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Abstract. Distributed storage systems usually achieve fault tolerance
by replicating data across different nodes. However, redundancy schemes
based on erasure codes can provide a storage-efficient alternative to repli-
cation. This is particularly suited for data archival since archived data
is rarely accessed. Typically, the migration to erasure-encoded storage
does not leverage on the existing replication based redundancy, and sim-
ply discards (garbage collects) the excessive replicas. In this paper we
propose a new decentralized erasure coding process that achieves the mi-
gration in a network-efficient manner in contrast to the traditional cod-
ing processes. The proposed approach exploits the presence of data that
is already replicated across the system and distributes the redundancy
generation among those nodes that store part of this replicated data,
which in turn reduces the overall amount of data transferred during the
encoding process. By storing additional replicated blocks at nodes exe-
cuting the distributed encoding tasks, the necessary network traffic for
archiving can be further reduced. We analyze the problem using symbolic
computation and show that the proposed decentralized encoding process
can reduce the traffic by up to 56% for typical system configurations.

Keywords: archival, migration, erasure codes, distributed storage.

1 Introduction

Large data centers such as Google file-system (GFS) [9], Amazon S3 [2] or
Hadoop file-system (HDFS) [3] handle extremely big volume of data by scaling-
out, i.e., by realizing a distributed storage system comprising of hundreds or even
thousands of commodity storage servers. To ensure that the stored data survives
failures of some of the storage nodes, all data needs to be redundantly stored. A
common and simple form of redundancy is to store multiple copies (replicas) of
each data across the system. Storing erasure coded data is a more sophisticated
alternative, which achieves significantly better trade-off in terms of storage-
overhead and fault-tolerance [14, 17]. Many recent systems such as Microsoft
Azure [10], Facebook’s HDFS-RAID [4, 16] and the new version of the Google
File System [8] among others have thus embraced erasure codes based storage
systems. Typical parameter choices of erasure codes used in these deployed sys-
tems incur overall overhead of 1.3×–2× the size of the original data [4, 7, 10].
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This translates to a reduction of up to 50% in infrastructural costs with respect
to a (3-way) replication based storage system.

Even though erasure coding based systems have significantly lower storage
overhead, newly inserted data is usually first replicated across different stor-
age nodes. The reasons for initially using replication are twofold. Replication
is easy and fast to achieve by pipelining the data through the involved stor-
age nodes,1 without incurring any computation related costs or latency. This
allows high throughput data insertion, achieving immediate fault tolerance. Fur-
thermore, replication allows task schedulers to exploit data locality and achieve
load-balancing [9], helping improve performance of applications manipulating
the stored data.

Thus the use of erasure code based redundancy is primarily relegated to archi-
val of data which is no longer frequently accessed [7]. Such a pragmatic design
choice reduces the storage footprint significantly, and has immediate impact on
the infrastructural and operational costs of a data center. However, this dual re-
dundancy based approach, namely, the use of replication for newly inserted data
and that of erasure codes for subsequent archival suffers from an important prob-
lem: all archived data passes through two independent redundancy generation
processes, each of them having their own associated costs.

In this work, we explore a new decentralized erasure coding process leverag-
ing on the existence of replicas from the first (data insertion) phase to reduce
the network overheads during the second (migration from replication to erasure
coded storage) phase. The basic idea is illustrated with a toy example shown
in Figure 1. However, in order to amplify the reduction of the network traffic
w.r.to the traditional archiving process, the replicas created during the insertion
of new data have to be placed in some specific manner. Specifically, if multiple
distinct blocks of a replicated object are collocated in a specific manner within
the subset of nodes performing the decentralized encoding, then such locality
can be exploited to further reduce the network traffic. Note that collocation of
random object blocks may not be amenable to such benefits.

Symbolic computation based analysis show that for typical erasure code con-
figurations used in in-production storage systems, the proposed decentralized
erasure coding process can reduce the network traffic by up to 24% or 56%,
depending on the collocation of the replicated blocks.

The main contributions of this paper are threefold.

1. We introduce a new decentralized erasure coding process to reduce the traffic
required to archive data in replicated storage systems.

2. We provide a generic code construction that exploits this decentralized cod-
ing process.

3. We show how the traffic required during the decentralized coding process can
by further reduced by adopting smart replica placement strategies during the
data insertion phase.

1 New inserted data can be stored in a first node while it is concurrently forwarded to
and stored in a second node, and from this second node to a third, and so on [3,9].



44 L. Pamies-Juarez, F. Oggier, and A. Datta

(a) Traditional archiving process.

(b) Decentralized coding process.

Fig. 1. Example of how to generate erasure code redundancy from a replicated system
using (a) a traditional encoding process, and (b) a decentralized coding process. White
squares represent storage nodes and arrow labels denote the number of blocks trans-
ferred over the network. We can see how (a) requires a total of 5 network transfers
while (b) only needs 4 network transfers. The “X” symbol denotes the replicas that are
discarded once the archival finishes, and the symbol ⊗ denotes an encoding operation.

The rest of the paper is organized as follows. In Section 2 we provide some back-
ground on erasure codes for distributed storage systems. In Section 3 we present
our new decentralized erasure coding process, and in Section 4 we evaluate its
fault tolerance and its encoding traffic savings. In Section 5 we discuss some
related works. Finally, in Section 6 we draw our conclusions and outline some
planned future work.

2 Background

When a data object is stored for the first time in a distributed storage system
such as GFS [9] or HDFS [3], it is initially split into blocks of size B and each
of them is replicated over r different storage nodes (usually r = 3). The size of
these blocks is set to relatively large values of B, e.g., B = 64MB in GFS and
HDFS, which allow to amortize data access latencies, as well as to exploit local
data caching [9].

At a later time, when an object does not need to be frequently accessed, it
can be archived using an erasure code, reducing its storage footprint, and hence
its associated storage costs. This encoding process takes k blocks of data, each
of size B, and computes m parity blocks (or redundancy blocks) of the same
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size, which are stored in m other different storage nodes. Since in most cases it
is unlikely that data objects were split exactly into k blocks during the insertion
process, the k blocks used in the encoding process might belong to different data
objects. For example, in some systems files from the same directory are jointly
encoded [5].

We can formally define the erasure encoding process as follows. Let the vector
o = (o1, . . . , ok) denote a data object of k × q bits. That is, each symbol oi,
i = 1, . . . , k is a string of q bits. Operations are typically performed using finite
field arithmetic, that is, the two bits {0, 1} are seen as forming the finite field
F2 of two elements, while oi, i = 1, . . . , k then belong to the binary extension
field F2q containing 2q elements. Then, the encoding of the object o is performed
using an (n×k) generator matrix G such that G ·oT = cT , in order to obtain an
n-dimensional codeword c = (c1, . . . , cn) of size n× q bits. When the generator
matrix G has the form G = [Ik, G

′]T where Ik is the identity matrix and G′ is a
k×m matrix, the codeword c becomes c = [o,p] where o is the original object,
and p is a parity vector containing m × q parity bits. The code is then said to
be systematic, in which case the k parts of the original object remain unaltered
after the coding process. The data can then still be read without requiring a
decoding process by accessing these systematic pieces.

Finally, an optimal erasure code in terms of the trade-off between storage
overhead and fault tolerance is called a maximum distance separable (MDS)
code, and has the property that the original object can be reconstructed from
any k out of the total n = k+m stored blocks, tolerating the loss of any arbitrary
m = n−k blocks. The notation “(n, k) code” is often used to emphasize the code
parameters. Examples of the most widely used MDS codes are the Reed-Solomon
codes [13].

While the efficacy of the use of erasure codes for fault tolerant storage has
long been understood and leveraged, the migration process from a replication
based storage to erasure coding based storage has been identified as a significant
challenge relatively recently [5], given the tremendous growth in the volume
of data that is continuously being generated and needs to be processed and
archived. Next, we explain how the network traffic can be significantly reduced
during the migration by embracing a decentralized coding process leveraging on
the replicas.

3 Decentralizing the Data Archival Process

In this section we first introduce the decentralized erasure coding problem state-
ment in 3.1. In 3.2 we provide a motivating example of how the decentralized
archiving process works, and in 3.3 we provide a general code construction using
a decentralized erasure coding process.

3.1 Problem Statement

When a data object o = (o1, . . . , ok) is newly inserted in the system, each data
block oi is replicated across r different storage nodes. Once the object o is no
longer in frequent use, it is archived using a systematic (n, k) erasure code. The
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migration from replicas to encoding goes as follows: a node obtains an entire copy
of o by downloading k different blocks, encodes them to generate a parity vector
p = (p1, . . . , pm), and finally uploads each parity block pi to a different storage
node. The encoding process thus requires the transfer of n = k + m blocks,
which can be reduced to n− 1 if the coding node keeps one of the parity blocks
and uploads m − 1 blocks. Once the m parity blocks are stored, the number
of replicas of each stored block oi can be safely reduced to r = 1, discarding
the remaining r − 1 block replicas. After this, a whole replica of the original
object o remains unaltered and stored over k different storage nodes, becoming
then the systematic part of the final codeword, which is formed of the blocks
c1 = o1, c2 = o2, . . . , ck = ok. An example of this process is depicted in Figure 1a
for a simple (6,3) code.

The problem with this traditional coding process is that redundant data is
transferred within the network twice (once to obtain and store kr replicated
blocks, and once to compute and upload the m parity blocks) which might seem
a waste of resources. Indeed, out of the kr replicated blocks generated during the
first storage phase, only k of them are used to compute the coded parity blocks.
This observation motivates the design of a new decentralized erasure coding
process that reuses the original replicated data to reduce the total number of
blocks transferred during the data archival process. In Figure 1b we showed a
simple toy example of how to perform a decentralized encoding and save a block
transfer as compared to the classical encoding process.

Iterative Encoding: Unfortunately, the simple decentralized encoding depicted in
Figure 1b cannot be easily adopted by codes with large n and k values. To solve
this problem we propose an iterative encoding process that splits the coding in
ν different steps and involves up to m nodes that store some of the rk block
replicas. The coding can be described in two logical phases: (i) at each step, a
node generates a temporary redundant block and forwards it to the next node,
and (ii) after ν steps each of the m nodes locally combines the stored replicas
with the temporary blocks it received to generate and store one of the m parity
blocks p1, . . . , pm.

Replica Collocation: Traditionally, distributed storage systems allocate the rk
replicated blocks of each data object among different nodes at random, which
guarantees with high probability that the different replicated blocks are stored
in rk different nodes. Random replica placement balances the amount of data
stored per node and guarantees high resiliency in face of correlated node failures.
However, in the case of the previous iterative coding process, having only one
block replica per node increases the number of steps ν required to obtain an
MDS erasure code. To minimize the number of steps required to achieve MDS
codes, and thus minimize encoding traffic, we propose to collocate � out of the
total (r− 1)k unused block replicas within the m coding nodes. By doing so, the
coding nodes will have more information about the original data and would be
able to reduce the number of encoding steps.



Decentralized Erasure Coding for Efficient Data Archival 47

For this decentralized erasure coding process to be relevant, the benefits that
they provide in terms of network resources should not be at the expense of fault
tolerance. We will show that the fault tolerance of the proposed decentralized
erasure codes depends on the values of � and ν: the larger these values are,
the more likely it is to achieve the MDS property. However, large values of �
impose strict placement policies which might complicate load balancing, while
large values of ν increase the number of transferred blocks and thus reduce the
benefit in terms of communication costs. It is then important to understand
the trade-off between these two parameters to find high fault tolerance codes
(preferably MDS codes) requiring low communication costs during the archiving
process and flexible initial replica placement policies.

The drawback of collocation of � replicas within m storage nodes is that a
high collocation might reduce the tolerance of the storage system to correlated
node failures. For this reason it is very important to keep low collocation rates
(small value of �). We also note that a traditional erasure coding process can
also exploit the presence of nodes storing multiple blocks from a single object,
and thus reduce the number of blocks downloaded in order to obtain the whole
data object o. Thus, in Section 4.3 we compare the required traffic of traditional
erasure encoding process and that of the decentralized coding process, and find
that for the same amount of collocation, decentralized coding always achieve
the same or less traffic than the traditional coding, demonstrating its efficacy.
Furthermore, in the cases where both coding schemes require the same traffic,
a decentralized coding is preferred over a centralized one since it avoids the
network and computing bottlenecks of having a single coding node.

3.2 A Motivating Example

To understand the proposed decentralized erasure coding process, we first pro-
vide as example the encoding of a (10,6) erasure code, which provides m =
10 − 6 = 4 blocks of redundancy (parity blocks). We have a data object o =
(o1, o2, . . . , o6) to be stored with a replica placement policy that stores r = 3
replicas of o, that is three replicas of every oi, i = 1, . . . , 6 (for a total of 18
data blocks). We assume that one of the replicas of o is stored in k = 6 dif-
ferent nodes, which will finally constitute the systematic part of the codeword,
c1 = o1, . . . , ck = ok. From the (r − 1)k = 12 replicas left, we select a subset
of � of them to be stored in the m = 4 coding nodes that will carry out the
decentralized encoding process. The assignment of these � replicas is as follows:

N1 = {o1, o2, o3}
N2 = {o4, o5, o6}
N3 = {o1, o2}
N4 = {o3, o4}

where Nj denotes the set of blocks stored in node j. Note that only � = 10 out of
the available (r−1)k = 12 blocks are replicated in the m coding nodes, while the
remaining two can be flexibly stored in other nodes, e.g., to balance the amount
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of data stored per node. Note also that no node stores any repeated block, since
this would reduce fault tolerance.

To describe the decentralized encoding process we use an iterative encoding
process of ν = 7 steps, in which every ψi, ξj ∈ F2q are predetermined values that
define the actual code instance. During step 1, node 1 which has N1 generates

x1 = o1ψ1 + o2ψ2 + o3ψ3

and sends it to node 2, which uses N2 and x1 to compute

x2 = o4ψ4 + o5ψ5 + o6ψ6 + x1ψ7

during step 2. After two more steps, we get:

x3 = o1ψ8 + o2ψ9 + x2ψ10

x4 = o3ψ11 + o4ψ12 + x3ψ13,

and node 4 forwards x4 to node 1, since ν = 7 > m = 4, which creates

x5 = o1ψ14 + o2ψ15 + o3ψ16 + x4ψ17

before sending x5 to node 2. For the last two iterations, both node 2 and node
3 use respectively N2, x1 and x5, and N3, x2 and x3 together, to compute

x6 = o4ψ18 + o5ψ19 + o6ψ20 + x1ψ21 + x5ψ22

x7 = o1ψ23 + o2ψ24 + x2ψ25 + x6ψ26.

After this phase, node 1 to 4 are locally storing:

N1 = {o1, o2, o3, x4}
N2 = {o4, o5, o6, x1, x5}
N3 = {o1, o2, x2, x6}
N4 = {o3, o4, x3, x7}

from which they compute the final m parity blocks:

p1 = o1ξ1 + o2ξ2 + o3ξ3 + x4ξ4

p2 = o4ξ5 + o5ξ6 + o6ξ7 + x1ξ8 + x5ξ9

p3 = o1ξ10 + o2ξ11 + x2ξ12 + x6ξ13

p4 = o3ξ14 + o4ξ15 + x3ξ16 + x7ξ17.

The final codeword is c = [o,p] = (o1, . . . , o6, p1, . . . , p4). There is a total of
ν blocks transmitted during the encoding process (those forwarded during the
iterative phase). In this example, ν = 7, and the encoding process requires
two block transmissions less than the classical encoding process, which requires
n− 1 = 9 blocks, thus achieving a 22% reduction of the traffic.

We will in fact analytically show (see Section 4) that this decentralized en-
coding obtains a (10,6) MDS code. It means that there is a set of values for
the coefficients ψi and ξi, which can be determined (for example, by exhaustive
search), guaranteeing maximum fault tolerance of the code. In fact, the larger
the field F2q is, the more likely it is to obtain MDS codes, allowing to use random
ψi and ξi values in practical settings [1].
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3.3 General Code Construction

We now provide a general technique to generate the parity vectorp = (p1, . . . , pm)
in a decentralized manner by usingm storage nodes that altogether store � out of
the total (r − 1)k block replicas.

We first define how the � replicated blocks are allocated among the m coding
nodes, i.e., the content of the setNj for each node j. For the sake of simplicity, we
assume that the � replicas are deterministically assigned in a sequential manner
as illustrated in the example used in 3.2, trying to even out the number of
blocks assigned to each node. A formal description of this allocation is provided
in Algorithm 1. Note that for practical small values of � Algorithm 1 avoids the
replication of the same block in a single node.

Algorithm 1. Replica placement policy
1: i ← 1
2: for j = 1, . . . ,m do
3: α ← ��/m�
4: if j ≤ (� mod m) then
5: α ← α+ 1
6: end if
7: Nj = {ol : l = (j mod k), j = i, . . . , i+ α}
8: i ← i+ α
9: end for

This assignment policy imposes some restrictions on the location of the dif-
ferent replicated blocks. These restrictions might become a drawback in systems
trying to uniformly distribute the storage load among all nodes in the system.
The problem can be specially important in the extreme case when � = (r− 1)k,
where all replicas need to be specifically stored in the m coding blocks. However,
smaller values of � provide some flexibility on where to assign the (r − 1)k − �
remaining replicas. We will explore the effects that different � values have in the
fault tolerance of the erasure code in Section 4.

Remark 1. In the case of � = k, there is no replica assignment policy and a
random placement can be used.

Given the previous replica assignment policy, the decentralized encoding process
is split in two different phases: the iterative encoding and the local encoding.

The iterative encoding consists of ν sequential encoding steps, where at each
step, each node generates and forwards a temporary redundant block. For each
step i, where i = 1, . . . , ν, node j = (i modm) which stores the set of blocks
Nj = {z1, z2, . . . } locally computes a temporary block xi ∈ F2q as follows:

xi = z1ψ1 + z2ψ2 + · · ·+ z|Nj|ψ|Nj |, (1)

where ψi ∈ F2q are predetermined values. Once xi is computed, node j sends xi
to the next node l = (i+1 modm), who stores locally the new temporary block:
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Nl = Nl ∪{xi}. After that, node l computes xi+1 as defined in (1) and forwards
it the next node. The iterative process is similarly repeated a total of ν times.

After this iterative encoding phase, each node i = 1, . . . ,m executes a local
encoding process where the stored blocks Ni (including the temporary blocks
generated during the iterative encoding phase) are combined to generate the
final parity block pi (for predetermined values of ξi ∈ F2q ) as follows:

pi = z1ξ1 + z2ξ2 + · · ·+ z|Ni|ξ|Ni|. (2)

Finally, we describe the overall distributed encoding algorithm (including the
iterative encoding and the local encoding) in Algorithm 2. Note that values ψl

and ξl (lines 7 and 17) are picked at random. In a sufficiently large field (e.g.,
when q = 16) this random choice will not introduce additional dependencies
other than the ones introduced by the iterative encoding process itself [1].

Algorithm 2. Decentralized redundancy generation

1: l ← 1
2: j ← 1
3: x ← 0
4: for i = 1, . . . , ν do � Generation of the ν temporary blocks.
5: x ← 0
6: for z ∈ Nj do � Coding operation as described in (1).
7: x ← x+ ψl · z
8: l ← l + 1
9: end for
10: j ← (i+ 1) mod m
11: Nj ← Nj ∪ {x} � Each union (∪) represents a block transfer.
12: end for
13: l ← 1
14: for i = 1, . . . ,m do � Generation of the final m parity blocks.
15: pi ← 0
16: for x ∈ Ni do � Coding operation as described in (2).
17: pi ← pi + ξl · x
18: l ← l + 1
19: end for
20: end for

4 Evaluation

In this section we evaluate the effects that the number of collocated replicas, �,
and the number of steps, ν, have in the fault tolerance of the code obtained by
the decentralized coding strategy. To do it, we symbolically compute different
iterated codings as it is specified in Algorithm 2. We do it for different values of
n, k, � and ν, however, the block values oi and the value of coefficients ψi and
ξi are not specified, which means that after the iterative coding phase we obtain
a symbolic codeword c = (c1, . . . , cn). We use this codeword then to enumerate
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all the possible
(
n
k

)
k-subsets of blocks in c and measuring how many of them

contain k linearly independent blocks. We refer to the fault tolerance of the
code, π, as the percentage of k-subsets that do not contain linear dependencies
between its blocks. When all the

(
n
k

)
k-subsets are free of linear dependencies

we say that the code is MDS, and has maximum fault tolerance, i.e., π = 1.
Since we aim to evaluate the effects of the parameters � and ν, we select three

different (n,k) instances commonly used by in-production distributed storage
systems: (i) a (6,3) code, suggested in the new Google FS [8], (ii) a (10,6) code
used in the Microsoft Azure Storage service [10], and (iii) a (14,10) code used in
Facebook’s HDFS-RAID implementation [4, 15]. Respectively, these codes have
storage footprints of 2×, 1.6̇× and 1.4× the size of the original stored data, which
represents a diverse spectrum of code parameters. For each of them we evaluate
the fault tolerance of a code generated with a decentralized erasure code that
uses � collocated blocks and ν coding steps, for different values of � and ν.

4.1 Fault Tolerance Analysis

We divide the fault tolerance analysis in two experiments, one aiming to evaluate
the effects of ν, and another one to evaluate the effects of �.

In figures 2a, 2c, and 2e we show the fault tolerance of the code π as a function
of the number of steps, ν. For each of the three different codes we depict the
effects of ν for three different values of �: � = k, � = 1.5 and � = 2k. We
can see how the proportion of linearly independent k-subsets increases as more
encoding iterations are executed. Achieving the maximum fault tolerance (when
the fraction of linearly independent k-subsets is one) requires less iterations for
high replica collocation values �.

Similarly, in figures 2b, 2d, and 2f we show the fault tolerance as a function
of the number of blocks stored within the m coding nodes, �. For each code we
also show the results for three different values of ν, which aim to show the fault
tolerance when all (i) only a few coding nodes execute the iterative encoding
process, (ii) when all coding nodes execute it exactly once, and (iii) when some
coding nodes execute it more than once. In general we can see how increasing
the number of initially collocated replicas � increases the fault tolerance of the
code. However, for small values of ν there are cases where increasing � might
slightly reduce the fault tolerance. Finally, we want to note that in those cases
where ν ≤ m (only a few coding nodes execute the iterative encoding), the
code produced by the decentralized coding can never achieve maximum fault
tolerance. To achieve maximum fault tolerance all the m coding nodes need to
execute at least one coding step.

4.2 Obtaining an (6,3) MDS Code

We propose a simple example to understand why the iterative encoding pro-
cess allows to obtain MDS codes. Suppose we have a (6,3) erasure code, whose
codewords are of the general form
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(b) Results for (6,3) code.
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(e) Results for (14,10) code
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(f) Results for (14,10) code.

Fig. 2. Fault tolerance achieved by our decentralized erasure coding process as a func-
tion of the number of encoding steps, ν, and the number of co-located block replicas,
�. The fault tolerance π is expressed as the proportion of k-subsets of the codeword c
that do not contain linear dependencies. When this value is one, the code is MDS and
has maximum fault tolerance.
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c = (o1, o2, o3, α1o1 + α2o2 + α3o3, β1o1 + β2o2 + β3o3, γ1o1 + γ2o2 + γ3o3)

for some fixed αi, βi, γi ∈ F2q , i = 1, 2, 3, where o = (o1, o2, o3) is the object to
be encoded. We assume that every αi, βi, γi is nonzero, so that it is invertible.
Note that if any of them were to be zero, then the code cannot be MDS.

Let us assume a replica placement policy using � = 3 that allocates these �
replicas within the m coding blocks as follows:

N1 = {o1} , N2 = {o2} , N3 = {o3} .
Then, an iterative encoding process of ν = 4 steps allows to compute the generic
parity blocks as given above:

1. Node 1 sends o1 to node 2,
2. Node 2 uses o2 and x1 = o1 to compute x2 = o1γ1 + o2γ2.
3. Node 3 receives x2 and sends x3=γ

−1
2 α2x2+α3o3 = γ−1

2 α2γ1o1+α2o2+α3o3.
4. Node 1 forwards x3 to node 2.

After this phase, node 1 to 3 are locally storing:

N1 =
{
o1, x3 = γ−1

2 α2γ1o1 + α2o2 + α3o3
}

N2 =
{
o1, o2, x3 = γ−1

2 α2γ1o1 + α2o2 + α3o3
}

N3 = {o3, x2 = o1γ1 + o2γ2}
from which they compute the final m parity blocks:

p1 = o1(γ
−1
2 α2γ1 + α1) + x3

p2 = α−1
3 β3x3 + (α−1

3 β3γ
−1
2 α2γ1 + β1)o1 + (α−1

3 β3α2 + β2)o2

p3 = γ3o3 + x2.

The final codeword is c = [o,p] = (o1, o2, o3, p1, p2, p3). Thus any (6,3) MDS
code can be obtained through this iterative encoding.

4.3 Reduction of the Encoding Traffic

Finally, we aim to evaluate the traffic savings that the decentralized erasure cod-
ing provides on the data archival process. For that we take the results presented
in Figure 2 and measure the encoding traffic of the MDS codes obtained when
� = k and � = 2k. For each � value the decentralized encoding traffic corresponds
to the minimum value of ν required to achieve the MDS property. Additionally,
for the same value of collocated replicas � we also evaluate the encoding traffic
that a traditional erasure would require, considering that the coding node stores
more than one object block.

In Figure 3 we depict the encoding traffic comparison between a centralized
coding process, denoted by RS2, and a decentralized MDS coding process, de-
noted by DE. In the case of the (6,3) code, there are only traffic savings when

2 The acronym refers to the classical Reed-Solomon coding process.
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Fig. 3. Comparison of the number of transferred blocks during the encoding of a clas-
sical Reed-Solomon code (RS) and the decentralized coding (DE) for two different
replica collocation values: � = k and � = 2k. All DE codes are MDS codes optimized
to minimize the number of coding steps ν.

the m = 3 coding nodes store all the (r−1)k replicas. In this case the decentral-
ized coding saves one block transfer. In the case of the (10,6) the decentralized
coding process always requires less network traffic, even for low replica colloca-
tion levels, and these traffic savings are amplified for the (14,10) code. In this
last case the savings range from a 24% in the case of the low replica collocation
(� = k), up to 56% for high collocation values (� = 2k).

5 Related Work

Despite widespread use of erasure coding for archiving data in distributed stor-
age systems, the study of the actual migration process from replication based
redundancy to erasure code based redundancy is in its infancy.

The most relevant related work is that of Fan et al. [5], who propose to dis-
tribute the task of erasure coding using the Hadoop infrastructure, as MapRe-
duce tasks. Any individual object is however encoded at a single node, and hence
the parallelism achieved in their approach is only at the granularity of individ-
ual data objects. Besides, their data archiving process relies on the traditional
erasure code redundancy generation process, which does not exploit previously
existing replicas.

In [12] we recently proposed RapidRAID codes, a family of pipelined erasure
code that aim to speedup the archival process in distributed storage systems.
Although such fast data archival is also achieved by a decentralized coding pro-
cess, the RapidRAID approach differs fundamentally from the one presented in
this paper in two ways. First, RapidRAID codes are non-systematic codes that
require decoding operations to read the archived data, complicating the access
to archived data. Second, RapidRAID codes are aimed to reduce the encoding
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time, but achieves no reduction of traffic as compared to what is required by
a traditional coding processes. The presented work in contrast is specifically
aimed at traffic reduction, and any collateral benefits in terms of speed-up of
the process is left for future study.

Finally, a somewhat unrelated line of work worth mentioning are codes de-
signed for storage in sensor networks [6, 11]. However, in such a setting, the
(disjoint) data generated by k sensors is jointly stored over n > k storage sen-
sors based on erasure coding redundancy. This is achieved using network coding
techniques by creating random linear combinations of the already distributed
data. Such a technique has however not been explored for the specific migration
problem studied in this work.

6 Conclusions

In this paper we introduce a new decentralized erasure coding process to reduce
the network traffic required to archive replicated data in distributed storage
systems. The decentralized process distributes the coding tasks among those
nodes storing data block replicas of the object to be archived. These nodes
collaboratively generate and store all the parity data.

Additionally, we provide a formal definition of the decentralized erasure cod-
ing process and symbolically analyze the fault tolerance of the obtained codes
for different parameters. We show that in already deployed systems where the
placement of the replicated data can not be changed, our decentralized cod-
ing process can reduce the redundancy generation traffic by 20% upto 38% for
typical code configurations used in current systems. However, when the replica
placement of newly inserted data can be manipulated to co-locate more block
replicas in some specific manner in the nodes participating in the coding process,
the redundancy generation traffic can be reduced by 40% upto 70%.

The design of decentralized erasure coding process to archive replicated data
is a relatively unexplored problem that needs to be further studied. We identify
two problems that we plan to address in future works. Specifically, we aim to
look methodically at the effects that different replica placement policies have on
the network traffic required during the archiving process. We also want to gen-
eralize the idea to decentralize the redundancy generation of existing standard
erasure codes such as Reed-Solomon codes. Ultimately, we want to develop a
holistic theory, which explores any possible trade-offs between the network traf-
fic generated by and the speed of the archival process, subject to various other
system design choices such as the initial replica placement.
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