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Abstract. Modern networks assemble an ever growing number of nodes.
However, it remains difficult to increase the number of channels per node,
thus the maximal degree of the network may be bounded. This is typ-
ically the case in grid topology networks, where each node has at most
four neighbors. In this paper, we address the following issue: if each node
is likely to fail in an unpredictable manner, how can we preserve some
global reliability guarantees when the number of nodes keeps increasing
unboundedly ?

To be more specific, we consider the problem or reliably broadcasting
information on an asynchronous grid in the presence of Byzantine failures
– that is, some nodes may have an arbitrary and potentially malicious
behavior. Our requirement is that a constant fraction of correct nodes
remain able to achieve reliable communication. Existing solutions can
only tolerate a fixed number of Byzantine failures if they adopt a worst-
case placement scheme. Besides, if we assume a constant Byzantine ratio
(each node has the same probability to be Byzantine), the probability to
have a fatal placement approaches 1 when the number of nodes increases,
and reliability guarantees collapse.

In this paper, we propose the first broadcast protocol that overcomes
these difficulties. First, the number of Byzantine failures that can be
tolerated (if they adopt the worst-case placement) now increases with the
number of nodes. Second, we are able to tolerate a constant Byzantine
ratio, however large the grid may be. In other words, the grid becomes
scalable. This result has important security applications in ultra-large
networks, where each node has a given probability to misbehave.

Keywords: Byzantine failures, Networks, Broadcast, Fault tolerance,
Distributed computing, Protocol, Random failures.

1 Introduction

As modern networks grow larger and larger, their components become more
likely to fail. Indeed, some nodes can be subject to crashes, attacks, bit flips,
etc. Many models of failures and attacks have been studied so far, but the most
general one is the Byzantine model [11]: the failing nodes behave arbitrarily. In
other words, we must anticipate the most malicious strategy they could adopt.
This encompasses all other possible types of failures, and has important security
applications.
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In this paper, we study the problem of reliably broadcasting information in a
network despite the presence of Byzantine failures. This is a difficult problem,
as a single Byzantine node, if not neutralized, can potentially lie to the entire
network. Our objective is to design a broadcast protocol that prevent or limit
the diffusion of malicious messages.

Related works. Many Byzantine-robust protocols are based on cryptography [3,5]:
the nodes use digital signatures or certificates. Therefore, the correct nodes can
verify the validity of received informations and authenticate the sender across
multiple hops. However, this approach may not be as general as we want, as
the malicious nodes are supposed to ignore some cryptographic secrets: there-
fore, their behavior is not completely arbitrary. Besides, cryptographic opera-
tions require the presence of a trusted infrastructure that deals with public and
private keys: if this infrastructure fails, the whole network fails. Yet, we would
like to consider that any component can fail. For these reasons, we focus on
cryptography-free solutions.

Cryptography-free solutions have first been studied in completely connected
networks [11,1,12,13,17]: a node can directly communicate with any other node,
which implies the presence of a channel between each pair of nodes. Therefore,
these approaches are hardly scalable, as the number of channels per node can be
physically limited. We thus study solutions in multihop networks, where a node
must rely on other nodes to broadcast informations.

A notable class of algorithms tolerates Byzantine failures with either
space [15,18,21] or time [14,9,8,7,6] locality. Yet, the emphasis of space local
algorithms is on containing the fault as close to its source as possible. This
is only applicable to the problems where the information from remote nodes is
unimportant (such as vertex coloring, link coloring or dining philosophers). Also,
time local algorithms presented so far can hold at most one Byzantine node and
are not able to mask the effect of Byzantine actions. Thus, the local containment
approach is not applicable to reliable broadcast.

It has been shown that, for agreement in the presence of up to k Byzantine
nodes, it is necessary and sufficient that the network is (2k + 1)-connected, and
that the number of nodes in the system is at least 3k+ 1 [4]. Also, this solution
assumes that the topology is known to every node, and that nodes are scheduled
according to the synchronous execution model. Both requirements have been
relaxed [19]: the topology is unknown and the scheduling is asynchronous. Yet,
this solution retains 2k+1 connectivity for reliable broadcast and k+1 connec-
tivity for detection (the nodes are aware of the presence of a Byzantine failure).
In sparse networks such as a grid (where a node has at most four neighbors),
both approaches can cope only with a single Byzantine node, independently of
the size of the grid.

Another existing approach is based, not on connectivity, but on the fraction
of Byzantine neighbors per node. Broadcast protocols have been proposed for
nodes organized on a grid [10,2]. However, the wireless medium typically induces
much more than four neighbors per node, otherwise the broadcast does not work.
Both approaches are based on a local voting system, and perform correctly if
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every node has strictly less than a 1/4 fraction of Byzantine neighbors. This
result was later generalized to other topologies [20], assuming that each node
knows the global topology. Again, in weakly connected networks, this constraint
on the proportion of Byzantine nodes in any neighborhood may be difficult to
assess.

All aforementioned results rely on strong connectivity and Byzantine propor-
tions assumptions in the network. In other words, tolerating more Byzantine
failures requires to increase the number of channels per node, which may be
difficult or impossible when the size of the network increases. To overcome this
difficulty, an alternate approach has been proposed [16]. The idea is to make
a small concession to the problem: we now aim at reliable communication, not
between all correct nodes, but between most correct nodes. In other words, we
now accept that a small minority of correct nodes can be fooled by the Byzantine
nodes. This is not unrealistic, as we already accepted the idea that some nodes
can fail unpredictably (being hit by Byzantine failures). This approach has been
shown very efficient when the Byzantine failures are randomly distributed. This
is the case, for instance, in a peer-to-peer overlay (the malicious nodes do not
choose their localization when they join the overlay), or if we consider that each
node has a given probability of failure.

All existing approaches have the same weak point: if the number of channels
per node (degree) is bounded, a fixed number of Byzantine nodes can destabilize
the whole network. Indeed, if they adopt a sufficiently close formation, they can
pretend to be the source node, and lie to any other node – thus, we cannot even
ensure that most correct nodes communicate reliably. Besides, if each node has
a given probability to be Byzantine, the probability that such a fatal forma-
tion exists approaches 1 when the number of nodes increases. Therefore, these
approaches are hardly scalable when the maximal degree is bounded.

Our contribution. In this paper, we propose the first broadcast protocol that
overcomes these difficulties on a specific degree-bounded topology: the grid,
where each node has at most four neighbors. For this protocol, the diameter
of the grid can only have discrete values, but can be as large as we want. As in
[16], our requirement is that a constant fraction of correct nodes achieves reli-
able communication. We show that the number of Byzantine failures that can be
tolerated (if they adopt the worst-case placement) increases with the number of
nodes: in other words, for the first time, this number is not limited by the max-
imal degree or the connectivity of the network. Besides, if we assume a constant
rate of Byzantine failures (each node has the same probability to be Byzantine),
the expected reliable fraction of the network is always the same, however large
the grid may be. This may have applications in large-scale networks, where each
node has a given probability to fail: we can now increase the size of the network
indefinitely, and yet preserve the same reliability guarantees.

The paper is organized as follows. In Section 2, we describe the network topol-
ogy (a sequence of grid networks that may be as large as we want) and the
broadcast protocol to execute on it. In Section 3, we adopt the point of view of
an omniscient observer that knows the positions of Byzantine nodes, and give a



90 A. Maurer and S. Tixeuil

methodology to determine a reliable node set - that is, a set of nodes that always
communicate reliably, in any possible execution. At last, in Section 4, we use the
aforementioned methodology to prove the claims.

2 Our Algorithm

In this section, we define a class of grid networks and the broadcast protocol to
execute on.

2.1 Hypotheses

The network is constituted by a set of processes, called nodes. Some pairs of
nodes are linked by a communication channel – we call them neighbors – and
can exchange messages. Each node of the network has a unique identifier, which
is its position on the grid. A node, upon receiving a message from a neighbor,
knows the identifier of this neighbor. The network is asynchronous: any message
sent is eventually received, but it can be at any time.

2.2 Network Topology

Let N = 10. Our broadcast protocol is defined for the networks Gk, ∀k ≥ 1, Gk

being a Nk ×Nk grid. These networks may be as large as needed.

Definition 1 (Grid network). An M ×M grid is a network such that:

– Each node has a unique identifier (i, j) with 0 ≤ i < M and 0 ≤ j < M .
– Two nodes (i1, j1) and (i2, j2) are neighbors if and only if one of these two

conditions is satisfied:
• i1 = i2 and |j1 − j2| = 1.
• j1 = j2 and |i1 − i2| = 1.

According to our hypotheses, each node knows its identifier (i, j) on the grid,
and the identifier (i, j) of its neighbors. Each node of Gk also knows N and k.

2.3 Informal Description of the Protocol

Our broadcast protocol (BP) is defined by induction: we use an existing BP on
G1, then use the BP of Gk to define the BP of Gk+1. The idea is to associate a
cluster of Gk+1 to each node of Gk. Let G(p) be the cluster associated to a node
p (we call it macro-node). This is illustrated in Figure 1. The goal of a macro-
node G(p) is to simulate the behavior of p, so that we obtain a macroscopic BP
in Gk+1. Then, when a node u of G(p) wants to broadcast a message m in Gk+1:

1. First, u broadcasts m in G(p) with a local BP.
2. Then, G(p) broadcasts m in Gk+1 with the macroscopic BP.

The interest of this inductive definition lies in its Byzantine-resilience properties.
These properties are studied in Section 3.
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Fig. 1. Association of a macro-node of Gk+1 to each node of Gk

2.4 Complete Description of the Protocol

The BP executed on G1 is the Control Zone Protocol (CZP) proposed in [16]. Let
us give the methodology to construct the BP of Gk+1 with the BP of Gk. For this
purpose, we first give an algorithm to communicate between two macro-nodes
(macro-channel), then use it to construct the macroscopic BP.

Macro-node. To each node p of Gk, we associate a cluster G(p) of Gk+1, called
macro-node. Let (i, j) be the identifier of p. Then, G(p) is the N ×N grid such
that the node (0, 0) of G(p) corresponds to the node (Ni,Nj) of Gk+1.

Macro-channel. Let p and q be two neighbor nodes in Gk. We give an algorithm
to tranfer messages from G(p) to G(q), as if they were two neighbor nodes linked
by a channel.

First, we execute the CZP on both G(p) and G(q), to enable local broad-
cast inside each macro-node. The following algorithm enables to send a message
m, known by the nodes of G(p), to the nodes of G(q). Let Border(p) (resp.
Border(q)) be the set of nodes of G(p) (resp. G(q)) having a neighbor in G(q)
(resp. G(p)).

1. The nodes of Border(p) send m to their neighbor in Border(q).

2. The nodes of Border(q), upon receivingm from their neighbor in Border(q),
broadcast m in G(q) with the CZP .

3. The nodes of G(q), upon receiving strictly more than N/2 distinct messages
(vi,m) trough the CZP with vi ∈ Border(q), accept m.

We associate a dynamic set Senq to each node of G(p) (storing the message
to send), and a dynamic set Recp to each node of G(q) (storing the messages
received). We execute this algorithm for each pair of neighbor macro-nodes. This
mechanism is illustrated in Figure 2.
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Macroscopic BP. For each node p of Gk, all nodes of G(p) execute the same
algorithm than p, with the two following modifications:

1. When the algorithm requires to send a message m to a neighbor q, add m
to Senq.

2. When a message m is added to the set Recq, consider that m was received
from q.

Now, let s be a node of G(p) that wants to broadcast a message m in Gk+1.
First, s broadcasts (s,m) in G(p) with the CZP. Then, upon receiving (s,m),
the nodes of G(p) broadcast (s,m) with the macroscopic BP . Thus, the nodes
receiving (s,m) know that s broadcast m: we now have a BP on Gk+1.

Fig. 2. Principle of the protocol

3 Construction of a Reliable Node Set

In this section, we now assume that some nodes are Byzantine, and behave
arbitrarily instead of following the aforementioned protocol. We adopt the point
of view of an omniscient external observer, knowing the positions of Byzantine
nodes, and give a methodology to determine a reliable node set - that is, a set of
nodes that communicate reliably in any possible execution. This methodology is
used in Section 4 to prove the claims. Notice that we never require that a node
determines such a set: this is just a global view of the system.

Notion of reliable node set. The nodes following the aforementioned protocol are
called correct. The correct nodes do not know the positions of Byzantine nodes.

Definition 2 (Reliable node set). For a given broadcast protocol (BP), a set
of correct nodes is reliable if, for each pair of nodes s and r of this set:

1. If s broadcasts m, r eventually accepts (s,m).
2. If r accepts (s,m), r necessarily broadcast m.
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In other words, a reliable node set behaves like a network without Byzantine
failures. The item (1) guarantees that the nodes always manage to communicate.
The item (2) guarantees that no node of the reliable set can be fooled - for
instance, if a Byzantine node broadcasts (s,m′) to make the network believe
that s broadcast m′.

Construction of a reliable node set. Let Corr be a set of correct nodes of Gk.
Let us define a function Relk such that Relk(Corr) returns a reliable node set
for our BP. For this purpose, we first introduce some new elements.

In [16], we gave a methodology to determine a reliable node set for the CZP
on an N × N grid, for a given set Corr0 of correct nodes. Let RelCZP be a
function such that RelCZP (Corr0) returns a reliable node set for the CZP.

At last, we introduce the notion of correct macro-node. In broad outline, a
correct macro-node behaves like a correct node in the macroscopic BP. This
intuitive idea is the key element of the next theorem.

Definition 3 (Correct macro-node). Let there be an N × N grid with a
distribution Corr0 of correct nodes. This grid (or macro-node) is said correct if
each side of the grid (up, down, right and left), among its N nodes, has strictly
more than 3N/4 nodes in RelCZP (Corr0).

The underlying idea of this definition is the following: the reliable node sets of
two adjacent correct macro-nodes are always connected by a majority of channels
(strictly more than N/2). Therefore, the messages exchanged between these two
reliable sets always receive a majority of votes. This idea is illustrated in Figure 3,
and used in the proof below.

Fig. 3. Reliable communication between 2 correct macro-nodes

We can now define the function Relk by induction, ∀k ≥ 1:

– Rel1 = RelCZP

– Relk+1(Corr) =
⋃

p∈Relk(Corr′) RelCZP (Corr(p)), where . . .
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• Corr is a distribution of correct nodes on Gk+1.
• Corr(p) is the corresponding distribution on G(p).
• Corr′ is the set of nodes p of Gk such that G(p) is a correct macro-node.

In the following, we refer to RelCZP (Corr(x)) by Rel(x).

Theorem 1. ∀k ≥ 1, if Corr is a distribution of correct nodes on Gk, then
Relk(Corr) is a reliable node set for our BP.

Proof. The main idea of the proof is to show an equivalence between the execu-
tion on Gk+1 and a virtual execution on Gk (this, of course, does not mean that
Gk must actually exist for Gk+1 to work).

The proof is by induction. The property is true at rank 1 by definition. Now,
let us suppose that the property is true at rank k, and show that it is true at
rank k + 1. Let Corr be a distribution of correct nodes on Gk+1, and let s and
r be two nodes of Relk+1(Corr). Let us suppose that s broadcasts m in Gk+1.
Then, to show that Relk+1(Corr) is a reliable node set, we show that the items
(1) and (2) of Definition 2 are satisfied.

1. We call accumulative a distributed algorithm where each node holds a given
number of dynamic sets S1, S2, S3 . . ., can only add elements to these sets
(Si ← Si ∪ {x}), and eventually executes an action when a given collection
of elements has joined these sets: (X1 ⊆ S1) ∧ (X2 ⊆ S2) ∧ . . .. The CZP
is accumulative, and so is our BP, as it is an inductive combination of ac-
cumulative algorithms. In other words, the order of reception of messages is
unimportant in our BP.

Let p and q be the nodes of Gk such that s belongs to G(p) and r
belongs to G(q). By definition of Relk+1, p and q belong to Relk(Corr′).
Let us suppose that Corr′ is a distribution of correct nodes on Gk. Then,
Relk(Corr′) is a reliable node set on Gk. Therefore, if p broadcasts (s,m),
there exists a sequence of message receptions such that q eventually accepts
(s,m). Let (R1, R2, . . . , RM ) be this sequence, Ri being a triplet (qi,mi, pi)
such that qi receives mi from pi, with p1 = p and qM = q. Let us prove the
following property Pi by induction, ∀i ∈ {1, . . . ,M}: all the nodes of Rel(qi)
eventually add mi to Recpi .

– First, let us show that P1 is true. According to our BP, s initially broad-
casts (s,m) in G(p). Therefore, as p = p1, all the nodes of Rel(p1) even-
tually accept (s,m). Then, as they execute the same alogorithm than p1,
they add m1 to their set Senq1 .

Let Border(q1) be the set of nodes of G(q1) having a neighbor in
G(p1). As G(q1) and G(p1) are two correct macro-nodes, according to
Definition 3, strictly more than N/2 nodes of Rel(p1) have a neighbor in
Rel(q1). Therefore, strictly more than N/2 nodes of Border(q1)∩Rel(q1)
eventually receive m1, and broadcast it in G(q1). So all the nodes of
Rel(q1) eventually receive strictly more thanN/2 messages (vx,m1) with
vx ∈ Border(q1) and add m1 to Recp1 . Thus, P1 is true.
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– Now, let us suppose that Pj is true ∀j ≤ i. Then, as the order of reception
of messages is unimportant, all the nodes of Rel(pi+1) eventually behave
as pi+1, and add mi+1 to Senqi+1 .
Thus, by a perfectly similar demonstration, Pi+1 is true.

Then , as r ∈ Rel(q), according to PM : r eventually receives the same
messages as q = qM and accepts (s,m). Thus, the item (1) of Definition 2 is
satisfied. This is illustrated in Figure 4.

Fig. 4. Illustration of the proof (1) : what occurs in Relk(Corr′) eventually occurs in
Relk+1(Corr)

2. The proof is by contradiction. Let us suppose the opposite: r accepts a
message (s,m), yet s did not broadcast m. Let p0 be the node of Gk such
that r ∈ Rel(p0). If we also have s ∈ Rel(p0), it is impossible that r accepts
(s,m), as Rel(p0) is a reliable node set. So s necessarily belongs to another
macro-node. Similarly than above, let us suppose that Corr′ is a distribution
of correct nodes on Gk. Then, as Relk(Corr′) is a reliable node set on Gk,
r necessarily received a message that p0 cannot receive in Gk. Let us show
that this is impossible.

Let u be the first node ofRelk+1(Corr) (possibly r), belonging to a macro-
node G(q), to receive a message m′ that q cannot receive in Gk. Let G(p) be
the macro-node sending this message. If G(p) is not correct (in the sense of
Definition 3), then p does not belong to Corr′, is assumed to be Byzantine
on Gk, and can actually send m′ to q – so G(p) is necessarily correct. It
implies that u received strictly more than N/2 messages (vi,m

′) with vi ∈
Border(q). As G(p) and G(q) are two correct macro-node, strictly more
than N/2 nodes of Rel(p) have a neighbor in Rel(q). So at least one of the
nodes vi belongs to Rel(q) and received m′ from a neighbor v ∈ Rel(p). As
Rel(p) is a reliable node set, the only possibility is that v received a message
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Fig. 5. Illustration of the proof (2) : a node of Relk+1(Corr) cannot misbehave

that p cannot receive in Gk. So u is not the first node in this situation,
which contradicts the initial statement. Thus, the item (2) of Definition 2 is
satisfied. This is illustrated in Figure 5.

We now have a methodology to determine a reliable node set for a given dis-
tribution of Byzantine nodes on Gk, ∀k ≥ 1. In the next section, we use this
methodology to prove the claims.

4 Proof of the Claims

In this section, we finally prove the claims of the paper: the number of Byzan-
tine failures that can be tolerated increases with the number of nodes (if they
adopt the worst-case placement), and a constant rate of Byzantine failures can
be tolerated, however large the grid may be. As in [16], our requirement to toler-
ate Byzantine failures is that a constant fraction of the network communicates
reliably.

4.1 Worst-Case Placement

Let us give a minimal number of Byzantine failures that can be tolerated when
they adopt an arbitrary placement (possibly the worst).

Theorem 2. ∀k ≥ 1, on a grid Gk with at most 2k−1 Byzantine failures (arbi-
trarily placed), the fraction of the network achieving reliable communication is

at least 1− 4

N2
.

Proof. The proof is by induction. For k = 1, we can test all possible placements
of a single Byzantine failure (as N = 10) and show that the property is true.
Now, let us suppose that the property is true at rank k. Let there be 2k Byzantine
failures arbitrarily placed on Gk+1. Then, at most 2k−1 macro-nodes of Gk+1
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contain more than 2 Byzantine failures. Again, by testing all possible cases, we
can show that an N×N grid with at most 1 Byzantine failure is always correct in
the sense of Definition 3. So at most 2k−1 macro-nodes are not correct. Therefore,

as the property is true at rank k, the reliable node set covers at least a 1− 4

N2

fraction of macro-nodes (and in this worst case, all these macro-nodes have only
correct nodes). Thus, according to the definition of Relk+1, the property is true
at rank k + 1. This is illustrated in Figure 6.

Fig. 6. Worst-case placement of 2k−1 Byzantine nodes on Gk

So we can always tolerate 2k−1 failures on Gk. As the parameter k sets the size
of the grid, this number increases with the number of nodes. To our knowledge,
this is the first time that this number is not limited by the connectivity or the
maximal degree of the network.

4.2 Random Distribution

Let us assume a constant rate of Byzantine failures (each node has the same
probability λ to be Byzantine) and give the expected reliable fraction of the
network. Let μ = 1− λ be the probability that a node is correct.

Theorem 3. ∀k ≥ 1, let Fk(μ) be the expected reliable fraction of Gk. Then, if
μ ≥ 1− 10−5, we have Fk(μ) ≥ 1− 10−4.

Proof. Let there be an N ×N grid where each node has the same probability μ0

to be correct. We call P (μ0) the probability that the two following events occur:
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1. The grid is correct in the sense of Definition 3.

2. A node, chosen uniformly at random, belongs to RelCZP (Corr0), Corr0
being the distribution of correct nodes on the grid.

We want to prove the following property by induction: Fk ≥
i=k∏

i=1

P i(μ), P i being

the ith application of the function P . The property is true at rank 1, as F1(μ) ≥
P (μ).

Now, let us suppose that the property is true at rank k. Let Corr be the
distribution of correct nodes on Gk+1. Let u be a randomly chosen node of
Gk+1, and let p be the node of Gk such that u belongs to the macro-node
G(p). According to Theorem 1, to have u ∈ Relk+1(Corr), it is necessary and
sufficient that (1) u ∈ Rel(p) and (2) p ∈ Relk(Corr′). The first event occurs
with probability P1 ≥ P (μ), and if so, the second event occurs with probability

P2 ≥ Fk(P (μ)). Thus, Fk+1(μ) ≥ P (μ)Fk(P (μ)) =

i=k+1∏

i=1

P i(μ): the property is

true at rank k + 1. This is illustrated in Figure 7.

Fig. 7. Sufficient condition for u to be in Relk+1(Corr)

Now, let us give a lower bound of P (μ0). We consider two disjoint cases:

1. The case where all the nodes of the N × N grid are correct, which occurs
with probability μN2

0 . In this case, RelCZP (Corr0) covers the whole grid,
and the grid is correct in the sense of Definition 3.

2. The case where one single node is Byzantine, which occurs with probability

N2(1− μ0)μ
N2−1
0 . As N = 10, we evaluate RelCZP (Corr0) for the 100 pos-

sible placements of the single Byzantine node. In 64 cases, this set contains
99 nodes. In 32 cases, it contains 98 nodes. In 4 cases, it contains 96 nodes.
Thus, the probability that a randomly chosen correct node belongs to this

set is α =
64× 99 + 32× 98 + 4× 96

100× 99
≥ 199

200
. In all cases, the grid is correct

in the sense of Definition 3. This is illustrated in Figure 8.
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Fig. 8. Different cases for the placement of 1 Byzantine node on an N ×N grid

So P (μ) ≥ g(μ) = μN2

+αN2(1−μ)μN2−1. This function is convex

(
∂2g(μ)

∂μ2
≤ 0

)

for μ ≥ α. Let β = 1− 10−5 ≥ α. Then, ∀μ ≥ β, g(μ) ≥ f(γ, μ) = 1− γ(1− μ),

with γ =
1− g(β)

1− β
. Then, we easily show by induction that ∀k ≥ 1, P k(μ) ≥

f(γk, μ). So Fk(μ) ≥ Hk(μ) =

i=k∏

i=1

f(γi, μ).

We now have a lower bound of Fk(μ), but it may be hard to calculate when
k approaches infinity. To overcome this difficulty, let i0 be the first integer

such that, ∀i ≥ i0, γ
i ≤ 1

i2
. So Hk(μ) ≥

i=i0∏

i=1

f(γi, μ)
i=k∏

i=i0+1

(1 − 1− μ

i2
). Then,

when k approaches infinity, we can apply the Wallis formula: lim
x→∞Hk(μ) ≥

i=i0∏

i=1

f(γi, μ)
sin(π

√
1− μ)

π
√
1− μ

≥ 1 − 10−4 if μ ≥ β. Thus, the result, as Hk(μ) de-

creases with k.

Therefore, we can hold a constant rate of Byzantine failures and yet have a
constant expected fraction of reliable nodes, however large the grid may be. This
may have important security applications – for instance in a computationnal
grid where each processor has a given probability to misbehave. This result
shows that, for a given security requirement, we can increase the size of the grid
indefinetely, which could be a solution to the problem of scalability.

5 Conclusion

In this paper, we have shown that Byzantine resilience was possible in a scalable
degree-bounded network. If the adversary can place the Byzantine nodes arbi-
trarily, then for the first time, we can tolerate a number of Byzantine failures
that largely exceeds the node degree. If not (random distribution), then we can
tolerate a constant fraction of Byzantine nodes, even if the size of the network
approaches infinity.

We have the strong conviction that this approach (slice the network into clus-
ters, then slice each cluster into smaller clusters, etc . . . ) can be generalized to
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less regular topologies. Indeed, the notion of a correct macro-node (see Defini-
tion 3) can be generalized to an arbitrary graph – the key idea is that, for each
interface with another macro-node, we must still have a 3/4 fraction of reliable
nodes. Besides, the network diameter can only have discrete values here, but we
could generalize the result to any network diameter.
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