
Self-stabilizing Silent Disjunction

in an Anonymous Network

Ajoy K. Datta1, Stéphane Devismes2, and Lawrence L. Larmore1

1 Department of Computer Science, University of Nevada Las Vegas, USA
2 VERIMAG UMR 5104, Université Joseph Fourier, France

Abstract. Given a fixed input bit to each process of a connected net-
work of processes, the disjunction problem is for each process to compute
an output bit , whose value is 0 if all input bits in the network are 0, and 1
if there is at least one input bit in the network which is 1. A uniform asyn-
chronous distributed algorithm DISJ is given for the disjunction problem
in an anonymous network. DISJ is self-stabilizing, meaning that the cor-
rect output is computed from an arbitrary initial configuration, and is
silent, meaning that every computation of DISJ is finite. The time com-
plexity of DISJ is O(n) rounds, where n is the size of the network. DISJ
works under the unfair daemon.

Keywords: anonymous, disjunction, self-stabilization, silence, unfair
daemon.

1 Introduction

Given a network of processes G, where each process has a fixed input bit ,
Input(x), the disjunction problem is for each process to compute Output =∨

x∈G Input(x), the disjunction of all input bits in the network.
A distributed solution to the disjunction problem is a distributed algorithm

which computes an output bit for each process, such that all output bits are
equal to Output. The solution given in this paper, the distributed algorithm
DISJ, correctly solves the disjunction problem if the network is connected. DISJ
is self-stabilizing [1,2], meaning that a correct output configuration is reached in
finite time after arbitrary initialization, and is silent, meaning that eventually the
computation of DISJ will halt. DISJ works under the unfair scheduler (daemon).

DISJ is uniform, meaning that every process has the same program, and is
anonymous, meaning that processes are not required to have distinguished IDs.
The round complexity of DISJ is O(n), where n is the size of the network. We
use the composite model of computation [2].

1.1 Related Work

We are not aware of closely related work in the literature. Although we use
some of the same techniques in this paper that are used for leader election, the

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 148–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Self-stabilizing Silent Disjunction 149

disjunction problem in an anonymous network cannot be solved by using a leader
election algorithm, nor by using an algorithm to construct a spanning tree. In
fact, there is no distributed algorithm which elects a leader or which constructs
a spanning tree for general anonymous networks.

1.2 Outline of the Paper

In Section 2, we explain our model of computation. In Section 3, we give the for-
mal definition of DISJ. In Section 4, we sketch the proof of the self-stabilization,
silence, and time complexity of DISJ.

2 Preliminaries

We assume that we are given an anonymous network of processes. Let N(x) be
the set of neighbors of a process x.

A self-stabilizing [1,2] system is guaranteed to converge to the intended be-
havior in finite time, regardless of the initial state of the system. In particular,
a self-stabilizing algorithm distributed will eventually reach a legitimate state
within finite time, regardless of its initial configuration, and will remain in a
legitimate state forever. An algorithm is called silent if eventually all execution
halts.

In the composite atomicity model of computation, each process has variables.
Each process can read the values of its own and its neighbors’ variables, but
can write only to its own variables. We assume that each transition from a
configuration to another, called a step of the algorithm, is driven by a scheduler ,
also called a daemon.

The program of each process consists of a finite set of actions of the following
form: < label >:: < guard > −→ < statement >. The guard of an action
in the program of a process x is a Boolean expression involving the registers
of x and its neighbors. The statement of an action of x updates one or more
variables of x. An action can be executed only if it is enabled , i.e., its guard
evaluates to true. A process is said to be enabled if at least one of its actions is
enabled. A step γi �→ γi+1 consists of one or more enabled processes executing
an action. Evaluation of all guards and execution of all statements of an action
are presumed to take place in one atomic step. A distributed algorithm is called
uniform if every process has the same program.

We use the distributed daemon. If one or more processes are enabled, the
daemon selects at least one of these enabled processes to execute an action. We
also assume that daemon is unfair , i.e.,that it need never select a given enabled
process unless it becomes the only enabled process.

We define a computation to be a sequence of configurations γp �→ γp+1 . . . �→ γq

such that each γi �→ γi+1 is a step.
We measure the time complexity of DISJ in rounds [2]. We say that a fi-

nite computation � = γp �→ γp+1 �→ . . . �→ γq is a round if every process which is

150 A.K. Datta, S. Devismes, and L.L. Larmore

enabled at γp is either neutralized or executes an action at some step, and if the
computation γp �→ γp+1 �→ . . . �→ γq−1 does not satisfy that condition. We define
the round complexity of a computation to be the number of disjoint rounds in
the computation.

3 DISJ

In this section, we give the formal definition of our algorithm, DISJ, which
solves the disjunction problem in an anonymous connected network, G. The
fundamental idea of DISJ is to build a local BFS tree rooted at every process
whose input bit is 1. Each process will join the tree rooted at the nearest process
with input bit 1; ties will be broken arbitrarily. The construction of the BFS
trees is by flooding.

The main difficulty with this method is the possibility that, in the initial
configuration (which is arbitrary) there could be “fictitious” BFS trees. It is
necessary to delete all such fictitious trees. This is an easy task if Output = 1,
but is difficult if Output = 0. If a process does not have a parent in one of the
trees, it will delete itself from the structure. Our problem is to ensure that a
fictitious tree does not grow as fast at the leaf end as it deletes itself from the
root end.

The method we use to ensure deletion of fictitious trees is derived from the
color wave method of [3]. Each process in a tree or fictitious tree, whether true
or fictitious, has a color , either 0 or 1. A process can only recruit a new process
to the tree if its color is 1, and the recruited process will initially have color 0.
Colors change in pipelined convergecast waves. Colors in a tree must alternate,
and to allow the color waves to continue upward, the root of each BFS tree (a
process whose input bit is 1) must “absorb” each wave. A fictitious tree will
not be rooted at a process with input bit 1, and thus color waves will not be
absorbed. “Color lock,” the situation where the waves are maximally crowded
and cannot move up, will eventually stop the growth of the fictitious tree.

We use the concept of energy introduced in [3]. Energy(x) is a positive integer
for each process x whose output bit is 1, and zero for processes with output
bit 0. If Output = 0, Energy(x) ≤ 2n for all x, and the maximum value of
Energy decreases by at least 1 during every round, and thus must eventually
reach zero. At that point, every process has output bit 0. In one more round,
DISJ converges.

3.1 Definition of DISJ

Recall that Input(x) is the input bit of the process x, and that Output is the
disjunction of all input bits. Define Ii = {x : Input(x) = i}, for i = 0, 1. Thus,
Output = 0 if I1 = ∅, while Output = 1 otherwise. If x, y are processes, let
||x, y|| be the distance (“hop-distance”) from x to y. If S is a non-empty set
of processes, let ||S, y|| = min {||x, y|| : x ∈ S}. We let ||∅, y|| = ∞. Finally, let
L(x) = ||I1, x||.

Self-stabilizing Silent Disjunction 151

Variables of DISJ. Each process x has the following variables.

1. x.out ∈ {0, 1}, the output bit of x.
When DISJ halts, x.out = Output for all x. We let Oi = {x : x.out = i}, for
i = 0, 1. During a computation of DISJ, the sets Oi can change.

2. x.parent ∈ N(x) ∪ {⊥}, the parent of x.
If Output = 0, then x.parent = ⊥ for all x when DISJ halts. If Output = 1,
then, when DISJ halts, x.parent = ⊥ for all x ∈ I1, while x.parent is the
parent pointer of x in the local BFS tree rooted at the nearest member of I1
if x ∈ I0.

3. x.level ≥ 0, integer or ∞, the level of x.
4. x.color ∈ {0, 1}, the color of x.

If x.out = 0, the value of x.color is irrelevant. The purpose of the color
variable is to ensure that eventually x.out = 0 for all x, if Output = 0.
The main difficulty of the problem in that case is eliminating processes with
output bit 1. We accomplish this task by using color waves , which ensure
that “fictitious” trees shrink faster than they grow.

5. x.done, Boolean. This variable is irrelevant if x.out = 0. If Output = 1,
the variable done is used to achieve silence when all BFS trees have been
constructed. In that case, x.done = true for all x when DISJ halts.

Functions and Sets. The following functions can be computed by any given
process x by examining its own and its neighbors’ variables.

1. Level(x) =

⎧
⎨

⎩

0 if Input(x) = 1
∞ if Input(x) = 0 and N(x) ⊆ O0

1 + min {y.level : y ∈ N(x) ∩O1} otherwise
When DISJ halts, x.level = Level(x) = L(x) for all x.

2. Chldrn(x) =

{{y ∈ N(x) ∩O1 : y.parent = x and y.level = 1 + x.level} if x ∈ O1

∅ if x ∈ O0

the children of x in its local BFS tree.
3. 0 Valid(x), Boolean, meaning that x is in a valid state with output bit 0,

which is true if and only if all the following conditions hold.
(a) x ∈ O0

(b) x.level = Level(x)
(c) x.parent = ⊥

4. 1 Valid(x), Boolean, meaning that x is in a valid state with output bit 1,
which is true if and only if all the following conditions hold.
(a) x ∈ O1

(b) x.level = Level(x)
(c) If Input(x) = 0 then x.parent ∈ O1 and x.level = 1 + x.parent .level .
(d) If Input(x) = 1 then x.parent = ⊥ and x.level = 0.
(e) If y ∈ N(x) then y.level + 1 ≥ x.level .

5. Valid(x) ≡ 0 Valid(x) ∨ 1 Valid(x), Boolean, meaning that x is valid. If
Valid(x) = false, we say x is invalid.
An invalid process x is enabled to execute the Reset action, A1, which causes
x to become valid.

152 A.K. Datta, S. Devismes, and L.L. Larmore

6. Can Recruit(x), Boolean, meaning that there is a neighbor of x which can
be recruited by x. This function is true if and only 1 Valid(x) and there is
some y ∈ N(x) ∩O0 such that y.level = x.level + 1.

7. Done(x), Boolean, indicates that there should be no further recruitment of
processes by x or any descendant of x in its local BFS tree.
This function is true if and only if 1 Valid(x), Can Recruit(x) = false,
and y.done for all y ∈ Chldrn(x).

Actions of DISJ
We list the actions of DISJ, in Table 1. The first column of the table gives the
name of the action, as well as its priority. The second column gives an informal
name of the action.

The guard of each action is a Boolean function, which we express as a list of
clauses in the third column. Each guard is the conjunction of the clauses. If the
priority of an action is not 1, there is an additional unlisted clause, which states
that no action of higher priority is enabled. For example, if the priority of an
action is 3, it is not enabled if an action of priority 1 or 2 is enabled.

The fourth column of Table 1 lists the statement of each action. If a process
is enabled and executes an action, then the statement, which consists of a list of
assignments of values to the process’ local variables, is executed.

We follow Table 1 by a detailed explanation of each of the actions.

Explanation of the Actions of DISJ. We now give a detailed explanation of
each of the actions of DISJ.

Action A1 (Reset): If a process x is invalid, it executes A1, and then
becomes 0-valid. An invalid process cannot change its parent or its level
without first executing A1.

Action A2 (Finish): If x ∈ O1, and if it appears to x, by looking at its
own and its neighbors’ variables, that construction of the local BFS trees is
done, then x.done is changed to true. Alternatively, if x ∈ O1 can determine
that the local BFS trees are not finished, x.done is changed to false. Both
changes are accomplished by the execution of Action A2.

When construction of local BFS trees is finished, all the done variables
change to true in a convergecast wave beginning at the leaves. When that
wave reaches x ∈ I1, then x can no longer execute Action A6, causing color
lock to percolate down its tree. When that happens with every tree, all
executions of Action A5 cease, and the configuration is final.

Action A3 (Initialize): If a process x ∈ I1 is 0-valid, it initiates a local
BFS tree with itself as the root, unless there is some neighbor y such that
y.parent = x. The reason for this clause is that, otherwise, y could acciden-
tally and erroneously link with the local BFS tree.

If such a y exists, then y is invalid, which implies that it will execute
Action A1 during the next round, after which x is enabled to execute A3.

Action A4 (Join): If a process x ∈ I0 is 0-valid and has a neighbor y ∈ O1,
and if y.color = 1 and x.level = 1 + y.level , then x can join y by executing

Self-stabilizing Silent Disjunction 153

Table 1. Actions of DISJ

A1 Reset ¬Valid(x) −→ x.out ← 0
priority 1 x.level ← Level (x)

x.parent ← ⊥
A2 Finish x.out = 1 −→ x.done ← Done(x)

priority 2 x.done �= Done(x)

A3 Initialize Input(x) = 1 −→ x.out ← 1
priority 3 0 Valid(x) x.color ← 1

∀y ∈ N(x) : y.parent �= x x.level ← 0
x.done ← false

A4 Join y y ∈ N(x) −→ x.parent ← y
priority 3 Input(x) = 0 x.out ← 1

0 Valid(x) x.color ← 0
y.out = 1 x.done ← false
y.level + 1 = x.level
y.color = 1
∀z ∈ N(x) : z.parent �= x

A5 Reverse 1 Valid(x) −→ x.color ← ¬x.color
priority 3 Color Input(x) = 0

¬Can Recruit(x) ∨ (x.color = 0)
x.parent .color = x.color
∀y ∈ Chldrn(x) : y.color �= x.color

A6 Absorb 1 Valid(x) −→ x.color ← ¬x.color
priority 3 Color Input(x) = 1

¬Can Recruit(x) ∨ (x.color = 0)
∀y ∈ Chldrn(x) : y.color �= x.color
¬x.done

Action A4, unless there is some neighbor z such that z.parent = x. The
reason for this clause is the same as the reason given for Action A3.

When x joins y, x.color ← 0. Thus, x starts a 0-color wave, which follows
the 1-color wave that y belongs to.

Action A5 (Reverse Color): Color waves alternate in color, and no color
wave can pass its preceding color wave. This rule is enforced by the guard of
A5. In order for the next color wave to reach x, that wave must have already
reached all children of x (if there are no children, then x initiates a new color
wave by executing A5) and the current color wave of x must already have
reached x.parent .

Action A6 (Absorb Color): Since color waves alternate colors and cannot
pass each other, eventually every chain would have alternating colors, i.e.,

154 A.K. Datta, S. Devismes, and L.L. Larmore

x and y would have different colors if y = x.parent . This situation is called
color lock . A color locked chain can only recruit a process if its last process
has color 1, and after it recruits that new process, which then has color 0, no
further recruitment is possible. Thus, in order for the local BFS trees to grow,
it is necessary for the root processes to absorb color waves. Action A6 by a
process x ∈ I1 consists of simply allowing the color wave that has reached its
children to move up to x. This then destroys (absorbs) the process’ current
color wave.

If x ∈ I1 and x.done = true, the local tree is complete, and color locking
is desired. In this case, x refuses to absorb its current color wave, the color
waves “pile up” behind it, and color lock is achieved. When all local BFS
trees reach color lock, the configuration of DISJ is final, and x.out = 1 for
all x.

3.2 Legitimate Configurations

There are two kinds of legitimate configurations. We say that a process x is in
a legitimate state of type 0 if the following conditions hold.

1. Input(x) = 0.
2. 0 Valid(x).
3. N(x) ⊆ O0.

We say that a process x is in a legitimate state of type 1 if the following conditions
hold.

1. 1 Valid(x).
2. x.done.
3. y.done for all y ∈ Chldrn(x).
4. If Input(x) = 0, then x.parent .color �= x.color .

We say that a configuration is legitimate, of type 0 or 1, if all processes are in a
legitimate state of type 0 or 1, respectively.

Properties of Legitimate Configurations. If the configuration is legitimate of
type 0, all processes have the same state, where level =∞. If the configuration
is legitimate of type 1, the network is partitioned into clusters, each of which
contains exactly one member of I1. Each process belongs to the cluster containing
the nearest member of I1 (where ties are broken arbitrarily), and the parent
pointers of the processes of each cluster form a BFS tree rooted at its member
of I1.

4 Self-stabilization and Silence

Our main result is Theorem 4.19 below, which follows immediately from the
lemmas proved in this section.

Self-stabilizing Silent Disjunction 155

4.1 Legitimacy and Silence

Remark 4.1. Every legitimate configuration is final.

Proof. Assume that the configuration is legitimate, and let x be a process.
Since Valid(x), x cannot execute Action A1.

Suppose x is legitimate of type 0.
Since x ∈ O0, x cannot execute Action A2.
Since Input(x) = 0, x cannot execute Action A3.
Since N(x) ⊆ O0, x cannot execute Action A4.
Since x ∈ O0, 1 Valid(x) = false, and thus x cannot execute either Action
A5 or A6.

Suppose x is legitimate of type 1.
For any y ∈ N(x), since y is legitimate, y ∈ O1 and y.done = true. Thus,
Done(x) = true, and hence x cannot execute Action A2.

Since x ∈ O1, x cannot execute either Action A3 or A4.
If x ∈ I0, then x.parent is legitimate of type 1. Then x cannot execute Action
A5 since x.parent .color �= x.color .
If x. ∈ I1, then x cannot execute Action A6 since x.done = true.

Thus, in either case, x is not enabled. and we are done.

We now prove the converse of Remark 4.1.

Lemma 4.2. Every final configuration is legitimate.

Proof. Assume that the current configuration of DISJ is final, but not legitimate.
For any process x, we have Valid(x) = true, and x.done = Done(x) if x ∈ O1,
since otherwise x would be enabled to execute either Action A1 or A2.

Our proof is by contradiction. Assume that not all processes are in a legitimate
state.

Case I: There is some x ∈ O0 where x is not in a legitimate state, andN(x) ⊆ O0.
Then 0 Valid(x). Since x is not legitimate of type 0, Input(x) = 1. Since all
neighbors of x are valid, x is enabled to execute Action A3, contradiction.

Case II: There is some x ∈ O1 such that x.level > 0 and x.parent .color = x.color .
Without loss of generality, the level of x is maximum, i.e., y.parent .color �=
y.color for all y ∈ O1 such that y.level > x.level .

If Can Recruit(x) = false, then x is enabled to execute Action A5, since
y.color �= x.color for all y ∈ Chldrn(x). Suppose Can Recruit(x) = true. Then
there exists y ∈ N(x) ∩ O0 such that y.level = 1 + x.level , and Level (y) =
1 + x.level since y is legitimate. Thus, y is enabled to execute Action A4. In
either case, we have a contradiction.

Case III: There are processes x ∈ O0 and y ∈ N(x) ∩ O1, and z.color �=
z.parent .color for all z ∈ O1 such that z.level > 0. Let r be the end of the chain

156 A.K. Datta, S. Devismes, and L.L. Larmore

starting with y and following parent pointers. Then r ∈ O1 and r.level = 0. Since
y.done = false, it follows by induction along the chain that r.done = false.
If r ∈ B1 and Can Recruit(r), then some neighbor of r can execute Action A4,
contradiction. Otherwise, r is enabled to execute Action A6, contradiction.

4.2 Characteristics of a Legitimate Configuration

Lemma 4.3. In a legitimate configuration, x.level = L(x) for all x.

Proof. By Remark 4.1, the configuration is final. If Output = 0, then Level(x) =
∞, since otherwise Action A1 would be enabled.

Suppose Output = 1, and x.level �= L(x) Without loss of generality, L(x) is
minimum subject to that condition. If x ∈ I1, then x is enabled to execute Action
A1, contradiction. Henceforth, assume x ∈ I0, which implies that x.level �=
L(x) =≥ 0.

Case I: x.level > L(x). Pick r ∈ I1 such that ||r, x|| = L(x). Pick y ∈ N(x) on
the shortest path from x to r. Then Level(x) ≤ 1+ y.level = 1+L(y) = L(x) <
x.level . Thus, x is enabled to execute Action A1, contradiction.

Case II: x.level < L(x). For all y ∈ N(x), L(y) ≥ L(x) − 1, by the triangle
inequality. Thus Level(x) ≥ L(x) > x.level , which implies that x is enabled to
execute Action A1, contradiction.

Corollary 4.4. In a configuration which is legitimate of type 1, the network is
partitioned into clusters, each containing one member of I1. In each cluster, the
parent pointers form a BFS tree rooted at its member of I1.

4.3 Energy

At any configuration of DISJ, and for any process x, let

Energy(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x.out = 0
1 if (x.out = 1) ∧ (Chldrn(x) = ∅) ∧ (x.color = 0)
2 if (x.out = 1) ∧ (Chldrn(x) = ∅) ∧ (x.color = 1)

max
(
{1 + Energy(y) : (y ∈ Chldrn(x)) ∧ (y.color �= x.color)} ∪

{2 + Energy(y) : (y ∈ Chldrn(x)) ∧ (y.color = x.color)}
)
otherwise

We define Max Energy to be the maximum energy of processes in the network.

Lemma 4.5. Execution of Action A1, A2, A4, or A5 by any process does not
increase Max Energy.

Proof. If a process x executes Action A1, there is no effect on Max Energy if
x ∈ O0. If x ∈ O1, then Energy(x) ← 0, and the effect on the energy of any
process is non-positive. If x executes Action A2, there is no effect on color, and
thus Max Energy is unaffected.

Self-stabilizing Silent Disjunction 157

Suppose x executes Action A4, attaching itself to y ∈ N(x). Then Energy(x)←
1, but Energy(y) = 2 before the step. Thus, Max Energy does not decrease.

Suppose x executes Action A5. Let y = x.parent . Before the step, Energy(y) ≥
Energy(x) + 2. Thus, the action could increase the energy of x by at most one.

Energy Plus Level. For any process x, define

Energy plus level(x) =

{
0 if x.level =∞
Energy(x) + x.level otherwise

Define Max Energy plus level to be the maximum value of Energy plus level (x)
over all x.

Lemma 4.6. The value of max

{
Max Energy plus level

2n

}

cannot increase.

Proof. If x is not a root, then Energy plus level(x) ≤ Energy plus level (x.parent)
by the definition of Energy . Thus, the maximum value of Energy plus level , if
greater than zero, is always achieved at a root, either a true root or a false root.

Let γ �→ γ′ be a step, and let M,M ′ be the values of
max {2n,Max Energy plus level} at γ and γ′, respectively. We use “prime”
notation for the values of variables and functions at γ′, and no ’prime’ to indicate
values at γ.

We need to prove M ′ ≤ M . If M ′ ≤ 2n, we are done. Therefore, we can
assume that M ′ > 2n. Pick x such that Energy plus level ′(x) = M ′. If x is a
true root at γ′, then Energy plus level ′(x) = Energy ′(x) ≤ 2n. Thus, x is a false
root at γ′.

If x did not execute at the step, then Energy ′(x) ≤ Energy(x) and thus
M ′ = Energy plus level ′(x) ≤ Energy plus level(x) ≤ M . If x executed at the
step, then x could not have been a false root at γ, Let y = x.parent . Then
Energy ′(x) < Energy(y) by the definition of Energy. Since x.level = 1+ y.level ,
we have M ′ = Energy plus level ′(x) ≤ Energy plus level(y) ≤M .

4.4 Silence

We define an infinite computation of an algorithm to be repetitive if every con-
figuration that occurs in the computation occurs infinitely often, and if every
transition between two configurations that occurs also occurs infinitely often.

Lemma 4.7. If DISJ has an infinite computation, then DISJ has a repetitive
infinite computation.

Proof. Let Γ be an infinite computation of DISJ on a network G. Let M be
the value of Max Energy plus level at the first configuration of Γ . By Lemma
4.6, Max Energy plus level ≤ M at all configuration of Γ . Thus, the number
of possible values of x.level for any given process x ∈ G. is bounded by M + 1.

158 A.K. Datta, S. Devismes, and L.L. Larmore

The number of possible values of x.parent is bounded by the degree of the
network, and the number of possible values of every other variable of DISJ is
bounded as well. Thus, the number of distinct configurations in the computation
Γ is finite.

Let P be the set of distinct consecutive pairs of configurations of DISJ which
occur in the computation G.

Let F be the set of members of P that occur only finitely many times in Γ .
Since F is finite, there is some step γ of Γ after which no member of F occurs.
Let Γ ′ be obtained by deleting all steps of Γ up to and including γ. In Γ ′, every
pair of consecutive configurations is repeated infinitely many times, and thus Γ ′

is repetitive.

We now prove that DISJ is silent. Our proof is by contradiction – throughout
the remainder of this subsection, we assume that Γ is an infinite computation
of DISJ. Without loss of generality, by Lemma 4.7, Γ is repetitive.

Sets of Processes.

1. S = the set of processes which never execute.
2. A = the set of processes which execute.
3. EOi, for i = 0, 1, is the set of processes which are in Oi forever.
4. EB = EO0 ∪ EO1.
5. EO1Cj , for j = 0, 1, is the set of processes in EO1 whose color remains j

forever.
6. EO1C = EO1C0 ∪ EO1C1.

Remark 4.8. If x ∈ EB, then x.level cannot change.

Lemma 4.9. If Input(x) = 1, then x ∈ EB.

Proof. If x ∈ S, then x ∈ EB. If y ∈ N(x) ∩ S, and y.parent = x. Then x
cannot execute either Action A3 or A4, and hence x ∈ EB. Otherwise, suppose
x /∈ EB. Then x will eventually execute Action A3, and will never again execute
Action A1, hence x ∈ EO1, contradiction.

Define the function f on processes.

f(x) =

⎧
⎨

⎩

∞ if x ∈ EO0

x.level if x ∈ EO1

1 + min {f(y) : y ∈ N(x)} otherwise

Lemma 4.10. x.level ≥ f(x).

Proof. By contradiction. Let Λ = min {x.level : x.level < f(x)}. If x.level = Λ
and x.level < f(x), then x will execute Action A1. When all such processes
have executed, Λ will increase. Since Λ is bounded above by the diameter of the
network, eventually x.level ≥ f(x).

Self-stabilizing Silent Disjunction 159

Lemma 4.11. All processes are in EB.

Proof. By contradiction. Suppose x /∈ EB. Let h be the minimum value of
x.level , taken over all configurations of Γ . If h = 0, then Input(x) = 1, and
hence x ∈ EB by Lemma 4.9. Otherwise, there is some y ∈ N(x) such that
y ∈ EO1 and y.level = h − 1. Thus, Level(x) ≤ h at every configuration of Γ .
Since any neighbor of x whose level is less than h must be in EO1, we have
that Level (x) cannot change, and hence must always be equal to h. Thus, x will
remain valid and cannot execute Action A1. Hence x ∈ EO1, contradiction.

Corollary 4.12. For any process x, x.parent never changes.

Lemma 4.13. EO0 ⊆ S.

Proof. If x ∈ EO0, then the only action that x could execute is A1. By Remark
4.8 and Lemma 4.11, no valid process in EO0 can become invalid, and thus
Level(x) cannot change. Thus, x can execute Action A1 at most once.

Lemma 4.14. if x ∈ EO1 and either x.parent ∈ EO1C or y ∈ EO1C for some
y ∈ Chldrn(x), then x ∈ EO1C.

Proof. By the guards of Actions A5 and A6, x cannot execute either of those
actions more than once.

Lemma 4.15. EO1 ⊆ S.

Proof. By contradiction. By Lemma 4.11 and Corollary 4.13, A ⊆ EO1.
We first prove, by contradiction, that x.done never changes for any x ∈ A.

Let x be the process of greatest level such that x.done changes. But Done(x)
cannot change, and so x can execute Action A2 at most once, contradiction.

Let A be the graph whose nodes are processes in A and whose edges are
defined by the parent pointers. Each component of A is a tree rooted at its
member of minimum level. Let T be one of those trees. If any member x ∈ T is
a neighbor of any member of EO0, then x can change color at most once. Thus,
by Lemma 4.14 applied inductively, T ⊆ EO1C. If any member of T is linked,
by a parent pointer, to any process not in A, then, also by Lemma 4.14 applied
inductively, T ⊆ EO1C. Since no value of done in T can change, T ⊆ S.

Now, suppose that no member of T is a neighbor of any member of EO0 or
is linked by a parent pointer to any process not in A. Then the root of T has
level 0 and x.done = true for all x ∈ T . The root of T cannot execute Action
A6, and thus, by Lemma 4.14 applied inductively, T ⊆ EO1C, and thus T ⊆ S.

4.5 Time Complexity of DISJ

Using the concept of energy, we can prove that, in the case that Output = 0,
energy must decrease during every round, and thus must reach zero after at
most 2n rounds. After one more round, a legitimate configuration of type 0 is
achieved.

160 A.K. Datta, S. Devismes, and L.L. Larmore

In the case that Output = 1, color waves actually slow down convergence. A
simple flooding algorithm, which would work if we were guaranteed that I1 �= ∅,
would take at most Diam rounds, where Diam is the diameter of G. Unfortu-
nately, the addition of color waves causes the case where Output = 1 to also take
O(n) rounds.

Time Complexity when I1 = ∅
In this subsection, we analyze the time complexity of DISJ in the case that
I1 = ∅.
Lemma 4.16. If I1 = ∅ and O1 �= ∅, then Max Energy decreases during the
next round.

Proof. During the first round, all the first processes of chains with energy
Max Energy will execute Action A1. The remaining chains will have smaller
energy. Since I1 = ∅, no process can execute Action A4. By Lemma 4.5, no other
action can increase Max Energy . Thus Max Energy decreases.

Lemma 4.17. If I1 = ∅, then the configuration will be legitimate of type 0 within
2n+ 1 rounds of an arbitrary initialization.

Proof. In the initial configuration, Max Energy ≤ 2n, By Lemma 4.16, within
2n rounds, Max Energy = 0, and thus O1 = ∅. Within one more round, every
process which is not valid will execute Action A1, and the configuration will
then be legitimate of type 0.

Lemma 4.18. If Output = 1, then DISJ converges within O(n) rounds.

We only sketch the proof. The initial value of Max Energy cannot exceed 2n.
We can show that within O(n) rounds, Max Energy = O(Diam), after which
DISJ converges within O(Diam) additional rounds.

From the above lemmas, we conclude our main result, below.

Theorem 4.19 DISJ is self-stabilizing and silent, takes O(n) rounds, and works
under the unfair daemon.

Proof. Let Γ be any computation of DISJ. By Lemmas 4.11 and 4.15, and Corol-
lary 4.13, Γ is finite. By Lemma 4.2, the last configuration of Γ is legitimate,
and hence DISJ is self-stabilizing and silent. By Lemmas 4.18 and 4.17, DISJ
converges in O(n) rounds from an arbitrary initial configuration.

References

1. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications
of the Association of Computing Machinery 17, 643–644 (1974)

2. Dolev, S.: Self-Stabilization. The MIT Press (2000)
3. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in opti-

mal space under an arbitrary scheduler. Theoretical Computer Science 412(40),
5541–5561 (2011)

	Self-stabilizing Silent Disjunction in an Anonymous
Network
	Introduction
	Related Work
	Outline of the Paper

	Preliminaries
	DISJ
	Definition of DISJ
	Legitimate Configurations

	Self-stabilization and Silence
	Legitimacy and Silence
	Characteristics of a Legitimate Configuration
	Energy
	Silence
	Time Complexity of DISJ

	References

