
Accuracy of the Cell-Centered Grid Metric
in the DLR TAU-Code
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Abstract. The drag prediction accuracy of the current version of the cell-centered
grid metric discretization in the edge-based flow solver TAU lags behind the ac-
curacy of the cell-vertex grid metric on highly-skewed unstructured meshes. Inac-
curate convective fluxes and gradients contributing to the turbulence sources are
identified as the reasons for this accuracy degradation. Alternative approaches for
cell-centered discretizations are presented and shown to lead to significant accuracy
and robustness improvements. Recommendations are given to improve spatial dis-
cretization schemes for the cell-centered grid metric in an edge-based finite volume
code.

1 Introduction

Both cell-centered and cell-vertex discretizations are widely used for turbulent flow-
simulations in aerospace applications. The relative advantages of the two approaches
have been studied concerning accuracy, efficiency and robustness, but a consensus
has not emerged [3, 4, 7].

The DLR RANS-Solver TAU [10] is an unstructured CFD solver based on a
finite-volume discretization scheme. The geometry of a configuration is mapped by
a cell-vertex grid metric and stored via an edge-based data structure. Since Release
2008.1.0 of the TAU-code, a cell-centered grid metric based on the same data struc-
ture is available as well. The drag prediction accuracy of the current cell-centered
version of the TAU-Code lags behind the accuracy of the cell-vertex version for
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Fig. 1 Idealized drag polar
of DLR F6 configuration
at Mach 0.75 and Re =
5.000.000 [12] on a coarse
mesh (provided by Boe-
ing) for cell-vertex (upwind
scheme, least-squares gra-
dients) and cell-centered
(upwind scheme, Green-
Gauss gradients) grid met-
ric. The original Spalart-
Allmaras turbulence model
is used. Circles represent
wind-tunnel measurements
conducted at the National
Transonic Facility. Cd - Cl
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complex industrial three-dimensional (3-D) configurations. On the other side, test
cases (e.g. NACA0012, flat plate) using high quality meshes, which are nearly or-
thogonal in relevant mesh regions, show no significant differences between grid
metrics.

A test case from the Third AIAA Drag Prediction Workshop (DPW-III) is chosen
to illustrate and explain the reasons for this accuracy degradation. The case is the
DLR F6 wing-body configuration [12]. A comparison of the idealized drag polar
computed on an unstructured, highly-skewed mesh is shown in Fig. 1. The mesh is
the coarse mesh of the family used in the DPW-III computations for a mesh conver-
gence study. Differences of more than 30 drag counts have been observed between
the cell-vertex and the cell-centered solutions; the cell-vertex solution is in much
better agreement with the wind-tunnel measurements.

This paper presents explanations for the insufficient accuracy of the cell-centered
solution and offers approaches to improve this accuracy. Section 2 considers details
of the spatial grid-metric discretizations relying on the edge-based data structure
of the TAU-code. The gradient calculation methods used in the current TAU-code
and improved approaches for the cell-centered grid metric are described in Section
3. Conclusions and recommendations for cell-centered finite volume flow solvers
based on an edge-based date structure are offered in Section 4.

2 Spatial Discretization

The accuracy difference is observed in a steady case solution and, thus, has its roots
in the spatial discretization. The spatial discretization used in the TAU-code is de-
rived from the integral form of the 3-D RANS equations

∂
∂ t

∫
Ω

WdΩ +

∮
∂Ω

(Fc −Fv)dS =

∫
Ω

QdΩ . (1)
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(a) Cell-Centered (b) Cell-Vertex

Fig. 2 Computational mesh for cell-vertex and cell-centered grid metric. Black circles repre-
sent locations of degrees of freedom, white circles represent vertices of the control volumes,
solid lines denote faces of the control volumes, dashed lines denote edges, and arrows denote
area-normal vectors.

Here, t is the time, Ω is the spatial domain, W is the vector of the conservative
Reynolds-averaged variables including main and turbulence variables, Fc and Fv

are the respective vectors of convective and viscous fluxes, and Q is the source
term. The discretization of the governing equations follows the method of lines,
which decouples the spatial and the temporal discretization [2]. The spatial domain
is divided into a set of non-overlapping polyhedral control volumes, and Eq. 1 is
discretized for each control volume. The finite-volume discretization of Eq.1 at a
representative control volume i can be written as

dWi

dt
=− 1

Ωi

[
N

∑
j=1

(Fc −Fv)i j ni j −QiΩi

]
, (2)

where ni j is the area-normal vector of the control volume face separating points i
and j, and N is the number of face-neighbors of control volume i. The area-normal
vector is the outward vector perpendicular to the face with the magnitude equal to
the face area. The connection between point i and j is denoted as edge i j.

The set of non-overlapping polyhedral control volumes is called the computa-
tional or dual mesh. The computational mesh is dependent on the used grid metric
and is based on the primary mesh, containing tetrahedrons, hexahedrons, prisms and
pyramids in the context of the TAU-code. For the cell-centered grid metric, degrees
of freedom are located at the centers of the primal cells. The cell center coordinates
are typically defined as the averages of the cell vertex coordinates. The control vol-
umes are the primal cells (Fig. 2(a)). For the cell-vertex grid metric, degrees of
freedom are located at the vertices of the primal cells. The control volumes are con-
structed around the vertices by the median-dual partition: the centers of primal cells
are connected with the midpoints of the surrounding faces, the area-normals can be
computed as the vector sum of the area-normals of the faces adjacent to the edge
(Fig. 2(b)).

There are at least two reasons for the difference between the cell-vertex and the
cell-centered solutions: (1) accuracy of the surface flux integration and (2) accuracy
of the gradients contributing to the source of the turbulence equation. In this section,
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(a) Cell-Vertex (b) Cell-Centered

Fig. 3 Possible locations of edge-midpoints (gray circles) and face-integration points (white
circles) in a typical unstructured discretization, e.g. of a blunt trailing edge. Black lines repre-
sent control volume faces, dashed lines edges, black circles locations of degrees of freedom.

accuracy of the surface flux integration is considered; the effect of gradient approx-
imation on the turbulent sources and solution accuracy is discussed in Section 3.

The surface integral of Eq. 1 is approximated via the sum of fluxes over con-
trol volume faces in Eq. 2. At each control volume face, the flux is reconstructed
at the face-integration point and multiplied by the area-normal vector. For second-
order accuracy, the reconstruction at the face-integration points should be second
order accurate. In an edge-based code, the values are typically reconstructed at
an edge-midpoint and used to approximate values at a face-integrations point. In
a cell-vertex code, the edge-midpoints coincide with the face-integration points
(Fig. 3(a)). In a cell-centered code, on highly-stretched curved grids, the locations of
the corresponding edge-midpoint and face-integration point may differ significantly
(Fig. 3(b)). This difference has been identified as the leading reason for inaccuracy
of the order discussed in this paper.

In the TAU-code, there are two second-order schemes for the convective fluxes:
a central scheme with artificial dissipation and an upwind scheme [2]. The central
scheme averages flow variables and adds an artificial dissipation term to avoid odd-
even decoupling.

Fi j =
1
2
(Wi +W j)+Di j. (3)

Details concerning the dissipation term Di j can be found e.g. in [2]. The average
of the control volume values Wi and Wj is intended to provide a solution approx-
imation at the face-integration point. In the case of the cell-centered grid metric,
this average introduces an error caused by the difference between the locations of
the face-integration point and edge-midpoint (Fig. 3(b)) and thus reduces the order
of the scheme. This error can only be avoided if additional neighboring points are
involved to get a more accurate interpolation at the face-integration point. Due to
the current edge-based data structure of the TAU-code, no information about other
neighboring points is available for the cell-centered metric. Thus, the central scheme
is not recommended for edge-based cell-centered grid metric without altering the
edge-based data structure significantly.

The upwind scheme reconstructs the fluxes at the face-integration point at the left
and the right side of the face.

Fi j =
1
2

(
FL +FR −

∣∣Ai j
∣∣(WR −WL)

)
. (4)



Accuracy of the Cell-Centered Grid Metric in the DLR TAU-Code 433

FL and FR are the left and right fluxes respectively, computed from the state solu-
tions reconstructed at the corresponding side of the face, Ai j denotes the convec-
tive flux Jacobian. The state solutions are reconstructed at the face-integration point
with second order using the solutions and solution gradients defined at the control-
volume centers. The gradient accuracy has to be at least first order [2]. The upwind
scheme, Eq. 4, is usable for the edge-based cell-centered grid metric.

3 Gradient Computation

Two types of gradients are used in the finite-volume discretization schemes: cell gra-
dients are used in second-order upwind schemes and in source terms for turbulence
models, face gradients are used to compute viscous fluxes.

Face-gradients are used to evaluate the viscous fluxes Fv in Eq. 2. The derivatives
of the velocity components and the temperature have to be known at the faces of
the control volumes. The schemes for computing the face gradients strongly affect
robustness of the solution process on highly-skewed meshes.

With an edge-based data structure, an average of the corresponding cell-gradients
∇Wi is typically calculated to compute the face gradients

∇W i j =
1
2
(∇Wi +∇Wj) . (5)

Hasselbacher [6] observed that such averaging leads to odd-even decoupling and
introduced edge-derivative augmentation to improve robustness. It was suggested
that the edge derivative can be introduced in two ways: as either edge-normal or
face-tangent augmentation. The more widely used edge-normal augmentation is im-
plemented in the TAU-code. The effects of both augmentations have been studied
in [9, 11]. Face-tangent augmentation has been recommended as more robust.

The edge-normal augmentation is defined as

∇W |i j = ∇W i j − [∇Wi j · êi j − Wj −Wi∣∣ei j
∣∣ ]êi j, (6)

where ei j is the edge vector and êi j is the normalized edge vector. The face-tangent
augmentation is defined as

∇W |i j = ∇W i j − [∇Wi j · êi j − Wj −Wi∣∣ei j
∣∣ ]

n̂i j

n̂i j · êi j
, (7)

where n̂i j is the normalized area-normal vector. Nishikawa [9] called the term
in the brackets as damping term. The edge-normal augmentation leads to a non-
robust scheme on highly-skewed meshes using the cell-centered grid metric. With
the edge-normal augmentations, the damping-term contributions to the diffusion
operator vanish when n̂i j · êi j approaches zero. With the face-tangent augmenta-
tion, the damping-term contributions are always large, preventing the odd-even



434 A. Schwöppe and B. Diskin

decoupling. It has been observed that, in many cases, a converged cell-centered
solution is obtained only with the face-tangent augmentation.

The Green-Gauss (GG) and least-squares (LSQ) approaches for cell-gradient cal-
culation are widely used. For second-order accuracy, the cell-gradient is assumed to
be constant over the control volume.

Following the Green-Gauss theorem, the cell gradient is approximated as a dis-
crete surface integral, a sum of scalar values reconstructed at the face-integration
point multiplied by the area-normal face vector

∇Wi =
1

Ωi

N

∑
j=1

1
2
(Wi +Wj) ·ni j. (8)

Because of the approximation properties of the cell-vertex integration scheme [5,
9], the GG gradient is exact for a linear function only on tetrahedral or triangular
meshes, although reasonable accuracy has been demonstrated in computations on
mixed grids [8]. For the cell-centered metric, the GG gradient is not generally exact
for a linear function; accuracy is achieved only if the edge-midpoint coincides with
the face-integration point [8].

The LSQ cell-gradient [1] is computed by solving a system of linear equations
for the gradient values. The system results from the minimization of the functional

N

∑
j=1

w2
i j

(
∇Wi ·

(
xj − xi

)− (Wj −Wi)
)2 → min . (9)

Here xi is the coordinate vector of point i and wi j is a weighting factor chosen as
wi j = 1/

∣∣xj − xi
∣∣. This weighted LSQ method is known to improve gradient accu-

racy on certain high aspect ratio grids [4, 8] due to an improvement of the condition
of the linear system [8]. The LSQ cell-gradients represent linear functions exactly
for cell-vertex and cell-centered discretizations. Mavriplis [8] noted that this is not
a sufficient criterion for accuracy certification in the context of the whole finite
volume scheme. The accuracy depends on the choice of the stencils for the LSQ
minimization.

The LSQ stencil is the set of points involved in the sum of Eq. 9. A comprehensive
study of inviscid finite-volume discretizations employing various LSQ stencils can
be found in [4]. The nearest neighbor (NN) stencil includes only face-neighbors
(Fig. 4(a)). The NN stencil is inexpensive, but does not necessarily provide accuracy
and robustness [4, 8]. The full augmentation (FA) stencil includes all neighbors
that share a vertex with the given volume (Fig. 4(b)). In an edge-based code, this
extension beyond the face-neighbors is straightforward. The FA stencil normally
leads to robust and accurate solutions but is expensive to compute [4], in particular
in 3-D cases. The smart augmentation (SA) stencil employs only a small portion of
the points used on the corresponding FA stencil (Fig. 4(c)). The SA stencil expands
the NN stencil by one volume point per volume vertex. In this paper for each control
volume vertex, the cell center added to the SA stencil is the nearest to the stencil
center of all the cells surrounding the vertex.
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(a) NN (b) FA (c) SA

Fig. 4 Least-square gradient stencils for cell-centered grid metric. White circle represent
computation points (stencil center), black circles represent neighbors involved in the stencil.
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Fig. 5 Influence of the stencil of the least-squares gradient on the eddy-viscosity (plane be-
hind the wing of the DLR-F6 configuration as in Fig. 1)

Fig. 6 Improved idealized
drag polar compared to
Fig. 1 for the cell-centered
grid metric using second
order upwind scheme,
least-square gradient recon-
struction based on the cSA
stencil
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With this SA stencil, there still are instances, where additional points should
be added to the stencil to provide accurate cell-gradients. Without sufficient cell-
gradient accuracy, large errors are introduced to the turbulence equation through
gradient sources [2], thus leading to erroneous eddy-viscosity. Non-physical vortex
structures (Fig. 5(a)), which have their origins at elements with inaccurate gradients,
can be observed. To prevent these non-physical vortex structures, the SA stencil is
expanded by adding additional points from the FA-stencil. Points are added if their
addition improves the condition number of the LSQ system. The Frobenius matrix
norm is chosen to compute the condition number. The expanded stencil is denoted
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as conditioned smart augmentation (cSA) stencil. With the cSA stencil, the non-
physical vortex structures do not appear, see Fig. 5(b).

Fig. 6 shows that, with the upwind scheme using the LSQ cSA gradients, the large
offset between cell-centered and cell-vertex polars has been completely removed.
Note that the offset is removed even with the SA stencil; cSA stencil is required to
remove the non-physical vortex structures.

4 Conclusions

Inaccuracy in the cell-centered version of the edge-based TAU-code has been ob-
served, explained, and cured. The roots of inaccuracy are twofold: (1) large devia-
tions between the locations of the face-integration point and the edge-midpoint on
non-orthogonal meshes led to accuracy deterioration in computations with a central
scheme or an upwind scheme using Green-Gauss gradients for convective fluxes.
(2) inaccurate gradient computations led to erroneous turbulence sources and non-
physical eddy viscosity. To cure these inaccuracies, an upwind scheme using the
least-square gradients computed with a compact cSA stencil has been applied. Ad-
ditionally, the robustness of computations has been improved by introduction of
face-tangent augmentation for face-gradients used in viscous fluxes.
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