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Abstract. Large scale peer-to-peer (P2P) systems are envisioned as a
way to provide online storage service. For a reliable storage service, the
participating peers are required to maintain strict commitments for their
online duration. On the other hand, recent results show that users par-
ticipating in volunteer computing collectively exhibit certain patterns in
terms of their long-term availability, a metric that denotes periodic online
durations for a considerably long time interval. In this article we intro-
duce PeerVault, a P2P platform that leverages the long-term availability
of the computer users to form a distributed reliable storage service, tar-
geted to backup of personal data. We further present a distributed mon-
itoring scheme that assists PeerVault to detect peer churns and ensure
the reliability of the proposed backup service. To the best of our knowl-
edge, this is the first effort to describe the architecture of a reliable P2P
backup service exploiting the long-term availability and idle resources
of computing devices. We conduct experiments based on the availability
traces of hundreds of thousands of hosts from the SETI@home computing
project. The obtained results show that the proposed approach is effec-
tive in terms of availability as well as reliability of the offered backup
service.

Keywords: Peer-to-peer backup, distributed storage, reliability,
monitoring.

1 Introduction

Traditional approaches for reliable storage of data involve maintaining redundant
backup copies on a variety of storage devices which evolved over time from tapes
and optical media to external hard drives. More recently, the availability of
storage space in data centers and ubiquitous access to the Internet have made
remote storage solutions increasingly appealing. In this context, cloud-based
services such as Amazon Cloud Drive, Microsoft SkyDrive and DropBox have
become very popular. Such systems are easy to use and provide seamless service
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as they exploit the reliability inherent to the cloud infrastructure. Most of these
services provide a limited storage space without any charge to attract new users.
Subsequently, users pay for additional storage space on a monthly or yearly basis.

Although computer users keep on purchasing additional storage for data
backup, a significant portion of their own local storage remains unutilized. Ac-
cording to [1], almost half of the users consistently utilize less than 40% of their
available disk space. Therefore, a different approach to design a backup system
is to exploit the unutilized disk space and bandwidth in a peer-to-peer (P2P)
architecture. Such P2P backup systems have also received attention by the re-
search community [2] and even resulted in actual commercial products [3, 4]
in the last few years. However, most of the existing systems require the users
to be online for a considerably long period of time, e.g., more than 80% time
of a day [4]. Moreover, these systems require the users to contribute their own
storage space to receive the backup service [3] and thus excludes the users who
are unwilling to contribute their own resources.

In this article, we introduce PeerVault, a platform which exploits the long-
term availability of online computer users, as well as their idle resources, in order
to realize a distributed online backup service based on a P2P infrastructure. In
this approach, participating users advertise their unused storage and network
resources based on which PeerVault decides how to store the data by ensuring
their long-term availability. To receive the backup service, users are not explicitly
required to contribute any resources. Even though the backup service can be
supported by an appropriate revenue model [5], in this work we focus on the
architectural aspects of the system. The major contributions of this article are
as follows.

– We design a novel distributed storage system based on erasure coding which
realizes a seamless online backup service on top of idle peers connected over
the Internet.

– We propose the concept of peer path to derive an efficient solution for dis-
tributing data to the peers. Peer paths encapsulate individual peer availabil-
ities to offer a seamless backup service over a given time interval.

– We devise a distributed monitoring scheme to detect peer churn. The
proposed algorithm is shown to monitor all the involved peers with high
probability, while incurring a nominal bandwidth.

– Through extensive simulations based on the traces of the SETI@home project
[6], we show that the proposed approach is effective in terms of long-term
service availability.

The remainder of the article is organized as follows. Section 2 details the pro-
posed PeerVault architecture with focus on the feasibility of the offered service.
Section 3 introduces a randomized scheme to monitor peer churn in our system.
Section 4 presents the details of the simulation setup and the obtained results.
Section 5 summarizes the related work and, finally, Sect. 6 concludes the article
with directions for future research.
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2 PeerVault Architecture

The proposed PeerVault architecture is based on the three basic components
illustrated in Fig. 1. The source peers are the end-users of the system and are
willing to store data (namely, files) in exchange for a high reliability. On the
other hand, the storage peers provide their bandwidth and storage resources
to realize the distributed backup service. Finally, the tracker supervises the
resources offered by the storage peers as well as the mapping between files and
peers. Source peers can request a certain amount of remote storage space for a
particular period of time, with a minimum bandwidth desired for uploading or
retrieving the data. Similarly, a storage peer can choose the amount of space
it is willing to share, the minimum upload and download bandwidth, and its
availability periods.

Throughout our discussion, the availability of a storage peer will refer to its
compliance with the advertised resources. We will refer to service availability
of PeerVault at a given time instant as the accessibility of the stored files at
that particular instant. Moreover, we will refer to service reliability as the long-
term availability (i.e., in a sufficiently large time period) of the offered service.
Since PeerVault is based on a P2P infrastructure, intermittent deviation from
the advertised resources and also permanent departure of the storage peers are
possible. The service availability of PeerVault relies on the group availability
of the storage peers instead of the individual availabilities. Thus, service avail-
ability can be ensured, even when storage peers have some deviation from their
advertised resources. Moreover, in Sect. 3 we explicitly provide a mechanism to
detect and adjust with the deviations to ensure service reliability.

2.1 Distributed Storage Scheme

In PeerVault, a file is distributed by a source peer to a set of storage peers in
the form of chunks. We exploit erasure coding to create these chunks from a
given file. The basic idea behind this approach is to encode data by adding some
redundancy. As a result, the original data can be obtained from the encoded data
even when part of them is not available. Erasure coding operates on individual
chunks of a file, where each chunk is of fixed size λ. In the following, we will
assume that the source data (i.e., a file) is split into k chunks, and then encoded
into n = ηk chunks, where η is the replication factor (see Fig. 1). Erasure coding
guarantees that the original file can be reconstructed from any k distinct encoded
chunks among the n encoded ones.

A suitable value of η is obtained through a preliminary negotiation phase
between the source peer and the tracker, based on the resources available in the
system. After that, the source peer applies erasure coding on the given file to
produce n different chunks. The tracker derives a mapping between an encoded
chunk and a set of storage peers, known as a peer path. The storage peers in the
mapping are selected based on their advertised resources. Thus, for the entire
file (i.e., the n encoded chunks), the tracker finds n peer paths and provides
the related mapping to the source peer. The tracker also ensures that no storage
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Fig. 1. System Architecture of PeerVault

peer receives more than k−1 chunks of a given file. As a consequence, no storage
peer can reconstruct or access the given file.

2.2 Characterization of Storage Peers

Different storage peers provide their resources during different time intervals.
On the other hand, a source peer may need to store or retrieve a file at any
time instant. In the following, we will build our storage scheme based on the
availability of the storage peers so that the requirements of the source peers are
successfully satisfied.

First, we denote the i-th storage peer by means of its unique identifier, pi. We
assume that the availability of storage peers is periodic over a time frame, defined
as service time frame. Specifically, the availability of storage peers is character-
ized in terms of the considered service time frame. For instance, a given peer
could be available from Monday to Friday between 12 AM to 8 PM when the ser-
vice time frame is equal to one week. Within a service time frame, a peer can be
available during multiple contiguous time intervals, referred to as the availability
periods. We represent the j-th availability period of pi as pij . In detail, we define
as arrival time and departure time the instants corresponding to the beginning
and the end of a single (contiguous) availability period, respectively. For a given
availability period pij , we denote the corresponding arrival time as a(pij) and
the departure time as d(pij). Each availability period pij is associated with its of-
fered bandwidth b(pij), which is the minimum between the upload and download
bandwidths of the storage peer during the availability period. Moreover, each
availability period has an associated cost per unit storage, represented by c(pij).
The duration of an availability period is denoted by A(pij) = (a(pij), d(pij)).
The overlapping time between two availability periods pij and pkl is finally de-
fined as T (pij , pkl) = min{d(pij), d(pkl)} −max{a(pij), a(pkl)} if d(pkl) > a(pij)
and d(pij) > a(pkl), otherwise T (pij, pkl) = 0.

Let us consider the example scenario represented in Fig. 2a. For clarity, we
assume that each storage peer has a single availability period, denoted by a
single subscript corresponding to the peer identifier (i.e., pi represents the only



PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 319

p0

p1

p2

p3

p4

p5

t1 t2 t3 t4 t5 t6t0

Av
ai

la
bi

lit
y 

pe
rio

ds

Time

(a)

p2

p3

p0

p5ps p1

ptp4

(b)

Fig. 2. (a) Availability periods of different storage peers as a function of time. (b)
Interval graph corresponding to (a) with the addition of dummy nodes ps and pt.

availability period of the i-th peer). The durations of the availability periods p1
and p2 are A(p1) = (t0, t3) and A(p2) = (t1, t4), respectively. Note here that the
availability period p0 overlaps with both p1 and p2. Specifically, the overlapping
time between p0 and p1 is T (p0, p1) = t2 − t0, while that between p0 and p2 is
T (p0, p2) = t2 − t1.

2.3 Managing Storage Requests

The backup service is requested by a source peer (for an individual file) in terms
of the following parameters: the target availability interval (δs, δe); the desired
minimum download bandwidth μ; and the requested storage space ρ. We assume
that the chunk size for the given file is λ and that the target availability interval
requested by the source peer is equal to the service time frame.

We use interval graphs [7] to model the considered scenario. An undirected
graph G = (V,E) is called an interval graph if a one-to-one mapping between
the vertices V and a set of intervals I can be established, such that two vertices
are connected by an edge in G if and only if there is an intersection between
the corresponding intervals. In our case, V = {pij} and I = {Iij} = A(pij) =
{(a(pij), d(pij))} for 0 ≤ i < m and 0 ≤ j < ni, where m is the number of
storage peers and ni is the number of availability periods of pi.

We construct a constrained interval graph, Gc, for the given storage request
according to the availability periods of the storage peers. Let us assume, for an
availability period pij , the offered bandwidth and the cost are denoted by b(pij)
and c(pij), respectively. Now we restrict the nodes in the graph Gc to those with
offered bandwidth higher than μ

k . Furthermore, we restrict the edges between
any two nodes pij and pkl so that their overlapping time is longer than the
minimum overlapping time τ , where τ = (min{b(pij), b(pkl)})−1 · λ. Note that a
chunk stored in a peer can be transferred to the next peer along the associated
peer path in the minimum overlapping time. Finally, we define the weight of an

edge between nodes pij and pkl as w(pij , pkl) =
c(pij)+c(pkl)

2 .
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Fig. 3. Dissemination of file chunks

On the basis of the target availability interval (δs, δe), we add two dummy
availability periods ps and pt, so that a storage request can be mapped to a
path between a single source and a single destination in Gc. The duration of the
availability periods associated to the dummy nodes are set to A(ps) = (δs, δs+τ)
and A(pt) = (δe − τ, δe + τ), respectively. We also set b(ps) = b(pt) = μ

k and
c(ps) = c(pt) = 0. As a consequence, a peer path can be referred by a path
between ps and pt in Gc. Formally, a peer path associated with the interval
(δs, δe) is the set of m availability periods P(δs, δe) = {pi1j1 , pi2j2 , . . . , pimjm}
such that T

(
pixjy , pix+1jy+1

)
> τ , ∀i ∈ [1,m], a(pi1j1) ≤ δs and d(pimjm) ≥ δe.

For instance, P(t0, t6) = {ps, p0, p2, p3, pt} is a peer path in Fig. 2b. Note that
the parameters assigned to the dummy nodes ensure the inclusion of the peers
with the required amount of overlapping time in a peer path.

For a storage request with n encoded chunks, our system associates a dis-
tinct peer path Pr(δs, δe), with 0 ≤ r < n, to each of the chunks in the source
file. For a storage request, we intend to assign at most one chunk to a single
availability period so that any interruption during this availability period has
minimal impact. Moreover, a storage peer is not allowed to receive more than
k − 1 chunks of the file, even though it may have multiple availability peri-
ods. Otherwise, it would be possible for a storage peer to obtain k or more
chunks and reconstruct the file. As a consequence, at most k − 1 availability
periods of a storage peer are allowed to belong to a single storage request. To
this end, for each storage peer pi, we sort the availability periods based on the
weight ψ(pij)A(pij), for 0 ≤ j < ni in decreasing order, where ψ(pij) represents
the probability of pi being online during pij as explained in Sect. 2.5. Thus,
we further restrict Gc by taking the top k − 1 availability periods from the
sorted list.

Finally, to serve the storage request, PeerVault selects the set of peer paths
X =

{∪n−1
j=0Pj(δs, δe)

}
so that Pi ∩ Pj = {ps, pt}, ∀i �= j and the total cost of

the availability periods in the selected peer paths is minimized. Note that this
problem can be mapped to the minimum weight n-node disjoint path problem in
an undirected graph [8] which is well studied in the literature, and can be solved
in polynomial time [9].
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2.4 Data Dissemination and Retrieval

According to the definition of peer path, at any time instant, a storage peer
can be found online. When a source peer intends to backup a file, it creates n
encoded chunks and sends a storage request to the tracker. The tracker selects
a set of n peer paths and sends it back to the source peer. Now the source peer
uploads each chunk to the currently available storage peer from each peer path.
After all the chunks are uploaded, the source peer can leave the system. Once a
storage peer of a peer path receives a chunk, it transfers the chunk to the next
storage peer of the peer path. Thus the chunk is propagated to all the storage
peers of the peer path. This dissemination process for a file consisting of two
encoded chunks is illustrated in Fig. 3 for the scenario already introduced in
Fig. 2a. In this example, the tracker reports two peer paths to the source peer,
namely P1 = {p0, p2, p3} and P2 = {p1, p4, p5}. If the source peer is online at t0,
it can upload chunk 1 to p0 and chunk 2 to p1, and may leave the system.

When the source peer decides to retrieve the stored file, it selects k distinct
peer paths and proceeds to download the chunks from the currently available
storage peer of each peer path. Once k chunks are successfully downloaded, the
source peer reconstructs the original file.

2.5 Estimating Available Resources

As the offered backup service is largely dependent on the long-term availability
of the storage peers, it is essential to know the relevant parameters of a storage
peer – namely, availability periods, bandwidth, and storage space – before it is
actually allowed to participate in the system. Unlike some existing approaches
[4], we do not rely on the user to define the expected operating parameters.
Instead, PeerVault observes the users for a training period denoted by σ.

We use the bit vector method similar to [10] to predict the long-term availabil-
ity of the storage peers. Consistent with that solution, we consider the service
time frame of one week, wherein each hour of the week is represented by a bit.
For each hour, the corresponding bit is set to 1 if a storage peer is available for
more than 55 minutes. The peer is observed for each hour in the entire training
period. Let us assume that there are y weeks in σ, and a bit is set for x weeks.
Then the training probability of the corresponding hour is defined by x

y . We
consider an hour to include in an availability period if the training probability
exceeds a threshold αb. Finally, the availability periods are obtained by merging
the contiguous available hours. The training probability of the availability period
is denoted by ψ(·) and computed by taking the average of the probabilities of the
constituent hours. A storage peer is considered as eligible if it has at least one
availability period with training probability greater than αb. At the end of the
training period, an eligible peer is requested to approve its estimated availability
periods and specify the information of the free disk space, bandwidth, and cost
it can offer to PeerVault. Subsequently, the associated cost per unit storage, c(·)
is derived through a revenue model. These sets of parameters are referred as the
advertised resources of the storage peer for the considered availability period. A
specific choice of the revenue model is out of the scope of this paper.



322 A. Khan et al.

3 A Distributed Peer Monitoring Scheme

To ensure the long-term availability of the stored data, peer churns must be
detected and the corresponding peers need to be replaced accordingly. In this
section, we introduce a distributed algorithm to monitor storage peers and detect
churn. In our approach, each storage peer sends a ping message to a set of
other peers to monitor whether or not they are maintaining their advertised
resources. Our algorithm, called DistMonitor has the following properties: (i)
the absence of a storage peer is reported to the tracker with high probability;
(ii) the overhead of the monitoring effort is proportional to the number of stored
chunk and, hence, is fairly distributed; (iii) newly joined peers can easily be
included in the monitoring process, thus making the solution scalable; (iv) most
of the monitoring overhead is assigned to the peers themselves, while only limited
interactions with the tracker are needed; and (v) overall, the required bandwidth
for the monitoring scheme is nominal.

For convenience of discussion, let γk denotes a particular availability period.
Let h(·) be a one-to-one function that maps an ordered pair of integers < i, j >
to a single integer k. Thus, γk represents a unique availability period pij .

Definition 1 (Simultaneous Availability Period List). Let n chunks of a
file be stored among a set of peers with availability periods P = {γ1, γ2, . . . , γm}.
The simultaneous availability period list (SAPL) for a given availability period
γi ∈ P is the set Si ⊆ P such that T (γi, γj) > tmax, for all γj ∈ Si \ {γi} and
tmax is a predefined timeout period greater than zero.

Definition 2 (Potential Availability Period List). The potential availabil-
ity period list (PAPL) Ni of a given availability period γi is a randomly selected
proper subset of Si.

After finding the peer paths for a given file, the tracker computes the PAPL for
each of the availability periods. Basically, when a storage peer participates in
storing a file (by holding a chunk during a particular availability period), it is
also assigned with the PAPL.

Once a storage peer pk obtains the PAPL for a particular availability period
γi, it executes the function DistMonitor illustrated in Algorithm 1. Specifically,
the storage peer selects q random availability periods from the PAPL of γi and
assigns it to a set B (line 1). For each member of B, there is a counter (count)
initialized with a value l (line 2). For each of the availability periods γj from B,
the peer pk selects a random time in the overlapping time T (γi, γj) and sends
a ping message at that particular time to the storage peer associated with γj ,
namely, g(γj) (line 11). Note that g(·) is a function that returns the identifier
of a peer corresponding to a given availability period. After sending the ping
message, pk waits for the reply for a predefined timeout period tmax. If the reply
is received within that period, γj is removed from the list B, and it is assumed
that the corresponding peer is conforming to its commitment. Otherwise, the
value of the corresponding count is decremented by 1 (lines 14–15). Note that
pk may try to send at most l messages to a particular peer associated with an
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Algorithm 1. DistMonitor(γi,Ni, q, l)

output: R // list of reported peers

1 R ← ∅; B ← q randomly chosen elements from Ni;
2 foreach γj ∈ B do count[γj ]← l ;
3 while B �= ∅ do
4 foreach γj ∈ B do
5 if count[γj ] = 0 then R ← R∪ g(γj) ; B ← B \ γj ;
6 else
7 t′ ← [tnow,∞] ; tol ← T (γi, γj) ∩ t′;
8 if tol = 0 then B ← B \ γj ;
9 else

10 t[γj ]← randomly selected value from tol;
11 schedule a message for g(γj) at t[γj ] ;
12 schedule a thread waiting for γj from t[γj ];

13 foreach γj ∈ B do
14 if a reply is received within T [γj ] + tmax then B ← B \ γj ;
15 else count[γj ]← count[γj ]− 1;

16 report R to the tracker;

availability period. If the value of count is 0 for a particular availability period
γj , then pk adds the corresponding peer g(γj) to the set R, (line 5), where R
denotes the set of peers that have not responded to the ping messages. Before
γi ends, pk sends R to the tracker as negative feedback.

3.1 Analysis of DistMonitor

The performance of the monitoring algorithm is measured in terms of two met-
rics, namely, percentage of peers that were monitored and the associated message
overhead. Let the chunks of a particular file is stored among a group of peer avail-
abilities. We denote γji as the i-th availability period in the peer path j (holding
the j-th chunk of the file). Let |S| and |N | denote the average size of SAPL and
PAPL of the involved availability periods. The following theorem characterizes
q (the number of selected availability periods from the PAPL) and |N | to ensure
the desired performance of the DistMonitor algorithm.

Theorem 1. For a stored file, each storage peer is monitored in its availability
period by DistMonitor with high probability, for a proper choice of q and |N |,
i.e., q = |N | = log |S|.
Proof. Let us assume that a file has n encoded chunks and C =
{γx1

i1
, γx2

i2
, . . . , γxm

im
} is the group of availability periods for a particular chunk.

Let γji ∈ C be an availability period such that all other members in C are in

the SAPL of γji (excluding itself). Without loss of generality, let us assume that
the size of the SAPLs and PAPLs of all the availability periods in C are |S| and
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|N |, respectively. We aim at finding the probability of a peer pk corresponding
to γji being monitored, that is, the probability of receiving at least one message
from any of the peers corresponding to the availability periods of C. Essentially,
all the corresponding peers of C (except for pk) contain pk in their SAPL, so
each of these peers has a probability to send a ping message to pk.

Let us introduce the following notation first. Let Dk be the event that pk
receives at least one message from any of the peers, and G be the event that pk
receives a message from pl. By recalling that a peer sends out ping messages to q
randomly selected peers from its PAPL N (for a particular availability period),
let us also define M as the event that pk is in the PAPL of pl, and Y as the
event that pk is sent a message by pl. Hence, P (G) = P (M)P (Y |M). Now,

P (M) = 1−
(

1− 1

|S|

)|N |

and P (Y |M) = q · (|N |)−1. Therefore,

P (G) =
q

|N |

(

1−
(
1− 1

|S|

)|N|)

=
q

|N |

(
1− e

− |N|
|S|

)

So P
(
Dk

)
= (1− P (G))|S| = f

(|N |, q), for a fixed value of |S|. Thus P (Dk) =

1− f
(|N |, q). Thus, the probability of a peer being monitored depends on f(·)

which, in turn, depends on q and |N | for a specific file. For an instance, if we
choose both q and |N | as 1, a peer is monitored with a constant probability of
around 63% by other storage peers. In the specific case where log |S| is chosen
for both |N | and q, f(·) becomes 0 with high probability asymptotically with
increasing values of |S|. Therefore, a peer is guaranteed to be monitored with
high probability in its availability period for storing a single file chunk when
q = |N | = log |S|.
Now, we consider the bandwidth requirements for the monitoring scheme.

Lemma 1. In an availability period, a peer sends/receives a total of O(ξlog |S|)
ping messages, where ξ represents the number of file chunks it holds.

Lemma 1 follows from the following arguments. During an availability period,
for each file, a storage peer sends out O(q) ping messages. It can be shown
that the expected number of ping messages received by a storage peer is also
O(q). In addition, a peer has to send (and receive) O(q) reply messages. In our
application, a storage peer can send/receive at most l log |S| ping messages for
a single file. Therefore, in total, a peer can send/receive at most lξ log |S| ping
messages. Similarly, a peer can send/receive at most lξlog |S| reply messages.

If the average size of the ping and reply messages is α, and the availability

period is A, a peer incurs an average download/upload bandwidth of 4·lαξlog |S|
A

.
When l = 2, as in our application, a peer with an availability period of 20
hours contributing 100 GB storage space may incur an average upload/download
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bandwidth of less than 0.75 KBps. This assumes the average size of ping/reply
message as 100 bytes, and the average chunk size as 10 MB.

Replacement Strategy. The tracker maintains a negative feedback counter for
each availability period. If it receives negative feedback for more than 10 times
about an availability period in a particular week, it verifies whether the peer is
unavailable by sending periodic ping messages for the next 4 weeks. Based on
the response, the tracker computes the probability of the associated peer to be
available using the bit vector method (recall from Sect. 2.5). If the probability
is less than 0.2, the tracker picks a new availability period with similar or longer
availability duration and similar or higher bandwidth offering the minimum cost.

4 Performance Evaluation

We simulated the PeerVault system based on the user availability traces of the
SETI@home project [6]. SETI@home is a scientific experiment that uses the idle
resources of the Internet-connected computers, in the Search for Extraterrestrial
Intelligence (SETI).

4.1 Simulation Setup

In the following, we will present the details about the traces, the parameters,
and the methodology used in the performance evaluation.

SETI@Home Traces. In our experiments, we used the traces corresponding to
the CPU availability of the SETI@home project as collected by the Failure Trace
Archive [6]. We consider each unique host in the trace as a storage peer. The data
reported in the trace spans over a period of a year and nine months that we call
the trace duration. All the hosts of the trace data are not available for the entire
trace duration. Some hosts start contributing after the trace duration starts,
while some others leave permanently before the trace duration ends. Thus, each
host (or storage peer) has trace data over an interval that we call host duration.
If the host duration of a storage peer is (t1, t2), we define the prediction interval
as (t1 + σ, t2) if t1 + σ < t2, and 0 otherwise (in which case, we ignore that
particular host). Recall from Sect. 2.5 that σ refers to the training period.

Simulation Details and Relevant Metrics. We carried out the experiments
through a custom simulator written in Java to validate the availability and relia-
bility of the backup service as well as the performance of the monitoring scheme,
DistMonitor. In order to serve the storage requests, we implemented the min-
imum weight n-node disjoint path algorithm proposed in [9]. The availability
periods were derived by using the method described in Sect. 2.5, with a train-
ing period σ of 4 weeks. We considered three different datasets of storage peers
for the experiments. For each dataset, we picked a random sample of 10, 000
hosts, from which we extracted storage peers with training probability equal to
or greater than 0.6, 0.75, and 0.9. Throughout this section, they will be referred
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0.6 71 3.38 31.28

0.75 70 3.4 29.75

0.9 53 3.32 26.84
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Fig. 4. (a) Availability periods obtained from traces. (b) Effective redundancy against
the original redundancy of the files for storage peers with different training probability
thresholds.

to as datasets A, B and C, respectively. Table 4a shows the percentage of hosts
with the desired training probability and the number of availability periods per
host which are considered in the simulation. We performed independent exper-
iments for each of the datasets. In each experiment, 1,000 files are requested
and the file sizes were generated from a lognormal distribution with a mean and
standard deviation of 100 MB and 20 MB, respectively [11].

We considered the following performance metrics:

– Observed redundancy: the ratio of the number of available encoded chunks
(n∗) to the minimum number of encoded chunks (k), for a given file.

– Percentage of available files : the ratio of the files with greater than or equal
to k chunks available to the total number of files initially stored.

4.2 Experimental Results

Figure 4b shows the observed redundancy, averaged over all stored files, against
the applied redundancy. In all datasets, the observed redundancy for a single
service time frame (i.e., the first week) is summarized in a single plot to assess the
availability of the offered service in a short time frame. The figure clearly shows
that the observed redundancy increases with the threshold for increasing training
probability of the hosts. Therefore, a higher threshold for training probability
(e.g., higher than or equal to 90%) can be used to achieve a better performance.
The line marked as ideal represents the case wherein all peers are available.

Figure 5 shows the availability of the stored files over a long time period to
assess the reliability of the offered service. Specifically, it shows the percent-
age of accessible files (with η = 2.5) over a period of 52 weeks for datasets A
and1 C. The figures show that the availability of the files gradually decreases

1 Results for dataset B are similar to those for dataset A, so we did not report them
here due to lack of space.
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(a) (b)

Fig. 5. Available files during 52 weeks for the different datasets: (a) A (αb = 0.6); and
(b) C (αb = 0.9).

for all datasets. Even though dataset C shows a much higher availability over
time than others (i.e., after 1 year, around 90% files are still accessible), there
is no guarantee that all files can be accessed throughout the entire simulated
period when no monitoring and replacement are used. This result, in addition
to Fig. 4b, suggests that file availability is improved and retained over time
when the training probability is high. However, some peers permanently leave
the system over time and, thus, the data stored by them become unavailable.
The monitoring algorithm and the replacement policy can guarantee that the
files are available over the entire simulated period. The results also suggest that
the availability of files can be improved by reducing the chunk size. Since the
peer paths increase when the chunk size λ decreases, the probability of getting
the minimum number of chunks for a file increases as well. On the other hand,
very small file chunks result in a higher overhead for both the tracker and the
storage peers. After considering all the above-mentioned aspects, 5 MB appears
to be a suitable choice for the chunk size.

5 Related Work

In the following, we will summarize relevant literature on P2P systems used for
both storage and for monitoring purposes.

The P2P networking paradigm has been exploited in the context of distributed
file systems [12–14]. However, none of the proposed approaches exploits the avail-
ability pattern and the idle resources of the computer users. In some existing
works, P2P networks were used to provide an enhanced online storage service in
addition to dedicated servers. FS2You [15] and Amazing Store [16] are examples
of such hybrid P2P systems explicitly designed to improve the availability of
stored data with efficient bandwidth utilization. Among P2P backup systems,
Symform [4] offers up to 200 GB of free storage space. In return, users are re-
quired to be online at least 80% of the time and provide at least 1.5 times the
storage they receive from the system. Unfortunately, the details on the system
design are not publicly available. Wuala [3] is another commercial P2P backup
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system that relies on a symmetric service between users and exploits a hybrid
architecture. A peer-assisted backup service was also proposed in [17], wherein it
was shown that a performance comparable to traditional client-server architec-
ture can be achieved by temporarily using storage space from cloud providers.
However, all the above solutions still rely on the presence of special servers or
data centers. In contrast, our solution is based on a pure P2P architecture.
FriendStore [2] is a backup system where users store data by exploiting their
social connection with other peers. Specifically, personal data are backed up on
“friend” peers. Thus, availability and reliability depend on the number of friends,
which can be rather low in realistic scenarios. In [18], a pricing mechanism for
the offered resources in a P2P backup system is investigated. However, the work
does not define any specific architecture as for the storage mechanism.

P2P networks employ monitoring schemes to ensure peer participation. A
generic monitoring system based on the principles of autonomic computing was
presented in [19]. Such a mechanism assumes that the P2P network is structured
(i.e., has a logical overlay), thus, it is not directly applicable to our system. Exist-
ing P2P backup services use monitoring approaches which assign the monitoring
responsibility to either a centralized server [4] or the peer that originated the
backup request [3, 20]. On the other hand, our approach is distributed, since a
peer is randomly monitored by some other peers, and assigns minimal responsi-
bility to the tracker.

6 Conclusion

In this paper, motivated by the availability of unused disk space of the users
and their long-term availability pattern, we introduced PeerVault, a data stor-
age system based on a peer-to-peer architecture which can be used to provide
a seamless backup service. PeerVault exploits group availability of participating
peers to ensure long-term availability of the stored data. Moreover, to address
peer churns, we proposed a distributed monitoring scheme that detects peers
deviating from the desired availability pattern. Simulation results based on the
traces of the SETI@home computing project demonstrated that the proposed
approach efficiently utilizes the available resources and obtains a very high ser-
vice reliability. In future, we propose to investigate revenue and recommendation
models that will enhance the peer selection mechanism.
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