them in later sections.
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3 Generating Algebraic Semantics

3.1 Pre-emption Point and Atomic Action

In Verilog, x := e, Skip and @(x := e) are considered as instantaneous actions.
We first introduce the concept of pre-emption point. Only at a pre-emption point
does the scheduler make a decision whether the environment gets a chance to
make its contribution or the program itself continues to execute.

A pre-emption point can be one of the cases: (1) the two points before and
after a timing control statement; (2) the two points before and after a parallel
process; (3) for a process that is a component of a parallel process, the two
points before and after the process are also pre-emption points. For a sequence
of instantaneous actions, if its beginning and ending points are two pre-emption
points and there are no pre-emption points appearing inside the sequence, then
this sequence is called an atomic action. x := e is not an atomic action. It is a
fragment of an atomic action, whereas @(x := e) is an atomic action.

At each pre-emption point for a process, both the process itself and its environ-
ment can get the control to do its atomic action. The scheduling between them
is non-deterministic. If an instantaneous action is at the beginning of an atomic
action, this instantaneous action can be scheduled to execute immediately. Alter-
natively, the environment can also perform its instantaneous behaviours. After
the first instantaneous action in an atomic action terminates, the following ac-
tions in the atomic action must be executed sequentially and uninterruptedly.
This indicates that the execution of an atomic action is uninterrupted. Regard-
ing the triggering case, a guard can be triggered by its atomic action that has
just completed. If there are no cases like this, the guard waits for its environment
to trigger it. At some particular points of execution, if the process itself and the
environment cannot do any instantaneous action, then time may advance.

Example 3.1.
(1) Consider the program P1 =df @(↑ x) ; x := 0 ; x := x+1 ; y := x+1 ; #1.
There are four pre-emption points; i.e., the points before and after the event
guard @(↑ x) and the two points before and after time delay #1.

(2) Consider the program P ‖ Q when P =df (x := 0 ; y := x + 1 ; z := x + 1)
and Q =df x := 2. For process P , there are two pre-emption points; i.e., the
point before the assignment x := 0 and the point after z := x + 1. For process
Q, the pre-emption points are the points just before and after x := 2.

(3) Consider the program P =df @(↑ x) ; x := 1 ; y := x+1 ; @(x := 0) ; z :=
x+ 1 ; #1. The assignment guard @(x := 0) not only assigns a value to x, but
also indicates that the previous instantaneous sequence forms an atomic action
and itself is an atomic action. This means “x := 1 ; y := x + 1”, “@(x := 0)”
and “z := x+ 1” are three atomic actions inside program P . �

3.2 Locality of Instantaneous Action and Guarded Choice with
Location Status

In order to model the scheduling policy for parallel processes, we use a thread se-
quence seq to index the currently active sub-process in a nested parallel
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composition. A thread sequence can be 〈〉 or a non-empty thread sequence,
where 〈〉 indicates that there is only one thread for the action that has just been
executed.

Example 3.2. Let P =df x := 0 ; #1 ; x := 1 ; @(↑ x). The instantaneous
actions x := 0 and x := 1 are both due to process P itself. Therefore, the
sequence for indexing their contribution in P is 〈〉. �
Example 3.3. Let P = I ‖ J , I = E ‖ F , J = G ‖ H ,

E = A ‖ B, H = C ‖ D.

where, the outside structure of processes A, B, F , G, C and D is not the parallel
composition. Below is the graph that illustrates the structure of process P .

P

J

H

2

1 2

1 2
1 2

A B C D

F G

I
1

21

E

We assign a label for each edge. If it is the left edge of a process, the label
is 1, otherwise the label is 2. Now we consider the sequence that can index the
instantaneous action of parallel process P . If P ’s instantaneous action is due to
process A, then the sequence that indexes the exact component of P ’s contri-
bution is the sequence 〈1〉〈1〉〈1〉1. If P ’s instantaneous action is due to process
B, then the sequence that indexes the exact component of P ’s contribution is
the sequence 〈1〉〈1〉〈2〉. Similarly, if P ’s instantaneous action is due to process
F , then the sequence that indexes the exact component of P ’s contribution is
the sequence 〈2〉〈2〉〈2〉. �

Now we introduce the concept of location status for a program, which is one
of the following three forms:

(1) index, which can be 〈〉 or a non-empty thread sequence. It indicates an
instantaneous action is due to which exact component of a parallel process.

(2) 0, which indicates the termination of an atomic action.

(3) null, which indicates a process is at a state where the process itself and its
environment can both have a chance to perform its instantaneous action.

For example, in the above example (i.e., Example 3.3), let A = x := 1 ; x :=
x + 1 ; x := x + 2. If x := 1 is scheduled and completes its execution, the
location status for the remaining process of P is 〈1〉〈1〉〈1〉. This means that it
will continue to execute the two subsequent statements x := x+1 and x := x+2.

The introduction of guarded choice is to support the parallel expansion laws.
Guarded choice can be formalizedwith location status (i.e., tag), as defined below.

1 〈1〉〈1〉〈1〉 stands for 〈1, 1, 1〉.
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Definition 3.3.
(1) h (P, tag) is a guarded component if it can be one of the forms below. Here,
b is a Boolean condition and index can be 〈〉 or a non-empty thread sequence.

b&(x := e) (P, index), b&(x := e) (P, 0), @(g) (P, null), #1 (P, null)

(2) []{h1 (P1, tag1), . . . , hn (Pn, tagn)} is a guarded choice if every element
hi (Pi, tagi) is a guarded component. �
For guarded component “h (P, tag)”, if h is executed (or fired), the subsequent
process is P and it is at the location status tag. Programs can be represented
in the form of a guarded choice. For this aim, the guarded choice can only have
five types:

(1) []i∈I{bi&(xi := ei) (Pi, tagi)}
(2) []i∈I{@(ηi) (Pi, null)}
(3) []{#1 (P, null)}
(4) []i∈I{bi&(xi := ei) (Pi, tagi)} [] []j∈J{@(ηj) (Qj , null)}
(5) []i∈I{@(ηi) (Pi, null)} [] {#1 (Q, null)}
The first type of guarded choice is composed of a set of assignment components,
where the second type of guarded choice is only composed of a set of event guard
components. The third type is composed of one time-delay component. The
fourth type of guarded choice is composed of a set of assignment components and
a set of event guard components. The fifth type of guarded choice is composed
of a set of event guard components and a time delay component.

When mechanizing in Maude, we implement b&(x := e) (P, index) and
b&(x := e) (P, 0) as “GComponent1”, Similarly, @(g) (P, null) and #1 (P, null)
are implemented as “GComponent2” and “GComponent3” respectively. All the
guarded components are expressed as type “GComponent”. Below is the detailed
definition of guarded components in Maude.

fmod GUARDED-COMPONENT is pr VERILOG-PROGRAM .
pr CONFIG .

sorts GComponent1 GComponent2 GComponent3 GComponent .
subsort GComponent1 GComponent2 GComponent3 < GComponent .

sorts AssignmentGuard GuardPostfix GuardPostfix1 GuardPostfix2
GuardPostfix3 .

subsort GuardPostfix1 GuardPostfix2 GuardPostfix3 < GuardPostfix .

op &( ) : BoolExp Assignment -> AssignmentGuard [ctor] .
op ‘( , ‘) : Program Index -> GuardPostfix1 [ctor] .
op ‘( , ‘) : Program EndPoint -> GuardPostfix2 [ctor] .
op ‘( , ‘) : Program Null -> GuardPostfix3 [ctor] .

op : AssignmentGuard GuardPostfix1 -> GComponent1 [ctor] .
op : AssignmentGuard GuardPostfix2 -> GComponent1 [ctor] .
op : EventGuard GuardPostfix3 -> GComponent2 [ctor] .
op : TimeControl GuardPostfix3 -> GComponent3 [ctor] .

endfm

GComponents are the key components of guarded choices. Based on the three
GComponents, we can define the guarded choices, which we call HealthyGC.
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subsort HGCType1 HGCType2 HGCType3 HGCType4 HGCType5 < HealthyGC .

op { } : GComponent1 -> HGCType1 [ctor] .
op { } : GComponent2 -> HGCType2 [ctor] .
op { } : GComponent3 -> HGCType3 [ctor] .
op [] : HGCType1 HGCType1 -> HGCType1 [ctor] .
op [] : HGCType2 HGCType2 -> HGCType2 [ctor] .
op [] : HGCType1 HGCType2 -> HGCType4 [ctor] .
op [] : HGCType2 HGCType3 -> HGCType5 [ctor] .

In the above definitions, HealthyGC is defined as five subsorts, which are de-
clared as sorts HGCType1, · · · , HGCType5, representing the five types of guarded
choices respectively. HGCType1 and HGCType2 are composed of GComponent1 and
GComponent2 respectively, separated by []. HGCType3 is composed of a sin-
gle GComponent3. HGCType4 is concatenated by HGCType1 and HGCType2, and
HGCType5 is concatenated by HGCType2 and HGCType3.

3.3 Generating Algebraic Laws

Now we study the expansion laws for parallel composition, which is useful in
deriving operational semantics from algebraic semantics. Based on the mecha-
nism of parallel composition for Verilog, we summarize that there are five typical
parallel expansion forms, described as comp1, comp2, · · · , and comp5, shown be-
low. The whole set of parallel expansion laws is reflected in the definition of head
normal form for parallel composition in the next section. We use the notation
P =tag Q to stand for (P, tag) = (Q, tag), indicating that process P and Q are
equivalent at location status tag. The notation (P, tag) stands for the behaviour
of program P at location status tag.

First we consider the case that one parallel component is in the form of as-
signment guarded choice. In this case, for a parallel process, no matter which
form another parallel component is in, any assignment can be scheduled. The
location status of the remaining process after the scheduled assignment should
be re-calculated shown in the “par1” function2. This case can be expressed in
“comp1”, which is defined recursively.

For example, assume P =null []i∈I{bi&(xi := ei) (Pi, tagi)} and
Q be any process.

Then, []i∈I{bi&(xi := ei) par1(Pi, Q, 1, tagi))} is one part of the parallel expan-
sion of P ‖ Q due to the initial assignments of P .

Now we consider the case that one parallel component is in the form of event-
guarded choice. For a parallel process, we assume that another parallel compo-
nent does not have event-guard initially. For this case, if an event guard is fired,
the remaining process of the parallel process is the parallel composition of the

2 par1(P,Q, i, tag) =df

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ε, 0) if P = ε and Q = ε
(ε ‖ Q, 0) if P = ε and Q �= ε and i = 1
(P ‖ ε, 0) if P �= ε and Q = ε and i = 2
(P ‖ Q, 0) if P �= ε and tag = 0 and i = 1
(P ‖ Q, 0) if Q �= ε and tag = 0 and i = 2
(P ‖ Q, 〈1〉̂tag) if P �= ε and tag �= 0 and i = 1
(P ‖ Q, 〈2〉̂tag) if Q �= ε and tag �= 0 and i = 2
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remaining process of the first component and the second parallel component.
This case can be expressed using “comp2”. Meanwhile, comp2 can also be ap-
plied to the case that the first parallel component is in the form of time delay
component.

For example, assume Q =null []j∈J{@(ηj) (Qj, null)} and
P does not have event-guard initially.

Then, []j∈J{@(ηj) par(P,Qj)}3 is one part of the parallel expansion of P ‖ Q
due to the initial event guard firing of Q.

Now we consider the case that both of the two parallel components are in the
form of event-guarded choice. There are several types of the triggered cases. If
one guard from one parallel part is triggered and all the guards from another
parallel part cannot be triggered, the behaviour after the triggered case is the
parallel composition of the subsequent process of one parallel part after the trig-
gered guard with another parallel part. This can be defined in “comp3” and
“comp4” recursively. On the other hand, if two guards from different parallel
parts are triggered simultaneously, the behaviour after this type of triggered
case is the parallel composition of the subsequent processes, after two triggered
guards from each parallel part. This can be defined in “comp5” recursively.

For example, Assume P =null []i∈I{@(ηi) (Pi, null)} and
Q =null []j∈J{@(ξj) (Qj , null)}

Then

[]i∈I{@(ηi and ¬ξ) par(Pi, Q)} (1)

and []j∈J{@(ξj and ¬η) par(P,Qj)} (2)

and []i∈I∧j∈J{@(ηi and ξj) par(Pi, Qj)} (3)

are the three firing cases for P ‖ Q. Here η = ori∈I{ηi} and ξ = orj∈J{ξi}.
comp3, comp4 and comp5 stand for the above three firing cases (1), (2) and (3)
respectively.

Below is the detailed description of comp1, comp2, · · · , and comp5 in Maude.

op comp1( , , ) : HGCType1 Program Index -> HGCType1 .
eq comp1({b &(x := e)(P1,tag1)},Q,<1>) = {b &(x := e)par1(P1,Q,<1>,tag1)} .
eq comp1({b &(x := e)(Q1,tag1)},P,<2>) = {b &(x := e)par1(P,Q1,<2>,tag1)} .
eq comp1({h1 Post1} [] hgc’,P,i) = comp1({h1 Post1},P,i) []

comp1(hgc’,P,i) .

op comp2( , , ) : HealthyGC Program Index -> HealthyGC .
eq comp2({@(g)(P1,tag1)},Q,<1>) = {@(g)(par(P1,Q),tag1)} .
eq comp2({@(g)(Q1,tag1)},P,<2>) = {@(g)(par(P,Q1),tag1)} .
eq comp2({# 1(P1,tag1)},Q,<1>) = {# 1(par(P1,Q),tag1)} .
eq comp2({# 1(Q1,tag1)},P,<2>) = {# 1(par(P,Q1),tag1)} .
eq comp2({h1 Post1} [] hgc’,P,i) = comp2({h1 Post1},P,i) []

comp2(hgc’,P,i) .

3 par(P,Q) =df

{
(ε, null) ifP = ε and Q = ε
(P ‖ Q, null) otherwise
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op comp3( , , ) : HGCType2 HGCType2 Program -> HGCType2 .
eq comp3({@(g1)(P1,null)}, hgct2, Q) = {@(g1 and ∼ guard(hgct2))

(par(P1,Q),null)} .
eq comp3({@(g1)(P1,null)} [] hgct2’, hgct2, Q) =

comp3({@(g1)(P1,null)},hgct2,Q) [] comp3(hgct2’,hgct2,Q) .

op comp4( , , ) : HGCType2 HGCType2 Program -> HGCType2 .
eq comp4(hgct2, {@(g1)(Q1,null)}, P) = {@(g1 and ∼ guard(hgct2))

(par(P,Q1),null)} .
eq comp4(hgct2, {@(g1)(Q1,null)} [] hgct2’, P) =

comp4(hgct2,{@(g1)(Q1,null)},P) [] comp4(hgct2,hgct2’,P) .

op comp5( , ) : HGCType2 HGCType2 -> HGCType2 .
eq comp5({@(g1)(P1,null)},{@(g2)(Q1,null)}) = {@(g1 and g2)

(par(P1,Q1),null)} .
eq comp5({@(g1)(P1,null)},{@(g2)(Q1,null)} [] hgct2) =
comp5({@(g1)(P1,null)},{@(g2)(Q1,null)})[]comp5({@(g1)(P1,null)},hgct2) .
eq comp5({@(g1)(P1,null)} [] hgct2,hgct2’) =

comp5({@(g1)(P1,null)},hgct2’)[]comp5(hgct2,hgct2’) .

All these five definitions are used to compute the components of parallel ex-
pansions of two processes. In order to compute the remaining process after the
corresponding guard of the parallel expansion, the process not being scheduled
will be added as a parameter to the computation.

4 Generating Head Normal Form

In order to support the derivation of operational semantics from algebraic se-
mantics, we introduce the concept of head normal form. For program P , if its
location status is tag, we use the notation HF (P, tag) to stand for the head
normal form of process P at the location status tag.

The head normal form of HF (P, tag) is to make one step forward expansion
for program P at the location status tag. For parallel program P , the parallel
expansion laws can help to calculate the head normal form HF (P, tag). As the
operational semantics is also to make one step forward transition, the head
normal form can support to derive the operational semantics.

4.1 Sequential Constructs

For sequential constructs, its initial location status can be null, 〈〉 and 0. Below
are the definitions of the head normal form of sequential constructs at the loca-
tion status tag.

eq HF(x := e,tag) = ({t &(x := e)(nil,<>)},tag) .
eq HF(Skip,tag) = ({t &(Skip)(nil,<>)},tag) .
eq HF(@(x := e),tag) = ({t &(x := e)(nil,0)},tag) .
eq HF(@(g),tag) = ({@(g)(nil,null)},tag) .
eq HF(# 1,tag) = ({# 1(nil,null)},tag) .
eq HF(# n,tag) = ({# 1(# (n - 1),null)},tag) .
ceq HF(P ; Q,tag) = (seq(T,Q),tag) if (T,tag) := HF(P,tag) .
ceq HF(P ; Q,tag) = (seq(T,Q),tag) if (T,tag) := HF(P,tag) .
ceq HF(if b then P else Q,tag) = ({b &(Skip)(P,<>)} [] {∼ b &(Skip)(Q,<>},tag) .
ceq HF(while b do P,tag) = ({b &(Skip)(P ; while b do P,<>)} []

{∼ b &(Skip)(nil,<>)},tag) .



Mechanical Approach to Linking Operational Semantics 175

The first line defines the head normal form of x := e. Here “t” stands for
true and “nil” stands for the empty process ε. After its execution, the location
status is 〈〉. On the other hand, the third line defines the head normal form
of assignment guard @(x := e). After its execution, the location status is 0,
indicating the completion of an atomic action.

4.2 Parallel Composition

For parallel process P ‖ Q, its location status can be null, 0 and seq. Firstly we
consider the head normal form of P ‖ Q at the location status null.

There are five types of guarded choice. We first consider the case that two
parallel components of a parallel process are of the first three types. Their head
normal forms are defined based on comp1, comp2, · · · , comp5.

ceq HF(P || Q,null) = (comp1(hgct11,Q,<1>) [] comp1(hgct12,P,<2>) , null)
if (hgct11,null) := HF(P,null) /\ (hgct12,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp1(hgct1,Q,<1>) [] comp2(hgct2,P,<2>) , null)
if (hgct1,null) := HF(P,null) /\ (hgct2,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp1(hgct1,Q,<1>) , null)
if (hgct1,null) := HF(P,null) /\ (hgct3,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp3(hgct21,hgct22,Q) [] comp4(hgct21,hgct22,P) []
comp5(hgct21,hgct22), null)

if (hgct21,null) := HF(P,null) /\ (hgct22,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp2(hgct2,Q,<1>) [] comp2(hgct3,P,<2>), null)
if (hgct2,null) := HF(P,null) /\ (hgct3,null) := HF(Q,null) .

ceq HF(P || Q,null) = ({# 1(par(R1,R2),null)}, null)
if ({# 1(R1,null)},null) := HF(P,null) /\ ({# 1(R2,null)},null) :=

HF(Q,null) .

In the above definitions, we use the first case to explain our definition. The
head normal forms of P andQ at the location status null are expressed as hgct11
and hgct12 respectively, and they are both of the first type of guarded choice.
Hence, “comp1(hgct11,Q,<1>)[]comp1(hgct12,P,<2>)” is the head normal
form of P ‖ Q at the location status null, indicating that the assignments in P
and Q can both be scheduled first and the location status after the execution of
the corresponding assignment is calculated.

If a process is in the form of the fourth type of guarded choice (or the fifth
type of guarded choice), it can be composed in parallel with any process (i.e.,
in the form of any type of guarded choice). The head normal form of the corre-
sponding parallel process at location status null can be defined similarly. Below
is the case that both of the parallel components are of the fourth type of guarded
choice.

ceq HF(P || Q,null) = (comp1(hgct11,Q,<1>) [] comp1(hgct12,P,<2>) []
comp3(hgct21,hgct22,Q) [] comp4(hgct21,hgct22,P) []
comp5(hgct21,hgct22),null)

if (hgct11[]hgct21,null) := HF(P,null) /\ (hgct12[]hgct22,null) :=
HF(Q,null) .

The above analysis considered the generating of head normal form for a par-
allel process at the location status null. Now we consider other cases for the
location status of a parallel process. The first four ceqs below explore the case
that one parallel part is at the state of the execution of an instantaneous action.
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ceq HF(P || Q,<1> ^ index) = (comp1({b &(x := e)(P1,index)},Q,<1>), <1> ^ index)
if ({b &(x := e)(P1,index)},index) := HF(P,index) .

ceq HF(Q || P,<2> ^ index) = (comp1({b &(x := e)(P1,index)},Q,<2>), <2> ^ index)
if ({b &(x := e)(P1,index)},index) := HF(P,index) .

ceq HF(P || Q,<1> ^ index) = (comp1({b &(x := e)(P1,0)},Q,<1>), <1> ^ index)
if ({b &(x := e)(P1,0)},index) := HF(P,index) .

ceq HF(Q || P,<2> ^ index) = (comp1({b &(x := e)(P1,0)},Q,<2>), <2> ^ index)
if ({b &(x := e)(P1,0)},index) := HF(P,index) .

ceq HF(P || Q,index) = (T,index) if (T,null) := HF(P || Q,null) .

ceq HF(P || Q,0) = (T,0) if (T,null) := HF(P || Q,null) .

In the above definitions, the first and second case models the situation that a
process continues to execute the next assignment in an atomic action. For paral-
lel process P ‖ Q, the first case models the execution of next assignment which
is contributed by process P , whereas the second case models the execution of
next assignment which is due to Q. Now we explain the first case further. For
process P at location status index, after the execution of the next assignment,
the location status is still index. Then, for parallel process, it will execute the
same next assignment contributed by P and the location status is expressed as
“<1>^index”.

Example 4.1. Let P = ((x := x+1 ; @(↑ y)) ‖ y := y+1) ‖ (#1 ; y := y+1).
Now we consider the head normal form of process P at the location state null.

For process P , two assignments x := x+1 and y := y+1 in (x := x+1 ; @(↑
y)) ‖ y := y + 1 can have chances to be scheduled. Therefore, if x := x + 1 is
scheduled, the remaining process is (@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1)
and the corresponding location status is 〈1〉〈1〉.

On the other hand, for process P , if y := y + 1 in (x := x + 1 ; @(↑ y)) ‖
y := y + 1 is scheduled, the remaining process is (x := x + 1 ; @(↑ y)) ‖
(#1 ; y := y+1). As this assignment is the last statement of parallel composition
(x := x+ 1 ; @(↑ y)) ‖ y := y+ 1, the location status is 0 after the execution of
this assignment.

Using the command red(uce) provided by Maude, we can compute the head
normal form of the example program,

reduce in HEAD-NORM-FORM :

( {t & (x := x+ 1) ((@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , 〈1〉〈1〉)}
[] {t & (y := y + 1) ((x := x+ 1 ; @(↑ y)) ‖ (#1 ; y := y + 1) , 0)}

, null )

5 Generating Operational Semantics from Algebraic
Semantics

5.1 Transition Types

The transitions for Verilog are of the form C
β−→ C′, where C and C′ are

configurations describing the states of an executing mechanism before and after
a step respectively. Here we use β to represent the transition type. There are
three types of configurations:
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〈P, σ, ∅〉 〈P, σ, σ′, 1, seq〉 〈P, σ, σ′, 0〉
where:

(1) The first component P is a program text representing the program that
remains to be executed.

(2) The second component σ in 〈P, σ, ∅〉 stands for the initial state, which can
be regarded as the initial state of the atomic action that appears at the
beginning of P . The second component σ in other configurations stands for
the initial state of an atomic action that is currently being executed.

(3) The third component σ′ (σ′ 	= ∅) models the accumulation of the contribu-
tion of instantaneous actions in an atomic action. If the third component is
∅, it means the previous atomic action ends and the new atomic action has
not been scheduled.

(4) If the third component is not empty, a control flag j should be supplied in
the configuration as the fourth element. “j = 0” indicates that the current
atomic action ends, where “j = 1” indicates that current atomic action is
still executing.

(5) In order to model the scheduling policy for parallel processes, a thread se-
quence seq is supplied in the configuration if the third element is not empty
(for explanations, see section 3.2), which is used to index the currently ac-
tive sub-process in a nested parallel composition. Here, seq can be 〈〉 or a
non-empty thread sequence.

The transition rules for Verilog programs can be grouped into the following three

types: (1) Instantaneous transition C −→ C′; (2) Event transition C
〈σ,σ′〉−→ C′;

(3) Time advance transition C
1−→ C′. Below are the detailed descriptions:

1. Instantaneous transition
T1 A process can perform its first instantaneous action of an atomic action.

〈P, σ, ∅〉 −→ 〈P ′, σ, σ′, 1, seq〉
T2 A process can continue its following instantaneous action in an atomic

action.
〈P, σ, σ′, 1, seq〉 −→ 〈P ′, σ, σ′′, 1, seq〉

T3 A process completes an instantaneous section.
〈P, σ, σ′, 1, seq〉 −→ 〈P, σ, σ′, 0〉

T4 A process executes an assignment guard.
〈P, σ, ∅〉 −→ 〈P ′, σ, σ′, 0〉

2. Event transition
T5 (1) A transition can be fired by the atomic action that has just com-

pleted. 〈P, σ, σ′, 0〉 〈σ,σ′〉−→ 〈P ′, σ′, ∅〉
(2) A transition can be fired by the action of its environment.

〈P, σ, ∅〉 〈σ,σ′〉−→ 〈P ′, σ′, ∅〉
3. Time advance transition

T6 A process that cannot do anything else will allow time to advance. Time
advances in unit steps.

〈P, σ, ∅〉 1−→ 〈P ′, σ, ∅〉
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The configuration can be implemented in Maude as below.
fmod CONFIG is pr VERILOG-PROGRAM .

pr ENVIRONMENT .
......
op # : -> Init [ctor] .
op 1 : -> Flag [ctor] .
op 0 : -> EndPoint [ctor] .
op <> : -> Index [ctor] .
op <1> : -> Index [ctor] .
op <2> : -> Index [ctor] .
op ^ : Index Index-> Index [ctor assoc id: <>] .

op < , , > : Program Env Init -> Config [ctor] .
op < , , , , > : Program Env Env Flag Index -> Config [ctor] .
op < , , , > : Program Env Env EndPoint -> Config [ctor] .

endfm

The definition of configurations in Maude is based on the three types of configu-
rations. The first type contains three components and ends with a # which is the
only element of sort Init (i.e., representing ∅). And the second type contains
five components among which the fourth is the Flag represented by 1 and the
fifth is a Index. The third type contains four components and the fourth is the
EndPoint represented by 0.

5.2 Deriving Operational Semantics from Algebraic Semantics

The main purpose of this section is to derive the transition system for Verilog
from its algebraic laws. This approach allows the operational semantics to be
derived as theorems, rather than being presented as postulates or definitions.

Firstly we give the derivation strategy, which is based on the head normal of
each program. For every program, its location status can be null, 〈〉 or seq.
Definition 5.1 (Derivation Strategy).

(1.a) If HF (P, null) = ( []i∈I{bi&(xi := ei) (Pi, tagi)}, null ),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.a1] : . < P , env , # > => < Pi , env , env <- (x , e) , 1 , tag >

if (hgct1,null) := HF(P,null) /\ (hgc []{b &(x := e)(Pi,tag)} [] hgc’, null)
:= (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.a1’] : . < P , env , # > => < Pi , env , env , 1 , tag >
if (hgct1,null) := HF(P,null) /\ (hgc [] {b &(Skip)(Pi,tag)} [] hgc’, null)
:= (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.a2] : . < P , env , # > => < Pi , env , env <- (x , e) , 0 >
if (hgct1,null) := HF(P,null) /\ (hgc []{b &(x := e)(Pi,tag)} [] hgc’, null)
:= (hgct1,null) /\ b[env] /\ tag == 0 .

crl [1.a3] : . < P , env , env’ , 0 > => < P , env’ , # >
if (hgct1,null) := HF(P,null) .

(1.b) If HF (P, null) = ( []i∈I{@(ηi) (Pi, null)}, null ),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.b1] : . < P , env , env’ , 0 > => < P , env’ , # >

if (hgct2,null) := HF(P,null) /\ not fire(guard(hgct2))(env,env’) .

crl [1.b2] : . < P , env , env’ , 0 > => < Pi , env’ , # >
if (hgct2,null) := HF(P,null) /\ (hgc [] {@(g)(Pi,null)} [] hgc’ , null) :=
(hgct2,null) /\ fire(g)(env,env’) .

crl [1.b3] : . < P , env , # > => < P , env , # >
if (hgct2,null) := HF(P,null) .

(1.c) If HF (P,null) = ( []{#1 (R,null)}, null),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
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crl [1.c1] : < P , env , env’ , 0 > => < P , env’ , # >
({# 1(R,null)} , null) := HF(P,null) .

crl [1.c2] : < P , env , # > => < R , env , # >
({# 1(R,null)} , null) := HF(P,null) .

(1.d) If HF (P,null) = ( []i∈I{bi&(xi := ei) (Pi, tagi)} [] []j∈J{@(ηj) (Rj , null)},
null ),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.d1] : . < P , env , # > => < Pi , env , env <- (x , e) , 1 , tag >

if (hgct1 [] hgct2,null):= HF(P,null) /\ (hgc[]{b &(x := e)(Pi,tag)}[] hgc’,
null):= (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.d1’] : . < P , env , # > => < Pi , env , env , 1 , tag >
if (hgct1 [] hgct2,null) := HF(P,null)/\ (hgc [] {b &(Skip)(Pi,tag)}[] hgc’,
null) := (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.d2] : . < P , env , # > => < Pi , env , env <- (x , e) , 0 >
if (hgct1 [] hgct2,null) := HF(P,null)/\ (hgc [] {b &(x := e)(Pi,tag)}[]hgc’,
null) := (hgct1,null) /\ b[env] /\ tag == 0 .

crl [1.d3] : . < P , env , env’ , 0 > => < P , env’ , # >
if (hgct1 [] hgct2,null) := HF(P,null) /\ not fire(guard(hgct2))(env,env’) .

crl [1.d4] : . < P , env , env’ , 0 > => < R , env’ , # >
if (hgct1 [] hgct2,null) := HF(P,null) /\ (hgc [] {@(g)(R,null)}[] hgc’ , null)
:= (hgct2,null) /\ fire(g)(env,env’) .

(1.e) If HF (P, null) = ( []i∈I{@(ηi) (Pi, null)} [] {#1 (R, null)}, null ),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.e1] : . < P , env , env’ , 0 > => < P , env’ , # >

if (hgct2 []{# 1(R,null)},null) := HF(P,null) /\ not fire(guard(hgct2))(env,env’) .

crl [1.e2] : . < P , env , env’ , 0 > => < R , env’ , # >
if (hgct2 [] {# 1(R,null)},null) := HF(P,null) /\ (hgc [] {@(g)(R,null)} [] hgc’
, null) := (hgct2,null) /\ fire(g)(env,env’) .

crl [1.e3] : . < P , env , # > => < R , env’ , # >
if (hgct2 [] {# 1(R,null)},null) := HF(P,null) .

(2.a) If HF (P, seq) = ( []i∈I{b&(xi := ei) (Pi, seq)}, seq ),

then P can perform transitions at state 〈P, σ, σ′, 1, seq〉.
crl [2.a]:. < P , env , env’ , 1 , index > => < Pi , env , env <- (x , e) , 1 , index >

if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(x := e)(Pi,index)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

crl [2.a’] : . < P , env , env’ , 1 , index > => < Pi , env , env’ , 1 , index >
if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(Skip)(Pi,index)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

(2.b) If HF (P, seq) = ( []i∈I{bi&(xi := ei) (Pi, 0)}, seq ),

then P can perform transitions at state 〈P, σ, σ′, 1, seq〉.
crl [2.b] : . < P , env , env’ , 1 , index > => < Pi , env , env <- (x , e) , 0 >

if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(x := e)(Pi,0)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

crl [2.b’] : . < P , env , env’ , 1 , index > => < Pi , env , env’ , 0>
if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(Skip)(Pi,0)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

crl [2.b”] : . < P , env , env’ , 1 , index > => < P , env , env’ , 0 >
if (hgct1 [] hgct2,index) := HF(P,index) .

crl [2.b”’] : . < P , env , env’ , 1 , index > => < P , env , env’ , 0 >
if (hgct2 [] {# 1(R,null)},index) := HF(P,index) .

(3.a) If HF (P, 〈〉) = ( []i∈I{gi (Pi, tagi)}, 〈〉 ) and ∀i ∈ I • tagi �= 〈〉,
then P can perform transitions at state 〈P, σ, σ′, 1, 〈〉〉.
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crl [3.a] : . < P , env , env’ , 1 , <> > => < P , env , env’ , 0 >
if (hgc , <>) := HF(P , <>) /\ tagnotempty(hgc) .

For the above derivation strategy, items ((1.a)–(1.e)) explore the situation that
a program is at the location status null. The corresponding derivation strategy
can be defined based on the five types of guarded choice of the head normal form
of a program. If the head normal form of a program is expressed as the first type
of guarded choice, the program can perform the first instantaneous action of
an atomic action provided that the location status of the subsequent process
is not 0. On the other hand, if the location status of the subsequent process
is 0, this means that the program can perform an assignment guard transition.
Meanwhile, the program can also perform a transition of event transition type.
This can be expressed in item (1.a). When implementing in Maude, hgct1 and
hgct2 stand for the first and second type of guarded choice.

Now we use rule [1.a1] as an example to make further explanation. From the
conditions, we know that the head normal form of P at the location status null
is hgct1 and hgct1 has a component b&(x := e)(Pi,tag). In this case, process
P can perform a transition reflecting the execution of that component (i.e., the
assignment guarded component). The notation “env<-(x,e)” stands for a new
state which is the same as env except assigning value e to x.

There are two types of event transitions. When designing the operational
semantics, we take the understanding that, if a process has an event transition
of the first type, it can also have an event transition of the second type, and
vice-versa. When mechanizing the derivation of operational semantics, we take
the understanding of regarding a system as closed. Therefore, the second type
of event transition is not listed here.

Item (1.b) models the case that the head normal form of a program is
expressed as the second type of guarded choice (i.e., event guarded choice). For
this case, the program can perform an event transition, including the event tran-
sition that one of the guards is fired (i.e., [1.b2]), or the event transition that none
of the guards are satisfied (i.e., [1.b1]). The program can also have time delay
transition (i.e., [1.b3]), expressed as “<P,env,#> => <P,env,#>” in Maude. The
notation “fire(g)(env,env’)” in [1.b2] means that the change from state env
to evnv’ can fire the event guard g. The notation “not fire(guard(hgct2))

(env,env’)” in [1.b1] means that the state change from state env toevnv’ can-
not fire any guards in hgct2 (i.e., the event guarded choice part of P ).

For item (1.c), it models the case that a program is expressed as the time delay
guarded choice. For this case, the program can perform time delay transition. It
can also have event transition.

For item (1.d), it models the case that the head normal form of a program
is expressed as the fourth type of guarded choice, i.e., the compound of the
first and second type of guarded choice. For this case, the program can perform
instantaneous transition (i.e., [1.d1], [1.d1’] and [1.d2]). It can also have event
transition (i.e., [1.d3] and [1.d4]). As the behavior of assignment is instantaneous,
the program cannot perform time delay transition. Transition [1.d1] (and [1.d1’])
models the case that the process executes an assignment, whereas transition
[1.d2] models the case that the process executes as assignment guard. [1.d3]
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models the event transition that all the event guards cannot be fired, whereas
[1.d4] models the event transition that one guard is fired among all event guards.

Item (1.e) models the case that the head normal form of a program is expressed
as the compound of the second and third type of guarded choice. At this case,
the program can perform event transition based on firing condition of all guards.
The program can also have time delay transition.

Items (2.a) and (2.b) model the situation that a process has already performed
a sequence of instantaneous actions for an atomic action. Item (2.a) models the
case that the process continues to execute the next instantaneous action for the
atomic action. Therefore, it can perform the second type of instantaneous action,
leaving the location status before and after the transition unchanged.

Nowwe consider a single threaded process (denoted by location status 〈〉), which
performs a sequence of instantaneous actions and reaches at the point that the re-
mainingprocess isguard, timedelayorparallelprocess. Inthiscase, for theheadnor-
mal form of the remaining process, the subsequent process after each head cannot
be 〈〉. For this case, the original processwill perform the third type of instantaneous
transitions, i.e., completing an atomic action. This case is illustrated in item (3.a).
Example 5.2. We take program P in Example 4.1 to illustrate the effectiveness
of our derivation strategy. Assume that the initial values of x, y are both 0.
The head normal form of program P was discussed in Example 4.1. We use
the command “search” to get its transitions in Maude as following. But the
display of the result of “search” is in a breadth-first style which is not very
straightforward to see. We then use the “show path (state number)” command
to show one of the path below. In order to display the result neatly, we also omit
the rules used by the corresponding transition.

< ((x := x + 1 ; @(↑ y)) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty ,# >
< (x := x + 1 ; @(↑ y)) ‖ (#1 ; y := y + 1) , empty , (y, 1) , 0 >
< (x := x + 1 ; @(↑ y)) ‖ (#1 ; y := y + 1) , (y, 1) , # >
< @(↑ y) ‖ (#1 ; y := y + 1) , (y, 1) , (y, 1)|(x, 1) , 〈1〉 >
< @(↑ y) ‖ (#1 ; y := y + 1) , (y, 1) , (y, 1)|(x, 1) , 0 >
< @(↑ y) ‖ (#1 ; y := y + 1) , (x, 1)|(y, 1) , # >
< @(↑ y) ‖ y := y + 1 , (x, 1)|(y, 1) , # >
< @(↑ y) , (x, 1)|(y, 1) , (x, 1)|(y, 2) , 0 >
< nil , (x, 1)|(y, 2) , # >

The above is one execution sequence leading program P to the terminating
state and the final state of variables is “x = 1 ∧ y = 2”. For program P , there
are two execution sequences leading program P to the terminating state. For
another execution sequence, the final variable state is also “x = 1 ∧ y = 2”. �

5.3 Mechanizing Operational Semantics

In the last subsection we provided the strategy for deriving the operational
semantics from algebraic semantics. Our approach is via the concept of head
normal form. Based on the derivation strategy, we can derive the full set of op-
erational semantics for Verilog as theorems by strict proof. Now we consider the
practical aspect of the derived operational semantics. We apply Maude in mech-
anizing the derived operational semantics. We select assignment, event guard
and parallel composition here for illustrating the mechanization.
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As the execution of x := e is instantaneous, if x := e is the first statement
of an atomic action, it can be scheduled at once or the environment is allowed
to perform some atomic actions. If x := e is not the first action of an atomic
action, it should be scheduled to execute at once without interruption by the
environment. Time cannot advance for assignment. When animating the oper-
ational semantics, we do not know the environment’s behaviour. Therefore, we
take the understanding of regarding a system as closed. Although the second
type of event transition can be derived, we regard it as not executable (see be-
low for x := e and @(g)). We use the keyword “[nonexec]” to show this.

rl : . < x := e , env , # > => < nil , env , env <- (x , e) , 1 , <> > .

rl : . < x := e , env , env’ , 1 , <> > => < nil , env , env <- (x , e) , 1 , <> > .

rl : . < x := e , env , env’ , 0 > => < x := e , env’ , # > .

rl : . < x := e , env , # > => < x := e , env’ , # > [nonexec] .

The guard @(g) can be immediately fired after it is scheduled to execute; it is ac-
tually triggered by the execution of its previous action that has just completed.
Another case is that the guard waits to be fired by its environment. Time can
also advance before the guard becomes enabled.

rl : . < @(g) , env , env’ , 1 , <> > => < @(g) , env , env’ , 0 > .

rl : . < @(g) , env , env’ , 0 > => < nil , env’ , # > if fire(g)(env , env’) .

rl : . < @(g) , env , env’ , 0 > => < @(g) , env’ , # > if not fire(g)(env , env’) .

rl : . < @(g) , env , # > => < nil , env’ , # > if fire(g)(env , env’) [nonexec] .

rl : . < @(g) , env , # > => < @(g) , env’ , # > if not fire(g)(env , env’) [nonexec] .

rl : . < @(g) , env , # > => < @(g) , env , # > .

Now we consider the mechanizing of the derived operational semantics for paral-
lel composition. If one of the two parallel parts of a Verilog program can perform
the first instantaneous action of an atomic action, then the whole process can
also make this transition.4

crl : . < P || Q , env , # > => < par(nil,Q) , env , env’ , 0 >
if . < P , env , # > => < nil , env , env’ , 1 , seq > .

crl : . < Q || P , env , # > => < par(Q,nil) , env , env’ , 0 >
if . < P , env , # > => < nil , env , env’ , 1 , seq > .

crl : . < P || Q , env , # > => < par(P’,Q) , env , env’ , 1 , <1> ^ seq >
if . < P , env , # > => < P’ , env , env’ , 1 , seq > /\ P’ =/= nil .

crl : . < Q || P , env , # > => < par(Q,P’) , env , env’ , 1 , <2> ^ seq >
if . < P , env , # > => < P’ , env , env’ , 1 , seq > /\ P’ =/= nil .

If one of the two parallel parts of a Verilog program continues to perform the
instantaneous action of an atomic action, then the whole process can also make
this transition.

crl : . < P || Q , env , env’ , 1 , <1> ^ seq > => < par(P’,Q) , env , env’’,<1> ^ seq >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’’ , 1 , seq > /\ P’ =/= nil .

crl : . < Q || P , env , env’ , 1 , <2> ^ seq > => < par(Q,P’) , env , env’’,<2> ^ seq >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’’ , 1 , seq > /\ P’ =/= nil .

4 For this case, we can also have the situation that P or Qmay be the empty process. In
the consideration for other cases below, for P ‖ Q, P or Q maybe also be the empty
process. We omit the transition rules which are similar to the normal situation.
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If one of the two parallel parts of a Verilog program exits from an atomic action,
then the whole process can also exit from the atomic action. A parallel process
can also exit from its prior instantaneous section.

crl : . < P || Q , env , env’ , 1 , <1> ^ seq > => < par(P’,Q) , env , env’ , 0 >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’ , 0 > .

crl : . < Q || P , env , env’ , 1 , <2> ^ seq > => < par(Q,P’) , env , env’ , 0 >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’ , 0 > .

crl : . < P || Q , env , env’ , 1 , <> > => < P || Q , env , env’ , 0 > .

If one of the two parallel parts of a Verilog program executes an atomic assign-
ment, then the whole process can also execute the atomic assignment.

crl : . < P || Q , env , # > => < par(P’,Q) , env , env’ , 0 >
if . < P , env , # > => < P’ , env , env’ , 0 > .

crl : . < Q || P , env , # > => < par(Q,P’) , env , env’ , 0 >
if . < P , env , # > => < P’ , env , env’ , 0 > .

P ‖ Q can perform a triggered action caused by its predecessor or one of its
components. P ‖ Q allows the environment to perform an atomic action. P ‖ Q
allows time advance iff both components do so.

crl : . < P || Q , env , env’ , 0 > => < par(P’,Q’) , env’ , # >
if . < P , env , env’ , 0 > => < P’ , env’ , # > /\

. < Q , env , env’ , 0 > => < Q’ , env’ , # > .

crl : . < P || Q , env , # > => < par(P’,Q’) , env’ , # >
if . < P , env , # > => < P’ , env’ , # > /\ . < Q , env , # > => < Q’ , env’ , # > .

crl : . < P || Q , env , # > => < par(P’,Q’) , env , # >
if . < P , env , # > => < P’ , env , # > /\ . < Q , env , # > => < Q’ , env , # > .

Example 5.3. Let P be the program described in Example 4.1 and Example
5.2. In Example 5.2, we have already considered the execution sequence of pro-
gram P using the derivation strategy via algebraic semantics. Now we consider
its execution based on the transition rules (i.e., the operational semantics in this
section).

There are also two execution sequences leading program P to the terminating
state. The first sequence is the same as the one described as Example 5.2 and
the final state of program variables is also “x = 1 ∧ y = 2”.

For the second execution sequence, the final state of program variables is also
“x = 1∧ y = 2” and its detailed transition is as below. This execution sequence
is the same as the second sequence in Example 5.2 leading program P to the
terminating state (although we didn’t list it).

< ((x := x + 1 ; @(↑ y)) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty ,# >
< ((@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty , (x, 1) , 〈1〉 >
< ((@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty , (x, 1) , 0 >
< (@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , (x, 1) , # >
< @(↑ y) ‖ (#1 ; y := y + 1) , (x, 1) , (x, 1)|(y, 1), 0 >
< #1 ; y := y + 1 , (x, 1)|(y, 1), # >
< y := y + 1 , (x, 1)|(y, 1), # >
< nil , (x, 1)|(y, 2), 1 , 〈〉 >

The mechanical approach indicates that the transition system from the derived
operational semantics is the same as the one from the derivation strategy. �
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6 Conclusion and Future Work

This paper has presented how an algebraic semantics links with the operational
semantics for Verilog, starting from the algebraic semantics. Our approach is to
derive the operational semantics from the algebraic semantics. The mechanical
method is applied in linking the two semantics. We used the equational and
rewriting logic system Maude to support the mechanical implementation.

We have given the algebraic laws. Our approach is new, where a process is
expressed as the guarded choice of a set of guarded components with location
status. This guarded choice gives us a way to express how a process can be se-
quentialized, which also reflects the scheduling policy. In order to support the
derivation, we introduced the concept of head normal form for every program
at a location status. We have studied the derivation of the operational seman-
tics for Verilog from its algebraic semantics. We have given the definition of the
derivation strategy. Then a transition system (i.e., operational semantics) for
Verilog can be derived via the derivation strategy. The algebraic laws, head nor-
mal form, derivation strategy and derived transition system are all implemented
in the Maude system. The results mechanized indicate that the transition sys-
tem of the derived operational semantics is the same as the one based on the
derivation strategy.

Semantic linking is the challenging research [7]. For the future, we are continu-
ing to explore further linking theories for Verilog semantics [8]. In particular the
mechanical approach to the derivation of denotational semantics from algebraic
semantics is also very challenging.
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Abstract. The signal calculus for event-based synchronous languages is
developed for the specification and programming of embedded systems.
This paper first explores a structural operational semantics for concep-
tually instantaneous reactions of the signal calculus, which exhibits how
the effectiveness of such reactions is produced. Further, we investigate
the unifying theory of operational semantics and algebraic semantics for
instantaneous reactions. On one hand, all the algebraic laws character-
izing the primitives and the combinators can be established in terms of
the suggested structural operational semantics which claims the sound-
ness of the algebraic semantics. On the other hand, reactions which are
equivalent from the operational perspective can be reduced to the same
normal form and this demonstrates the relative completeness of algebraic
semantics with respect to the operational semantics.

1 Introduction

Real-time systems (RTS) are widely used in many areas including household
electrical appliances, laboratory paraphernalia, Cyber Physical System, etc. All
these systems have independent computing ability and can react to the envi-
ronment through sensors and actuators. In essence, not only the correctness of
such systems depends on the logical computing, but also the computing result
should be taken at the right time. And this makes a great difference to tra-
ditional software systems. RTS have a more rigid time restriction and need to
have some ability to predict the behaviors of the system while the scheduling
algorithm is quite complex. Meanwhile, high security is eagerly expected while
the interaction with the environment is complex and unpredictable. All of these
lead to great challenges in modeling, designing, analyzing and verifying RTS.

The research on RTS has lasted for a long time. There have been a lot of mod-
eling methods, calculus and reactive programs proposed to model, design, ana-
lyze and verify RTS. Modeling methods like Finite Automata [14] are popular in
modeling traditional software system. In order to model RTS, Timed Automata
[8,9] extends Büchi automata with clocks. And it’s supported by many tools like
UPPAAL [10] and Kronos [18]. ATP [15], Timed CSP [16,17] and HCSP [13] are
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widely used in the modeling of RTS as they use the method of process algebra.
There are tool supports for timed process algebra as well, like PAT for Stateful
Timed CSP. Esterel [2,3,5,6,11,12] is a synchronous language with many great
processing methods which is very suitable for specifying and programming RTS
[2,4,7].

Inspired by the Esterel language, we propose a signal calculus for event-based
synchronous languages. Our calculus adopts the so-called synchronous hypothe-
sis, i.e., instantaneous reaction to signals and immediate propagation of signals
in each time-instant. In [1], the algebraic semantics of the instantaneous signal
calculus (I-calculus) has been completely explored. A set of algebraic axioms is
provided to characterize the properties of the primitives and the combinators.
Further, the corresponding algebraic normal form is provided and every instanta-
neous reaction, however deeply structured, can be reduced into the normal form
by a series of algebraic manipulations. Consequently, that two syntactically dif-
ferent but semantically equivalent instantaneous reactions can be proved from
the equation of their algebraic presentations.

In this paper, we investigate the semantics for instantaneous reactions from
an operational perspective. A structural operational semantics for instantaneous
signal calculus is explored, which exhibits the effect of how reactions react to the
environment. Further, we investigate the unifying theory of operational seman-
tics and algebraic semantics for instantaneous reactions. On one hand, all the
algebraic laws concerning the distinct features for instantaneous reactions can
be established in terms of the suggested structural operational semantics, i.e.,
if the equality of two differently written instantaneous reactions is algebraically
provable, the two reactions are also equivalent with respect to the operational
semantics. Obviously, this claims the soundness of algebraic semantics. On the
other hand, reactions which are equivalent from the operational perspective can
be reduced to the same normal form and this demonstrates the relative com-
pleteness of algebraic semantics with respect to the operational semantics.

The remainder of this paper is organized in five sections. In section 2, we give
a brief introduction to signals, event guards and I-Calculus which is the basis
of our work. Then we propose our operational semantics in section 3. In section
4, we list the algebraic laws of I-Calculus and prove the soundness of algebraic
laws based on the concept of program equivalence via operational semantics.
And then in section 5, we prove the relative completeness of algebraic laws, by
proving that the reactions which are equivalent in our operational semantics has
the same normal form. Section 6 concludes the paper and presents some future
work.

2 Instantaneous Reactions: I-Calculus

2.1 Event Guards

First we introduce broadcast signals and event guards. Signal is the basic com-
munication and synchronization methods for different agents, systems and en-
vironments. In this paper, signals we are going to analyze have three status
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including presence(+), absence(−) and unknown(0). The order of the status is
defined as + ≥ 0 and − ≥ 0. And we use B to represent the status set {+,−, 0}.
Generally, we use lowercase letters like s, t, m to represent signals. Letter S is
usually used as the finite set of all signal names in our paper. We use the tuples
like (s,+), (s,−), (s, 0) to represent the presence, absense and unknown status
of signal s.

Event is used to describe the status of signals we are observing. The change
of events indicates the changes of the system and environment. An event is
defined as a total function from the signal name set S to the status set B, i.e.,
e : S → B. Generally, we use E to represent the set of all events. We use
(s,+) ∈ e or e(s) = + to represent the existence of s in event e. The function
sig(e) defines the observation set consisting the names of all the signals included
in the event e, e.g., sig(e) = {s, t}. The status of any signal in one event is
unique. Then we give the definition of compatible events. Generally, when both
(s,+) and (s,−) are not in an event, we mean that the state of s are unknown
in the event or we can say e(s) = 0 though we have not explicitly written that
(s, 0) ∈ e .

Definition 1 (Compatible). Event e1 and e2 are compatible on the signal
name set S if they agree with the status of all signals, i.e., ∀s ∈ S • e1(s) =
e2(s) ∨ (s, 0) ∈ e1 ∨ (s, 0) ∈ e2. We denote it by compatible(e1, e2).

The pre-order of events is defined. We say event e1 is better than event e2 if
∀s ∈ S • e1(s) ≥ e2(s). We denote this by e1 ≥ e2. Then we can introduce the
definition of event guards which is of the following form:

g ::= ε | ∅ | s+ | s− | g · g | g + g | g
An event guard can be regarded as a set of events that could trigger the guard.
And g defines the set of all events that will not trigger guard g. The detailed
meaning of these event guards is given in Table 1.

Table 1. The Meaning of Event Guards

[[ε]] =df E [[∅]] =df ∅ [[s+]] =df {e | (s,+) ∈ e ∧ e ∈ E}
[[s−]] =df {e | (s,−) ∈ e ∧ e ∈ E} [[g1 + g2]] =df [[g1]] ∪ [[g2]]

[[g1 · g2]] =df {e | e ∈ [[g1]] ∧ e ∈ [[g2]]}
[[g]] =df {e | ∀f ∈ [[g]] • ¬compatible(e, f)}

After introducing the definition of event guards, we can define the triggering
of an event guard by an event. If an event e can give rise to an event guard g,
the event should be in the semantics set of the event guard, e ∈ [[g]].

Then we can define the order of guards depending on the event set of the
guard. In this order, stronger guards are more difficult to be triggered.
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Definition 2. Given guards g1 and g2, we say guard g1 is better than guard g2
semantically if [[g1]] ⊆ [[g2]]. We denote this by g1 ≥ g2.

2.2 I-Calculus

Instantaneous reactions are used for modeling and programming the event-based
synchronous languages. In this paper we only discuss conceptually instantaneous
reactions like zero time reactions. The syntax of I-calculus is given as below:

I ::=!s | Π | ⊥ | g&I | I\s | I ‖ I
where !s is an atomic action emitting signal s. Π is a skip reaction without doing
anything. ⊥ is a bad reaction which can only be generated by some conflict
conditions. Generally, we do not allow a program contain ⊥ directly because it
is meaningless. That is to say ⊥ is only used to represent the bad cases we are
trying to avoid. And g is an event guard with the sense that in the component
g&I, I will only be executed when g is triggered. The function ems(I) is defined
to represent the set of signals which will be possibly emitted by I.

The meaning of the reactions is straightforward. The status of all signals can
be sensed by all agents. !s is an atomic action emitting a signal; Π is a skip
reaction without doing anything and generally used to denote the termination
status; ⊥ indicates the reaction has caused conflict of some signal’s status and
generally used to denote the chaotic state; in reaction g&I, if the guard g is
triggered, the reaction will react like I, but if g is triggered, it will perform like
Π , otherwise it will wait for the stable event of g. As an canceling reaction, I\s
separates the actions on s between I and the outside event. I1 ‖ I2 represents
the parallel reactions of I1 and I2. As mentioned before, all reactions in parallel
interact with each other by the shared event.

Example 1. Let I = s+2 &!s1 || (s+1 · s+2 )&!s3 || s−1 &⊥
Given an input event e = {s2,+}, the guard s+2 will be triggered, and then s1
will be emitted; immediately, the guard s+1 · s+2 can be triggered; thus s3 will be
emitted. So, reaction I will react to the input event e by generating signal s1
and s3. But if e = {(s1,−)} is given as the input event, I will fall into chaos.

3 Operational Semantics

Operational semantics is used to define the meaning of computer programs. It
can be expressed as a set of possible transitions which simulate the execution
of programs. The transitions for I-Calculus are written in a special notation of
structural operational semantics

C −−−→ C′

where C and C′ are the two configurations describing the states of an executing
mechanism before and after a step respectively. The formal definition of the
configuration is as following. The structure of a configuration is written as 〈I, e〉
where I is a reaction and e is a special event recording the signal status for I.
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Definition 3 (Configuration). A configuration is an element of the cartesian
product of the set of all reactions and the set of all events. Generally, we use I

to represent the set of all reactions and use E to represent the set of all events.
Then we get the definition of a configuration C as:

C ∈ I× E.

Additionally, the chaos state 〈⊥, e〉 is also a configuration which is the worst
situation of an execution for a reaction. And in this chaos state ⊥ represents the
chaos reaction. Before we define the transition rules, we give a set of definitions
for our transition system.

Definition 4 (−→∗). The transition symbol −→∗ in 〈I, e〉 −→∗ 〈I ′, e′〉 means
that the left configuration 〈I, e〉 turn into 〈I ′, e′〉 after zero or more transition
steps within the transition rules in our operational semantics.

As a property of transition, we have e′ ≥ e for all transitions like 〈I, e〉 −→∗
〈I ′, e′〉.
Definition 5 (Stable Configuration). A configuration 〈I, e〉 is stable in the
status of signal s if for all e′ ≥ e

〈I, e′〉 −→∗ 〈I ′, e′′〉 =⇒ e(s) = e′(s) = e′′(s).

In this case the configuration is denoted by 〈I, e〉sstable. And if 〈I, e〉 is stable at
the status of all signals, we denote it by 〈I, e〉stable. Especially, 〈Π, e〉 is a stable
state as well as a terminated state denoted by 〈Π, e〉term. And 〈⊥, e〉 is not stable
at any signals, so we denote it by 〈⊥, e〉chaos.
In the following subsections, we provide the operational semantics for our I-
Calculus.

3.1 Primitives

(a) We can describe the configurations expressing the normal terminated state
and chaos state as below:

〈Π, e〉term, 〈⊥, e〉chaos
The skip reaction just transforms a reaction into the terminated state which is
regarded as the end of the execution for the reaction with the input event e.
The chaos state indicates that the reaction has fallen into chaos which is the
worst situation. Normally, a configuration needs a judgement step to determine
its state. But for simplification, we sometimes bypass this step and mark the
state of the configuration immediately in our transition systems.

(b) A process does an atomic action, emitting a signal:

〈!s, e〉 −−−→ 〈⊥, e〉, where (s,−) ∈ e.

〈!s, e〉 −−−→ 〈Π, e′〉, where (s,−) 	∈ e and e′ = e⊕ (s,+).
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Emitting a signal is an atomic action of a reaction. The emitting of signal s
will add (s,+) to the given event e. We use e ⊕ (s,+) to represent e

⋃{(s,+)}
for simplification. And this result event shows the way how the agent reacts to
the environment. But if (s,−) has already been in the given input event, the
emitting action will lead to a conflict in the status of the signal. So we describe
this situation as chaos.

3.2 Guarded Reactions

For a configuration 〈g&I, e〉, we have the guarded transition as below:

〈g&I, e〉 −−−→ 〈I, e〉, if e ∈ [[g]]

〈g&I, e〉 −−−→ 〈Π, e〉, if e ∈ [[g]]

where e ∈ [[g]] means that the input event e can satisfy the guard g. If the guard
g is satisfied, the reaction after g would be executed. But if the opposite side of
the guard g marked as g is satisfied by e, the g will never be satisfied by e. In
this case, all the programs guarded by g will be skipped.

3.3 Parallel Reactions

The configuration of a parallel reaction is of the form

〈I1||I2, e〉

where I1 and I2 are two reactions with e as their common event.

(a) First of all, we introduce the following basic situations for parallel reactions:

〈I1, e〉term
〈I1||I2, e〉 −→ 〈I2, e〉

〈I2, e〉term
〈I1||I2, e〉 −→ 〈I1, e〉

〈I1, e〉chaos
〈I1||I2, e〉 −→ 〈⊥, e〉chaos

〈I2, e〉chaos
〈I1||I2, e〉 −→ 〈⊥, e〉chaos

These transition rules indicate that the operator || has Π and ⊥ as its zero and
unit respectively.

(b) Then we describe the following transition rules for the parallel reactions in
the two cases:

〈I1, e〉 −→ 〈I ′1, e′〉
〈I1||I2, e〉 −→ 〈I ′1||I2, e′〉
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〈I2, e〉 −→ 〈I ′2, e′〉
〈I1||I2, e〉 −→ 〈I1||I ′2, e′〉

When two reactions are paralleled with a common event e, the parallel reaction
will perform the component which could react to e. These two transition rules
show the commutative property of the parallel operator and how two programs
communicate with each other by sharing the common input event e and the
output event e′. The following example shows how two components perform
when both can be transited. Also this example shows that the transition order
of the parallel components is irrelevant.

Example 2. I = k+&!s || !t I can react to the input event e = {(k,+)} in two
possible ways with the same output event.

〈k+&!s || !t, e〉 −→ 〈!s || !t, e1〉, e1 = {(k+)}
−→ 〈Π || !t, e1〉, e1 = {(k+), (s,+)}
−→ 〈!t, e1〉, e1 = {(k,+), (s,+)}
−→ 〈Π, e′1〉term, e′1 = {(k,+), (s,+), (t,+)}

〈k+&!s || !t, e〉 −→ 〈k+&!s || Π, e2〉, e2 = {(k,+), (t,+)}
−→ 〈k+&!s, e2〉, e2 = {(k,+), (t,+)}
−→ 〈!s, e2〉, e2 = {(k,+), (t,+)}
−→ 〈Π, e′2〉term, e′2 = {(k,+), (s,+), (t,+)}

3.4 Concealment

The configuration containing canceling operation is

〈I\s, e〉

in which s is a local signal to I. For all configurations like this, we can make
the assumption that s 	∈ sig(e) because we can rename s as t (t 	∈ sig(e)) in I if
s ∈ sig(e).

Then we have the transition rules for concealment:

〈I, e〉 −→ 〈⊥, e〉chaos
〈I\s, e〉 −→ 〈⊥, e〉chaos ,

〈I, e〉 −→ 〈I ′, e′〉sstable
〈I\s, e〉 −→ 〈I[⊥/s−, ε/s+, Π/!s], e〉 , when (s,+) ∈ e′

〈I, e〉 −→ 〈I ′, e′〉sstable
〈I\s, e〉 −→ 〈I[⊥/s+, ε/s−], e′〉 , when (s,+) 	∈ e′

〈I, e〉 −→ 〈I ′, e′〉
〈I\s, e〉 −→ 〈I ′\s, e′〉 , when (s,+) 	∈ e′.
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The first rule shows that the concealment operation on a chaos reaction will
not change the chaos state. The second transition rule describes the action of
emitting a local signal by the inner reaction. The emitting affects the inner com-
ponents via replacing all s+ in guard components and s− by ε and ⊥ respectively.
Also, as the signal has been emitted, all the emitting action can be ignored via re-
placing !s by Π . And we denote these replacements in I by I[⊥/s−, ε/s+, Π/!s].
The third transition rule defines the opposite situation when the action of emit-
ting the local signal does not exist. As the configuration 〈I ′, e′〉sstable is stable
at signal s and (s,+) is not in e′ currently, and s is a local signal whose status
cannot be provided by the outside, in this situation we assign the absence value
to the signal s. In order to be invisible to the outside, we make the replace-
ment which replaces s+ and s− by ⊥ and ε respectively. These replacements are
denoted by I[⊥/s+, ε/s−].

These transition rules indicate that when the status of a local signal is deter-
mined, the label will be abandoned, the instances of the signal will be replaced
by basic symbols like ⊥, ε, Π . The last rule indicates that when we are not
sure whether the result configuration is stable at the local signal, we should keep
the concealment operator until we get a stable configuration. Here we give some
examples to explain the rules for concealment.

Example 3. We give the following reactions to show how the concealment oper-
ator works.

I1 = (t+&!s || s+&!k)\s
I2 = (k+&!s)\k || t+&!k

I3 = (t−&!s || s+&!k)\t
I4 = (t+&!s || s+&!k)\t

When the input event is e = {(t,+)}, the transition can be as following.

〈I1, e〉 −→ 〈(!s || s+&!k)\s, {(t,+)}〉
−→ 〈!k, {(t,+)}〉
−→ 〈Π, {(k,+), (t,+)}〉term

〈I2, e〉 −→ 〈(k+&!s)\k || !k, {(t,+)}〉
−→ 〈(k+&!s)\k, {(k,+), (t,+)}〉
as k 	∈ ems(k+&!s), we have ∀e0 • 〈k+&!s〉kstable, then we have

−→ 〈Π, {(k,+), (t,+)}〉term
〈I3, e〉 −→ 〈!s || s+&!k, {(t,+)}〉

−→ 〈Π || s+&!k, {(s,+), (t,+)}〉
−→ 〈s+&!k, {(s,+), (t,+)}〉
−→ 〈!k, {(s,+), (t,+)}〉
−→ 〈Π, {(k,+), (s,+), (t,+)}〉term

〈I4, e〉 −→ 〈Π || s+&!k, {(t,+)}〉
−→ 〈s+&!k, {(t,+)}〉
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4 Algebraic Laws and Its Soundness

In this section, we study the algebraic laws for I-calculus. Firstly, we give the
concept of the equivalence of two reactions via operational semantics. The cor-
rectness of our algebraic laws is based on the equivalence of their reactions.

Definition 6. The equivalence of two reactions is denoted by I1 =O I2. The
equivalence means that for any e we have

〈I1, e〉 −→∗ 〈Π, e′〉term ⇐⇒ 〈I2, e〉 −→∗ 〈Π, e′〉term,

or 〈I1, e〉 −→∗ 〈⊥, e1〉chaos ⇐⇒ 〈I2, e〉 −→∗ 〈⊥, e2〉chaos
From the definition above, we know that when we say two reactions are equal,
we mean that they have the same termination condition and the same chaos
condition. Obviously we can obtain the laws which reflect the reflexivity, com-
mutativity and transitivety of the equivalence of reactions.

Equiv-1 I =O I (reflexivity)

Equiv-2 I1 =O I2 ⇐⇒ I2 =O I1 (commutativity)

Equiv-3 ∃I2 • I1 =O I2 ∧ I2 =O I3 ⇐⇒ I1 =O I3 (transitivity)

The algebraic laws of I-calculus can be classified into several groups. And among
which, the correctness of the laws for parallel, primitives, concealment and de-
pendence are palpable. So, in the following paragraphs we list all the laws and
give proof for some representative laws. The proofs for some other laws are pro-
vided in the appendix.

The following laws show that the parallel operator is commutative, associative
and idempotent. And Π and ⊥ are the unit reaction and the zero reaction for
parallel respectively.

Par-1 I1 || I2 =O I2 || I1
Par-2 (I1 || I2) || I3 =O I1 || (I2 || I3)
Par-3 I || I =O I

Par-4 ⊥ || I =O ⊥
Par-5 Π || I =O I

The following laws for guards are established in our operational semantics.

Guard-1 g1&(g2&I) =O (g1 · g2)&I

Guard-2 g1&I || g2&I =O (g1 + g2)&I

Guard-3 g&(I1 || I2) =O g&I1 || g&I2

Guard-4 ∅&I =O Π

Guard-5 ε&I =O I

Guard-6 g&Π =O Π
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The laws for guards are very important in algebraic semantics. We give the proof
for law guard-1 and the other proofs are provided in the appendix.

Guard-1 g1&(g2&I) =O (g1 · g2)&I

Proof. First of all, we can prove that the chaos conditions for both reactions are
the same, i.e., e ∈ [[g1]] ∧ e ∈ [[g2]] ∧ ∃s ∈ ems(I) • (s,−) ∈ e where e is the
input event. Then we can give the proof regardless of chaos.

1. For any e, if we have the transition

〈g1&(g2&I), e〉 −→∗ 〈Π, e′〉term
if all guards for I can be fired, we can find an intermediate state 〈I, e〉 that

〈g1&(g2&I), e〉 −→∗ 〈I, e〉 −→∗ 〈Π, e′〉term,

where e ∈ [[g1]] and e ∈ [[g2]] from which we have e ∈ [[g1 · g2]]. So for the
second reaction, we have

〈(g1 · g2)&I, e〉 −→∗ 〈I, e〉 and 〈I, e〉 −→∗ 〈Π, e′〉term.

if the negation of the guards for I can be fired, we can find that e = e′ and
either e ∈ [[g1]] or e ∈ [[g2]] which implies that e ∈ [[g1 · g2]], then we have

〈(g1 · g2)&I, e〉 −→ 〈φ&I, e〉 −→ 〈Π, e〉term
Then we have proved that for any e,

〈g1&(g2&I), e〉 −→∗ 〈ε, e′〉term =⇒ 〈(g1 · g2)&I, e〉 −→∗ 〈Π, e′〉term.

2. For any e, if we have the transition

〈(g1 · g2)&I, e〉 −→∗ 〈Π, e′〉term,

if all guards for I can be fired, we can find an intermediate state 〈I, e〉 that
〈(g1 · g2)&I, e〉 −→∗ 〈I, e〉 −→∗ 〈Π, e′〉term

where e ∈ [[g1 · g2]] from which we have e ∈ [[g1]] and e ∈ [[g2]]. So for the first
reaction, we have

〈g1&(g2&I), e〉 −→∗ 〈I, e〉 and 〈I, e〉 −→∗ 〈Π, e′〉term.

if the negation of the guards for I can be fired, we can find that e = e′ and
e ∈ [[g1 · g2]] which implies that either e ∈ [[g1]] or e ∈ [[g2]], then we have

〈g1&(g2&I), e〉 −→ 〈φ&(g2&I), e〉 −→ 〈Π, e〉term, or

〈g1&(g2&I), e〉 −→ 〈g1&(φ&I), e〉 −→ 〈g1&Π, e〉 −→∗ 〈Π, e〉term.

Then we have proved that for any e,

〈(g1 · g2)&I, e〉 −→∗ 〈Π, e′〉term =⇒ 〈g1&(g2&I), e〉 −→∗ 〈Π, e′〉term.

�
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Now we study the algebraic laws for the concealment operator.

Conc-1 (I\s)\t =O (I\t)\s
Conc-2 (I1 || I2)\s =O (I1\s) || I2, provided that s 	∈ I2

Conc-3 (g&I)\s =O g&(I\s), provided that s 	∈ g

Conc-4 (g&!s || I)\s =O I[g/s+, g/s−], provided that s 	∈ g ∧ s 	∈ ems(I)

We now list some laws for primitive commands. The reaction s−&!s behaves
like ⊥ when s− is triggered because it will violate the status of signal s. And
the reaction s+&!s behaves like Π because the emission of s will not change the
status of s.

Prim-1 s−&!s =O s−&⊥
Prim-2 s+&!s =O s+&Π

The dependency law below shows how to expose the internal dependency explic-
itly in algebraic semantics. The proof can be found in the appendix.

Depend-axiom g&!s || s+&I =O g&!s || (s+ + g)&I

After all laws have been established in our framework of operational semantics,
we can claim the soundness of algebraic semantics.

Theorem 1 (Soundness). If two reactions are algebraically equivalent, they
are also equivalent with the respect to the operational semantics.

I1 = I2 =⇒ I1 =O I2

5 The Relative Completeness of Algebraic Semantics

In section 4, we have proved that the algebraic laws are established in the frame-
work of our operational semantics. And in this section, we come to prove that
reactions which are equivalent from the operational perspective should be alge-
braically equivalent. And thus we can prove the relative completeness of algebraic
semantics with respect to the operational semantics.

In [1], the normal form for I-calculus has been proposed. From the algebraic
aspect, the normal form provides a way to investigate the equivalence of two
reactions. The equivalence of two reactions depends on the equivalence of their
normal forms which can be reduced by the algebraic laws. In the normal form,
all parallel sub-reactions can react to the environment signals simultaneously
because they are all free of dependency.

Definition 7 (Normal Form). The reaction ||m∈Mgm&!sm || h&⊥ is a nor-
mal form for I-calculus if it satisfies the two conditions below, where the index
set M is finite and all signals si(i ∈M) are different.

1. ∀m,n ∈M, g • (g · s+n ≥ gm ⇒ g · gn ≥ gm) ∧ (g · s+n ≥ h⇒ g · gn ≥ h).
2. ∀m ∈M, gm · s−m ≥ h ≥ gm.
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Example 4. Here we give an example of normal form.

NF = (s−1 + s+2 + s+3 )&!s1 || (s−1 + s+2 · s−3 )&!s2

|| (s−1 + s+2 )&!s3 || (s−1 + s+2 · s−3 )&⊥
Obviously, two reactions in normal form are behaviorally equivalent if they have
the same algebraic norm form. The following definition captures the intuition.

Definition 8. NF1 = NF2 iff h ≡ h′ and ∀i ∈ M • gi ≡ g′i, where NF1 =
||m∈Mgm&!sm || h&⊥ and NF2 = ||m∈Mg′m&!sm || h′&⊥ are normal forms.

Theorem 2. All instantaneous reactions can be reduced into normal forms.

Theorem 2 indicates that every instantaneous reaction, however deeply struc-
tured, can be reduced into the normal form by a series of algebraic manipulation.
The proof can be found in [1]. We can get a corollary from this theorem.

Corollary 1. I1 = I2 iff NF1 = NF2, where NF1 and NF2 are the normal
forms of reaction I1 and I2 respectively.

Lemma 1. I1 =O I2 =⇒ NF1 = NF2 where NF1 and NF2 are the normal
form of reaction I1 and I2 respectively.

Proof. We can make the assumption

NF1 = ||m∈Mgm&!sm || h&⊥

NF2 = ||m∈Mg′m&!sm || h′&⊥
Obviously we obtain that NF1 =O I1 =O I2 =O NF2. When we have NF1 =O

NF2, we can get h = h′ which means that the chaos condition for NF1 and
NF2 is the same. Then if we want to prove NF1 = NF2, we need to prove
∀m ∈M • gm ≡ g′m.

If we make the hypothesis that ∃m ∈M • gm 	= g′m, there should be an event
e that

e ∈ [[gm]] ∧ e 	∈ [[g′m]] ∨ e ∈ [[g′m]] ∧ e 	∈ [[gm]]

We assume that there exists an input event e satisfying e ∈ [[gm]] ∧ e 	∈ [[g′m]]. As
NF1 =O NF2, they will react to e with a same output event e′. We can obtain
that e 	= ⊥ or else we have e ∈ [[h′]] ⊆ [[g′m]]. Also we have (sm,+) ∈ e′ as we
know that e ∈ [[gm]]. But we also assumed that e 	∈ [[g′m]] and have just deduced
that e ∈ [[g′m]] which leads to a contradiction. So the assumption is incorrect,
that is to say there is no event e satisfying e ∈ [[gm]] ∧ e 	∈ [[g′m]]

Similarly, we can prove that there is no event e satisfying e ∈ [[g′m]]∧e 	∈ [[gm]].
So the hypothesis is invalid and we have ∀m ∈ M • gm ≡ g′m Then we have
NF1 = NF2. �
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Based on the discuss above, we have proved lemma 1, I1 =O I2 =⇒ NF1 = NF2

and then we can obtain the relative completeness of algebraic semantics.

Theorem 3 (Relative Completeness). If two reactions are equivalent from
the operational perspective, they are also algebraically equivalent.

I1 =O I2 =⇒ I1 = I2

Finally, by proving theorem 2 and theorem 3, we have established the linking
theory of our operational semantics and the algebraic semantics.

Theorem 4. Two reactions are equivalent from the operational perspective if
and only if they are algebraically equivalent.

I1 =O I2 ⇐⇒ I1 = I2

The following example shows how two equal reactions react to the given event.

Example 5. Here are two different reactions.

I1 = (s−1 &!t || t+&!s2)\t || s+2 &!s3 || s+3 &!s1

I2 = (s−1 + s+2 + s+3 )&!s1 || (s−1 + s+2 · s−3 )&!s2

|| (s−1 + s+2 )&!s3 || (s−1 + s+2 · s−3 )&⊥
From the definition of normal form, we obtain that I2 is a normal form. And
from the algebraic laws, we can reduce the first reaction I1 to I2.

I1 = (s−1 &!t || t+&!s2)\t || s+2 &!s3 || s+3 &!s1 {depend− axiom}
= (s−1 &!t || (s−1 + t+)&!s2)\t || s+2 &!s3 || s+3 &!s1 {conc− 4}
= s−1 &!s2 || s+2 &!s3 || s+3 &!s1 {depend− 1}
= s−1 &!s2 || (s−1 + s+2 )&!s3 || s+3 &!s1 {depend− 2}
= (s−1 )&!s2 || (s−1 + s+2 )&!s3 || (s−1 + s+2 + s+3 )&!s1 {guard− 2, 3, 4}
= (s−1 )&!s2 || (s−1 + s+2 )&!s3 || (s−1 + s+2 + s+3 )&!s1

||(s−1 + s+2 · s−3 )&⊥ {guard− 2}
= (s−1 + s+2 + s+3 )&!s1 || (s−1 + s+2 · s−3 )&!s2

|| (s−1 + s+2 )&!s3 || (s−1 + s+2 · s−3 )&⊥
= I2

From these reducing steps we obtain that I1 and I2 are equal algebraically,
I1 = I2. Then we give the transitions of these two reactions with the same input
e to show that they are also equal in our operational semantics.
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When the input e consists (s2,+) and (s3,−) or just consists (s1,−), both
reactions will be terminated in chaos. We give the example transitions with the
input event e = {(s1,−)}.

〈I2, e〉 −→ 〈⊥, e〉term
〈I1, e〉 −→ 〈(!t || t+&!s2)\t || s+2 &!s3 || s+3 &!s1, {(s1,−)}〉

−→ 〈!s2 || s+2 &!s3 || s+3 &!s1, {(s1,−)}〉
−→ 〈s+2 &!s3 || s+3 &!s1, {(s1,−), (s2,+)}〉
−→ 〈!s3 || s+3 &!s1, {(s1,−), (s2,+)}〉
−→ 〈s+3 &!s1, {(s1,−), (s2,+), (s3,+)}〉
−→ 〈!s1, {(s1,−), (s2,+), (s3,+)}〉
−→ 〈⊥, e〉term

When the input e consists (s2,+) and does not consist(s1,−), (s2,−) and (s3,−),
both reactions will be terminated in 〈Π, {(s1,+), (s2,+), (s3,+)}〉term. We give
the example transitions when e = {(s2,+)}.

〈I2, e〉 → 〈!s1 || (s−1 + s+2 · s−3 )&!s2 || !s3 || (s−1 + s+2 · s−3 )&⊥, {(s2,+)}〉
→ 〈(s−1 + s+2 · s−3 )&!s2||!s3||(s−1 + s+2 · s−3 )&⊥, {(s1,+), (s2,+)}〉
→ 〈(s−1 + s+2 · s−3 )&!s2||(s−1 + s+2 · s−3 )&⊥, {(s1,+), (s2,+), (s3,+)}〉
→ 〈Π, {(s1,+), (s2,+), (s3,+)}〉term

〈I1, e〉 −→ 〈(s−1 &!t || t+&!s2)\t || !s3 || s+3 &!s1, {(s2,+)}〉
−→ 〈(s−1 &!t || t+&!s2)\t || s+3 &!s1, {(s2,+), (s3,+)}〉
−→ 〈(s−1 &!t || t+&!s2)\t || !s1, {(s2,+), (s3,+)}〉
−→ 〈(s−1 &!t || t+&!s2)\t, {(s1,−), (s2,+), (s3,+)}〉
−→ 〈(t+&!s2)\t, {(s1,−), (s2,+), (s3,+)}〉
−→ 〈(Π)\t, {(s1,−), (s2,+), (s3,+)}〉
−→ 〈Π, {(s1,−), (s2,+), (s3,+)}〉term.

From the above two parts of transitions, we find that I1 and I2 are also equivalent
with respect to the operational semantics, I1 =O I2.

6 Conclusion

In this paper, we have investigated the semantics for instantaneous reactions
from an operational perspective. We have explored a structural operational se-
mantics for instantaneous signal calculus, which exhibits the effect of how reac-
tions react to the environment. Further, we have investigated the linking theory
of operational semantics and algebraic semantics for instantaneous reactions. On
one hand, all the algebraic laws concerning the distinct features for instantaneous
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reactions can be established in terms of the suggested structural operational se-
mantics, i.e., if the equality of two differently written instantaneous reactions
is algebraically provable, the two reactions are also equivalent with respect to
the operational semantics. Thus we have claimed the soundness of algebraic
semantics in [1]. On the other hand, reactions which are equivalent from the
operational perspective can be reduced to the same normal form and thus we
have demonstrated the relative completeness of algebraic semantics with respect
to the operational semantics.

In the future, we will take sequential reaction and time-delayed reactions into
our consideration to complete the operational semantics for the instantaneous
calculus. We are also trying to use the Rewriting system Maude [19,20] to link
the operational semantics for Instantaneous Calculus.
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Appendix

Firstly, we give the following lemma and its proof before we come to prove
other laws.

Lemma 2. g&I || I =O I

Proof. Obviously, the chaos conditions for both program are the same, i.e.,
(s,−) ∈ e ∧ s ∈ ems(I) where e is the input event. Then, we consider the
normal termination situations.

1. For all input event e, if we have

〈I, e〉 −→∗ 〈Π, e′〉term
then we can have

〈g&I || I, e〉 −→∗ 〈g&I || Π, e′〉stable −→ 〈Π, e′〉term
2. For all input event e, if we have

〈g&I || I, e〉 −→∗ 〈Π, e′〉term
then we can find an intermediate configuration 〈g&I || Π, e′〉stable that,

〈g&I || I, e〉 −→∗ 〈g&I || Π, e′〉stable −→ 〈Π, e′〉term
Therefore, we can get

〈I, e〉 −→∗ 〈Π, e′〉term
�
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Based on the aboves, we have proved that Lemma 2 is true. Now we come to
prove the law of Guard-2.

Guard-2. g1&I || g2&I =O (g1 + g2)&I

Proof. It’s easy to find that the chaos conditions are the same. So we mainly
focus on the proof regardless of chaos.

For any e, if we have the transition

〈(g1 + g2)&I, e〉 −→∗ 〈Π, e′〉term,

if the guard for I can be fired, we can have e ∈ [[g1 + g2]]. And we can give an
intermediate configuration 〈I, e〉 that

〈(g1 + g2)&I, e〉 −→∗ 〈I, e〉 −→∗ 〈Π, e′〉term
For simplification, we assume that e ∈ [[g2]]. Then we have the transition

〈g1&I || g2&I, e〉 −→ 〈 g1&I ||I, e〉 −→ 〈I, e〉 −→∗ 〈Π, e′〉term
if the negation of the guard for I can be fired, we can have e = e′ and e ∈
[[ g1 + g2 ]] which implies that e ∈ [[g1]] and e ∈ [[g2]], then we have

〈g1&I || g2&I, e〉 −→∗ 〈 φ&I || φ&I, e〉 −→∗ 〈Π || Π, e〉 −→ 〈Π, e〉term
For the other side, the proof is just similar. Therefore, we have proved that
guard-3 is true in our operational semantics. �
Guard-3. g&(I1 || I2) =O g&I1 || g&I2

Proof. Similar to the proof of Guard-2, the chaos conditions for each program are
the same which can be expressed as e ∈ [[g]]∧ (s,−) ∈ e∧∃s • (s ∈ ems(I1)∨ s ∈
ems(I2)) with a given event e. Then we prove the equivalence of the normal
termination conditions.

1. For any e we have the implementation

〈g&(I1 || I2), e〉 −→∗ 〈Π, e〉 =⇒ e ∈ [[g]].

Hence, if the guard of I1 || I2 can be fired we can find an intermediate state
〈I1 || I2, e〉 of the transition.

〈g&I1 || g&I2〉 −→∗ 〈I1 || I2, e〉 −→∗ 〈Π, e′〉
Therefore, we get the transition

〈g&I1||g&I2〉 −→∗ 〈Π, e′〉.
if the negation of the guard for I1||I2 can be fired, we can have e = e′ and
e ∈ [[g]], then we have

〈g&I1 || g&I2〉 −→∗ 〈Π || Π, e〉 −→∗ 〈Π, e〉
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2. For any e we have the implementation

〈g&I1 || g&I2, e〉 −→∗ 〈Π, e〉 =⇒ e ∈ [[g]].

Hence, if the guards for I1 and I2 can be fired, we can find an intermediate
state 〈I1 || I2, e〉 of the transition.

〈g&(I1 || I2), e〉 −→∗ 〈I1 || I2, e〉 −→∗ 〈Π, e′〉
if the negation of the guards for I1 and I2 can be fired, we can find e = e′

and e ∈ [[g]], then we have

〈g&(I1 || I2), e〉 −→ 〈φ&(I1 || I2), e〉 −→ 〈Π, e〉
Therefore, we get the transition

〈g&(I1 || I2), e〉 −→∗ 〈Π, e′〉.
Finally we have proved that guard-3 is correct in our operational semantics. �
For other guard related laws like guard-4 (∅&I = Π), guard-5 (ε&I = I) and
guard-6 (g&Π = Π), their proofs are similar.

Depend-Axiom. g&!s || s+&I =O g&!s || (s+ + g)&I

Proof. Obviously, the chaos condition events for both reactions are the same,
i.e., e ∈ [[g]] ∧ (s,−) ∈ e or ((s,+) ∈ e ∨ e ∈ [[g]]) ∧ ∃t ∈ ems(I) • (t,−) ∈ e.
Therefore, we mainly focus on the proof based on the termination conditions.
Also, if the negation of the guard for !s can be fired, we can easily find that

g&!s || s+&I =O s+&I =O (s+ + g)&I =O g&!s || (s+ + g)&I

then we come to consider the situation when the guard for !s can be fired.

1. For any e, we have the implementation

〈g&!s || s+&I, e〉 −→ 〈Π, e′〉term =⇒ e ∈ [[g]] ∨ (s,+) ∈ e

Then we can have e ∈ [[s+ + g]] and then get the transition

〈g&!s || (s+ + g)&I, e〉 −→ 〈Π, e′〉
2. For any e, we have the implementation

〈g&!s || (s+ + g)&I, e〉 −→ 〈Π, e′〉term =⇒ e ∈ [[s+ + g]]

Then we can have e ∈ [[g]] ∨ (s,+) ∈ e and then get the transition

〈g&!s || s+&I, e〉 −→ 〈Π, e′〉
Based on the above parts, we have proved that the law of depend-axiom is true
in our operational semantics. �



Higher-Order UTP for a Theory of Methods

Frank Zeyda and Ana Cavalcanti

University of York, Deramore Lane, York, YO10 5GH, UK
{frank.zeyda,ana.cavalcanti}@york.ac.uk

Abstract. Higher-order programming admits the view of programs as
values and has been shown useful to give a semantics to object-oriented
languages. In building a UTP theory for object-orientation, one faces
four major challenges: consistency of the program model, redefinition of
methods in subclasses, recursion and mutual recursion, and simplicity. In
this paper, we discuss how the UTP treatment of higher-order programs
impacts on these issues and propose solutions to emerging problems. Our
solutions give rise to a novel UTP theory of methods.
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1 Introduction

Higher-order programming is a paradigm that admits programs as values. Using
the notation {|p|} for the program value p, varm • m := {|x := x + 1|} ; callm,
for instance, is equivalent to the program x := x +1. Thus, the local variable m
holds a program value whereas x is an integer variable. Generally, we have that
call {|p|} is equivalent to p, hence call can be regarded as the inverse of {| |}.

Higher-order programming has many useful applications and is prevalent in
guise in many modern programming languages. An extensive semantic account
based on predicate transformers is given in [9,10]. Our motivation is to reason
about object-oriented programs: we take method definitions as assignments to
program-valued variables that can be updated by method redefinitions.

There are a number of challenges in defining a comprehensive semantics of an
object-oriented language and reasoning about object-oriented programs. Many
of these have been addressed, for example, in [8,1,6,14]. Our objective in this
paper is, however, not to present a comprehensive model for object-orientation
but complement existing and on-going research efforts by presenting practical
solutions to issues arising from the modelling and redefinition of class methods.

In [7], Hoare and He examine the integration of higher-order predicates into
the Unifying Theories of Programming (UTP) framework. This includes the
treatment of programs as values as well as procedures with parameters. A pro-
gram value is said “to range over predicates, or rather some subset of predicates
(or programs)”. The word ‘program’ is used in the UTP sense here, thus referring
to a predicate that is constructed from a syntactic (program) expression.

To build on such a theory to reason about (object-oriented) programs, we
face four major challenges. The first is a consistent account of the notion of
program value. Program values are used to specify the behaviour of methods.

B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.): UTP 2012, LNCS 7681, pp. 204–223, 2013.
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As mentioned above, we do not handle a complete object-oriented theory; our
focus is on methods. Nonetheless, due to the modular nature of the UTP, our
work can be combined with existing UTP theories that address complementary
features such as modelling of classes and inheritance, as well as object references.

To reason about higher-order programs written in a particular language, we
require a method by which program values can be constructed. This usually
induces a particular model for program values in terms of predicates and begs
the question if there are constraints that such a model has to satisfy.

For instance, does the model have to be an encoding of some form of syntax or
can we equate program values directly with predicates of a suitable UTP theory?
The latter would be tempting as it is in harmony with the philosophy of the UTP,
which is agnostic to syntactic issues and focuses on the semantic properties of
objects. However, there are potential pitfalls. To illustrate this, we assume that
program values are higher-order predicates themselves. The {| |} operator then
becomes a type constructor that turns a higher-order predicate into a (program)
value. Because the set of predicates with a single variable whose value ranges
over some type is equipotent to the subsets of such values, the domain of the {| |}
function would have a higher cardinality than its range. Therefore, its use as a
type constructor is unsound (it fails to be injective). This is a well known issue
in recursive data type definitions, and is, for example, illustrated in [15]. We can
remedy the situation by confining ourselves to finitely expressible predicates. For
an arbitrary UTP theory, however, we usually do not assume that all elements
of the underlying predicate lattice are finitely expressible; this would already
amount to narrowing the discourse to more specific families of theories.

The above hence shows that we cannot admit just any predicate as a pro-
gram value. The account in [7] does in fact restrict the admissible higher-order
predicates indirectly by constraining the type of higher-order variables. This
effectively excludes recursions like p := {|x := x + 1 ; call p|}.

A second challenge that we face is method redefinition. In a view of methods
as program variables, a method redefinition is an update to an existing program
value. In the UTP theory of object-orientation presented in [14], for instance,
this is handled by relying on the fact that program values are syntactic elements
of a particular form that reflects the hierarchy of classes where the method is
(re)defined. This is a simple elegant solution that enables the use of the copy
rule to give semantics to method calls. On the other hand, it ties the theory to
a specific syntax of programs, which is against the UTP philosophy.

Recursion, and, in particular, the extensive use of mutual recursion in object-
oriented programs impose a third challenge. As already explained, the theory
in [7] does not permit the use of a program variable itself in its value. This
means that recursion has to be treated in the context defined by the particular
notion of programs. In [14], this is achieved by taking fixed points in the UTP
theory that is used to give semantics to the syntactic elements taken as program
values. To treat mutual recursion, it is therefore necessary to give semantics to
all method definitions (and their redefinitions) together. This is illustrated by
the following example, where we have two program variables m1 and m2 that
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represent methods that mutually call each other (they calculate | x − y |). Prior
to encoding the methods as a predicate, the recursions have to be eliminated.

m1,m2 := {|μX ,Y •
〈
(x := x − 1 ; Y ) � x > 0 � II,
(y := y − 1 ; X ) � y > 0 � II

〉
|}

As shown, this gives rise to fixed-point constructions in the program values.
Another issue arises if m1 is redefined later on. Such a redefinition does not
merely affect the value ofm1, but alsom2 as the fixed point needs to be calculated
afresh. Though this approach is feasible, it forfeits compositionality.

A final challenge is simplicity. Higher-order programs are just one of the many
aspects of an object-oriented program. We strive for simplicity, although this can
be fully appreciated only once we combine our theory with other UTP theories
(to cater to concurrency, time, sharing, and so on).

Our contribution in this paper is to examine solutions to all these challenges
to provide a UTP theory that can be used in the context of a theory of object-
orientation like that in [14]. We first illustrate the construction of a sound se-
mantic model for higher-order predicates. Importantly, our program model does
not encode programs as syntax, but directly in terms of their semantics as pred-
icates. We show how, in spite of that, we can still cope with method redefinition
by using a combination of syntax and semantics in the program model; this also
turns out to be useful for the semantic encoding of procedures with parameters.

Finally, we provide a sound solution for the (mutual) recursion problem. This
does not affect the underlying semantic model of higher-order predicates and
hence does not compromise consistency.

The structure of the paper is as follows. In Section 2 we review the UTP in
its higher-order version. Section 3 describes a consistent model of higher-order
predicates that is based on predicates rather than a fixed syntax. In Section 4
we propose a UTP theory of methods that overcomes the restriction on the
use of recursion in [7]. Section 5 includes some discussions and revisits the initial
problem presented above, and in Section 6 we report on related and future work.

2 Preliminaries

In this section, we discuss specific features of higher-order UTP, assuming the
reader is familiar with standard UTP. We also give some brief background on
the theory of object-orientation in [14], which motivated the work in this paper.

2.1 Higher-Order UTP

The Unifying Theories of Programming [7] is a mathematical framework that
provides means for defining the semantics of a variety of programming languages
and modelling notations. The primal extension in higher-order UTP is the in-
clusion of procedure variables. Procedure variables are declared and used just
like standard variables. For example, var p : proc{x ,x ′} ; p := {|x := x + 1|} in-
troduces a (local) procedure variable p that holds predicates whose alphabet is
{x , x ′}, and assigns to it the program x := x + 1. Procedure values are directly
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identified with predicates of some theory of designs or programs. The purpose of
{| |} is merely “to distinguish what is to be stored from what is to be executed”
as stated in [7]. Otherwise, the brackets have no semantic significance and are
simply omitted in a procedure call.

Procedure variables can be written as executable statements in a predicate.
For example, var p ; p := {|x := x + 1|} ; p ; end p is equivalent to x := x + 1.
The type of p has been omitted in the declaration, but we note that all variables,
whether they are standard variables or procedure variables, need to have a type.
The notion of a procedure type is explained in more detail in the next section.
For clarity, we hereafter make the invocation of a procedure variable explicit by
writing call p rather than just p as in [7].

A fundamental law about procedure calls is recaptured below.

(p := {|Q |} ; call p) = (p := {|Q |} ; Q)

It entitles us to replace the invocation of a procedure by its definition and can
be regarded as a manifestation of the copy rule.

An intricacy in higher-order UTP arises from the desire that procedure as-
signment ought to be monotonic with respect to refinement. Formally,

P  Q ⇒ (p := {|P |})  (p := {|Q |})
This cannot be true if assignment has its standard meaning of equating the
primed variable with the assigned expression. This issue and a new definition of
refinement were first discussed in [9]. Hence, in higher-order UTP, the meaning
of assignment is modified. Here, the semantics of p := {|Q |} is a non-determinism
that constrains the value of p′ to be any refinement of Q .

p := {|Q |} =̂ (true � (Q  p′)) ∧ (v  v ′)

where α(p := {|Q |}) = {p, p′, v , v ′}. The new definition implies that we require a
notion of refinement of values. For standard values, this is just a flat order, and
for program values it is the underlying refinement order on predicates.

Procedures with parameters are supported through functions that map values
or variables to (higher-order) predicates. This is essentially the approach that
is described in [2]. Permitted are both value and result parameters, and their
semantics is expressed in terms of a more general construct {|λ x : var(T ) • P |}
which corresponds to a procedure that takes a variable of type T as a parameter.

In [7] further aspects of the theory are discussed related to functions and
declarative programming. They are not relevant for the material in this paper
though. In terms of terminology, we shall use the word ‘program’ from here on
in preference of ‘procedure’ and reserve the later for programs with parameters.
We next give a brief summary of Santos’ theory of object-orientation.

2.2 A Theory of Object-Orientation

The theory in [14] builds on an integration of the theory of UTP designs and
higher-order programs. The theory introduces observational variables that de-
termine declared classes, their attributes, as well as the subclass order. Methods
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are encoded via higher-order program variables, and only one variable is used
for all redefinitions (overridings) of a method in subclasses.

The theory supports declarations of classes, attributes and methods, and
hence entails the possibility to reason about class and method definitions, as well
as particular object-oriented programs. Dynamic binding is supported by im-
posing a certain syntactic structure on method definitions that resolves method
binding as part of the method invocation. Namely each value of a method vari-
able has a fixed syntactic structure illustrated below.

(p1 � self is C1 � (p2 � self is C2 � (. . . (pn � self is Cn �⊥oo) . . .)))

Above, self is an auxiliary variable that determines the target of a method
invocation. The pi are basically specifications of the same method, albeit defined
in different subclasses C1, C2, . . ., Cn . The cascade of tests is used to resolve
dynamic binding when the method is called on an object, with tests against
more concrete types being carried out before tests against more abstract types.

Method redefinition in a class C has to inject a new test (p � self is C � ...)
at the right place into this cascade, depending on where C fits into the subclass
hierarchy. Redefinition of methods is therefore a syntactic transformation of the
top-level cascade of tests; this is made possible in [14] by the fact that programs
are uniformly treated as syntax.

3 A Program Model

Our first challenge is to provide a consistent account of a program model. As
already explained, our goal is an account that does not assume a fixed syntax for
program values but identifies them directly with the predicates of a UTP theory.
This enables us to consider a generic theory of object-orientation, independent
of the syntax in which we write, for instance, the body of a method.

On the other hand, to take advantage of the approach in [14] to method redef-
inition and dynamic binding, we do not exclude syntax entirely. In Section 3.1,
we first prove soundness of treating program values directly as predicates of an
arbitrary UTP theory. This is a useful insight for any work that uses higher-
order UTP. Our motivation, as hinted above, is to eradicate any constraints on
the underlying theory in which we express the computational effect of methods
when instantiating a generic theory of object-orientation. We then extend this
argument (Section 3.2) by making a case for the safe combination of syntax and
semantics to support method redefinition as in [14]. This provides us with full
flexibility on the one hand to remain in the realm of semantics but escape into
syntax where this is beneficial to the model and operator definitions.

3.1 Consistency of Higher-Order Programs

As already pointed out, in a sound program model, program values cannot range
over arbitrary predicates. The treatment in [7] rules this out by restrictions
on alphabets that effectively prohibit recursion. More precisely, this is done by
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introducing a notion of variable type for higher-order predicates that does not
admit circularity. The corresponding BNF-like encoding is reproduced below.

<type> ::= <program type> | <base type>

<program type> ::= ProcType(<alphabet>)

<alphabet> ::= list of (<variable> : <type>)

<base type> ::= BaseType(int) | BaseType(bool) | . . .
The dots indicate that we might have further type constructors for base values,
for instance, to create composite values like pairs or (finite) sets. As long as those
constructors are sound and only recursive into <base type>, this is not an issue
and does not invalidate any of the subsequent reasoning.

As briefly discussed in the introduction, with the restriction in [7] to predicates
whose variable types are finite terms constructed by the above rules, recursion
is effectively excluded. To illustrate this, we consider the invalid predicate

p := {|x := x + 1 ; call p|}
In this example, it is already clear though that to define the type of the variable
p, we would need to refer to that type itself, and this circularity is not allowed.
Mutual recursion gives rise to similar situations. We use {| |} only informally here
since we have not formally established its existence and semantics yet.

In the sequel we argue that the finitary nature of types is sufficient to ensure
consistency. This is a result left implicit in [7]. The argument that we present
clarifies important issues related to the treatment of higher-order programs. It
can also be used as a basis for a formal treatment of the UTP theory of higher-
order programs and its embedding in a theorem prover. Our argument is based
on the inductive construction of a model. For this, we first define the notion of
the rank of a type inductively over the type structure.

rank(BaseType(t)) = 0 and

rank(ProcType(list of [v1 : t1, v2 : t2, . . .])) = max {rank(t1), rank(t2), . . .}+ 1

Since types are finite by construction, the above recursion properly defines the
rank of any given type. We define the rank of a variable to be the rank of its
type. The rank of an alphabet is defined as the maximum rank of its variables,
and the rank of a predicate is defined just as the rank of its alphabet.

Intuitively, the rank determines the maximal nesting level of program abstrac-
tions in a predicate. For instance, the predicates of rank 0 are just the standard
predicates; predicates of rank 1 include program variables whose values are stan-
dard predicates; predicates of rank 2 moreover admit program values being rank
1 predicates, and so on. Thus, x := 1 is a rank 0 predicate, m1 := {|x := 1|} is a
rank 1 predicate, and m2 := {|x := 1 ; callm1|} is a rank 2 predicate.

The motivation for introducing a notion of rank is twofold: first we observe
that it allows us to partition all higher-order predicates into an enumerable
succession of higher-order predicate subsets since every valid predicate must
have a finite rank. Secondly, we shall see that the concept of ranks is also central
in a theory of methods, which we propose and discuss in Section 4.
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We next give a constructive definition of a function pred(n) that yields the
predicates of a given rank; our motivation is to subsequently use it to construct
the predicates of arbitrary ranks, and as mentioned in the last paragraph, these
encompass all valid higher-order predicates. We name StdPred the standard
(non-higher-order) predicates and define, again inductively,

pred(0) = StdPred and pred(n + 1) = lift(pred(n), pred(n))

This definition rests on the existence of a lifting function lift (ps , vs), which takes
a set of predicates ps and lifts them into a set of predicates that introduce pro-
gram variables that range over the values in vs , which are predicates themselves.
By way of an example, we have that pred(1) = lift(StdPred , StdPred). These are
the standard predicates augmented with variables whose values can range over
standard predicates. We can convince ourselves that in general the application
of lift (ps , ps) admits predicates one rank higher than those in ps .

A precise constructive definition of lift can only be given with respect to a core
semantic encoding of predicates, like the one in [12], which characterises them in
terms of binding sets. Rather than defining lift for a specific model, we instead
present an abstract axiomatic characterisation that relies on four operators, α p,
m = v , � ps and ' ps . The value of lift(ps , vs) is equated with the smallest
set of predicates hps that satisfies the following five properties.

A1 ps ⊆ hps

A2 ∀m : ProcType(l) • ∀ v : vs | SetOf (l) = α v • m = v ∈ hps

A3 ∀ ps ⊆ hps • � ps ∈ hps

A4 ∀ ps ⊆ hps • ' ps ∈ hps

A5 � and ' are the meet and join of a complete lattice 
The axioms capture elemental correctness properties of the lifting that ensure
completeness of the lifted model and that we retain the property of a complete
lattice. The boxed operators have to be provided by the core predicate model.
Here, α p determines the alphabet (set of variables) of a predicate p, m = v
constructs a simple equality between a variable m and a value v , and � ps and
' ps are the greatest lower bound and least upper bound of a set of predicates
with respect to an ordering that serves as refinement. The latter two operators
are moreover used to define disjunction and conjunction of predicates in the lifted
model. This is by virtue of p1 ∨ p2 = � {p1, p2} and p1 ∧ p2 = ' {p1, p2}.

The first property A1 establishes monotonicity, namely that each lift extends
the previous predicate rank. From it we can prove, by induction over the rank,
that ∀n ≤ m • pred(n) ⊆ pred(m). The second property A2 is a family of
axioms for each alphabet given by the list l . The alphabet encoded by a list
simply corresponds to the elements in the list, and we use the function SetOf
to obtain the list elements as a set. A2 introduces new predicates into the lifted
model; they are just simple equalities over (new) program variables. We note
that generally, the predicates in vs have a variety of types.
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A3 and A4 are closure properties that enable us to construct arbitrary predi-
cates over the added program variables and values. We note that no closure axiom
for negation is needed because ¬ m = v , for instance, can be constructed by
� {w | w 	= v • m = w}, the disjunction of all predicates m = w where w 	= v .
We can think of A2 as providing the building blocks for constructing predi-

cates over program variables of the successor rank. If we consider, for example,
the lifting of rank 0 predicates, m = {|x := 1|} and m = {|x := 2|} are admitted
by A2 and m = {|x := 1|} ∨ m = {|x := 2|} is admitted by A3. In this way,
the complete lattice of successor rank predicates is constructible. A refinement
ordering  on predicates exists by A5. The top and bottom of the lattice are
obtained by the meet and join over empty sets: � =̂ � {} and ⊥ =̂ ' {}.

The question of the semantics of lift has now been pushed into the definition of
α p, m = p, � ps and ' ps in a core predicate model. For their interpretation
in that model, we require that the operators obey the algebraic laws that are
presented in [7]. This validates the soundness of the operator definitions in the
lifted predicate model. We next define the set pred as follows.

pred =
⋃ {n ∈ N • pred(n)}

It contains all predicates of any rank. We claim that if StdPred are the standard
predicates, and the boxed operators are soundly defined, in the above sense, pred
is also a model for precisely the higher-order predicates considered in [7]. The
axioms A1 to A5 are sufficient to establish this. The purpose and motivation for
the lift function now becomes clear as being primarily a utility for constructing
the entire set of admissible higher-order predicates.

To conclude the consistency argument, we observe that {| |} only has to be
injective on the predicates that are well-formed, thus having non-circular types
as introduced above. We trivially define it as follows.

{| |} =df (λ p : pred • p) where dom {| |} = pred

It is simply the identity on pred . Clearly, {| |} is injective on pred , so it serves as
a sound type constructor for program values. We have thus shown that it is safe
to treat higher-order UTP predicates as semantics just like the standard ones,
and in doing so also illustrated the layered construction of a predicate model.
The cardinality of values from <base type> is moreover irrelevant. Namely, the
carrier sets of base value types may be infinite, even uncountably so.

3.2 Syntax and Semantics in Program Values

We have now established the use of predicates directly as program values. On the
other hand, in order to support the approach in [14] for redefinition of methods
in subclasses, it turns out that part of the program value in fact has to be kept as
syntax as explained in Section 2.2. Our treatment views them as predicates and,
despite the discussed benefits, this invalidates the transformational approach.
Our solution is to alter the iterative definition of pred(n) as follows.

pred(n + 1) = lift(pred(n), embed(pred(n)))

The only modification is the application of a function embed to the set of pred-
icates that determines the values of programs at the next rank. This function
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realises the syntactic embedding of the semantic entities. The definition of lift
remains fundamentally the same. The only implication is that the α function
in A2 now has to extract the alphabet of a predicate that is embedded in a
segment of syntax. This is not a problem: we can define the extraction function
inductively over the data type that encodes the syntactic structure.

In the above example, the syntax is specified by the following generic data
type that represents a method in [14]. (We use the Z notation [16].)

METH [PRED ] ::=

CondSytx 〈〈METH × CVALUE ×METH 〉〉 | BotSytx | Body 〈〈PRED〉〉
This is a Z definition of a new data type METH , which is generic (PRED is
a type parameter). As usual, the bar is used to separate the definition of type-
constructor functions and between 〈〈. . .〉〉 brackets, we specify the types of those
functions. The type constructor CondSytx encodes the syntax c1 � self is C � c2,
where the underlined elements may themselves be pieces of syntax. BotSytx
encodes the syntax of ⊥oo , the bottom element in the theory of [14]. The con-
structor Body is non-recursive and injects the semantics of a method body as a
predicate, supplied by an element of the generic type PRED , into the syntactic
domain defined by METH . Hence we have embed(ps) = METH [ps ].

We note that despite the presence of the embed function in the lifting, the
result of the lifting is still a predicate set. On the other hand, the call operation
has to be adjusted when identifying METH [PRED ] with program values. We
require an additional layer of denotation in the definition of callm that turns
a value from METH [PRED ] into a value of PRED . This can be achieved by
interpreting the conditional and bottom with their usual definitions in the UTP.
The denotation is inductively defined over METH [PRED ]. It also serves as a
basis for defining refinement on the syntactic program values.

Our conclusion in this section is that we have a certain leeway to mix syntax
and semantics, as long as we can provide a way of embedding the semantics into
the syntax and provide a denotation in terms of the embedded predicate model.
Having established the soundness of a suitable program model for our purposes,
in the next section we examine issues that emerge from method redefinition.

4 A Theory of Methods

In this section, we illustrate a fundamental challenge posed by method definition
and redefinition in theories of object-orientation. This motivates us to propose a
novel UTP theory of methods that overcomes the problem. It exploits the notion
of programs as predicates, as established in the previous section, and is applicable
and useful in any context where higher-order variables are used to record method
behaviour. Importantly, it restores the simplicity of the treatment in [14] in the
view of the issues raised and thereby paves the way for a compositional semantics.

In Section 4.1 we illustrate a fundamental problem with method redefinition
in theories of object-orientation, and in Section 4.2 we present our solution. As
mentioned, the primary motivation is to solve issues of compositionality when
defining methods, but also to unify the treatment of method (re)definition.



Higher-Order UTP for a Theory of Methods 213

4.1 Method Definition Revisited

As an example, we consider the following higher-order predicate.

S1 =̂ m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; callm1|}

It captures the definition of two methods, recorded by the program variables m1

and m2. We observe that m1 is a rank 1 variable whereas m2 is a rank 2 variable.
Hence, the predicate S1 is a rank 2 predicate.

We first observe that, in general, to encode programs by way of method vari-
ables, we cannot restrict ourselves to predicates of a rank lower than 2. This begs
the question whether rank 2 is enough to encode all possible object-oriented pro-
grams? Unfortunately, the answer is ‘no’. For instance, assume we compose the
predicate S1 with the definition of another method m3.

S2 =̂ S1 ; m3 := {|x := x + 3 ; callm2|}

Clearly, the rank of variable m3 has to be one greater than the one of variable
m2. This renders S2 a rank 3 predicate. The issue is subtle because it depends
on the careful accounting for types in program variables. This has important
implications. In deciding the type of m3, we need to have knowledge of the type
ofm2 in S1 — its name is not enough. This is because the alphabet ofm3 does not
merely include standard variables for the inputs and outputs of the method, but
also program variables for methods that are called by the method; and clearly,
the type of m3 depends on the type(s) of those variables too.

This means that in general, we cannot give a compositional account of method
definition in cases where a method calls other methods, unless we make the type
of the called method(s) a parameter of that definition. In that case, the definition
of S2 would not be a predicate but a function that, if applied to a type, yields a
predicate, and further mechanisms would have to be put into place to instantiate
this type parameter. This kind of treatment is not unsound, in particular with
our result of admitting predicates of any rank, but it considerably complicates
the theory of object-orientation and its application.

Method redefinition further complicates matters because it can result in the
type of a method variable having to change. We consider the scenario where we
introduce another method m4 and then redefine m1 to call it.

S3 =̂ S2 ; m4 := {|x := x + 4|} ; m1 := {| callm4|}

The variable m1 above cannot possibly be the same m1 as in the definition of
S1 because there its rank is 1 whereas here its rank has to be at least 2. We can
envisage a solution in which we know in advance that m1 would subsequently be
redefined in terms of a program with a higher rank, and already use that higher
rank in typing m1 in S1. Such knowledge, however, is doubtful in practice and
certainly not available in a compositional treatment. In consequence, we have
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to redefine m1 together with all previous method definitions that depend on its
value. This gives rise to

S3b =̂

(
m1 := {| callm4|} ; m2 := {|x := x + 2 ; callm1|};
m3 := {|x := x + 3 ; callm2|} ; m4 := {|x := x + 4|}

)
We thereby tame the impact of the type change of m1 by adjusting the types
and definitions of all method variables that directly or indirectly call m1.

A similar problem arises even when redefinition does not involve a predicate
of a higher rank. To illustrate this, instead of m1 we redefine m2 in S2.

S4 =̂ S2 ; m4 := {|x := x + 4|} ; m2 := {| callm4|}
The rank of the new program value of m2 is the same as before, so this is not
an issue. However, originally the variable m4 was not in the alphabet of m2.
Introducing it during redefinition is again problematic since this changes the
type of m2, giving rise to exactly the same issues as illustrated before (since m3

calls m2). We could try and include all other method variables in the alphabet
of any method variable we introduce. But then, what rank(s) should those other
method variables have? This decision again imposes a priori restrictions on what
calls between methods are permissible at a future point; this is not practical.

As a note, the finite nature of alphabets prohibits inclusion of all method
variables, but we can get around this in practice by using a finite but large enough
repository of method variables. Although this style of modelling is somewhat
against the philosophy of the UTP, where alphabets are used in meaningful
ways, it is difficult to avoid even in the solution we propose in the sequel.

Motivated by the above observations, we next present a treatment in which
the rank of any method variable is not greater than 2. The rank of a predicate
encoding an object-oriented program is thus not greater than 2 either.

4.2 A UTP Theory of Methods

We present our theory in the usual UTP style. The observational variables of the
theory are program variables that represent methods. We only include program
variables at rank 1 and rank 2 and call them method variables hereafter. The
rationale for this is that all method definitions we introduce shall constrain rank 2
variables, while all calls within those definitions will be to rank 1 variables.

In the sequel we use overbars to highlight the rank of a method variable. Thus
m is a rank 1 method variable and m is a rank 2 method variable. No overbar
indicates a standard program variable (rank 0). We note that the overbars are
mere annotations that highlight the type of the variable.

To illustrate the main idea, below we encode the predicate S1 presented earlier
on in Section 4.1. We name it T , rather than S , to emphasise that this predicate
belongs to the theory of methods we develop here.

T1 =̂ m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; callm1|}
Close inspection reveals an important difference: the call is to m1 rather than
to m1 as it was the case in S1. Method assignment is uniformly carried out to
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rank 2 variables, highlighted by two overbars in the assigned method variables
m1 and m2. Although, in principle, the first assignment could be to a rank 1
variable, our approach puts uniformity above such ad hoc optimisations.

Next, we sequence T1 with a predicate that introduces another method that
calls m2, as we did in S2. This now yields

T2 =̂ T1 ; m3 := {|x := x + 3 ; callm2|}

Once again, the call is to m2 rather than m2. This shows that the rank of method
variables does not increase with subsequent definitions of methods, and neither
does it increase upon method redefinition. However, mx and mx are clearly
different variables, and our theory hence has to create a link between them.

This is achieved by a single healthiness condition. It establishes a connection
between rank 1 and rank 2 method variables of the same name. To formulate
it, we require a way to refer to the name of a variable rather than its identity,
which includes its type. To facilitate notation, we shall assume that m and m
have the same name, and moreover that a quantification ∀m m • P [m,m] is
over variables that have rank 1 and rank 2 and the same name. In this way, we
do not have to talk about names and types explicitly.

The healthiness condition HM is defined as follows.

HM(P) = P ∧ (∀m m | {m,m} ⊆ αP • [callm ⇔ callm]0)

It states that two method variables in P of the same name, but at different
ranks, have to be consistent in terms of the constraints they impose on program
variables ([ ]0 is the closure operator over standard (program) variables).

We can think ofHM, together with the constraints imposed on rank 2 method
variables by a predicate of the theory, as defining a family of equations that con-
strain the value of rank 1 method variables and thereby yield an interpretation
of methods purely in terms of standard predicates. This interpretation falls out
when we quantify over the rank 2 method variables in a healthy predicate and
observe the corresponding rank 1 method variables. It corresponds to an encod-
ing of methods in terms of weakest fixed points of a recursive equation that uses
recursive parameters instead of method variables. For instance, the predicate
(∃m1 m2 • T1) is equivalent to the concurrent assignment

m1,m2 := {|μX ,Y • 〈x := x + 1, (x := x + 2 ; X )〉|}

where call statements in T1 have been eliminated by virtue of a multi-variable
recursion over standard predicates. For two variables, this takes the general form
µX ,Y • 〈F (X ,Y ),G(X ,Y )〉. We note that above only G recurses (into X )
whereas F depends on neither X nor Y . Such a transformation was already used
in [14] to deal with (mutual) recursions. Our claim is that both interpretations
are mathematically equivalent. To support this conjecture, we first quote Hoare
and He in [7]: “The inclusion of high order variables does not increase the power
of the language”. Secondly, in the particular example, we can use fixed-point laws
to show that X is equivalent to x := x + 1 and Y is equivalent to x := x + 3. A
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formal proof is presented at the end of the section that this is exactly the value
of m1 and m2 in T1. Proving the general case is still future work and requires a
precise definition of how to transform one representation into the other.

We next present some essential properties and laws of our theory.

Closure of operators. The notion of a conjunctive healthiness condition is for-
mulated in [5] and means that the healthiness condition can be expressed in the
form CH(P) = P ∧ γ for some constant predicate γ. In our case, that predicate
is not constant though, as it depends on the alphabet of P . In particular, we
have HM(P) = P ∧ γHM (αP) where

γHM (a) = (∀m m | {m,m} ⊆ a • [callm ⇔ callm]0)

Despite this, we can recover essential closure properties that hold for conjunc-
tive healthiness conditions. They are, however, subject to additional caveats. To
formulate them, we first require a notion of compatibility of alphabets.

Definition 1. Two alphabets a1 and a2 are compatible if, and only if,

∀m m • (m ∈ a1 ∧ m ∈ a2)⇔ (m ∈ a1 ∧ m ∈ a2)

Intuitively, compatibility implies that if alphabets share a method variable with
the same name but at different ranks, each alphabet has to include both instances
of that variable. By way of illustration, the alphabet pairs ({m1,m1}, {m1,m1}),
({m1,m1}, {m2,m2}) and ({m1}, {m2}) are compatible but ({m1}, {m1}) is not.

It is easy to show that compatibility is reflexive and symmetric, however, it
is not transitive. The latter we illustrate by observing that ({m1}, {m2}) and
({m2}, {m1}) are compatible alphabet pairs, but ({m1}, {m1}) is not.

Compatibility of alphabets enjoys closure properties with respect to set oper-
ations like union, intersection and difference. The following law specifies them.

Law 1. Let (a1, a2) and (a1, a3) be compatible alphabets. Then,

(a1, a2 ∪ a3) , (a1, a2 ∩ a3) and (a1, a2 \ a3) are compatible alphabets.

An important property of γHM is formulated by the following lemma.

Lemma 1. Let a1 and a2 be compatible alphabets. Then we have

γHM(a1 ∪ a2) = γHM(a1) ∧ γHM(a2)

The law is proved by splitting the universal quantification in γHM into a con-
junction of two parts in which m and m range over a1 and a2, respectively; this
succeeds because of the compatibility property. A mechanised theory in Isabelle
HOL that proofs the above law and lemma is available [17]. The lemma enables
us to prove closure under conjunction of HM-healthy predicates.

Law 2. Let P and Q be HM-healthy predicates with compatible alphabets. Then,

P ∧ Q is a HM-healthy predicate.
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Proof. We show that P ∧ Q is a fixed point of HM.

P ∧ Q

≡ “P and Q are HM-healthy”

HM(P) ∧ HM(Q)

≡ “unfolding definition of HM”

(P ∧ γHM(αP)) ∧ (Q ∧ γHM(αQ))

≡ “reordering conjuncts”

(P ∧ Q) ∧ (γHM(αP) ∧ γHM(αQ))

≡ “Lemma 1”

(P ∧ Q) ∧ γHM((αP) ∪ (αQ))

≡ “rewriting (αP) ∪ (αQ) into α (P ∧ Q)”

(P ∧ Q) ∧ γHM(α (P ∧ Q))

≡ “folding definition of HM”

HM(P ∧ Q)

Unfortunately, compatibility of alphabets is insufficient for closure under dis-
junction. There, we require the stronger proviso of the alphabets being equal.

Law 3. Let P and Q be HM-healthy predicates with equal alphabets. Then,

P ∨ Q is a HM-healthy predicate.

In general, if we restrict ourselves to predicates over the same alphabet, all theo-
rems for conjunctive healthiness conditions proved in [5] continue to hold. This is
because in that case, we can treat γHM(αP) as a constant. We thus have closure
under sequential composition, too, proved by factoring γHM(a) into orthogonal
constraints on undashed and dashed variables: γHM(in a) ∧ γHM(out a). Re-
quiring equal alphabets may nevertheless be a strong caveat, for instance, in the
presence of local variable blocks that incur alphabet changes. The motivation for
alphabet compatibility can also be understood as an attempt to weaken the as-
sumptions of closure laws in our theory. Exploiting it further in order to discover
laws with weaker assumptions is on-going research.

Lastly, also following from [5], the set of HM-healthy predicates over a fixed
alphabet is a complete lattice, as it is the image of a monotonic and idempotent
healthiness function [7]. Further properties detailed in [5] consider the interaction
with designs; they also transfer to our work. We next examine how we use the
theory to reason about programs.

Application example. We first introduce a utility law that allows us to extract
properties of specific method variables from an HM-healthy predicate. This law
facilitates reasoning about methods and will also be used later on. To express
it concisely, we extend the use of the α operator to apply to method variables
also, where it yields the alphabet of the underlying procedure type.
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Law 4. Assume P is HM-healthy and we have {mx ,mx} ⊆ αP, αmx ⊆ αP,
and αmx ⊆ αP. Then, P = P ∧ (callmx ⇔ callmx ).

Proof

P ≡ “P is HM-healthy”

HM(P)

≡ “unfolding definition of HM”

P ∧ (∀m m | {m,m} ⊆ αP • [callm ⇔ callm ]0)

≡ “specialisation of quantification with mx and mx”

P ∧ . . . ∧ [callmx ⇔ callmx ]0

≡ “specialisation of quantification (universal closure)”

P ∧ . . . ∧ (callmx ⇔ callmx )

≡ “logic and folding definition of HM”

HM(P) ∧ (callmx ⇔ callmx )

≡ “P is HM-healthy”

P ∧ (callmx ⇔ callmx )

Another useful law is a predicative version of the substitution rule.

Law 5. P [Q1] ∧ (Q1 ⇔ Q2) = P [Q2] ∧ (Q1 ⇔ Q2) where the notation P [Q ]
expresses that the predicate Q occurs in another predicate P.

Let us revisit S1. We encode it in our theory as illustrated below.

T1 =̂ HM(m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; callm1|})
We note that the assignments above are relational assignments rather than gen-
eralised higher-order assignments. The simple technical reason for this is to take
advantage of the one-point rule; it is not a limitation of our theory.

The transformation below exemplifies how we reason about T1.

T1 ≡ “unfolding definition of HM, let γ∗
HM =̂ γHM({m1,m2,m1,m2})”

(m1 := {|x := x + 1|} ; m2 := {|x := x + 2 ; callm1|}) ∧ γ∗
HM

≡ “unfolding sequential compositions and assignments, one-point rule”

(m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; callm ′

1|}) ∧ γ∗
HM

≡ “Law 4 with (m ′
1,m

′
1) and (m ′

2,m
′
2), predicate is HM-healthy”(

m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; callm ′

1|} ∧
(callm ′

1 ⇔ callm
′
1) ∧ (callm ′

2 ⇔ callm
′
2)

)
∧ γ∗

HM

≡ “one-point rule using m
′
1 = {|x := x + 1|} and m

′
2 = {|x := x + 2 ; callm ′

1|}”⎛⎝m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; callm ′

1|} ∧
(callm ′

1 ⇔ call {|x := x + 1|}) ∧
(callm ′

2 ⇔ call {|x := x + 2 ; callm ′
1|})

⎞⎠ ∧ γ∗
HM
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≡ “cancellation law: call {|p|} = p”⎛⎝m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; callm ′

1|} ∧
(callm ′

1 ⇔ x := x + 1) ∧
(callm ′

2 ⇔ (x := x + 2 ; callm ′
1))

⎞⎠ ∧ γ∗
HM

≡ “Law 5 using callm ′
1 ⇔ x := x + 1 ”⎛⎝m

′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; callm ′

1|} ∧
(callm ′

1 ⇔ x := x + 1) ∧
(callm ′

2 ⇔ (x := x + 2 ; x := x + 1))

⎞⎠ ∧ γ∗
HM

≡ “simplification of sequence: (x := x + 2 ; x := x + 1) = (x := x + 3)”⎛⎝m
′
1 = {|x := x + 1|} ∧ m

′
2 = {|x := x + 2 ; callm ′

1|} ∧
(callm ′

1 ⇔ x := x + 1) ∧
(callm ′

2 ⇔ x := x + 3)

⎞⎠ ∧ γ∗
HM

The last step makes precise the effect of calling the methods m1 and m2. It
agrees with our intuition and moreover shows the validity of the copy rule.

To summarise, in this section we have presented a novel theory of methods
that deals with the issues raised when using higher-order UTP to model object-
oriented software. For instance, it allows us to redefine m1 in T1 as follows.

T2 =̂ T1 ; HM(m1 := {|(x := x + 1 ; callm1) � x < 10 � II|})
where II has a suitable alphabet. This introduces a call into the method body.
The types of m1 is exactly as before, assuming that m1 and m2 a priori have m1

and m2 in their alphabets; this ceases to be a problem in our theory as it does
not constrain calls. Thus compositionality of method (re)definition is restored.

5 Discussion

In this section we first discuss the treatment of procedures with parameters and
secondly tackle the problem of (mutual) recursion in our theory of methods.

5.1 Procedures with Parameters

In our treatment so far, we have ignored the possibility of program values being
procedures — that is having parameters. A standard approach to support pro-
cedures is to encode them as functions [2] whose domains correspond to the kind
of objects being passed to the procedure (a variable or value) and whose range is
the underlying semantic model of the procedure body. Higher-order UTP adopts
a similar approach to realise parameter passing. For instance, we can define a
procedure p1 with a name parameter n as follows.

p1 := {|λ n : var(Z) • n := n + x |}
It takes an integer variable as its argument and adds the value of x to it. It is
a function from variables to predicates. This procedure is besides ‘polymorphic’
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in the sense that the alphabet of the predicate that results from applying p1
is determined by the argument. For instance, we have that the alphabet of the
predicate resulting from the call p1(x ) includes {x , x ′, y, y ′} whereas the call
p1(z ) gives rise to a predicate whose alphabet is {y, y ′, z , z ′}.

The polymorphic nature of procedures is difficult to reconcile with the model
construction in Section 3.1. This is because the notion of type that is used there
and taken from [7] is not appropriate anymore, precisely because no a priori
knowledge of the alphabet of a procedure’s predicate is possible. Because of
this, we confine ourselves to procedures that are non-polymorphic. They are the
procedures that only admit value parameters. An example is given below.

p2 := {|λ v : val(Z) • x := x + v |}
We note though that the absence of result parameters does not prohibit or
constrain the use of object references (pointers) [3]. Java, for instance, only
includes value parameters. To integrate these kinds of procedures into our higher-
order programmodel, we can, in essence, use the same technique as in Section 3.2.
This is by introducing additional syntax that corresponds to the declaration of
formal procedure parameters. Once again, a data type is used for this purpose.

PROC [BODY ] ::= ValArg 〈〈TYPE × PROC [BODY ]〉〉 | Body 〈〈BODY 〉〉
Above, TYPE encodes the type of a parameter; we assume this is <base type>.
The recursion in ValArg enables us to support procedures with arbitrary num-
bers of parameters, as an object of a unified type PROC [BODY ] where BODY
provides the semantic model of the procedure body. We note that in the theory
of object-orientation in [14], BODY is itself syntax, which is not a problem.

Importantly, a new definition of call, refinement and at least assignment (to
support refinement of procedure values) have to be provided for PROC [BODY ].
These definitions take advantage of a function apply that applies a procedure to
a list of arguments; its signature is illustrated below.

apply : PROC [BODY ]→ seq(VALUE )→ BODY

The apply function has a simple inductive definition which we omit. Refinement
is defined as a pointwise extension of body , the refinement of objects of type
BODY . It only considers argument sequences of the correct length and type,
which is determined by an auxiliary function valid .

p1 proc p2 = ∀ args | valid(p1, p2, args) • (apply p1 args) body (apply p2 args)

The new call operation pcall is defined as pcall p(args) =̂ call(apply p args)
where call provides the semantics of calls on entities of type BODY , which we
assume already exists. If needed, other operators can be provided via pointwise
lifting too, using the same approach as in [2].

The above shows how we can integrate limited support for parametrised pro-
cedures into our model without compromising soundness. Its primary limitation
is that it excludes result parameters. Result parameters are, it seems, needed in
order to support methods with return values. This is an open issue that we are
currently investigating and planning to report on in follow-up work.
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5.2 Mutual Recursion

We return now to the problem in the introduction of encoding

S =̂ m1,m2 := {|μX ,Y •
〈
(x := x − 1 ; Y ) � x > 0 � II,
(y := y − 1 ; X ) � y > 0 � II

〉
|}

In our theory of methods, this can now be written as

T1 =̂ HM(m1 :=A {|(x := x − 1 ; callm2) � x > 0 � II|}) and

T2 =̂ HM(m2 :=A {|(y := y − 1 ; callm1) � y > 0 � II|}) and

T =̂ T1 ; T2

where A =̂ {m1,m
′
1,m2,m

′
2,m1,m

′
1,m2,m

′
2} and

αm1 = αm
′
1 = αm2 = αm

′
2 = {m1,m

′
1,m2,m

′
2}

We observe that T1 introduces the method definition for m1 and T2 introduces
the method definition form2. Neither of them relies on a fixed-point construction,
and compositionality is illustrated by the combined definition T that composes
the individual method definitions in sequence. For composability, the alphabets
of the assignments have to be suitably extended with A.

Although this is not proved here, we claim that

S ⇔ (∃m1,m
′
1,m2,m

′
2 • T )

A proof of this conjecture requires special laws that permit one to move between
formulations in terms of recursive calls to rank 1 method variables and fixed
points; we are currently examining those laws. It seems that in order to reason
about particular programs, the form in S may have practical advantages. How-
ever, to reason about features of object-orientation, the form in T is superior
because there we profit from compositional method (re)definition.

Above we introduced an alphabet A that contains all method variables under
consideration. In practice, it is necessary to fix such an alphabet since otherwise,
we still run into the problems discussed in Section 4.1 regarding the types of
method variables. We recapture that in the theory of methods, there is, however,
no problem in fixing this alphabet as this per se does not restrict calls. The
fixing of alphabets in general involves the provision of a predefined repository of
method variables in which the rank 2 variables have all rank 1 variables in their
alphabets; we believe that this is largely a technical (and tractable) issue.

Finally, it is even possible to redefine recursive methods individually. For
instance, we may redefine m1 in T as follows.

T ; HM(m1 :=A {| callm2|})
Importantly, this redefinition implicitly also alters the behaviour of m2, which
now leaves x unaffected and sets y to 0. It appears that the theory of methods
solves the problem of redefinition gracefully also in the context of (mutual)
recursion. This may be at the cost of a possibly more complicated strategy
for reasoning about the properties of methods, such as proving that the above
specification implies that [callm2 ⇔ y := 0]. We are currently investigating this.
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6 Conclusion

We have examined the ramifications of higher-order UTP in theories of object-
orientation and presented solutions to four major challenges: consistency of the
program model, redefinition of methods in subclasses, the treatment of recursion
and mutual recursion, and simplicity. We briefly comment on each of them.

Consistency is achieved by the inductive construction of a programmodel that
caters for our needs to combine syntax and semantics, as well as procedures with
parameters. We thereby proved a result that was left implicit in [7], namely that
arbitrary theories can be used in place of the program model. The construction
also provides guidance for mechanisation in a theorem prover. There are still
open issues with regards to supporting result parameters; it seems that in order
to do so, we have to elaborate the notion of variable type to reflect the signature
of polymorphic procedures. This is on-going research work.

A number of issues that arise from method (re)definition have been discussed
and we have presented a novel solution in terms of a UTP theory. The important
contribution of the theory is to restore compositionality. Almost as a side effect, it
also gracefully handles recursive definitions in a compositional manner. Notably,
this is useful for the theory of object-orientation in [14], as it eliminates the need
to rewrite recursive methods into multi-variable fixed-point terms.

Simplicity is achieved as our theory of methods provides a uniform treatment
of types: method definitions are assignments to rank 2 variables while method
calls are to rank 1 variables. The only complication that persists is that we have
to introduce an a priori repository of method variables which determines the
minimal alphabet of all rank 2 method variables (the set A in Section 5.2).

As related work, we first note Naumann’s foundational work on the semantics
of higher-order imperative programming [9,10]. It is based on predicate trans-
formers and tackles features of object-oriented programs, such as inheritance and
dynamic binding through the use of record subtyping. In [6], Jifeng et al. intro-
duce rCOS, a UTP-based refinement calculus for object systems. It is based on
a fixed syntax and defines the semantics of an object-oriented program by way
of a denotation function; this seems to side-step the explicit use of procedure
variables, although the treatment of recursion is not discussed.

Recent work by Chin et al. [4] proposes a modular verification technique for
object-oriented programs based on separation logic. Their approach seems effi-
cient and pragmatic, but is tied to a design-based view of method specifications.
Our aim is to create a framework that can be integrated with arbitrary theories
of programming. Lessons may be learned from [4] in terms of modular reasoning.

There are two main strands for future work. The first one is to formulate and
prove more laws and properties of the theory of methods, and show how they
are used in practice to reason about object-oriented programs. We expect there
exist further interesting laws waiting for discovery, in particular in conjunction
with fixed points and the theory of designs.

A second strand is the mechanisation of higher-order UTP as well as the
theory in [14]. We already have preliminary but promising results on such a
mechanisation in the Isabelle HOL prover [11]; it extends the semantic model of
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alphabetised predicates that was used in [13] and [18] to incorporate program
values. A delicate open issue is that presently we rely on custom axioms for the
type morphism {| |} and its inverse; future work will aim to remove those axioms.
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ments. This work was funded by the EPSRC grant EP/H017461/1.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer (1996)
2. Back, R.-J., Preoteasa, V.: Reasoning About Recursive Procedures with Parame-

ters. In: Proceedings of the 2003 ACM SIGPLAN Workshop on Mechanized Rea-
soning about Languages with Variable Binding. ACM (August 2003)

3. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java Memory
Model: A Formal Account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS,
vol. 6664, pp. 246–261. Springer, Heidelberg (2011)

4. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing Modular OO Verifica-
tion with Separation Logic. ACM SIGPLAN Not 43(1), 87–99 (2008)

5. Harwood, W., Cavalcanti, A., Woodcock, J.: A Theory of Pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 141–155. Springer, Heidelberg (2008)

6. He, J., Li, X., Liu, Z.: rCOS: A refinement calculus for object systems. Theoretical
Computer Science 365(1-2), 109–142 (2006)

7. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Series in
Computer Science. Prentice Hall (February 1998)

8. Kassios, I.T.: Decoupling in Object Orientation. In: Fitzgerald, J.S., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 43–58. Springer, Heidelberg
(2005)

9. Naumann, D.: Predicate Transformer Semantics of an Oberon-Like Language. In:
Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Pro-
gramming Concepts, Methods and Calculi, PROCOMET 1994, pp. 467–487 (1994)

10. Naumann, D.: Predicate transformers and higher-order programs. Theoretical
Computer Science 150(1), 111–159 (1995)

11. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

12. Nuka, G., Woodcock, J.: Mechanising a Unifying Theory. In: Dunne, S., Stoddart,
B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 217–235. Springer, Heidelberg (2006)

13. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying Theories in ProofPower-Z. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 123–140. Springer,
Heidelberg (2006)

14. Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: Dunne,
S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37. Springer, Heidelberg
(2006)

15. Spivey, M.: The Consistency Theorem for Free Type Definitions in Z. Formal As-
pects of Computing 8, 369–375 (1996)

16. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Interna-
tional Series in Computer Science. Prentice Hall (July 1996)

17. Zeyda, F.: A Theory of Methods: Validation of Laws. Technical report (July 2012),
http://www.cs.york.ac.uk/circus/hijac/publication.html

18. Zeyda, F., Cavalcanti, A.: Mechanical reasoning about families of UTP theories.
Science of Computer Programming 77(4), 444–479 (2012)

http://www.cs.york.ac.uk/circus/hijac/publication.html


Denotational Semantics for a Probabilistic Timed
Shared-Variable Language

Huibiao Zhu1, Jeff W. Sanders2, Jifeng He1, and Shengchao Qin3

1 Shanghai Key Laboratory of Trustworthy Computing
Software Engineering Institute, East China Normal University

3663 Zhongshan Road (North), Shanghai, China, 200062
{hbzhu,jifeng}@sei.ecnu.edu.cn
2 African Institute for Mathematical Sciences

6-8 Melrose Road, Muizenberg 7945, South Africa
jsanders@aims.ac.za

3 School of Computing, University of Teesside
Middlesbrough TS1 3BA, UK

s.qin@tees.ac.uk

Abstract. Complex software systems typically involve features like time, con-
currency and probability, where probabilistic computations play an increasing
role. It is challenging to formalize languages comprising all these features. We
have proposed a language, which integrates probability with time and shared-
variable concurrency (called PTSC [19]). We also explored its operational se-
mantics, where a set of algebraic laws has been investigated via bisimulation.

In this paper we explore the denotational semantics for our probabilistic lan-
guage. In order to deal with the above three features and the nondeterminism, we
introduce a tree structure, called P -tree, to model concurrent probabilistic pro-
grams. The denotational semantics of each statement is formalized in the structure
of P -tree. Based on the achieved semantics, a set of algebraic laws is explored;
i.e., especially those parallel expansion laws. These laws can be proved via our
achieved denotational semantics.

1 Introduction

As probabilistic computations play an increasing role in solving various problems [16],
various proposals on probabilistic languages have been reported [1–3, 5, 8–10, 13–
15]. Complex software systems typically involve important features like real-time [12],
probability and shared-variable concurrency. The shared-variable mechanism is typi-
cally used for communications among components running in parallel, such as the Java
programming language and the Verilog hardware description language. It proves to be
challenging to formalize it [6, 17, 18]. Therefore, system designers would expect a for-
mal model that incorporates all these features to be available for them to use.

In [19], we have integrated a formal language model, which equips with probability,
time and shared-variable concurrency. Our model is meant to facilitate the specification
of complex software systems. The probability feature is reflected by the probabilistic
nondeterministic choice, probabilistic guarded choice and the probabilistic scheduling
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of actions from different concurrent components in a program. For this proposed lan-
guage model, an operational semantics was formalized. On the top of the operational
model, an abstract bisimulation relation was defined and several algebraic laws have
been derived for program equivalence.

The PTSC model proposed in this paper has recently been used to specify a circuit
in the register-transfer level [11]. The circuit takes two integers as the input and sums
up them as the output, where the register containing one of the inputs may be faulty.
Our algebraic laws proposed for the PTSC language have also been employed to ver-
ify that an implementation of the circuit with probabilistic behavior conforms to the
probabilistic specification.

As advocated in Hoare and He’s Unifying Theories of Programming (UTP) [7], three
different styles of mathematical representations are normally used: operational, deno-
tational, and algebraic ones. Denotational semantics provides mathematical meanings
to programs. Compared with operational semantics, it is more abstract. As PTSC in-
tegrates probability, time and shared-variable in one single model, it is challenging to
formalize its denotational semantics. This paper studies the denotational semantics for
PTSC. In order to deal with the above three features, together with the feature of nonde-
terminism, we introduce the concept of P -Tree in our model. The P -tree structure can
be considered as the extension of traditional trace structure. Based on the achieved de-
notational semantics and the exploration of the equivalence of P -trees, a set of algebraic
laws is investigated.

For exploring the unifying of the semantics for PTSC, we have explored the link
between operational semantics and algebraic semantics [20]. Our approach in [20] is
to derive operational semantics from algebraic semantics for our proposed probabilis-
tic language. Moreover, we have also explored the animation of the link between the
two semantics. Our approach can be considered as the soundness and completeness
exploration of operational semantics from algebraic viewpoint, both theoretically and
practically.

The remainder of this paper is organized as follows. Section 2 introduces our prob-
abilistic language with time and shared-variable concurrency (i.e., PTSC). Section 3
explores the denotational semantic model. In order to deal with the above three fea-
tures, together with the feature of nondeterminism, we introduce a tree structure in our
semantic model, called P -tree. Section 4 investigates the denotational semantics for
each statement of PTSC. Our P -tree structure is successfully applied in the exploration.
For the aim of explore program equivalence, we provide an equivalence relation for P -
trees. Based on the achieved semantics and the equivalence of P -tree structure, a set of
algebraic laws is explored in section 5. Section 6 concludes the paper.

2 The Language PTSC

The PTSC language integrates probability and time with shared-variable concurrency. It
has been designed to express the scheduling of threads, incorporating with concurrency
and nondeterminism as well as probability and time. It is thus well suited to discrete
event simulation where those features are present. The PTSC language has the following
syntactical elements:
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P ::= Skip | x := e | Chaos | if b then P else P |while b do P

| @b P | #n P | P ; P

| P � P | P �p P | P ‖ P | P ‖p P

Note that:
(1) x := e is the atomic assignment. Skip behaves the same as x := x. Chaos stands

for the divergent process.
(2) Regarding @b P , when the Boolean condition b is satisfied, process P can have the

chance to be scheduled. The program @b P can wait the environment to fire the
event if the Boolean condition b is not met currently. For #n P , after n time units
elapse, process P can be scheduled.

(3) Similar to a conventional programming language, if b then P else Q stands for
the conditional, whereas while b do P stands for the iteration.

(4) The mechanism for parallel composition is a shared-variable interleaving model
with probability feature. For probabilistic parallel composition P ‖p Q, if process
P can perform an atomic action, P ‖p Q has conditional probability p to do that
atomic action. On the other hand, if process Q can perform an atomic action, P ‖p
Q has conditional probability 1−p to perform that action. On the other hand, P ‖ Q
stands for the general parallel composition.

(5) � stands for the nondeterministic choice, whereas �p stands for the probabilistic
nondeterministic choice. P �pQ indicates that the probability for P �pQ to behave
as P is p, where the probability for P �p Q to behave as Q is 1−p.

In order to facilitate algebraic reasoning, we enrich our language with a guarded choice.
As our parallel composition has probability feature, the guarded choice also shares this
feature. Guarded choice is classified into five types:

(1) []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
(2) []i∈I{@bi Pi}
(3) []{#1 R}
(4) []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}

[][]k∈K{@bk Qk}
(5) []i∈I{@bi Pi}[]{#1 R}
Regarding []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} in the guarded choice type (1)
and (4), it should satisfy the following healthiness conditions:

(a) ∀i • (∨j∈Ji
bij = true) and

(∀j1, j2 • (j1 	= j2)⇒ ((bij1 ∧ bij2) = false))

(b) Σi∈I pi = 1

The first type is composed of a set of assignment-guarded components. The condition (a)
indicates that for any i ∈ I , the Boolean conditions bij from “choicej∈Ji(bij&(xij :=
eij)Pij)” are complete and disjoint. Therefore, there will be exactly one component
bij&(xij := eij)Pij selected among all j ∈ Ji. Furthermore, for any i ∈ I , the possi-
bility for a component (xij := eij)Pij (where bij is met) to be scheduled is pi and it
should satisfy the second healthiness condition.
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The second type is composed of a set of event-guarded components. If one guard
is satisfied, the subsequent behaviour for the whole process will be followed by its
subsequent behaviour of the satisfied component. The firing of these guards is disjoint.

The third type is composed of one time delay component. Initially, it cannot do
anything except letting time advance one unit.

The fourth type is the guarded choice composition of the first and second type of
guarded choice. If there exists one bk (k ∈ K) being satisfied currently, then the event
@ bk is fired and the subsequent behaviour isQk. If there is no satisfied bk, the behaviour
of the fourth type of guarded choice is the same as that of the first type.

The fifth type is the compound of the second and third type of guarded choice. Cur-
rently, if there exists i (i ∈ I) such that bi is satisfied, then the subsequent behaviour of
the whole guarded choice is Pi. On the other hand, if there is no i (i ∈ I) such that bi
is satisfied currently, then the whole guarded choice cannot do anything initially except
letting time advance one unit. The subsequent behaviour is the same as the behaviour
of R.

As the first type of guarded choice does not have time advancing behavior, there is
no type of guarded choice composing of the first and third type of guarded choice.

3 The Denotational Semantic Model for PTSC

In order to deal with shared-variable, probability and time in our model, we introduce
the concept of snapshots for our denotational model.

A snapshot is expressed as a triple (tag, p, σ), where:

(1) σ stands for the contributed state. These states are contributed by the program itself
or the environment.

(2) tag can be 0, 0−, 1 and
√

. If tag = 0, it indicates that the contribution of σ is
due to the environment. If tag = 1, it indicates the contribution of σ is due to the
process itself. On the other hand, if tag =

√
, it indicates that time advances one

unit and the state σ is the same as the previous one. Flag 0− is used to model the
case that after the environment actions, the subsequent process will be assignment.

(3) For the second element, it is used to express the probability of the contributed state.
If tag =

√
, it will be ∅, indicating that we do not need to consider the probability

for time delay. On the other hand, if tag = 0, 0−, 1, the second element p will be
the probability of the contributing the state σ.

Based on the concept, we are now ready in defining the concept of P−-trees. The intro-
duction of P−-tree can be used in formalizing the denotational semantics for PTSC.

Definition 3.1 (P−-tree)

(1) st is P−-tree, where st stands for the execution state. Here, st can be div, wait or
ter.

(2) {|(tag, pi, σi) : Ui | i ∈ I ∧Σi∈I pi = 1|} is P−-tree if each element in every Ui is
P−-tree.

(3) {|(√, ∅, σ) : U}|} is P−-tree if each element in U is P−-tree.

Note that st ∈ Ui(or U) iff Ui = {st} (or U = {st}). �
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Here, the notation “{| |}”stands for a bag. For a P−-tree, st can be used to model the
corresponding leaf. It stands for the execution state of the corresponding execution path.
During the execution, a program can be in divergent state (i.e., div), waiting state (i.e.,
wait) or terminating state (i.e., ter).

For {|(tag, pi, σi) : Ui | i ∈ I ∧Σi∈I pi = 1|}, the property “Σi∈I pi = 1” indicates
that the summation of all the probabilities for all the corresponding newly updated states
is 1. Here, tag can be 0, 1. If tag = 1, it indicates that all the newly updated states
with the corresponding probabilities are contributed by the program itself. On the other
hand, if tag = 0, it indicates that all the newly updated states with the corresponding
probabilities are contributed by the environment. Moreover, tag = 0− is used to model
the case that after the environment’s behavior, the subsequent behavior for the process
is the assignment action.

For {|(√, ∅, σ) : U |}, the snapshot (
√
, ∅, σ) here is used to model one unit delay

behavior. The notation ∅ in snapshot (
√
, ∅, σ) indicates that time delay does not concern

probability, whereas
√

stands for one unit time advancing and σ stands for the state after
the time delay.

Further, for (tag, μ, σ) : U in a P−-tree, if st ∈ U , it indicates that it cannot contain
more than one leaf point. For example, {ter, wait} is not allowed. Next we use some
examples to illustrate our P−-tree.

Example 3.2. Let Q1 =df x := 1 ; #1 ; x := x + 1 �0.4 x := x+ 2. We find that
below is one P−-tree of program Q1.

{|(1, 1, σ1) : {T0}|}
where, T0 = {|(√, ∅, σ1) : {T1}|} and

T1 = {|(1, 0.4, σ1) : {T1,1}, (1, 0.6, σ1) : {T1,2}|} and

T1,1 = {|(1, 1, σ2) : {ter}|}, T1,2 = {|(1, 1, σ3) : {ter}|}
Here, σ1 = {x �→ 1}, σ2 = {x �→ 2} and σ3 = {x �→ 3}.
For snapshot (1, 1, σ1), it is used to model the contribution ofx := 1. Snapshot (

√
, ∅, σ1)

is used to model #1. Tree T1 models the behavior of x := x+ 1 �0.4 x := x := x+ 2,
whereas treeT1,1 andT1,2 model the behaviour ofx := x+1 andx := x+2 respectively.

Furthermore, letQ2 =df x := 1 ; #1 ; x := x+1�x := x+2, below is theP−-tree
of program Q2.

{|(1, 1, σ1) : {T2}|}
where, T2 = {|(√, ∅, σ1) : {T3,r|0 ≤ r ≤ 1}|} and

T3,r = {|(1, r, σ1) : {T1,1}, (1, 1− r, σ1) : {T1,2}|}
Here, T1,1 and T1,2 have been defined in the above for modelling x := x + 1 and
x := x+2 respectively.T3,r is used to model the probabilistic choice x := x+1�rx :=
x + 2. Hence, {T3,r|0 ≤ r ≤ 1} can model the behaviour of nondeterministic choice
x := x+ 1 � x := x+ 2. �

Next we use an example to illustrate how a process’s behaviour and its environment’s
behaviour cooperate.
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Example 3.3. Let Q1 = x := 1�0.4 x := 2, Q2 = y := 1�0.3 y := 2, Q = Q1 ‖ Q2.
Consider the P−-trees for process Q1, Q2 and Q respectively.

We consider the case that, for process Q, the assignment in Q1 is scheduled first. In
this case, below is one P−-tree for Q1 at the initial state (tag, μ, σ0).

(tag, μ, σ0) : { {| (1, 0.4, σ0) : { {|(1, 1, σ1) : {ter}|} },
(1, 0.6, σ0) : { {|(1, 1, σ2) : {ter}|} }
|} }

where, σ0 = {x �→ 0, y �→ 0}, σ1 = {x �→ 1, y �→ 0}, σ2 = {x �→ 2, y �→ 0}.
As Q1 is scheduled first, similarly, below is the corresponding P−-tree for Q2 at the
initial state (tag, μ, σ0).

(tag, μ, σ0) : { {| (0−, 0.4, σ0) : { {|(0−, 1, σ1) : {T2}|} },
(0−, 0.6, σ0) : { {|(0−, 1, σ1) : {T ′

2}|} }
|} }

where, T2 = {| (1, 0.3, σ1) : {{|(1, 1, σ′
1) : {ter}|}},

(1, 0.7, σ1) : {{|(1, 1, σ′′
1 ) : {ter}|}} |}

T ′
2 = {| (1, 0.3, σ2) : {{|(1, 1, σ′

2) : {ter}|}},
(1, 0.7, σ2) : {{|(1, 1, σ′′

2 ) : {ter}|}} |}
where, σ′

1 = {x �→ 1, y �→ 1}, σ′′
1 = {x �→ 1, y �→ 2}

σ′
2 = {x �→ 2, y �→ 1}, σ′′

2 = {x �→ 2, y �→ 2}
Hence, below is the corresponding P−-tree for process Q (i.e., parallel process Q1 ‖
Q2), which is the merge of the P−-tree of process Q1 and the corresponding P−-tree
of Q2.

(tag, μ, σ0) : { {| (1, 0.4, σ0) : { {|(1, 1, σ1) : {T2}|} },
(1, 0.6, σ0) : { {|(1, 1, σ2) : {T ′

2}|} }
|} }

Similarly, we can also analyze the P−-tree of process Q for the case that the assignment
in Q2 is scheduled first. �

Definition 3.3 (P -tree)

(tag, μ, σ) : U is P -tree if each element in U is P−-tree. �
P -tree is composed of an initial snapshot and a set of P−-trees. The P -tree (tag, μ, σ) :
U indicates that each P−-tree in U is initially at the state shown in snapshot (tag, μ, σ).
Next we define the sequential composition for P−-trees and P -trees.

Definition 3.4 (Sequential Composition of P−-trees)

(1) ((tag0, μ0, σ0) : {st}) ; {(tag, μ, σ) : V | (tag, μ, σ) ∈ Σ}

=df

{
(tag0, μ0, σ0) : V, if st = ter

(tag0, μ0, σ0) : {st}, if st = wait ∨ st = div
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If U 	= {st}, then

((tag0, μ0, σ0) : U) ; { (tag, μ, σ) : V | (tag, μ, σ) ∈ Σ }
=df (tag0, μ0, σ0) : {T ; { (tag, μ, σ) : V | (tag, μ, σ) ∈ Σ } | T ∈ U }

(2) {|(tagi, μi, σi) : Ui | i ∈ I|} ; {(tag, μ, σ) : V | (tag, μ, σ) ∈ Σ}
=df {| (tagi, μi, σi) : (Ui ; {(tag, μ, σ) : V | (tag, μ, σ) ∈ Σ}) | i ∈ I |}

(3) {(tag, μ, σ) : U | (tag, μ, σ) ∈ Σ} ; {(tag1, μ1, σ1) : V | (tag1, μ1, σ1) ∈ Σ}
=df { ((tag, μ, σ) : U) ; {(tag1, μ1, σ1) : V | (tag1, μ1, σ1) ∈ Σ})

| (tag, μ, σ) ∈ Σ }
�

Here, the notationΣ stands for the set containing all the snapshots. The above definition
deals with the sequential composition of P -trees or P−-trees. The first one considers
the sequential composition of P -tree and a set of P -trees (at any different initial state).
Its definition can be divided into two cases according to the case that the first P -tree is a
leaf point or not. The leaf point can be the terminating state, waiting state or divergence
state.

The second one considers the sequential composition of a P−-tree and a set of P -
trees (at any different initial state). The third one considers the sequential composition
of a set of P -trees with another set of P -trees. Both of the two sets of P -trees can be at
any different initial state.

Example 3.5. Let P =df x := 0�x := 1 and Q =df y := 0�0.5 y := 1. Now we
want to calculate Prob(P ;Q, x = y) and Prob(Q;P, x = y). Assume the initial states
of x and y are−1 respectively. Here the notation Prob(W, c) stands for the probability
that the final state of program W satisfies condition c.

First, we consider the P -tree for program P ;Q, shown below.

(tag, μ, σ) : { {| (1, r, σ) : {{|(1, 1, σ0) : {T1}|}},
(1, 1− r, σ) : {{|(1, 1, σ1) : {T2}|}}
|} | 0 ≤ r ≤ 1 }

where, T1 = {| (1, 0.5, σ0) : {{|(1, 1, σ′
0) : {ter}|}},

(1, 0.5, σ0) : {{|(1, 1, σ′′
0 ) : {ter}|}} |}

T2 = {| (1, 0.5, σ1) : {{|(1, 1, σ′
1) : {ter}|}},

(1, 0.5, σ1) : {{|(1, 1, σ′′
1 ) : {ter}|}} |}

σ = {x �→ −1, y �→ −1},
σ0 = {x �→ 0, y �→ −1}, σ′

0 = {x �→ 0, y �→ 0}, σ′′
0 = {x �→ 0, y �→ 1},

σ1 = {x �→ 1, y �→ −1}, σ′
1 = {x �→ 1, y �→ 0}, σ′′

1 = {x �→ 1, y �→ 1},
Based on the P -tree for program P ;Q, we can have:

Prob(P ; Q, x = y)

= min{r × 1× 0.5× 1 + (1− r) × 1× 0.5× 1 | 0 ≤ r ≤ 1}
= min{0.5 | 0 ≤ r ≤ 1} = 0.5
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Next we consider the P -tree for program Q;P , shown below.

(tag, μ, σ) : { {| (1, 0.5, σ) : { {| (1, 1, σ2) : {T3,r | 0 ≤ r ≤ 1} |} },
(1, 0.5, σ) : { {| (1, 1, σ3) : {T4,r | 0 ≤ r ≤ 1} |} }
|} }

where, T3,r = {| (1, r, σ2) : {{|(1, 1, σ′
2) : {ter}|}},

(1, 1− r, σ2) : {{|(1, 1, σ′′
2 ) : {ter}|}} |}

T4,r = {| (1, r, σ3) : {{|(1, 1, σ′
3) : {ter}|}},

(1, 1− r, σ3) : {{|(1, 1, σ′′
3 ) : {ter}|}} |}

σ2 = {x �→ −1, y �→ 0}, σ′
2 = {x �→ 0, y �→ 0}, σ′′

2 = {x �→ 1, y �→ 0},
σ3 = {x �→ −1, y �→ 1}, σ′

3 = {x �→ 0, y �→ 1}, σ′′
3 = {x �→ 1, y �→ 1},

Based on the P -tree for program Q;P , we can have:

Prob(Q ; P, x = y)

= 0.5× 1×min{r × 1 | 0 ≤ r ≤ 1} + 0.5× 1×min{r × 1 | 0 ≤ r ≤ 1}
= 0 �

In order to support to later formalization of each statement, we introduce the concept of
idle0(tag, b) P−-tree (tag can be 0 or 0−, and b is a Boolean condition).

Definition 3.6 (idle0(tag, b) P−-tree)

(1) st is idle0(tag, b), where st = wait or ter.

(2) {|(tag, pi, σi) : Si | i ∈ I|} is idle0(tag, b), if for any i ∈ I , b(σi) and ∀X ∈ Si •
X is idle0(tag, b).

where, tag = 0 or 0−. �

For the snapshots in an idle0(0, b) P−-tree, the flag parts are all 0. This indicates that
all the newly added states (with probabilities) are contributed by the environment and
Boolean condition b is satisfied for all these newly added states. Further, there are no
(
√
, ∅, σ) snapshots in an idle0(0, b) P−-tree. This means that all actions reflected in

an idle0(0, b) P−-tree is instantaneous. Similarly, the concept of idle0(0−, b) P−-tree
is defined in the above definition.

Now we can also define the concept of idle(tag, b) P−-tree (tag = 0 or 0−, and b
is a Boolean condition). An idle(tag, b) tree not only can contain instantaneous action,
but also can contain time delay snapshots.

(1’) st is idle(tag, b), where st = wait or ter.

(2’) {|(tag, pi, σi) : Si | i ∈ I|} is idle(tag, b), if for any i ∈ I , bi(σ) and ∀X ∈ Si •
X is idle(tag, b).

(3’) {|(√, ∅, σ) : S|} is idle(tag, b), if b(σ) and ∀X ∈ S •X is idle(tag, b).

where, tag = 0 or 0−. �

Based on the definitions ofP -trees and P−-trees, the denotational semantics for process
P can be formalized in the form below.
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{ (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ }
Here, U contains a set of P−-trees and Σ stands for the set containing all snapshots.

4 Denotational Semantics for PTSC Statements

Based on the introduction of P -tree (and P−-tree), this section is to study the deno-
tational semantics for PTSC, including sequential constructs, timed constructs, proba-
bilistic choice, nondeterminism, guarded choice and parallel composition.

4.1 Sequential Constructs

Assignment. Assignment is considered as an atomic action. Before the assignment is
scheduled, the environment may also have a chance to be scheduled to perform actions.

Firstly, we define function append(T, x, e), which appends the assignment of vari-
able x with e to P−-tree T .

append({|(tagi, μi, σi) : Ui | i ∈ I|}, x, e)
=df {|(tagi, μi, σi) : { attach(σi, Ui, x, e) } | i ∈ I|}

where,

attach(σ, U, x, e)

=df ( (1, 1, σ[e/x]) : {ter})� U = {ter}�
( U �U = {wait}∨U = {div}� (∀T ∈ U •append(T, x, e)) )

Here, attach(σ, U, x, e) means adding a new snapshot (the update of variable x with
e) to the terminating leaf of all P−-trees in U . Its definition can be defined recursively.
When a leaf is encountered, if it is a terminating leaf, the adding will be performed. On
the other hand, when divergence leaf or waiting leaf is encountered, the adding will not
be performed.

Similarly,

append((tag, μ, σ) : U, x, e)

=df (tag, μ, σ) : { attach(σ, T, x, e) | ∀T ∈ U }
Then, the semantics of x := e can be described as the tree behaviour shown below.
Formula idle(0−, true) here indicates that, before the assignment is scheduled, the en-
vironment can have chances to perform instantaneous actions. The symbol 0− indicates
that, after the environment’s instantaneous actions, the process itself will perform as-
signment action.

[[x := e]]

=df { append((tag, μ, σ) : U, x, e) | (tag, μ, σ) ∈ Σ ∧
∀X ∈ U •X is idle0(0−, true) }

Chaos. For Chaos statement, its denotational semantics can be defined as below:

[[Chaos]] =df { (tag, μ, σ) : {div} | (tag, μ, σ) ∈ Σ }
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Sequential Composition. (P ; Q) behaves like P before P terminates, and then be-
haves like Q afterwards.

[[P ; Q]] =df [[P ]] ; [[Q]]

Conditional. The definition of conditional can be defined as below.

[[if b then P elseQ]]

=df { (tag, μ, σ) : U � b(σ)� (tag, μ, σ : V )

| (tag, μ, σ) ∈ Σ ∧ (tag, μ, σ) : U ∈ [[P ]]

∧ (tag, μ, σ) : V ∈ [[Q]] }
Iteration. In order to define the semantics of iteration, we define the partial order be-
low.

{|(tagi, μi, σi) : Ui | i ∈ I|} ) {|(tagj, μj , σj) : Vj} | j ∈ J |}
=df ∀i ∈ I • ∃j ∈ J • (tagi, μi, σi) : Ui ∈ {|(tagi, μi, σi) : Ui|} ∧

(tagj , μj , σj) : Vj ∈ {|(tagj, μj , σj) : Vj |} ∧
(tagi, μi, σi) = (tagj , μj , σj) ∧
∀X ∈ Ui • ∃Y ∈ Vj • (X ) Y ∧X ≈ Y )

where, the equivalence relation≈ on trees will be defined in section 5.
Then we can use this order to give the order ) for programs. Based on this, we can

give the definition for iteration. The iteration construct is defined in the same way as its
counterpart in conventional programming language.

[[while b do P ]] =df μX • [[if b then (P ;X) else II]]

where:

(1) [[II]] =df { (tag, μ, σ) : {ter} | (tag, μ, σ) ∈ Σ }
(2) The notation μX •F (X) denotes the weakest fixed point of the monotonic function

F .

4.2 Timed Constructs

Time Delay. Firstly we consider the time delay statement. The definition is based on
two tick and tick′ functions.

tick′((tag, μ, σ) : {st})

=df

{
(tag, μ, σ) : {st} if st = wait or div

(tag, μ, σ) : {(√, ∅, σ) : {ter}} if st = ter

and

tick′((tag, μ, σ) : U) =df (tag, μ, σ) : {tick(X) | X ∈ U}
Then, a further function tick can be defined as:

tick({|(tagi, μi, σi) : Ui | i ∈ I|})
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=df {| tick′((tagi, μi, σi) : Ui) | i ∈ I |}
Based on the above definitions, we can have the semantics of #1 via the tree behaviour.

[[#1]] =df { (tag, μ, σ) : {tick(X) | X is idle0(0, true)} | (tag, μ, σ) ∈ Σ }
[[#n]] =df [[#1]] ; [[#(n− 1)]]

For #1, before time advancing, the environment may perform assignments with cer-
tain probabilities at the current time point. This behaviour can be expressed as an
idle0(0, true) tree. For the behaviour of #n, it can be defined recursively.

Event Guard. Now we are ready to consider the event triggering behaviour. Firstly
we define the concept of trig(b, f) (f = 0 or 1) as below.

{| (0, pi, σi) : Ui | i ∈ I |} is trig(b, f),

if it satisfies the following conditions⎛⎜⎝∃i ∈ I • b(σi) ∧
∀i ∈ I • b(σi)⇒ Ui = {ter} ∧
∀i ∈ I • ¬b(σi)⇒ ∀X ∈ Ui •X is leaffired(b, f)

⎞⎟⎠
For the concept of leaffired(b, f) P−-tree (f = 0 or 1), it can be defined as below.

(1) {| (0, pi, σi) : Ui | i ∈ I |} is leaffired(b, f) (f = 0 or 1) if it satisfies the follow-
ing condition

∀i ∈ I •
(
b(σi)⇒ Ui = {ter} ∧
¬b(σi)⇒ ∀X ∈ Ui •X is leaffired(b, f)

)
(2) {| (√, ∅, σ) : U |} is leaffired(b, 1) if it satisfies the following condition(

b(σ)⇒ U = {ter} ∧
¬b(σ)⇒ ∀X ∈ U •X is (leaffired(b, 0) ∨ leaffired(b, 1))

)
For @b, there are two firing cases. The first case is that event @b is fired at the initial
state, which is denoted as formula Immefired(b). The second case is that it waits for
the environment to fire it. This case can be described using two formulae Await(b, 1)
and Trig(b, 1). Formula Await(b, 1) indicates that all the environment behaviour can-
not fire @b. Trig(b, 1) indicates that @b is fired finally. Then the semantics of @ b can
be defined as:

[[@ b]] =df Immefired(b) ∪ (Await(b, 1) ; Trig(b, 1))

where,

Immefired(b)

=df { (tag, μ, σ) : {ter} | (tag, μ, σ) ∈ Σ ∧ b(σ) }
Await(b, f)

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ¬b(σ)
∧ ∀X ∈ U• (f = 0∧X is idle0(0,¬b) ∨ f = 1∧X is idle(0,¬b)) }
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Trig(b, f)

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ¬b(σ) ∧ ∀X ∈ U •X is trig(b, f) }
Here, f = 0, 1.

4.3 Probabilistic Nondeterminism

Firstly we consider the definition for probabilistic nondeterminism P �r Q.

[[P �r Q]]

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ∀X ∈ U • X is idle0(0−, true) } ;
{ (tag, μ, σ) : {T (r)} | (tag, μ, σ) ∈ Σ }

where,

T (r) =df {| (1, r, σ) : U, (1, 1− r, σ) : V |}
and, (tag, μ, σ) : U ∈ [[P ]], (tag, μ, σ) : V ∈ [[Q]]

Moreover, we can give the definition for P �Q.

[[P �Q]]

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ∀X ∈ U • X is idle0(0−, true) } ;
{ (tag, μ, σ) : {T (r) | 0 ≤ r ≤ 1} | (tag, μ, σ) ∈ Σ }

4.4 Guarded Choice

As mentioned earlier, there are five types of guarded choice. Now we give the denota-
tional semantics for these five types of guarded choice.

Assignment Guarded Choice. Firstly, we consider the assignment guarded choice,
which is composed of a set of assignment guarded components.

Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
Then,

[[P ]]

=df {((tag, μ, σ) : idle0(0−, true)) ; ImmeAssi({P}) | (tag, μ, σ) ∈ Σ}
where,

ImmeAssi(S) =df {(tag, μ, σ) : {T (P ) | P ∈ S} | (tag, μ, σ) ∈ Σ}
T (P ) =df {| ∀j ∈ Ji • if bij then (1, pi, σij) : Vij

| i ∈ I ∧ (1, pi, σij) : Vij ∈ [[Pij ]] |}
The formula idle0(0−, true) here indicates that, before any assignment is scheduled,
the environment will have chances to perform the instantaneous actions. The execution
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of assignment guarded components is expressed by formulae ImmeAssi({P}) and
T (P ).

Event Guarded Choice. Now we consider the denotational semantics for the second
type of guarded choice, which is composed of a set of event guarded components.

Let P = []i∈I{@bi Pi}.
Then,

[[P ]]

=df Immefired([]i∈I{@bi Pi})
∪ (Await(b, 1) ; Trig(b, 1) ; Imme([]i∈I{@bi Pi}))

where,

b = ∨i∈I bi

Immefired([]i∈I{@bi Pi})
=df {(tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧

∃i ∈ I • (bi(σ) ∧ (tag, μ, σ) : U ∈ [[Pi]])}
Time Delay Guarded Choice. For the third type of guarded choice, it is composed of
only one time delay component.

[[[]{#1 P}]] =df [[#1]] ; [[P ]]

Guarded Choice Composing of Assignment Guarded Choice and Event Guarded
Choice. For the fourth type of guarded choice, it is composed of a set of assignment
guarded components and a set of event guarded components.

Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}[][]k∈K{@ck Qk} and

P1 = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}.
Then,

[[P ]]

=df Immefied([]k∈K{@ck Qk})
∪ ( Await(c, 0) ; ImmAssi(P1) )

∪ ( Await(c, 0) ; Trig(c, 0) ; Imme([]k∈K{@ck Qk}) )
where, c = ∨k∈K ck

As the fourth type of guarded choice contains assignment guarded components, the
waiting period of waiting the event guards to be fired is at the current time point. The
formulae Await(c, 0) and Trig(c, 0) are applied.

Guarded Choice Composing of Event Guarded Choice and Time Delay Guarded
Choice. Now we consider the denotational semantics for the fifth type of guarded
choice, which is composed of event guarded choice and time delay guarded choice.

Let P = []i∈I{@bi Pi}[]{#1 R}.
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Then,

[[P ]]

=df Immefired([]i∈I{@bi Pi})
∪ ( Await(b, 0) ; Trig(b, 0) ; Imme([]i∈I{@bi Pi}) )

( Await(b, 0) ; phase1 ; [[R]] )

where, b = ∨i∈I bi

phase1 =df { (tag, μ, σ) : {{|(√, ∅, σ) : {ter}|}} | (tag, μ, σ) ∈ Σ }
For the fifth type of guarded choice, the event guards can be fired immediately, or wait-
ing for the environment to fire them. The waiting period should be at the current time
point. If at the current time point, all the events are not fired, then time will advance one
unit. This can be expressed by formula phase1.

Or Construct for Guarded Choice. In order to support the expansion laws of general
parallel composition, we introduce the concept of the or Construct for Guarded Choice.
Below are the two cases for the or Construct.

(1) Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(ckl&(ykl := fkl)Qkl)}.

Then,

[[P or Q]]

=df {((tag, μ, σ) : idle0(0−, true)) ; ImmeAssi({P,Q}) | (tag, μ, σ) ∈ Σ}
(2) Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}

[][]m∈M{@cm Rm}
P1 = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
Q = []k∈K{[qk] choicel∈Lk

(bkl&(ykl := fkl)Qkl)}
[][]m∈M{@cm Rm}

Q1 = []k∈K{[qk] choicel∈Lk
(bkl&(ykl := fkl)Qkl)}

Then,

[[P or Q]]

=df Immefired([]m∈M{@cmRm})
∪ ( Await(c, 0) ; ImmAssi({P1, Q1}) )
∪ ( Await(c, 0) ; Trig(c, 0) ; Imme([]m∈M{@cmRm}) )

where, c = ∨m∈M cm

4.5 Probabilistic Parallel Composition

Now we consider the probabilistic parallel composition. In order to deal with the defini-
tion for probability parallel composition, we first define the probabilistic merge operator
⊗r. This can be done by the case analysis.
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Firstly we consider the case that P can perform probabilistic atomic actions initially.
If Q can also perform probabilistic atomic actions initially, P ⊗r Q can also perform
probabilistic atomic actions initially from both P and Q. And the probability of these
assignments needs to be updated with the probability parameter r (or 1− r).

If Q can observe the environment’s behaviour and its subsequent behaviour is as-
signment, we regard P ⊗r Q as undefined. This consideration is reflected in (1.b) and
it can support the understanding of (1.a).

If Q can observe the environment’s behaviour and its subsequent behaviour is not
assignment, their merge P ⊗r Q can also perform these assignments from P without
any change of the probabilities. This understanding supports the definition of event
firing behaviour.

On the other hand, if Q can do time delay, their merge P ⊗r Q is undefined. This
is because assignment is the instantaneous behavior and the two process cannot be
compared.

Below are the detailed definition for the above four cases when P can perform prob-
abilistic atomic actions initially.

(1) If P = {|(1, pi, σi) : Ui | i ∈ I|} and

(1.a) if Q = {|(1, qk, σk) : Vk | k ∈ K|}, then

P ⊗r Q

=df {| (1, r × pi, σi) : {X ⊗r Q | X ∈ Ui},
(1, (1− r)× pk, σk) : {P ⊗r Y | Y ∈ Vk} | i ∈ I ∧ k ∈ K |}

(1.b) if Q = {|(0−, qk, σk) : Vk | k ∈ K|}, then P ⊗r Q =df undefined

(1.c) if Q = {|(0, qk, σk) : Vk | k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗r fji(X) is well-defined

P ⊗r Q =df {|(1, pi, σi) : {X ⊗r fji(X) | X ∈ Ui} | i ∈ U |}
(1.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗r Q =df undefined

Secondly, we consider the case when P is in observing the environment’s behaviour
and its subsequent behaviour is probabilistic assignment. Item (2.a) is similar to (1.b).
The analysis for (2.b) is also similar to (1.b). Furthermore, If Q is in observing the
environment’s behaviour and its subsequent behaviour is not probabilistic assignment,
we regard their merge (P ⊗rQ) is still in observing the environment’s behaviour and its
subsequent behaviour is still assignment action. On the other hand, item (2.d) considers
the case that Q can let time advance. As P is currently in observing the environment’s
instantaneous action, we regard P ⊗r Q as undefined in this case.

(2) If P = {|(0−, pi, σi) : Ui} | i ∈ I|} and

(2.a) if Q = {|(1, qk, σk) : Vk} | k ∈ K|}, then P ⊗r Q =df undefined

(2.b) if Q = {|(0−, qk, σk) : Vk}| k ∈ K|}, then P ⊗r Q =df undefined
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(2.c) if Q = {|(0, qk, σk) : Vk}| k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗r fji(X) is well-defined

P ⊗r Q =df {|(0−, pi, σi) : {X ⊗r fji(X) | X ∈ Ui} | i ∈ I|}
(2.d) if Q = {|(√, ∅, σ) : V }|}, then P ⊗r Q =df undefined

Thirdly, we consider the case that P is in observing the environment’s behaviour and its
subsequent behaviour is not probabilistic assignment. Item (3.a) and (3.b) are similar
to (1.c) and (2.c) respectively. On the other hand, if Q is also in observing the envi-
ronment’s behaviour and its subsequent behaviour is not probabilistic assignment, their
merge (P ⊗r Q) belongs to the same execution type. The consideration for (3.d) is
similar to (2.d).

(3) If P = {|(0, pi, σi) : Ui | i ∈ I|} and

(3.a) if Q = {|(1, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q is the same as (1.c)

(3.b) if Q = {|(0−, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q is the same as (2.c)

(3.c) if Q = {|(0, pk, σk) : Vk} | k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗r fji(X) is well-defined

P ⊗r Q =df {|(0, pi, σi) : {X ⊗r fji(X) | X ∈ Ui} | i ∈ I|}
(3.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗r Q =df undefined

Lastly, we consider that the case that P can perform time delay initially. Item (4.a), (4.b)
and (4.c) are all about performing or observing instantaneous actions initially. Hence,
their merges (P ⊗r Q) are considered as undefined. Item (4.d) indicates that Q can also
let time advance. Therefore, their merge (P ⊗r Q) can also do time advancing initially.

(4) If P = {|(√, ∅, σ) : U}|} and

(4.a) if Q = {|(1, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q =df undefined

(4.b) if Q = {|(0−, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q =df undefined

(4.c) if Q = {|(0, pk, σk) : Vk | k ∈ K|}, then P ⊗r Q =df undefined

(4.d) if Q = {|(√, ∅, σ) : V |}, then there exists a bijection f : U → V such that
∀X ∈ U •X ⊗r f(X) is well-defined

P ⊗r Q =df {|(√, ∅, σ) : {X ⊗r f(X) | X ∈ U}|}
Further, we also need the table below to complete the definition of ⊗r.

div ⊗r div =df div div ⊗r wait =df div div ⊗r ter =df div

wait⊗r div =df div wait⊗r wait =df wait wait⊗r ter =df wait

ter ⊗r div =df div, ter ⊗r wait =df wait ter ⊗r ter =df ter
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We also need the following definition for further support. Here we assume that T is not
empty (i.e., T 	= st).

div ⊗r T =df div T ⊗r div =df div

ter ⊗r T =df T T ⊗r ter =df T

Further, if T 	= div, then wait⊗r T = wait and T ⊗r wait =df wait

Based on the definition of ⊗r, now we can give the semantics for probabilistic parallel
programs.

[[P ‖r Q]]

=df { (tag, μ, σ) : {X ⊗r Y | X ∈ U ∧ Y ∈ V ∧ X ⊗r Y is well-defined}
| (tag, μ, σ) ∈ Σ ∧ (tag, μ, σ) : U ∈ [[P ]] ∧ (tag, μ, σ) : V ∈ [[Q]] }

4.6 General Parallel Composition

Now we start to define the semantics for general parallel composition ‖. We first give
the definition for the merge operator⊗, which is symmetric.

Firstly we consider the case that P can perform probabilistic atomic actions initially.

(1) If P = {|(1, pi, σi) : Ui | i ∈ I|} and

(1.a) if Q = {|(1, qk, σk) : Vk} | k ∈ K|}, then P ⊗Q =df undefined

(1.b) if Q = {|(tag, qk, σk) : Vk} | k ∈ K|} (tag = 0− or 0), then there exists a
permutation j1, j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and
there exists a bijection fi : Ui → Vji such that ∀X ∈ Ui • X ⊗ fji(X) is
well-defined

P ⊗Q =df {|(1, pi, σi) : {X ⊗ fji(X) |X ∈ Ui} | i ∈ I|}
(1.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗Q =df undefined

Secondly, we consider the case that P is in the observing the environment’s behaviour
and its subsequent behaviour is the probabilistic assignment.

(2) If P = {|(0−, pi, σi) : Ui | I ∈ I|} and

(2.b) if Q = {|(tag, qk, σk) : Vk | k ∈ K|} (tag = 0− or 0), then there exists a
permutation j1, j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and
there exists a bijection fi : Ui → Vji such that ∀X ∈ Ui • X ⊗ fji(X) is
well-defined

P ⊗Q =df {|(0−, pi, σi) : {X ⊗ fJi(X) | X ∈ Ui} | i ∈ I|}
(2.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗Q =df undefined

Thirdly, we consider the case that P is in the observing the environment’s behaviour
and its subsequent behaviour is not the probabilistic assignment.

(3) If P = {|(0, pi, σi) : Ui | i ∈ I|} and
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(3.c) if Q = {|(0, qk, σk) : Vk | k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗ fji(X) is well-defined

P ⊗Q =df {|(0, pi, σi) : {X ⊗ fji(X) |X ∈ Ui} | i ∈ I|}
(3.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗Q =df undefined

Fourthly, we consider the case that P can perform time delay initially.

(4) If P = {|(√, ∅, σ) : U |} and

(4.d) if Q = {|(√, ∅, σ) : V |}, then there exists a bijection f : U → V such that
∀X ∈ U •X ⊗ f(X) is well-defined

P ⊗r Q =df {|(√, ∅, σ) : {X ⊗ f(X) | X ∈ U}|}
For the definition of st ⊗ st′ and st ⊗ T (st can be ter, wait or div), they are similar
to those in the definition of ⊗r.

Based on the above defined merge operator⊗ , now we are ready to give the seman-
tics for general parallel composition.

[[P ‖ Q]]

=df { (tag, μ, σ) : {X ⊗ Y | X ∈ U ∧ Y ∈ V ∧ X ⊗ Y is well-defined}
| (tag, μ, σ) ∈ Σ ∧ (tag, μ, σ) : U ∈ [[P ]] ∧ (tag, μ, σ) : V ∈ [[Q]] }

5 Program Equivalence

In this section we are exploring some flattening relations betweenP -trees (orP−-trees).
It will be used in giving the definitions for the concept of tree equivalence. Based on
the concept of the equivalence of P -trees (or P−-trees), we can define the equivalence
between PTSC programs.

Below we define a set of flattening relations Ri and R′
i (i = 0, 1, 2, 3). Based on

these flattening relations, we define R =df Id ∪ ⋃
i∈{0,1,2,3}(Ri ∪R−1

i ) and R′ =df

Id ∪⋃
i∈{0,1,2,3}(R

′
i ∪R′−1

i ).
For {|(tag, 1, σ) : U, (tag, 0, σ) : V }|}, due to the 0 probability, the branch (tag, 0,

σ) : V can be eliminated. This means that the two P−-trees {|(tag, 1, σ) : U, (tag, 0,
σ) : V }|} and {|(tag, 1, σ) : U |} should be equivalent. Therefore, we give the definition
of flattening relation R0.

Definition 5.1 (Flattening Relation R0)

(1) {|(tag, 1, σ) : U, (tag, 0, σ) : V }|} R0 {|(tag, 1, σ) : W |}, where U RW 1.

(2) If ∀X ∈ U • ∃Y ∈ Y • (X,Y ) ∈ R0 and ∀Y ∈ V • ∃X ∈ U • (X,Y ) ∈ R0,

then (tag, μ, σ) : U R′
0 (tag, μ, σ) : V . �

1 Let U and V be two sets of P−-trees and S be a relation between P−-trees. The notation
U S V means that ∀X ∈ U •∃Y ∈ Y •(X, Y ) ∈ S and ∀Y ∈ V •∃X ∈ U •(X, Y ) ∈ S
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For {{|(1, 1, σ) : U |}} at the initial state (tag, μ, σ), the contributed snapshot (1, 1, σ)
indicates that the process performs assignment-like action with probability 1 and the
data state remains the unchanged. This means that the contributed new snapshot can be
eliminated, indicating that (tag, μ, σ) : {{|(1, 1, σ) : U |}} is the same as (tag, μ, σ) : U .
We give the definition of flattening relation R1 for aiming this.

Definition 5.2 (Flattening Relation R1)

(1) (tag, μ, σ) : {{|(1, 1, σ) : U |}} R′
1 (tag, μ, σ) : V , where U RV .

(2) If (tagi, μi, σi) : Ui R
′
1 (tagi, μi, σi) : Vi, i ∈ I

then {|(tagi, μi, σi) : Ui | i ∈ I}|} R1{|(tagi, μi, σi) : Vi | i ∈ I}|} �

For P−-tree {|(1, r, σ) : U, (1, 1 − r, σ) : U |} at the initial state (tag, μ, σ), we find
that the two probabilistic branches of the P−-tree enter into the same process. The two
data sates are the same as the σ, the sum of the two corresponding probabilities are 1,
and the two subsequent behaviours are the same. Therefore, we can say the behaviour
of the P−-tree {|(1, r, σ) : U, (1, 1 − r, σ) : U |} at the initial state (tag, μ, σ) should
be the same as the behaviour (tag, μ, σ) : U . Our definition for flattening relation R2 is
for achieving this kind of equivalence.

Definition 5.3 (Flattening Relation R2)

(1) (tag, μ, σ) : { {|(1, r, σ) : U, (1, 1− r, σ) : U |} } R′
2 (tag, μ, σ) : V ,

where U RV .

(2) (tag, μ, σ) : {{|(1, r, σ) : U, (1, 1− r, σ) : U |} | r ∈ A} R′
2 (tag, μ, σ) : V ,

where U RV

(3) If (tagi, μi, σi) : Ui R
′
2 (tagi, μi, σi) : Vi, i ∈ I

then {|(tagi, μi, σi) : Ui} | i ∈ I|} R2 {|(tagi, μi, σi) : Vi | i ∈ I}|} �

Definition 5.4 (Flattening Relation R3)

(1) Define P R′
3 Q, where:

P = (tag, μ, σ) : {{|(1, p, σ) : U, (1, 1− p, σ) : {{|(1, q, σ) : V, (1, 1− q, σ) : W |}}|}}
Q = (tag, μ, σ) : {{|(1, y, σ) : {{|(1, x, σ) : U ′, (1, 1− x, σ) : V ′}|}}, (1, 1− y, σ) : W ′}|}}
where, U RU ′, V RV ′, W RW ′,

and, x = p/(p+ q − p× q), y = p+ q − p× q

(2) If (tagi, μi, σi) : Ui R
′
3 (tagi, μi, σi) : Vi, i ∈ I

then {|(tagi, μi, σi) : Ui | i ∈ I|} R3 {|(tagi, μi, σi) : Vi} | i ∈ I|} �

In the above definition for flattening relation R3, for P and Q, both of them have three
execution branches (i.e., U , V and W ). The three new data states for U , V and W
(i.e., U ′, V ′ and W ′) are the same as the initial data state of P and Q. Further, the
probabilities to reach to U (i.e., U ′) for P and Q are both p, whereas the probabilities
to reach to V (i.e., V ′) for P and Q are both (1 − p)× q. And the probability to reach
to W (i.e., W ′) for both P and Q are (1 − p) × (1 − q). This indicates that P and Q
should have the same behaviour.
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Based on the above definitions of flattening relations and R (and R′), we know that
R (and R′) is an equivalence relation. Let ≈ and ≈′ stand for the largest relations
satisfying R and R′ respectively.

Now we start to consider program equivalence. Its definition can be based on the
equivalence≈ and ≈′ (for P−-trees and P -trees), shown below.

Definition 5.5 (Program Equivalence)

P ≈ Q

=df ∀(tag, μ, σ) : U ∈ [[P ]], (tag, μ, σ) : V ∈ [[Q]] •
(tag, μ, σ) : U ≈′ (tag, μ, σ) : V �

6 Algebraic Laws

In this section we explore the algebraic laws for PTSC programs based on the defined
program equivalence. For assignment, conditional, iteration, nondeterministic choice
and sequential composition, our language enjoys similar algebraic properties as those
reported in [4, 7]. In what follows, we shall only focus on novel algebraic properties
with respect to time, probabilistic nondeterministic choice and parallel composition.

6.1 Sequential Constructs

Two consecutive time delays can be combined into a single one, where the length of the
delay is the sum of the original two lengths.

(delay-1) #n; #m ≈ #(n+m)

Probabilistic nondeterministic choice is idempotent.

(prob-1) P �p P ≈ P

However, it is not purely symmetric and associative. Its symmetry and associativity rely
on the change of the associated probabilities:

(prob-2) P �p1 Q ≈ Q �1−p1 P

(prob-3) P �p (Q �q R) ≈ (P �x Q) �y R
where x = p/(p+ q − p× q) and y = p+ q − p× q

6.2 Parallel Construct

Probabilistic parallel composition is also not purely symmetric and associative. Its sym-
metry and associativity rely on the change of the associated probabilities as well.

(par-1) P ‖p Q ≈ Q ‖1−p P

(par-2) P ‖p (Q ‖q R) ≈ (P ‖x Q) ‖y R

where, x = p/(p+ q − p× q) and y = p+ q − p× q

For general parallel composition, it is purely symmetric and associative.
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(par-1’) P ‖ Q ≈ Q ‖ P
(par-2’) P ‖ (Q ‖ R) ≈ (P ‖ Q) ‖ R
In what follows we give a collection of parallel expansion laws, which enable us to ex-
pand a probabilistic parallel composition to a guarded choice construct. As mentioned
earlier, there exist five types of guarded choice. To take into account a probabilistic
parallel composition of two arbitrary guarded choices, we end up with fifteen different
expansion laws. Similarly, for general parallel composition, we also have fifteen differ-
ent expansion laws. We select some parallel expansion cases for both probabilistic and
general parallel compositions.

Firstly, we consider the case that both of the two parallel components are with the
form of assignment-guarded choice. The expansion law is shown is (par-3-1).

(par-3-1) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)Pkl)}

Then
P ‖r Q

≈ []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)Pij ‖r Q}
[][]k∈K{[(1− r) × qk] choicel∈Lk

(bkl&(xkl := ekl)P ‖r Qkl}
and

P ‖ Q
≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ‖ Q}
or []k∈K{[qk] choicel∈Lk

(bkl&(xkl := ekl)P ‖ Qkl}
Next we consider the case that one parallel component is with the form of assignment
guarded choice and another component is with the form of event guarded choice. Law
(par-3-2) below shows the expansion law for probabilistic and general parallel compo-
sition. The probability factor for the initial step expansion does not affect for the two
parallel compositions.

(par-3-2) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and Q = []k∈K{@ck Qk}
Then

P ,Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ,Q}
[][]k∈K{@ck P ,Qk}

where, , ∈ { ‖r, ‖ }.
Now we consider the case that one parallel component is with the form of assignment
guarded choice and another component is with the form of time delay component. Only
assignment guards can be scheduled initially. This case is expressed in law (par-3-3).

(par-3-3) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and Q = []{#1 R}
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Then

P ,Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ,Q}
where, , ∈ { ‖r, ‖ }.
If one parallel component is with the form of assignment guarded choice and another
parallel component is with the form of the guarded choice composing of assignment
guarded components and event guarded components. Law (par-3-4) shows the expan-
sion for the probabilistic parallel composition and general parallel composition for this
case.

(par-3-4) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)Qkl)}

[][]m∈M{@cm Rm}
Then

P ‖r Q
≈ []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)Pij ‖r Q)}
[][]k∈K{[(1− r) × qk] choicel∈Lk

(bkl&(xkl := ekl)P ‖r Qkl}
[][]m∈M{@ck P ‖r Rm}
P ‖ Q
≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ‖ Q)}
[][]m∈M{@ck P ‖ Rm}
or

[]k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)P ‖ Qkl}

[][]m∈M{@ck P ‖ Rm}
Now we consider the case that both of the two parallel components are of the form of
event guarded choice. For probabilistic parallel composition and general parallel com-
position, there are three event triggered cases. Also the probability factor does not have
effects in the initial step expansion. This is illustrated in law (par-3-6).

(par-3-6) Let P = []i∈I{@bi Pi} and Q = []j∈J{@cj Qj}
Then

P ,Q

≈ []i∈I{@(bi ∧ ¬c) Pi ,Q}[][]j∈J{@(cj ∧ ¬b) P ,Qj}
[][]i∈I∧j∈J{@(bi ∧ cj) Pi ,Qj}

where, , ∈ { ‖r, ‖ }
b = ∨i∈I bi, and c = ∨j∈J cj

We now move to the case that both of the two parallel components are of the form com-
prising assignment-guarded components and event-guarded components. Law
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(par-3-13) stands for the expansion for probabilistic parallel composition and general
parallel composition.

(par-3-13) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}[][]k∈K{@bk Rk}
and Q = []l∈L{[ql] choicem∈Ml

(clm&(xlm := elm)Plm)}[][]n∈N{@cn Tn}
Then

P ‖r Q
≈ []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)Pij ‖r Q)}
[][]l∈L{[(1− r)× ql] choicem∈Ml

(clm&(xlm := elm)P, ‖r Qlm)}
[][]k∈K{@(bk ∧ ¬c) Rk ‖r Q}[][]n∈N{@(cn ∧ ¬b) Rk ‖r Q}
[][]k∈K∧n∈N{@(bk ∧ cn) Rk ‖r Qn}
P ‖ Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ‖ Q)}
[][]k∈K{@(bk ∧ ¬c) Rk ‖ Q}[][]n∈N{@(cn ∧ ¬b) Rk ‖ Q}
[][]k∈K∧n∈N{@(bk ∧ cn) Rk ‖ Qn}
or

[]l∈L{[ql] choicem∈Ml
(clm&(xlm := elm)P, ‖ Qlm)}

[][]k∈K{@(bk ∧ ¬c) Rk ‖ Q}[][]n∈N{@(cn ∧ ¬b) Rk ‖ Q}
[][]k∈K∧n∈N{@(bk ∧ cn) Rk ‖ Qn}
where, b = ∨k∈K bk and c = ∨n∈N cn

7 Conclusion

Recently we have proposed the language PTSC [19], which integrates probability, time
and shared-variable concurrency. In this paper, we studied the denotational semantics
for PTSC. For dealing with the above three features, as well as the nondeterminism, we
introduced the concept of P -tree in our denotational semantics. Based on the P -tree,
we defined the denotational semantics for each PTSC statement. In order to deal with
program equivalence based on the achieved denotational semantics, we defined a set
of flattening relations. We have explored a set of algebraic laws for PTSC, especially a
set of parallel expansion laws. The correctness of these laws is based on the concept of
program equivalence.

For the future, we would like to link the denotational semantics with operational
semantics and algebraic semantics respectively. Moreover, the deduction approach for
PTSC is also challenging to work on.
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