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Abstract. Interval-valued fuzzy set theory is an extension of fuzzy set theory in
which the real, but unknown, membership degree is approximated by a closed in-
terval of possible membership degrees. Since implications on the unit interval play
an important role in fuzzy set theory, several authors have extended this notion to
interval-valued fuzzy set theory. This chapter gives an overview of the results per-
taining to implications in interval-valued fuzzy set theory. In particular, we describe
several possibilities to represent such implications using implications on the unit
interval, we give a characterization of the implications in interval-valued fuzzy set
theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a par-
ticular distributivity equation involving strict t-norms, we extend monoidal logic to
the interval-valued fuzzy case and we give a soundness and completeness theorem
which is similar to the one existing for monoidal logic, and finally we discuss some
other constructions of implications in interval-valued fuzzy set theory.

1 Introduction

Fuzzy set theory has been introduced by Zadeh [57] in order to deal with the im-
precision, ignorance and vagueness present in the real world, and has been applied
successfully in several areas. In fuzzy set theory the membership of an object in
a set is determined by assigning a real number between 0 and 1, called the mem-
bership degree of the object in the set. However, in some real problems, it is very
difficult to determine a correct value (if there is one) for the membership degrees.
In many cases only an approximated value of the membership degree is given. This
kind of uncertainty in the membership degrees has motivated several extensions of
Zadeh’s fuzzy set theory, such as Atanassov’s intuitionistic fuzzy set theory [1],
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interval-valued fuzzy set theory [43], type-2 fuzzy set theory [58], . . . Interval-
valued fuzzy sets assign to each object instead of a single number a closed in-
terval which approximates the real, but unknown, membership degree. As such,
interval-valued fuzzy set theory forms a good balance between the ease of use
of fuzzy set theory and the expressiveness of type-2 fuzzy set theory. Since the
underlying lattice of Atanassov’s intuitionistic fuzzy set theory is isomorphic to
the underlying lattice of interval-valued fuzzy set theory, any results about any
functions on any of those lattices hold for both theories. Therefore we will fo-
cus in this work to functions defined on the underlying lattice of interval-valued
fuzzy set theory. Interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy
sets have been investigated both theoretically and practically by many researchers
[12, 13, 15, 33, 38, 40, 45, 53, 54, 55, 60].

Since implications on the unit interval play an important role in fuzzy set theory
[9], several authors have extended this notion to interval-valued fuzzy set theory
[4, 6, 7, 8, 11, 17, 26, 48]. This chapter gives an overview of the results pertaining
to implications in interval-valued fuzzy set theory. In the next section we start with
some preliminary definitions concerning the underlying structure of interval-valued
fuzzy set theory and some functions which we will need later on. This section is
followed by several sections in which we give an overview of known results.

2 Preliminary Definitions

2.1 The Lattice L I

The underlying lattice L I of interval-valued fuzzy set theory is given as follows.

Definition 1. We define L I = (LI ,≤LI ), where

LI = {[x1,x2] | (x1,x2) ∈ [0,1]2 and x1 ≤ x2},
[x1,x2]≤LI [y1,y2] ⇐⇒ (x1 ≤ y1 and x2 ≤ y2), for all [x1,x2], [y1,y2] in LI .

Similarly as Lemma 2.1 in [24] it is shown that L I is a complete lattice.

Definition 2. [34, 43] An interval-valued fuzzy set on U is a mapping A : U → LI .

Definition 3. [1, 2, 3] An intuitionistic fuzzy set in the sense of Atanassov on U is
a set

A = {(u,μA(u),νA(u)) | u ∈U},
where μA(u) ∈ [0,1] denotes the membership degree and νA(u) ∈ [0,1] the non-
membership degree of u in A and where for all u ∈U , μA(u)+νA(u)≤ 1.

An intuitionistic fuzzy set in the sense of Atanassov A on U can be represented by
the L I-fuzzy set A given by
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A : U → LI :
u �→ [μA(u),1−νA(u)], ∀u ∈U.

In Figure 1 the set LI is shown. Note that to any element x = [x1,x2] of LI there
corresponds a point (x1,x2) ∈R

2.
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Fig. 1 The grey area is LI

In the sequel, if x ∈ LI , then we denote its bounds by x1 = pr1(x) and x2 = pr2(x),
i.e. x = [x1,x2]. The smallest and the largest element of L I are given by 0L I =
[0,0] and 1L I = [1,1]. The hypothenuse of the triangle corresponds to the set D =
{[x1,x1] | x1 ∈ [0,1]} of values in LI about which there is no indeterminacy and
can be identified with the unit interval [0,1] from (classical) fuzzy set theory. The
elements of D are called the exact elements of the lattice L I . Note that, for x,y in
LI , x <LI y is equivalent to “x ≤LI y and x 	= y”, i.e. either x1 < y1 and x2 ≤ y2, or
x1 ≤ y1 and x2 < y2. We denote by x 
LI y: x1 < y1 and x2 < y2.

Bedregal et al. [12, 44] introduced the notion of interval representation, where an
interval function F : LI → LI represents a real function f : [0,1]→ [0,1] if for each
X ∈ LI , f (x) ∈ F(X) whenever x ∈ X (the interval X represents the real x). So, F
is an interval representation of f if F(X) includes all possible situations that could
occur if the uncertainty in X were to be expelled. For f : [0,1]→ [0,1], the function
f̂ : LI → LI defined by

f̂ (X) = [inf{ f (x) | x ∈ X},sup{ f (x) | x ∈ X}]

is an interval representation of f [12, 44]. Clearly, if F is also an interval repre-
sentation of f , then for each X ∈ LI , f̂ (X) ⊆ F(X). Thus, f̂ returns a narrower
interval than any other interval representation of f and is therefore its best interval
representation.
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2.2 Triangular Norms, Implications and Negations on L I

Implications are often generated from other connectives. In this section we will in-
troduce some of these connectives and give the construction of implications derived
from these functions.

Definition 4. A t-norm on a complete lattice L = (L,≤L) is a commutative, asso-
ciative, increasing mapping T : L2 → L which satisfies T (1L ,x) = x, for all x ∈ L.

A t-conorm on a complete lattice L = (L,≤L) is a commutative, associative,
increasing mapping S : L2 → L which satisfies S (0L ,x) = x, for all x ∈ L.

Let T be a t-norm on a complete lattice L = (L,≤L) and x ∈ L, then we denote
x(n)T = T (x,x(n−1)T ), for n ∈ N\ {0,1}, and x(1)T = x.

Example 1. Some well-known t-(co)norms on ([0,1],≤) are the Łukasiewicz t-norm
TL, the product t-norm TP and the Łukasiewicz t-conorm defined by, for all x,y in
[0,1],

TL(x,y) = max(0,x+ y− 1),

TP(x,y) = xy,

SL(x,y) = min(1,x+ y).

For t-norms on L I , we consider the following special classes.

Lemma 1. [21]

• Given t-norms T1 and T2 on ([0,1],≤) with T1 ≤ T2, the mapping TT1,T2 : (LI)2 →
LI defined by, for all x,y in LI,

TT1,T2(x,y) = [T1(x1,y1),T2(x2,y2)].

is a t-norm on L I .
• Given a t-norm T on ([0,1],≤), the mappings TT : (LI)2 → LI and T ′

T : (LI)2 →
LI defined by, for all x,y in LI,

TT (x,y) = [T (x1,y1),max(T (x1,y2),T (x2,y1))],

T ′
T (x,y) = [min(T (x1,y2),T (x2,y1)),T (x2,y2)],

are t-norms on L I .

Definition 5. [21] Let T1, T2 and T be t-norms on ([0,1],≤). The t-norms TT1,T2 ,
TT and T ′

T defined in Lemma 1 are called the t-representable t-norm on L I with
representatives T1 and T2, the optimistic t-norm and the pessimistic t-norm on L I

with representative T , respectively. In a similar way t-representable, pessimistic and
optimistic t-conorms on L I can be defined.
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Note that TT,T is the best interval representation of T . Furthermore, if T is
continuous1,

TT,T ([x1,x2], [y1,y2]) = {T (α,β ) | α ∈ [x1,x2] and β ∈ [y1,y2]}. (1)

Looking at the structure of TT , this t-norm has the same lower bound as the t-
representable t-norm TT,T , but differs from it by its upper bound: instead of taking
the “optimum” value T (x2,y2), the second component is obtained by taking the
maximum of T (x1,y2) and T (x2,y1). Hence it is not guaranteed that the interval
TT (x,y) contains all possible values T (α,β ) for α ∈ [x1,x2] and β ∈ [y1,y2]. Rather
(for continuous T ),

TT ([x1,x2], [y1,y2]) = {T (α,y1) | α ∈ [x1,x2]}∪{T (x1,β ) | β ∈ [y1,y2]}. (2)

What this representation enforces is that, in eliminating the uncertainty from x and y,
we have to impose for at least one of them the “worst” possible value (x1, resp. y1).
Therefore, this could be called a pessimistic approach to the definition of a t-norm
on L I , hence the name “pessimistic t-norm”. Similarly, the adapted upper bound of
T ′

T reflects an optimistic approach.
A class of t-norms generalizing both the t-representable t-norms and the pes-

simistic t-norms can be introduced. Let T be a t-norm on ([0,1],≤), and t ∈ [0,1].
Then the mapping TT,t : (LI)2 → LI defined by, for all x,y in LI ,

TT,t(x,y) = [T (x1,y1),max(T (t,T (x2,y2)),T (x1,y2),T (x2,y1))],

is a t-norm on L I [23]. The usage of this class is that it allows the user to define
T ([0,1], [0,1]) = [0, t] arbitrarily. This can be useful in applications where in some
situations one needs to impose that the conjunction of two completely unknown
propositions is also unknown (e.g. “the sun will shine tomorrow” and “this night it
will freeze”), while in other situations it would be more appropriate that the con-
junction of two unknown statements is false (e.g. “this night it will freeze” and “this
night it will be hot”). If t = 0, then we obtain the pessimistic t-norms, if t = 1, then
we find t-representable t-norms. Clearly, since the lower bound of TT,t(x,y) is inde-
pendent of x2 and y2, the optimistic t-norms do not belong to this class as soon as
T 	= min.

Definition 6. An implication on a complete lattice L = (L,≤L) is a mapping I :
L2 → L that is decreasing (w.r.t. ≤L) in its first, and increasing (w.r.t. ≤L) in its
second argument, and that satisfies

I (0L ,0L ) = 1L , I (0L ,1L ) = 1L ,

I (1L ,1L ) = 1L , I (1L ,0L ) = 0L .

1 The continuity is necessary in order to have an equality in (1). In the general case it only
holds that the left-hand side of (1) is a subset of the right-hand side.
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Definition 7. A negation on a complete lattice L =(L,≤L) is a decreasing mapping
N : L → L for which N (0L ) = 1L and N (1L ) = 0L . If N (N (x)) = x, for all
x ∈ L, then N is called involutive.

Proposition 1. [6] Let IVFI be the set of all implications on L I . Then (IVFI, inf,
sup) is a complete lattice, i.e.

(∀t ∈ T )(It ∈ IVFI) =⇒ (sup
t∈T

It , inf
t∈T

It) ∈ IVFI2.

Corollary 1. [6] (IVFI, inf,sup) has the greatest element

I1(x,y) =

{
0L I , if x = 1L I and y = 0L I ,

1L I , otherwise,

and the least element

I0(x,y) =

{
1L I , if x = 0L I or y = 1L I ,

0L I , otherwise.

Implications are often derived from other types of connectives. For our purposes,
we consider S- and R-implications:

• let T be a t-norm on L , then the residual implication or R-implication IT is
defined by, for all x,y in L,

IT (x,y) = sup{z | z ∈ L and T (x,z) ≤L y}; (3)

• let S be a t-conorm and N a negation on L , then the S-implication IS ,N is
defined by, for all x,y in L,

IS ,N (x,y) = S (N (x),y). (4)

We say that a t-norm T on L satisfies the residuation principle if and only if, for
all x,y,z in L,

T (x,y)≤L z ⇐⇒ y ≤L IT (x,z).

Example 2. The residual implications of the t-norms given in Example 1 are given
by, for all x,y in [0,1],

ITL(x,y) = min(1,y+ 1− x),

ITP(x,y) = min
(

1,
y
x

)
,

using the convention y
x =+∞, for x = 0 and y ∈ [0,1].

Example 3. Using the Łukasiewicz t-norm and t-conorm given in Example 1 the
following t-norm, t-conorm and implication on L I can be constructed. For all x,y
in LI ,
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TTL(x,y) = [max(0,x1 + y1− 1),max(0,x1 + y2− 1,x2 + y1− 1)],

SSL(x,y) = [min(1,x1 + y2,x2 + y1),min(1,x2 + y2)],

ITTL
(x,y) = ISSL

,Ns(x,y) = [min(1,y1 + 1− x1,y2 + 1− x2),min(1,y2 + 1− x1)],

where Ns is the standard negation on L I defined by Ns([x1,x2]) = [1− x2,1− x1],
for all [x1,x2] ∈ LI .

Example 4. [23] Let T be an arbitrary t-norm on ([0,1],≤) and t ∈ [0,1]. The resid-
ual implication ITT,t of TT,t is given by, for all x, y in LI ,

ITT,t (x,y) = [min(IT (x1,y1), IT (x2,y2)),min(IT (T (x2, t),y2), IT (x1,y2))].

Proposition 2. [22] Let N be a negation on L I . Then N is involutive if and only
if there exists an involutive negation N on ([0,1],≤) such that, for all x ∈ LI,

N (x) = [N(x2),N(x1)].

Definition 8. For any negation N on L I , if there exists negations N1 and N2 on
([0,1],≤) with N1 ≤ N2 such that N (x) = [N1(x2),N2(x1)], for all x ∈ LI , then
we denote N by NN1,N2 , we call N n-representable and we call N1 and N2 the
representatives of N .

Note that NN,N is the best interval representation of N. Furthermore, if N is contin-
uous, then

NN,N([x1,x2]) = {N(x) | x ∈ [x1,x2]}.
Proposition 3. [19, 22] A mapping Φ : LI → LI is an increasing permutation of L I

with increasing inverse if and only if there exists an increasing permutation φ of
([0,1],≤) such that, for all x ∈ LI,

Φ(x) = [φ(x1),φ(x2)].

Let n ∈ N \ {0}. If for an n-ary mapping f on [0,1] and an n-ary mapping F
on LI it holds that F([a1,a1], . . . , [an,an]) = [ f (a1, . . . ,an), f (a1, . . . ,an)], for all
(a1, . . . ,an) ∈ [0,1]n, then we say that F is a natural extension of f to LI . Clearly,
for any mapping F on LI , F(D, . . . ,D) ⊆ D if and only if there exists a mapping
f on [0,1] such that F is a natural extension of f to LI . E.g. for any t-norm T on
([0,1],≤), the t-norms TT,T and TT are natural extensions of T to LI ; if N is an
involutive negation on L I , then from Proposition 2 it follows that there exists an
involutive negation N on ([0,1],≤) such that N is a natural extension of N.

2.3 Continuity on L I

In order to introduce continuity on L I we need a metric on LI . Well-known metrics
include the Euclidean distance, the Hamming distance and the Moore distance. In
the two-dimensional space R

2 they are defined as follows:
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• the Euclidean distance between two points x = (x1,x2) and y = (y1,y2) in R
2 is

given by

dE(x,y) =
√
(x1 − y1)2 +(x2− y2)2 ,

• the Hamming distance between two points x = (x1,x2) and y = (y1,y2) in R
2 is

given by
dH(x,y) = |x1− y1|+ |x2− y2|,

• the Moore distance between two points x= (x1,x2) and y= (y1,y2) in R
2 is given

by [39]
dM(x,y) = max(|x1 − y1|, |x2 − y2|).

If we restrict these distances to LI then we obtain the metric spaces (LI ,dE), (LI ,dH)
and (LI ,dM). Note that these distances are homeomorphic when used on R

2 (see
[14]). Therefore, the relative topologies w.r.t. LI are also homeomorphic, which im-
plies that they determine the same set of continuous functions. From now on, if we
talk about continuity in LI , then we mean continuity w.r.t. one of these metric spaces.

It is shown in [22] that for t-norms on L I the residuation principle is not equiv-
alent to the left-continuity and not even to the continuity of the t-norm: all t-norms
on L I which satisfy the residuation principle are left-continuous, but the converse
does not hold.

3 Representation of Implications on L I

Similarly as for t-norms we can introduce a direct representability for implications
on L I , as well as optimistic and pessimistic representability, by means of implica-
tions on ([0,1],≤).

Lemma 2. [21] Given implications I1 and I2 on ([0,1],≤) with I1 ≤ I2, the mapping
II1,I2 : (LI)2 → LI defined by, for all x,y in LI,

II1,I2(x,y) = [I1(x2,y1), I2(x1,y2)]

is an implication on L I .

Note that II,I is the best interval representation of I. Furthermore, for continuous I
it holds that

II,I([x1,x2], [y1,y2]) = {I(α,β ) | α ∈ [x1,x2] and β ∈ [y1,y2]}.

Lemma 3. [21] Given an implication I on ([0,1],≤) the mappings II : (LI)2 → LI

and I ′
I : (LI)2 → LI defined by, for all x,y in LI,

II = [I(x2,y1),max(I(x1,y1), I(x2,y2))],

I ′
I = [min(I(x1,y1), I(x2,y2)), I(x1,y2)],

are implications on L I .
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Definition 9. [21] Let I1, I2 and I be implications on ([0,1],≤), the mappings II1,I2 ,
II and I ′

I defined in Lemma 2 and 3 are called the i-representable implication on
L I with representatives I1 and I2, the pessimistic and the optimistic implication on
L I with representative I, respectively.

Implications on L I can also be generated from t-(co)norms and negations as S- and
R-implications. We study the relationship of these constructs to i-representability
and optimistic and pessimistic representability.

The following proposition shows that there exists a strong relationship between
S-implications on L I based on a t-representable t-conorm and S-implications on
the unit interval based on the representatives of that t-conorm.

Proposition 4. [6] A mapping I : (LI)2 → LI is an S-implication based on an in-
volutive negation NN,N and on a t-representable t-conorm SS1,S2 if, and only if,
there exist S-implications IS1,N , IS2,N : [0,1]2 → [0,1] based on the negation N and
the t-conorms S1 and S2 respectively, such that

I ([x1,x2], [y1,y2]) = [IS1,N(x2,y1), IS2,N(x1,y2)].

So, S-implications on L I generated by a t-representable t-conorm and an involu-
tive negation are i-representable implications having an S-implication on ([0,1],≤)
as their representative. For R-implications, no such transparent relation with i-
representability exists.

Proposition 5. [21] No R-implication on L I is i-representable.

We discuss now how optimistic and pessimistic implications can be related to op-
timistic and pessimistic t-norms through the construction of the corresponding R-
and S-implications.

Proposition 6. [21] Let TT be a pessimistic t-norm on L I . Then the R-implication
generated by TT is given by the optimistic implication with representative IT , i.e.

ITT = I ′
IT .

Proposition 7. [21] Let T ′
T be an optimistic t-norm on L I . Then the R-implication

generated by T ′
T is given by, for all x,y in LI,

IT ′
T
(x,y) = [min(IT (x1,y1), IT (x2,y2)), IT (x2,y2)].

This formula resembles the one corresponding to optimistic implications. However,
the upper bound involves x2 instead of x1, so contrary to optimistic implicators this
bound does not correspond to the highest possible value of I(α,β ), where α,β in
[0,1]. Obviously, IT ′

T
is not a pessimistic implication either. Moreover, it is equal

to the R-implication generated by the corresponding t-representable t-norm TT,T .
More generally, we have the following property.

Proposition 8. [21] Let TT1,T2 be a t-representable t-norm on L I . Then the R-
implication generated by TT1,T2 is given by, for all x,y in LI,
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ITT1,T2
(x,y) = [min(IT1(x1,y1), IT2(x2,y2)), IT2(x2,y2)].

For the S-implications corresponding to pessimistic and optimistic t-conorms we
obtain the following.

Proposition 9. [21] Let SS be a pessimistic t-conorm on L I with representative
S and let NN,N be an n-representable negation with representative N. Then the S-
implication generated by SS and NN,N is the pessimistic implication with represen-
tative IS,N, i.e.

ISS,NN,N = IIS,N .

Let S ′
S be an optimistic t-conorm on L I with representative S and let NN,N be an

n-representable negation with representative N. Then the S-implication generated
by S ′

S and NN,N is the optimistic implication with representative IS,N, i.e.

IS ′
S,NN,N

= I ′
IS,N .

We see that pessimistic t-norms generate optimistic R-implications, but optimistic
t-norms do not generate pessimistic implications. The R-implications generated by
optimistic t-norms coincide with the R-implications generated by t-representable t-
norms. However, no intuitive interpretation of these R-implications can be given.
On the other hand, for S-implications the situation is clearer: pessimistic t-conorms
generate pessimistic S-implications, optimistic t-conorms generate optimistic S-
implications and t-representable t-conorms generate i-representable S-implications.

4 Smets-Magrez Axioms

In the previous section we have seen that the class of pessimistic t-norms is the only
one which generate both R- and S-implications that belong to one of the classes
of representable implications which we discussed before. The superiority of the
pessimistic t-norms goes even further as we will see below.

Let I be an implication on L . The mapping NI : L → L defined by NI (x) =
I (x,0L ), for all x ∈ L, is a negation on L , called the negation generated by I .

The Smets-Magrez axioms, a set of natural and commonly imposed criteria for
implications on the unit interval, can be extended to L I as follows [17]. An im-
plication I on L I is said to satisfy the Smets-Magrez axioms if for all x,y,z in
LI ,

(A.1) I (.,y) is decreasing and I (x, .) is increasing (monotonicity laws),
(A.2) I (1L I ,x) = x (neutrality principle),
(A.3) I (NI (y),NI (x)) = I (x,y) (contrapositivity),
(A.4) I (x,I (y,z)) = I (y,I (x,z)) (exchange principle),
(A.5) I (x,y) = 1L I ⇐⇒ x ≤LI y (confinement principle),
(A.6) I is a continuous (LI)2 → LI mapping (continuity).

Note that according to our definition, any implication on L I satisfies (A.1).
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Proposition 10. [17] An S-implication IS ,N on L I satisfies (A.2), (A.3) and (A.4)
if and only if N is involutive.

Proposition 11. [17] An S-implication IS ,N on L I satisfies (A.6) as soon as S
and N are continuous.

The following proposition shows that only studying i-representable implicators re-
duces the possibilities of finding an implication on L I which satisfies all Smets-
Magrez axioms.

Proposition 12. [17] Axiom (A.5) fails for every S-implication IS ,N on L I for
which S is t-representable and N is involutive.

For R-implications on L I we have the following results.

Proposition 13. [17] Every R-implication IT on L I satisfies (A.2).

Proposition 14. [17] An R-implication IT on L I satisfies (A.5) if and only if there
exists for each x= [x1,x2]∈ LI a sequence (δi)i∈N\{0} in Ω = {δ | δ ∈LI and δ2 < 1}
such that limi→+∞ δi = 1L I and

lim
i→+∞

pr1 T (x,δi) = x1,

lim
i→+∞

pr2 T (x,δi) = x2.

As a consequence of the last proposition, if T is a t-norm on L I for which pr1 T :
(LI)2 → [0,1] and pr2 T : (LI)2 → [0,1] are left-continuous mappings, then IT

satisfies (A.5).
Similarly as for S-implications, limiting ourselves to R-implications generated by

t-representable t-norms reduces our chances of finding an implication which satisfies
all Smets-Magrez axioms.

Proposition 15. [17] Axiom (A.3) fails for every R-implication IT on L I for which
T is t-representable.

Similarly as for t-norms on the unit interval we have the following property.

Proposition 16. [17] If an implication I on L I satisfies (A.2), (A.3), (A.4), then
the mappings TI ,SI : (LI)2 → LI defined by, for all x,y in LI,

TI (x,y) = NI (I (x,NI (y))),

SI (x,y) = I (NI (x),y),

are a t-norm and a t-conorm on LI, respectively.

As a consequence, all implications on L I satisfying (A.2), (A.3) and (A.4) are S-
implications.

We check for the class of t-norms TT,t under which conditions the residual im-
plication ITT,t satisfies the Smets-Magrez axioms.
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Proposition 17. [27] Let T be a t-norm on ([0,1],≤) and t ∈ [0,1]. The residual
implication ITT,t of TT,t satisfies

• (A.1) and (A.2);
• (A.3) if and only if t = 1 and IT satisfies (A.3);
• (A.4) if and only if IT satisfies (A.4);
• (A.5) if and only if IT satisfies (A.5);
• (A.6) as soon as T is continuous and IT satisfies (A.6).

The main result of this section says that the implications on L I which satisfy all
Smets-Magrez axioms and the additional border condition I (D,D) ⊆ D (which
means that all exact intervals are mapped on exact intervals, or, in other words, that
an implication can not add uncertainty when there is no uncertainty in the origi-
nal values) can be fully characterized in terms of the residual implication of the
pessimistic extension of the Łukasiewicz t-norm.

Proposition 18. [17] An implication I on L I satisfies all Smets-Magrez axioms
and I (D,D)⊆ D if and only if there exists a continuous increasing permutation Φ
of LI with increasing inverse such that for all x,y in LI,

I (x,y) = Φ−1(ITTL
(Φ(x),Φ(y))).

5 Distributivity of Implication Functions over Triangular
Norms and Conorms

In this section we discuss the solutions of equations of the following kind:

I (x,g(y,z)) = g(I (x,y),I (x,z)),

where I is an implication function on L I and g is a t-norm or a t-conorm on
L I . Distributivity of implications on the unit interval over different fuzzy logic
connectives has been studied in the recent past by many authors (see [5, 10, 36, 41,
42, 46]). This interest, perhaps, was kickstarted by Combs and Andrews [16] which
exploit the classical tautology

(p∧q)→ r ≡ (p → r)∨ (q → r)

in their inference mechanism towards reduction in the complexity of fuzzy “If–
Then” rules.

We say that a t-norm T on ([0,1],≤) is strict, if it is continuous and strictly
monotone, i.e. T (x,y) < T (x,z) whenever x > 0 and y < z.

Proposition 19. A function T : [0,1]2 → [0,1] is a strict t-norm if and only if there
exists a continuous, strictly decreasing function t : [0,1]→ [0,+∞] with t(1) = 0 and
t(0) = +∞, which is uniquely determined up to a positive multiplicative constant,
such that

T (x,y) = t−1(t(x)+ t(y)), for all (x,y) ∈ [0,1]2.
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The function t is called an additive generator of T .

In order to be able to find the implications on L I which are distributive w.r.t.
a t-representable t-norm generated from strict t-norms, we consider the following
lemma.

Lemma 4. [8] Let L∞ = {(u1,u2) | (u1,u2) ∈ [0,+∞]2 and u1 ≥ u2}. For a function
f : L∞ → [0,+∞] the following statements are equivalent:

1. f satisfies the functional equation

f (u1 + v1,u2 + v2) = f (u1,u2)+ f (v1,v2), for all (u1,u2), (v1,v2) in L∞;

2. either f = 0, or f =+∞, or

f (u1,u2) =

{
0, if u2 = 0,

+∞, else,

or

f (u1,u2) =

{
0, if u2 <+∞,

+∞, else,

or

f (u1,u2) =

{
0, if u1 = 0,

+∞, else,

or

f (u1,u2) =

{
0, if u1 = u2 <+∞,

+∞, else,

or

f (u1,u2) =

{
0, if u2 = 0 and u1 <+∞,

+∞, else,

or

f (u1,u2) =

{
0, if u1 <+∞,

+∞, else,

or there exists a unique c∈ ]0,+∞[ such that f (u1,u2) = cu1, or f (u1,u2) = cu2,
or

f (u1,u2) =

{
cu1, if u1 = u2,

+∞, else,

or

f (u1,u2) =

{
cu2, if u1 <+∞,

+∞, else,

or

f (u1,u2) =

{
cu1, if u2 = 0,

+∞, else,
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or

f (u1,u2) =

{
c(u1− u2), if u2 <+∞,

+∞, else,

or there exist unique c1, c2 in ]0,+∞[ with c1 	= c2 such that

f (u1,u2) =

{
c1(u1− u2)+ c2u2, if u2 <+∞,

+∞, else,

for all (u1,u2) ∈ L∞.

The following proposition detailing the solutions of the distributivity equation fol-
lows immediately from the results in [8].

Proposition 20. Let T be a t-representable t-norm generated from strict t-norms
with generator t1 and t2 respectively. If a function I : (LI)2 → LI satisfies the equa-
tion

I (x,T (y,z)) = T (I (x,y),I (x,z)), for all (x,y,z) ∈ (LI)3, (5)

then for each [x1,x2] ∈ LI , each of the functions defined by, for all (a,b) ∈ L∞,

f[x1,x2](a,b) = t1 ◦ pr1 ◦I ([x1,x2], [t
−1
1 (a), t−1

1 (b)]),

f [x1,x2](a,b) = t2 ◦ pr2 ◦I ([x1,x2], [t
−1
2 (a), t−1

2 (b)])

satisfies one of the representations given in Lemma 4.

In [7] the functions I : (LI)2 → LI which are continuous w.r.t. the second argument
and which satisfy (5) are listed in the case that T is the t-representable t-norm
generated from the product t-norm TP on ([0,1],≤).

Not all possibilities for f in Lemma 4 yield a mapping I which returns values
in L I ; furthermore the mappings I that do only return values in L I are not all
implications on L I [8]. The following example shows that there is at least one
possibility for f which produces an implication on L I .

Example 5. Let [x1,x2] be arbitrary in LI . Define for all (a,b) ∈ L∞,

f[x1,x2](a,b) = x2a,

f [x1,x2](a,b) = x1b.

We find

I (x,y) =

⎧⎪⎨
⎪⎩

1L I , if x2 = 0,

[t−1
1 (x2t1(y1)),1], if x1 = 0 < x2,

[t−1
1 (x2t1(y1)), t

−1
2 (x1t2(y2))], otherwise.
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Note that I = II1 ,I2 where for i ∈ {1,2}, Ii is the implication on ([0,1],≤) defined
by, for all x,y in [0,1],

Ii(x,y) =

{
1, if x = 0,

t−1
i (xti(y)), otherwise.

It can be straightforwardly verified that the implication I = II1,I2 and the t-
representable t-norm generated by strict t-norms with generators t1 and t2 satisfy (5).
For T1 = T2 = TP we have that t1(x) = t2(x) = − ln(x) (so t−1

1 (a) = t−1
2 (a) = e−a)

and we obtain

I (x,y) =

⎧⎪⎨
⎪⎩

1L I , if x2 = y1 = 0,

[yx2
1 ,1], if x1 = y2 = 0 < x2,

[yx2
1 ,yx1

2 ], otherwise,

This implication resembles the function I in Example 11 of [7]; however the latter
is not increasing in its second argument and therefore not an implication on L I .
Indeed, I ([0,1], [0,0]) = 1L I and I ([0,1], [y1,y1]) = [y1,1] 	≥LI I ([0,1], [0,0])
for any y1 ∈ ]0,1[.

6 Interval-Valued Residuated Lattices, Triangle Algebras and
Interval-Valued Monoidal Logic

In this section we relate implications on L I to a generalization of fuzzy logic to the
interval-valued fuzzy case. We first discuss triangle algebras which are special cases
of residuated lattices designed for being used in interval-valued fuzzy set theory.

6.1 Interval-Valued Residuated Lattices and Triangle Algebras

We consider special cases of residuated lattices in which new operators are added
so that the resulting structure captures the triangular shape of L I (and its general-
izations). First we recall the definition of a residuated lattice.

Definition 10. [28] A residuated lattice is a structure L = (L,�,�,∗,⇒,0,1) in
which �, �, ∗ and ⇒ are binary operators on the set L and

• (L,�,�,0,1) is a bounded lattice (with 0 as smallest and 1 as greatest element),
• ∗ is commutative and associative, with 1 as neutral element, and
• x∗ y ≤ z iff x ≤ y ⇒ z for all x, y and z in L (residuation principle).

The binary operations ∗ and ⇒ are called product and implication, respectively. We
will use the notations ¬x for x ⇒ 0 (negation), x ⇐⇒ y for (x ⇒ y)� (y ⇒ x) and
xn for x∗ x∗ · · ·∗ x︸ ︷︷ ︸

n times

.
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Definition 11. [49] Given a lattice L = (L,�,�) (called the base lattice), its trian-
gularization T(L ) is the structure T(L ) = (Int(L ), ⊔,⊔) defined by

• Int(L ) = {[x1,x2] | (x1,x2) ∈ L2 and x1 ≤ x2},
• [x1,x2] ⊔[y1,y2] = [x1� y1,x2� y2],
• [x1,x2]

⊔
[y1,y2] = [x1� y1,x2� y2].

The set DL = {[x,x] | x ∈ L} is called the set of exact elements of T(L ).

Definition 12. [49] An interval-valued residuated lattice (IVRL) is a residuated lat-
tice (Int(L ), ⊔,⊔,�,⇒�, [0,0], [1,1]) on the triangularization T(L ) of a bounded
lattice L =(L,∩,∪) in which DL is closed under� and⇒�, i.e. [x,x]� [y,y]∈DL

and [x,x]⇒� [y,y] ∈ DL for all x, y in L.
When we add [0,1] as a constant, and pv and ph (defined by pv([x1,x2]) = [x1,x1]

and ph([x1,x2]) = [x2,x2] for all [x1,x2] in Int(L )) as unary operators, the structure
(Int(L ), ⊔,⊔,�,⇒�, pv, ph, [0,0], [0,1], [1,1]) is called an extended IVRL.

Example 6. Let T be a left-continuous t-norm on ([0,1],min,max), t ∈ [0,1]. Then
(LI , inf,sup,TT,t ,ITT,t , [0,0], [1,1]) is an IVRL.

The triangular norms T on L I satisfying the residuation principle and which satisfy
the property that D is closed under T and IT are completely characterized in terms
of a t-norm T on the unit interval.

Proposition 21. [49] Let (Int(L ), ⊔,⊔,�,⇒�, [0,0], [1,1]) be an IVRL and let t ∈
L, ∗ : L2 → L and ⇒: L2 → L be defined by

t = pr2([0,1]� [0,1]),

x∗ y = pr1([x,x]� [y,y]),

x ⇒ y = pr1([x,x]⇒� [y,y]),

for all x, y in L. Then for all x, y in Int(L ),

[x1,x2]� [y1,y2] = [x1 ∗ y1,(x2 ∗ y2 ∗ t)∪ (x1 ∗ y2)∪ (x2 ∗ y1)],

[x1,x2]⇒� [y1,y2] = [(x1 ⇒ y1)∩ (x2 ⇒ y2),(x1 ⇒ y2)∩ (x2 ⇒ (t ⇒ y2))].

To capture the triangular structure of IVRLs, we extend the definition of a residuated
lattice with a new constant u (“uncertainty”) and two new unary connectives ν (“ne-
cessity”) and μ (“possibility”). Intuitively, the elements of a triangle algebra may
be thought of as closed intervals, u as the interval [0,1], and ν and μ as operators
mapping [x1,x2] to [x1,x1] and [x2,x2] respectively.

Definition 13. [47, 50] A triangular algebra is a structure A = (A,�,�,∗,⇒,
ν,μ ,0,u,1) of type (2,2,2,2,1,1,0,0,0) such that (A,�,�,∗,⇒,0,1) is a resid-
uated lattice and, for all x, y in A,
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(T.1) νx ≤ x,
(T.2) νx ≤ ννx,
(T.3) ν(x� y) = νx�νy,
(T.4) ν(x� y) = νx�νy,
(T.5) νu = 0,
(T.6) νμx = μx,
(T.7) ν(x ⇒ y)≤ νx ⇒ νy,
(T.8) (νx ⇔ νy)∗ (μx ⇔ μy)≤ (x ⇔ y),
(T.9) νx ⇒ νy ≤ ν(νx ⇒ νy),

(T.1’) x ≤ μx,
(T.2’) μμx ≤ μx,
(T.3’) μ(x� y) = μx�μy,
(T.4’) μ(x� y) = μx�μy,
(T.5’) μu = 1,
(T.6’) μνx = νx,

where the biresiduum ⇔ is defined as x ⇔ y = x ⇒ y∧ y ⇒ x, for all x, y in A. The
unary operators ν and μ are called the necessity and possibility operator, respec-
tively.

Note that in a triangle algebra x = νx� (μx� u), for all x ∈ A. This shows that an
element of the triangle algebra is completely determined by its necessity and its
possibility.

There is a one-to-one correspondance between the class of IVRLs and the class
of triangle algebras.

A

1

u

μx

x

νx

0

[0,0]

[0,1] [1,1]

[x1,x1] = pv([x1,x2])

[x2,x2] =
ph([x1,x2])

χ(x) = [x1,x2]

χ

Triangle algebra
(A,�,�,∗,⇒,ν,μ,0,u,1)

Isomorphic extended IVRL
(A′,�′,�′,∗′,⇒′,ν ′,μ ′, [0,0], [0,1], [1,1])

Fig. 2 The isomorphism ξ from a triangle algebra to an IVRL

Proposition 22. [50] Every triangle algebra is isomorphic to an extended IVRL (see
Figure 2). Conversely, every extended IVRL is a triangular algebra.
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6.2 Interval-Valued Monoidal Logic

We now translate the defining properties of triangle algebras into logical axioms
and show that the resulting logic IVML is sound and complete w.r.t. the variety of
triangle algebras.

The language of IVML consists of countably many proposition variables (p1, p2,
. . . ), the constants 0 and u, the unary operators �, ♦, the binary operators ∧, ∨, &,
→, and finally the auxiliary symbols ‘(’ and ‘)’. Formulas are defined inductively:
proposition variables, 0 and u are formulas; if φ and ψ are formulas, then so are
(φ∧ψ), (φ∨ψ), (φ&ψ), (φ → ψ), (�ψ) and (♦ψ).

In order to avoid unnecessary brackets, we agree on the following priority rules:

• unary operators always take precedence over binary ones, while
• among the binary operators, & has the highest priority; furthermore∧ and ∨ take

precedence over →,
• the outermost brackets are not written.

We also introduce some useful shorthand notations: 1 for 0 → 0, ¬φ for φ → 0 and
φ ↔ ψ for (φ → ψ)∧ (ψ → φ) for formulas φ and ψ .

The axioms of IVML are those of ML (Monoidal Logic) [35], i.e.

(ML.1) (φ → ψ)→ ((ψ → χ)→ (φ → χ)),
(ML.2) φ → (φ∨ψ),
(ML.3) ψ → (φ∨ψ),
(ML.4) (φ → χ)→ ((ψ → χ)→ ((φ∨ψ)→ χ)),
(ML.5) (φ∧ψ)→ φ ,
(ML.6) (φ∧ψ)→ ψ ,
(ML.7) (φ&ψ)→ φ ,
(ML.8) (φ&ψ)→ (ψ&φ),
(ML.9) (φ → ψ)→ ((φ → χ)→ (φ → (ψ∧χ))),
(ML.10) (φ → (ψ → χ))→ ((φ&ψ)→ χ),
(ML.11) ((φ&ψ)→ χ)→ (φ → (ψ → χ)),
(ML.12) 0 → φ ,

complemented with

(IVML.1) �φ → φ , (IVML.1′) φ → ♦φ ,
(IVML.2) �φ →��φ , (IVML.2′) ♦♦φ → ♦φ ,
(IVML.3) (�φ∧�ψ)→�(φ∧ψ), (IVML.3′) (♦φ∧♦ψ)→ ♦(φ∧ψ),
(IVML.4) �(φ∨ψ)→ (�φ∨�ψ), (IVML.4′) ♦(φ∨ψ)→ (♦φ∨♦ψ),
(IVML.5) �1, (IVML.5′) ¬♦0,
(IVML.6) ¬�u, (IVML.6′) ♦u,
(IVML.7) ♦φ →�♦φ , (IVML.7′) ♦�φ →�φ ,
(IVML.8) �(φ → ψ)→ (�φ →�ψ),
(IVML.9) (�φ ↔�ψ)&(♦φ ↔ ♦ψ)→ (φ ↔ ψ),
(IVML.10) (�φ →�ψ)→�(�φ →�ψ).
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The deduction rules are modus ponens (MP, from φ and φ → ψ infer ψ), gener-
alization2 (G, from φ infer �φ ) and monotonicity of ♦ (M♦, from φ → ψ infer
♦φ → ♦ψ).

The consequence relation � is defined as follows, in the usual way. Let V be
a theory, i.e., a set of formulas in IVML. A (formal) proof of a formula φ in V
is a finite sequence of formulas with φ at its end, such that every formula in the
sequence is either an axiom of IVML, a formula of V , or the result of an application
of an inference rule to previous formulas in the sequence. If a proof for φ exists in
V , we say that φ can be deduced from V and we denote this by V � φ .

For a theory V , and formulas φ and ψ in IVML, denote φ ∼V ψ iff V � φ → ψ
and V � ψ → φ (this is also equivalent with V � φ ↔ ψ).

Note that (IVML.5) is in fact superfluous, as it immediately follows from /0 � 1
and generalization; we include it here to obtain full correspondence with
Definition 13.

Definition 14. Let A = (A,�,�,∗,⇒,ν,μ ,0,u,1) be a triangle algebra and V a
theory. An A -evaluation is a mapping e from the set of formulas of IVML to A
that satisfies, for each two formulas φ and ψ : e(φ ∧ψ) = e(φ)� e(ψ), e(φ ∨ψ) =
e(φ)� e(ψ), e(φ&ψ) = e(φ) ∗ e(ψ), e(φ → ψ) = e(φ)⇒ e(ψ), e(�φ) = νe(φ),
e(♦φ) = μe(φ), e(0) = 0 and e(u) = u. If an A -evaluation e satisfies e(χ) = 1 for
every χ in V , it is called an A -model for V .

The following property shows that interval-valued monoidal logic is sound w.r.t. the
variety of triangle algebras, i.e., that if a formula φ can be deduced from a theory V
in IVML, then for every triangle algebra A and for every A -model e of V , e(φ) = 1,
and that IVML is also complete (i.e. that the converse of soundness also holds).

Proposition 23 (Soundness and completeness of IVML). [50] A formula φ can
be deduced from a theory V in IVML iff for every triangle algebra A and for every
A -model e of V , e(φ) = 1.

By adding axioms, we can obtain axiomatic extensions of interval-valued monoi-
dal logic. For these extensions a similar soundness and completeness result holds.
Furthermore, in some cases we can obtain a stronger result. For example, similarly
as for monoidal t-norm based logic (MTL) [32] we obtain the following result.

Proposition 24 (Standard completeness). [51] For each formula φ , the following
three statements are equivalent:

• φ can be deduced from a theory V in IVMTL (which is the axiomatic extension
of IVML obtained by adding the axiom scheme (�φ →�ψ)∨ (�ψ →�φ)),

• for every triangle algebra A in which the set of exact elements is prelinear and
for every A -model e of V , e(φ) = 1,

• for every triangle algebra A in which the set of exact elements is linear and for
every A -model e of V , e(φ) = 1.

2 Generalization is often called necessitation, e.g. in [59].
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More information on this and on the soundness and completeness of other axiomatic
extensions of IVML can be found in [47, 51, 52].

Remark 1. Interval-valued monoidal logic is a truth-functional logic: the truth de-
gree of a compound proposition is determined by the truth degree of its parts. This
causes some counterintuitive results, if we want to interpret the element [0,1] of
an IVRL as uncertainty. For example: suppose we don’t know anything about the
truth value of propositions p and q, i.e., v(p) = v(q) = [0,1]. Then yet the im-
plication p → q is definitely valid: v(p → q) = v(p) ⇒ v(q) = [1,1]. However, if
¬[0,1] = [0,1] 3 (which is intuitively preferable, since the negation of an uncertain
proposition is still uncertain), then we can take q = ¬p, and obtain that p →¬p is
true. Or, equivalently (using the residuation principle), that p&p is false. This does
not seem intuitive, as one would rather expect p&p to be uncertain if p is uncertain.
Another consequence of [0,1]⇒ [0,1] = [1,1] is that it is impossible to interpret the
intervals as a set in which the ‘real’ (unknown) truth value is contained, and X ⇒ Y
as the smallest closed interval containing every x ⇒ y, with x in X and y in Y (as in
[31]). Indeed: 1 ∈ [0,1] and 0 ∈ [0,1], but 1 ⇒ 0 = 0 /∈ [1,1].

On the other hand, for t-norms it is possible that X ∗Y is the smallest closed inter-
val containing every x∗y, with x in X and y in Y , but only if they are t-representable
(described by the axiom μ(x ∗ y) = μx ∗ μy). However, in this case ¬[0,1] = [0,0],
which does not seem intuitive (‘the negation of an uncertain proposition is abso-
lutely false’).

These considerations seem to suggest that interval-valued monoidal logic is not
suitable to reason with uncertainty. This does not mean that intervals are not a good
way for representing degrees of uncertainty, only that they are not suitable as truth
values in a truth functional logical calculus when we interpret them as expressing
uncertainty. It might even be impossible to model uncertainty as a truth value in
any truth-functional logic. This question is discussed in [29, 30]. However, nothing
prevents the intervals in interval-valued monoidal logic from having more adequate
interpretations.

7 Other Constructions of Implications on L I

In the previous section we have seen that implications on L I can be constructed as
R- or S-implications derived from t-norms or t-conorms on L I . In this section we
describe several other constructions of implications on L I .

7.1 Conjugacy

In Proposition 3 we have seen that an increasing permutation on L I which has an
increasing inverse is completely determined by a permutation on ([0,1],≤). Such
permutations can be used to construct new functions as follows.

3 This is for example the case if ¬ is involutive.



Implication Functions in Interval-Valued Fuzzy Set Theory 93

We say that the functions F,G : (LI)2 → LI are conjugate, if there exists an in-
creasing bijection Φ : LI → LI with increasing inverse such that G = FΦ , where

Fφ (x,y) = Φ−1(F(Φ(x),Φ(y))), for all (x,y) ∈ (LI)2.

Proposition 25. [6] Let Φ : LI → LI be an increasing permutation with increasing
inverse.

• If I is an implication on L I , then IΦ is an implication on L I .
• If I is an S-implication on L I based on some t-conorm S and strong negation

N on L I , then IΦ is also an S-implication on L I based on the t-conorm SΦ
and strong negation NΦ .

• If I is an R-implication on L I based on some t-norm T on L I , then IΦ is
also an R-implication on L I based on the t-norm TΦ .

7.2 Implications Defined Using Arithmetic Operators on L I

Let L̄I = {[x1,x2] | (x1,x2)∈R
2 and x1 ≤ x2} and L̄I

+ = {[x1,x2] | (x1,x2) ∈ [0,+∞[2

and x1 ≤ x2}. We start from two arithmetic operators⊕ : (L̄I)2 → L̄I and⊗ : (L̄I
+)

2 →
L̄I satisfying the following properties (see [20]),

(ADD-1) ⊕ is commutative,
(ADD-2) ⊕ is associative,
(ADD-3) ⊕ is increasing,
(ADD-4) 0L I ⊕ a = a, for all a ∈ L̄I ,
(ADD-5) [α,α]⊕ [β ,β ] = [α +β ,α +β ], for all α,β in R,
(MUL-1) ⊗ is commutative,
(MUL-2) ⊗ is associative,
(MUL-3) ⊗ is increasing,
(MUL-4) 1L I ⊗ a = a, for all a ∈ L̄I

+,
(MUL-5) [α,α]⊗ [β ,β ] = [αβ ,αβ ], for all α,β in [0,+∞[.

The conditions (ADD-1)–(ADD-4) and (MUL-1)–(MUL-4) are natural conditions for
any addition and multiplication operators. The conditions (ADD-5) and (MUL-5)
ensure that these operators are natural extensions of the addition and multiplication
of real numbers to L̄I .

The mapping � is defined in [20] by, for all x,y in L̄I ,

1L I � x = [1− x2,1− x1], (6)

x� y = 1L I � ((1L I � x)⊕ y). (7)

Similarly, the mapping � is defined by, for all x,y in L̄I
+,0,

1L I � x =

[
1
x2
,

1
x1

]
, (8)

x� y = 1L I � ((1L I � x)⊗ y). (9)
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The properties of these operators are studied in [20].
Using the arithmetic operators on L I we can construct t-norms, t-conorms and

implications on L I which are generalizations of the Łukasiewicz t-norm, t-conorm
and implication on the unit interval and which have a similar arithmetic expression
as those functions.

Proposition 26. [20] The mapping S⊕ : (LI)2 → LI defined by, for all x,y in LI,

S⊕(x,y) = inf(1L I ,x⊕ y), (10)

is a t-conorm on L I if and only if ⊕ satisfies the following condition:

(∀(x,y,z) ∈ (LI)3)((
(inf(1L I ,x⊕ y)⊕ z)1 < 1 and (x⊕ y)2 > 1

)
=⇒ (inf(1L I ,x⊕ y)⊕ z)1 = (x⊕ inf(1L I ,y⊕ z))1

)
.

(11)

Furthermore S⊕ is a natural extension of SL to LI.

Proposition 27. [20] The mapping T⊕ : (LI)2 → LI defined by, for all x,y in LI,

T⊕(x,y) = sup(0L I ,x� (1L I � y)), (12)

is a t-norm on L I if and only if ⊕ satisfies (11). Furthermore, T⊕ is a natural
extension of TL to LI.

The following theorem gives a simpler sufficient condition so that S⊕ is a t-conorm
and T⊕ is a t-norm on L I .

Proposition 28. [20] Assume that ⊕ satisfies the following condition:

(∀(x,y) ∈ L̄I
+×LI)((

([x1,1]⊕ y)1 < 1 and x2 ∈ ]1,2]
)

=⇒ ([x1,1]⊕ y)1 = (x⊕ y)1

)
.

(13)

Then the mappings T⊕,S⊕ : (LI)2 → LI defined by, for all x,y in LI,

T⊕(x,y) = sup(0L I ,x� (1L I � y)),

S⊕(x,y) = inf(1L I ,x⊕ y),

are a t-norm and a t-conorm on L I respectively. Furthermore T⊕ is a natural
extension of TL to LI, and S⊕ is a natural extension of SL to LI.

Note that Ns(x) = 1L I � x, for all x ∈ LI . So we obtain the following result.

Proposition 29. Under the same conditions as in Proposition 26 or 28, the mapping
IS⊕,Ns defined by, for all x,y in LI,
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IS⊕,Ns(x,y) = S⊕(Ns(x),y) = inf(1L I ,(1L I � x)⊕ y),

is an implication on L I . Furthermore, IS⊕ ,Ns is a natural extension of ISL,Ns to
LI.

7.3 Implications Generated by Binary Aggregation Functions

By modifying the definition of TT,T , TT , . . . we can obtain new binary aggregation
functions on L I which are not t-norms or t-conorms. For example, let T and T ′ be
t-norms and S and S′ be t-conorms on ([0,1],≤) with T ≤ T ′ and S ≤ S′, then we
define for all x,y in LI (see [26]),

AT (x,y) = [min(T (x1,y2),T (y1,x2)),max(T (x1,y2),T (y1,x2))],

AS(x,y) = [min(S(x1,y2),S(y1,x2)),max(S(x1,y2),S(y1,x2))],

A ′
T,T ′(x,y) = [min(T (x1,y2),T (y1,x2)),T

′(x2,y2)],

A ′
S,S′(x,y) = [S(x1,y1),max(S′(x2,y1),S

′(y2,x1))].

Proposition 30. [26, 37] Let T and T ′ be left-continuous t-norms with T ≤ T ′, S
and S′ be t-conorms with S ≤ S′, and N be an involutive negation on ([0,1],≤).
Then

• the residuum of AT is equal to the residual implication of TT , i.e. IAT = ITT ;
• the mapping IAS,N : (LI)2 → LI given by, for all x,y in LI,

IAS,NN,N (x,y) = [min(IS,N(x1,y1), IS,N(x2,y2)),max(IS,N(x1,y1), IS,N(x2,y2))],

is an implication on L I;
• the residuum of A ′

T,T ′ given by, for all x,y in LI,

IA ′
T,S
(x,y) = [min(IT (x1,y1), IT ′(x2,y2)), IT ′(x2,y2)],

is an implication on L I;
• the mapping IA ′

S,S′ ,NN,N
: (LI)2 → LI given by, for all x,y in LI ,

IA ′
S,S′ ,NN,N

(x,y) = [S(N(x2),y1),max(S′(N(x1),y1),S
′(N(x2),y2))],

is an implication on L I .

7.4 Implications Generated by Uninorms on L I

Similarly as for t-norms, implications can also be derived from uninorms. Uninorms
are a generalization of t-norms and t-conorms for which the neutral element can be
any element of L I .
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Definition 15. [25] A uninorm on a complete lattice L = (L,≤L) is a commutative,
associative, increasing mapping U : L2 → L which satisfies

(∃e ∈ L)(∀x ∈ L)(U (e,x) = x).

The element e corresponding to a uninorm U is unique and is called the neutral
element of U .

If U (0L ,1L ) = 0L , then U is called conjunctive, if U (0L ,1L ) = 1L , then U is
called disjunctive. Although all uninorms on the unit interval are either conjunctive
or disjunctive [56], this is not the case anymore for uninorms on L I [18].

Now we construct R- and S-implications derived from uninorms on L I .

Proposition 31. [25] Let U be a uninorm on L I with neutral element e ∈ LI \
{0L I ,1L I}. Let Ω = {ω | ω ∈ LI and ω2 > 0}. The mapping IU : (LI)2 → LI

defined by, for all x,y in LI,

IU (x,y) = sup{z | z ∈ LI and U (x,z)≤LI y}

is an implication on L I if and only if

(∀ω ∈ Ω)(U (0L I ,ω) = 0L I ).

As a consequence of this proposition, if U is conjunctive, then IU is an implication
on L I . Note also that IU (e,x) = x, for all x ∈ LI .

Proposition 32. [25] Let U be a uninorm and N a negation on L I . Then the
mapping IU ,N : (LI)2 → LI defined by, for all x,y in LI,

IU ,N (x,y) = U (N (x),y)

is an implication on L I if and only if U is disjunctive.

8 Conclusion

In this work we have listed some results pertaining to implications in interval-valued
fuzzy set theory. We have described several possibilities to represent such impli-
cations using implications on the unit interval. We gave a characterization of the
implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez ax-
ioms. We discussed the solutions of a particular distributivity equation involving
strict t-norms. We extended monoidal logic to the interval-valued fuzzy case and we
gave a soundness and completeness theorem which is similar to the one existing for
monoidal logic. Finally we discussed some other constructions of implications in
interval-valued fuzzy set theory.
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