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Abstract. In synchronous message passing models in which some pro-
cesses may be homonyms, i.e. may share the same id, we consider the
consensus problem. Many results have already been proved concerning
Byzantine failures in models with homonyms [10], we complete here the
picture with crash and omission failures.

Let n be the number of processes, t the number of processes that may
be faulty (t < n) and l (1 ≤ l ≤ n) the number of identifiers. We prove
that for crash failures and send-omission failures, uniform consensus is
solvable even if l = 1, that is with fully anonymous processes for any
number of faulty processes.

Concerning omission failures, when the processes are numerate, i.e. are
able to count the number of copies of identical messages they received
in each round, uniform consensus is solvable even for fully anonymous
processes for n > 2t. If processes are not numerate, uniform consensus is
solvable if and only if l > 2t.

All the proposed protocols are optimal both in the number of com-
munication steps needed, and in the number of processes that can be
faulty.

All these results show, (1) that identifiers are not useful for crash and
send-omission failures or when processes are numerate, (2) for general
omission or for Byzantine failures the number of different ids becomes
significant.

1 Introduction

Generally distributed algorithms assume either that all processes have distinct
identifiers and more rarely that they are anonymous. These two models are two
extremes of the same model called homonyms in [10]: n processes use l different
identifiers. Hence the case l = 1 corresponds to a fully anonymous model and
the case l = n to model in which all processes have different identifiers.

Anonymous models have a very restricted computational power and many
impossibility results have been proved with anonymous models (e.g. leader elec-
tion, Byzantine consensus[2,3,5,8,18,22] ...) and it is interesting to determine
how identifiers are needed and useful. Beyond this theoretical interest, models
with homonyms have also a practical interest. In large systems, it is not so easy
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to ensure that all processes have unique and unforgeable identifiers. Moreover,
in some cases, users of a system may wish to preserve their privacy and for this
appear in the system not as an individual but rather as member of some group
[9].

As agreement protocols are major tools for fault-tolerance (e.g. state machine
approach [24]), to evaluate the power of identifiers we consider the classical
consensus problem. In [10,12,13] many results have been proved concerning the
Byzantine consensus problem in models with homonyms. In this paper we com-
plete this picture considering less severe process failures.

With homonyms, l (1 ≤ l ≤ n) distinct identifiers are assigned to each process.
Several processes may be homonyms and share the same identifier. When a
process p receives a message from a process q with identifier i, then p knows
that the message has been sent by some process with identifier i but does not
know wether it was sent by q or another process having the same identifier i.

We restrict ourselves to synchronous message passing models. In the models
we consider, computation proceeds in rounds. In each round each process sends
messages to all other processes and then receives all messages that were sent to
it during the round.

When processes with the same identifier send the same message, it can be
assumed or not that the processes receiving this message know how many times
this message was sent. Then, as in [10], we consider two variants of the model,
in the first one processes are innumerate: each process receives only a set of
messages without multiplicity, whereas in the second one processes are numerate:
each process receives a multiset of messages.

Only benign process failures are considered here. More precisely we study:
process crashes (a process stops its code and if the crash occurs in a round
some messages from this process may be not received by some processes), send
omission (a process may crash or omit to send messages to some processes),
receive omission (a process may crash or omit to receive some messages) and
general omission (a process may crash or commit send or receive omissions).

Results: Concerning innumerate processes we prove that uniform consensus1 is
solvable even with l = 1 (anonymous processes) for crash failures and send-
omission failures. For general omission and innumerate processes, uniform con-
sensus is solvable if and only if l > 2t. Hence there is no algorithm for fully
anonymous processes, but the number of identifier needed depends only on the
number of tolerated faulty processes. Moreover the solution we propose is in t+1
rounds for any t such that t < n, and is then optimal [1,16,21] concerning both
the communication complexity in number of rounds and the resiliency. Hence,
working with anonymous processes gets no penalty with crash or send-omission
failures and in this sense identifiers are not useful.

Numerate processes are more powerful, even if l = 1 (anonymous processes)
uniform consensus is solvable for general omission failures if and only if n >

1 In the uniform version of the consensus, if a faulty process decides, the decided value
has to satisfy the same properties as for correct processes.
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Table 1. Necessary and sufficient conditions on the number identifiers for solving
consensus in a system of n processes with at most t faulty processes

Send-omission General-omision Byzantine Restricted Byzantine

Innumerate processes l ≥ 1 l > 2t l > 3t l > 3t

Numerate processes l ≥ 1 l ≥ 1 l > 3t n > 3t ∧ l > t

2t [23], that is with the same bound as for processes having different identifiers.
Hence the ability of counting the number of messages may be a way to avoid
identifiers.

Adding results from [10], Table 1 summarizes the necessary and sufficient
conditions on the number of identifiers to solve the consensus. In the restricted
Byzantine case, a Byzantine process is only able to send one message to each
process in each round.

From this table, we may observe that (1) numerate processes enable to avoid
the use of identifiers for omission failures, (2) for innumerate anonymous pro-
cesses consensus is solvable only for send-omisison failures, and (3) identifiers
are really needed for Byzantine failures.

2 Model and Definitions

We consider a synchronous message passing system of n ≥ 2 processes. Each
process has an identifier from the set L = {1, · · · l}. l is the number of different
identifiers. We assume that n ≥ l and each identifier is assigned to at least one
process. If n > l some processes share the same identifiers and are homonyms,
when l = 1 all processes have the same identifier and the processes are anony-
mous, when l = n all processes have different identifiers. Processes with the
same identifier execute the same code. For convenience, we sometimes refer to
individual processes by names, but these names cannot be used by processes
themselves in the algorithms. The total number of processes, n, is known by the
processes.

Processes communicate by messages. Processes may only send messages to
all processes with the same identifier. When a process with identifier id sends a
message to the processes of identifier id′, all processes with identifier id′ receive
m. When a process receives a message m it knows the identifier i of the sender
of the message but it does not know which process with identifier i sent this
message.

We consider a synchronous round based model for which in each round, each
process sends the same set of messages to all other processes and then receives
all messages that were sent to it during that round.

Process failures. We assume that communication is reliable in the sense that
every message sent by correct processes is received by all correct processes in
the round it was sent. We restrict ourselves to the following benign failures of
processes:
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– Crash failure: A faulty process stops its execution prematurely. After it has
crashed, a process does nothing.

– Send Omission failure: A faulty process crashes or omits sending messages
it was supposed to send to other processes.

– General Omission failure: A faulty process crashes or omits sending and/or
receiving messages it was supposed to send to/from other processes.

A send (receive) omission failure actually models a failure of the output (input)
buffer of a process. A buffer overflow is a typical example of such a failure.
Note that when a process crashes in a round or commits a send omission, some
processes may receive the message of this process for this round and some other
not.

In the following t denotes an upper bound on the number of faulty processes.

Innumerate and numerate processes. As processes are anonymous, among the
messages received in the round, a process may only distinguish between messages
having different values, but it may be assumed or not that a process is able count
the number of identical messages received in the round. [10]

More precisely, if more than one process sends the same message m in a
round, the model ensures either that each process only knows that m has been
sent or that each process knows not only that m has been sent but also how
many time m has been sent in the round. In the first case, the processes are said
innumerate whereas in the second case they are said numerate. When a process
is innumerate, it cannot count the number of copies of identical messages it
receives in the round and in this case each process p receives a set of messages.
When a process is numerate, the messages it receives in round r is a multiset of
messages.

The uniform consensus problem. The goal of a consensus algorithm is, for a
set of processes proposing values, to decide on exactly one of these values. We
consider the uniform consensus problem as defined in [21] by the following three
properties:

1. Termination: Every correct process eventually decides.
2. Uniform Validity: If a (correct or not) process decides v, then v was proposed

by some process.
3. Uniform Agreement : No two (correct or not) processes decide different val-

ues.

3 Consensus with Send-Omission Failures

In this section we prove that uniform consensus is solvable with send-omission
failures for all t less than n even if processes are innumerate.

The crash-tolerant uniform consensus protocols in models in which processes
have distinct identifiers described in [4,20,19] are based on a “flood set” strategy.
Each process p maintains a local variable that contains its current estimates of
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the decision value. Initially, the local variable is set to the input proposed by p.
Then, during each round, each non-crashed process first broadcasts its current
estimate, and then updates it to the smallest values among the estimates it has
received. After t+1 rounds, as there is at least one round without any crash, all
processes will have the same estimate. These algorithms do not use identifiers for
processes and solve directly the uniform consensus problem when all processes
are anonymous (l = 1) in presence of any number of crashes.

With omission failures, faulty processes may commit omissions in any round,
and it is possible that there is failures in all rounds. To circumvent this difficulty,
in [21,23,25], each process keeps track (explicitly or implicitly) of the set of
processes it considers to be correct. A process does not accept messages from
processes outside of this set. In [17], the current estimate of each process is
updated to the current estimate of the leader selected in each round. All these
ways use the fact that each process identifies the sender.

We present here a protocol that solves uniform consensus despite up to t <
n processes that commit send-omission failures even if all processes are fully
anonymous. The underlying principles of this algorithm are inspired by [23,25].
Roughly speaking, the algorithm ensures that if some process changes its esti-
mate in round r, then another process has changed its estimate in the previous
round. After the first round, when a process changes its estimate to some value,
this value may only come from a faulty process, if some process changes its
estimate in round k, then at least k − 1 processes are faulty.

The protocol for a process p is described in Figure 1. Each process p maintains
local variables new and old: old is the estimate of the previous round and new
the current estimate of the round. Initially, new is set to v, the initial value
of p.

Note that after the first round, new is different from old if and only if the
process has changed its estimate. Moreover a process changes its estimate only
for a smaller value, then if new < old that means that the process has changed
its estimate. During each round r, each process first broadcasts its current value
of variables new and old and then updates them as follows: the variable old is
set to the value of variable new at round r − 1. Variable new may change only
if the process receives some pairs (v, o) with v < o. From the previous remark,
a process changes its variable new in round r only if it sees that a process has
changed its value of variable new in the previous round. If new is modified, it is
updated by the min of the previous value of new and the min of all v received
from processes having changed their estimate in the previous round.

Finally, at round t+1, each process decides on the maximum of values received
in round t+ 1.

To prove the correctness of the algorithm, we use the following notation: we
say that a process “changes its estimate to some value v0 in round r”, if at the
end of this round, new = v0∧v0 < old. We say that a process “keeps its estimate
in round r”, if at the end of this round, new = old.

Let p0 be the process having the minimum input value vmin. Let newp(r) be
the value of variable new of the process p at the end of round r, oldp(r) be the
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Code for process p

Variable:
1 input = {v} /* v is the value proposed value */
2 new = input
3 old = input

Main code:
4 ROUND 1
5 send new to all processes
6 old = new
7 new = Min{v|p has received v in this round}
8 ROUND r from 2 to t
9 send (new, old) to all processes
10 old = new
11 let Gp[r] = {v| p has received (v, o) in this round and v < o}
12 if Gp[r] �= ∅ and Min{v|v ∈ Gp[r]} < new then new = Min{v|v ∈ Gp[r]}
13 ROUND t+ 1
14 send new to all processes
15 decide Max{v|p has received v in this round}

Fig. 1. Anonymous Consensus Protocol with at most t send omission processes

value of variable old of process p at the end of round r, V [r] be the set of values
of variable new of all processes (not crashed at the end of round r) at the end of
the round r: V [r] = {newp(r)|p is any process}, and vmax be the largest value
of set V [t].

We begin with two simple facts:

Fact 1. oldp(r + 1) = newp(r) for every round 1 ≤ r < t and every process p
not crashed at the end of round r + 1.

Fact 2. newp(r) ≤ oldp(r) for every round 1 ≤ r ≤ t and every process p not
crashed at the end of round r.

Lemma 1. V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.

Proof. Consider variable newp(r+ 1) for some process p not crashed at the end
of round r + 1. There are two cases:

– p changes its estimate in round r + 1 to some value v0 at Line 12. Then
newp(r + 1) = v0 where v0 is the value of variable new of some process q
that sent the pair (v0, old) to p with v0 = newq(r).

– p keeps its estimate in this round. Hence, newp(r + 1) = oldp(r + 1) =
newp(r).

Thus, V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.
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We directly get:

Lemma 2. If p0 is correct then newp(r) = vmin for every round 1 ≤ r ≤ t and
every process p not crashed at the end of round r.

Lemma 3. If a correct process has input value v0 or changes its estimate to
some value v0 in round 1 ≤ r < t then newq(t) ≤ v0 for every process q not
crashed at the end of round t.

Proof. If some correct process p has input v0 then at the end of round 1, the
variable new of all processes is less than or equal to v0 (Line 7). By Lemma 1,
we have V [t] ⊆ V [1]. Thus, newq(t) ≤ v0 for every process q.

If p changes its estimate new to v0 in round 1 ≤ r < t. Then v0 = newp(r) <
oldp(r). In the round r+1 ≤ t, the correct process p sends the pair (v0, oldp(r))
to all processes. At the end of the round r+1, all processes receive (v0, oldp(r)).
We consider any process q, after Line 12, new′

qr + 1) ≤ v0. By Lemma 1, we
have V [t] ⊆ V [r + 1]. Thus, newq(t) ≤ v0 for every process q.

Lemma 4. If t > 1 and r ≥ 2, if some p changes its estimate to v0 in round r
then, there is a set of processes {q1, · · · , qr−1} such that for all i, 1 ≤ i ≤ r − 1,
qi changes its estimate to v0 in the round i and newqi(r − 1) ≤ v0.

Proof. Since p changes its estimate to v0 in round r, we must have newp(r) =
Min{v|v ∈ Gp[r]} and there is at least one process qr−1 that sent (new, old) to
p, with new = v0 < old. Hence, at the end of round r− 1, the process qr−1 must
have newqr (r−1) < oldqr (r−1). That means that qr−1 has changed its estimate
in round r − 1.

By induction, we have a sequence of processes (q1, · · · , qr−1) such that qi
changes its estimate in round i, 1 ≤ i ≤ r − 1.

Furthermore, if a process changes its estimate to v0 in some round r0 then
after this round, its value of variable new is less than or equal to v0 and no
process can change its estimate to v0 twice. Thus, all processes qi are distinct
and newqi(r − 1) ≤ v0 for all i such that 1 ≤ i ≤ r − 1, proving the Lemma.

Lemma 5. Either (a) newq(t) = vmax for every correct process q, or (b) V [t] =
{vmin, vmax}, news(t) = vmin for every faulty process s and some correct process
changes its estimate to vmin in round t.

Proof. If t = 1 then consider two cases:

– if p0 is correct and then by Lemma 2, newq(t) = vmin for all correct processes
q.

– if p0 is faulty. At the end of round 1, either all correct processes have the
same value of estimate or some correct process changes its estimate to vmin,
proving the Lemma.

faux
If t > 1, we consider the set of values of variable new of correct processes at the
end of round t. Since n > t, this set is not empty.

Assume that (a) is not satisfied then for some correct process p newp(t) <
vmax. Let v0 be newp(t) (v0 < vmax). Consider the following two cases:
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– v0 is the input value of p or p changes its estimate to v0 in a round 1 ≤
r < t then by Lemma 3, newq(t) ≤ v0 for every process q, contradicting the
hypothesis that v0 < vmax.

– p changes its estimate to v0 in round t. By Lemma 4, we have a set of
processes {q1, · · · , qt−1} such that qi changes its value of variable new to v0
in the round i, 1 ≤ i ≤ t − 1. Moreover, no process among them is correct
because if some process qi is correct then the value of variable new at the end
of the round t of every process is less than or equal to v0, hence vmax ≤ v0,
contradicting the hypothesis that v0 < vmax. Moreover, p0 is faulty because
if p0 were correct then by Lemma 2, newp(1) = vmin and p could not change
its estimate in round t, contradicting the hypothesis. Therefore, we have a
set of t faulty processes {q1, ..., qt−1} ∪ {p0}.

Since all processes qi that have ever changed their estimate to v0 in some
round r ≥ 1, v0 cannot be the input value of one of these processes. On
the other hand, by Lemma 3, if v0 is the input value of a correct process
then newq(t) ≤ v0 for every process q, by definition of vmax, vmax = v0,
contradicting the hypothesis that v0 < vmax. Hence, v0 may only be the
input value of faulty process p0. That means that newp(t) = v0 = vmin.
Moreover, all faulty processes qi that changed their estimate to vmin in some
round r ≥ 1 do not change their estimate more because vmin is minimum
value, hence news(t) = vmin for every faulty process s ∈ {q1, ..., qt−1}∪{p0}.

Proposition 1. Uniform agreement: No two processes decide different val-
ues.

Proof. By Lemma 5, we have either

– If newq(t) = vmax for every correct process q then, every process p not
crashed at round t + 1 receives vmax in round t + 1 and decides vmax at
Line 15.

– V [t] = {vmin, vmax}, news(t) = vmin for every faulty process s. Hence, vmax

must come from some correct process. At the beginning of round t+ 1, this
process sends vmax to all and every process not crashed at round t+1 receives
the value vmax and decides vmax.

The Termination and Uniform Validity are trivially satisfied, then with the pre-
vious proposition we deduce:

Theorem 1. Uniform consensus is solvable in t+1 rounds with send-omission
failures of any number of processes even if all processes are anonymous.

This algorithm is optimal concerning the number of rounds (t + 1) and the
number of tolerated faulty processes (t < n).

4 Consensus with General-Omission Failures

In this section we give an algorithm solving uniform consensus with general-
omission failures if processes are numerate (even if they are anonymous). In
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a second subsection we prove there is no solution for uniform consensus with
general-omission failures when processes are anonymous and innumerate. More
precisely we prove that at least l > 2t identifiers are needed. Recall that uniform
consensus is solvable with processes having unique identifiers for general-omission
failures only if there is a majority of correct processes, then we always assume
in this section that n > 2t.

4.1 Numerate Processes

In this subsection, processes are anonymous and numerate.
An algorithm in Figure 2 solves the consensus in general omission model base

on the same principles as Figure 1. Round t + 1 has to be adapted to general-
omission failures for which it is not ensured that all correct processes have the
same estimate in round t+ 1.

Code for process p

Variable:
1 input = {v} /* v is the proposed value */
2 new = input
3 old = input

Main code:
4 ROUND 1
5 send new to all processes
6 old = new
7 new = Min{v| v in the set of messages received }
8 ROUND r from 2 to t
9 send (new, old) to all processes
10 old = new
11 let Gp[r] = {v| p has received (v, v1) in this round and v < v1}
12 if Gp[r] �= ∅ and Min{v|v ∈ Gp[r]} < new then new = Min{v|v ∈ Gp[r]}
13 ROUND t+ 1
14 send (new, old) to all processes
15 if for some v received n− t pairs (v, ∗) in this round
16 then decides v
17 else if received at least n− t pairs
18 and one of them is (x, y) such that x < y
19 then
20 let Gp = {v| p has received (v, ∗) in this round }
21 if ∃(x, y) such that x < y and (x, y) received in this round

and x = Min{v|v ∈ Gp}
22 then decide x

Fig. 2. Anonymous Consensus Protocol with at most t general-omission processes
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We now present the steps of the proof that the protocol of Figure 2 satisfies the
specification of uniform consensus.We use the same notations p0, vmin, V, newp(r)
and oldp(r) as in the proof of Theorem 1. Let C[r] be the set of values of variable
new of all correct processes at the end of the round r: C[r] = {newp(r)|p is a
correct process}, and cmax be the largest value of set C[t].

Although here processes may commit receive omission the following lemmata
may be proved in a very similar way as in the proof of Theorem 1.

Lemma 6. V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.

Lemma 7. If p0 is correct then newp(r) = vmin for every correct process p and
every round 1 ≤ r ≤ t .

Lemma 8. If a correct process changes its estimate to some value v0 in round
1 ≤ r < t or has input v0 then newq(t) ≤ v0 for every correct process q.

Lemma 9. If t > 1 and r ≥ 2, if some process p changes its estimate to v0
in round r then, there is a set of processes {q1, ..., qr−1} such that for all i,
1 ≤ i ≤ r − 1, qi changes its estimate to v0 in the round i.

Lemma 10. Either (a) newq(t) = cmax for every correct process q, or (b)
V [t] = {vmin, cmax}, news(t) = vmin for every faulty process s, some correct
process changes its estimate to vmin in round t, and t processes are faulty.

Proof. If t = 1 then consider two cases:

– if p0 is correct then by Lemma 7, newq(1) = vmin for all correct processes.
– if p0 is faulty. At the end of round 1, either all correct processes have the

same value of estimate or some correct process changes its estimate to vmin,
proving the Lemma.

If t > 1, we consider the set of values of variable new of correct processes at the
end of round t. Since n > 2t, this set is not empty.

Assume that (a) is not satisfied then for some correct process p newp(t) <
vmax. Let v0 be newp(t) (v0 < cmax). Consider the following two cases:

– v0 is the input value of p or p changes its estimate to v0 in a round 1 ≤ r < t
then by Lemma 8, newq(t) ≤ v0 for every correct process q. By definition of
cmax, we must have cmax = v0, contradicting the hypothesis that v0 < cmax.

– p changes its estimate to v0 in round t. By Lemma 9, we have a set of
processes {q1, · · · , qt−1} such that qi changes its value of variable new to v0
in the round i, 1 ≤ i ≤ t − 1. Moreover, no process among them is correct
because if any process qi is correct then the value of variable new at the end
of the round t of every process is less than or equal to v0, hence cmax ≤ v0,
contradicting the hypothesis that v0 < cmax. On the other hand, p0 is faulty
because if p0 were correct then by Lemma 7, newp(1) = vmin and p could
not change its estimate in round t, contradicting the hypothesis. Therefore,
we have a set of t faulty processes {q1, ..., qt−1} ∪ {p0}.
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As all qi changed their estimate to v0 in some round r ≥ 1, v0 is not any
input value of these processes. On the other hand, by Lemma 8, if v0 is
input value of a correct process then newq(t) ≤ v0 for every process q. By
definition of cmax, we must have cmax = v0, contradicting the hypothesis
that v0 < cmax. Then, v0 may only be the input value of faulty process p0.
That means that newp(t) = v0 = vmin. Moreover, all faulty processes qi
that have changed their estimate to vmin in some round r ≥ 1 do not change
their estimate after because vmin is minimum value. Hence news(t) = vmin

for every faulty process s ∈ {q1, ..., qt−1} ∪ {p0}.
Lemma 11. Suppose that newq(t) = cmax for every correct process q. Thus, if
a faulty process changes its estimate to v0 in round t then v0 ≥ cmax.

Proof. If p0 is correct then at the end of round 1, we have newq(1) = vmin

for every correct process q. q never changes its estimate because vmin is the
minimum value. Thus, cmax = vmin. If a faulty process changes its estimate to
v0 in round t then obviously, v0 ≥ vmin.

Now, consider the case where p0 is a faulty process. Suppose that a faulty
process q changes its estimate to v0 in round t. By Lemma 9, we have a set
of processes {q1, · · · , qt−1} such that qi changes its value of variable new to
v0 in the round i, 1 ≤ i ≤ t − 1. Moreover, the faulty process p0 that never
changes its estimate must be different from all processes in the set {q1, · · · , qt−1}.
If all these processes were faulty with p0 and q we would have t + 1 faulty
processes, contradicting the hypothesis that there are at most t faulty processes.
Therefore, at least one of processes of set {q1, · · · , qt−1} is correct, say p. p
changes its estimate to v0 in round 1 ≤ r < t: newp(r) = v0. But we have always
newp(t) ≤ newp(r) for every 1 ≤ r < t. Thus, v0 = newp(r) ≥ newp(t) = cmax.

Lemma 12. If two processes decide at Line 16 then they decide the same value.

Proof. Suppose that process p decides v0 at Line 16 and process q decides v1 at
Line 16. Thus, p receives at least n− t pairs (v0, ∗) and q receives at least n− t
pairs (v1, ∗) in round t+1. That means that at least n− t processes sent (v0, ∗)
and at least n− t processes sent (v1, ∗). Since (n− t) + (n− t) > n, v0 = v1.

Theorem 2. If processes are numerate, uniform consensus is solvable in t + 1
rounds if n > 2t even if all processes are anonymous.

Proof. Termination: By Lemma 10, at the end of round t, either:

– the value of variable new of every correct process is the same, then all correct
processes decide at Line 16.

– at least one correct process p changes its estimate to vmin and the value of
variable new of every faulty process is vmin. Thus, every correct process q
receives at least n− t pairs and one of them is (vmin, y) such that vmin < y
from p. q decides vmin at Line 22.

Uniform Validity: if a process decides it decides some value in set V [t]. By Lemma
6, we have V [t] ⊆ V [1]. Moreover, V [1] is a subset of the inputs proposed by
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processes. Therefore, if a process p decides v, then v is input value of some
process.

Uniform agreement: By Lemma 10, at the end of round t either:

– the value of variable new of every correct process is the same cmax then all
correct processes decide this value at Line 16. Suppose that a faulty process
q want to decide. If it decides at Line 16 then by Lemma 12 it must decide
the same cmax. If it decides at Line 22 it has received at least n − t pairs
and one of them is (x, y) such that x < y and x = Min{v|v ∈ Gq}. As q
receives at least n− t pairs, at least one pair comes from a correct process.
then x = Min{v|v ∈ Gq} ≤ cmax. If this pair (x, y) comes from a correct
process then x = cmax. If the pair come from a faulty process. By Lemma
11, we have x ≥ cmax. Thus, in all cases, we have always x = cmax. That
means that q decides the same value as correct processes.

– V [t] = {vmin, cmax}, news(t) = vmin for every faulty process s, some correct
process p changes its estimate to vmin in round t, and t processes are faulty.
As p is correct, all correct processes receive its value. Moreover a correct
process receives at most n − t − 1 value different from vmin and cannot
decide at Line 16 then it decides vmin at Line 22. If a faulty process q
decide, by hypothesis it has news(t) = vmin.

4.2 Innumerate Processes

Proposition 2. Uniform consensus is not solvable with innumerate processes if
l ≤ 2t with general-omission failures.

Proof. The proof is based on a classical partitioning argument. By contradiction,
assume that there is a protocol that solves the uniform binary consensus problem
with l ≤ 2t.

Let a partition of the set of identifiers L into two sets I = {1, . . . , l/2} and
J = {l/2 + 1, . . . l}, such that |I| ≤ t and |J | ≤ t. Consider the two following
repartitions of identifiers. In repartition R, all identifiers in I are identifier of
only one process, identifiers in J − {l} are identifiers of only one process too
and identifier l is the identifier of the remaining n − l + 1 processes. R(I) and
R(J) denote respectively the set of processes with identifiers in I and the set
of processes with identifiers in J for repartition R Repartition S is identical to
R except that only one process has identifier l and the other processes having
identifier l for R have now identifier 1. S(I) and S(J) denote respectively the set
of processes with identifiers in I and the set of processes with identifiers in J for
repartition S. Note that R(I) and S(J) contain at most t processes. Note also
that as processes are innumerate if all processes with the same identifier send
the same messages in R and S and have the same initial state, execution in R
or S are indistinguishable for any process.

Consider the following executions:
Execution α. The repartition is R, all processes have 0 as initial value. Pro-

cesses in R(I) are crashed from the beginning. By validity the decision value
is 0.
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Execution α′. The repartition is R, the initial values are 0 for processes in
R(J) and 1 for processes in R(I). Processes in R(I) commit send and receive
omission failures: processes in R(J) do not receive any message from processes in
R(I) and processes in R(I) do not receive any message from processes in R(J).
α′ is indistinguishable from α for processes in R(J) and the decision value is 0.

Execution β. The repartition is S, all processes have 1 as initial value. Pro-
cesses in S(J) are crashed from the beginning. By validity the decision value
is 1.

Execution β′. The repartition is S, processes in S(I) have 1 as initial value
and processes in S(J) have 0 as initial value. Processes in S(J) commit send and
receive omission and processes in S(I) don’t receive any message from S(J) and
processes in S(J) don’t receive any message from S(I). β′ is indistinguishable
from β for processes in S(I) and the decision value is 1.

Now consider any process p with identifier in I both for R and S. As processes
are innumerate p receives in β′ and α′ exactly the same messages from identifiers
in I, and receives no messages from identifiers in J , both execution are then
indistinguishable for p. In β′ it decides 1 then in α′ it decides 1 too. But the
decision value for α′ is 0.

In the other hand, the consensus is solvable when l > 2t. The protocol is similar
to the one presented in Figure 2 only Lines 13 - 22 (round t + 1) are replaced
by:

15 ROUND t+ 1
16 send (new, old) to all processes
17 if for some v received (v, ∗) from at least l − t identifiers in this round
18 then decides v
19 else if received at least messages from l − t identifiers
20 and one of them is (x, y) such that x < y
21 then
22 let Gp = {v| p has received (v, ∗) in this round }
23 if ∃(x, y) such that x < y and (x, y) received in this round

and x = Min{v|v ∈ Gp}
24 then decide x

Then we get:

Theorem 3. Uniform consensus is solvable with innumerate processes with
general-omission failures if and only l > 2t.

5 Conclusion and Perspectives

One natural extension of this work is to consider partially synchronous mod-
els [14,15]. Some results for consensus with anonymous processes for a specific
partially synchronous model are given in [11].

Concerning numerate processes in models like [15] in which the communica-
tion between all correct processes is eventually synchronous we conjecture that
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consensus is solvable with a majority of correct processes. Concerning only crash
failures, it may be noticed that sending regularly “alive” messages an anonymous
failure detector [6,7] giving eventually the exact number of correct processes may
be implemented, and then with this failure detector and a majority of correct
processes consensus may be implemented.

When processes are innumerate in the Byzantine failures case, it has been
proved [10] by a partitioning argument the lower bound of l > (n + 3t)/2 for
consensus. This proof may be adapted to crash and omission failures giving
a lower bound of l > (n + 2t)/2. This bound indicates that in partially syn-
chronous models, to solve the consensus the homonymy of processes must be
very restricted.

One more technical issue is the ability to have early stopping algorithms. We
guess that with innumerate processes early-stopping algorithms are not possible
or with very poor bounds.

In some way, the results of this paper shows that two mechanisms help to
solve the consensus: identifiers of processes and the ability of processes to count
identical messages they receive. Anonymity of processes may be balanced by the
ability to count the number of identical messages received.
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