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Abstract. Over the last decade, PageRank has gained importance in a
wide range of applications and domains, ever since it first proved to be ef-
fective in determining node importance in large graphs (andwas a pioneer-
ing idea behind Google’s search engine). In distributed computing alone,
PageRank vectors, or more generally random walk based quantities have
been used for several different applications ranging from determining im-
portant nodes, load balancing, search, and identifying connectivity struc-
tures. Surprisingly, however, there has been little work towards designing
provably efficient fully-distributed algorithms for computing PageRank.
The difficulty is that traditional matrix-vector multiplication style itera-
tive methods may not always adapt well to the distributed setting owing
to communication bandwidth restrictions and convergence rates.

In this paper, we present fast random walk-based distributed algo-
rithms for computing PageRank in general graphs and prove strong
bounds on the round complexity. We first present an algorithm that
takes O(log n/ε) rounds with high probability on any graph (directed or
undirected), where n is the network size and ε is the reset probability
used in the PageRank computation (typically ε is a fixed constant). We
then present a faster algorithm that takes O(

√
log n/ε) rounds in undi-

rected graphs. Both of the above algorithms are scalable, as each node
processes and sends only small (polylogarithmic in n, the network size)
number of bits per round and hence work in the CONGEST distributed
computing model. For directed graphs, we present an algorithm that has
a running time of O(

√
log n/ε), but it requires a polynomial number

of bits to processed and sent per node in a round. To the best of our
knowledge, these are the first fully distributed algorithms for computing
PageRank vectors with provably efficient running time.
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1 Introduction

In the last decade, PageRank has emerged as a very powerful measure of relative
importance of nodes in a network. The term PageRank was first introduced in
[14,7] where it was used to rank the importance of webpages on the web. Since
then, PageRank has found a wide range of applications in a variety of domains
within computer science such as distributed networks, data mining, web algo-
rithms, and distributed computing [8,5,6,12]. Since PageRank is essentially the
steady state distribution (or the top eigenvector of the Laplacian) correspond-
ing to a slightly modified random walk process, it is a easily defined quantity.
However, the power and applicability of PageRank arises from its basic intu-
ition of being a way to naturally identify “important” nodes, or in certain cases,
similarity between nodes.

While there has been recent work on performing random walks efficiently
in distributed networks [19,4], surprisingly, little theoretically provable results
are known towards efficient distributed computation of PageRank vectors. This
is perhaps because the traditional method of computing PageRank vectors is
to apply iterative methods (i.e., do matrix-vector multiplications) till (near)-
convergence. While such techniques may not adapt well in certain settings, when
dealing with a global network with only local views (as is common in distributed
networks such as Peer-to-Peer (P2P) networks), and particularly, very large net-
works, it becomes crucial to design far more efficient techniques. Therefore,
PageRank computation using Monte Carlo methods is more appropriate in a
distributed model where only limited sized messages are allowed through each
edge in each round.

To elaborate, a naive way to compute PageRank of nodes in a distributed
network is simply scaling iterative PageRank algorithms to distributed environ-
ment. But this is firstly not trivial, and secondly expensive even if doable. As
each iteration step needs computation results of previous steps, there needs to
be continuous synchronization and several messages may need to be exchanged.
Further, the convergence time may also be slow. It is important to design effi-
cient and localized distributed algorithms as communication overhead is more
important than CPU and memory usage in distributed page ranking. We take all
these concerns into consideration and design highly efficient fully decentralized
algorithms for efficiently computing PageRank vectors in distributed networks.

Our Contributions. In this paper, to the best of our knowledge, we present
the first provably efficient fully decentralized algorithms for estimating PageR-
ank vectors under a variety of settings. Our algorithms are scalable since, each
node processes and sends only polylogarithmic in n (the network size) number
of bits per round. Thus our algorithms work in the well-studied CONGEST

distributed computing model [16], where there is a restriction on the number
of bits (typically, polylogarithmic in n) that can be sent per edge per round.
Specifically, our contributions are as follows:

• We present an algorithm, Simple-PageRank-Algorithm (cf. Algorithm
1), that computes the PageRank accurately in O( log n

ε ) rounds with high
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probability1, where n is the number of nodes in the network and ε is the
random reset probability in the PageRank random walk [2,4,19]. Our algo-
rithms work for any arbitrary network (directed as well as undirected).

• We present an improved algorithm, Improved-PageRank-Algorithm (cf.
Algorithm 2), that computes the PageRank accurately in undirected graphs

and terminates with high probability inO(
√
logn
ε ) rounds.We note that though

PageRank is usually applied for directed graphs (e.g., for theWorldWideWeb),
however, it is sometimes also applied in connection with undirected graphs as
well ([10,1,17,11,21]) and is non-trivial to compute (cf. Section 2.2). In partic-
ular, it can be applied for distributed networks when modeled as undirected
graphs (as is typically the case, e.g., in P2P network models). We note that
the Improved-PageRank-Algorithm as well as the Simple-PageRank-

Algorithm require only polylogarithmic in n number of bits to be processed
and sent per round and works in the CONGEST model.

• We present an improved algorithm for directed graphs (which is a modified
version of the Improved-PageRank-Algorithm) that computes PageR-

ank accurately and terminates with high probability in O(
√

logn
ε ) rounds,

but it requires a polynomial number of bits to be processed and sent per
node in a round. Assuming ε is a constant (which is typically the case),
this algorithm as well as the Improved-PageRank-Algorithm yields a
sub-logarithmic (in n) running time. Thus, in many networks, this running
time can be substantially smaller than even the network diameter (e.g., in
constant-degree networks, the diameter is Ω(log n)).

2 Background and Related Work

2.1 Distributed Computing Model

We model the communication network as an unweighted, connected n-node
graph G = (V,E). Each node has limited initial knowledge. Specifically, we
assume that each node is associated with a distinct identity number (e.g., its IP
address). At the beginning of the computation, each node v accepts as input its
own identity number (which is of length O(log n) bits) and the identity numbers
of its neighbors in G. The node may also accept some additional inputs as spec-
ified by the problem at hand (e.g., the number of nodes in the network). A node
v can communicate with any node u if v knows the id of u.2 (Initially, each node
knows only the ids of its neighbors in G.) We assume that the communication
occurs in synchronous rounds, i.e., nodes run at the same processing speed and

1 Throughout, “with high probability (whp)” means with probability at least 1 −
1/nΩ(1), where n is the number of nodes in the networks.

2 This is a typical assumption in the context of P2P and overlay networks, where a
node can establish communication with another node if it knows the other node’s
IP address. We sometimes call this direct communication, especially when the two
nodes are not neighbors in G. Note that our algorithm of Section 3 uses no direct
communication between non-neighbors in G.
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any message that is sent by some node v to its neighbors in some round r will
be received by the end of r. To ensure scalability, we restrict the number of bits
that are processed and sent per round by each node to be polylogarithmic in n,
the network size. In particular, in each round, each node is allowed to send a
message of size B bits (where B is polylogarithmic in n) through each commu-
nication link. This is a widely used standard model (called the CONGEST(B)

model) to study distributed algorithms (e.g., see [16,15]) and captures the band-
width constraints inherent in real-world computer networks. We assume B to
be polylogarithmic in n. We relax this restriction in Section 5, where we allow
polynomial (in n) number of bits to be sent across a link per round; thus our
algorithm presented in this Section works in the LOCAL model [16], which is
another standard model where there is no restriction on the amount of commu-
nication per link per round.

There are several measures of efficiency of distributed algorithms; here we will
focus on the running time, i.e. the number of rounds of distributed communica-
tion. (Note that the computation that is performed by the nodes locally is free,
i.e., it does not affect the number of rounds.)

2.2 PageRank

We formally define the PageRank of a graph G = (V,E). Let ε be a small con-
stant which is fixed (ε is called the reset probability, i.e., with probability ε, it
starts from a node chosen uniformly at random among all nodes in the network).
The PageRank of a graph (e.g., see [2,4,19,5]) is the stationary distribution vec-
tor π of the following special type of random walk: at each step of the walk,
with probability ε it starts from a randomly chosen node and with remaining
probability 1−ε, it follows a randomly chosen outgoing (neighbor) edge from the
current node and moves to that neighbor.3 Therefore the PageRank transition
matrix on the state space (or vertex set) V can be written as

P = (
ε

n
)J + (1− ε)Q (1)

where J is the matrix with all entries 1 and Q is the transition matrix of a simple
random walk on G defined as Qij = 1/k, if j is one of the k > 0 outgoing links
of i, otherwise 0. Computing PageRank and its variants efficiently in various
computation models has been of tremendous research interest in both academia
and industry. For a detailed survey of PageRank see e.g., [5,12]. We note that
PageRank is well-defined in both directed and undirected graphs. Note that it
is difficult to compute analytically (and no such analytical formulas are known
for general graphs) the PageRank distribution and hence various computational
methods have been used to estimate the PageRank distribution. In fact, this is
true for general undirected graphs as well [10].

There are mainly two broad approaches to computing PageRank (e.g., see [3]).
One is to using linear algebraic techniques, (e.g., the Power Iteration [14]) and the

3 We sometime use the terminology “PageRank random walk” for this special type of
random walk process.
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other approach is Monte Carlo [2]. In the Monte Carlo method, the basic idea is
to approximate PageRank by directly simulating the corresponding random walk
and then estimating the stationary distribution with the performed walk’s distri-
bution. In [2] Avrachenkov et al., proposed the following Monte Carlo method for
PageRank approximation: PerformK random walks (according to the PageRank
transition probability) starting from each node v of the graph G. For each walk,
terminate the walk with its first reset instead of moving to a random node. Then,
the frequencies of visits of all these random walks to different nodes will approxi-
mate the PageRank. Our distributed algorithms are based on the above method.

Monte Carlo methods are efficient, light weight and highly scalable [2]. It has
proved to be a useful technique in designing algorithms for PageRank and its
variants in important computational models like data streaming [19] and MapRe-
duce [3]. The works in [20,18] study distributed implementation of PageRank in
peer-to-peer networks but uses iteration methods.

3 A Distributed Algorithm for PageRank

We present a Monte Carlo based distributed algorithm for computing PageRank
distribution of a network [2]. The main idea of our algorithm (formal pseudocode
is given in Algorithm 1) is as follows. Perform K (K will be fixed appropriately
later) random walks starting from each node of the network in parallel. In each
round, each random walk independently goes to a random (outgoing) neighbor
with probability 1−ε and with the remaining probability (i.e., ε) terminates in the
current node. (Henceforth, we call this random walk as ‘PageRank random walk’.
This random walk can be shown to be equivalent to one based on the PageRank
transition matrix P (defined in Section 2.2) [2].) Since, ε is the probability of ter-
mination of a walk in each round, the expected length of every walk is 1/ε and the
length will be at mostO(log n/ε) with high probability. Let every node v count the
number of visits (say, ζv) of all the walks that go through it. Then, after termina-
tion of all walks in the network, each node v computes (estimates) its PageRank
πv as π̃v = ζvε

nK . Notice that nK
ε is the (expected) total number of visits over all

nodes of all the nK walks. The above idea of counting the number of visits is a
standard technique to approximate PageRank (see e.g., [2,4]).

We show in the next section that the above algorithm approximates PageR-
ank vector π accurately (with high probability) for an appropriate value of K.
The main technical challenge in implementing the above method is that per-
forming many walks from each node in parallel can create a lot of congestion.
Our algorithm uses a crucial idea to overcome the congestion. We show that (cf.
Lemma 1) that there will be no congestion in the network even if we start a
polynomial number of random walks from every node in parallel. The main idea
is based on the Markovian (memoryless) properties of the random walks and the
process that terminates the random walks. To calculate how many walks move
from node i to node j, node i only needs to know the number of walks that
reached it. It does not need to know the sources of these walks or the transitions
that they took before reaching node i. Thus it is enough to send the count of
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the number of walks that pass through a node. The algorithm runs till all the
walks are terminated. It is easy to see that it finishes in O(log n/ε) rounds with
high probability (this is because the maximum length of any walk is O(log n/ε)
whp). Then every node v outputs its PageRank as the ratio between the number
of visits (denoted by ζv) to it and the total number of visits (nKε ) over all nodes
of all the walks. We show that our algorithm computes approximate PageRank
accurately in O(log n/ε) rounds with high probability (cf. Theorem 1).

Algorithm 1. Simple-PageRank-Algorithm

Input (for every node): Number of walks K = c log n from each node (where
c = 2

δ′ε and δ′ is defined in Section 3.2), reset probability ε.
Output: PageRank of each node.

[Each node v starts c log n walks. All walks keep moving in parallel until they
terminate. The termination probability of each walk is ε, so the expected
length of each walk is 1/ε.]

1: Initially, each node v in G creates c log n messages (called coupons)
C1, C2, . . . , Cc log n. Each node also maintains a counter ζv (for counting visits of
random walks to it).

2: while there is at least one (alive) coupon do
3: This is i-th round. Each node v holding at least one coupon does the following:

Consider each coupon C held by v which is received in the (i − 1)-th round.
Generate a random number r ∈ [0, 1].

4: if r < ε then
5: Terminate the coupon C.
6: else
7: Select an outgoing neighbor uniformly at random, say u. Add one coupon

counter number to T v
u where the variable T v

u indicates the number of coupons
(or random walks) chosen to move to the neighbor u from v in the i-th round.

8: end if
9: Send the coupon’s counter number T v

u to the respective outgoing neighbors u.
10: Every node u adds the total counter number (

∑
v∈N(u) T

v
u—which is the total

number of visits of random walks to u in i-th round) to ζu.
11: end while
12: Each node outputs its PageRank as ζvε

cn log n
.

3.1 Analysis

Our algorithm computes the PageRank of each node v as π̃v = ζvε
nK and we say

that π̃v approximates original PageRank πv. We first focus on the correctness of
our approach and then analyze the running time.

3.2 Correctness of PageRank Approximation

The correctness of the above approximation follows directly from the main re-
sult of [2] (see Algorithm 4 and Theorem 1) and also from [4] (Theorem 1). In
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particular, it is mentioned in [2,4] that the approximate PageRank value is quite
good even for K = 1. It is easy to see that the expected value of π̃v is πv (e.g.,
[2]). In [4] (Theorem 1), it shows that π̃v is sharply concentrated around π using
a Chernoff bound technique ([13]). They show,

Pr[| π̃v − πv |≤ δπv] ≤ e−nKπvδ
′

(2)

where δ′ is a constant depending on ε and δ. From the above bound (cf. Equation
2), we see that for K = 2 log n

δ′nπmin
, we get a sharp approximation of PageRank

vector with high probability. Since the PageRank of any node is at least ε/n
(i.e. the minimum PageRank value, πmin ≥ ε/n), so it gives K = 2 logn

δ′ε . For
simplicity we assume the constant c = 2

δ′ε . Therefore, it is enough if we perform
c logn PageRank random walks from each node. Now we focus on the running
time of our algorithm.

3.3 Time Complexity

From the above section we see that our algorithm is able to compute the PageR-
ank vector π in O(log n/ε) rounds with high probability if we perform c logn
walks from each node in parallel without any congestion. The lemma below
guarantees that there will be no congestion even if we do a polynomial number
of walks in parallel.

Lemma 1. There is no congestion in the network if every node starts at most
a polynomial number of random walks in parallel.

Proof. It follows from our algorithm that each node only needs to count the
number of visits of random walks to itself. Therefore nodes do not require to
know from which source node or rather from where it receives the random walk
coupons. Hence it is not needed to send the ID of the source node with the
coupon. Recall that in our algorithm, in each round, every node currently hold-
ing at least one random walk coupon (could be many) does the following. For
each coupon, either the walk is terminated with probability ε or with remaining
probability 1− ε, any outgoing edge is chosen uniformly at random to send the
coupon. Any particular outgoing edge may be chosen for more than one coupon.
Instead of sending each coupon separately through that edge, the algorithm sim-
ply sends the count, i.e., number of coupons, to the chosen outgoing neighbor.
Since we consider CONGEST model, a polynomial in n number of coupon’s
count (i.e., we can send count of up to a polynomial number) can be sent in one
message through each edge without any congestion. ��
Theorem 1. The algorithm Simple-PageRank-Algorithm (cf. Algorithm
1) computes PageRank in O( log n

ε ) rounds with high probability.

Proof. The algorithm stops when all the walks terminate. Since the termination
probability is ε, so in expectation after 1/ε steps, a walk terminates and with
high probability (via the Chernoff bound) the walk terminates in O(log n/ε)
rounds and by union bound [13], all walks (they are only polynomially many)
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terminate in O(log n/ε) rounds whp. Since all the walks are moving in parallel
and there is no congestion (cf. Lemma 1), all the walks in the network terminate
in O(log n/ε) rounds whp. Hence the algorithm stops in O(log n/ε) rounds whp.
The correctness of the PageRank approximation follows from [2,4] as discussed
earlier in Section 3.2. ��

4 A Faster Distributed PageRank Algorithm (for
Undirected Graphs)

We present a faster algorithm for PageRank computation. First we present an
algorithm for undirected graphs and in Section 5 we modify it slightly to work
for directed graphs. Our algorithm’s time complexity for the undirected graphs
holds in the CONGEST model, whereas for directed graphs a slightly better
time complexity applies only in the LOCAL model.

We use a similar Monte Carlo method as described in Section 3 to estimate
PageRank. This says that the PageRank of a node v is the ratio between the num-
ber of visits of PageRank random walks to v itself and the sum of all the visits
over all nodes in the network. In the previous section (cf. Section 3) we show that
in O(log n/ε) rounds, one can approximate RageRank accurately by walking in
a naive way on general graph. We now outline how to speed up our previous algo-
rithm (cf. Algorithm 1) using an idea similar to the one used in [9]. In [9], it is shown
how one can perform a standard (simple) random walk in an undirected graph4 of
length L in Õ(

√
LD) rounds whp (D is the diameter of the network). The high

level idea of their algorithm is to perform ‘many’ short walks in parallel and later
‘stitch’ them to get the desired longer lengthwalk.To apply this idea in our case,we
modify our approach accordingly as speeding up (many) PageRank randomwalks
is different from speeding up one (standard) random walk. We show that our im-

proved algorithm (cf. Algorithm 2) approximates PageRank in O(
√
logn
ε ) rounds

whp.

4.1 Description of Our Algorithm

In Section 3, we showed that by performing Θ(log n) walks (in particular we are
performing c logn walks, where c = 2

δ′ε , δ
′ is defined in Section 3.2) of length

logn/ε from each node, one can approximate the PageRank vector π accurately
(with high probability). In this section we focus on the problem of how efficiently
one can performΘ(n log n) walks (Θ(log n) from each node) each of length log n/ε
and count the number of visits of these walks to different nodes. Throughout,
by “random walk” we mean the “PageRank random walk” (cf. Section 3).

The main idea of our algorithm is to first perform ‘many’ short random walks
in parallel and then ‘stitch’ those short walks to get the longer walk of length
logn/ε and subsequently ‘count’ the number of visits of these random walks to
different nodes. In particular, our algorithm runs in three phases. In the first

4 In each step, an edge is taken from the current node x with probability proportional
to 1/d(x) where d(x) is the degree of x.
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phase, each node v performs d(v)η (d(v) is degree of v) independent ‘short’
random walks of length λ in parallel. (The value of the parameters η and λ
will be fixed later in the analysis.) This is done naively by forwarding d(v)η
‘coupons’ having the ID of v from v (for each node v) for λ steps via random
walks. The intuition behind performing d(v)η short walks is that the PageRank
of an undirected graph is proportional to the degree distribution [10]. Therefore
we can easily bound the number of visits of random walks to any node v (cf.
Lemma 2). At the end of this phase, if node u has k coupons with the ID of
a node v, then u is a destination of k walks starting at v. Note that just after
this phase, v has no knowledge of the destinations of its own walks, but it can
be known by direct communication from the destination nodes. The destination
nodes (at most d(v)η) have the ID of the source node v. So they can contact the
source node via direct communication. We show that this takes at most constant
number of rounds as only polylogarithmic number of bits are sent (since η will
be at most O(log3 n/ε), shown later). It is shown that the first phase takes O(λε )
rounds with high probability (cf. Lemma 3).

In the second phase, starting at source node s, we ‘stitch’ some of the λ-length
walks prepared in first phase (note that we do this for every node v in parallel as
we want to perform Θ(log n) walks from each node). The algorithm starts from
s and randomly picks one coupon distributed from s in Phase 1. We now discuss
how to sample one such coupon randomly and go to the destination vertex of that
coupon. One simple way to do this is as follows: In the end of Phase 1, each node
v knows the destination node’s ID of its d(v)η short walks (or coupons). When a
coupon needs to be sampled, node s chooses a random coupon number (from the
unused set of coupons) and informs the destination node (which will be the next
stitching point) holding the coupon C (by direct communication, since s knows
the ID of the destination node at the end of the first phase). Let C be the sampled
coupon and v be the destination node of C. The source s then sends a ‘token’ to
v and s deletes the coupon C (so that C will not be sampled again next time at s,
otherwise, randomness will be destroyed). The process then repeats. That is, the
node v currently holding the token samples one of the coupons it distributed in
Phase 1 and forwards the token to the destination of the sampled coupon, say v′.
Nodes v, v′ are called ‘connectors’— they are the endpoints of the short walks that
are stitched. A crucial observation is that the walk of length λ used to distribute the
corresponding coupons from s to v and from v to v′ are independent randomwalks.
Therefore, we can stitch them to get a randomwalk of length 2λ. We therefore can
generate a random walk of length 3λ, 4λ, . . . by repeating this process. We do this
until we have completed a length of at least (logn/ε− λ). Then, we complete the
rest of the walk by doing the naive random walk algorithm.We show that Phase 2
finishes in O( log n

λε ) rounds with high probability (cf. Lemma 5).
In the third phase we count the number of visits of all the random walks to

a node. As we have discussed, we have to create many short walks of length
λ from each node. All short walks may not be used to make the long walk of
length logn/ε. We show a technique to count all the used short walks’ visits
to different nodes. Remember that after completion of Phase 2, all the Θ(n log n)
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Algorithm 2. Improved-PageRank-Algorithm

Input (for every node): Length � = logn
ε

of each walk, reset probability ε, short
walk length λ =

√
log n and number of walks K = c log n (where c = 2

δ′ε and δ′ is
defined in Section 3.2).
Output: PageRank of each node.

Phase 1: (Each node v performs d(v)η = d(v) log3 n/ε random walks of
length λ =

√
log n. At the end of this phase, there are d(v) log3 n/ε

(not necessarily distinct) nodes holding a ‘coupon’ containing the ID of
v.)

1: for each node v do
2: Construct d(v)η = d(v) log3 n/ε messages containing its ID and also the desired

walk length of λ =
√
log n. We will refer to these messages created by node v as

‘coupons created by v’.
3: end for
4: for i = 1 to λ do
5: This is the i-th round. Each node v does the following: Consider each coupon

C held by v which is received in the (i− 1)-th round. If the coupon C’s desired
walk length is at most i, then v keeps this coupon (v is the desired destination).
Else, {v generates a random number r ∈ [0, 1]. If r < ε, terminate the coupon C
and keep the coupon as then v itself is the destination. Else, pick a neighbor u
uniformly at random for the coupon C and forward C to u after incrementing
counter}. Note that v does this for every coupon simultaneously in the i-th
round.

6: end for
7: Each destination node sends its ID to the source node, as it has the source node’s

ID now.

Phase 2: (Stitch short walks by token forwarding. Stitch Θ(�/λ) walks, each
of length λ)

1: The source node s creates a message called “token” which contains the ID of s.
(Note that for simplicity we are showing the stitching from one source node but
this has to be done for each node in the network in parallel.)

2: The algorithm will forward the token around and keep track of a set of connectors,
denoted by CON . Initially, CON = {s}.

3: while Length of walk completed is at most �− λ do
4: Let v be the node that is currently holding the token.
5: v samples one of the coupons distributed by v uniformly at random from the

unused set of coupons. Let v′ be the destination node of the sampled coupon,
say C.

6: v sends the token to v′ and deletes the coupon C.
7: CON = CON ∪ {v′}
8: end while
9: Walk naively until � steps are completed (this is at most another λ steps).
10: A node say w, holding the token having the ID of s is final destination of � = log n/ε

length PageRank random walk. CON = CON ∪ {w}
Phase 3: (Counting the number of visits of short walks to a
node)

1: Each node v maintains a counter ζv to keep track of the number of visits of walks.
2: for each walk completed in Phase 2 do
3: Start from each connector node in CON except the source node s.
4: Trace the random walk in reverse (in parallel) up to the source node of the

corresponding short walk. (Recall that each connector node is the destination of
some short walk).

5: Count the number of visits during this reverse tracing and add to ζv.
6: end for
7: Each node v outputs its PageRank πv as ζvε

cn logn
.
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long walks (Θ(log n) from each node) have been stitched. During stitching (i.e.,
in Phase 2), each connector node (which is also end point of the short walk)
should remember the source node of the short walk. Now start from the each
connector node and do a walk in reverse direction (i.e., retrace the short walk
backwards) to the source node in parallel. During the reverse walk, simply count
the visit to nodes. It is easy to see that this will take at most O(λ) rounds with
high probability (cf. Lemma 6). Now we analyze the running time of our algo-
rithm Improved-PageRank-Algorithm. The compact pseudo code is given
in Algorithm 2.

4.2 Analysis

First we are interested in the value of η i.e., how many coupons (short walks) do
we need from each node to successfully answer all the stitching requests. Notice
that it is possible that d(v)η coupons are not enough (if η is not chosen suitably
large): We might forward the token to some node v many times in Phase 2 and
all coupons distributed by v in the first phase may be deleted. (In other words,
v is chosen as a connector node many times, and all its coupons have been
exhausted.) If this happens then the stitching process cannot progress. To fix
this problem, we use an easy upper bound of the number of visits to any node
v of a random walk of length 
 in an undirected graph: d(v)
 times. Therefore
each node v will be visited as a connector node at most O(d(v)
) times with
high probability. This implies that each node does not have to prepare too many
short walks.

The following lemma bounds the number of visits to every node when we
do Θ(log n) walks from each node, each of length logn/ε (note that this is the
maximum length of a long walk, whp).

Lemma 2. If we perform Θ(log n) random walks of length logn/ε from each

node, then no node v is visited more than O(d(v) log
3 n

ε ) times with high probabil-
ity.

Proof. Suppose we perform so many long walks in parallel. In other words, we
can say that each node performing one walk of length Θ(log2 n/ε). The bound
on the number of visits to each node follows because in each round a node v can
get only at most d(v) walks in expectation (since we have an undirected graph)
and hence O(d(v) log n) whp (via Chernoff bound). Since long walk length is
Θ(log2 n/ε), so total number of visits is O(d(v) log3 n/ε) whp. ��
It is now clear from the above lemma (cf. Lemma 2) that η = O(log3 n/ε) i.e.,
each node v has to prepare O(d(v) log3 n/ε) short walks of length λ in Phase 1.
Now we show the running time of algorithm (cf. Algorithm 2) using the following
lemmas.

Lemma 3. Phase 1 finishes in O(λε ) rounds with high probability.

Proof. It is known from the Lemma 2 that in Phase 1, each node v
performs O(d(v) log3 n/ε) walks of length λ. Initially each node v starts with
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O(d(v) log3 n/ε) coupons (or messages) and each coupon takes a random walk
according to the PageRank transition probability. Let η = O(log3 n/ε). We now
prove that after any given number of steps j (j ≤ λ), the expected number
of coupons at node any v is still d(v)η. This is because at each step any node
v can send (as well as receive) d(v) messages in expectation. The number of
messages we started at any node v is proportional to its degree d(v). Therefore,
in expectation the number of messages at any node remains same. Thus in ex-
pectation the number of messages, say X that want to go through an edge in
any round is at most 2η (from both end points). Using Chernoff bound we get,
Pr[X ≥ 4η logn] ≤ 2−4 logn = n−4. It follows that the number of messages that
want to go through any edge in any round is at most 4η logn = O(log4 n/ε) with
high probability. Hence there will be at mostO(log5 n/ε) bits whp at any edge per
round (as one message is log n bits). Since we consider CONGEST(polylogn)
model, we can extend all walk’s length from i to length i + 1 in O(1/ε) rounds
whp. Therefore, for walks of length λ it takes O(λ/ε) rounds whp as claimed. ��

Lemma 4. One time stitching in parallel from each node always finishes within
O(1) rounds.

Proof. Each node knows all of its short walk’s (or coupon’s) destination address.
Each time when a (source or connector) node wants to stitch, it randomly chooses
one of its unused coupons (created in Phase 1). Then it contacts the destination
node (holding the coupon) through direct communication and informs it as the
next connector node (or stitching point). Since the network allows polylogn
congestion, this will finish in constant rounds. ��

Lemma 5. Phase 2 finishes in O( log n
λε ) rounds.

Proof. Phase 2 is for stitching short walks of length λ to get the long walk of
length O(log n/ε). Therefore it needs to stitch approximately O(log n/λε) times.
Since each time stitching can be done in constant rounds (cf. Lemma 4), Phase
2 finishes in O( log n

λε ) rounds. ��

Lemma 6. Phase 3 finishes in O(λ) rounds with high probability.

Proof. Each short walk is of length λ. Phase 3 is simply tracing back the short
walks. So it is easy to see we can perform all the reverse walks in parallel in O(λ)
rounds (same as the time to do all the short walks in parallel in Phase 1). Due
to Lemma 3 and the fact that each node can communicate a polylogn number
of bits in every round, we can say that Phase 3 finishes in O(λ) rounds with high
probability. ��

Now we are ready to show the main result of this section.

Theorem 2. The Improved-PageRank-Algorithm (cf. Algorithm 2)

computes the PageRank accurately and with high probability finishes in O(
√
logn
ε )

rounds.
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Proof. The algorithm Improved-PageRank-Algorithm consists of three
phases. We have calculated above the running time of each phase separately.
Now we want to compute the overall running time of the algorithm by com-
bining these three phases and by putting appropriate value of parameters. By
summing up the running time of all three phases, we get from Lemmas 3, 5 and
6 that the total time taken to finish the Improved-PageRank-Algorithm is
O(λε + logn

λε + λ) rounds with high probability. Choosing λ =
√
logn, gives the

required bound as O(
√
logn
ε ) whp. ��

5 A Faster Algorithm for Directed Graphs

We extend the Improved-PageRank-Algorithm of Section 4 to directed
graphs. Recall that it follows from Section 3 that it is enough to approximate
PageRank vector if each node performs c logn PageRank random walk of length
logn/ε, where c = 2/δ′ε is a constant. The basic idea of the algorithm is sim-
ilar as above i.e., create some short walks from each node in parallel and later
stitch them to get long walks and then count the number of visits of all the long
walks to different nodes. However, the main difficulty in an directed graph is to
bound the number of visits of random walks to any node. This is because, in a
directed graph we do not have a suitable upper bound on PageRank (unlike the
case of an undirected graph). There could be large discrepancy between indegree
and outdegree of a node on a directed graph (in shorthand we use indeg and
outdeg respectively). Therefore, for any node whose indeg and outdeg ratio is
large enough, it is very likely that many random walk coupons will pass over
those nodes in every round. In the similar way, there can be a large congestion
on those nodes if we want to perform a large number of short walks from each
node. Hence it is difficult to derive a similar faster algorithm as Algorithm 2
in the CONGEST model for directed graphs. Hence, in this section, we adopt
the LOCAL distributed computing model [16] where message size restriction is
removed, i.e., nodes can communicate any number of bits in each round. (Our
algorithm will need a polynomial number of bits to be processed and sent by
a node in each round.) Even in the LOCAL model, it is not obvious how to
perform a 
 length random walk in less than 
 rounds when 
 < D, the diameter
of the network. Because in LOCAL model, a trivial solution of any distributed
computation problem is to collect all the information of the network to a single
node and compute the solution locally. Clearly this will take diameter (D) time.
Since we are interested to performing random walks of length logn/ε which can
be much less than the diameter (in general), our algorithm gives a non-trivial
result in LOCAL model also. We discuss below our algorithm for directed graphs
using the same approach as in Section 4.

5.1 Description of Our Algorithm

It is now clear that only Phase 1 of Algorithm 2 is problematic. We want to
modify the Phase 1 of the previous algorithm. First we consider an upper bound
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on the number of times any node is visited if we perform c logn random walks
of length logn/ε from each node. We assume the trivial upper bound that any

node v will be visited at most cn log2 n
ε times with high probability (since total

cn logn walks of length logn/ε). This bound also trivially holds for number of

visits as a connector node. This implies that we have to create cn log2 n
ε short

walks of length λ from each node in Phase 1. It is easy to see that this can be
done in O(λ) rounds in the LOCAL model (cf. Lemma 7). The other two phases
of the algorithm namely, Phase 2 (stitching short walks) and Phase 3 (counting
number of visits) can be done by the same approach as in Section 4. We note
that Phase 2 and Phase 3 can be done in almost the same running time without
considering direct communication in LOCAL model.

5.2 Analysis

Lemma 7. Phase 1 takes O(λ) rounds for performing cn log2 n
ε walks of length

λ from each node v.

Proof. We are interested in performing cn log2 n
ε random walks of length λ from

each node. In the LOCAL model, every node can send or receive any number
of messages through an edge in each round. Congestion is not an issue here.
Therefore at any round i, each node holding any number of coupons can forward
them to randomly chosen outgoing neighbors (in parallel). This will take one
round only. Thus by walking in naive way for λ rounds in parallel, all short walks
can extend their length to λ, i.e. every coupon will reach to the destination node
after λ rounds. So it will finish in O(λ) rounds. ��

Lemma 8. Phase 2 finishes in O( log n
λε ).

Proof. Since Phase 2 is the same as in Algorithm 2, the proof follows from the
Lemma 5 above. ��

Lemma 9. Phase 3 finishes in O(λ) rounds with high probability.

Proof. The Phase 3 is also same as in Algorithm 2. The proof follows from the
Lemma 6 above. ��

Theorem 3. The algorithm computes the PageRank accurately on directed graph

and with high probability finishes in O(
√

log n
ε ) rounds in LOCAL model.

Proof. The algorithm for computing PageRank on directed graph also comprises
of three phases. Combining the running time of these three phases from above
we get the total time taken to finish the algorithm: O(λ+ log n

ελ +λ) rounds with

high probability. Choosing λ =
√

logn
ε , gives the required bound as O(

√
logn
ε ).

��
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6 Conclusion

We presented fast distributed algorithms for computing PageRank, a measure
of fundamental interest in networks. Our algorithms are Monte-Carlo and based
on the idea of speeding up random walks in a distributed network. Our faster
algorithms take time only sub-logarithmic in n which can be useful in large-scale,
resource-constrained, distributed networks, where running time is especially cru-
cial. Since they are based on random walks, which are lightweight, robust, and
local, they can be amenable to self-organizing and dynamic networks.
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