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Abstract. An established Immersed Boundary flow solver has been coupled with a
newly developed structural solver employing the Finite Element Method. The cou-
pling algorithm is presented as well as some essential details of both solvers. The
structural solver is validated for different test cases. The approach is applied to the
flow past an elastic cylinder.

1 Introduction

One difficulty of Fluid-Structure-Interaction (FSI) is the changing of geometries. In
case of a body conformal discretisation, a change of the body shape implicates mod-
ifications of the grid. These are commonly realised by grid deformation techniques
often involving additional coasts, while they are limited to moderate deformations.
In this situation non body conformal grid approaches become advantageous. The IB-
Method [1] is a suitable approach for the simulation of flows in complex and moving
geometries. The governing equations can be discretised on a Cartesian grid and the
boundary conditions are applied considering an additional surface mesh represent-
ing the geometry. Utilising separate grids for the computation and the imposition of
the boundary conditions allows for an exchange of the surface description during
the simulation. This conveniently enables the consideration of moving or deforming
geometries without being restricted to grid deformation techniques. The methodol-
ogy mentioned above is successfully employed for different cases with a prescribed
motion or deformation, e.g. an oscillating rectangular prism [2] or the respiratory
flow within dynamic airway geometries [3]. In the present paper the aspect of an in-
teraction between the fluid and an immersed structure will be discussed. Section 2
gives an overview over the flow solver with respect to FSI.
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The triangular surface discretisation of the flow solver is directly used for the struc-
tural simulation. An Finite Element Method (FEM) solver, employing shell elements
representing thin structures, has been derived, implemented and validated (see sec-
tion 3). Both solvers are subsequently coupled by an iterative procedure (section 4)
in order to simulate problems of thin elastic structures interacting with the flow field.
The steady and laminar flow past a elastic circular cylinder is an appropriate first test
case for the developed approach (section 5).

2 IB Flow Solver

The governing equations of the fluid mechanical part are the law of mass conserva-
tion for the incompressible case (1) and the equations of momentum balance (2):

∇ ·u = 0, (1)
∂u
∂t
+ (u · ∇)u+

1
ρ
∇p− ν∇2u = 0, (2)

where u, p, ρ, ν and t are the velocities, pressure, density, kinematic viscosity and
time, respectively. The Finite Volume discretisation of the flow solver is of second
order accuracy in space and time. The state variables are calculated successively
using the SIMPLE algorithm combining pressure and velocity fields. A non body
conformal Cartesian discretisation is used in which the boundary conditions are
imposed by the IB-method. There are different ways of imposing the boundary con-
ditions at the immersed surface [4]. In this work a Ghost-Cell method [5] is used.

2.1 Moving Wall Boundaries

The IB surface separates the computational domain into fluid and solid sections.
Therefore an identification and marking procedure is necessary to distinguish be-
tween fluid and non-fluid regions prior to the simulation. At an IB wall the veloci-
ties of the ghost-cells are interpolated to fulfil the no slip condition. In the case of a
moving wall the surface is exchanged after each time step, followed by the identifi-
cation and marking process again. The velocity uIB is currently approximated by a
backward difference scheme of first-order accuracy:

uIB =
dx
dt
≈ x(t)−x(t−Δt)

Δt
, (3)

where x is the vector to each point of the surface grid. Due to the modification
of the surface mesh two effects can occur: fluid cells may become non-fluid cells
and vice versa. In the first case the stored variables of the now non-fluid cells are
simply neglected. In the second case where a non-fluid cell has changed to a fluid
cell an appropriate initialisation is needful. The velocity and pressure values for the
mentioned cells are gained from the nearest point of the IB. The space convervation
law [6] is not fulfilled.
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Fig. 1 Calculation of forces at the IB: due to pressure (left) and friction (middle); nearest
fluid cell associated with each triangle element (right). Centre of Cartesian cell (•), position
of stored values (x), IB triangle (�), fluid region (�), non-fluid region (�).

2.2 Calculation of Forces

The forces of the fluid at the immersed body Ffluid contains forces caused by the
pressure Fp and forces due to the wall friction F f :

Ffluid = Fp+F f = p A�n− τw A�n. (4)

The forces are determined for each element of the surface grid located in the triangle
centre. The pressure at each IB triangle, its normal vector n and the area A� have
to be known to calculate Fp (fig. 1 left). The wall shear stresses (τw) determine
the friction forces F f (fig. 1 middle). To compute the shear stresses, it is necessary
to obtain the velocity gradient in wall normal direction. As the surface elements
have an arbitrary orientation with respect to the Cartesian grid, some extra work is
required: For each surface element the nearest fluid cell (ideally in normal direction)
has to be found (fig. 1 right). This kind of point to point search is done once for
a certain surface configuration. Based on the velocities at the IB and the located
nearest cell a gradient is computed, which is then corrected in wall normal direction.

3 FEM Structural Solver

The implemented FEM structural solver is based on the theory of linear elasticity.
Within the process of development, different element types were integrated, result-
ing in a three-dimensional description of shell elements (see section 3.1). Indepen-
dently from the type of element, the FEM discretisation leads to an equation:

K×us = f. (5)

K is the total stiffness matrix, us the vector of deflections (and rotations) and f
containing the loads (forces and moments). The matrix K is sparse symmetric and
stored in compressed row storage (CRS) format. The Dirichlet boundary condition
of a zero deflection is realised by dropping corresponding entries of the matrix. The
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Fig. 2 Triangle element Ee, defined by the nodes pn (left); element with in-plane deforma-
tions ũ(n)
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equation system (5) is solved by a BiCGSTAB solver with diagonal precondition-
ing [7].

3.1 Triangle Shell Elements

Shell elements are 2d elements which can represent in-plane deformations and de-
flections normal to its orientation. They are commonly applied for modelling thin
structures. In the current implementation they are represented by triangles, defined
by its three nodes pn. Each element Ee is formulated in local coordinates x̃, ỹ, z̃ (see
fig. 2 left). The mechanical properties are the modulus of elasticity E, the Poisson
ratio νs, the density ρs, the thickness ts and the area A� of the triangle. The stiff-
ness K̃shell

e of the shell element can be derived by combining the stiffness relations
of the plane element K̃plane

e and plate element K̃plate
e (see fig. 2 middle and right).

A conventional linear element [8] is chosen to represent the in-plane deformations
ũs, ṽs. A plate bending element by Specht [9] is added to consider the normal dis-
placements w̃s and the rotations Θx and Θy. The stiffness matrix for each element
is derived in the local coordinate system (fig. 2 left). Usually the triangles are ori-
ented arbitrarily in space, which makes a transformation from the local to the global
coordinate system necessary:

Ke = TT K̃e T, (6)

in which T is a transformation matrix on the basis of the direction cosine [8]. The
resulting element stiffness matrices are then assembled into the total stiffness matrix
K.

3.2 Validation

The novel implemented approach has been validated for several test cases: first for
elements in the local and later for elements in the global coordinate system. The
results are exactly matching apart from some slight numerical differences caused
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Fig. 3 Beam test case of in-plane deformations (left); convergence of the plate element (right)

by the coordinate transformation. The shell element is also able to represent pure
in-plane and pure bending deformations, shown in figure 3. The results for a can-
tilever beam (fig. 3 left) completely agree with the results published in [10]. A fully
supported square plate (fig. 3 right) with a single vertical force in the centre is a
standard test case for the verification and validation of plate elements. In a conver-
gence test the numerical solution can be compared to the analytical solution of the
problem [11]. The results of this test fully agree with the data published in [10].

4 Coupling Algorithm

The two introduced methods are loosely coupled by an iterative procedure similar
to the one published in [12]. Figure 4 presents a flow chart of the coupling pro-
cedure, which currently works well for steady cases. The FSI iteration (F ) can be
summarised as follows: after a certain number of iterations in the flow solver the
loads induced by the fluid Ffluid are transferred1 to the FE solver and the solver is
executed. The resulting deflections are added to the geometry and the CFD compu-
tation is continued, after the identification procedure has finished. For the following
FSI iteration (F +1) the procedure is repeated. The currently computed loads are ap-
plied to the undeflected geometry respectively. To control the FSI iteration a residual
based on the Euclidean norm of the force differences (for each node n) is generated:

RFSI =
∥
∥
∥FF+1 −FF

∥
∥
∥ =

nmax∑

n=1

√

(

Fn
F+1−Fn

F
)2
. (7)

1 The surface mesh of the flow computation is directly utilised for the FEM simulation. The
force vectors of adjacent triangle elements are averaged to the nodes. These forces are also
causing bending moments [10], which are currently neglected as a first approach.
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Fig. 4 Flow chart of the iterative coupling algorithm

If the residual is smaller than a certain minimum value RFSI <Rmin the FSI iteration
stops. The allowed maximum iteration numberFmax and the minimum residualRmin

have to be adjusted manually.

5 Application: Flow Around an Elastic Cylinder

The coupled system has been applied to the steady laminar [13] flow (Red = 20)
past an elastic cylinder. The cylinder (h/d = 2) is fully supported at the upper and
lower face. For the FSI iteration the flow field is initialised with the steady solu-
tion past a rigid cylinder. The surface grid consists of ≈9,500 triangles and the
volume grid of ≈500,000 Cartesian cells respectively. The properties of the cylin-
der (E, νs, ρs, ts) are chosen in relation to the fluid properties (ρ, ν, u∞) such that
moderate deformations occur (compare fig. 6).

5.1 Results and Discussion

Within about 10 FSI iteration steps the FSI convergence reaches a constant level
of RFSI ≈ 4.0 · 10−4 (see fig. 5 left). No further changes of the flow field and of
the deflected geometry are observed for an increasing iteration number. At this
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Fig. 5 FSI convergence (left); comparison of rigid and elastic cylinder at Re = 20 (right)

Fig. 6 Deformed cylinder

stage an equilibrium between the two solutions is reached.
The flow regime of around the deflected geometry re-
mains steady and laminar. Figure 5 right depicts a com-
parison of the flow past the rigid and the elastic cylinder.
Under the forces of the fluid (mainly determined by the
pressure) the cylinder flattens at the front and increases its
cross section in the y-direction. The new shape of the de-
formed cylinder is displayed in fig. 6. The flattened front
extends the high pressure region whereas the enlargement
in y-direction causes a higher amount of pressure drop at
the side regions. For a cylinder flow at Red = 20 the sep-
aration length is equal to the diameter lsep ≈ d. Due to the
magnification of the cylinder normal to the mean flow direction the Reynolds num-
ber increases, which consistently leads to an enlargement of the separation length
(compare fig. 5).

6 Conclusions and Outlook

In this paper the coupling of an IB flow solver with an FEM solver on the basis
of shell elements has been demonstrated. There are however some limitations that
should not be rejected: The IB-Method is restricted to moderate Reynolds numbers
because of insufficient near wall grid resolution by the Cartesian cells. The FEM
implementation is currently based on the linear theory, which is usually only valid
for small deformations of a linearly elastic material. Furthermore the test configu-
ration is far away from typical engineering problems. Nevertheless we successfully
demonstrated a convenient way of combining both solvers in which only the in-
teracting forces have to be transferred. The surface grid of the flow simulation is
directly considered in the FEM solver. However to simulate more realistic problems
further development of the structural solver and an enhancement to the non-linear
theory is necessary. Instead of that an existing solver (commercial or open source)
could be engaged.
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