

Lecture Notes in Computer Science 7730
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Davide Frey Michel Raynal
Saswati Sarkar Rudrapatna K. Shyamasundar
Prasun Sinha (Eds.)

Distributed Computing
and Networking

14th International Conference, ICDCN 2013
Mumbai, India, January 3-6, 2013
Proceedings

13

Volume Editors

Davide Frey
IRISA/INRIA-Rennes
35042 Rennes Cedex, France
E-mail: davide.frey@irisa.fr

Michel Raynal
Institut Universitaire de France
IRISA-ISTIC Université de Rennes 1
35042 Rennes Cedex, France
E-mail: michel.raynal@irisa.fr

Saswati Sarkar
University of Pennsylvania
Philadelphia, PA 19104, USA
E-mail: swati@ee.upenn.edu

Rudrapatna K. Shyamasundar
Faculty of Technology and Computer Science
Tata Institute of Fundamental Research
Mumbai 400005, India
E-mail: shyam@tifr.res.in

Prasun Sinha
Ohio State University
Columbus, OH 43210-1277, USA
E-mail: prasun@cse.ohio-state.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35667-4 e-ISBN 978-3-642-35668-1
DOI 10.1007/978-3-642-35668-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012953914

CR Subject Classification (1998): C.2, D.1.3, D.2.12, C.2.4, D.4, F.2, F.1.2, H.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The International Conference on Distributed Computing and Networking
(ICDCN) was launched 14 years ago, initially as an International Workshop
(IWDC), and within a few years it gained visibility as one of the leading in-
ternational conferences in this area. ICDCN is one of the very few conferences
where researchers in distributed computing get to meet their networking coun-
terparts on the same scientific platform. In addition to presenting scientific re-
search, ICDCN organizes various forums such as specific workshops, tutorials,
and panels of current importance, and it encourages strong participation from
industry.

The current edition of ICDCN 2013 was the 14th edition of the series. This
volume contains papers presented at ICDCN 2013 held at Tata Institute of Fun-
damental Research, Mumbai, during January 3–6, 2013. The conference consisted
of two tracks,“Distributed Computing”and“Networking”, and received in all 149
submissions.

The Distributed Track consisted of 67 submissions, each of which received at
least three reviews by the track’s Program Committee (PC) members as well as
by selected external reviewers. Based on these reviews and discussions among
PC members, 18 regular and 3 short papers were selected for inclusion in the
proceedings. The Networking Track consisted of 72 papers, each of which was
reviewed by at least three PC members and a few selected external referees.
Based on the reviews, and the PC discussions spead over two weeks, the PC
selected 9 regular papers, 2 short papers, and 7 poster papers.

The ICDCN 2013 program included five keynote speakers: Leslie Lamport
(Microsoft Research), Hari Balakrishnan (CSAIL, MIT), David Culler (UC,
Berkeley), Yoram Moses (Technion), and the R. Narasimhan Memorial keynote
lecture by Sanjit Seshia (UC, Berkeley). On behalf of the entire PC, we would
like to take this opportunity to thank them for accepting our invitation and con-
tributing to the success of the conference. We are confident that the conference
attendees enjoyed and were enlightened by the various keynote addresses and
benefited further from productive discussions with them.

On behalf of the PC and conference organizers, we would like to express our
gratitude to the PC members and the external reviwers who took part in the
review process: their hard work and responsiveness made it possible to stick to
our tight review schedule and arrive at a quality programme. We are sure the
reviews would enable authors to further refine their works and arrive at new
openings/initiatives.

It is our pleasure to thank ACM SIGCOMM for according us ACM In-
cooperation status and IEEE CS TCDP for according us “Technical cooperation
status.”

VI Preface

We are grealy indebted to Tata Institute of Fundamental Research both for
the generous financial and organizational support. Thanks go the faculty of the
School of Technology and Computer Science (STCS) for the support in organiz-
ing the conference. We thank the staff of STCS, in particular John Barretto, Ravi
Naik, and Kishore Menon (Public Relation Officer) for their efforts in making
the organization and running of the conference smooth.

We express our gratitude to our sponsors C-DAC (Centre for Advanced com-
puting, DeITY (Department of Electronics and Information Technology of the
Government of India), Quallcomm, Microsoft Research, HP Research, IBM Re-
search, Tata Consultancy Services (TCS) as well as other organizations like
IARCS and DRDO (GOI) that supported the conference in various ways.

From the practical perspective of conference management, we would like to
acknowledge that the whole process of paper submission, selection, and com-
pilation in the proceedings was greatly simplified by the friendly interface of
the EasyChair conference system (http://www.easychair.org). We owe a lot to
the EasyChair creators and maintainers for their commitment to the scientific
community.

To conclude, we are confident that the 14th edition of ICDCN will contribute
to enhancing knowledge in the broad areas of distributed computing and net-
working and will further add to the prestige and reputation of ICDCN. We are
sure that the readers will find the proceedings informative and they will assist
them in their upcoming research and development activities.

23 October 2012 Rudrapatna Shyamasundar
Michel Raynal

Davide Frey
Saswati Sarkar
Prasun Sinha

Conference Organization

General Chair

R.K. Shyamasundar Tata Institute of Fundamental Research
(TIFR)

Technical Program Committee Chairs

Distributed Computing Track Co-chairs

Michel Raynal IRISA
Davide Frey INRIA

Networking Track Co-chairs

Saswati Sarkar University of Pennsylvania
Prasun Sinha Ohio State University

Workshop Chairs

R.K. Ghosh IIT Kanpur
Mohan J. Kumar UTA
Maitreya Natu TRDDC Pune

Tutorial Co-chairs

N.V. Krishna IIT Madras
Mainak Chatterjee University of Central Florida

Doctoral Forum Chair

Santonu Sarkar Infosys

Publicity Co-chairs

Santonu Sarkar Infosys
Yong Cui Tsinghua University, Beijing
Mario Di Francesco Aalto University and University of Texas

at Arlington
Nirmalya Roy Wichita State University

Industry Track Chair

Ankur Narang IBM Research

VIII Conference Organization

Steering Committee Co-chairs

Sajal K. Das University of Texas at Arlington
Sukumar Ghosh University of Iowa

Webmaster

Ravikumar J. Naik TIFR

Conference Secretary

John Barretto TIFR

Technical Program Committee

Distributed Computing Track

Yehuda Afek University of Tel Aviv
Mustaque Ahamad Georgia Tech
Anish Arora Ohio State University
Roberto Baldoni University of Rome La Sapienza
Jiannong Cao Polytechnic University of Hong Kong
Gregory Chockler IBM, Haifa
Ajoy K. Datta University of Las Vegas
Xavier Defago JAIST, Kanazawa
Shlomi Dolev Ben-Gurion University
Panagiota Fatourou University of Crete
Hugues Fauconnier LIAFA, Université de Paris 7
Christof Fetzer Dresden University of Technology
Vijay K. Garg University of Texas at Austin
Chryssis Georgiou University of Cyprus
Prasad Jayanti Dartmouth College
Petr Kuznetsov Technical University of Berlin
Ajay Kshemkalyani University of Chicago
Toshimitsu Masuzawa University of Osaka
Yoram Moses The Technion, Haifa
Gilles Muller INRIA/LIP6, Paris
Paritosh K. Pandya TIFR
Sergio Rajsbaum Universidad Nacional Autonama de Mexico
R. Ramanujam IMSc, Chennai
Matthieu Roy LAAS-CNRS, Toulouse
Alex A. Shvartsman University of Connecticut and MIT
Ulrich Schmidt University of Vienna
Gadi Taubenfeld Interdisciplinary Center at Herzliya
Paulo Verissimo University of Lisbon
Krishnamurthy Vidyasankar University of Newfoundland

Conference Organization IX

Networking Track

Alexandre Proutiere KTH Royal Institute of Technology
Amarjeet Singh IIIT Delhi
Anurag Kumar Indian Institute of Science
Arunabha Sen Arizona State University
Arup Acharya IBM T.J. Watson Research Center
Benyuan Liu University of Massachusetts at Lowell
Cormac J. Sreenan University College of Cork
Dirk Pesch Cork Institute of Technology
George Kesidis National Science Foundation and Penn

State University
Hwangnam Kim Korea University
Joy Kuri Indian Institute of Science
Koushik Kar Rensselaer Polytechnic Institute
Krishna Sivalingam IIT Madras
Kyu-Han Kim HP Labs, Palo Alto
Mani Srivastava University of California at Los Angeles
Munchoon Chan National University of Singapore
Ness Shroff Ohio State University
Niloy Ganguli IIT Kharagpur
Paolo Bellavista University of Bologna
Paolo Santi IIT, CNR
Prasanna Chaporkar IIT, Bombay
Prithwish Basu BBN Technologies
R. Srikant University of Illinois at Urbana-Champaign
Samir Das SUNY at Stony Brook
Sanjay Jha University of New South Wales
Sotiris Nikoletseas CTI, Patras
Srinivas Shakkotai Texas A&M University
Subir Biswas Michigan State University
Sudip Misra IIT, Kharagpur
Tara Javidi University of California at San Diego
Thyagarajan Nandagopal National Science Foundation
Tomasso Melodia SUNY at Buffalo
Tracy Camp Colorado School of Mines
Vartika Bhandari Google, New York
Vikram Srinivasan Bell Labs India
Vinod Prabhakaran TIFR
Vinod Sharma Indian Institute of Science
Xinbing Wang Shanghai Jiao Tong University
Young-Bae Ko Ajou University
Zizhan Zheng Ohio State University

X Conference Organization

Technical Co-sponsors

Premium Sponsors

Platinum Sponsors

Gold Sponsors

Silverplus Sponsors

Silver Sponsors

Supporting Organizations

DRDO

Who Builds a House without Drawing

Blueprints?
(Invited Keynote Talk)

Leslie Lamport

Microsoft Research

Abstract. Architects draw detailed plans before a brick is laid or a nail
is hammered. Programmers and software engineers don’t. Can this be
why houses seldom collapse and programs often crash?

Sense and Sensibility for Wireless Networks
(Invited Talk)

Hari Balakrishnan

M.I.T.
Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139
hari@mit.edu

Abstract. Truly mobile devices such as smartphones and tablets are
fast becoming the dominant mode of Internet access. People use these
devices while moving through wide range of locations, often in quick
succession. The rapid variations in network conditions experienced poses
a significant challenge for wireless network protocols, degrading perfor-
mance, and making users unhappy. This talk will describe two techniques
to overcome this challenge: (1) spinal codes, a new class of rateless codes,
and (2) a system to use sensors on mobile devices to improve network
performance.

On Using Knowledge and Timing Information

for Distributed Coordination
(Invited Talk)*

Yoram Moses

EE Dept., Technion Israel
moses@ee.technion.ac.il

This talk will illustrate the interplay between knowledge, action and commu-
nication in a distributed setting. Fundamental to distributed an multi-agent
systems is the fact that an agent can base her actions only on her locally avail-
able information, or knowledge. Some of the actions, resulting in communication
between the agents, modify agents’ knowledge. Consequently, there is a subtle
inter-dependence between knowledge and action in a distributed setting. A for-
mal theory of knowledge in multi-agent systems has been slowly emerging over
the course of the last three decades [4, 3]. The talk will focus on three aspects:

– From specifications to knowledge: If preconditions for Bob performing action b
are specified, the Bob must know that they hold before performing b. More-
over, if Alice should perform a only after Bob does b, then Alice must have
knowledge about Bob’s knowledge before she can act. Thus, specifications
induce sometimes subtle knowledge preconditions.

– The role of time in the emergence of knowledge: In the absence of timing infor-
mation, the evolution of knowledge is governed by Lamport’s happened before
relation [5]. The presence of clocks and timing information allows the pas-
sage of time to be used in conjunction with communication in coordinating
nontrivial tasks. The generalisation of Lamport’s relation will be discussed,
along the lines of [1].

– An example: Depending on available time, an example of how knowledge and
time can be used to obtain an optimal protocol for computing spontaneous
global snapshots in a setting with synchronous clocks will be discussed. This
is a synchronous counterpart of [2].

References

1. Ben-Zvi, I., Moses, Y.: Beyond Lamport’s Happened-Before: On the Role of Time
Bounds in Synchronous Systems. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC
2010. LNCS, vol. 6343, pp. 421–436. Springer, Heidelberg (2010)

* This work was supported in part by Grant 1520/11 of the Israel Science Foundation.

XIV On Using Knowledge and Timing Information for Distributed Coordination

2. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. on Computer Systems 3(1), 63–75 (1985)

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT
Press, Cambridge (2003)

4. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed envi-
ronment. Journal of the ACM 37(3), 549–587 (1990)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7), 558–565 (1978)

Sustainable Energy Networks - The Distributed

Computing and Networking Challenge
of the Real World

(Invited Talk)

David E. Culler

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

culler@eecs.berkeley.edu

After 150 years of industrial (r)evolution, we must ask how we can bring In-
formation Technology, which has brought such advances in productivity and
performance, to bear on efficiency and sustainability. The problems of energy,
climate, and sustainability are not crisp, clean technology challenges; they are
complex Cyber-Physical Systems challenges and fundamentally distributed. In
this talk, we explore how to apply lessons of the Internet, i.e., design principles
for building distributed and robust communications infrastructures, to develop
an architecture for a cooperative energy network that promotes reduction in use
and penetration of renewable sources. We explore how pervasive information can
improve energy production, distribution and use. We investigate how design tech-
niques for scalable, power proportional computing infrastructures can translate
to the design of a more scalable and flexible electric infrastructure, encouraging
efficient use, integrating local or non-dispatchable generation, and managing de-
mand through awareness of energy availability and use over time. Our approach
is to develop a cyber overlay on the energy distribution system in its physical
manifestations: machine rooms, buildings, neighborhoods and regional grids. A
scaled series of experimental energy networks demonstrate monitoring, negotia-
tion protocols, and control algorithms can eb designed to integrate information
and energy flows in various settings, e.g., datacenter, building, and campus. We
seek to understand broadly how information enables energy efficiencies: through
intelligent matching of loads to sources, via various levels of aggregation, power
proportional design, and by managing how and when energy is delivered to de-
mand, adapted in time and form to available supply. Together these offer a path
to a consumer-centric grid with supply-following loads.

Table of Contents

Verifying High-Confidence Interactive Systems: Electronic Voting and
Beyond (Invited Paper) . 1

Sanjit A. Seshia

Fast Distributed PageRank Computation . 11
Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and
Eli Upfal

Dealing with Undependable Workers in Decentralized Network
Supercomputing . 27

Seda Davtyan, Kishori Konwar, Alexander Russell, and
Alexander Shvartsman

Decentralized Erasure Coding for Efficient Data Archival in Distributed
Storage Systems . 42

Lluis Pamies-Juarez, Frederique Oggier, and Anwitaman Datta

Transport Protocol with Acknowledgement-Assisted Storage
Management for Intermittently Connected Wireless Sensor Networks . . . 57

Ying Li, Radim Bartos, and James Swan

Iterative Approximate Byzantine Consensus under a Generalized Fault
Model . 72

Lewis Tseng and Nitin Vaidya

A Scalable Byzantine Grid . 87
Alexandre Maurer and Sébastien Tixeuil

Collaborative Detection of Coordinated Port Scans 102
Roberto Baldoni, Giuseppe Antonio Di Luna, and Leonardo Querzoni

Exploiting Partial-Packet Information for Reactive Jamming Detection:
Studies in UWSN Environment . 118

Manas Khatua and Sudip Misra, Senior Member, IEEE

Fault-Tolerant Design of Wireless Sensor Networks with Directional
Antennas . 133

Shahrzad Shirazipourazad, Arunabha Sen, and Subir Bandyopadhyay

Self-stabilizing Silent Disjunction in an Anonymous Network 148
Ajoy K. Datta, Stéphane Devismes, and Lawrence L. Larmore

XVIII Table of Contents

Uniform Consensus with Homonyms and Omission Failures 161
Carole Delporte-Gallet, Hugues Fauconnier, and Hung Tran-The

Democratic Elections in Faulty Distributed Systems 176
Himanshu Chauhan and Vijay K. Garg

Robust Deployment of Wireless Sensor Networks Using Gene
Regulatory Networks . 192

Azade Nazi, Mayank Raj, Mario Di Francesco, Preetam Ghosh, and
Sajal K. Das

Cellular Pulse Switching: An Architecture for Event Sensing and
Localization in Sensor Networks . 208

Qiong Huo, Bo Dong, and Subir Biswas

Asynchrony from Synchrony . 225
Yehuda Afek and Eli Gafni

Maximal Antichain Lattice Algorithms for Distributed Computations . . . 240
Vijay K. Garg

On the Analysis of a Label Propagation Algorithm for Community
Detection . 255

Kishore Kothapalli, Sriram V. Pemmaraju, and Vivek Sardeshmukh

How to Survive and Thrive in a Private BitTorrent Community 270
Adele Lu Jia, Xiaowei Chen, Xiaowen Chu, Johan A. Pouwelse, and
Dick H.J. Epema

Optimal Migration Contracts in Virtual Networks: Pay-as-You-Come
vs Pay-as-You-Go Pricing . 285

Xinhui Hu, Stefan Schmid, Andrea Richa, and Anja Feldmann

Parallel Scalar Multiplication on Elliptic Curves in Wireless Sensor
Networks . 300

Yanbo Shou, Herve Guyennet, and Mohamed Lehsaini

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data
Backup . 315

Adnan Khan, Mehrab Shahriar, Sk Kajal Arefin Imon,
Mario Di Francesco, and Sajal K. Das

Distributed Verification Using Mobile Agents . 330
Shantanu Das, Shay Kutten, and Zvi Lotker

Sublinear Bounds for Randomized Leader Election 348
Shay Kutten, Gopal Pandurangan, David Peleg,
Peter Robinson, and Amitabh Trehan

Table of Contents XIX

Linear Space Bootstrap Communication Schemes . 363
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and
Sergio Rajsbaum

An Analysis Framework for Distributed Hierarchical Directories 378
Gokarna Sharma and Costas Busch

SMT-Based Model Checking for Stabilizing Programs 393
Jingshu Chen and Sandeep Kulkarni

Deployment and Evaluation of a Decentralised Runtime for Concurrent
Rule-Based Programming Models . 408

Marko Obrovac and Cédric Tedeschi

Weak Read/Write Registers . 423
Gadi Taubenfeld

Fast Leader (Full) Recovery Despite Dynamic Faults 428
Ajoy K. Datta, Stéphane Devismes, Lawrence L. Larmore, and
Sébastien Tixeuil

Addressing the ZooKeeper Synchronization Inefficiency 434
Babak Kalantari and André Schiper

Compact TCAM: Flow Entry Compaction in TCAM for Power Aware
SDN . 439

Kalapriya Kannan and Subhasis Banerjee

A Media Access and Feedback Protocol for Reliable Multicast over
Wireless Channel . 445

Ashutosh Bhatia and R.C. Hansdah

POSTER: Distributed Lagrangean Clustering Protocol 450
Ravi Tandon, Biswanath Dey, and Sukumar Nandi

POSTER: Broadcasting in Delay Tolerant Networks Using Periodic
Contacts . 452

Prosenjit Dhole, Arobinda Gupta, and Arindam Sharma

POSTER: Cryptanalysis and Security Enhancement of Anil K Sarje’s
Authentication Scheme Using Smart Cards . 454

Chandra Sekhar Vorugunti and Mrudula Sarvabhatla

POSTER: A New Approach to Impairment-Aware Static RWA in
Optical WDM Networks . 456

Sebastian Zawada, Shrestharth Ghosh, Fangyun Luo,
Sriharsha Varanasi, Arunita Jaekel, and Subir Bandyopadhyay

POSTER: Using Directional Antennas for Epidemic Routing in DTNs
in Practice . 458

Rajib Ranjan Maiti, Niloy Ganguly, and Arobinda Gupta

XX Table of Contents

POSTER: A Secure and Efficient Cross Authentication Protocol in
VANET Hierarchical Model . 461

Chandra Sekhar Vorugunti and Mrudula Sarvabhatla

POSTER: Approximation Algorithm for Minimizing the Size of
Coverage Hole in Wireless Sensor Networks . 463

Barun Gorain, Partha Sarathi Mandal, and Sandip Das

Author Index . 465

Verifying High-Confidence Interactive Systems:
Electronic Voting and Beyond

Sanjit A. Seshia

EECS Department, UC Berkeley
sseshia@eecs.berkeley.edu

Abstract. Human interaction is central to many computing systems that require
a high level of assurance. We term such systems as high-confidence interactive
systems. Examples of such systems include aircraft control systems (interacting
with a pilot), automobiles with self-driving features (interacting with a driver),
medical devices (interacting with a doctor), and electronic voting machines (in-
teracting with a voter). A major challenge to verifying the correct operation of
such systems is that it is difficult to formally specify the human user’s view of
correct operation and perception of the input/output interface. In this paper, we
describe a promising approach towards addressing this challenge that combines
formal verification with systematic testing by humans. We describe an illustrative
application of this approach to electronic voting in the U.S., and outline directions
for future work.

1 Introduction

High-confidence computer systems are those that require a high level of assurance of
correct operation. Many of these systems are interactive — they interact with a human
being — and the human operator’s role is central to the operation of the system. Ex-
amples of such systems include fly-by-wire aircraft control systems (interacting with a
pilot), automobiles with driver assistance systems (interacting with a driver), medical
devices (interacting with a doctor, nurse, or patient), and electronic voting machines
(interacting with a voter). The costs of incorrect operation in all such systems can be
very severe. Given the central role of the human operator/user in these systems, correct
operation necessarily involves the human-computer interface; in fact, problems in this
interface are often the source of failures. For instance, the U.S. Federal Aviation Ad-
ministration has attributed several incidents, including fatal crashes, to problems in the
human-computer interface [3]. Similarly, human errors in medical device use account
for a large portion of medical errors, and many of these errors are due to poor design
of the interface [5,6]. It is therefore essential to develop techniques to ensure correct
operation of such high-confidence interactive systems.

Formal methods appear to provide the perfect fit for this need. Techniques such as
model checking and automatic theorem proving have made tremendous advances over
the past several years, with successful applications to the verification of hardware, soft-
ware, and even biological systems. However, they are only applicable to systems where
all the parts are formally specifiable. This presents a problem for interactive systems,
where it is difficult or even impossible to formally specify the human user’s view of

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S.A. Seshia

correct operation and perception of the input/output interface. For instance, given a
bitmap image on a touch-sensitive screen, automatically recognizing which portions of
the screen a human would expect to form a touchable region (e.g. button) might require
non-trivial image processing. Testing by humans is well-suited to checking that the sys-
tem performs according to their expectation, since it eliminates the need to model the
human operator. However, a limitation of conventional testing is that it is not exhaustive
and it therefore can only find bugs; it cannot guarantee their absence.

In this paper, we advocate for a new approach that enables the principled design of
high-confidence interactive systems where correctness is certified through a combina-
tion of formal verification and testing by humans. The approach has three main steps.
First, we need to identify design principles that ease the task of verification and test-
ing. Second, given a set of verification tasks, we need scalable algorithmic methods to
tackle them. Third, a rigorous testing protocol must be specified for humans that also
uses a tractable number of tests (ideally, low-degree polynomial in the size of the de-
sign, since running each test involves possibly several hours of human effort). We have
performed an initial application of the approach to direct-recording electronic voting
for U.S. elections [7].

Two key elements of the approach are integrating design and verification and us-
ing formal verification to reduce the testing burden. We propose that systems must
be designed in a component-based manner following the principles of determinism,
independence, and unambiguity of the I/O interface. Unambiguity of the output, for
example, means that the system output is a 1-1 function of a subset of “core” state
variables defined by the designer (possibly along with the system input), and nothing
else. Determinism ensures that these core state variables evolve as a function only of
their previous values and the system input. For modularity, the core state variables are
partitioned amongst different system components. Independence ensures that updating
the state of one component does not change the state of other components.

The above design principles are not new in and of themselves. However, the way in
which we combine them for design and verify them on an implementation is novel. We
verify determinism, independence, and unambiguity on the system code using encod-
ings to satisfiability modulo theories (SMT) formulas, which are then proved
automatically [2]. The results of the above verification is used to reduce the amount of
human-driven testing to a tractable number. Our approach uses rigorous test coverage
criteria to derive “test scripts” which humans can then use to evaluate the correctness
of the system through testing.

In the rest of this paper, we sketch out the approach using electronic voting as
an illustrative application domain (Section 2), and outline directions for future work
(Section 3).

2 Electronic Voting

We begin by describing one of our key motivating applications: electronic voting. The
work described in this section is joint with several colleagues and has been published
earlier [7].

Verifying High-Confidence Interactive Systems 3

2.1 Preliminaries

Electronic voting is increasingly coming into use in the U.S. and around the world.
It has brought with it concerns about reliability, accuracy, and trustworthiness. Exist-
ing electronic voting systems can be complex systems, often consisting of hundreds of
thousands of lines of code, and a single bug anywhere in the code could potentially
cause votes to be lost, misrecorded, or altered. As a result, it is difficult for independent
evaluators to be confident that these systems will record and count the votes accurately.
Moreover, in order to completely verify the voting machine, it is necessary to also verify
the interface to human voters, i.e., that the operation of the voting machine is consistent
with the behavior expected by voters.

The kind of voting machine that we focus on here is known as a direct-recording
electronic (DRE) voting machine (although the principles we use here are applicable
elsewhere). A DRE voting machine is one where voters interact with the machine to
make their selections and then the votes are recorded electronically. The most familiar
example is a touchscreen voting machine, where the voter interacts with a graphical
user interface displayed on the screen by software running on the voting machine. The
voter presses at various locations on the screen to register her selections, and the voting
software records the voter’s selections once she is ready to cast her ballot. DREs are
widely deployed throughout the US: for instance, in 2008 and 2010 DREs were used by
approximately 33% of registered voters [1,9]. While DRE’s are commonly thought to
be large, complex machines, in preliminary work [7] we have shown that a functional
DRE can be designed as a finite-state machine directly in hardware, in custom Verilog
code, so that there is no operating system or runtime software environment to verify.

Before we get into the notion of correctness for a voting machine, here are some
voting-related terms that are used throughout the discussion.

Contest: A single race, such as for President, that a voter will vote on.

Ballot: The physical or electronic representation of all contests that a voter will be
deciding on election day.

Candidate: A choice in a particular contest. The voter will typically make one or more
selections from among two or more candidates for each contest on the ballot.

Voting Session: A voter’s interaction with the machine from the time they are given a
new ballot until the time their entire ballot is stored in non-volatile memory, i.e., until
the time they cast the ballot. A session in U.S. elections typically comprises voting on
several contests.

Cast: Casting a vote refers to the action taken at the end of a voting session that causes
the selections made in all contests to be irrevocably written to non-volatile memory.
Making a selection in a particular contest and moving on to the next contest is not
considered casting a vote.

Selection State: The state representing the set of all candidates currently selected in a
particular contest.

4 S.A. Seshia

Button: A (usually rectangular) region on the screen. Touching anywhere within this
region activates a particular functionality of the machine. The corresponding part of the
screen image is often designed to provide the appearance of a physical button.

Given the above terms, consider the notion of correctness for a single voting session:
given a series of inputs (button presses) from the human voter, the machine must record
votes in accordance with the expectation of the human voter.

A human voter’s expectation is difficult to completely specify formally. However,
it is possible to specify at least part of it formally, as a state machine describing how
the voting machine must update its internal state: for instance, how the set of candi-
dates currently selected should be updated when the voter presses a button, or how the
current contest is updated when the voter presses a “next” or “previous” buttong to nav-
igate between contests, or that the ballot is irrevocably cast when the voter presses the
“cast” button. This state machine serves to formalize our assumptions about the “mental
model” of the user.

However, the specification machine does not specify all human expectations – for
instance, what kinds of screen images should be produced by the voting machine. For
example, if there is a rectangular region on the screen that displays “Thomas Jefferson”
in some readable font, a human might expect that pressing that portion of the screen
would select Jefferson, causing Jefferson’s name to be highlighted and eventually caus-
ing a vote to be recorded for Jefferson if no other selection is subsequently made in this
contest. However, because it involves semantic interpretation of the contents of a partic-
ular screen image by a human it is not clear how to specify this expected behavior in a
precise, mathematical fashion. For instance, given a bitmap image, mechanically recog-
nizing which portions of the screen a human would expect to correspond to a touchable
region might require non-trivial image processing; moreover, mechanically determin-
ing that the touchable region should be associated with Thomas Jefferson might require
computer vision algorithms and other complex computation. Formalizing these kinds of
human expectations in a formal logic could be horribly messy, and probably error-prone
as well.

For this reason, one might consider using a representative panel of human “test vot-
ers” in the validation process. In particular, we ask human voters to cast test votes on
the voting machine during pre-election testing. We ask them to check that the machine
seems to be working correctly and recording their votes accurately. We assume that if
the machine behaves in a way inconsistent with their expectations, they will notice and
complain. Consequently, if the voting machine passes all of these tests, then at least we
know that the voting machine has behaved in a way consistent with human expectations
during those tests.

We propose that such human-driven testing can be supported by formal verification.
For instance, we can formally verify that the voting machine (as implemented in code
or in hardware) behaves deterministically. This ensures that the voting machine will
behave the same way on election day as it did in pre-election testing.

However, this verification alone is not enough to provide useful guarantees in prac-
tice, because the number of tests needed to exhaustively exercise all possible machine
behaviors is astronomically large. For instance, in an election with N contests and k
choices in each contest, the number of different ways to vote (assuming voters are only

Verifying High-Confidence Interactive Systems 5

allowed to vote for a single candidate in each contest) is kN , an exponential function of
N . Taking into account the possibility to change one’s selections in a contest as many
times as one likes, the number of ways to interact with the voting machine becomes in-
finitely large. Clearly, we cannot exhaustively try all of these possibilities in pre-election
testing: we need something more selective.

The burden of testing can be reduced by a combination of principled design and
formal verification. In the above scenario, we can ensure that only O(kN) tests are
needed. Roughly speaking, if the state and behavior for each contest is independent of
the state of all other contests, it suffices to choose a test suite that attains 100% transition
coverage in each individual contest and of navigation between contests, rather than
100% coverage of the whole voting machine’s statespace. This can be achieved with
O(k) tests per contest, since the state space in a single contest is only of size O(k)
(whereas the statespace for the entire voting machine has size O(kN) and thus would
require exponentially many tests to fully cover). Such independence properties can be
verified using formal verification.

Each contest can be viewed as a separate logical component of the voting machine.
Ideally, the design should be structured into logical components in a manner so as to
ease the formal verification of independence of one logical component on another.

Finally, we also need to verify that the input/output interface of the voting machine
is not ambiguous; e.g., that the machine cannot output the same output screen for two
different internal states (selection state and contest number). One way of formalizing
this is to show that the output bitmap generated by the voting machine code is an injec-
tive (1-1) function of the selection state and contest number. Such a injectivity property
can also be verified by formal verification.

To summarize, verifying that a voting machine meets human expectations must in-
volve the following steps:

• Formalizing part of the human mental model as a finite-state machine;
• Designing the voting machine using logical components so that it satisfies the prop-

erties of determinism, independence, and unambiguity of input/output;
• Formally verifying that the design actually satisfies the above properties, and
• Testing of the input/output interface by humans, where ideally each logical compo-

nent (contest) can be tested independently so that the overall number of tests grows
polynomially with the number of such components.

For the first step, it is relatively easy to formalize correct operation of the voting ma-
chine (informally described above) as a finite-state machine P . We term this state
machine the specification voting machine — it is intended to capture the typical mental
model that a voter has for U.S. elections. Details of this model may be found in our
paper [7]; in essence, it specifies the initial state (start in the first contest with no se-
lections), how one can navigate between contests and select (and deselect) candidates
within a contest, and what happens when the “cast” button is pressed to finalize one’s
votes. The important point for the rest of the paper is that the operation can be formal-
ized as a (finite) state machine.

6 S.A. Seshia

2.2 Verifying Independence, Determinism, and Injectivity

We now describe how SMT solving can be used for verification of the three key prop-
erties: independence, determinism, and injectivity. In order to perform formal verifica-
tion, the implementation (code) of the voting machine is automatically transformed into
a finite-state transducer model. For our Verilog implementation [7], this is a trivial step.

Independence and determinism both involve checking that a variable v depends only
on some specified setW = {w1, . . . , wn} of variables, and nothing else. In other words,
we must verify that v can be expressed as a deterministic function of the other variables:
v = f(w1, . . . , wn), for some function f , or in shorthand, v = f(W). Put another
way, we want to check that v deterministically depends on W , and only W , i.e., for
every other variable x /∈ W , v is conditionally independent of x given W . We verify
this kind of property by formulating it as a Boolean satisfiability (SAT) problem (for
completely bit-level designs) or as a satisfiability modulo theories (SMT) problem for
designs specified at higher levels of abstraction.

The first step is to encode a step of the transducer as a Boolean formula. We begin
by introducing some notation. We assume there is a set S of state variables, so that each
valuation of values to these variables corresponds to a state of the system. Similarly, let
I be a set of input variables, and O a set of output variables. For each state variable s,
let the variable s′ denote the previous value of s; let S′ denote the set of these variables.
Then we can write the transition relation as a function δ, which expresses the state as a
function of the previous state and the input via the relation S = δ(S′, I). (This is short-
hand for si = δi(s

′
1, . . . , s

′
k, i1, . . . , i�) for i = 1, . . . , k, assuming S = {s1, . . . , sk}

and I = {i1, . . . , i�}.) Similarly, we assume the output function is modeled as a func-
tion ρ, via the relation O = ρ(S). Thus, we can model a step of the transducer from
state S′ to S by the formula

φ(S, S′, I, O) ≡ S = δ(S′, I) ∧O = ρ(S).

Now suppose we wish to check that state or output variable v is a deterministic function
of a set W of state or input variables. Let S1, S2 be two copies of the state variables,
I1, I2 be two copies of I , and O1, O2 be two copies of O. Consider the formula

W1

S1 O1 O2

ψ

φ1 φ2

v1 �= v2

S2

v2 ∈ S2 ∪O2v1 ∈ S1 ∪O1

W1 = W2

S′
1 \W1 I1 \W1 S′

2 \W2 I2 \W2

W2

Fig. 1. Satisfiability problem for checking that v deterministically depends on W and nothing
else

Verifying High-Confidence Interactive Systems 7

ψ(S1, S
′
1, I1, O1, S2, S

′
2, I2, O2) ≡

φ(S1, S
′
1, I1, O1) ∧ φ(S2, S

′
2, I2, O2)∧

v1 �= v2 ∧ ∀w ∈ W . w1 = w2.

Effectively, we make two copies of our model of the system. We then check whether
it is possible for v to take on two different values in the two copies, while all variables
in W take on the same value in both copies; the answer reveals whether v depends
deterministically upon W . In particular, v can be expressed as a deterministic function
of W (v = f(W)) if and only if ψ is unsatisfiable. Figure 2.2 illustrates this idea. This
approach to checking dependence is similar to the technique of using self-composition
for checking information flow [8]. The key idea is to formulate non-interference as a
2-safety property.

The property of injectivity can be easily formalized in logic. In general, the outputs
O of the transducer is computed as a function ρ(S), where, as above, S is the state
of the system. However, for injectivity, we wish to show that ρ is a 1-1 function of a
subset of “relevant state variables”. We do this in two steps. First, for a candidate set of
state variables W , we check (as shown above) that ρ is a function only of variables in
W . Then to prove that ρ is an injective function, we additionally need to prove that the
following formula is valid:

ρ(W1) = ρ(W2) =⇒ (W1 = W2)

In other words, if two output screens are identical, the relevant state of the system is the
same in the two cases.

All of these checks have been performed for the voting machine we designed [7]
using the Beaver SMT solver for finite-precision bit-vector arithmetic [4].

2.3 Systematic Human-Driven Testing

A key component of the approach is a systematic protocol for testing the interactive
system by human “test users”. The main steps are:

1. Prove determinism, independence, and unambiguity (injectivity) properties on the
implementation, as described above;

2. Define coverage criteria that a test suite must satisfy, and
3. Prove that the two items above taken together ensure correctness of the interactive

system.

We now briefly sketch the above approach using our voting machine case study.
A test input (or just test) is a sequence of button presses involving navigating be-

tween contests or selecting candidates that ends in the cast button being pressed. Let
τA denote the input-output trace exhibited by the implementation machine A on test
input T , and let τP be the trace exhibited by P on T . We ensure by design and formal
verification that A and P are deterministic, meaning that for any T , there exists exactly
one τA and exactly one τP . Denote by I an input/output interpretation function that

8 S.A. Seshia

formalizes (i) how a human voter might map regions on the screen to input buttons,
and (ii) how the human voter might map the bitmap of an output screen to their percep-
tion of the relevant state of the machine (i.e., the current contest and selection state). If
I(τA) = τP , we say that A is correct on test T or that test T passes.

Intuitively, at each step, the tester will check the output screen to make sure that
the voting machine appears to have responded correctly, according to their expectations
about correct behavior (e.g., after selecting a candidate, the candidate should be high-
lighted or otherwise appear to be selected). After casting their ballot, the tester will
inspect the cast vote record produced by the voting machine (e.g., on a paper readout)
and check that it appears to be correct (i.e., it is consistent with the selections the tester
has made during this test, according to their interpretation of the test inputs). If any of
these checks fail, the human tester will judge the machine A to have failed; otherwise,
the human tester will pass the machine.

A test suite T is a set of complete tests. We say that T passes if every T ∈ T passes.
We assume that if any test fails, the voting system will not be used in an election.

Therefore, we wish to identify a condition on T so that if every test in T passes, then we
can be assured that A is trace-equivalent to P after application of the input-output in-
terpretation function. We identify such a sufficient condition on T below. The condition
relies upon the following formally verified properties:

P0: The output function of the voting machine is a injective function of the contest
number and selection state of the current contest.

P1: The voting machine is a deterministic transducer.
P2: The state of a contest is updated independently of the state of other contests.
P3: If a navigation button is pressed, the selection state remains unchanged.
P4: If a selection button is pressed, the current contest number stays unchanged.

In addition, we require another property ofA (to be formally verified on the implemen-
tation):

P5: The electronic cast vote record that is produced when we cast the ballot is an
accurate copy of the selection state for each contest.

All of these properties have been formally verified on the implementation used in our
paper [7].

Coverage Criteria. We say that a test suite T satisfies our coverage criteria if the re-
sulting set of traces of P satisfies the following conditions:

C0: (Initial State Coverage) There is a test in which, from the initial output screen z0,
P receives the cast input.

C1: (Transition Coverage)
(a) (Selection transitions) For every contest i, every selection state si within con-

test i, and every input button b corresponding to a selection, there is some trace
where P receives b in a state (i, s) where the ith component of s is si.

(b) (Navigation transitions) For every contest i, and every input button correspond-
ing to navigation between contests, there is some trace where P receives b in a
state of the form (i, s).

Verifying High-Confidence Interactive Systems 9

C2: (Output Screen Coverage) For every contest i and every selection state si of P
within contest i, there is some trace of P where the last transition within contest i
ended at si and then at some point thereafter P receives the cast input.

The main correctness theorem we obtain in our paper [7] for the voting machine de-
scribed therein is that the tests pass iff the machine is trace-equivalent w.r.t. the mental
model P :

Theorem 1. Consider a test suite T that satisfies coverage criteria C0–C2. Then, T
passes if and only if A is correct (i.e., Tr(P) = {I(τ) : τ ∈ Tr(A)}).

2.4 Extensions

The basic approach outlined in the preceding sections is well-suited for finite-state inter-
active systems, such as the voting machine. However, even in the domain of electronic
voting machines, there is more to be done by including advanced features of voting,
such as a summary screen that lists selections made in multiple contests, straight-party
voting, where one can cast a vote for all candidates of the same party, instant runoff vot-
ing, where one can rank candidates rather than select them, etc. For some of these, we
have already developed some initial ideas that can be used to extend the basic approach.

3 Conclusions and Future Work

Even as computing systems are increasingly integrated into our everyday lives, human
interaction and operation remains central to their working. In this paper, we describe
how a combination of formal verification and systematic testing by humans can help in
improving the assurance of these systems. As an illustrative example, we described our
work on verification of an electronic voting machine for U.S. elections [7].

A particularly compelling next step is to consider interactive cyber-physical sys-
tems — systems that tightly integrate computational processes with the physical world,
possibly involving networking — that also have humans playing central roles in their
operation. Modern automotive, avionics and medical systems are good examples. The
technical challenge in these systems vis-a-vis electronic voting arises from the combi-
nation and close interaction of continuous and discrete state and dynamics. While the
essence of the approach described in this paper, including the properties of indepen-
dence, determinism, and umabiguity, should remain relevant, extensions are required
to deal with the complexity in the state space. Our ongoing work is developing new
techniques for such systems.

Another direction for future work involves systems that have multiple humans in-
volved — i.e., teams of human operators or even multiple competing human agents
interacting with computing systems, possibly over a network. Altogether, many more
advances are needed before we can achieve the goal of high-assurance distributed cyber-
physical systems with multiple humans in the loop.

10 S.A. Seshia

Acknowledgements. This paper describes work conducted jointly with Susmit Jha,
Cynthia Sturton, and David Wagner. The author gratefully acknowledges the support of
an Alfred P. Sloan Research Fellowship and the National Science Foundation through
grants CNS-0644436 and CCF-1116993.

References

1. Alexander, K., Smith, P.: Verifying the vote in 2008 presidential election battleground states
(November 2008), http://www.calvoter.org/issues/votingtech/pub/
pres2008 ev.html

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere,
A., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 4, ch. 8. IOS Press (2009)

3. Federal Aviation Administration (FAA). The interfaces between flight crews and modern flight
systems (1995), http://www.faa.gov/avr/afs/interfac.pdf

4. Jha, S., Limaye, R., Seshia, S.A.: Beaver: Engineering an Efficient SMT Solver for Bit-Vector
Arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 668–674.
Springer, Heidelberg (2009)

5. Kohn, L.T., Corrigan, J.M., Donaldson, M.S. (eds.): To err is human: Building a safer health
system. Technical report, A report of the Committee on Quality of Health Care in America,
Institute of Medicine. National Academy Press, Washington, DC (2000)

6. Obradovich, J.H., Woods, D.D.: Users as designers: How people cope with poor HCI design
in computer-based medical devices. Human Factors 38(4), 574–592 (1996)

7. Sturton, C., Jha, S., Seshia, S.A., Wagner, D.: On voting machine design for verification and
testability. In: Proceedings of the ACM Conference on Computer and Communications Secu-
rity (CCS) (November 2009)

8. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. Technical Report
UCB/CSD-05-1396, EECS Department, University of California, Berkeley (June 2005)

9. Verified Voting Foundation. America’s voting systems in 2010,
http://verifiedvoting.org

http://www.calvoter.org/issues/votingtech/pub/pres2008_ev.html
http://www.calvoter.org/issues/votingtech/pub/pres2008_ev.html
http://www.faa.gov/avr/afs/interfac.pdf
http://verifiedvoting.org

Fast Distributed PageRank Computation

Atish Das Sarma1, Anisur Rahaman Molla2,
Gopal Pandurangan3, and Eli Upfal4

1 eBay Research Labs, eBay Inc., CA, USA
atish.dassarma@gmail.com

2 Division of Mathematical Sciences, Nanyang Technological University,
Singapore 637371

anisurpm@gmail.com
3 Division of Mathematical Sciences, Nanyang Technological University,

Singapore 637371 and Department of Computer Science, Brown University,
Providence, RI 02912, USA

gopalpandurangan@gmail.com
4 Department of Computer Science, Brown University, Providence,

RI 02912, USA
eli@cs.brown.edu

Abstract. Over the last decade, PageRank has gained importance in a
wide range of applications and domains, ever since it first proved to be ef-
fective in determining node importance in large graphs (andwas a pioneer-
ing idea behind Google’s search engine). In distributed computing alone,
PageRank vectors, or more generally random walk based quantities have
been used for several different applications ranging from determining im-
portant nodes, load balancing, search, and identifying connectivity struc-
tures. Surprisingly, however, there has been little work towards designing
provably efficient fully-distributed algorithms for computing PageRank.
The difficulty is that traditional matrix-vector multiplication style itera-
tive methods may not always adapt well to the distributed setting owing
to communication bandwidth restrictions and convergence rates.

In this paper, we present fast random walk-based distributed algo-
rithms for computing PageRank in general graphs and prove strong
bounds on the round complexity. We first present an algorithm that
takes O(log n/ε) rounds with high probability on any graph (directed or
undirected), where n is the network size and ε is the reset probability
used in the PageRank computation (typically ε is a fixed constant). We
then present a faster algorithm that takes O(

√
log n/ε) rounds in undi-

rected graphs. Both of the above algorithms are scalable, as each node
processes and sends only small (polylogarithmic in n, the network size)
number of bits per round and hence work in the CONGEST distributed
computing model. For directed graphs, we present an algorithm that has
a running time of O(

√
log n/ε), but it requires a polynomial number

of bits to processed and sent per node in a round. To the best of our
knowledge, these are the first fully distributed algorithms for computing
PageRank vectors with provably efficient running time.

Keywords: PageRank, Distributed Algorithm, Random Walk, Monte
Carlo Method.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 11–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

12 A.D. Sarma et al.

1 Introduction

In the last decade, PageRank has emerged as a very powerful measure of relative
importance of nodes in a network. The term PageRank was first introduced in
[14,7] where it was used to rank the importance of webpages on the web. Since
then, PageRank has found a wide range of applications in a variety of domains
within computer science such as distributed networks, data mining, web algo-
rithms, and distributed computing [8,5,6,12]. Since PageRank is essentially the
steady state distribution (or the top eigenvector of the Laplacian) correspond-
ing to a slightly modified random walk process, it is a easily defined quantity.
However, the power and applicability of PageRank arises from its basic intu-
ition of being a way to naturally identify “important” nodes, or in certain cases,
similarity between nodes.

While there has been recent work on performing random walks efficiently
in distributed networks [19,4], surprisingly, little theoretically provable results
are known towards efficient distributed computation of PageRank vectors. This
is perhaps because the traditional method of computing PageRank vectors is
to apply iterative methods (i.e., do matrix-vector multiplications) till (near)-
convergence. While such techniques may not adapt well in certain settings, when
dealing with a global network with only local views (as is common in distributed
networks such as Peer-to-Peer (P2P) networks), and particularly, very large net-
works, it becomes crucial to design far more efficient techniques. Therefore,
PageRank computation using Monte Carlo methods is more appropriate in a
distributed model where only limited sized messages are allowed through each
edge in each round.

To elaborate, a naive way to compute PageRank of nodes in a distributed
network is simply scaling iterative PageRank algorithms to distributed environ-
ment. But this is firstly not trivial, and secondly expensive even if doable. As
each iteration step needs computation results of previous steps, there needs to
be continuous synchronization and several messages may need to be exchanged.
Further, the convergence time may also be slow. It is important to design effi-
cient and localized distributed algorithms as communication overhead is more
important than CPU and memory usage in distributed page ranking. We take all
these concerns into consideration and design highly efficient fully decentralized
algorithms for efficiently computing PageRank vectors in distributed networks.

Our Contributions. In this paper, to the best of our knowledge, we present
the first provably efficient fully decentralized algorithms for estimating PageR-
ank vectors under a variety of settings. Our algorithms are scalable since, each
node processes and sends only polylogarithmic in n (the network size) number
of bits per round. Thus our algorithms work in the well-studied CONGEST

distributed computing model [16], where there is a restriction on the number
of bits (typically, polylogarithmic in n) that can be sent per edge per round.
Specifically, our contributions are as follows:

• We present an algorithm, Simple-PageRank-Algorithm (cf. Algorithm
1), that computes the PageRank accurately in O(log n

ε) rounds with high

Fast Distributed PageRank Computation 13

probability1, where n is the number of nodes in the network and ε is the
random reset probability in the PageRank random walk [2,4,19]. Our algo-
rithms work for any arbitrary network (directed as well as undirected).

• We present an improved algorithm, Improved-PageRank-Algorithm (cf.
Algorithm 2), that computes the PageRank accurately in undirected graphs

and terminates with high probability inO(
√
logn
ε) rounds.We note that though

PageRank is usually applied for directed graphs (e.g., for theWorldWideWeb),
however, it is sometimes also applied in connection with undirected graphs as
well ([10,1,17,11,21]) and is non-trivial to compute (cf. Section 2.2). In partic-
ular, it can be applied for distributed networks when modeled as undirected
graphs (as is typically the case, e.g., in P2P network models). We note that
the Improved-PageRank-Algorithm as well as the Simple-PageRank-

Algorithm require only polylogarithmic in n number of bits to be processed
and sent per round and works in the CONGEST model.

• We present an improved algorithm for directed graphs (which is a modified
version of the Improved-PageRank-Algorithm) that computes PageR-

ank accurately and terminates with high probability in O(
√

logn
ε) rounds,

but it requires a polynomial number of bits to be processed and sent per
node in a round. Assuming ε is a constant (which is typically the case),
this algorithm as well as the Improved-PageRank-Algorithm yields a
sub-logarithmic (in n) running time. Thus, in many networks, this running
time can be substantially smaller than even the network diameter (e.g., in
constant-degree networks, the diameter is Ω(log n)).

2 Background and Related Work

2.1 Distributed Computing Model

We model the communication network as an unweighted, connected n-node
graph G = (V,E). Each node has limited initial knowledge. Specifically, we
assume that each node is associated with a distinct identity number (e.g., its IP
address). At the beginning of the computation, each node v accepts as input its
own identity number (which is of length O(log n) bits) and the identity numbers
of its neighbors in G. The node may also accept some additional inputs as spec-
ified by the problem at hand (e.g., the number of nodes in the network). A node
v can communicate with any node u if v knows the id of u.2 (Initially, each node
knows only the ids of its neighbors in G.) We assume that the communication
occurs in synchronous rounds, i.e., nodes run at the same processing speed and

1 Throughout, “with high probability (whp)” means with probability at least 1 −
1/nΩ(1), where n is the number of nodes in the networks.

2 This is a typical assumption in the context of P2P and overlay networks, where a
node can establish communication with another node if it knows the other node’s
IP address. We sometimes call this direct communication, especially when the two
nodes are not neighbors in G. Note that our algorithm of Section 3 uses no direct
communication between non-neighbors in G.

14 A.D. Sarma et al.

any message that is sent by some node v to its neighbors in some round r will
be received by the end of r. To ensure scalability, we restrict the number of bits
that are processed and sent per round by each node to be polylogarithmic in n,
the network size. In particular, in each round, each node is allowed to send a
message of size B bits (where B is polylogarithmic in n) through each commu-
nication link. This is a widely used standard model (called the CONGEST(B)

model) to study distributed algorithms (e.g., see [16,15]) and captures the band-
width constraints inherent in real-world computer networks. We assume B to
be polylogarithmic in n. We relax this restriction in Section 5, where we allow
polynomial (in n) number of bits to be sent across a link per round; thus our
algorithm presented in this Section works in the LOCAL model [16], which is
another standard model where there is no restriction on the amount of commu-
nication per link per round.

There are several measures of efficiency of distributed algorithms; here we will
focus on the running time, i.e. the number of rounds of distributed communica-
tion. (Note that the computation that is performed by the nodes locally is free,
i.e., it does not affect the number of rounds.)

2.2 PageRank

We formally define the PageRank of a graph G = (V,E). Let ε be a small con-
stant which is fixed (ε is called the reset probability, i.e., with probability ε, it
starts from a node chosen uniformly at random among all nodes in the network).
The PageRank of a graph (e.g., see [2,4,19,5]) is the stationary distribution vec-
tor π of the following special type of random walk: at each step of the walk,
with probability ε it starts from a randomly chosen node and with remaining
probability 1−ε, it follows a randomly chosen outgoing (neighbor) edge from the
current node and moves to that neighbor.3 Therefore the PageRank transition
matrix on the state space (or vertex set) V can be written as

P = (
ε

n
)J + (1− ε)Q (1)

where J is the matrix with all entries 1 and Q is the transition matrix of a simple
random walk on G defined as Qij = 1/k, if j is one of the k > 0 outgoing links
of i, otherwise 0. Computing PageRank and its variants efficiently in various
computation models has been of tremendous research interest in both academia
and industry. For a detailed survey of PageRank see e.g., [5,12]. We note that
PageRank is well-defined in both directed and undirected graphs. Note that it
is difficult to compute analytically (and no such analytical formulas are known
for general graphs) the PageRank distribution and hence various computational
methods have been used to estimate the PageRank distribution. In fact, this is
true for general undirected graphs as well [10].

There are mainly two broad approaches to computing PageRank (e.g., see [3]).
One is to using linear algebraic techniques, (e.g., the Power Iteration [14]) and the

3 We sometime use the terminology “PageRank random walk” for this special type of
random walk process.

Fast Distributed PageRank Computation 15

other approach is Monte Carlo [2]. In the Monte Carlo method, the basic idea is
to approximate PageRank by directly simulating the corresponding random walk
and then estimating the stationary distribution with the performed walk’s distri-
bution. In [2] Avrachenkov et al., proposed the following Monte Carlo method for
PageRank approximation: PerformK random walks (according to the PageRank
transition probability) starting from each node v of the graph G. For each walk,
terminate the walk with its first reset instead of moving to a random node. Then,
the frequencies of visits of all these random walks to different nodes will approxi-
mate the PageRank. Our distributed algorithms are based on the above method.

Monte Carlo methods are efficient, light weight and highly scalable [2]. It has
proved to be a useful technique in designing algorithms for PageRank and its
variants in important computational models like data streaming [19] and MapRe-
duce [3]. The works in [20,18] study distributed implementation of PageRank in
peer-to-peer networks but uses iteration methods.

3 A Distributed Algorithm for PageRank

We present a Monte Carlo based distributed algorithm for computing PageRank
distribution of a network [2]. The main idea of our algorithm (formal pseudocode
is given in Algorithm 1) is as follows. Perform K (K will be fixed appropriately
later) random walks starting from each node of the network in parallel. In each
round, each random walk independently goes to a random (outgoing) neighbor
with probability 1−ε and with the remaining probability (i.e., ε) terminates in the
current node. (Henceforth, we call this random walk as ‘PageRank random walk’.
This random walk can be shown to be equivalent to one based on the PageRank
transition matrix P (defined in Section 2.2) [2].) Since, ε is the probability of ter-
mination of a walk in each round, the expected length of every walk is 1/ε and the
length will be at mostO(log n/ε) with high probability. Let every node v count the
number of visits (say, ζv) of all the walks that go through it. Then, after termina-
tion of all walks in the network, each node v computes (estimates) its PageRank
πv as π̃v = ζvε

nK . Notice that nK
ε is the (expected) total number of visits over all

nodes of all the nK walks. The above idea of counting the number of visits is a
standard technique to approximate PageRank (see e.g., [2,4]).

We show in the next section that the above algorithm approximates PageR-
ank vector π accurately (with high probability) for an appropriate value of K.
The main technical challenge in implementing the above method is that per-
forming many walks from each node in parallel can create a lot of congestion.
Our algorithm uses a crucial idea to overcome the congestion. We show that (cf.
Lemma 1) that there will be no congestion in the network even if we start a
polynomial number of random walks from every node in parallel. The main idea
is based on the Markovian (memoryless) properties of the random walks and the
process that terminates the random walks. To calculate how many walks move
from node i to node j, node i only needs to know the number of walks that
reached it. It does not need to know the sources of these walks or the transitions
that they took before reaching node i. Thus it is enough to send the count of

16 A.D. Sarma et al.

the number of walks that pass through a node. The algorithm runs till all the
walks are terminated. It is easy to see that it finishes in O(log n/ε) rounds with
high probability (this is because the maximum length of any walk is O(log n/ε)
whp). Then every node v outputs its PageRank as the ratio between the number
of visits (denoted by ζv) to it and the total number of visits (nKε) over all nodes
of all the walks. We show that our algorithm computes approximate PageRank
accurately in O(log n/ε) rounds with high probability (cf. Theorem 1).

Algorithm 1. Simple-PageRank-Algorithm

Input (for every node): Number of walks K = c log n from each node (where
c = 2

δ′ε and δ′ is defined in Section 3.2), reset probability ε.
Output: PageRank of each node.

[Each node v starts c log n walks. All walks keep moving in parallel until they
terminate. The termination probability of each walk is ε, so the expected
length of each walk is 1/ε.]

1: Initially, each node v in G creates c log n messages (called coupons)
C1, C2, . . . , Cc log n. Each node also maintains a counter ζv (for counting visits of
random walks to it).

2: while there is at least one (alive) coupon do
3: This is i-th round. Each node v holding at least one coupon does the following:

Consider each coupon C held by v which is received in the (i − 1)-th round.
Generate a random number r ∈ [0, 1].

4: if r < ε then
5: Terminate the coupon C.
6: else
7: Select an outgoing neighbor uniformly at random, say u. Add one coupon

counter number to T v
u where the variable T v

u indicates the number of coupons
(or random walks) chosen to move to the neighbor u from v in the i-th round.

8: end if
9: Send the coupon’s counter number T v

u to the respective outgoing neighbors u.
10: Every node u adds the total counter number (

∑
v∈N(u) T

v
u—which is the total

number of visits of random walks to u in i-th round) to ζu.
11: end while
12: Each node outputs its PageRank as ζvε

cn log n
.

3.1 Analysis

Our algorithm computes the PageRank of each node v as π̃v = ζvε
nK and we say

that π̃v approximates original PageRank πv. We first focus on the correctness of
our approach and then analyze the running time.

3.2 Correctness of PageRank Approximation

The correctness of the above approximation follows directly from the main re-
sult of [2] (see Algorithm 4 and Theorem 1) and also from [4] (Theorem 1). In

Fast Distributed PageRank Computation 17

particular, it is mentioned in [2,4] that the approximate PageRank value is quite
good even for K = 1. It is easy to see that the expected value of π̃v is πv (e.g.,
[2]). In [4] (Theorem 1), it shows that π̃v is sharply concentrated around π using
a Chernoff bound technique ([13]). They show,

Pr[| π̃v − πv |≤ δπv] ≤ e−nKπvδ
′

(2)

where δ′ is a constant depending on ε and δ. From the above bound (cf. Equation
2), we see that for K = 2 log n

δ′nπmin
, we get a sharp approximation of PageRank

vector with high probability. Since the PageRank of any node is at least ε/n
(i.e. the minimum PageRank value, πmin ≥ ε/n), so it gives K = 2 logn

δ′ε . For
simplicity we assume the constant c = 2

δ′ε . Therefore, it is enough if we perform
c logn PageRank random walks from each node. Now we focus on the running
time of our algorithm.

3.3 Time Complexity

From the above section we see that our algorithm is able to compute the PageR-
ank vector π in O(log n/ε) rounds with high probability if we perform c logn
walks from each node in parallel without any congestion. The lemma below
guarantees that there will be no congestion even if we do a polynomial number
of walks in parallel.

Lemma 1. There is no congestion in the network if every node starts at most
a polynomial number of random walks in parallel.

Proof. It follows from our algorithm that each node only needs to count the
number of visits of random walks to itself. Therefore nodes do not require to
know from which source node or rather from where it receives the random walk
coupons. Hence it is not needed to send the ID of the source node with the
coupon. Recall that in our algorithm, in each round, every node currently hold-
ing at least one random walk coupon (could be many) does the following. For
each coupon, either the walk is terminated with probability ε or with remaining
probability 1− ε, any outgoing edge is chosen uniformly at random to send the
coupon. Any particular outgoing edge may be chosen for more than one coupon.
Instead of sending each coupon separately through that edge, the algorithm sim-
ply sends the count, i.e., number of coupons, to the chosen outgoing neighbor.
Since we consider CONGEST model, a polynomial in n number of coupon’s
count (i.e., we can send count of up to a polynomial number) can be sent in one
message through each edge without any congestion. ��

Theorem 1. The algorithm Simple-PageRank-Algorithm (cf. Algorithm
1) computes PageRank in O(log n

ε) rounds with high probability.

Proof. The algorithm stops when all the walks terminate. Since the termination
probability is ε, so in expectation after 1/ε steps, a walk terminates and with
high probability (via the Chernoff bound) the walk terminates in O(log n/ε)
rounds and by union bound [13], all walks (they are only polynomially many)

18 A.D. Sarma et al.

terminate in O(log n/ε) rounds whp. Since all the walks are moving in parallel
and there is no congestion (cf. Lemma 1), all the walks in the network terminate
in O(log n/ε) rounds whp. Hence the algorithm stops in O(log n/ε) rounds whp.
The correctness of the PageRank approximation follows from [2,4] as discussed
earlier in Section 3.2. ��

4 A Faster Distributed PageRank Algorithm (for
Undirected Graphs)

We present a faster algorithm for PageRank computation. First we present an
algorithm for undirected graphs and in Section 5 we modify it slightly to work
for directed graphs. Our algorithm’s time complexity for the undirected graphs
holds in the CONGEST model, whereas for directed graphs a slightly better
time complexity applies only in the LOCAL model.

We use a similar Monte Carlo method as described in Section 3 to estimate
PageRank. This says that the PageRank of a node v is the ratio between the num-
ber of visits of PageRank random walks to v itself and the sum of all the visits
over all nodes in the network. In the previous section (cf. Section 3) we show that
in O(log n/ε) rounds, one can approximate RageRank accurately by walking in
a naive way on general graph. We now outline how to speed up our previous algo-
rithm (cf. Algorithm 1) using an idea similar to the one used in [9]. In [9], it is shown
how one can perform a standard (simple) random walk in an undirected graph4 of
length L in Õ(

√
LD) rounds whp (D is the diameter of the network). The high

level idea of their algorithm is to perform ‘many’ short walks in parallel and later
‘stitch’ them to get the desired longer lengthwalk.To apply this idea in our case,we
modify our approach accordingly as speeding up (many) PageRank randomwalks
is different from speeding up one (standard) random walk. We show that our im-

proved algorithm (cf. Algorithm 2) approximates PageRank in O(
√
logn
ε) rounds

whp.

4.1 Description of Our Algorithm

In Section 3, we showed that by performing Θ(log n) walks (in particular we are
performing c logn walks, where c = 2

δ′ε , δ
′ is defined in Section 3.2) of length

logn/ε from each node, one can approximate the PageRank vector π accurately
(with high probability). In this section we focus on the problem of how efficiently
one can performΘ(n log n) walks (Θ(log n) from each node) each of length log n/ε
and count the number of visits of these walks to different nodes. Throughout,
by “random walk” we mean the “PageRank random walk” (cf. Section 3).

The main idea of our algorithm is to first perform ‘many’ short random walks
in parallel and then ‘stitch’ those short walks to get the longer walk of length
logn/ε and subsequently ‘count’ the number of visits of these random walks to
different nodes. In particular, our algorithm runs in three phases. In the first

4 In each step, an edge is taken from the current node x with probability proportional
to 1/d(x) where d(x) is the degree of x.

Fast Distributed PageRank Computation 19

phase, each node v performs d(v)η (d(v) is degree of v) independent ‘short’
random walks of length λ in parallel. (The value of the parameters η and λ
will be fixed later in the analysis.) This is done naively by forwarding d(v)η
‘coupons’ having the ID of v from v (for each node v) for λ steps via random
walks. The intuition behind performing d(v)η short walks is that the PageRank
of an undirected graph is proportional to the degree distribution [10]. Therefore
we can easily bound the number of visits of random walks to any node v (cf.
Lemma 2). At the end of this phase, if node u has k coupons with the ID of
a node v, then u is a destination of k walks starting at v. Note that just after
this phase, v has no knowledge of the destinations of its own walks, but it can
be known by direct communication from the destination nodes. The destination
nodes (at most d(v)η) have the ID of the source node v. So they can contact the
source node via direct communication. We show that this takes at most constant
number of rounds as only polylogarithmic number of bits are sent (since η will
be at most O(log3 n/ε), shown later). It is shown that the first phase takes O(λε)
rounds with high probability (cf. Lemma 3).

In the second phase, starting at source node s, we ‘stitch’ some of the λ-length
walks prepared in first phase (note that we do this for every node v in parallel as
we want to perform Θ(log n) walks from each node). The algorithm starts from
s and randomly picks one coupon distributed from s in Phase 1. We now discuss
how to sample one such coupon randomly and go to the destination vertex of that
coupon. One simple way to do this is as follows: In the end of Phase 1, each node
v knows the destination node’s ID of its d(v)η short walks (or coupons). When a
coupon needs to be sampled, node s chooses a random coupon number (from the
unused set of coupons) and informs the destination node (which will be the next
stitching point) holding the coupon C (by direct communication, since s knows
the ID of the destination node at the end of the first phase). Let C be the sampled
coupon and v be the destination node of C. The source s then sends a ‘token’ to
v and s deletes the coupon C (so that C will not be sampled again next time at s,
otherwise, randomness will be destroyed). The process then repeats. That is, the
node v currently holding the token samples one of the coupons it distributed in
Phase 1 and forwards the token to the destination of the sampled coupon, say v′.
Nodes v, v′ are called ‘connectors’— they are the endpoints of the short walks that
are stitched. A crucial observation is that the walk of length λ used to distribute the
corresponding coupons from s to v and from v to v′ are independent randomwalks.
Therefore, we can stitch them to get a randomwalk of length 2λ. We therefore can
generate a random walk of length 3λ, 4λ, . . . by repeating this process. We do this
until we have completed a length of at least (logn/ε− λ). Then, we complete the
rest of the walk by doing the naive random walk algorithm.We show that Phase 2
finishes in O(log n

λε) rounds with high probability (cf. Lemma 5).
In the third phase we count the number of visits of all the random walks to

a node. As we have discussed, we have to create many short walks of length
λ from each node. All short walks may not be used to make the long walk of
length logn/ε. We show a technique to count all the used short walks’ visits
to different nodes. Remember that after completion of Phase 2, all the Θ(n log n)

20 A.D. Sarma et al.

Algorithm 2. Improved-PageRank-Algorithm

Input (for every node): Length � = logn
ε

of each walk, reset probability ε, short
walk length λ =

√
log n and number of walks K = c log n (where c = 2

δ′ε and δ′ is
defined in Section 3.2).
Output: PageRank of each node.

Phase 1: (Each node v performs d(v)η = d(v) log3 n/ε random walks of
length λ =

√
log n. At the end of this phase, there are d(v) log3 n/ε

(not necessarily distinct) nodes holding a ‘coupon’ containing the ID of
v.)

1: for each node v do
2: Construct d(v)η = d(v) log3 n/ε messages containing its ID and also the desired

walk length of λ =
√
log n. We will refer to these messages created by node v as

‘coupons created by v’.
3: end for
4: for i = 1 to λ do
5: This is the i-th round. Each node v does the following: Consider each coupon

C held by v which is received in the (i− 1)-th round. If the coupon C’s desired
walk length is at most i, then v keeps this coupon (v is the desired destination).
Else, {v generates a random number r ∈ [0, 1]. If r < ε, terminate the coupon C
and keep the coupon as then v itself is the destination. Else, pick a neighbor u
uniformly at random for the coupon C and forward C to u after incrementing
counter}. Note that v does this for every coupon simultaneously in the i-th
round.

6: end for
7: Each destination node sends its ID to the source node, as it has the source node’s

ID now.

Phase 2: (Stitch short walks by token forwarding. Stitch Θ(�/λ) walks, each
of length λ)

1: The source node s creates a message called “token” which contains the ID of s.
(Note that for simplicity we are showing the stitching from one source node but
this has to be done for each node in the network in parallel.)

2: The algorithm will forward the token around and keep track of a set of connectors,
denoted by CON . Initially, CON = {s}.

3: while Length of walk completed is at most �− λ do
4: Let v be the node that is currently holding the token.
5: v samples one of the coupons distributed by v uniformly at random from the

unused set of coupons. Let v′ be the destination node of the sampled coupon,
say C.

6: v sends the token to v′ and deletes the coupon C.
7: CON = CON ∪ {v′}
8: end while
9: Walk naively until � steps are completed (this is at most another λ steps).
10: A node say w, holding the token having the ID of s is final destination of � = log n/ε

length PageRank random walk. CON = CON ∪ {w}
Phase 3: (Counting the number of visits of short walks to a
node)

1: Each node v maintains a counter ζv to keep track of the number of visits of walks.
2: for each walk completed in Phase 2 do
3: Start from each connector node in CON except the source node s.
4: Trace the random walk in reverse (in parallel) up to the source node of the

corresponding short walk. (Recall that each connector node is the destination of
some short walk).

5: Count the number of visits during this reverse tracing and add to ζv.
6: end for
7: Each node v outputs its PageRank πv as ζvε

cn logn
.

Fast Distributed PageRank Computation 21

long walks (Θ(log n) from each node) have been stitched. During stitching (i.e.,
in Phase 2), each connector node (which is also end point of the short walk)
should remember the source node of the short walk. Now start from the each
connector node and do a walk in reverse direction (i.e., retrace the short walk
backwards) to the source node in parallel. During the reverse walk, simply count
the visit to nodes. It is easy to see that this will take at most O(λ) rounds with
high probability (cf. Lemma 6). Now we analyze the running time of our algo-
rithm Improved-PageRank-Algorithm. The compact pseudo code is given
in Algorithm 2.

4.2 Analysis

First we are interested in the value of η i.e., how many coupons (short walks) do
we need from each node to successfully answer all the stitching requests. Notice
that it is possible that d(v)η coupons are not enough (if η is not chosen suitably
large): We might forward the token to some node v many times in Phase 2 and
all coupons distributed by v in the first phase may be deleted. (In other words,
v is chosen as a connector node many times, and all its coupons have been
exhausted.) If this happens then the stitching process cannot progress. To fix
this problem, we use an easy upper bound of the number of visits to any node
v of a random walk of length � in an undirected graph: d(v)� times. Therefore
each node v will be visited as a connector node at most O(d(v)�) times with
high probability. This implies that each node does not have to prepare too many
short walks.

The following lemma bounds the number of visits to every node when we
do Θ(log n) walks from each node, each of length logn/ε (note that this is the
maximum length of a long walk, whp).

Lemma 2. If we perform Θ(log n) random walks of length logn/ε from each

node, then no node v is visited more than O(d(v) log
3 n

ε) times with high probabil-
ity.

Proof. Suppose we perform so many long walks in parallel. In other words, we
can say that each node performing one walk of length Θ(log2 n/ε). The bound
on the number of visits to each node follows because in each round a node v can
get only at most d(v) walks in expectation (since we have an undirected graph)
and hence O(d(v) log n) whp (via Chernoff bound). Since long walk length is
Θ(log2 n/ε), so total number of visits is O(d(v) log3 n/ε) whp. ��

It is now clear from the above lemma (cf. Lemma 2) that η = O(log3 n/ε) i.e.,
each node v has to prepare O(d(v) log3 n/ε) short walks of length λ in Phase 1.
Now we show the running time of algorithm (cf. Algorithm 2) using the following
lemmas.

Lemma 3. Phase 1 finishes in O(λε) rounds with high probability.

Proof. It is known from the Lemma 2 that in Phase 1, each node v
performs O(d(v) log3 n/ε) walks of length λ. Initially each node v starts with

22 A.D. Sarma et al.

O(d(v) log3 n/ε) coupons (or messages) and each coupon takes a random walk
according to the PageRank transition probability. Let η = O(log3 n/ε). We now
prove that after any given number of steps j (j ≤ λ), the expected number
of coupons at node any v is still d(v)η. This is because at each step any node
v can send (as well as receive) d(v) messages in expectation. The number of
messages we started at any node v is proportional to its degree d(v). Therefore,
in expectation the number of messages at any node remains same. Thus in ex-
pectation the number of messages, say X that want to go through an edge in
any round is at most 2η (from both end points). Using Chernoff bound we get,
Pr[X ≥ 4η logn] ≤ 2−4 logn = n−4. It follows that the number of messages that
want to go through any edge in any round is at most 4η logn = O(log4 n/ε) with
high probability. Hence there will be at mostO(log5 n/ε) bits whp at any edge per
round (as one message is log n bits). Since we consider CONGEST(polylogn)
model, we can extend all walk’s length from i to length i + 1 in O(1/ε) rounds
whp. Therefore, for walks of length λ it takes O(λ/ε) rounds whp as claimed. ��

Lemma 4. One time stitching in parallel from each node always finishes within
O(1) rounds.

Proof. Each node knows all of its short walk’s (or coupon’s) destination address.
Each time when a (source or connector) node wants to stitch, it randomly chooses
one of its unused coupons (created in Phase 1). Then it contacts the destination
node (holding the coupon) through direct communication and informs it as the
next connector node (or stitching point). Since the network allows polylogn
congestion, this will finish in constant rounds. ��

Lemma 5. Phase 2 finishes in O(log n
λε) rounds.

Proof. Phase 2 is for stitching short walks of length λ to get the long walk of
length O(log n/ε). Therefore it needs to stitch approximately O(log n/λε) times.
Since each time stitching can be done in constant rounds (cf. Lemma 4), Phase
2 finishes in O(log n

λε) rounds. ��

Lemma 6. Phase 3 finishes in O(λ) rounds with high probability.

Proof. Each short walk is of length λ. Phase 3 is simply tracing back the short
walks. So it is easy to see we can perform all the reverse walks in parallel in O(λ)
rounds (same as the time to do all the short walks in parallel in Phase 1). Due
to Lemma 3 and the fact that each node can communicate a polylogn number
of bits in every round, we can say that Phase 3 finishes in O(λ) rounds with high
probability. ��

Now we are ready to show the main result of this section.

Theorem 2. The Improved-PageRank-Algorithm (cf. Algorithm 2)

computes the PageRank accurately and with high probability finishes in O(
√
logn
ε)

rounds.

Fast Distributed PageRank Computation 23

Proof. The algorithm Improved-PageRank-Algorithm consists of three
phases. We have calculated above the running time of each phase separately.
Now we want to compute the overall running time of the algorithm by com-
bining these three phases and by putting appropriate value of parameters. By
summing up the running time of all three phases, we get from Lemmas 3, 5 and
6 that the total time taken to finish the Improved-PageRank-Algorithm is
O(λε + logn

λε + λ) rounds with high probability. Choosing λ =
√
logn, gives the

required bound as O(
√
logn
ε) whp. ��

5 A Faster Algorithm for Directed Graphs

We extend the Improved-PageRank-Algorithm of Section 4 to directed
graphs. Recall that it follows from Section 3 that it is enough to approximate
PageRank vector if each node performs c logn PageRank random walk of length
logn/ε, where c = 2/δ′ε is a constant. The basic idea of the algorithm is sim-
ilar as above i.e., create some short walks from each node in parallel and later
stitch them to get long walks and then count the number of visits of all the long
walks to different nodes. However, the main difficulty in an directed graph is to
bound the number of visits of random walks to any node. This is because, in a
directed graph we do not have a suitable upper bound on PageRank (unlike the
case of an undirected graph). There could be large discrepancy between indegree
and outdegree of a node on a directed graph (in shorthand we use indeg and
outdeg respectively). Therefore, for any node whose indeg and outdeg ratio is
large enough, it is very likely that many random walk coupons will pass over
those nodes in every round. In the similar way, there can be a large congestion
on those nodes if we want to perform a large number of short walks from each
node. Hence it is difficult to derive a similar faster algorithm as Algorithm 2
in the CONGEST model for directed graphs. Hence, in this section, we adopt
the LOCAL distributed computing model [16] where message size restriction is
removed, i.e., nodes can communicate any number of bits in each round. (Our
algorithm will need a polynomial number of bits to be processed and sent by
a node in each round.) Even in the LOCAL model, it is not obvious how to
perform a � length random walk in less than � rounds when � < D, the diameter
of the network. Because in LOCAL model, a trivial solution of any distributed
computation problem is to collect all the information of the network to a single
node and compute the solution locally. Clearly this will take diameter (D) time.
Since we are interested to performing random walks of length logn/ε which can
be much less than the diameter (in general), our algorithm gives a non-trivial
result in LOCAL model also. We discuss below our algorithm for directed graphs
using the same approach as in Section 4.

5.1 Description of Our Algorithm

It is now clear that only Phase 1 of Algorithm 2 is problematic. We want to
modify the Phase 1 of the previous algorithm. First we consider an upper bound

24 A.D. Sarma et al.

on the number of times any node is visited if we perform c logn random walks
of length logn/ε from each node. We assume the trivial upper bound that any

node v will be visited at most cn log2 n
ε times with high probability (since total

cn logn walks of length logn/ε). This bound also trivially holds for number of

visits as a connector node. This implies that we have to create cn log2 n
ε short

walks of length λ from each node in Phase 1. It is easy to see that this can be
done in O(λ) rounds in the LOCAL model (cf. Lemma 7). The other two phases
of the algorithm namely, Phase 2 (stitching short walks) and Phase 3 (counting
number of visits) can be done by the same approach as in Section 4. We note
that Phase 2 and Phase 3 can be done in almost the same running time without
considering direct communication in LOCAL model.

5.2 Analysis

Lemma 7. Phase 1 takes O(λ) rounds for performing cn log2 n
ε walks of length

λ from each node v.

Proof. We are interested in performing cn log2 n
ε random walks of length λ from

each node. In the LOCAL model, every node can send or receive any number
of messages through an edge in each round. Congestion is not an issue here.
Therefore at any round i, each node holding any number of coupons can forward
them to randomly chosen outgoing neighbors (in parallel). This will take one
round only. Thus by walking in naive way for λ rounds in parallel, all short walks
can extend their length to λ, i.e. every coupon will reach to the destination node
after λ rounds. So it will finish in O(λ) rounds. ��

Lemma 8. Phase 2 finishes in O(log n
λε).

Proof. Since Phase 2 is the same as in Algorithm 2, the proof follows from the
Lemma 5 above. ��

Lemma 9. Phase 3 finishes in O(λ) rounds with high probability.

Proof. The Phase 3 is also same as in Algorithm 2. The proof follows from the
Lemma 6 above. ��

Theorem 3. The algorithm computes the PageRank accurately on directed graph

and with high probability finishes in O(
√

log n
ε) rounds in LOCAL model.

Proof. The algorithm for computing PageRank on directed graph also comprises
of three phases. Combining the running time of these three phases from above
we get the total time taken to finish the algorithm: O(λ+ log n

ελ +λ) rounds with

high probability. Choosing λ =
√

logn
ε , gives the required bound as O(

√
logn
ε).
��

Fast Distributed PageRank Computation 25

6 Conclusion

We presented fast distributed algorithms for computing PageRank, a measure
of fundamental interest in networks. Our algorithms are Monte-Carlo and based
on the idea of speeding up random walks in a distributed network. Our faster
algorithms take time only sub-logarithmic in n which can be useful in large-scale,
resource-constrained, distributed networks, where running time is especially cru-
cial. Since they are based on random walks, which are lightweight, robust, and
local, they can be amenable to self-organizing and dynamic networks.

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: FOCS, pp. 475–486 (2006)

2. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo meth-
ods in pagerank computation: When one iteration is sufficient. SIAM J. Number.
Anal. 45(2), 890–904 (2007)

3. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce.
In: SIGMOD Conference, pp. 973–984 (2011)

4. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pager-
ank. PVLDB 4, 173–184 (2010)

5. Berkhin, P.: A survey on pagerank computing. Internet Mathematics 2(1), 73–120
(2005)

6. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Internet Tech-
nol. 5(1), 92–128 (2005)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Seventh International World-Wide Web Conference (WWW 1998), pp. 107–117
(1998)

8. Cook, M.: Calculation of pagerank over a peer-to-peer network (2004)
9. Das Sarma, A., Nanongkai, D., Pandurangan, G., Tetali, P.: Efficient distributed

random walks with applications. In: PODC, pp. 201–210 (2010)
10. Grolmusz, V.: A note on the pagerank of undirected graphs. CoRR, abs/1205.1960

(2012)
11. Iván, G., Grolmusz, V.: When the web meets the cell: using personalized pagerank

for analyzing protein interaction networks. Bioinformatics 27(3), 405–407 (2011)
12. Langville, A.N., Meyer, C.D.: Survey: Deeper inside pagerank. Internet Mathemat-

ics 1(3), 335–380 (2003)
13. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, New York (2005)
14. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. Technical report, Stanford InfoLab (1999)
15. Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms

and Theory of Computation Handbook, 2nd edn. CRC Press (2009)
16. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadel-

phia (2000)
17. Perra, N., Fortunato, S.: Spectral centrality measures in complex networks. Phys.

Rev. E 78, 36107 (2008)

26 A.D. Sarma et al.

18. Sankaralingam, K., Sethumadhavan, S., Browne, J.C.: Distributed pagerank for
p2p systems. In: Proceedings of the 12th International Symposium on High Per-
formance Distributed Computing, pp. 58–68 (June 2003)

19. Sarma, A.D., Gollapudi, S., Panigrahy, R.: Estimating pagerank on graph streams.
In: PODS, pp. 69–78. ACM (2008)

20. Shi, S., Yu, J., Yang, G., Wang, D.: Distributed page ranking in structured p2p net-
works. In: Proceedings of the 2003 International Conference on Parallel Processing
(2003)

21. Wang, J., Liu, J., Wang, C.: Keyword Extraction Based on PageRank. In: Zhou,
Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 857–864.
Springer, Heidelberg (2007)

Dealing with Undependable Workers

in Decentralized Network Supercomputing�

Seda Davtyan1, Kishori Konwar2, Alexander Russell1,
and Alexander Shvartsman1

1 Department of Computer Science & Engineering, University of Connecticut,
Storrs, CT 06269, USA

{seda,acr,aas}@engr.uconn.edu
2 University of British Columbia, Vancouver, BC V6T 1Z3, Canada

kishori@interchange.ubc.ca

Abstract. Internet supercomputing is an approach to solving partition-
able, computation-intensive problems by harnessing the power of a vast
number of interconnected computers. This paper presents a new algo-
rithm for the problem of using network supercomputing to perform a
large collection of independent tasks, while dealing with undependable
processors. The adversary may cause the processors to return bogus re-
sults for tasks with certain probabilities, and may cause a subset F of
the initial set of processors P to crash. The adversary is constrained in
two ways. First, for the set of non-crashed processors P − F , the av-
erage probability of a processor returning a bogus result is inferior to
1
2
. Second, the adversary may crash a subset of processors F , provided

the size of P − F is bounded from below. We consider two models: the
first bounds the size of P − F by a fractional polynomial, the second
bounds this size by a poly-logarithm. Both models yield adversaries that
are much stronger than previously studied. Our randomized synchronous
algorithm is formulated for n processors and t tasks, with n ≤ t, where
depending on the number of crashes each live processor is able to ter-
minate dynamically with the knowledge that the problem is solved with
high probability. For the adversary constrained by a fractional polyno-
mial, the time complexity of the algorithm is O(t

nε log n log log n), its
work is O(t log n log log n) and message complexity is O(n log n log log n).
For the poly-log constrained adversary, the time complexity is O(n), work
is O(t poly log n), and message complexity is O(n poly log n). All bounds
are shown to hold with high probability.

1 Introduction

Cooperative network supercomputing is becoming increasingly popular for har-
nessing the power of the global Internet computing platform. A typical Internet
supercomputer, e.g., [1, 2], consists of a master computer and a large number of
computers called workers, performing computation on behalf of the master. De-
spite the simplicity and benefits of a single master approach, as the scale of such

� This work is supported in part by the NSF Award 1017232.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 27–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

28 S. Davtyan et al.

computing environments grows, it becomes unrealistic to assume the existence
of the infallible master that is able to coordinate the activities of multitudes of
workers. Large-scale distributed systems are inherently dynamic and are subject
to perturbations, such as failures of computers and network links, thus it is also
necessary to consider fully distributed peer-to-peer solutions.

Interestingly, computers returning bogus results is a phenomenon of increasing
concern. While this may occur unintentionally, e.g., as a result of over-clocked
processors, workers may in fact wrongly claim to have performed assigned work
so as to obtain incentives associated with the system, e.g., higher rank. To ad-
dress this problem, several works, e.g., [3, 6, 7, 10], study approaches based on
a reliable master coordinating unreliable workers. The drawback in these ap-
proaches is the reliance on a reliable, bandwidth-unlimited master processor.

In our recent work [4, 5] we began to address this drawback of centralized
systems by removing the assumption of an infallible and bandwidth-unlimited
master processor. We introduced a decentralized approach, where a collection
of worker processors cooperates on a large set of independent tasks without the
reliance on a centralized control. Our prior algorithm is able to perform all tasks
with high probability (whp), while dealing with undependable processors under
an assumption that the average probability of live (non-crashed) processors re-
turning incorrect results remains inferior to 1

2 during the computation. There
the adversary is only allowed to crash a constant fraction of processors, and
the correct termination of the n-processor algorithm strongly depends on the
availability of Ω(n) live processors.

The goal of this work is to develop a new n-processor algorithm that is able
to deal with much stronger adversaries, e.g., those that can crash all but a
fractional polynomial in n, or even a poly-log in n, number of processors. One
of the challenges here is to enable an algorithm to terminate efficiently in the
presence of any allowable number of crashes. Of course, to be interesting, such a
solution must be efficient in terms of its work and communication complexities.

Contributions. We consider the problem of performing t tasks in a distributed
system of n workers without centralized control. The tasks are independent,
they admit at-least-once execution semantics, and each task can be performed
by any worker in constant time. We assume that tasks can be obtained from
some repository (else we can assume that the tasks are initially known). The
fully-connected message-passing system is synchronous and reliable. We deal
with failure models where crash-prone workers can return incorrect results. We
present a randomized decentralized algorithm and analyze it for two different
adversaries of increasing strength: constrained by a fractional polynomial, and
poly-log constrained. In each of these settings, we assume that all surviving
processors return bogus results with the average probability inferior to 1

2 . In
more detail our contributions are as follows.

1. Given the initial set of processors P , with |P | = n, we formulate two adver-
sarial models, where the adversary can crash a set F of processors, subject
to model constraints: a) For the first model, constrained by a fractional

Undependable Workers in Decentralized Network Supercomputing 29

polynomial, we have |P − F | = Ω(nε), for a constant ε ∈ (0, 1). b) For
the second, poly-log constrained model, we have |P − F | = Ω(logcn), for
a constant c ≥ 1. The adversary may assign arbitrary constant probability
to processors, provided that processors in P return bogus results with the
average probability inferior to 1

2 . The adversary is additionally constrained,
so that the average probability of returning bogus results for processors in
P − F must remain inferior to 1

2 .
2. We provide a randomized algorithm for n processors and t tasks that works

in synchronous rounds, where each processor, starting as a “worker,” per-
forms a random task and shares its cumulative knowledge of results with
one randomly chosen processor. Once a processor accumulates a “sufficient”
number of results, it becomes “enlightened.” Enlightened processors then
“profess” their knowledge by multicasting it to exponentially growing ran-
dom subsets of processors. When a processor receives a “sufficient” number
of such messages, it halts. We note that workers become enlightened with-
out any synchronization, and using only the local knowledge. The values that
control “sufficient” numbers of results and messages are established in our
analysis and are used as compile-time constants.

We consider the protocol, by which the “enlightened” processors “profess”
their knowledge and reach termination, to be of independent interest. The
protocol’s message complexity does not depend on crashes, and the proces-
sors can terminate without explicit coordination. This addresses one of the
challenges associated with termination when P −F can vary broadly in both
models.

3. We analyze the quality and performance of the algorithm for the two ad-
versarial models. For each model we show that all live workers obtain the
results of all tasks whp, and that these results are correct whp. Complexity
results for the algorithm also hold whp:

a) For the polynomially constrained model we show that work complexity
is O(t logn log logn) and message complexity is O(n log n log logn).

b) For the poly-log constrained model we show that work is O(t poly(logn))
and message complexity is O(n poly(logn)). For this model we note that
trivial solutions with all workers doing all tasks may be work-efficient,
but they do not guarantee that the results are correct.

Prior Work. Earlier approaches explored ways of improving the quality of
the results obtained from untrusted workers in the settings where a bandwidth-
unlimited and infallible master is coordinating the workers. Fernandez et al. [7, 6]
and Konwar et al. [10] consider a distributed master-worker system where the
workers may act maliciously by returning wrong results. Works [7, 6, 10] design
algorithms that help the master determine correct results whp, while minimizing
work. The failure models assume that some fraction of processors can exhibit
faulty behavior. Another recent work by Christoforou et al. [3] pursues a game-
theoretic approach. Paquette and Pelc [11] consider a model of a fault-prone
system in which a decision has to be made on the basis of unreliable information
and design a deterministic strategy that leads to a correct decision whp.

30 S. Davtyan et al.

As already mentioned, our prior work [4] introduced the decentralized ap-
proach that eliminates the master, and provided a synchronous algorithm that
is able to perform all tasks whp, while dealing with incorrect behaviors under
an assumption that the average probability of non-crashed processors returning
incorrect results remains inferior to 1

2 . There the adversary was allowed to crash
fail only a linear in n number of processors, and the analysis for live proces-
sors easily followed from the case when no crashes were allowed. That algorithm
requires Ω(n) live processors to terminate correctly. While our new algorithm
uses a similar approach to performing tasks, it uses a completely different ap-
proach once processors become “enlightened” and commence “professing” their
knowledge, ultimately leading to termination.

A related problem, called Do-All, deals with the setting where a set of proces-
sors must perform a collection of tasks in the presence of adversity [8, 9]. Here
the termination condition is that all tasks must be performed, but the processors
need not learn the results of the computation.

Document Structure. In Section 2 we give the models of computation and
adversity, and measures of efficiency. Section 3 presents our algorithm. In Sec-
tion 4 we carry out the analysis of the algorithm and derive complexity bounds
(for paucity of space proofs of some lemmas are given in the appendix found
at http://www.engr.uconn.edu/~sad06005/APX/ICDCN13.pdf). We conclude in Sec-
tion 5 with a discussion.

2 Model of Computation and Definitions

System Model. There are n processors, each with a unique identifier (id) from
set P = [n]. We refer to the processor with id i as processor i. The system is
synchronous and processors communicate by exchanging reliable messages. Com-
putation is structured in terms of synchronous rounds, where in each round a
processor can send and receive messages, and perform local polynomial computa-
tion, where the local computation time is assumed to be negligible compared to
message latency. The duration of each round depends on the algorithm and need
not be constant (e.g., it may depend on n). Messages received by a processor in
a given step include all messages sent to it in the previous step.

Tasks. There are t tasks to be performed, each with a unique id from set T = [t].
We refer to the task with id j as Task[j]. The tasks are (a) similar, meaning
that any task can be done in constant time by any processor, (b) independent,
meaning that each task can be performed independently of other tasks, and (c)
idempotent, meaning that each task admits at-least-once execution semantics
and can be performed concurrently. For simplicity, we assume that the outcome
of each task is a binary value. The problem is most interesting when there are
at least as many tasks as there are processors, thus we consider t ≥ n.

Models of Adversity. Processors are undependable in that a processor may
compute the results of tasks incorrectly and it may crash. Following a crash,
a processor performs no further actions. Otherwise, each processor adheres to

http://www.engr.uconn.edu/~sad06005/APX/ICDCN13.pdf

Undependable Workers in Decentralized Network Supercomputing 31

the protocol established by the algorithm it executes. We refer to non-crashed
processors as live. We consider an oblivious adversary that decides prior to the
computation what processors to crash and when to crash them. The maximum
number of processors that can crash is established by the adversarial models
(specified below).

For each processor i ∈ P , we define pi to be the probability of proces-
sor i returning incorrect results, independently of other processors, such that,
1
n

∑
i pi <

1
2 − ζ, for some ζ > 0. That is, the average probability of proces-

sors in P returning incorrect results is inferior to 1
2 . We use the constant ζ to

ensure that the average probability of incorrect computation does not become
arbitrarily close to 1

2 as n grows arbitrarily large. The individual probabilities
of incorrect computation are unknown to the processors.

For an execution of an algorithm, let F be the set of processors that adversary
crashes. The adversary is constrained in that the average probability of proces-
sors in P −F computing results incorrectly remains inferior to 1

2 . We define two
adversarial models:

Model Ffp, adversary constrained by a fractional polynomial :
|P − F | = Ω(nε), for a constant ε ∈ (0, 1).

Model Fpl, poly-log constrained adversary :
|P − F | = Ω(logcn), for a constant c ≥ 1.

Measures of Efficiency. We assess the efficiency of algorithms in terms of
time, work, and message complexities. We use the conventional measures of time
complexity and work complexity. We assess message complexity as the number
of point-to-point messages sent during the execution of an algorithm. Lastly, we
use the common definition of an event E occurring with high probability (whp) to
mean that Pr[E] = 1−O(n−α) for some constant α > 0.

3 Algorithm Description

We now present our decentralized solution, called algorithm daks (for Decentral-
ized Algorithm with Knowledge Sharing), that employs no master and instead
uses a gossip-based approach. We start by specifying in detail the algorithm for
n processors and t = n tasks, then we generalize it for t tasks, where t ≥ n.

The algorithm is structured in terms of a main loop. The principal data struc-
tures at each processor are two arrays of size linear in n: one accumulates knowl-
edge gathered from the processors, and another stores the results. All processors
start as workers. In each iteration, any worker performs one randomly selected
task and sends its knowledge to just one other randomly selected processor.
When a worker obtains “enough” knowledge about the tasks performed in the
system, it computes the final results, stops being a worker, and becomes “en-
lightened.” Such processors no longer perform tasks, and instead “profess” their
knowledge to other processors by means of multicasts to exponentially increasing
random sets of processors. The main loop terminates when a certain number of
messages is received from enlightened processors.

32 S. Davtyan et al.

Procedure for processor i;
external n, km, kt /* n is number of processors and tasks */

/* km, kt are constants */
Task[1..n] /* set of tasks */
Ri[1..n] init ∅n /* set of collected results */
Resultsi[1..n] init ⊥ /* array of results */
prof ctr init 0 /* number of profess messages received */
r init 0 /* round number */
� init 0 /* specifies the number of profess messages to be sent per iteration */
worker init true /* indicates whether the processor is still a worker */

while prof ctr < km log n do
Send:

1: if worker then
2: Let q be a randomly selected processor from P
3: Send 〈share, Ri[]〉 to processor q
4: else
5: Let D be a set of 2� log n randomly selected processors from P
6: Send 〈profess, Ri[]〉 to processors in D
7: � ← �+ 1

Receive:
8: Let M be the set of received messages
9: prof ctr ← prof ctr + |{m : m ∈ M ∧m.type = profess}|

10: for all j ∈ T do
11: Ri[j] ← Ri[j] ∪ (

⋃
m∈M m.R[j]) /* update knowledge */

Compute:
12: r ← r + 1
13: if worker then
14: Randomly select j ∈ T and compute the result vj for Task[j]
15: Ri[j] ← Ri[j] ∪ {〈vj , i, r〉}
16: if minj∈T {|Ri[j]|} ≥ kt log n then /* i has enough results */
17: for all j ∈ T do
18: Resultsi[j] ← u such that triples 〈u, , 〉 form a plurality in Ri[j]
19: worker ← false /* worker becomes enlightened */

end

Fig. 1. Algorithm daks for t = n; code at processor i for i ∈ P

The pseudocode for algorithm daks is given in Figure 1. We now give the
details.

Local Knowledge and State. Every processor i maintains the following:

– Array of results Ri[1..n], where element Ri[j], for j ∈ T , is a set of results for
Task[j]. Each Ri[j] is a set of triples 〈v, i, r〉, where v is the result computed
for Task[j] by processor i in round r (here the inclusion of r ensures that
the results computed by processor i in different rounds are preserved).

– The array Resultsi[1..n] stores the final results.
– The prof ctr stores the number of messages received from enlightened pro-

cessors.

Undependable Workers in Decentralized Network Supercomputing 33

– r is the round (iteration) number that is used by workers to timestamp the
computed results.

– � is the exponent that controls the number of messages multicast by enlight-
ened processors.

Control Flow. The algorithm iterations are controlled by the main while-loop,
and we use the term round to refer to a single iteration of the loop. The loop
contains three stages, viz., Send, Receive, and Compute.

Processors communicate using messagesm that contain pairs 〈type,R[]〉. Here
m.R[] is the sender’s array of results. When a processor is a worker, it sends
messages with m.type = share. When a processor becomes enlightened, it sends
messages with m.type = profess. The loop is controlled by the counter prof ctr
that keeps track of the received messages of type profess. We next describe the
stages in detail.

Send stage: Any worker chooses a target processor q at random and sends
its array of results R[] to processor q in a share message. Any enlightened
processor chooses a set D ⊆ P of processors at random and sends the array
of results R[] to processors in D in a profess message. The size of the set
D is 2� logn, where initially � = 0, and once a processor is enlightened, it
increments � by 1 in every round.

Receive stage: Processor i receives messages (if any) sent to it in the pre-
ceding Send stage. The processor increments its prof ctr by the number of
profess messages received. For each task j, the processor updates its Ri[j] by
including the results received in all messages.

Compute stage: Any worker randomly selects task j, computes the result vj ,
and adds the triple 〈vj , i, r〉 for round r to Ri[j]. For each task the worker
checks whether “enough” results were collected. Once at least kt logn results
for each task are obtained, the worker stores the final results in Resultsi[]
by taking the plurality of results for each task, and becomes enlightened. (In
Section 4 we reason about the compile-time constant kt, and establish that
kt logn results are sufficient for our claims.) Enlightened processors rest on
their laurels in subsequent Compute stages.

Reaching Termination. We note that a processor must become enlightened
before it can terminate. Processors can become enlightened at different times and
without any synchronization. Once enlightened, they profess their knowledge
by multicasting it to exponentially growing random subsets D of processors.
When a processor receives sufficiently many such messages, i.e., km logn, it halts,
again without any synchronization, and using only the local knowledge. We
consider this protocol to be of independent interest. In Section 4 we reason about
the compile-time constant km, and establish that km logn profess messages are
sufficient for our claims; additionally we show that the protocol’s efficiency can
be assessed independently of the number of crashes.

Extending the Algorithm for t ≥ n. We now modify the algorithm to handle
arbitrary number of tasks t such that t ≥ n. Let T ′ = [t] be the set of unique

34 S. Davtyan et al.

task identifiers, where t ≥ n. We segment the t tasks into chunks of �t/n� tasks,
and construct a new array of chunk-tasks with identifiers in T = [n], where
each chunk-task takes Θ(t/n) time to perform by any live processor. We now
use algorithm daks, where the only difference is that each Compute stage takes
Θ(t/n) time to perform a chunk-task.

4 Algorithm Analysis

Here we analyze the performance of algorithm daks in our two failure models.
We start by giving several lemmas relevant to all models, then detail the analysis
for each model. We start by stating the Chernoff bound.

Lemma 1 (Chernoff Bounds). Let X1, X2, · · · , Xn be n independent Bernoulli
random variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, then it holds
for X =

∑n
i=1Xi and μ = E[X] =

∑n
i=1 pi that for all δ > 0, (i) Pr[X ≥

(1 + δ)μ] ≤ e−
μδ2

3 , and (ii) Pr[X ≤ (1− δ)μ] ≤ e−
μδ2

2 .

The following lemma shows that if Θ(n log n) profess messages are sent by the
enlightened processors, then every live processor either terminates or becomes
enlightened whp.

Lemma 2. Let r be the first round by which the total number of profess messages
is Θ(n log n). Then by the end of this round every live processor either halts or
becomes enlightened whp.

Proof. Let ñ = kn logn be the number of professmessages sent by round r, where
k > 1 is a sufficiently large constant. We show that whp every live processor
received at least (1− δ)k logn profess messages, for some constant δ ∈ (0, 1).

Let us assume that there exists processor q that receives less than (1−δ)k logn
of such messages. We prove that whp such a processor does not exist.

Since ñ profess messages are sent by round r, there were ñ random selections
of processors from set P in line 5 of algorithm daks, possibly by different en-
lightened processors. We denote by i an index of one of the random selections
in line 5. Let Xi be a Bernoulli random variable such that Xi = 1 if processor q
was chosen by an enlightened processor and Xi = 0 otherwise.

We define the random variable X =
∑ñ

i=1 to estimate the total number of
times processor q is selected by round r. In line 5 every enlightened processor
chooses a destination for the profess message uniformly at random, and hence
Pr[Xi = 1] = 1

n . Let μ = E[X] =
∑ñ

i=1Xi = 1
nk n logn = k logn, then by

applying Chernoff bound, for the same δ chosen as above, we have:

Pr[X ≤ (1− δ)μ] ≤ e−
μδ2

2 ≤ e−
(k log n)δ2

2 ≤ 1

n
bδ2

2

≤ 1

nα

where α > 1 for some sufficiently large b. Hence, by letting km = (1 − δ)k, we
have Pr[X ≤ km logn] ≤ 1

nα for some α > 1. Now let us denote by Eq the fact
that prof ctrq ≥ km logn by the end of round r, and let Ēq be the complement

Undependable Workers in Decentralized Network Supercomputing 35

of that event. By Boole’s inequality we have Pr[∪q Ēq] ≤
∑

q Pr[Ēq] ≤ 1
nβ , where

β = α− 1 > 0. Hence each processor q ∈ P is the destination of at least km logn
profess messages whp, i.e.,

Pr[∩qEq] = Pr[∩q Ēq] = 1−Pr[∩q Ēq] ≥ 1− 1

nβ
,

and hence, it halts.
It follows that every live processor becomes enlightened. Indeed, even if there

exists a processor that does not receive enough profess messages (≥ km logn) to
halt, it receives at least one such message with extremely high probability, and
hence becomes enlightened. ��

Recall that the constant km from the proof of Lemma 2 is used as a compile-time
constant in algorithm daks.

Lemma 3. Once a processor q ∈ P−F becomes enlightened, every live processor
halts in additional O(log n) rounds whp.

Proof. According to Lemma 2 if Θ(n log n) profess messages are sent then every
processor halts whp. Given that processor q does not crash it takes q at most logn
rounds to send Θ(n log n) profess messages (per line 5 in Figure 1), regardless of
the actions of other processors. Hence, whp every live processor halts in O(log n)
rounds. ��

We denote by L the number of rounds required for a processor from the set
P − F to become enlightened. We next analyze the value of L for models Ffp
and Fpl. The compile-time constant kt appearing in algorithm daks is computed
as max{k1, k2, k3}, where k2 and k3 are from the proofs of Lemmas 4 and 8. The
constant k1 = (1− δ)λk is from the proof of Lemma 5 of [4].

4.1 Analysis for Model Ffp

In model Ffp we have |F | ≤ n−nε. Let Fr be the actual number of crashes that
occur prior to round r. For the purpose of analysis we divide an execution of the
algorithm into two epochs: epocha consists of all rounds r where |Fr| is at most
linear in n, so that when the number of live processors is at least c′n for some
suitable constant c′; epoch b consists of all rounds r starting with first round r′

(it can be round 1) when the number of live processors drops below some c′n and
becomes c′′nε for some suitable constant and c′′. Note that either epoch may be
empty.

For a small number of failures in epocha, we anchor the analysis to our work [4].
Here |Fr| is bounded as in model F of [4] with at most hn processor crashes for
a constant h ∈ (0, 1), and the new algorithm incurs costs exactly as algorithm A
of [4] does. (To avoid a complete restatement, we refer the kind reader to that
earlier paper, and focus here on the new analysis).

Next we consider epoch b. If the algorithm terminates in round r′, the first
round of the epoch, the cost remains the same as for algorithm A [4]. If it

36 S. Davtyan et al.

does not terminate, it incurs additional costs associated with the processors in
P − Fr′ , where |P − Fr′ | ≤ c′′nε. We analyze the costs for epoch b in the rest of
this section. The final message and work complexities will be at most the worst
case complexity for epoch a plus the additional costs for epoch b incurred while
|P − F | = Ω(nε) per model Ffp.

First we show that whp it will take L = O(n1−ε logn log logn) rounds for a
worker from the set P − F to become enlightened in epoch b.

Lemma 4. In O(n1−ε logn) rounds of epoch b every task is performed Θ(log n)
times whp by processors in P − F .

Proof. Let us assume that after r̃ = kn1−ε logn rounds of algorithm daks, where
k is a sufficiently large constant and 0 < ε < 1 is a constant, there exists a task τ
that is performed less than (1− δ)k logn times among all live workers, for some
δ > 0. We prove that whp such a task does not exist.

According to our assumption at the end of round r̃ for some task τ , we have
| ∪n

j=1 Rj [τ]| < k2 logn, where k2 = (1− δ) logn. Let Xi be a Bernoulli random
variable such that Xi = 1 if the task was chosen to be performed in line 14 of
the algorithm by a processor in P − F , and Xi = 0 otherwise.

Let us next define the random variable X = X1 + · · · + Xr̃cnε to count the
total number of times task τ is performed by the end of r̃ rounds by workers in
P − F .

Note that according to line 14 any worker picks a task uniformly at random. To
be more specific let x be an index of one of r̃cnε executions of line 14 by processors
in P −F . Observe that for any x, Pr[Xx = 1] = 1

n given that the workers choose

task τ uniformly at random. Let μ = E[X] =
∑r̃cnε

x=1
1
n = r̃cnε

n = kc logn, then
by applying Chernoff bound, for the same δ > 0 chosen as above, we have:

Pr[X ≤ (1− δ)μ] ≤ e−
μδ2

2 ≤ e−
(kc log n)δ2

2 ≤ 1

n
bδ2

2

≤ 1

nα

where α > 1 for some sufficiently large b. Now let us denote by Eτ the fact that
| ∪n

i=1 Ri(τ)| > k2 logn by the round r̃ of the algorithm and we denote by Ēτ
the complement of that event. Next by Boole’s inequality we have Pr[∪τ Ēτ] ≤∑

τ Pr[Ēτ] ≤ 1
nβ , where β = α − 1 > 0. Hence each task is performed at least

Θ(log n) times by workers in P − F whp, i.e.,

Pr[∩τEτ] = Pr[∪τ Ēτ] ≥ 1− 1

nβ
.

We now focus only on the set of live processors P − F with |P − F | ≥ cnε. Our
goal is to show that in O(n1−ε logn log logn) rounds of algorithm daks at least
one processor from P − F becomes enlightened.

We first show that any triple τ = 〈x, y, z〉 generated by a processor in P − F
is known to all processors in P − F in O(n1−ε logn log logn) rounds of algo-
rithm daks.

We denote by S(r) ⊆ P − F the set of processors that know a certain
triple τ by round r, and let s(r) = |S(r)|. Next lemma shows that after r1 =
O(n1−ε logn log logn) rounds s(r1) = Θ(log3 n).

Undependable Workers in Decentralized Network Supercomputing 37

Lemma 5. After r1 = O(n1−ε logn log logn) rounds of epoch b, s(r1) =
Θ(log3 n) whp.

Proof. Consider a scenario when a processor p ∈ P−F generates a triple τ . Then
the probability that processor p sends triple τ to at least one other processor
q ∈ P − F , where p �= q, in n1−ε logn rounds is at least 1− (1− cnε

n)n
1−ε logn ≥

1 − e−b logn > 1 − 1
nα s.t. α > 0 for some appropriately chosen b and for a

sufficiently large n. Similarly, it is straightforward to show that the number
of live processors that learn about τ doubles every n1−ε logn rounds, hence
whp after (n1−ε logn) · 3 log logn = O(n1−ε logn log logn) rounds the number of
processors in P − F that learn about τ is Θ(log3 n). ��

In the next lemma we reason about the growth of s(r) after round r1.

Lemma 6. Let r2 be the first round after round r1 in epochb such that r2−r1 =
O(n1−ε logn). Then s(r2) ≥ 3

5 |P − F | whp.

Next we calculate the number of rounds required for the remaining 2
5 |P − F |

processors in P − F to learn τ . Let Ud ⊂ P − F be the set of workers that do
not learn τ after O(n1−ε logn log logn) rounds of algorithm daks. According to
Lemma 6 we have |Ud| ≤ 2

5 |P − F |.

Lemma 7. Once every task is performed Θ(log n) times in epoch b by proces-
sors in P − F then at least one worker from P − F becomes enlightened in
O(n1−ε logn log logn) rounds, whp.

(The proofs of Lemmas 6 and 7 are in the Appendix.)

Theorem 1. In epoch b algorithm daks performs all n tasks correctly, and the
results are known at every live processor after O(n1−ε logn log logn) rounds.

Proof sketch. According to algorithm daks (line 18) every live processor com-
putes the result of every task t by taking a plurality among all the results.
According to our assumption in every execution of the algorithm the average
probability of workers computing incorrectly is inferior to 1

2 among live proces-
sors. On the other hand Lemma 4 shows that for every task processors in P −F
calculate Θ(log n) results in O(n1−ε logn) rounds whp. Lemmas 3, 6 and 7 show
that whp in O(n1−ε logn log logn) rounds of algorithm daks at least Θ(n logn)
triples generated by processors in P −F will be known to all live processors. The
claim then follows along the lines of the proof of Theorem 1 of [4]. ��
According to Lemma 7, after O(n1−ε logn log logn) rounds of epoch b at least
one processor in P − F becomes enlightened. Furthermore, once a processor in
P −F becomes enlightened, according to Lemma 3 after O(log n) rounds of the
algorithm every live processor becomes enlightened and then terminates, whp.
Next we assess work and message complexities.

Theorem 2. For t = n algorithm daks has work and message complexity
O(n log n log logn).

http://www.engr.uconn.edu/~sad06005/APX/ICDCN13.pdf

38 S. Davtyan et al.

Proof. To obtain the result we combine the costs associated with epoch a with
the costs of epoch b. As reasoned earlier, the worst case costs for epoch a are
captured in Theorems 2 and 4 of [4]. Specifically, both complexity bounds are
Θ(n log n).

For epoch b (if it is not empty), where |P − F | = O(nε), algorithm daks

terminates after O(n1−ε logn log logn) rounds whp and there are Θ(nε) live pro-
cessors, thus its work is O(n log n log logn). In every round if a processor is a
worker it sends a share message to one randomly chosen processor. If a processor
is enlightened then it sends professmessages to a randomly selected subset of pro-
cessors. In every round Θ(nε) share messages are sent. Since whp algorithm daks

terminates in O(n1−ε log n log logn) rounds, Θ(n logn log logn) share messages
are sent. On the other hand according to Lemma 2 if during the execution of the
algorithm Θ(n log n) profess messages are sent then every processor terminates
whp. Hence, the message complexity is O(n log n log logn).

The worst case costs of the algorithm correspond to executions with non-
empty epoch b. In this case the costs from epoch a are asymptotically absorbed
into the costs of epoch b computed above. ��

Last, we consider the complexities of algorithm daks for t tasks such that t ≥
n. The following result is trivially obtained from the analysis for t = n by
multiplying the time and work complexities by the size of the chunk Θ(t/n); the
message complexity is unchanged.

Theorem 3. For t ≥ n algorithm daks has time complexity O(t
nε log n log logn),

work complexity O(t log n log logn) and message complexity O(n log n log logn).

Proof sketch. For epoch a the algorithm has time Θ(log n), work Θ(t log n), and
message complexity is Θ(n log n) For epoch b, just as for the case of t = n,
the algorithm takes O(n1−ε logn log logn) iterations for at least one processor
from set P − F to become enlightened whp, except that each iteration now
takes Θ(t/n) time. This yields time complexity O(t

nε logn log logn). Work com-
plexity is then O(t log n log logn). The message complexity remains the same
at O(n log n log log n) as the number of messages does not change. The final
assessment is obtained by combining the costs of epoch a and epoch b. ��

4.2 Failure Model Fpl
In model Fpl we have |F | ≤ n−poly logn, thus, |P −F | = Ω(poly logn). We first
note that when a large number of crashes make |P −F | = Θ(poly logn), one may
attempt a trivial solution where all live processors perform all t tasks. While this
approach has efficient work, it does not guarantee that workers compute correct
results; in fact, since the overall probability of live workers producing bogus
results can be close to 1

2 , this may yield on the average just slightly more than
t/2 correct results.

For executions in Fpl, let |P − F | be at least a logc n, for specific constants a
and c satisfying the model constraints. Let Fr be the actual number of crashes

Undependable Workers in Decentralized Network Supercomputing 39

that occur prior to round r. For the purpose of analysis we divide an execution
of the algorithm into two epochs: epoch b′ consists of all rounds r where |Fr |
remains bounded as in model Ffp (for reference, this epoch combines epoch a
and epoch b from the previous section); epoch c consists of all rounds r starting
with first round r′′ (it can be round 1) when the number of live processors drops
below a1n

ε and becomes a2 log
a3 n for some suitable constants a1, a2, and a3

(here a2 ≥ a and a3 ≥ c). Note that either epoch may be empty.
In epoch b′ the algorithm incurs costs exactly as in model Ffp.
Next we consider epoch c. If the algorithm terminates in round r′′, the first

round of the epoch, the costs remain the same as the costs analyzed for Ffp in
the previous section.

If it does not terminate, it incurs additional costs associated with the proces-
sors in P − Fr′′ , where |P − Fr′′ | ≤ b logc n. We analyze the costs for epoch c
in the rest of this section. The final message and work complexities will be at
most the worst case complexity for epochb′ plus the additional costs for epoch c
incurred while |P − F | = Ω(poly logn) per model Fpl.

The following lemma shows that within some O(n) rounds in epoch c every
task is chosen for execution Θ(log n) times by processors in P − F whp.

Lemma 8. In O(n) rounds of epoch c every task is performed Θ(log n) times
whp by processors in P − F .

Proof. Let us assume that after r̃ rounds of algorithm daks, where r̃ = kn (k
is a sufficiently large constant), there exists a task τ that is performed less than
(1 − δ)k logn times by the processors in P − F , for some δ > 0. We prove that
whp such a task does not exist.

According to our assumption at the end of round r̃ for some task τ , we have
| ∪n

j=1 Rj [τ]| < k3 logn, where k3 = (1− δ) logn. Let Xi be a Bernoulli random
variable such that Xi = 1 if the task was chosen to be performed in line 14 of
the algorithm by processors in P − F , and Xi = 0 otherwise.

Let us next define the random variable X = X1 + · · ·+Xr̃a logc n to count the
total number of times task τ is performed by the end of r̃ rounds by workers in
P − F .

Note that according to line 14 any worker picks a task uniformly at random.
To be more specific let x be an index of one of r̃a logc n executions of line 14
by processors in P − F . Observe that for any x, Pr[Xx = 1] = 1

n given that

the workers choose task τ uniformly at random. Let μ = E[X] =
∑r̃a logc n

x=1
1
n =

ka logc n > k3 logn, then by applying Chernoff bound, for the same δ > 0 chosen
as above, we have:

Pr[X ≤ (1 − δ)μ] ≤ e−
μδ2

2 ≤ e−
(ka logc n)δ2

2 ≤ 1

n
b logc−1 nδ2

2

≤ 1

nα

where α > 1 for some sufficiently large b. Now let us denote by Eτ the fact
that | ∪n

i=1 Ri(τ)| > k3 logn by the round r̃ of the algorithm, and we let Ēτ be
the complement of that event. Next by Boole’s inequality we have Pr[∪τ Ēτ] ≤

40 S. Davtyan et al.∑
τ Pr[Ēτ] ≤ 1

nβ , where β = α − 1 > 0. Hence each task is performed at least

Θ(log n) times whp, i.e., Pr[∩τEτ] = Pr[∪τ Ēτ] ≥ 1− 1
nβ . ��

Next we show that once each task is done a logarithmic number of times, then
every processor in P − F will acquire a sufficient collection of triples in at most
a linear number of rounds to become enlightened.

Lemma 9. Once every task is performed Θ(log n) times by processors in P −F
then at least one worker in P − F becomes enlightened whp after O(n) rounds
in epoch c.

(The proof of Lemma 9 is in the Appendix.)

Theorem 4. Algorithm daks performs all n tasks correctly, and the results are
known at every live processor after O(n) rounds of epoch c whp.

Proof sketch. The proof of this theorem is similar to the proof of Theorem 1.
This is because by Lemma 8 in O(n) rounds Θ(logc n), where c ≥ 1 is a constant,
triples are generated by processors in P − F . According to Lemmas 3 and 9 in
O(n) rounds of the algorithm every live worker will become enlightened. ��
According to Lemma 9, after O(n) rounds of epoch c at least one processor in
P − F becomes enlightened. Furthermore, once a processor in P − F becomes
enlightened, according to Lemma 3 after O(log n) rounds of the algorithm every
live processor becomes enlightened and then terminates, whp. Next we assess
work and message complexities (using the approach in the proof of Theorem 2).

Theorem 5. Algorithm daks has work and message complexity O(n poly logn).

Proof. To obtain the result we combine the costs associated with epoch b′ with
the costs of epoch c. As reasoned earlier, the worst case costs for epoch b′ are
given in Theorem 2.

For epoch c (if it is not empty), where |P − F | = Θ(poly log n), algorithm
daks terminates after O(n) rounds whp and there are Θ(poly logn) live proces-
sors, thus its work is Θ(n poly logn). In every round if a processor is a worker it
sends a share message to one randomly chosen processor. If a processor is enlight-
ened then it sends profess messages to a randomly selected subset of processors.
In every round Θ(poly logn) share messages are sent. Since whp algorithm daks

terminates in O(n) rounds, Θ(n poly logn) share messages are sent. On the other
hand according to Lemma 2 if during the execution of the algorithm Θ(n logn)
profess messages are sent then every processor terminates whp. Hence, the mes-
sage complexity is Θ(n poly logn).

The worst case costs of the algorithm correspond to executions with non-
empty epoch c. In this case the costs from epoch b′ are asymptotically absorbed
into the costs of epoch c computed above. ��

Last, we consider algorithm daks for t tasks such that t ≥ n.

Theorem 6. For t ≥ n algorithm daks has time complexity O(t), work com-
plexity O(t poly logn) and message complexity O(n poly logn).

http://www.engr.uconn.edu/~sad06005/APX/ICDCN13.pdf

Undependable Workers in Decentralized Network Supercomputing 41

Proof sketch. The result is obtained (as in Theorem 3) by combining the costs
from epochb′ (ibid.) with the costs of epoch c derived from the analysis for t = n
(Theorem 5) by multiplying the time (number of rounds) and work complexities
by the size of the chunk Θ(t/n); the message complexity is unchanged. ��

5 Conclusion

We presented a synchronous decentralized algorithm that can perform a set of
tasks using a distributed system of undependable, crash-prone processors. Our
randomized algorithm allows the processors to compute the correct results and
make the results available at every live participating processor, whp. We provided
time, message, and work complexity bounds for two adversarial strategies, viz.,
(a) all but Ω(nε) processors can crash, and (b) all but a poly-logarithmic number
of processors can crash. Future work considers the problem in synchronous and
asynchronous decentralized systems, with more virulent adversarial settings in
both. Lastly, it is interesting to derive strong lower bounds on the message, time,
and work complexities in various models.

References

[1] Distributed.net, http://www.distributed.net/
[2] Seti@home, http://setiathome.ssl.berkeley.edu/
[3] Christoforou, E., Fernandez, A., Georgiou, C., Mosteiro, M.: Algorithmic mecha-

nisms for internet supercomputing under unreliable communication. In: NCA, pp.
275–280 (2011)

[4] Davtyan, S., Konwar, K.M., Shvartsman, A.A.: Robust Network Supercomputing
without Centralized Control. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 435–450. Springer, Heidelberg (2011)

[5] Davtyan, S., Konwar, K.M., Shvartsman, A.A.: Decentralized network supercom-
puting in the presence of malicious and crash-prone workers. In: Proc. of 31st
ACM Symp. on Principles of Distributed Computing, pp. 231–232 (2012)

[6] Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in
the presence of malicious processors. Technical Report Numero 9 (RoSaC-2005-
9), Grupo de Sistemas y Comunicaciones, Universidad Rey Juan Carlos (2005),
http://gsyc.escet.urjc.es/publicaciones/tr/RoSaC-2005-9.pdf

[7] Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in
the presence of untrusted entities. In: SRDS, pp. 39–50 (2006)

[8] Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing; Algo-
rithms and Complexity, 1st edn. Morgan & Claypool Publishers (2011)

[9] Kanellakis, P.C., Shvartsman, A.A.: Fault-Tolerant Parallel Computation. Kluwer
Academic Publishers (1997)

[10] Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust Network Su-
percomputing with Malicious Processes. In: Dolev, S. (ed.) DISC 2006. LNCS,
vol. 4167, pp. 474–488. Springer, Heidelberg (2006)

[11] Paquette, M., Pelc, A.: Optimal decision strategies in byzantine environments.
Parallel and Distributed Computing 66(3), 419–427 (2006)

http://www.distributed.net/
http://setiathome.ssl.berkeley.edu/
http://gsyc.escet.urjc.es/publicaciones/tr/RoSaC-2005-9.pdf

Decentralized Erasure Coding for Efficient Data

Archival in Distributed Storage Systems

Lluis Pamies-Juarez1, Frederique Oggier1, and Anwitaman Datta2

1 School of Mathematical and Physical Sciences
2 School of Computer Engineering

Nanyang Technological University, Singapore
{lpjuarez,frederique,anwitaman}@ntu.edu.sg

Abstract. Distributed storage systems usually achieve fault tolerance
by replicating data across different nodes. However, redundancy schemes
based on erasure codes can provide a storage-efficient alternative to repli-
cation. This is particularly suited for data archival since archived data
is rarely accessed. Typically, the migration to erasure-encoded storage
does not leverage on the existing replication based redundancy, and sim-
ply discards (garbage collects) the excessive replicas. In this paper we
propose a new decentralized erasure coding process that achieves the mi-
gration in a network-efficient manner in contrast to the traditional cod-
ing processes. The proposed approach exploits the presence of data that
is already replicated across the system and distributes the redundancy
generation among those nodes that store part of this replicated data,
which in turn reduces the overall amount of data transferred during the
encoding process. By storing additional replicated blocks at nodes exe-
cuting the distributed encoding tasks, the necessary network traffic for
archiving can be further reduced. We analyze the problem using symbolic
computation and show that the proposed decentralized encoding process
can reduce the traffic by up to 56% for typical system configurations.

Keywords: archival, migration, erasure codes, distributed storage.

1 Introduction

Large data centers such as Google file-system (GFS) [9], Amazon S3 [2] or
Hadoop file-system (HDFS) [3] handle extremely big volume of data by scaling-
out, i.e., by realizing a distributed storage system comprising of hundreds or even
thousands of commodity storage servers. To ensure that the stored data survives
failures of some of the storage nodes, all data needs to be redundantly stored. A
common and simple form of redundancy is to store multiple copies (replicas) of
each data across the system. Storing erasure coded data is a more sophisticated
alternative, which achieves significantly better trade-off in terms of storage-
overhead and fault-tolerance [14, 17]. Many recent systems such as Microsoft
Azure [10], Facebook’s HDFS-RAID [4, 16] and the new version of the Google
File System [8] among others have thus embraced erasure codes based storage
systems. Typical parameter choices of erasure codes used in these deployed sys-
tems incur overall overhead of 1.3×–2× the size of the original data [4, 7, 10].

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 42–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Decentralized Erasure Coding for Efficient Data Archival 43

This translates to a reduction of up to 50% in infrastructural costs with respect
to a (3-way) replication based storage system.

Even though erasure coding based systems have significantly lower storage
overhead, newly inserted data is usually first replicated across different stor-
age nodes. The reasons for initially using replication are twofold. Replication
is easy and fast to achieve by pipelining the data through the involved stor-
age nodes,1 without incurring any computation related costs or latency. This
allows high throughput data insertion, achieving immediate fault tolerance. Fur-
thermore, replication allows task schedulers to exploit data locality and achieve
load-balancing [9], helping improve performance of applications manipulating
the stored data.

Thus the use of erasure code based redundancy is primarily relegated to archi-
val of data which is no longer frequently accessed [7]. Such a pragmatic design
choice reduces the storage footprint significantly, and has immediate impact on
the infrastructural and operational costs of a data center. However, this dual re-
dundancy based approach, namely, the use of replication for newly inserted data
and that of erasure codes for subsequent archival suffers from an important prob-
lem: all archived data passes through two independent redundancy generation
processes, each of them having their own associated costs.

In this work, we explore a new decentralized erasure coding process leverag-
ing on the existence of replicas from the first (data insertion) phase to reduce
the network overheads during the second (migration from replication to erasure
coded storage) phase. The basic idea is illustrated with a toy example shown
in Figure 1. However, in order to amplify the reduction of the network traffic
w.r.to the traditional archiving process, the replicas created during the insertion
of new data have to be placed in some specific manner. Specifically, if multiple
distinct blocks of a replicated object are collocated in a specific manner within
the subset of nodes performing the decentralized encoding, then such locality
can be exploited to further reduce the network traffic. Note that collocation of
random object blocks may not be amenable to such benefits.

Symbolic computation based analysis show that for typical erasure code con-
figurations used in in-production storage systems, the proposed decentralized
erasure coding process can reduce the network traffic by up to 24% or 56%,
depending on the collocation of the replicated blocks.

The main contributions of this paper are threefold.

1. We introduce a new decentralized erasure coding process to reduce the traffic
required to archive data in replicated storage systems.

2. We provide a generic code construction that exploits this decentralized cod-
ing process.

3. We show how the traffic required during the decentralized coding process can
by further reduced by adopting smart replica placement strategies during the
data insertion phase.

1 New inserted data can be stored in a first node while it is concurrently forwarded to
and stored in a second node, and from this second node to a third, and so on [3,9].

44 L. Pamies-Juarez, F. Oggier, and A. Datta

(a) Traditional archiving process.

(b) Decentralized coding process.

Fig. 1. Example of how to generate erasure code redundancy from a replicated system
using (a) a traditional encoding process, and (b) a decentralized coding process. White
squares represent storage nodes and arrow labels denote the number of blocks trans-
ferred over the network. We can see how (a) requires a total of 5 network transfers
while (b) only needs 4 network transfers. The “X” symbol denotes the replicas that are
discarded once the archival finishes, and the symbol ⊗ denotes an encoding operation.

The rest of the paper is organized as follows. In Section 2 we provide some back-
ground on erasure codes for distributed storage systems. In Section 3 we present
our new decentralized erasure coding process, and in Section 4 we evaluate its
fault tolerance and its encoding traffic savings. In Section 5 we discuss some
related works. Finally, in Section 6 we draw our conclusions and outline some
planned future work.

2 Background

When a data object is stored for the first time in a distributed storage system
such as GFS [9] or HDFS [3], it is initially split into blocks of size B and each
of them is replicated over r different storage nodes (usually r = 3). The size of
these blocks is set to relatively large values of B, e.g., B = 64MB in GFS and
HDFS, which allow to amortize data access latencies, as well as to exploit local
data caching [9].

At a later time, when an object does not need to be frequently accessed, it
can be archived using an erasure code, reducing its storage footprint, and hence
its associated storage costs. This encoding process takes k blocks of data, each
of size B, and computes m parity blocks (or redundancy blocks) of the same

Decentralized Erasure Coding for Efficient Data Archival 45

size, which are stored in m other different storage nodes. Since in most cases it
is unlikely that data objects were split exactly into k blocks during the insertion
process, the k blocks used in the encoding process might belong to different data
objects. For example, in some systems files from the same directory are jointly
encoded [5].

We can formally define the erasure encoding process as follows. Let the vector
o = (o1, . . . , ok) denote a data object of k × q bits. That is, each symbol oi,
i = 1, . . . , k is a string of q bits. Operations are typically performed using finite
field arithmetic, that is, the two bits {0, 1} are seen as forming the finite field
F2 of two elements, while oi, i = 1, . . . , k then belong to the binary extension
field F2q containing 2q elements. Then, the encoding of the object o is performed
using an (n×k) generator matrix G such that G ·oT = cT , in order to obtain an
n-dimensional codeword c = (c1, . . . , cn) of size n× q bits. When the generator
matrix G has the form G = [Ik, G

′]T where Ik is the identity matrix and G′ is a
k×m matrix, the codeword c becomes c = [o,p] where o is the original object,
and p is a parity vector containing m × q parity bits. The code is then said to
be systematic, in which case the k parts of the original object remain unaltered
after the coding process. The data can then still be read without requiring a
decoding process by accessing these systematic pieces.

Finally, an optimal erasure code in terms of the trade-off between storage
overhead and fault tolerance is called a maximum distance separable (MDS)
code, and has the property that the original object can be reconstructed from
any k out of the total n = k+m stored blocks, tolerating the loss of any arbitrary
m = n−k blocks. The notation “(n, k) code” is often used to emphasize the code
parameters. Examples of the most widely used MDS codes are the Reed-Solomon
codes [13].

While the efficacy of the use of erasure codes for fault tolerant storage has
long been understood and leveraged, the migration process from a replication
based storage to erasure coding based storage has been identified as a significant
challenge relatively recently [5], given the tremendous growth in the volume
of data that is continuously being generated and needs to be processed and
archived. Next, we explain how the network traffic can be significantly reduced
during the migration by embracing a decentralized coding process leveraging on
the replicas.

3 Decentralizing the Data Archival Process

In this section we first introduce the decentralized erasure coding problem state-
ment in 3.1. In 3.2 we provide a motivating example of how the decentralized
archiving process works, and in 3.3 we provide a general code construction using
a decentralized erasure coding process.

3.1 Problem Statement

When a data object o = (o1, . . . , ok) is newly inserted in the system, each data
block oi is replicated across r different storage nodes. Once the object o is no
longer in frequent use, it is archived using a systematic (n, k) erasure code. The

46 L. Pamies-Juarez, F. Oggier, and A. Datta

migration from replicas to encoding goes as follows: a node obtains an entire copy
of o by downloading k different blocks, encodes them to generate a parity vector
p = (p1, . . . , pm), and finally uploads each parity block pi to a different storage
node. The encoding process thus requires the transfer of n = k + m blocks,
which can be reduced to n− 1 if the coding node keeps one of the parity blocks
and uploads m − 1 blocks. Once the m parity blocks are stored, the number
of replicas of each stored block oi can be safely reduced to r = 1, discarding
the remaining r − 1 block replicas. After this, a whole replica of the original
object o remains unaltered and stored over k different storage nodes, becoming
then the systematic part of the final codeword, which is formed of the blocks
c1 = o1, c2 = o2, . . . , ck = ok. An example of this process is depicted in Figure 1a
for a simple (6,3) code.

The problem with this traditional coding process is that redundant data is
transferred within the network twice (once to obtain and store kr replicated
blocks, and once to compute and upload the m parity blocks) which might seem
a waste of resources. Indeed, out of the kr replicated blocks generated during the
first storage phase, only k of them are used to compute the coded parity blocks.
This observation motivates the design of a new decentralized erasure coding
process that reuses the original replicated data to reduce the total number of
blocks transferred during the data archival process. In Figure 1b we showed a
simple toy example of how to perform a decentralized encoding and save a block
transfer as compared to the classical encoding process.

Iterative Encoding: Unfortunately, the simple decentralized encoding depicted in
Figure 1b cannot be easily adopted by codes with large n and k values. To solve
this problem we propose an iterative encoding process that splits the coding in
ν different steps and involves up to m nodes that store some of the rk block
replicas. The coding can be described in two logical phases: (i) at each step, a
node generates a temporary redundant block and forwards it to the next node,
and (ii) after ν steps each of the m nodes locally combines the stored replicas
with the temporary blocks it received to generate and store one of the m parity
blocks p1, . . . , pm.

Replica Collocation: Traditionally, distributed storage systems allocate the rk
replicated blocks of each data object among different nodes at random, which
guarantees with high probability that the different replicated blocks are stored
in rk different nodes. Random replica placement balances the amount of data
stored per node and guarantees high resiliency in face of correlated node failures.
However, in the case of the previous iterative coding process, having only one
block replica per node increases the number of steps ν required to obtain an
MDS erasure code. To minimize the number of steps required to achieve MDS
codes, and thus minimize encoding traffic, we propose to collocate � out of the
total (r− 1)k unused block replicas within the m coding nodes. By doing so, the
coding nodes will have more information about the original data and would be
able to reduce the number of encoding steps.

Decentralized Erasure Coding for Efficient Data Archival 47

For this decentralized erasure coding process to be relevant, the benefits that
they provide in terms of network resources should not be at the expense of fault
tolerance. We will show that the fault tolerance of the proposed decentralized
erasure codes depends on the values of � and ν: the larger these values are,
the more likely it is to achieve the MDS property. However, large values of �
impose strict placement policies which might complicate load balancing, while
large values of ν increase the number of transferred blocks and thus reduce the
benefit in terms of communication costs. It is then important to understand
the trade-off between these two parameters to find high fault tolerance codes
(preferably MDS codes) requiring low communication costs during the archiving
process and flexible initial replica placement policies.

The drawback of collocation of � replicas within m storage nodes is that a
high collocation might reduce the tolerance of the storage system to correlated
node failures. For this reason it is very important to keep low collocation rates
(small value of �). We also note that a traditional erasure coding process can
also exploit the presence of nodes storing multiple blocks from a single object,
and thus reduce the number of blocks downloaded in order to obtain the whole
data object o. Thus, in Section 4.3 we compare the required traffic of traditional
erasure encoding process and that of the decentralized coding process, and find
that for the same amount of collocation, decentralized coding always achieve
the same or less traffic than the traditional coding, demonstrating its efficacy.
Furthermore, in the cases where both coding schemes require the same traffic,
a decentralized coding is preferred over a centralized one since it avoids the
network and computing bottlenecks of having a single coding node.

3.2 A Motivating Example

To understand the proposed decentralized erasure coding process, we first pro-
vide as example the encoding of a (10,6) erasure code, which provides m =
10 − 6 = 4 blocks of redundancy (parity blocks). We have a data object o =
(o1, o2, . . . , o6) to be stored with a replica placement policy that stores r = 3
replicas of o, that is three replicas of every oi, i = 1, . . . , 6 (for a total of 18
data blocks). We assume that one of the replicas of o is stored in k = 6 dif-
ferent nodes, which will finally constitute the systematic part of the codeword,
c1 = o1, . . . , ck = ok. From the (r − 1)k = 12 replicas left, we select a subset
of � of them to be stored in the m = 4 coding nodes that will carry out the
decentralized encoding process. The assignment of these � replicas is as follows:

N1 = {o1, o2, o3}
N2 = {o4, o5, o6}
N3 = {o1, o2}
N4 = {o3, o4}

where Nj denotes the set of blocks stored in node j. Note that only � = 10 out of
the available (r−1)k = 12 blocks are replicated in the m coding nodes, while the
remaining two can be flexibly stored in other nodes, e.g., to balance the amount

48 L. Pamies-Juarez, F. Oggier, and A. Datta

of data stored per node. Note also that no node stores any repeated block, since
this would reduce fault tolerance.

To describe the decentralized encoding process we use an iterative encoding
process of ν = 7 steps, in which every ψi, ξj ∈ F2q are predetermined values that
define the actual code instance. During step 1, node 1 which has N1 generates

x1 = o1ψ1 + o2ψ2 + o3ψ3

and sends it to node 2, which uses N2 and x1 to compute

x2 = o4ψ4 + o5ψ5 + o6ψ6 + x1ψ7

during step 2. After two more steps, we get:

x3 = o1ψ8 + o2ψ9 + x2ψ10

x4 = o3ψ11 + o4ψ12 + x3ψ13,

and node 4 forwards x4 to node 1, since ν = 7 > m = 4, which creates

x5 = o1ψ14 + o2ψ15 + o3ψ16 + x4ψ17

before sending x5 to node 2. For the last two iterations, both node 2 and node
3 use respectively N2, x1 and x5, and N3, x2 and x3 together, to compute

x6 = o4ψ18 + o5ψ19 + o6ψ20 + x1ψ21 + x5ψ22

x7 = o1ψ23 + o2ψ24 + x2ψ25 + x6ψ26.

After this phase, node 1 to 4 are locally storing:

N1 = {o1, o2, o3, x4}
N2 = {o4, o5, o6, x1, x5}
N3 = {o1, o2, x2, x6}
N4 = {o3, o4, x3, x7}

from which they compute the final m parity blocks:

p1 = o1ξ1 + o2ξ2 + o3ξ3 + x4ξ4

p2 = o4ξ5 + o5ξ6 + o6ξ7 + x1ξ8 + x5ξ9

p3 = o1ξ10 + o2ξ11 + x2ξ12 + x6ξ13

p4 = o3ξ14 + o4ξ15 + x3ξ16 + x7ξ17.

The final codeword is c = [o,p] = (o1, . . . , o6, p1, . . . , p4). There is a total of
ν blocks transmitted during the encoding process (those forwarded during the
iterative phase). In this example, ν = 7, and the encoding process requires
two block transmissions less than the classical encoding process, which requires
n− 1 = 9 blocks, thus achieving a 22% reduction of the traffic.

We will in fact analytically show (see Section 4) that this decentralized en-
coding obtains a (10,6) MDS code. It means that there is a set of values for
the coefficients ψi and ξi, which can be determined (for example, by exhaustive
search), guaranteeing maximum fault tolerance of the code. In fact, the larger
the field F2q is, the more likely it is to obtain MDS codes, allowing to use random
ψi and ξi values in practical settings [1].

Decentralized Erasure Coding for Efficient Data Archival 49

3.3 General Code Construction

We now provide a general technique to generate the parity vectorp = (p1, . . . , pm)
in a decentralized manner by usingm storage nodes that altogether store � out of
the total (r − 1)k block replicas.

We first define how the � replicated blocks are allocated among the m coding
nodes, i.e., the content of the setNj for each node j. For the sake of simplicity, we
assume that the � replicas are deterministically assigned in a sequential manner
as illustrated in the example used in 3.2, trying to even out the number of
blocks assigned to each node. A formal description of this allocation is provided
in Algorithm 1. Note that for practical small values of � Algorithm 1 avoids the
replication of the same block in a single node.

Algorithm 1. Replica placement policy
1: i ← 1
2: for j = 1, . . . ,m do
3: α ← ��/m�
4: if j ≤ (� mod m) then
5: α ← α+ 1
6: end if
7: Nj = {ol : l = (j mod k), j = i, . . . , i+ α}
8: i ← i+ α
9: end for

This assignment policy imposes some restrictions on the location of the dif-
ferent replicated blocks. These restrictions might become a drawback in systems
trying to uniformly distribute the storage load among all nodes in the system.
The problem can be specially important in the extreme case when � = (r− 1)k,
where all replicas need to be specifically stored in the m coding blocks. However,
smaller values of � provide some flexibility on where to assign the (r − 1)k − �
remaining replicas. We will explore the effects that different � values have in the
fault tolerance of the erasure code in Section 4.

Remark 1. In the case of � = k, there is no replica assignment policy and a
random placement can be used.

Given the previous replica assignment policy, the decentralized encoding process
is split in two different phases: the iterative encoding and the local encoding.

The iterative encoding consists of ν sequential encoding steps, where at each
step, each node generates and forwards a temporary redundant block. For each
step i, where i = 1, . . . , ν, node j = (i modm) which stores the set of blocks
Nj = {z1, z2, . . . } locally computes a temporary block xi ∈ F2q as follows:

xi = z1ψ1 + z2ψ2 + · · ·+ z|Nj|ψ|Nj |, (1)

where ψi ∈ F2q are predetermined values. Once xi is computed, node j sends xi
to the next node l = (i+1 modm), who stores locally the new temporary block:

50 L. Pamies-Juarez, F. Oggier, and A. Datta

Nl = Nl ∪{xi}. After that, node l computes xi+1 as defined in (1) and forwards
it the next node. The iterative process is similarly repeated a total of ν times.

After this iterative encoding phase, each node i = 1, . . . ,m executes a local
encoding process where the stored blocks Ni (including the temporary blocks
generated during the iterative encoding phase) are combined to generate the
final parity block pi (for predetermined values of ξi ∈ F2q) as follows:

pi = z1ξ1 + z2ξ2 + · · ·+ z|Ni|ξ|Ni|. (2)

Finally, we describe the overall distributed encoding algorithm (including the
iterative encoding and the local encoding) in Algorithm 2. Note that values ψl

and ξl (lines 7 and 17) are picked at random. In a sufficiently large field (e.g.,
when q = 16) this random choice will not introduce additional dependencies
other than the ones introduced by the iterative encoding process itself [1].

Algorithm 2. Decentralized redundancy generation

1: l ← 1
2: j ← 1
3: x ← 0
4: for i = 1, . . . , ν do � Generation of the ν temporary blocks.
5: x ← 0
6: for z ∈ Nj do � Coding operation as described in (1).
7: x ← x+ ψl · z
8: l ← l + 1
9: end for
10: j ← (i+ 1) mod m
11: Nj ← Nj ∪ {x} � Each union (∪) represents a block transfer.
12: end for
13: l ← 1
14: for i = 1, . . . ,m do � Generation of the final m parity blocks.
15: pi ← 0
16: for x ∈ Ni do � Coding operation as described in (2).
17: pi ← pi + ξl · x
18: l ← l + 1
19: end for
20: end for

4 Evaluation

In this section we evaluate the effects that the number of collocated replicas, �,
and the number of steps, ν, have in the fault tolerance of the code obtained by
the decentralized coding strategy. To do it, we symbolically compute different
iterated codings as it is specified in Algorithm 2. We do it for different values of
n, k, � and ν, however, the block values oi and the value of coefficients ψi and
ξi are not specified, which means that after the iterative coding phase we obtain
a symbolic codeword c = (c1, . . . , cn). We use this codeword then to enumerate

Decentralized Erasure Coding for Efficient Data Archival 51

all the possible
(
n
k

)
k-subsets of blocks in c and measuring how many of them

contain k linearly independent blocks. We refer to the fault tolerance of the
code, π, as the percentage of k-subsets that do not contain linear dependencies
between its blocks. When all the

(
n
k

)
k-subsets are free of linear dependencies

we say that the code is MDS, and has maximum fault tolerance, i.e., π = 1.
Since we aim to evaluate the effects of the parameters � and ν, we select three

different (n,k) instances commonly used by in-production distributed storage
systems: (i) a (6,3) code, suggested in the new Google FS [8], (ii) a (10,6) code
used in the Microsoft Azure Storage service [10], and (iii) a (14,10) code used in
Facebook’s HDFS-RAID implementation [4, 15]. Respectively, these codes have
storage footprints of 2×, 1.6̇× and 1.4× the size of the original stored data, which
represents a diverse spectrum of code parameters. For each of them we evaluate
the fault tolerance of a code generated with a decentralized erasure code that
uses � collocated blocks and ν coding steps, for different values of � and ν.

4.1 Fault Tolerance Analysis

We divide the fault tolerance analysis in two experiments, one aiming to evaluate
the effects of ν, and another one to evaluate the effects of �.

In figures 2a, 2c, and 2e we show the fault tolerance of the code π as a function
of the number of steps, ν. For each of the three different codes we depict the
effects of ν for three different values of �: � = k, � = 1.5 and � = 2k. We
can see how the proportion of linearly independent k-subsets increases as more
encoding iterations are executed. Achieving the maximum fault tolerance (when
the fraction of linearly independent k-subsets is one) requires less iterations for
high replica collocation values �.

Similarly, in figures 2b, 2d, and 2f we show the fault tolerance as a function
of the number of blocks stored within the m coding nodes, �. For each code we
also show the results for three different values of ν, which aim to show the fault
tolerance when all (i) only a few coding nodes execute the iterative encoding
process, (ii) when all coding nodes execute it exactly once, and (iii) when some
coding nodes execute it more than once. In general we can see how increasing
the number of initially collocated replicas � increases the fault tolerance of the
code. However, for small values of ν there are cases where increasing � might
slightly reduce the fault tolerance. Finally, we want to note that in those cases
where ν ≤ m (only a few coding nodes execute the iterative encoding), the
code produced by the decentralized coding can never achieve maximum fault
tolerance. To achieve maximum fault tolerance all the m coding nodes need to
execute at least one coding step.

4.2 Obtaining an (6,3) MDS Code

We propose a simple example to understand why the iterative encoding pro-
cess allows to obtain MDS codes. Suppose we have a (6,3) erasure code, whose
codewords are of the general form

52 L. Pamies-Juarez, F. Oggier, and A. Datta

1 2 3 4 5

number of steps (ν)

0.2

0.4

0.6

0.8

1.0

π

� = 3

� = 4

� = 6

(a) Results for (6,3) code

3 444 5555 666

number of blocks (�)

0.2

0.4

0.6

0.8

1.0

ν = 1

ν = 3

ν = 5

(b) Results for (6,3) code.

1 2 3 4 5 6 7 8 9

number of steps (ν)

0.2

0.4

0.6

0.8

1.0

π

� = 6

� = 9

� = 12

(c) Results for (10,6) code

6 7 88 99 1010 1111 12

number of blocks (�)

0.2

0.4

0.6

0.8

1.0

ν = 2

ν = 4

ν = 6

(d) Results for (10,6) code.

1 2 3 4 5 6 7 8

number of steps (ν)

0.2

0.4

0.6

0.8

1.0

π

� = 10

� = 15

� = 20

(e) Results for (14,10) code

10 11 12 13 14 15 16 17 18 19 20

number of blocks (�)

0.2

0.4

0.6

0.8

1.0

ν = 2

ν = 4

ν = 6

(f) Results for (14,10) code.

Fig. 2. Fault tolerance achieved by our decentralized erasure coding process as a func-
tion of the number of encoding steps, ν, and the number of co-located block replicas,
�. The fault tolerance π is expressed as the proportion of k-subsets of the codeword c
that do not contain linear dependencies. When this value is one, the code is MDS and
has maximum fault tolerance.

Decentralized Erasure Coding for Efficient Data Archival 53

c = (o1, o2, o3, α1o1 + α2o2 + α3o3, β1o1 + β2o2 + β3o3, γ1o1 + γ2o2 + γ3o3)

for some fixed αi, βi, γi ∈ F2q , i = 1, 2, 3, where o = (o1, o2, o3) is the object to
be encoded. We assume that every αi, βi, γi is nonzero, so that it is invertible.
Note that if any of them were to be zero, then the code cannot be MDS.

Let us assume a replica placement policy using � = 3 that allocates these �
replicas within the m coding blocks as follows:

N1 = {o1} , N2 = {o2} , N3 = {o3} .

Then, an iterative encoding process of ν = 4 steps allows to compute the generic
parity blocks as given above:

1. Node 1 sends o1 to node 2,
2. Node 2 uses o2 and x1 = o1 to compute x2 = o1γ1 + o2γ2.
3. Node 3 receives x2 and sends x3=γ−1

2 α2x2+α3o3 = γ−1
2 α2γ1o1+α2o2+α3o3.

4. Node 1 forwards x3 to node 2.

After this phase, node 1 to 3 are locally storing:

N1 =
{
o1, x3 = γ−1

2 α2γ1o1 + α2o2 + α3o3
}

N2 =
{
o1, o2, x3 = γ−1

2 α2γ1o1 + α2o2 + α3o3
}

N3 = {o3, x2 = o1γ1 + o2γ2}

from which they compute the final m parity blocks:

p1 = o1(γ
−1
2 α2γ1 + α1) + x3

p2 = α−1
3 β3x3 + (α−1

3 β3γ
−1
2 α2γ1 + β1)o1 + (α−1

3 β3α2 + β2)o2

p3 = γ3o3 + x2.

The final codeword is c = [o,p] = (o1, o2, o3, p1, p2, p3). Thus any (6,3) MDS
code can be obtained through this iterative encoding.

4.3 Reduction of the Encoding Traffic

Finally, we aim to evaluate the traffic savings that the decentralized erasure cod-
ing provides on the data archival process. For that we take the results presented
in Figure 2 and measure the encoding traffic of the MDS codes obtained when
� = k and � = 2k. For each � value the decentralized encoding traffic corresponds
to the minimum value of ν required to achieve the MDS property. Additionally,
for the same value of collocated replicas � we also evaluate the encoding traffic
that a traditional erasure would require, considering that the coding node stores
more than one object block.

In Figure 3 we depict the encoding traffic comparison between a centralized
coding process, denoted by RS2, and a decentralized MDS coding process, de-
noted by DE. In the case of the (6,3) code, there are only traffic savings when

2 The acronym refers to the classical Reed-Solomon coding process.

54 L. Pamies-Juarez, F. Oggier, and A. Datta

(6, 3) (10, 6) (14, 10)
0

2

4

6

8

10

12

14

no
.

tr
an

sf
er

ed
bl

oc
ks

RS(�= k)

DE(�= k)

RS(�= 2k)

DE(�= 2k)

Fig. 3. Comparison of the number of transferred blocks during the encoding of a clas-
sical Reed-Solomon code (RS) and the decentralized coding (DE) for two different
replica collocation values: � = k and � = 2k. All DE codes are MDS codes optimized
to minimize the number of coding steps ν.

the m = 3 coding nodes store all the (r−1)k replicas. In this case the decentral-
ized coding saves one block transfer. In the case of the (10,6) the decentralized
coding process always requires less network traffic, even for low replica colloca-
tion levels, and these traffic savings are amplified for the (14,10) code. In this
last case the savings range from a 24% in the case of the low replica collocation
(� = k), up to 56% for high collocation values (� = 2k).

5 Related Work

Despite widespread use of erasure coding for archiving data in distributed stor-
age systems, the study of the actual migration process from replication based
redundancy to erasure code based redundancy is in its infancy.

The most relevant related work is that of Fan et al. [5], who propose to dis-
tribute the task of erasure coding using the Hadoop infrastructure, as MapRe-
duce tasks. Any individual object is however encoded at a single node, and hence
the parallelism achieved in their approach is only at the granularity of individ-
ual data objects. Besides, their data archiving process relies on the traditional
erasure code redundancy generation process, which does not exploit previously
existing replicas.

In [12] we recently proposed RapidRAID codes, a family of pipelined erasure
code that aim to speedup the archival process in distributed storage systems.
Although such fast data archival is also achieved by a decentralized coding pro-
cess, the RapidRAID approach differs fundamentally from the one presented in
this paper in two ways. First, RapidRAID codes are non-systematic codes that
require decoding operations to read the archived data, complicating the access
to archived data. Second, RapidRAID codes are aimed to reduce the encoding

Decentralized Erasure Coding for Efficient Data Archival 55

time, but achieves no reduction of traffic as compared to what is required by
a traditional coding processes. The presented work in contrast is specifically
aimed at traffic reduction, and any collateral benefits in terms of speed-up of
the process is left for future study.

Finally, a somewhat unrelated line of work worth mentioning are codes de-
signed for storage in sensor networks [6, 11]. However, in such a setting, the
(disjoint) data generated by k sensors is jointly stored over n > k storage sen-
sors based on erasure coding redundancy. This is achieved using network coding
techniques by creating random linear combinations of the already distributed
data. Such a technique has however not been explored for the specific migration
problem studied in this work.

6 Conclusions

In this paper we introduce a new decentralized erasure coding process to reduce
the network traffic required to archive replicated data in distributed storage
systems. The decentralized process distributes the coding tasks among those
nodes storing data block replicas of the object to be archived. These nodes
collaboratively generate and store all the parity data.

Additionally, we provide a formal definition of the decentralized erasure cod-
ing process and symbolically analyze the fault tolerance of the obtained codes
for different parameters. We show that in already deployed systems where the
placement of the replicated data can not be changed, our decentralized cod-
ing process can reduce the redundancy generation traffic by 20% upto 38% for
typical code configurations used in current systems. However, when the replica
placement of newly inserted data can be manipulated to co-locate more block
replicas in some specific manner in the nodes participating in the coding process,
the redundancy generation traffic can be reduced by 40% upto 70%.

The design of decentralized erasure coding process to archive replicated data
is a relatively unexplored problem that needs to be further studied. We identify
two problems that we plan to address in future works. Specifically, we aim to
look methodically at the effects that different replica placement policies have on
the network traffic required during the archiving process. We also want to gen-
eralize the idea to decentralize the redundancy generation of existing standard
erasure codes such as Reed-Solomon codes. Ultimately, we want to develop a
holistic theory, which explores any possible trade-offs between the network traf-
fic generated by and the speed of the archival process, subject to various other
system design choices such as the initial replica placement.

Acknowledgments. We would like to thank Dr. Punarbasu Purkayastha for his
valuable comments on this research. L. Pamies-Juarez and F. Oggier’s research
is supported by the Singapore National Research Foundation under Research
Grant NRF-CRP2-2007-03. A. Datta’s work is supported by A*Star TSRP grant
number 1021580038 and NTU/MoE Tier-1 grant number RG 29/09.

56 L. Pamies-Juarez, F. Oggier, and A. Datta

References

1. Acedański, S., Deb, S., Médard, M., Koetter, R.: How good is random linear coding
based distributed networked storage. In: Workshop on Network Coding, Theory,
and Applications, NetCod (2005)

2. Amazon.com. Amazon S3, http://aws.amazon.com/s3
3. Apache.org. HDFS, http://hadoop.apache.org/hdfs/
4. Apache.org. HDFS-RAID, http://wiki.apache.org/hadoop/HDFS-RAID
5. Fan, B., Tantisiriroj, W., Xiao, L., Gibson, G.: DiskReduce: Replication as a Pre-

lude to Erasure Coding in Data-Intensive Scalable Computing. Technical Report
Technical Report CMU-PDL-11-112, Carnegie Mellon Univsersity, Parallel Data
Laboratory (2011)

6. Dimakis, A., Prabhakaran, V., Ramchandran, K.: Decentralized erasure codes for
distributed networked storage. IEEE/ACM Transactions on Networking 14 (2006)

7. Fan, B., Tantisiriroj, W., Xiao, L., Gibson, G.: DiskReduce: RAID for Data-
Intensive Scalable Computing. In: The 4th Annual Workshop on Petascale Data
Storage, PDSW (2009)

8. Ford, D., Labelle, F., Popovici, F.I., Stokely, M., Truong, V.A., Barroso, L., Grimes,
C., Quinlan, S.: Availability in Globally Distributed Storage Systems. In: The 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI
(2010)

9. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: Proceedings of
the ACM Symposium on Operating Systems Principles, SOSP (2003)

10. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin,
S.: Erasure Coding in Windows Azure Storage. In: Proceedings of the USENIX
Annual Technical Conference, ATC (2012)

11. Kamra, A., Misra, V., Feldman, J., Rubenstein, D.: Growth codes: maximizing
sensor network data persistence. In: Proceedings of the Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM (2006)

12. Pamies-Juarez, L., Datta, A., Oggier, F.E.: RapidRAID: Pipelined Erasure Codes
for Fast Data Archival in Distributed Storage Systems. CoRR, abs/1207.6744
(2012)

13. Reed, I., Solomon, G.: Polynomial Codes Over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)

14. Rodrigues, R., Zhou, T.H.: High Availability in DHTs: Erasure Coding vs. Replica-
tion. In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 226–239. Springer,
Heidelberg (2005)

15. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R.,
Chen, S., Borthakur, D.: Novel Codes for Cloud Storage (2012),
https://mhi.usc.edu/files/2012/04/Sathiamoorthy-Maheswaran.pdf

16. Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy,
R., Liu, H.: Data warehousing and analytics infrastructure at facebook. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010 (2010)

17. Weatherspoon, H., Kubiatowicz, J.D.: Erasure Coding Vs. Replication: A Quanti-
tative Comparison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 328–337. Springer, Heidelberg (2002)

http://aws.amazon.com/s3
http://hadoop.apache.org/hdfs/
http://wiki.apache.org/hadoop/HDFS-RAID
https://mhi.usc.edu/files/2012/04/Sathiamoorthy-Maheswaran.pdf

Transport Protocol

with Acknowledgement-Assisted Storage
Management for Intermittently Connected

Wireless Sensor Networks

Ying Li, Radim Bartos, and James Swan

Department of Computer Science
University of New Hampshire

Durham, NH 03824
{yws2,rbartos,jmswan}@cs.unh.edu

http://www.cs.unh.edu

Abstract. Thebenefits ofhop-by-hop transportprotocols and in-network
storage in intermittently connected networks arewell known.However, due
to the extreme limitation on the storage capability of wireless sensor net-
works (WSNs), the hop-by-hop transport protocols that are based on in-
network storage without storage management are inappropriate to apply
directly to intermittently connected WSNs. The lack of storage manage-
ment leads to mote storage overflow when using in-network storage, which
in turn degrades the performance of the network.

In this paper, we propose a hop-by-hop transport protocol that pro-
vides not only end-to-end reliability and congestion control but also an
innovative storage management mechanism. The proposed protocol en-
hances the network delivery rate without sacrificing the delivery speed
even in high contention scenarios.

Keywords: WSNs, transport protocol, storage management, intermit-
tent connection.

1 Introduction

Wireless sensor networks (WSNs) have been extensively studied in the last
decade, not only because of the wide range of applications but also the chal-
lenges involved in this kind of network. It is well known that the motes used in
WSNs are usually limited in energy, storage, computation capability and com-
munication range [1,21]. In addition, communication contention and collisions
easily happen in such wireless environments. Moreover, signal attenuation can
make the network intermittently connected, in which case there might be periods
when there is no path from the source to the destination.

In such a wireless scenario, it is inappropriate to directly use the traditional
reliable transport protocol TCP [4]. In TCP, packet loss is a sign of network
congestion [18], which is not always true in wireless communication. In WSNs,

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 57–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.unh.edu

58 Y. Li, R. Bartos, and J. Swan

many factors other than network congestion can cause packet loss, such as motes
running out of memory, energy exhaustion and signal attenuation. Therefore, the
congestion control mechanism of TCP fails to determine the traffic problem cor-
rectly, causing the protocol to perform poorly. Moreover, TCP is mainly operated
on the sender side. In WSNs, motes have limited energy supplies that could be
drained quickly due to heavy communication.

In intermittently connected networks, end-to-end congestion control and loss
recovery are less efficient than in connected networks. In contrast, hop-by-hop
congestion control and loss recovery allow for a more immediate reaction af-
ter a traffic problem is detected. In-network storage can reduce the number of
end-to-end retransmissions when using hop-by-hop transport protocols. Both
delay-tolerant networks (DTN) [2] and multi-hop wireless communication [14]
have realized the benefits of hop-by-hop transport and in-network storage. The
framework of traditional DTNs can be thought of as an overlay network on top of
the Internet [3]. The DTN bundle layer between the application layer and trans-
port layer provides a persistent storage for custody transfer [2]. In the cache
and forward (CNF) architecture, both CNF routers and cache and carry (CNC)
routers have persistent storages. Unlike DTN and CNF, the storage capability of
motes in WSNs is very limited. Typically the amount of the storage in one mote is
less than 512 KB. Table 1 lists the storage capability of several motes available
today [12]. From the table, we can see that storage management is necessary
for hop-by-hop transfer and in-network storage in WSNs. Although there are
many routing protocols providing storage management such as CHARON [15],
RED&FED [20] and TBR [13], they do not guarantee transmission reliability.

Table 1. Mote’s extra nonvolatile storage size

Mote Storage size(KB)

WeC 32

Renè 32

Renè2 32

Dot 32

Mica 512

Mica2Dot 512

Mica2 512

Telos 128

In this paper, we propose a hop-by-hop transport protocol, Transport Protocol
with Acknowledgement-assisted Storage Management (Acksis). Acksis provides
an innovative storage management feature in order to enhance the network de-
livery rate without losing delivery speed. We disable the link-layer ACKs in
Acksis in order to reduce energy spent on overhead. We also take advantage of
in-network storage and overhearing to reduce the number of end-to-end retrans-
missions when packet loss happens.

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 59

The rest of the paper is organized as follows: in Section 2 we study several
existing transport protocols. Section 3 describes Acksis in detail. In Section 4
we explain the simulator set up and analyze the performance. The conclusion is
drawn in Section 5.

2 Related Works

STCP [4], ART [17], Flush [5], RCRT [10] and Hop [8] are transport protocols
that have been designed in recent years to provide both end-to-end reliability and
congestion control. STCP and RCRT implement end-to-end congestion control,
while ART, Flush and Hop implement hop-by-hop congestion control. Hop-by-
hop congestion control is more appropriate for intermittently connected networks
than end-to-end congestion control, since end-to-end congestion control is less
effective when there typically is no contemporaneous path in a network. However,
the end-to-end reliability of STCP, Flush and RCRT relies on the source to
provide loss recovery, which is not effective in intermittently connected scenarios.

Hop-by-hop reliability takes advantage of in-network storage such that loss
recovery can happen through the use of cached data in the intermediate motes
instead of only relying on the source to retransmit. This is more efficient and
less expensive than relying on the source to provide loss recovery. However, in
WSNs the mote storage capability is limited which makes the in-network storage
less desirable than in networks where there is plenty of storage. GARUDA [11],
PSFQ [19] and ART provide packet level reliability in a hop-by-hop manner
but only for downstream data. The motivation is that the amount of data sent
from the sink to other motes is small, so storage management is not a significant
problem. Hop, DTNS [9], RMST [16] and RBC [22] provide upstream transport
reliability, but are more suitable for networks where storage capability is not a
problem.

Table 2 provides an attribute comparison of the mentioned transport proto-
cols. It is easily to see that Hop is the only protocol that provides packet-level,
end-to-end reliability in both directions and hop-by-hop congestion control. In
Hop, data is packed into blocks, which are forwarded to the next hop through
backpressure routing. In-network storage is used by Hop to achieve end-to-end
reliability.

In-network storage and hop-by-hop transport resolve the problems of reliabil-
ity and congestion control in intermittently connected networks more efficiently
than end-to-end recovery and congestion control. The storage limitation of motes
makes existing protocols, such as Hop, less attractive for intermittently con-
nected WSNs. Storing every packet that is received or overheard until packets
out of date works under the condition that traffic is light, contention and colli-
sions are infrequent, noise is low, and the storage capability is not a bottleneck.
If traffic load is high, contention and collision happen frequently or transmission
is lossy, motes risk encountering storage overflow, making end-to-end reliability
difficult to guarantee.

60 Y. Li, R. Bartos, and J. Swan

Table 2. Attribute comparison of transport protocols mentioned in Section 2

Protocols Reliability Congestion
Control

Storage Man-
agement

Type Level Direction Type

STCP end-to-end custom upstream end-to-end clean buffer for
continuous flows

Flush end-to-end packet upstream hop-by-hop N/A

RCRT end-to-end packet upstream end-to-end N/A

ART hop-by-hop packet (down-
stream)/event
(upstream)

both hop-by-hop N/A

Hop hop-by-hop packet both hop-by-hop N/A

GARUDA hop-by-hop packet downstream N/A N/A

PAFQ hop-by-hop packet downstream N/A N/A

DTNS hop-by-hop packet upstream N/A clean buffer, no
control on buffer
size

RMST hop-by-hop packet upstream N/A N/A

RBC hop-by-hop packet upstream N/A N/A

3 Transport Protocol with Acknowledgement-Assisted
Storage Management

Hop-by-hop transport and in-network storage are suitable for intermittently con-
nected WSNs. Hop-by-hop congestion control can react rapidly after congestion
is detected. In-network storage can significantly reduce the number of end-to-end
recoveries under the condition that the storage is plentiful. In WSNs, this as-
sumption is not appropriate, since the storage capability of motes is very limited.
Moreover, because of the requirement for low cost motes, to add extra storages
to motes is not an optimal solution. Hence, storage limitations must be taken
into consideration for in-network storage in WSNs. Otherwise, the network could
be overloaded, and its performance will be degraded.

Acksis implements end-to-end reliability and congestion control in a hop-by-
hop manner. It employs overhearing and in-network storage to reduce end-to-end
retransmissions when packet loss happens. It also takes advantage of backpres-
sure and acknowledgement messages to achieve congestion control and to man-
age mote storage in order to minimize storage overflow and increase delivery rate
without sacrificing delivery speed.

3.1 Protocol Overview

In Acksis, packets are grouped into blocks to send. The block size is pre-calculated
through the number of motes in a network and the minimum storage size of motes

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 61

in the network, which will be explained in Subsection 3.3. An example of Acksis
communication is shown in Figure 1. Figure 2 is the state diagram of storage
management of Acksis.

X

X

X

X
X
X

packet

FIN

RPLY

RFIN

E2ERPLY

packet 1
packet 2

packet 2

lost

packet 2 lost

packet 2

no lost packet

block 1 end

block 1 end

block 1
end

Is block 1 complete received?

packet 1
packet 2
block 1

end
Is block 1 complete received?

packet 1 lost

packet 2 lost

packet 1
packet 2
block 1 end

Destination completely

received block 1.

Destination completely

received block 1.

block 1

FIN
timeout

FIN
timeout

block 1 end

RFIN
timeout

Source DestinationMiddle mote

RFIN
timeout

Fig. 1. One example of Acksis communication

There are four acknowledgement messages in Acksis:

FIN: sent by a block B’s sender to B’s receiver after the last packet of B is
sent, to indicate the end of the block to the receiver.

RPLY: sent by B’s receiver to B’s sender after the receiver receives the FIN
of B to guarantee hop-by-hop reliability. If there is packet loss, indicate the
lost packet number in the message.

62 Y. Li, R. Bartos, and J. Swan

Fig. 2. State diagram of storage management of Acksis

E2ERPLY: sent by B’s destination to B’s source after B has been received
completely to notify that B has been received by the destination success-
fully. Motes execute storage management when they receive or overhear an
E2ERPLY message, which will be interpreted in Subsection 3.4.

RFIN: sent by B’s source if it does not receive E2ERPLY of B after a certain
period of time to guarantee end-to-end reliability.

Figure 1 shows an example packet exchange between motes using Acksis. During
this communication process, motes execute storage management when they re-
ceive or overhear a packet or E2ERPLY message according to the state machine
in Figure 2. In the rest of this subsection, we outline how Acksis works.

Initially, a sender sends a block B to a receiver followed by a FIN message.
The receiver stores packets of B that have not been cached in its storage while
increasing its backlog value by one per packet. Any mote that overhears the
transmission will store overheard packets that are not already stored. After re-
ceiving the FIN message of B, the receiver checks for lost packets in B before
sending an RPLY message to the sender. When the sender receives the RPLY
message, it retransmits any lost packets. This process continues until the re-
ceiver completely receives B. If there are no lost packets, the sender decreases
its backlog value by the block size.

If several motes send FIN messages to the same receiver simultaneously, then
the receiver serves the first arriving FIN message. A mote does not acknowledge
more FIN messages until it forwards one more block to a downstream mote. If
there is no RPLY message received before timeout, the sender resends the FIN
message. The sender cannot send more blocks if the current one has not been
completely received by the receiver.

When B reaches its destination, the destination sends out an E2ERPLY mes-
sage toB’s source.When an intermediate mote receives the E2ERPLYmessage, it
deletes the cachedB from its storage, and forwards the E2ERPLYmessage to the
next hop. If the E2ERPLYmessage reaches B’s source before timeout, the source
deletesB from its storage and is ready to send the next block.Otherwise, the source
sends an RFIN message. Motes that overhear the E2ERPLY message remove B
from their storage, but do not forwarded the E2ERPLYmessage further.

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 63

When a mote receives the RFIN message for B, it searches the storage to
see whether all packets within B are cached. If there are missing packets, the
mote sends an RPLY message to the sender of the RFIN message to ask for a
retransmission. The process continues until the mote receives the whole block
B. It then forwards the RFIN message to the next hop. If there are no missing
packets, the RFIN message is forwarded to the next mote directly. If the mote
is the destination, an E2ERPLY message for B will be sent out.

The main differences between Acksis and Hop [8]:

– In Acksis, the block size is pre-calculated through the number of motes in a
network and the minimum storage size of motes in the network, which will
be illustrated in Subsection 3.3.

– In Acksis, motes take advantage of the received and overheard E2ERPLY
message to manage the storage.

3.2 Congestion Control and Flow Control

Acksis employs three mechanisms to provide congestion control in a hop-by-hop
manner.

1. Backpressure. Each mote maintains a backlog table of its neighbors’ queue
lengths, and periodically sends its queue length to its neighbors to update
their backlog tables. When a mote receives one uncached packet, its queue
length is increased by one. After completely forwarding a block to the next
hop, its queue length is decreased by the size of the block. The next hop is
the neighbor with the shortest queue length.

2. RPLY block. A mote cannot send more blocks if the current one has not
been completely received by the receiver.

3. FIN constrain. A mote replies to one FIN message in a first come first
serve manner if it receives more than one simultaneously.

Backpressure is a method to signal the congestion level. The longer a neighbor’s
queue length is, the more congested the neighbor is. Leveraging of backpressure
can alleviate the congestion by directing traffic to the paths with lighter traffic
load. Moreover, by picking routing paths through backpressure, a mote can react
to the congestion rapidly, which is more appropriate to intermittently connected
networks. The RPLY block and FIN constrain can alleviate the congestion
by withholding sending blocks until the congestion is relieved.

In Acksis, the flow control is achieved through E2ERPLY lock ensuring
that a source cannot inject more blocks into the network until it receives the
E2ERPLYmessage for the block it just sent. There are two reasons leading to the
source failing to receive the E2ERPLY before the timeout: network congestion
and signal attenuation. Both are valid reasons not to inject new blocks into the
network. Waiting for an E2ERPLY message before injecting new blocks can help
to relieve the overall network congestion.

64 Y. Li, R. Bartos, and J. Swan

3.3 Block Size Calculation

In this study, the block size in Acksis is determined on the basis of the number
of motes in the network and the minimum storage size of motes. The size is
pre-calculated and shipped with motes when the network is deployed initially.
The block size equals the floor of the minimum storage size of motes divided by
the number of motes in the network:

BlockSize =
⌊Min(StorageSize(i))

count(S)

⌋
, ∀i ∈ S (1)

where S is the set of motes in the network, and i is an individual mote.
The idea of the block size calculation is based on a worst case consideration

in this study for simplicity, but do not exclude other methods in future work. A
mote can only receive or overhear transmissions from one-hop neighbors, since
only two motes can be in the same communication range in this pre-planned
network. Due to E2ERPLY lock, each source can inject one block into the net-
work before it receives an E2ERPLY for the block it sent. The worst case is
that a mote needs to cache all blocks from the rest of motes in the network. If
there is not enough space available, the storage of the mote will overflow causing
unnecessary retransmissions. Equation 1 reduces the probability of overflow by
letting each mote reserve space for the transmissions from other motes in the
network.

3.4 Storage Management

The goal of Acksis storage management is to save storage space for valuable
packets without causing unnecessary retransmissions, and control storage size
to minimize overflow. Simply saving every packet a mote received or overheard
may cause the storage overflow resulting in packet loss. Simply dropping the
oldest packets can also cause unnecessary retransmissions. Without storage size
control, blindly transmitting packets to motes without sufficient available space
causes overflow and wasted energy. All of these negatively affect the network
performance.

Acksis solves the storage management problem through three mechanisms:

1. Block size calculation. This is explained in Subsection 3.3.
2. Duplicate checking. Checking the storage before caching a packet. If the

packet has not been cached yet, it is cached. Otherwise, it is dropped.
3. Buffer cleaning. Checking the storage after receiving or overhearing an

E2ERPLY message. If there are packets in the block indicated by the
E2ERPLY message cached in the storage, they are deleted.

Mechanism 1 avoids transmitting packets to motes without sufficient free storage
in a worst case scenario, which is elaborated in detail in the Subsection 3.3.
Mechanism 2 saves space by avoiding repeatedly caching packets, which greatly
reduces the opportunity of storage overflow. Mechanism 3 deletes the packets

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 65

that already arrive at the destination from storage in order to save spaces for
valuable packets. Together these mechanisms significantly reduce the packet loss
caused by storage overflow.

4 Simulator and Experiments

4.1 Simulator and Experiment Setup

TinyOS [6] is a popular operation system designed for low-power wireless devices
such as motes used in WSNs. TOSSIM [7] is a discrete event simulator for
TinyOS sensor networks. TOSSIM models the network in a weighted, directed
graph, G = {V,A}. Weights of A specify the receive signal power between two
nodes.

In this study, we implement the Acksis protocol and Hop protocol on TinyOS.
The Hop protocol is designed for a regular mesh wireless network where the stor-
age is not extremely limited. So it stores every packet motes receive or overhear.
In order to investigate the performance of acknowledgement-assisted storage
management of Acksis, we implement a modified Hop allowing motes to check
their storage before caching packets and store the packets that have not been
cached yet. This eliminates performance improvements of duplicate checking and
allows us to focus on the improvements due to the buffer cleaning of Acksis pro-
tocol. We also want to compare Acksis with protocols designed for WSN, so we
chose Collection Tree Protocol (CTP) as an example, which is a common WSN
communication protocol. All four protocols are tested in TOSSIM. In the fol-
lowing experiment analysis, Hop is the original Hop protocol that motes store
everything they receive or overhear without duplicate checking. Modified Hop
has the duplicate checking, storing packets that are not already cached by the
motes. CTP sends sequential packets without interval. CTP(2s) has two seconds
sending interval between two consequent packets. When comparing Acksis, Hop
and Modified Hop, these protocols use the same block size and same beacon
timer for motes to exchange backlog tables with neighbors, in order to focus on
the performance of storage management.

We ran the experiments on a 7 × 7 grid with the receive signal power over
each edge of −60.0 dBm which is a typical value for wireless networks. Since
mote storage is limited and we want to investigate the performance of the
acknowledgement-assisted storage management of Acksis, we set the data packet
queue size of each mote to 50.

We use two metrics to evaluate the performance: delivery rate and delivery
speed. Delivery rate is the number of received distinct packets at the destination
divided by the total number of packets sent by the sources. Delivery speed is
the number of packets sent by sources divided by the time to receive all of them
at the destination. If there are packet losses, the time is the sum of the actual
time to receive the last received packet and the estimation time to receive the
rest of the packets. The higher the loss rate is, the longer the estimation time is.
Unlike throughput, delivery speed is not the overall transmission capability of
the network, but the speed to deliver a certain amount of data. Since TOSSIM

66 Y. Li, R. Bartos, and J. Swan

does not consider energy consumption, we will inspect this metric in future
work. Each data point used for plotting is the average value of 100 runs of the
experiment.

4.2 Experiment Results and Performance Evaluation

Single Source. In the single source experiment, the protocols are tested in
light contention and collisions scenario. In this experiment we set the source to
be the top left mote of the grid and the destination to be the right bottom mote
of the grid. The block size of Acksis is one, which is calculated through Equation
1. Hop and Modified Hop use the same block size. The source sends out a flow of
packets. The runtime of each run is 30 minutes simulator time. Figure 3 shows
the delivery rates and delivery speeds of the protocols.

In Figure 3 (a), the delivery rate of Acksis and Modified Hop are very close
and high, and decrease slowly as the flow length increases. However, the delivery
rate of Hop is much lower than the other two, and decreases quickly with the
flow length increasing. The reason for the quick decrease in the delivery rate
of Hop is that the longer flows need more rounds to get delivered completely.
Therefore the probability of retransmission also increases, which leads to the
waste of mote storage for the duplicate packets. The longer the queue is, the
higher the probability of storage overflow, which results in the delivery rate
of Hop decreasing quickly. Collection Tree Protocol is designed for light traffic
scenarios, and has no end-to-end reliability guarantee. So it can reach 100 percent
delivery rate when it has two seconds sending interval. But when it has no
sending interval, its delivery rate decreases quickly with the flow length increase.

 0

 0.2

 0.4

 0.6

 0.8

 1

1(2%) 2(4%) 3(6%) 4(8%) 5(10%)

D
e
liv

e
ry

 r
a
te

Number of blocks (percentage of the mote storage)

Acksis

Hop

Modified Hop

CTP

CTP(2s)

(a) Acksis and Modified Hop have much
higher delivery rates than Hop. CTP has
the lowest delivery rate. CTP(2s) has a

perfect delivery rate.

 0

 1

 2

 3

 4

 5

 6

 7

1(2%) 2(4%) 3(6%) 4(8%) 5(10%)

D
e
liv

e
ry

 s
p
e
e
d
 (

p
a
c
k
e
ts

/s
e
c
o
n
d
)

Number of blocks (percentage of the mote storage)

Acksis

Hop

Modified Hop

CTP

CTP(2s)

(b) Acksis has higher speeds than Hop and
Modified Hop. CTP has the highest
delivery speed initially, but declines

quickly. CTP(2s) has comparatively low
delivery speed.

Fig. 3. Delivery rate and delivery speed comparison in a low contention and collision
scenario

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 67

In Figure 3 (b), the delivery speed of Acksis, Hop and Modified Hop decrease
with flow length increasing. However Acksis has higher delivery speed than the
other two. This is because Acksis deletes useless packets to save space, which
keeps the queue length comparatively shorter than Hop and Modified Hop. So
the queue time of packets in Acksis is comparatively less than the other two.
CTP has good delivery speed initially, but due to its high loss rate the delivery
speed decreases quickly. CTP(2s) has a fairly low delivery speed because of the
two seconds sending interval.

Fig. 4. Network layout for the experiment with multiple sources

Multiple Sources. In the multiple sources experiment, the protocols are tested
in a high contention and collision scenario. In this experiment, we increase the
number of sources from left to right diagonally. Figure 4 shows how the sources
increase in this experiment. Initially, only the top left green mote transmits,
which accounts for 1% of all motes. Next, the three green motes on the left of
the 3(6%) diagonal start transmitting. The sources continue to increase until all
the green motes in the grid start transmitting, which accounts for 57% of all
motes. All sources send simultaneously. The runtime of each run is 30 minute
simulator time. The block size for Acksis, Hop and Modified is one. Each source
sends a single packet. So in this experiment, contention and collision increase as
the percentage of sources increase. Figure 5 shows the delivery rates and delivery
speeds of the protocols under the multiple sources scenario.

In Figure 5 (a), the delivery rate of Acksis is higher than Hop and Modified
Hop. This is because Acksis has comparatively higher delivery speed than the
other two, which is shown in Figure 5 (b). The higher the delivery speed, the more
packets can be delivered during a certain period. As discussed in the previous
experiment, the queue lengths of motes implementing Acksis are comparatively

68 Y. Li, R. Bartos, and J. Swan

 0

 0.2

 0.4

 0.6

 0.8

 1

1(1%)3(6%) 6(12%) 10(20%) 15(30%) 21(42%) 28(57%)

D
e
liv

e
ry

 r
a
te

Number of sources (percentage of motes)

Acksis

Hop

Modified Hop

CTP

CTP(2s)

(a) Acksis has better delivery rates than
Hop and Modified Hop. CTP and CTP(2s)
have the lowest and very close delivery

rates.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1(1%)3(6%) 6(12%) 10(20%) 15(30%) 21(42%) 28(57%)

D
e
liv

e
ry

 s
p
e
e
d
 (

p
a
c
k
e
ts

/s
e
c
o
n
d
)

Number of sources (percentage of motes)

Acksis

Hop

Modified Hop

CTP

CTP(2s)

(b) Acksis has higher delivery speeds than
Hop and Modified Hop. CTP has the

highest delivery speed initially, but declines
quickly. CTP(2s) has the lowest delivery

speed all the time.

Fig. 5. Delivery rate and delivery speed comparison in a high contention and collision
scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

1(1%)3(6%) 6(12%) 10(20%) 15(30%) 21(42%) 28(57%)

D
e
liv

e
ry

 r
a
te

Number of sources (percentage of motes)

Acksis block size 1

Acksis block size 5

(a) Acksis with block size 1 has better
delivery rates when more than 40% motes

are sources.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1(1%)3(6%) 6(12%) 10(20%) 15(30%) 21(42%) 28(57%)

D
e
liv

e
ry

 s
p
e
e
d
 (

p
a
c
k
e
ts

/s
e
c
o
n
d
)

Number of sources (percentage of motes)

Acksis block size 1

Acksis block size 5

(b) Acksis with block size 1 has a lower
delivery speeds because it takes more

rounds to send one flow than Acksis with
block size 5.

Fig. 6. Delivery rates and delivery speeds of different block sizes

shorter than that of the motes implementing Hop and Modified Hop. As a result,
the queue time of packets in Acksis is shorter than Hop and Modified Hop, and
the delivery speed of Acksis is higher than the other two protocols. When the
number of sources increases, the delivery rates of Acksis and Modified Hop get
close, since the delivery speed of the two protocols also gets close. The reason for
this change is the flow control mechanism. When there are more motes injecting
packets into the network, the E2ERPLY buffer cleaning will not change the
queue length much. Hence, the difference in mote queue length in these two
protocols is insignificant, so that the delivery speeds of the two protocols are
getting closer as the number of sources increase. The delivery rate and delivery

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 69

speed of Hop decreases quickly when more than 40% of the motes are sources.
In Hop, motes store every packet received or overheard which causes storage
overflows that degrades the performance. Due to a lack of end-to-end reliability
and the capability to deal with heavy traffic, both CTP and CTP(2s) have the
lowest delivery rates and delivery speeds.

Different Block Sizes. The block size does affect the performance of Acksis.
In the different block sizes experiment, Acksis with different block sizes is tested
under a high contention and collision scenario. In this experiment, the sources
are selected in the same fashion as in multiple sources experiment. But, instead
of each source sending a single packet, a flow of five packets needs to be sent by
each source. Acksis with block size 5 sends one flow at one time, while Acksis
with block size one needs five rounds to send one flow. The runtime of the
experiment is 60 minute simulator time. Figure 6 shows the delivery rates and
delivery speeds of each condition.

In Figure 6 (a), the delivery rates of Acksis with both sizes decrease as the
number of sources increase. When more than 40% of motes are sources, Acksis
with block size one has a better delivery rate than Acksis with block size five,
since storages overflow happens when the block size is five.

In Figure 6 (b), Acksis with block size five has higher delivery speeds than
Acksis with block size one. Because when sending the same flow, Acksis with
block size five needs fewer rounds than Acksis with block size one.

This experiment exposes the weakness of the block size calculation in Acksis:
the network resources are not sufficiently utilized when the traffic load is light.
We are starting to address this problem by implementating an optimal block
size calculation and will evaluate it in future work.

5 Conclusions and Future Work

This paper proposes a hop-by-hop transport protocol, Acksis, for intermittently
connected WSNs, which supplies end-to-end reliability, congestion control and
storage management. Acksis can provide a higher delivery rate and delivery
speed even in a high contention and collision scenario than other hop-by-hop
transport protocols with in-network storage that do not employ sufficient storage
management. This is achieved by the storage management mechanisms of Acksis:
block size calculation, checking duplicates before caching a packet and removing
cached packets that have been confirmed by their destinations.

There are further opportunities for improvement of Acksis. In order to avoid
overflow even in the high traffic load situations, the block size is pre-calculated,
which leads to mote storage underutilization in low traffic load situations. Be-
cause the small block size needs more rounds to completely deliver a flow, the
delivery speed is reduced. In our future work, we optimize block size decision
making to imporve the network resource utilization. This optimization can also
improve the scalability of Acksis, and help to ameliorate congestion control by
allowing more blocks from a single source in flight. In addition, we will evaluate

70 Y. Li, R. Bartos, and J. Swan

the performance of Acksis on a delay-tolerant simulator and compare it with
more WSN communication protocols, since it is hard to model the intermittent
connectivity in TOSSIM. The network transmission capability of Acksis will also
be inspected.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002),
http://www.sciencedirect.com/science/article/pii/S1389128601003024

2. Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K.,
Weiss, H.: Delay-tolerant networking architecture (2007),
http://www.ietf.org/rfc/rfc4838.txt

3. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Pro-
ceedings of the 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM 2003, pp. 27–34. ACM, New
York (2003), http://doi.acm.org/10.1145/863955.863960

4. Iyer, Y., Gandham, S., Venkatesan, S.: STCP: a generic transport layer protocol for
wireless sensor networks. In: Proceedings of the 14th International Conference on
Computer Communications and Networks (ICCCN 2005), pp. 449–454 (October
2005)

5. Kim, S., Fonseca, R., Dutta, P., Tavakoli, A., Culler, D., Levis, P., Shenker, S.,
Stoica, I.: Flush: a reliable bulk transport protocol for multihop wireless net-
works. In: Proceedings of the 5th International Conference on Embedded Net-
worked Sensor Systems, SenSys 2007, pp. 351–365. ACM, New York (2007),
http://doi.acm.org/10.1145/1322263.1322296

6. Levis, P., Gay, D.: TinyOS Programming. Cambridge University Press (2009)
7. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simulation

of entire TinyOS applications. In: Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems, SenSys 2003, pp. 126–137. ACM, New
York (2003), http://doi.acm.org/10.1145/958491.958506

8. Li, M., Agrawal, D., Ganesan, D., Venkataramani, A.: Block-switched networks: a
new paradigm for wireless transport. In: Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 423–436. USENIX
Association, Berkeley (2009),
http://dl.acm.org/citation.cfm?id=1558977.1559006

9. Marchi, B., Grilo, A., Nunes, M.: DTSN: Distributed transport for sensor networks.
In: IEEE Symposium on Computers and Communications (ISCC 2007), pp. 165–
172 (July 2007)

10. Paek, J., Govindan, R.: RCRT: Rate-controlled reliable transport protocol for
wireless sensor networks. ACM Transactions on Senensor Networks 7, 20:1–20:45
(2010), http://doi.acm.org/10.1145/1807048.1807049

11. Park, S.J., Vedantham, R., Sivakumar, R., Akyildiz, I.F.: A scalable approach
for reliable downstream data delivery in wireless sensor networks. In: Pro-
ceedings of the 5th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, MobiHoc 2004, pp. 78–89. ACM, New York (2004),
http://doi.acm.org/10.1145/989459.989470

12. Polastre, J., Szewczyk, R., Sharp, C., Culler., D.: The mote revolution: Low power
wireless sensor network devices. In: IEEE HotChips 16 (August 2004)

http://www.sciencedirect.com/science/article/pii/S1389128601003024
 http://www.ietf.org/rfc/rfc4838.txt
http://doi.acm.org/10.1145/863955.863960
http://doi.acm.org/10.1145/1322263.1322296
http://doi.acm.org/10.1145/958491.958506
http://dl.acm.org/citation.cfm?id=1558977.1559006
http://doi.acm.org/10.1145/1807048.1807049
http://doi.acm.org/10.1145/989459.989470

Acksis Protocol for Intermittently Connected Wireless Sensor Networks 71

13. Prodhan, A.T., Das, R., Humayun, K., Shoja, G.C.: TTL based routing in oppor-
tunistic networks. Journal of Network and Computer Applications 34, 1660–1670
(2011), http://dx.doi.org/10.1016/j.jnca.2011.05.005

14. Saleem, A.B.: Performance Evaluation of The Cache and Forward Link Layer Pro-
tocol in Multihop Wireless Subnetworks. Master’s thesis, Rutgers University (2008)

15. Soares, J.M., Franceschinis, M., Rocha, R.M., Zhang, W., Spirito, M.A.: Oppor-
tunistic data collection in sparse wireless sensor networks. EURASIP Journal on
Wireless Communications Networking, 6:1–6:20 (January 2011),
http://dx.doi.org/10.1155/2011/401802

16. Stann, F., Heidemann, J.: RMST: reliable data transport in sensor networks. In:
Proceedings of the First IEEE International Workshop on Sensor Network Proto-
cols and Applications, pp. 102–112 (May 2003)

17. Tezcan, N., Wang, W.: ART: an asymmetric and reliable transport mechanism
for wireless sensor networks. International Journal of Sensor Network 2, 188–200
(2007), http://dl.acm.org/citation.cfm?id=1359004.1359009

18. Tian, Y., Xu, K., Ansari, N.: TCP in wireless environments: problems and solu-
tions. IEEE Communications Magazine 43(3), S27–S32 (2005)

19. Wan, C.Y., Campbell, A.T., Krishnamurthy, L.: PSFQ: a reliable transport pro-
tocol for wireless sensor networks. In: Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, WSNA 2002, pp. 1–11.
ACM, New York (2002), http://doi.acm.org/10.1145/570738.570740

20. Wang, Y., Wu, H.: Delay/fault-tolerant mobile sensor network (DFT-MSN): A
new paradigm for pervasive information gathering. IEEE Transactions on Mobile
Computing 6(9), 1021–1034 (2007)

21. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer
Networks 52(12), 2292–2330 (2008), http://www.sciencedirect.com/science/

article/B6VRG-4S8TBBT-1/2/b242d2fd1f6d2cf5c6fce0a24c4cb029

22. Zhang, H., Arora, A., Choi, Y.R., Gouda, M.G.: Reliable bursty convergecast in
wireless sensor networks. In: Proceedings of the 6th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc 2005, pp. 266–276. ACM,
New York (2005), http://doi.acm.org/10.1145/1062689.1062724

http://dx.doi.org/10.1016/j.jnca.2011.05.005
http://dx.doi.org/10.1155/2011/401802
http://dl.acm.org/citation.cfm?id=1359004.1359009
http://doi.acm.org/10.1145/570738.570740
http://www.sciencedirect.com/science/article/B6VRG-4S8TBBT-1/2/b242d2fd1f6d2cf5c6fce0a24c4cb029
http://www.sciencedirect.com/science/article/B6VRG-4S8TBBT-1/2/b242d2fd1f6d2cf5c6fce0a24c4cb029
http://doi.acm.org/10.1145/1062689.1062724

Iterative Approximate Byzantine Consensus

under a Generalized Fault Model�

Lewis Tseng1,3 and Nitin Vaidya2,3

1 Department of Computer Science
2 Department of Electrical and Computer Engineering, and

3 Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

{ltseng3,nhv}@illinois.edu

Abstract. In this work, we consider a generalized fault model [7,9,5]
that can be used to represent a wide range of failure scenarios, including
correlated failures and non-uniform node reliabilities. Under the gener-
alized fault model, we explore iterative approximate Byzantine consen-
sus (IABC) algorithms [15] in arbitrary directed networks. We prove a
tight necessary and sufficient condition on the underlying communication
graph for the existence of IABC algorithms.

We propose a new IABC algorithm for the generalized fault model,
and present a transition matrix-based proof to show the correctness of
the proposed algorithm. While transition matrices have been used to
prove correctness of non-fault-tolerant consensus [6], this paper is the
first to extend the technique to Byzantine fault-tolerant algorithms.

Keywords: iterative consensus, graph property, generalized fault model.

1 Introduction

Dolev et al. [3] introduced the notion of approximate Byzantine consensus by
relaxing the requirement of exact consensus [12]. The goal in approximate con-
sensus is to allow the fault-free nodes to agree on values that are approximately
equal to each other (and not necessarily exactly identical). The fault model as-
sumed in much of the work on Byzantine consensus allows up to f Byzantine
faulty nodes in the network. We will refer to this fault model as the “f -total”
fault model [11,10,3,12]. In prior work, other fault models have been explored
as well. For instance, in the “f -local” fault model, up to f neighbors of each
node in the network may be faulty [8,1,11]. In this paper, we consider a gener-
alized fault model (to be described in the next section), which is similar to the
fault model presented in [7,9,5]. The generalized fault model specifies a “fault

� This research is supported in part by National Science Foundation award CNS
1059540 and Army Research Office grant W-911-NF-0710287. Any opinions, find-
ings, and conclusions or recommendations expressed here are those of the au-
thors and do not necessarily reflect the views of the funding agencies or the U.S.
government.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 72–86, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Iterative Approximate Byzantine Consensus 73

domain”, which is a collection of feasible fault sets. For example, in a system
consisting of four nodes, namely, nodes 1, 2, 3 and 4, the fault domain could be
specified as F = { {1}, {2, 3, 4} }. Thus, in this case, either node 1 may be faulty,
or any subset of nodes in {2, 3, 4} may be faulty. However, node 1 may not be
faulty together with another node in the same execution. This fault model is
general in the sense that the other fault models, such as f -total, and f -local
models, are special cases of the generalized fault model.

In this work, we consider “iterative” algorithms for achieving approximate
Byzantine consensus in synchronous point-to-point networks that are modeled
as arbitrary directed graphs. The iterative approximate Byzantine consensus
(IABC) algorithms [15] of interest have the following properties:

– Initial state of each node is equal to a real-valued input provided to that
node.

– Memory-less: the computation of new state at each node is based only on
local information, i.e., node’s own state and states from neighboring nodes.

– Validity condition: After each iteration of an IABC algorithm, the state of
each fault-free node must remain in the convex hull of the states of the
fault-free nodes at the end of the previous iteration.

– Convergence condition: For any ε > 0, there exists an iteration r such that
the states of the fault-free nodes are guaranteed to be within ε in every
iteration r′ ≥ r.

1.1 Main Contributions

This paper is a generalization of our recent work on IABC algorithms under the
f -total fault model [15]. There are two contributions of this paper:

– We identify a necessary (Section 4) condition on the underlying communi-
cation graph for the existence of a correct IABC algorithm under the gen-
eralized fault model. Moreover, we show that the necessary condition is also
sufficient by introducing a new IABC algorithm for the generalized fault
model (Section 5) that uses only “local” information.

– We present a transition matrix representation [14] of the new IABC
algorithm (Section 6). This representation is then used to prove the cor-
rectness of the proposed algorithm (Section 6.4). Transition matrices have
been used previously to prove correctness of non-fault-tolerant consensus [6].
However, this paper is the first to develop transition matrix representation
for Byzantine fault-tolerant consensus. We make the following observation:
for a given evolution of the state vector corresponding to the state of the
fault-free nodes, many alternate state transition matrices may potentially
be chosen to emulate that evolution correctly. However, for any given state
evolution, we can suitably “design” the transition matrices so that the clas-
sical results on matrix products can be applied to prove convergence of our
algorithm in all networks that satisfy the necessary condition.

74 L. Tseng and N. Vaidya

2 Models

Communication Model: The system is assumed to be synchronous. The
communication network is modeled as a simple directed graph G(V , E), where
V = {1, . . . , n} is the set of n nodes, and E is the set of directed edges between
the nodes in V . We assume that n ≥ 2, since the consensus problem for n = 1 is
trivial. Node i can reliably transmit messages to node j if and only if the directed
edge (i, j) is in E . Each node can send messages to itself as well; however, for
convenience, we exclude self-loops from set E . That is, (i, i) �∈ E for i ∈ V . With a
slight abuse of terminology, we will use the terms edge and link interchangeably
in our presentation.

For each node i, let N−
i be the set of nodes from which i has incoming edges.

That is, N−
i = { j | (j, i) ∈ E }. Similarly, define N+

i as the set of nodes to which
node i has outgoing edges. That is, N+

i = { j | (i, j) ∈ E }. Nodes in N−
i and N+

i

are, respectively, said to be incoming and outgoing neighbors of node i. Since
we exclude self-loops from E , i �∈ N−

i and i �∈ N+
i . However, we note again that

each node can indeed send messages to itself.

Generalized Byzantine Fault Model: A Byzantine faulty node may misbe-
have arbitrarily. Possible misbehavior includes transmitting incorrect and mis-
matching (or inconsistent) messages to different neighbors. The faulty nodes may
collaborate with each other. Moreover, the faulty nodes are assumed to have a
complete knowledge of the execution of the algorithm, including the states of all
the nodes, the algorithm specification, and the network topology.

The generalized fault model we consider is similar to fault models presented in
[7,9,5]. The generalized fault model is characterized using fault domain F ⊆ 2V

as follows: Nodes in set F may fail during an execution of the algorithm only if
there exists set F ∗ ∈ F such that F ⊆ F ∗. Set F is then said to be a feasible
fault set.

Definition 1. Set F ⊆ V is said to be a feasible fault set, if there exists F ∗ ∈ F
such that F ⊆ F ∗.

Thus, each set in F specifies nodes that may all potentially fail during a single
execution of the algorithm. This feature can be used to capture the notion of
correlated failures. For example, consider a system consisting of four nodes,
namely, nodes 1, 2, 3, and 4. Suppose that

F = { {1}, {2}, {3, 4} }.

This definition of F implies that during an execution either (i) node 1 may
fail, (ii) node 2 may fail, or (iii) any subset of {3, 4} may fail, and no other
combination of nodes may fail (e.g., nodes 1 and 3 cannot both fail in a single
execution). In this case, the reason that the set {3, 4} is in the fault domain may
be that the failures of nodes 3 and 4 are correlated.

Iterative Approximate Byzantine Consensus 75

The generalized fault model is also useful to capture variations in node reli-
ability [7,9,5]. For instance, in the above example, nodes 1 and 2 may be more
reliable than nodes 3 and 4. Therefore, while nodes 3 and 4 may fail in the same
execution, nodes 1 and 2 are less likely to fail together in the same execution.
Therefore, {1, 2} �∈ F .

Local knowledge of F : To implement our IABC Algorithm presented in Section
5, it is sufficient for each node i to know N−

i ∩F , for each feasible fault set F . In
other words, each node only needs to know the set of its incoming neighbors that
may fail in the same execution of the algorithm. Thus, the iterative algorithm
can be implemented using only “local” information regarding F .

3 Iterative Approximate Byzantine Consensus (IABC)
Algorithms

In this section, we describe the structure of the IABC algorithms of interest, and
state the validity and convergence conditions that they must satisfy.

Each node i maintains state vi, with vi[t] denoting the state of node i at the
end of the t-th iteration of the algorithm. Initial state of node i, vi[0], is equal
to the initial input provided to node i. At the start of the t-th iteration (t > 0),
the state of node i is vi[t− 1]. The IABC algorithms of interest will require each
node i to perform the following three steps in iteration t, where t > 0. Note that
the faulty nodes may deviate from this specification.

1. Transmit step: Transmit current state, namely vi[t−1], on all outgoing edges
and self-loop (to nodes in N+

i and node i itself).
2. Receive step: Receive values on all incoming edges and self-loop (from nodes

in N−
i and itself). If the node does not receive the message from an incoming

neighbor, the message value is assumed to be equal to some default value.
Denote by ri[t] the vector of values received by node i from its incoming
neighbors and itself. The size of vector ri[t] is |N−

i |+ 1.
3. Update step: Node i updates its state using a transition function Zi as follows.

Zi is a part of the specification of the algorithm, and takes the vector ri[t]
as the input.

vi[t] = Zi (ri[t]) (1)

The following conditions must be satisfied by an IABC algorithm when the set
of faulty nodes (in a given execution) is F :

– Validity: ∀t > 0, and all fault-free nodes i ∈ V − F ,
vi[t] ≥ minj∈V−F vj [t− 1] and vi[t] ≤ maxj∈V−F vj [t− 1].1

– Convergence: for all fault-free nodes i, j ∈ V −F , lim t→∞ (vi[t]−vj[t]) = 0

1 For sets X and Y , X − Y contains elements that are in X but not in Y . That is,
X − Y = {i | i ∈ X, i �∈ Y }.

76 L. Tseng and N. Vaidya

An IABC algorithm is said to be correct if it satisfies the above validity and
convergence conditions in the given graph G(V , E). For a given fault domain F
for graph G(V , E), the objective here is to identify the necessary and sufficient
conditions for the existence of a correct IABC algorithm.

4 Necessary Condition

In this section, we develop a necessary condition for the existence of a correct
IABC algorithm. The necessary condition will be proved to be also sufficient in
Section 6.

4.1 Preliminaries

To facilitate the statement of the necessary condition, we first introduce the
notions of “source component” and “reduced graph” using the following three
definitions.

Definition 2. Graph Decomposition: Let H be a directed graph. Partition
graph H into strongly connected components, H1, H2, · · · , Hh, where h is a non-
zero integer dependent on graph H, such that

– every pair of nodes within the same strongly connected component has di-
rected paths in H to each other, and

– for each pair of nodes, say i and j, that belong to two different strongly
connected components, either i does not have a directed path to j in H, or j
does not have a directed path to i in H, or both.

Construct a graph Hd wherein each strongly connected component Hk above is
represented by vertex ck, and there is an edge from vertex ck to vertex cl if and
only if the nodes in Hk have directed paths in H to the nodes in Hl. H

d is called
the decomposition graph of H.

It is known that for any directed graph H , the corresponding decomposition
graph Hd is a directed acyclic graph (DAG) [2].

Definition 3. Source Component: Let H be a directed graph, and let Hd be
its decomposition graph as per Definition 2. Strongly connected component Hk

of H is said to be a source component if the corresponding vertex ck in Hd is
not reachable from any other vertex in Hd.

Definition 4. Reduced Graph: For a given graph G(V , E) and a feasible fault
set F , a reduced graph GF (VF , EF) is obtained as follows:

– Node set is obtained as VF = V − F .
– For each node i ∈ VF , a feasible fault set Fx(i) is chosen, and then the edge

set EF is obtained as follows:

Iterative Approximate Byzantine Consensus 77

• remove from E all the links incident on the nodes in F , i.e., all the
incoming and outgoing links of nodes in F , and

• for each j ∈ Fx(i) ∩ VF ∩N−
i , remove link (j, i) from E.

Feasible fault sets Fx(i) and Fx(j) chosen for i �= j may or may not be
identical.

Note that for a given G(V , E) and a given F , multiple reduced graphs GF may
exist, depending on the choice of Fx sets above.

4.2 Necessary Condition

For a correct IABC algorithm to exist, the network graph G(V , E) must satisfy
the necessary condition stated in Theorem 1 below.

Theorem 1. Suppose that a correct IABC algorithm exists for G(V , E). Then,
any reduced graph GF , corresponding to any feasible fault set F , must contain
exactly one source component.

Proof Sketch: A complete proof is presented in our technical report [13].The
proof is by contradiction. Let us assume that a correct IABC algorithm exists,
and for some feasible fault set F , and feasible sets Fx(i) for each i ∈ V − F , the
resulting reduced graph contains two source components. Let L and R denote
the nodes in the two source components, respectively. Thus, L and R are disjoint
and non-empty. Let C = (V −F −L−R) be the remaining nodes in the reduced
graph. C may or may not be non-empty. Assume that the nodes in F (if non-
empty) are all faulty, and all the nodes in L, R, and C (if non-empty) are
fault-free. Suppose that each node in L has initial input equal to m, each node
in R has initial input equal to M , where M > m, and each node in C has an
input in the range [m,M]. As elaborated in [13], the faulty nodes can behave in
such a manner that, in each iteration, nodes in L and R are forced to maintain
their updated state equal to m and M , respectively, so as to satisfy the validity
condition. This ensures that, no matter how many iterations are performed, the
convergence condition cannot be satisfied. �

5 Algorithm 1

We will prove that there exists an IABC algorithm – particularly Algorithm
1 below – that satisfies the validity and convergence conditions provided that
the graph G(V , E) satisfies the necessary condition in Theorem 1. This implies
that the necessary condition in Theorem 1 is also sufficient. Algorithm 1 has the
three-step structure described in Section 3. This algorithm is a generalization –
to accommodate the generalized fault model – of iterative algorithms that were
analyzed in prior work [3,12,11], including in our own prior work as well [15].
The key difference from previous algorithms is in the Update step below. Now,
we describe the steps need to be followed by all the fault-free nodes in iteration
t (t > 0).

78 L. Tseng and N. Vaidya

Algorithm 1.

1. Transmit step: Transmit current state vi[t − 1] on all outgoing edges and
self-loop.

2. Receive step: Receive values on all incoming edges and self-loop. These values
form vector ri[t] of size |N−

i |+1 (including the value from node i itself). When
a fault-free node expects to receive a message from an incoming neighbor but
does not receive the message, the message value is assumed to be equal to
its own state, i.e., vi[t− 1].

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties
arbitrarily). Let D be a vector of nodes arranged in an order “consistent”
with ri[t]: specifically, D(1) is the node that sent the smallest value in ri[t],
D(2) is the node that sent the second smallest value in ri[t], and so on. The
size of vector D is also |N−

i |+ 1.
From vector ri[t], eliminate the smallest f1 values, and the largest f2 values,
where f1 and f2 are defined as follows:
– f1 is the largest number such that there exists a feasible fault set F ′ ⊆
N−

i containing nodes D(1), D(2), ..., D(f1). Recall that i �∈ N−
i .

– f2 is the largest number such that there exists a feasible fault set F ′′ ⊆
N−

i containing nodes D(|N−
i |−f2+2), D(|N−

i |−f2+3), ..., D(|N−
i |+1).

F ′ and F ′′ above may or may not be identical.
Let N∗

i [t] denote the set of nodes from whom the remaining |N−
i |+1−f1−f2

values in ri[t] were received, and let wj denote the value received from node
j ∈ N∗

i [t]. Note that i ∈ N∗
i [t]. Hence, for convenience, define wi = vi[t−1] to

be the value node i receives from itself. Observe that if j ∈ N∗
i [t] is fault-free,

then wj = vj [t− 1].
Define

vi[t] = Zi(ri[t]) =
∑

j∈N∗
i [t]

aiwj (2)

where

ai =
1

|N∗
i [t]|

=
1

|N−
i |+ 1− f1 − f2

The “weight” of each term on the right-hand side of (2) is ai, and these
weights add to 1. Also, 0 < ai ≤ 1. Although f1, f2 and ai may be different for
each iteration t, for simplicity, we do not explicitly represent this dependence
on t in the notations.

Observe that f1 + f2 nodes whose values are eliminated in the Update step
above are all in N−

i . Thus, the above algorithm can be implemented by node i
if it knows which of its incoming neighbors may fail in a single execution of the
algorithm; node i does not need to know the entire fault domain F as such.

The main difference between the Algorithm 1 and IABC algorithms in prior
work is in the choice of the values eliminated from vector ri[t] in the Update step.

Iterative Approximate Byzantine Consensus 79

The manner in which the values are eliminated ensures that the values received
from nodes D(f1 +1) and D(|N−

i |− f2 +1) (i.e., the smallest and largest values
that survive in ri[t]) are within the convex hull of the state of fault-free nodes,
even if nodes D(f1+1) and D(|N−

i |−f2+1) may not be fault-free. This property
is useful in proving algorithm correctness (as discussed below).

6 Sufficiency: Correctness of Algorithm 1

We will show that Algorithm 1 satisfies validity and convergence conditions,
provided that G(V , E) satisfies the condition below, which matches the necessary
condition stated in Theorem 1.

Sufficient Condition:Any reduced graph GF corresponding to any feasible fault
set F contains exactly one source component.

In the rest of this section, we assume that G(V ,F) satisfies the above condition.
We first introduce some standard matrix tools to facilitate our proof. Then, we
develop a transition matrix representation of the Update step in Algorithm 1,
and show how to use these tools to prove the correctness of Algorithm 1 in
G(V ,F).

When presenting matrix products, for convenience of presentation, we adopt
the “backward” product convention below, where a ≤ b,

Πb
i=aA[i] = A[b]A[b− 1] · · ·A[a] (3)

6.1 Matrix Preliminaries

In the discussion below, we use boldface upper case letters to denote matrices,
rows of matrices, and their elements. For instance, A denotes a matrix, Ai

denotes the i-th row of matrixA, andAij denotes the element at the intersection
of the i-th row and the j-th column of matrix A.

Definition 5. A vector is said to be stochastic if all the elements of the vector
are non-negative, and the elements add up to 1. A matrix is said to be row
stochastic if each row of the matrix is a stochastic vector.

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are
defined as follows [16]:

δ(A) = max
j

max
i1,i2

|Ai1 j −Ai2 j |

λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j)

It is easy to show that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows of A
are all identical if and only if δ(A) = 0. Also, λ(A) = 0 if and only if δ(A) = 0.

The next result from [4] establishes a relation between the coefficient of ergod-
icity δ(·) of a product of row stochastic matrices, and the coefficients of ergodicity
λ(·) of the individual matrices defining the product.

80 L. Tseng and N. Vaidya

Lemma 1. For any p square row stochastic matrices A(1),A(2), . . .A(p),

δ(A(p)A(p− 1) · · ·A(1)) ≤ Πp
i=1 λ(A(i)).

Lemma 1 is proved in [4]. It implies that if, for all i, λ(A(i)) ≤ 1 − γ for some
γ, where 0 < γ ≤ 1, then δ(A(p)A(p − 1) · · ·A(1)) will approach zero as p
approaches ∞. We now define a scrambling matrix [4,16].

Definition 6. A row stochastic matrix A is said to be a scrambling matrix if

λ(A) < 1

The following lemma follows easily from the above definition of λ(·).

Lemma 2. If any column of a row stochastic matrix A contains only non-zero
elements that are all lower bounded by some constant γ, where 0 < γ ≤ 1, then
A is a scrambling matrix, and λ(A) ≤ 1− γ.

6.2 Transition Matrix Representation

In our discussion below, M[t] is a square matrix, Mi[t] is the i-th row of the
matrix, and Mij [t] is the element at the intersection of the i-th row and j-th
column of M[t].

For a given execution of Algorithm 1, let F denote the actual set of faulty
nodes in that execution. Let |F | = ψ. Without loss of generality, suppose that
nodes 1 through (n−ψ) are fault-free, and if ψ > 0, nodes (n−ψ+1) through n
are faulty. Denote by v[0] the column vector consisting of the initial states of all
the fault-free nodes. Denote by v[t], where t ≥ 1, the column vector consisting
of the states of all the fault-free nodes at the end of the t-th iteration. The i-th
element of vector v[t] is state vi[t]. The size of vector v[t] is (n− ψ).

We will show that the iterative update of the state of a fault-free node i (1 ≤
i ≤ n − ψ) performed in (2) in Algorithm 1 can be expressed using the matrix
form below.

vi[t] = Mi[t] v[t− 1] (4)

where Mi[t] is a stochastic row vector of size n − ψ. That is, Mij [t] ≥ 0, for
1 ≤ j ≤ n − ψ, and

∑
1≤j≤n−ψ Mij [t] = 1.2 By “stacking” (4) for different i,

1 ≤ i ≤ n − ψ, we will represent the Update step of Algorithm 1 at all the
fault-free nodes together using (5) below.

v[t] = M[t] v[t− 1] (5)

where M[t] is a (n−ψ)× (n−ψ) row stochastic matrix, with its i-th row being
equal to Mi[t] in (4). M[t] is said to be a transition matrix.

2 In addition to t, the row vector Mi[t] may depend on the state vector v[t−1] as well
as the behavior of the faulty nodes in F . For simplicity, the notation Mi[t] does not
explicitly represent this dependence.

Iterative Approximate Byzantine Consensus 81

By repeated application of (5), we can represent the Update step of Algorithm
1 at the t-th iterations (t ≥ 1) as:

v[t] =
(
Πt

k=1M[k]
)
v[0] (6)

Recall that we adopt the “backward” product convention as presented in (3).
In the rest of this section, we will first “construct” transition matrices M[k]

(1 ≤ k ≤ t) that satisfy certain desirable properties. Then, we will identify a
connection between these transition matrices and the sufficiency condition stated
above, and use this connection to establish convergence property for Algorithm
1. The validity property also follows from the transition matrix representation.

6.3 Construction of the Transition Matrix

We will construct a transition matrix with the property described in Lemma 3
below.

Lemma 3. The Update step of Algorithm 1 at the fault-free nodes can be ex-
pressed using row stochastic transition matrix M[t], such that there exists a fea-
sible fault set Fx(i) for each i ∈ V−F , and for all j ∈ {i}∪ ((VF −Fx(i))∩N−

i),

Mij [t] ≥ β

where β is a constant (to be defined later), and 0 < β ≤ 1.

Proof. We prove the correctness of Lemma 3 by constructing Mi[t] for 1 ≤ i ≤
n−ψ that satisfies the conditions in Lemma 3. Recall that F is the set of faulty
nodes, and |F | = ψ. As stated before, without loss of generality, nodes 1 through
n− ψ are assumed to be fault-free, and the remaining ψ nodes faulty.

Consider a fault-free node i performing the Update step in Algorithm 1. In the
Update step, recall that the smallest f1 and the largest f2 values are eliminated
from ri[t], where the choice of f1 and f2 is described in Algorithm 1. Let us
denote by S and L, respectively, the set of nodes3 from whom the smallest f1
and the largest f2 values were received by node i in iteration t. Define sets Sg
and Lg to be subsets of S and L that contain all the fault-free nodes in S and
L, respectively. That is, Sg = S ∩ (V − F) and Lg = L ∩ (V − F).

Construction of Mi[t] differs somewhat depending on whether sets Sg,Lg and
N∗

i [t]∩F are empty or not. We divide the possibilities into 6 cases. Due to space
limitation, here we present the construction for one of the cases (named Case I).
The construction for the remaining cases is presented in [13].

In Case I, Sg �= ∅,Lg �= ∅, and N∗
i [t] ∩ F �= ∅. Let mS and mL be defined as

shown below. Recall that the nodes in Sg and Lg are all fault-free, and therefore,
for any node j ∈ Sg ∪ Lg, wj = vj [t− 1] (in the notation of Algorithm 1).

mS =

∑
j∈Sg

vj [t− 1]

|Sg|
and mL =

∑
j∈Lg

vj [t− 1]

|Lg|
3 Although S and L may be different for each t, for simplicity, we do not explicitly
represent this dependence on t in the notations S and L.

82 L. Tseng and N. Vaidya

Now, consider any node k ∈ N∗
i [t]. By the definition of sets Sg and Lg, mS ≤

wk ≤ mL. Therefore, we can find weights Sk ≥ 0 and Lk ≥ 0 such that Sk+Lk =
1, and

wk = Sk mS + Lk mL (7)

=
Sk

|Sg|
∑
j∈Sg

vj [t− 1] +
Lk

|Lg|
∑
j∈Lg

vj [t− 1] (8)

Clearly, at least one of Sk and Lk must be ≥ 1/2. We now define elements Mij [t]
of row Mi[t]:

– For j ∈ N∗
i [t] ∩ (V − F) : In this case, j is either a fault-free incoming

neighbor of i, or i itself. For each such j, define Mij [t] = ai. This is obtained
by observing in (2) that the contribution of such a node j to the new state
vi[t] is ai wj = ai vj [t− 1].
The elements of Mi[t] defined here add up to

|N∗
i [t] ∩ (V − F)| ai

– For j ∈ Sg ∪ Lg : In this case, j is a fault-free node in S or L.
For each j ∈ Sg,

Mij [t] = ai
∑

k∈N∗
i [t]∩F

Sk

|Sg|

and for each node j ∈ Lg,

Mij [t] = ai
∑

k∈N∗
i [t]∩F

Lk

|Lg|

To obtain these two expressions, we represent value wk sent by each faulty
node k in N∗

i [t], i.e., k ∈ N∗
i [t] ∩ F , using (8). Recall that this node k

contributes aiwk to (2). The above two expressions are then obtained by
summing (8) over all the faulty nodes in N∗

i [t] ∩ F , and replacing this sum
by equivalent contributions by nodes in Sg and Lg.
The elements of Mi[t] defined here add up to

ai
∑

k∈N∗
i [t]∩F

(Sk + Lk) = |N∗
i [t] ∩ F | ai.

– For j ∈ (V − F) − (N∗
i [t] ∪ Sg ∪ Lg) : These fault-free nodes have not yet

been considered above. For each such node j, define Mij [t] = 0.

With the above definition of Mi[t], it should be easy to see that Mi[t] v[t − 1]
is, in fact, identical to vi[t] obtained using (2). Thus, the above construction of
Mi[t] results in the contribution of the faulty nodes in N∗

i [t] to (2) being replaced
by an equivalent contribution from fault-free nodes in Lg and Sg.

Iterative Approximate Byzantine Consensus 83

Properties of Mi[t]: First, we show that M[t] is row stochastic. Observe that
all the elements of Mi[t] are non-negative. Also, all the elements of Mi[t] above
add up to

|N∗
i [t] ∩ (V − F)| ai + |N∗

i [t] ∩ F | ai = |N∗
i [t]| ai = 1

because ai = 1/|N∗
i [t]| as defined in Algorithm 1. Thus, Mi[t] is a stochastic row

vector.
Recall that from the above discussion, for k ∈ N∗

i [t], one of Sk and Lk must
be ≥ 1/2. Without loss of generality, assume that Ss ≥ 1/2 for some node
s ∈ N∗

i [t] ∩ F . Consequently, for each node j ∈ Sg, Mij [t] ≥ ai

|Sg|Ss ≥ ai

2|Sg| .
Also, for each fault-free node j in N∗

i [t], Mij [t] = ai. Thus, if β is chosen such
that

0 < β ≤ ai
2|Sg|

(9)

and Fx(i) is defined to be equal to L, then the condition in the lemma holds for
node i. That is, Mij [t] ≥ β for j ∈ {i} ∪ ((VF − Fx(i)) ∩N−

i).

All Cases Together: Using similar constructions in other cases as well (presented
in [13]) and a suitable choice of β (presented in [13]), we can obtain a row
stochastic matrix M[t], and for each i ∈ V −F identify a feasible fault set Fx(i),
such that Mij [t] ≥ β for all j ∈ {i} ∪ ((VF − Fx(i)) ∩N−

i). Thus, Lemma 3 can
be proved correct. �

6.4 Validity and Convergence of Algorithm 1

Correspondence between M[t] and a Reduced Graph: Let RF denote
the set of all the reduced graphs of G(V , E) corresponding to a feasible fault set
F . Let τ = |RF |. τ depends on F and the underlying network, and is finite.

In discussion below, let us denote a reduced graph by an italic upper case
letter, and the corresponding “adjacency matrix” (defined below) using the same
letter in boldface upper case. Thus, H denotes the adjacency matrix for graph
H ∈ RF .

Non-zero elements of adjacency matrix H are defined as follows: (i) for 1 ≤
i, j ≤ n−ψ, Hij = 1 if and only if (j, i) ∈ H, and (ii) Hii = 1 for 1 ≤ i ≤ n−ψ.
That is, non-zero elements of row Hi correspond to the incoming links at node
i, and the self-loop at node i. Thus, the adjacency matrix for any reduced graph
in RF has a non-zero diagonal.

Based on the sufficient condition stated at the start of Section 6 and Lemma
3, we can show the following key lemmas.

Lemma 4. For any H ∈ RF ,H
n−ψ has at least one non-zero column.

Proof. G(V , E) satisfies the sufficient condition stated at the start of Section 6.
Therefore, there exists at least one non-faulty node k in the reduced graph H
that has directed paths to all the nodes in H (consisting of the edges in H). Since

84 L. Tseng and N. Vaidya

the length of the path from k to any other node in H is at most n− ψ − 1, the
k-th column of matrix Hn−ψ will be non-zero.4 �

Definition 7. For matrices A and B of identical size, and a scalar γ, γB ≤ A
provided that γBij ≤ Aij for all i, j.

Lemma 5. For any t ≥ 1, there exists a graph H ∈ RF such that βH ≤M[t].

Proof. Observe that the i-th row of the transition matrix M[t] corresponds to
the state update (in Algorithm 1) performed at fault-free node i. Recall from
Lemma 3 that Mij [t] ≥ β for j ∈ {i} ∪ ((VF − Fx(i)) ∩ N−

i), where Fx(i) is a
feasible fault set.

Let us obtain a reduced graph H by choosing Fx(i) for each i as defined
in Lemma 3. Then from the definition of adjacency matrix H, Lemma 5 then
follows. �

Correctness of Algorithm 1: The rest of the proof below is inspired by related
work on non-fault-tolerant consensus [6].

Let H[t] denote the matrix H corresponding to M[t] as defined in Lemma 5.

Lemma 6. For any z ≥ 1, in the product below of H[t] matrices for consecutive
τ(n− ψ) iterations, at least one column is non-zero.

Π
z+τ(n−ψ)−1
t=z H[t]

Proof. Since the above product consists of τ(n − ψ) adjacency matrices corre-
sponding to graphs in RF , at least one of the adjacency matrices corresponding
to the τ distinct graphs in RF , say matrix H∗ , will appear in the above product
at least n− ψ times.

Now observe that: (i) By Lemma 4, Hn−ψ
∗ contains a non-zero column, say the

k-th column is non-zero, and (ii) all the H[t] matrices in the product contain a
non-zero diagonal. These two observations together imply that the k-th column
in the above product is non-zero. �

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these
matrices is a product of τ(n − ψ) of the M[t] matrices. Specifically,

Q(i) = Π
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 M[t] (10)

From (6) and (10) observe that

v[kτ(n− ψ)] =
(
Πk

i=1 Q(i)
)
v[0] (11)

4 That is, all the elements of the column will be non-zero. Also, such a non-zero
column will exist in Hn−ψ−1, too. We use the loose bound of n− ψ to simplify the
presentation.

Iterative Approximate Byzantine Consensus 85

Lemma 7. For i ≥ 1, Q(i) is a scrambling row stochastic matrix, and

λ(Q(i)) ≤ 1− βτ(n−ψ).

Proof. Q(i) is a product of row stochastic matrices (M[t]); therefore, Q(i) is row
stochastic. From Lemma 5, for each t ≥ 1,

βH[t] ≤ M[t]

Therefore,

βτ(n−ψ) Π
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 H[t] ≤ Π

iτ(n−ψ)
t=(i−1)τ(n−ψ)+1 M[t] = Q(i)

By using z = (i−1)(n−ψ)+1 in Lemma 6, we conclude that the matrix product
on the left side of the above inequality contains a non-zero column. Therefore,
Q(i) on the right side of the inequality also contains a non-zero column.

Observe that τ(n− ψ) is finite, and hence, βτ(n−ψ) is non-zero. Since the non-

zero terms inH[t] matrices are all 1, the non-zero elements inΠ
iτ(n−ψ)
t=(i−1)τ(n−ψ)+1H[t]

must each be ≥ 1. Therefore, there exists a non-zero column in Q(i) with all the
elements in the column being ≥ βτ(n−ψ). Therefore, by Lemma 2, λ(Q(i)) ≤
1− βτ(n−ψ), and Q(i) is a scrambling matrix. �

Theorem 2. Suppose that G(V , E) satisfies the sufficient condition stated above.
Algorithm 1 satisfies both the validity and convergence conditions.

Proof. Since v[t] = M[t] v[t− 1], and M[t] is a row stochastic matrix, it follows
that Algorithm 1 satisfies the validity condition.

Using Lemma 1 and the definition ofQ(i), and using the inequalities λ(M[t]) ≤
1 and λ(Q(i)) ≤ (1− βτ(n−ψ)) < 1, we get

lim
t→∞ δ(Πt

i=1M[i]) = lim
t→∞ δ

((
Πt

i=(� t
τ(n−ψ)

�)τ(n−ψ)+1M[i]
)(

Π
� t
τ(n−ψ)

�
i=1 Q(i)

))
≤ lim

t→∞Π
� t
τ(n−ψ) �

i=1 λ(Q(i)) = 0

Thus, the rows of Πt
i=1M[i] become identical in the limit. This observation,

and the fact that v[t] = (Πt
i=1M[i])v[0] together imply that the states of the

fault-free nodes satisfy the convergence condition. �

7 Summary and Discussion

This paper considers a generalized fault model [7,9,5], which can be used to
specify more complex failure patterns, such as correlated failures or non-uniform
node reliabilities. Under this fault model, we prove a necessary condition for the
existence of synchronous iterative approximate Byzantine consensus algorithms
in arbitrary directed graphs. Then, we show the condition is also sufficient by
providing a new IABC algorithm.

86 L. Tseng and N. Vaidya

We present a transition matrix-based proof to show the correctness of the pro-
posed algorithm. While transition matrices have been used to prove correctness
of non-fault-tolerant consensus [6], this paper is the first to extend the technique
to Byzantine consensus.

There are two main open problems: (i) for arbitrary graph, finding the global
fault-tolerance parameter f , and (ii) analyzing the communication and compu-
tation complexity of Algorithm 1.

References

1. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Proc. of
ACM Symposium on Principles of Distributed Computing, PODC 2005 (2005)

2. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. McGraw-Hill Higher
Education (2006)

3. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33, 499–516 (1986)

4. Hajnal, J., Bartlett, M.S.: Weak ergodicity in non-homogeneous markov chains.
In: Proceedings of the Cambridge Philosophical Society (1958)

5. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure
multi-party computation (extended abstract). In: PODC 1997 (1997)

6. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Con-
trol 48(6), 988–1001 (2003)

7. Junqueira, F.P., Marzullo, K.: Synchronous consensus for dependent process fail-
ures. In: ICDCS 2003 (2003)

8. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Proc. ACM Symp. on Principles of Distributed Computing, PODC 2004 (2004)

9. Kuznetsov, P.: Understanding non-uniform failure models. Bulletin of the European
Association for Theoretical Computer Science (BEATCS) 106, 53–77 (2012)

10. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
on Programming Languages and Systems (1982)

11. LeBlanc, H., Zhang, H., Sundaram, S., Koutsoukos, X.: Consensus of multi-agent
networks in the presence of adversaries using only local information. In: HiCoNs
2012 (2012)

12. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
13. Tseng, L., Vaidya, N.H.: Iterative approximate byzantine consensus under a gen-

eralized fault model. Technical report, CSL, UIUC (2012)
14. Vaidya, N.H.: Matrix representation of iterative approximate byzantine consensus

in directed graphs. Technical report, CSL, UIUC (2012)
15. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate byzantine consensus in

arbitrary directed graphs. In: PODC 2012 (2012)
16. Wolfowitz, J.: Products of indecomposable, aperiodic, stochastic matrices. In: Proc.

of the American Mathematical Society, vol. 14, pp. 733–737 (1963)

A Scalable Byzantine Grid

Alexandre Maurer and Sébastien Tixeuil

UPMC Sorbonne Universités, France
{Alexandre.Maurer,Sebastien.Tixeuil}@lip6.fr

Abstract. Modern networks assemble an ever growing number of nodes.
However, it remains difficult to increase the number of channels per node,
thus the maximal degree of the network may be bounded. This is typ-
ically the case in grid topology networks, where each node has at most
four neighbors. In this paper, we address the following issue: if each node
is likely to fail in an unpredictable manner, how can we preserve some
global reliability guarantees when the number of nodes keeps increasing
unboundedly ?

To be more specific, we consider the problem or reliably broadcasting
information on an asynchronous grid in the presence of Byzantine failures
– that is, some nodes may have an arbitrary and potentially malicious
behavior. Our requirement is that a constant fraction of correct nodes
remain able to achieve reliable communication. Existing solutions can
only tolerate a fixed number of Byzantine failures if they adopt a worst-
case placement scheme. Besides, if we assume a constant Byzantine ratio
(each node has the same probability to be Byzantine), the probability to
have a fatal placement approaches 1 when the number of nodes increases,
and reliability guarantees collapse.

In this paper, we propose the first broadcast protocol that overcomes
these difficulties. First, the number of Byzantine failures that can be
tolerated (if they adopt the worst-case placement) now increases with the
number of nodes. Second, we are able to tolerate a constant Byzantine
ratio, however large the grid may be. In other words, the grid becomes
scalable. This result has important security applications in ultra-large
networks, where each node has a given probability to misbehave.

Keywords: Byzantine failures, Networks, Broadcast, Fault tolerance,
Distributed computing, Protocol, Random failures.

1 Introduction

As modern networks grow larger and larger, their components become more
likely to fail. Indeed, some nodes can be subject to crashes, attacks, bit flips,
etc. Many models of failures and attacks have been studied so far, but the most
general one is the Byzantine model [11]: the failing nodes behave arbitrarily. In
other words, we must anticipate the most malicious strategy they could adopt.
This encompasses all other possible types of failures, and has important security
applications.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 87–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 A. Maurer and S. Tixeuil

In this paper, we study the problem of reliably broadcasting information in a
network despite the presence of Byzantine failures. This is a difficult problem,
as a single Byzantine node, if not neutralized, can potentially lie to the entire
network. Our objective is to design a broadcast protocol that prevent or limit
the diffusion of malicious messages.

Related works. Many Byzantine-robust protocols are based on cryptography [3,5]:
the nodes use digital signatures or certificates. Therefore, the correct nodes can
verify the validity of received informations and authenticate the sender across
multiple hops. However, this approach may not be as general as we want, as
the malicious nodes are supposed to ignore some cryptographic secrets: there-
fore, their behavior is not completely arbitrary. Besides, cryptographic opera-
tions require the presence of a trusted infrastructure that deals with public and
private keys: if this infrastructure fails, the whole network fails. Yet, we would
like to consider that any component can fail. For these reasons, we focus on
cryptography-free solutions.

Cryptography-free solutions have first been studied in completely connected
networks [11,1,12,13,17]: a node can directly communicate with any other node,
which implies the presence of a channel between each pair of nodes. Therefore,
these approaches are hardly scalable, as the number of channels per node can be
physically limited. We thus study solutions in multihop networks, where a node
must rely on other nodes to broadcast informations.

A notable class of algorithms tolerates Byzantine failures with either
space [15,18,21] or time [14,9,8,7,6] locality. Yet, the emphasis of space local
algorithms is on containing the fault as close to its source as possible. This
is only applicable to the problems where the information from remote nodes is
unimportant (such as vertex coloring, link coloring or dining philosophers). Also,
time local algorithms presented so far can hold at most one Byzantine node and
are not able to mask the effect of Byzantine actions. Thus, the local containment
approach is not applicable to reliable broadcast.

It has been shown that, for agreement in the presence of up to k Byzantine
nodes, it is necessary and sufficient that the network is (2k + 1)-connected, and
that the number of nodes in the system is at least 3k+ 1 [4]. Also, this solution
assumes that the topology is known to every node, and that nodes are scheduled
according to the synchronous execution model. Both requirements have been
relaxed [19]: the topology is unknown and the scheduling is asynchronous. Yet,
this solution retains 2k+1 connectivity for reliable broadcast and k+1 connec-
tivity for detection (the nodes are aware of the presence of a Byzantine failure).
In sparse networks such as a grid (where a node has at most four neighbors),
both approaches can cope only with a single Byzantine node, independently of
the size of the grid.

Another existing approach is based, not on connectivity, but on the fraction
of Byzantine neighbors per node. Broadcast protocols have been proposed for
nodes organized on a grid [10,2]. However, the wireless medium typically induces
much more than four neighbors per node, otherwise the broadcast does not work.
Both approaches are based on a local voting system, and perform correctly if

A Scalable Byzantine Grid 89

every node has strictly less than a 1/4 fraction of Byzantine neighbors. This
result was later generalized to other topologies [20], assuming that each node
knows the global topology. Again, in weakly connected networks, this constraint
on the proportion of Byzantine nodes in any neighborhood may be difficult to
assess.

All aforementioned results rely on strong connectivity and Byzantine propor-
tions assumptions in the network. In other words, tolerating more Byzantine
failures requires to increase the number of channels per node, which may be
difficult or impossible when the size of the network increases. To overcome this
difficulty, an alternate approach has been proposed [16]. The idea is to make
a small concession to the problem: we now aim at reliable communication, not
between all correct nodes, but between most correct nodes. In other words, we
now accept that a small minority of correct nodes can be fooled by the Byzantine
nodes. This is not unrealistic, as we already accepted the idea that some nodes
can fail unpredictably (being hit by Byzantine failures). This approach has been
shown very efficient when the Byzantine failures are randomly distributed. This
is the case, for instance, in a peer-to-peer overlay (the malicious nodes do not
choose their localization when they join the overlay), or if we consider that each
node has a given probability of failure.

All existing approaches have the same weak point: if the number of channels
per node (degree) is bounded, a fixed number of Byzantine nodes can destabilize
the whole network. Indeed, if they adopt a sufficiently close formation, they can
pretend to be the source node, and lie to any other node – thus, we cannot even
ensure that most correct nodes communicate reliably. Besides, if each node has
a given probability to be Byzantine, the probability that such a fatal forma-
tion exists approaches 1 when the number of nodes increases. Therefore, these
approaches are hardly scalable when the maximal degree is bounded.

Our contribution. In this paper, we propose the first broadcast protocol that
overcomes these difficulties on a specific degree-bounded topology: the grid,
where each node has at most four neighbors. For this protocol, the diameter
of the grid can only have discrete values, but can be as large as we want. As in
[16], our requirement is that a constant fraction of correct nodes achieves reli-
able communication. We show that the number of Byzantine failures that can be
tolerated (if they adopt the worst-case placement) increases with the number of
nodes: in other words, for the first time, this number is not limited by the max-
imal degree or the connectivity of the network. Besides, if we assume a constant
rate of Byzantine failures (each node has the same probability to be Byzantine),
the expected reliable fraction of the network is always the same, however large
the grid may be. This may have applications in large-scale networks, where each
node has a given probability to fail: we can now increase the size of the network
indefinitely, and yet preserve the same reliability guarantees.

The paper is organized as follows. In Section 2, we describe the network topol-
ogy (a sequence of grid networks that may be as large as we want) and the
broadcast protocol to execute on it. In Section 3, we adopt the point of view of
an omniscient observer that knows the positions of Byzantine nodes, and give a

90 A. Maurer and S. Tixeuil

methodology to determine a reliable node set - that is, a set of nodes that always
communicate reliably, in any possible execution. At last, in Section 4, we use the
aforementioned methodology to prove the claims.

2 Our Algorithm

In this section, we define a class of grid networks and the broadcast protocol to
execute on.

2.1 Hypotheses

The network is constituted by a set of processes, called nodes. Some pairs of
nodes are linked by a communication channel – we call them neighbors – and
can exchange messages. Each node of the network has a unique identifier, which
is its position on the grid. A node, upon receiving a message from a neighbor,
knows the identifier of this neighbor. The network is asynchronous: any message
sent is eventually received, but it can be at any time.

2.2 Network Topology

Let N = 10. Our broadcast protocol is defined for the networks Gk, ∀k ≥ 1, Gk

being a Nk ×Nk grid. These networks may be as large as needed.

Definition 1 (Grid network). An M ×M grid is a network such that:

– Each node has a unique identifier (i, j) with 0 ≤ i < M and 0 ≤ j < M .
– Two nodes (i1, j1) and (i2, j2) are neighbors if and only if one of these two

conditions is satisfied:
• i1 = i2 and |j1 − j2| = 1.
• j1 = j2 and |i1 − i2| = 1.

According to our hypotheses, each node knows its identifier (i, j) on the grid,
and the identifier (i, j) of its neighbors. Each node of Gk also knows N and k.

2.3 Informal Description of the Protocol

Our broadcast protocol (BP) is defined by induction: we use an existing BP on
G1, then use the BP of Gk to define the BP of Gk+1. The idea is to associate a
cluster of Gk+1 to each node of Gk. Let G(p) be the cluster associated to a node
p (we call it macro-node). This is illustrated in Figure 1. The goal of a macro-
node G(p) is to simulate the behavior of p, so that we obtain a macroscopic BP
in Gk+1. Then, when a node u of G(p) wants to broadcast a message m in Gk+1:

1. First, u broadcasts m in G(p) with a local BP.
2. Then, G(p) broadcasts m in Gk+1 with the macroscopic BP.

The interest of this inductive definition lies in its Byzantine-resilience properties.
These properties are studied in Section 3.

A Scalable Byzantine Grid 91

Fig. 1. Association of a macro-node of Gk+1 to each node of Gk

2.4 Complete Description of the Protocol

The BP executed on G1 is the Control Zone Protocol (CZP) proposed in [16]. Let
us give the methodology to construct the BP of Gk+1 with the BP of Gk. For this
purpose, we first give an algorithm to communicate between two macro-nodes
(macro-channel), then use it to construct the macroscopic BP.

Macro-node. To each node p of Gk, we associate a cluster G(p) of Gk+1, called
macro-node. Let (i, j) be the identifier of p. Then, G(p) is the N ×N grid such
that the node (0, 0) of G(p) corresponds to the node (Ni,Nj) of Gk+1.

Macro-channel. Let p and q be two neighbor nodes in Gk. We give an algorithm
to tranfer messages from G(p) to G(q), as if they were two neighbor nodes linked
by a channel.

First, we execute the CZP on both G(p) and G(q), to enable local broad-
cast inside each macro-node. The following algorithm enables to send a message
m, known by the nodes of G(p), to the nodes of G(q). Let Border(p) (resp.
Border(q)) be the set of nodes of G(p) (resp. G(q)) having a neighbor in G(q)
(resp. G(p)).

1. The nodes of Border(p) send m to their neighbor in Border(q).

2. The nodes of Border(q), upon receivingm from their neighbor in Border(q),
broadcast m in G(q) with the CZP .

3. The nodes of G(q), upon receiving strictly more than N/2 distinct messages
(vi,m) trough the CZP with vi ∈ Border(q), accept m.

We associate a dynamic set Senq to each node of G(p) (storing the message
to send), and a dynamic set Recp to each node of G(q) (storing the messages
received). We execute this algorithm for each pair of neighbor macro-nodes. This
mechanism is illustrated in Figure 2.

92 A. Maurer and S. Tixeuil

Macroscopic BP. For each node p of Gk, all nodes of G(p) execute the same
algorithm than p, with the two following modifications:

1. When the algorithm requires to send a message m to a neighbor q, add m
to Senq.

2. When a message m is added to the set Recq, consider that m was received
from q.

Now, let s be a node of G(p) that wants to broadcast a message m in Gk+1.
First, s broadcasts (s,m) in G(p) with the CZP. Then, upon receiving (s,m),
the nodes of G(p) broadcast (s,m) with the macroscopic BP . Thus, the nodes
receiving (s,m) know that s broadcast m: we now have a BP on Gk+1.

Fig. 2. Principle of the protocol

3 Construction of a Reliable Node Set

In this section, we now assume that some nodes are Byzantine, and behave
arbitrarily instead of following the aforementioned protocol. We adopt the point
of view of an omniscient external observer, knowing the positions of Byzantine
nodes, and give a methodology to determine a reliable node set - that is, a set of
nodes that communicate reliably in any possible execution. This methodology is
used in Section 4 to prove the claims. Notice that we never require that a node
determines such a set: this is just a global view of the system.

Notion of reliable node set. The nodes following the aforementioned protocol are
called correct. The correct nodes do not know the positions of Byzantine nodes.

Definition 2 (Reliable node set). For a given broadcast protocol (BP), a set
of correct nodes is reliable if, for each pair of nodes s and r of this set:

1. If s broadcasts m, r eventually accepts (s,m).
2. If r accepts (s,m), r necessarily broadcast m.

A Scalable Byzantine Grid 93

In other words, a reliable node set behaves like a network without Byzantine
failures. The item (1) guarantees that the nodes always manage to communicate.
The item (2) guarantees that no node of the reliable set can be fooled - for
instance, if a Byzantine node broadcasts (s,m′) to make the network believe
that s broadcast m′.

Construction of a reliable node set. Let Corr be a set of correct nodes of Gk.
Let us define a function Relk such that Relk(Corr) returns a reliable node set
for our BP. For this purpose, we first introduce some new elements.

In [16], we gave a methodology to determine a reliable node set for the CZP
on an N × N grid, for a given set Corr0 of correct nodes. Let RelCZP be a
function such that RelCZP (Corr0) returns a reliable node set for the CZP.

At last, we introduce the notion of correct macro-node. In broad outline, a
correct macro-node behaves like a correct node in the macroscopic BP. This
intuitive idea is the key element of the next theorem.

Definition 3 (Correct macro-node). Let there be an N × N grid with a
distribution Corr0 of correct nodes. This grid (or macro-node) is said correct if
each side of the grid (up, down, right and left), among its N nodes, has strictly
more than 3N/4 nodes in RelCZP (Corr0).

The underlying idea of this definition is the following: the reliable node sets of
two adjacent correct macro-nodes are always connected by a majority of channels
(strictly more than N/2). Therefore, the messages exchanged between these two
reliable sets always receive a majority of votes. This idea is illustrated in Figure 3,
and used in the proof below.

Fig. 3. Reliable communication between 2 correct macro-nodes

We can now define the function Relk by induction, ∀k ≥ 1:

– Rel1 = RelCZP

– Relk+1(Corr) =
⋃

p∈Relk(Corr′)RelCZP (Corr(p)), where . . .

94 A. Maurer and S. Tixeuil

• Corr is a distribution of correct nodes on Gk+1.
• Corr(p) is the corresponding distribution on G(p).
• Corr′ is the set of nodes p of Gk such that G(p) is a correct macro-node.

In the following, we refer to RelCZP (Corr(x)) by Rel(x).

Theorem 1. ∀k ≥ 1, if Corr is a distribution of correct nodes on Gk, then
Relk(Corr) is a reliable node set for our BP.

Proof. The main idea of the proof is to show an equivalence between the execu-
tion on Gk+1 and a virtual execution on Gk (this, of course, does not mean that
Gk must actually exist for Gk+1 to work).

The proof is by induction. The property is true at rank 1 by definition. Now,
let us suppose that the property is true at rank k, and show that it is true at
rank k + 1. Let Corr be a distribution of correct nodes on Gk+1, and let s and
r be two nodes of Relk+1(Corr). Let us suppose that s broadcasts m in Gk+1.
Then, to show that Relk+1(Corr) is a reliable node set, we show that the items
(1) and (2) of Definition 2 are satisfied.

1. We call accumulative a distributed algorithm where each node holds a given
number of dynamic sets S1, S2, S3 . . ., can only add elements to these sets
(Si ← Si ∪ {x}), and eventually executes an action when a given collection
of elements has joined these sets: (X1 ⊆ S1) ∧ (X2 ⊆ S2) ∧ The CZP
is accumulative, and so is our BP, as it is an inductive combination of ac-
cumulative algorithms. In other words, the order of reception of messages is
unimportant in our BP.

Let p and q be the nodes of Gk such that s belongs to G(p) and r
belongs to G(q). By definition of Relk+1, p and q belong to Relk(Corr

′).
Let us suppose that Corr′ is a distribution of correct nodes on Gk. Then,
Relk(Corr

′) is a reliable node set on Gk. Therefore, if p broadcasts (s,m),
there exists a sequence of message receptions such that q eventually accepts
(s,m). Let (R1, R2, . . . , RM) be this sequence, Ri being a triplet (qi,mi, pi)
such that qi receives mi from pi, with p1 = p and qM = q. Let us prove the
following property Pi by induction, ∀i ∈ {1, . . . ,M}: all the nodes of Rel(qi)
eventually add mi to Recpi .

– First, let us show that P1 is true. According to our BP, s initially broad-
casts (s,m) in G(p). Therefore, as p = p1, all the nodes of Rel(p1) even-
tually accept (s,m). Then, as they execute the same alogorithm than p1,
they add m1 to their set Senq1 .

Let Border(q1) be the set of nodes of G(q1) having a neighbor in
G(p1). As G(q1) and G(p1) are two correct macro-nodes, according to
Definition 3, strictly more than N/2 nodes of Rel(p1) have a neighbor in
Rel(q1). Therefore, strictly more than N/2 nodes of Border(q1)∩Rel(q1)
eventually receive m1, and broadcast it in G(q1). So all the nodes of
Rel(q1) eventually receive strictly more thanN/2 messages (vx,m1) with
vx ∈ Border(q1) and add m1 to Recp1 . Thus, P1 is true.

A Scalable Byzantine Grid 95

– Now, let us suppose that Pj is true ∀j ≤ i. Then, as the order of reception
of messages is unimportant, all the nodes of Rel(pi+1) eventually behave
as pi+1, and add mi+1 to Senqi+1 .
Thus, by a perfectly similar demonstration, Pi+1 is true.

Then , as r ∈ Rel(q), according to PM : r eventually receives the same
messages as q = qM and accepts (s,m). Thus, the item (1) of Definition 2 is
satisfied. This is illustrated in Figure 4.

Fig. 4. Illustration of the proof (1) : what occurs in Relk(Corr′) eventually occurs in
Relk+1(Corr)

2. The proof is by contradiction. Let us suppose the opposite: r accepts a
message (s,m), yet s did not broadcast m. Let p0 be the node of Gk such
that r ∈ Rel(p0). If we also have s ∈ Rel(p0), it is impossible that r accepts
(s,m), as Rel(p0) is a reliable node set. So s necessarily belongs to another
macro-node. Similarly than above, let us suppose that Corr′ is a distribution
of correct nodes on Gk. Then, as Relk(Corr

′) is a reliable node set on Gk,
r necessarily received a message that p0 cannot receive in Gk. Let us show
that this is impossible.

Let u be the first node ofRelk+1(Corr) (possibly r), belonging to a macro-
node G(q), to receive a message m′ that q cannot receive in Gk. Let G(p) be
the macro-node sending this message. If G(p) is not correct (in the sense of
Definition 3), then p does not belong to Corr′, is assumed to be Byzantine
on Gk, and can actually send m′ to q – so G(p) is necessarily correct. It
implies that u received strictly more than N/2 messages (vi,m

′) with vi ∈
Border(q). As G(p) and G(q) are two correct macro-node, strictly more
than N/2 nodes of Rel(p) have a neighbor in Rel(q). So at least one of the
nodes vi belongs to Rel(q) and received m′ from a neighbor v ∈ Rel(p). As
Rel(p) is a reliable node set, the only possibility is that v received a message

96 A. Maurer and S. Tixeuil

Fig. 5. Illustration of the proof (2) : a node of Relk+1(Corr) cannot misbehave

that p cannot receive in Gk. So u is not the first node in this situation,
which contradicts the initial statement. Thus, the item (2) of Definition 2 is
satisfied. This is illustrated in Figure 5.

We now have a methodology to determine a reliable node set for a given dis-
tribution of Byzantine nodes on Gk, ∀k ≥ 1. In the next section, we use this
methodology to prove the claims.

4 Proof of the Claims

In this section, we finally prove the claims of the paper: the number of Byzan-
tine failures that can be tolerated increases with the number of nodes (if they
adopt the worst-case placement), and a constant rate of Byzantine failures can
be tolerated, however large the grid may be. As in [16], our requirement to toler-
ate Byzantine failures is that a constant fraction of the network communicates
reliably.

4.1 Worst-Case Placement

Let us give a minimal number of Byzantine failures that can be tolerated when
they adopt an arbitrary placement (possibly the worst).

Theorem 2. ∀k ≥ 1, on a grid Gk with at most 2k−1 Byzantine failures (arbi-
trarily placed), the fraction of the network achieving reliable communication is

at least 1− 4

N2
.

Proof. The proof is by induction. For k = 1, we can test all possible placements
of a single Byzantine failure (as N = 10) and show that the property is true.
Now, let us suppose that the property is true at rank k. Let there be 2k Byzantine
failures arbitrarily placed on Gk+1. Then, at most 2k−1 macro-nodes of Gk+1

A Scalable Byzantine Grid 97

contain more than 2 Byzantine failures. Again, by testing all possible cases, we
can show that an N×N grid with at most 1 Byzantine failure is always correct in
the sense of Definition 3. So at most 2k−1 macro-nodes are not correct. Therefore,

as the property is true at rank k, the reliable node set covers at least a 1− 4

N2

fraction of macro-nodes (and in this worst case, all these macro-nodes have only
correct nodes). Thus, according to the definition of Relk+1, the property is true
at rank k + 1. This is illustrated in Figure 6.

Fig. 6. Worst-case placement of 2k−1 Byzantine nodes on Gk

So we can always tolerate 2k−1 failures on Gk. As the parameter k sets the size
of the grid, this number increases with the number of nodes. To our knowledge,
this is the first time that this number is not limited by the connectivity or the
maximal degree of the network.

4.2 Random Distribution

Let us assume a constant rate of Byzantine failures (each node has the same
probability λ to be Byzantine) and give the expected reliable fraction of the
network. Let μ = 1− λ be the probability that a node is correct.

Theorem 3. ∀k ≥ 1, let Fk(μ) be the expected reliable fraction of Gk. Then, if
μ ≥ 1− 10−5, we have Fk(μ) ≥ 1− 10−4.

Proof. Let there be an N ×N grid where each node has the same probability μ0

to be correct. We call P (μ0) the probability that the two following events occur:

98 A. Maurer and S. Tixeuil

1. The grid is correct in the sense of Definition 3.

2. A node, chosen uniformly at random, belongs to RelCZP (Corr0), Corr0
being the distribution of correct nodes on the grid.

We want to prove the following property by induction: Fk ≥
i=k∏
i=1

P i(μ), P i being

the ith application of the function P . The property is true at rank 1, as F1(μ) ≥
P (μ).

Now, let us suppose that the property is true at rank k. Let Corr be the
distribution of correct nodes on Gk+1. Let u be a randomly chosen node of
Gk+1, and let p be the node of Gk such that u belongs to the macro-node
G(p). According to Theorem 1, to have u ∈ Relk+1(Corr), it is necessary and
sufficient that (1) u ∈ Rel(p) and (2) p ∈ Relk(Corr

′). The first event occurs
with probability P1 ≥ P (μ), and if so, the second event occurs with probability

P2 ≥ Fk(P (μ)). Thus, Fk+1(μ) ≥ P (μ)Fk(P (μ)) =

i=k+1∏
i=1

P i(μ): the property is

true at rank k + 1. This is illustrated in Figure 7.

Fig. 7. Sufficient condition for u to be in Relk+1(Corr)

Now, let us give a lower bound of P (μ0). We consider two disjoint cases:

1. The case where all the nodes of the N × N grid are correct, which occurs
with probability μN2

0 . In this case, RelCZP (Corr0) covers the whole grid,
and the grid is correct in the sense of Definition 3.

2. The case where one single node is Byzantine, which occurs with probability

N2(1− μ0)μ
N2−1
0 . As N = 10, we evaluate RelCZP (Corr0) for the 100 pos-

sible placements of the single Byzantine node. In 64 cases, this set contains
99 nodes. In 32 cases, it contains 98 nodes. In 4 cases, it contains 96 nodes.
Thus, the probability that a randomly chosen correct node belongs to this

set is α =
64× 99 + 32× 98 + 4× 96

100× 99
≥ 199

200
. In all cases, the grid is correct

in the sense of Definition 3. This is illustrated in Figure 8.

A Scalable Byzantine Grid 99

Fig. 8. Different cases for the placement of 1 Byzantine node on an N ×N grid

So P (μ) ≥ g(μ) = μN2

+αN2(1−μ)μN2−1. This function is convex

(
∂2g(μ)

∂μ2
≤ 0

)
for μ ≥ α. Let β = 1− 10−5 ≥ α. Then, ∀μ ≥ β, g(μ) ≥ f(γ, μ) = 1− γ(1− μ),

with γ =
1− g(β)

1− β
. Then, we easily show by induction that ∀k ≥ 1, P k(μ) ≥

f(γk, μ). So Fk(μ) ≥ Hk(μ) =

i=k∏
i=1

f(γi, μ).

We now have a lower bound of Fk(μ), but it may be hard to calculate when
k approaches infinity. To overcome this difficulty, let i0 be the first integer

such that, ∀i ≥ i0, γ
i ≤ 1

i2
. So Hk(μ) ≥

i=i0∏
i=1

f(γi, μ)
i=k∏

i=i0+1

(1 − 1− μ

i2
). Then,

when k approaches infinity, we can apply the Wallis formula: lim
x→∞Hk(μ) ≥

i=i0∏
i=1

f(γi, μ)
sin(π

√
1− μ)

π
√
1− μ

≥ 1 − 10−4 if μ ≥ β. Thus, the result, as Hk(μ) de-

creases with k.

Therefore, we can hold a constant rate of Byzantine failures and yet have a
constant expected fraction of reliable nodes, however large the grid may be. This
may have important security applications – for instance in a computationnal
grid where each processor has a given probability to misbehave. This result
shows that, for a given security requirement, we can increase the size of the grid
indefinetely, which could be a solution to the problem of scalability.

5 Conclusion

In this paper, we have shown that Byzantine resilience was possible in a scalable
degree-bounded network. If the adversary can place the Byzantine nodes arbi-
trarily, then for the first time, we can tolerate a number of Byzantine failures
that largely exceeds the node degree. If not (random distribution), then we can
tolerate a constant fraction of Byzantine nodes, even if the size of the network
approaches infinity.

We have the strong conviction that this approach (slice the network into clus-
ters, then slice each cluster into smaller clusters, etc . . .) can be generalized to

100 A. Maurer and S. Tixeuil

less regular topologies. Indeed, the notion of a correct macro-node (see Defini-
tion 3) can be generalized to an arbitrary graph – the key idea is that, for each
interface with another macro-node, we must still have a 3/4 fraction of reliable
nodes. Besides, the network diameter can only have discrete values here, but we
could generalize the result to any network diameter.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, New York (1998)

2. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Aguilera,
M.K., Aspnes, J. (eds.) PODC, pp. 138–147. ACM (2005)

3. Castro, M., Liskov, B.: Practical byzantine fault tolerance. Theoretical Computer
Science TCS 243(12), 363–389 (2000)

4. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3(1), 14–30
(1982)

5. Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless
ad-hoc networks. In: DSN, pp. 160–169. IEEE Computer Society (2005)

6. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Con-
tainment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

7. Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of
the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS
2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

8. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks
in stabilization. IEEE Transactions on Parallel and Distributed Systems, TPDS
(2011)

9. Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum Metric Spanning Tree Made
Byzantine Tolerant. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 150–164.
Springer, Heidelberg (2011)

10. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 275–282. ACM (2004)

11. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

12. Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propa-
gating updates in a Byzantine environment. Theoretical Computer Science 299(1-
3), 289–306 (2003)

13. Malkhi, D., Reiter, M., Rodeh, O., Sella, Y.: Efficient update diffusion in byzantine
environments. In: The 20th IEEE Symposium on Reliable Distributed Systems
(SRDS 2001), Washington, Brussels, Tokyo, pp. 90–98. IEEE (2001)

14. Masuzawa, T., Tixeuil, S.: Bounding the Impact of Unbounded Attacks in Sta-
bilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 440–453. Springer, Heidelberg (2006)

15. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

16. Maurer, A., Tixeuil, S.: Limiting byzantine influence in multihop asynchronous
networks. In: IEEE International Conference on Distributed Computing Systems,
ICDCS (2012)

A Scalable Byzantine Grid 101

17. Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Comput-
ing 16(1), 49–68 (2003)

18. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Sym-
posium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer
Society (2002)

19. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine nodes. IEEE Transactions on Parallel and Distributed Systems (TPDS) 20(12),
1777–1789 (2009)

20. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf.
Process. Lett. 93(3), 109–115 (2005)

21. Sakurai, Y., Ooshita, F., Masuzawa, T.: A Self-stabilizing Link-Coloring Protocol
Resilient to Byzantine Faults in Tree Networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

Collaborative Detection

of Coordinated Port Scans

Roberto Baldoni, Giuseppe Antonio Di Luna, and Leonardo Querzoni

Cyber Intelligence and Information Security Center and Dipartimento di Ingegneria
informatica automatica e gestionale ”Antonio Ruberti”

Universitá di Roma La Sapienza, Roma, Italy
{baldoni,diluna,querzoni}@dis.uniroma1.it

Abstract. In this paper we analyze the coordinated port scan attack
where a single adversary coordinates a Group of Attackers (GoA) in or-
der to obtain information on a set of target networks. Such orchestration
aims at avoiding Local Intrusion Detection Systems checks allowing each
host of the GoA to send a very few number of probes to hosts of the target
network. In order to detect this complex attack we propose a collabo-
rative architecture where each target network deploys local sensors that
send alarms to a collaborative layer. This, in turn, correlates this data
with the aim of (i) identifying coordinated attacks while (ii) reducing
false positive alarms and (iii) correctly separating GoAs that act concur-
rently on overlapping targets. The soundness of our approach is tested on
real network traces. Tests show that collaboration among networks do-
mains is mandatory to achieve accurate detection of coordinated attacks
and sharp separation between GoAs that execute concurrent attacks on
the same targets.

1 Introduction

A port scan is a specific kind of malicious activity carried out by an adversary
aimed at inspecting a target network for open hosts/ports. The final adversary
goal is usually to identify possible vulnerabilities in the system that can be later
exploited for realizing an intrusion. Detecting this kind of activity is thus funda-
mental for proper network protection. In order to avoid detection the adversary
employs several decoying techniques aimed at obfuscating the presence of net-
work packets generated by the port scan activity within the regular network
traffic. One of such techniques consists in coordinating a group of geographi-
cally dispersed computers (i.e., the attackers) to split the scan activities. From
a defender point of view this attack appears as a set of uncorrelated connections
coming from independent machines. Common network intrusion detection sys-
tems (IDSs) often fail in detecting such coordinated attacks and, in the best case,
report it simply as separate scans produced by independent attackers. These co-
ordinated attacks require high technical skill, thus, from the defender viewpoint,
assessing the dimension of the attack can help in understanding the motivation
and skill of the adversary.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 102–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Collaborative Detection of Coordinated Port Scans 103

Recently, Gates [1] proposed an offline solution for solving the problem of
accurately identifying coordinated port scans executed against a single network
domain and based on adversary modeling of the desired information gain. This
solution clusters several different sources identified as scanners in order to pro-
vide a coherent view of the coordinated scan. Even though results are quite
encouraging, Gates’s solution could fail in identifying scans executed by groups
of attackers (GoAs) targeting machines/ports located in different networks do-
mains or, in the best case it could detect part of the attackers if the scan activity
done in the single network domain is above some thresholds. Thus, as a matter
of fact, the problem of providing an integrated solution to correctly identify-
ing coordinated port scans that carry out their activities over multiple network
domains is still an open problem.

This paper focuses on such type of coordinated port scans and provides a novel
approach based on the collaboration among independent network domains. Our
solution deploys a local system at each network domain that monitors and stores
data on failed connections and, if the number of connection errors within the net-
work domain goes above a given threshold, triggers the construction of a local at-
tack graph retrieving historical information on failed connections. Interestingly,
the amount of information retrieved depends on the speed of the scan activity
(e.g., if the threshold has been quickly reached, the scan activity is suspected to
be fast, then failed connections within a small time window will be retrieved from
storage). The local attack graph provides potential group of attackers at the col-
laborative layer. The latter collects all this information and builds a collaborative
graph that identifies GoAs even if they are executing concurrent and (partially)
overlapping scan activities. Contrarily to [1], this approach is on-line in the sense
that it continuouslymonitors failed connections and, if there is a certain amount of
suspect scan activities on the network domain, it launches the next steps towards
the detection of GoAs. The contributions presented in this paper are:

- a formal model of the local network domain that is able both to express an
estimated failure threshold for coordinated port scans and to define a local graph
that isolates potential attackers into connected components;
- concurrent use of graph clustering and separation techniques, similarity-based
clustering [2] and Parallel Reactive GRASP [3] respectively, at the collaborative
layer to identify and separate GoAs.
- the realization of a java-based prototype of the collaborative port scan detec-
tion system and its evaluation based on real runs and GoAs of 800 hosts.
An interesting outcome of the performance evaluation is a tradeoff between GoA
detection accuracy and the number of network domains participating to the col-
laboration. In most of the cases (around 70%) the collaborative system is also
able to separate concurrent GoAs of 200 hosts each. The rest of the paper is
structured as follows: Section 2 presents the related work. Section 3 provides an
overview of the problem and Section 4 introduces the network domain model.
Section 5 presents the collaborative layer and Section 6 the System Architec-
ture. Section 7 reports on the results of the evaluation and Section 8 points out

104 R. Baldoni, G.A. Di Luna, and L. Querzoni

limitations and future perspectives. Finally, Section 9 draws the conclusion of
this work.

2 Related Work

The idea of a coordinated port scan traces back to 1999 [4] even if it was not
considered by literature on security till three years later. Apart from [1] the other
works that address it are:

Staniford et al. [5] in 2002 introduced the concept of distributed scanning and
provided a solution constituted by two subsystems: a network anomaly detector
(Spade) and a correlation engine (Spice). The paper does not propose any ex-
perimental results for the detection of coordinated port scan, so it is not clear
how well this approach could be effective in our case study.

The solution proposed by Conti and Abdullah in [6] heavily relies on human-
analysis to find suspicious patterns in the normal traffic, and it is not clear how
those patterns will be modified by the normal network activity.

Robertson et al. [7] proposed a method for detecting coordinated port scans
under the assumption that the attack sources are on the same subnet. Even if
this assumption sounds reasonable it somewhat limits the applicability of this
solution.

A real collaborative project is Dshield [8]. DShield could be seen as a world-
wide sensor network, that collects data coming from firewalls and IDSs of vol-
unteers spread all over the world. Data collected by the DShield system is sent
to the Internet Storm Center, inserted in the central database and analyzed by
the staff.

Using data from DShield, Yegneswaran et al. [9] have done a general analysis
focused on the issues of distribution, categorization and prevalence of portscans.
They found that a large proportion of the daily scans are coordinated or come
from distributed sources.

In [10] have been discussed the collaborative approach to protection of critical
infrastructure. However they do not address the case of coordinated portscan.

A

z1 z2 z3 z4 z5 z6 z7 z8

Adversary
Group of Attackers

Network Domain 1 Network Domain 2 Network Domain 3 Network Domain 1 Network Domain 2

AUser

Attacker Adresses

Adversary

Fig. 1. (a) pattern of probes of an adversary that coordinates a set of attackers/zombies
scanning addresses on multiple network domain; (b) pattern of probes of users con-
tacting addresses of services on multiple network domain

Collaborative Detection of Coordinated Port Scans 105

3 Problem Overview

The scenario we consider is constituted by several network domains, possibly
managed by independent administrators. An adversary is willing to obtain in-
formation on some addresses (ports) of the hosts (also called target addresses)
within these networks using port scanning. Thus the adversary coordinates a set
of attackers by splitting the set of addresses in order each attacker has different
targets to scan. This set is also called Group of Attacker (GoA).

The adversary wants to obtain this information within a predefined timeframe,
i.e. it is not willing to wait an unreasonable amount of time for a port scan to
end; at the same time it wants to remain undetected, i.e. it doesn’t want network
administrators to be able to correctly identify that separate scan activities are
originated by a single adversary. Figure 1.a shows a pattern of such coordinated
port scanning while Figure 1.b shows a normal use of network addresses by non-
malicious activities. This figure could represent a pattern of requests sent to two
web servers.On the administrator side, the goal is to collect and correlate enough
information such that scan activities originating from different sources can be
correctly clustered. Ideally, each cluster should contains scan sources pertaining
only to a single GoA: the result should be both complete, all machines in the
GoA are included in the cluster, and accurate, no machine external to the GoA is
included in the cluster. IDSs deployed within networks can identify attacker only
on the basis of local information and raise alarms. Sometimes this information
is not enough to correctly separate distinct attacker or merge group of source
addresses belonging to a single attack. To this aim, we advocate a cooperative
approach: local network domains send their alarms toward a centralized coordi-
nation node, where this data is aggregate in order to have a more complete view
on the composition of GoA and thus on the number of attackers.

4 Network Domain Model

A Network N can bee seen as a set of addresses N = {
⋃

∀j∀c x
c
j} where c is the

portnumber and j is the hostname. The state of each address at a given time t
can be closed, open or undefined (i.e. {c, o, u}). An address xcj is in the o state
if at time t if it replies with a SYN-ACK to any SYN packet sent to it. If the state
is c it means that the address replies with RST-ACK to any SYN packet. Finally,
the address is in the u state if there is no active service on it or because there
is a firewall blocking its connections. The function st : N → {c, o, u} maps each
address ofN to the corresponding state. Two addresses xki , x

t
j belong to the same

host if and only if i = j. In the following we consider an address xcj as k-active
at time t if ∃t′ ∈ [t − k, t]|st′(xcj) = o. Otherwise xcj is k-closed. Therefore, we
can define the two set of k − active Ka

t and k − closed Kc
t addresses.

Observer. The observer is an entity able to see and inspect any packet trans-
mitted on the monitored network N and unable to monitor the attacker source
network NA. The observer has limited computational power and can observe the

106 R. Baldoni, G.A. Di Luna, and L. Querzoni

network for a limited time window Δo. As an example the observer can compute
on-the-fly which ports are k − active and k − closed if k < Δo.

Adversary. An adversary A is an entity that wants to know the state of a set of
targets S inN . The set S can be build using a sampling function ψt : N → P(N).
Commonly adopted ψ functions are [5]:

ψv vertical scan: S = {xcj | j = h c ∈ P}. All the addresses belong to the
same host.

ψh horizontal scan: S = {xcj | c = h j ∈ H}. All the addresses share the
same port but are distributed among different hosts.

ψs strobe scan: S = {xcj | j ∈ H c ∈ P}. The same set of ports P is tested
over a set of hosts H .

Let us remark that it is always possible for an adversary to use a sampling
function ψk that is totally random. In the following, as in [1], we consider only
adversaries that are carrying out scan activities using contiguous addresses as
a target. In order to identify these specific sampling functions, we introduce
the symbol ψ; two addresses xkj , x

t
i are contiguous if k − t = 1 ∧ i = j or k =

t∧i−j = 1. Each adversary A has a limited amount of time useful to accomplish
the scanning. This assumption is reasonable because, as an example, the results
of a scan can easily become useless if the scan lasts for a too long period. We call
ΔA the maximum time window in which the adversary is supposed to accomplish
the scan. If c = |S| is the size of the target set we can define the minimum request
rate that the adversary has to sustain during the scanning as: ρcA = c

ΔA

Coordinated Port Scanning. A coordinated port scan is a port scan activity in
which the target set S is probed by a set of attackers Z = {z1, ..., zn} orchestrated
by the adversary A. The problem of the adversary is to carry out the coordinated
port scan without being noticed by the observer which means that the number
of probes sent by each attacker should be below a certain threshold.We define
the assignment function: φ : Z → P(S) This function assigns to each attacker zj
the set φ(zj) containing the subset of addresses in S that zj will probe during
the attack and such that S =

⋃n
j=1 φ(zj). We can now define the average number

of probes for an attacker as: cz =
∑n

j=1
|φ(zj)|
|Z|

Here we assume that 0 < cz < ts where ts is the minimum number of requests
that results in a scan detection by the observer.

Failures and Failure Network Threshold. Let now consider an observer
o using a time window size Δo and an adversary A carrying out a port scan
activity over S. For the observer it is possible to compute the density ρactive of
k − active ports over N . So the observer can estimate the density of k − closed
ports 1 − ρactive, this implies for an adversary with a fixed request rate ρ′cA
scanning the network N , that the observer should see during Δo a number of
failures that is:

P = ρ′cA(1− ρactive)Δoρ
Sf

t ≥ t(ρ′cA, Δo) =
ρ′cA(1− ρactive)Δo

2

Collaborative Detection of Coordinated Port Scans 107

t(ρ′cA, Δo) represents the estimated failure threshold for the network and it is
a function of both the observation window and the adversary rate. In other words,
this threshold is not considered for failures caused by single source attacks like
in [1], but rather it is considered for all the failures happening in the observed
network N , additional details on how to compute this threshold ca be found
in [11].

Local Attack Graph. An attack executed against a network can be represented
through a Source-Errors graph, namely Local Attack Graph LAG, that has some
important properties. Assume A starts a coordinated port scan towards S ⊆ N
at time t0 and that this attack will end at time t0+ΔA. Without loss of generality,
let us assume that this attack is an horizontal port scan. Consider F c, that is
the set of connection failures directed towards a k-closed port c at time t0 +Δa,
and F c(x), the subset of these failures generated by source x.

We define the Local Attack Graph LAG(V,Eψp
h
) where V = {zj|∃rtxc

j
∈

F c(zj)} and Eψp
h

= {(vj , vi) ∈ Eψp
h
|∃rtxc

k
∈ F c(vj) ∧ ∃rtxc

t
∈ F c(vi) ∧

near(xck, x
c
t)}.

The near function is defined as:

near(xc
k, x

c
t) =

{
true if 0 < |{xc

k, x
c
k+1, · · · , xc

t}\Ko
t0+Δa

| ≤ dmax

false otherwise

ip4

ip1

ip2

ip3

ip5

ipA

ipB
ipB

ip2

ip1

ip4
ip3

(a) (b)

<ipC,h0> accept <ip2,h1> drop
<ip3,h1> drop <ip4,h1> drop

<ip1,h1> drop<ipD,h0> accept
<ipE,h0> accept <ipB,hx> drop

Failure History B

<ipE,h0> accept<ipE,h0> accept

<ipC,h0> accept <ip2,h1> drop
<ip3,h2> drop <ip4,h3> drop

<ip1,h4> drop<ipD,h0> accept
<ipE,h0> accept

<ip5,h5> drop
<ipB,hx> drop

<ipA,hy> drop

 Failure History A
<Src,Dst> outcame <Src,Dst> outcame

Fig. 2. (a) Local Attack Graph obtained by the Failure history A (b) Local Attack
Graph obtained by the Failure history A. In both graphs dmax is equal to 2.

In other words, if we consider the list of failures there is an edge between two
nodes that failed a connection to a host in N if their addresses are contiguous
according to the near function. As an example, Figure 2.a and Figure 2.b show
two LAGs obtained from the failure histories a and b respectively. Note that if
one host fails a connection to an address that is not contiguous to other failures
then these hosts appear as isolated nodes in LAG (e.g., ipB and ipA in Figure
2.a). In the case there is no contiguity at all between any pair of failures we get
the graph shown in Figure 2.b where all hosts are isolated. Let us now introduce
the following lemma:

Lemma 1. Let G be the Local Attack Graph in case of coordinated port scan
with sampling function ψp

h the following two properties hold:

108 R. Baldoni, G.A. Di Luna, and L. Querzoni

(1) all the attackers that generated at least one anomalous failure are in G.
(2) all the attackers controlled by a same adversary are in the same connected
component.

As a consequence, a contiguous coordinated port scan will create connected
components inside the LAG. This brings to the following observation: if a LAG
shows connected components with high intra-edge density there is a suspect
that a coordinated port scan is running. If we consider Figure 2.a there is a
connected component of hosts that can be suspected to be a (or a part of)
group of attackers. This is just a suspect because the connected component
could be a false positive. Each suspect is reported as a potential group attack
(PGA) alert constituted by a set of possible attackers at = {at1, at2, ..., atz} and
for each attackers atj the set of targets Tatj . As an example considering Figure
2.a, at = {ip1, ip2, ip3, ip4, ip5} and Tip1 = {h4}, Tip2 = {h1}, Tip3 = {h2}.
These potential alerts are sent to the collaborative layer described below.

5 Collaborative Layer Model

The LAG can be used to detect an attack carried out by an adversary that just
probes addresses in that single network. However, if we consider an adversary A
carrying out an attack through GoA Z against multiple networks domains, each
single local attack graph contains only a partial view of the attack. By analyzing
separately the LAGs information about the port scan could go undetected. More
specifically the following issues arise at the single network domain level:

(1) Detection of big attack communities : it is possible that the set of attackers
available for the adversary is bigger than |N | (i.e. cz < 1); in this case the
information collected within each single network is not sufficient to detect the
entire GoA.
(2) Separation of adversaries : assume that two adversaries owning two indepen-
dent GoA Z1, Z2 decide to attack the same set of addresses at the same time; if
cz = 1 there is no way to distinguish attackers belonging to the two GoA using
only information of a single network domain, since each possible partition of the
attackers set would be arbitrary.

Collaborative Graph. We can mitigate these issues by introducing a collabo-
rative layer where a set of network domains share information about PGA. This
layer collects PGA alerts from local network domains and creates a Collabora-
tive Graph CGc(V,E) that should be able to cluster and separate GoAs. In a
collaborative graph V is the set of PGA alerts and two PGAs are connected by
an edge if a measure of similarity between them is above a certain threshold δs.
The edge is labeled with the list of the intersections of attackers. To express this
notion of similarity, let us introduce the inter-alert similarity (IAS) between
two alerts a1, a2. IAS is defined as the ratio between the union of targets of the
intersection of attackers over the union of targets. i.e.,

IAS(a1, a2)=
| ∪∀atj∈a1∩a2 Tatj |
| ∪∀ati∈a1∪a2 Tati |

Collaborative Detection of Coordinated Port Scans 109

As an example let consider Figure 5, an edge is established between potential
group attack alerts PGA1 and PGA2 that share the attackers {b, c}, each at-
tacker has one target so in this case the cardinality of the union of targets it is
equals to the cardinality of the union of attackers. This value is divided for the
cardinality of the union of all targets in PGA1 and PGA2, the result is above
the threshold and leads to the creation of the edge between PGA1 and PGA2
whose label is {b, c}.

PGAs

Attackers
 Intersection

PGA1

PGA2
PGA3

PGA6
PGA7

PGA5

PGA4

PGAA

PGA9

PGA8

PGAC

PGAB

Potential Group Attack
AlertID Attackers Targets

<PGA1, {a,b,c,1,...}, T_a={n1h1},T_b={n1h2},..>
<PGA2, {3,c,4,b,...}, T_3={n2h1},T_c={n2h2},..>

<PGA3, {4,3,c,1,...},T_4={n2h1},T_3={n2h2},..>
.................

Fig. 3. Cooperative Graph obtained by a list of potential group attack alerts got by the
Network Domains. The list highlights potential group attack alerts PGA1,.., PGA5.

Each time a new PGA alert gets to the collaborative layer, a node is added
to the collaborative graph and its corresponding edges are created. Periodically,
a procedure is executed transforming the graph in order first to aggregate and
then to separate group of attackers. The final aim of this procedure is to detect
entire group of attackers and to separate two groups in case of concurrent attack.
Below we describe the two main steps of this procedure.

5.1 Group Attack Aggregation

Once we have a Collaborative Graph, we need a mechanism that is capable to
aggregate PGA alerts coming from Local Attack Graphs.

We employ a clustering algorithm on CG(V,E) that try to maximize the
modularity [12], since the group of PGA alerts generated by the same attackers
are likely to have higher density of intra-cluster links. The clusters obtained in
this way are then analyzed: if the set C obtained by the union of all the edge-sets
covers a sufficient number of targets, then the cluster is collapsed; all the nodes
are deleted and substituted with a supernode that contains the attackers in C
and the relative targets. When this happens the set C is signaled as a group of
attackers.

In order to trigger the collapsing behavior we need to introduce the intra-
alert coverage (IAC) of a set of attackers C = {at1, at2, ..., atz} over the PGA
a as:

IAC(C,a)=
| ∪∀atj∈C∩a Tatj |
| ∪∀ati∈a Tati |

we allow the collapse only when the set of attackers in C covers at least a certain
threshold ρiac of targets over at least a threshold ρalert of PGA alerts.

110 R. Baldoni, G.A. Di Luna, and L. Querzoni

5.2 Separation of Adversaries

The Group Attack aggregation step could merge two different GoAs, then we
need a step that tries to check if this has been done and, in the affirmative,
separate the two groups. We assume, as in [1], that the adversary will orchestrate
the GoA attackers to maximize the scan coverage minimizing the intra scan
overlap. So we define the Maximum Union Minimum Intersection problem as
follows:

Definition 1 (definition MUMI). (Maximum Union Minimum Intersection)
Consider a set of attackers A = {at1, ..., atz} each one associated with a set of
targets Tatj = {t1, ..., tkatj

}. We want to find out the subset A∗ of attackers that

maximize g(X) = | ∪∀atj∈X Tatj | − k
∑

∀atj,ati∈X |Tatj ∩ Tati | without violating
the coverage constraint | ∪∀atj∈A∗ Tatj | ≥ C with C ≤ | ∪∀atj∈A Tatj | and with
k > 0

Theorem 1. MUMI is not solvable in polynomial time.

The proof of MUMI is omitted, interested reader can refer to [11].

Network Domain NNetwork Domain N
Network Domain 2

Collaborative Analysis

-Similarity Based Clustering
-Separation Algorithm

Graph status updates

Network Domain 2

DB

Trigger
(slow/normal/fast + port)

Network

Connection Sniffing

Network Domain 1

Local Attack
Graph

Slow Nor Fast

Failures
History

Collaborative Graph

Failures Filtering
Failure Network
Alert Generator

Failures

Console

Event CorrelationPotential Group
Attack (PGAs)

Fig. 4. The overall architecture of the collaborative port scan detection system

6 System Architecture

In this section we illustrate the details of all components present in figure 4.

Network Domain Level
The system is constituted at this level by three independent modules. Infor-
mation sniffed on the local network infrastructure flows through these mod-
ules where it is analyzed and transformed in order to produce Potential Group
Attacks (PGAs) for the collaborative layer.

Event correlation: this module is in charge of collecting data sniffed at the net-
work level, filter and analyze it to detect possible anomalous activities. More
in detail, connection events sniffed at the network level are sent toward a Fail-
ures Filtering block. This block discards all regular connections and let only

Collaborative Detection of Coordinated Port Scans 111

anomalous connections (failures) pass through it. Note that connection filter-
ing is executed within this block by taking into account possible accidents that
could easily raise the number of false positives. For example, the block discards
failures happening on k-active addresses that recently become inactive as this
is probably a sign of a failed local service still targeted by non-malicious con-
nection attempts. The block also discards massive amounts of failures incoming
from independent sources and directed to specific addresses as they are usually
a consequence of transient misconfigurations (e.g. some changes in a DSN direc-
tory). Failures that pass the filtering stage are directed towards the DB module
and the Failure Network Alert Generator block (FABG).

The FABG block receives failures and keeps track of the number of connection
attempts made toward k-closed addresses in multiple concurrent time-windows.
These statistics are separately traced per port. Each counter is compared with
thresholds calculated using the function t. Here we consider three kind of scan
activities that we are interested in tracing (that correspond to three different
time windows):

Fast : a fast attacker wants to scan S, with ΔA limited to few minutes. This
kind of attack uses a scan rate ρcA ≥ 1 req

s , issuing a large number of errors
in a small time window. To trace this kind of activity we can use a small
sliding time window δf triggered when the errors are more than t(1 req

s , δf).
Normal : a normal attacker uses 1 req

min ≤ ρcA < 1 req
s , with ΔA covering a time

span of few hours. To detect these attacks a time window δn > δf is used.

The value t(1 req
min , δf) is the threshold of this window.

Slow : a slow attacker uses a rate ρcA<1 req
min , with ΔA larger than ten hours. In

this case the threshold is computed using (1−ρactive)|N |
2 . At least half of all

the k-closed addresses must be covered.

Every time a defined threshold is surpassed within a time window, this block
triggers the Local Attack Graph module to create a new graph. DB: this module
simply stores failures received from the Event correlation module; in this way
the system keeps track of local failure histories that will be used to build LAGs.

Local Attack Graph: this module is in charge of building the LAG. It is triggered
by the Event correlation module every time some suspicious activity (slow, nor-
mal or fast) is detected on a specific port. The LAG is built extracting historical
information on past failures for that specific port from the DB and using on
it the construction method detailed in Section 4. The module locally maintains
data to compute the near function using a modified version of the interval-
tree; this allows efficient maintenance under the addition and removal of active
ports using logarithmic operations for update and querying. The LAG is then
examined to find suspicious agglomerates created using the Louvain1 clustering
algorithm [13]. Each cluster whose size is larger than a configurable threshold
represents a PGA that is sent to the collaborative layer.

1 The Louvain algorithm has been selected since it is considered one of the fastest
available method for community detection and, according to the authors, it scales
well on graphs of large size.

112 R. Baldoni, G.A. Di Luna, and L. Querzoni

Collaborative Layer. The collaborative layer is constituted by two modules:
the Collaborative Analysis module and a Console. The former correlates and
analyze PGAs incoming from the various network domains producing a Collab-
orative Graph that contains information on running attacks; the latter is used
to visualize the CG.

Global Variables:
A: set of PGA alerts
CG(V,E): collaborative graph

When a new PGA a is received:
(01) V ← V ∪ a
(02) for each alert e ∈ A do
(03) if (IAS(e,a)> δs)

(04) E ← E ∪ {e,a′}
(05) A ← A ∪ a

Periodically executed:
(06) Clusters ← cluster(CG)
(07) for each cluster c ∈ Clusters do
(08) if c can be collapsed
(09) g ← solve MUMI on c
(10) for each alert a ∈ c do
(11) remove from a every attacker at ∈ g

(12) V ← C ∪ a new alert a′ containing g
(13) for each alert e ∈ A do

(14) if (IAS(e,a′)> δs)

(15) E ← E ∪ {e,a′}
(16) A ← A ∪ a′

Fig. 5. Collaborative analysis algorithm

Collaborative Analysis: this module continuously maintains the CG using the
pseudocode reported in Figure 5. Every time a new PGAs is received from a
network domain it is added to the CG (line 01) and the edges are updated
accordingly (lines 02-04). Periodically, the module checks if alerts contained in
the CG can be grouped as single GoAs. This is done by applying again the
Louvain [13] clustering algorithm on the CG (line 06) that returns a set of
clusters. If a cluster can be collapsed (following the policies specified in Section 5)
the module solves the MUMI problem using it as input in order to extract from
it the attackers actually pertaining to the GoA. The approximate solution to
MUMI is obtained using a reactive greedy randomized adaptive search procedure
(*RGRASP) [3] where the stopping condition is true when the ratio of new
covered elements over the overlapping elements is less or equal to a threshold k,
while the probability for the parameter αj is defined as P (αj) = solαj/

∑
∀i solαi

where solαj is the average of all the solutions found using αj . We slightly modified
the original RGRASP adding one step after the local search procedure: the idea
is to run the randomized greedy until the stopping condition is satisfied; then,
as in the original GRASP we run the local search to improve the solution found
so far. The result of the search procedure is improved using one more step of
randomized greedy, then this solution is used to feed a local search and so on
till we reach a local maximum. The rationale in this procedure is that the local
search procedure could improve the solution selected by the randomized greedy
removing a conflicting attacker; this could lead to the addition of a new attacker
that now does not conflict with the solution obtained after the local search. After

Collaborative Detection of Coordinated Port Scans 113

a solution to MUMI has been found, we create from this set of attackers a new
node in the CG (this is like a new alert) that correspond to a GoA (lines 12-16).
The attackers included in this GoA are removed from other alerts that remain in
the CG (lines 10-11). The choice of *RGRASP has been done after an evaluation
of this meta-heuristic against a greedy algorithm and the original RGRASP. Due
to lack of space the comparison betwen RGRASP and *RGRASP can be found
on [11].

We realized a prototype of the system in java using Jung libraries [14] for the
visualization and graph manipulation. The event correlation module has been
developed using Esper Complex Event Processing system [15]. The output of
the system is a human-readable form of the CG that is generated by a Console
module. The console could easily be substituted by more complex reactive sys-
tems that, by inspecting changes in the CG would trigger adequate automatic
responses (e.g. the addition of rules to a firewall).

7 Evaluation

This section provides an evaluation of a prototype implementation of the pro-
posed system with respect to its ability to correctly identify coordinated port
scan activities.

Input data. In order to feed the system with realistic data we collected several
traces from the firewall deployed at the edge of the DMZ network of a large
academic institution2. The traces globally contain data collected during three
days of activity, from november 4th to november 7th, 2011. The network where
activity was traced includes web-servers of the institution and many other public
services available from outside, (email server, ftp, etc.). Each TCP connection
is associated timestamp with granularity up to seconds, and state information
(Dropped or Accepted). With respect to our model a dropped connection is
considered as a connection to a closed port, while an accepted connection is a
connection towards an open service. Note that we had no way to clearly detect
the presence of coordinated port scan activities in the traces but to run our
solution on it. We decided to purposely inject such activities within the traces
to simulate the presence of (multiple) adversaries. Gates [1] quotes two soft-
wares for distributed port scan that are DSCAN and NSAT. To the best of our
knowledge, these software are currently not publicly available. For this reason
we wrote a coordinated port scan simulator tool that, taking a trace as input,
inserts coordinated port scan activities in it. It is possible to tune the simulator
specifying parameters like the number of adversaries, the scan rate, the size of
the GoAs, and the targets. The tool uses a random assignment of targets that
tries to balance the number of requests for each attackers minimizing cz. In order
to mimic a collaborative scenario we used the available traces as if they were
extracted from different network domains.

2 University of Rome La Sapienza.

114 R. Baldoni, G.A. Di Luna, and L. Querzoni

Measures of interest. The two main characteristics of the proposed solution
we want to evaluate are its capability in isolating GoAs that are larger than the
target network and its effectiveness in correctly identifying multiple adversaries
whose targets overlap. We define the Intra Cluster Detection (ICD) of GoA Z

for a CG node V as the ratio |Z∩V |
|A| . The ICD will be 1 if all the attackers in Z

have been detected and inserted in the right node.
In order to measure the system ability to correctly separate concurrent attacks

we can start computing the ICD for all the GoAs Zj present in a same CG node
V , i.e. ICD(Zj , V). Intuitively a bad separation of distinct GoAs within V will
lead to similar values for their ICDs, while with a good separation only one
GoA will sport an ICD value close to one, while all the other ICDs will be close
to zero. Therefore, the sum H(V) =

∑
∀Zj∈V −ICD(Zj, V)Log(ICD(Zj , V))

is larger with a bad separation and zero if the node is homogeneous, i.e. it
includes attackers from a single GoA. We normalize that value obtaining H(V)
and compute the converse D(V) = 1−H(V).

7.1 Experimental Results

Detection of GoAs
In this experiment we test the behaviour of the system considering a GoA Z
that scans twenty network domains. The target dimension |S| is limited to 200
addresses. We varied both the size of the GoA by tuning cz and the parameters
ρiac and ρalert used to configure the CG clustering. The two Figures 6, and 7
report results obtained setting ρiac = 0.85, 0.7 and ρalert = 0.9, 0.7 respectively.
Each graph plots the values for cz = 2, 1, 0.6, 0.5, 0.4, 0.33, 0.28 and 0.25; the size
of the GoA goes from 100 to 800 attackers.

The results show that, for a given configuration (e.g. ρiac = 0.7 and ρalert =
0.7) the system requires information incoming from a larger number of network
domains to identify GoAs (cz ≤ 0.5), while smaller GoAs (cz = 2) can be easily
identified using data incoming from few domains. The impact ρiac and ρalert
have on the results is less intuitive. By increasing their values toward one, we

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IC
D

Number of network domains

Cz=2 Cz=1 Cz=0.6 Cz=0.5

Cz=0.4 Cz=0.33 Cz=0.28 Cz=0.25

Fig. 6. Intra-Cluster Detection with
ρiac = 0.85, ρalert = 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IC
D

Number of network domains

 Cz=2 Cz=1 Cz=0.6 Cz=0.5

Cz=0.4 "Cz=0.33" Cz=0.28 Cz=0.25

Fig. 7. Intra-Cluster Detection with
ρiac = 0.7, ρalert = 0.7

Collaborative Detection of Coordinated Port Scans 115

are tuning the collaborative layer to be more “picky” in the selection of attackers
that form an identified GoA; as a consequence, if the GoA is large (e.g. cz ≤ 0.5)
it takes a larger amount of information for the system to isolate it, but, once the
GoA is identified, information about almost all its attackers is already available
in the CG. This accounts for the results that show how the ICD value increase
for larger number of domains but at a very steep rate, quickly reaching values
close to one (cfr. Figure 6). Conversely, by decreasing the values of the two ρ
parameters, we choose to have a system that reacts quicker to potential attacks
starting to isolate GoAs as soon as information from few network domains is
available; on the other side, “early” isolation of GoAs comes at a price: most
detections happens with incomplete information about the GoAs as it is shown
by the slower growth rate of the curves reported in Figure 7.

Table 1. Results of experiments on GoA separation. The overlap size indicates the
number of shared target network domains in the adversaries’ targets. The total number
of domains is 20. Each CG node is summarized as a list of cardinality for the detected
GoAs.

Overlap size CG nodes D(V)
20 V1 = (|Z1| = 198, |Z2| = 0) V2 = (|Z1| = 1, |Z2| = 200) D(V1) = 1 D(V2) = 0.95
17 V1 = (|Z1| = 200, |Z2| = 2) V2 = (|Z1| = 0, |Z2| = 198) D(V1) = 0.91 D(V2) = 1
15 V1 = (|Z1| = 199, |Z2| = 15) V2 = (|Z1| = 16, |Z2| = 199) D(V1) = 0.62 D(V2) = 0.62
13 V1 = (|Z1| = 200, |Z2| = 16) V2 = (|Z1| = 0, |Z2| = 80) D(V1) = 0.62 D(V2) = 1
11 V1 = (|Z1| = 177, |Z2| = 6) V2 = (|Z1| = 0, |Z2| = 200) D(V1) = 0.79 D(V2) = 1
9 V1 = (|Z1| = 98, |Z2| = 158) D(V1) = 0.03
7 V1 = (|Z1| = 91, |Z2| = 151) D(V1) = 0.04
5 V1 = (|Z1| = 186, |Z2| = 129) D(V1) = 0.02
1 V1 = (|Z1| = 192, |Z2| = 0) V2 = (|Z1| = 0, |Z2| = 193) D(V1) = 1 D(V2) = 1
0 V1 = (|Z1| = 199, |Z2| = 0) V2 = (|Z1| = 0, |Z2| = 198) D(V1) = 1 D(V2) = 1

Separation of GoAs
The other aspect of our system is the possibility to correctly identify two ad-
versaries attacking concurrently the same targets. We tested this feature using
20 network domains and running different tests where we vary the amount of
network domains where the targets of the two adversaries overlap. As Table 1
shows the separation is sharp in the most cases proving the effectiveness of our
approach in identifying concurrent coordinated port scans.

Some difficulties arise when the target overlap happens on few domains. In
these cases the system is not able to clearly separate the GoAs and create in
the CG a single node containing a mix of attackers from both GoAs. Let us
recall that within the MUMI problem formulation a parameter k is present that
assigns a malus for the presence in a same CG node of two different attackers
that share some targets. Tests reported in Table 1 have been performed setting
k = 2.0. This lead to the bad behaviour reported above when the cardinality
of the overlap is above half of the union of the targets. By tweaking the value
of k it would be possible to take into account these specific scenarios and still
obtain an effective GoA separation. However, larger k values could bring into
play undesired side effects like the partitioning of a single GoA in two CG nodes.

116 R. Baldoni, G.A. Di Luna, and L. Querzoni

8 Limitation, Conclusion and Future Work

In this paper we presented a new approach for collaborative detection of co-
ordinated port scans over multiple network domains. Despite the encouraging
results reported in Section 7, the proposed solution still shows some limitations
that could be exploited by skilled adversaries to avoid the detection.

Target Contiguity: the system assumes that the target set of an attack con-
tains contiguous addresses. The presence of dmax mitigates this problem as at-
tackers that have probed addresses that are not strictly contiguous will be still
considered as neighbors in the local graph.

Collaboration among Network Domains: the system is designed to leverage
information coming from different network domains to detect coordinated port
scans.The collaborative layer, in fact, is totally useless when the adversary is
acting only against one network domain.

Botnet-Based GoAs: if the adversary controls a huge GoA, for example one
based on a large-scale botnet, it could be capable of generating a single probe per
attacker. In this way all the PGAs generated by network domains will be fully
uncorrelated, hampering the possibility to identify the GoA at the collaborative
layer.

Very Slow Attackers: an adversary willing to use a time-window larger than
the observer maximum window will avoid detection in the network domain.

As a future direction for the evolution of this work, we are interested in
devising new correlation methods, possibly based on characteristics of the scan
activities that have not been considered in this work, that would make the system
capable of solving some of the previous limitations.

References

1. Gates, C.: Coordinated scan detection. In: Proceedings of NDSS 2009 (2009)
2. Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and

collaborative intrusion detection. Computer and Security 29, 124–140 (2009-2010)
3. Prais, M., Ribeiro, C.C.: Reactive grasp: An application to a matrix decomposition

problem in tdma traffic assignment. INFORMS Journal on Computing 12, 164–176
(1998)

4. hybrid, Distributed Information Gathering (2011),
http://www.phrack.org/issues.html?issue=55&id=9

5. Staniford, S., Hoagland, J.A., Mcalerney, J.M.: Practical automated detection of
stealthy portscans. Journal of Computer Security 10, 105–136 (2002)

6. Conti, G., Abdullah, K.: Passive visual fingerprinting of network attack tools. In:
Proceedings of VizSEC/DMSEC 2004, pp. 45–54. ACM, New York (2004)

7. Robertson, S., Siegel, E.V., Miller, M., Stolfo, S.J.: Surveillance detection in high
bandwidth environments. In: Proceedings of DARPA DISCEX III, pp. 229–238.
IEEE Press (2003)

8. DShield: Cooperative Network Security Community - Internet Security (2009),
http://www.dshield.org/indexd.html/

http://www.phrack.org/issues.html?issue=55&id=9
http://www.dshield.org/indexd.html/

Collaborative Detection of Coordinated Port Scans 117

9. Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: global characteristics
and prevalence. SIGMETRICS Perform. Eval. Rev. 31, 138–147 (2003)

10. Baldoni, R., Chockler, G.: Collaborative Financial Infrastructure Protection.
Springer (2012)

11. Baldoni, R., Luna, G.D., Querzoni, L.: Collaborative Detection of Coordinated
Port Scans, MIDLAB 1/12 - University of Rome “La Sapienza” Tech. Rep. (2012),
http://www.dis.uniroma1.it/~midlab/publications.php

12. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (2006)

13. Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities
in large networks. J. Stat. Mech., 10008 (2008)

14. Jung (2011), http://jung.sourceforge.net/
15. Esper (2011), http://esper.codehaus.org/

http://www.dis.uniroma1.it/~midlab/publications.php
http://jung.sourceforge.net/
http://esper.codehaus.org/

Exploiting Partial-Packet Information

for Reactive Jamming Detection:
Studies in UWSN Environment

Manas Khatua and Sudip Misra, Senior Member, IEEE

SIT, Indian Institute of Technology Kharagpur, India
{manask,smisra}@sit.iitkgp.ernet.in

Abstract. Reactive jamming in an underwater sensor network (UWSN)
environment is a realistic and very harmful threat. It, typically, affects
only a small part of a packet (not the entire one), in order to maintain
a low detection probability. Prior works on reactive jamming detection
were focused on terrestrial wireless sensor networks (TWSNs), and are
limited in their ability to (a) detect it correctly, (b) distinguish the small
corrupted part from the uncorrupted part of a packet, and (c) be adap-
tive with dynamic environment. Further, there is currently a need for a
generalized framework for jamming detection that outlines the basic op-
erations governing it. In this paper, we address these research lacunae by
broadly designing such a framework for jamming detection, and specif-
ically a detection scheme for reactive jamming. A key characteristic of
this work is introducing the concept of partial-packet (PP) in jamming
detection. The introduction of such an approach is unique – the existing
works rely on holistic packet analysis, which degrades their performance
– a fundamental issue that would substantially affect achieving real-time
performance. We estimate the probability of high deviation in received
signal strength (RSS) using a weak estimation learning scheme, which
helps in absorbing the impact of dynamic environment. Finally, we per-
form CUSUM-test for reactive jamming detection. We evaluate the per-
formance of our proposed scheme through simulation studies in UWSN
environment. Results show that, as envisioned, the proposed scheme is
capable of accurately detecting reactive jamming in UWSNs, with an
accuracy of 100% true detection, while the average detection delay is
substantially less.

Keywords: Reactive jamming, partial-packet, weak estimation, CUSUM.

1 Introduction

UWSNs [1] find many time-critical applications in scenarios such as underwater
surveillance, intrusion detection, and seismic monitoring. The real-time delivery
of messages is crucial in these applications. An important class of threats that can
severely affect the successful functioning of such kind of challenged networks is
jamming. The unique characteristics of UWSNs, such as low bandwidth, adverse

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 118–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Exploiting Partial-Packet Information for Reactive Jamming Detection 119

communication channel, large and variable propagation delay, high bit error
rate, and harsh environment, make these networks more vulnerable to jamming
attacks. Additionally, sensor nodes, as such, have limited resources in terms
of storage capacity, energy supply, and computational power, which make the
designing of any jamming attack detection scheme even more challenging.

1.1 Motivation

It is shown in [2] and [3] that reactive jamming, as such, is a realistic and very
harmful threat in any TWSN. The reactive jammer stays quiet untill and unless
it senses any ongoing communication within its transmission range. Upon sens-
ing any communication, the reactive jammer transmits a short-duration signal
to disrupt the legitimate communication, and then again remains quiet. The
UWSNs, likewise, are also vulnerable to jamming attacks [4]. Our measurement-
based experimental studies reveal that reactive jamming can potentially decrease
the throughput of a network, on an average, by 35.7% below normal scenarios
in UWSN environments, as shown in Figure 1 (experimental setup is explained
in Section 6). There exists only one work [2] on reactive jamming detection in
TWSNs. However, none of the existing works was designed for UWSNs. Along
with this lacuna, some of the important observations characterizing UWSN envi-
ronments and reactive jamming (mentioned below) have motivated us to design
an effective scheme for reactive jamming attack detection in UWSN environment.

0

10

20

30

40

50

60

70

80

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.2 5.4 5.6

Th
ro

ug
hp

ut
 (b

ps
)

Simulation Time (×100 sec)

Without Jamming With Jamming

Fig. 1. Effect of reactive jamming in UWSNs

UWSNs suffer from long and variable propagation delay. The propagation
speed of acoustic signal is five orders of magnitude less than the radio frequency
propagation speed [4]. Therefore, ACK-based detection metrics, such as packet
delivery ratio (PDR), takes much longer time for jamming detection. Moreover,
accurate calculation of PDR is not feasible for on-demand reactive forward-
ing schemes [2]. Hence, PDR is not a suitable metric for jamming detection

120 M. Khatua and S. Misra

in UWSNs. Underwater channels are highly influenced by artificially triggered
noise sources such as pumps, gears, ships, and ambient noise sources such as
tides, rain drops, fishes, and seismic activities. All these unavoidable and unpre-
dictable noise sources make the average signal strength unpredictable in normal
scenarios too, and, thus, invalidate the use of signal-to-noise (SNR) ratio for jam-
ming detection. Global Positioning System (GPS) uses 1.5 GHz radio frequency
band, and these waves do not propagate long distance in water [1]. This issue
restricts the use of node-position-based jamming detection schemes in UWSNs.
The underwater medium is highly dynamic in nature. Parameters such as tem-
perature, pressure, salinity, and noise significantly vary with depth in the water
column. It is inappropriate to use schemes (e.g. [5], and [6]), which rely on a pre-
defined threshold of a metric that depends on any of these varying parameters.
Rather, we argue that it is required to design suitable metrics that can reduce
the impact of the dynamic nature of the medium.

Reactive jamming, typically, corrupts only a few bits of a packet [2]. In gen-
eral, the Forward Error Correction (FEC) based schemes are not suitable for
error correction in TWSNs due to high resource consumption [7]. Additionally,
FEC-based schemes can be used for jamming mitigation, but not for jamming
detection [2]. The corruption of only a few bits does not increase the signal
strength corresponding to a packet noticeably [2], as the RSS corresponding to
a packet may “dilute” the RSS changes corresponding to a few corrupted bits.
So, the average RSS based schemes (e.g. [5], and [6]) are not suitable for reactive
jamming detection. Furthermore, all existing schemes (e.g. [2], [5], and [6]) rely
on retransmitting the whole affected packet. Such an approach leads to the re-
transmission of highly redundant bits, and consequently, consuming additional
energy. The fact of the matter is that the algorithms used in these existing ap-
proaches cannot be used to distinguish between the corrupted and uncorrupted
bits. Finally, it is observed that, the underline stream of all existing jamming
detection schemes are same, even though, they followed different approaches for
jamming detection in TWSNs. Hence, we tried to expose such underline stream
through a well-designed framework.

1.2 Contributions

This paper addresses some of the research lacunae identified in Section 1.1, by de-
signing a generalized jamming detection framework, and then, using it for reactive
jamming detection studies in UWSN environments. We use the logical concept of
partial-packet (PP) [8], [9] to monitor short-duration packet dynamics, which is
a key feature of our work. We estimate the probability of high deviation in RSS
using a weak estimation learning [10] scheme, and perform CUSUM-test [11] for
reactive jamming detection. Additionally, the proposed scheme provides an op-
portunity of partial-packet recovery [8], [9] by acknowledging the sender about
the corrupted PPs. In sum, our contributions in this work are as follows:

(a) Studies on Reactive Jamming in UWSN Environment : To the best of
our knowledge, no work on reactive jamming detection in UWSN exists. We
have specifically considered UWSN environments to perform a study on the

Exploiting Partial-Packet Information for Reactive Jamming Detection 121

effectiveness of reactive jamming and its detection, as the UWSNs are more
challenging networks [1].

(b) Channel Observation Metrics : We propose two new metrics for short-
duration channel monitoring, Bad Partial-Packet Ratio and Partial-Packet RSS,
which quantify the observed statistics with respect to PP.We define another met-
ric, Deviation of PPRSS, to capture the deviation of RSS in corrupted bits. This
metric correctly distinguishes the effect of poor channel from packet collision,
and addresses the problem of considering signal strength decrease due to destruc-
tive interference (an important contribution, as the existing works assumed only
constructive interference). It also absorbs the impact of dynamic environment in
UWSNs by avoiding the use of static threshold for RSS.

(c) Reactive Jamming Detection Scheme: We propose a CUSUM-based dis-
tributed reactive jamming detection scheme, which can detect reactive jamming
correctly (i.e. very less false detection) and in short interval of time. On the
contrary, the existing schemes are limited in their fundamental ability to detect
it simply correctly in different scenarios (as explained in Section 2).

(d) Jamming Detection Framework : We design a component-based general-
ized framework to provide a structural view of common operations required for
jamming detection. It reduces the complexity of designing a specific scheme by
identifying those task and organizing them in separate modules such that it
allows implementing different algorithms for each module independently.

1.3 Organization of the Paper

The remaining paper is organized as follows. In Section 2, we briefly discuss
the related works reported in some literature with respect to their suitability
and correctness in UWSNs. The network model and the jamming model, used
in this paper for simulation, are discussed in Section 3. In Section 4, we discuss
about different packet formats and three newly defined metrics for short-duration
packet monitoring. We discuss about the proposed generalized framework and
CUSUM-based reactive jamming detection scheme in Section 5. The simulation
results and their analysis is shown in Section 6 followed by the conclusion and
future direction of work for extending it further in Section 7.

2 Related Work: Challenging Their Suitablity and
Correctness for Use in UWSNs

There exist many important pieces of research works on jamming attack detec-
tion and countermeasures in TWSNs, as discussed in [7] and [12]. We noticed
that the existing reactive jamming detection schemes in TWSNs use different
combinations of jamming detection metrics, such as RSS, PDR, and SNR. There-
fore, at first we study the effectiveness of each metric in UWSN environment as
described in Section 1.1. In this section, we draw discussion on each scheme
separately. Xu et al. [6,13] reported extensive studies of different jamming at-
tack models and their effectiveness in the physical layer of wireless networks.

122 M. Khatua and S. Misra

They proposed few jamming attack detection techniques using RSS, PDR, and
carrier sensing time (CST). To improve the detection accuracy, they proposed
consistency check of signal strength and node location coupled with the PDR
observation. Finally, they concluded that PDR is an important metric for jam-
ming detection, even though, any individual metric is not sufficient to detect
jamming correctly. It is already mentioned in Section 1.1 that, the use of the
position of the nodes, PDR, RSS, and SNR metrics are not suitable in UWSN
environments. This issue invalidates the use of the above mentioned schemes
and few others proposed in the existing pieces of literature (e.g., [5], [14], [15],
and [16]), for reactive jamming detection in UWSN environments.

All the works, mentioned above, are general jamming attack detection schemes
designed for TWSNs. There exist only one work [2] on reactive jamming detec-
tion in TWSNs (none for UWSNs). In that scheme, bit error is calculated as
e[i] := m1[i]⊕m2[i], where m1 and m2 are two independently received packets
by two nodes of “n-tuple wired chained nodes”. We argue that the equation
may result in an erroneous value for “passive monitoring”, if both the packets
are equally corrupted. In case of “active monitoring”, periodical probe message
exchange increases the overhead of the network. Further, the authors assumed
for both the types of monitoring that wired communication is error free, and at
least one node of n-tuple nodes must be within the jammed area. Along with
these assumptions, few other limitations are as follows: (a) To implement the
“limited wiring” in practice, we need either hardware support or special kind of
nodes in the network. (b) By default, all signal strength based detection schemes
consider that interference always increases the signal strength. However, signal
strength decreases if destructive interference occurs. Hence, we argue that de-
tection schemes based on threshold value comparison of RSS and SNR metrics
are not capable of discriminating channel fading and destructive interference. All
these discrepancies strike the correctness of the scheme.

3 Network and Jamming Model

In this Section, we briefly specify the network model and the jamming model
that we use in this work.

3.1 Network Model

We consider security- and safety-critical applications in which timely delivery of
alarm messages is crucial. Let us assume that a UWSN is deployed to provide the
application requirements within a specified 3D space in an aquatic environment.
The underwater sensor nodes are floated at different depths as per their hard-
ware arrangements, such as bladder apparatus and presure gauge. Each node is
assumed to have an omnidirectional antenna with equal communication ranges.
They are considered not to have active mobility, although they are mobile due to
the underwater current. It is further assumed that the nodes are aware of their
own location coordinates, but do not know others’ locations. They can localize
themselves using any localization technique, as explained [17] and [18].

Exploiting Partial-Packet Information for Reactive Jamming Detection 123

3.2 Jamming Model

The main objective of jamming-style denial-of-service (DoS) attacks is to block or
delay the delivery of legitimate messages. In this work, we assume that only one
reactive jammer exists in the network. The jammer can only send random signals
to corrupt the transmission, but cannot destroy or deactivate normal nodes. The
jammer cannot restrict the nodes from observing the environment or events too.
The reactive jammer senses the channel for identifying any ongoing transmission.
Once the data transmission is sensed, the reactive jammer sends random signals
of short-duration that are capable enough of corrupting the legitimate packets.
Except this intensional transmission, the reactive jammer remains quiet at all
times. Thus, the reactive jammer does not need any extra information about
legitimate nodes and communication protocols for jamming the network, except
for channel sensing. We consider that the jammer can choose its transmission
power within a finite range. The main objective of the reactive jammer is to infect
the network as much as possible while it maintains the probability of detection
low. The reactive jammer also has no active mobility, although it moves under
the water due to underwater currents.

4 Partial-Packet Measurement

In this Section, we describe the packet formats and three new metrics designed
for reactive jamming detection in UWSNs.

4.1 Message Formats

A packet of length x bytes is logically divided into n PPs. Each PP is augmented
with one byte cyclic redundancy check (CRC) code for error detection. The size
of each PP, except the last one, equals �x/n� + 1. We assume that the maxi-
mum possible value for n is 256. A traditional network layer packet is similar to
a modified packet, except the CRCs augmented with it. This augmentation in-
creases the packet size by n bytes in our design, as we use 1 byte for representing
each CRC. It may be less or more depending on the type of CRC used for error
detection. Note that if the maximum deliverable packet length for a network is
specified, then the maximum data size of each packet is reduced by n bytes to
accomodate the CRCs of n PPs. Therefore, a tradeoff is created between the
network overhead and the number of PPs. We left the experimental discussion
on this tradeoff as our future work.

The formats of a traditional network layer packet, partial-packet, and recov-
ery packet are shown in Figure 2(a), 2(b), and 2(c), respectively. The PktType,
Src, and Dest fields indicate the type, source and destination of the packet, re-
spectively. The PPMap field is a bit-map indicating which PPs of the packet
have been received correctly. We can use the same PPMap array for the next
packet as well, thereby avoiding additional storage overhead. The CRC field in
the recovery packet is used to identify the error in it.

124 M. Khatua and S. Misra

Net Hdr
(h byte)

DATA & CRC
(x-h) byte

Packet (x byte)

PPk

DATA CRC
(1 byte)

(a)

(b)

Pkt Type
(1 byte)

Recovery Packet

(c)

PPn

Src
(1 byte)

Dest
(1 byte)

CRC
(1 byte)

PP Map (1..n)
(n bits)

PP1

Fig. 2. Packet formats (a) Network layer packet (b) Partial-packet (c) Recovery packet

4.2 Metrics for Short-Duration Channel Monitoring

In this paper, we define three new metrics to observe the short duration packet
statistics, i.e., traffic status. These metrics can help in detecting and characteriz-
ing jamming attacks in UWSN environments. Simultaneously, these metrics are
carefully designed so that they do not suffer from the disadvantages mentioned
in Section 1.1. The following metrics are proposed in this work.

– Bad Partial-Packet Ratio (BPPR): BPPR is defined as the ratio of the num-
ber of corrupted PPs received to the total number of PPs received in an
interval. Hence, the value of BPPR can be within the interval [0, 1].

BPPR =
number of corrupted PPs

total number of PPs received
(1)

– Partial-Packet RSS (PPRSS): PPRSS is defined as the average RSS corre-
sponding to each PP.

PPRSS =
1

d

d∑
i=1

RSS[i] (2)

where, d is the size of a PP in bits and RSS[i] is the received signal strength
of ith bit in the PP.

– Deviation of PPRSS (DevPPRSS): DevPPRSS is defined as the difference
between the average PPRSS of corrupted PPs and correctly received PPs.

DevPPRSS =

n∑
i=1

PPRSS[i]× PPMap[i]

−
n∑

i=1

PPRSS[i]× (1 − PPMap[i]) (3)

where, the value of PPMap[i] is either 0 or 1 depending on whether the ith

PP is erronious or not, respectively.

Exploiting Partial-Packet Information for Reactive Jamming Detection 125

5 Reactive Jamming Detection

In this Section, we initially describe the proposed generalized framework for jam-
ming detection, and then use it for designing a CUSUM-based reactive jamming
detection scheme which can be executed by any node in the network.

5.1 Generalized Architecture

A well-designed architecture reduces the complexity for designing schemes. The
existing works on jamming detection did not provide any common sequence of
functionalities needed for the execution of any jamming detection exercise. To
address this problem, in this paper, we try to expose the common sequence of
steps through a well-designed component-based framework. The proposed ar-
chitecture, shown in Figure 3, carries multiple advantages. For instance, using
it one can design different algorithms for individual components, and any algo-
rithm can be modified independently to improve its performance. The designed
framework consists of three components:

Fig. 3. A generalized framework for jamming detection

(a) Error Notification Component (ENC): The basic functionality of this com-
ponent is to detect any error introduced within a packet, and to notify it to the
next component. This component also monitors necessary information when a
packet arrives at the receiver. In the proposed scheme, we use the concept of
CRC for error detection in each PP. If any PP is detected as erroneous, it in-
vokes the algorithm written in the next component; otherwise, it skips all the
remaining steps. The receiver records the corresponding RSS value for each bit
while it receives any packet.

(b)DeviationEstimationComponent (DEC):This component helps to compute
the values of different metrics used in any jamming detection scheme. In the pro-
posed scheme, initially, we compute the values of metrics defined in Section 4.2.

126 M. Khatua and S. Misra

The value of the BPPRmetric varies from 0 to 1, as the number of corrupted PPs
are within 0 and n. If all the PPs are received correctly, then BPPR is 0, and its
value approaches unity, if the number of corrupted PPs approaches n. We, then,
compute the PPRSS of each PP, and estimate the probability of high deviation in
PPRSS using a weak estimation learning [10] scheme. Let us assume that the mea-
sured deviation is represented asΠ , whereΠ is the absolute value of DevPPRSS.
We determine a threshold value τ to differentiate between the high and the low
values ofΠ . Clearly, this threshold value represents theΠ parameter as a binomi-
ally distributed random variable, and its value must be either ≥ τ or < τ . Let us
consider thatΠ obeys the following distribution:

Π =

⎧⎨⎩
≥ τ with probability φ0

< τ with probability φ1
(4)

such that φ0 + φ1 = 1, where Φ = [φ0, φ1]T . At any iteration i, let us assume
that Π takes the value πi. The weak estimator maintains a running estimate
Ψ = [ψ0

i , ψ
1
i]

T of Φ to estimate φj , where ψj
i is the estimate of φj at time i, for

j = 0, 1. In this setting, the value of ψ0
i is updated as follows.

ψ0
i =

⎧⎨⎩
λ× ψ0

i−1, if πi−1 < τ

1− λ× ψ1
i−1, if πi−1 ≥ τ

(5)

where λ is a learning constant (0 < λ < 1), and ψ1
i = 1− ψ0

i . We then move to
the next component to identify the cause of this packet error.

(c) Jamming Detection Component (JDC): This component executes an al-
gorithm designed for jamming detection. In the proposed scheme, we design a
CUSUM-based detection mechanism which is described in detail in Section 5.2.
This scheme can detect the occurrence of reactive jamming quickly without pos-
sessing any a priori knowledge about the jammer’s strategy and the time of
occurrence of jamming.

5.2 CUSUM-Based Detection Scheme Design

In this Section, we present the CUSUM-based reactive jamming detection scheme
(CURD) considering the following philosophy. As stated earlier, a reactive jam-
mer, typically, corrupts only a few bits of a packet. Except this type of jammers,
all others corrupt large number of bits almost equalling the number of bits
present in a packet. If a packet is corrupted due to poor link or high channel
fading, then the average PPRSS of both the corrupted as well as the uncorrupted
PPs will be reduced and this reduction can be correctly identified by DevPPRSS.
Thus, we utilize the BPPR of a packet having n PPs as the primary measuring
parameter in the proposed detection scheme. We consider the reception of n PPs
as an observation interval, due to its effectiveness in capturing small-duration
packet statistics. As the value of n is constant during an experiment, a node

Exploiting Partial-Packet Information for Reactive Jamming Detection 127

running the CURD scheme, called the tagged node, can easily compute the se-
quences of its measurement parameter. Let us consider that a node q is tagged
with the CURD scheme. Our observation measure is the BPPR of the node q,
denoted as Ht, in every n PP reception.

Let {Ht, t = 1, 2, ..., n} be the sequence of BPPR of the tagged node. Here,
Ht is a random variable, as its value varies from (1

n) to (nn). We consider a
default probability distribution of Ht, and calculate its expectation, μ. Let us
assume that μh is the upper bound of μ. We, then, have a modified CUSUM-test
statistic, which is as follows:

γi = [γi−1 + (μh −Ht)]
+ (6)

where,

γ0 = 0 (7)

[γi]
+ =

⎧⎨⎩
γi, if γi ≥ 0

γi−1, otherwise
(8)

The CUSUM-test statistic indicates that, if the number of corrupted PPs con-
tinuously remains low, γi will quickly accumulate to a large positive value. Oth-
erwise, γi maintains the previous value γi−1 to overlook long- or mid-duration
packet corruption. To distinguish the short-duration packet corruptions due to
reactive jamming and any other network event, the indicator function consults
with the estimated probability, ψ0

i . Finally, the decision rule for ith step of this
CUSUM-test is defined as:

δi =

⎧⎨⎩
1, if γi ≥ α and ψ0

i ≥ β

0, otherwise
(9)

where, δi is an indicator function about the occurrence of reactive jamming, and
α and β are the identification thresholds of γi and ψ0

i , respectively. As soon as
the detectors γi and ψ0

i cross their respective thresholds, they are reset to the
default values 0 and 0.5, respectively.

6 Simulation and Evaluation

To evaluate the effectiveness of the proposed scheme, we used Aqua-Sim [19], a
NS-2 based simulator for UWSNs. In the simulation, we randomly deployed 30
underwater sensor nodes in a 3D network space of 250 m3 in an aquatic environ-
ment. One of these nodes was considered to behave like a reactive jammer. The
details of the other input parameters used are listed in Table 1. We executed
each simulation 20 times and computed the average value of the specified metrics
for comparison. At first, we examined the usefulness of the partial-packet scheme
used for detecting the small changes in signal strength corresponding to a few
bits. Then, we studied the effectiveness of the proposed reactive jamming detec-
tion scheme using three fundamental metrics: average detection delay, average
missed detection ratio, and average residual energy.

128 M. Khatua and S. Misra

Table 1. Parameters and their corresponding values used in the simulation

Parameter UWSN Jammer

Frequency (f) 25 KHz 25 KHz

Transmitted Power (Pt) 0.2818 W Variable (≤ 0.2818 W)

Transmission Range 100 m 100 m

Propagation Model Thorp Model [20] Thorp Model [20]

Packet Size (x) 100 bytes none

Routing Protocol VBF [21] None

MAC Protocol BroadcastMac [19] BroadcastMac [19]

Initial Node Energy 1000 Joules 1000 Joules

Bit Rate 10 Kbps 10 Kbps

Mobility Model Random Random

Node Movement 0.3 m/s 0.3 m/s

Jamming Duration (Jd) none 20-80 bits

6.1 Effectiveness of the PPRSS Metric

In this experiment, the tagged node was configured to capture the values of
RSS and PPRSS metrics corresponding to the received packets and the partial-
packets, respectively. We categorized all the received packets into three types
– normal packets (NP), jammed packets (JP), and collided packets (CP). We
observed that the average RSS corresponding to the JP does not significantly
increased, as compared to that of the NP, as the RSS corresponding to a packet
may “dilute” the RSS changes corresponding to a few corrupted bits in the
packet. Thus, RSS is not an effective metric for distinguishing the NP and the JP,
as shown in Figure 4(a). On the contrary, Figure 4(b) shows that the proposed
PP-based metric, PPRSS, can effectively distinguish the NP from the JP.

(a) (b)

Fig. 4. Effectiveness of PPRSS. Average (a) RSS and (b) PPRSS for NP, CP, and JP

Exploiting Partial-Packet Information for Reactive Jamming Detection 129

6.2 Average Detection Delay

We performed a set of experiments with different settings of each parameter
to analyze the average detection delay, E[D], of the CURD scheme. We defined
E[D] as the average number of packets received by the tagged node for successful
detection of reactive jamming, after the reactive jammer initiates its operation.
Initially, we captured the distribution of γ observed by the tagged node with
μh = 3/n and τ = 0.1 mW, when n = 50 and Jd = 20 bits. We chose the
weak estimation learning constant, λ = 0.9, throughout the simulation. In this
experiment, if we ignore the channel condition, i.e. β = 0, the threshold value
of γi alone indicates the jamming. On the contrary, even though the number of
corrupted PPs is high enough, the identification parameter remains 0 until the
probability of high deviation in RSS of those corrupted bits crosses the threshold,
which is shown in Table 2. Thus, the CURD scheme can effectively distinguish
the packet error due to poor channel and jamming. Similar effect was observed
when we captured the distribution of ψ0

i with respect to the variation of β, while
γi equals a constant value.

Table 2. Distribution of γ for different values of α and β

Figure 5 shows the average detection delay under the different sets of values
of μh and τ . The observations reveal that, irrespective of the values of α, the
average detection delay is observed high, when the threshold values of ψ0

i is set
to a high value. On the other hand, for lower values of β, the average detection
delay is varied slowly with the variation of α. In conclusion, the CURD scheme
provides lower detection delay, if the threshold values of both the identification
parameters γi and ψ0

i are maintained at low values.

6.3 Average Missed Detection Ratio

The average missed detection ratio, Rmd, is the ratio of the sum of the false
positives and the false negatives detected by the scheme to the total number of
nodes present in the network. We observed in Figure 5 that the CURD scheme
waits for less duration of time for successful detection of reactive jamming, when

130 M. Khatua and S. Misra

0
2
4
6
8

10
12
14
16
18
20

0.03 0.04 0.05 0.06 0.07 0.08 0.09

E[
D

]

α

β=0.3 β=0.5

β=0.7 β=0.9

0

5

10

15

20

25

30

35

0.03 0.04 0.05 0.06 0.07 0.08 0.09

E[
D

]

α

β=0.3 β=0.5

β=0.7 β=0.9

(a) (b)

Fig. 5. Average detection delay (a) μh = 3
n
, τ = 0.1 mW (b) μh = 6

n
, τ = 0.125 mW

the values of α and β are set to 0.04 and 0.5, respectively. Therefore, in this
experiment, we assumed constant values of α, β, and τ , which are 0.04, 0.5, and
0.1 mW, respectively. As the value of n has high impact on false detection (both
false positive and false negative), we captured the results for different values
of n to evaluate its impact. Figure 6(a) and 6(b) depict the missed detection
ratio of the proposed CURD scheme with different values of μh, for 20 and 80
bits of reactive jamming duration, respectively. From this experiment, we infer
that, irrespective of the values of μh, the CURD scheme provides zero missed
detection ratio, i.e., 100% true detection, if we select n = 40 for the experimental
setup whose parameters are listed in Table 1.

(a) (b)

Fig. 6. Average missed detection ratio (a) Jd = 20 bits (b) Jd = 80 bits

6.4 Average Residual Energy

We measured the energy consumption rate of a tagged node in UWSN environ-
ment. Figures 7 (a) and 7 (b) show the average residual energy (E

′
r) of the tagged

node for each successful detection of reactive jamming. The residual energy is de-
fined as the ratio of the remaining energy to the initial energy of a node. The ver-
tical axis in Figure 7 represents energy ratio, Er, where Er = (E

′
r−0.99)×1000.

Exploiting Partial-Packet Information for Reactive Jamming Detection 131

(a) (b)

Fig. 7. Average residual energy of a tagged node (a) β = 0.5 (b) α = 0.04

As the performance of the CURD scheme depends on the selected threshold val-
ues α and β, we measured Er with respect to the true detection count (Ctd), for
different values of α and β.

7 Conclusion

In this paper, we established that correct detection of reactive jamming in
UWSN environment is possible. We developed a short-duration packet observa-
tion scheme using the concept of partial-packet, which helps to capture changes
in a few bits too, and is capable of distinguishing the corrupted bits from the
uncorrupted bits. The proposed metrics were designed in such a way that they
absorb the effect of dynamic environment. We used a weak estimation learn-
ing scheme and a non-parametric CUSUM detector for detecting reactive jam-
ming correctly. To show the common tasks of jamming detection in UWSNs, we
stacked them up in a generalized framework for any reactive jamming detection.
Finally, our validation study through simulations show that the partial-packet
based reactive jamming detection scheme provides exactly 100% true detection,
while the average detection delay equalling the equivalent of 3 packets reception.

In our future work, we will attempt to analytically evaluate the behaviour of
the detection scheme, as the distribution of Ht follows the discrete time Markov
model. We will endeavour to determine the optimal value of n, which influ-
ences detection accuracy greatly. We will try to implement the partial-packet
ARQ with this detection mechanism to measure the improvement in network
throughput and lifetime.

Acknowledgment. This work has been partially supported by a grant from
the DIT, Govt. of India, Grant No. 13(10)/2009-CC-BT, which the authors
gratefully acknowledge.

132 M. Khatua and S. Misra

References
1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: Re-

search challenges. Ad Hoc Networks 3, 257–279 (2005)
2. Strasser, M., Danev, B., Capkun, S.: Detection of reactive jamming in sensor net-

works. ACM Transactions on Sensor Networks 7, 1–29 (2010)
3. Wilhelm, M., Martinovic, I., Schmitt, J.B., Lenders, V.: Short paper: Reactive

jamming in wireless networks - how realistic is the threat? In: Proceedings of
WiSec, Hamburg, Germany, pp. 47–52 (2011)

4. Domingo, M.: Securing underwater wireless communication networks. IEEE Wire-
less Communications 18, 22–28 (2011)

5. Misra, S., Singh, R., Mohan, S.V.R.: Information warfare-worthy jamming attack
detection mechanism for wireless sensor networks using a fuzzy inference system.
Sensors 10, 3444–3479 (2010)

6. Xu,W., Trappe,W., Zhang, Y.,Wood, T.: The feasibility of launching and detecting
jamming attacks in wireless networks. In: Proc. of MobiHoc, pp. 46–57 (2005)

7. Pelechrinis, K., Iliofotou, M., Krishnamurthy, S.V.: Denial of service attacks in
wireless networks: The case of jammers. IEEE Communications Surveys & Tuto-
rials 13, 245–257 (2011)

8. Ganti, R.K., Jayachandran, P., Luo, H., Abdelzaher, T.F.: Datalink streaming in
wireless sensor networks. In: Proceedings of SenSys, pp. 209–222 (2006)

9. Jamieson, K., Balakrishnan, H.: PPR: Partial packet recovery for wireless networks.
In: Proceedings of SIGCOMM (2007)

10. Oommen, B.J., Rueda, L.: Stochastic learning-based weak estimation of multino-
mial random variables and its applications to pattern recognition in non-stationary
environments. Pattern Recognition 39, 328–341 (2006)

11. Poor, H., Hadjiliadis, O.: Quickest Detection. Cambridge University Press (2008)
12. Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., Pantziou, G.: A survey on

jamming attacks and countermeasures in wireless sensor networks. IEEE Commu-
nications Surveys & Tutorials 11, 42–56 (2009)

13. Xu, W., Ma, K., Trappe, W., Zhang, Y.: Jamming sensor networks: Attacks and
defense strategies. IEEE Network 20, 41–47 (2006)

14. Cagalj, M., Capkun, S., Hubaux, J.P.: Wormhole -based anti-jamming techniques
in sensor networks. IEEE Transactions on Mobile Computing 6, 100–114 (2007)

15. Cakiroglu, M., Ozcerit, A.T.: Jamming detection mechanisms for wireless sensor
networks. In: Proceedings of InfoScale, Vico Equense, Italy, pp. 1–8 (2008)

16. Li, M., Koutsopoulos, I., Poovendran, R.: Optimal jamming attack strategies and
network defense policies in wireless sensor networks. IEEE Transactions on Mobile
Computing 9, 1119–1133 (2010)

17. Tan, H.P., Diamant, R., Seah, W.K.G., Waldmeyer, M.: A survey of techniques and
challenges in underwater localization. Ocean Engineering 38, 1663–1676 (2011)

18. Erol-Kantarci, M., Mouftah, H.T., Oktug, S.: A survey of architectures and local-
ization techniques for underwater acoustic sensor networks. IEEE Communications
Surveys & Tutorials 13, 487–502 (2011)

19. Xie, P., Zhou, Z., Peng, Z., Yan, H., Hu, T., Cui, J., Shi, Z., Pei, Y., Zhou, S.: Aqua-
Sim: an NS-2 based simulator for underwater sensor networks. In: Proceedings of
OCEANS, Mississippi, USA, pp. 1–7 (2009)

20. Berkhovskikh, L., Lysanov, Y.: Fundamentals of Ocean Acoustics. Springer (1982)
21. Xie, P., Cui, J.-H., Lao, L.: VBF: Vector-Based Forwarding Protocol for Underwa-

ter Sensor Networks. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Mon-
teiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 1216–1221. Springer,
Heidelberg (2006)

Fault-Tolerant Design of Wireless Sensor

Networks with Directional Antennas

Shahrzad Shirazipourazad1, Arunabha Sen1, and Subir Bandyopadhyay2

1 School of Computing, Informatics and Decision System Engineering
Arizona State University

Tempe, Arizona 85281, USA
{sshiraz1,asen}@asu.edu

2 School of Computer Science
University of Windsor

Windsor, ON N9B 3P4, Canada
subir@uwindsor.ca

Abstract. A tree structure is often used in wireless sensor networks to
deliver collected sensor data to a sink node. Such a tree can be built
using directional antennas as they offer considerable advantage over the
omni-directional ones. A tree is adequate for data gathering from all
sensor nodes as long as no node in the tree fails. Since the connectivity
of the tree is one, failure of any one node disconnects the tree and may
disable the sink node from collecting data from some of the sensor nodes.
In this paper we study the problem of enhancing the fault tolerance ca-
pability of a data gathering tree by adding a few additional links so that
the failure of any one sensor would not disconnect the tree. Assuming
that the addition of each link to the tree involves some cost, we study
the problem of least-cost augmentation of the tree, so that even after
failure of a single node, all the surviving nodes will remain connected
to the sink node. We prove that the least-cost tree augmentation prob-
lem is NP-complete. Moreover, we provide an approximation algorithm
with performance bound of two. The experimental evaluations of the al-
gorithm demonstrate that the approximation algorithm performs even
better in practice and almost always produces near-optimal solution.

1 Introduction

The primary goal of a wireless sensor network is to deliver the data collected
by the sensor nodes to the sink node, possibly after some data aggregation.
Generally, each sensor node has two components: the sensing component and the
communication component. The sensing component gathers information from
the surrounding area and the communication component transmits it to some
other node for further processing. Most often, the data collection operation from
all the sensor nodes is carried out by creating a tree topology that spans all the
sensor nodes, with the sink node as the root [1, 2].

Directional antennas offer substantial advantages over their omni-directional
counterparts, as they can focus their transmission energy in a specific direction,

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 133–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

using a narrow beam of width α. A directional antenna can be mounted on a
swivel and can be oriented towards a target or alternately each sensor can be
equipped with multiple antennas, each occupying a sector with beam width α.
The transmitted signal disperses in any unguided wireless media and as a conse-
quence, the signal strength diminishes with distance. Although attenuation is in
general a complex function of the distance and the makeup of the environment
through which the signal propagates, a significant cause of signal degradation
is free space loss. Free space loss for an ideal isotropic antenna is measured as

the ratio of the transmitted power to the received power and is given by (4πd2)
λ2 .

where λ is the carrier wavelength, and d is the propagation distance between
transmission and reception antennas. In particular, the energy required by an
antenna to reach all nodes within its transmission radius is proportional to the
area covered. Thus, an omni-directional antenna with a transmission radius r
will consume power proportional to πr2 (the area of a circle with radius r) while
a directional antenna with beam width α radians will consume power propor-
tional to α

2 r
2. The expression is valid under the assumption that the signal is

transmitted over the primary lobe and the power consumed by the remaining
lobes is negligible [3]. The expressions show that with a directional antenna with
beam width α, power consumption can be reduced by a factor of α

2π . Moreover, in
comparison with omnidirectional antennas, the directional antennas have signif-
icantly less interference and fading [4,5]. For additional information on antenna
theory, we refer the reader to [6].

Due to such attractive features, sensors with directional antennas are being
increasingly used for wireless sensor networks. Some examples include camera
networks for vision-based sensing, radar networks for weather monitoring and
sonar network for underwater object detection [5]. With rapid advances in the
miniaturization of directional antenna technology, it is likely that the use of
directional antennas in sensor platforms will proliferate. This trend is demon-
strated by the increasing interest in the use of directional antennas for perfor-
mance improvement in wireless networks in general and wireless sensor networks
in particular [4].

Just as the directional antennas offer a number of advantages, it also intro-
duces a few problems. When sensor nodes use omni-directional antennas, the
network topology typically is a mesh and not a tree. A tree that spans over this
mesh topology is utilized for the purpose of data gathering. Although it may
appear that the use of omni-directional antenna for the purpose of data gather-
ing is wasteful, as many of the network links created by such antennas are never
utilized, this is not completely true. The unused links essentially introduce a
certain level of redundancy that can be utilized when one or more of the sensor
nodes fail and the data gathering spanning tree becomes disconnected.

One advantage of the directional antennas in the sensor application is that
it can build the data gathering tree directly, instead of first creating a mesh
network and then constructing a data gathering spanning tree for it (as is done
with omni-directional antennas). The tree constructed with directional antennas
is more efficient because it does not have the redundant links that are created but

Fault-Tolerant Design of Wireless Sensor Networks 135

not used by the omni-directional antennas. However, the negative aspect of this
lack of redundancy is that it can no longer deal with a fault scenario, where one
or more sensor nodes fail. Without any built-in redundancy, when some nodes
fail, the data gathering tree is disconnected and the sink node fails to receive
any data from some of the sensors.

The primary motivation of our work is to retain the advantage of both types
of antennas by combining the efficiency of directional antennas with the redun-
dancy of omni-directional ones. Specifically, our objective is to ensure that the
failure of any one sensor node would not prohibit the surviving nodes from com-
municating with the sink node. We consider that the sensor nodes are equipped
with directional antennas and nodes p and q can communicate with each other if
antennas of p and q direct their beams to each other. In this case a bidirectional
link is used between the nodes p and q. Fig. 1 shows a data collection tree with
two sensor nodes u and v and a sink r. The sectors show the communication
ranges and the lines show the wireless links. The addition of an edge between two
nodes p and q in the sensor network topology corresponds to the deployment of
two new directional antennas at the nodes p and q directed towards each other.

r rr

u v

Fig. 1. A data collection tree constructed by directional antennas

Most of the prior studies on fault tolerant sensor network design [7–9] focus
their attention to sensor nodes with omni-directional antennas. The primary goal
of these studies is to compute transmission power to the nodes, so that the power
consumption is minimized, subject to the constraint that the resulting network
is k-connected. In a k-connected (i.e., k − 1 fault-tolerant) network, there are
k disjoint paths between every pair of nodes. However, for data collection in
sensor networks, it is not necessary that the network be k connected. As long
as every sensor node has k disjoint paths to the sink node, failure of k − 1
sensors nodes can be tolerated. It may be noted that we assume that the sink
node does not fail, i.e., it is more reliable than other sensor nodes. In [10, 11]
the authors studied the problems of all-to-one and one-to-all k-fault-tolerant
topology control problems. In these study also the sensor nodes are assumed to
have omni-directional antennas.

In this paper we study the case of single node failure of sensor networks,
where each node is equipped with directional antenna(s). Even for this restricted
scenario, the problem turns out to be computationally hard. Assuming that the

136 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

addition of each link to the tree involves a cost, our objective is to solve the
problem of least-cost augmentation of the tree, so that, even after the failure of a
single node, all the surviving nodes will remain connected to the sink node. We
will call this the Tree Connectivity Augmentation (TCA) problem. We prove that
the TCA problem is NP-complete and we provide an approximation algorithm,
with a performance bound of two. Experimental evaluation of the algorithm
demonstrates that it performs even better in practice and almost always produces
near-optimal solution.

In the theoretical computer science community, problems of this vein are
known as the graph augmentation problems. Two important problems in this
class are the bi-connectivity augmentation (BICA) and the bridge-connectivity
augmentation (BRCA) (a bridge is defined to be an edge whose removal discon-
nects the graph) [12]. Although at a first glance, it may appear that TCA is the
same as BICA or BRCA, we demonstrate through the example shown in Fig.
2 that TCA is distinctly different from both BICA and BRCA. The solid lines
in Fig. 2 are the existing edges in the input graph. A few of the edges that may
be added to the graph are shown in dashed lines and cost of each of these edges
is 1. The cost of the edges that can be added to the graph, but not shown in
dashed lines, is 10. In Fig. 2(a), the solution of the TCA is the addition of edges
{(a, b), (c, d)} with a total cost of 2. However, for BICA, more edges are needed
and as such the total cost will be at least 12. The Fig. 2(b) shows an example in
which TCA has a solution with cost 3, (addition of edges {(g, h), (h, i), (i, j)})
but BRCA requires the addition of edges {(a, e), (g, h), (i, j), (d, f)} with a total
cost of 4.

a b c d

r

(a)

a b c d

r

e f
g h i j

(b)

Fig. 2. Comparison of TCA in single fault model with (a) BICA (b) BRCA

Our presentation of the rest of the paper follows the following structure. In
Section 2 we formally define the TCA problem and prove it to be NP-complete. In
Section 3 we present an approximation algorithm for TCA with a performance
bound of two. In Section 4 we report the results of our experimental evalua-
tion of the approximation algorithm. We conclude by making a few remarks in
Section 5.

Fault-Tolerant Design of Wireless Sensor Networks 137

2 Computational Complexity

In Section 1 we have indicated that our goal is to ensure that the data gathering
tree in a sensor network with directional antennas do not get disconnected due
to the failure of any one sensor node. This objective can be realized by ensuring
that every node (except the root and its adjacent nodes) has an alternate path
to the root (different from the path that exists in the data gathering tree). We
formally state the problem below.

Definition: u−fault tolerant graph: A graph G = (V,E) with a specified
vertex u ∈ V is said to be u−fault tolerant if after the failure of any one node
v ∈ V − {u}, any residual node w ∈ V − {v} remains connected to node u.

Tree Connectivity Augmentation Problem (TCA)

Instance: Complete undirected graph G = (V,E), weight function c(e) ∈ Z
+,

∀e ∈ E, a spanning tree T1 = (V,E1) of G rooted at some node r ∈ V , and a
cost budget B.
Question: Is there a set Eaug ⊆ E − E1, such that the graph (V,E1 ∪ Eaug) is
r−fault tolerant and

∑
e∈Eaug c(e) ≤ B?

We show that the TCA problem is NP-complete, by a transformation from
the 3-dimensional matching, which is known to be NP-complete [13].

3-Dimensional Matching (3DM)

Instance: A set M ⊆ W ×X × Y , where W , X and Y are disjoint sets having
the same number q of elements.
Question: Does M contain a matching, that is, a subset M ′ ⊆ M such that
|M ′| = q and no two elements of M ′ agree in any coordinate?

Theorem 1. TCA is NP-complete.

Proof. Let M ⊆ W × X × Y be an instance of 3DM, with |M | = p and W =
{wi|i = 1, 2, . . . , q}, X = {xi|i = 1, 2, . . . , q} and Y = {yi|i = 1, 2, . . . , q}. We
start by creating a set of nodes having labels as follows:

- r, where r will be the root of the spanning tree T1,
- wi (xi, yi) for all wi ∈W (respectively xi ∈ X , and yi ∈ Y),
- for each wi ∈ W (xi ∈ X, yi ∈ Y), one additional node with label w′

i (respec-
tively x′i and y′i),

- for each triple (wi, xj , yk) ∈ M , three additional nodes with labels
aijk, a

′
ijk, āijk.

We now create an instance of TCA as follows:

V = {r} ∪ {wi, w
′
i, xi, x

′
i, yi, y

′
i|i = 1, 2, . . . , q} ∪ {aijk, a

′
ijk, āijk|(wi, xj , yk) ∈ M}

E = {(u, v)|u, v ∈ V and u �= v}
E1 = {(r, wi), (wi, w

′
i)|i = 1, 2, . . . , q} ∪

{(r, xi), (xi, x′i), |i = 1, 2, . . . , q} ∪
{(r, yi), (yi, y′i)|i = 1, 2, . . . , q} ∪
{(r, aijk), (aijk , a′ijk)|(wi, xj , yk) ∈M} ∪
{(w′

i, āijk)|(wi, xj , yk) ∈M}

138 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

B = p+ q
c(x′j , āijk) = c(y′k, a

′
ijk) = c(āijk , a

′
ijk) = 1, for all

(wi, xj , yk) ∈M . All other edges in E have weight 2.

We claim that M contains a matching M ′ iff there is a set Eaug of cost no more
than B, such that the graph (V,E1 ∪ Eaug) is a r−fault tolerant graph.

To prove the only if part, let M contain a matching M ′. We form Eaug by
following the procedure given below:

Step i) For each triple (wi, xj , yk) ∈M ′, we add edges (x′j , āijk) and (y′k, a
′
ijk),

Step ii) For each triple (wi, xj , yk) ∈M −M ′, we add edge (a′ijk, āijk).

Since |M ′| = q and |M −M ′| = p− q, and the cost of each edge added in Steps i
and ii is 1, the total cost of the added edges in steps i and ii is 2q+ p− q. Thus,
the total cost of the edges in Eaug is p + q. E1 ∪ Eaug includes the following
cycles that pass through r:

– r, wi, w
′
i, āijk, x

′
j , xj , ∀i, j, k : (wi, xj , yk) ∈M ′,

– r, yk, y
′
k, a

′
ijk, aijk, ∀i, j, k : (wi, xj , yk) ∈M ′,

– r, aijk, a
′
ijk, āijk, w

′
i, wi, ∀i, j, k : (wi, xj , yk) ∈M −M ′.

It can be readily verified that all the nodes in V − {r} appear in at least one of
the above cycles. Therefore, there are two disjoint paths from r to each vertex.

To prove the if part, let there be a set of edges Eaug ⊆ (E − E1), with a
cost of at most p + q, so that in the graph (V,E1 ∪ Eaug) every non-adjacent
vertex of root r has two node disjoint paths to r. There are exactly 2p+ 2q leaf
nodes in T1 = (V,E1) and they are not adjacent to r. Among these leaf nodes,
there exists p nodes having labels of the form a′′ijk and āijk and q nodes having
labels of the form y′′k and x′′j . To ensure that 2p+ 2q leaf nodes have two node
disjoint paths to r, at least p+ q edges must be added to T1 = (V,E1). It may
be noted that there are only three types of edges i) (x′j , āijk), ii) (y

′
k, a

′
ijk) and

iii) (āijk, a
′′
ijk) that have cost 1 and every other edge in E have a cost 2. Since

the cost of the edges in Eaug is at most p+ q and |Eaug| ≥ p+ q, it implies that
|Eaug| = p+ q and the cost of each edge in Eaug is 1.

In order to have two node disjoint paths from 2p + 2q leaf nodes to r, each
node of the from y′k and x′j must be connected to a node of the form a′ijk or āijk.
The total cost of this set of edges will be 2q. Since the total cost Eaug is p+ q,
the cost of the edges to connect the remaining leaves of the type a′ijk or āijk,
(i.e., the ones that were not connected to either y′k and x′j), must be p− q and
the number of such leaves must be 2(p− q). To connect 2(p− q) leaves, at least
p− q edges will be necessary. Since the total cost of these edges is p− q and at
least p− q edges will be necessary, the cost of these edges must be 1. However,
this will only be possible if 2(p − q) leaves can be grouped into p − q pairs of
nodes (a′ijk, āi′j′k′), such that i = i′, j = j′, k = k′. This implies that exactly q
nodes, each of the form a′ijk or āijk, must be connected to q nodes, each of the
form y′k and x′j , and these 2q nodes (a′ijk or āijk) can be grouped into q pairs
of nodes (a′ijk , āi′j′k′), such that i = i′, j = j′, k = k′. Since these q pairs of ijk
indices connects to all the y′k and x′j nodes, the corresponding subset M ′ ⊆ M
must be a matching for the instance of the 3DM problem.

Fault-Tolerant Design of Wireless Sensor Networks 139

3 Approximation Algorithm for the TCA

In this section we propose an approximation algorithm with a guaranteed per-
formance bound for TCA. The input to the algorithm is a complete undirected
graph G1 = (V,E) with cost function c : E → Z

+ defined on the edges, and
T1 = (V,E1), a spanning tree of G1 with a specified vertex r ∈ V as the root. The
output is a set of edges Eaug ⊆ E −E1, such that, in the graph (V,E1 ∪Eaug),
there are two node disjoint paths from every node v (v ∈ V − r) to the node
r. Since the tree T1 = (V,E1) is given as part of the input, we assume that
the cost of the edges in E1 is zero, i.e., we do not have to pay for these edges,
c(e) = 0, ∀e ∈ E1. We compute the edge set Eaug using a sequence of steps where,
in each step, we construct a new graph/tree (undirected/directed). The sequence
of construction of graphs is as follows: [T1 = (V,E1)]⇒ [T2 = (V2, E2)]⇒ [G2 =
(V2, E

′
2)] ⇒ [T d

2 = (V2, A2)] ⇒ [Gd
2 = (V2, A

′
2)], where T2 is a tree constructed

from T1, G2 is a complete graph defined with the vertex set of T2, T
d
2 is a directed

tree defined on T2, and G
d
2 is a completely connected directed graph defined with

the vertex set of T d
2 . From Gd

2 we identify a set of arcs (directed edges) Aaug
2 ,

so that the directed graph (V2, A2 ∪Aaug
2) is strongly connected [14]. Finally, we

construct Eaug from Aaug
2 . We now describe, in detail, the construction rules for

these graphs/trees.

[A] Construction of T2: Let Vp ⊂ V be the set of leaves in T1 and let
Vq = V − (Vp ∪ {r}) be the set of all internal (non-leaf) nodes except the root.
We define a new tree T2 = (V2, E2) using the following rules:

– V2 = V ∪ {vij |i, j ∈ V − {r} and (i, j) ∈ E1}.
– For each edge (i, j) ∈ E1, we include in E2,
• edge (i, j), if i = r or j = r,
• edges (i, vij) and (vij , j), otherwise.

[B] Construction of G2:

Let G2 = (V2, E
′
2) be the complete graph defined on V2. We define the cost

function c′ : E′
2 → Z

+ ∪ {∞} as follows. For every edge (x, y) ∈ E′
2, if x, y ∈ V ,

c′(x, y) = c(x, y); otherwise, c′(x, y) =∞ (i.e., we set the initial cost of the edges
between a node u ∈ V2 − V and every other node in V2 to infinity).

Next we define two functions d(u, v) (distance function) and p(u, v) (pointer
function) for every pair of nodes u and v in G2. We define both the functions in
terms of c′ and T2.

Definition: d(u, v) = min{c′(x, y)|u and v are on the path from x to y in T2}.
Definition: p(u, v) is a pointer to the edge (s, t), such that d(u, v) = c′(s, t),
where u and v are on the path from s to t in T2.

Example: The Fig. 3(a) shows a spanning tree T1 = (V,E1) of a complete graph
G1 = (V,E) (for the sake of clarity, only three edges from the set E − E1,
(a− b), (c− d) and (d − e) are shown in Fig. 3(a)). The solid lines indicate the
edges in E1 and the dashed lines show a subset of the edges in E−E1. The cost

140 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

of each edge in E1 = 0. The weights associated with the dashed lines indicate
the cost of these edges. All other edges in E−E1, (not shown in Fig. 3(a)), have
a cost of 10. Fig. 3(b) shows the tree T2 = (V2, E2) constructed from T1 in Fig.
3(a). From T2, we can construct the complete graph G2 = (V2, E

′
2) following

the construction rules described earlier. The solid lines in Fig. 3(b) indicate the
edges in E2 and the dashed lines show a subset of the edges in E′

2 − E2 (only
five edges with associated weights are shown). In this example, d(vac, vad) =
c′(c, d) = c(c, d) = 1, d(a, b) = c′(d, e) = c(d, e) = 1 and p(vac, vad) = (c, d),
p(a, b) = (d, e).

We now discuss the rationale for definitions of the d(u, v) and p(u, v) given
above. In order to have another path from a to b in Fig. 3(a), (different from the
one in the tree T2, a− r− b), the edge (d, e) with cost 1 or the edge (a, b) (in G2)
with cost 4 can be added to the tree. The addition of the link (d, e) will result in
a cheaper path from a to b with cost 1. The goal of the distance function d(u, v)
is to identify this edge. The function p(u, v) is defined to be a pointer to the
edge selected by the function d(u, v).

Computation of d(u, v): It has been shown in [12] that d(u, v) for all pairs
of nodes can be computed in O(|V |2). For ease of reference, we summarize the
algorithm for computing the function d(u, v) presented in [12]. Initially, for every
pair of nodes u, v ∈ V2, d(u, v) = c′(u, v) and p(u, v) = (u, v). Let l(u, v) be
the number of edges on the path from u to v in T2 and s(u, v) be the node
adjacent to v on this path. The edges (u, v) ∈ E′

2 − E2 are sorted in non-
decreasing order, based on l(u, v). For each edge (u, v) ∈ E′

2−E2, we compute the
distance function d(u, v) as follows. If d(u, v) < d(u, s(u, v)) then d(u, s(u, v)) =
d(u, v) and p(u, s(u, v)) = (u, v). If d(u, v) < d(s(v, u), v), then d(s(v, u), v) =
d(u, v) and p(s(v, u), v) = (u, v).

[C] Construction of T d
2 = (V2, A2): We construct T d

2 from T2 = (V2, E2) by
directing all edges of T2 towards the root node r. We will use A2 to represent
the set of arcs (directed edges) corresponding to the undirected edges in E2.

[D] Construction of Gd
2 = (V2, A

′
2): Gd

2 is a completely connected directed
graph, with associated cost c′′(u, v) with each arc u→ v ∈ A′

2 as follows:

c′′(u, v) =

⎧⎨⎩
∞, if v = r,
∞, if u ∈ Vq and v ∈ subtree(u)
d(u,v), otherwise.

Here we define subtree(u) to be the set of nodes in the subtree rooted at node
u in tree T2.

We note that each arc u → v ∈ A2 where v �= r has a zero cost. The rationale
for assigning the arc costs in this specific way is as follows:
(a) By assigning a cost of ∞ to the edges where v = r, we ensure that the
minimum cost arborescence on Gd

2 is rooted at r,
(b) By assigning a cost of∞ to the edges (u, v) where u ∈ Vq and v ∈ subtree(u)
in T2, we ensure that, in Gd

2, no node u ∈ Vq will have a directed path from u to
the nodes in subtree(u), unless it first goes through some nodes not in subtree(u).

Fault-Tolerant Design of Wireless Sensor Networks 141

1 1

4
a b

c d

r

e

(a)

1 1

4
a b

c d

r

e

vac vad vbe∞
∞

(b)

Fig. 3. (a) An example of T1; E1 includes the edges shown with solid lines. (b) The
tree with solid lines is T2 corresponding to T1 in (a) and dashed lines are some of the
edges in E′

2 − E2.

When constructing Gd
2 = (V2, A

′
2), our goal is to identify a set of arcs Aaug

2 ,
(Aaug

2 ⊆ A′
2), so that the graph (V2, A2 ∪ Aaug

2) is strongly connected, i.e., there
exists a directed path between every pair of nodes in V2. We obtain the arc
set Aaug

2 by computing the least-cost arborescence [15] in Gd
2 = (V2, A

′
2), which

we denote by T arb
2 = (V2, A

arb
2). We obtain the set of arcs Aaug

2 from Aarb
2 by

excluding those arcs with cost zero, i.e., Aaug
2 = Aarb

2 − {a ∈ Aarb
2 |c′′(a) = 0}.

Finally, we construct the set of edges Eaug that we have to add to the input
tree T1 = (V,E1), to obtain the r−fault tolerant graph (V,E1∪Eaug) as follows:
Eaug = {p(u, v)|u→ v ∈ Aaug

2 }.

Algorithm 1. TCA Algorithm

Input: G1 = (V,E), a complete graph with cost c(e) for every edge e ∈ E; T1 = (V,E1),
a spanning tree of G1 with root r.
Output: A set of edges Eaug ⊆ E −E1, such that (V,E1 ∪ Eaug) is r−fault tolerant.

1: Construct T2 = (V2, E2), a complete graph G2 = (V2, E
′
2) and the cost function

c′(.) from T1 and G1 using the technique described in [A].
2: Compute d(u, v) and p(u, v) for each pair of nodes u, v ∈ V2 using the technique

described in [B].
3: Compute a directed tree T d

2 = (V2, A2) by directing all edges in E2 toward root r
using technique described in [C].

4: Compute a completely connected directed graph Gd
2 = (V2, A

′
2) with cost c′′ defined

on the arcs set A′
2 using technique described in [D].

5: Compute a minimum cost arborescence T d
2 = (V2, A

arb
2) of the graph Gd

2 = (V2, A
′
2).

6: Set Aaug
2 = Aarb

2 − {a ∈ Aarb
2 |c′′(a) = 0}.

7: Set Eaug = {p(u, v)|u → v ∈ Aaug
2 }.

8: Return Eaug.

We note that the time complexity of the TCA algorithm (Algorithm 1) is
O(|V |2). Line 4 has O(|V 2|) time complexity. Finding minimum cost arbores-
cence also needs O(|V |2) time [15].

142 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

Theorem 2. Algorithm TCA finds a set of edges Eaug such that (V,E1∪Eaug)
is r−fault tolerant.

Proof. In order to prove that (V,E1 ∪Eaug) is r−fault tolerant, we need to show
that there is no node in Vq whose removal disconnects the graph (Vq is the set
of all internal nodes in the tree T1 = (V,E1) except the root r). Since the graph
(V2, A2 ∪Aaug

2) is constructed by augmenting T d
2 = (V2, A2) with the arcs of the

T arb
2 (excluding the arcs that are already in A2), it must be strongly connected.

Accordingly, there must be a directed path from any node v ∈ Vq to the nodes
in subtree(v). Let w �= v be a node in subtree(v). Since there is no directed edge
∈ A′

2 going out of v to the nodes in subtree(v) (because the cost of these edges
is infinity), the first arc in a path from v to any other node in subtree(v) should
go through a node s where s is not in subtree(v). Since the graph (V2, A2∪Aaug

2)
is strongly connected, there must be a path from s to w in (V2, A2 ∪ Aaug

2) not
including v. Suppose that c → d ∈ Aaug

2 is on the path from s to w which
does not include v. If (c, d) is replaced by p(c, d) = (e, f), (e ∈ subtree(c) and
f ∈ subtree(d)), the new path also will not include v, because v cannot be on the
path from c to e or f to d in T2. Hence, even if a node v ∈ Vq is removed from the
graph (V,E1 ∪Eaug), the graph remains connected. Therefore, (V,E1 ∪Eaug) is
r−fault tolerant.

Theorem 3. Algorithm TCA finds a set of edges Eaug with a total cost Caug,
such that Caug ≤ 2Copt, where Copt is the cost of the optimal solution.

Proof: Our proof strategy is as follows. Let Copt be the optimal cost of edges
Eopt necessary to add to the input tree T1 = (V,E1), so that the resulting graph
becomes r−fault-tolerant and Caug is the cost of edges Eaug selected by the
TCA Algorithm. We show that there exists a subset of arcs A′′ in the graph
Gd

2 = (V2, A
′
2) with three useful properties. If C′′ is the cost of the arcs in

A′′, A′′ ⊆ A′
2 − A2, (i.e., C

′′ =
∑

u→v∈A′′ c′′(u, v)), then (i) Copt ≥ C′′/2, (ii)
Caug ≤ C′′, and (iii) the graph (V2, A2∪A′′) is strongly connected. From (i) and
(ii) it follows that Caug ≤ 2Copt.

We can compute the set of arcs A′′ ⊆ A′
2 − A2 from the optimal solution

Eopt ⊆ E − E1 following the procedure described below.
Let Q be the set of nodes that are strongly connected in (V2, A2∪A′′). Initially,

we set A′′ = ∅, Q = {r} and mark all the edges in Eopt as unused. We update
Q, A′′ and the marking of the edges in Eopt using the following procedure:
While Q �= V2 repeat the following steps:

– Select an unused edge (u, v) from Eopt, such that there is a node t ∈ Q− Vq
on the weakly directed path from u to v in T d

2 = (V2, A2). (The weakly
directed path from u to v in T d

2 is the path from u to v in T d
2 in which the

direction of the arcs is ignored.)
– If t �= u, add t→ u to A′′ and if t �= v add t→ v to A′′.
– Add all the nodes on the weakly directed path from u to v in T d

2 to Q.
Since t has been selected from set Q, it is already accessible from root r in
(V2, A2 ∪ A′′). Therefore, by adding the new arcs to A′′ in step (ii) all the

Fault-Tolerant Design of Wireless Sensor Networks 143

nodes on the weakly directed path from u to v in T d
2 are now accessible from

root r in current augmented directed graph (V2, A2 ∪A′′).
– Change the marking of the edge (u, v) from unused to used.

We need to show that, during the execution of the iterative process, an unused
edge (u, v) ∈ Eopt and a suitable vertex t ∈ Q − Vq exist. While there are some
edges in Eopt which have not been used previously, there is still some node
w in Vq whose deletion disconnects some node a ∈ subtree(w) from the root
in (V2, A2 ∪ A′′). So, there is no directed path from r to a in (V2, A2 ∪ A′′)
during that iteration. Therefore, there should be an edge (u, v) in Eopt which
creates a path from r to a ∈ subtree(w) such that the path does not include
w in (V,E1 ∪ Eopt). Also, the path from u to v in T1 will contain more nodes
from Q than just one vertex from Vq; otherwise, the removal of that vertex would
disconnect the graph (V,E1∪Eopt) which contradicts the fact that (V,E1∪Eopt)
is r−fault tolerant. Since there is no directed edge, in T d

2 , between the nodes in
Vq, the weakly directed path from u to v in T d

2 should include a node t ∈ Q−Vq.
Let C′′ be the cost of the arcs in A′′; C′′ =

∑
u→v∈A′′

t
c′′(u, v). For every

edge (u, v) ∈ Eopt, we have to add at most two arcs t → u and t → v to A′′.
Because c′′(t, u) ≤ d(u, v) and c′′(t, v) ≤ d(u, v), C′′ ≤ 2Copt. Also we know
that the graph (V2, A2 ∪A′′) is strongly connected. We can, therefore, construct
an arborescence on (V2, A2 ∪ A′′) rooted at r using c′′ as the cost of the edges.
Since the TCA algorithm gives us the minimum cost arborescence on Gd

2 and
A2 ∪ A′′ ⊆ A′

2 , Caug ≤ C′′ ≤ 2Copt.

4 Experimental Results

In this section we present the experimental results of the proposed approximation
algorithm for the TCA problem. In the experiments we compare the results of
the approximation algorithm against the optimal solution. Moreover, we examine
energy consumption by directional and omni-directional antennas deployed in a
sensor network.

For every instance of our experiment, we generate the locations of the sensor
nodes randomly, using a uniform distribution on a square deployment area of size
100× 100 units. We take the cost of edge between the nodes u and v in the sensor
network, as an indicator of the transmit power needed by the nodes to reach each
other. Accordingly, we construct a complete graphG = (V,E) by setting the cost
of each edge c(i, j) proportional to d2(i, j) where d(i, j) is the Euclidean distance
between nodes i and j. We assume that an omni-directional antenna will consume
power proportional to r2 where r is the radius of the coverage circle. A directional
antenna with same transmit range r but with transmit beam width α degrees will
consume power proportional to α

360r
2 [3]. In our model, an edge represents two

directional antennas transmitting signals to each other. Therefore, if the beam
width is αwe assume that the cost of the edge (i, j) is 2α

360d
2(i, j). For each problem

instance we compute theminimum spanning tree to be the initial tree T1 and select
a node randomly as the root of the tree.

144 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

In our first set of experiments our objective was to compare the results of
the approximation algorithm with the optimal solution, obtained by solving an
integer linear programming (ILP). We have denoted the ILP used to find the
optimal solution of TCA by ILP . We used the CPLEX package to solve the ILP.
Since ILP takes considerable amount of time in these experiments, we vary the
number of nodes, n, from 5 to 25 in steps of 5. For each value of n, we generate
10 random instances of network layouts in a 2-dimensional plane. We set the
beam width to 30 degrees. We present in Figure 4 the comparisons between the
optimal augmentation cost and the augmentation cost computed by the TCA
algorithm. For each n, we compute the average cost over 10 instances. We note
that in these simulations, the ratio of the average cost of augmentation computed
by the TCA algorithm to the average cost of optimal solution is smaller than
1.46. This indicates that in practice the performance of the TCA algorithm is
significantly better than it’s guaranteed worst case bound (2).

In our second set of experiments, we compare the power consumption of
directional antennas versus omni-directional antennas. We vary the number
of nodes, n, from 10 to 50 in steps of 10. For each value of n, we generate
50 random instances of network layouts in a 2-dimensional plane. We com-
pute the average cost of augmentation by taking the average of costs incurred
in these 50 instances. We perform the experiments for two values of beam
width, 20 and 40 degrees. For each instance we execute the TCA algorithm.
We assume that the transmit range of the omni-directional antenna is large
enough to cover furthest neighbor in the augmented graph. Therefore, the total
power consumption in network with omni-directional antennas is proportional to∑

1≤i≤n max{j|(i,j)∈E1∪Eaug} d2(i, j). In the case of directional antennas, every
edge in the augmented graph corresponds to two antennas, where each antenna
needs α

360d
2(i, j) amount of power to reach the other. Hence, the total power

consumption is proportional to
∑

(i,j)∈E1∪Eaug
2α
360d

2(i, j). The Fig. 5 illustrates
the comparison of power consumption in these two cases. We observe that the
total power consumption in the network is significantly smaller when directional
antennas are used instead of omni-directional ones. More specifically, when the
beam width is 20 degrees, the power consumption with directional antennas is
less than 9 percent of omni-directional antennas and when the beam width is 40
degrees it is less than 18 percent. We note that in order to make the network
r−fault tolerant, we need to install additional directional antennas, which has a
fixed cost associated with it. When nodes have omni-directional antenna, each
node requires only one antenna. When we use directional antennas, the total
number of antennas deployed in every sensor node is equal to the node degree
(including both the initial set of antennas in the tree and the antennas installed
to augment the tree). In Fig. 6 we illustrate the average number of antennas that
is needed in the network for each value of n. The first diagram shows the total
number of directional antennas needed in the network. We observe that the ratio
of the total number of directional antennas to the number of omni-directional
antennas in these experiments is less than 2.7. However, in the TCA problem
we consider that the initial set of edges in the tree has cost zero (it is not part

Fault-Tolerant Design of Wireless Sensor Networks 145

of augmentation cost). Therefore, only the cost of the new (augmenting) edges
(i.e., the cost of the corresponding additional antennas) that are added during
augmentation phase needs to be considered. The third diagram in Fig. 6 depicts
the average number of directional antennas that are added to the network dur-
ing the augmentation process. This number is smaller than 75 percent of the
number of omni-directional antennas. More accurately, augmenting directional
antennas that are needed to make the network r−fault tolerant are fewer than
75 percent of number of omni-directional antennas. Therefore, the savings in
power consumption with directional antennas outweighs the cost of additional
directional antennas needed, particularly when the width of the antenna beam
is narrow.

0

200

400

600

800

5 10 15 20 25

Co
st

Number of Nodes

TCA
ILP

Fig. 4. Comparison of augmentation cost of TCA algorithm and ILP .

0

4000

8000

12000

16000

20000

0 20 40 60

Po
w

er

Number of nodes

Directional (beam width=20)

Directional (beam width=40)

Omnidirectional

Fig. 5. Comparison between power consumption of directional antennas and omni-
directional antennas

146 S. Shirazipourazad, A. Sen, and S. Bandyopadhyay

0

40

80

120

160

10 20 30 40 50

N
um

be
r o

f a
nt

en
na

s

Number of nodes

#Directional antennas

#Omnidirectional antennas

#Augmenting directional
antennas

Fig. 6. Comparison between number of directional antennas and omni-directional
antennas

5 Conclusions

This paper was motivated by the importance of both data collection and fault
tolerance in wireless sensor networks. We have studied the problem of enhancing
the fault tolerance capability of a sensor network where the sensor nodes are
equipped with directional antennas using techniques for graph augmentation.
We proved that the least cost tree augmentation problem to achieve resilience
with respect to single faults is NP-complete. We have proposed an approxima-
tion algorithm, with a performance bound of two. Experimental evaluation of
the approximation algorithm shows that it performs even better in practice. In
future we plan to study the tree augmentation problem under more general topo-
logical fault models, where a fault is defined as any subgraph with diameter not
exceeding d or when a fault is defined, based on the network geometry.

Acknowledgments. The research was supported in part by the DTRA grant
HDTRA1-09-1-0032 and the AFOSR grant FA9550-09-1-0120.

References

[1] Incel, O., Krishnamachari, B.: Enhancing the data collection rate of tree-based
aggregation in wireless sensor networks. In: Secon (2008)

[2] Li, X.Y., Wang, Y., Wang, Y.: Complexity of data collection, aggregation, and
selection for wireless sensor networks. IEEE Transactions on Computers 60,
386–399 (2011)

[3] Kranakis, E., Krizanc, D., Williams, E.: Directional Versus Omnidirectional An-
tennas for Energy Consumption and k-Connectivity of Networks of Sensors. In:
Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer, Hei-
delberg (2005)

Fault-Tolerant Design of Wireless Sensor Networks 147

[4] Yu, Z., Teng, J., Bai, X., Xuan, D., Jia, W.: Connected coverage in wireless net-
works with directional antennas. In: INFOCOM (2011)

[5] Wang, Y., Cao, G.: Minimizing service delay in directional sensor networks. In:
INFOCOM (2011)

[6] Balanis, C.A.: Antenna Theory: Analysis and Design, 2nd edn. Wiley (1997)
[7] Bredin, J.L., Demaine, E.D., Hajiaghay, M., Rus, D.: Deploying sensor networks

with guaranteed capacity and fault tolerance. In: MobiHoc (2005)
[8] Hajiaghayi, M., Immorlica, N., Mirrokni, V.: Power optimization in fault-tolerant

topology control algorithms for wireless multi-hop networks. IEEE/ACM Trans-
actions on Networking 15, 1345–1358 (2007)

[9] Pishro-Nik, H., Chan, K., Fekri, F.: Connectivity properties of large-scale sensor
networks. Wireless Networks 15(7), 945–964 (2009)

[10] Wang, F., Thai, M., Li, Y., Cheng, X., Du, D.Z.: Fault-tolerant topology control for
all-to-one and one-to-all communication in wireles networks. IEEE Transactions
on Mobile Computing 7, 322–331 (2008)

[11] Cardei, M., Yang, S., Wu, J.: Algorithms for fault-tolerant topology in heteroge-
neous wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 19(4), 545–558
(2008)

[12] Frederickson, G.N., Ja’Ja’, J.: Approximation algorithms for several graph aug-
mentation problems. SIAM J. on Computing 10, 270–283 (1981)

[13] Garey, M., Johnson, D.: Computers and intractability. A guide to the theory of
NP-completeness. Freeman (1979)

[14] West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)
[15] Tarjan, R.E.: Finding optimum branchings. Networks 7, 25–35 (1977)

Self-stabilizing Silent Disjunction

in an Anonymous Network

Ajoy K. Datta1, Stéphane Devismes2, and Lawrence L. Larmore1

1 Department of Computer Science, University of Nevada Las Vegas, USA
2 VERIMAG UMR 5104, Université Joseph Fourier, France

Abstract. Given a fixed input bit to each process of a connected net-
work of processes, the disjunction problem is for each process to compute
an output bit , whose value is 0 if all input bits in the network are 0, and 1
if there is at least one input bit in the network which is 1. A uniform asyn-
chronous distributed algorithm DISJ is given for the disjunction problem
in an anonymous network. DISJ is self-stabilizing, meaning that the cor-
rect output is computed from an arbitrary initial configuration, and is
silent, meaning that every computation of DISJ is finite. The time com-
plexity of DISJ is O(n) rounds, where n is the size of the network. DISJ
works under the unfair daemon.

Keywords: anonymous, disjunction, self-stabilization, silence, unfair
daemon.

1 Introduction

Given a network of processes G, where each process has a fixed input bit ,
Input(x), the disjunction problem is for each process to compute Output =∨

x∈G Input(x), the disjunction of all input bits in the network.
A distributed solution to the disjunction problem is a distributed algorithm

which computes an output bit for each process, such that all output bits are
equal to Output. The solution given in this paper, the distributed algorithm
DISJ, correctly solves the disjunction problem if the network is connected. DISJ
is self-stabilizing [1,2], meaning that a correct output configuration is reached in
finite time after arbitrary initialization, and is silent, meaning that eventually the
computation of DISJ will halt. DISJ works under the unfair scheduler (daemon).

DISJ is uniform, meaning that every process has the same program, and is
anonymous, meaning that processes are not required to have distinguished IDs.
The round complexity of DISJ is O(n), where n is the size of the network. We
use the composite model of computation [2].

1.1 Related Work

We are not aware of closely related work in the literature. Although we use
some of the same techniques in this paper that are used for leader election, the

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 148–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Self-stabilizing Silent Disjunction 149

disjunction problem in an anonymous network cannot be solved by using a leader
election algorithm, nor by using an algorithm to construct a spanning tree. In
fact, there is no distributed algorithm which elects a leader or which constructs
a spanning tree for general anonymous networks.

1.2 Outline of the Paper

In Section 2, we explain our model of computation. In Section 3, we give the for-
mal definition of DISJ. In Section 4, we sketch the proof of the self-stabilization,
silence, and time complexity of DISJ.

2 Preliminaries

We assume that we are given an anonymous network of processes. Let N(x) be
the set of neighbors of a process x.

A self-stabilizing [1,2] system is guaranteed to converge to the intended be-
havior in finite time, regardless of the initial state of the system. In particular,
a self-stabilizing algorithm distributed will eventually reach a legitimate state
within finite time, regardless of its initial configuration, and will remain in a
legitimate state forever. An algorithm is called silent if eventually all execution
halts.

In the composite atomicity model of computation, each process has variables.
Each process can read the values of its own and its neighbors’ variables, but
can write only to its own variables. We assume that each transition from a
configuration to another, called a step of the algorithm, is driven by a scheduler ,
also called a daemon.

The program of each process consists of a finite set of actions of the following
form: < label >:: < guard > −→ < statement >. The guard of an action
in the program of a process x is a Boolean expression involving the registers
of x and its neighbors. The statement of an action of x updates one or more
variables of x. An action can be executed only if it is enabled , i.e., its guard
evaluates to true. A process is said to be enabled if at least one of its actions is
enabled. A step γi �→ γi+1 consists of one or more enabled processes executing
an action. Evaluation of all guards and execution of all statements of an action
are presumed to take place in one atomic step. A distributed algorithm is called
uniform if every process has the same program.

We use the distributed daemon. If one or more processes are enabled, the
daemon selects at least one of these enabled processes to execute an action. We
also assume that daemon is unfair , i.e.,that it need never select a given enabled
process unless it becomes the only enabled process.

We define a computation to be a sequence of configurations γp �→ γp+1 . . . �→ γq

such that each γi �→ γi+1 is a step.
We measure the time complexity of DISJ in rounds [2]. We say that a fi-

nite computation � = γp �→ γp+1 �→ . . . �→ γq is a round if every process which is

150 A.K. Datta, S. Devismes, and L.L. Larmore

enabled at γp is either neutralized or executes an action at some step, and if the
computation γp �→ γp+1 �→ . . . �→ γq−1 does not satisfy that condition. We define
the round complexity of a computation to be the number of disjoint rounds in
the computation.

3 DISJ

In this section, we give the formal definition of our algorithm, DISJ, which
solves the disjunction problem in an anonymous connected network, G. The
fundamental idea of DISJ is to build a local BFS tree rooted at every process
whose input bit is 1. Each process will join the tree rooted at the nearest process
with input bit 1; ties will be broken arbitrarily. The construction of the BFS
trees is by flooding.

The main difficulty with this method is the possibility that, in the initial
configuration (which is arbitrary) there could be “fictitious” BFS trees. It is
necessary to delete all such fictitious trees. This is an easy task if Output = 1,
but is difficult if Output = 0. If a process does not have a parent in one of the
trees, it will delete itself from the structure. Our problem is to ensure that a
fictitious tree does not grow as fast at the leaf end as it deletes itself from the
root end.

The method we use to ensure deletion of fictitious trees is derived from the
color wave method of [3]. Each process in a tree or fictitious tree, whether true
or fictitious, has a color , either 0 or 1. A process can only recruit a new process
to the tree if its color is 1, and the recruited process will initially have color 0.
Colors change in pipelined convergecast waves. Colors in a tree must alternate,
and to allow the color waves to continue upward, the root of each BFS tree (a
process whose input bit is 1) must “absorb” each wave. A fictitious tree will
not be rooted at a process with input bit 1, and thus color waves will not be
absorbed. “Color lock,” the situation where the waves are maximally crowded
and cannot move up, will eventually stop the growth of the fictitious tree.

We use the concept of energy introduced in [3]. Energy(x) is a positive integer
for each process x whose output bit is 1, and zero for processes with output
bit 0. If Output = 0, Energy(x) ≤ 2n for all x, and the maximum value of
Energy decreases by at least 1 during every round, and thus must eventually
reach zero. At that point, every process has output bit 0. In one more round,
DISJ converges.

3.1 Definition of DISJ

Recall that Input(x) is the input bit of the process x, and that Output is the
disjunction of all input bits. Define Ii = {x : Input(x) = i}, for i = 0, 1. Thus,
Output = 0 if I1 = ∅, while Output = 1 otherwise. If x, y are processes, let
||x, y|| be the distance (“hop-distance”) from x to y. If S is a non-empty set
of processes, let ||S, y|| = min {||x, y|| : x ∈ S}. We let ||∅, y|| = ∞. Finally, let
L(x) = ||I1, x||.

Self-stabilizing Silent Disjunction 151

Variables of DISJ. Each process x has the following variables.

1. x.out ∈ {0, 1}, the output bit of x.
When DISJ halts, x.out = Output for all x. We let Oi = {x : x.out = i}, for
i = 0, 1. During a computation of DISJ, the sets Oi can change.

2. x.parent ∈ N(x) ∪ {⊥}, the parent of x.
If Output = 0, then x.parent = ⊥ for all x when DISJ halts. If Output = 1,
then, when DISJ halts, x.parent = ⊥ for all x ∈ I1, while x.parent is the
parent pointer of x in the local BFS tree rooted at the nearest member of I1
if x ∈ I0.

3. x.level ≥ 0, integer or ∞, the level of x.
4. x.color ∈ {0, 1}, the color of x.

If x.out = 0, the value of x.color is irrelevant. The purpose of the color
variable is to ensure that eventually x.out = 0 for all x, if Output = 0.
The main difficulty of the problem in that case is eliminating processes with
output bit 1. We accomplish this task by using color waves , which ensure
that “fictitious” trees shrink faster than they grow.

5. x.done, Boolean. This variable is irrelevant if x.out = 0. If Output = 1,
the variable done is used to achieve silence when all BFS trees have been
constructed. In that case, x.done = true for all x when DISJ halts.

Functions and Sets. The following functions can be computed by any given
process x by examining its own and its neighbors’ variables.

1. Level(x) =

⎧⎨⎩
0 if Input(x) = 1
∞ if Input(x) = 0 and N(x) ⊆ O0

1 + min {y.level : y ∈ N(x) ∩O1} otherwise
When DISJ halts, x.level = Level(x) = L(x) for all x.

2. Chldrn(x) =

{{y ∈ N(x) ∩O1 : y.parent = x and y.level = 1 + x.level} if x ∈ O1

∅ if x ∈ O0

the children of x in its local BFS tree.
3. 0 Valid(x), Boolean, meaning that x is in a valid state with output bit 0,

which is true if and only if all the following conditions hold.
(a) x ∈ O0

(b) x.level = Level(x)
(c) x.parent = ⊥

4. 1 Valid(x), Boolean, meaning that x is in a valid state with output bit 1,
which is true if and only if all the following conditions hold.
(a) x ∈ O1

(b) x.level = Level(x)
(c) If Input(x) = 0 then x.parent ∈ O1 and x.level = 1 + x.parent .level .
(d) If Input(x) = 1 then x.parent = ⊥ and x.level = 0.
(e) If y ∈ N(x) then y.level + 1 ≥ x.level .

5. Valid(x) ≡ 0 Valid(x) ∨ 1 Valid(x), Boolean, meaning that x is valid. If
Valid(x) = false, we say x is invalid.
An invalid process x is enabled to execute the Reset action, A1, which causes
x to become valid.

152 A.K. Datta, S. Devismes, and L.L. Larmore

6. Can Recruit(x), Boolean, meaning that there is a neighbor of x which can
be recruited by x. This function is true if and only 1 Valid(x) and there is
some y ∈ N(x) ∩O0 such that y.level = x.level + 1.

7. Done(x), Boolean, indicates that there should be no further recruitment of
processes by x or any descendant of x in its local BFS tree.
This function is true if and only if 1 Valid(x), Can Recruit(x) = false,
and y.done for all y ∈ Chldrn(x).

Actions of DISJ
We list the actions of DISJ, in Table 1. The first column of the table gives the
name of the action, as well as its priority. The second column gives an informal
name of the action.

The guard of each action is a Boolean function, which we express as a list of
clauses in the third column. Each guard is the conjunction of the clauses. If the
priority of an action is not 1, there is an additional unlisted clause, which states
that no action of higher priority is enabled. For example, if the priority of an
action is 3, it is not enabled if an action of priority 1 or 2 is enabled.

The fourth column of Table 1 lists the statement of each action. If a process
is enabled and executes an action, then the statement, which consists of a list of
assignments of values to the process’ local variables, is executed.

We follow Table 1 by a detailed explanation of each of the actions.

Explanation of the Actions of DISJ. We now give a detailed explanation of
each of the actions of DISJ.

Action A1 (Reset): If a process x is invalid, it executes A1, and then
becomes 0-valid. An invalid process cannot change its parent or its level
without first executing A1.

Action A2 (Finish): If x ∈ O1, and if it appears to x, by looking at its
own and its neighbors’ variables, that construction of the local BFS trees is
done, then x.done is changed to true. Alternatively, if x ∈ O1 can determine
that the local BFS trees are not finished, x.done is changed to false. Both
changes are accomplished by the execution of Action A2.

When construction of local BFS trees is finished, all the done variables
change to true in a convergecast wave beginning at the leaves. When that
wave reaches x ∈ I1, then x can no longer execute Action A6, causing color
lock to percolate down its tree. When that happens with every tree, all
executions of Action A5 cease, and the configuration is final.

Action A3 (Initialize): If a process x ∈ I1 is 0-valid, it initiates a local
BFS tree with itself as the root, unless there is some neighbor y such that
y.parent = x. The reason for this clause is that, otherwise, y could acciden-
tally and erroneously link with the local BFS tree.

If such a y exists, then y is invalid, which implies that it will execute
Action A1 during the next round, after which x is enabled to execute A3.

Action A4 (Join): If a process x ∈ I0 is 0-valid and has a neighbor y ∈ O1,
and if y.color = 1 and x.level = 1 + y.level , then x can join y by executing

Self-stabilizing Silent Disjunction 153

Table 1. Actions of DISJ

A1 Reset ¬Valid(x) −→ x.out ← 0
priority 1 x.level ← Level (x)

x.parent ← ⊥
A2 Finish x.out = 1 −→ x.done ← Done(x)

priority 2 x.done �= Done(x)

A3 Initialize Input(x) = 1 −→ x.out ← 1
priority 3 0 Valid(x) x.color ← 1

∀y ∈ N(x) : y.parent �= x x.level ← 0
x.done ← false

A4 Join y y ∈ N(x) −→ x.parent ← y
priority 3 Input(x) = 0 x.out ← 1

0 Valid(x) x.color ← 0
y.out = 1 x.done ← false

y.level + 1 = x.level
y.color = 1
∀z ∈ N(x) : z.parent �= x

A5 Reverse 1 Valid(x) −→ x.color ← ¬x.color
priority 3 Color Input(x) = 0

¬Can Recruit(x) ∨ (x.color = 0)
x.parent .color = x.color
∀y ∈ Chldrn(x) : y.color �= x.color

A6 Absorb 1 Valid(x) −→ x.color ← ¬x.color
priority 3 Color Input(x) = 1

¬Can Recruit(x) ∨ (x.color = 0)
∀y ∈ Chldrn(x) : y.color �= x.color
¬x.done

Action A4, unless there is some neighbor z such that z.parent = x. The
reason for this clause is the same as the reason given for Action A3.

When x joins y, x.color ← 0. Thus, x starts a 0-color wave, which follows
the 1-color wave that y belongs to.

Action A5 (Reverse Color): Color waves alternate in color, and no color
wave can pass its preceding color wave. This rule is enforced by the guard of
A5. In order for the next color wave to reach x, that wave must have already
reached all children of x (if there are no children, then x initiates a new color
wave by executing A5) and the current color wave of x must already have
reached x.parent .

Action A6 (Absorb Color): Since color waves alternate colors and cannot
pass each other, eventually every chain would have alternating colors, i.e.,

154 A.K. Datta, S. Devismes, and L.L. Larmore

x and y would have different colors if y = x.parent . This situation is called
color lock . A color locked chain can only recruit a process if its last process
has color 1, and after it recruits that new process, which then has color 0, no
further recruitment is possible. Thus, in order for the local BFS trees to grow,
it is necessary for the root processes to absorb color waves. Action A6 by a
process x ∈ I1 consists of simply allowing the color wave that has reached its
children to move up to x. This then destroys (absorbs) the process’ current
color wave.

If x ∈ I1 and x.done = true, the local tree is complete, and color locking
is desired. In this case, x refuses to absorb its current color wave, the color
waves “pile up” behind it, and color lock is achieved. When all local BFS
trees reach color lock, the configuration of DISJ is final, and x.out = 1 for
all x.

3.2 Legitimate Configurations

There are two kinds of legitimate configurations. We say that a process x is in
a legitimate state of type 0 if the following conditions hold.

1. Input(x) = 0.
2. 0 Valid(x).
3. N(x) ⊆ O0.

We say that a process x is in a legitimate state of type 1 if the following conditions
hold.

1. 1 Valid(x).
2. x.done.
3. y.done for all y ∈ Chldrn(x).
4. If Input(x) = 0, then x.parent .color �= x.color .

We say that a configuration is legitimate, of type 0 or 1, if all processes are in a
legitimate state of type 0 or 1, respectively.

Properties of Legitimate Configurations. If the configuration is legitimate of
type 0, all processes have the same state, where level =∞. If the configuration
is legitimate of type 1, the network is partitioned into clusters, each of which
contains exactly one member of I1. Each process belongs to the cluster containing
the nearest member of I1 (where ties are broken arbitrarily), and the parent
pointers of the processes of each cluster form a BFS tree rooted at its member
of I1.

4 Self-stabilization and Silence

Our main result is Theorem 4.19 below, which follows immediately from the
lemmas proved in this section.

Self-stabilizing Silent Disjunction 155

4.1 Legitimacy and Silence

Remark 4.1. Every legitimate configuration is final.

Proof. Assume that the configuration is legitimate, and let x be a process.
Since Valid(x), x cannot execute Action A1.

Suppose x is legitimate of type 0.
Since x ∈ O0, x cannot execute Action A2.
Since Input(x) = 0, x cannot execute Action A3.
Since N(x) ⊆ O0, x cannot execute Action A4.
Since x ∈ O0, 1 Valid(x) = false, and thus x cannot execute either Action
A5 or A6.

Suppose x is legitimate of type 1.
For any y ∈ N(x), since y is legitimate, y ∈ O1 and y.done = true. Thus,
Done(x) = true, and hence x cannot execute Action A2.

Since x ∈ O1, x cannot execute either Action A3 or A4.
If x ∈ I0, then x.parent is legitimate of type 1. Then x cannot execute Action
A5 since x.parent .color �= x.color .
If x. ∈ I1, then x cannot execute Action A6 since x.done = true.

Thus, in either case, x is not enabled. and we are done.

We now prove the converse of Remark 4.1.

Lemma 4.2. Every final configuration is legitimate.

Proof. Assume that the current configuration of DISJ is final, but not legitimate.
For any process x, we have Valid(x) = true, and x.done = Done(x) if x ∈ O1,
since otherwise x would be enabled to execute either Action A1 or A2.

Our proof is by contradiction. Assume that not all processes are in a legitimate
state.

Case I: There is some x ∈ O0 where x is not in a legitimate state, andN(x) ⊆ O0.
Then 0 Valid(x). Since x is not legitimate of type 0, Input(x) = 1. Since all
neighbors of x are valid, x is enabled to execute Action A3, contradiction.

Case II: There is some x ∈ O1 such that x.level > 0 and x.parent .color = x.color .
Without loss of generality, the level of x is maximum, i.e., y.parent .color �=
y.color for all y ∈ O1 such that y.level > x.level .

If Can Recruit(x) = false, then x is enabled to execute Action A5, since
y.color �= x.color for all y ∈ Chldrn(x). Suppose Can Recruit(x) = true. Then
there exists y ∈ N(x) ∩ O0 such that y.level = 1 + x.level , and Level (y) =
1 + x.level since y is legitimate. Thus, y is enabled to execute Action A4. In
either case, we have a contradiction.

Case III: There are processes x ∈ O0 and y ∈ N(x) ∩ O1, and z.color �=
z.parent .color for all z ∈ O1 such that z.level > 0. Let r be the end of the chain

156 A.K. Datta, S. Devismes, and L.L. Larmore

starting with y and following parent pointers. Then r ∈ O1 and r.level = 0. Since
y.done = false, it follows by induction along the chain that r.done = false.
If r ∈ B1 and Can Recruit(r), then some neighbor of r can execute Action A4,
contradiction. Otherwise, r is enabled to execute Action A6, contradiction.

4.2 Characteristics of a Legitimate Configuration

Lemma 4.3. In a legitimate configuration, x.level = L(x) for all x.

Proof. By Remark 4.1, the configuration is final. If Output = 0, then Level(x) =
∞, since otherwise Action A1 would be enabled.

Suppose Output = 1, and x.level �= L(x) Without loss of generality, L(x) is
minimum subject to that condition. If x ∈ I1, then x is enabled to execute Action
A1, contradiction. Henceforth, assume x ∈ I0, which implies that x.level �=
L(x) =≥ 0.

Case I: x.level > L(x). Pick r ∈ I1 such that ||r, x|| = L(x). Pick y ∈ N(x) on
the shortest path from x to r. Then Level(x) ≤ 1+ y.level = 1+L(y) = L(x) <
x.level . Thus, x is enabled to execute Action A1, contradiction.

Case II: x.level < L(x). For all y ∈ N(x), L(y) ≥ L(x) − 1, by the triangle
inequality. Thus Level(x) ≥ L(x) > x.level , which implies that x is enabled to
execute Action A1, contradiction.

Corollary 4.4. In a configuration which is legitimate of type 1, the network is
partitioned into clusters, each containing one member of I1. In each cluster, the
parent pointers form a BFS tree rooted at its member of I1.

4.3 Energy

At any configuration of DISJ, and for any process x, let

Energy(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x.out = 0
1 if (x.out = 1) ∧ (Chldrn(x) = ∅) ∧ (x.color = 0)
2 if (x.out = 1) ∧ (Chldrn(x) = ∅) ∧ (x.color = 1)

max
(
{1 + Energy(y) : (y ∈ Chldrn(x)) ∧ (y.color �= x.color)} ∪

{2 + Energy(y) : (y ∈ Chldrn(x)) ∧ (y.color = x.color)}
)
otherwise

We define Max Energy to be the maximum energy of processes in the network.

Lemma 4.5. Execution of Action A1, A2, A4, or A5 by any process does not
increase Max Energy.

Proof. If a process x executes Action A1, there is no effect on Max Energy if
x ∈ O0. If x ∈ O1, then Energy(x) ← 0, and the effect on the energy of any
process is non-positive. If x executes Action A2, there is no effect on color, and
thus Max Energy is unaffected.

Self-stabilizing Silent Disjunction 157

Suppose x executes Action A4, attaching itself to y ∈ N(x). Then Energy(x)←
1, but Energy(y) = 2 before the step. Thus, Max Energy does not decrease.

Suppose x executes Action A5. Let y = x.parent . Before the step, Energy(y) ≥
Energy(x) + 2. Thus, the action could increase the energy of x by at most one.

Energy Plus Level. For any process x, define

Energy plus level(x) =

{
0 if x.level =∞
Energy(x) + x.level otherwise

Define Max Energy plus level to be the maximum value of Energy plus level (x)
over all x.

Lemma 4.6. The value of max

{
Max Energy plus level

2n

}
cannot increase.

Proof. If x is not a root, then Energy plus level(x) ≤ Energy plus level (x.parent)
by the definition of Energy . Thus, the maximum value of Energy plus level , if
greater than zero, is always achieved at a root, either a true root or a false root.

Let γ �→ γ′ be a step, and let M,M ′ be the values of
max {2n,Max Energy plus level} at γ and γ′, respectively. We use “prime”
notation for the values of variables and functions at γ′, and no ’prime’ to indicate
values at γ.

We need to prove M ′ ≤ M . If M ′ ≤ 2n, we are done. Therefore, we can
assume that M ′ > 2n. Pick x such that Energy plus level ′(x) = M ′. If x is a
true root at γ′, then Energy plus level ′(x) = Energy ′(x) ≤ 2n. Thus, x is a false
root at γ′.

If x did not execute at the step, then Energy ′(x) ≤ Energy(x) and thus
M ′ = Energy plus level ′(x) ≤ Energy plus level(x) ≤ M . If x executed at the
step, then x could not have been a false root at γ, Let y = x.parent . Then
Energy ′(x) < Energy(y) by the definition of Energy. Since x.level = 1+ y.level ,
we have M ′ = Energy plus level ′(x) ≤ Energy plus level(y) ≤M .

4.4 Silence

We define an infinite computation of an algorithm to be repetitive if every con-
figuration that occurs in the computation occurs infinitely often, and if every
transition between two configurations that occurs also occurs infinitely often.

Lemma 4.7. If DISJ has an infinite computation, then DISJ has a repetitive
infinite computation.

Proof. Let Γ be an infinite computation of DISJ on a network G. Let M be
the value of Max Energy plus level at the first configuration of Γ . By Lemma
4.6, Max Energy plus level ≤ M at all configuration of Γ . Thus, the number
of possible values of x.level for any given process x ∈ G. is bounded by M + 1.

158 A.K. Datta, S. Devismes, and L.L. Larmore

The number of possible values of x.parent is bounded by the degree of the
network, and the number of possible values of every other variable of DISJ is
bounded as well. Thus, the number of distinct configurations in the computation
Γ is finite.

Let P be the set of distinct consecutive pairs of configurations of DISJ which
occur in the computation G.

Let F be the set of members of P that occur only finitely many times in Γ .
Since F is finite, there is some step γ of Γ after which no member of F occurs.
Let Γ ′ be obtained by deleting all steps of Γ up to and including γ. In Γ ′, every
pair of consecutive configurations is repeated infinitely many times, and thus Γ ′

is repetitive.

We now prove that DISJ is silent. Our proof is by contradiction – throughout
the remainder of this subsection, we assume that Γ is an infinite computation
of DISJ. Without loss of generality, by Lemma 4.7, Γ is repetitive.

Sets of Processes.

1. S = the set of processes which never execute.
2. A = the set of processes which execute.
3. EOi, for i = 0, 1, is the set of processes which are in Oi forever.
4. EB = EO0 ∪ EO1.
5. EO1Cj , for j = 0, 1, is the set of processes in EO1 whose color remains j

forever.
6. EO1C = EO1C0 ∪ EO1C1.

Remark 4.8. If x ∈ EB, then x.level cannot change.

Lemma 4.9. If Input(x) = 1, then x ∈ EB.

Proof. If x ∈ S, then x ∈ EB. If y ∈ N(x) ∩ S, and y.parent = x. Then x
cannot execute either Action A3 or A4, and hence x ∈ EB. Otherwise, suppose
x /∈ EB. Then x will eventually execute Action A3, and will never again execute
Action A1, hence x ∈ EO1, contradiction.

Define the function f on processes.

f(x) =

⎧⎨⎩
∞ if x ∈ EO0

x.level if x ∈ EO1

1 + min {f(y) : y ∈ N(x)} otherwise

Lemma 4.10. x.level ≥ f(x).

Proof. By contradiction. Let Λ = min {x.level : x.level < f(x)}. If x.level = Λ
and x.level < f(x), then x will execute Action A1. When all such processes
have executed, Λ will increase. Since Λ is bounded above by the diameter of the
network, eventually x.level ≥ f(x).

Self-stabilizing Silent Disjunction 159

Lemma 4.11. All processes are in EB.

Proof. By contradiction. Suppose x /∈ EB. Let h be the minimum value of
x.level , taken over all configurations of Γ . If h = 0, then Input(x) = 1, and
hence x ∈ EB by Lemma 4.9. Otherwise, there is some y ∈ N(x) such that
y ∈ EO1 and y.level = h − 1. Thus, Level(x) ≤ h at every configuration of Γ .
Since any neighbor of x whose level is less than h must be in EO1, we have
that Level (x) cannot change, and hence must always be equal to h. Thus, x will
remain valid and cannot execute Action A1. Hence x ∈ EO1, contradiction.

Corollary 4.12. For any process x, x.parent never changes.

Lemma 4.13. EO0 ⊆ S.

Proof. If x ∈ EO0, then the only action that x could execute is A1. By Remark
4.8 and Lemma 4.11, no valid process in EO0 can become invalid, and thus
Level(x) cannot change. Thus, x can execute Action A1 at most once.

Lemma 4.14. if x ∈ EO1 and either x.parent ∈ EO1C or y ∈ EO1C for some
y ∈ Chldrn(x), then x ∈ EO1C.

Proof. By the guards of Actions A5 and A6, x cannot execute either of those
actions more than once.

Lemma 4.15. EO1 ⊆ S.

Proof. By contradiction. By Lemma 4.11 and Corollary 4.13, A ⊆ EO1.
We first prove, by contradiction, that x.done never changes for any x ∈ A.

Let x be the process of greatest level such that x.done changes. But Done(x)
cannot change, and so x can execute Action A2 at most once, contradiction.

Let A be the graph whose nodes are processes in A and whose edges are
defined by the parent pointers. Each component of A is a tree rooted at its
member of minimum level. Let T be one of those trees. If any member x ∈ T is
a neighbor of any member of EO0, then x can change color at most once. Thus,
by Lemma 4.14 applied inductively, T ⊆ EO1C. If any member of T is linked,
by a parent pointer, to any process not in A, then, also by Lemma 4.14 applied
inductively, T ⊆ EO1C. Since no value of done in T can change, T ⊆ S.

Now, suppose that no member of T is a neighbor of any member of EO0 or
is linked by a parent pointer to any process not in A. Then the root of T has
level 0 and x.done = true for all x ∈ T . The root of T cannot execute Action
A6, and thus, by Lemma 4.14 applied inductively, T ⊆ EO1C, and thus T ⊆ S.

4.5 Time Complexity of DISJ

Using the concept of energy, we can prove that, in the case that Output = 0,
energy must decrease during every round, and thus must reach zero after at
most 2n rounds. After one more round, a legitimate configuration of type 0 is
achieved.

160 A.K. Datta, S. Devismes, and L.L. Larmore

In the case that Output = 1, color waves actually slow down convergence. A
simple flooding algorithm, which would work if we were guaranteed that I1 �= ∅,
would take at most Diam rounds, where Diam is the diameter of G. Unfortu-
nately, the addition of color waves causes the case where Output = 1 to also take
O(n) rounds.

Time Complexity when I1 = ∅
In this subsection, we analyze the time complexity of DISJ in the case that
I1 = ∅.
Lemma 4.16. If I1 = ∅ and O1 �= ∅, then Max Energy decreases during the
next round.

Proof. During the first round, all the first processes of chains with energy
Max Energy will execute Action A1. The remaining chains will have smaller
energy. Since I1 = ∅, no process can execute Action A4. By Lemma 4.5, no other
action can increase Max Energy . Thus Max Energy decreases.

Lemma 4.17. If I1 = ∅, then the configuration will be legitimate of type 0 within
2n+ 1 rounds of an arbitrary initialization.

Proof. In the initial configuration, Max Energy ≤ 2n, By Lemma 4.16, within
2n rounds, Max Energy = 0, and thus O1 = ∅. Within one more round, every
process which is not valid will execute Action A1, and the configuration will
then be legitimate of type 0.

Lemma 4.18. If Output = 1, then DISJ converges within O(n) rounds.

We only sketch the proof. The initial value of Max Energy cannot exceed 2n.
We can show that within O(n) rounds, Max Energy = O(Diam), after which
DISJ converges within O(Diam) additional rounds.

From the above lemmas, we conclude our main result, below.

Theorem 4.19 DISJ is self-stabilizing and silent, takes O(n) rounds, and works
under the unfair daemon.

Proof. Let Γ be any computation of DISJ. By Lemmas 4.11 and 4.15, and Corol-
lary 4.13, Γ is finite. By Lemma 4.2, the last configuration of Γ is legitimate,
and hence DISJ is self-stabilizing and silent. By Lemmas 4.18 and 4.17, DISJ
converges in O(n) rounds from an arbitrary initial configuration.

References

1. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications
of the Association of Computing Machinery 17, 643–644 (1974)

2. Dolev, S.: Self-Stabilization. The MIT Press (2000)
3. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in opti-

mal space under an arbitrary scheduler. Theoretical Computer Science 412(40),
5541–5561 (2011)

Uniform Consensus with Homonyms

and Omission Failures�

Carole Delporte-Gallet, Hugues Fauconnier, and Hung Tran-The

LIAFA-Université Paris-Diderot, France
{cd,hf,hung}@liafa.univ-paris-diderot.fr

Abstract. In synchronous message passing models in which some pro-
cesses may be homonyms, i.e. may share the same id, we consider the
consensus problem. Many results have already been proved concerning
Byzantine failures in models with homonyms [10], we complete here the
picture with crash and omission failures.

Let n be the number of processes, t the number of processes that may
be faulty (t < n) and l (1 ≤ l ≤ n) the number of identifiers. We prove
that for crash failures and send-omission failures, uniform consensus is
solvable even if l = 1, that is with fully anonymous processes for any
number of faulty processes.

Concerning omission failures, when the processes are numerate, i.e. are
able to count the number of copies of identical messages they received
in each round, uniform consensus is solvable even for fully anonymous
processes for n > 2t. If processes are not numerate, uniform consensus is
solvable if and only if l > 2t.

All the proposed protocols are optimal both in the number of com-
munication steps needed, and in the number of processes that can be
faulty.

All these results show, (1) that identifiers are not useful for crash and
send-omission failures or when processes are numerate, (2) for general
omission or for Byzantine failures the number of different ids becomes
significant.

1 Introduction

Generally distributed algorithms assume either that all processes have distinct
identifiers and more rarely that they are anonymous. These two models are two
extremes of the same model called homonyms in [10]: n processes use l different
identifiers. Hence the case l = 1 corresponds to a fully anonymous model and
the case l = n to model in which all processes have different identifiers.

Anonymous models have a very restricted computational power and many
impossibility results have been proved with anonymous models (e.g. leader elec-
tion, Byzantine consensus[2,3,5,8,18,22] ...) and it is interesting to determine
how identifiers are needed and useful. Beyond this theoretical interest, models
with homonyms have also a practical interest. In large systems, it is not so easy

� Supported by ANR VERSO SHAMAN.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 161–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

162 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

to ensure that all processes have unique and unforgeable identifiers. Moreover,
in some cases, users of a system may wish to preserve their privacy and for this
appear in the system not as an individual but rather as member of some group
[9].

As agreement protocols are major tools for fault-tolerance (e.g. state machine
approach [24]), to evaluate the power of identifiers we consider the classical
consensus problem. In [10,12,13] many results have been proved concerning the
Byzantine consensus problem in models with homonyms. In this paper we com-
plete this picture considering less severe process failures.

With homonyms, l (1 ≤ l ≤ n) distinct identifiers are assigned to each process.
Several processes may be homonyms and share the same identifier. When a
process p receives a message from a process q with identifier i, then p knows
that the message has been sent by some process with identifier i but does not
know wether it was sent by q or another process having the same identifier i.

We restrict ourselves to synchronous message passing models. In the models
we consider, computation proceeds in rounds. In each round each process sends
messages to all other processes and then receives all messages that were sent to
it during the round.

When processes with the same identifier send the same message, it can be
assumed or not that the processes receiving this message know how many times
this message was sent. Then, as in [10], we consider two variants of the model,
in the first one processes are innumerate: each process receives only a set of
messages without multiplicity, whereas in the second one processes are numerate:
each process receives a multiset of messages.

Only benign process failures are considered here. More precisely we study:
process crashes (a process stops its code and if the crash occurs in a round
some messages from this process may be not received by some processes), send
omission (a process may crash or omit to send messages to some processes),
receive omission (a process may crash or omit to receive some messages) and
general omission (a process may crash or commit send or receive omissions).

Results: Concerning innumerate processes we prove that uniform consensus1 is
solvable even with l = 1 (anonymous processes) for crash failures and send-
omission failures. For general omission and innumerate processes, uniform con-
sensus is solvable if and only if l > 2t. Hence there is no algorithm for fully
anonymous processes, but the number of identifier needed depends only on the
number of tolerated faulty processes. Moreover the solution we propose is in t+1
rounds for any t such that t < n, and is then optimal [1,16,21] concerning both
the communication complexity in number of rounds and the resiliency. Hence,
working with anonymous processes gets no penalty with crash or send-omission
failures and in this sense identifiers are not useful.

Numerate processes are more powerful, even if l = 1 (anonymous processes)
uniform consensus is solvable for general omission failures if and only if n >

1 In the uniform version of the consensus, if a faulty process decides, the decided value
has to satisfy the same properties as for correct processes.

Uniform Consensus with Homonyms and Omission Failures 163

Table 1. Necessary and sufficient conditions on the number identifiers for solving
consensus in a system of n processes with at most t faulty processes

Send-omission General-omision Byzantine Restricted Byzantine

Innumerate processes l ≥ 1 l > 2t l > 3t l > 3t

Numerate processes l ≥ 1 l ≥ 1 l > 3t n > 3t ∧ l > t

2t [23], that is with the same bound as for processes having different identifiers.
Hence the ability of counting the number of messages may be a way to avoid
identifiers.

Adding results from [10], Table 1 summarizes the necessary and sufficient
conditions on the number of identifiers to solve the consensus. In the restricted
Byzantine case, a Byzantine process is only able to send one message to each
process in each round.

From this table, we may observe that (1) numerate processes enable to avoid
the use of identifiers for omission failures, (2) for innumerate anonymous pro-
cesses consensus is solvable only for send-omisison failures, and (3) identifiers
are really needed for Byzantine failures.

2 Model and Definitions

We consider a synchronous message passing system of n ≥ 2 processes. Each
process has an identifier from the set L = {1, · · · l}. l is the number of different
identifiers. We assume that n ≥ l and each identifier is assigned to at least one
process. If n > l some processes share the same identifiers and are homonyms,
when l = 1 all processes have the same identifier and the processes are anony-
mous, when l = n all processes have different identifiers. Processes with the
same identifier execute the same code. For convenience, we sometimes refer to
individual processes by names, but these names cannot be used by processes
themselves in the algorithms. The total number of processes, n, is known by the
processes.

Processes communicate by messages. Processes may only send messages to
all processes with the same identifier. When a process with identifier id sends a
message to the processes of identifier id′, all processes with identifier id′ receive
m. When a process receives a message m it knows the identifier i of the sender
of the message but it does not know which process with identifier i sent this
message.

We consider a synchronous round based model for which in each round, each
process sends the same set of messages to all other processes and then receives
all messages that were sent to it during that round.

Process failures. We assume that communication is reliable in the sense that
every message sent by correct processes is received by all correct processes in
the round it was sent. We restrict ourselves to the following benign failures of
processes:

164 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

– Crash failure: A faulty process stops its execution prematurely. After it has
crashed, a process does nothing.

– Send Omission failure: A faulty process crashes or omits sending messages
it was supposed to send to other processes.

– General Omission failure: A faulty process crashes or omits sending and/or
receiving messages it was supposed to send to/from other processes.

A send (receive) omission failure actually models a failure of the output (input)
buffer of a process. A buffer overflow is a typical example of such a failure.
Note that when a process crashes in a round or commits a send omission, some
processes may receive the message of this process for this round and some other
not.

In the following t denotes an upper bound on the number of faulty processes.

Innumerate and numerate processes. As processes are anonymous, among the
messages received in the round, a process may only distinguish between messages
having different values, but it may be assumed or not that a process is able count
the number of identical messages received in the round. [10]

More precisely, if more than one process sends the same message m in a
round, the model ensures either that each process only knows that m has been
sent or that each process knows not only that m has been sent but also how
many time m has been sent in the round. In the first case, the processes are said
innumerate whereas in the second case they are said numerate. When a process
is innumerate, it cannot count the number of copies of identical messages it
receives in the round and in this case each process p receives a set of messages.
When a process is numerate, the messages it receives in round r is a multiset of
messages.

The uniform consensus problem. The goal of a consensus algorithm is, for a
set of processes proposing values, to decide on exactly one of these values. We
consider the uniform consensus problem as defined in [21] by the following three
properties:

1. Termination: Every correct process eventually decides.
2. Uniform Validity: If a (correct or not) process decides v, then v was proposed

by some process.
3. Uniform Agreement : No two (correct or not) processes decide different val-

ues.

3 Consensus with Send-Omission Failures

In this section we prove that uniform consensus is solvable with send-omission
failures for all t less than n even if processes are innumerate.

The crash-tolerant uniform consensus protocols in models in which processes
have distinct identifiers described in [4,20,19] are based on a “flood set” strategy.
Each process p maintains a local variable that contains its current estimates of

Uniform Consensus with Homonyms and Omission Failures 165

the decision value. Initially, the local variable is set to the input proposed by p.
Then, during each round, each non-crashed process first broadcasts its current
estimate, and then updates it to the smallest values among the estimates it has
received. After t+1 rounds, as there is at least one round without any crash, all
processes will have the same estimate. These algorithms do not use identifiers for
processes and solve directly the uniform consensus problem when all processes
are anonymous (l = 1) in presence of any number of crashes.

With omission failures, faulty processes may commit omissions in any round,
and it is possible that there is failures in all rounds. To circumvent this difficulty,
in [21,23,25], each process keeps track (explicitly or implicitly) of the set of
processes it considers to be correct. A process does not accept messages from
processes outside of this set. In [17], the current estimate of each process is
updated to the current estimate of the leader selected in each round. All these
ways use the fact that each process identifies the sender.

We present here a protocol that solves uniform consensus despite up to t <
n processes that commit send-omission failures even if all processes are fully
anonymous. The underlying principles of this algorithm are inspired by [23,25].
Roughly speaking, the algorithm ensures that if some process changes its esti-
mate in round r, then another process has changed its estimate in the previous
round. After the first round, when a process changes its estimate to some value,
this value may only come from a faulty process, if some process changes its
estimate in round k, then at least k − 1 processes are faulty.

The protocol for a process p is described in Figure 1. Each process p maintains
local variables new and old: old is the estimate of the previous round and new
the current estimate of the round. Initially, new is set to v, the initial value
of p.

Note that after the first round, new is different from old if and only if the
process has changed its estimate. Moreover a process changes its estimate only
for a smaller value, then if new < old that means that the process has changed
its estimate. During each round r, each process first broadcasts its current value
of variables new and old and then updates them as follows: the variable old is
set to the value of variable new at round r − 1. Variable new may change only
if the process receives some pairs (v, o) with v < o. From the previous remark,
a process changes its variable new in round r only if it sees that a process has
changed its value of variable new in the previous round. If new is modified, it is
updated by the min of the previous value of new and the min of all v received
from processes having changed their estimate in the previous round.

Finally, at round t+1, each process decides on the maximum of values received
in round t+ 1.

To prove the correctness of the algorithm, we use the following notation: we
say that a process “changes its estimate to some value v0 in round r”, if at the
end of this round, new = v0∧v0 < old. We say that a process “keeps its estimate
in round r”, if at the end of this round, new = old.

Let p0 be the process having the minimum input value vmin. Let newp(r) be
the value of variable new of the process p at the end of round r, oldp(r) be the

166 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

Code for process p

Variable:
1 input = {v} /* v is the value proposed value */
2 new = input
3 old = input

Main code:
4 ROUND 1
5 send new to all processes
6 old = new
7 new = Min{v|p has received v in this round}

8 ROUND r from 2 to t
9 send (new, old) to all processes
10 old = new
11 let Gp[r] = {v| p has received (v, o) in this round and v < o}
12 if Gp[r] �= ∅ and Min{v|v ∈ Gp[r]} < new then new = Min{v|v ∈ Gp[r]}

13 ROUND t+ 1
14 send new to all processes
15 decide Max{v|p has received v in this round}

Fig. 1. Anonymous Consensus Protocol with at most t send omission processes

value of variable old of process p at the end of round r, V [r] be the set of values
of variable new of all processes (not crashed at the end of round r) at the end of
the round r: V [r] = {newp(r)|p is any process}, and vmax be the largest value
of set V [t].

We begin with two simple facts:

Fact 1. oldp(r + 1) = newp(r) for every round 1 ≤ r < t and every process p
not crashed at the end of round r + 1.

Fact 2. newp(r) ≤ oldp(r) for every round 1 ≤ r ≤ t and every process p not
crashed at the end of round r.

Lemma 1. V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.

Proof. Consider variable newp(r+ 1) for some process p not crashed at the end
of round r + 1. There are two cases:

– p changes its estimate in round r + 1 to some value v0 at Line 12. Then
newp(r + 1) = v0 where v0 is the value of variable new of some process q
that sent the pair (v0, old) to p with v0 = newq(r).

– p keeps its estimate in this round. Hence, newp(r + 1) = oldp(r + 1) =
newp(r).

Thus, V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.

Uniform Consensus with Homonyms and Omission Failures 167

We directly get:

Lemma 2. If p0 is correct then newp(r) = vmin for every round 1 ≤ r ≤ t and
every process p not crashed at the end of round r.

Lemma 3. If a correct process has input value v0 or changes its estimate to
some value v0 in round 1 ≤ r < t then newq(t) ≤ v0 for every process q not
crashed at the end of round t.

Proof. If some correct process p has input v0 then at the end of round 1, the
variable new of all processes is less than or equal to v0 (Line 7). By Lemma 1,
we have V [t] ⊆ V [1]. Thus, newq(t) ≤ v0 for every process q.

If p changes its estimate new to v0 in round 1 ≤ r < t. Then v0 = newp(r) <
oldp(r). In the round r+1 ≤ t, the correct process p sends the pair (v0, oldp(r))
to all processes. At the end of the round r+1, all processes receive (v0, oldp(r)).
We consider any process q, after Line 12, new′

qr + 1) ≤ v0. By Lemma 1, we
have V [t] ⊆ V [r + 1]. Thus, newq(t) ≤ v0 for every process q.

Lemma 4. If t > 1 and r ≥ 2, if some p changes its estimate to v0 in round r
then, there is a set of processes {q1, · · · , qr−1} such that for all i, 1 ≤ i ≤ r − 1,
qi changes its estimate to v0 in the round i and newqi(r − 1) ≤ v0.

Proof. Since p changes its estimate to v0 in round r, we must have newp(r) =
Min{v|v ∈ Gp[r]} and there is at least one process qr−1 that sent (new, old) to
p, with new = v0 < old. Hence, at the end of round r− 1, the process qr−1 must
have newqr (r−1) < oldqr (r−1). That means that qr−1 has changed its estimate
in round r − 1.

By induction, we have a sequence of processes (q1, · · · , qr−1) such that qi
changes its estimate in round i, 1 ≤ i ≤ r − 1.

Furthermore, if a process changes its estimate to v0 in some round r0 then
after this round, its value of variable new is less than or equal to v0 and no
process can change its estimate to v0 twice. Thus, all processes qi are distinct
and newqi(r − 1) ≤ v0 for all i such that 1 ≤ i ≤ r − 1, proving the Lemma.

Lemma 5. Either (a) newq(t) = vmax for every correct process q, or (b) V [t] =
{vmin, vmax}, news(t) = vmin for every faulty process s and some correct process
changes its estimate to vmin in round t.

Proof. If t = 1 then consider two cases:

– if p0 is correct and then by Lemma 2, newq(t) = vmin for all correct processes
q.

– if p0 is faulty. At the end of round 1, either all correct processes have the
same value of estimate or some correct process changes its estimate to vmin,
proving the Lemma.

faux
If t > 1, we consider the set of values of variable new of correct processes at the
end of round t. Since n > t, this set is not empty.

Assume that (a) is not satisfied then for some correct process p newp(t) <
vmax. Let v0 be newp(t) (v0 < vmax). Consider the following two cases:

168 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

– v0 is the input value of p or p changes its estimate to v0 in a round 1 ≤
r < t then by Lemma 3, newq(t) ≤ v0 for every process q, contradicting the
hypothesis that v0 < vmax.

– p changes its estimate to v0 in round t. By Lemma 4, we have a set of
processes {q1, · · · , qt−1} such that qi changes its value of variable new to v0
in the round i, 1 ≤ i ≤ t − 1. Moreover, no process among them is correct
because if some process qi is correct then the value of variable new at the end
of the round t of every process is less than or equal to v0, hence vmax ≤ v0,
contradicting the hypothesis that v0 < vmax. Moreover, p0 is faulty because
if p0 were correct then by Lemma 2, newp(1) = vmin and p could not change
its estimate in round t, contradicting the hypothesis. Therefore, we have a
set of t faulty processes {q1, ..., qt−1} ∪ {p0}.

Since all processes qi that have ever changed their estimate to v0 in some
round r ≥ 1, v0 cannot be the input value of one of these processes. On
the other hand, by Lemma 3, if v0 is the input value of a correct process
then newq(t) ≤ v0 for every process q, by definition of vmax, vmax = v0,
contradicting the hypothesis that v0 < vmax. Hence, v0 may only be the
input value of faulty process p0. That means that newp(t) = v0 = vmin.
Moreover, all faulty processes qi that changed their estimate to vmin in some
round r ≥ 1 do not change their estimate more because vmin is minimum
value, hence news(t) = vmin for every faulty process s ∈ {q1, ..., qt−1}∪{p0}.

Proposition 1. Uniform agreement: No two processes decide different val-
ues.

Proof. By Lemma 5, we have either

– If newq(t) = vmax for every correct process q then, every process p not
crashed at round t + 1 receives vmax in round t + 1 and decides vmax at
Line 15.

– V [t] = {vmin, vmax}, news(t) = vmin for every faulty process s. Hence, vmax

must come from some correct process. At the beginning of round t+ 1, this
process sends vmax to all and every process not crashed at round t+1 receives
the value vmax and decides vmax.

The Termination and Uniform Validity are trivially satisfied, then with the pre-
vious proposition we deduce:

Theorem 1. Uniform consensus is solvable in t+1 rounds with send-omission
failures of any number of processes even if all processes are anonymous.

This algorithm is optimal concerning the number of rounds (t + 1) and the
number of tolerated faulty processes (t < n).

4 Consensus with General-Omission Failures

In this section we give an algorithm solving uniform consensus with general-
omission failures if processes are numerate (even if they are anonymous). In

Uniform Consensus with Homonyms and Omission Failures 169

a second subsection we prove there is no solution for uniform consensus with
general-omission failures when processes are anonymous and innumerate. More
precisely we prove that at least l > 2t identifiers are needed. Recall that uniform
consensus is solvable with processes having unique identifiers for general-omission
failures only if there is a majority of correct processes, then we always assume
in this section that n > 2t.

4.1 Numerate Processes

In this subsection, processes are anonymous and numerate.
An algorithm in Figure 2 solves the consensus in general omission model base

on the same principles as Figure 1. Round t + 1 has to be adapted to general-
omission failures for which it is not ensured that all correct processes have the
same estimate in round t+ 1.

Code for process p

Variable:
1 input = {v} /* v is the proposed value */
2 new = input
3 old = input

Main code:
4 ROUND 1
5 send new to all processes
6 old = new
7 new = Min{v| v in the set of messages received }

8 ROUND r from 2 to t
9 send (new, old) to all processes
10 old = new
11 let Gp[r] = {v| p has received (v, v1) in this round and v < v1}
12 if Gp[r] �= ∅ and Min{v|v ∈ Gp[r]} < new then new = Min{v|v ∈ Gp[r]}

13 ROUND t+ 1
14 send (new, old) to all processes
15 if for some v received n− t pairs (v, ∗) in this round
16 then decides v
17 else if received at least n− t pairs
18 and one of them is (x, y) such that x < y
19 then
20 let Gp = {v| p has received (v, ∗) in this round }
21 if ∃(x, y) such that x < y and (x, y) received in this round

and x = Min{v|v ∈ Gp}
22 then decide x

Fig. 2. Anonymous Consensus Protocol with at most t general-omission processes

170 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

We now present the steps of the proof that the protocol of Figure 2 satisfies the
specification of uniform consensus.We use the same notations p0, vmin, V, newp(r)
and oldp(r) as in the proof of Theorem 1. Let C[r] be the set of values of variable
new of all correct processes at the end of the round r: C[r] = {newp(r)|p is a
correct process}, and cmax be the largest value of set C[t].

Although here processes may commit receive omission the following lemmata
may be proved in a very similar way as in the proof of Theorem 1.

Lemma 6. V [r + 1] ⊆ V [r] for every round 1 ≤ r < t.

Lemma 7. If p0 is correct then newp(r) = vmin for every correct process p and
every round 1 ≤ r ≤ t .

Lemma 8. If a correct process changes its estimate to some value v0 in round
1 ≤ r < t or has input v0 then newq(t) ≤ v0 for every correct process q.

Lemma 9. If t > 1 and r ≥ 2, if some process p changes its estimate to v0
in round r then, there is a set of processes {q1, ..., qr−1} such that for all i,
1 ≤ i ≤ r − 1, qi changes its estimate to v0 in the round i.

Lemma 10. Either (a) newq(t) = cmax for every correct process q, or (b)
V [t] = {vmin, cmax}, news(t) = vmin for every faulty process s, some correct
process changes its estimate to vmin in round t, and t processes are faulty.

Proof. If t = 1 then consider two cases:

– if p0 is correct then by Lemma 7, newq(1) = vmin for all correct processes.
– if p0 is faulty. At the end of round 1, either all correct processes have the

same value of estimate or some correct process changes its estimate to vmin,
proving the Lemma.

If t > 1, we consider the set of values of variable new of correct processes at the
end of round t. Since n > 2t, this set is not empty.

Assume that (a) is not satisfied then for some correct process p newp(t) <
vmax. Let v0 be newp(t) (v0 < cmax). Consider the following two cases:

– v0 is the input value of p or p changes its estimate to v0 in a round 1 ≤ r < t
then by Lemma 8, newq(t) ≤ v0 for every correct process q. By definition of
cmax, we must have cmax = v0, contradicting the hypothesis that v0 < cmax.

– p changes its estimate to v0 in round t. By Lemma 9, we have a set of
processes {q1, · · · , qt−1} such that qi changes its value of variable new to v0
in the round i, 1 ≤ i ≤ t − 1. Moreover, no process among them is correct
because if any process qi is correct then the value of variable new at the end
of the round t of every process is less than or equal to v0, hence cmax ≤ v0,
contradicting the hypothesis that v0 < cmax. On the other hand, p0 is faulty
because if p0 were correct then by Lemma 7, newp(1) = vmin and p could
not change its estimate in round t, contradicting the hypothesis. Therefore,
we have a set of t faulty processes {q1, ..., qt−1} ∪ {p0}.

Uniform Consensus with Homonyms and Omission Failures 171

As all qi changed their estimate to v0 in some round r ≥ 1, v0 is not any
input value of these processes. On the other hand, by Lemma 8, if v0 is
input value of a correct process then newq(t) ≤ v0 for every process q. By
definition of cmax, we must have cmax = v0, contradicting the hypothesis
that v0 < cmax. Then, v0 may only be the input value of faulty process p0.
That means that newp(t) = v0 = vmin. Moreover, all faulty processes qi
that have changed their estimate to vmin in some round r ≥ 1 do not change
their estimate after because vmin is minimum value. Hence news(t) = vmin

for every faulty process s ∈ {q1, ..., qt−1} ∪ {p0}.

Lemma 11. Suppose that newq(t) = cmax for every correct process q. Thus, if
a faulty process changes its estimate to v0 in round t then v0 ≥ cmax.

Proof. If p0 is correct then at the end of round 1, we have newq(1) = vmin

for every correct process q. q never changes its estimate because vmin is the
minimum value. Thus, cmax = vmin. If a faulty process changes its estimate to
v0 in round t then obviously, v0 ≥ vmin.

Now, consider the case where p0 is a faulty process. Suppose that a faulty
process q changes its estimate to v0 in round t. By Lemma 9, we have a set
of processes {q1, · · · , qt−1} such that qi changes its value of variable new to
v0 in the round i, 1 ≤ i ≤ t − 1. Moreover, the faulty process p0 that never
changes its estimate must be different from all processes in the set {q1, · · · , qt−1}.
If all these processes were faulty with p0 and q we would have t + 1 faulty
processes, contradicting the hypothesis that there are at most t faulty processes.
Therefore, at least one of processes of set {q1, · · · , qt−1} is correct, say p. p
changes its estimate to v0 in round 1 ≤ r < t: newp(r) = v0. But we have always
newp(t) ≤ newp(r) for every 1 ≤ r < t. Thus, v0 = newp(r) ≥ newp(t) = cmax.

Lemma 12. If two processes decide at Line 16 then they decide the same value.

Proof. Suppose that process p decides v0 at Line 16 and process q decides v1 at
Line 16. Thus, p receives at least n− t pairs (v0, ∗) and q receives at least n− t
pairs (v1, ∗) in round t+1. That means that at least n− t processes sent (v0, ∗)
and at least n− t processes sent (v1, ∗). Since (n− t) + (n− t) > n, v0 = v1.

Theorem 2. If processes are numerate, uniform consensus is solvable in t + 1
rounds if n > 2t even if all processes are anonymous.

Proof. Termination: By Lemma 10, at the end of round t, either:

– the value of variable new of every correct process is the same, then all correct
processes decide at Line 16.

– at least one correct process p changes its estimate to vmin and the value of
variable new of every faulty process is vmin. Thus, every correct process q
receives at least n− t pairs and one of them is (vmin, y) such that vmin < y
from p. q decides vmin at Line 22.

Uniform Validity: if a process decides it decides some value in set V [t]. By Lemma
6, we have V [t] ⊆ V [1]. Moreover, V [1] is a subset of the inputs proposed by

172 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

processes. Therefore, if a process p decides v, then v is input value of some
process.

Uniform agreement: By Lemma 10, at the end of round t either:

– the value of variable new of every correct process is the same cmax then all
correct processes decide this value at Line 16. Suppose that a faulty process
q want to decide. If it decides at Line 16 then by Lemma 12 it must decide
the same cmax. If it decides at Line 22 it has received at least n − t pairs
and one of them is (x, y) such that x < y and x = Min{v|v ∈ Gq}. As q
receives at least n− t pairs, at least one pair comes from a correct process.
then x = Min{v|v ∈ Gq} ≤ cmax. If this pair (x, y) comes from a correct
process then x = cmax. If the pair come from a faulty process. By Lemma
11, we have x ≥ cmax. Thus, in all cases, we have always x = cmax. That
means that q decides the same value as correct processes.

– V [t] = {vmin, cmax}, news(t) = vmin for every faulty process s, some correct
process p changes its estimate to vmin in round t, and t processes are faulty.
As p is correct, all correct processes receive its value. Moreover a correct
process receives at most n − t − 1 value different from vmin and cannot
decide at Line 16 then it decides vmin at Line 22. If a faulty process q
decide, by hypothesis it has news(t) = vmin.

4.2 Innumerate Processes

Proposition 2. Uniform consensus is not solvable with innumerate processes if
l ≤ 2t with general-omission failures.

Proof. The proof is based on a classical partitioning argument. By contradiction,
assume that there is a protocol that solves the uniform binary consensus problem
with l ≤ 2t.

Let a partition of the set of identifiers L into two sets I = {1, . . . , l/2} and
J = {l/2 + 1, . . . l}, such that |I| ≤ t and |J | ≤ t. Consider the two following
repartitions of identifiers. In repartition R, all identifiers in I are identifier of
only one process, identifiers in J − {l} are identifiers of only one process too
and identifier l is the identifier of the remaining n − l + 1 processes. R(I) and
R(J) denote respectively the set of processes with identifiers in I and the set
of processes with identifiers in J for repartition R Repartition S is identical to
R except that only one process has identifier l and the other processes having
identifier l for R have now identifier 1. S(I) and S(J) denote respectively the set
of processes with identifiers in I and the set of processes with identifiers in J for
repartition S. Note that R(I) and S(J) contain at most t processes. Note also
that as processes are innumerate if all processes with the same identifier send
the same messages in R and S and have the same initial state, execution in R
or S are indistinguishable for any process.

Consider the following executions:
Execution α. The repartition is R, all processes have 0 as initial value. Pro-

cesses in R(I) are crashed from the beginning. By validity the decision value
is 0.

Uniform Consensus with Homonyms and Omission Failures 173

Execution α′. The repartition is R, the initial values are 0 for processes in
R(J) and 1 for processes in R(I). Processes in R(I) commit send and receive
omission failures: processes in R(J) do not receive any message from processes in
R(I) and processes in R(I) do not receive any message from processes in R(J).
α′ is indistinguishable from α for processes in R(J) and the decision value is 0.

Execution β. The repartition is S, all processes have 1 as initial value. Pro-
cesses in S(J) are crashed from the beginning. By validity the decision value
is 1.

Execution β′. The repartition is S, processes in S(I) have 1 as initial value
and processes in S(J) have 0 as initial value. Processes in S(J) commit send and
receive omission and processes in S(I) don’t receive any message from S(J) and
processes in S(J) don’t receive any message from S(I). β′ is indistinguishable
from β for processes in S(I) and the decision value is 1.

Now consider any process p with identifier in I both for R and S. As processes
are innumerate p receives in β′ and α′ exactly the same messages from identifiers
in I, and receives no messages from identifiers in J , both execution are then
indistinguishable for p. In β′ it decides 1 then in α′ it decides 1 too. But the
decision value for α′ is 0.

In the other hand, the consensus is solvable when l > 2t. The protocol is similar
to the one presented in Figure 2 only Lines 13 - 22 (round t + 1) are replaced
by:

15 ROUND t+ 1
16 send (new, old) to all processes
17 if for some v received (v, ∗) from at least l − t identifiers in this round
18 then decides v
19 else if received at least messages from l − t identifiers
20 and one of them is (x, y) such that x < y
21 then
22 let Gp = {v| p has received (v, ∗) in this round }
23 if ∃(x, y) such that x < y and (x, y) received in this round

and x = Min{v|v ∈ Gp}
24 then decide x

Then we get:

Theorem 3. Uniform consensus is solvable with innumerate processes with
general-omission failures if and only l > 2t.

5 Conclusion and Perspectives

One natural extension of this work is to consider partially synchronous mod-
els [14,15]. Some results for consensus with anonymous processes for a specific
partially synchronous model are given in [11].

Concerning numerate processes in models like [15] in which the communica-
tion between all correct processes is eventually synchronous we conjecture that

174 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

consensus is solvable with a majority of correct processes. Concerning only crash
failures, it may be noticed that sending regularly “alive” messages an anonymous
failure detector [6,7] giving eventually the exact number of correct processes may
be implemented, and then with this failure detector and a majority of correct
processes consensus may be implemented.

When processes are innumerate in the Byzantine failures case, it has been
proved [10] by a partitioning argument the lower bound of l > (n + 3t)/2 for
consensus. This proof may be adapted to crash and omission failures giving
a lower bound of l > (n + 2t)/2. This bound indicates that in partially syn-
chronous models, to solve the consensus the homonymy of processes must be
very restricted.

One more technical issue is the ability to have early stopping algorithms. We
guess that with innumerate processes early-stopping algorithms are not possible
or with very poor bounds.

In some way, the results of this paper shows that two mechanisms help to
solve the consensus: identifiers of processes and the ability of processes to count
identical messages they receive. Anonymity of processes may be balanced by the
ability to count the number of identical messages received.

References

1. Aguilera, M.K., Toueg, S.: A simple bivalency proof that t-resilient consensus re-
quires t + 1 rounds. Inf. Process. Lett. 71(3-4), 155–158 (1999)

2. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: STOC, pp. 82–93. ACM (1980)

3. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared memory systems. Information and Computation 173(2), 162–183 (2002)

4. Attiya, H., Welch, J.: Distributed Computing: fundamentals, simulations and ad-
vanced topics, 2nd edn. Wiley (2004)

5. Boldi, P., Vigna, S.: An Effective Characterization of Computability in Anonymous
Networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

6. Bonnet, F., Raynal, M.: Anonymous Asynchronous Systems: The Case of Failure
Detectors. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 206–220. Springer, Heidelberg (2010)

7. Bonnet, F., Raynal, M.: The price of anonymity: Optimal consensus despite asyn-
chrony, crash, and anonymity. TAAS 6(4), 23 (2011)

8. Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.M.B.: On the importance of
having an identity or, is consensus really universal? Distributed Computing 18(3),
167–176 (2006)

9. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.-M., Ruppert,
E., Tran-The, H.: Byzantine agreement with homonyms. In: PODC, pp. 21–30.
ACM (2011)

11. Delporte-Gallet, C., Fauconnier, H., Tielmann, A.: Fault-tolerant consensus in un-
known and anonymous networks. In: ICDCS, pp. 368–375. IEEE Computer Society
(2009)

Uniform Consensus with Homonyms and Omission Failures 175

12. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Byzantine Agreement with
Homonyms in Synchronous Systems. In: Bononi, L., Datta, A.K., Devismes, S.,
Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129, pp. 76–90. Springer, Heidelberg
(2012)

13. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Homonyms with Forgeable Iden-
tifiers. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355,
pp. 171–182. Springer, Heidelberg (2012)

14. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1), 77–97 (1987)

15. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial
synchrony. Journal of the ACM 35(2), 288–323 (1988)

16. Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environ-
ment: Crash failures. Information and Computation 88(2), 156–186 (1990)

17. Guerraoui, R., Kouznetsov, P., Pochon, B.: A note on set agreement with omission
failures. Electr. Notes Theor. Comput. Sci. 81, 48–58 (2003)

18. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
puting. Distributed Computing 20(3), 165–177 (2007)

19. Kumar, G.V.: Elements of Distributed Computing. Wiley-Interscience (2002)
20. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
21. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed

algorithms. Journal of Algorithms 11(3), 374–419 (1990)
22. Okun, M., Barak, A.: Efficient algorithms for anonymous Byzantine agreement.

Theory of Computing Systems 42(2), 222–238 (2008)
23. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and

communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986)
24. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)
25. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple

fault-tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)

Democratic Elections in Faulty Distributed Systems

Himanshu Chauhan and Vijay K. Garg�

Parallel and Distributed Systems Lab,
Department of Electrical and Computer Engineering,

The University of Texas at Austin
himanshu@utexas.edu, garg@ece.utexas.edu

Abstract. In this paper, we show that for elections in distributed systems the
conversion from non-binary choices to binary choices does not always provide
optimal results when the preferences of nodes are not identical. With this obser-
vation, we study the problem of conducting democratic elections in distributed
systems in the form of social choice and social welfare functions with three or
more candidates. We present some impossibility and possibility results for dis-
tributed democratic elections in presence of Byzantine behavior. We also discuss
some existing election schemes, and present a new approach that attempts to miti-
gate the effects of Byzantine votes. We analyze the performance of these schemes
through simulations to compare their efficacy in producing the most desirable so-
cial welfare rankings.

1 Introduction

Many problems in distributed systems require election for processes to carry out glob-
ally consistent actions. For example, the problem of binary consensus can be viewed
as an election between two possible choices. The value decided by the protocol can be
considered the winner elected by the system. The leader election problem requires that
all the processes in the system agree on a leader. The agreed upon leader may then per-
form certain privileged tasks on assuming this role. Most protocols for leader election
select processes with the lowest or the highest identifier value as the leader. It can be
argued that such a selection on the basis of identifiers does not constitute an ‘election’
in true sense as the results are not based on the choices of the involved nodes in the
system, assuming the nodes can indicate their preferences. Given that one of the funda-
mental problems in the area of distributed systems, the Byzantine Agreement problem,
assumes malicious intent as well as collusion, it seems natural that the problem of fair
democratic elections be also studied in this context.

Democratic elections have been studied extensively in the fields of economics and
game theory. A large set of interesting problems for elections with three or more can-
didates have already been explored [1,2]. Arrow’s theorem, an important result on this
topic, shows impossibility of elections under some specific requirements [3]. Yet, the
confluence of democratic elections (with more than two candidates) and distributed pro-
tocols has not been explored to the best of our knowledge. Involvement of Byzantine

� Supported by NSF NSF CNS-1115808, CNS-0718990, and the Cullen Trust for Higher Edu-
cation Endowed Professorship.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 176–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Democratic Elections in Faulty Distributed Systems 177

processes in the system presents some additional challenges for this task. The notion
of strategy-proofness [4] does not readily apply to Byzantine processes as they can be
considered unaffected by individual losses. In this paper, we introduce the notion of
democratic elections in distributed settings by addressing the following sub-problems:

Sub-optimality of Standard Protocol: With the background setting of elections, the
idea of deciding on a winner based on every node’s most preferred choice seems ap-
pealing. With this approach the eventual winner would be the node receiving highest
number of votes (ties broken arbitrarily). This scheme is called ‘plurality’ scheme in
economics and game-theory literature. However this approach does not always lead to
outcomes that maximize the overall gains for the system. The term ‘gains’ may be at-
tributed to any property that is relevant to global observations of the system, such as the
overall latency of a message broadcast or the average load on each node in the system in
some distributed computing protocol. For example, let us consider a system with seven
nodes {P1, P2, . . ., P7} that run a distributed protocol in presence of a leader node that
controls the distribution of work. Based on the resulting latency or load values of their
individual communications with three possible candidate nodes, the seven nodes want
to elect a leader. Let a,b, and c denote the three possible outcomes of such an election
among three candidates. For one such instance of voting assume that Table 1 repre-
sents the votes of each node in the system. This tabular representation means that P1

prefers the outcome b the most, and then prefers a over c; the preferences of all other
processes can also be inferred in this manner. ‘Plurality’ method on this vote profile,
with coin-toss based tie breaking, elects b or c with equal probability, and never elects
a . However, it is easy to verify that a beats both b and c on individual pairwise com-
parisons. Additionally, if a positional vote counting mechanism1, such as Borda-Count
Method (see Section 5) [5] is applied, then a’s score is strictly higher than those of both
b and c. Hence, even though election of a seems the most optimal outcome for the over-
all system, the standard approach never elects a, and by electing either b or c reduces
the social welfare2 of the system.

Table 1. Votes by Processes P1 to P7

P1 P2 P3 P4 P5 P6 P7

1st choice b b b c c c a
2nd choice a a a a a a b
3rd choice c c c b b b c

Strategic Voting by Byzantine Processes: The Byzantine processes can exhibit any
kind of malicious behavior. One such malicious act is to cast strategic votes so that the
overall social welfare is not maximized. For example, in Table 1, if P7 is Byzantine,
it may broadcast its vote (to all the processes) with c as its first choice and a as its

1 Considers the positions of each candidate in all the votes, assigning fixed points to each posi-
tion and then computing aggregate points of every candidate.

2 Standard term from economics literature; defined in Section 2. For detailed explanations see
[6].

178 H. Chauhan and V.K. Garg

last. With the changed vote profile, even the pairwise comparison, or positional voting
schemes would not elect a. Thus, this fault would result in decrease of overall social
welfare of the system. For binary choices, [7] studies the similar problem when one of
the two available choices is more desirable, and it is beneficial for the system to agree
on that choice despite the efforts of Byzantine processes.

In short the contributions of this paper are following:

– We introduce the problem of democratic elections in distributed systems by study-
ing: Social Choice and Social Welfare in distributed settings with Byzantine faults.

– We present the impossibility and possibility results for some specific requirements
for the problems.

– We propose a social welfare function called Pruned-Kemeny, and by means of sim-
ulations show that our scheme significantly outperforms other popular schemes for
Byzantine Social Welfare problem.

2 Preliminaries

In economics and game theory, elections have been studied primarily in two forms – so-
cial choice functions, and social welfare functions [6]. For both of these forms, the vot-
ers are required to cast their vote indicating their preferences over all the candidates. As
the result of voting, social choice functions elect one candidate as the winner; whereas
social welfare functions produce an overall ranking of the candidates. Formally, these
functions are defined as follows:

LetA be a set of choices/candidates and {P1, ..., Pn} be the set of n voters. LetL denote
the set of linear orders on A (L is isomorphic to the set of permutations on A). The
preferences of each voter Pi are given by ≺i ∈ L, where a ≺i b means that Pi prefers
choice b to choice a. A social welfare functionW is a function of the formW : Ln →
L; and a social choice function C takes the form C : Ln →A.

The preferences of a voter are strict if the voter is not indifferent between any two
candidates. Throughout the paper, we limit our focus to strict preferences. Construction
of a social choice function from a social welfare function, and vice-versa is trivial [8].
Given a social welfare function W, one could construct a social choice function by
simply declaring the top-most ranked candidate in the result obtained byW as the social
choice. Conversely, to construct a welfare functionW from a given choice function C
one could applyC over k candidates and place the winning candidate on top of the result
ofW, and repeat this processes k − 1 times (at each iteration, removing the candidates
already placed in the result).

A ranking is a total order over a fixed set of candidates. A vote is an individual
voter’s preference ranking over the set of candidates. Based on the above notation, ≺i

is the vote of voter Pi. A ballot is a collection of the votes. The size of the ballot is the
number of votes the ballot contains. A scheme is a mechanism that takes a ballot as input
and produces a ranking or a winner as output. Given a ballot, the ranking/winner pro-
duced by any scheme is called the result of the scheme on that particular ballot instance.

Democratic Elections in Faulty Distributed Systems 179

Condorcet Candidate: If a candidate is preferred by all the voters over each of the
other candidates in a head-to-head comparisons, then such a candidate is called Con-
dorcet Candidate. It is not necessary that such a candidate always exists.

3 Model

We assume a synchronous distributed system consisting of n processes. In our model
any two nodes in the system can communicate privately with each other, thus the in-
duced communication graph is complete. Of the n nodes in the system, at most f can
be Byzantine. For the synchronous model of communication, [9] showed that agree-
ment can only be guaranteed when f < n/3. Throughout this paper, we assume that this
bound of f < n/3 holds. All non-faulty processes in the system are called good pro-
cesses, and the faulty processes are called bad processes. The terms voters, processes,
and nodes represent the same entities, and are used interchangeably. The set of choices,
A, is known to all the nodes in the system and each node votes with its strict prefer-
ences as a total order over the elements ofA.

Byzantine Social Choice Problem: Given a set of n processes of which at most f are
faulty, and a setA of k choices, design a protocol that elects one candidate as the social
choice (while providing the guarantees 1 to 3 listed below).

Byzantine Social Welfare Problem: Given a set of n processes of which at most f are
faulty, and a setA of k choices, design a protocol that produces a ranking of the choices
(while providing the guarantees 1 to 3 listed below).

Protocol Guarantees

1. Agreement: All good processes decide on the same choice/ranking.
2. Termination: The protocol terminates in a finite number of rounds.
3. Validity: This condition imposes requirement on the choice/ranking decided based

upon the preferences provided by the good processes.
If V is the validity condition selected for the election, then BSC(k,V) denotes the
Byzantine Social Choice problem over k choices that satisfies the validity condition V;
similarly BSW(k,V) denotes the Byzantine Social Welfare problem that is defined with
the constraints of V for the available k choices. Some examples of validity conditions
are listed in Table 2 in the context of BSC problem.

In the standard Byzantine agreement problem [9], all the good processes must agree
on a common value v ∈ A. The only requirement on the decided value is that if all
good processes propose the same value v, then the value decided must also be v. If
all good processes do not propose the same value, then there is no requirement on the
value that is decided. In Byzantine Social Choice/Welfare problem the value decided by
the protocol is important, as some of the choices/rankings may be more desirable than
others.

4 Byzantine Social Choice (BSC)

For the Byzantine Social Choice (BSC) problem, we always require agreement, and
termination conditions but may want to impose different validity conditions. In the

180 H. Chauhan and V.K. Garg

Table 2. Various Validity Conditions for Byzantine Social Choice

Condition Description
S If v is the top choice of all good voters, then v must be the winner.
M If v is top choice of majority of good voters, then v must be the winner.
S ′ If v is the last choice of all good voters, then v must not be the winner.
M′ If v is last choice of majority of good voters, then v must not be the winner.
P If v is not the top choice of any good process, then v must not be the winner.

standard Byzantine Agreement literature, the problem of deciding from more than two
choices is considered equivalent to that of choosing from a set of two choices because
a solution for either one of the problems can be used to solve the other [10]. However,
as we show in this paper (Sec. 1), this is not the case for the BSC problem. BSC(k,V)
denotes a BSC problem over k choices that satisfies the validity condition V . Thus,
BSC(2, S) is the standard binary Byzantine Agreement. Note that when k equals two,
S , P and S ′ are equivalent to the standard validity requirements for binary Byzantine
Agreement protocol [11]. Similarly, M and M′ are equivalent when there are only two
choices.

BSC(3,M) is the Byzantine social choice problem on three choices with agreement,
termination, and the majority validity condition. We show in Section 4.1 that this prob-
lem is impossible to solve in a distributed system. However, somewhat surprisingly
BSC(3,M′) is possible to solve. As an example of BSC(3,M′) consider the problem of
leader election in a distributed system with Byzantine processes. Suppose that processes
need to choose a leader among three choices. It is known that one of the three choices
may be Byzantine and the good processes would want to avoid its election. Although
there is no initial agreement on which of these choices is Byzantine, it is a reasonable
assumption that majority of good processes will identify the Byzantine choice correctly.
In Section 4.2, we give a protocol for solving BSC(3,M′) .

Observe that BSC(k, S) is simply the standard Byzantine agreement problem in which
every process proposes its first choice. Hence BSC(k, S) is solvable for any k so long
as f < n/3. It is also possible to solve BSC(k, S ∧ S ′). We give such a protocol in
Section 4.2.

4.1 Impossibilities

Arrow [3] showed that for elections with three or more alternatives, no voting system
that provides two basic properties: Pareto Efficiency and Independence of Irrelevant
Alternatives (IIA), can guarantee non-dictatorial elections. In this section, we show im-
possibilities for elections in distributed systems with Byzantine faults. We focus on
instances of BSC(k,V) problems which are impossible to solve for specified values of
k and V . Let us first consider the case when k equals two. For this case, the condi-
tions S , P and S ′ are equivalent. Standard Byzantine agreement protocols can be used
to solve BSC(2, S).

Democratic Elections in Faulty Distributed Systems 181

Lemma 1. There is no protocol to solve BSC(2,M) when f ≥ n/4.

Proof: If f ≥ n/4, then good processes are at most 3n/4. Suppose that the set of choices
is {a, b}. Assume that just the bare majority of good processes propose value a. Thus,
the total number of processes proposing a is at most 3n/8+ 1. The number of processes
proposing b is at least 5n/8 − 1. Then for n ≥ 4, we have that more processes are
proposing b. Since processes do not know which processes are good, this problem is
indistinguishable from the instance where 5n/8 − 1 good processes propose b and re-
maining 3n/8+1 processes propose a. In the second instance, the protocol must choose
b, and therefore it will also choose b in the first instance. �

Lemma 2. There is no protocol to solve BSC(2,M′) when f ≥ n/4.

Proof: For binary choices, k = 2, it can be easily observed that the problem BSC(2,M′)
is equivalent to BSC(2,M). Thus, based on the result of previous lemma, BSC(2,M′) is
also unsolvable when f ≥ n/4. �

Lemma 3. There is no protocol to solve BSC(k, P) for any k ≥ n when f ≥ 1.

Proof: Given that k ≥ n, consider the case when each process proposes a different
value. Since each value appears exactly once, there is no way to distinguish the value
proposed by a bad process from that proposed by a good process. �

Theorem 1. There is no protocol to solve BSC(k,M) for any k ≥ 2 when f ≥ n/4.

Proof: Suppose that there is a protocol that solves BSC(k,M) for any k ≥ 3. We will
use this protocol to solve BSC(2,M). Given an instance of BSC(2,M) problem, all the
processes construct an instance of BSC(k,M) by first constructing k−2 artificial choices.
However, none of the good processes use these choices as their first two choices. Now
they run the protocol for BSC(k,M) which must choose a value that has been proposed
by the majority (ties broken in favor of lower value) of good processes as the first choice.
All good processes return this as the decided value for the given BSC (2,M) problem.
But by Lemma 1, BSC(2,M) is unsolvable. �

4.2 Possibilities

As BSC(k, S) is solvable by standard Byzantine agreement [10] and BSC(k,M) is un-
solvable, it is natural to seek some validity conditions that admit solution. Consider the
following validity condition:

Mo (Overwhelming Majority): If there is a choice that is the first choice of at least 3/4th

good processes, then all the good processes elect that choice.
It can be observed that any protocol that ensures M also ensures Mo. Similarly Mo is
a stronger requirement than S, and thus any protocol providing guarantee on Mo also
guarantees S.

Lemma 4. Protocol α given by Algorithm 1, solves BSC(k,Mo) when for any k ≥ 2
when f < n/3.

182 H. Chauhan and V.K. Garg

Proof: Let v be the value proposed by at least 3/4th fraction of processes. It is easy to
see that 3/4 ∗ (n− f) > 1/4 ∗ (n− f) + f for all values of f < n/3. Hence, all processes
decide on v. �

Algorithm 1. Protocol α at Pi to ensure BSC(k,Mo) and therefore also BSC(k, S)
T : array[1..n] (container to store all the votes) /* Proposals */
vote: array[1..k] (ranking of k candidates) /* My vote */
/* Every process proposes its first choice */
T [i] = vote[1] /* index starts from 1 */
/* Step 1: Exchange first choice with all */
for j = 1 to n do

send T [i] to Pj

receive T [j] from Pj

/* if no value received from Pj set T [j] = 0 */
end for
/* Step 2: Agree on T vector : the ballot of all votes */
for j = 1 to n do

run Standard Byzantine Agreement on T [j];
end for
/* Step 3: Choose the value with the highest tally, breaking ties in favor of the smaller value */
return the least value from 1..k that has the highest frequency in T .

We showed in Section 4.1 that P is impossible to achieve when k ≥ n. However, if
choices are limited, then P can be guaranteed as follows.

Lemma 5. Protocol α solves BSC(k, P) for 2 ≤ k< n when f < min(n/k, n/3).

Proof: It is sufficient to show that the largest tally would be of a value proposed by a
correct process. Suppose, if possible, the largest tally is for the value v which is not pro-
posed by any good process. The tally for v can be at most f . There are n − f proposals
by good processes. None of these proposals is for v, and therefore all these proposals
are for remaining k − 1 values. Since none of these values had tally more than v, we get
that the total number of proposals possible are (k− 1) ∗ f . From f < n/k, we obtain that
(k − 1) ∗ f < n − f which is a contradiction because all correct processes make at least
one proposal. �

However, if we were to require (M′ ∧P) and use the steps in the protocolαwith suitable
adjustments (not picking a social choice that would violate M′) to handle the validity
requirements – it would be evident that the modified protocol α would not satisfy (M′ ∧
P). It is not possible for a protocol to deterministically know which nodes are good and
which are bad in all the instances. Thus to provide M′ the only option any deterministic
protocol would have to discard a choice that appears �(n − f)/2 + 1� or more times as
the bottom choice in the ballot. Consider the example ballot presented in Table 3, with
P6 and P7 as Byzantine voters. In this example, a simple majority over the first choices
would result in choosing c as the winner which violates M′. The modified protocol α
(that attempts to provide M′) will elect a as the winner. However, an overwhelming

Democratic Elections in Faulty Distributed Systems 183

Table 3. A ballot with P6 and P7 as Byzantine Voters

P1 P2 P3 P4 P5 P6 P7

1st choice b b b c c c c
2nd choice a a a b a a a
3rd choice c c c a b b b

majority of good processes, 4 out of 5, prefer b over a. Note that the choice a is not the
first choice for any process, leave alone being the first choice of a good process. In this
example, with n = 7 and f = 2, �(n− f)/2+ 1� is 3 and thus it is clear that any protocol
that guarantees M′ can only choose a as winner (because both b and c are last choices
for at least three processes).

We now show the surprising result that BSC(k,M′ ∧ S) is solvable for k ≥ 3 when
f < n/3. Protocol β, shown in Algorithm 2, is based on the idea of processes proposing
their last choice. Since Byzantine processes may send conflicting values to different
processes, Protocol β first agrees on the vector T of last choices. Each process then
discards the values that appear as the last choice at least �(n− f)/2+ 1� times. It should
be noted that since f < n/3, the size of discard set in protocol β is at most two. Now all
the processes run Byzantine Agreement with their top choice from the remaining set.

Algorithm 2. The BSC(k,M′ ∧ S) Protocol β at Pi

T : array[1..n] (container to store all the votes) /* Proposals */
vote: array[1..k] (ranking of k candidates) /* My vote */
/* Every process proposes its last choice */
T [i] = vote[k]
/* Step 1: Exchange last choice with all */
for j = 1 to n do

send T [i] to Pj

receive T [j] from Pj

/* if no value received from Pj set T [j] = 0 */
end for
/* Step 2: Agree on T vector, ballot of last choice votes */
for j = 1 to n do

run Standard Byzantine Agreement on T [j];
end for
/* Step 3: Eliminate unqualified choices */
discard = set of choices to discard; initially {φ}
for j = 1 to k do
/* count returns the frequency of any value in T */
if (count(vote[j]) >= �(n − f)/2 + 1�) then

add vote[j] to discard
end if

end for
/* Step 4: Now use the remaining choices for selecting top choices of processes */
run Byzantine Agreement on top choice � discard

184 H. Chauhan and V.K. Garg

Lemma 6. Protocol β, given by Algorithm 2, solves BSC(k,M′ ∧ S) for k ≥ 3 when
f < n/3.

Proof: We first note that if Pi is good then T [i] at P j will be same as the value proposed
by Pi. This means that if there is any value v that is considered the last choice by a
majority of good processes then it appears at least �(n− f)/2+ 1� times in T vector; all
such values are discarded. Since k ≥ 3 and | discard | ≤ 2, there is at least one value
which is not discarded by any good process. Hence, the agreement phase in step 4 leads
to selection of a choice proposed by some good process.

It is also easy to verify that the protocol satisfies S . If all good processes have v as
their first choice, then it cannot appear �(n − f)/2 + 1� times as the last choice. Hence
no good process will discard this choice and will propose it in step 4. �

Lemma 7. Protocol β does not guarantee Mo condition.

Proof: Consider the vote ballot presented in Table 4 in which 4 out of 5 good processes
have b as their first choice. Since it can not differentiate between good and bad processes
based on the ballot, protocol β would be forced into electing a as the social choice. �

Table 4. A ballot with P6 and P7 as Byzantine Voters

P1 P2 P3 P4 P5 P6 P7

1st choice b b b b a c c
2nd choice a a a a c a a
3rd choice c c c c b b b

5 Byzantine Social Welfare (BSW)

The problem of Byzantine Social Welfare can be seen as an extension to the BSC prob-
lem. In the Byzantine Social Welfare (BSW) problem, the goal is to produce a ranking, a
total order over k candidates, of choices as the result of elections. Multiple such schemes
exist in the literature of economics and game theory. We now discuss some of these as
social welfare functions, and propose a new scheme called Pruned-Kemeny specially
tailored towards handling Byzantine votes. We focus only on the schemes that require
a single round of voting. After exchanging their votes with all the other processes in
the system, the processes participate in O(f) rounds of agreement to ensure that all the
good processes agree on the same ballot.

From here on, for notational convenience we use a short form representation of rank-
ings such that abc represents ranking a b c.

PlacePlurality: For each position in the result ranking, the scheme finds the candidate
with most votes for that position in the ballot, and places this candidate at that position
in the result. Only the candidates that are not already placed in the result ranking are
considered. Plurality based schemes satisfies S and S ′ criteria. Revisiting the example
ballot of Table 1 from Section 1, one can verify that the rankings cab and bac are the
two possible outcomes of a social welfare function that applies PlacePlurality.

Democratic Elections in Faulty Distributed Systems 185

Pairwise Comparison: This scheme uses the Condorcet Criterion and compares the
pairwise preferences over the ballot for all

(
k
2

)
pairs. Detailed description of the scheme

is presented in [12]. Using this scheme, the output for the welfare function on the ballot
of Table 1 is abc.

Borda Count: This scheme applies the positional voting approach to calculate the
points scored by each candidate. Each position in a vote is assigned unique points -
top position given the highest, and the bottom position given the lowest points. The
cumulative score of a candidate is the sum of all the points it accumulates over the
complete ballot. The resulting social welfare ranking is the list of candidates sorted in
non-increasing order of their overall scores (ties broken arbitrarily). For the ballot of
Table 1, the social welfare result using Borda Count scheme is abc.

Young in [13] shows with convincing arguments that most of the simple schemes,
including the three presented above, do not necessarily produce the outcomes that are
optimal in terms of overall representation of the voter preferences. The discussion in
[13] points out that schemes that use the mean as the representative outcome of the
voting process tend to generate ‘inferior’ results as opposed to the schemes that try to
compute an outcome that is close to the median. The following two schemes, use the
median as the basis for the result computation, and we show by means of simulation
that they do produce better social rankings.

Kemeny-Young Scheme: This approach, proposed by J. Kemeny and H. Young in
[14,13], uses a metric to identify a ranking that is closest to the median of the ballot. The
metric used in this scheme is the distance between rankings, where distance between
any two rankings is defined as the number of pairs on which the rankings differ. For
example, taking r = abc and r′ = bac the distance between these two rankings is 1,
whereas if r′ = cba, then the distance between r and r′ is 3.

Algorithm 3 presents the steps involved in the scheme. The scheme iterates over
each of the possible k! permutations of k candidates and considers each ranking (per-
mutation). The goal is to identify a ranking that maximizes the agreement on pairwise
comparisons with the overall ballot. For a detailed analysis of the scheme, we refer the
reader to [13]. Applying this scheme on the ballot in Table 1 gives a result ranking of
abc.

Pruned-Kemeny: We propose a scheme called Pruned-Kemeny that is aimed towards
mitigating the damaging effects of bad voters. The key motivation for this scheme is
that good voters, while indicating their individual preferred choices would in addition
be also inclined towards the final outcomes that are beneficial to the overall system.
Where as the bad voters would not only send conflicting information to the good vot-
ers, but also focus on manipulating their vote preferences in order to reduce the overall
welfare of the system. The steps of the scheme are presented in Algorithm 4. Simi-
lar to the Kemeny-Young scheme, our approach also iterates through all the possible
permutations of candidates but we restrict the ballot in consideration for each iterated
permutation. The restriction on the ballot is attained in the following manner:

Let P denote the set of all permutations of k candidates, and B be the initial ballot
of n voters. For each ranking r ∈ P compute a pruned ballot B′ by setting B′ = B \ F ,
where F is the collection of f most distant rankings in B from r. Hence, size of the

186 H. Chauhan and V.K. Garg

Algorithm 3. Kemeny-Young Scheme
P = Set of all permutations of k candidates,
B = agreed upon ballot of n votes
maxScore= 0,maxRank = nil
for each ranking r in P do

score = Kemeny-YoungScore(r, B)
if score > maxScore then

maxScore= score
maxRank = r

end if
end for
return maxRank

Kemeny-YoungScore(ranking, ballot):
score = 0
for each pair (ab) in ranking do

score = score + # of ab in ballot
end for

return score

Algorithm 4. Pruned-Kemeny Scheme
P = Set of all permutations of k candidates,
B = agreed upon ballot of n votes
maxScore= 0,maxRank = nil
for each ranking r in P do
F = f most distant rankings from r in B
B′ = B \ F
score = Kemeny-YoungScore(r,B′)
if score > maxScore then

maxScore = score
maxRank = r

end if
end for
return maxRank

restricted ballot B′ is n − f . The score for ranking r is its Kemeny-Young score on B′.
The result of the scheme is the ranking with highest score (ties broken arbitrarily). For
instance, when applied to the ballot of Table 1, this scheme produces bac as the result.

We show shortly that the problem of finding a solution to the election problem us-
ing either Kemeny-Young or Pruned-Kemeny scheme is NP-Hard. In the context of
distributed systems, the round and message complexities for agreement on the the bal-
lots, performed before application of the schemes, are essentially the complexities of
the protocols used reach agreement. We use the Gradecast based Byzantine agreement
protocol presented in [15], mainly because this protocol provides the early termination
property. Based upon this, the agreement requires O(f) rounds, and has the message
complexity of O(f n3). For proofs and detailed discussions on these bounds we refer the
reader to [15].

Lemma 8. The problem of finding the result of a ballot using Pruned-Kemeny scheme
is NP-Hard.

Proof: Consider any instance of the problem of finding optimal rankings with Kemeny-
Young scheme. Each such instance can be converted to an instance of the problem of
finding the result with Pruned-Kemeny with f set to zero. Hence, the Pruned-Kemeny
based optimization problem is at least as hard as the Kemeny-Young based problem,
which is already known to be NP-Hard [16]. �

Theorem 2. Pruned-Kemeny satisfies S and S ′ requirements.

Proof: First, we prove that Pruned-Kemeny satisfies S . Let us assume that Pruned-
Kemeny violates S , and thus its output is ranking r that does not put v on top when all
the good processes put v as their top choice. Hence, there is at least one candidate u that

Democratic Elections in Faulty Distributed Systems 187

is immediately above v in r. Construct a new ranking r′ by swapping the places of u and
v in r. We now show that r′ would have a higher Kemeny-Young score than r, which
would be a contradiction. Since r′ puts v above u, it agrees with all the good processes
on at least one more pairwise comparison. It may disagree with the votes of all the bad
processes. Also, in the worst case scenario r′ discards f good votes during the protocol
run. Thus in the worst case the overall Kemeny-Young score of r′ increases by

(n − f) − f − f = n − 3 f

in comparison to the Kemeny-Young score of r. The first term of (n − f) is due to the
increment (by at least one point) in score for each good vote, however if we assume that
it is possible to discard f good votes in the worst case, the second term indicates that
adjustment. Also, all the bad processes might provide exact opposite rankings in their
votes, hence a further decrease of f (third term) in points is possible in the worst case.
Since n ≥ 3 f + 1, the score of r′ is strictly greater than that of r, which means r being
selected as the final outcome of Pruned-Kemeny is a contradiction. S ′ can be shown
similarly by placing v at the bottom of each good vote. �

Similar to the Kemeny-Young scheme, Pruned-Kemeny also performs exponential com-
putations by iterating over all the k! permutations. However, for small values of k and
large values of n, the performance of the scheme is acceptable.

Lemma 9. Kemeny-Young scheme satisfies S and S ′ requirements.

Proof: As Kemeny-Young is a special case of Pruned-Kemeny scheme with f set to
zero; the proof immediately follows from Theorem 2. �

6 Simulation Results

It is possible to have scenarios in which the bad voters need not just send conflicting
information, but may as well have much more malignant intentions. Consider the case
when the good voters want to reach a consensus on a ranking that is beneficial to the
system as a whole, and thus have similar if not exactly the same preferences. On the
other hand, the bad voters may want to minimize the benefit that the system may attain
by the resulting welfare ranking (that is the outcome of the election). Schemes that do
not assume that a small section of voters might behave in this manner, may thus produce
rankings which are prone to manipulation by the bad voters. Given the knowledge that
at most f voters can be bad, our scheme Pruned-Kemeny tries to produce best possible
social welfare outcomes in presence of such hostile voting by the bad voters.

We now list the details of our experimental setup and the simulations performed to
evaluate the utility of Pruned-Kemeny in computing ‘near-optimal’ welfare rankings in
comparison to the other discussed schemes. Let ω represent an ideal ranking for the
BSW problem, such that selection of ω as the result of the election maximizes the so-
cial welfare of the system. Let us assume that ω is not completely known to any good
process, however each good process tends to favor the ideal ranking. The voting prefer-
ences of good and bad processes in presence of an ideal ranking are defined as follows:

188 H. Chauhan and V.K. Garg

Let goodProb denote the probability of a good voter ranking two candidates a and b
in the same order as that in the ideal ranking ω, and badProb denote the probability of
a bad voter ranking the candidates in the reverse order to that in ω. Hence, if ω ranks
two candidates a and b with a b then goodProb is the probability that any good voter
decides to put a b in its vote, and badProb is the probability that any bad voter puts
a ≺ b in its vote. For our experimental setup we fix the following values:

n = 100, f = 33, badProb = 0.9

By setting f to its highest possible value, and badProb to a considerably high value
in the possible range, we try to realize the assumption that bad voters would want to
disrupt the election of ideal ranking, and would vote in opposite polarity of the good
voters. The value of the number of candidates k is varied in the range [3,8]. For each
value of k, the value of goodProb is varied from 0.55 to 0.90 in step increments of
0.05. For each such resulting configuration of 〈k, n, f , goodProb, badProb〉, 50 ballots
(of n = 100 voters) are generated by fixing an ideal ranking and applying the prob-
abilistic model on individual votes based on goodProb and badProb. We then apply
the discussed schemes, and find the distance (defined in previous section) of their re-
sult rankings from the ideal ranking. We then compute the average distance over the 50
ballots for each configuration.

Figure 1 shows the variation in the average distance values. As evident from the
plots, Pruned-Kemeny produces results that are much closer to the ideal ranking even
for comparatively low values of goodProb. In addition, the plots also indicate that as
the number of candidates increases, the results of Pruned-Kemeny consistently match
the ideal ranking. Another interesting observation is that the distance of results for
PlacePlurality from the ideal ranking increases significantly with increase in the number

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
vg

. D
is

ta
nc

e
fr

om
 Id

ea
l

goodProb

of Candidates=3

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

 0

 1

 2

 3

 4

 5

 6

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

goodProb

of Candidates=4

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

goodProb

of Candidates=5

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

 0

 2

 4

 6

 8

 10

 12

 14

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
vg

. D
is

ta
nc

e
fr

om
 Id

ea
l

goodProb

of Candidates=6

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

goodProb

of Candidates=7

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

 0

 5

 10

 15

 20

 25

 30

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

goodProb

of Candidates=8

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

Fig. 1. Comparison of Average Distance of Results from Ideal

Democratic Elections in Faulty Distributed Systems 189

of candidates. This clearly indicates that PlacePlurality is not a good choice for a social
welfare function. We argued in Section 1 that for more than three choices, the plurality
based methods do not guarantee best results. The observations on the variation in result
distances clearly validate our argument.

7 Discussion

Extensive literature is already present on the topic of leader election in distributed
systems [11,17,18,19]. [11] presents various protocols and lower bounds for message
complexity for the leader election problem in absence of Byzantine processes. Leader
Election has also been studied in presence of Byzantine failures. [20] gives a random-
ized distributed protocol to elect a leader in the asynchronous full information model
that tolerates n/(6+ ε) cheaters with positive constant success probability in rounds that
is polylogarithmic in n.

Our work studies the problem of democratic elections in a distributed system as so-
cial choice and social welfare ranking problems [6]. When number of choices is more
than two, elections based on the top-preference-only model may not lead to optimal re-
sults, and hence we assume that processes in the system propose a ranking of candidates
rather than a single leader. For agreement that is dependent only on the number of fail-
ures we use the deterministic early-stopping Byzantine agreement protocol from [15]
to reach the agreement on every processes’ vote within min{ f + 1, fa + 2} rounds where
fa is the actual number of failures. We focus on the guarantees on the social choice or
the social welfare ranking produced by the election, rather than on the message or bit
complexity of election protocols.

Prisco et al. in [21] present some impossibility and possibility results for the k-set
consensus problem in which each node starts with one value and the protocol must
decide on a value so that at most total k values are decided by the correct processes. The
k-set problem does not involve voting over multiple candidates. Under some specific
boundary conditions there is a slight overlap between two impossibility results in [21]
and those presented in this work.

In the standard Byzantine agreement [9] the protocols only need to guarantee agree-
ment on some value that is proposed by a good process. With this objective, the pro-
tocols do not need to guard against the possibility of Byzantine voters affecting the
eventual outcome by strategic reporting of their values. However, as we saw in Sec-
tion 3 it is important to design voting mechanisms that do not allow this advantage to
Byzantine voters.

8 Future Work

If all the good processes lean towards some fixed ideal ranking, even with weak in-
clinations, the simulation results indicate that our proposed approach Pruned-Kemeny
provides desired results with much higher accuracy in comparison to other schemes.
However, determining the provable guarantees for optimal results under some specific
conditions is an important open challenge for this work.

190 H. Chauhan and V.K. Garg

Another interesting problem is to differentiate between the ideal results, and the re-
sults that comply with the Condorcet Criterion. It should be noted that for some given
ballot, it is possible to have a clear Condorcet candidate/ranking yet the ideal win-
ner/ranking might differ from it. However, in terms of computational complexity both
Kemeny-Young and Pruned-Kemeny schemes are NP-Hard, where as a Condorcet can-
didate/ranking can be found in polynomial time. With this observation, it would be
beneficial to design a social welfare scheme that can strike a balance between these two
approaches. Depending on the constraints of the computing environment, this balanced
scheme could have the flexibility to employ either the PrunedKemeny or the Condorcet
scheme so that the difference between the social welfare resulting from the two out-
comes is either relatively small or bounded in some acceptable form.

9 Conclusion

In this paper, we introduced the problem of democratic elections in distributed systems.
We showed that the standard approach of reducing three or more choices to binary
choices does not guarantee optimal outcomes, and hence the standard assumption of
always having binary choices is weak. We presented impossibility results under some
specific validity requirements, as well as showed some surprising possibilities that result
from availability of more than two choices.

For producing results that are close to an ideal ranking when there exists one, we
proposed a new scheme called Pruned-Kemeny that aims to counter the votes of Byzan-
tine processes. The results of our simulations show that for the purpose of finding
ideal order, Pruned-Kemeny provides significantly improved results over existing voting
systems.

References

1. Arrow, K.J.: Social Choice and Individual Values. Yale University Press (1951)
2. Farquharson, R.: A Theory of Voting. Yale University Press (1969)
3. Arrow, K.J.: A difficulty in the concept of social welfare. Journal of Political Economy 58,

328–346 (1950)
4. Ishikawa, S., Nakamura, K.: The strategy-proof social choice functions. Journal of Mathe-

matical Economics 6, 283–295 (1979)
5. Saari, D.G.: Mathematical structure of voting paradoxes: Positional voting. Economic The-

ory 15, 55–102 (2000)
6. Graaff, J.V.: Theoretical Welfare Economics. Cambridge University Press (1957)
7. Garg, V.K., Bridgman, J., Balasubramanian, B.: Accurate Byzantine Agreement with Feed-

back. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 465–480. Springer, Heidelberg (2011)

8. Buchanan, J.M.: Social choice, democracy, and free markets. Journal of Political Econ-
omy 62, 114–123 (1954)

9. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of ACM 27, 228–234 (1980)

10. Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued byzantine
agreement. Inf. Process. Lett. 18, 73–76 (1984)

Democratic Elections in Faulty Distributed Systems 191

11. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
12. Young, H.P.: Condorcet’s theory of voting. American Political Science Review 82(4),

1231–1244 (1988)
13. Young, H.P.: Optimal voting rules. Journal of Economic Perspectives 9(1), 51–64 (1995)
14. Kemeny, J.G.: Mathematics without numbers. Daedalus, Quantity and Quality 88(4),

577–591 (1959)
15. Ben-Or, M., Dolev, D., Hoch, E.N.: Simple gradecast based algorithms. CoRR,

vol. abs/1007.1049 v3 (2010)
16. Bartholdi, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell

who won the election. Social Choice and Welfare 6(2), 157–165 (1989)
17. Ostrovsky, R., Rajagopalan, S., Vazirani, U.: Simple and efficient leader election in the full

information model. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on The-
ory of Computing, STOC 1994, pp. 234–242 (1994)

18. Feige, U.: Noncryptographic selection protocols. In: Proceedings of the 40th Annual Sym-
posium on Foundations of Computer Science (1999)

19. Russell, A., Zuckerman, D.: Perfect information leader election in log*n + o(1) rounds. In:
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS
1998, pp. 576–583 (1998)

20. Kapron, B., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous byzantine agree-
ment and leader election with full information. In: Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 1038–1047 (2008)

21. Prisco, R.D., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous sys-
tems. In: Proceedings of the 18th ACM Symposium on Principles of Distributed Computing
(PODC 1999), pp. 257–265 (1999)

Robust Deployment of Wireless Sensor Networks

Using Gene Regulatory Networks

Azade Nazi1, Mayank Raj1, Mario Di Francesco2,
Preetam Ghosh3, and Sajal K. Das1

1 University of Texas at Arlington
2 Aalto University

3 Virginia Commonwealth University
{azade.nazi,mayank.raj}@mavs.uta.edu, mario.di.francesco@aalto.fi,

pghosh@vcu.edu, das@uta.edu

Abstract. Sensor nodes in a Wireless Sensor Network (WSN) are re-
sponsible for sensing the environment and propagating the collected data
in the network. The communication between sensor nodes may fail due
to different factors, such as hardware failures, energy depletion, tem-
poral variations of the wireless channel and interference. To maximize
efficiency, the sensor network deployment must be robust and resilient
to such failures. One effective solution to this problem has been inspired
by Gene Regulatory Networks (GRNs). Owing to millions of years of evo-
lution, GRNs display intrinsic properties of adaptation and robustness,
thus making them suitable for dynamic network environments. In this
paper, we exploit real biological gene structures to deploy wireless sen-
sor networks, called bio-inspired WSNs. Exhaustive structural analysis
of the network and experimental results demonstrate that the topology
of bio-inspired WSNs is robust, energy-efficient, and resilient to node and
link failures.

1 Introduction

Wireless Sensor Networks (WSNs) are used in a wide variety of applications,
such as environment monitoring, tracking, pervasive security, smart healthcare,
as well as in disaster management and recovery to deliver critical information.
Sensor nodes are deployed over a monitoring area, perform in-network processing
(e.g., aggregation, filtering) of data and forward the results to the sink via multi-
hop paths. The communication between the sensors may fail due to different
factors, such as, the distance between the nodes, temporal variations of the
wireless channel and interference. Additionally, node failures can also occur due
to hardware failures or sensor nodes running out of energy, thus disrupting the
network. Hence, the deployment of WSNs must be robust and resilient to such
failures.

Bio-inspired approaches have been extensively used for solving many problems
in WSNs, for instance, the use of swarm intelligence to organize and route data in
WSNs [19,7]. In this regard, Gene Regulatory Networks (GRNs) a graph-based

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 192–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Robust Deployment of Wireless Sensor Networks 193

representation of genes/proteins and the interactions between them, serve as a
useful model for robust network design. Similar to sensor nodes, genes perform
three major functions: sensing, actuating and signaling. In the sensing phase,
genes sense the levels of specific proteins in the cells through signals mediated
by other interacting genes and environmental variables, (e.g., temperature) to
determine their own expression levels. Then, in the actuating phase, each gene
produces enhancer or inhibitor proteins to regulate the expression level of other
genes in the network. Lastly, in the signaling phase, genes interact with other
genes to co-regulate targeted protein levels in the cell. This distributed behavior
of the genes has evolved over many millennia into a robust network [18,15].
Thus, in order to design a robust WSN, the topology of GRNs can be used as a
template for deploying sensor nodes.

In this paper, we use the topology of GRNs to deploy WSNs. Specifically,
we extract a GRN sub-network and construct a WSN based on the extracted
topology. Such WSN deployment requires to determine the locations of the sen-
sor nodes so that the physical topology of the WSNs follows the topology of the
extracted GRNs. We model this problem as a non-linear optimization by using
the virtual force approach. We call the resulting WSNs as bio-inspired WSNs.
We hypothesize that bio-inspired WSNs inherit the properties of GRNs, such
as robustness [18,15] and small maximal diameter [9]. We analyze the topology
of the bio-inspired WSNs with k-connected and randomly deployed WSNs us-
ing a graph-theoretic analysis. Furthermore, we carry out a comprehensive set
of experiments to validate our claims. The performance of bio-inspired WSNs
is compared with k-connected and random WSNs in terms of packet delivery,
latency and energy consumption in presence of node and link failures.

The rest of the paper is organized as follows. Section 2 discusses several appli-
cations of GRNs and motivates their use for deploying WSNs. The deployment
of bio-inspired WSNs is presented in Section 3. Graph-theoretic analysis of the
bio-inspired WSN topology is presented in Section 4 followed by performance
evaluation based on experiments. Finally, Section 5 concludes the paper with
directions of future research.

2 Background and Motivation

In the literature many solutions exist for deployment of wireless sensor networks
with different goals, including robustness [11], maximum coverage [23] and energy
efficiency [22]. In [11] various algorithms for constructing the topology of WSNs
with consideration of fault tolerance are discussed. The problem is modelled
as finding a minimum-cost k-vertex connected topology which is NP-hard [11].
In [14], the authors show that k-connectivity is not a necessary and sufficient
condition for robustness. They proved that robustness in WSNs can be further
enhanced by optimally selecting the sinks. However, the optimal sink selection
problem is also NP-Hard [14]. As a result, we took inspiration from nature to
solve such complex problems.

194 A. Nazi et al.

Biological systems are governed by simple generic rules which produce ef-
ficient collaborative patterns for distributed resource management, task allo-
cation and synchronization. Furthermore, millions of years of evolution has
made biological systems adaptive, robust, resilient, efficient and exhibiting self-�
properties [18,15]. These features of biological systems inspire solutions to many
problems in WSNs, such as maximizing network coverage, topology construction,
routing, duty-cycling and clustering [19]. In this paper, we consider a robust and
efficient network model for biological systems, called Gene Regulatory Network
(GRN).

2.1 Applications of Gene Regulatory Networks to WSNs

With increasing level of detail and complexity, GRNs can be modelled as graphs,
Boolean random networks and non-linear differential equations [12]. Boolean ran-
dom networks and non-linear differential based models emulate the control pro-
cess and the real time behavior of GRNs as well as its response to environmental
changes. In [8], the Boolean network model is used to identify the attractors. The
attractors represent the set of steady states in the GRNs at the end of evolution
which are resilient to dynamic removal or functional problems of nodes in the
network. This makes the GRNs functionally robust wherein cellular functions
persist even when an element of the underlying genes are exposed to adverse
conditions. Thus modeling WSNs using the Boolean network model can address
the issue of robustness in them. The non-linear differential equation model of
GRN has been used in [6] to identify the minimum number of sensors required
for maximum coverage in WSNs. Furthermore, the authors in [6] show that the
proposed algorithm performs similar to genetic-based optimization algorithms.
In [17], the authors also use the non-linear differential equations based model to
emulate the evolution process of genes in GRNs for self network configuration.

However, owing to the high complexity of models based on Boolean random
networks and non-linear differential equations, the size of the networks that can
be modeled using them is limited [21]. On the other hand, WSN deployments
consist of a large number of sensor nodes with limited resources; hence, regu-
lating WSN deployment behavior based on the above models may not always
be feasible. In this paper, we use the evolved topology of GRNs, represented as
an undirected graph, which provides the necessary properties to build robust
WSNs. The graph models represent the genes and their interactions, implying
much larger networks can be described using them. Each gene is represented as
a node and an edge exists between two genes if one of the gene interacts with
the other gene. The GRN topology posses many attractive properties, like ro-
bustness, resilience to failure and small diameter [9], which are desired in WSNs.

2.2 Motivation for Using GRN Topologies in WSNs

The properties of robustness and resilience to failures in GRNs are central to
the proper functioning and adaptation of all organisms. These properties have
been attributed to two of the features inherent to GRNs: 1) the existence of

Robust Deployment of Wireless Sensor Networks 195

motifs [18,15] which are specific sub-graphs that occur with higher frequencies
in the underlying GRN topology; and 2) the degree distribution of gene nodes in
the GRNs [4]. The robustness of a network is highly correlated to the abundance
of motifs in the network which provide selective advantages in evolution [18,15].
Furthermore, the degree distribution of genes follows a power-law distribution [4].
In other words, gene nodes with high degree tend to have an early evolutionary
history and, more importantly, the mechanism of attachment to them tends to
be linear. Hence, a new node is twice as likely to link to a node that has twice as
many connections. Thus, the ratio of the number of the nodes with high degree
to those with low degree is very small, thereby making the GRN topology robust
and resilient to failure because the probability that a node with high degree fails
is low. We claim that a WSN built using the topology of GRNs will inherit the
above-mentioned properties. Furthermore, the GRN topology exhibits a small
diameter [9] which results in lower latency and energy consumption as packets
are delivered to the sink using shorter paths in the WSNs.

In [13], the authors carried out a performance evaluation of WSNs built on top
of GRNs. The paper considers a single source, flooding based routing protocol
and static links, which makes the assumptions unrealistic. This motivates us to
carry out an exhaustive investigation of the performance of WSNs built on top
of GRNs and using the IEEE 802.15.4 standard specifications [3], thus paving
the way for deployment of fault-tolerant and robust WSNs as well as efficient
design of routing and other data dissemination algorithms.

3 Bio-inspired WSNs

Let us assume a set of sensors (Vw) needs to be deployed, such that the network
is robust and resilient to failures. To construct a bio-inspired WSN topology we
need to extract a sub-network from the GRN with the same number of nodes. In
the sub-network, the interactions of genes represent the communications between
the sensor nodes. The extracted sub-network of GRN is represented as G′

g =
(V ′

g , E
′
g) where V

′
g is the set of genes and E′

g represents the interactions between
the genes. Let Gw = (Vw, Ew) be the corresponding bio-inspired WSN graph,
such that Vw is the set of sensor nodes and Ew is the set of communication
links in the WSN. To build the bio-inspired WSN (Gw) based on the extracted
sub-network, we must follow the following rules: 1) every gene in the extracted
sub-network is mapped to a sensor node in the WSN; and 2) an edge exists
between two sensor nodes in Gw if an edge exists between the corresponding
gene nodes in G′

g. An edge in the bio-inspired WSN implies that the two sensor
nodes communicate with each other and thus are in the communication range
of each other.

These rules imply that the gene sub-network and bio-inspired WSN are iso-
morphic to each other, i.e., Gw � Gg. Ideally the WSN topology is dependent
on the locations of the sensor nodes. However, in our case, we need to assign lo-
cations to the sensors to derive the given topology. Once the sensor locations are
determined, we assume the sensors can be deployed at the given locations. We

196 A. Nazi et al.

address the issues of sub-network extraction and determining the sensor nodes
location in the following subsections.

3.1 Extraction of GRN Sub-networks

The interactions of genes in the regulatory network of the Yeast has been exten-
sively studied in the literature [16] and its network structure is commonly known.
Yeast has 4,441 genes and 12,873 interactions and is referred as the GRN source
network. Given the number of sensor nodes (|Vw|), a sub-network G′

g = (V ′
g , E

′
g)

needs to be extracted from the GRN source network Gg = (Vg , Eg) such that
|V ′

g | = |Vw|, V ′
g ⊆ Vg, and E′

g ⊆ Eg.
We used GeneNetWeaver [20] software to extract a sub-network which pre-

serves the structural properties of the source network. The procedure to extract
the GRN template follows a greedy algorithm which starts with a random se-
lection of a seed node. The remaining nodes in the sub-network are iteratively
chosen from the neighboring set of the selected nodes, such that the modularity
of the sub-network is maximized. Recall that modularity is a measure of the
structure of a network. The higher the modularity of the sub-network, the more
it preserves the structural properties of the source network [16]. For example,
let us consider the deployment of a bio-inspired WSN with 20 sensor nodes. As
mentioned above, we first extract a sub-network from the Yeast GRN with the
help of GeneNetWeaver software. The extracted sub-network is illustrated in
Figure 1. Now in order to construct the bio-inspired WSN, we need to deploy
the sensor nodes according to the topology of the extracted sub-network.

3.2 Determining Locations of Sensor Nodes in Bio-inspired WSNs

Let us assume the bio-inspired WSN with the given topology needs to be de-
ployed in a grid size of m×m units. The node placement must satisfy the two
constraints: 1) sensor nodes having an edge in Gw must be in the transmission
range of each other; and 2) nodes not having an edge in Gw must not be in the
transmission range of each other.

We formulate the problem of node placement using virtual forces. The use of
virtual forces for determining the locations of the sensor nodes has been primarily
used in scenarios wherein the physical topology of the WSN is built based on
the goals of network deployment, like maximum coverage [23]. The nodes move
in the network trying to balance the forces of attraction and repulsion with
other nodes. The attractive and repulsive forces between the sensor nodes are
determined by the above goals. However, in our approach we already have the
desired physical topology of the WSNs and need to determine the locations of
the sensor nodes based on it.

Assigning locations to the sensor nodes to satisfy the constraints is based on
the principle that if two nodes have an edge, they attract each other. Whereas,
if there is no edge between two nodes, they repulse each other. Let the total

attractive and repulsive forces are represented as
−→
Fa and

−→
Fr, respectively. An

Robust Deployment of Wireless Sensor Networks 197

Fig. 1. Extracted Yeast Sub-network Fig. 2. Deployment of Sensor Nodes

optimal solution for assigning location to each node is achieved when the attrac-

tive and repulsive forces due to all the nodes cancel each other, i.e.,
−→
Fa−

−→
Fr = 0.

However, we claim that finding the optimal solution for the bio-inspired WSN
graph is an intractable problem. In Figure 1, node u is the one with the highest
degree and all of its neighbors do not share an edge with each other. Hence,
the neighbors of u must be in the transmission range of u while they must not
be in the transmission range of each other. In such scenarios, if the number of
neighboring nodes is ≥ 5, a solution to the location assignment problem does
not exist with the given constraints.

Theorem 1. The maximum number of nodes that can be placed in transmission
range of u but not in transmission range of each other is 5.

Proof. We begin by placing node (u) on a 2-dimensional grid. Let the trans-
mission range of the sensor nodes be Tx units, represented by the circle with
the sensor node at its center. The transmission range of u is given by the circle
Cu, as shown in Figure 2. The nodes in the transmission range of u should be
placed within the circle Cu. Let v be the first node must be placed such that
the overlap of its transmission range with Cu is minimum. This maximizes the
non-overlapping area of Cu, increasing the probability of identifying the location
of the remaining nodes, such that they are not in the transmission range of each
other. As shown in Figure 2, minimum overlap of transmission range is achieved
when v is placed on the circumference of the circle Cu. The next neighboring
node (w) must be placed along the circumference in the non-overlapping area
of Cu. So, the minimum distance between v and w must be (Tx + Tx), i.e.,
the angular separation between the two nodes with u as the center must be
(60o + α). Hence, the maximum number of nodes that can be placed along the
circumference without being in the transmission range of each other is given by
! 360
60+α" = 5, where α is an infinitely small number. �

In other words, if the number of neighboring nodes who are not in the transmis-
sion range of each other is ≥ 5, the attractive and repulsive forces do not cancel

each other and the unbalanced force is given by
−→
Fa −

−→
Fr. The unbalanced force

causes displacement of nodes from their optimal positions. Let us assume that
the distance between the new position due to the displacement and the optimal

198 A. Nazi et al.

position is given by ε. Hence, the goal of the optimization is to minimize ε. How-
ever, the displacement of the sensor node may cause two nodes having an edge to
move out of the transmission range of each other. This is not desired as it would
change the extracted topology from the GRN. Furthermore, the displacement
may also cause two nodes without an edge to move in the transmission range
of each other. However, we can overcome this problem by not choosing to use
these additional communication links. Thus, the extracted topology of the GRN
is preserved in the bio-inspired WSN.

We formulate the sensor node placement problem as follows with the help of
non-linear programming where the goal is to minimize ε, such that ε > 0. Let
there be |Vw| nodes in the bio-inspired WSN. The location of each node ui needs
to be determined and represented as (xi, yi) where ui ∈ Vw, 0 ≤ xi ≤ m and 0 ≤
yi ≤ m. We assume two nodes in the network cannot be deployed in close vicinity
of each other. Hence, we assume a lower bound (LB) on the distance between
two nodes. The non-linear programming is formulated in Equation 1 with four
inequalities. We realize that, due to the unbalanced force, the nodes are always in
constant motion. However, given by the first and second constraints, if an edge
exists between the nodes in Gw, they cannot move outside the transmission
range (Tx) of each other and thus cannot move closer than LB distance of each
other. Moreover, nodes without an edge between them would repulse each other,
such that the distance between the nodes is maximum. The maximum distance
between nodes in am×m grid is its diameter and is given bym

√
2. However, due

to the unbalanced force, the distance between the two nodes becomes (m
√
2−ε).

As we minimize ε, the distance between two nodes without an edge approaches
m
√
2, given by the third constraint in Equation 1. If node u has two neighbors v

and w, with nodes v and w not sharing an edge between them. The unbalanced
force generated from repulsive force between v and w and their attractive forces
with u, causes v and w to move closer to each other. However, they should not
move within the transmission range of each other. The fourth constraints ensures
that they are not in the transmission range of each other, as ε > 0.

minimize ε

subject to
√
(xi − xj)

2 + (yi − yj)
2 − Tx ≤ 0, ∀(ui, uj) ∈ Ew

LB −
√
(xi − xj)

2
+ (yi − yj)

2 ≤ 0 ∀(ui, uj) ∈ Ew

m
√
2−
√
(xi − xj)

2
+ (yi − yj)

2 ≤ ε, ∀(ui, uj) /∈ Ew

and
√
(xi − xj)

2
+ (yi − yj)

2 − Tx ≤ ε, ∀(ui, uj) /∈ Ew

(1)

We use the Sequential Quadratic Programming (SQP) algorithm to estimate the
location of the sensors using Equation 1. The sensors can now be deployed at
their estimated location using the topology of the extracted sub-network.

4 Evaluation of Bio-inspired WSNs

In this section, we evaluate the robustness of bio-inspired WSNs and compare
its performance with k-connected and randomly deployed WSNs. k-connectivity

Robust Deployment of Wireless Sensor Networks 199

in the network is a useful metric to provide robustness. Hence, we compare the
robustness of the bio-inspired WSNs with k-connected WSNs. First, we carry
out a graph-based analysis of the topological properties of the three networks
and then substantiate our claims by performing exhaustive experiments.

In order to generate the topology of bio-inspired WSN, we used the Yeast
as the GRN source network and extract the sub-networks by using the
GeneNetWeaver software [20]. We generated a random geometric graph to rep-
resent a randomly deployed WSN. In random geometric graphs an edge exists
between two nodes if their distance is less than a threshold. We assume the sen-
sors are deployed in a grid of dimension 100m×100m, with the transmission range
of each sensor being 20m. For meaningful comparison between the randomly de-
ployed WSN and bio-inspired WSN, both networks should have same number of
nodes and edges. Hence, we generate a random geometric graph with the same
number of nodes as the bio-inspired WSN. If the edges in the random WSN is
less than the bio-inspired WSN, we iteratively generate another random WSN.
When the random WSN has more edges than bio-inspired WSN we randomly
remove edges from it to make the number of edges equal to the bio-inspired
WSN. While removing edges we do not consider those edges whose removal will
make the random WSN disconnected. For generating the k-connected WSN we
use the k-UPVCS algorithm proposed in [10] on a random geometric graph with
the same number of nodes as the bio-inspired WSN. The parameter k is selected
uniformly at random as an input to the algorithm. The lower bound of k is
chosen as the 1 and the upper bound is selected as the k-connectivity of the
generated random geometric graph.

4.1 Structural Properties of Bio-inspired WSNs

Network performance, such as end to end delay and robustness is determined
by the underlying topology represented as a graph. For example, end to end
delay in the WSN is proportional to the diameter of the graph. On the other
hand, robustness of a WSN can be defined as its capability to reliably deliver the
packets from the source to a destination, on occurrence of node or link failures.
The reliable delivery of packets depend on multiple factors:

– Average Length of Shortest Path: If the length of the average shortest
path is high, it implies that the data is delivered to the sink using a higher
number of hops. Since at each hop, the packet transmission may fail due to
fading of wireless channel and interference, it reduces the likelihood of the
packet being delivered to the sink.

– Average Node Connectivity: A graph is called k-node-connected or k-
connected if there exists atleast k-node disjoint paths between each pairs
of nodes. The k-connectivity of a graph represents the worst-case scenario
wherein the graph is disconnected if at least k nodes fail. However, the fail-
ure of nodes may have minimal impact on connectivity of the network as
the size of disconnected component may be small. Thus we use the aver-
age node connectivity as a metric to determine the global connectivity and

200 A. Nazi et al.

thr robustness of the network. Average connectivity is the average number
of node disjoint paths between any pair of nodes.

– Average Edge Connectivity: A graph is called k-edge-connected if there
exist atleast k-edge disjoint paths between each pair of nodes. Thus, k-edge-
connectivity can be used to evaluate the robustness of the network on oc-
currence of link failures. Similar to k-node connectivity, k-edge connectivity
does not represent the global edge connectivity of the network. Therefore we
consider average edge connectivity to measure the resilience of the network
to link failures. It is defined as the average number of the edge disjoint paths
between each pair of nodes.

– Edge Persistence: Edge persistence denoted as π(G), is a metric to mea-
sure robustness in WSNs as proposed in [14]. This metric calculates the ratio
of the number of failed edges to the number of nodes that become unreach-
able to the sink. A higher edge persistence ratio implies that a higher number
of nodes are reachable on occurrence of link failures. For a graph G(V,E) it
is computed as shown in Equation 2, where A is the set of failed edges in
G and λ(A) is the number of nodes which cannot reach the sink due to the
edge failures.

π(G) = min

{
|A|
λ(A)

: A ⊆ E, λ(A) > 0

}
(2)

We evaluate the topologies of the three network based on the parameters dis-
cussed above. We vary the number of nodes from 10 to 100 in steps of 10. Each
data point in the Figure 3 and Figure 4 represents the average data observed in
100 unique topologies of each bio-inspired, k-connected and random WSNs each
and is shown with 95% confidence interval.

Figure 3a shows the diameter of the bio-inspired, k-connected and random
WSNs. The results show that, since bio-inspired WSNs has lower average diam-
eter than k-connected and randomWSNs, they will exhibit lower end to end delay.
Since the deployment area of the sensors is fixed, the density of the network in-
creases with the number of sensor nodes. Thus as the density increases, the connec-
tivity in the network improves and the average diameter of the network decreases.
In order to compute the average shortest path, we consider the node with highest
degree as the sink. In [13], the authors show that selecting nodes with highest de-
gree as sinks leads to one of the best candidates for sink selection and, hence, this
solution is used here. Figure 3b shows that the bio-inspiredWSNs have lower aver-
age shortest path than k-connected and randomWSNs, i.e., in bio-inspiredWSNs,
the probability of failure of the shortest-path is lower than others.

Figure 3c and Figure 3d show the average node connectivity and the average
edge connectivity of the three networks, respectively. At a first glance, we may
say that k-connected and random WSNs will perform better than bio-inspired
WSNs in dense deployments as they have better edge and node connectivity.
Node and link failures may create multiple components in the network. Al-
though these components may exhibit high average node and edge connectivity,

Robust Deployment of Wireless Sensor Networks 201

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

D
ia

m
et

er

Number Of Nodes

Bio−Inspired WSN
Random WSN
k−Connected WSN

(a) Average Diameter

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

A
ve

ra
g

e
S

h
o

rt
es

t
P

at
h

 T
o

 S
in

k

Number Of Nodes

Bio−Inspired WSN
Random WSN
k−Connected WSN

(b) Average Shortest Path to Sink Node

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A
ve

ra
g

e
N

o
d

e
C

o
n

n
ec

ti
vi

ty

Number Of Nodes

Bio−Inspired WSN
Random WSN
k−Connected WSN

(c) Average Node Connectivity

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

A
ve

ra
g

e
E

d
g

e
C

o
n

n
ec

ti
vi

ty

Number Of Nodes

Bio−Inspired WSN
Random WSN
k−Connected WSN

(d) Average Edge Connectivity

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

E
d

g
e

P
er

si
st

en
ce

Number Of Nodes

Bio−Inspired WSN
Random WSN
k−Connected WSN

(e) Average Edge Persistence

Fig. 3. Graph Based Analysis of Bio-inspired, k-connected and Random WSNs

202 A. Nazi et al.

the connectivity of the network depends only on the component containing the
sink. Furthermore, edge-connectivity of the network is computed by permanently
removing the edges from the network. However, in a real scenario, failures of links
between sensor nodes may not necessarily be permanent. Temporal link failures
may occur due to variations in wireless channel and interference. Hence, a further
evaluation of the performance of the three WSNs is required.

Figure 3e shows the edge persistence of the three WSNs using the formula-
tion shown in Equation 2 using the node with the highest degree as the sink.
Owing to the power-law distribution of node degrees, random removal of edge
creates smaller disconnected components to the sink than k-connected and ran-
dom WSNs. Thus the bio-inspired WSNs is more robust than both of them.

These factors use different parameters to measure robustness. Even though
bio-inspired WSNs perform better than k-connected and random WSNs when
considering diameter, average shortest path and edge persistence, we cannot
conclusively say that bio-inspired WSNs are more robust as they have lower
average node and edge connectivity in dense deployment scenarios. Therefore,
we conduct experiments to prove the robustness of bio-inspired WSNs in terms
of data delivery ratio.

4.2 Simulation Scenario

We carried out the simulations using Castalia [1], a simulator for WSNs. The
parameters for for the simulation for the wireless sensor network are selected
based on the 802.15.4PHY and TI CC2420 transceiver specifications and are
given in Table 1 [5,2]. The initial energy of each sensor node is selected as
the capacity of two AA batteries. As discussed earlier, the bio-inspired WSNs
are generated using the Yeast GRN by the GeneNetWeaver software [20], with
varying number of nodes from 10 to 100 in steps of 10. We deploy the generated

Table 1. Simulation Scenario

RF Transceiver Texas Instru-
ment CC2420

Data Rate 250Kbps

Carrier Frequency 2.4 GHz Total simulation time 10800s

Radio Propagation
Model

Two Ray Path
Loss Model

Data Generation Rate Uniform
(100ms,1s)

Modulation Scheme PSK Initial Energy 18720 Joules

Bandwidth 20MHz Transmission Power
Level

0dBm

Noise Floor −100dBm Power consumed in
transmit mode

57.42mW

Receiver Sensitivity −95.0dBm Power consumed in re-
ceive mode

62mW

MAC Protocol T-MAC Power consumed in
sleep mode

1.4mW

Robust Deployment of Wireless Sensor Networks 203

network topology on the grid using the formulation shown in Section 3.2. The
k-connected WSNs and random WSNs are generated as described earlier. In all
the WSNs, each sensor node generates data with the inter-arrival time of data
being uniformly distributed between 100ms and 1s and forwards it to the sink.
The sink is selected using the same rule as described in Section 4.1. Data from
the source sensor node is forwarded to the sink along the shortest path.

Each data point in the figures represents the average data observed in 100
unique topologies of Yeast based bio-inspired WSNs, k-connected WSNs and
random WSNs each and is shown with 95% confidence interval. The simulation
time is kept constant at 3 hrs.

4.3 Experimental Results

We compare the performance of the three generated WSN topologies using the
percentage of packet delivered to the sink, latency and energy consumed by the
sensor nodes as parameters without node failures. Furthermore, to evaluate the
robustness of the given topologies we introduce node failures in the network to
determine their capability to recover from permanent removal of communication
links in the network.

Data Delivery. Figure 4a shows the average percentage of total packets deliv-
ered to the sink in bio-inspired, k-connected and random WSNs. As the density
of sensor nodes in the network increases, more packets are dropped due to higher
interference. Figure 4b shows the average number of control and data packets,
dropped at the MAC layer due to interference for a givenWSN. As the number of
packets dropped due to interference increases with the number of sensor nodes,
less packets are delivered to the sink. Although Figure 3c and Figure 3d show
that, in high density deployments, k-connected and random WSNs should per-
form better than bio-inspired WSN, the bio-inspired WSN delivers more packets
than k-connected and random WSN. In bio-inspired WSN the packets are deliv-
ered using fewer hops, hence, they are less susceptible to variations of wireless
channel and interference. Thus, due to the topology of the bio-inspired WSN, it
delivers more packets than k-connected and random WSNs. On the other hand,
the percentage of packets delivered in k-connected WSN is similar to random
WSN even though the k-connected WSN has a slightly lower number of packets
dropped due to interference. It was observed that since the number of packets
dropped due to interference includes a large number of control messages, the
actual difference in the number of dropped data packets is low. Hence, they have
similar percentage of data packets delivered to the sink in Figure 4a.

Latency. Figure 4c shows that the latency in bio-inspired WSN is lower than k-
connected and randomWSNs. As shown in Figure 3a and Figure 3b, the topology
based on Yeast sub-network have a smaller diameter and average shortest path.
Hence, the data is delivered to the sink using a fewer number of hops than
k-connected and random WSNs, resulting in lower latency.

204 A. Nazi et al.

20 40 60 80 100
50

55

60

65

70

75

80

85

90

95

Number of Sensor Nodes

P
er

ce
n

ta
g

e
o

f
P

ac
ke

ts
 R

ec
ei

ve
d

Bio−Inspired WSN

Random WSN

k−Connected WSN

(a) Percentage of packets delivered

20 40 60 80 100
0

1

2

3

4

5

6
x 10

5

Number of Sensor Nodes

A
ve

ra
g

e
N

u
m

b
er

 o
f

P
ac

ke
ts

 D
ro

p
p

ed

p
er

 N
o

d
e

D
u

e
to

 In
te

rf
er

en
ce

Bio−Inspired WSN

Random WSN

k−Connected WSN

(b) Average number of dropped packets due
to interference

20 40 60 80 100
300

400

500

600

700

800

900

1000

Number of Sensor Nodes

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

Bio−Inspired WSN

Random WSN

k−Connected WSN

(c) Average latency in data delivery

20 40 60 80 100
100

150

200

250

300

350

400

Number of Sensor Nodes

A
ve

ra
g

e
E

n
er

g
y

C
o

n
su

m
p

ti
o

n

p
er

 N
o

d
e

(J
o

u
le

s)

Bio−Inspired WSN
Random WSN
k−Connected WSN

(d) Average energy consumption at a sensor
node

30% 60% 90%
0

20

40

60

80

100

Average Percentage of Failed Nodes

P
er

ce
n

ta
g

e
o

f
P

ac
ke

ts
 D

el
iv

er
ed

Bio−Inspired WSN − 60 Nodes
Random WSN − 60 Nodes
K−Connected WSN − 60 Nodes
Bio−Inspired WSN − 100 Nodes
Random WSN − 100 Nodes
K−Connected WSN − 100 Nodes

(e) Percentage of Packets Delivered with Varying Node Failure Rate

Fig. 4. Simulation Results for Bio-inspired, k-connected and Random WSNs

Robust Deployment of Wireless Sensor Networks 205

Energy Consumption. Figure 4d shows that the average energy consumption
of sensor nodes in the bio-inspired WSN is smaller than k-connected and ran-
dom WSNs. Due to lower packet loss in the bio-inspired WSN, there are fewer
number of packet re-transmissions at the MAC layer resulting in lower energy
consumption. Furthermore in bio-inspired WSNs, due to lower average shortest
path, fewer number of intermediate sensor nodes are used to deliver the data to
the sink, thus resulting in lower energy consumption.

Data Delivery with Node Failure. We want to evaluate the performance of
bio-inspired WSNs, k-connectedWSNs and randomWSNs on occurrence of node
failure. We assume that the failure time between the nodes follows an exponential
distribution. The performance of the three networks is compared under varying
conditions of node failures. Specifically, we consider three scenarios, wherein the
expected rate of node failure is selected such that the expected number of nodes
failing during the simulation time is 30%, 60% and 90% of the total number of
nodes. In the simulations, we assume a node stops generating data on failure.
When a node fails, it informs its neighbors which in turn try to find an alternate
path to the sink. We compare the performance of the three networks with 60
and 100 nodes.

Figure 4e shows the percentage of packets delivered to the sink with varying
number of failed sensor nodes. For example, when on an average 30% of the 60
and 100 nodes fail during simulation, the bio-inspired WSN delivers more pack-
ets than k-connected and random WSNs. As the degree distribution of sensor
nodes in bio-inspired WSNs follows power-law distribution, link-failures due to
node failures prevents only a smaller subset of sensor nodes from reaching the
sink when compared with k-connected and random WSNs. This causes a higher
number of packets being delivered to the sink in bio-inspired WSNs even though
the average node and edge connectivity of k-connected and random WSNs was
higher as shown in Figure 3c and Figure 3d, respectively. Similar behavior is
seen for 60% and 90% of node failures. However, in the simulation, since nodes
in the disconnected components can also fail and hence stop generating packets,
we cannot compare the results across different node failure rates. The results
conclusively show that the bio-inspired WSNs are more robust, energy efficient
and had lower latency than k-connected and random WSNs.

5 Conclusion and Future Work

In this paper, we investigated the use of the gene regulatory networks (WSNs)
topology for deploying wireless sensor networks. We termed such a network as
bio-inspired WSN and hypothesized that it is robust. To prove its robustness, we
evaluated the structural properties of bio-inspired WSNs and compared it with
k-connected and random WSNs. Based on the structural analysis we concluded
that bio-inspired network would have lower latency and high edge persistence.
Furthermore, through comprehensive experiments we show that the bio-inspired
WSNs are robust, have lower latency and are energy efficient. The results in the

206 A. Nazi et al.

paper establish the feasibility of using GRNs based topology to deploy fault-
tolerant and robust WSNs. In this paper, we deployed the WSNs using the
topology of the Yeast sub-network. However, a bio-inspired WSNs can be de-
ployed more flexibility, if we map the GRN topology on an already deployed
WSNs. This would involve activating sensor nodes and links such that their in-
teractions follow the GRN topology. We will investigate the feasibility of such
a deployment and design more robust routing protocols based on it as a future
work.

Acknowledgement. This research is partially supported by the NSF grants
CNS-104965, IIS-1064460, IIP-1242521 and CNS-1150192.

References

1. Castalia, a simulator for wsns, http://castalia.npc.nicta.com.au/index.php
2. Cc2420 - single-chip 2.4 ghz ieee 802.15.4 compliant and zigbee ready rf transceiver,

http://www.ti.com/product/cc2420

3. Ieee standard for local and metropolitan area networks–part 15.4: Low-rate wireless
personal area networks (lr-wpans),
http://standards.ieee.org/about/get/802/802.15.html

4. Bonabeau, A.B.E.: Scale free networks. Scientific American, 60–69 (2003)
5. Bougard, B., Catthoor, F., Daly, D.C., Chandrakasan, A., Dehaene, W.: Energy

efficiency of the ieee 802.15.4 standard in dense wireless microsensor networks:
Modeling and improvement perspectives. In: Conf. on Design, Automation and
Test in Europe, pp. 196–201 (2005)

6. Das, S., Koduru, P., Cai, X., Welch, S., Sarangan, V.: The gene regulatory network:
an application to optimal coverage in sensor networks. In: 10th Annual Conf. on
Genetic and Evolutionary Computation, pp. 1461–1468 (2008)

7. Dressler, F., Akan, O.: Bio-inspired networking: from theory to practice. IEEE
Communications Magazine 48(11), 176–183 (2010)

8. Ghosh, P., Mayo, M., Chaitankar, V., Habib, T., Perkins, E., Das, S.: Principles of
genomic robustness inspire fault-tolerant wsn topologies: A network science based
case study. In: PERCOM 2011 Workshops, pp. 160–165 (2011)

9. Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal struc-
ture of the yeast transcriptional regulatory network. Nature Genetics 31(1), 60–63
(2002)

10. Hajiaghayi, M., Immorlica, N., Mirrokni, V.: Power optimization in fault-tolerant
topology control algorithms for wireless multi-hop networks. IEEE/ACM Transac-
tions on Networking 15(6), 1345–1358 (2007)

11. Hou, J.C., Li, N., Stojmenovi, I.: Topology Construction and Maintenance in Wire-
less Sensor Networks, pp. 311–341. John Wiley & Sons, Inc. (2005)

12. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. Journal of Computational Biology 9(1), 67–103 (2002)

13. Kamapantula, B.K., Abdelzaher, A., Ghosh, P., Mayo, M., Perkins, E., Das, S.K.:
Performance of wireless sensor topologies inspired by e. coli genetic networks. In:
IEEE Int’l Workshop on PerSeNS, pp. 308–313 (2012)

14. Laszka, A., Buttyn, L., Szeszlr, D.: Designing robust network topologies for wireless
sensor networks in adversarial environments. Pervasive and Mobile Computing
(2012)

http://castalia.npc.nicta.com.au/index.php
http://www.ti.com/product/cc2420
http://standards.ieee.org/about/get/802/802.15.html

Robust Deployment of Wireless Sensor Networks 207

15. Macneil, L.T., Walhout, A.J.: Gene regulatory networks and the role of robustness
and stochasticity in the control of gene expression. Genome Research (March 2011)

16. Marbach, D.: Evolutionary reverse engineering of gene networks. Ph.D. thesis, Lau-
sanne (2009), http://library.epfl.ch/theses/?nr=4503

17. Markham, A., Trigoni, N.: Discrete gene regulatory networks (dgrns): A novel
approach to configuring sensor networks. In: INFOCOM, pp. 1–9 (2010)

18. Prill, R.J., Iglesias, P.A., Levchenko, A.: Dynamic properties of network motifs
contribute to biological network organization. Public Library of Science (2005)

19. Ren, H., Meng, M.H.: Biologically inspired approaches for wireless sensor networks.
In: Int’l Conf. on Mechatronics and Automation, pp. 762–768 (June 2006)

20. Schaffter, T., Marbach, D., Floreano, D.: Genenetweaver: In silico benchmark gen-
eration and performance profiling of network inference methods. Bioinformatics 27,
2263–2270 (2011)

21. Thomas, S., Alvis, B.: Current approaches to gene regulatory network modelling.
BioMed Central (2007)

22. Wightman, P., Labrador, M.: A3: A topology construction algorithm for wireless
sensor networks. In: IEEE GLOBECOM, pp. 1–6 (December 2008)

23. Yu, X., Huang, W., Lan, J., Qian, X.: A novel virtual force approach for node
deployment in wireless sensor network, pp. 359–363 (2012)

http://library.epfl.ch/theses/?nr=4503

Cellular Pulse Switching: An Architecture

for Event Sensing and Localization
in Sensor Networks

Qiong Huo, Bo Dong, and Subir Biswas

Michigan State University, East Lansing MI 48824, USA
{huoqiong,dongbo,sbiswas}@msu.edu

Abstract. This paper presents a novel energy-efficient pulse switching
protocol for ultra-light-weight wireless cellular network applications. The
key idea of pulse switching is to abstract a single pulse, as opposed to
multi-bit packets, as the information exchange mechanism. Event mon-
itoring with conventional packet transport can be prohibitively energy-
inefficient due to the communication, processing, and buffering overheads
of the large number of bits within a packet’s data, header, and preambles.
Pulse switching, on the other hand, is shown to be sufficient for event
monitoring applications that require binary sensing. This paper presents
a joint MAC and Routing architecture for pulse switching with a novel
cellular event localization framework. Through analytical modeling and
simulation experiments, it is shown that pulse switching can be an ef-
fective means for event based networking, which can potentially replace
packet transport when the information is binary in nature.

Keywords: Ultra Wide Band Impulse Radio, Pulse Switching, Cellular
Sensor Networks, Event Monitoring, Pulse Routing, Energy-efficiency.

1 Introduction

The objective of this paper is to develop a novel pulse switching framework1

that uses a cellular network and localization structure to implement packet-
less event communication. The key idea in this paper is to introduce a new
abstraction of sensor event area cells and to use it for packet-less pulse switching
for event monitoring. An example application is intrusion detection in which
while surveying a building it is often sufficient for a sensor to generate an event
to indicate an intrusion in its vicinity. Sending an event to a sink ideally requires
a single bit information (i.e. binary) transport for which the traditional mode of
packet communication can be highly energy inefficient. Such inefficiency stems
from communication, processing, and buffering overheads of a large number of
bits [1] in each packet. Another example application of the proposed mechanism
for binary event sensing is structural health monitoring.

1 This work was partially supported by a grant (NeTS 0915851) from National Science
Foundation.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 208–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

CPS 209

In the proposed paradigm, such an event can be coded as a single pulse,
which is then transported multi-hop towards a sink while preserving the event’s
localization information in terms of its originating event area cell. The resulting
operational lightness, leveraged via zero collision, zero buffering, no addressing,
no packet processing, and ultra-low communication and energy budgets makes
the protocol applicable for severely resource-constrained sensor devices.

The primary challenges for pulse switching in a cellular network are how to:
1) transport cellular localization information using a single pulse, and 2) route
a pulse multi-hop. These problems are architecturally solved by integrating a
pulse’s (i.e. event’s) cell of origin within the MAC-routing protocol syntaxes.
Specifically, by observing the time of arrival of a pulse with respect to the MAC-
routing frame, a sink can resolve the corresponding event location with a pre-set
resolution. The problem of multi-hop pulse routing is solved by introducing a
novel concept of cellular event area combined with synchronized pulse frames.

The contributions of this paper are: 1) development of a sensor-cell based
event localization architecture, 2) integration of such localization with a pulse-
switching protocol paradigm and its associated MAC and routing syntaxes for
multi-hop operations, 3) development of response mechanism and pulse compres-
sion for added network resilience and energy efficiency, 4) analytical modeling
for error handling measures, and finally 5) evaluation of the above components
for event monitoring in a cellular sensor network.

Note that the proposed architecture is targeted mainly for small sensor net-
works with few tens of sensors distributed within a restricted geographical area.
While not being scalable well for very large networks, the protocol can enable
event monitoring for specific applications such as intrusion detection and struc-
tural health monitoring for aircraft wings and bridges [2].

2 Related Work

Very few efforts exist in the literature on packet-less networking using pulse com-
munication. The paper in [3] reduces preamble and header overheads of packet
communication by aggregating payloads from multiple short packets into a single
large packet that is routed to a sink. While reducing the energy cost, aggregation
still requires the inherent packet overheads. The paper in [4] proposes a binary
sensing model in which each sensor returns only one-bit information regarding a
target’s presence or absence within its sensing range. Although this binary sens-
ing saves energy to some degree, the approach in [4] too uses a packet abstraction.
The objective of our work is to fully replace packets by routable pulses.

The authors in [5] develop models for energy and delay bounds for bit (i.e.
packet based) and pulse communications in single hop networks. The main re-
sults in [5] are that the worst case energy performance of pulse communication
can be substantially better than that of packet based communication, although
with a possibly worse delay performance. A notable limitation is that the pa-
per does not provide mechanisms for scaling these results for multi-hop net-
works. Also, no MAC and routing protocol details are provided. This limitation is

210 Q. Huo, B. Dong, and S. Biswas

addressed in our work through the design of a MAC-routing framework that can
implement multi-hop pulse switching with sensor-cell based event localization.

In our previous work in [6], the concept of multi-hop pulse switching was
first introduced for binary event detection and tracking applications. The pa-
per presented pulse switching in the presence of hop-angular event localization.
Although it offered a fundamental conceptual framework for pulse switching,
its hop-angular localization abstraction relied on an assumption of stationary
nature of the wireless transmission and propagation properties. This assump-
tion may not hold in certain applications due to various kinds of time-varying
shadowing and fading phenomena. This paper adopts a novel sensor-cell based
architecture that relies on a pre-set sensor cell structure for localization, which
is not affected by non-stationary wireless transmission properties. In doing so, it
achieves a network-wide uniform spatial resolution of event detection which was
not possible in the approach used in [6]. Furthermore, a response mechanism is
introduced in this paper for dealing with pulse losses and network faults.

Pulse: Gaussian Monocycle Received: Single Pulse

Pulse

Slot: Tb
(Pulse Repetition

Period)
Multi-path: Delay Spread

Width

(a) (b)

Fig. 1. Pulse switching with un-modulated
UWB impulses

Energy-efficiency in cellular
networks has been a recent re-
search interest in the context of
green communication. The paper
in [7] develops energy-efficiency
metrics and mechanisms for dy-
namic operation of cellular base
stations in order to provide energy
savings. With real data traces, [7]
derives a first-order approxima-
tion of the percentage of power
savings by turning off base stations during low traffic periods while maintaining
necessary coverage. This and most other cellular work in the literature, however,
are targeted towards phone and data networks, thus rendering the approaches
unusable for sensor networks and more distinctly for packet-less pulse switch-
ing. This paper merges the cellular abstraction with pulse switching for energy-
efficient event sensing in sensor networks.

3 Pulse Realization Using UWB Impulse Radio

The ability to transmit and receive a single pulse without per-pulse synchro-
nization overhead is a key requirement for pulse switching. Ultra Wide Band
(UWB) [8] [9] Impulse Radio (IR) technology can be practically [10] used be-
cause of its support of single pulse transmission and reception.

UWB Slotting. Fig.1 depicts a UWB implementation of pulse structure. A
typical UWB pulse width is 1ns, and the pulse repetition period Tb (slot size)
is 1000ns [8]. This large difference between pulse width and slot size minimizes
the overlapping probability between pulses in adjacent slots in the presence of
multi-path delay.

CPS 211

Modulation and Synchronization. Since each individual pulse carries in-
formation about an event by itself, unlike in packet based UWB-IR, no Time
Hopping Sequence [9] based Pulse Position Modulation is needed in this archi-
tecture. Additionally, since the synchronization is achieved through a sink (see
Section.5.1), no per-pulse synchronization preambles are needed. It helps avoid-
ing huge synchronization overheads of up to 600 pulse repletion periods [11] as
typically needed for packet preambles.

Energy Budget. The all-digital baseband operation of the UWB-IR enables it
to be implemented in low-cost CMOS logic [10]. For example, with 0.18m CMOS
based UWB, power consumptions of 4nJ for each pulse transmission (average
4mW with 1000ns pulse repetition period), 8nJ for each pulse reception (average
8mW) and idling consumption of 8mW can be typical.

4 Sensor Cells and Event Localization

4.1 Pulse as Protocol Data Unit

Upon detection of an event, a sensor node generates a single (RF) pulse (e.g.
UWB-IR [10]) which needs to be transported multi-hop to a sink. A pulse is able
to represent: a) the very occurrence of the event, and b) its location of origin. An
event can result in multiple pulses generated by all sensors detecting the event,
and all such pulses need to be transported to the sink. With the localization
information for each such pulse, several application level conclusions can be
derived at the sink by correlating multiple event pulses.

4.2 Cellular Event Localization

v

Sensor Cells Sensors

4

5
6

7

8

14

15

33

34

18

24

25

26

29

30

Sink

Access PointAccess Point

v

Sensor
Field

1

2

3

9

10

11

12

16

17
19

20

21

22

23

6

27

28

31

32

0

1
3

Fig. 2. Network model with arbitrarily de-
fined sensor-cells

As shown in Fig.2, a network may
contain arbitrarily distributed sensors
that detect events and send corre-
sponding pulses to a sink. The fig-
ure also shows geographically overlaid
sensor-cells (i.e. arbitrarily shaped
and placed) that are pre-defined and
individually represent event areas,
and have unique Cell-IDs.

Each sensor is pre-programmed
with the Cell-ID of its own cell and
with a list of Cell-IDs of all the geo-
graphically neighboring sensor cells.

An event is localized at the spa-
tial resolution of a sensor-cell. In a
bridge monitoring scenario, for ex-
ample, when one or multiple sensors

212 Q. Huo, B. Dong, and S. Biswas

within a cell detect a structural fatigue or failure, the sink node will eventually be
able to localize the event in terms of the cell that those detecting sensors belong
to. If sensors from multiple cells detect such an event, the sink can resolve the
event spanning multiple such cells. The sensors are not individually addressed,
and therefore no per-sensor addressing is necessary at the MAC or routing layers.
An event is always identified by the Cell-ID of its cell of origin. The energy non-
constrained sink is assumed to make high-power transmissions with full network
coverage for frame-synchronizing the sensors. Event localization resolution can
be adjusted by changing the size and shape of sensor cells.

5 Cellular Pulse Switching

5.1 Joint MAC-Routing Frame Structure

Nodes in the proposed system are frame-by-frame time synchronized by the
sink. They maintain MAC-Routing frames (see Fig.3), in which each slot is used
for sending a single pulse. The slot includes a guard time to accommodate the
cumulative clock-drift during a frame and the maximum cell-to-cell propagation
delay. Due to UWB-IR’s short frame size (s), the clock-drift can be very small.

����
����	

���

���� ������

��

�����	

���

�

���	

���

���
�����������

��� �

�������������
���

 �����

���
�����������

!�

���"	

���

#��$�

���%

�

��� ���

� �� �

�����	�
���

DL: Downlink
UL: Uplink
SC: Sensor-cell

&'��'�&���������(
)*�%���"

��+ *�%���"

� ��������� �����

&'��'�&���������(
)*�%���"

� � �� �

,��$���
�����

��$$��
�������� �-�

Fig. 3. MAC-Routing frame for multi-hop cellular pulse switching

As shown in Fig.3, each frame contains a downlink part, an uplink part, and
a response area in which pulses can be sent either downlink or uplink. The
downlink part of the frame includes a synchronization slot where the sink pe-
riodically transmits a full power pulse to frame-synchronize all nodes in the
network. The following DiscoveryArea in the frame is designed for adaptive
route discovery, as described in Section 5.2. In the uplink part, there are three
components: a) ControlArea for energy management, b) LocalizationArea for
representing an event’s location of origin and the routing table information, and

CPS 213

c) ProtectionArea for false positive error protection. The ResponseArea is used
for implementing pulse transmission reliability.

5.2 Route Discovery

This is a continuous background process that creates and maintains the routing
table in each sensor in terms of the next-hop Cell-IDs. In order for routing to
work, each sensor needs to be aware of its own Cell-ID and those of all its
geographically neighboring cells. A sensor should also have wireless reachability
to at least another sensor in one of its neighboring sensor cells. Note that the
proposed architecture and the route discovery process do not assume any specific
shape of a sensor cell and node’s transmission coverage area.

The Discovery Area in the MAC-routing frame contains ((γ + 1)M + 1) slots,
where M is the number of sensor-cells in the network and γ is the transceiver
turnaround time (between transmission and reception modes) as a multiple of
slot duration. As shown in Fig.3:b, the first slot is allocated to the sink, and the
rest of the slots are allocated to all M sensor-cells in contiguous slot clusters.
Within a cluster, the first γ slots are designated as dummy slots during which
transceiver turn-around happens, and the (γ + 1)

th
slot is designated as a normal

slot, during which discovery related transmission happens as follows. Once in
every discovery cycle, the sink initiates a routing discovery phase by sending a
regular power (as opposed to a full power synchronization pulse) discovery pulse
in the first slot of the Discovery Area. Upon receiving that pulse, all sensors
within the sink’s neighboring sensor cells register the reception time and the
Cell-ID (retrieved from the temporal location of the pulse) of the sensor cell
(which is the sink in this case) from which the discovery pulse was received. The
sensors then forward the pulse to their neighbors in the normal slots of their
corresponding clusters in the Discovery Area of the next frame. This time-stamp
and forwarding process continues till the discovery pulse is flooded throughout
the entire network. The pseudo-code for such a process is shown in Algorithm
1. At the end of each discovery phase, each node develops a routing table which
is a list of time-stamps and the corresponding Cell-IDs of its neighboring cells,
indicating which sensor cells forwarded the discovery pulse at what time. In the
absence of queuing delay, the entry with the earliest time-stamp would indicate
the shortest hop next-hop sensor cell to reach the sink. A node may have one
or multiple shortest hop next-hop sensor cells depending on the shape, size, and
relative locations of the cells with respect to the sink’s location.

5.3 Pulse Forwarding in the Localization Area

The Localization Area of the uplink part of the frame is key to pulse forwarding.
In a network with M sensor-cells, this area contains M slot-clusters, where each
such cluster contains (M +1) individual slots. Each slot-cluster corresponds to a
specific Cell-ID which represents an event’s cell of origin. In a given slot-cluster,
each slot corresponds to a specific Cell-ID which represents the next-hop cell
for a transmitted pulse within the slot cluster. The first slot in each cluster

214 Q. Huo, B. Dong, and S. Biswas

Algorithm 1. Route Discovery

Discv(i): A discovery pulse forwarded by cell i, where a pulse in the normal slot of the ith

cluster of the Discovery Area of a frame (1 ≤ i ≤ M);
NB(i)=(nb1, ..., nbN): Neighbor cells of cell i, nbj �= i,1 ≤ j ≤ N , N is the max cnt of cell i’s
neighbor cells;
L(i)=((t1, id1),...,(tR, idR)): A received discovery pulse list at a node in cell i; (tj , idj)
represents a reception time-stamp and the corresponding Cell-ID of cell i’s neighbor
cell,idj �= i, 1 ≤ j ≤ R,R ≥ 0;
TableSort(L(i)): Sort L(i) in terms of time-stamp;
RouteTable(i): Routing table of cell i destined to the sink;
while t == k ∗ Fdiscv, k ≥ 0, Fdiscv is discovery period do

sink sends a Discv(0)
end
if a node in cell i receives a Discv(n) at frame t then

if n ∈ NB(i) //sender cell of Discv(n) is the neighbor of cell i then
inserts the time-stamp t and Cell-ID n to L(i); will forward Discv(i) at frame t+1;

end
else

discards Discv(n);
end

end
if t == k ∗ Fdiscv − 1, k ≥ 0//the end of each discovery phase then

RouteTable(i)=TableSort(L(i)); Empty L(i);//establish or update the routing table
end

of Localization Area represents the sink. It is important to note that the slot
cluster for a pulse remains unchanged during the entire forwarding of the pulse
from the sensor of origin all the way to the sink node. This way, the localization
information of the pulse (i.e. of the corresponding event) is preserved till the
pulse arrives at the sink. What changes in a hop-by-hop basis is the specific
slot within the slot-cluster depending on the specific next hop sensor-cell. This
way, when the pulse arrives at the sink, it is still a part of the unchanged slot
cluster, which indicates the pulse’s cell of origin. Pulse forwarding decisions are
made based on a sensor’s routing table. The routing table maintains a sorted list
of next-hop cells based on the hop-counts of the corresponding resulting routes
(see Section 5.2). For routing with no diversity, a node chooses the best next-hop

Algorithm 2. Pulse Forwarding

F(i,δ): A node in cell i (1 ≤ i ≤ M) gets the top δ next-hop Cell-IDs (k1, ..., kδ) from the
routing table RouteTable(i), where δ is the route diversity, kj �= i, 1 ≤ kj ≤ M, 1 ≤ j ≤ δ;
Event(i,(k1, ..., kδ)): An event pulse originated from cell i and forwarded to cells of Cell-IDs

(k1, ..., kδ), where pulses respectively in the ((k1 + 1)th, ..., (kδ + 1)th) slots of the ith

cluster of the Localization Area of a frame, kj �= i, 1 ≤ j ≤ δ;
if a node in cell i senses an event at frame t then

sends an Event(i,F(i,δ)) at frame t; //generates a new event pulse
end
if a node in cell i receives an Event(j,(k1, ..., kδ)) at frame t then

if i �= j, i ∈ (k1, ..., kδ) //cell i is one of next-hops for this received event pulse then
will forward the Event(j,F(i,δ)) at frame t+1;//the node in cell i updates (k1, ..., kδ)

end
else

discard the received event pulse;
end

end

CPS 215

sensor cell from the routing table and forwards the pulse. With non-zero route
diversity (parameterized as δ), a pulse is forwarded to top δ next hop sensor cells
from the routing table. Details are provided in Algorithm 2.

Since the above pulse forwarding process is executed on a per-pulse manner,
a large number of pulses can be simultaneously and independently routed in
different parts of the Localization Area of a frame depending on their cells of
origin and the respective next-hop cells.

5.4 Response Mechanism

A Response Mechanism is mainly for handling pulse loss errors. As shown in
Fig.3, the Response Area of a frame contains 2(M + 1) slots, where M is the
number of sensor-cells in the network. The first (M+1) slots in the Response
Area are used for indicating the Cell-ID of a sensor cell which receives a pulse.
The remaining (M+1) slots are used for indicating the Cell-ID of the cell of
origin of the event corresponding to the received pulse. The first slot in each
(M+1)-slot set is allocated to the sink, and the rest M slots are allocated to
sensor-cells. It is abstracted as a single-pulse acknowledgement for enhancing
one-hop transmission reliability. After receiving a pulse in the Localization Area
of a frame, a receiver sends a response pulse to the sender node during the
Response Area at the end the frame (see Fig.3). If the sender does not receive
a response pulse, it periodically retransmits the pulse in the following frames
during a pre-specified time-out period. See the pseudo-code in Algorithm 3.

5.5 Protocol State Machine

Each sensor node maintains three separate state machines for Route Discovery,
Pulse Forwarding and Response processes respectively. A state is defined in a
per-frame manner and can be one of Transmission (T), Listening (L), or Sleep-
ing (S). During Route Discovery and Pulse Forwarding processes, the initial
state of each node is L and a state transition is triggered by pulse reception.
During Route Discovery process, a node switches from L to T in the correspond-
ing Discovery Area normal slot which is assigned to the node’s Cell-ID. After
forwarding the received discovery pulse in that slot the node switches back to
L during the upcoming normal slots of the same frame. This way the node can
receive discovery pulses from all its neighboring cells. The dummy slots in each
slot-cluster of the Discovery Area of a frame are utilized for the transceiver turn
around between T and L. During Pulse Forwarding process, when a node is
transmitting a pulse, it keeps T in the Localization Area of the current frame.
Once pulse forwarding is done, the node switches back to L in the Localization
Area of the next frame. The state of a node in Response Area is complementary
to that in Localization Area in a frame.The usage of state S for energy saving
will be described in Section 6.1.

216 Q. Huo, B. Dong, and S. Biswas

Algorithm 3. Response Mechanism

Resp(j,i): A response pulse forwarded by cell j for the event originated from cell i, where a

pulse in the (j + 1)th slot of the first cluster and another pulse in the (i + 1)th slot of the
second cluster of the Response Area of a frame, i, j �= 0, i �= j, 1 ≤ i, j ≤ M ;
Ltx(i): A transmitted event pulse list at a node in cell i, where each item includes a
next-hop Cell-ID and the corresponding Cell-ID of the event origin’s cell;
if a node in cell m forwards an Event(i,(k1, ..., kδ)) at frame t // δ is the route diversity
then

inserts item (i,(k1, ..., kδ)) into Ltx(i);
end
if a node in cell j receives an Event(i,(k1, ..., kδ)) at frame t then

if j �= i, j ∈ (k1, ..., kδ) //cell j is one of next-hops for this received event pulse then
sends a Resp(j,i) at frame t;

end
else

discard the received event pulse;
end

end
if a node in cell m receives the Resp(j,i) at frame t then

if (j, i) ∈ Ltx(i) then
transmission of the Event(i,(k1, ..., kδ)) is successful;

end
else

will retransmit the Event(i,(k1, ..., kδ)) at the next frame t+1;
end

end

6 Energy Saving Measures

6.1 Energy Saving via Intra-frame Interface Shut-Down

Protocol syntaxes are added for nodes to be able to selectively turn their RF
interfaces off during appropriate parts of the frame. As for transmissions in Pulse
Forwarding process, a node needs to be awake only during the slot clusters (of the
Localization Area) at which it needs to transmit. During the other slot clusters,
the node can simply keep the interface in sleep mode in order to save energy.

However, considering the asynchronous nature of pulse receptions, a node
cannot sleep during all the non-transmission slot clusters in the Localization
Area. To address this, a Control Area (see Fig.3) is added in the beginning of
the uplink part of the frame. The slots in the Control Area of a frame are used
for notifying about the impending receptions that are expected during the slot
clusters of the Localization Area of the frame. When a node plans to send a
pulse originally from the sensor-cell of Cell-ID m during the mth slot cluster
of the Localization Area of a frame, it also sends a pulse in the mth slot in the
Control Area of the same frame. All nodes remain awake during the Control Area
for receiving the notification about impending transmissions in the mth cluster
of the Localization Area of the frame. Based on this information, the node can
remain awake during the mth slot cluster of the Localization Area.

Such intra-frame interface sleep can reduce the idling energy consumption.
Additionally, the node’s state in the Control Area of a frame is same as that in
the mth slot cluster of the Localization Area of the same frame.

CPS 217

6.2 Pulse Merging

Pulse merging may happen when multiple pulses are transmitted at the same
exact slot by multiple nodes, and all such transmissions arrive at a node simulta-
neously. For example, in Fig.4, the Cell-ID of each node is marked at the bottom
of the node. A pulse originates at node D in cell 4 and gets forwarded to two
neighboring cells 2 and 3. Nodes B and C in those cells independently forward
the pulse to cell 1. As a result, node A in cell 1 receives 2 overlapping pulses
in the same slot (the 2nd slot of the 4th slot-cluster in the Localization Area).

4

1

2

A

B

D

3
C Sensor-cell: 4

1 2 3 41 2 3 4 0

Localization
Area

Control
Area

overlapped pulses

4

b: Intra-event pulse merging at node A
Wake-up Regions

1 2 3 41 2 3 4 0

a: Fault tolerance
due to route diversity

Fig. 4. Pulse merging due to overlapped pulse reception

Note that instead of a
functional collision, a sin-
gle pulse with merged
RF signal is detected by
the receiver node. As
long as the RF hard-
ware can detect the pres-
ence of this overlapped
pulse, the routing contin-
ues. Such merging could
also take place when mul-
tiple pulses from the same
sensor cell are originated in the same frame. In such scenarios, pulse merging
provides inherent in-network aggregation for events originated from the same
cells. Also note that pulse merging can occur at any stage of an end-to-end
route, including at the sink.

Pulse merging can increase the effective transmission power, thus undesirably
extending RF transmission range. Consequently, a pulse may reach further than
it was originally intended to. Since the Route Discovery, Pulse Forwarding and
Response processes in the proposed sensor-cell based event localization is com-
pletely insensitive to the wireless transmission range, the range extension due to
pulse merging does not affect the protocol operation in any ways.

6.3 Spatial Pulse Compression

Although multiple sensors can send pulses for the same event within a sensor
cell, ideally only one such pulse from the sensor-cell should be forwarded to
the sink to inform about the event. Spatial pulse compression accomplishes this
as follows. Upon detecting an event (OR receiving a pulse), a sensor node-i
defers its pulse transmission for a back-off period that is randomly distributed
between 0 to Rrnd frames. If another node within the same sensor cell sends a
pulse before its deferring period is over, then node-i cancels its own transmission
after hearing that pulse. Typically, this would lead to very few pulses (often a
single pulse) transmission per event per sensor cell. Let k (1≤k≤Nnode

i) be the
number of nodes in cell i that select the same smallest number and the rest
(Nnode

i − k) nodes choose greater numbers, where Nnode
i is the number of nodes

in cell i. Thus, k forwarding transmissions will occur within cell i. The rest

218 Q. Huo, B. Dong, and S. Biswas

(Nnode
i − k) nodes receive those k pulses and stop their own back-off processes.

The probability that k nodes select the same smallest number can be expressed

as: p(k,Nnode
i , Rrnd) =

(Nnode
i
k

)∑Rrnd−1
m=1 (Rrnd −m)(N

node
i −k)/(Rrnd)

Nnode
i .

So the expected number of forwarding transmissions in cell i is:

Nexp
i =

Nnode
i∑
k=1

kp(k,Nnode
i , Rrnd) (1)

7 Error Analysis

7.1 Protection from False Positive Pulses

If pulses are erroneously detected [12] by a node in the listening state (L) such
that a false positive pulse in the Control Area corresponds to another false
positive pulse in the Localization Area (see Fig.3), then a false positive event is
produced. Once such a false positive event is generated, it is forwarded all the
way to the sink as a regular event, leading to a false positive event reporting. In
order to limit false positive events, we develop a novel Frame Protection Code
(FPC) mechanism for the proposed cellular pulse switching. An FPC is an M -
slot long protection code which is appended at the end of each frame (see Fig.3).
For a transmitted event (i.e. a pulse in the ith slot of the Control Area and
a pulse in a slot of the ith cluster of the Localization Area), the transmitter
node sends an additional pulse in the ith slot of the Protection Area. After the
reception of such a protected pulse, the receiver node checks whether the three
pulses respectively in the Control Area, the Localization Area and Protection
Area match with each other or not. If yes, the pulse would be forwarded by the
receiver in a next frame. Otherwise, the receiver simply declares an error.

Let False Positive Pulse Rate (FPPR) be the probability that a false positive
pulse is detected due to faulty UWB detection in a given time-slot. False Positive
Event Generation Rate (FPEGR) represents the probability of detecting at least
one false positive event per frame per node at a given cell. A node in cell i is
able to receive pulses forwarded by its neighboring cell n (1≤i, n≤M). As a
result, the vulnerable area for false positive events in the Control Area are all
slots except the ith slot, and that in the Localization Area is the (i + 1)th slot
of any slot-cluster except the ith cluster, and that in the Protection Area are
all slots except the ith slot if protection is enabled. In other words, there are
(M -1) vulnerable matching sets of slots in the Control Area, Localization Area
and Protection Area (with protection) respectively. The FPEGR at a node in
cell i can be expressed as:

FPEGR =

M−1∑
j=1

(−1)j−1

(
M − 1

j

)
pτj (2)

where p is the FPPR, M is the number of sensor cells in the network, j
(1≤j≤M − 1) notifies the number of false positive events generated in cell i,
and τ is the number of pulses in a frame (τ=2 without protection, τ=3 with

CPS 219

protection). Observe Eq.2, the quantity of FPEGR decreases with a higher τ .
Based on FPEGR obtained from numerical computation (from Eq.2) and sim-
ulation in Section 8.3, it is shown that FPC offers good protection from false
positive pulses by reducing the effective FPEGR. Note that FPEGR for any
sensor cell is same for the given FPPR.

7.2 Immunity from Pulse Loss

Pulse losses can manifest in the form of un-reported events. Such effects, however,
can be alleviated by exploiting the pulse transmission redundancy inherent to
pulse routing, e.g. turning off the functionality of pulse compression or increasing
the route diversity δ. More importantly, Response Mechanism can mitigate the
effects of pulse loss errors in that a node would retransmit a pulse for as many
times as possible until the successful pulse reception in a next-hop cell.

Let the Pulse Loss Rate (PLR) be the probability that a pulse is lost in a
given time slot due to multi-path, channel noise, or various types of interferences.
We analyze the case when the route diversity δ is 1. An event pulse in any cell
is represented by one pulse in the Control Area, one corresponding pulse in the
Localization Area and another corresponding pulse in the Protection Area (if
protection is enabled). Loss of any of these τ(τ=2 OR τ=3) pulses in a frame will
lead to the loss of the corresponding event. Therefore, the probability of losing
an event on any transmission hop (termed as e) is the same as the probability of
losing at least one of such τ pulses. This probability can be expressed as: e=1-
(1-PLR)τ . The following model expresses the relation between Pulse Loss Rate
(PLR) and the corresponding Event Loss Rate (ELR). Let ni represent a node
on the route of an event and pi represent the probability that the node ni fails
to receive the event due to pulse losses along the route from the event-source
to node ni. Let #i represent the sub-set of parent nodes of ni, such that: 1)
each node in #i belongs to a neighbor cell which forwards pulses to ni, and 2)
when a node in #i forwards a pulse, node ni is able to receive it. We assume the
quantity of the times of retransmissions is θk which can be very large. So the
probability that node ni fails to receive an event from a parent node nj for the
θk times can be written as pj+[(1-pj)e]

θk . Therefore, the probability that node
ni fails to receive the event can be written as:

pi =
∏
j∈�i

{pj + [(1− pj)(1 − (1− PLR)τ)]θk} (3)

For a given topology and PLR, pi for a node ni can be iteratively computed
starting from a pulse’s source node to the nodes in sensor-cells closer to the
sink along its route. When ni corresponds to the sink node, the quantity pi
represents the Event Loss Rate (ELR) for a given PLR. The results from simu-
lation, as shown in Section 8.3, and the calculation according to Eq.3 prove that
the response mechanism can indeed mitigate the effects of pulse loss errors on
ELR.

220 Q. Huo, B. Dong, and S. Biswas

8 Performance Evaluation

We developed an event-driven C++ simulator which implements MAC framing
and pulse routing using the UWB IR model as presented in Sections 4 to 6. A
network with terrain size of 10×10m2 with evenly distributed sensor nodes and
a sink node placed at the lower left corner of the terrain. Sensors are grouped
into 115 regular hexagonal cells, each containing 5 nodes in average. This section
presents simulation results for scenarios in which a static single event causes the
sensor to generate a single event pulse, which is transported to the sink using
the proposed routing and localization protocols. The route diversity is set to 1.

8.1 Pulse Transmission Count

Fig.5:a reports the number of pulse transmissions (i.e. with and without com-
pression) in cells that are at specific cell-counts away from the sink. Protection
is disabled. An event is generated at a cell which is 15 cell-count away from the
sink. The event is then routed to the sink using the presented Cellular Pulse
Switching (CPS) protocol. The resulting number of transmitted pulses within
the cells along the route is plotted in Fig.5:a. The x-axis corresponds to distance
of the cells along the route expressed as cell-count from the sink. Cell-count 1
represents the cell nearest to the sink and the highest cell-count represents the
source cell. For comparison purpose, we also present pulse transmission count
for the Hop-angular Pulse Switching (HPS) protocol reported in [6] applied to
the same network. The x-axis for HPS corresponds to distance of the event areas
along the route expressed as hop-counts from the sink. Hop-count 1 represents
the hop distance nearest to the sink and the highest hop-count represents the
source area for the HPS scenario. Although the event is generated at 10 hop-
distances away, the shortest route for CPS is 15-sensor-cell long. It is because
the size of a hop area in HPS is larger than that of a cell in CPS. For HPS,
the resolution and the sector-constraint are set to 30◦ and 1 respectively. For
CPS and HPS, the number of pulse transmissions in a sensor-cell (or hop area)
is equal to the forwarding node count in the corresponding sensor-cell (or hop
area) multiplied by the number of pulses in a frame.

As shown in Fig.5:a, the line corresponding to the CPS with no compression
case is flat across different cell-counts except for the cell-counts 1 and 15. All five
nodes in the sensor-cell corresponding to the cell-counts from 2 to 14 participate
in forwarding pulses. So multiplying the node count 5 by 2, which is the number
of pulses in a frame τ , results in 10 pulse transmissions. Pulse transmission count
in the cell-count 15 is 2 due to the fact that only one node in the source-cell sends
a pair of pulses in a frame. The sensor-cell in the cell-count 1 has 4 nodes. That
is the reason why the pulse transmission count in the cell-count 1 is 8 which is
slightly smaller than 10. With compression applied in CPS, the expected pulse
transmission count is reduced to a very small value due to the back-off process
(see Section 6.3). With such pulse compression, the pulse transmission count
stays around 2 for a sufficiently large back-off counter Rrnd.

CPS 221

1 5 10 15
0
5

10
15
20
25
30
35
40
45
50

Cell-count(CPS)
/Hop-count(HPS)

P
ul

se
 T

ra
ns

. C
nt

.

0

50

100

150

200

250

300

350

C
um

ul
at

iv
e

P
ul

se
 T

ra
ns

. C
nt

.

0 10 20 30
0

5

1

2

3

4

Spatial Compression Factor

E
xp

ec
te

d
P

ul
se

 T
ra

ns
.

C
nt

. P
er

 C
el

l

0

2

1

D
elay (10

2)
a) b) c)HPS/NC

CPS/NC

HPS/C

CPS/C
C

NC

C

NC

CPS HPS
Protocol

Pulse Trans. Cnt.

Delay

C:Compression; NC:No CompressionC:Compression; NC:No Compression

Fig. 5. Number of pulse transmissions and Impacts of spatial compression

Observe that the number of pulse transmissions in HPS maximizes at certain
intermediate hop-counts in the case of no compression. In HPS, pulse routing is
implemented in the form of constrained flooding with very few nodes participat-
ing in forwarding near the source and the sink nodes, and large number of nodes
participating in the middle. This explains the pulse count maximization near
the hop-count range from 4 to 6. As the compression case in CPS, the expected
number of pulse transmissions in HPS is also decreased to a very small value due
to the compression mechanism as outlined in Section 6.3. Because of this small
spread in the forwarding transmission count, the line corresponding to the case
of compression with HPS in Fig.5:a does not show an obvious maximum.

More importantly, the pulse transmission counts in HPS are much larger than
that in CPS for up to 10 hop-counts without compression in that the hop area in
HPS includes more nodes than a cell in CPS. With compression, the number of
pulse transmissions in HPS is slightly more than that in CPS, because the pulse
transmissions cannot be reduced much more when approaching to the minimum
pulse transmission count (e.g. 2). In this case, the effectiveness of compression
on reducing the pulse transmission count overrides that of CPS.

Fig.5:b reports the cumulative pulse transmission count along the entire route
in both CPS and HPS for the cases of compression and no compression. The
cumulative pulse transmission count of the single event in HPS is 2.23 times
greater than that in CPS without compression. With compression applied, the
cumulative number of pulse transmissions in HPS is only 1.07 times greater than
that in CPS, due to the effectiveness of pulse compression.

These results indicate that CPS can achieve better energy efficiency than HPS
by transporting events to the sink with lower number of pulse transmissions.
Since HPS was proven to be more energy-efficient than packet switching [6],
these results demonstrate that CPS can provide a more energy-efficient solu-
tion by replacing packet switching in applications involving binary event sens-
ing. Additionally, since the number of nodes within a cell in CPS is generally
smaller than that within a HPS hop-areas, CPS also offers better localization
resolution.

222 Q. Huo, B. Dong, and S. Biswas

8.2 Impacts of Spatial Pulse Compression

The spatial compression factor f sp
comp is defined to be equal to the quantity Rrnd,

which is the maximum value of a random back-off period. For a single event, the
performance of pulse compression is impacted by fsp

comp in terms of the expected
pulse transmission count per cell and the reporting delay for the event. The delay
is defined to be the time duration between the generation time of a single event and
thearrival timeat the sinkof thefirst pulse representing the event.We set the source
sensor cell at a distance corresponding to cell-count 15. Protection is disabled. Sup-
pose that all nodes in the intermediate sensor-cells participate in forwarding pulses
and the retransmission times θk is 1. According to Eq.1, the expected pulse trans-
mission count per cell (containing 5 nodes on average) decreases with increasing
f sp
comp. This trend is validated in Fig.5:c. Observe that the pulse count saturates
when fsp

comp increases approximately beyond 10. The delay, however, almostmono-
tonically increaseswith increasing fsp

comp, indicating the effects of increasedback-off
time. A suitable range of fsp

comp [5,10] can be chosen based on a desirable tradeoff
between the pulse transmission count and the event reporting delay.

8.3 Pulse Error Analysis

This subsection presents results for effects of pulse error occurrences and the
protection mechanism proposed in Section 7.

Impacts of False Positive Errors and Protection. The impacts of FPPR
on FPEGR in any sensor-cell, both with and without protection, are shown in
Fig.6:a. Observe that the simulation results do exactly match the FPEGR values
that are numerically obtained from Eq.2. In Fig.6:a, for both with and without
protection, FPEGR is extremely small within the practical range of FPPR (less
than 10−4) [13]. It indicates that for both with and without protection, the
proposed pulse switching protocol is fairly immune to false positive errors. Also
observe that for larger FPPR (i.e. larger than 10−4), it shows less sensitivity to
false positive errors with protection compared to that without protection.

10-5 10010-4 10-3 10-2 10-110-20

10-10

100

FPPR

F
P

E
G

R

NP/S,M
P/S,M

a)

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

PLR

E
LR

b) R,C,NP/S
R,C,NP/M

R,NC,NP/S,M

0.6 0.8 1
0

0.5

1

PLR

E
LR

c) R,C,P/S

R,C,P/M
R,NC,P/S

R,NC,P/M

10
-4

10
-2

10
0

10
-3

10
-10

0.5

1

PLR

E
LR

d) NR,C,NP/S
NR,C,NP/M

NR,NC,NP/S
NR,NC,NP/M

R:Response; C:Compression; P:Protection; NR:No Response;
NC:No Compression; NP:No Protection; S:Simulation; M:Model

Fig. 6. Impacts of Errors

Impacts of Pulse Loss
Error. Figs.6:b, 6:c and
6:d depict impacts of
PLR on ELR for a single
event generated at a dis-
tance corresponding to
cell-count 15. The route
diversity δ is set to 1. Ob-
serve that the results de-
rived from model (Eq.3)
and simulations match
quite well. For practical
range of PLR (less than
10−4) [13], the ELR for

CPS 223

all cases remains vanishingly small and it is generally insensitive to the value of
PLR. When response is disabled, ELR is higher with compression compared to
that without compression. It is because lower transmission redundancy leads to a
higher event loss probability. Although protection algorithm alleviates the effects
of false positive pulse detection, it may sometime aggravate the impacts of UWB
pulse losses due to that the value of e is greater with a higher τ (see Section
7). However, Response Mechanism offsets the side effects of Pulse Compression
and Protection algorithms. In other words, Response Mechanism contributes a
lot to decrease the ELR as low as zero when PLR is within the range [10−3,
0.8]. So the proposed response mechanism in Section 5.4 strengthens the system
reliability against high-rate pulse loss errors.

9 Conclusions

A novel cellular pulse switching protocol for ultra light-weight networking appli-
cations has been developed in this paper. A joint MAC-routing architecture for
pulse switching with a cellular event localization strategy was presented. The key
contribution of the presented architecture is to combine cellular event localiza-
tion with a pulse switching protocol in a manner that allows a receiver to localize
an event by observing the temporal position of a received pulse with respect to a
synchronized frame structure. Through analytical models and simulation based
experiments, it is shown that the proposed cellular pulse switching architecture
can be an effective means for transporting information that is binary in nature
with high energy efficiency and strong reliability against errors. Ongoing work
on this topic includes the investigation of network-wide fault scenario, and devel-
opment of implementations of an UWB impulse radio and an ultrasound based
pulse communication link.

References

1. Yuanjin, Z., Rui, C., Yong, L.: A new synchronization algorithm for UWB impulse
radio communication systems. In: Proceedings of ICCS (2004)

2. Farra, C., Park, G., Allen, D.W., Todd, M.D.: Sensor network paradigms for struc-
tural health monitoring (2006)

3. Jain, A., Gruteser, M., Neufeld, M., Grunwald, D.: Benefits of packet aggregation
in Ad-Hoc wireless network. Technical Report Technical Report CU-CS-960-03,
Department of Computer Science, Boulder, Colorado (2003)

4. Wang, Z., Bulut, E., Szymanski, B.: A distributed target tracking with binary
sensor networks. In: IEEE ICC Workshops, pp. 306–310 (2008)

5. Fragouli, C., Orlitsky, A.: Silence is golden and time is money: Power-aware com-
munication for sensor networks. In: Proceedings of Allerton Conference on Comm.,
Control and Computing (2005)

6. Huo, Q., Biswas, S., Plummer, A.: Ultra wide band impulse switching protocols
for event and target tracking applications. In: IEEE SECON, pp. 197–205 (2011)

7. Oh, E., B., K., Liu, X., Niu, Z.: Toward dynamic energy-efficient operation of
cellular network infrastructure. IEEE Communications Magazine 49, 56–61 (2011)

224 Q. Huo, B. Dong, and S. Biswas

8. Haykin, S., Moher, M.: Modern Wireless Communications. Prentice-Hall, Inc., Up-
per Saddle River (2004)

9. Win, M.Z., Scholtz, R.A.: Impulse radio: How it works. IEEE Communications
Letters (2) (1998)

10. Poucke, B., Gyselinckx, B.: Ultra-wideband communication for low-power wireless
body area networks. Industrial Embedded Systems Resources Guide (2005)

11. Task group, I..: IEEE 802.15 working group for wireless personal area networks
(WPANs) DS-UWB physical layer (2005)

12. Van Trees, H.L.: Detection, Estimation, and Modulation Theory - Part l. John
Wiley & Sons

13. Andreyev, Y., Dmitriev, A., Efremova, E., Khilinsky, A., Kuzmin, L.: Qualitative
theory of dynamical systems, chaos and contemporary wireless communications.
International Journal of Bifurcation and Chaos 15 (2005)

Asynchrony from Synchrony

Yehuda Afek1 and Eli Gafni2

1 Blavatnik School of Computer Science, Tel Aviv University
2 Computer Science Department, University of California, Los Angeles

Abstract. A synchronous message passing complete network with an
adversary that may purge messages is used to precisely model tasks that
are read-write wait-free computable.

In the past, adversaries that reduce the computational power of a
system as they purge messages were studied in the context of their ability
to foil consensus. This paper considers the other extreme. It characterizes
the limits on the power of message-adversary so that it cannot foil the
solution of tasks which are read-write wait-free solvable but can foil the
solution of any task that is not read-write wait-free solvable. Put another
way, we study the weakest message-adversary which allows for solving
any task that is solvable wait-free in the read-write model.

A remarkable side-benefit of this characterization is a simple, as sim-
ple as can be, derivation of the Herlihy-Shavit condition that equates
the wait-free read-write model with a subdivided-simplex. We show how
each step in the computation inductively takes a subdivided-simplex and
further subdivides it in the simplest way possible, making the character-
ization of read-write wait-free widely accessible.

Keywords: shared memory, distributed algorithms, wait-free, subdi-
vided simplex, asynchronous computability.

1 Introduction

The seminal FLP result [15] shows that in a message-passing system with the
possibility of a single processor failing by stopping (1-resilient system) consensus
is not solvable. From a programmer’s point of view this allows her to instruct
processors to wait to receive messages from all processors but one (we assume
the number of processors, n satisfies n > 2). That is, she may write her program
to progress in rounds where in each round a processor sends a message to all
and then waits to receive messages sent at this round from all but one processor.
Thus she can view the model of computation as a synchronous system with a
message-adversary that is allowed to purge at most one message incoming to
each processor in a round. From FLP it follows that such a message-adversary
can foil consensus. It is easy to see that if we change the message-adversary so
it can purge any but at most n − 2 messages in a round then consensus could
be reached.

Thus, we are led to consider a message-passing systems on n processors that
progress in rounds. In each round all processors send to all. There is a syn-
chronous indication of an end of a round. If pi did not receive a message from pj

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 225–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

226 Y. Afek and E. Gafni

by the end of the round it has to be attributed to an adversary that purged the
message. We consider adversaries as a constraint on the message pattern they
may purge. This constraint applies uniformly to all rounds, and the patterns the
adversary may purge in a round is independent of what it actually purged in
previous rounds.

Clearly the weaker the message-adversary, the more tasks the programmer
can solve, and vice versa, the more powerful adversary, the more it can purge,
the less tasks the programmer can solve.

In this paper we introduce a general definition of message-adversaries and
investigate the relations between the adversaries power and the tasks that may
be computed in their presence. Specifically we identify the weakest message-
adversary with which any task that is wait-free solvable in a read-write shared
memory system is solvable in a synchronous network governed by that message-
adversary. To recap, we consider a complete synchronous message passing di-
rected network employing a full information algorithm by which each processor
in each round sends all its history to all, and by the end of the round collects
all the messages that have arrived on its links, i.e., those that were not purged
by the adversary. In each round the adversary may remove a subset of the mes-
sages that have been sent. The subset removed in one round is independent of
the subsets removed in previous rounds. Furthermore, the removal of a message
might be asymmetric, a message removed on a link in one direction does not
imply the removal of the message in the other direction.

To specify an adversary AD in a round we view a successful message from
processor pi to processor pj as a directed edge from node i to node j. An adver-
sary AD is a set of directed graphs such that in each round there is a digraph
G, G ∈ AD such that the message sent on each link in G, successfully reaches
the other side. Notice, the adversary is restricted not to purge more than it
is allowed, but can always leave more successful messages, i.e., the successful
messages may induce a graph H such that ∃G, G ∈ AD which is a subgraph
of H .

For instance, the message adversary AD-1-res(incoming), corresponding to 1-
resilient systems is specified by all the directed graphs on n nodes in which the
in-degree of each node is n − 2. Thus it takes (n − 1)n graphs to specify this
adversary.

An adversary AD characterizes the asynchronous shared-memory model M ,
if all the tasks it allows to solve are exactly all the tasks solvable by M . In
this paper we restrict our attention to message-adversaries that characterize
the class of tasks are wait-free solvable in an asynchronous read-write shared-
memory (RWWF) model. We show that the adversary that captures RWWF
is the Traversal Path, TP adversary. The TP adversary can remove any set of
messages in a round as long as the directed graph induced by the messages it
leaves behind is a not necessarily simple, path of messages that goes through
all the nodes (i.e., TP contains all possible paths that satisfy the above). Notice
that TP satisfies the property that it leaves messages such that for any pair pi,

Asynchrony from Synchrony 227

pj of processors there is a directed path of messages left that leads either from
pi to pj or from pj to pi or both. This property will play a key role in the sequel.

There are many adversaries which characterize RWWF, of which TP is the
strongest. We show this by presenting an equivalence between a few we are in-
terested in. Two adversaries are equivalent if any task solvable by one is solvable
by the other and vice versa. If we have two adversaries AD1 and AD2 that char-
acterize RWWF then adversary AD1 ∪ AD2 also characterizes RWWF. That
follows because sets from at least one collection must be used infinitely often
and that will allow for simulating a write. Thus there exists the most powerful
adversary that still allows the system to characterize RWWF. The adversary TP
is the most powerful. Any more powerful adversary can purge messages leaving
no Traversal Path that goes through all the nodes. It is not hard to see that this
means the existence of pi and pj where the adversary can prevent forever a chain
of messages in any direction between them. Many read-write solvable tasks are
not solvable without pi knowing the input of pj , or pj knowing the input of pi
(e.g., snapshot).

A very weak adversary is TOUR (for TOURnament). The adversary TOUR
may purge just a single message on each of two antiparallel links, in a round. It
will play an instrumental role as we prove that the adversaries TOUR and TP
are equivalent.

Adversaries are very simple creatures. They are independent from round to
round. They do not involve any notion of “eventually.” We can easily see that
we do not necessarily need to describe an adversary by its behavior in a single
round. In fact, if we take any fixed consecutive number of rounds k and describe
what the adversary can do in these round, we get an adversary equivalent to a
single round adversary. Indeed, we take adversary TOUR and “spread” it over
k = n(n − 1)/2 rounds where n is the size of the network, to get adversary
PAIRS. The adversary PAIRS chooses a pair of nodes pair in a round, and each
directed edge between the two is an a directed graph in PAIRS for this round. It
may delete all messages not sent between processors in pair. Of the two messages
between pair it has to leave unpurged at least one message. Over k rounds it
“services” all possible pairs of processors. Notice, PAIRS is still independent
between sets of k rounds, and is used as a tool show the equivalence of TOUR
and a subdivided simplex.

Why is PAIRS interesting? We consider a geometric depiction of all the possi-
ble evolutions of processors’ local states with adversary PAIRS. At the beginning
each processor has its initial state and we depict this configuration as a simplex
(generalization of triangle to higher dimensions) in an appropriate dimension. In
round 1, when PAIRS chooses a pair, 〈pi, pj〉 the state of a processor not in 〈pi,
pj〉 does not change, it is the initial view plus the information that one round
passed. A round in which it received no message. The views (states) of pi and
pj split - at least one or perhaps both receive a message from each other. To
capture this, in the depiction of a copy of the original simplex we split the edge
connecting 〈pi, pj〉 into three segments, by planting the views of each receiving
a message from the other (see Figure 1.a). Thus the original edge pi, pj splits in

228 Y. Afek and E. Gafni

the new copy into three consecutive edges: (pi
′, pj ′′), (pj ′′, pi′′), (pi′′, pj ′). Here a

prime represents a state in which no message was received, while a double prime
corresponds to a state in which a message was received. Notice that the fact that
at least one message between 〈pi, pj〉 is not purged precludes the combination
of views (pi

′, pj ′).
Thus, after one round we can depict the collection of possible views as three

simplexes (see Figure 1.a): Each of the new segments together with the rest of
the views pl

′, l �= i, j. A simplex now is a combination of views possible after one
round. We have three combinations. If we do this depiction “in place” by planting
the new nodes pj

′′ and pi′′ on the former edge pi, pj and leaving all single primes
nodes in their former place without a prime, what we did is we subdivided the
simplex (triangulated a triangle). Continuing this process inductively we realize
that all the computations of PAIRS after any number of rounds can be depicted
as a subdivided simplex.

As we show that PAIRS is equivalent to TOUR which is equivalent to TP
and hence allows to solve all the RWWF tasks, and only RWWF tasks. Thus a
model that characterizes exactly RWWF corresponds to a subdivided simplex.

This simple result, that some full-information model that characterizes
RWWF is a subdivided simplex, which can now be easily presented to undergrad-
uates, has been one of the most important results in distributed computing [21].
Two decades after the discovery of the result it can be explained now in an
elementary way. Another derivation in [11] uses a similar thrust of “in-place”
subdivision, but the subdivision there is quite complex compared to the one at
hand. It is surprising to us that subdivision of edges is “universal” in that it can
replace the “colored” analog of the barycenteric subdivision [27].

Independent of the simple topological result our adversaries yield, this line of
investigation also leads to a new classification, left to come, of network topolo-
gies. Given a network, and a message-adversary that allows for solving RWWF
solvable tasks, are there tasks not solvable wait-free in the read write model
which it necessarily can solve? Like ABD which solves more than RWWF tasks,
characterizing RWWF in a non-complete network may restrict the adversary
and consequently increase the power of the system to solve tasks not in RWWF.

For instance, to arrive at an adversary that characterizes exactly RWWF we
use the complete network topology. It can be easily seen that if we consider
an underlying network topology which is a single simple undirected path (each
end point knows it is an end point), an adversary that characterizes RWWF
necessarily solves 2-set consensus. Because, a processor can output one of the
two end nodes of the path as a traversal path has to start with one of these
two nodes and with at least one of them infinitely often. Thus, how does the
power of the adversary that characterizes RWWF changes as we move along the
spectrum, from complete network to a line network?

1.1 Related Work

The closest we can recall studies of computational power against synchronous
message adversary is in the context of Byzantine agreement in the presence

Asynchrony from Synchrony 229

of an adversary that corrupts messages rather than processors [14]. Similarly,
many papers touch on the communication requirements to achieve consensus.
Indeed, when a communication link is either up in both direction, or down in
both directions, we either have connectivity and consequently consensus, or we
have disconnected components with no coordination among them.

“Scenarios” of message faults in a round that can foil consensus in such a
system were extensively studied in the past [13,29,30,32], and references there in,
to name just few studies. By “scenarios” we mean some “special” predicate, e.g.,
how many send faults, how many receive faults, how many nodes are involved
in the faults, etc.

This paper diverges from previous studies in two aspect: First, it studies a
different computational model than consensus, and second, it studies a more
general definition of adversary.

The current paper shows that TP can (nonblocking) emulate the read-write
wait-free model, and vice versa. This result is in contrast to the celebrated
ABD emulation [7] that shows how message-passing system can emulate shared-
memory. Indeed, this emulation is more powerful than ours. The emulation of
each read or write operation is independently wait-free. Our emulation of reads
and writes is non-blocking. Some processor will progress. This is unavoidable in
our context as the adversary is independent in what it does from round to round.
Hence if it is allowed to make pj unreachable from pi by a path of messages in
one round, it do so in all rounds thus making pi forever invisible to pj . There-
fore, pi cannot progress without knowing the output of pj . Yet, we observe that
non-blocking emulation suffices to solve tasks. Consequently with TP we are
able to emulate RWWF and no more. In contrast the ABD emulation pays for
the wait-freedom of the read write emulation - the ABD emulation that solves
RWWF solves much more. In fact, the ABD emulation is powerful enough to
solve n/2 set consensus. After hearing from n/2 processors a processor outputs
the minimum value it has heard about.

In [22] Kuhn, Lynch, and Oshman study dynamic networks that are also
governed by an adversary. In their case the adversary can erase edges (commu-
nication in both directions or none) and they restrict the adversary to various
types of eventually connected network [3,4], called T-interval connectivity. While
such a network can solve the consensus problem they investigated the complex-
ity of key distributed computing problems such as determining the network size,
and computing any function on the ids of the processors (e.g., leader election =
consensus).

That the protocol complex of models that solve exactly RWWF task contains
an image of a subdivided simplex was first established by Herlihy and Shavit [21].
In [11] this result was shown using the iterated model notion and immediate
snapshot tasks. It assumed without proof that the immediate snapshot task is a
subdivided simplex.

Paper organization: The paper is organized as follows. In the next section we
discuss the model of synchronous dynamic network with message adversary in
more detail. We then, as a warm-up, show “procedurally” how our TP adversary

230 Y. Afek and E. Gafni

implements Read-Write. In a subsequent section we rely on previous work that
shows that the iterated snapshots (IS) model [11, 18] solves exactly any task
that is RWWF solvable. Then in a declarative manner of tasks implementing
tasks, we show TP in complete networks is equivalent to IS. Subsequently, in
Section 6, we introduce PAIRS which can be easily seen to be equivalent to TP.
We then show in elementary inductive way how PAIRS gives rise to a protocol
complex [21] which is precisely a subdivided simplex. In Section 6 we detail the
construction for n = 3 and in the appendix the construction is detailed for an
arbitrary n. Finally we close with conclusions.

2 Model

This paper deals with the relations between two basic models in distributed
computing, the asynchronous read-write shared-memory, and the synchronous
message passing with message delivery failures. In both there are n processors,
p1, . . . pn. In the shared memory case we consider the standard model [19] in
which all communication between processors is via writing to and reading from
shared single-write multi-reader atomic registers.

The network model we assume is synchronous complete network (unless stated
otherwise) in which in each round each processor sends its entire history to all
its neighbors i.e., all the other nodes in the network. In each round an adversary
may purge a subset of the messages sent. All other messages are received by their
destination by the end of the round. Depict a message successfully delivered
from pi to pj in a round as a directed edge from pi to pj . The collection of
directed edges in one round is called the round communication graph (RCG).
The adversary is specified by a property that must be satisfied by any directed
graph RCG it can create. The strongly connected (SC) adversary, is the one
in which at each round the RCG must be a strongly connected directed graph
spanning all the nodes. In the Traversal-Path (TP) adversary, the RCG in each
round must contain a directed (not necessarily simple) path starting at one node
and passing through all the nodes. A dynamic network ruled by an adversary Γ
is called Γ -dynamic network.

We extensively use an adversary we call TOUR, defined only with respect to an
underlying complete network. Its predicate is that RCG contains a tournament.
In other words, of the two messages on a link sent in a round TOUR can purge
at most one. For complete networks TOUR and TP are shown equivalent (with
respect to the tasks each can solve, as defined in the Introduction).

We consider only adversaries whose behavior is oblivious to the processor ids,
i.e., independent of the processors ids. Whether a graph is a valid RCG for the
given adversary is invariant to renumbering of nodes.

A task [21] is a distributed computational problem involving n processors.
Each participating process starts with a private input value, exchanges infor-
mation with other participating processes and eventually outputs a value. The
task is specified by a relation Δ that associates with every input vector

Asynchrony from Synchrony 231

(one element per participating processor) a set of output vectors that are allowed
given this input. See [21] for a more formal definition of a task.

We now describe the meaning of computation in a synchronous dynamic net-
work. An input is an abstract “my item.” Computation evolves in synchronous
rounds. In the first round each processor sends a message consisting of a pair
(my id,my item) to all neighbors. Some messages get through some are deleted
by the adversary. The messages that make it through have to comply with the
predicate Γ that defines the RCGs that the adversary must maintain. In every
subsequent round inductively a node sends a message with all its history to all its
neighbors. A protocol to solve a task T with an adversary Γ is associated with a
number k, and after k rounds, in which in the initial round my item is instanti-
ated to the senders input, each processor takes its history andmaps it to an output
of T . The protocol solves T if under the condition that in every round the com-
munication graph RCG agrees with Γ then the outputs of all processors are valid
combination through Δ with respect to the initial items which are the inputs.

Interchangeably, we will view a round as a task: The abstract “item” is the
processor id, and the output of a node/processor is a set of ids (i.e., the first
message above is now (my id,my id)). The task is then defined through a pred-
icate on the combination of returned sets. Obviously, any variant of a model of
“iterated shared memory” [16] can be captured by such a task, and consequently
as an adversary in our network. Notice that the view of a task as being “invoked”
by a processor or not is mute when we compute in synchronous networks. Pro-
cessors do not “crash,” they always are together in a round. It is just that some
may not be observed by others in a round. Thus, say, t-resiliency is an adversary
whose RCG has a strongly connected component (SCC) of size at least n − t,
and this SCC is a source SCC in the graph of the RCG.

3 TOUR Network Solves RWWF - Direct Argument

In this section as an informal warm-up and for self containment we show a direct
implementation of asynchronous read-write wait-free by a TOUR network. To
show that TOUR solves every task solvable in RWWF, it is enough to show that
TOUR emulates RWWF in a nonblocking way. After taking enough steps even-
tually there is a processor that generates an output. From there on, processors
“ignore” this processor, i.e., continue the task emulation without ever waiting on
the processor that has terminated. Therefore, some other processor progresses
until producing an output in the non-blocking emulation. This process continues
inductively until all processors have produced an output and terminate.

In the next section we achieve the same by reduction, hence the informality
in this section. In the next section we also show that TOUR is equivalent to TP,
thus TP solves RWWF as well.

How does TOUR simulate a single-writer multi-reader system? Suppose, in
round 1 each processor pi sends 〈pi, itemi〉 to all neighbors. In round 2 each
processor just forwards the items it received to all its neighbors. A new combi-
natorial result by Linial and the authors [5] shows that even though the TOUR’s

232 Y. Afek and E. Gafni

RCG in round 2 is not the same as the RCG in round 1, nevertheless there exists
at least one processor called king whose item has reached all. But how does a
processor know its item has reached all? At the end of a round in which all the
messages it receives contain its item, it knows that all processors have its item.
Those processors from whom it receives a message have its item because they
sent it to him. Those from whom it did not receive a message have it as at least
at this round they must have received it, since if TOUR purged the message to
it, then in this round it could not purge the message from it. Thus, in round 3,
at least the king processor knows its item has been received by all.

It is now easy to see how to emulate the SWMR system: To write, processor
pi sends the value it writes as a new item. All processors forward in each round
all the items they have ever received or that originated from them. Of course,
the next new item a processor sends is tagged by its id and a sequence number,
indicating what number of write it is for that processor. Thus each processor
can order all the items it received that originated from the same processor.
Processor pi finishes its kth write when it learns as above that its kth item has
been received by all.

To read, a processor takes all the highest index items it knows from each
other processor (taking the initial value for processors it did not hear from),
and treating this collection of n items as a single item, which it now writes, i.e.
continues until it knows everybody saw all the items it is reading.

Obviously, a write of an item is linearized to the end of the first round in
which its writing terminates or its read terminates. A read by a processor is
linearized at the end of its read operation.

As argued above, progress is guaranteed, at least one process finishes writing
and then reading. Thus eventually at least one processor has alternately read
and wrote enough times so that it produces an output. It then writes this output.
After its write we do not need to specify what it does. From now on it can be
ignored as the rest of the processors continue as a smaller system with a TOUR
adversary. Hence a new processor will do enough writes and reads to obtain an
output, and the process continues inductively until all processors produce an
output.

We now show that SWMR implements TOUR. Notice that the SWMR steps
can be “stripped” into rounds by tagging each write with its round number, and
keeping the entire sequence of writes of pi in its SWMR register Ci. To simulate
a send by pi of item item in round j, processor pi appends to its SWMR cell Ci

the pair 〈j, item〉. After the send it simulates receiving messages in round j by
reading one by one in some order all cells Cl, l = 1, ..., n. If cell Ck contains a
pair 〈j, item′〉 it simulates receiving a message from pk at round j containing
item′. Since in shared memory if pi and pk both perform write and then read,
either pi observes pk’s write, or pk sees pi’s write or both, in the simulation of
round j. Thus we have that a stripped round of SWMR is an instance of TOUR:
There is at least one message simulated between pi and pk at round j.

Asynchrony from Synchrony 233

4 TOUR Network Solves RWWF - Via Reduction

Here we show that TOUR network is equivalent to the iterated atomic snapshot
(IAS) model. Together with the result of [18], that shows that IAS is non-
blocking equivalent to the asynchronous SWMR model, this reduction proves
that TOUR solves RWWF and no more. The IAS model consists of a bank
of atomic snapshot memories M1,M2,M3, To compute, a processor writes
(submits) a value to memory Mi, starting with i = 1, and then obtains an
atomic snapshot Si of Mi, it then writes to memory Mi+1, and so forth until it
is ready to output. In the full-information protocol a processor originally writes
its input to M1 and from there on submits its output from Mi as an input to
Mi+1.

The snapshot task implements a round of TOUR network: The items submitted
to the snapshot are the messages in a round. If pi in the snapshot task returns
the item of pj (or pj for short) we consider it that the message from pj to pi was
successful. Since snapshot is an instance of shared memory pairs of processors
do not miss each other, and RCG contains a tournament. Thus, the snapshot
task implements one round of TOUR.

TOUR network implements a snapshot: To show that TOUR implements snap-
shot we borrow the algorithm from [18]. Although that algorithm was given in
the context of AS it also works for TOUR network. We go through n rounds of
TOUR. As before, in each round a processor pi sends to all other nodes all the
ids, Si, it has obtained by now. Let Sj [k] be the the set Sj at processor pj the
end of round k. Then, if at the end of round �, |Sj [�]| = �, pj returns Sj [�].

Claim. The sets Si, i = 1, . . . n thus returned in the above algorithm are snap-
shots. I.e., ∀i, pi ∈ Si and ∀(i and j), Si ⊆ Sj or Sj ⊆ Si.

Proof. By induction. Assume that by the end of round k − 1 at most k − 1
processors returned and they returned snapshots, and all the processors which
did not return have sets containing the largest (snapshot) set returned so far
and all the sets are at least of size k at the beginning of round k.

Observe that the inductive assumption holds at the end of round k = 1. First
we show that at round k > 1 only a single set can be returned. Since each of the
pair pi, pj has a set of size k or more (i.e., |Si[k − 1]| ≥ k and |Sj [k − 1]| ≥ k),
and one of them at least hears from the other, then if processor pi returns then
it saw only sets identical to his own (Si[k− 1]), so either pj does not return if it
has a different set, or it returns since it has the same set.

If pi returns, then it received messages only from processors with a set identical
to his (Si[k− 1]), thus |Si[k − 1]| = k) that pi returns was sent to all processors
who do not have an identical set, consequently they either heard already of k+1
items or they heard about k items and Si adds at least one more since it is
different. Thus the hypothesis that the set that continue to round k+ 1 contain
Si if Si was returned is maintained. establishing containment.

Since processors heard about themselves and the maximum size returned by
now is k then the number of processors returning in round k is at most k.

234 Y. Afek and E. Gafni

Obviously, as in the end of the previous section, task AS implements a round
of TOUR. Thus we have established that TOUR-dynamic is equivalent to IAS
which solves exactly the class RWWF.

5 TP is Equivalent to TOUR

TP implements TOUR We first show that 2n − 1 rounds of TP implements
TOUR round. In each round a processor pi sends to all its neighbors the set Hi

of inductively all the ids it has heard so far, starting by setting Si = {pi} in the
beginning of first round, and sending Si. At the end of each subsequent round
it just sets Si to the union of his set with all the sets it received in the round.

Claim. After 2n − 1 rounds for every pi and pj, either pi ∈ Sj , or pj ∈ Si, or
both.

Proof. Let Hi at the end of a round be the set of nodes pk such that pi ∈ Sk. If
neither pi ∈ Hj nor pj ∈ Hi, then, using Sperner Lemma [31] for dimension 1,
in the next round of TP a message is successful from either a node in Hi to a
node not in Hi or from a node in Hj to a node not in Hj , or both. Thus in each
round the size of at least one of the sets Hi and Hj increases by one.

TOUR implements TP We show that a round of TOUR is a round of TP. Let G
be the RCG of a round of TOUR. Thus is contains a tournament G′. Consider
SCC(G′) - the graph of the strongly-connected-components of G′. Obviously
SCC(G′) is an acyclic tournament and we can topologically sort it, where there
is an edge leading from one component to the next in the topological order,
establishing the requirement.

6 TP Network Colors a Subdivided Simplex

To show that the outputs of a multi round execution of TP network colors
a subdivided simplex we show that PAIRS-dynamic implements TP, and show
that the outputs of PAIRS color a subdivided complex. We show the equivalence
of TP to PAIRS, by showing that PAIRS is equivalent to TOUR. That the latter
is equivalent to TP has been shown in Section 5.

Recall the definition of TOUR: In the TOUR adversary in each round on each
edge at least one message is delivered in one direction or both directions. In the
PAIRS adversary we spread TOUR over n(n− 1)/2 rounds where in each such
round a message is sent in both directions of one unique edge and at most one
of these two messages may be purged.

Clearly, TOUR implements PAIRS by going n(n − 1)/2 rounds and at each
round ignoring anything which is not associated with the particular edge of the
round. To see that PAIRS implements TOUR, we emulate rounds of TOUR
one after the other. Each round of TOUR is emulated by n(n− 1)/2 rounds of
PAIRS. In each such round of PAIRS, if a processor sends it sends what it sent

Asynchrony from Synchrony 235

the first time it was scheduled in this round-of-TOUR emulation. At the end of
the n(n− 1)/2 rounds a processor just collects all the messages it has received.

6.1 The PAIRS Protocol-Complex at an End of a Round

Here we show that the protocol-complex of PAIRS is a subdivided complex.
Keeping the exposition simple, we avoid unnecessary formalism and notation by
restricting this section to n = 3. The n = 3 case generalizes to higher n’s in
a straightforward way. For completeness we repeat the construction given here,
but for arbitrary n in Appendix A.

Consider all the possible local states of the 3 processors p0, p1, p2 after round
r and make a graph Gr out of it. The nodes of Gr are the pairs of processor-id
and its possible local state at the end of round r. Two nodes are connected by
an edge between them if there exists an execution E, that is an instantiation of
the PAIRS adversary in rounds 1 to r, such that the corresponding processors
are in the corresponding states. Assume inductively that Gr is a 3-colored trian-
gulated triangle. Notice the colors here are the processor ids (not to be confused
with other additional colorings of the complex used in some proofs, such as the
impossibility of set-consensus, where the colors are the outputs of the processors
in each final state).

The process starts with a triangle of the 3 processors in their initial state.
Let round r+1 be a round in which messages are sent (only) on link (pi, pj).

How does the different behaviors of the adversary in round r + 1 change the
graph/simplex? First, for round r + 1 subdivided simplex Gr+1 start from a
copy of the subdivided simplex Gr of round r. Each node that corresponds to
a process pk different than pi or pj remains the same in the new subdivided
simplex except now it corresponds to the same state of process pk as in the
previous round with the additional knowledge that one more round has passed.
In place of each (pi, pj) edge we get now a path of 3 edges (pi, p

′
j), (p

′
j , p

′
i), (p

′
i, pj).

The first node in the new path is a pi node with a state in which pi appends to
its local state from round r that it did not receive a message from pj in round
r + 1. Analogously, the node pj at the other end of the path. The nodes in the
middle, p′j and p′i, are nodes in which the corresponding processor appends to
its state from round r the content of the message it received in round r+1. The
nodes corresponding to the third processor pk have only one new incarnation
from Gr to Gr+1 as pk records that it did not receive any message in the round,
and as said, that one more round, round r+1 has terminated. Obviously a node
of type pk that was connected to a (pi, pj) edge at the end of round r is now
connected to the four nodes of the path that replaces the (pi, pj) edge in Gr. See
Figure 1(a).

For example, consider this process of graph evolution by drawing Gr+1 in
the plane (Figure 1(a)). Initially the graph is the triangle of the initial states.
Assume the first round of the PAIRS schedule is sending messages on edge (1, 2).
To construct the graph corresponding to this round take the (p1, p2) edge and
replace it by a path by planting two middle nodes on the edge, denoting the new

236 Y. Afek and E. Gafni

0

0

0

00

0
0

0

1
1

1
1

2

22 2

22

2 2

0

0 0

21

1

1

1

2

(a)

0

2
2 1

1

(b) (c)

Fig. 1. A 3 processors, 3 rounds subdivision example. The order edges on which mes-
sages where exchanged is (1, 2), (0, 1), (0, 2). (a), (b) and (c) are the corresponding first,
second and third split operations.

local states by the original (p1, p2) to get an alternating path of p1, p2, p1, p2. We
now connect the middle nodes with node p0, and we got G1.

Inductively, we embed the initial triangle in the plane, it is 3-colored by the
3 ids. In any inductive step we embed node on an edge and connect them to the
third node in the triangles the edge is in. Obviously we have an embedding and
the corresponding triangilated triangle is 3-colored, and the original edges of the
triangle we started with are now a face which is 2-colored by the colors pi, pj
defining the original egde.

7 Conclusions

We have extended the study of message-adversary [13, 29, 30, 32] in generalizing
the notion of an adversary, and studying it at the other “extreme” than it was
studied in the past: Instead of studying what limits must be put on the adversary
so that every task is solvable (consensus [15, 19]), we studied what limits must
be put on the adversary so that the weakest tasks of interest are solvable - those
that are solvable read-write wait-free.

We showed the benefit of such a “theoretical study” by showing that it yields
the simplest-ever explanation of why read-write wait-free equates with subdi-
vided simplex.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merrit, M., Shavit, N.: Atomic Snapshots
of Shared Memory. In: Proc. 9th ACM Symposium on Principles of Distributed
Computing (PODC 1990), pp. 1–13. ACM Press (1990)

2. Afek, Y., Attiya, H., Fouren, A., Stupp, G., Touitou, D.: Long-Lived Renaming
Made Adaptive. In: PODC, pp. 91–103 (1999)

Asynchrony from Synchrony 237

3. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an eventu-
ally connected network (Extended Abstract). In: Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing, PODC 1984, Vancou-
ver, British Columbia, Canada, pp. 278–281 (1984)

4. Afek, Y., Gafni, E.: End-to-end communication in unreliable networks. In: Pro-
ceedings of the Seventh Annual ACM Symposium on Principles of Distributed
Computing, PODC 1988, Toronto, Ontario, Canada, pp. 131–148 (1988)

5. Afek, Y., Gafni, E., Linial, N.: A King in two tournaments (submitted for publi-
cation)

6. Afek, Y., Stupp, G., Touitou, D.: Long-lived Adaptive Collect with Applications.
In: FOCS, pp. 262–272 (1999)

7. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message-Passing
Systems. J. ACM 42(1), 124–142 (1995)

8. Bar-Noy, A., Naor, J.: Sorting, Minimal Feedback Sets and Hamilton Paths
in Tournaments. SIAM Journal on Discrete Mathematics 3(1), 7–20 (1990),
doi:10.1137/0403002.

9. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient
Asynchronous Computations. In: Proc. 25th ACM Symposium on the Theory of
Computing (STOC 1993), pp. 91–100. ACM Press (1993)

10. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming (Ex-
tended Abstract). In: PODC, pp. 41–51 (1993)

11. Borowsky, E., Gafni, E.: A Simple Algorithmically Reasoned Characterization of
Wait-Free Computations (Extended Abstract). In: Proc. 16th ACM Symposium
on Principles of Distributed Computing (PODC 1997), pp. 189–198. ACM Press
(August 1997)

12. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG Distributed Simulation
Algorithm. Distributed Computing 14(3), 127–146 (2001)

13. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed sys-
tems with benign faults. Distributed Computing 22(1), 49–71 (2009)

14. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
JACM 32(1), 191–204 (1985)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

16. Gafni, E.: Round-by-Round Fault Detectors, Unifying Synchrony and Asynchrony
(Extended Abstract). In: PODC, pp. 143–152 (1998)

17. Gafni, E., Koutsoupias, E.: Three-Processor Tasks Are Undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

18. Gafni, E.: The 0–1-Exclusion Families of Tasks. In: Baker, T.P., Bui, A., Tixeuil,
S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 246–258. Springer, Heidelberg (2008)

19. Herlihy, M.P.: Wait-Free Synchronization. ACM Transactions on programming
Languages and Systems 11(1), 124–149 (1991)

20. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying Synchronous and Asynchronous
Message-Passing Models. In: PODC, pp. 133–142 (1998)

21. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computabil-
ity. Journal of the ACM 46(6), 858–923 (1999)

22. Kuhn, F., Lynch, N., Oshman, R.: Distributed Computation in Dynamic Graphs.
In: 42nd ACM Symposium on Theory of Computing (STOC 2010) (2010)

23. Lamport, L.: On Interprocess Communication. Part II: Algorithms. Distributed
Computing 1(2), 86–101 (1986)

238 Y. Afek and E. Gafni

24. Landau, H.: On dominance relations and the structure of animal societies, III: The
condition for score structure. Bulletin of Mathematical Biophysics 15(2), 143–148
(1953)

25. Moran, S., Wolfstahl, Y.: Extended impossibility results for asynchronous complete
networks. Inf. Process. Lett. 26(3), 145–151 (1987)

26. Moses, Y., Rajsbaum, S.: The Unified Structure of Consensus: A Layered Analysis
Approach. In: PODC, pp. 123–132 (1998)

27. Munkres, J.R.: Elements of algebraic topology. Addison-Wesley (1984)
28. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology

of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)
29. Nicola, S., Peter, W.: Time is Not a Healer. In: Cori, R., Monien, B. (eds.) STACS

1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)
30. Nicola, S., Peter, W.: Agreement in synchronous networks with ubiquitous faults.

Theor. Comput. Sci. 384(2-3), 232–249 (2007)
31. Sperner, E.: Fifty years of further development of a combinato-

rial lemma. In: Numerical solution of highly nonlinear problems
(Sympos. Fixed Point Algorithms and Complementarity Problems,
Univ. Southampton, Southampton), Part A, pp. 183–197, Part B,
pp. 199–214 (1979)

32. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for con-
sensus under link failures. SIAM Journal on Computing 38(5), 1912–1951 (2009)

A The PAIRS Subdivided Complex

For the sake of completeness we follow here the arguments given in Section 6
and show somewhat more formally that the PAIRS model when executed for
k = f(j) rounds implies a subdivision of the input complex. The argument
here is for arbitrary n. Each elementary simplex in the subdivision corresponds
to a particular k rounds execution of PAIRS, i.e., a particular instantiation of
the adversary. The number of iterations, k = f(j) is taken as the number of
rounds required by the PAIRS in the worst case to emulate a complete wait-free
execution of a task under consideration (see Section 3).

W.l.o.g, instead of subdividing the input complex we create a subdivision
T of an n-vertex simplex P , corresponding to an input less initial configuration
simplex. Every vertex v in T is associated with a processor’s name χ(v). Distinct
vertices at the same simplex of T are associated with distinct processors, so that
χ is a proper coloring of the graph which is T ’s one-dimensional skeleton. Clearly,
initially χ is a proper vertex coloring of P . In addition, the construction of T is
such that χ has the Sperner property i.e., if vertex y ∈ V (T) is on P ’s boundary
and if σ is the lowest-dimensional face of P that contains y, then χ(y) = χ(x)
for some vertex x of σ.

Lemma 1. Given the PAIRS model on n processors, and k the number of rounds
executed by the model, then there is a subdivision T of the n-vertex simplex P
with proper coloring χ of V (T), the vertices of T . Such that each simplex in
the subdivision represents the final states of the n processors at the end of the
execution. The coloring χ : V (T)→ {0, . . . , n− 1} satisfies Sperner’s condition.

Asynchrony from Synchrony 239

Proof. We go through a sequence of subdivision refinements, Ti, i = 0, . . . , k,
where, P = T0, Ti+1 is a subdivision refinement of Ti that corresponds to all
possible behaviors in the i′th round of the PAIRS adversary, and Tk = T . Thus
we go repeatedly over the sequence of edges in the order in which PAIRS goes
over them, for k steps. In each step we consider the three possible behaviors of
the adversary on the corresponding edge (one message delivered in one direction,
in the other direction or in both). The resulting T is finite, with 3k simplices.
T0 = P is properly colored by χ : V (P) → {0, . . . , n− 1}, i.e., each vertex is

associated with the processor id which is its color, and with its initial state. Every
refinement step consists of several xy-split operations, that split each simplex of
Ti into three simplices in Ti+1. In an xy-split, where x, y is a pair of adjacent
vertices of T we partition the edge xy into three segments x = z0, z1, z2, z3 = y
in this order. All old vertices maintain their χ values, while χ(z1) := χ(y) and
χ(z2) := χ(x). Furthermore, every simplex σ of T with x, y ∈ V (σ), say σ =
conv({x, y}∪̇S) (i.e., S ∪ {x, y} is the set of vertices of σ) is split accordingly to
three simplices σ0 ∪ σ1 ∪ σ2 where σi = conv({zi, zi+1}∪̇S). We note, following
Section 2 that an xy-split corresponds to the three possible behaviors of the
adversary between processors χ(x) and χ(y). Vertex x corresponds to the state
of processor χ(x) in Ti concatenated with it sending the message in round i+ 1
but not receiving any message, vertex z1 corresponds to processor χ(y) in Ti
concatenated with it sending its state (message) in round i+1 and receiving the
message from processor χ(x), and so forth. To construct Ti+1 from Ti we apply
the xy-split operation to all pairs of vertices, x, y in Ti, such that (χ(x), χ(y))
is the unordered pair of processors associated with round i + 1 in the PAIRS
schedule. See Figure 1 for an example.

It remains to show that the coloring χ : V (T) → {0, . . . , n − 1} satisfies
Sperner’s condition. Clearly P satisfies the condition. Consider by contradiction
the first time that the condition fails, in an xy-split operation o in which the
edge xo–yo is split, creating the two new vertices zo1, zo2, with colors χ(xo) and
χ(yo). The only way the condition can fail is if either of the z’s is not in the
union of the carriers of xo and yo. But, by simple algebra, the carrier of any
point along the xo–yo edge (line) belongs to the union of the carriers of xo and
yo, thus χ(zo1) and χ(zo2) are colors of vertices in their carrier, concluding the
proof.

Maximal Antichain Lattice Algorithms

for Distributed Computations

Vijay K. Garg�

Parallel and Distributed Systems Lab,
Department of Electrical and Computer Engineering,

The University of Texas at Austin,
Austin, TX 78712

garg@ece.utexas.edu

http://www.ece.utexas.edu/~garg

Abstract. The lattice of maximal antichains of a distributed computa-
tion is generally much smaller than its lattice of consistent global states.
We show that a useful class of predicates can be detected on the lattice
of maximal antichains instead of the lattice of consistent cuts obtaining
significant (exponential for many cases) savings. We then propose new
online and offline algorithms to construct and enumerate the lattice of
maximal antichains. Previously known algorithm by Nourine and Ray-
noud [NR99, NR02] to construct the lattice takes O(n2m) time where n is
the number of events in the computation, and m is the size of the lattice
of maximal antichains. The algorithm by Jourdan, Rampon and Jard
[JRJ94] takes O((n + w2)wm) time where w is the width of the com-
putation. All these algorithms assume as input the lattice of maximal
antichains prior to the arrival of a new event. We present a new online
incremental algorithm, OLMA, that computes the newly added elements
to the lattice without requiring the prior lattice. Since the lattice may be
exponential in the size of the computation, we get a significant reduction
in the space complexity. The OLMA algorithm takes O(mw2 logwL) time
and O(wLw log n) space where wL is the width of the lattice of maximal
antichains. The lower space complexity makes our algorithm applicable
for online global predicate detection in a distributed system. For the
purposes of analyzing offline traces, we also propose new enumeration
algorithms to traverse the lattice.

1 Introduction

A distributed computation can be modeled as a partially ordered set (poset) of
events based on the happened-before relation [Lam78]. Given any poset, there
are three important distinct lattices associated with it: the lattice of consistent
cuts (or ideals), the lattice of normal cuts, and the lattice of maximal antichains.
The lattice of consistent cuts captures the notion of consistent global states in

� Supported in part by the NSF Grants CNS-1115808, CNS-0718990, CNS-0509024,
and Cullen Trust for Higher Education Endowed Professorship.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 240–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Maximal Antichain Lattice Algorithms for Distributed Computations 241

a distributed computation and has been discussed extensively in the distributed
computing literature [Mat89, CM91, GM01]. The other lattices have not received
as much attention. For a poset P , its completion by normal cuts is the smallest
lattice that has P as its suborder [DP90]. Its applications to distributed com-
puting are discussed in [Gar12]. In this paper, we discuss the lattice of maximal
antichains with applications to global predicate detection.

For the set of events in a distributed computation ordered with happened-
before relation, a subset of events forms an antichain if all events in the subset
are pairwise concurrent. Informally, an antichain captures a possible set of events
that could have occurred concurrently, and the events do not have any causal
or happened-before relationship with each other. The lattice of all antichains
is isomorphic to the lattice of all consistent cuts. An antichain A is maximal if
there does not exist any event that can be added to the set without violating
the antichain property. The lattice of maximal antichains, denoted by LMA(P)
is the set of all maximal antichains under the order consistent with the order on
the lattice of consistent cuts.

The lattice of maximal antichains captures all maximal sets of concurrent
events and has applications in detection of global predicates because it is usu-
ally much smaller than the lattice of consistent cuts. In the extreme case, the
lattice of consistent cuts may be exponentially bigger in size than the lattice of
maximal antichains. We show in this paper that some global predicates can be
detected on the lattice of maximal antichains instead of consistent cuts, thereby
providing an exponential reduction in the complexity of detecting them. Fig.
1(i) shows a distributed computation with six events. For example, process P1

executes a send event a, and then receives a message at event d. The message
sent by P1 is received by P3 as event e. Fig. 1(ii) shows the computation with
vector clocks. Fig. 2(i) shows the poset corresponding to the computation. Its
lattices of consistent cuts and maximal antichains are shown in Fig. 2(ii), and
(iii) respectively.

In this paper, we also discuss algorithms for computing LMA for a distributed
computation (or a trace of events) given as a finite poset P with implicit repre-
sentation using vector clocks. Incremental algorithms assume that we are given
a poset P and its lattice of maximal antichains L and we are required to con-
struct LMA of the poset P ′ corresponding to P extended with an element x. The
algorithms by Jourdan, Rampon and Jard [JRJ94], and Lourine and Raynaud

P

P

P

1

2

3

d

b f

c e

a
P

P

P

1

2

3

(1,0,2)

(1,0,0) (2,1,0)

(0,2,1)

(0,0,1)

(0,1,0)

(i) (ii)

Fig. 1. (i) A computation (ii) Its equivalent representation in vector clocks

242 V.K. Garg

Fig. 2. (i) The original poset. (ii) Its lattice of ideals (consistent cuts) (iii) Its lattice
of maximal antichains.

[NR99, NR02] fall in this class. These algorithms store the entire lattice LMA

and have space complexity of O(mn log n) where n is the size of the poset P ,
and m is the size of LMA(P). The algorithm by Jourdan, Rampon and Jard
[JRJ94] has O(w3m) time complexity and the algorithm by Lourine and Ray-
naud [NR99, NR02] has O(mn) time complexity.

Our first algorithm called ILMA is a simple modification of the algorithm
by Nourine and Raynoud [NR99, NR02] based on vector clocks. The algorithm
requires O(wm logm) time and O(wm log n) space where w is the width of the
poset P . The second algorithm called OLMA does not require lattice LMA(P)
to compute elements of the new lattice. Let mx be the size of the set of maxi-
mal antichains that include the element x. Then, the algorithm OLMA requires
O(w2mx logwL) time and O(wLw logn) space, where wL is the width of the
lattice of maximal antichains. Since wL is much smaller than m, there is a
significant reduction in the space complexity. The algorithm OLMA answers
the open problem posed in [NR99]: “One open question is the enumeration of
the family generated by a basis without computing the tree or the lattice with
the same complexity.”

Even though the OLMA algorithm has lower space complexity than ILMA,
in the worst case the size of wL can be exponential in the number of pro-
cesses. If the goal is to not construct, but simply enumerate (or check for some
global predicate) all the elements of LMA, then we propose BFS and DFS based

Maximal Antichain Lattice Algorithms for Distributed Computations 243

enumeration of lattice of maximal antichains. Earlier algorithms for enumera-
tion of closed sets by Ganter [Gan84] use lexical enumeration. The BFS and
DFS algorithms are more meaningful in the context of distributed systems. For
example, when searching for a maximal antichain satisfying a given predicate
the programmer may be interested in the maximal antichain that appears first
in the BFS enumeration. It is important to note that algorithms for BFS and
DFS enumeration of lattices are different from the standard graph-based BFS
and DFS enumeration because our algorithms cannot store the explicit graph
corresponding to the lattice. Hence, the usual technique of marking the visited
nodes is not applicable.

Table 1 summarizes the time and space complexity for construction and enu-
meration algorithms for the lattice of maximal antichains with the notation in
Table 2.

Table 1. Lattice Construction of Maximal Antichains

Incremental Algorithms Time Complexity Space Complexity

Jourdan et al.[JRJ94] O(w3m) O(mn log n)
Nourine and Raynaud[NR99, NR02] O(mn) O(mn log n)

Algorithm ILMA [this paper] O(wm logm) O(mw log n)
Algorithm OLMA [this paper] O(mxw

2 logwL)) O(wLw log n)

Offline Algorithms

Jourdan et al.[JRJ94] O((n+ w2)wm) O(mn log n)
Nourine and Raynaud[NR99, NR02] O(mn2) O(mn log n)

Algorithm ILMA [this paper] O(nwm logm) O(mw log n)
BFS-MA [this paper] O(mw2 logm) O(wLw log n)
DFS-MA [this paper] O(mw4) O(nw log n)

Lexical by Ganter [Gan84] O(mn3) O(n log n)

Table 2. The notation used in the paper

Symbol Definition Symbol Definition

n size of the poset P m size of the maximal antichains lattice L
w width of the poset P mx number of strict ideals ≥ D(x) (Section 2)
wL width of the lattice L

The paper is organized as follows. Section 2 gives the background definitions.
Section 3 discusses the lattice of maximal antichains and some other lattices that
are useful for incremental lattice construction. Section 4 discusses incremental
and online construction of the lattice of maximal antichains. Section 5 discusses
enumeration of the lattice of maximal antichains. We discuss distributed com-
puting applications in Section 6.

244 V.K. Garg

2 Background: Posets with Implicit Representation

We assume that the reader is familiar with the basic concepts of posets and
lattices [DP90]. A partially ordered set (or poset) is a pair P = (X,≤) where X
is a set and ≤ is a reflexive, antisymmetric, and transitive binary relation on X .
We write x ≤ y when (x, y) ∈ P . If either x ≤ y or y ≤ x, we say that x and
y are comparable; otherwise, we say x and y are incomparable or concurrent. A
subset Y ⊆ X is called an antichain (chain), if every distinct pair of points from
Y is incomparable (comparable) in P . The width (height) of a poset is defined
to be the size of a largest antichain (chain) in the poset.

Given a subset Y ⊆ X , the meet of Y , if it exists, is the greatest lower bound
of Y and the join of Y is the least upper bound. In Fig. 2(i), the meet of the
set {d, e} is a. The meet of the set {b, c} does not exist. An element is join-
irreducible (meet-irreducible) if it cannot be expressed as join (meet) of other
elements. In Fig. 2(i), the elements {a, b, c} are join-irreducible but {d, e, f} are
not. A poset P = (X,≤) is a lattice if joins and meets exist for all finite subsets
of X . The largest element of a lattice is called the top element.

Let P be a poset with a given chain partition of width w. In a distributed
computation, P would be the set of events executed under the happened-before
partial order. Each chain would correspond to a total order of events executed
on a single process. In such a poset, every element e can be identified with a
tuple (i, k) which represents the kth event in the ith process. In this paper, we
keep the order relation of the poset implicit using vector clocks [Mat89, Fid89]
as explained next. For e ∈ P , let D[e], the down-set of e, be the elements of P
that are less than or equal to P . The set D[e] can equivalently be captured using
a vector e.V such that e.V [i] = j iff there are exactly j elements on chain i that
are less than or equal to e. It is easy to verify that e ≤ f iff e.V ≤ f.V . The
above discussion shows 1-1 correspondence between each element e of a poset
and its vector e.V .

In this paper, we also use the set D(e), the strict down-set of e, which contains
all elements in the poset P that are strictly less than e. The reader should note
the difference in the notation D[e] and D(e); the former is a down-set and the
latter a strict down-set. The notation D(e) can be extended to apply for sets as
follows: D(Y) = ∪e∈YD(e). We also use the dual notation for up-sets, U(Y) and
U [Y].

A subset Q is an ideal (order ideal, or a consistent cut) of P if it satisfies the
constraint that if f is in Q and e is less than or equal to f , then e is also in Q.
For any element e ∈ P , D[e] is always an ideal. In distributed computing, when
a distributed computation is modeled as a poset of event, the order ideals are
called consistent cuts, or consistent global states [CL85].

Any idealQ of P can be represented using a vectorQ.V with the interpretation
that Q.V [i] = j iff exactly j elements of chain i are in Q. We use the set and
the vector notation for an ideal interchangably. Given two ideals Q and R, their
intersection (union) is simply the component-wise minimum (maximum) of the
vectors for Q and R. The set of order ideals is closed under both union and
intersection and therefore forms a lattice under the set containment order.

Maximal Antichain Lattice Algorithms for Distributed Computations 245

3 Maximal Antichain Lattice

We first define three different but isomorphic lattices: the lattice of maximal
antichain ideals, the lattice of maximal antichains and the lattice of strict ideals.
Besides giving an insight in the structure of the lattice of maximal antichains,
these lattices have different closure properties making them useful in different
contexts. The lattice of strict ideals is closed under union and is used in our
ILMA and OLMA algorithms. The lattice of maximal ideals is closed under
intersection and is used in our DFS-MA algorithm.

Definition 1 (Maximal Antichain). An antichain A is maximal in a poset
P = (X,≤) if every element in X −A is comparable to some element in A.

In Fig. 3(i), the set {d, e} is an antichain but not a maximal antichain because
f is incomparable to both d and e. The set {d, e, f} is a maximal antichain. It
is easy to see that A is a maximal antichain iff D(A) ∪ U [A] = X .

Definition 2 (Maximal Ideal). An ideal Q of a poset P = (X,≤) is a maxi-
mal antichain ideal (or, maximal ideal) if the set of its maximal elements, denoted
by maximal(Q), is a maximal antichain.

The set of maximal ideals is closed under intersection but not union. In
Fig.3(ii) the ideals {a, b, c, d} and {a, b, c, e} are maximal ideals, but their union
{a, b, c, d, e} is not a maximal ideal.

Definition 3 (Lattice of Maximal Ideals of a Poset). For a given poset
P = (X,≤), its lattice of maximal ideals is the poset formed with the set of all
the maximal ideals of P under the set inclusion. Formally,

LMA(P) = ({A ⊆ X : A is a maximal ideal of P},⊆).

For the poset in Figure 3(i), the set of all maximal ideals is:
{{a, b, c}, {a, b, c, d}, {a, b, c, e}, {a, b, c, f}, {a, b, c, d, e, f}}.

The poset formed by these sets under the ⊆ relation is shown in Figure 3(iii).
This poset is a lattice with the meet as the intersection.

A lattice isomorphic to the lattice of maximal ideals is that of the maximal
antichains.

Definition 4 (Lattice of Maximal Antichains of a Poset). For a given
poset P = (X,≤), its lattice of maximal antichains is the poset formed with the
set of all the maximal antichains of P with the order A $ B iff D[A] ⊆ D[B].

In Section 4 we discuss incremental algorithms for lattice construction. In these
algorithms, we have the lattice LMA(P) for a poset P and our goal is to construct
LMA(P ∪ {x}) where x is a new event that is not less than any event in P .
It would be desirable if all the elements of LMA(P) continue to be elements of
LMA(P

′). However, this is not the case for maximal antichains. An antichain that
is maximal in P may not be maximal in P∪{x}. For example, in Fig. 3(i), suppose
that f arrives last. The set {d, e} is a maximal antichain before the arrival of f ,

246 V.K. Garg

but not after. The algorithm by Jourdan, Rampon and Jard explicitly determines
the maximal antichains that get changed when a new event arrives. In this paper,
and also in [NR99], the problem is circumvented by building the lattice of strict
ideals instead of the lattice of maximal antichains. If S is a strict ideal of P
then it continues to be one on arrival of x so long as x is a maximal element
of P ∪ {x}. The lattice of strict ideals is isomorphic to the lattice of maximal
antichains, but easier to implement via an incremental algorithm.

Definition 5 (Strict Ideal). A set Y is a strict ideal of a poset P = (X,≤),
if there exists an antichain A ⊆ X such that D(A) = Y .

Definition 6 (Lattice of Strict Ideals of a Poset). For a given poset P =
(X,≤), its lattice of strict ideals is the poset formed with the set of all the strict
ideals of P with the ⊆ order.

Fig. 3. (i) The original poset. (ii) Its lattice of maximal ideals (iii) Its lattice of
maximal antichains (iv) Its lattice of strict ideals.

Fig. 3 shows a poset with the three isomorphic lattices: the lattice of maximal
ideals, the lattice of maximal antichains and the lattice of strict ideals. To go from
the lattice of maximal ideals to the lattice of maximal antichains, a maximal ideal
Q is mapped to the antichain maximal(Q). Conversely, a maximal antichain A
is mapped to the maximal ideal D[A]. To go from the lattice of antichains to
the lattice of strict ideals, a maximal antichain A is mapped to the set D(A).
Conversely, a strict ideal Z is mapped to an antichain as the minimal elements
in Zc, the complement of Z. For example, when Z equals {b, c}, its complement
is {a, d, e, f}. The set of the minimal elements of the set {a, d, e, f} is {a, f}
which is the antichain corresponding to {b, c}. The correctness of this mapping
is shown in the proof of correctness of ILMA algorithm (Theorem 1).

4 Incremental Algorithms to Construct Lattice of
Maximal Antichains

In this section, we give two incremental algorithms, ILMA and OLMA. The
ILMA algorithm makes it easier to understand the difference in the technique of
previous algorithms and the OLMA algorithm.

Maximal Antichain Lattice Algorithms for Distributed Computations 247

4.1 The ILMA Algorithm

The ILMA algorithm is a modification of the algorithm given by Nourine and
Raynaud [NR99], based on computing the lattice of strict ideals. There are two
main differences. First, our algorithm does not use the lexicographic tree used in
their algorithm. Another difference is that we have used the implicit represen-
tation of the poset and the lattice based on vector clocks making the algorithm
more suitable for distributed systems.

The ILMA algorithm, shown in Fig. 4, is based on computing closure under
union of strict ideals. It takes as input the poset P , an element x, and the
lattice of maximal antichains of P . The poset and the lattice are assumed to be
represented using vector clocks. It outputs the lattice of maximal antichains of
P ′ = P ∪ {x}. At step 1, we compute the vector clock corresponding to the set
D(x). The vector clock for x, V corresponds to D[x]. By removing x from the
set D[x], we get D(x). The removal of x is accomplished by decrementing S[i]
in step 1. At step 2, we add S to L and make L closed under union.

Input: P : a finite poset as a list of vector clocks
L: lattice of maximal antichains as a balanced binary tree of vector clocks
x: new element
Output: L′ := Lattice of maximal antichains of P ∪ {x} initially L

// Step 1: Compute the set D(x)
Let V be the vector clock for x on process Pi;
S := V ; S[i] := S[i]− 1;
// Step 2:
if S �∈ L then

L′ := L′ ∪ {S};
forall vectors W ∈ L:

if max(W,S) �∈ L then L′ := L′ ∪max(W,S);

Fig. 4. The Algorithm ILMA for Construction of Lattice of Maximal Antichains

The above algorithm can also be used to compute the lattice of maximal
antichains of any poset in an offline manner by repeatedly invoking the algorithm
with elements of the poset in any total order consistent with the poset. To start
the algorithm, the initial poset P would be a minimal element of P and the
corresponding lattice L would be a singleton element corresponding to the empty
strict downset.

We now show the correctness of the algorithm.

Theorem 1. The lattice L′ constructed by ILMA algorithm is isomorphic to the
lattice of maximal antichains of P ′.

248 V.K. Garg

Proof. It is easy to verify that every vector in L′ is a strict ideal I of the poset
P ′ = P ∪ {x}. By induction, we can assume that L contains all the strict ideals
of P . Step (1) adds the strict ideal for D(x) and step (2) takes its union with
all existing strict ideals. Since max is an idempotent operation, it is sufficient to
iterate over L once.

The bijection from L′ to the set of maximal antichains is as follows. Let I be
a strict ideal in L′, i.e., there exists an antichain A such that D(A) = I. Let Ic

denote the complement of I, and let B equal to the set of the minimal elements
of Ic. Thus, B = minimal(Ic). It can be shown that every strict ideal I gives a
unique antichain B by this construction. To show that B is a maximal antichain
it is sufficient to show that D(B)∪U [B] = X . This claim follows from the facts
that A ⊆ minimal(Ic), D(A) = I and U [minimal(Ic)] = Ic.

The time complexity of ILMA is dominated by Step 2. Checking if the vector is in
L requires O(w logm) time if L is kept as a balanced binary search tree of vector
clocks. Thus, the time complexity of Step 2 is O(wm logm). By repeatedly invok-
ing ILMA algorithm for a maximal element, we can construct the lattice of max-
imal antichains of a poset with n elements in O(nwm logm) time. The algorithm
by Jourdan, Rampon and Jard takes O((n+w2)wm) time, and the algorithm by
Nourine and Raynaud takesO(mn2) time. The space complexity is dominated by
storage requirements for L. With implicit representation, we have to store m ele-
ments where each element is stored as a vector of dimension w of coordinates each
of size O(log n). Hence, the overall space complexity is O(mw logn).

4.2 The OLMA Algorithm

In the ILMA algorithm, we traverse the lattice L for every element x. It requires
us to maintain the lattice L which may be exponentially bigger than poset P ,
making the algorithm impractical for distributed computations. We now show
an online algorithm OLMA which does not require the lattice L but only uses
the poset P . Let M be the set of new elements (strict ideals) generated due to
x. The time complexity of OLMA is dependent on the size of M independent of
the size of the lattice L.

The incremental online algorithm OLMA is shown in Fig. 5. At lines (1) and
(2), we compute the vector S for the set D(x). At line (3), we check if S is
already in LMA(P). Note that we do not store the lattice LMA(P). The check
at line (3) is done by checking if S is a strict ideal of P . If this is the case, we
are done and M is an empty set. Otherwise, we need to enumerate all strict
ideals that are reachable from S in the lattice LMA(P

′). We do so in lines (5)-
(15) by traversing the strict ideals greater than or equal to S in the BFS order.
The set T consists of strict ideals that have not been explored yet. At line (7),
we remove the smallest strict ideal H and enumerate it at line (8). For global
predicate detection applications, we would evaluate the global predicate on H
at this step. To find the set of strict ideals that are reachable by taking union
with one additional event e, we explore the next event e after the ideal H along
every process. There are two cases to consider.

Maximal Antichain Lattice Algorithms for Distributed Computations 249

Input: a finite poset P , x maximal element in P ′ = P ∪ {x}
Output: enumerate M such that LMA(P

′) = LMA(P) ∪M

(1) S := the vector clock for x on process Pi;
(2) S[i] := S[i]− 1;
(3) if S is not a strict ideal of P then
(4) // BFS(S): Do Breadth-First-Search traversal of M
(5) T := set of vectors initially {S};
(6) while T is nonempty do
(7) H := delete the smallest vector from T in the levelCompare order;
(8) enumerate H ;
(9) foreach process k with next event e do
(10) if (D(e) ⊆ H) then
(11) if (succ(e) exists then T := T ∪ {max(H,D(succ(e)))};
(12) else
(13) T := T ∪ {max(H,D(e))};
(14) endfor;
(15) endwhile;
(16) endif;

int levelCompare(VectorClock a, VectorClock b)
(1) if (a.sum() > b.sum()) return 1;
(2) else if (a.sum() < b.sum()) return -1;
(3) for (int i = 0; i < a.size(); i++)
(4) if (a[i] > b.[i]) return 1;
(5) if (a[i] < b[i]) return -1;
(6) return 0;

Fig. 5. The Algorithm OLMA for Construction of Lattice of Strict Ideals

If (D(e) ⊆ H), then the smallest event on process k that will generate new
strict ideal by taking union with H is the successor of e on process k, succ(e), if
it exists. Since D(succ(e)) contains e which is not in H , we are guaranteed that
max(H,D(succ(e))) is strictly greater than H . It is also a strict ideal because
it corresponds to union of two strict ideals H and D(succ(e)).

If (D(e) �⊆ H), then the smallest event on process k that will generate
new strict ideal by taking union with H is e. We add to T the strict ideal
max(H,D(e)).

This method of BFS traversal is guaranteed to explore all strict ideals greater
than or equal to S as shown by the next theorem.

Theorem 2. The Algorithm OLMA enumerates all H ∈M such that LMA(P
′)

= LMA(P) ∪M .

Proof. We first show that M contains only strict ideals greater than or equal
to D(x). Since we enumerate (at line 8) only the vectors deleted from T , it is
sufficient to show the claim for T . The claim is initially true because T initially

250 V.K. Garg

contains S which is a strict ideal equal to D(x). For induction, we assume that
H deleted at line 7 is also such a strict ideal. We add vectors only at lines 11
and 13. Since the set of strict ideals is closed under union, and both D(e) and
D(succ(e)) are strict ideals, we get that the vector added to T at lines 11 and
13 are also strict ideals. Both the ideals contain H due to the max operation,
and hence they are greater than or equal to D(x).

We now show that any strict ideal greater than or equal to D(x) is added
to T at some point in the algorithm. Let T be any strict ideal of P ′ greater
than or equal to D(x). We use induction on r, the size of T − D(x). When r
is zero, T equals D(x), and is part of T due to line (5). Assume by induction
that any strict ideal, T ′ with |T ′−D(x)| < r is added to T . Let A be a minimal
set such that D(A) = T . Since r > 0, there exists y ∈ A that is not in D(x).
Let T ′ = D(A − {y}). T ′ must be a proper subset of T ; otherwise, A is not a
minimal set such that D(A) = T . From induction hypothesis T ′ is added to T
in the algorithm. Let z be the predecessor of y on the process that contains y.
We have the following cases.
Case 1: z ∈ T ′. Since T ′ ∈ T and z ∈ T ′, y would be considered at line (9) when
T ′ is explored. Since T ′ = D(A− {y}) and T ′ is a proper subset of T , we know
that D(y) �⊆ T ′. By line (13), T is added to T .
Case 2: z �∈ T ′. There are two cases to consider.
Case 2.1: D(z) ⊆ T ′. Since T ′ ∈ T and D(z) ⊆ T ′, z would be considered at line
(9) when T ′ is explored. Then by line (11), we add max(T ′, D(y)). Therefore, T
is added to T .
Case 2.2: D(z) �⊆ T ′. When T ′ is explored, we add to T , T ′′ := max(T ′, D(z))
due to line (13). Clearly, D(z) ⊆ T ′′. Since T ′′ ∈ T and D(z) ⊆ T ′′, when we
explore T ′′, we add max(T ′′, D(y)) due to line (11). Therefore, we get that T is
added to T .
Finally, we show that no vector is added to T again once it has been deleted.
The function levelCompare provides a total order on all vectors. The vector H
deleted is the smallest in T . Any vector that we add due to H is strictly greater
than H (either at line (11) or line (13)). Hence, once a vector has been deleted
from T it can never be added back again.

We now analyze the time and space complexity of the algorithm OLMA. Lines
(7) to (15) are executed for every strict ideal in M . Suppose that the number
of strict ideals greater than or equal to D(x) is mx. The foreach loop at line (9)
is executed w times. Computing max of two vectors at lines (11) and (13) take
O(w) time. Adding it to the set T takes O(w logwL) time if T is maintained as
a balanced binary tree of the vectors, where wL is the maximum size of T . Since
T corresponds to BFS enumeration, it can also be viewed as the width of the
lattice L in the worst case. Hence, the total time complexity for enumerating
M is O(mxw

2 logwL). Recall that the ILMA algorithm traversed over the entire
lattice when adding a new element resulting in O(wm logm) complexity for
incremental construction.

We now compute the complexity of the OLMA algorithm to build the lat-
tice for the entire poset. For simplicity, we bound mx by m. Since the OLMA

Maximal Antichain Lattice Algorithms for Distributed Computations 251

algorithm would be called n times, the time complexity is O(nmw2 logwL). The
space complexity of the OLMA algorithm is O(wLw logn) bits to store the set
T where wL is the maximum size that T will take during BFS enumeration.

5 Traversal Based Algorithms for Enumerating Lattice of
Maximal Antichains

In some applications (such as global predicate detection discussed in Section 6),
we may not be interested in storing LMA but simply enumerating all its elements
(or storing only those elements that satisfy a given property). In this section, we
consider the problem of enumerating all the maximal antichains of a computation
in an offline manner. In the OLMA algorithm, we enumerate all strict ideals
greater than or equal to D(x), when x arrives. We can use the OLMA algorithm
in an offline manner as well. We simply use BFS({}) instead of BFS(D(x))
which enumerates all the ideals. The time complexity is O(mw2 logwL) and the
space complexity is O(wLw logn). We call this algorithm BFS-MA.

We now show that the space complexity can be further reduced by using DFS
(depth first search) enumeration of LMA. The depth first search enumeration
requires storage proportional to the height of LMA which is at most n.

In previous section, we had used the lattice of strict ideals instead of lattice
of maximal ideals. In this section, we use the lattice of maximal ideals because
the lattice of maximal ideals is closed under intersection which allows us to find
the smallest maximal ideal that contains a given set (at line (3) in Fig. 6).

One of the main difficulties is to ensure that we do not visit the same max-
imal antichain ideal twice because we do not store all the nodes of the lattice
explicitly and hence cannot use the standard technique of marking a node visited
during traversal. The solution we use is similar to that used for the lattice of
ideals [AV01] and the lattice of normal cuts [Gar12]. Let pred(H) be the set of
all maximal ideals that are covered by H in the lattice. We use the total order
levelOrder on the set pred(H). We make a recursive call on H from the maximal
ideal G iff G is the biggest maximal ideal in pred(K) in the total order given
by levelOrder. To find pred(H), we first note that every maximal antichain of
a poset P is also a maximal antichain of its dual P d. Hence the lattice of max-
imal antichains of P is isomorphic to the lattice of maximal antichains of P d.
Traversing LMA(P) in the upward direction (in the Hasse diagram) is equivalent
to traversing LMA(P

d) in the backward direction.
The algorithm for DFS enumeration is shown in Fig. 6. From any maximal ideal

G, we explore all enabled events to findmaximal ideals with at least one additional
event. There are atmostw enabled events and for each event it takesO(w2) time to
compute the smallest maximal idealK at line (3). At line (4) we check ifK covers
G using the characterization provided by Reuter [Reu91] as follows. A maximal
idealK covers the maximal ideal G in the lattice of maximal ideals iff (K − G) ∪
(U [Maximal(G)]−U [Maximal(K)]) induces a complete height-one subposet ofP
with (K−G) as the maximal elements and (U [Maximal(G)]−U [Maximal(K)])
as minimal element. This check can be performed in O(w2) time.

252 V.K. Garg

Algorithm DFS-MaximalIdeals(G)
Input: a finite poset P , starting state G
Output: DFS Enumeration of all maximal ideals of P

(1) output(G);
(2) for each event e enabled in G do
(3) K := smallest maximal ideal containing Q := G ∪ {e};
(4) if K does not cover G then go to the next event;
(5) M := get-Max-predecessor(K) ;
(6) if M = G then
(7) DFS-MaximalIdeals(K);

function VectorClock get-Max-predecessor(K) {
//takes K as input vector and returns the maximal ideal that is biggest in the

levelCompare order

(1) H = maximal ideal in P d that has the same maximal antichain
as K
(2) // find the maximal predecessor using maximal ideals in the dual poset
(3) for each event e enabled in the cut H in P d do
(4) temp := advance along event e in P d from cut H ;
(5) // get the set of maximal ideals reachable in P d

(6) pred := smallest Maximal ideal containing temp that covers H
(7) return the maximal ideal that corresponds to maxPred in P ;

Fig. 6. Algorithm DFS-MA for DFS Enumeration of Maximal Ideals

In line (5), we traverse K using recursive call only if M equals G. Since
there can be w predecessors for K and it takes O(w2) time to compute each
predecessor; the total time complexity to determine whether K can be inserted
is O(w3). Hence the overall time complexity of the algorithm is O(mw4).

The main space requirement of the DFS algorithm is the stack used for re-
cursion. Every time the recursion level increases, the size of the maximal ideal
increases by at least 1. Hence, the maximum depth of the recursion is n, and the
space requirement is O(nw logn) bits because we only need to store vectors of
dimension w at each recursion level.

6 Application of Lattice of Maximal Antichains

Global predicate detection problem has applications in distributed debugging,
testing, and software fault-tolerance. The problem can be stated as follows.
Given a distributed computation (either in an online fashion, or an offline fash-
ion), and a global predicate B (a boolean function on the lattice of consistent
global states), determine if there exists a consistent global state that satisfies
B. The global predicate detection problem is NP-complete [CG98], even for the
restricted case when the predicate B is a singular 2CNF formula of local predi-
cates [MG01]. The key problem is that the lattice of consistent global states may

Maximal Antichain Lattice Algorithms for Distributed Computations 253

be exponential in the size of the poset. Given the importance of the problem in
software testing and monitoring of distributed systems, there is strong motiva-
tion to find classes of predicates for which the underlying space of consistent
global states can be traversed efficiently. The class of linear predicates [CG98]
and relational predicates [TG93, IG06] are two such classes. We now describe a
class called antichain predicates which satisfies the property that they hold on
the lattice LCGS iff they hold on the lattice LMA. We give examples of predicates
that occur in practice which belong to this class.

A global predicate B is an antichain-consistent predicate if its evaluation
depends only on maximal events of a consistent global state and if it is true on
a subset of processes, then presence of additional processes does not falsify the
predicate. Formally,

Definition 7 (Antichain-Consistent Predicate). A global predicate B de-
fined on LCGS is an antichain-consistent predicate if for all consistent global
states G and H: (maximal(G) ⊆ maximal(H)) ∧B(G)⇒ B(H).

We now give examples of antichain-consistent predicate.

– Violation of mutual exclusion: Consider the predicate, B, “there is more
than one process in the critical section.” The relevant critical section events
for this predicate are entry to the critical section and exit from the critical
section. B is true in a global state G iff maximal(G) has more than one
critical section event. Clearly, if B is true in G and maximal(G) is contained
in maximal(H), then it is also true in H .

– Violation of resource usage: The predicate, B, “there are more than k con-
current activation of certain service,” a slight generalization of the previous
example, is also antichain-consistent.

– Global Control Point: The predicate, B, “Process P1 is at line 35 and P2 is
at line 23 concurrently,” is also antichain-consistent.

We can now show the following result.

Theorem 3. There exists a consistent global state that satisfies an antichain-
consistent predicate B iff there exists a maximal ideal that satisfies B.

Proof. Let G be a consistent global state that satisfies B. If G is a maximal
ideal, we are done. Otherwise, consider Gc, the complement of G. Since G is
not a maximal ideal, there exists y ∈ minimal(Gc) such that y is incompa-
rable to all elements in maximal(G). It is easy to see that G1 = G ∪ {y}
is also a consistent global state. Furthermore, maximal(G) ⊆ maximal(G1).
Since B is antichain-consistent, it is also true in G1. If G1 is a maximal ideal,
we are done. Otherwise, by repeating this procedure, we obtain H such that
maximal(G) ⊆ maximal(H), and H is a maximal ideal. From the definition of
antichain-consistent, we get that B(H).

The converse is obvious because every maximal ideal is also an ideal.

Hence, instead of constructing the lattice of ideals, we can use algorithms in Sec-
tion 4 and Section 5 to detect an antichain-consistent global predicate resulting
in significant reduction in time complexity.

254 V.K. Garg

References

[AV01] Alagar, S., Venkatesan, S.: Techniques to tackle state explosion in global pred-
icate detection. IEEE Transactions on Software Engineering 27(8), 704–714
(2001)

[CG98] Chase, C.M., Garg, V.K.: Detection of global predicates: Techniques and their
limitations. Distributed Computing 11(4), 191–201 (1998)

[CL85] Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states
of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

[CM91] Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proc.
of the Workshop on Parallel and Distributed Debugging, Santa Cruz, CA,
pp. 163–173 (May 1991)

[DP90] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge (1990)

[Fid89] Fidge, C.J.: Partial orders for parallel debugging. In: Proc. of the ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, vol. 24(1),
pp. 183–194 (1989)

[Gan84] Ganter, B.: Two basic algorithms in concept analysis. Technical Report 831,
Techniche Hochschule, Darmstadt (1984)

[Gar12] Garg, V.K.: Lattice completion algorithms for distributed computations. In:
Proc. of Principles of Distributed Systems - 16th International Conference,
OPODIS 2012 (December 2012)

[GM01] Garg, V.K., Mittal, N.: On slicing a distributed computation. In: 21st Int-
natl. Conf. on Distributed Computing Systems (ICDCS 20 01), Washington,
Brussels, Tokyo, pp. 322–329. IEEE (2001)

[IG06] Ikiz, S., Garg, V.K.: Efficient incremental optimal chain partition of dis-
tributed program traces. In: ICDCS, p. 18. IEEE Computer Society (2006)

[JRJ94] Jourdan, G.-V., Rampon, J.-X., Jard, C.: Computing on-line the lattice of
maximal antichains of posets. Order 11, 197–210 (1994)

[Lam78] Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. of the ACM 21(7), 558–565 (1978)

[Mat89] Mattern, F.: Virtual time and global states of distributed systems. In: Parallel
and Distributed Algorithms: Proc. of the Intnatl. Workshop on Parallel and
Distributed Algorithms, pp. 215–226. Elsevier Science Publishers B.V., North-
Holland (1989)

[MG01] Mittal, N., Garg, V.K.: On detecting global predicates in distributed compu-
tations. In: 21st Intnatl. Conf. on Distributed Computing Systems (ICDCS
2001), Washington, Brussels, Tokyo, pp. 3–10. IEEE (2001)

[NR99] Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process.
Lett. 71(5-6), 199–204 (1999)

[NR02] Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices.
J. Exp. Theor. Artif. Intell. 14(2-3), 217–227 (2002)

[Reu91] Reuter, K.: The jump number and the lattice of maximal antichains. Discrete
Mathematics 88(23), 289–307 (1991)

[TG93] Tomlinson, A.I., Garg, V.K.: Detecting relational global predicates in dis-
tributed systems. In: Proc. of the Workshop on Parallel and Distributed De-
bugging, San Diego, CA, pp. 21–31 (May 1993)

On the Analysis of a Label Propagation

Algorithm for Community Detection�

Kishore Kothapalli1, Sriram V. Pemmaraju2, and Vivek Sardeshmukh2

1 International Institute of Information Technology, Hyderabad, India 500 032
kkishore@iiit.ac.in

2 Department of Computer Science, The University of Iowa, Iowa City,
IA 52242-1419, USA

firstname-lastname@uiowa.edu

Abstract. This paper initiates formal analysis of a simple, distributed
algorithm for community detection on networks. We analyze an algo-
rithm that we call Max-LPA, both in terms of its convergence time and
in terms of the “quality” of the communities detected. Max-LPA is an
instance of a class of community detection algorithms called label propa-
gation algorithms. As far as we know, most analysis of label propagation
algorithms thus far has been empirical in nature and in this paper we
seek a theoretical understanding of label propagation algorithms. In our
main result, we define a clustered version of Erdös-Rényi random graphs
with clusters V1, V2, . . . , Vk where the probability p, of an edge connecting
nodes within a cluster Vi is higher than p′, the probability of an edge con-
necting nodes in distinct clusters. We show that even with fairly general

restrictions on p and p′ (p = Ω
(

1

n1/4−ε

)
for any ε > 0, p′ = O(p2), where

n is the number of nodes), Max-LPA detects the clusters V1, V2, . . . , Vn

in just two rounds. Based on this and on empirical results, we conjecture
that Max-LPA can correctly and quickly identify communities on clus-
tered Erdös-Rényi graphs even when the clusters are much sparser, i.e.,
with p = c log n

n
for some c > 1.

1 Introduction

The problem of efficiently analyzing large social networks spans several areas in
computer science. One of the key properties of social networks is their community
structure. A community in a network is a group of nodes that are “similar” to
each other and “dissimilar” from the rest of the network. There has been a lot of
work recently on defining, detecting, and identifying communities in real-world
networks [9, 7, 25]. It is usually, but not always, the tendency for vertices to be
gathered into distinct groups, or communities, such that edges between vertices
in the same community are dense but inter-community edges are sparse [21, 9].

� This work was done when the first author (KK) was visiting The University of Iowa
on an Indo-US Science and Technology Forum Fellowship. The work of the second
author (SP) was partially supported by National Science Foundation grant CCF
0915543.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 255–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

256 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

A community detection algorithm takes as input a network and outputs a par-
tition of the vertex set into “communities”. Detecting communities can allow us
to understand attributes of vertices from the network topology alone.

There are many metrics to measure the “quality” of the communities detected
by a community detection algorithm. A popular and widely adopted metric is
graph modularity defined by Newman [22]. This measure is obtained by summing
up, over all communities of a given partition, the difference between the observed
fraction of links inside the community and the expected value of this quantity
for a null model, that is, a random network having the same size and same
degree sequence. Other popular measures include graph conductance [12] and
edge betweenness [9].

The community detection problem has connections to the graph partitioning
problem which has been well studied since 1970s [5, 13, 14, 26]. Graph parti-
tioning problems are usually modeled as combinatorial optimization problems
and this approach requires a precise sense of the objective function being opti-
mized. Sometimes additional criteria such as the number of parts or the sizes
of parts also need to be specified. In contrast, the notion of communities is rel-
atively “fuzzy” [8] and changes from application to application. Furthermore,
researchers in social network analysis are reluctant to over-specify properties
of communities and would rather let algorithms “discover” communities in the
given network. For a survey of the different approaches that have been proposed
to find community structure in networks, see Fortunato’s work [8].

The focus of this paper is a class of seemingly simple community detection
algorithms called label propagation algorithms (LPA). Raghavan et al. [25] seem
to be the first to study label propagation algorithms for detecting network com-
munities. The advantage of a LPA is, in addition to its simplicity, the fact that
it can be easily parallelized or distributed. The generic LPA works as follows:
initially each node in the network is assigned a unique label. In each iteration
every node updates its label to the label which is the most frequent in its neigh-
borhood; ties are broken randomly. One obtains variants of LPA by varying how
the initial label assignment is made, how ties are broken, and whether a node
includes itself in computing the most frequent label in its neighborhood. In this
paper, we analyze a specific instance of LPA called Max-LPA in which nodes
are assigned initial labels uniformly at random from some large enough space.
Also, if there is a tie, it is broken in favor of the larger label. Finally, a node
includes its own label in determining the most frequent label in its neighborhood.

At any point during the execution of a LPA, a community is simply all nodes
with the same label. The intuition behind using a LPA for community detection
is that a single label (the maximum label in the case of Max-LPA) can quickly
become the most frequent label in neighborhoods within a dense cluster whereas
labels have trouble “traveling” across a sparse set of edges that might connect
two dense clusters. A LPA is said to have converged if it starts cycling through
a collection of states. Ideally, we would like LPA to converge to a cycle of period
one, i.e., to a state in which any further execution of LPA yields the same state.
However, this is not always possible. In fact, part of the difficulty of analyzing

On the Analysis of a Label Propagation Algorithm for Community Detection 257

LPA stems from the randomized tie-breaking rule. This way of breaking ties
makes it difficult to estimate the period of the cycle that the algorithm eventually
converges to. The version of LPA that we analyze, namely Max-LPA, does not
suffer from this problem because Poljak and S̊ura [24] have shown in a different
context that Max-LPA converges to a cycle of period 1 or 2.

Despite the simplicity of LPA, there has been very little formal analysis of
either the convergence time of LPA or the quality of communities produced
by it. There have been papers [25, 16, 4] that provide some empirical results
about LPAs. For example, the number of iterations of label updates required
for the correct convergence of LPA is around 5 [25], but it is hard to derive
any fundamental conclusions about LPA’s behavior, even on specific families
of networks, from these empirical results. One reason for this state of affairs is
that despite its simplicity, even on simple networks, LPA can have complicated
behavior, not unlike epidemic processes that model the spread of disease in a
networked population [20]. Our goal in this paper is to initiate a systematic
analysis of the behavior of Max-LPA, both in terms of its convergence time
and in terms of the “quality” of communities produced.

Watts and Strogatz [28] have pointed out that the classical Erdös-Rényi model
of random graphs differs from real-world social, technological, and biological net-
works in several critical ways. Following this, a variety of other random graph
models have been considered as models of real-world networks. These include
the configuration model [18, 2], the Watts-Strogatz model [28], preferential at-
tachment models [1], etc. (for definitions and more examples, see [19]). There is
no empirical study or formal analysis of LPAs on these classes of networks. As
our first step towards developing analysis techniques for LPAs we define a clus-
tered version of Erdös-Rényi random graphs and present a formal proof of the
running times of LPAs on these networks. We realize that Erdös-Rényi networks
and even clustered Erdös-Rényi networks are inadequate models of real world
networks, but believe that our analysis techniques could be useful in general.

The variants of LPA can naturally be viewed as distributed algorithms, mean-
ing each node only has local knowledge, i.e., knowledge of its label and the
labels of its neighbors obtained by means of message passing along edges of the
networks. Distributed algorithms are generally classified as synchronous or asyn-
chronous algorithms. (The reader is referred to standard books (e.g., [23]) for a
full exposition of these terms). Here we analyze a synchronous version of Max-

LPA. The algorithm proceeds in rounds and in each round each node sends its
label to all neighbors and then updates its label based on the labels received
from neighbors and its own label.

1.1 Preliminaries

We use G = (V,E) to denote an undirected connected graph (network) of size
n = |V |. For v ∈ V , we denote by N(v) = {u : u ∈ V, (u, v) ∈ E} the
neighborhood of v in graph G, by deg(v) = |N(v)| the degree of v, and by
Δ(G) = maxv∈V deg(v) the maximum degree over all the vertices in G. A k-hop
neighborhood (k � 1) of v is defined as Nk(v) = {w : distG(w, v) ≤ k} \ {v}.

258 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

Algorithm 1. Max-LPA on a node v

i = 0
lv[i] ← random(0,1)
while true do

i++;
send lv[i− 1] to ∀u ∈ N(v)
receive lu[i− 1] from ∀u ∈ N(v)

lv[i] ← max
{
� |

∑
u∈N′(v)[�u[i− 1] == �] ≥

∑
u∈N′(v)[�u[i− 1] == �′] for all �′

}
end while

We denote the closed neighborhood (respectively, closed k-hop neighborhood) of
v as N ′(v) = N(v) ∪ {v} (respectively, N ′

k(v) = Nk(v) ∪ {v}).
Denote by �u(t) the label of node u just before round t. When the round

number is clear from the context, we use �u to denote the current label of u.
Since the number of labels in the network is finite, LPA will behave periodically
starting in some round t∗, i.e., for some p ≥ 1, 0 ≤ i < p, and j = 0, 1, 2, . . .,

�u(t
∗ + i) = �u(t

∗ + i+ j · p)

for all u ∈ V . Then we say that Max-LPA has converged in t∗ rounds.
We now describe Max-LPA precisely (see Algorithm 1). Every node v ∈ V

is assigned a unique label uniformly and independently at random. For concrete-
ness, we assume that these labels come from the range [0, 1]. At the start of a
round, each node sends its label to all neighboring nodes. After receiving labels
from all neighbors, a node v updates its label as:

lv ← max

⎧⎨⎩� | ∑
u∈N ′(v)

[�u == �] ≥
∑

u∈N ′(v)

[�u == �′] for all �′

⎫⎬⎭ , (1)

where [�u == �] evaluates to 1 if �u = �, otherwise evaluates to 0. Note that
there is no randomness in the algorithm after the initial assignments of labels.

By “w.h.p.” (with high probability) we mean with probability at least 1− 1
nc

for some constant c � 1. In this paper we repeatedly use the following versions of
a tail bound on the probability distribution of a random variable, due to Cher-
noff and Hoeffding [3, 11]. Let X1, X2, . . . , Xm be independent and identically
distributed binary random variables. Let X =

∑m
i=1Xi. Then, for any 0 ≤ ε ≤ 1

and c � 1,

Pr [X > (1 + ε) · E[X]] ≤ exp

(
− ε

2E[X]

3

)
(2)

Pr [X < (1 − ε) · E[X]] ≤ exp

(
− ε

2E[X]

2

)
(3)

Pr
[
|X − E[X]| >

√
3c · E[X] · logn

]
≤ 1

nc
(4)

On the Analysis of a Label Propagation Algorithm for Community Detection 259

1.2 Results

As mentioned earlier, the purpose of this paper is to counterbalance the pre-
dominantly empirical line of research on LPA and initiate a systematic analysis
of Max-LPA. Our main results can be summarized as follows:

– As a “warm-up” we prove (Section 2) that when executed on an n-node
path Max-LPA converges to a cycle of period one in Θ(log n) rounds w.h.p.
Moreover, we show that w.h.p. the state that Max-LPA converges to has
Ω(n) communities.

– In our main result (Section 3), we define a class of random graphs that we
call clustered Erdös-Rényi graphs. A clustered Erdös-Rényi graphG = (V,E)
comes with a node partition Π = (V1, V2, . . . , Vk) and pairs of nodes in each
Vi are connected with probability pi and pairs of nodes in distinct parts in
Π are connected with probability p′ < mini{pi}. Since p′ is small relative
to any of the pi’s, one might view a clustered Erdös-Rényi graph as having
a natural community structure given by Π . We prove that even with fairly
general restrictions on the pi’s and p′ and on the sizes of the Vi’s, Max-

LPA converges to a period-1 cycle in just 2 rounds, w.h.p. and “correctly”
identifies Π as the community structure of G.

– Roughly speaking, the above result requires each pi to be Ω

((
log n
n

)1/4)
.

We believe that Max-LPA would correctly and quickly identify Π as the
community structure of a given clustered Erdös-Rényi graph even when the
pi’s are much smaller, e.g. even when pi = c logn

n for c > 1. However, at
this point our analysis techniques do not seem adequate for situations with
smaller pi values and so we provide empirical evidence (Section 4) for our
conjecture thatMax-LPA correctly converges to Π in O(polylog(n)) rounds
even when pi = c logn

n for some c > 1 and p′ is just a logarithmic factor
smaller than pi.

1.3 Related Work

There are several variants of LPA presented in the literature [4, 10, 27, 17].
Most of these are concerned about “quality” of the output and present empirical
studies of output produced by LPA.

Raghavan et al. [25], based on the experiments, claimed that at least 95% of
the nodes are classified correctly by the end of 5 rounds of label updates. But
the experiments that they carried out were on the small networks.

Cordasco and Gargano [4] proposed a semi-synchronous approach which is
guaranteed to converge without oscillations and can be parallelized. They pro-
vided a formal proof of convergence but did bound the running time of the algo-
rithm. Lui and Murata [17] presented a variation of LPA for bipartite networks
which converges but no formal proof is provided, neither for the convergence nor
for the running time.

Leung et al. [16] presented empirical analysis of quality of output produced
by LPA on larger data sets. From experimental results on a special structured
network they claimed that running time of LPA is O(log n).

260 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

2 Analysis of Max-LPA on a Path

Consider a path Pn consisting of vertices V = [n] and edge set E = {(i, i+ 1) |
1 ≤ i < n}. In this section, we analyze the execution of Max-LPA on a path
network Pn and prove that in O(log n) rounds Max-LPA converges to a state
from which no further label updates occur and furthermore in such a state the
number of communities is Ω(n) w.h.p..

Lemma 1. When Max-LPA is executed on path network Pn, independent of
the initial label assignment, it will converge to a state from which no further label
updates occur.

Proof. First we show that at any point in the execution of Max-LPA, the
subgraph of Pn induced by all nodes with the same label, is a single connected
component. This is true before the first round since the initial label assignment
assigns distinct labels to the nodes. Suppose the claim is true just before round
t. Let S = (i, i + 1, . . . , j) be the subgraph of Pn consisting of nodes with label
�, just before round t of Max-LPA.

– If S contains two or more nodes then none of the nodes in S will ever change
their label. Moreover, the only other nodes that can acquire label � in round
t are nodes i− 1 and j +1. Hence, after round t, the set of nodes with label
� still induces a single connected component.

– If S contains a single node, say i, then the only way in which label � might
induce multiple connected components after round t would be if in round t:
(i) node i− 1 acquires label �, (ii) node i+ 1 acquires label �, and (iii) node
i changes its label to some �′ �= �. (i) and (ii) above can only happen if � is
larger than the labels of nodes i − 1 and i + 1 just before round t. But, if
this were true, then node i would not change its label in round t.

Hence, in either case the nodes with label � would induce a connected component.
According to Poljak and S̊ura [24], Max-LPA has a period of 1 or 2 on any

network with any initial label assignment. To obtain a contradiction we suppose
that Max-LPA has a period of 2 when executed on Pn for some n and some
initial label assignment. Therefore for some v ∈ V and some time t, �v(t+2i) = �
and �v(t+ 2i+ 1) = �′ for � �= �′ and all i = 0, 1, 2, For v to change its label
from � to �′ in a round it must be the case that � < �′. This is because v
cannot have two neighbors with label �′ since �′ can only induce one connected
component. Hence, v acquires the new label �′ by tie breaking. By a symmetric
argument, for v to change its label from �′ to � in the next round, it must be the
case that �′ < �. Both conditions cannot be met and we have a contradiction. ��

Definition 1. A node v is said to be k-hop maxima if its label �v is (strictly)
greater than the labels of all nodes in its k-neighborhood. As a short form, we
will use local maxima to refer to any node that is a 1-hop maxima.

Let M = {i1, i2, . . . , ir}, i1 < i2 · · · < ir be the set of nodes which are 2-hop
maxima in Pn for the given initial label assignment. For any 1 ≤ j < r, nodes
ij and ij+1 are said to be consecutive 2-hop maxima.

On the Analysis of a Label Propagation Algorithm for Community Detection 261

Lemma 2. When Max-LPA converges, the number of communities it identifies
is bounded below by the number of 2-hop maxima in the initial label assignment.

Proof. Since all initial node labels are assumed to be distinct, in the first round
of Max-LPA every node u ∈ V acquires a label by breaking ties. Since ties are
broken in favor of larger labels, all neighbors of each ij ∈ M will acquire the
corresponding 2-hop maxima label �ij . Thus after one round of Max-LPA, for
each ij ∈ M , there are three consecutive nodes in Pn with label �ij . None of
these nodes will change their label in future rounds and hence there will be a
community induced by label �ij when Max-LPA converges. ��

Lemma 3. Let D be the maximum distance in Pn between a pair of consecutive
nodes in M . Then the number of rounds that Max-LPA takes to converge is
bounded above by D + 2.

Proof. Call a node v isolated if its label is distinct from the labels of its neighbors.
After the first round of Max-LPA each node ij ∈M and its neighbors acquire
label �ij . Therefore, after the first round, every connected component of the
graph induced by isolated nodes has size bounded above by D. We now show
that in each subsequent round, the size of every connected component of size two
or more will reduce by at least one. Let S be a component in the graph induced
by isolated nodes, just before round t. Let i be the node with maximum label in
S. Since S contains at least two nodes, without loss of generality suppose that
i+1 is also in S. In round t, node i could acquire the label of a node outside S.
If this happens i would cease to be isolated after round t. Similarly, in round t,
node i+1 could acquire the label of a node outside S and would therefore cease
to be isolated after round t. If neither of these happens in round t, then node
i + 1 will acquire the label of node i in round t and node i will not change its
label. In this case, both i and i + 1 will cease to be isolated nodes after round
t. In any case, we see that the size of the component S has shrunk by at least
one in round t. Thus in D + 1 rounds Pn we will reach a state in which all
components in the graph induced by isolated nodes have size one. Isolated nodes
whose labels are larger than the labels of neighbors will make no further label
updates. The remaining isolated nodes will disappear in one more round. ��

Theorem 1. When Max-LPA is executed on a path Pn, it converges to a state
from which no further label updates occur in O(log n) rounds w.h.p. Furthermore,
in such a state there are Ω(n) communities.

Proof. Partition Pn into “segments” of 5 nodes each. Let S denote the set of
center nodes of these segments. The probability that a node in Pn is a 2-hop
maxima is 1

5 . Therefore the expected number of nodes in S that end up being
2-hop maxima is n/25. Now note that for any two nodes i, j ∈ S, node i being
a 2-hop maxima is independent of node j being a 2-hop maxima due to the fact
that there are at least 4 nodes between i and j. Therefore, we can apply the
lower tail Chernoff bound (3) to conclude that w.h.p. at least n/50 nodes in Pn

are 2-hop maxima. Combining this with Lemma 2 tell us that when Max-LPA

262 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

converges, it does so to a state in which there are at least n/50 communities
with high probability.

Now consider a contiguous sequence of k 5-node segments. The probability
that none of the centers of the k segments are 2-hop maxima is (4/5)k. Note
that here we use the independence of different segment centers becoming 2-hop
maxima. Hence, for a large enough constant c, the probability that none of the
centers of k = c logn consecutive segments are 2-hop maxima is at most 1/n2.
Using the union bound and observing that there at most n consecutive segment
sequences of length k, we see that the probability that there is a sequence of
k = c logn consecutive segments, none of whose centers are 2-hop maxima, is
at most 1/n. Therefore, with probability at least 1 − 1/n every sequence of
k = c logn consecutive segments contains a segment whose center is a 2-hop
maxima. It follows that the distance between consecutive 2-hop maxima is at
most 5c logn with probability at least 1− 1/n. The result follows by combining
this with Lemma 3. ��

The argument given here establishing a linear lower bound on the number of
communities can be easily extended to graphs with maximum degree bounded
by a constant. The argument bounding the convergence time depended cru-
cially on two properties of the underlying graph: (i) degrees being bounded and
(ii) number of paths of length O(log n) being polynomial in number. Thus the
convergence bound can be extended to other graph classes satisfying these two
properties (e.g., trees with bounded degree).

3 Analysis of Max-LPA on Clustered Erdös-Rényi
Graphs

We start this section by introducing a family of “clustered” random graphs that
come equipped with a simple and natural notion of a community structure. We
then show that on these graphsMax-LPA detects this natural community struc-
ture in only 2 rounds, w.h.p. provided certain fairly general sparsity conditions
are satisfied.

3.1 Clustered Erdös-Rényi Graphs

Recall that for an integer n ≥ 1 and 0 ≤ p ≤ 1, the Erdös-Rényi graph G(n, p)
is the random graph obtained by starting with vertex set V = {1, 2, . . . , n} and
connecting each pair of vertices u, v ∈ V , independently with probability p. LetΠ
denote a partition (V1, V2, . . . , Vk) of V , let π denote the real number sequence
(p1, p2, . . . , pk), where 0 ≤ pi ≤ 1 for all i and let 0 ≤ p′ < mini{pi}. The
clustered Erdös-Rényi graph G(Π, π, p′) has vertex set V and edges obtained
by independently connecting each pair of vertices u, v ∈ V with probability pi
if u, v ∈ Vi for some i and with probability p′, otherwise (see Figure 1). Thus
each induced subgraph G[Vi] is the standard Erdös-Rényi graph G(ni, pi), where
ni = |Vi|.

On the Analysis of a Label Propagation Algorithm for Community Detection 263

V1

u1

u2

un1

...

p1

p1

V2

v1

v2

vn2

...
p2

p2

. . .

. . . Vk

w1

w2

wnk

... pk

pk

p′

p′

Fig. 1. The clustered Erdös-Rényi graph. We connect two nodes in the i-th ellipse (i.e.,
Vi) with probability pi and nodes from different ellipses are connected with probability
p′ < mini{pi}.

Given that p′ < pi for all i, one might view G(Π, π, p′) as having a natural
community structure given by the vertex partition Π . Specifically, when p′ is
much smaller than mini{pi}, the inter-community edge density is much less than
the intra-community edge density and it may be easier to detect the community
structureΠ . On the other hand as the intra-community probabilities pi get closer
to p′, it may be hard for an algorithm such as Max-LPA to identify Π as the
community structure. Similarly, if an intra-community probability pi becomes
very small, then the subgraph G[Vi] can itself be quite sparse and independent
of how small p′ is relative to pi, any community detection algorithm may end up
viewing each Vi as being composed of several communities.

In the rest of the section, we explore values of the pi’s and p′ for which
Max-LPA “correctly” and quickly identifies Π as the community structure of
G(Π, π, p′).

3.2 Analysis

In the following theorem we establish fairly general conditions on the probabili-
ties {pi} and p′ and on the node subset sizes {ni} and n under which Max-LPA

converges correctly, i.e., to the node partition Π , w.h.p. Furthermore, we show
that under these circumstances just 2 rounds suffice for Max-LPA to reach
convergence!

Lemma 4. Let G(Π, π, p′) be a clustered Erdös-Rényi graph such that p′ <
mini{ni

n }. Let �i be the maximum label of a node in Vi. Then for any node
v ∈ Vi the probability that v is not adjacent to a node outside Vi with label higher
than �i is at least 1/2e.

Proof. Let v′ be a node in V \ Vi. Given that |Vi| = ni and �i is the maximum
label among these ni nodes, the probability that the label assigned uniformly at

264 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

random to v′ is larger than �i is 1/(ni + 1). The probability that v has an edge
to v′ and v′ has a higher label than �i is p

′/(ni + 1). Therefore the probability
that v′ has no edge to a node outside Vi with label larger than �i is(

1− p′

ni + 1

)n−ni

.

We bound this expression below as follows:(
1− p′

ni + 1

)n−ni

>

(
1− p′

ni

)n

>

(
1− 1

n

)n

>
1

2e
.

��

Theorem 2. Let G(Π, π, p′) be a clustered Erdös-Rényi graph. Suppose that
the probabilities {pi} and p′ and the node subset sizes {ni} and n satisfy the
inequalities:

(i) nip
2
i > 8np′ and (ii) nip

4
i > 1800c logn,

for some constant c. Then, given input G(Π, π, p′), Max-LPA converges cor-
rectly to node partition Π in two rounds w.h.p. (Note that condition (ii) implies
for each i, pi >

logni

ni
and hence each G[Vi] is connected.)

Proof. Let Vi = {u1, u2, . . . , uni} and without loss of generality assume that
�u1 > �u2 > · · · > �uni

. Since all initial node labels are assumed to be distinct,
in the first round of Max-LPA every node u ∈ V acquires a label by breaking
ties. Since ties are broken in favor of larger labels, all neighbors of u1 in Vi
that have no neighbor outside Vi with a label larger than �u1 will acquire the
label �u1 . Consider a node v ∈ Vi. Let β denote the probability that v has no
neighbor outside Vi with label larger than �u1 . Note that inequality (i) in the
theorem statement implies the hypothesis of Lemma 4 and therefore β > 1/2e.
The probability that v is a neighbor of u1 and does not have a neighbor outside
Vi is β · pi. Hence, after the first round of Max-LPA, in expectation, ni · β · pi
nodes in Vi would have acquired the label �u1 . In the rest of the proof we will
use

X := ni · β · pi.

Now consider node uj for j > 1. For a node v ∈ Vi to acquire the label �uj

it must be the case that v is adjacent to uj , not adjacent to any node in
{u1, u2, . . . , uj−1}, and not adjacent to any node outside Vi with a label higher
than �uj . Since �uj is smaller than �u1 , the probability that v is not adjacent to
a node outside Vi with label higher than �uj is less than β. Thus the probability
that a node in Vi acquires the label �uj is at most pi(1−pi)j−1 ·β < pi(1−pi) ·β.
Furthermore, the probability that a node outside Vi will acquire the label �uj at
the end of the first round is at most p′. Therefore, the expected number of nodes
in V that acquire the label uj, at the end of the first round, is in expectation at

On the Analysis of a Label Propagation Algorithm for Community Detection 265

most ni · pi(1− pi) · β + (n− ni)p
′. We now use inequality (i) and the fact that

2βe > 1 to upper bound this expression as follows:

ni ·pi(1−pi) ·β+(n−ni)p
′ < ni ·pi(1−pi) ·β+

2βe · nip
2
i

8
< ni ·pi

(
1− 3pi

4

)
·β.

Therefore, the expected number of nodes in V that acquire the label uj , at the
end of the first round, is in expectation at most

Y := ni · pi
(
1− 3pi

4

)
· β.

It is worth mentioning at this point that X − Y = nip
2
iβ/4.

Note that all the random variables we have utilized thus far, e.g., the number
of nodes adjacent to u1 and not adjacent to any node outside Vi with label
higher than �u1 , can be expressed as sums of independent, identically distributed
indicator random variables. Hence we can bound the deviation of such random
variables using the tail bound in (4). In particular, let Y ′ denote Y +

√
3cY logn

and X ′ denote X −
√
3cX log n. With high probability, at the end of the first

round of Max-LPA, the number of nodes in Vi that acquire the label u1 is at
least X ′ and the number of nodes in V that acquire the label �uj , j > 1, is at
most Y ′. Next we bound the “gap” between X ′ and Y ′ as follows:

X ′ − Y ′ = X − Y −
√
3cX logn−

√
3cY logn

>
3nip

2
iβ

4
− 2
√
3cX logn

>
3nip

2
iβ

4
− 2
√
3cnipiβ logn

>
3nip

2
iβ

4
− 3nip

2
i β

5

=
3nip

2
iβ

20

The second inequality follows from X − Y = 3nip
2
iβ/4 and Y < X , the third

from the fact that X = nipiβ, and the fourth by using inequality (ii) from the
theorem statement.

We now condition the execution of the second round of Max-LPA on the
occurrence of the two high probability events: (i) number of nodes in Vi that
acquire the label u1 is at least X ′ and (ii) the number of nodes in V that
acquire the label �uj , j > 1, is at most Y ′. Consider a node v ∈ Vi just before
the execution of the second round of Max-LPA. Node v has in expectation
at least piX

′ neighbors labeled �u1 in Vi. Also, node v has in expectation at
most piY

′ neighbors labeled �uj , for each j > 1, in V . Let us now use X ′′

to denote the quantity piX
′ −
√
3cpiX ′ logn and Y ′′ to denote the quantity

piY
′+
√
3cpiY ′ logn. By using (4) again, we know that w.h.p. v has at least X ′′

neighbors with label �u1 and at most Y ′′ neighbors with a label �uj , j > 1. We
will now show that X ′′ > Y ′′ and this will guarantee that in the second round

266 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

of Max-LPA v will acquire the label �u1 , with high probability. Since v is an
arbitrary node in Vi, this implies that all nodes in Vi will acquire the label �u1

in the second round of Max-LPA w.h.p.

X ′′ − Y ′′ = pi(X
′ − Y ′)−

√
3cpiX ′ logn−

√
3cpiY ′ logn

>
3nip

3
i

20
− 2
√
3cpiX ′ logn

>
3nip

3
i

20
− 2
√
3cnip2iβ logn

>
3nip

3
i

20
− nip

3
iβ

10

=
3nip

2
i

20
> 0

The second inequality follows from the bound on X ′ − Y ′ derived earlier and
Y ′ < X ′, the third from the fact that X ′ < nipiβ, and the fourth by using
inequality (ii) from the theorem statement.

Thus at the end of the second round of Max-LPA, w.h.p., every node in Vi
has label �u1 . This is of course true, w.h.p., for all of the Vi’s. Now note that every
node v ∈ Vi has, in expectation nipi neighbors in Vi and fewer than np′ neighbors
outside Vi. Inequality (i) implies that np′ < nipi/8 and inequality (ii) implies
that nipi = Ω(logn). Pick a constant ε > 0 such that nipi(1+ε)/8 < nipi(1−ε).
By applying tail bound (2), we see that w.h.p. v has more than nipi(1 − ε)
neighbors in Vi and fewer than nipi(1+ ε)/8 neighbors outside Vi. Hence, w.h.p.
v has no reason to change its label. Since v is an arbitrary node in an arbitrary
Vi, w.h.p. there are no further changes to the labels assigned by Max-LPA. ��

To understand the implications of Theorem 2 consider the following example.
Suppose that the clustered Erdös-Rényi graph has O(1) clusters and each cluster
had size Θ(n). In such a setting, inequality (ii) from the theorem simplifies
to requiring that each pi = Ω((log n/n)1/4) and inequality (ii) simplifies to
p′ < p2i /c for all i. This tells us, for instance, that Max-LPA converges in
just two rounds on a clustered Erdös-Rényi graph in which each cluster has
Θ(n) vertices and an intra-community probability of Θ(1/n1/3) and the inter-
community probability is Θ(1/n2/3).

This example raises several questions. If we were willing to allow more time for
Max-LPA to converge, say O(log n) rounds, could we significantly weaken the
requirements on the pi’s and p

′. Specifically, could we permit an intra-community
probability pi to become as small as c logn/n for some constant c > 1? Similarly,
could we permit the inter-community probability p′ to come much closer to the
smallest pi, say within a constant factor.

We believe that it may be possible to obtain such results, but only via sub-
stantively different analysis techniques.

On the Analysis of a Label Propagation Algorithm for Community Detection 267

4 Empirical Results on Sparse Erdös-Rényi Graphs

In the previous section we proved that if the clusters (each Vi) in a clustered
Erdös-Rényi graphs were dense enough and the inter-cluster edge density (frac-
tion of edges between nodes in different Vi) was relatively low, then Max-LPA

would correctly converge in just 2 rounds. Specifically, our result requires each

cluster to be Erdös-Rényi random graph G(n, p) with p = O

((
logn
n

)1/4)
. In

this section we ask: how does Max-LPA behave if individual clusters are much
sparser? For example, how does Max-LPA behave on G(n, p) with much smaller
p, say p = c·logn

n for some c > 1. The proof technique used in the previous section
does not extend to such small values of p. However, we believe that Max-LPA

converges quickly and correctly even on clustered Erdös-Rényi graphs whose
clusters are of the type G(n, p) for p = c·logn

n for c > 1. In this section, we ask
(and empirically answer) two questions:

1. Can one expect there to be a constant c such that Max-LPA, when run
on G(n, p) with p ≥ c logn

n will, with high probability, terminate with one
community. If the answer to Question 1 is “yes” what might the running
time of Max-LPA, as a function of n be for appropriate values of p.

2. Consider a clustered Erdös-Rényi graph with two parts V1 and V2 of equal
size, and each pi = c logn

n for some c > 1. Let p′ = c′
n for some c′. Are

there constants c, c′ for which Max-LPA will quickly converge and correctly
identify (V1, V2) as the community structure?

We are interested in values of p of the form c·logn
n because logn

n is the threshold
for connectivity in Erdös-Rényi graphs [6]. For the details about the simulation
setup and results reader is referred to the full version of this paper [15].

We observed in our simulations that Max-LPA when executed on Erdös-
Rényi graphs with p = c logn

n and c > 1, with high probability, terminate with
one community. It also seems to be the case that as c increases, we are getting
more single community runs. We also observed that the running time seems to
grow in a linear fashion with logarithm of graph size. Also as c increases the
running time decreases, which implies that as the graph becomes more dense
Max-LPA converges more quickly to a single community. Our results lead us to
conjecture that when Max-LPA is executed on Erdös-Rényi graphsG(n, p) with
p = O(log n

n) it will, with high probability, terminate with a single community in
O(log n) rounds. To answer the second question mentioned above, we executed
Max-LPA on G(Π, π, p′) with Π = (V1, V2), |V1| = |V2| = n/2, π = (p, p),
p′ = 0.6/n for various values of n and p. We observed that as p increases, Max-

LPA converges and correctly identifies (V1, V2) as the community structure.

5 Future Work

We believe that with some refinements, the analysis technique used to show
O(log n)-rounds convergence of Max-LPA on paths, can be used to show

268 K. Kothapalli, S.V. Pemmaraju, and V. Sardeshmukh

poly-logarithmic convergence on sparse graphs in general, e.g., those with degree
bounded by a constant. This is one direction we would like to take our work in.

At this point the techniques used in Section 3 do not seem applicable to more
sparse clustered Erdös-Rényi graphs. But if we were willing to allow more time
for Max-LPA to converge, say O(log n) rounds, could we significantly weaken
the requirements on the pi’s and p′? Specifically, could we permit an intra-
community probability pi to become as small as c logn/n for some constant
c > 1? Similarly, could we permit the inter-community probability p′ to come
much closer to the smallest pi, say within a constant factor? This is another
direction for our research.

Acknowledgments. We would like to thank James Hegeman for helpful dis-
cussions and for some insightful comments.

References

[1] Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

[2] Bender, E.A., Rodney Canfield, E.: The asymptotic number of labeled graphs with
given degree sequences. Journal of Combinatorial Theory, Series A 24(3), 296–307
(1978)

[3] Chernoff, H.: A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the sum of Observations. The Annals of Mathematical Statistics 23(4), 493–507
(1952)

[4] Cordasco, G., Gargano, L.: Community detection via semi-synchronous label prop-
agation algorithms. In: 2010 IEEE International Workshop on Business Applica-
tions of Social Network Analysis (BASNA), pp. 1–8. IEEE (2010)

[5] Elsner, U.: Graph Partitioning - A Survey (1997)
[6] Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci. 5(17) (1960)
[7] Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web commu-

nities. In: Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 150–160. ACM (2000)

[8] Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

[9] Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences 99(12), 7821 (2002)

[10] Gregory, S.: Finding overlapping communities using disjoint community detection
algorithms. Complex Networks, 47–61 (2009)

[11] Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc. 58, 13–30 (1963)

[12] Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J.
ACM 51(3), 497–515 (2004)

[13] Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)
[14] Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.

Bell System Technical Journal 49(2), 291–307 (1970)
[15] Kothapalli, K., Pemmaraju, S.V., Sardeshmukh, V.: On the analysis of a label

propagation algorithm for community detection. arXiv preprint (2012)

On the Analysis of a Label Propagation Algorithm for Community Detection 269

[16] Leung, I.X.Y., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community de-
tection in large networks. Arxiv preprint arXiv:0808.2633 (2008)

[17] Liu, X., Murata, T.: How does label propagation algorithm work in bipartite
networks? In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology, vol. 03, pp. 5–8.
IEEE Computer Society (2009)

[18] Molloy, M., Reed, B.: A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)

[19] Newman, M.E.J.: Networks: An Introduction. OUP Oxford (2010)
[20] Newman, M.E.J.: The spread of epidemic disease on networks. Physical Review

Letters 66, 16128 (2002)
[21] Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Re-

view 45(2), 167–256 (2003)
[22] Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in

networks. Physical Review E 69(2), 26113 (2004)
[23] Peleg, D.: Distributed computing: a locality-sensitive approach, vol. 5. Society for

Industrial Mathematics (2000)
[24] Poljak, S., Sura, M.: On periodical behaviour in societies with symmetric influ-

ences. Combinatorica 3(1), 119–121 (1983)
[25] Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect

community structures in large-scale networks. Physical Review E 76(3), 36106
(2007)

[26] Suaris, P.R., Kedem, G.: An algorithm for quadrisection and its application
to standard cell placement. IEEE Transactions on Circuits and Systems 35(3),
294–303 (1988)

[27] Šubelj, L., Bajec, M.: Unfolding network communities by combining defensive and
offensive label propagation. In: In Proceedings of the ECML PKDD Workshop on
the Analysis of Complex Networks 2010 (ACNE 2010), pp. 87–104 (March 2011)

[28] Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Na-
ture 393, 440–442 (1998)

How to Survive and Thrive in a Private

BitTorrent Community

Adele Lu Jia1, Xiaowei Chen2, Xiaowen Chu2,
Johan A. Pouwelse1, and Dick H.J. Epema1

1 Department of Computer Science,
Delft University of Technology, The Netherlands

2 Department of Computer Science,
Hong Kong Baptist University, Hong Kong

Abstract. Many private BitTorrent communities employ Sharing Ra-
tio Enforcement (SRE) schemes to incentivize users to contribute. It
has been demonstrated that communities that adopt SRE are greatly
oversupplied, i.e., they have much higher seeder-to-leecher ratios than
communities in which SRE is not employed. Most previous studies fo-
cus on showing the positive effect of SRE in achieving high downloading
speed. However, in this paper we show through measurements that SRE
also induces severe side-effects. Under SRE, users are forced to seed for
excessively long times to maintain adequate sharing ratios to be able
to start new downloads, though most of the time their seedings are not
very productive (in terms of low upload speed). We also observe that
many users who seed for very long times still have low sharing ratios.
We find that this is due to the counter-intuitive phenomenon that long
seeding times do not necessarily lead to large upload amounts. Based on
these observations, we discuss possible strategies for users to gain shar-
ing ratios efficiently, which help them to survive and thrive in private
communities.

1 Introduction

BitTorrent is a popular Peer-to-Peer (P2P) protocol for file distribution. A key
of its success lies in its Tit-For-Tat (TFT) incentive policy, which works rea-
sonably well in fostering cooperation among downloading peers 1 (also known
as leechers). However, TFT does not provide any incentive for peers to remain
in the system after the download is complete, in order to seed the entire file
to others. Therefore, peers are free to engage in “Hit and Run” behavior, the
scenario under which a peer leaves immediately upon completing a download.

To provide incentives for seeding, in recent years there has been a proliferation
of so-called private BitTorrent communities. While most previous works [1–4]
focus on demonstrating the positive effects of the high seeder-to-leecher ratios,

1 In this paper, we use user and peer alternatively to refer to the individuals in a
private community.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 270–284, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

How to Survive and Thrive in a Private BitTorrent Community 271

i.e., oversupply, achieved in these communities, in this paper we show through
measurements that oversupply also induces severe adverse effects.

Most private communities employ a private-tracker-based method that main-
tains centralized accounts and records the sharing ratio of each peer, i.e., the
ratio between its total amount of upload and download. Community administra-
tors specify some threshold above which all members are required to maintain
their sharing ratios. This mechanism is known as Sharing Ratio Enforcement
(SRE). Community members whose sharing ratios drop below the threshold are
warned and then banned from downloading, or even expelled from the com-
munity. In this way, it is guaranteed that each peer provides a certain level of
contribution to the community.

The main motivation for implementing SRE is to close the gap between band-
width demand and supply as observed in public communities, where there is
significantly more demand than supply [3]. Thus, the basic design goal of SRE is
to achieve higher system-wide downloading speed by increasing the bandwidth
supply. Several measurement studies have shown that SRE is very effective in in-
creasing the bandwidth supply [1–5]. For instance, [3] reports seeder-to-leecher
ratios that are at least 9 times higher in private communities than in public
ones, while downloading speeds are found to be 3-5 times higher. However, is
high downloading speed the unique and ultimate design goal of private commu-
nities? Do all the users enjoy it without experiencing any adverse effects?

To answer these questions, in this paper we analyze SRE’s performance
through measurements based on an extended range of metrics including the
seeding time, the upload speed, and the evolution of sharing ratio. These met-
rics are highly related to user experience, but have never been considered before
in previous measurement work. Our previous work [6,7] has dealt with analyzing
the pros and cons of SRE schemes based on theoretical models and simulations.
This paper complements these works by presenting observations from real world
communities. The main contributions of this paper are as follows:

– We perform a measurement study of three private communities that provide
user-level information including the upload amount, download amount, seed-
ing time, leeching time, and sharing ratio of each user. Among the tens of
existing communities we have examined, they are the only ones that provide
such detailed information.

– We use one of the three communities as an example, and we show that
while users achieve very high downloading speeds, to maintain adequate
sharing ratios they have to seed for excessively long times (compared to
their downloading times), though most of the time their seedings are not
very productive due to the oversupply induced by SRE.

– For users who intend to increase their sharing ratios to survive and thrive
in a private community, our analysis shows that seeding for longer durations
is not as effective as increasing the upload speed. In order to do so, besides
upgrading the internet access, users can also try to avoid the oversupply by
joining swarms in their early stages.

272 A.L. Jia et al.

– Given the possible user strategies against SRE, we further analyze the ex-
isting strategies adopted by administrators in private communities, which
are initially designed to further incentivize contribution. We show that some
strategies have limited or even negative effects on the performance and we
propose our remedies.

2 Methodology

In order to obtain a better understanding of private BitTorrent communities it
is critical to be able to collect data on their operation. Over the years it has
been proven to be a challenge to obtain detailed traces of user behavior, due to
a combination of technical constraints and privacy concerns. For instance, prior
work was never able to capture both detailed user profiles, content availability,
and precise information on every user download.

To support our analysis, we have examined 38 elite private communities, out of
which three communities (CHDBits [8], ChinaHDTV [9], and HDStar [10]) were
selected for detailed regular deep crawling of HTML pages. These specific three
communities were selected as they are the only ones that provide information
detailed enough for our analysis. We have obtained the following three datasets
for each community:

1. Community-level user profile: in this dataset, we crawl the profile page
of each community user and obtain the information of its upload and down-
load amount, its seeding and leeching time, its sharing ratio at the time of
snapshot, and the time it joined the community.
It should be noted that the seeding time of each user recorded by the tracker
is swarm-based, i.e., simultaneously seeding in multiple swarms counts sep-
arately. For instance, after a user has seeded in two swarms for 10 hours,
2 × 10 = 20 hours will be added to its seeding time. Similarly, the leeching
time recorded by the tracker is also swarm-based. In later sections, when we
calculate the average upload speed of a user, we calculate its per-swarm aver-
age upload speed, i.e., the total upload amount divided by the swarm-based
seeding time. In this way, we get a rough estimation of a user’s seeding time
and upload speed. Though more accurate calculation of the seeding time
and upload speed would be better, to the best of our knowledge, until now
no private communities provide this information and it is also impossible to
deploy a client and contact every user individually to get this information.

2. Community-level torrent profile: in this dataset, we crawl the commu-
nity trackers and collect information of each torrent, including the number
of seeders and leechers, the number of finished downloads at the time of the
snapshot, and the time the torrent was published.

3. Torrent-level user activity: the tracker records a user’s torrent-level ac-
tion times, such as the time of joining the swarm, the time of starting seeding,
etc. The precision of the recorded action time decreases with time. For ex-
ample, if a user started to seed 10 hours ago, its action time will be “10

How to Survive and Thrive in a Private BitTorrent Community 273

hours ago”. However, if a user started to seed one month 23 days and 10
hours ago, its action time will only be “one month and 23 days ago”.

In order to obtain the action times with precision in hours, we examine
all the torrents released within 24 hours and choose the one with the largest
number of participants. We follow this torrent for 7 days and record the
activity of each user who has participated or is participating in it. The
collected information includes each user’s upload amount, download amount,
seeding time, and leeching time in this swarm, as well as the time it joins
and leaves the swarm.

We analyze the three communities we measured in detail. Due to the limit of
space, we only demonstrate the results of CHDBits. We collected the data in
May, 2011. At the time of our measurement, CHDBits had 31,547 registered
users, 40,040 torrents, and a total download amount of 24.3 PB. For dataset
1 and 2, information of all the users and torrents are collected. For dataset 3,
information of 3,776 users attracted to the chosen torrent is collected. Results
about the other two communities can be found in our technical report [11]. The
datasets of the other two communities demonstrate similar performance as that
of CHDBits.

3 A General View: The Rich Are Rich and the Poor Are
Poor

Fig. 1 shows the CDF of the user’s sharing ratio in CHDBits (dataset 1). We see
that around 15% users have sharing ratios less than 1 (considered as the poor),
while around 18% users have sharing ratios larger than 5 (considered as the
rich). The behavior of accumulating a large sharing ratio may be triggered by
various motivations, such as altruism, a desire to be part of the rich elite of the
community, or a habit of saving sharing ratio for the future. The rich peers have
little worry about staying in the community, since their sharing ratios are far
beyond the SRE threshold, which for CHDBits is 0.7. On the other hand, poor
peers are at the risk of being expelled from the community. As a consequence,
they need to be concerned a lot about their decisions: they may download new
contents they really desire, but this might reduce their sharing ratios to a more
risky level.

One may argue that the poor peers are free-riders, who intend to keep low and
risky sharing ratios that are just enough to stay in the community. However, the
highly restricted membership in private communities, especially in CHDBits and
many other private communities where new members can only join by a limited
number of invitations, makes it very difficult to get a new membership. Hence,
we conjecture that not all poor peers are strategic and psychologically strong
enough to face being expelled from the community due to insufficient sharing
ratios. Interestingly, as we will show in the following sections, the poverty is
partially induced by the fact that the poor peers are not strategic enough.

274 A.L. Jia et al.

10
−1

10
0

10
1

10
20

0.2

0.4

0.6

0.8

1

Sharing ratio

C
D

F

Fig. 1. The CDF of user’s sharing ratio

4 Long Seeding Time: The Expense of High Downloading
Speed

Many previous studies have shown that under SRE, users seed for long durations
[1–4]. They consider this as a positive effect of SRE since long seeding durations
lead to high downloading speeds. However, in this section we argue that the long
seeding durations can also be seen as a negative effect, especially for poor peers.

4.1 Long Seeding Times, Even for Poor Peers

Fig. 2 shows the CDF of user’s seeding time and leeching time in CHDBits (dataset
1). Consistent with the theoretical results of our previous work [7], in general the
seeding time is much longer than the leeching time: the median leeching time is
70 days while the median seeding time is 1,100 days. Remember that the seeding
and leeching time of users are swarm-based, leading to very high values.

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Day

C
D

F

leeching time, all users
leeching time, users with 0.7<SR<1
seeding time, users with 0.7<SR<1
seeding time, all users

Fig. 2. The CDF of user’s seeding and leeching time

How to Survive and Thrive in a Private BitTorrent Community 275

Intuitively, longer seeding times than leeching times for rich peers (in terms
of high sharing ratios) are to be expected, since the rich peers are saving sharing
ratios by seeding. However, we observe from Fig. 2 that, even though the poor
peers in general seed slightly shorter than rich peers, they still seed much longer
than they leech. While intuitively poor peers should be the ones that are not
“hard-working” enough, why do some of them seed for long durations but still
have low sharing ratios? In the following section, we explore the possible reasons.

4.2 Possible Reasons?

One may argue that the long seeding times of poor peers are due to the fact
that even though they contribute more, they also consume more. Hence, they
seed for long durations but they still have low sharing ratios. This argument
is partially true. Andrade et al. [12] have shown and we also observe from our
measurement (Fig. 3, dataset 1) that the individual upload amount (contribu-
tion) increases with the corresponding download amount (consumption), with
the Spearman’s rank correlation coefficient equal to 0.8110. Spearman’s rank
correlation coefficient assesses how well the relationship between two variables
can be described using a monotonic function [13]. However, this doesn’t nec-
essarily mean that heavy contributions induce long seeding times, nor does it
mean that long seeding times lead to heavy contributions.

10
0

10
1

10
2

10
3

10
410

0

10
2

10
4

10
6

Download amount (GB)

U
pl

oa
d

am
ou

nt
 (

G
B

)

Fig. 3. Upload amount vs. download amount (with Spearman’s rank correlation coef-
ficient equal to 0.8110)

Quite counter-intuitively, as shown in Fig. 4(a), a peer’s upload amount has
little relation to its seeding time: many peers seed for long durations but only
have uploaded relatively small amounts of data, while other peers seed for rel-
atively short durations but have successfully achieved large upload amounts.
The same argument is also applicable to poor peers (Fig. 4(b)). This interesting
phenomenon implies that for poor peers who intend to increase their upload
amount to become rich, seeding for longer durations may not be an effective
method, even if intuitively it seems so.

276 A.L. Jia et al.

0 1 2 3 4 5
x 10

4

0

2

4

6

8

10x 10
4

Upload amount (GB)

S
ee

di
ng

 ti
m

e
(d

ay
)

(a) for all users

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10x 10
4

Upload amount (GB)

S
ee

di
ng

 ti
m

e
(d

ay
)

(b) for users with 0.7 ≤ SR ≤ 1

Fig. 4. Seeding time vs. upload amount

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10x 10
4

Average upload speed (KB/s)

S
ee

di
ng

 ti
m

e
(d

ay
)

Fig. 5. Seeding time vs. upload speed (with Spearman’s rank correlation coefficient
equal to −0.6318)

How to Survive and Thrive in a Private BitTorrent Community 277

Though there is no strict relationship between a peer’s seeding time and its
upload amount, we do observe that a peer’s seeding time is related to its average
upload speed, regardless of its upload amount. As shown in Fig. 5, most of the
long seeding durations happen to the peers with relatively small upload speeds,
and for peers who have high upload speeds, the seeding times are normally short.

The most intuitive reason for a low upload speed is a limited internet access.
However, we argue that this is not the only reason. From dataset 2, at the time
when we crawled the site, CHDBits had 33,041 active swarms (with at least one
leecher or one seeder), among which 26,402 swarms (79.9%) had no leechers at
all. As shown in Fig. 6(a), 40% of the swarms with no leechers still have at least
5 seeders, and 5% of these swarms even have more than 20 seeders. For swarms
with at least 1 leecher, the seeder-to-leecher ratio (SLR) is quite high: as shown
in Fig. 6(b), 50% of these swarms have as SLR larger than 6, and 5% of these
swarms even have as SLR larger than 30. We see clearly that a majority of the
swarms in CHDBits are heavily oversupplied. In such swarms, seeders are not
able to perform any actual uploads due to the insufficient demand and unsatisfied
supply. We term this situation unproductive seeding. As a consequence, users have
to seed for excessively long durations to achieve the sharing ratio required by
SRE.

0 25 50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

Seeder number in swarms with no leechers

C
D

F

(a) The CDF of the number of seeders
in swarms with no leechers

0 25 50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

Seeder−to−leecher ratio

C
D

F

(b) The CDF of seeder-to-leecher ratio
in swarms with at least one leecher

Fig. 6. Oversupply in CHDBits swarms

While a low upload speed mainly leads to a long seeding time, in the next
section we show its influence on a user’s status. We analyze the reasons for the
poor being poor and discusses strategies for users to become rich efficiently.

5 Why the Poor Are Poor and How to Become Rich?

As the sharing ratio is defined as the ratio between a peer’s upload and download
amount, two possible reasons for a peer being poor are that it has downloaded
too much or has uploaded not enough. The download amount depends on a
user’s interests in contents. We do not suggest users to download less so as to

278 A.L. Jia et al.

become rich, since the fundamental user experience that should be guaranteed
by communities is that users should not need to limit their download needs.
Following this argument, in this section we focus on the user upload activity and
analyze why some users have uploaded not enough (hence, are poor) and how
they can improve it (to become rich).

5.1 Community level

In Section 4.2 we have shown that the seeding time has little influence on the
upload amount but the upload speed does. The upload speed further influences
whether a user is rich or poor. As shown in Fig. 7 (dataset 1), in general rich
peers (SR ≥ 5) have much higher upload speeds than poor peers (SR ≤ 1). For
example, 80% of the poor peers upload at a speed less than 20 KB/s, while at
least 40% rich peers can upload at a speed larger than 50 KB/s. Together with
the result in Section 4.2, we conclude that instead of seeding for longer durations,
peers who intend to become rich should seed with higher upload speeds. And
to seed with a higher upload speed, a user could upgrade its internet access or
choose a swarm that is less oversupplied.

10
−1

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Average upload speed (KB/s)

C
D

F

users with 0.7<SR<1
all users
users with SR>5

Fig. 7. The CDF of user’s average upload speed in CHDBits

One may argue that the above analysis is based on community-level activities,
which only provide a macroscopic view that is not enough to show the underlying
details. To explore this, in the following subsection we focus on a single swarm
and demonstrate the torrent-level user performance, and we discuss possible
strategies for users to become rich.

5.2 Torrent Level

Different Individual Upload Amount in One Swarm: Fig. 8 shows the
CDF of the user upload amount in a single swarm (dataset 3), from which we

How to Survive and Thrive in a Private BitTorrent Community 279

0 25 50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

Upload amount (GB)

C
D

F

Fig. 8. The CDF of user’s upload amount in one swarm

observe that a small fraction of users have uploaded considerably more than the
others. For example, 60% of the users have uploaded less than 10 GB, which is
less than the amount they have downloaded (11.7 GB). On the other hand, 5%
of the users have uploaded more than 50 GB. Of course, the users who managed
to upload more will become richer. While these users have participated in the
very same swarm, why did some manage to gain a lot while others didn’t?

Possible Reasons and How to Gain More: One intuitive reason for a
small upload amount is a short seeding time. However, similar to the analysis in
Section 4.2, again we find the counter-intuitive result that in one swarm a peer’s
upload amount is not related to its seeding time (Fig. 9). On the other hand,
it is related to its upload speed. As shown in Fig. 10, most of the small upload
amounts happen to the peers with relatively low upload speeds, and peers with
high upload speeds normally have uploaded a large amount.

0 50 100 150
0

50

100

150

200

250

300

Seeding time (hour)

U
pl

oa
d

am
ou

nt
 (

G
B

)

Fig. 9. Upload amount vs. seeding time in one swarm

280 A.L. Jia et al.

0 200 400 600 800 1000
0

50

100

150

200

250

300

Average upload speed (KB/s)

U
pl

oa
d

am
ou

nt
 (

G
B

)

Fig. 10. Upload amount vs. upload speed in one swarm (with Spearman’s rank corre-
lation coefficient equal to 0.7876)

0 50 100 150 200
0

50

100

150

200

250

300

Hours after the content is released

U
pl

oa
d

am
ou

nt
 (

G
B

)

Fig. 11. Upload amount vs. time of starting seeding in one swarm (with Spearman’s
rank correlation coefficient equal to −0.6491)

When we organize the peers according to the time they start to seed, we find
another interesting phenomenon: peers that start to seed earlier normally have
uploaded more (Fig. 11). The same phenomenon has also been observed by Kash
et al. in [14]. One may argue that the peers who start to seed earlier can seed for
longer durations, hence they upload more. However, in Fig. 9 we already show
that the upload amount is not related to the seeding time. Then why do peers
that start to seed earlier upload more?

As shown in Fig. 12(a), after the burst at the first two hours since the file was
published, the peer arrival rate decreases dramatically. On the other hand, the
number of seeders increases quickly at the first 60 hours, then decreases with a
much smaller rate (Fig. 12(b)). In general, the number of leechers is negligible
compared to the number of seeders. As a consequence, peers who join late have
to compete with a large number of seeders for uploading, which leads to a low

How to Survive and Thrive in a Private BitTorrent Community 281

upload speed, and hence a small upload amount. Therefore, peers who intend
to become richer should join the swarm in it’s early stage, when it is still not
extremely oversupplied.

6 Discussion

Though altruistic users always exist, we conjecture that most users in private
communities are selfish. Their initial goal in a community is to download all the
contents they are interested in. To achieve this, while not limiting their download
needs, they always try to increase their sharing ratios when it is possible. The
strategies they apply mainly optimize their own benefit, without considering the
social welfare, i.e., the performance of other users. For example, users may seed
all the files they have downloaded to increase the opportunity of performing some
actual uploading during seeding. However, this directly increases the bandwidth
supply and makes the upload competition even more severe. As we discussed in
Section 5, joining swarms earlier helps users gain sharing ratios more efficiently.
However, if a majority of users strategically join the swarm immediately after
a new content is published, then 1) many users will download something they
don’t want, only for gaining sharing ratios; 2) the downloading speed in the
early stage of a swarm will be very low, because a large number of strategic
users joining simultaneously makes the swarm heavily flash-crowded2; and 3) it
will be more difficult to perform any actual uploads after the early stage, since
only a few non-strategic users will join the swarm during that period.

Private community administrators that intend to adopt strategies, or reme-
dies, to alleviate the side-effects of SRE, should take the potential strategic user
behaviors into account. For example, some private communities try to further
incentive contribution beyond SRE by giving rich peers the priority to access the
newly published contents [15]. However, as discussed previously, joining early in
a new swarm will help the users, especially the poor users, gain sharing ratios
more efficiently. By giving the priority to the rich peers, administrators are ba-
sically taking the opportunities away from the poor peers for gaining sharing
ratios. Unless the administrators intend to let the rich be richer and the poor
be poorer (which will lead to a more intense competition and a potential dete-
rioration of performance as discussed previously), we suggest administrators to
remove these restrictions.

Another example would be free-leech and seeding-bonus. Some communities
[8–10,16] temporarily adopt free-leech and/or seeding-bonus for certain swarms,
which means that a user can download the file for free and/or get extra bonus for
seeding. Under free-leech periods, users are attracted to those swarms because of
the low price for downloading. In this way, the bandwidth demand is increased
and the oversupply in the system is alleviated. Meanwhile, when free-leech is
applied to an relatively old swarm, the benefit of joining early is also reduced.
The same argument is also applicable to seeding-bonus. Under seeding-bonus

2 We refer a swarm to be flash-crowded when it has a sudden increase in the number
of leechers.

282 A.L. Jia et al.

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

Hours after the content is released

P
ee

r
ar

riv
al

 r
at

e
(p

er
 h

ou
r)

(a) Peer arrival rate (per hour)

0 25 50 75 100 125 150 175
0

250

500

750

1000

1250

1500

Hours after the content is released

N
um

be
r

of
 p

ee
rs

seeder
leecher

(b) Evolution of leechers and seeders

Fig. 12. Performance in one swarm

periods, peers are attracted to the swarms to seed. Hence, when seeding-bonus is
applied to old swarms, the file availability is improved. However, administrators
should be careful and not adopt free-leech or seeding-bonus for a long time,
otherwise strategic users might wait and not download anything until the files
are for free, or only seed in swarms with seeding bonus.

In our previous work [7], we propose a self-organizing strategy named SRE
with supply-based price that prevents this potential manipulation of strategic
users. Instead of manually adopting free-leech (i.e., zero price), this strategy in-
versely relates the price for downloading one unit of data to the seeder-to-leecher
ratio in the swarm. With a larger seeder-to-leecher ratio, i.e., an increasing sup-
ply, SRE with supply-based price automatically decreases the price. Once the
supply goes tight again, it will automatically increase the price. In this way, the
demand and supply are automatically balanced and reasonable downloading and
seeding times are achieved.

How to Survive and Thrive in a Private BitTorrent Community 283

7 Related Work

To date, only few works have analyzed private communities. Zhang et al. [4]
investigate hundreds of private trackers and depict a broad and clear picture
of the private community landscape. Chen et al. [1] compare system behaviors
among 13 private trackers and 2 public trackers, and they show their differences
regarding user viscosity, single torrent evolution, user behaviors, and content
distribution. Liu et al. [2] also perform measurement studies and further develop
a model to show that SRE indeed provides effective incentives, but is vulnerable
to collusion.

While these studies all focus on demonstrating the high seeding level achieved
by private communities, there have been a few preliminary works that show the
adverse effects. Andrade et al. [12] focus on the dynamics of resource demand
and supply, and they show that users typically try to increase their contribution
levels by seeding for longer and not by providing more bandwidth to the system.
However, our paper shows that providing limited bandwidth is not the will of
users, but it is a consequence of the oversupply in private communities. Chen
et al. [17] also notice the oversupply problem and provide a model to identify
the optimal stable SLR range. However, they didn’t analyze the reason or pro-
pose strategies to solve the problem of oversupply. Kash et al. [14] demonstrate
that there are significant disparities in the cost of new and old files in a private
community named DIME, and users compensate for the high cost of older files
by downloading more copies of newer files or by preferentially consuming older
files during free-leech periods. Particularly, they have shown that after a pe-
riod of free-leech, there are more download activities in the community. This is
consistent with our result that during free-leech, there is more demand and the
oversupply is alleviated. Besides analyzing positive and negative effects of SRE,
our work further discusses the performance of well-adopted community strate-
gies, their effects against strategic user behavior and the remedies we proposed.

8 Conclusion

While previous works only focus on showing the effectiveness of SRE in increas-
ing the bandwidth supply, in this paper we provide a better understanding of
private communities by demonstrating both the positive and negative effects
of SRE. We show that swarms in private communities are greatly oversupplied.
Users achieve very high downloading speeds, but at significant expense including
excessively long seeding times and very low upload speeds. As a consequence,
users with small sharing ratios are forced to limit their downloading needs so as
to keep adequate sharing ratios to stay in the community. For users who intend
to increase their sharing ratios, we show that seeding for longer durations is not
as effective as increasing the upload speed. If it is not realistic for the users to
upgrade their internet access, we suggest them to join swarms early or to join
undersupplied swarms.

284 A.L. Jia et al.

Acknowledgements This work was supported by the Future and Emerging
Technologies programme FP7-COSI-ICT of the European Commission through
project QLectives (grant no.: 231200) and the EU FP7 project P2PNEXT (grant
no.: 216217).

References

1. Chen, X., Chu, X.: Measurements, analysis and modeling of private trackers. In:
Proceeding of the 10th IEEE International Conference on Peer-to-Peer Computing,
IEEE P2P 2010 (2010)

2. Liu, Z., Dhungel, P., Wu, D., Zhang, C., Ross, K.: Understanding and improving
incentives in private p2p communities. In: Proceedings of the 30th International
Conference on Distributed Computing Systems (ICDCS 2010) (2010)

3. Meulpolder, M., D’Acunto, L., Capota, M., Wojciechowski, M., Pouwelse, J.,
Epema, D., Sips, H.: Public and private bittorrent communities: A measurement
study. In: Proceedings of 9th International Workshop on Peer-to-Peer Systems
(IPTPS 2010) (2010)

4. Zhang, C., Dhungel, P., Di Wu, Z.L., Ross, K.: Bittorrent darknets. In: Proceed-
ings of the 30th IEEE International Conference on Computer Communications
(INFOCOM 2010) (2010)

5. Jia, A., D’Acunto, L., Meulpolder, M., Pouwelse, J.: Modeling and analysis of
sharing ratio enforcement in private bittorrent networks. In: Proceedings of the
IEEE International Communications Conference (ICC 2011) (2011)

6. Rahman, R., Hales, D., Vinko, T., Pouwelse, J., Sips, H.J.: No more crash or
crunch: Sustainable credit dynamics in a p2p community. In: Proceeding of the
International Conference on High Performance Computing and Simulation, HPCS
2010 (2010)

7. Jia, A., Rahman, R., Vinko, T., Pouwelse, J., Epema, D.: Fast download but eternal
seeding: the reward and punishment of sharing ratio enforcement. In: Proceeding
of the 11th IEEE International Conference on Peer-to-Peer Computing, IEEE P2P
2011 (2011)

8. CHDBits, http://chdbits.org/
9. ChinaHDTV, http://www.chinahdtv.org

10. HDStar, http://www.hdstar.org/
11. Jia, A.L., Chen, X., Chu, X., Pouwelse, J.: From user experience to strategies:

how to survive in a private community. Technical Report PDS-2011-004, Delft
University of Technology (September 2011)

12. Andrade, N., Santos-Neto, E., Brasileiro, F., Ripeanu, M.: Resource demand and
supply in bittorrent content-sharing communities. Computer Networks 53 (2008)

13. Spearman, C.: The proof and measurement of association between two things.
American Journal of Psychology 15 (1904)

14. Kash, I., Lai, J., Zhang, H., Zohar, A.: Economics of bittorrent communities. In:
Proceeding of the 6th Workshop on the Economics of Networks, Systems, and
Computation, NetEcon 2011 (2011)

15. BitSoup, http://bitsoup.org
16. PolishTracker, http://polishtracker.net/
17. Chen, X., Chu, X., Li, Z.: Improving sustainability of private p2p communities. In:

Proceeding of the 20th International Conference on Computer Communications
and Networks (ICCCN 2011) (2011)

http://chdbits.org/
http://www.chinahdtv.org
http://www.hdstar.org/
http://bitsoup.org
http://polishtracker.net/

Optimal Migration Contracts in Virtual Networks:
Pay-as-You-Come vs Pay-as-You-Go Pricing

Xinhui Hu1, Stefan Schmid2, Andrea Richa1, and Anja Feldmann2

1 SCIDSE, Arizona State University, Tempe, AZ 85287, USA
{xinhui.hu,aricha}@asu.edu

2 TU Berlin & T-Labs, Germany
{stefan,anja}@net.t-labs.tu-berlin.de

Abstract. Network virtualization realizes the vision of an Internet where re-
sources offered by different stakeholders are used and shared by multiple co-
existing virtual networks. The abstraction introduced by network virtualization
opens new business opportunities. We expect that in the near future, infrastructure
providers (or resource brokers and resellers) will offer flexibly specifiable and
on-demand virtual networks over the Internet, similarly to the elastic resources in
today’s clouds.

This paper initiates the discussion on the optimal resource allocations in such
an economic environment. We attend to a scenario where a flexible service (such
as a web service or an SAP database) is implemented over a virtual network. This
service can be seamlessly migrated closer to the current locations of the (mobile)
users. We assume that a virtual network provider offers different contracts to the
service provider, and we distinguish between two fundamentally different pricing
models: (1) a Pay-as-You-Come model where the service provider needs to decide
in advance which time-based contracts to buy in order to implement the service,
and a (2) Pay-as-You-Go-model where the service provider is charged only when
the service terminates and only for the amount of resources actually used. In
both cases, the virtual network provider may offer a discount if more resources
are bought, e.g., buying a resource contract of double duration or of twice as
much bandwidth only costs fifty percent more than a simple contract. We describe
two optimal migration algorithms PAYC (for the Pay-as-You-Come model) and
PAYG (for the Pay-as-You-Go model), provide a quantitative comparison of the
two pricing models, and discuss their implications. Finally, extensions to online
algorithms are discussed.

1 Introduction

The Internet becomes more and more virtualized and programmable (or “software-
defined”), and we witness a trend towards extending the cloud paradigm to the network.
Researchers in the field of network virtualization develop prototype architectures that
herald flexibly specifiable, fully virtual networks (VNets) (also known as CloudNets):
virtual networks that can be requested at short notice (and even be migrated arbitrarily
within the specification constraints), while providing isolation guarantees (e.g., in terms
of QoS or security). This paradigm has the potential to open a network infrastructure

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 285–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

286 X. Hu et al.

for a wide range of new and innovative services, and it is believed that new economical
entities will emerge that lease (or re-lease) infrastructure parts to service providers.

We expect that in the near future, such virtual networks connecting arbitrary loca-
tions (and spanning multiple autonomous systems and providers) in the Internet can be
leased similarly to the resource leasing models of today’s clouds. This paper attends
to a use case for such dynamic VNets where a service provider offers a flexible and
latency-critical service (for instance a web service, an SAP server or a game server)
to its mobile customers whose demand and locations changes over time (e.g., due to
time-zone effects or commuting). We assume that the service provider itself uses the
resource services of a substrate infrastructure provider (e.g., a physical infrastructure
provider or a virtual network provider) in order to offer a low-latency access to a server
which can be migrated seamlessly in the VNet (i.e., without reconfiguration or changes
of routable network addresses). The service provider is faced with the challenge that
while moving the server closer to the customers improves QoS (and/or reduces roam-
ing costs), frequent migrations come at service interruption and bulk data transfer costs.
We initiate the study of optimal offline and online migration strategies for the service
provider under two different pricing models.

Our Contribution. This paper initiates the study of the virtual server migration prob-
lem from an economical perspective. We compare the two most basic pricing policies
Pay-as-You-Come and Pay-as-You-Go (see, e.g., [14]), in which a service provider has
to pay in advance for time-based contracts respectively in retrospect for the resources
actually used. The service provider receives a discount when buying larger contracts,
e.g., a contract of twice the resource volume only costs 50% more. As a first step, we, in
this paper, design offline migration algorithms for different settings and discount func-
tions. We find that optimal offline solutions can indeed by computed in polynomial time
by using non-trivial dynamic programs. We theb use these algorithms to quantify and
compare the two pricing models by simulation. We discuss the implications of these
models and find that, as expected, Pay-as-You-Come pricing yields higher costs on the
service provider side than Pay-as-You-Go pricing, especially for moderate discounts.
Interestingly, the distribution and structure of the costs and the used contracts differ
significantly for the two pricing schemes, and it turns out that the QoS guarantees under
the Pay-as-You-Go model are much better due to the efficient resource investments.

Note that offline algorithms are particularly interesting if demand patterns can be
predicted well (e.g., if it depends on time-zone effects or commuter behavior). However,
offline algorithms can also serve as a yardstick to evaluate the performance (i.e., the so-
called competitive ratio) of online algorithms in simulations. This paper also initiates
exploring online migration strategies.

2 Economical Service Migration

A virtual network topology can be modeled as a graphG = (V,E) where V (G) denotes
the set of nodes and E(G) the set of links. We assume that a service provider can place
its service (i.e., the server) on any location in the virtual network. Requests can originate
from different access points in V (G), and the access cost is given by the shortest path
(depending on some given metric D) to the server location in V (G). In order to reduce

Optimal Migration Contracts in Virtual Networks 287

the access cost, the virtual server can be migrated along the links in E(G). To do so,
the service provider needs to purchase bandwidth along the migration path.

We attend to a scenario where a virtual network provider offers the service provider
a choice of contracts of different durations in which dedicated resources can be leased
in the virtual network (e.g., for migration), i.e., D = {d1, d2, . . . , dk} (we assume
d1< d2<. . .< dk). In addition to the contract durations, the service provider can
choose between different bandwidths along the links, i.e., it can choose among the
following set of bandwidths for each link: B = {b1, b2, . . . , bq} (we also assume that
b1<b2 <. . .<bq).

We consider two different pricing models. Under Pay-as-You-Go pricing, a customer
only needs to pay for the used resources after the actual consumption (or at regular
time intervals T), and the best contract is determined according to the usage pattern a
posteriori. Pay-as-You-Go pricing is often used in the context of cloud resource leasing.
In contrast, in the Pay-as-You-Come model, a customer needs to decide in advance
which kind of time-based contracts she is interested in, and needs to buy them before
the actual resource usage. Examples for this model can be found, e.g., in the context
of private Internet access where users often pay in advance and independently of the
actual usage pattern.

In this paper, in order to focus on the main tradeoffs, we initiate the study of these
pricing models in a simplified scenario where the virtual network consists of two loca-
tions only (e.g., one in the U.S. and one in Asia); we will refer to these locations by L
(left) and R (right) respectively and normalize their distance to one unit. The server can
be migrated arbitrarily between the two locations if a corresponding resource contract
is present for the bulk-data transfers. Concretely, a contract in the Pay-as-You-Come
model consists of a duration di and the bandwidth bj to lease the virtual link between
the two sites for di units (e.g., days) and at a bandwidth of bj (e.g., Mbit/s). The price
of the contract is given by a function f(di, bj), where f(·, ·) describes a monotonic in-
creasing discount over the contract duration and over the amount of reserved resources.
For example, a twice as long contract may cost only 50% more, and doubling the re-
served bandwidth may cost only 30% more. In the Pay-as-You-Go model, the customer
only needs to pay when the service is finished or after a given duration, i.e., every T
time units (e.g., a month), and only for the resources (and bulk data transfers) that are
actually used. Concretely, if μi migrations are performed during the time period T at a
bandwidth of bj ∈ B, the overall costs amount to f(μi, bj).

The main objective is to minimize the migration and contracting costs (denoted
by MigCost and ConCost) while providing good Quality-of-Service (QoS) guaran-
tees (minimize access cost AccCost). Hence, we seek to minimize the following cost
function:

Cost = AccCost + MigCost + ConCost

We assume there are n requests total, denoted by a set < r1, r2, · · · , rn > at respective
times < t1, t2, · · · , tn >. The access cost is given by the latency of the requests ri ∈
V (G) to the location of the server si ∈ V (G), i.e., AccCost =

∑
iD[ri, si] where ri

and si denote the ith request node and the server location at time ti. The migration cost
MigCost is given by the service interruption time (see also [5]), i.e., the time to transfer

288 X. Hu et al.

the server which is determined by the bandwidth of the weakest link along the migration
path. (In a system supporting live migration, this cost can be negligible and set to zero.)
Concretely, the migration cost is computed as MigCost =

∑
i S ·D[si−1, si]/bi, where

S is the server size, D[si−1, si] denotes whether the locations si−1 ∈ {L,R} and
si ∈ {L,R} differ (recall that D[si−1, si] is 1 if si−1 �= si, and 0 otherwise), and
bi ∈ B is the (minimal) bandwidth along the migration path. Finally, the contract cost
is computed as described above, i.e., ConCost =

∑
i f(di, bi) for the Pay-as-You-Come

model and as ConCost = f(μ, bi) for Pay-as-You-Go model, where di ∈ D, bi ∈ B
and μ is the total number of migrations.

3 Migration Strategies

This section presents optimal algorithms to compute the best set of contracts and op-
timal migration strategies for the two presented pricing models. We will first present
an algorithm PAYC for the Pay-as-You-Come model and prove its optimality, and then
extend this algorithm to a PAYG algorithm which solves the Pay-as-You-Go model.
Both our algorithms PAYC and PAYG are based on dynamic programming, and fill
out matrices such that optimal substructures are reused.

3.1 Pay-as-You-Come

Let us now turn our attention to the first, time-based pricing model. Our PAYC algo-
rithm stores intermediate minimum total cost results (access, migration and contract
costs) in a 3-dimensional matrix Cn×n×4 where n is the total number of requests.
C[i, j, k] denotes an entry of the matrix, where i, j ∈ [1, n] and k ∈ {(s, s′)|s, s′ ∈
{L,R}}. C[i, j, (s, s′)] denotes the minimum total cost for satisfying all requests from
ri to rj for a scenario where at the beginning of the ith request the server is at node s
and at the end of request j the server is at node s′. We also need a matrix (AMm)n×n×4

for each bandwidth bm ∈ B. For a fixed bandwidth bm during the entire interval [ti, tj],
entry AMm[i, j(s, s′)] stores the combined access and migration costs for the best mi-
gration strategy that satisfies the sequence of requests from ri to rj , assuming that the
server is located at node s at the start of request ri and at node s′ at the end of request
rj . The contract costs, given by the function f , are not included in the entries of AMm.

Given these data structures, we can describe algorithm PAYC (Algorithm 1) for the
Pay-as-You-Come model. PAYC exploits that the optimal contract from request time
ti to request time tj can either be decomposed into two consecutive subperiods with
no overlapping contracts, or be obtained by buying a contract of long duration dv and
bandwidth bm if dv−1 < tj − ti + 1 ≤ dv , where dv , dv−1 ∈ D.

PAYC starts by initializing the optimal costs if we were to serve only one request
ri, for all possible combinations of starting server location s and ending server location
s′ at time ti. According to our model, the access cost is equal to the distance between
the current requesting node ri and the server location s′ at the end of time ti, denoted
by D[ri, s

′]. If the request at time ti comes from the server location s′, then no access
cost is needed since D[ri, s

′] is 0; otherwise the access cost is positive. Recall that the
migration cost for request ri is computed as S ·D[s, s′]/bm, where bm ∈ B is the se-
lected bandwidth and S is the migrated server size. We store the respective optimal cost

Optimal Migration Contracts in Virtual Networks 289

Algorithm 1. Algorithm PAYC
Input: Requests <r1, r2, ..., rn> at respective times <t1, t2, ..., tn>.
Output: Minimum cost.
1: for i = 1 to n do
2: for all pairs (s, s′) ∈ {L,R}2 do
3: for m = 1 to q do
4: AMm[i, i, (s, s′)] ← D[s′, ri] + S ·D[s, s′]/bm
5: C[i, i, (s, s′)] ← min1≤m≤q{AMm[i, i, (s, s′)] + f(d1 ∗D[s, s′], bm)}
6: for l = 2 to n do
7: for i = 1 to n− l + 1 and pairs (s, s′) ∈ {L,R}2 do
8: j ← i+ l − 1
9: C[i, j, (s, s′)] ← mini≤u<j;s′′∈{L,R}{C[i, u, (s, s′′)] + C[u+ 1, j, (s′′, s′)]}

10: if dv−1 < tj − ti + 1 ≤ dv, for some v = {1, · · · , k} then
11: for m = 1 to q do
12: AMm[i, j, (s, s′)] ← mins′′∈{L,R}{AMm[i, i, (s, s′′)] + AMm[i + 1, j,

(s′′, s′)]}
13: if C[i, j, (s, s′)] > min1≤m≤q{AMm[i, j, (s, s′)] + f(dv, bm)} then
14: C[i, j, (s, s′)] ← min1≤m≤q{AMm[i, j, (s, s′)] + f(dv, bm)}
15: return minsfinal∈{L,R} C[1, n, (sinit, sfinal)]

of satisfying request ri (which may or may not incur a non-zero access cost D[ri, s
′],

depending on whether ri �= s′ or not) using bandwidth bm, with starting and ending po-
sitions of the server s and s′ respectively, in AMm[i, i, (s, s′)]. We choose a bandwidth
bm ∈ B such that the total cost, including the contract cost f(d1, bm) if a migration
accurs, is minimized, and store the optimal total cost in C[i, i, (s, s′)].

Next, we consider the total costs for sequences of more than one request. Note that
there are l requests occurring between time ti and tj , where i < j are defined in Lines 7
and 8 of the algorithm and l (= j − i + 1) > 1. We have two alternative options: (i)
we can split the interval [ti, tj] at the time tu of request ru, where i ≤ u < j, and
buy contracts for the intervals [ti, tu] and [tu+1, tj] independently for the two possible
locations s′′ of the server at time tu; or (ii) we can buy a long contract of duration
dv ∈ D and some bandwidth bm ∈ B to cover all the l requests if the period tj − ti+1
is between dv−1 and dv . The smaller cost of these two cases gives the optimal cost for
the interval [ti, tj].

We also update AMm[i, j, (s, s′)], for all possible bandwidths bm. Basically
we extend the intervals already considered by one request (ri), and we store in
AMm[i, j, (s, s′)] the migration strategy that minimizes the total access and migration
costs for satisfying requests ri through rj using bandwidth bm for starting and ending
positions of the server s and s′ respectively. Note that by taking into account all possible
positions of the server at the end of request ri, we consider all the possibilities of adding
ri to all the best possible strategies already computed for the subsequence ri+1, . . . , rj
(ending at node s′).

We process the previous steps in increasing order of l until l spans all the requests.
Thus, the optimal cost is given by minsfinal∈{L,R}C[1, n, (sinit, sfinal)], where sinit is the
initial server location.

290 X. Hu et al.

Theorem 1. PAYC (see Algorithm 1) computes the optimal contracts for Pay-as-You-
Come model. The time complexity of PAYC is O(n2(n+ kq)), where n is the number
of requests, k is the number of contract durations and q is the number of different
bandwidth contracts.

Proof. The correctness follows by induction over the number of request l and by the
optimal substructure property. Due to space constraints, we only sketch the proof. The
claim is trivially true for sequences of one request (Lines 1–5). Consider the time inter-
val from ti to tj with l requests, where 1 ≤ i ≤ j ≤ n and 2 ≤ l(= j− i+1) ≤ n. This
interval is split into two subintervals (Case I), or a long contract is bought that covers
the entire interval (Case II). In Case I, we split the cost at time tu with the server located
at s′′ such that the total cost C[i, u, (s, s′′)] + C[u + 1, j, (s′′, s′)] is minimized, where
i ≤ u ≤ j and s′′ ∈ {L,R}. Since the number of requests in the two subintervals,
u− i+ 1 and j − u, are shorter than l, by the induction hypothesis, C[i, u, (s, s′′)] and
C[u+ 1, j, (s′′, s′)] already store the optimal costs for these two intervals respectively.
In Case II, we buy a long contract to cover the whole interval. Given a certain server lo-
cation s′′ at the start of the time ti+1, AMm[i+1, j, (s′′, s′)] already stores the optimal
access and migration strategy cost for bandwidth bm for interval [ti+1, tj]. Therefore,
an optimal migration strategy for interval [ti, tj] using bandwidth bm can be obtained
by adding ri to the optimal strategies selected for the interval [ti+1, tj] and optimizing
over the choice on whether to migrate the server to serve ri or not (resulting in the two
possible choices for s′′, the position of the server right after satisfying request ri).

Now we consider the time complexity of the PAYC algorithm. Clearly, the first phase
of the algorithm requires time O(nq). The second phase consists of three nested loop
and has a complexity of O(n2 · (n+ kq)). ��

3.2 Pay-as-You-Go

Optimal solutions can also be computed for the Pay-as-You-Go model, and the algo-
rithm PAYG is similar to the algorithm PAYC. As discussed above, in the Pay-as-
You-Come model we need to decide when to migrate, which contracts to buy, and how
much bandwidth to use. In the Pay-as-You-Go model, we still need to make a decision
on when to migrate and how much bandwidth should be reserved, but we do not have to
explicitly decide on a time contract. However, unlike the Pay-as-you-Come model, in
the Pay-as-you-Go model, a bandwith bm has to be chosen and fixed for satisfying the
entire sequence of requests ri, . . . , rj . Also, the contract cost in this model is directly
dependent on the number of migrations of the server, and hence we explicitly have to
keep track of this number.

Algorithm PAYG is listed in Algorithm 2. PAYG uses a new matrix (Am)n×n×4

to store the access cost under a certain bandwidth bm, 1 ≤ m ≤ q, and another ma-
trix (Nm)n×n×4 is used to store the migration number for bandwidth bm. A matrix
(Cm)n×n×4 stores the total cost for bandwith bm. In the entries of the new matrices,
the elements Am[i, j, (s, s′)] and Nm[i, j, (s, s′)] store the access cost and the number
of migrations, respectively, for the optimal solution between time ti and tj with an ini-
tial server location s and a final server location s′, where s, s′ ∈ {L,R}. The entry
Cm[i, j, (s, s′)] stores the total optimal cost within this time period for bandwith bm.

Optimal Migration Contracts in Virtual Networks 291

Algorithm 2. Algorithm PAYG
Input: Requests <r1, r2, ..., rn> at respective times <t1, t2, ..., tn>.
Output: Minimum Cost.
1: for i = 1 to n do
2: for all pairs (s, s′) ∈ {L,R}2 and 1 ≤ m ≤ q do
3: Am[i, i, (s, s′)] ← D[s′, ri]
4: Nm[i, i, (s, s′)] ← D[s, s′]
5: Cm[i, i, (s, s′)] ← Am[i, i, (s, s′)] + S ·Nm[i, i, (s, s′)]/bm + f(D[s, s′], bm)
6: for l = 2 to n do
7: for i = 1 to n− l + 1 do
8: j ← i+ l − 1
9: for all pairs(s, s′) ∈ {L,R}2 and 1 ≤ m ≤ q do

10: Cm[i, j, (s, s′)] ← mini≤u<j;s′′∈{L,R}{Am[i, u, (s, s′′)] + Am[u + 1, j,
(s′′, s′)] + S · (Nm[i, u, (s, s′′)] + Nm[u + 1, j, (s′′, s′)])/bm +
f((Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)]), bm)}

11: Let (u, s′′) be the parameter and location of request ru at tu that minimized
Line 10.

12: Am[i, j, (s, s′)] ← Am[i, u, (s, s′′)] +Am[u+ 1, j, (s′′, s′)]
13: Nm[i, j, (s, s′)] ← Nm[i, u, (s, s′′)] +Nm[u+ 1, j, (s′′, s′)]
14: return minsfinal∈{L,R}, 1≤m≤q Cm[1, n, (sinit, sfinal)]

The basic idea behind PAYG is to compute the optimal solution for a scenario where
all the requests require the same bandwidth, and then choose the smallest cost among all
the bandwidth options. PAYG starts off by computing the optimal costs for satisfying
one request (Lines 1-5). Given the request ri and the starting and ending server locations
s, s′, the access cost is given by D[s′, ri] which is 0 if the final server location s′

and the request location ri coincide, and 1 otherwise. Meanwhile D[s, s′] will indicate
that the server migrates to the other location to serve the current request if D[s, s′]
is 1. Otherwise, there is no migration, and the starting and ending server locations s,
s′ describe the same node. We store the optimal solution in Cm[i, i, (s, s′)] for each
bandwidth bm, where Cm[i, i, (s, s′)] = D[s′, ri] + S ·D[s, s′]/bm + f(D[s, s′], bm).

Now PAYG iterates over the number of requests l (Line 6). For each value of l, we
compute all the possible cases, as in Lines 7-13. First, we select from [1, n− l− 1] the
value i denoting the index of the first of these l requests. Obviously, the index of the last
of the l requests (denoted by j) would be i+ l− 1, as in Line 8. Assume that the server
is located at node s at the time when the ith request occurs, and located at node s′ at
the end of the jth request, where s, s′ ∈ {L,R}. We look for a way to split the duration
such that the total cost Cm[i, j, (s, s′)] is minimized, as shown in Line 10. We use u, m,
and s′′ to denote the index of the request occurring at the chosen split point, the chosen
bandwidth, and the location of the server (Line 11). Therefore, the total cost consists of
the summation of the access costs of two subintervals, the summation of the migration
costs of two subintervals, and a long contract cost covering the whole period. Here,
the access cost is computed as Am[i, u, (s, s′′)] + Am[u+ 1, j, (s′′, s′)], the migration
cost is computed as (Nm[i, u, (s, s′′)]+Nm[u+1, j, (s′′, s′)])/bm and the contract cost

292 X. Hu et al.

is computed as f(Nm[i, u, (s, s′′)]+Nm[u+1, j, (s′′, s′)], bm), for a certain bandwidth
bm. We store the access cost in Am[i, j, (s, s′)] (Line 12) and the number of migrations
in Nm[i, j, (s, s′)] (Line 13) for the current duration.

For each bandwidth bm, we store the optimal solution to serve all the re-
quests in Cm matrix. Thus the optimal cost is hence obtained by computing
minsfinal∈(L,R),1≤m≤q Cm[1, n, (sinit, sfinal)] (Line 14).

The following claim follows by simple induction over the number of requests.

Theorem 2. PAYG (see Algorithm 2) computes the optimal contracts for the Pay-as-
You-Go model. The time complexity is O(qn3), where n is the number of requests and
q is the number of different contract bandwidths.

Proof. We argue by induction on the number of the requests l considered. In base case,
when there is just one request (l = 1), lines 1-5 will give the optimal solutions under
each bandwidth. As for the inductive step, we follow a similar strategy as for PAYC. We
split at time tu with the server located at s′′ such that the access cost and the migration
cost of two sub intervals will minimize the total amount for the current duration. Since
we consider all possible splits at all times within the whole interval as well as all the
server migrations (Line 10), we choose the best option for the longer interval.

Regarding the time complexity, Lines 3, 4, and 5 each take O(1) time, respectively.
Since Lines 3-5 are executed 4nq times, the total running time of Lines 1-5 is O(nq).
Considering that Lines 10-13 are executed O(n2q) times and l ≤ n, we know that the
running time of Lines 6-13 is O(qn3). Therefore, the time complexity of Algorithm 2
is O(qn3). ��

4 Quantitative Comparison

The presented economical migration algorithms allow us to shed light on the properties
of the two pricing models. We study three different discount functions flin, fsqrt, flog

which offer cheaper contracts if longer (in terms of days) or larger (in terms of
leased bandwidth) contracts are bought: flin is linear (“get twice as much for a 50%
higher price”), fsqrt grows according to a square root function and hence describes
a steeper discount, and flog even gives an even steeper logarithmic discount. For all
three discount functions, the cost of a one-day contract with 50 Mbit/s bandwidth
is the same, namely fi(1, 50) = 6 for i ∈ {lin, sqrt, log}. Concretely, we use
flin(di, bj) = 1.5 · flin(di/2, bj) = 1.5 · flin(di, bj/2)=1.5(�logdi�+bj/50−1) · flin(1, 50),
fsqrt(di, bj) =

√
dibj/50 · fsqrt(1, 50), and flog(di, bj) = log(dibj/50) · flog(1, 50). We

assume a server of size S = 250 MB, and we assume that the access cost for one re-
mote request is five units (a request originating at the node where the service is located
is free). We study a scenario where the provider offers two different bandwidth capaci-
ties, namely 50 Mbit/s and 100 Mbit/s, and four types of contract durations, namely 1,
30, 60 and 100 days (i.e., B = {50, 100} and D = {1, 30, 60, 100}).

We study a simple request pattern where requests originate from L and R in turn,
e.g., requests originating in Asia alternate with requests originating in the U.S..

Optimal Migration Contracts in Virtual Networks 293

Simplified Demand Scenario: We assume that requests alternate infinitely between
the two sites L and R in the following manner: requests originate from one site (one
per round) for a time interval duration which is chosen according to an exponential
distribution with parameter λ, before requests originate from the opposite side again
(according to the same distribution).

We simulate n = 1500 requests, and present the average over five runs for each experi-
ment.

(a) Cost PAYC (b) Cost PAYC (in %)

(c) Cost PAYG (d) Cost PAYG (in %)

Fig. 1. Cost distribution for PAYC and PAYG

We discuss the following simulations in more detail.

Cost Distribution and Number of Migrations. We analyze how the cost distributes
among the access cost, the migration cost, and the contract cost for the two algorithms
PAYC and PAYG. All experiments discussed here are conducted under the natural flin

discount function. Figure 1(a) shows the absolute costs of PAYC as a function of λ.
We observe that the total cost and the access cost decrease for larger λ while the migra-
tion and contract stay much more stable. This is clear as requests originating from one
site for longer time periods render it worthwhile to migrate and buy longer contracts.

294 X. Hu et al.

The contract increases firstly and then decrease after some point, since the total mi-
gration numbers decrease and hence the contract cost is reduced. As the number of
migrations decrease, the average number of migrations within a contract is also de-
creased. Therefore, PAYC will buy smaller bandwidth for such contract, which will
result in larger migration costs(also shown in Table 2). Figure 1(b) presents the relative
shares of the three costs. While the access costs approach zero for larger λ since the
server is often at the right location, the contract costs and the migration costs stay stable
since PAYC migrates a lot even for larger λ. The same results for PAYG are shown in
Figures 1(c) and 1(d), respectively. As a first takeaway, we see that the cost distribution
of Figure 1(c) defers from Figure 1(a) in that the total costs are lower, i.e., Pay-as-You-
Go is always the cheaper option than Pay-as-You-Come pricing for the customer. Also
note that in contrast to the Pay-as-You-Come model, the migrations constitute a larger
share of the overall costs, since the contract cost is given by the number of migrations
and the amount of leased bandwidth under the discount function; hence the contract
cost is lower than the one of PAYC for the same number of migrations. Moreover,
there are relatively more frequent migrations under the PAYG model, see Figure 2(a),
which also explains the lower access costs (i.e., this improves QoS experienced by the
users). Regarding the relative cost shares (Figure 1(d)), we can see that the percent-
age for the access cost is decreasing while the percentages for the migration cost and
the contract cost are increasing slowly. Again, when λ is large enough and the
requests become more local, since migrations only occur at the beginning of each
interval, the number of migrations (as well as all three cost components) eventually
decreases.

Contract Distribution. Different pricing models and scenarios result in different types
and combinations of contracts, and it is interesting to study the frequency (or popularity)
distribution of the contracts. Table 1 reports on the average number of the contracts as
a function of λ, for different contract durations and bandwidths, under the PAYC algo-
rithm and for flin. We see that when λ is small and migrations are dense, longer duration
contracts occur frequently since the server migrates often. However, as λ increases, all
lengths of contracts decrease. As λ increases, the average number of migrations in a
contract decreases and hence the smaller bandwidth will benefit more than the larger
one. Therefore, it turns out to buy more contracts with smaller bandwidth. This can also
be seen in Table 2 which records the average number of migrations in different contracts
accordingly (average over five runs).

Table 1. Distribution of purchased contracts (discount function flin)

�����Dur-Bw
λ

3 4 5 6 7 8

1-50 11.2 8 15.4 13.8 18.4 39.2
60-50 0 0 0 0 2.4 0.8
60-100 1.4 2 1.4 2.8 1 0.4
100-50 0 0 0 0.6 2 5.4
100-100 11 11 11.2 10 7.6 3.4

Optimal Migration Contracts in Virtual Networks 295

(a) Number of Migrations (b) Cost Discount

(c) Cost Discount (in %)

Fig. 2. Number of migrations and effect of discount function

Table 2. Number of migrations for each contract (discount function flin)

�����Dur-Bw
λ

3 4 5 6 7 8

1-50 1 1 1 1 1 1
60-50 0 0 0 0 8,5 0
60-100 17.67 14 13.5 11.5 0 0
100-50 0 0 0 13 13 12.57
100-100 27.33 23.58 19.45 17.33 15 14.5

Impact of Discount Function. Finally, let us compare the different discount functions
in more detail. Figure 2(b) and Figure 2(c) explore the absolute and relative (in %)
cost distributions for PAYC and PAYG under different discount functions. Clearly, the
higher the discount, the smaller the total cost. Moreover, not surprisingly the perfor-
mance of PAYG is always better than that of PAYC since the total cost is less for
PAYG compared to that for PAYC. However, the difference of the costs for the two
models is smaller for higher discounts, i.e., the difference for the logarithmic discount
function is smaller than for a discount function which follows a square root.

296 X. Hu et al.

5 A First Look at Online Migration

Although the main focus of this paper is on predictable demand scenarios and offline
algorithms, in this section, we want to initiate the discussion of online algorithms. The
online discussion builds upon our offline results in two respects: First, some algorith-
mic techniques from the offline variant may be used also for the online variants. For
example, an online algorithm may try to predict the future from the past, and apply an
optimal offline algorithm on a sequence of recent past requests in order to make de-
cisions on how to deal with upcoming requests. Second, offline algorithms are often
needed to evaluate the performance of an online algorithm. The ratio of the cost of an
online algorithm divided by the cost of an optimal offline algorithm is also known as
the competitive ratio [3].

Both online algorithms presented in the following are inspired by the (optimal) of-
fline variants and seek to amortize costs over time. To simplify the presentation, we
assume a constant bandwidth scenario.

ONC: The online Pay-as-You-Come algorithm ONC tracks the access costs it incurs
at the current location using a counter C. Once the counter exceeds the migration cost
(given by the server size divided by the bandwidth), ONC migrates the server and resets
C. If there is currently no contract available for migration, ONC checks whether a
contract longer than the most recently used contract would have been better for the
past requests. Concretely, ONC checks longer contracts one by one (in increasing order
of length) and compares their costs in the corresponding intervals (starting from the
last migration) to the cost ONC incurred during that time period. As soon as a better
contract is found, it is chosen. Otherwise, ONC checks whether a contract shorter than
the most recent contract should be chosen. The following heuristic is applied: ONC
checks whether during the last contract, the number of migrations was larger in the first
half or the second half of the contract time interval. In case of the first half, ONC will
buy the shorter contract; otherwise, ONC chooses the same contract as last time.

Now let us discuss a simple online algorithm ONG for the Pay-as-You-Go model. Since
the customers only need to pay for the resources actually consumed, ONG just needs to
decide when to migrate.

ONG: Let the counter C1 record the number of the migrations performed so far and let
the counter C2 denote the total access costs. If the access cost C2 reaches the migration
cost plus marginal migration contract costs (i.e., f(C1+1, b)−f(C1, b), for bandwidth
b), ONG migrates the server, increments counter C1, and resets counter C2.

Given our optimal offline algorithms, it is interesting to study the competitive ratio
of ONC and ONG. We conduct simulations with the same three discount functions
flog, fsqrt and flin, the same contract set and the same access cost as in Section 4. The
bandwidth used in our experiments is 50 Mbit/s.

The competitive ratios for ONC and ONG are presented in Figure 3. We observe that
the ratios for both algorithms are relatively small (between 1.5 and 4) and decrease for
larger λ (lower dynamics). This can be explained by the fact that with higher λ, requests

Optimal Migration Contracts in Virtual Networks 297

(a) Competitive ratio for ONC. (b) Competitive ratio for ONG.

Fig. 3. Effect of discount function on competitive ratio. We simulate 1500 requests and present
the average over five runs.

remain more local and migration patterns more obvious. A second takeaway is that the
competitive ratio for the lowest discount function flin is best, while higher discounts
like flog are handled worse by our online algorithms. Especially in the Pay-as-You-
Come model, our online algorithm has more difficulties to deal with high discounts, as
it tends to buy too many short contracts (ONC migrates more often than the offline algo-
rithm). Also under Pay-as-You-Go pricing, the offline algorithm can exploit discounts
relatively better, although to a lesser extent. (The offline algorithm migrates relatively
more frequently for higher discounts.)

6 Related Work

Our work is motivated by the advent of first network virtualization prototype architec-
tures such as GENI. For a good overview of the network virtualization field, see [7].
Theoretical research on network virtualization often focuses on the problem of how
to embed VNets, e.g., [6,19,15] (and especially the survey [4]), while benefitting from
specification flexibilities [13]. Naturally, there are also many papers and results on mi-
gration (e.g., [1,3,11,18]): the possibility to migrate is one of the key advantages of
the virtualization abstraction; it is due to the decoupling of services from the physical
infrastructure. Indeed, it has been shown that it can make sense to migration a Samba
front-end server closer to the clients even for bulk-data applications [12]. Our work
builds upon the formal migration model studied in [3] and ports it to an economical
setting.

Economical aspects of network virtualization are much less well-understood, but
there exist strong ties with related problems in, e.g., cloud computing. For example,
Armbrust et al. [2] made an effort to understand cloud computing economical mod-
els for long-term hosting a service in the cloud. Dash et al. [9] proposed an economic
model for self-tuned cloud caching targeting the service of scientific data. Recently, Pal
and Hui [14] devised and analyzed three inter-organizational economic models rele-
vant to cloud networks, and formulated non-cooperative price and QoS games between

298 X. Hu et al.

multiple cloud providers existing in a cloud market. In the context of network virtual-
ization, Schaffrath et al. [16] identified stakeholders and economical roles in a network
virtualization environment. The authors distinguish between a physical infrastructure
provider, a virtual network provider (i.e., resource reseller), a virtual network operator
and a service provider. In terms of pricing, Even et al. [10] presented an online algo-
rithm which decides which VNets to accept and embed such that the overall provider
benefit is maximized. The benefit threshold of when to accept a VNet can be seen as a
simple form of pricing. Migration is not considered in [10].

Finally, a description of our own network virtualization prototype (currently using
VLANs) which is developed at Telekom Innovation Laboratories and NTT DoCoMo
Eurolabs and which motivates our work can be found in [16]. Currently, migration is
seamless (i.e., without the need for reconfigurations) but not live. See [8] for a migration
demo.

7 Conclusion

There is a large body of literature on economical aspects of cloud computing, but much
less is known about efficient (virtual) network pricing. Interestingly, while cloud (or
node) resources are often priced according to a flexible per-use or pay-as-you-go pol-
icy, networking services such as MPLS connectivity are often charged according to
usage-independent, time-based policies. [17] This is particularly surprising as network
demand is likely to exhibit a higher variance over time than, e.g., storage resources. For
instance, distributed SAP systems may be fully synchronized only sporadically (but
then lead to high network loads), whereas the resource requirements of, e.g., a mail
service normally grows monotonically over time.

We understand this paper as a first step to study the effect of virtual network pricing
policies on service migration. We focused on the offline setting where demand pat-
terns are given (e.g., describe regular time-of-day or commuter effects). Such online
algorithms can also be useful to evaluate the competitive ratio of online algorithms in
simulations. We presented two optimal algorithms for efficient service migration in dif-
ferent economic settings. We believe that the used algorithmic techniques are relatively
general and can be extended to more complex scenarios, e.g., to networks supporting
live migration or more complex virtual network topologies.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
valuable comments.

References

1. Agarwal, S., Dunagan, J., Jain, N., Saroiu, S., Wolman, A., Bhogan, H.: Volley: automated
data placement for geo-distributed cloud services. In: Pro. 7th USENIX NSDI (2010)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4),
50–58 (2010)

Optimal Migration Contracts in Virtual Networks 299

3. Arora, D., Bienkowski, M., Feldmann, A., Schaffrath, G., Schmid, S.: Online strategies for
intra and inter provider service migration in virtual networks. In: Proc. IPTComm (2011)

4. Belbekkouche, A., Hasan, M., Karmouch, A.: Resource discovery and allocation in network
virtualization. IEEE Communications Surveys Tutorials (99), 1–15 (2012)

5. Bienkowski, M., Feldmann, A., Jurca, D., Kellerer, W., Schaffrath, G., Schmid, S., Widmer,
J.: Competitive analysis for service migration in VNets. In: Proc. ACM VISA, pp. 17–24
(2010)

6. Chowdhury, K., Rahman, M.R., Boutaba, R.: Virtual network embedding with coordinated
node and link mapping. In: Proc. IEEE INFOCOM (2009)

7. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Computer Net-
works 54, 862–876 (2010)

8. CloudNet. Migration Demo (2012), http://www.youtube.com/
watch?v=llJce0F1zHQ

9. Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud caching. In:
Proc. IEEE International Conference on Data Engineering, pp. 1687–1693 (2009)

10. Even, G., Medina, M., Schaffrath, G., Schmid, S.: Competitive and Deterministic Embed-
dings of Virtual Networks. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN
2012. LNCS, vol. 7129, pp. 106–121. Springer, Heidelberg (2012)

11. Hajjat, M., Sun, X., Sung, Y.-W.E., Maltz, D., Sripanidkulchai, S.R.K., Tawarmalani, M.:
Cloudward bound: Planning for beneficial migration of enterprise applications to the cloud.
In: Proc. ACM SIGCOMM (2011)

12. Hao, F., Lakshman, T.V., Mukherjee, S., Song, H.: Enhancing dynamic cloud-based services
using network virtualization. SIGCOMM Comput. Commun. Rev. 40(1), 67–74 (2010)

13. Ludwig, A., Schmid, S., Feldmann, A.: The price of specificity in the age of network virtu-
alization (short paper). In: Proc. 5th IEEE/ACM UCC (2012)

14. Pal, R., Hui, P.: Economic Models for Cloud Service Markets. In: Bononi, L., Datta, A.K.,
Devismes, S., Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129, pp. 382–396. Springer, Hei-
delberg (2012)

15. Schaffrath, G., Schmid, S., Feldmann, A.: Optimizing long-lived cloudnets with migrations.
In: Proc. 5th IEEE/ACM UCC (2012)

16. Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh, A., Wund-
sam, A., Kind, M., Maennel, O., Mathy, L.: Network virtualization architecture: proposal and
initial prototype. In: Proc. ACM VISA (2009)

17. Schönherr, M.: T-labs berlin. Personal Communication (2012)
18. Wood, T., Shenoy, P., Ramakrishnan, K., der Merwe, J.V.: Cloudnet: Dynamic pooling of

cloud resources by live wan migration of virtual machines. In: Proc. ACM VEE (2011)
19. Zhang, S., Qian, Z., Wu, J., Lu, S.: An opportunistic resource sharing and topology-aware

mapping framework for virtual networks. In: Proc. IEEE INFOCOM (2012)

http://www.youtube.com/watch?v=llJce0F1zHQ
http://www.youtube.com/watch?v=llJce0F1zHQ

Parallel Scalar Multiplication on Elliptic Curves

in Wireless Sensor Networks

Yanbo Shou1, Herve Guyennet1, and Mohamed Lehsaini2

1 University of Franche-Comte, France
{yshou,herve.guyennet}@femto-st.fr

2 University of Tlemcen, Algeria
m lehsaini@mail.univ-tlemcen.dz

Abstract. In event-driven sensor networks, when a critical event occurs,
sensors should transmit quickly and securely messages back to base sta-
tion. We choose Elliptic Curve Cryptography to secure the network since
it offers faster computation and good security using shorter keys than
RSA. In order to minimize the computation time, we propose to dis-
tribute the computation of scalar multiplications on elliptic curves by
involving neighbor nodes in this operation. The results of performance
tests show that parallel computing certainly consumes much more re-
sources, however it reduces considerably the computation time of scalar
multiplications. This method is applicable in event-driven applications
when execution time is the most critical factor.

Keywords: Wireless sensor networks, Elliptic curves, Scalar multipli-
cation, Parallel computing.

1 Introduction

A wireless sensor node is a small electronic device which consists of sensing, data
processing and communicating components [1]. Such sensor nodes can be pro-
grammed to collect environmental data and to communicate with other nodes.
A sensor node is often equipped of a low-cost low-power microcontroller which is
not capable of doing complicated calculations. As the ability of a single node is
very limited, a wireless sensor network is usually constituted of a large number
of nodes which are interconnected to each other to form a large network. In most
of cases a sensor node has to cooperate with other nodes to achieve a common
goal.

Sensors are often deployed in hostile and inaccessible areas for human being.
Today, we can find a wide spectrum of sensor networks applications such as en-
vironmental monitoring [2], industrial sensing [3], home automation [4], medical
care [5] or military surveillance [6].

However sensors are vulnerable and subject of various attacks due to their lack
of resources and the unreliability of wireless connection, in [7] we can find the
presentation of almost all possible attacks in wireless sensor networks. In order
to secure wireless sensor networks, one of the most efficient solutions is to use

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 300–314, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallel Scalar Multiplication on Elliptic Curves 301

cryptographic mechanisms [7,8]. Symmetric cryptographic algorithms are usually
light weighted and can be efficiently implemented in hardware and software, but
as we use the same key for data encryption and decryption, the key management
becomes a challenging problem in wireless sensor networks, since the key can be
exposed if a node is compromised. An other choice is asymmetric cryptography
which is computationally more expensive but it’s easier to manage the keys, a
compromised node cannot provide clue to the private keys of non-compromised
nodes [8]. Of course the security of sensor networks can still be threatened by
physical attacks, but the protection against such attack is beyond the scope of
this paper.

In this paper we choose the Elliptic Curve Cryptography (ECC) which is
one of the most famous asymmetric cryptographic schemes. It has attracted
considerable attention recently because of its shorter key length requirement
comparing with the other widely used asymmetric cryptographic algorithm RSA.
An elliptic curve cryptosystem using a 160-bits key can provide the same security
level with a 1024-bit RSA key [9]. The security of elliptic curve cryptography
mainly relies on the difficulty of discrete logarithm problem. All the points on a
curve form a abelian group whose group law is the point addition which combines
2 points on the curve to get a third one. Based on the point addition, we may
then perform point multiplication, also called scalar multiplication, for example
Q = kP where Q and P are 2 points on the curve and k is a positive integer.
It’s extremely difficult to compute the value of k given P and Q if k is big
enough. Scalar multiplication is the most expensive operation on elliptic curves
and it exists various solutions in the literature to optimize its performance [10],
especially for embedded platforms which have very limited CPU power.

Parallelism is an other choice to improve the performance of scalar multipli-
cation. Instead of performing calculations on a single sensor node, we try to split
the computing task into smaller pieces which are then distributed to neighbor
nodes and carried out simultaneously. In this paper we propose to use parallel
computing to accelerate scalar multiplication which is the most complicated and
time-consuming operation on elliptic curves. To the best of our knowledge, we
are the first who have applied this technique in sensor networks. We find that
the parallelization of scalar multiplication is efficient in execution time. The par-
allel overhead is relatively low comparing with the computation time, since the
computing power of embedded microcontrollers are very weak.

We have also studied the memory usage et the energy consumption of parallel
computing in wireless sensor networks. As more sensor nodes are involved in
the computation, more resources will be consumed. However the objective of
our solution is to accelerate the computation on elliptic curves in cases where
execution time becomes the most critical factor.

The rest of the paper is organized as follows. Section 2 gives a presentation of
basic concepts of elliptic curves, and in section 3 we present the related work of
parallelization of scalar multiplication. Section 4 describes our parallel comput-
ing scheme for scalar multiplication in wireless sensor networks, and the results
of performance test are given in section 5. Section 6 concludes the paper.

302 Y. Shou, H. Guyennet, and M. Lehsaini

2 Basic Concepts of Elliptic Curve

Elliptic curve cryptography were proposed independently by Miller [11] and
Koblitz [12] in the 80’s. It has attracted researchers’ attention in recent years
due to its shorter key length requirement comparing with RSA, especially in the
domain of embedded systems where devices have limited computing power.

In cryptography we work with the elliptic curves which are defined over a
finite field Fq where q = pm and p is a prime number called the characteristic of
F . If m = 1, then F is called a prime field, if q = 2m, then F is a binary field.

In this paper we only work with the first case where m = 1 and p �= 2 or 3,
only for reason of easier explanation. Then a curve can be represented using the
simplified Weierstrass equation (see formula 1).

y2 = x3 + ax+ b (1)

where the discriminant of the curve

−16(4a3 + 27b2) �= 0

All points on the curve, including the point at infinity, form an abelian group
whose group law is the point addition. Suppose that P1(x1, y1) and P2(x2, y2)
are 2 points on the curve and P3(x3, y3) is the sum of P1 + P2 which can be
calculated using the formula 2.{

x3 = s2 − x1 − x2
y3 = s(x1 − x3)− y1

(2)

where

s =

{
(y2 − y1)/(x2 − x1) if P1 �= P2, addition
(3x21 + a)/2y1 if P1 = P2, doubling

(3)

Geometrically P3 is the reflection about x-axis of the intersection point of the
curve with the line through P1 and P2.

We may also perform scalar multiplication Q = kP which can be considered
as a sequence of consecutive additions.
Q and P are 2 points on the curve and k is a positive integer. The point

multiplication can be performed more efficiently than repeating point addition.
The most basic method is using the Double and Add algorithm (see algorithm 1).

Suppose that integer k is represented in binary form k =
∑l−1

i=0 ki2
i where l

is the length of k. We keep reading ki from the least significant bit to the most
significant one. Every time when we read a bit, point P is doubled, and if ki is
a nonzero bit, Q = Q+ P . The performance of the algorithm 1 mainly depends
on the length of k and number of nonzero bits in its binary representation, the
average number of operations needed is l point doublings and l

2 point additions.
The performance of point multiplication can be significantly improved by

choosing appropriate representation of k, coordinate system and size of finite
field.

Parallel Scalar Multiplication on Elliptic Curves 303

Algorithm 1. Double and Add algorithm for point multiplication

Data: k = (kl−1, . . . , k1, k0)2, P ∈ E
Result: Q = kP
Q ← ∞;
for i from 0 to l − 1 do

if ki = 1 then
Q ← Q+ P ;

end
P ← 2P ;

end
return Q ;

If P = (x, y) is a point on an elliptic curve defined over a prime field Fp in
which −P = (x,−y), We can see that the subtraction of points on an elliptic
curve is as efficient as addition [13], since P1 − P2 = P1 + (−P2).

The first optimization possible is to use Non-Adjacent Form (NAF) method
which uses a signed digit representation of k (see formula 4), and the average
number of nonzero bits is reduced from l

2 to l
3 where l is the length of k.

k =

l−1∑
i=0

ki2
i where ki ∈ {0,±1} (4)

We read every digit ki, if ki = 1, then Q = Q+P , but if ki = −1, Q = Q−P =
Q+(−P). If the length of k is l, the average number of operations is reduced to
l point doubling and l

3 point addition (subtraction).
In formula 3 we see that both point addition and doubling need a field inver-

sion which is more computationally expensive than field multiplication. An other
optimization is to avoid the computation of field inversion by using projective
coordinates.

In Jacobian coordinates, a projective point (X,Y, Z), Z �= 0 is equivalent
to affine point (X/Z2, Y/Z3), and an elliptic curve is represented by the new
equation

Y 2 = X3 + aXZ4 + bZ6 (5)

We can then obtain the formula for point doubling in Jacobian coordinates by
substituting x by X

Z2 and y by Y
Z3 in formula 2,⎧⎨⎩

X3 = (3X2
1 + aZ4

1)
2 − 8X1Y

2
1

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1

Z3 = 2Y1Z1

(6)

and the formula for point addition in Jacobian coordinates can be derived in the
same manner.

There are obviously more multiplications using Jacobian coordinates, but dur-
ing a point multiplication we only need to perform field inversion once to convert

304 Y. Shou, H. Guyennet, and M. Lehsaini

Table 1. Operation counts for point doubling and addition. A=Affine, J=Jacobian,
M=Multiplication, S=Squaring, I=Inversion.

Doubling Addition

2A → A 1I,2M,2S A+ A → A 1I, 2M, 1S

2J → J 4M, 4S J + J → J 12M, 4S

the final result back to affine coordinates. The comparison of operations counts
for both coordinate systems are given in table 1[13].

We may also improve the performance of point multiplication by choosing
specific finite field. For example the modular reduction in prime field can be
very fast if we use recommended NIST primes, like p192 = 2192 − 264 − 1[14].

3 Parallelization of Scalar Multiplication

As previously presented, parallel computing can be used to accelerate compu-
tation and balancing workload. A task is divided into smaller ones which are
then carried out simultaneously by different processors. The parallel comput-
ing of scalar multiplication is a hot research topic in cryptography and various
solutions have been proposed in literature, but a lot of them are hardware im-
plementations using multi-core [15] or FPGA [16] architecture.

The paper [17] presents a fast exponentiation method using precomputed
table. For example we want to calculate gn where g is a element of Z/pZ and n
is a positive integer of length l. We can represent n in base h as follows

n =
l−1∑
i=O

aixi, 0 ≤ ai ≤ h− 1 and 0 ≤ i < l (7)

We precompute and store gx0 , gx1 , . . . , gxl−1 in a table, and then gn can be com-
puted easily using formula 8.

gn =

h−1∏
d=1

cdd, cd =
∏

i:ai=d

gxi (8)

The computation of gn is consisted of three main steps:

1. Determine the representation of n =
∑l−1

i=O aixi in base h.
2. Compute cd =

∏
i:ai=d g

xi.

3. Compute gn =
∏h−1

d=1 c
d
d.

This method is based on the precomputation, and it can also be applied to point
multiplication by precomputing points 21P, 22P . . . 2l−1P .

Parallel Scalar Multiplication on Elliptic Curves 305

Most time is spent in the second and third steps, and both of them can be
parallelized. For example, if we have h − 1 processors, then we can parallelize
the second step and each processor calculates its cd separately. In step 3, each
processor can calculate a cdd for one d.

An other method based on point precomputation is proposed in [18]. Suppose
that we want to calculate Q = kP where Q and P are 2 points represented in
Jacobian coordinates and k is a positive integer of 160 bits.

We prepare a precomputed table which consists of 62 points.

A[s] =
∑4

j=0 as,j2
32jG

B[s] =
∑4

j=0 as,j2
16+32jG

(9)

where 1 ≤ s ≤ 31 and as,0, . . . , as,4 is a binary representation of s =
∑4

j=0 as,j2
j .

Then the algorithm to compute kP is as follows:

Algorithm 2. Elliptic curve exponentiation based on precomputation

Data: k =
∑l−1

i=0 ki2
i, P

Result: kP
for 0 ≤ j ≤ 15 do

uj =
∑4

i=0 k32i+j2
i;

vj =
∑4

i=0 k32i+16+j2
i;

end
A[0] = ∞;
B[0] = ∞;
T = ∞;
for i from 15 to 0 do

T ← 2T ;
T ← T + A[ui] +B[vi];

end
return T ;

As this method is also based on precomputation, once the precomputed table
is prepared, the exponentiation loop can be performed separately by different
processors.

In [19] an other method is proposed for performing parallel scalar multiplica-
tion Q = kP with 2 processors using a shared memory.

The first processor initially reads P and then keeps scanning ki and computing
point doubling. It writes 2iP into the buffer whenever a non-zero ki is detected.
The second processor reads 2iP from the buffer and performs additions. The
computation is terminated when there is no more 2iP in the buffer.

An other method for performing parallel computing of fast exponentiation is
presented in [20]. Suppose that we want to calculate gR where R is a positive
integer of length n. We divide R into h blocks Ri of length a = �nh �, then each
Ri is still divided into v smaller blocks Ri,j of length b = �av � (formula 10).

306 Y. Shou, H. Guyennet, and M. Lehsaini

R = Rh−1 . . . R1R0 =
∑h−1

i=0 Ri2
ia

Ri = Ri,v−1 . . . Ri,1Ri,0 =
∑v−1

j=0 Ri,j2
jb (10)

Let g0 = g and define gi = g2
a

i−1 = g2
ia

for 0 < i < h. Using formula 10, we can
express gR as

gR =

h−1∏
i=0

gRi

i =

v−1∏
j=0

h−1∏
i=0

(g2
jb

i)Ri,j (11)

If the binary representation of Ri is Ri = ei,a−1ei,a−2 . . . ei,0 and
Ri,j = ei,jb+b−1ei,jb+b−2 . . . ei,jb+1ei,jb, then the formulas 11 can be rewritten
as follows

gR =

b−1∏
k=0

(

v−1∏
j=0

h−1∏
i=0

g
2jbei,jb+k

i)2
k

(12)

If we precompute and store the following values for all 1 ≤ i < 2h and 0 ≤ j < v.

G[0][i] = g
eh−1

h−1 g
eh−2

h−2 . . . ge00
G[j][i] = (G[j − 1][i])2

b

= (G[0][i])2
jb (13)

The formula 12 can be still rewritten as

gR =

b−1∏
k=0

(

v−1∏
j=0

G[j][Ij,k])
2k (14)

where Ij,k = eh−1,bj+k . . . e1,bj+ke0,bj+k(0 ≤ j < b). Then the computation of
gR can be parallelized using precomputed G[j][i].

We can see that all those parallelization schemes are based on the point pre-
computation and scalar decomposition. The configuration of elliptic curves, like
field type, curve form and coordinate system, doesn’t have any impact on the
result of calculation. Thus the optimization methods presented in section 2 can
be used with the parallelization schemes to improve their performance.

4 Parallel Scalar Multiplication in Wireless Sensor
Networks

In this section we present our method of parallel computing for accelerating
scalar multiplication on elliptic curves in wireless sensor networks. A sensor net-
work is composed of a great number of low-cost and low-power sensor nodes
which are always deployed in hostile territories and then work in unattended
mode. These sensors don’t have enough power to perform complicated calcula-
tions, but in some disaster monitoring applications, sensors might have only a
few seconds to send message back to base station before being destructed.

Parallel Scalar Multiplication on Elliptic Curves 307

Our method is designed for event-driven applications in which sensors remain
idle during most of the time to preserve energy, but when a sensor detects a
critical event, the message should be sent back to base station as fast as pos-
sible, even at the expense of consuming more energy. We suppose that in a
cluster-based sensor network, sensors use a symmetric cryptographic primitive,
like Trivium [21,22], to secure internal cluster communications. For inter-cluster
communication, we use the elliptic curve cryptography since it provides increased
security and digital signature.

Our method is mainly based on the idea of [20] since it offers a efficient scalar
decomposition and it doesn’t require shared memory [19]. The goal is to reduce
the execution time by asking neighbour nodes to perform computations together.
We suppose that the elliptic curve is preloaded before node deployment, and the
generator point G doesn’t change during the entire lifetime of the network. When
a node wants to perform a multiplication Q = kG, the node looks for available
neighbours in the same cluster and asks them to participate in computation.
The node which leads the computation is the master node and the other ones
are called slave nodes.

At first the master node splits the integer k into n blocks Bi of b = � l
n� bits

according to the number of available neighbours.

Bi =

ib+b−1∑
j=ib

aj2
j (15)

As the generator point G is chosen a priori and it doesn’t change, the precom-
putation of points Gi = 2ibG is then possible, and calculation of kG

Q = kG =

l−1∑
i=0

ai2
iG (16)

can be divided into n independent parts

Q0 = B0G

Q1 = B12
bG

. . .

Qn−1 = Bn−12
b(n−1)G (17)

Then Q = Q0 +Q1 + . . . +Qn−1 and each Qi can be computed independently
using the basic Double and Add algorithm.

Before task distribution, the master node copies one of the n blocks into its
local memory, for example the block B0, and then places the remaining blocks
Bi where 0 < i < n into a task distribution message, and task assignment
informations are also sent with Bi.

For example, k is a positive integer of 160 bits and 4 nodes participate in
computation of kG. Thus n = 4, b = 40 and all nodes have Gi for 0 ≤ i ≤ 3
precomputed and stored in theirs memories, like in figure 1. The master splits k

308 Y. Shou, H. Guyennet, and M. Lehsaini

into 4 blocks of 40 bits. It keeps the block B0 in its local memory and places the
remaining 3 blocks into a task distribution message. Then it attaches task assign-
ment informations to the message, encrypts it using the cluster’s cryptographic
primitive and broadcasts it to slave nodes.

G[0] G[1] G[2] G[3]

G 240G 280G 2120G

Fig. 1. Array containing precomputed points

An example of task assignment is given in figure 2. IDi are the IDs of slave
nodes. When the slave nodes receive the message, they decrypt it and calculate
respectively B1G[1], B2G[2] and B3G[3].

0 1 2 3 4 5

B1 B2 B3 ID1 ID2 ID3

Fig. 2. Structure of the task distribution message

The entire procedure is driven by a simple protocol (see diagram 3). When
a critical event takes place, like forest fire, volcanic eruption or earthquake.
There’s a chance that several nodes detect this event at almost the same time.
All nodes which detect the event should turn on the radio and get ready for
parallel computing. The protocol is described by the following steps :

1. A node detects a critical event and it turns on its radio. Then it waits for
call of parallel computing from other nodes for a random period.

2. If it doesn’t receive any call, then it becomes the Master node, and it broad-
casts a call for parallel computing.

3. If it receives a call from an other node, then it becomes a Slave node and it
should reply to show its availability.

4. After received all replies from slave nodes, the master node broadcasts the
task distribution message and then waits for results.

5. Slaves receive the task distribution message and perform theirs computa-
tions.

6. Slaves send theirs results back to their master and get back to initial state.
7. The master node combines the received results to get the final result and

sends it back to base station.

As this method is based on precomputation too, the maximum number of points
to precompute and store depends on the requirement of the application and the
memory size of sensor nodes. More points are precomputed, more nodes can
participate in parallel computing, but more energy will be consumed.

Parallel Scalar Multiplication on Elliptic Curves 309

Fig. 3. Protocol of proposed parallel computing scheme

5 Experimental Studies

To test the performance of our method, we have implemented it in nesC on
Crossbow’s Telosb motes [23] which are then deployed randomly in a zone of
10m × 10m. We ask them to keep repeating scalar multiplications Q = kG on
a preloaded elliptic curve defined over NIST192 prime field [14] for both affine
and Jacobian coordinates, G is the generator point of the curve and the scalar
k is an integer of 160 bits using NAF representation.

The execution times in milliseconds with and without parallel computing are
given in table 2. It’s hard to compare the absolute values of the results to other
implementations due to the variety of techniques and test scenarios. Here we
only interest in the performance gain produced by parallel computing.

Table 2. Execution time (ms) and gain of proposed parallel computing scheme

Nb of nodes Affine Gain Jacobian Gain

1 2307.27 – 1003.55 –

2 1189.96 48.43% 549.71 45.22%

3 861.48 62.66% 424.60 57.69%

4 665.68 71.15% 342.51 65.87%

5 583.29 74.72% 309.93 69.12%

6 581.32 74.80% 311.87 68.92%

We can see that the gain increases when more nodes participate in the calcu-
lation. Figure 4 shows that the execution time decreases gradually with increase
in the number of nodes. Suppose that the execution time using p nodes is Tp,
we evaluate the performance of our method by calculating its speedup Sp = T1

Tp

and the results are given in table 3 and represented graphically in figure 5.
There is a considerable drop in speedup when we use more than 5 nodes, since

the network needs more time to schedule radio communications and the master
node requires more time to combine the received points and get the final result.

310 Y. Shou, H. Guyennet, and M. Lehsaini

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

1 2 3 4 5 6

E
x
ec
u
ti
o
n
ti
m
e
(m

s)

Number of nodes

Affine
Jacobian

Fig. 4. Execution times using the proposed parallel computing scheme

Table 3. Speedup of the proposed parallel computing scheme

Nb of nodes 1 2 3 4 5 6

Affine 1.00 1.94 2.68 3.47 3.96 3.97

Jacobian 1.00 1.83 2.36 2.93 3.24 3.22

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

S
p
ee
d
u
p

Number of nodes

Affine
Jacobian

Fig. 5. Speedup Sp = T1
Tp

of the proposed parallel computing scheme

The parallel overhead is shown in table 4 and in figure 6. We can see that when
we use more than 5 nodes, there is a significant increase in overhead. Thus accord-
ing to the result of our experiment, the number of nodes should be limited to less
than 5.

Parallel Scalar Multiplication on Elliptic Curves 311

Table 4. Overhead (ms) of the proposed parallel computing scheme

Nb of nodes 1 2 3 4 5 6

Average overhead 0.00 36.33 92.39 88.86 121.84 196.78

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6

A
v
er
a
g
e
ov

er
h
ea
d
(m

s)

Number of nodes

Fig. 6. Parallel overhead (ms) of the proposed method

Suppose that the elliptic curve is defined in a field of 192 bits [14], so a point
in affine coordinate (x, y) can be represented by 2 integers of 192 bits, then it
can also be converted to Jacobian coordinates (x, y) → (x, y, 1). The memory
size needed to store precomputed points are given in table 5.

Table 5. Memory needed (Byte) to store precomputed points

Nb of nodes 1 2 3 4 5 6

Memory needed 0 48 96 144 192 240

Telosb mote has 48KB of Flash memory [23] and Micaz has 128KB [24], which
is obviously sufficient to store those precomputed points.

As previously presented, during the parallel computing more nodes are in-
volved in the computation, so more energy is consumed since they need to com-
municate between them. In order to estimate the energy consumption of our
method, we have run simulations with Avrora [25]. It gives only theoretical sim-
ulated results, but they’re precise enough to compare the energy consumption
according to the number of nodes participating in the computation (see table 6).

In figure 7, we can see that when computation is done on a single node, it
consumes very little energy. However when parallel computing is used, as slave
nodes have to receive tasks from the master node and return the results back to
it, they consume much more energy.

312 Y. Shou, H. Guyennet, and M. Lehsaini

Table 6. Energy consumption (Joule) of proposed method. TEC: Total energy con-
sumption.

Nb of nodes 1 2 3 4 5 6

TEC 0.889 2.125 3.156 4.192 5.225 6.256

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7E
n
er
g
y
co
n
su
m
p
ti
o
n
(J
o
u
le
)

Number of nodes

Fig. 7. Total energy consumption (Joule)

When we parallelize the calculation between 6 nodes, our method provides
a gain of around 70.0% in execution time. We have also tried to encrypt and
decrypt the task distribution message using the symmetric cryptographic prim-
itive Trivium, the result shows that the calculation can be done in less than 1
millisecond, thus its impact on the result of the performance test can be safely
neglected.

However as previously presented, in sensor networks sensor nodes work in
unattended manner and communicate with each other using wireless connection
which might be unstable due to radio interferences and low battery level. In
such cases the master node should be able to detect the faults. For example we
may divide the computation into 2 tasks which are then carried out by 3 nodes.
The master node compare the results returned by 2 slaves, if they’re different, it
means that 1 of the 2 results is wrong. We may also apply trust and reputation
assessment techniques in our system [26]. If a node always returns erroneous
results, it will be excluded from the parallel computing. There are still other
strategies, but the presentation of fault tolerance techniques is not the objective
of this paper.

6 Conclusion

In this paper we use parallel computing technologies to accelerate the scalar
multiplication on elliptic curves. We have tested our method using up to 6 Telosb
motes, and the results show that we obtain a gain of about 70.0% in execution

Parallel Scalar Multiplication on Elliptic Curves 313

time. However we propose that the number of nodes should be limited to less
than 5 due to parallel overhead. As the method is based on precomputation,
nodes need to store precomputed points locally.

The only drawback is the energy consumption since nodes have to commu-
nicate with each other for task distribution and result retrieval. Thus parallel
computing should not be used as the default computation mode in wireless sen-
sor networks, it can only be used in cases where execution time is the most
critical factor, like in disaster monitoring and military applications.

In our future work, we will try to reduce the energy consumption by minimiz-
ing radio transmissions. As nodes communicate with each other using unreliable
wireless communication, fault tolerance will also be taken into account.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4), 393–422 (2002)

2. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh,
M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Com-
puting 10(2), 18–25 (2006)

3. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.:
Wireless sensor networks for structural health monitoring. In: Proceedings of the
4th International Conference on Embedded Networked Sensor Systems, pp. 427–
428. ACM (2006)

4. Baker, C., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N., Der
Minassians, A., Dervisoglu, G., Gutnik, L., Haick, M., et al.: Wireless sensor net-
works for home health care. In: 21st International Conference on Advanced Infor-
mation Networking and Applications Workshops, AINAW 2007, vol. 2, pp. 832–837.
IEEE (2007)

5. Welsh, M., Moulton, S., Fulford-Jones, T., Malan, D.: Codeblue: An ad hoc sensor
network infrastructure for emergency medical care. In: International Workshop on
Wearable and Implantable Body Sensor Networks, London, UK (April 2004)

6. Gosnell, T., Hall, J., Jam, C., Knapp, D., Koenig, Z., Luke, S., Pohl, B., Schach von
Wittenau, A., Wolford, J.: Gamma-ray identification of nuclear weapon materials.
Technical report, Lawrence Livermore National Lab, Livermore, CA, US (1997)

7. Walters, J., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security:
A survey. Security in Distributed, Grid, Mobile, and Pervasive Computing 1, 367
(2007)

8. Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: a survey. IEEE
Communications Surveys & Tutorials 10(3), 6–28 (2008)

9. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: Proceedings of the 6th International Work-
shop on Cryptographic Hardware and Embedded Systems, CHES 2004, Cambridge,
MA, USA, August 11-13, vol. 6, p. 119. Springer-Verlag New York Inc. (2004)

10. Gordon, D.: A survey of fast exponentiation methods. Journal of Algorithms 27(1),
129–146 (1998)

11. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

12. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

314 Y. Shou, H. Guyennet, and M. Lehsaini

13. Hankerson, D., Vanstone, S., Menezes, A.: Guide to elliptic curve cryptography.
Springer-Verlag New York Inc. (2004)

14. Brown, M., Hankerson, D., López, J., Menezes, A.: Software Implementation of
the NIST Elliptic Curves Over Prime Fields. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

15. Panda, B., Khilar, P.: Fpga based implementation of parallel ecc processor. In:
Proceedings of the 2011 International Conference on Communication, Computing
& Security, pp. 453–456. ACM (2011)

16. Purnaprajna, M., Puttmann, C., Porrmann, M.: Power aware reconfigurable mul-
tiprocessor for elliptic curve cryptography. In: Design, Automation and Test in
Europe, DATE 2008, pp. 1462–1467. IEEE (2008)

17. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation
with Precomputation: Algorithms and Lower Bounds. In: Rueppel, R.A. (ed.) EU-
ROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)

18. Miyaji, A., Ono, T., Cohen, H.: Efficient Elliptic Curve Exponentiation. In: Han,
Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 282–290. Springer, Heidel-
berg (1997)

19. Ansari, B., Wu, H.: Parallel scalar multiplication for elliptic curve cryptosystems.
In: Proceedings of the 2005 International Conference on Communications, Circuits
and Systems, vol. 1, pp. 71–73. IEEE (2005)

20. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994)

21. De Canniere, C., Preneel, B.: Trivium specifications. estream, ECRYPT Stream
Cipher Project, Report 30 (2005)

22. Raddum, H.: Cryptanalytic results on trivium. estream, ECRYPT Stream Cipher
Project, Report 39 (2006)

23. MEMSIC: Telosb mote platform datasheet (November 2011),
http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html

24. MEMSIC: Mica2/micaz mote platform datasheet (June 2011),
http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html

25. Titzer, B., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with
precise timing. In: Fourth International Symposium on Information Processing in
Sensor Networks, IPSN 2005, pp. 477–482. IEEE (2005)

26. Chen, H., Wu, H., Zhou, X., Gao, C.: Reputation-based trust in wireless sensor
networks. In: International Conference on Multimedia and Ubiquitous Engineering,
MUE 2007, pp. 603–607. IEEE (2007)

http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html

PeerVault: A Distributed Peer-to-Peer Platform

for Reliable Data Backup

Adnan Khan1, Mehrab Shahriar1, Sk Kajal Arefin Imon1,
Mario Di Francesco2,1, and Sajal K. Das1

1 Center for Research in Wireless Mobility and Networking (CReWMaN)
University of Texas at Arlington

{firstname.lastname}@mavs.uta.edu, das@uta.edu
2 Department of Computer Science and Engineering

Aalto University School of Science
mario.di.francesco@aalto.fi

Abstract. Large scale peer-to-peer (P2P) systems are envisioned as a
way to provide online storage service. For a reliable storage service, the
participating peers are required to maintain strict commitments for their
online duration. On the other hand, recent results show that users par-
ticipating in volunteer computing collectively exhibit certain patterns in
terms of their long-term availability, a metric that denotes periodic online
durations for a considerably long time interval. In this article we intro-
duce PeerVault, a P2P platform that leverages the long-term availability
of the computer users to form a distributed reliable storage service, tar-
geted to backup of personal data. We further present a distributed mon-
itoring scheme that assists PeerVault to detect peer churns and ensure
the reliability of the proposed backup service. To the best of our knowl-
edge, this is the first effort to describe the architecture of a reliable P2P
backup service exploiting the long-term availability and idle resources
of computing devices. We conduct experiments based on the availability
traces of hundreds of thousands of hosts from the SETI@home computing
project. The obtained results show that the proposed approach is effec-
tive in terms of availability as well as reliability of the offered backup
service.

Keywords: Peer-to-peer backup, distributed storage, reliability,
monitoring.

1 Introduction

Traditional approaches for reliable storage of data involve maintaining redundant
backup copies on a variety of storage devices which evolved over time from tapes
and optical media to external hard drives. More recently, the availability of
storage space in data centers and ubiquitous access to the Internet have made
remote storage solutions increasingly appealing. In this context, cloud-based
services such as Amazon Cloud Drive, Microsoft SkyDrive and DropBox have
become very popular. Such systems are easy to use and provide seamless service

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 315–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

316 A. Khan et al.

as they exploit the reliability inherent to the cloud infrastructure. Most of these
services provide a limited storage space without any charge to attract new users.
Subsequently, users pay for additional storage space on a monthly or yearly basis.

Although computer users keep on purchasing additional storage for data
backup, a significant portion of their own local storage remains unutilized. Ac-
cording to [1], almost half of the users consistently utilize less than 40% of their
available disk space. Therefore, a different approach to design a backup system
is to exploit the unutilized disk space and bandwidth in a peer-to-peer (P2P)
architecture. Such P2P backup systems have also received attention by the re-
search community [2] and even resulted in actual commercial products [3, 4]
in the last few years. However, most of the existing systems require the users
to be online for a considerably long period of time, e.g., more than 80% time
of a day [4]. Moreover, these systems require the users to contribute their own
storage space to receive the backup service [3] and thus excludes the users who
are unwilling to contribute their own resources.

In this article, we introduce PeerVault, a platform which exploits the long-
term availability of online computer users, as well as their idle resources, in order
to realize a distributed online backup service based on a P2P infrastructure. In
this approach, participating users advertise their unused storage and network
resources based on which PeerVault decides how to store the data by ensuring
their long-term availability. To receive the backup service, users are not explicitly
required to contribute any resources. Even though the backup service can be
supported by an appropriate revenue model [5], in this work we focus on the
architectural aspects of the system. The major contributions of this article are
as follows.

– We design a novel distributed storage system based on erasure coding which
realizes a seamless online backup service on top of idle peers connected over
the Internet.

– We propose the concept of peer path to derive an efficient solution for dis-
tributing data to the peers. Peer paths encapsulate individual peer availabil-
ities to offer a seamless backup service over a given time interval.

– We devise a distributed monitoring scheme to detect peer churn. The
proposed algorithm is shown to monitor all the involved peers with high
probability, while incurring a nominal bandwidth.

– Through extensive simulations based on the traces of the SETI@home project
[6], we show that the proposed approach is effective in terms of long-term
service availability.

The remainder of the article is organized as follows. Section 2 details the pro-
posed PeerVault architecture with focus on the feasibility of the offered service.
Section 3 introduces a randomized scheme to monitor peer churn in our system.
Section 4 presents the details of the simulation setup and the obtained results.
Section 5 summarizes the related work and, finally, Sect. 6 concludes the article
with directions for future research.

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 317

2 PeerVault Architecture

The proposed PeerVault architecture is based on the three basic components
illustrated in Fig. 1. The source peers are the end-users of the system and are
willing to store data (namely, files) in exchange for a high reliability. On the
other hand, the storage peers provide their bandwidth and storage resources
to realize the distributed backup service. Finally, the tracker supervises the
resources offered by the storage peers as well as the mapping between files and
peers. Source peers can request a certain amount of remote storage space for a
particular period of time, with a minimum bandwidth desired for uploading or
retrieving the data. Similarly, a storage peer can choose the amount of space
it is willing to share, the minimum upload and download bandwidth, and its
availability periods.

Throughout our discussion, the availability of a storage peer will refer to its
compliance with the advertised resources. We will refer to service availability
of PeerVault at a given time instant as the accessibility of the stored files at
that particular instant. Moreover, we will refer to service reliability as the long-
term availability (i.e., in a sufficiently large time period) of the offered service.
Since PeerVault is based on a P2P infrastructure, intermittent deviation from
the advertised resources and also permanent departure of the storage peers are
possible. The service availability of PeerVault relies on the group availability
of the storage peers instead of the individual availabilities. Thus, service avail-
ability can be ensured, even when storage peers have some deviation from their
advertised resources. Moreover, in Sect. 3 we explicitly provide a mechanism to
detect and adjust with the deviations to ensure service reliability.

2.1 Distributed Storage Scheme

In PeerVault, a file is distributed by a source peer to a set of storage peers in
the form of chunks. We exploit erasure coding to create these chunks from a
given file. The basic idea behind this approach is to encode data by adding some
redundancy. As a result, the original data can be obtained from the encoded data
even when part of them is not available. Erasure coding operates on individual
chunks of a file, where each chunk is of fixed size λ. In the following, we will
assume that the source data (i.e., a file) is split into k chunks, and then encoded
into n = ηk chunks, where η is the replication factor (see Fig. 1). Erasure coding
guarantees that the original file can be reconstructed from any k distinct encoded
chunks among the n encoded ones.

A suitable value of η is obtained through a preliminary negotiation phase
between the source peer and the tracker, based on the resources available in the
system. After that, the source peer applies erasure coding on the given file to
produce n different chunks. The tracker derives a mapping between an encoded
chunk and a set of storage peers, known as a peer path. The storage peers in the
mapping are selected based on their advertised resources. Thus, for the entire
file (i.e., the n encoded chunks), the tracker finds n peer paths and provides
the related mapping to the source peer. The tracker also ensures that no storage

318 A. Khan et al.

Source
Peer

Storage
Peers

Tracker

Encoded File

Original File

...

...

...

k chunks

n=ηk chunks

Fig. 1. System Architecture of PeerVault

peer receives more than k−1 chunks of a given file. As a consequence, no storage
peer can reconstruct or access the given file.

2.2 Characterization of Storage Peers

Different storage peers provide their resources during different time intervals.
On the other hand, a source peer may need to store or retrieve a file at any
time instant. In the following, we will build our storage scheme based on the
availability of the storage peers so that the requirements of the source peers are
successfully satisfied.

First, we denote the i-th storage peer by means of its unique identifier, pi. We
assume that the availability of storage peers is periodic over a time frame, defined
as service time frame. Specifically, the availability of storage peers is character-
ized in terms of the considered service time frame. For instance, a given peer
could be available from Monday to Friday between 12 AM to 8 PM when the ser-
vice time frame is equal to one week. Within a service time frame, a peer can be
available during multiple contiguous time intervals, referred to as the availability
periods. We represent the j-th availability period of pi as pij . In detail, we define
as arrival time and departure time the instants corresponding to the beginning
and the end of a single (contiguous) availability period, respectively. For a given
availability period pij , we denote the corresponding arrival time as a(pij) and
the departure time as d(pij). Each availability period pij is associated with its of-
fered bandwidth b(pij), which is the minimum between the upload and download
bandwidths of the storage peer during the availability period. Moreover, each
availability period has an associated cost per unit storage, represented by c(pij).
The duration of an availability period is denoted by A(pij) = (a(pij), d(pij)).
The overlapping time between two availability periods pij and pkl is finally de-
fined as T (pij , pkl) = min{d(pij), d(pkl)} −max{a(pij), a(pkl)} if d(pkl) > a(pij)
and d(pij) > a(pkl), otherwise T (pij, pkl) = 0.

Let us consider the example scenario represented in Fig. 2a. For clarity, we
assume that each storage peer has a single availability period, denoted by a
single subscript corresponding to the peer identifier (i.e., pi represents the only

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 319

p0

p1

p2

p3

p4

p5

t1 t2 t3 t4 t5 t6t0

Av
ai

la
bi

lit
y

pe
rio

ds

Time

(a)

p2

p3

p0

p5ps p1

ptp4

(b)

Fig. 2. (a) Availability periods of different storage peers as a function of time. (b)
Interval graph corresponding to (a) with the addition of dummy nodes ps and pt.

availability period of the i-th peer). The durations of the availability periods p1
and p2 are A(p1) = (t0, t3) and A(p2) = (t1, t4), respectively. Note here that the
availability period p0 overlaps with both p1 and p2. Specifically, the overlapping
time between p0 and p1 is T (p0, p1) = t2 − t0, while that between p0 and p2 is
T (p0, p2) = t2 − t1.

2.3 Managing Storage Requests

The backup service is requested by a source peer (for an individual file) in terms
of the following parameters: the target availability interval (δs, δe); the desired
minimum download bandwidth μ; and the requested storage space ρ. We assume
that the chunk size for the given file is λ and that the target availability interval
requested by the source peer is equal to the service time frame.

We use interval graphs [7] to model the considered scenario. An undirected
graph G = (V,E) is called an interval graph if a one-to-one mapping between
the vertices V and a set of intervals I can be established, such that two vertices
are connected by an edge in G if and only if there is an intersection between
the corresponding intervals. In our case, V = {pij} and I = {Iij} = A(pij) =
{(a(pij), d(pij))} for 0 ≤ i < m and 0 ≤ j < ni, where m is the number of
storage peers and ni is the number of availability periods of pi.

We construct a constrained interval graph, Gc, for the given storage request
according to the availability periods of the storage peers. Let us assume, for an
availability period pij , the offered bandwidth and the cost are denoted by b(pij)
and c(pij), respectively. Now we restrict the nodes in the graph Gc to those with
offered bandwidth higher than μ

k . Furthermore, we restrict the edges between
any two nodes pij and pkl so that their overlapping time is longer than the
minimum overlapping time τ , where τ = (min{b(pij), b(pkl)})−1 · λ. Note that a
chunk stored in a peer can be transferred to the next peer along the associated
peer path in the minimum overlapping time. Finally, we define the weight of an

edge between nodes pij and pkl as w(pij , pkl) =
c(pij)+c(pkl)

2 .

320 A. Khan et al.

p0

p1

p2

p3

p4

p5

t1 t2 t3 t4 t5 t6t0

1

1

1

2

2

2Av
ai

la
bi

lit
y

pe
rio

ds

Time

Fig. 3. Dissemination of file chunks

On the basis of the target availability interval (δs, δe), we add two dummy
availability periods ps and pt, so that a storage request can be mapped to a
path between a single source and a single destination in Gc. The duration of the
availability periods associated to the dummy nodes are set to A(ps) = (δs, δs+τ)
and A(pt) = (δe − τ, δe + τ), respectively. We also set b(ps) = b(pt) = μ

k and
c(ps) = c(pt) = 0. As a consequence, a peer path can be referred by a path
between ps and pt in Gc. Formally, a peer path associated with the interval
(δs, δe) is the set of m availability periods P(δs, δe) = {pi1j1 , pi2j2 , . . . , pimjm}
such that T

(
pixjy , pix+1jy+1

)
> τ , ∀i ∈ [1,m], a(pi1j1) ≤ δs and d(pimjm) ≥ δe.

For instance, P(t0, t6) = {ps, p0, p2, p3, pt} is a peer path in Fig. 2b. Note that
the parameters assigned to the dummy nodes ensure the inclusion of the peers
with the required amount of overlapping time in a peer path.

For a storage request with n encoded chunks, our system associates a dis-
tinct peer path Pr(δs, δe), with 0 ≤ r < n, to each of the chunks in the source
file. For a storage request, we intend to assign at most one chunk to a single
availability period so that any interruption during this availability period has
minimal impact. Moreover, a storage peer is not allowed to receive more than
k − 1 chunks of the file, even though it may have multiple availability peri-
ods. Otherwise, it would be possible for a storage peer to obtain k or more
chunks and reconstruct the file. As a consequence, at most k − 1 availability
periods of a storage peer are allowed to belong to a single storage request. To
this end, for each storage peer pi, we sort the availability periods based on the
weight ψ(pij)A(pij), for 0 ≤ j < ni in decreasing order, where ψ(pij) represents
the probability of pi being online during pij as explained in Sect. 2.5. Thus,
we further restrict Gc by taking the top k − 1 availability periods from the
sorted list.

Finally, to serve the storage request, PeerVault selects the set of peer paths
X =

{
∪n−1
j=0Pj(δs, δe)

}
so that Pi ∩ Pj = {ps, pt}, ∀i �= j and the total cost of

the availability periods in the selected peer paths is minimized. Note that this
problem can be mapped to the minimum weight n-node disjoint path problem in
an undirected graph [8] which is well studied in the literature, and can be solved
in polynomial time [9].

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 321

2.4 Data Dissemination and Retrieval

According to the definition of peer path, at any time instant, a storage peer
can be found online. When a source peer intends to backup a file, it creates n
encoded chunks and sends a storage request to the tracker. The tracker selects
a set of n peer paths and sends it back to the source peer. Now the source peer
uploads each chunk to the currently available storage peer from each peer path.
After all the chunks are uploaded, the source peer can leave the system. Once a
storage peer of a peer path receives a chunk, it transfers the chunk to the next
storage peer of the peer path. Thus the chunk is propagated to all the storage
peers of the peer path. This dissemination process for a file consisting of two
encoded chunks is illustrated in Fig. 3 for the scenario already introduced in
Fig. 2a. In this example, the tracker reports two peer paths to the source peer,
namely P1 = {p0, p2, p3} and P2 = {p1, p4, p5}. If the source peer is online at t0,
it can upload chunk 1 to p0 and chunk 2 to p1, and may leave the system.

When the source peer decides to retrieve the stored file, it selects k distinct
peer paths and proceeds to download the chunks from the currently available
storage peer of each peer path. Once k chunks are successfully downloaded, the
source peer reconstructs the original file.

2.5 Estimating Available Resources

As the offered backup service is largely dependent on the long-term availability
of the storage peers, it is essential to know the relevant parameters of a storage
peer – namely, availability periods, bandwidth, and storage space – before it is
actually allowed to participate in the system. Unlike some existing approaches
[4], we do not rely on the user to define the expected operating parameters.
Instead, PeerVault observes the users for a training period denoted by σ.

We use the bit vector method similar to [10] to predict the long-term availabil-
ity of the storage peers. Consistent with that solution, we consider the service
time frame of one week, wherein each hour of the week is represented by a bit.
For each hour, the corresponding bit is set to 1 if a storage peer is available for
more than 55 minutes. The peer is observed for each hour in the entire training
period. Let us assume that there are y weeks in σ, and a bit is set for x weeks.
Then the training probability of the corresponding hour is defined by x

y . We
consider an hour to include in an availability period if the training probability
exceeds a threshold αb. Finally, the availability periods are obtained by merging
the contiguous available hours. The training probability of the availability period
is denoted by ψ(·) and computed by taking the average of the probabilities of the
constituent hours. A storage peer is considered as eligible if it has at least one
availability period with training probability greater than αb. At the end of the
training period, an eligible peer is requested to approve its estimated availability
periods and specify the information of the free disk space, bandwidth, and cost
it can offer to PeerVault. Subsequently, the associated cost per unit storage, c(·)
is derived through a revenue model. These sets of parameters are referred as the
advertised resources of the storage peer for the considered availability period. A
specific choice of the revenue model is out of the scope of this paper.

322 A. Khan et al.

3 A Distributed Peer Monitoring Scheme

To ensure the long-term availability of the stored data, peer churns must be
detected and the corresponding peers need to be replaced accordingly. In this
section, we introduce a distributed algorithm to monitor storage peers and detect
churn. In our approach, each storage peer sends a ping message to a set of
other peers to monitor whether or not they are maintaining their advertised
resources. Our algorithm, called DistMonitor has the following properties: (i)
the absence of a storage peer is reported to the tracker with high probability;
(ii) the overhead of the monitoring effort is proportional to the number of stored
chunk and, hence, is fairly distributed; (iii) newly joined peers can easily be
included in the monitoring process, thus making the solution scalable; (iv) most
of the monitoring overhead is assigned to the peers themselves, while only limited
interactions with the tracker are needed; and (v) overall, the required bandwidth
for the monitoring scheme is nominal.

For convenience of discussion, let γk denotes a particular availability period.
Let h(·) be a one-to-one function that maps an ordered pair of integers < i, j >
to a single integer k. Thus, γk represents a unique availability period pij .

Definition 1 (Simultaneous Availability Period List). Let n chunks of a
file be stored among a set of peers with availability periods P = {γ1, γ2, . . . , γm}.
The simultaneous availability period list (SAPL) for a given availability period
γi ∈ P is the set Si ⊆ P such that T (γi, γj) > tmax, for all γj ∈ Si \ {γi} and
tmax is a predefined timeout period greater than zero.

Definition 2 (Potential Availability Period List). The potential availabil-
ity period list (PAPL) Ni of a given availability period γi is a randomly selected
proper subset of Si.

After finding the peer paths for a given file, the tracker computes the PAPL for
each of the availability periods. Basically, when a storage peer participates in
storing a file (by holding a chunk during a particular availability period), it is
also assigned with the PAPL.

Once a storage peer pk obtains the PAPL for a particular availability period
γi, it executes the function DistMonitor illustrated in Algorithm 1. Specifically,
the storage peer selects q random availability periods from the PAPL of γi and
assigns it to a set B (line 1). For each member of B, there is a counter (count)
initialized with a value l (line 2). For each of the availability periods γj from B,
the peer pk selects a random time in the overlapping time T (γi, γj) and sends
a ping message at that particular time to the storage peer associated with γj ,
namely, g(γj) (line 11). Note that g(·) is a function that returns the identifier
of a peer corresponding to a given availability period. After sending the ping
message, pk waits for the reply for a predefined timeout period tmax. If the reply
is received within that period, γj is removed from the list B, and it is assumed
that the corresponding peer is conforming to its commitment. Otherwise, the
value of the corresponding count is decremented by 1 (lines 14–15). Note that
pk may try to send at most l messages to a particular peer associated with an

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 323

Algorithm 1. DistMonitor(γi,Ni, q, l)

output: R // list of reported peers

1 R ← ∅; B ← q randomly chosen elements from Ni;
2 foreach γj ∈ B do count[γj] ← l ;
3 while B �= ∅ do
4 foreach γj ∈ B do
5 if count[γj] = 0 then R ← R∪ g(γj) ; B ← B \ γj ;
6 else
7 t′ ← [tnow,∞] ; tol ← T (γi, γj) ∩ t′;
8 if tol = 0 then B ← B \ γj ;
9 else

10 t[γj] ← randomly selected value from tol;
11 schedule a message for g(γj) at t[γj] ;
12 schedule a thread waiting for γj from t[γj];

13 foreach γj ∈ B do
14 if a reply is received within T [γj] + tmax then B ← B \ γj ;
15 else count[γj] ← count[γj]− 1;

16 report R to the tracker;

availability period. If the value of count is 0 for a particular availability period
γj , then pk adds the corresponding peer g(γj) to the set R, (line 5), where R
denotes the set of peers that have not responded to the ping messages. Before
γi ends, pk sends R to the tracker as negative feedback.

3.1 Analysis of DistMonitor

The performance of the monitoring algorithm is measured in terms of two met-
rics, namely, percentage of peers that were monitored and the associated message
overhead. Let the chunks of a particular file is stored among a group of peer avail-
abilities. We denote γji as the i-th availability period in the peer path j (holding
the j-th chunk of the file). Let |S| and |N | denote the average size of SAPL and
PAPL of the involved availability periods. The following theorem characterizes
q (the number of selected availability periods from the PAPL) and |N | to ensure
the desired performance of the DistMonitor algorithm.

Theorem 1. For a stored file, each storage peer is monitored in its availability
period by DistMonitor with high probability, for a proper choice of q and |N |,
i.e., q = |N | = log |S|.

Proof. Let us assume that a file has n encoded chunks and C =
{γx1

i1
, γx2

i2
, . . . , γxm

im
} is the group of availability periods for a particular chunk.

Let γji ∈ C be an availability period such that all other members in C are in

the SAPL of γji (excluding itself). Without loss of generality, let us assume that
the size of the SAPLs and PAPLs of all the availability periods in C are |S| and

324 A. Khan et al.

|N |, respectively. We aim at finding the probability of a peer pk corresponding
to γji being monitored, that is, the probability of receiving at least one message
from any of the peers corresponding to the availability periods of C. Essentially,
all the corresponding peers of C (except for pk) contain pk in their SAPL, so
each of these peers has a probability to send a ping message to pk.

Let us introduce the following notation first. Let Dk be the event that pk
receives at least one message from any of the peers, and G be the event that pk
receives a message from pl. By recalling that a peer sends out ping messages to q
randomly selected peers from its PAPL N (for a particular availability period),
let us also define M as the event that pk is in the PAPL of pl, and Y as the
event that pk is sent a message by pl. Hence, P (G) = P (M)P (Y |M). Now,

P (M) = 1−
(
1− 1

|S|

)|N |

and P (Y |M) = q · (|N |)−1. Therefore,

P (G) =
q

|N |

(
1−
(
1− 1

|S|

)|N|)
=

q

|N |

(
1− e

− |N|
|S|

)
So P

(
Dk

)
= (1− P (G))|S| = f

(
|N |, q

)
, for a fixed value of |S|. Thus P (Dk) =

1− f
(
|N |, q

)
. Thus, the probability of a peer being monitored depends on f(·)

which, in turn, depends on q and |N | for a specific file. For an instance, if we
choose both q and |N | as 1, a peer is monitored with a constant probability of
around 63% by other storage peers. In the specific case where log |S| is chosen
for both |N | and q, f(·) becomes 0 with high probability asymptotically with
increasing values of |S|. Therefore, a peer is guaranteed to be monitored with
high probability in its availability period for storing a single file chunk when
q = |N | = log |S|.
Now, we consider the bandwidth requirements for the monitoring scheme.

Lemma 1. In an availability period, a peer sends/receives a total of O(ξlog |S|)
ping messages, where ξ represents the number of file chunks it holds.

Lemma 1 follows from the following arguments. During an availability period,
for each file, a storage peer sends out O(q) ping messages. It can be shown
that the expected number of ping messages received by a storage peer is also
O(q). In addition, a peer has to send (and receive) O(q) reply messages. In our
application, a storage peer can send/receive at most l log |S| ping messages for
a single file. Therefore, in total, a peer can send/receive at most lξ log |S| ping
messages. Similarly, a peer can send/receive at most lξlog |S| reply messages.

If the average size of the ping and reply messages is α, and the availability

period is A, a peer incurs an average download/upload bandwidth of 4·lαξlog |S|
A

.
When l = 2, as in our application, a peer with an availability period of 20
hours contributing 100 GB storage space may incur an average upload/download

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 325

bandwidth of less than 0.75 KBps. This assumes the average size of ping/reply
message as 100 bytes, and the average chunk size as 10 MB.

Replacement Strategy. The tracker maintains a negative feedback counter for
each availability period. If it receives negative feedback for more than 10 times
about an availability period in a particular week, it verifies whether the peer is
unavailable by sending periodic ping messages for the next 4 weeks. Based on
the response, the tracker computes the probability of the associated peer to be
available using the bit vector method (recall from Sect. 2.5). If the probability
is less than 0.2, the tracker picks a new availability period with similar or longer
availability duration and similar or higher bandwidth offering the minimum cost.

4 Performance Evaluation

We simulated the PeerVault system based on the user availability traces of the
SETI@home project [6]. SETI@home is a scientific experiment that uses the idle
resources of the Internet-connected computers, in the Search for Extraterrestrial
Intelligence (SETI).

4.1 Simulation Setup

In the following, we will present the details about the traces, the parameters,
and the methodology used in the performance evaluation.

SETI@Home Traces. In our experiments, we used the traces corresponding to
the CPU availability of the SETI@home project as collected by the Failure Trace
Archive [6]. We consider each unique host in the trace as a storage peer. The data
reported in the trace spans over a period of a year and nine months that we call
the trace duration. All the hosts of the trace data are not available for the entire
trace duration. Some hosts start contributing after the trace duration starts,
while some others leave permanently before the trace duration ends. Thus, each
host (or storage peer) has trace data over an interval that we call host duration.
If the host duration of a storage peer is (t1, t2), we define the prediction interval
as (t1 + σ, t2) if t1 + σ < t2, and 0 otherwise (in which case, we ignore that
particular host). Recall from Sect. 2.5 that σ refers to the training period.

Simulation Details and Relevant Metrics. We carried out the experiments
through a custom simulator written in Java to validate the availability and relia-
bility of the backup service as well as the performance of the monitoring scheme,
DistMonitor. In order to serve the storage requests, we implemented the min-
imum weight n-node disjoint path algorithm proposed in [9]. The availability
periods were derived by using the method described in Sect. 2.5, with a train-
ing period σ of 4 weeks. We considered three different datasets of storage peers
for the experiments. For each dataset, we picked a random sample of 10, 000
hosts, from which we extracted storage peers with training probability equal to
or greater than 0.6, 0.75, and 0.9. Throughout this section, they will be referred

326 A. Khan et al.

Training
prob-
ability
threshold
(αb)

Hosts
selected
from
sampled
ones (%)

Average
number
of avail-
ability
periods
per host

Average
length
of avail-
ability
periods
(hours)

0.6 71 3.38 31.28

0.75 70 3.4 29.75

0.9 53 3.32 26.84

(a)

2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

Original Redundancy

O
bs

er
ve

d
R

ed
un

da
nc

y

α
b
=0.6

α
b
=0.75

α
b
=0.9

Ideal

(b)

Fig. 4. (a) Availability periods obtained from traces. (b) Effective redundancy against
the original redundancy of the files for storage peers with different training probability
thresholds.

to as datasets A, B and C, respectively. Table 4a shows the percentage of hosts
with the desired training probability and the number of availability periods per
host which are considered in the simulation. We performed independent exper-
iments for each of the datasets. In each experiment, 1,000 files are requested
and the file sizes were generated from a lognormal distribution with a mean and
standard deviation of 100 MB and 20 MB, respectively [11].

We considered the following performance metrics:

– Observed redundancy: the ratio of the number of available encoded chunks
(n∗) to the minimum number of encoded chunks (k), for a given file.

– Percentage of available files : the ratio of the files with greater than or equal
to k chunks available to the total number of files initially stored.

4.2 Experimental Results

Figure 4b shows the observed redundancy, averaged over all stored files, against
the applied redundancy. In all datasets, the observed redundancy for a single
service time frame (i.e., the first week) is summarized in a single plot to assess the
availability of the offered service in a short time frame. The figure clearly shows
that the observed redundancy increases with the threshold for increasing training
probability of the hosts. Therefore, a higher threshold for training probability
(e.g., higher than or equal to 90%) can be used to achieve a better performance.
The line marked as ideal represents the case wherein all peers are available.

Figure 5 shows the availability of the stored files over a long time period to
assess the reliability of the offered service. Specifically, it shows the percent-
age of accessible files (with η = 2.5) over a period of 52 weeks for datasets A
and1 C. The figures show that the availability of the files gradually decreases

1 Results for dataset B are similar to those for dataset A, so we did not report them
here due to lack of space.

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 327

(a) (b)

Fig. 5. Available files during 52 weeks for the different datasets: (a) A (αb = 0.6); and
(b) C (αb = 0.9).

for all datasets. Even though dataset C shows a much higher availability over
time than others (i.e., after 1 year, around 90% files are still accessible), there
is no guarantee that all files can be accessed throughout the entire simulated
period when no monitoring and replacement are used. This result, in addition
to Fig. 4b, suggests that file availability is improved and retained over time
when the training probability is high. However, some peers permanently leave
the system over time and, thus, the data stored by them become unavailable.
The monitoring algorithm and the replacement policy can guarantee that the
files are available over the entire simulated period. The results also suggest that
the availability of files can be improved by reducing the chunk size. Since the
peer paths increase when the chunk size λ decreases, the probability of getting
the minimum number of chunks for a file increases as well. On the other hand,
very small file chunks result in a higher overhead for both the tracker and the
storage peers. After considering all the above-mentioned aspects, 5 MB appears
to be a suitable choice for the chunk size.

5 Related Work

In the following, we will summarize relevant literature on P2P systems used for
both storage and for monitoring purposes.

The P2P networking paradigm has been exploited in the context of distributed
file systems [12–14]. However, none of the proposed approaches exploits the avail-
ability pattern and the idle resources of the computer users. In some existing
works, P2P networks were used to provide an enhanced online storage service in
addition to dedicated servers. FS2You [15] and Amazing Store [16] are examples
of such hybrid P2P systems explicitly designed to improve the availability of
stored data with efficient bandwidth utilization. Among P2P backup systems,
Symform [4] offers up to 200 GB of free storage space. In return, users are re-
quired to be online at least 80% of the time and provide at least 1.5 times the
storage they receive from the system. Unfortunately, the details on the system
design are not publicly available. Wuala [3] is another commercial P2P backup

328 A. Khan et al.

system that relies on a symmetric service between users and exploits a hybrid
architecture. A peer-assisted backup service was also proposed in [17], wherein it
was shown that a performance comparable to traditional client-server architec-
ture can be achieved by temporarily using storage space from cloud providers.
However, all the above solutions still rely on the presence of special servers or
data centers. In contrast, our solution is based on a pure P2P architecture.
FriendStore [2] is a backup system where users store data by exploiting their
social connection with other peers. Specifically, personal data are backed up on
“friend” peers. Thus, availability and reliability depend on the number of friends,
which can be rather low in realistic scenarios. In [18], a pricing mechanism for
the offered resources in a P2P backup system is investigated. However, the work
does not define any specific architecture as for the storage mechanism.

P2P networks employ monitoring schemes to ensure peer participation. A
generic monitoring system based on the principles of autonomic computing was
presented in [19]. Such a mechanism assumes that the P2P network is structured
(i.e., has a logical overlay), thus, it is not directly applicable to our system. Exist-
ing P2P backup services use monitoring approaches which assign the monitoring
responsibility to either a centralized server [4] or the peer that originated the
backup request [3, 20]. On the other hand, our approach is distributed, since a
peer is randomly monitored by some other peers, and assigns minimal responsi-
bility to the tracker.

6 Conclusion

In this paper, motivated by the availability of unused disk space of the users
and their long-term availability pattern, we introduced PeerVault, a data stor-
age system based on a peer-to-peer architecture which can be used to provide
a seamless backup service. PeerVault exploits group availability of participating
peers to ensure long-term availability of the stored data. Moreover, to address
peer churns, we proposed a distributed monitoring scheme that detects peers
deviating from the desired availability pattern. Simulation results based on the
traces of the SETI@home computing project demonstrated that the proposed
approach efficiently utilizes the available resources and obtains a very high ser-
vice reliability. In future, we propose to investigate revenue and recommendation
models that will enhance the peer selection mechanism.

Acknowledgements. This research was partially supported by the NSF grants
CNS-1049652, IIS-1064460, CNS-0916221, IIP-1242521 and CNS-1150192.

References

[1] Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. Trans. Stor-
age 7(4), 14:1–14:20 (2012)

[2] Tran, D.N., Chiang, F., Li, J.: Friendstore: cooperative online backup using trusted
nodes. In: Proc. of the 1st Workshop on Social Network Systems, pp. 37–42 (2008)

PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup 329

[3] LaCie AG: Wuala – Secure Online Storage, http://www.wuala.com (retrieved
November 16, 2011)

[4] Symform, Inc.: symform – Revolutionary Cloud Storage Network,
http://www.symform.com/our-solutions/storage-backup/ (retrieved July 22,
2012)

[5] Turner, D.A., Ross, K.W.: A lightweight currency paradigm for the p2p resource
market. In: Proc. 7th ICEC (2004)

[6] Kondo, D., Javadi, B., Iosup, A., Epema, D.: The failure trace archive: En-
abling comparative analysis of failures in diverse distributed systems. In: 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Comput-
ing (CCGrid), pp. 398–407 (May 2010)

[7] Fishburn, P.: Interval orders and interval graphs: a study of partially ordered sets.
Wiley-Interscience series in discrete mathematics. Wiley (1985)

[8] Bhandari, R.: Survivable Networks: Algorithms for Diverse Routing. Kluwer Aca-
demic Publishers, Norwell (1998)

[9] Bhandari, R.: Optimal physical diversity algorithms and survivable networks. In:
Proc. of Second IEEE Symposium on Computers and Communications (1997)

[10] Lázaro, D., Kondo, D., Marquès, J.M.: Long-term availability prediction for groups
of volunteer resources. JPDC 72(2) (2012)

[11] Downey, A.B.: The structural cause of file size distributions. In: Proc. of the 2001
ACM SIGMETRICS international Conference on Measurement and Modeling of
Computer Systems. SIGMETRICS 2001, pp. 328–329 (2001)

[12] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
Oceanstore: an architecture for global-scale persistent storage. SIGPLAN 35
(November 2000)

[13] Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R., Douceur, J.R.,
Howell, J., Lorch, J.R., Theimer, M., Wattenhofer, R.P.: Farsite: federated, avail-
able, and reliable storage for an incompletely trusted environment. In: Proc. of
the 5th OSDI (2002)

[14] Hasan, R., Anwar, Z., Yurcik, W., Brumbaugh, L., Campbell, R.: A survey of
peer-to-peer storage techniques for distributed file systems. In: Proc. of ITCC
(2005)

[15] Sun, Y., Liu, F., Li, B., Li, B., Zhang, X.: Fs2you: Peer-assisted semi-persistent
online storage at a large scale. In: INFOCOM 2009, pp. 873–881. IEEE (April
2009)

[16] Yang, Z., Zhao, B.Y., Xing, Y., Ding, S., Xiao, F., Dai, Y.: Amazingstore: available,
low-cost online storage service using cloudlets. In: Proc. of the 9th International
Conference on Peer-to-peer Systems, IPTPS 2010 (2010)

[17] Toka, L., Dell’Amico, M., Michiardi, P.: Online data backup: A peer-assisted ap-
proach. In: 2010 IEEE Tenth International Conference on Peer-to-Peer Computing
(P2P), pp. 1–10 (August 2010)

[18] Seuken, S., Charles, D., Chickering, M., Puri, S.: Market design & analysis for a
p2p backup system. In: Proc. of the 11th ACM Conference on Electronic Com-
merce, EC 2010, pp. 97–108. ACM, New York (2010)

[19] Graffi, K., Stingl, D., Rueckert, J., Kovacevic, A., Steinmetz, R.: Monitoring and
management of structured peer-to-peer systems. In: IEEE Ninth International
Conference on Peer-to-Peer Computing, P2P 2009, pp. 311–320 (September 2009)

[20] Pamies-Juarez, L., Garcia-Lopez, P., Sanchez-Artigas, M.: Rewarding stability in
peer-to-peer backup systems. In: 16th IEEE International Conference on Net-
works, ICON 2008, pp. 1–6 (December 2008)

http://www.wuala.com
http://www.symform.com/our-solutions/storage-backup/

Distributed Verification Using Mobile Agents�

Shantanu Das1,2, Shay Kutten2,��, and Zvi Lotker1

1 Ben Gurion University of the Negev, Beer-Sheva, Israel
2 Technion - Israel Institute of Technology, Haifa, Israel

Abstract. We study the problem of distributed verification in the mo-
bile agent model. The problem of distributed verification in a network
using local checking has been studied previously. In the local verification
model, each node of the network must decide on a yes or no answer based
on the knowledge of its immediate neighborhood and the global answer
is obtained by a conjunction of the local answers. The efficiency of such
a verification process is determined by the sizes of the proofs i.e. labels
that must be assigned to the nodes to enable local verification of some
global property. On the other hand, in the mobile agent model, verifica-
tion is performed by an agent that is allowed to move from node to node
of the graph, reading the labels of visited nodes in order to verify the re-
quired property. In this case, minimizing the memory of the agent is the
primary objective. We study the space complexity of performing mobile
verification in terms of memory of each agent as well as the number of
agents required globally in networks of size n. In the case of a solitary
agent, logarithmic memory is both necessary and sufficient for solving
certain graph-based verification problems (even in the family of trees).
For a team of at least two agents, the space complexity of most verifica-
tion problems (including the well-studied MST verification) is reduced to
O(log log n), while a team of at least three agents even with constant size
memory each, is sufficient to solve all graph-based verification problems.
We also study the effect of randomization and show that one agent with
O(log log n) bits of memory and the ability to flip coins is as powerful as
two deterministic agent having the similar memory limitations.

Keywords: Mobile Agents, Distributed Verification, Proof Labeling,
Network Exploration, Finite State Automata.

1 Introduction

Consider a distributed network of processors connected by point to point message-
passing channels, where each processor can talk to only its neighbors in the net-
work. The topology is any arbitrary connected (undirected) graph. Suppose we
want to verify some global property in the network, e.g. whether the routing

� This work was partially supported by the Israel Ministry of Science and Technology
grant (#85387301): “Algorithmic approaches to energy savings”.

�� Additionally supported by Israel Science Foundation and the TASP center at the
Technion.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 330–347, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Distributed Verification Using Mobile Agents 331

subnet used by the network is a minimum spanning tree. Since each node has
only local information about the network, verification of any global property
would require exchange of information across the network.

The problem of distributed verification has been well investigated by the dis-
tributed computing community [1,6,8,9,12]. The problem is of fundamental im-
portance in a decentralized network of autonomous entities where any global
structure (e.g. routing tree) may become out-of-date due to changes in the net-
work or failure of some components. So, the solution must be periodically verified
in an efficient but robust manner. The capability of local verification of global
properties of a network is important also in the context of self-stabilization. In-
dividual components of a network may wake-up in an arbitrary state and must
verify whether they are is a correct state with respect to the rest of the network.

The concept of local checking using proof labeling schemes was studied by
Korman et al. [8,9]. In this model, each node is assigned a label (also called local
proof) that depends on the problem to be verified. Every node is allowed to
perform a local checking by reading labels of its neighboring nodes and output
a yes or no answer. If the global solution to be verified is correct then all nodes
should output “YES” and if the global solution is not correct, at least one node
must output “NO”. Such a distributed verification method works well in the
context of self-stabilization; if the states of some nodes are incorrect this will be
eventually detected by the distributed verification method, and a new solution
can then be computed. However if one of the nodes is faulty or is under the
control of an adversary, then such a distributed verification method may fail to
detect the problem.

In this paper, we study distributed verification from a different point of view.
We study the problem in the context of the mobile agents model. In this model,
the nodes of the graph are merely data repository and the computations are
performed by a mobile process (called an agent) that can move from node to
node along the edges of the graph. In this context the distributed verification
problem can be defined as follows. Each node of the network has a state (in our
case, it’s same as the label of a node). An agent starts from an arbitrary node
of the graph and traverses the graph. The agent can read the state of any node
that it visits and store it in its internal memory (but it cannot modify the state
of a node i.e. it cannot write on a node). The objective of the agent is to verify
whether the configuration of the graph—as defined by the states of the nodes—
satisfies some predicate that corresponds to some global property on the graph.
For example, we may wish to check whether the states of the nodes induce a
rooted spanning tree on the graph. If the agent has enough memory to store
the complete graph then the problem becomes trivial, assuming the agent can
traverse the graph. Once the agent has traversed the graph and obtained state
information from each node, it can decide locally using the complete information.
However if the memory of the agent is restricted then it is not clear if the agent
can perform verification even in those cases, where distributed verification is
possible in the traditional model. This is the case for example when the size of
the agent’s memory is independent of the graph size, i.e. when the agent is a

332 S. Das, S. Kutten, and Z. Lotker

finite state automaton. This paper investigates how much memory is needed by
an agent, or a team of agents, to perform distributed verification of problems
for which solutions exists in the message-passing network model with one round
of communication. Further, we discuss how randomization helps in reducing the
space complexity of mobile agent based verification.

The verification problem is known to be different for anonymous graphs and
for graphs having unique identifiers. The focus of this paper is on the latter
scenario. For an anonymous graph it is not always possible to traverse the graph
(without knowledge of the size of the graph) unless the agent is allowed to leave
marks on the nodes of the graph. On the other hand if an agent is allowed to
write on the nodes of the graph it is possible to both verify and correct the
labels of the nodes. In fact, an agent can perform the marking part of the local
distributed verification process, assigning labels to the nodes, and then perform
the verification using the labels. In case the verification process fails, the agent
can recompute the solution and reassign appropriate labels. The verification
problem for anonymous graphs using mobile agents has been studied only in
the recent paper of Fraigniaud et al. [5]. However the focus of that paper is on
computability rather than complexity. Since not all problems can be verified in
anonymous networks, the paper determines which classes of problems can be
verified in such networks (with or without additional information provided to
the agents). To the best of our knowledge, there are no other known results on
distributed verification in the mobile agent model.

2 The Model and the Problems

We consider an undirected connected graph G = (V,E), with |V | = n nodes
and each node has a unique identifier of size O(log n). The edges incident to
a node v are locally oriented with port-numbers from 0, 1, 2, . . . , deg(v) − 1. A
node may also contain a label (not the same as the identifier) which depends on
the problem to be verified. The label L(v) of a node v consists of two parts:

1. Solution(v) denoted by s(v): This is the local part of the solution that needs
to be verified. If the solution is the graph G itself, then this field may be
empty. Otherwise if the solution is a subgraph H of G then s(v) is a set of
some of the edges incident to the node v such that H is the graph defined by
the union ∪s(v), v ∈ V (G). For example, in case of the spanning tree ([SPT])
problem, s(v) is simply the parent pointer v, i.e. the edge connecting v to
its parent in the spanning tree.

2. Proof(v) denoted p(v): This is the local part of the proof that the solution is
correct. The size of the proof depends on the particular model. For example,
in the local verification model, the [SPT] problem can be verified using local
proofs of size O(log n) where p(v) consists of the identifier of the root of
the spanning tree T and the distance from v to the root in T . In case of
the verification by mobile agents, the size of local proofs depends on the
capabilities of the agents as discussed later. In some cases, the proof field
may be empty.

Distributed Verification Using Mobile Agents 333

We consider the problem of verifying some global property satisfied by the graph
and node labels. We investigate the relationship between the following two mod-
els for distributed verification—(i) Local verification model and (ii) Mobile Agent
verification model.

2.1 Local Verification Model

This model is based on the proof-based verification in local communication model
[9]. In this model, each node v in the network can see its own label, the labels
of its neighboring nodes and the port numbers leading to any such node. Based
on only this information the node has to output either YES or NO. If the global
property that we wish to verify is true, then all nodes should output YES.
Otherwise at least one node must output NO. There are no restrictions on the
memory or computational power of a node. However, the objective is to minimize
the size of the largest label assigned to any node in the graph, that still allows
local verification. The verification process consists of two parts: (i) Encoding or
the process of assigning proofs to the nodes, and (ii) Decoding or checking the
proofs and producing the output of YES or NO at every node. We assume that
the label assignment (proof assignment) is done by a central authority that has
knowledge of the network and the global solution1. For every true instance of
the problem, there is always a proof assignment that will enable each node to
locally verify the solution (e.g. writing the complete map of the graph at every
node). However, in most cases, it is possible to find much smaller proofs. In this
model, the focus is on reducing the space complexity (memory required at each
node for storing the proof). Note that the time taken for verification is always
one time unit since the nodes decide on the output by just looking at the local
neighborhood.

We define by LV D(q) as the set of all problems that can be locally verified
using labels of size at most q bits at each node of the graph.

2.2 Mobile Verification Model

In this model, computations are performed by mobile agents that can traverse
the edges of the graph. Nodes of the graph are inactive except when an agent
arrives to that node. The agent can be modeled as an automaton with state
space S and the following behavior. When an agent is at a node v, the agent can
read the label of node v (and the node identifier, if any) and the port number of
the edge through which it arrived at node v (unless v is the starting node). The
agent can perform local computations based on this information and the value
of its own state. The agent then changes states and decides on a port number
through which it exits the current node. Note that the agent residing on a node
can use the (possibly unlimited) memory and computational power of that node.
An agent at a node v is provided with a working memory at node v which can be

1 Note that the proof assignment process can also be performed in a distributed man-
ner without global knowledge but this is irrelevant for the purpose of this paper.

334 S. Das, S. Kutten, and Z. Lotker

used for computation. However, any information written by an agent at a node,
disappears as soon as the agent leaves that node.

Note that the agent is only responsible for the checking (or ‘decoding’) part of
the verification process, i.e. given a proof-labeling for a particular problem, the
job of the agent is to check if the proofs at each node correspond to a globally
correct solution to the problem. The label assigned to a node v (and also the
node identifier) is written in a read-only memory at node v and the agent is not
allowed to change the label of a node. The only information that the agent can
carry with it when moving between nodes, is the state information of the agent.
The agent can be in k possible states (i.e. k = |S|) and the parameter k may or
may not depend on the size n of the graph. An agent must output YES or NO
within a finite time. If the global property that we wish to verify is true, then
all agent should output YES; Otherwise all agents must output NO. An agent
may not have any prior information about the graph, e.g. the topology, the size
or the diameter. If two or more agents are at the same node, the agents can
exchange information among themselves. The agents are distinctly identifiable
and they can read from the read-only memory of the node (containing the node
label) and can read/write on their own working memory at the current node
where they are located.

We define by MVD(q, k, t) the set of all problems that can be verified by
k mobile agents, each having a memory of at most q bits, in time t. We de-
fine MVD(q, k) = MVD(q, k, poly(n)) as the set of problem verifiable in time
polynomial in n, using k agents, each having at most q bits of memory.

2.3 Verification Problems

Given any connected undirected graph G, where each node v has a unique iden-
tifier ID(v) and also a label L(v) = (s(v), p(v)), we consider the following verifi-
cation problems:

1. [ACYCLICITY] Verify if G is acyclic (i.e. contains no undirected cycles). In
other words, G is a tree.

2. [ORIENTED] Given a tree G where for each node v, s(v) is a pointer to the
parent of v, verify if all the parent pointers are oriented towards a common
root node.

3. [PATH] Verify if G is a simple path.
4. [ELECTED] Verify if there is exactly one node v such that s(v) = 1.
5. [AGREEMENT] Verify if all nodes have the same input value i.e. s(v) = s(u),
∀u, v ∈ V (G).

6. [SIZE] Verify if the number of nodes in G is exactly k, where k = s(v),
∀v ∈ V (G).

7. [SPT] Verify if the subgraph H induced by the edges in ∪s(v), is a rooted
spanning tree of G.

8. [MST] Verify if the subgraph H induced by the edges in ∪s(v), is a minimum
spanning tree of G (If the edges of the graph have unit weights, then this is
equivalent to SPT problem).

Distributed Verification Using Mobile Agents 335

9. [MIS] Verify if the set {v ∈ V (G) : s(v) = 1} forms a maximal independent
set of G.

10. [k-CONNECTED] Verify if G is k-edge-connected, i.e. no set of edges of
cardinality at most k disconnects the graph G, where k = s(v), ∀v ∈ V (G).

11. [k-CLIQUE] Verify if G contains a clique of size k, as a subgraph, where
k = s(v), ∀v ∈ V (G).

12. [SYMMETRICITY] Verify if the graph G (ignoring node-identities) is sym-
metric, i.e. there is an axis of symmetry passing through some of the edges
of G, and cutting G into two disjoint, isomorphic components.

We distinguish graph-based problems as those problems that depend only on the
structure of the graph G. For example, [SPT] is a graph-based problem since the
solution depends only on the graph structure, but [MST] is not a graph-based
problem since the solution depends also on the weights of the edges (which could
potentially be arbitrarily large compared to the size of the graph).

3 Preliminaries

The problem of mobile verification requires the agents to traverse the graph
and perform computations on the labels of the nodes. We present here some
techniques for graph traversal which will be used in the rest of the paper. (Note
that we consider traversal techniques for agents with limited memory so the
agents cannot possibly remember the identifiers of all visited nodes during the
traversal.) Given a tree T that is rooted at node r and where all other nodes
contain a pointer to their parent in the tree, it is easy to traverse T using
the depth-first traversal algorithm. Such a traversal begins at the root r and
traverses all incident edges one after the other in order of the port numbers. On
reaching any node v, the agent recursively performs a depth-first traversal of the
subtree rooted at v. Note that the agent does not need to remember anything as
the traversal is guided by the port-numbering and the parent pointers at each
node. Whenever the agent enters a node v through the non-parent edge having
the largest port-numbers, the agent knows that it has traversed the complete
subtree rooted at v and must now return to the parent of v to continue the
traversal.

A more general traversal technique for any arbitrary connected graph G, is
based on the concept of a Universal Exploration Sequence (UXS) [10]. For any
node u ∈ G, we define the ith successor of u, denoted by succ(u, i) as the
node v reached by taking port number i from node u (where 0 ≤ i < deg(u)).
Let (a1, a2, . . . , ak) be a sequence of integers. An application of this sequence
to a graph G at node u is the sequence of nodes (u0, . . . , uk+1) obtained as
follows: u0 = u, u1 = succ(u0, 0); for any 1 ≤ i ≤ k, ui+1 = succ(ui, (p +
ai) mod deg(ui)), where p is the port-number at ui corresponding to the edge
{ui−1, ui}. A sequence (a1, a2, . . . , ak) whose application to a graph G at any
node u contains all nodes of this graph is called a UXS for this graph. For any
positive integers n, d, d < n, there exists a sequence denoted UXS(n,d) whose

336 S. Das, S. Kutten, and Z. Lotker

application to any graph G having at most n nodes and maximum degree at
most d, visits all nodes of the graph G at least once. Moreover, such a sequence
can be computed online by an agent having O(log n) memory (due to a recent
result [11]). At each step i of the traversal, the agent needs to remember only
the index i to compute the next element of the sequence. If the agent wants to
backtrack j steps, the agent can compute the reverse sequence for the j steps.
In the following, we will denote by UXS(n) = UXS(n,n), the sequence that can
be used to traverse all graphs of size at most n.

We now consider the problem of comparison of labels. We define an artificial
problem called EQUALITY[m] for a graphG2 on two nodes connected by a single
edge. The two nodes u and v contains two m-bit numbers a and b, i.e. L(u) = a
and L(v) = b. The agent must output YES if a = b and NO otherwise. This
problem is a special case of the [AGREEMENT] problem defined above. If an
agent cannot verify the EQUALITY problem then it cannot compare the labels
of two adjacent nodes of the graph and thus most of the verification problems
are impossible to solve in that case.

Lemma 1. An agent with o(logm) memory cannot verify EQUALITY[m].

Proof. Consider the minimum value k such that an agent with k states can verify
EQUALITY[m]. Such an agent starts in the initial state s0 and terminates in
state sy or sn (corresponding to YES or NO answer respectively). These three
states are necessarily distinct. Without loss of generality, we can assume the
algorithm A of the agent, to be as follows: In state s0 the agent at node u reads
a, changes states to some state sx, moves to node v, reads b, changes states and
continues moving back and forth between u and v, alternately reading a and b,
until the first time the agent enters state sy or sn and then it terminates. Note
any other algorithm can be modified to the above algorithm without using any
more states than algorithm A.

We denote by Si ⊂ S the set of possible states to which the agent may
transform after the ith step of algorithm (i.e. the agent transforms to some state
sx ∈ S1 after reading a for the first time, depending on the value of a). Note
that the Si are mutually disjoint and non-empty, for each i ≤ t where t is the
maximum number of time steps taken by the agent to decide on some input of
size n. Further s0 does not belong to any Si (since otherwise there will be a
cycle and the algorithm will never terminate). Now let us consider the number
of distinct paths from s0 to sy in the state transition diagram for algorithm
A. This must correspond to the number of YES instances for EQUALITY[m],
which is equal to 2m in our case (i.e. all pairs (a, b) where a = b). The number
of distinct paths from s0 to sy is given by the expression t+ |S1| ∗ |S2| ∗ . . . |St|
where the number of states of the agent is 3 + |S1| + |S2| + · · · + |St| = k.
Equating this expression t+ |S1| ∗ |S2| ∗ . . . |St| to 2m and minimizing for k, gives
us (3m/2+ 3) ≤ k ≤ (3m+3). Thus, an agent with at most m states, (i.e. logn
memory) cannot verify EQUALITY[m].

The above result is related to the recognition of palindromes by a turing ma-
chine with memory constraints. It was shown [7] that even a probabilistic turing

Distributed Verification Using Mobile Agents 337

machine with o(log n) memory cannot recognize the language consisting of all
palindromes of size at most n bits. The result of Lemma 1 can be obtained as
a corollary of that result (the original proof is non-trivial and thus is not re-
produced here). The stronger result of [7] implies that even randomization does
not help in overcoming the lower bound above (unless we make additional as-
sumptions). We return to this issue in Section 5. We now present the following
positive results.

Lemma 2. An agent having 1 + log(m) memory can verify EQUALITY[m] in
O(m) time.

The algorithm that achieves the above result is simple. The agent compares the
two bit strings bit-by-bit, by moving back and forth between u and v. The agent
needs to maintain a counter of logm bits that counts from 0 to m− 1. At each
step, the counter gives the index i of the bit to be compared and the additional
bit in memory is used to store the value of the i-th bit from a when the agent
moves to the other node to compare it with the i-th bit of b.

The above approach can be used not just for verifying equality, but also for
other boolean operations that can be performed bit-wise on the two numbers.
For example, the agent can verify if a > b, a < b, a = b + 1, or a = f(b) for
any computable function f . We shall call such operations as comparison-based
operations on two numbers a and b.

Corollary 1. An agent having O(logm) memory can compare two labels of size
at most m bits in O(m) time.

If there are multiple agents which start at the same node and have distinct
identifiers, then we can overcome the logarithmic bound on memory.

Lemma 3. For any m > 0, three (initially colocated) agents having O(1) mem-
ory each, can verify EQUALITY[m] in O(m) time.

Proof. The three agents can solve the verification problem using the following
algorithm. Agent 1 remains at the node u and agent 2 moves moves to the other
node v. Agent 3 travels back and forth between the nodes form steps, comparing
bitwise the numbers a and b. Agent 1 (respectively agent-2) maintains a counter
in its working memory at node u (resp. node v), containing the index of the
bit to be compared. Each time agent-3 arrives at node u, agent-1 communicates
the next bit of a to agent 3, which remembers the bit and moves to node v. At
node v agent-2 communicates the corresponding bit of b to agent 1. If there is
a mismatch, the agent 1 outputs NO and informs the other agents. Otherwise
the process continues until there are no more bits to read and the agents output
YES. Note that the traveling agent (agent-3) only needs to remember the value of
the current bit and the outcome of the last comparison. This requires a constant
amount of memory.

The algorithm above can be modified to compute any boolean function on the
numbers a and b, instead of the equality function. In this case, the agent 3 could

338 S. Das, S. Kutten, and Z. Lotker

copy the number b bit-by-bit into the working memory of agent 1 at node u and
then agent 1 can perform the computation at node u. A similar approach can
be used for a team of two agents having (1 + logm) bits of memory each. The
second agent would copy the number b bit-by-bit from node v to node u, using
a counter of logm bits containing the index of the bit to be copied in the next
step, while the first agent would remain stationary at node u and receive the
information from the second agent. Thus a team of three O(1) memory agents,
or two O(logm) memory agents can compute any computable function on two
m-bit size labels a, b stored at nodes u and v respectively.

4 Space Complexity of Mobile Verification

4.1 Mobile Agents with Logarithmic Memory

We first show that there exists some problems for which a mobile agent needs
at least logarithmic memory for verification, even in the family of trees. On the
positive side we show that logarithmic memory is sufficient for verifying any
graph-based property using a single agent in any arbitrary graph (even if the
size of the graph is unknown to the agent).

Theorem 1. An agent needs Ω(log n) memory to verify the [SYMMETRIC-
ITY] problem in the family of all trees of at most n nodes.

Proof. A tree is symmetric only if it has a central edge, say (u, v), and the
subtrees rooted at the two end-points u and v are isomorphic (where u maps to
v). Even if the map of the complete subtree is provided as label at the nodes u
and v, the agent needs to compare these maps (each containing at least Ω(n)
bits of information). The problem is equivalent to the communication complexity
problem of checking the equality of two Ω(n) bit strings given to the two end-
points of an edge. An agent with less than n states cannot accomplish this task,
as shown in Lemma 1.

Lemma 4. An agent having O(log n) memory can explore any graph of size at
most n and stop, even without any prior knowledge of n.

Proof. The agent has enough memory to remember the ID of the starting loca-
tion (which we call the source node). The idea of the algorithm is that the agent
guesses a value N as an upper bound for n and perform a traversal by applying
the universal exploration sequence UXS(N). During this traversal whenever it
reaches a vertex v, the agent performs a check operation and if this operation
returns false, then the agent aborts the current traversal, doubles the value of N
and starts the whole procedure again using the new value of N and the current
vertex as source. The checking operation at a vertex v is as follows. For each
neighbor w of v, the agent stores the ID of w in its memory, returns to the source
(by backtracking) and performs another traversal using UXS(N) to check if the
traversal visits w (i.e. during this traversal, the agent compares the ID of every
visited vertex with the stored value of ID(w)). If the agent does not encounter

Distributed Verification Using Mobile Agents 339

node w during the traversal then the checking operation returns false (i.e. the
value of N is not correct in this case). Otherwise, as soon as the agent encounters
the node w, it aborts the current traversal, returns to node v by backtracking
and the checking procedure returns true.

If the agent completes the traversal without having to increase N anymore
then this traversal has visited all nodes of G. So the agent can stop.

Theorem 2. For any constant c > 0, if there is a local verification algorithm
for a problem that uses labels of size at most m < nc, then there is mobile
verification algorithm for the same problem for a single agent having O(log n)
memory. In other words,

LV D(nc) ⊂MVD(O(log n), 1)

Proof. We have seen that an agent with logarithmic memory can traverse the
graph visiting each vertex at least once. Such an agent can simulate the local
verification algorithm for the message passing model. The simulation works as
follows: The agent performs a traversal of the graph and at each vertex v, the
agent imitates the local proof-checking procedure, by traveling to each neighbor
w of v, reading the label of node w and returning to v to check for consistency
with the label at node v. If the label of v is l′(v) in the local verification algorithm,
then the label used in our algorithm is L(v) = l′(v)l′(w1)l

′(w2) . . . l
′(wd), where

w1, w2, . . . , wd are the neighbors of v.
By assumption, the labels are of size at most m, thus the consistency check

for label of a neighbor w can be done by the agent making O(m) trips between v
and w, on each occasion remembering a constant number of bits from label(w).
Since the agent has enough memory to count up to m, it possible to perform
this operation (keeping track of which bits have been read). Once the agent has
checked the label of each neighbor w, the agent can execute the local checking
algorithm using the label L(v) of vertex v. If the local checking algorithm outputs
NO at any vertex v, then the agent outputs NO. Otherwise, when the agent
complete the traversal of G, the agent output YES. By the correctness of the
local verification algorithm, the agent has correctly performed mobile verification
for the same problem.

Note that any graph-based property can be verified locally if a complete map
of the graph is available at each node. Such a map can be encoded with labels
of O(n2) bits. Thus all graph-based problems can be verified by agents having
logarithmic memory.

In this section, we considered the space complexity of mobile agent based
verification and did not discuss the time complexity. The algorithm in Theorem 2
that simulates local checking runs in polynomial time, but is time consuming as
the length of known log-space constructible universal sequences are quite large.
However it is possible to have more time-efficient algorithms for the traversal
and thus the simulation algorithm. One possibility is to use a spanning tree T of
G, for the traversal. In this case, the labels at each node v must include a pointer
to the parent of v in T and the local proof at each node must include a proof

340 S. Das, S. Kutten, and Z. Lotker

that T is a spanning tree of G. The agent would first perform [SPT] verification
and then use the tree T for visiting each node v of G and simulating the local
checking at v as before.

4.2 Agents with O(log(logn)) Memory

Although we showed in the previous section that verification of certain problems
require logarithmic memory, there are problems that can be verified using less
memory. In this section we are interested in those problems that can be verified
using sub-logarithmic memory or more precisely, using only O(log logn) bits of
memory per agent. It is known that traversal of an unlabeled graph requires
logarithmic memory in the worst case. On the other hand, if the graph is ap-
propriately labelled then even a constant memory agent can traverse the graph,
e.g. using a labelled spanning tree of the graph. Thus, solving [SPT] verification
is important for solving other verification problems. We first show how an agent
can verify whether a given subgraph is a tree.

Theorem 3. A single mobile agent having O(log log n) bits of memory can ver-
ify [ACYCLICITY] in any graph of n nodes.

Proof. We provide a labeling and a verification algorithm for a O(log logn) mem-
ory agent. Notice that any YES instance of the problem is a tree. Given a tree
T , we choose an arbitrary root and orient all edges towards the root. The root is
distinctly labeled as the node with no parent and the label of every other node
contains a pointer to its parent node, the identifier of the root and distance to
the root. Thus, the labels are of size O(log n). The verification algorithm works
as follows. The agent, starting at any node follows the parent pointers to reach
the root. At each step, while going from v to parent(v), the agent checks if the
distance field decreases by exactly one and is greater than zero. This checking
can be performed due to lemma 2. On reaching the root, the agent performs a
depth-first traversal of T (using the parent pointers for backtracking). During
the traversal the agents checks the following. Whenever going up the tree, from
node u to v, the agent checks that the distance-to-root of v is one less than that
of u and the root identifiers are same. Similarly, while going down the tree from
node u to v, the agent checks that the distance-to-root of v is one more than
that of u and the root identifiers are same. Whenever the agent reaches a node
with the distance-to-root field equal to zero, the agent checks if the identifier of
the node is same as the root identifier.

The above property implies that agents with O(log logn) memory can verify
whether a subgraph of G is a tree or not. However, such an agent cannot verify
if the tree spans the entire graph.

Theorem 4. A single agent having O(log logn) bits of memory cannot verify
[SPT] in all graphs of size n.

We consider a team of two agents of O(log logn) memory each and show that
[SPT] verification is possible for such a team of 2 agents.

Distributed Verification Using Mobile Agents 341

Theorem 5. Two agents having O(log logn) bits of memory each, can verify
[SPT] in all graphs of size n.

Proof. As shown in Theorem 3, the agents can verify if a subgraph T is a tree.
To verify whether T is a SPT, it suffices to traverse T and at each node check
each incident edge e to see if the other end of the edge also belongs to the tree
T. Thus, the two agents can traverse the tree T together and at each non-tree
edge e = (u, v), the first agent would wait at node u and the second agent would
traverse e to reach v and then follow the parent pointers from v to reach the root.
If node v was indeed included in tree then the agent would have reached the root
of T . Now, the agent would perform a depth-first traversal of T , starting from
the root, until meeting the first agent again. If node v is not included in tree T,
then the agent would not be able to reach the root of T by following the parent
pointers from v, if any. Thus, in this case, the agent would detect a problem and
thus output ‘NO’. Otherwise, after the two agents meet, they would continue
the traversal and checking process until they have visited all nodes of tree and
check all non-tree egdes. In this case, the agents output YES.

When there are at least two agents, the team of two agents can verify [SPT] in
any arbitrary graph G as we have seen before. Thus after verification of [SPT],
the agents can use the spanning tree to visit every node of the graph and at
each such node, perform local verification if the node labels are of size at most
O(logc n).

Theorem 6. In arbitrary graphs of size n, a team of two agents with memory
size of O(log logn) each, can perform mobile verification of any problem P that
admits local verification using labels of size O(logc n). Thus,

LV D(logc n) ⊂MVD(O(log log n), 2)

The above result implies that a team of two agents can verify the [MST] problem
provided that the maximum edge weight W is polynomial in n 2. Such a team
of two agents can also verify the problems of [ELECTED], [SIZE], [MIS], [k-
CLIQUE] and [AGREEMENT] (For the latter, it is required that the input at
each node is not larger than nc).

4.3 Mobile Agents with Finite Memory

We now consider mobile agents whose memory is bounded by a finite constant
independent of the size of the graph and determine which problems can be
verified by such agents. For a single agent of O(1) size memory, it is difficult to
perform verification of most problems in the arbitrary graphs.

Theorem 7. For any k > 0, a single mobile agent with k bits of memory can-
not verify [ACYCLICITY] in graphs of arbitrary size n, even for the family of
bounded degree graphs.

2 It is known [8] that in the local verification model, [MST] can be verified with proof
labels of size O(log n · logW).

342 S. Das, S. Kutten, and Z. Lotker

Proof. Due to Lemma 1 we know that the agent cannot verify EQUALITY[m]
for m = logn. Thus the agent cannot compare the identifiers of the nodes of the
graph. Suppose for the sake of contradiction that there is an algorithm A for
verification of [ACYCLICITY] for an agent having k-bit memory. Consider the
execution of the algorithm in a ring of size n, where the agent is supposed to
output ‘NO’ within a finite time. If the agent outputs ‘NO’ without visiting all
edges of the graph, then we can delete one of the unvisited edges and obtain a
line graph which is YES instance of the problem and thus, the algorithm fails.
Hence assume that the agent visits all the edges and thus it visits one node v at
least twice. If the agent visits node v twice in the same state then the algorithm
would never terminate. Thus, if A is a correct algorithm, the agent can visit any
node at most k times before it outputs ‘NO’. Now, consider a line of size 4nk
and place the agent in the middle of this line. If the agent executes the same
algorithm, an adversary can assign labels and identifiers to the nodes of this line
in a such a way that the agent would output ‘NO’ before reaching any of the
end-points of the line. Thus, the algorithm fails to verify [ACYCLICITY].

The above result holds for the family of graphs of maximum degree two. Thus,
even if an agent has memory size proportional to the maximum degree of the
graph, it does not help for the verification of global properties in arbitrary graphs.

Corollary 2. An agent with memory size of O(Δ) is not sufficient for mobile
verification of [ACYCLICITY] in graphs of maximum degree Δ.

We know that a single agent having O(1) bits of memory cannot traverse an
arbitrary graph. However such an agent can traverse any tree. Moreover the
agent can verify the [ORIENTED] problem in any tree, using the techniques we
have seen before. Thus, a finite memory agent can verify any problem in trees
that can be verified with O(1) bit labels in the local verification model.

Theorem 8. In the family of all trees, a single agent with memory size of O(1)
bits can perform mobile verification of any problem P that admits local verifica-
tion using labels of size O(1).

We now focus on teams of multiple agents (each having finite memory) starting
from a common node of G, and show that even a team of two agents can verify
a large set of problems in arbitrary graphs.

Lemma 5. A team of two mobile agents having memory size of O(1) each, can
perform verification of [ACYCLICITY] in arbitrary graphs.

Proof. A YES instance of the problem is a tree. We can orient the tree with
respect to some root node r and use a labeling where each node has a pointer
to its parent in the rooted tree. The two agents can traverse G, starting from
any node u, using the following algorithm. Agent-1 stays at u and agent-2 goes
down the subtree rooted at u using the reverse of the parent pointers. If at any
point the agent reaches a node containing multiple parent pointers, it returns the
answer NO. Otherwise the agent would either succeed in visiting the complete

Distributed Verification Using Mobile Agents 343

subtree rooted at u or it would discover a cycle (a cycle of reverse parent pointers
must lead to u if there are no nodes with multiple parents). In the latter case,
the agent answers NO. Otherwise both agents move up to the parent v of u
and continue the same procedure. If the agents do not answer NO until they
eventually reach the root node r and traverse the subtree under the root (i.e.
the complete graph G), then the graph must be a tree. Thus the agents can
correctly identify all YES instances.

Lemma 6. A team of two mobile agents having memory size of O(1) each, can
verify [SPT] in any arbitrary graph G.

Proof. Due to the previous result we know that two mobile agents can verify
whether a given subgraph of G is a tree. For verification of the [SPT] problem
the agents can first verify whether the solution T is a tree. If so, the agents can
traverse T and for each non-tree edge e incident to a node u ∈ T , determine
whether the other end-point v of the edge also belongs to T . This can be done
as follows. When the agents reach node u having a non-tree edge e = (u, v), one
of the agents travels to the other end-point v. The other agent goes up from u
to the root of T using the parent pointers. This agent now traverses the tree to
find the unique node v that still contains the first agent. If the agents succeed
then v ∈ T and otherwise T is not an SPT of G.

Since it is possible to verify [SPT] for two finite memory agents, it is also possible
for them to traverse any G (using the spanning tree that they verified) and visit
every node of G. Thus the team of two agents can verify all problems for which
labels of constant size are sufficient in the local verification model. These include
the problems of [ELECTED], [MIS], [PATH], [k-CLIQUE].

Theorem 9. A team of two agents having memory size of O(1) bits each can
perform mobile verification of any problem P in arbitrary graphs that admits
local verification using labels of size O(1). Thus,

LVD(O(1)) ⊂MVD(O(1), 2)

Note that there are problems which require labels of size larger than O(1) in
the local verification model but can be verified by a team of two finite memory
agents. One such example is the [SPT] problem which requires labels of size
Ω(log n) in the local verification model.

We now consider teams of three agents and show that they can verify a larger
set of problems. We already know the three agents can verify EQUALITY[n] for
any n > 0 and thus they can compare any two labels of size at most n in time
polynomial in n. This leads us to the following results:

Theorem 10. A team of three mobile agents having memory size of O(1)
can perform verification of any graph-based property in arbitrary graphs. Thus,
LVD(nc) ⊂MVD(O(1), 3).

344 S. Das, S. Kutten, and Z. Lotker

5 Randomized Algorithms for Mobile Verification

In this section, we assume the nodes of the network provide the agents with some
mechanism to generate random bits. An agent located at any node v, can call a
subroutine that returns a random bit to the agent. A mobile agent that has this
additional capability will be called a probabilistic mobile agent. A probabilistic
mobile agent can use a random walk to traverse the graph. During a random
walk, an agent at any node v chooses one of the incident edges at v uniformly
at random, and traverses that edge. It is well known that a random walk visits
all the vertices of the graph of size n in O(n3) time steps, with high probability
[3].

We denote by MVR(q, k) the set of all problems that can be verified with
very high probability, by a team of k probabilistic mobile agents, each having a
memory of at most q bits, in polynomial time.

Theorem 11. A probabilistic mobile agent having O(log logn) bits of memory
can verify, with high probability, any property in graphs of size n that requires at
most logc n size labels for local verification. Thus,

LVD(logc n) ⊂MVR(O(log logn), 1)

Proof. We first show that the agent can traverse the graph and visit every node
with high probability, using the method of approximate counting (e.g. see [4]).
Each agent carries a counter C (initialized to zero) of size log logn. The agent
follows a random walk and at each node the agent makes a random coin flip,
C times; if all the C coin flips return 1, then and only then the agent incre-
ments the counter C. When the counter value is 3 logn, the agent stops. With
very high probability the agent would performed a random walk for n3 steps
and thus would have visited all nodes of the graph. During the traversal, the
agent performs local checking at each node v, comparing the label of v with its
neighbors (assuming that the labels are of size logc n bits, this checking can be
performed by an agent having O(log logn) memory).

The above result shows that one probabilistic agent having O(log logn) memory
can verify the same set of problems as a team of two deterministic agents having
same memory restrictions (see Theorem 6). We now consider a team of two prob-
abilistic agents and show that they can verify problems that two deterministic
agents could not.

Lemma 7. A team of two probabilistic mobile agents having O(log logn) bits of
memory each, can verify [k-CONNECTED] for k=2, in any arbitrary graph G
of size n.

Proof. Consider a spanning tree T of G. We know that a team of two agents can
verify [SPT]. If the node labels of G include proofs for [SPT] then the agents can
first verify [SPT] and then use the spanning tree T for traversal. To check for 2-
connectivity, it is sufficient to verify that each tree edge belongs to a cycle in the

Distributed Verification Using Mobile Agents 345

graph. For each edge e = (u, v) of the tree T, the agents perform the following
check. One agent stays at the parent node u and the other agent moves to the
child node v and then tries to reach u without using the edge (u, v) (i.e. the agent
performs a random walk in G \ e). If the agent does not succeed in reaching u
then G is not 2-connected, and the agent outputs NO. Otherwise, the two agents
would meet at u and then continue with the traversal of T, checking each tree
edge and finally output YES, if all tree edges satisfy the property.

Lower Bound: As mentioned before, based on the results of [7], we have the lower
bound of Ω(log(n)) for randomized verification of EQUALITY[n] and thus the
same lower bound holds for the verification of some graph-based problems (e.g.
[SYMMETRICITY]) in graphs of size n.

Theorem 12. Any probabilistic agent requires at least Ω(log n) bits of memory
to verify certain graph-based problems in arbitrary graphs of size n.

This lower bound can be overcome by making an additional assumption. We
assume there is a global clock and the agents can access the clock at any stage
of the algorithm. This allows an agent having a much smaller memory to verify
the EQUALITY[n] problem.

Theorem 13. In the presence of a global clock, a probabilistic mobile agent
having only O(log∗ n) bits of memory can verify any graph-based property in
graphs of size n with high probability.

Proof. As mentioned before, the agent can traverse the graph using a random
walk and it only needs to know when to stop traversing the graph. This can
be done by using a counter of O(log∗ n) bits that counts up to n3 with very
high probability. To imitate the local verification at each node the agent needs
to compare labels of adjacent nodes. Assuming that the labels are of size at
most m ≤ n2, this requires solving the EQUALITY[m] problem. The agent
maintains another counter that counts up to n2 with very high probability and
this counter is used for termination of the process of comparing two labels bit-
by-bit. At each step of the comparison, the agent obtains the index of the bit
that is being compared, as (C mod 2m)/2 where C is the value of the global
clock at that time.

6 Time Complexity of Mobile Verification

Until now we have only considered the space complexity of mobile verification in
terms of the size and number of mobile agents needed to perform verification. All
algorithms discussed so far run in polynomial time with respect to the size of the
graph. We now discuss the time efficiency of the mobile verification algorithms.
A trivial lower bound on the time complexity of mobile verification (irrespective
of the size of agents) is the following.

346 S. Das, S. Kutten, and Z. Lotker

Theorem 14. The verification of any global property by a mobile agent in graphs
of size n requires Ω(n) time. The verification of [SPT] requires Ω(m) time in
graphs with m edges.

The algorithm for mobile verification of [SPT] using two or three agents takes
O(mn) time in graphs with n nodes and m edges. All the other verification
algorithms are based on traversal using a spanning tree and thus require the
agents to perform [SPT] verification as the first step. The rest of the algorithm
requires O(m + n) time and thus the time complexity of the whole algorithm
is O(mn). Mobile verification in the family of trees can be performed in O(n)
time.

7 Verification in Anonymous Networks

We assumed, in this paper, that the nodes of the network have unique identifiers.
One can ask what properties can be verified in an anonymous network (i.e. when
the nodes of the network are not labelled with unique identifiers)? First let us
suppose that the agents are allowed to leave marks on the nodes. A single agent
that can write on the nodes is capable of performing mobile verification of any
computation even in an anonymous graph. The agent requires only O(1) bits of
memory. Note that there exists labeling schemes for labeling the vertices of the
graph such that a finite state agent can traverse the graph [2]. Further such a
labeling can be computed online by the agent. A finite state agent traversing the
graph, can use the memory of the nodes of the graph to perform verification of
any Turing-computable computation.

When the agents are not allowed to leave marks (labels) on the nodes of the
graph, one agent is not sufficient for mobile verification in anonymous graphs (it
is known that such an agent cannot even traverse the graph). Two co-located
agents (with sufficient memory each, e.g. polynomial in the size of the graph)
can perform mobile verification. In this case it is possible to traverse the graph
(using one agent as pebble or marker) and compute the size of the graph. If the
two agents are not initially co-located then randomization can help. Two agents
starting at distinct nodes of the graph can use random walk to gather at some
node with high probability. The gathered agents can then perform verification
without using randomization.

8 Conclusions

We studied the problem of distributed verification using mobile agents that tra-
verse the network. We showed that a few agents with small memory (or, constant
memory) are capable of performing verification of global problems in arbitrary
graphs. We compared the set of problems verifiable by such agents to those that
can verified in the local verification model under constraints on the memory
available at each node and the main results are summarized in the table below.

Distributed Verification Using Mobile Agents 347

Table 1. Set of problems verifiable by teams of mobile agents

#Agents Agent Memory Randomized Verifiable Problems

1 O(log n) NO LV D(nc)

1 O(log log n) YES LV D(logc n)

2 O(log log n) NO LV D(logc n)

2 O(1) NO LV D(O(1))

3 O(1) NO LV D(nc)

References

1. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: Proc. of the 32nd Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 268–277 (1991)

2. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided
graph exploration by a finite automaton. ACM Transactions on Algorithms 4(4),
42:1–42:18 (2008)

3. Feige, U.: A Tight Upper Bound on the Cover Time for Random Walks on Graphs.
Random Struct. Algorithms 6(1), 51–54 (1995)

4. Flajolet, P.: Approximate Counting: A Detailed Analysis. BIT 25(1), 113–134
(1985)

5. Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer,
Heidelberg (2012)

6. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. of
52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 708–717
(2011)

7. Freivalds, R., Karpinski, M.: Lower Space Bounds for Randomized Computation.
In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 580–592.
Springer, Heidelberg (1994)

8. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
tributed Computing (DC) 20(4), 253–266 (2007)

9. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Computing
(DC) 22(4), 215–233 (2010)

10. Kouckỳ, M.: Universal traversal sequences with backtracking. Journal of Comput.
Syst. Sci. 65, 717–726 (2002)

11. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55, 1–24
(2008)

12. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: Proc. of the 43rd ACM Symposium on Theory of Computing
(STOC), pp. 363–372 (2011)

Sublinear Bounds

for Randomized Leader Election

Shay Kutten1,�, Gopal Pandurangan2,��, David Peleg3,���, Peter Robinson4,†,
and Amitabh Trehan1,�

1 Information Systems Group, Faculty of Industrial Engineering and Management,
Technion - Israel Institute of Technology, Haifa-32000, Israel
kutten@ie.technion.ac.il, amitabh.trehaan@gmail.com

2 Division of Mathematical Sciences, Nanyang Technological University, Singapore
637371 and Department of Computer Science, Brown University, Box 1910,

Providence, RI 02912, USA
gopalpandurangan@gmail.com

3 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot-76100 Israel

david.peleg@weizmann.ac.il
4 Division of Mathematical Sciences, Nanyang Technological University,

Singapore 637371
peter.robinson@ntu.edu.sg

Abstract. This paper concerns randomized leader election in synchronous
distributed networks. A distributed leader election algorithm is presented
for complete n-node networks that runs in O(1) rounds and (with high
probability) takes only O(

√
n log3/2 n) messages to elect a unique leader

(with high probability). This algorithm is then extended to solve leader
election on any connected non-bipartite n-node graph G in O(τ (G)) time
and O(τ (G)

√
n log3/2 n) messages, where τ (G) is the mixing time of a

random walk on G. The above result implies highly efficient (sublinear
running time and messages) leader election algorithms for networks with
small mixing times, such as expanders and hypercubes. In contrast, pre-
vious leader election algorithms had at least linear message complexity
even in complete graphs. Moreover, super-linear message lower bounds
are known for time-efficient deterministic leader election algorithms. Fi-
nally, an almost-tight lower bound is presented for randomized leader
election, showing that Ω(

√
n) messages are needed for any O(1) time

leader election algorithm which succeeds with high probability. It is also

� Supported by the Israeli Science Foundation and by the Technion TASP center.
�� Research supported in part by the following grants: Nanyang Technological Univer-

sity grant M58110000, Singapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, and a grant from the US-Israel Bi-
national Science Foundation (BSF).

��� Supported in part by the Israel Science Foundation (grant 894/09), the United
States-Israel Binational Science Foundation (grant 2008348), and the Israel Min-
istry of Science and Technology (infrastructures grant).

† Research supported in part by the following grants: Nanyang Technological Univer-
sity grant M58110000, Singapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 2 grant MOE2010-T2-2-082.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 348–362, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sublinear Bounds for Randomized Leader Election 349

shown that Ω(n1/3) messages are needed by any leader election algo-
rithm that succeeds with high probability, regardless of the number of
the rounds. We view our results as a step towards understanding the
randomized complexity of leader election in distributed networks.

1 Introduction

Background and motivation. Leader election is a classical and fundamental prob-
lem in distributed computing. It originated as the problem of regenerating the
“token” in a local area token ring network [19] and has since then “starred” in
major roles in problems across the spectrum, providing solutions for reliability by
replication (or duplicate elimination), for locking, synchronization, load balanc-
ing, maintaining group memberships and establishing communication primitives.
As an example, the content delivery network giant Akamai uses decentralized and
distributed leader election as a subroutine to tolerate machine failure and build
fault tolerance in its systems [23]. Inmany cases, especially with the advent of large
scale networks such as peer-to-peer systems [27,28,32], it is desirable to achieve low
cost and scalable leader election, even though the guaranteesmay be probabilistic.

Informally, the problem of distributed leader election requires a group of pro-
cessors in a distributed network to elect a unique leader among themselves, i.e.,
exactly one processor must output the decision that it is the leader, say, by
changing a special status component of its state to the value leader [20]. All the
rest of the nodes must change their status component to the value non-leader.
These nodes need not be aware of the identity of the leader. This implicit variant
of leader election is rather standard (cf. [20]), and is sufficient in many applica-
tions, e.g., for token generation in a token ring environment. This paper focuses
on implicit leader election.

In the explicit variant, all the non-leaders change their status component to
the value non-leader, and moreover, every node must also know the identity
of the unique leader. This formulation may be necessary in problems where
nodes coordinate and communicate through a leader, e.g., implementations of
Paxos [7,18]. In this variant, there is an obvious lower bound of Ω(n) messages
(throughout, n denotes the number of nodes in the network) since every node
must be informed of the leader’s identity. This explicit leader election can be
achieved by simply executing an (implicit) leader election algorithm and then
broadcasting the leader’s identity using an additional O(n) messages and O(D)
time (where D is the diameter of the graph).

The complexity of the leader election problem and algorithms for it, espe-
cially deterministic algorithms (guaranteed to always succeed), have been well-
studied. Various algorithms and lower bounds are known in different models with
synchronous/asynchronous communication and in networks of varying topolo-
gies such as a cycle, a complete graph, or some arbitrary topology (e.g., see
[12,20,24,29,31] and the references therein). The problem was first studied in
context of a ring network by Le Lann [19] and discussed for general graphs in
the influential paper of Gallager, Humblet, and Spira [8]. However, the class of

350 S. Kutten et al.

complete networks has come to occupy a special position of its own and has been
extensively studied [1,10,13,15,16].

The study of leader election algorithms is usually concerned with both mes-
sage and time complexity. For complete graphs, Korach, Moran and Zaks [14]
and Humblet [10] presented O(n log n) message algorithms. Korach, Kutten, and
Moran [13] developed a general method decoupling the issue of the graph fam-
ily from the design of the leader election algorithm, allowing the development
of message efficient leader election algorithms for any class of graphs, given an
efficient traversal algorithm for that class. When this method was applied to com-
plete graphs, it yielded an improved (but still Ω(n logn)) message complexity.
Afek and Gafni [1] presented asynchronous and synchronous algorithms, as well
as a tradeoff between the message and the time complexity of synchronous deter-
ministic algorithms for complete graphs in the non-simultaneous wake-up model:
the results varied from a O(1)-time, O(n2)-messages algorithm to a O(log n)-
time, O(n log n)-messages algorithm. Singh [30] showed another trade-off that
saved on time, still for algorithms with a super-linear number of messages. (Sub-
linear time algorithms were shown in [30] even for O(n logn) messages algo-
rithms, and even lower times for algorithms with higher messages complexities).
Afek and Gafni, as well as Korach, Moran, and Zaks [14,16] showed a lower
bound of Ω(n log n) messages for deterministic algorithms in the general case.
Multiple studies showed a different case where it was possible to reduce the num-
ber of messages to O(n) by using a sense of direction–essentially, assuming some
kind of a virtual ring, superimposed on the complete graph, such that the order
of nodes on a ring is known to the nodes [6]. The above results demonstrate
that the number of messages needed for deterministic leader election is at least
linear if nodes wake up simultaneously, or even super-linear (i.e., Ω(n logn)) if
nodes are woken up by the adversary. In this paper, we focus on simultaneous
wake-up. Nevertheless, in the full paper we show that our algorithms also yield
sublinear message complexity even in the case where the adversary can wake up
nodes at arbitrary times, which is a significant improvement over the Ω(n log n)
bound required for deterministic algorithms.

At its core, leader election is a symmetry breaking problem. For anonymous
networks under some reasonable assumptions, deterministic leader election was
shown to be impossible [3] (using symmetry concerns). Randomization comes to
the rescue in this case; random rank assignment is often used to assign unique
identifiers, as done herein. Randomization also allows us to beat the lower bounds
for deterministic algorithms, albeit at the risk of a small chance of error.

Randomized asynchronous (explicit) leader election algorithms for various
networks were presented by Itai and Rodeh, Scheiber and Snir, and Afek and
Matias [11,5,2]. In particular, one of the algorithms elects a leader in a complete
graph with O(n) messages and O(log n) time [2]. The probability of error there
tends to zero when n grows to infinity but is not given explicitly. A randomized
leader election algorithm (for the explicit version) that could err with probabil-
ity O(1

(log n)Ω(1)) was presented recently in [26]1, with time O(log n) and linear

1 In contrast, the probability of error in the current paper is O(1

nΩ(1)).

Sublinear Bounds for Randomized Leader Election 351

message complexity. That paper also surveys some related papers about ran-
domized algorithms in other models that use more messages for performing
leader election [9] or related tasks (e.g., probabilistic quorum systems, Malkhi
et al [21]). In the context of self-stabilization, a randomized algorithm with
O(n log n) messages and O(log n) time until stabilization was presented in [33].

1.1 Our Main Results

The main focus of this paper is to study how randomization can help in improving
the complexity of leader election, especially message complexity in synchronous
networks. We first present a (implicit) leader election algorithm for a complete

network that runs in O(1) time and uses only O(
√
n log3/2 n) messages to elect

a unique leader (with high probability2). This is a significant improvement over
the linear number of messages required by any deterministic algorithm (in the
simultaneous wake-up model). In the full paper we show that our algorithm also
works in the non-simultaneous wake-up model, which is an even larger gap to the
Ω(n logn) message complexity bound required by any deterministic algorithm.
For the explicit variant of the problem, our algorithm can be extended to use
(w.h.p.) O(n) messages and O(1) time.

We then extend this algorithm to solve leader election on any connected
(non-bipartite)3 n-node graph G in O(τ(G)) time and O(τ(G)

√
n log3/2 n) mes-

sages, where τ(G) is the mixing time of a random walk on G. The above re-
sult implies highly efficient (sublinear running time and messages) leader elec-
tion algorithms for networks with small mixing time. In particular, for impor-
tant graph classes such as expanders (used, e.g., in modeling peer-to-peer net-
works [4]), which have logarithmic mixing time, it implies an O(log n) time

and O(
√
n log5/2 n) messages algorithm, and for hypercubes, which have a mix-

ing time of O(log n log logn), it implies a sublinear O(log n log logn) time and

O(
√
n log5/2 n log logn) messages algorithm.

For our algorithms, we assume that the communication is synchronous and
follows the standard CONGEST model [25], where in each round a node can send
at most one message of size O(log n) bits on a single edge. For our algorithm on
general graphs, we also assume that the nodes have an estimate of the mixing
time. We do not however assume that the nodes have unique IDs, hence the
algorithms in this paper work also for anonymous networks. We assume that all
nodes wake up simultaneously at the beginning of the execution. (Additional
details on our distributed computing model are given later.)

Finally we show that, in general, it is not possible to improve over our algo-
rithm substantially, by presenting an almost-tight lower bound for randomized
leader election. We show that Ω(

√
n) messages are needed for any O(1) time

leader election algorithm in a complete network which succeeds with high prob-
ability. It is also shown that Ω(n1/3) messages are needed by any leader election
algorithm that succeeds with high probability, regardless of the number of the

2 Throughout, “with high probability (whp)” means with probability � 1− 1/nΩ(1).
3 Our algorithm can be modified to work for bipartite graphs as well (cf. Section 3).

352 S. Kutten et al.

rounds. These lower bounds hold even in the LOCAL model [25], where there
is no restriction on the number of bits that can be sent on each edge in each
round. To the best of our knowledge, these are the first non-trivial lower bounds
for randomized leader election.

1.2 Technical Contributions

The main algorithmic tool used by our randomized algorithm involves reducing
the message complexity via random sampling. For general graphs, this sampling
is implemented by performing random walks. Informally speaking, a small num-
ber of nodes (about O(log n)), which are the candidates for leadership, initiate
random walks. We show that if a sufficient number of random walks are initiated
(about

√
n logn), then there is a good probability that random walks originating

from different candidates meet (or collide) at some node which acts as a referee.
The referee notifies a winner among the colliding random walks. The algorithms
use a birthday paradox type argument to show that a unique candidate node
wins all competitions (i.e. is elected) with high probability. An interesting fea-
ture of that birthday paradox argument (for general graphs) is that it is applied
to a setting with non-uniform selection probabilities. See Section 2 for a simple
version of the algorithm that works on a complete graph. The algorithm of Sec-
tion 3 is a generalization of the simple algorithm of Section 2 that works for any
connected graph; however the algorithm and analysis are more involved.

The main intuition in our lower bound proof for randomized leader election
is that we show that any algorithm which sends less messages than required by
our lower bound has a good chance of generating runs where there are multiple
potential leader candidates in the network that do not influence each other. In
other words, the probability of such “disjoint” parts of the network to elect a
leader is the same, which implies that there is a good probability that more than
one leader is elected. Although this is conceptually easy to state, it is technically
challenging to show formally since our result applies to all randomized algorithms
without further restrictions.

1.3 Distributed Computing Model

The model we consider is similar to the models of [1,10,13,15,16], with the main
addition of giving processors access to a private unbiased coin. Also, we do not
assume unique identities. We consider a system of n nodes, represented as an
undirected (not necessarily complete) graph G = (V,E). Each node runs an
instance of a distributed algorithm that has knowledge of n. The computation
advances in synchronous rounds, where, in every round, nodes can send mes-
sages, receive messages that were sent in the same round by neighbors in G,
and perform some local computation; every node has access to the outcome of
unbiased private coin flips. The messages are the only means of communication;
in particular, nodes cannot access the coin flips of other nodes, and do not share
any memory. Throughout this paper, we assume that all nodes are awake initially

Sublinear Bounds for Randomized Leader Election 353

and simultaneously start executing the algorithm. We discuss some relaxations
of this point in the full paper.

Leader Election. We now formally define the leader election problem. Every
node u has a special variable statusu that it can set to a value in the set
{⊥,non-elected, elected}; initially we assume statusu = ⊥. An algorithm
A solves leader election in T rounds if, from round T on, exactly one node has
its status set to elected while all nodes are in state non-elected. This is the
requirement for standard (implicit) leader election.

2 Randomized Leader Election in Complete Networks

To provide the intuition for our general result, let us first illustrate a simpler
version of our leader election algorithm, adapted to complete networks. More
specifically, this section presents an algorithm that, with high probability, solves
leader election in complete networks in O(1) rounds and sends no more than

O(
√
n log3/2 n) messages. Let us first briefly describe the main ideas of Algo-

rithm 1 (see pseudo-code below). Initially, the algorithm attempts to reduce the
number of leader candidates as far as possible, while still guaranteeing that there
is at least one candidate (with high probability). Non-candidate nodes enter the
non-elected state immediately, and thereafter only reply to messages initi-
ated by other nodes. Every node u becomes a candidate with probability 2 logn

n
and selects a random rank ru chosen from some large domain. Each candidate
node then randomly selects 2�

√
n logn� other nodes as referees and informs all

referees of its rank. The referees compute the maximum (say rw) of all received
ranks, and send a “winner” notification to the node w. If a candidate wins all
competitions, i.e., receives “winner” notifications from all of its referees, it enters
the elected state and becomes the leader.

Algorithm 1. Randomized Leader Election in Complete Graphs

Round 1 :
1: Every node u decides to become a candidate with probability 2 log n

n
and generates

a random rank ru from {1, . . . , n4}.
If a node does not become a candidate, it immediately enters the non-elected

state; otherwise it executes.
2: Choosing Referees: Node u samples 2�

√
n log n� neighbors (the referees) and

sends a message 〈u, ru〉 to each referee.

Round 2 :
3: Winner Notification: A referee v considers all received messages and sends a

winner notification to the node w that satisfies
rw � ru for every message 〈u, ru〉.

4: Decision: If a node receives winner notifications from all its referees, then it enters
the elected state,
otherwise it sets its state to non-elected.

354 S. Kutten et al.

Theorem 1. Consider a complete network of n nodes and assume the CONGEST
model of communication. Algorithm 1 solves leader election with high probability,
terminates in O(1) rounds, and uses O(

√
n log3/2 n) messages with high

probability.

Proof. Since all nodes enter either the elected or non-elected state after two
rounds at the latest, we get the runtime bound of O(1).

We now argue the message complexity bound. On expectation, there are
2 logn candidate nodes. By using a standard Chernoff bound (cf. Theorem 4.4
in [22]), there are at most 7 logn candidate nodes with probability at least
1 − n−2. In step 3 of the algorithm, each referee only sends messages to the
candidate nodes by which it has been contacted. Since there are O(log n) can-
didates and each approaches Θ(

√
n logn) referees, the total number of messages

sent is bounded by O(
√
n log3/2 n) with high probability.

Finally, we show that Algorithm 1 solves leader election with high probability.

With probability
(
1− 2 logn

n

)n
≈ exp(−2 logn) = n−2, no node becomes candi-

date. Hence the probability that at least one node is elected as leader is at least
1−n−2. Let � be the node that generates the highest random rank r� among all
candidate nodes; with high probability, � is unique. Clearly, node � enters the
elected state, since it receives “winner” notifications from all its referees.

Now consider some other candidate node v. This candidate chooses its referees
randomly among all nodes. Therefore, the probability that an individual referee

selected by v is among the referees chosen by �, is 2�√n logn�
n . It follows that the

probability that � and v do not choose any common referee node is at most(
1− 2

√
logn

n

)2
√
n logn

� exp (−4 logn) = n−4,

which means that with high probability, some node x serves as common referee
to � and v. By assumption, we have rv < r�, which means that node v does not
receive 2�

√
n logn� “winner” notifications, and thus it subsequently enters the

non-elected state. By taking a union bound over all other candidate nodes, it
follows that with probability at least 1 − 1

n , no other node except � wins all of
its competitions, and therefore, node � is the only node to become a leader. ��

3 Randomized Leader Election in General Graphs

In this section, we present our main algorithm, which elects a unique leader
(w.h.p.), and terminates in O(τ(G,n)) rounds while using O(τ(G,n)

√
n log3/2 n)

messages (w.h.p.), where τ(G,n) is the mixing time of a random walk on G.
Initially, a node u only knows the mixing time (or a constant factor estimate
of) τ(G,n) (defined below in (1)); in particular u does not have any a priori
knowledge about the actual topology of G.

The algorithm presented here requires nodes to perform random walks on
the network by token forwarding in order to choose sufficiently many referee

Sublinear Bounds for Randomized Leader Election 355

nodes at random. Thus essentially random walks perform the role of sampling
as done in Algorithm 1 and is conceptually similar. Whereas in the complete
graph randomly chosen nodes act as referees, here any intermediate node (in
the random walk) that sees tokens from two competing candidates can act as a
referee and notify the winner. One slight complication we have to deal with in
the general setting is that in the CONGEST model it is impossible to perform
too many walks in parallel along an edge. We solve this issue by sending only
the count of tokens that need to be sent by a particular candidate, and not the
tokens themselves.

While using random walks can be viewed as a generalization of the sampling
performed in Algorithm 1, showing that two candidate nodes intersect in at least
one referee leads to an interesting balls-into-bins scenario where balls (i.e., ran-
dom walks) have a non-uniform probability to be placed in some bin (i.e., reach
a referee node). This non-uniformity of the random walk distribution stems from
the fact that Gmight not be a regular graph. We show that the non-uniform case
does not worsen the probability of two candidates reaching a common referee,
and hence an analysis similar to the one given for complete graphs goes through.

We now introduce some basic notation for random walks. Suppose that V =
{u1, . . . , un} and let di denote the degree of node i. The n× n transition matrix
A of G has entries ai,j = 1

di
if there is an edge (i, j) ∈ E, otherwise ai,j = 0.

Entry ai,j gives the probability that a random walk moves from node ui to node
uj. The position of a random walk after k steps is represented by a probability
distribution πk determined by A. If some node ui starts a random walk, the
initial distribution π0 of the walk is an n-dimensional vector having all zeros
except at index i where it is 1. Once node u has chosen a random neighbor to
forward the token, the distribution of the walk after 1 step is given by π1 = Aπ0
and in general we have πk = Akπ0. If G is non-bipartite and connected, then the
distribution of the walk will eventually converge to the stationary distribution
π∗ = (b1, . . . , bn), which has entries bi =

di

2|E| and satisfies π∗ = Aπ∗.
We define the mixing time τ(G,n) of a graph G with n nodes as the minimum

k such that, for all starting distributions π0,

||Akπ0 − π∗||∞ � 1

2n
, (1)

where || · ||∞ denotes the usual maximum norm on a vector. Clearly, if G is a
complete network, then τ(G,n) = 1. For expander graphs it is well known that
τ(G,n) ∈ O(log n). Note that mixing time is well-defined only for non-bipartite
graphs; however, by using a lazy random walk strategy (i.e., with probability 1/2
stay at the current node; otherwise proceed as usual) our algorithm will work
for bipartite graphs as well.

Theorem 2. Consider a non-bipartite network G of n nodes with mixing time
τ(G,n), and assume the CONGEST model of communication. Algorithm 2 solves
leader election with high probability, terminates within O(τ(G,n)) rounds, and

uses O(τ(G,n)
√
n log3/2 n) messages with high probability.

356 S. Kutten et al.

Algorithm 2. Randomized Leader Election

1: VAR origin ← 0; winner-so-far ← ⊥
2: Initially, node u decides to become a candidate with probability 2 log n

n
and generates

a random rank ru from {1, . . . , n4}.

Initiating Random Walks:
3: Node u creates 2�

√
n log n� tokens of type 〈ru, k〉.

4: Node u starts 2�
√
n log n� random walks (called competitions), each of which is

represented by the random walk token 〈ru, k〉 (of O(log n) bits) where ru repre-
sents u’s random rank. The counter k is the number (initially 1) of walks that are
represented by this token (explained in Line 8).
Disqualifying hopeless candidates (note that any node can be a referee
and notify winner/loser):

5: A node v discards every received token 〈ru, k〉 if v has received (possibly in the
same round) a token rw with rw > ru.

6: if a received token 〈rw, k′〉 is not discarded and winner-so-far �= rw then
7: Node v remembers the port of an arbitrarily chosen neighbor that sent one of

the (possibly merged) tokens containing rw in its variable origin and sets its
variable winner-so-far to rw.

Token Forwarding:
8: Let μ = 〈ru, k〉 be a token received by v and suppose that μ is not discarded in

Line 5. For simplicity, we consider all distinct tokens that arrive in the current
round containing the same value ru at v to be merged into a single token 〈ru, k〉
before processing where k holds the accumulated count. Node v randomly samples
k times from its neighbors. If a neighbor x was chosen kx � k times, v sends a
token 〈ru, kx〉 to x.
Notifying a Winner in round τ (G,n):

9: if winner-so-far �= ⊥ then
10: Suppose that node v has not discarded some token generated by w. According

to Line 5, w has generated the largest rank among all tokens seen by v.
11: Node v generates a winner notification 〈WIN, rw, cnt〉 for rw and sends it to the

neighbor stored in origin (cf. Line 7). The field cnt is set to 1 by v and contains
the number of winner notifications represented by this token.

12: If a node u receives (possibly) multiple winner notifications for rw, it simply for-
wards a token 〈WIN, rw, cnt

′〉 to the neighbor stored in origin where cnt′ is the
accumulated count of all received tokens.
Decision:

13: If a node wins all competitions, i.e., receives 2�
√
n log n� winner notifications it

enters the elected state, otherwise it sets its state to non-elected.

Proof. We first argue the message complexity bound. On expectation, there are
Θ(log n) candidate nodes. By using a standard Chernoff bound (cf. Theorem 4.4
in [22]), there are at most 7 logn candidate nodes with probability at least 1−n−2.
Every candidate node u contactsΘ(

√
n logn) referee nodes and initiates a random

walk of length τ(G,n), for each of the Θ(
√
n logn) referees. By the description of

the algorithm, each referee node only sends messages to the candidate nodes by

Sublinear Bounds for Randomized Leader Election 357

which it has been contacted. Since we have O(log n) candidates, the total number

of messages sent is bounded by O(τ(G,n)
√
n log3/2 n) with high probability.

The running time bound depends on the time that it takes to complete the
2�
√
n logn� random walks in parallel and the notification of the winner. By

Line 5, it follows that a node only forwards at most one token to any neighbor
in a round, thus there is no delay due to congestion. Moreover, for notifying
the winner, nodes forward the winner notification for winner w to the neighbor
stored in origin. According to Line 7, a node sets origin to a neighbor from
which it has received the first token originated from w. Thus there can be no
loops when forwarding the winner notifications, which reach the winner w in at
most τ(G,n) rounds.

We now argue that Algorithm 2 solves leader election with high probability.
Similarly to Algorithm 1, it follows that there will be at least one leader with high
probability. Let � be the candidate that generated the (unique) highest random
rank among all candidates and consider some other candidate node v, i.e., we
have that rv < r� by assumption. By the description of the algorithm, node
v chooses its referees by performing ρ = 2�

√
n logn� random walks of length

τ(G,n). We cannot argue the same way as in the proof of Algorithm 1, since in
general, the stationary distribution of G might not be the uniform distribution
vector (1n , . . . ,

1
n). Let pi be the i-th entry of the stationary distribution. Let

Xi be the indicator random variable that is 1 if there is a collision (of random
walks) at referee node i. We have IP [Xi = 1] = (1− (1−pi)ρ)2. We want to show
that the probability of error (i.e., having no collisions) is small; in other words,
we want to upper bound IP [

⋂n
i=1(Xi = 0)]. The following lemma (proved in the

full paper) shows that it is sufficient to obtain a bound for the case when the
stationary distribution is uniform:

Lemma 1. Consider ρ balls that are placed into n bins according to some prob-
ability distribution π and let pi be the i-th entry of π. Let Xi be the indicator
random variable that is 1 if there is a collision (of random walks) at referee node
i. Then IP [

⋂n
i=1(Xi = 0)] is maximized for the uniform distribution.

By (1), the probability of such a walk hitting any of the referees chosen by �,

is at least 2
√
n logn
2n . It follows that the probability that � and v do not choose a

common referee node is at most(
1−
√

logn

n

)2
√
n logn

� exp (−2 logn) . (2)

Therefore, the event that node v does not receive sufficiently many winner no-
tifications, happens with probability � 1 − n−2, which requires v to enter the
non-elected state. By taking a union bound over all other candidate nodes,
it follows that with high probability no other node except � will win all of its
competitions, and therefore, node � is the only node to become a leader with
probability at least 1− 1

n . ��

358 S. Kutten et al.

4 Lower Bound

In this section we prove a lower bound on the number of messages required by
any algorithm that solves leader election with probability at least 1− 1/n.

Our model assumes that all processors execute the exact same algorithm and
have access to an unbiased private coin. So far we have assumed that nodes are
not equipped with unique ids. Nevertheless, our lower bound still holds even if
the nodes start with unique ids.

Our lower bound applies to all algorithms that send only o(
√
n) messages with

probability at least 1− 1/n. In other words, the result still holds for algorithms
that have small but nonzero probability for producing runs where the number of
messages sent is much larger (i.e., Ω(

√
n)). We show the result for the LOCAL

model, which implies the same for the CONGEST model.

Theorem 3. Consider any algorithm A that uses f(n) messages (of arbitrary
size) with high probability on a complete network of n nodes. If A solves leader
election in O(1) rounds with high probability, then f(n) ∈ Ω(

√
n). Moreover,

f(n) ∈ Ω(n1/3) for any algorithm A using any number of rounds that solves
leader election with high probability. This holds even if nodes are equipped with
unique identifiers (chosen by the adversary).

Proof. We first show the result for the case where nodes are anonymous, i.e.,
are not equipped with unique identifiers, and later on extend the impossibility
to the non-anonymous case by an easy reduction.

Assume that there is some algorithm A that solves leader election with high
probability but sends only f(n) messages. The remainder of the proof involves
showing that this yields a contradiction. Consider a complete network where
for every node, the adversary chooses the connections of its ports as a random
permutation on {1, . . . , n− 1}.

For a given run α of an algorithm, define the communication graph Cr(α) to
be a directed graph on the given set of n nodes where there is an edge from
u to v if and only if u sends a message to v in some round r′ � r of the run
α. For any node u, denote the state of u in round r of the run α by σr(u, α).
Let Σ be the set of all node states possible in algorithm A. (When α is known,
we may simply write Cr and σr(u).) With each node u ∈ Cr, associate its state
σr(u) in Cr, the communication graph of round r. We say that node u influences
node w by round r if there is a directed path from u to w in Cr. (Our notion
of influence is more general than the causality based “happens-before” relation
of [17], since a directed path from u to w is necessary but not sufficient for w
to be causally influenced by u.) A node u is an initiator if it is not influenced
before sending its first message. Note that a mute node that never receives any
messages is also an initiator. For every initiator u, we define the influence cloud
ICru as the pair ICru = (Cr

u, S
r
u), where Cr

u = 〈u,w1, . . . , wk〉 is the ordered
set of all nodes that are influenced by u, namely, that are reachable along a
directed path in Cr from u, ordered by the time by which they joined the cloud,
and Sr

u = 〈σr(u, α), σr(w1, α), . . . , σr(wk, α)〉 is their configuration after round
r, namely, their current tuple of states. (In what follows, we sometimes abuse

Sublinear Bounds for Randomized Leader Election 359

notation by referring to the ordered node set Cr
u as the influence cloud of u.)

Note that a passive (non-initiator) node v does not send any messages before
receiving the first message from some other node.

Since we are only interested in algorithms that send a finite number of mes-
sages, in every execution α there is some round ρ = ρ(α) by which no more
messages are sent.

In general, it is possible that in a given execution, two influence clouds Cr
u1

and Cr
u2

intersect each other over some common node v, if v happens to be
influenced by both u1 and u2. The following lemma shows that the low message
complexity of algorithm A yields a good probability for all influence clouds to
be disjoint from each other.

Hereafter, we fix a run α of algorithm A. Let N̂i be the event that there is no
intersection between (the node sets of) the influence clouds existing at the end
of round i, i.e., Ci

u ∩ Ci
u′ = ∅ for every two initiators u, u′. Let Nr =

∧r
i=1 N̂i.

Let N = Nρ be the corresponding event at the end of the run α. Let M be the
event that algorithm A sends no more than f(n) messages in the run α.

Lemma 2. Assume that IP [M] � 1 − 1
n . Then either of the following two con-

ditions is sufficient to ensure that IP [N ∧M] � 1− o(1):
(a) f(n) ∈ o(

√
n) and A terminates in O(1) rounds, or

(b) f(n) ∈ o(n1/3) and A terminates (in an arbitrary number of rounds).

We defer the proof of Lemma 2 to the full paper. The main idea is that, due
to the random choice of the port numberings and the assumption that at most
f(n) messages are sent, the probability that 2 influence clouds intersect is o(1).
Note that f(n) also limits the size of any influence cloud.

We next consider potential cloud configurations, namely, Z = 〈σ0, σ1, . . . , σk〉,
where σi ∈ Σ for every i, and more generally, potential cloud configuration se-
quences Z̄r = (Z1, . . . , Zr), where each Zi is a potential cloud configuration,
which may potentially occur as the configuration tuple of some influence clouds
in round i of some execution of Algorithm A (in particular, the lengths of the
cloud configurations Zi are monotonely non-decreasing). We study the occur-
rence probability of potential cloud configuration sequences.

We say that the potential cloud configuration Z = 〈σ0, σ1, . . . , σk〉 is real-
ized by the initiator u in round r of execution α if the influence cloud ICru =
(Cr

u, S
r
u) has the same node states in Sr

u as those of Z, or more formally, Sr
u =

〈σr(u, α), σr(w1, α), . . . , σr(wk, α)〉, such that σr(u, α) = σ0 and σr(wi, α) = σi
for every i ∈ [1..k]. In this case, the influence cloud ICru is referred to as a re-
alization of the potential cloud configuration Z. (Note that a potential cloud
configuration may have many different realizations.)

More generally, we say that the potential cloud configuration sequence Z̄r =
(Z1, . . . , Zr) is realized by the initiator u in execution α if for every round
i = 1, . . . , r, the influence cloud ICiu is a realization of the potential cloud con-
figuration Zi. In this case, the sequence of influence clouds of u up to round r,
ĪCru = 〈IC1u, . . . , ICru〉, is referred to as a realization of Z̄r. (Again, a potential
cloud configuration sequence may have many different realizations.)

360 S. Kutten et al.

For a potential cloud configuration Z, let Er
u(Z) be the event that Z is realized

by the initiator u in (round r of) the run of algorithm A. For a potential cloud
configuration sequence Z̄r, let Eu(Z̄

r) denote the event that Z̄r is realized by
the initiator u in (the first r rounds of) the run of algorithm A.

Lemma 3. Restrict attention to executions of algorithm A that satisfy event
N , namely, in which all stable influence clouds are disjoint. Then IP

[
Eu(Z̄

r)
]
=

IP
[
Ev(Z̄

r)
]
for every r ∈ [1, ρ], every potential cloud configuration sequence Z̄r,

and every two initiators u and v.

The proof (deferred to the full paper) proceeds by induction. For the base case, it
is intuitively clear that every initiator has the same probability for some specific
action. In the induction step, we generalize this statement to influence clouds,
conditioned on all influence clouds being disjoint so far.

We now conclude that for every potential cloud configuration Z, every ex-
ecution α and every two initiators u and v, the events Eρ

u(Z) and Eρ
v (Z) are

equally likely. More specifically, we say that the potential cloud configuration
Z is equi-probable for initiators u and v if IP [Eρ

u(Z) | N] = IP [Eρ
v (Z) | N]. Al-

though a potential cloud configuration Z may be the end-colud of many different
potential cloud configuration sequences, and each such potential cloud configu-
ration sequence may have many different realizations, the above lemma implies
the following (integrating over all possible choices).

Corollary 1. Restrict attention to executions of algorithm A that satisfy event
N , namely, in which all (final) stable influence clouds are disjoint. Consider two
initiators u and v and a potential cloud configuration Z. Then Z is equi-probable
for u and v.

By assumption, algorithm A errs with probability perr � 1/n. Let S be the event
that A elects exactly one leader. We get

IP [S |M ∧N] � IP [M ∧N]− perr = 1− o(1). (3)

Conditioning on event M ∧N , let X be the random variable that represents the
number of disjoint influence clouds generated by algorithm A. By Cor. 1, each of
the initiators has the same probability p of generating a leader cloud. Algorithm
A succeeds whenever event S occurs. Its success probability assuming X = c is

IP [S |M ∧N ∧ (X = c)] = cp(1− p)c−1. (4)

For any given c, the value of (4) is maximized if p = 1
c , which yields that

IP [S |M ∧N ∧ (X = c)] � 1/e for any c. It follows that IP [S |M ∧N] � 1/e
as well. This, however, is a contradiction to (3) and completes the proof of
Theorem 3 for algorithms without unique identifiers.

We now briefly argue why our result holds for any algorithm B that runs in
a model where nodes are equipped with unique ids (chosen by the adversary).
Suppose that, w.h.p., B succeeds in electing a leader while sending only f(n)
messages. Now consider an algorithm B′ in our model that is identical to B

Sublinear Bounds for Randomized Leader Election 361

with the difference that before performing any other computation, every node
generates a random number from the range [1, . . . , n4] and uses this value instead
of the unique id. Let I be the event that all node ids are distinct; clearly I
happens with high probability. Therefore, by the success probability of B, it
follows that B′ also succeeds with probability 1− o(1) (conditioned on I), which
contradicts our result for algorithms without unique ids. This completes the
proof of Theorem 3. ��

5 Conclusion

We studied the role played by randomization in distributed leader election. Some
open questions on randomized leader election are raised by our work: (1) Can
we find (universal) upper and lower bounds for general graphs? (2) Is Ω(

√
n) a

lower bound on the number messages needed for a complete graph, regardless of
the number of rounds?

References

1. Afek, Y., Gafni, E.: Time and message bounds for election in synchronous and
asynchronous complete networks. SICOMP 20(2), 376–394 (1991)

2. Afek, Y., Matias, Y.: Elections in anonymous networks. Inf. Comput. 113(2),
312–330 (1994)

3. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: STOC, pp. 82–93 (1980)

4. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and effi-
cient distributed computation in dynamic peer-to-peer networks. In: SODA (2012)

5. Snir, M., Scheiber, B.: Calling names on nameless networks. Inf. Comput. 113(1),
80–101 (1994)

6. Loui, M.C., Matsushita, T.A., West, D.B.: Election in a complete network with a
sense of direction. Information Processing Letters 22(4), 185–187 (1986)

7. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live - an engineering per-
spective (2006 invited talk). In: Proceedings of the 26th Annual ACM Symposium
on Principles of Distributed Computing (2007)

8. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

9. Gupta, I., van Renesse, R., Birman, K.P.: A Probabilistically Correct Leader Elec-
tion Protocol for Large Groups. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914,
pp. 89–103. Springer, Heidelberg (2000)

10. Humblet, P.: Electing a leader in a clique in O(n log n) messages. Intern. Memo.,
Laboratory for Information and Decision Systems. M.I.T, Cambridge (1984)

11. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Com-
put. 88(1), 60–87 (1990)

12. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed
approximation algorithms via probabilistic tree embeddings. In: Proceedings of the
Twenty-Seventh ACM Symposium on Principles of Distributed Computing, PODC
2008, pp. 263–272. ACM, New York (2008)

362 S. Kutten et al.

13. Korach, E., Kutten, S., Moran, S.: A modular technique for the design of efficient
distributed leader finding algorithms. ACM Trans. Program. Lang. Syst. 12(1),
84–101 (1990)

14. Korach, E., Moran, S., Zaks, S.: Tight lower and upper bounds for some distributed
algorithms for a complete network of processors. In: PODC 1984, pp. 199–207.
ACM, New York (1984)

15. Korach, E., Moran, S., Zaks, S.: The optimality of distributive constructions of
minimum weight and degree restricted spanning trees in a complete network of
processors. SIAM Journal on Computing 16(2), 231–236 (1987)

16. Korach, E., Moran, S., Zaks, S.: Optimal lower bounds for some distributed algo-
rithms for a complete network of processors. Theoretical Computer Science 64(1),
125–132 (1989)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

18. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

19. Le Lann, G.: Distributed systems - towards a formal approach. In: IFIP Congress,
pp. 155–160 (1977)

20. Lynch, N.: Distributed Algorithms. Morgan Kaufman Publishers, Inc., San Fran-
cisco (1996)

21. Malkhi, D., Reiter, M., Wright, R.: Probabilistic quorum systems. In: PODC 1997,
pp. 267–273. ACM, New York (1997)

22. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2004)

23. Nygren, E., Sitaraman, R.K., Sun, J.: The akamai network: a platform for high-
performance internet applications. SIGOPS Oper. Syst. Rev. 44(3), 2–19 (2010)

24. Peleg, D.: Time-optimal leader election in general networks. Journal of Parallel
and Distributed Computing 8(1), 96–99 (1990)

25. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
26. Ramanathan, M.K., Ferreira, R.A., Jagannathan, S., Grama, A., Szpankowski, W.:

Randomized leader election. Distributed Computing, 403–418 (2007)
27. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-

addressable network. In: SIGCOMM 2001, pp. 161–172. ACM, New York (2001)
28. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

29. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley Series on Par-
allel and Distributed Computing. Wiley-Interscience (2006)

30. Singh, G.: Efficient distributed algorithms for leader election in complete networks.
In: ICDCS, pp. 472–479 (1991)

31. Tel, G.: Introduction to distributed algorithms. Cambridge University Press, New
York (1994)

32. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22(1), 41–53 (2004)

33. Kutten, S., Zinenko, D.: Low Communication Self-stabilization through Random-
ization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 465–479. Springer, Heidelberg (2010)

Linear Space Bootstrap Communication Schemes

Carole Delporte-Gallet1,�, Hugues Fauconnier1,�, Eli Gafni2,
and Sergio Rajsbaum3,��

1 LIAFA-Université Paris-Diderot, France
{cd,hf}@liafa.jussieu.fr

2 Computer Science Department, UCLA, USA
eli@ucla.edu

3 Instituto de Matemáticas, UNAM, Mexico
rajsbaum@math.unam.mx

Abstract. We consider a system of n processes with ids not a priori
known, that are drawn from a large space, potentially unbounded. How
can these n processes communicate to solve a task? We show that n a
priori allocated Multi-Writer Multi-Reader (MWMR) registers are both
needed and sufficient to solve any read-write wait free solvable task.
This contrasts with the existing possible solution borrowed from adaptive
algorithms that require Θ(n2) MWMR registers.

To obtain these results, the paper shows how the processes can non
blocking emulate a system of n Single-Writer Multi-Reader (SWMR)
registers on top of n MWMR registers. It is impossible to do such an
emulation with n− 1 MWMR registers.

Furthermore, we want to solve a sequence of tasks (potentially infi-
nite) that are sequentially dependent (processes need the previous task’s
outputs in order to proceed to the next task). A non blocking emulation
might starve a process forever. By doubling the space complexity, using
2n − 1 rather than just n registers, the computation is wait free rather
than non blocking.

Keywords: shared memory, read/write registers, distributed algorithms,
wait free, space complexity, renaming.

1 Introduction

In many distributed algorithms it is assumed that the processes, p1, . . . , pn,
communicate using Single-Writer Multi-Reader (SWMR) registers, R1, . . . , Rn,
so pi knows it is the i-th process, and can write exclusively to Ri. However,
often processes do not know their indexes, they know only their ids, and the
number of possible ids N , is much bigger than the number of processes, n. In this
situation, preallocating a register for each identifier would lead to a distributed
algorithm with a very large space complexity. One would like the processes to
run a renaming algorithm as a preprocessing stage, to obtain new ids from a

� Supported by DISPLEXITY ANR-11-BS02-014.
�� Supported by UNAM-PAPIIT project IN104711.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 363–377, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

364 C. Delporte-Gallet et al.

smaller range, M(n), that depends only on n, and then use these ids to index
only M(n) SWMR registers. Several wait free renaming algorithms e.g. [6,12]
are known that reduce the name space to M(n) = 2n− 1 (and this is the best
that can be done, except for some exceptional values of n [14]). However, if the
system did not allocate N SWMR registers to start with, how do the processes
communicate to run the renaming algorithm?

Such a question has been considered in the context of adaptive computation
[7,8,26,2,4]. In these papers, n is unknown, and moreover processes “arrive” and
“depart.” When first solving adaptive renaming to allocate MWMR registers
to processes, they obtain Θ(n2) space complexity. The first basic question we
address here is: In the most favorable situation, when n is known and we want to
solve a task, how much space do we need? Is solving renaming first unavoidable?

Recall that a task e.g. [21] is a one shot problem, where processes start with
inputs and after communicating with each other, must decide on outputs that
satisfy the task’s specification. Famous examples of tasks are consensus and set
agreement.

We show that indeed it is possible to solve any read-write wait free solvable
task with n MWMR registers. To obtain this result, the paper shows how the
processes can non blocking emulate a system of n SWMR registers on top of n
MWMR registers. Moreover, as we explain, it is not hard to prove that no such
emulation exists on less than n MWMR registers.

An application of the non blocking emulation is that one can run any SWMR
wait free algorithm that solves a task on n MWMR registers. In particular, one
can run directly a SWMR (2n−1)-renaming algorithm such as the one of [12] on
top of n MWMR registers. This is a significant improvement over the previous
adaptive Θ(n2) space renaming algorithm, when that algorithm is instantiated
to our context. Admittedly, the previous renaming algorithm will actually use
fewer than n2 registers but nevertheless since it is apriori unknown how the
algorithm will evolve a preallocation of Θ(n2) registers is necessary. Notice that
as the simulation is non blocking, a SWMR algorithm that solves a task on top
of the n MWMR registers may incur some cost in time: a process may not be
able to produce an output value, until another process finishes the algorithm
and exits the emulation.

As said, with n registers we can solve (2n − 1)-renaming. Using these new
names, with additional 2n − 1 registers, each process can obtain a dedicated
register, and from there on emulate a simulated write operation in a wait free-
manner. Are 3n− 1 MWMR necessary to have a wait free emulation of a write
operation in a non-terminating environment? We show that a total of just 2n−1
MWMR registers is sufficient, describing how the processes can wait free emulate
a system of n SWMR registers on top of 2n−1 MWMR registers. We conjecture
that 2n − 1 registers are the minimum possible for wait free emulation. The
wait free emulation allows to solve a sequence of tasks (potentially infinite)
that are sequentially dependent (processes need the previous task’s outputs in
order to proceed to the next task). A non blocking emulation might starve a

Linear Space Bootstrap Communication Schemes 365

process forever. By doubling the space complexity, using 2n− 1 rather than just
n registers, the computation is wait free rather than non blocking.

The paper also describes an algorithm to broadcast the value of one of the
processes, using n/2 MWMR registers. The algorithm, which seems interesting in
itself, illustrates how the information propagates in our emulations. It is simple,
but the proof is subtle.

At the end of the paper we briefly discuss why we believe our techniques
will be useful for dynamic systems of bounded concurrency n e.g. [4]. In such a
system, any number of processes arrive, compute and depart. Yet, at any point
in time the number of arrivals exceeds the number of departures by at most n.

We stress that our interest is in space complexity, our emulations are not
particularly efficient in terms of step complexity. Also, there are various previous
papers dealing with a similar problem, but in the adaptive setting. In [10] there is
a definition similar to our emulation problem, as “store-collect” of a (key,value)
problem. Another definition of store-collect, by equivalence to an array (hence
more like our problem specification) appears in [3]. Similarly, solutions without
explicitly solving renaming first appear in [9], although not very space efficient.

There is a long history of space complexity results, starting with the mutual
exclusion lower bound of [13] and even before (see references herein). In this
context, [27] considers renaming with the same motivation that we do, and shows
that 2�logn� + 1 registers are sufficient to solve it, and a corresponding lower
bound within a constant factor but their model is stronger than ours. There
are various algorithms and lower bounds on the number of registers needed
to solve specific problems e.g. [16,17,19,26], but we are not aware of general
emulations. In [24] there is a lower bound for non blocking implementations,
but it is n − 1 registers. In special cases it can be beaten [5]. In [18] a Ω(

√
n)

space complexity lower bound for a randomized nonblocking implementation of
consensus is presented.

Due to lack of space, we refer the reader to the long version [15] for detailed
proofs.

2 Model

We assume a standard asynchronous shared-memory model of computation with
n processes communicating by reading and writing to a fixed set of shared reg-
isters [11,22]. The processes have unique ids in {1, . . . , N}, with N >> n. Pro-
cesses may take a finite or an infinite number of steps but we assume that at
least one process takes an infinite number of steps.

The shared memory consists of a set of atomic Multi-Writer Multi-Reader
(MWMR) registers. We assume that processes can read and write any MWMR
register and these operations are atomic [20]. For short, we usually omit the
term atomic. If r is such a MWMR register, a process can write x on r using
write(r, x), and read on r using read(r). A process executes its code taking
three types of atomic steps: the read of a register, the write of a register, and
the modification of its local state.

366 C. Delporte-Gallet et al.

We consider also more powerful operations to read the registers. A collect is
an iterative read of all registers. A scan returns a snapshot, an instantaneous
view of the registers. In [1], there are non blocking and wait free linearizable
implementations of scan. A non blocking implementation of scan (NBScan) can
be obtained by repeating Collect operations until two of them return the same
values. A wait free implementation of scan (Scan) is more involved, and embeds
a snapshot with the write. So in this case instead of write, we use the term
update (update(r, v) updates the register r with the value v).

Two progress conditions that have received much attention are non blocking
and wait free. The non blocking progress condition states that when there are
concurrent operations at least one process terminates its operations. The wait
free [20] progress condition states that each process terminates its operations in
a bounded number of its own steps.

We consider also a model in which each process has its own atomic Single-
Writer Multi-Reader register (SWMR). Process p can write a value x in its
SWMR register with the operation write(p, x) and all the processes may read
the value in the SWMR register of p with read(p).

We say that we have a non blocking (resp. wait free) emulation of the n
processes SWMR model using m MWMR registers if we implement write and
read in terms of write and read such that the implementation is linearizable
[23] and the progress condition is non blocking (resp. wait free).

A regular SWMR register [25], is a weaker type of register. A SWMR register
is regular if when no write is concurrent with a read operation, the read returns
the current value in the register. Otherwise the read returns any value written
by the concurrent writes or the last value in the register before the concurrent
writes. With regular SWMR registers it is possible to wait free free implement
atomic SWMR register [22,25]. So to emulate non blocking (resp. wait free) the
n processes SWMR register model using m MWMR registers it is enough to
emulate non blocking (resp. wait free) n processes model with regular SWMR
register model.

3 Preliminaries

We consider algorithms that have the same structure as the algorithm in Fig-
ure 1. Processes share a set R of MWMR registers. Each process maintains a
variable V iew. Each process repeatedly reads all registers (function Collect())
and updates its variable V iew by adding all it has just read in V iew together
with some other values in variable input, and then writes it in some registers.

For each R ∈ R, Rτ denotes the value of register R at time τ . Similarly,
V iewτ

p denotes the value of variable V iew of p at time τ .
We say that v is eventually forever in R if there is a time τ such that for all

time τ ′ > τ , v ∈ Rτ ′
. We have directly from the algorithm:

Observation 1. For all processes p and for all times τ and τ ′, if τ < τ ′ then
V iewτ

p ⊆ V iewτ ′
p .

Linear Space Bootstrap Communication Schemes 367

function Collect():
1 V = ∅
2 for all R in R
3 V = V ∪ read(R)
4 return V

main loop:
repeat forever

5 V iew = Collect() ∪ V iew ∪ input
6 Let (deterministically) Reg be some register in R
7 write(Reg,V iew)

Fig. 1. Generic algorithm

Following [13], we say that register R is covered by process p at some time τ
if the next register that p writes after time τ is R: more precisely p covers R at
time τ if, at time τ , the next writing of p (Line 7) is on register R and p has
begun the Collect in Line 5. Note that if p does not cover R, before writing R,
p reads the value of R (by Collect in Line 5) and then it will write in R at least
this value.

If some register is covered the value of this register may be lost. So, by exten-
sion, we say that R is V –covered at time τ if all processes covering R at time τ
are going to write sets containing V in register R. If R is V -covered at time τ ,
next writings contains V (by processes covering R) or contains Rτ (by processes
not covering R that read R before writing). We have:

Lemma 1. If, at some time τ , register R is V –covered at time τ then for all
τ ′ ≥ τ , (Rτ ∩ V) ⊆ Rτ ′

.

If no process covers R at time τ , then by definition R is V -covered for any set V ,
then by the previous Lemma after time τ , R contains forever Rτ . In particular:

Lemma 2. If R is not covered at time τ and v ∈ Rτ then v will be eventually
forever in R.

Let R∞ be the set of registers infinitely often written:

Lemma 3. If v is eventually forever in R then v is eventually forever in all
registers in R∞.

Lemma 4. If at time τ , card{R ∈ R|v ∈ Rτ} ≥ n, then v will be forever in all
registers in R∞.

4 Broadcast

We give here a very weak definition of broadcast. Essentially this definition
ensures that the value of some process will be known by all processes making an
infinity of steps. More precisely, we assume that each process p has a value vp
to broadcast, the broadcast is defined by way of a primitive Deliver returning
a set of values. The broadcast ensures:

368 C. Delporte-Gallet et al.

– (integrity) if v belongs to the set of values returned by some deliver then
v = vp for some process p,

– (convergence) there is a value v and a time τ after which every set returned
by any Deliver contains v.

Shared variable :
array of m MWMR register : R

Code for process p
Local variable:

set of Values V iew = {vp}
set of Values Deliver = ∅

function Collect():
1 variable: set of Values V = ∅
2 for i from 1 to m do
3 V = V ∪ read(R[i])
4 return V

Task main:
5 repeat forever
6 for i = 1 to m
7 V iew = V iew ∪NBScan();
8 write(R[i], V iew)

Task Deliver:
9 forever Deliver = Collect()

Fig. 2. Broadcast with m MWMR registers

Here processes share m MRMW registers R[i], 1 ≤ i ≤ m and write succes-
sively each register.

The algorithm of Figure 2 is a simple application of the generic algorithm
of Figure 1. But here in, the main loop, we use a non blocking scan NBScan
instead of Collect. NBScan() returns V , a snapshot of the registers, such that
there is a time τ such that R[i]τ = V [i]. NBScan() is only assumed to be non
blocking. Implementation of such non blocking snapshot is easy [1]. As NBScan
is a particular form of Collect all previous Lemmata from Section 3 apply. For
a snapshot V , V [i] is the value returned for register R[i] and abusing notation,
V may denote ∪1≤i≤mV [i].

A Deliver reads all the registers and returns the union of the values read in
the registers. Note, using Collect() that Deliver always terminate. We prove the
main property:

Theorem 2. Algorithm of Figure 2 implements broadcast if m > n
2 .

5 Non Blocking Emulation of SWMR Registers

We first describe the emulation, and then the lower bound, in Section 5.2.

Linear Space Bootstrap Communication Schemes 369

5.1 The Algorithm

The algorithm in Figure 3 is a non blocking emulation of regular SWMR registers
for n processes using an array R of m MWMR registers, with m ≥ n.

Shared variable :
array of m MWMR-register : R To ensure non blocking we assume m ≥ n

Code for process p
Local variable:

set of Values V iew = ∅
integer k = 0

write(p, x):
1 v = (x, p, k)
2 next = 0
3 V iew = V iew ∪ {v}
4 do
5 Snap = NBScan() NBScan returns a snapshot of the shared memory
6 V iew = Snap ∪ V iew
7 write(R[next], V iew)
8 next = (next+ 1) mod m
9 until (card{r|v in Snap[r]} ≥ n)
10 k = k + 1

read(q):
11 V iew = Collect()
12 return x such that (x, q, u) ∈ V iew with maximal u

Fig. 3. Non blocking implementation of regular SWMR registers for n processes

In the following to distinguish between the writings of MWMR registers and
the emulation of SWMR writings, we denote the first ones using lower case
and the second ones with upper case. To make its k-write, a process p adds
the value to write (in fact the value, its identity and its timestamp k) to its
variable V iew. The write ends when the value to be written is in all the m
registers. A read of value written by process q collects the values present in
registers and returns the value from q with the maximal timestamp among all
the values from q.

As in the generic algorithm of Figure 1, each process p maintains a variable
V iew containing all the information it knows. Iteratively, each process reads all
them registers by a non blocking scan and accordingly updates its variable V iew
before writing it in the next register in cyclic order. The write of v terminates
as soon as v is in n registers. Here instead of Collect, we use NBScan, a non
blocking Scan, as described in Section 2.

The main point here is that as we have n processes and at least n registers
then at least one register will not be covered and then all the values contained

370 C. Delporte-Gallet et al.

in this register will eventually be present in all registers and will remain forever
in all registers. Hence as soon as a value is present in all registers the write is
terminated because afterwards the Collect of every read will contain this value.

First we prove the safety properties of the implementation of regular register.
We say that the write of v succeeds at time τ if there is some register such

that after time τ , v is forever in this register. By extension, we say that the
write of v succeeds if there is a time at which the write of v succeeds or
equivalently if v is eventually forever in R. Directly from the algorithm we get
the following lemmata:

Lemma 5. Let v = (x, p, k) and v′ = (y, p, k′) such that k ≥ k′, if v succeeds at
time τ , then v′ succeeds at time τ too.

By Lemma 3 and the code of the algorithm:

Lemma 6. If the write of v succeeds at time τ , after this time v is returned
by every Collect.

Lemma 7. Let S be the set of all values (x, p, k) that succeed at time τ and
K the maximal k over all (x, p, k) in S, then read of p returns the value v =
(x, p, k) ∈ S with k ≥ K.

From Lemma 4:

Lemma 8. If at some time τ , v is in n registers, then the write of v succeeds
at time τ .

Lemma 9 (safety). Any read(p) returns the last value x such that write(p, x)
terminates before the beginning of the read, or a value x such that write(p, x)
is concurrent with the read.

Proof. Assume x is the kth write of p, let v be (x, p, k). Consider any read(p)
and let E be the set of values returned by the Collect made for this read. By
Lemma 6 all values for which the write has succeeded are in E. write(p, x)
returns when, for a NBScan (Line 5), v belongs to n registers (Line 9) at some
time. Then by Lemma 8, v succeeds by the time of the NBScan and E contains
all values for which the write has terminated. Lemma 7 proves that the value
returned by the read(p) is either the last value for which the write by p has
terminated or a value for which the write is concurrent.

Now we prove that the algorithm is non blocking. First as Collect is wait free,
any read is wait free too:

Lemma 10. Any read made by a process that takes an infinite number of steps
terminates.

By Lemma 3, and the fact that the write ends when the value is in all registers:

Lemma 11. Assume the registers are written infinitely often, if the write of
v succeeds then v will eventually be forever in all registers and if the process that
writes v takes an infinite number of steps, the write terminates.

Linear Space Bootstrap Communication Schemes 371

Lemma 12. If the registers are written infinitely often then an infinity of write

terminate.

Proof. By contradiction assume the contrary: there is a time τ after which no
write terminates. When a process has terminated all its writes it stops writing
the registers, then there is at least one process that takes an infinite number of
steps and does not terminate the write of some v. By Lemma 11, there is time
at which all registers will contain values for which the write is not terminated.
By pigeon hole principle one of these registers is not covered and contains a value
for which the write is not terminated, by Lemma 2 the write of this value
succeeds, and by Lemma 11, the write of this value terminates –a contradiction.

If after some time there is no writing of the registers, being non blocking any
NBScan returns:

Lemma 13. If some process that takes an infinite number of steps is stuck for-
ever on a NBScan then the registers are written infinitely often.

Lemma 14 (non blocking). If m ≥ n, and the write of v by a process p that
takes an infinite number of steps does not terminate, then infinitely often some
writes terminate.

Proof. By contradiction, assume that the write of some process p that takes an
infinite number of steps does not terminate and only a finite number of writes
occur. Then by Lemma 12, there is a time after which no registers are written
and by Lemma 13, p may not be stuck on a NBScan and hence p makes progress
in its code and hence writes registers infinitely often. By Lemma 12 an infinity
of write terminates —a contradiction.

Lemmata 9 and 14 prove that the algorithm in Figure 3 is a non blocking emu-
lation of regular SWMR registers for n processes from n MWMR registers. We
now use the classical wait free transformation [22,25] from regular to atomic
registers to conclude:

Theorem 3. There is a non blocking emulation of SWMR registers for n pro-
cesses from n MWMR registers.

5.2 Lower Bound

We prove in this section that we cannot emulate SWMR registers for n processes
with less than n MWMR registers.

Lemma 15. SWMR registers for n processes cannot be emulated with n − 1
MWMR registers.

Proof. Consider a set of n processes p1, . . . , pn. By contradiction, assume we
can emulate the n processes SWMR model with (n − 1) MWMR registers. We
construct inductively a run e where this assumption is not satisfied. For this we

372 C. Delporte-Gallet et al.

construct by induction on k a partial run ek and a set Rk of k registers each
being covered by processes p1, . . . , pk.
(k = 1) : Consider a run where only process p1 takes steps and its code is
write(p1, p1).

Claim: p1 has to write in some register.
Proof: By contradiction assume p1 does not write in any register and assume the
code of pn is read(p1). Once p1 ends its write, pn takes steps and does not
find any value written by p1, contradicting the semantics of a register.

Let the partial run e1, where only p1 takes steps, its code is write(p1, p1)
and it stops just before its first writing of a register, say R1. Then p1 covers R1

and R1 = {R}.
(k < n− 1) : By induction let ek be such that {p1, · · · , pk} covers each register
in the set of k registers Rk.

Let a run that extends partial run ek by the process pk+1 that executes the
code write(pk+1, pk+1).

Claim: pk+1 has to write in some register not in Rk.
Proof: By contradiction assume pk+1 does not write any register not in Rk

and assume the code of pn is read(pk+1). pk+1 ends its write and has only
written registers in Rk, then each process in {p1, . . . , pk} executes one step and
overrides each register in Rk. Then pn executes the code for read(pk+1). But
this execution is indistinguishable (for all processes different from pk+1) from
the one in which pk+1 does not make any write and the read may not return
the value written by pk+1.

In the partial run ek+1, that extends ek, pk+1 takes steps, executes the code
write(pk+1, pk+1). and stops before writing a register that is not in Rk, say
Rk+1. Then pk+1 covers Rk+1. Define Rk+1 = Rk ∪Rk+1.

When k = n − 1, Rn−1 contains all the MWMR registers. Now, consider
process pn and assume it runs the code write(pn, pn). Run en is an extension
of en − 1 in which pn takes steps until it ends its write and takes no other
steps. Each process executes one step and overrides each register in Rn−1. At
this point the value written by pn is not in the local memory of any process
(except pn) and in particular it is not in the local memory of p1. Then p1 ends
its write(p1, p1), at the end of this write, the value written by pn is not in
any MWMR registers and the run is indistinguishable (for all processes different
from pn) from the same run in which pn does not take any write. Now if p1
runs read(pn), p1 cannot get the value written by pn.

6 Wait Free Emulation of SWMR Registers

The previous emulation is only non blocking. Using 3n−1 MWMR registers with
help of the simulation of n non blocking SWMR registers it is easy to simulate
n wait free SWMR registers. For this, the 3n− 1 registers are partitioned into a
set W of n registers and a set PR of 2n− 1 registers. The n MWMR registers of
W are used to (non blocking) simulate n SWMR registers with the algorithm of

Linear Space Bootstrap Communication Schemes 373

Shared variable :
array of n− 1 MWMR-register : W
array of n+ 1 MWMR-register : PR

Code for process p
Local variable:

set of Values V iew = ∅
integer k = 0

write(p, x):
1 v = (x, p, k)
2 next = 0
3 nextReg = W [next]
4 V iew = V iew ∪ {v}
5 Name = index of p in V iew.proc

V iew.proc: set of processes in V iew ordered by name
6 do
7 Snap = Scan() Scan of W and PR
8 V iew = Snap ∪ V iew
9 if (Snap[card(V iew.proc)] = ⊥) then
10 Name = index of p in V iew.proc
11 Update(PR[card(V iew.proc)], V iew)
12 else
13 if next = n then update(PR[Name], V iew)
14 else update(W [next], V iew)
15 next = (next+ 1) mod (n+ 1)
16 until (card{r|v in Snap[r]} ≥ n)
17 k = k + 1

read(q):
18 V iew = Collect()
19 return x such that (x, q, u) ∈ V iew with maximal u

Fig. 4. Wait free emulation with 2n MWMR registers for n processes

Figure 3. With these n SWMR registers we can run a renaming algorithm [6,12].
In fact as such an algorithm always terminates in a finite number of steps it
is easy to verify that the non blocking simulation is enough to ensure that the
renaming terminates. Hence each process p of the n processes gets an unique
identity id(p) in the set {1, · · · , 2n− 1}. To write a value v, p will write in the
id(p)th register of PR. As p is the unique writer, the simulation is wait free.
But it is possible to reduce the number of MWMR registers to 2n − 1. In the
algorithm we propose, we eventually get an unique identity in the set {1, . . . , n}.

We present first an algorithm with 2n MWMR registers. The algorithm of
Figure 4 has a structure similar to the previous algorithms. Each process main-
tains a variable V iew containing all information it knows. Here the processes
access shared variables using wait free snapshot by means of primitives Update
and Scan. Implementations of such primitives are described for example in [1].

374 C. Delporte-Gallet et al.

For a set V of values V.proc denotes the list of all processes occurring in V
(process q occurs in V if there is any v = (x, q, s) in V). For convenience all
the lists of processes are ordered by process identities. The index of process p in
an ordered list of processes is the rank of p in the list. Indexes begins on 0, for
example, for 1, 3, 8, 15 the index of 1 is 0 and index of 3 is 1.

In the algorithm the processes share an array W (Working registers) of n− 1
MWMR registers (W [0], . . . ,W [n− 2]) and an array PR (Personal Registers) of
n+ 1 MWMR registers (PR[0], . . . , PR[n]).

Personal registers play a double part: they give the supposed number of par-
ticipants and give a personal register for each participant. For this, the last cell
different from ⊥ gives the supposed number and list of participants: if PR[a]
is this last cell then the supposed number of participants is a and the list of
participants is PR[a].proc. In the ordered list of assumed participants, process
p determines its index (variable Name) and will consider PR[Name] as its per-
sonal register (Lines 5 and 10).

As usual to write a value x (assuming it is the kth), a process adds v =
(x, p, k) to its V iew and successively writes (by Update and after updating its
V iew by Scan in Line 8) to the n− 1 registers W (Line 14) and in its personal
register PR[Name](Line 13). But it has to check that its Name is correct. After
each Scan a process will verify that the number of participants corresponds to
the contents of PR registers (Line 9): if the number of participants is a then
PR[a] must be the last cell different from ⊥. If it is the case, its Name is up
to date and it writes the next register (Line 13 and 14). If it not the case, the
index of the last non ⊥ cell in PR is less than the number of participants that
p has seen, then p writes in the correct cell of PR (PR[a] if a is the number of
participants seen by p) (Line 11) and determines its new index Name in its list
(Line 10).

As before the write terminates when v is in at least n registers (condition in
Line 16): when v is in n registers at least one of these registers is not covered.
Roughly speaking,write is wait free because eventually the last cell distinct of⊥
will correspond to the actual number of participants, and the list of participants
in this cell will be the actual list of all participants, hence processes will have a
personal register in which it will be alone to write.

The same arguments proving the safety properties of the non blocking algo-
rithm of Figure 3 apply here (essentially the write of v terminates when v is
in at least n registers. By a non covering argument, v will be returned by all
Scan). Then we restrict ourselves to prove the wait freed progress condition.

For each register r, r.proc is the list of all processes occurring in r.

Lemma 16. There is a time after which each register r of PR[0], ..., PR[n− 1]
is written by at most one process.

Proof. Let max be the greatest i such that PR[i] �= ⊥. By definition of the
index, max may not be the Name of any register, then PR[max] may only be
written by processes in Line 11 for which for the previous Scan, PR[max] was
⊥. Hence this register is written only a finite number of time. Consider time τ

Linear Space Bootstrap Communication Schemes 375

after which only processes that make an infinite number of Scan/Update take
steps and after which PR[max] is no more written.

Claim: There are a set Participant of size max and a time σ > τ after which:
(1) PR[max].proc = Participant and (2) for every process p that makes an
infinite number of Scan/Update, V iewp.proc = Participant.
Proof: Let Participant be the value of PR[max].proc a time τ . Let p be a process
that makes an infinite number of Scan/Update, p will make some Scan after
time τ getting PR[max]. Then there is a time τp after which PR[max].proc ⊆
V iewp.proc. After time τp, PR[max].proc �= V iewp.proc is equivalent to max �=
card(V iewp.proc). If Participant = PR[max].proc �= V iewp.proc then max <
card(V iewp.proc) and p will write in PR[card(V iewp.proc)] contradicting the
definition of PR[max]. Let time σ be the maximum of τp over all p making an
infinite number of Scan/Update, after time σ conditions (1), and (2) of the claim
are satisfied.

Let i such that 0 ≤ i ≤ n and assume that PR[i] is written after time σ, then
by definition of max, we can assume that 0 ≤ i < max. If, after time σ > τ ,
some q writes PR[i], by definition of τ , this process makes an infinite number of
Scan/Update. By the claim, V iewq.proc = Participant, and if q writes in PR[i]
that means that the index of q in Participant is i and as each process making
an infinity of Scan/Update has an unique index in Participant, q is the only
writer of PR[i].

Lemma 17. The algorithm in Figure 4 emulates wait free n SWMR registers
with 2n MWMR registers for n processes.

Proof. We prove only the wait freed progress condition. Assume a process p that
takes an infinite number of steps tries to write v = (x, p, k) in its register and
does not succeed. Then (v, p, k) is inserted in V iewp and by Lemma 1, (v, p, k)
remains forever in V iewp.

By the algorithm, p executes an infinite number of Scan/Update and writes
V iewp an infinite number of times in at least one register of PR. By Lemma 16,
there is a register PR[i] and a time τ after which p writes infinitely often in
PR[i] and p is the only writer of PR[i]. Then v will be forever in PR[i]. After
time τ , every process q that executes Scan/Update reads PR[i] and includes it
in its V iewq. Then all processes that write after time τ in some register will write
v in this register too. As we assume that the write of p does not terminate, at
least p writes in each register of W . Therefore, there is a time after which v will
be forever in all the n− 1 registers W and in register PR[i], then for any Scan
v will be in at least n registers and the write of v ends.

Notice that the information in PR[n] can be easily integrated to PR[n− 1]. So
we can use only 2n− 1 MWMR registers: The shared MWMR registers array W
is of size n− 1 and array PR is of size n, and we replace Line 9 to Line 11 from
algorithm in Figure 4 with Lines in Figure 5 :

Theorem 4. The algorithm in Figure 5 emulates wait free n SWMR registers
with 2n− 1 MWM Rregisters for n processes.

376 C. Delporte-Gallet et al.

9.1 if Name �= index of p in V iew.proc then
9.2 Name = index of p in V iew.proc
9.3 if (card(V iew.proc) = n and card(PR[n− 1].proc) = n− 1)

or (card(V iew.proc) < n and Snap[card(V iew.proc)] = ⊥))
9.4 then
9.5 if (card(V iew.proc) = n) then
9.6 update(PR[n− 1], V iew)
9.7 else
11 update(PR[card(V iew.proc)], V iew)

Fig. 5. Wait free emulation with 2n− 1 MWMR registers for n processes

7 Concluding Remarks

We have seen how n processes emulate SWMR registers non blocking using n
MWMR registers and wait free using 2n− 1 MWMR registers. What if we have
M processes M >> n (M possibly infinite) but we have the notion of arrivals
and departures of processes? Processes have to solve the task only under the
condition that the number of processes that invoked the task (arrived) minus
the number of processes that obtain an output (departed) is at any point of
time less or equal to n. Suppose that we know that a task T is read-write non
blocking (resp. wait free) solvable in the SWMR model under the assumption
of n-concurrency. Can we solve T with just n (resp. 2n − 1) MWMR registers,
without indefinite postponement, i.e. the step complexity of a process until it
gets an output will be, like in the SWMR model, a function of n rather than M?

We observe that the non blocking simulation is in fact n-concurrent. Thus, for
the non blocking case, the answer is positive. Concerning the wait free simulation
it is more tricky, but we conjecture that the answer is positive too.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., De Levie, Y.: Efficient adaptive collect algorithms. Distributed Comput-
ing 20, 221–238 (2007)

3. Afek, Y., Stupp, G., Touitou, D.: Long-lived adaptive collect with applications. In:
Proceedings of FOCS 1999, pp. 262–272. IEEE (1999)

4. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures.
SIGACT News 35(2), 36–59 (2004)

5. Aspnes, J., Attiya, H., Censor-Hillel, K.: Polylogarithmic concurrent data struc-
tures from monotone circuits. J. ACM 59(1), 2:1–2:24 (2012)

6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. Journal of the ACM 37(3), 524–548 (1990)

7. Attiya, H., Fouren, A.: Polynomial and Adaptive Long-Lived (2k - 1)-Renaming. In:
Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 149–163. Springer, Heidelberg
(2000)

Linear Space Bootstrap Communication Schemes 377

8. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM J. Comput. 31(2), 642–664 (2002)

9. Attiya, H., Fouren, A.: Algorithms adapting to point contention. J. ACM 50(4),
444–468 (2003)

10. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with applications.
Distributed Computing 15(2), 87–96 (2002)

11. Attiya, H., Welch, J.: Distributed Computing. Fundamentals, Simulations, and
Advanced Topics. John Wiley & Sons (2004)

12. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In:
PODC, pp. 41–51. ACM Press (1993)

13. Burns, J.E., Lynch, N.A.: Bounds on shared memory for mutual exclusion. Inf.
Comput. 107(2), 171–184 (1993)

14. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
the lower bound. Distributed Computing 22(5-6), 287–301 (2010)

15. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear space boot-
strap communication scheme. Technical Report hal-00717235, LIAFA, Université
Paris 7-Denis Diderot, France (2012)

16. Fatourou, P., Fich, F., Ruppert, E.: Space-optimal multi-writer snapshot objects
are slow. In: Proceedings of the Twenty-First Annual Symposium on Principles of
Distributed Computing, PODC 2002, pp. 13–20. ACM, New York (2002)

17. Fatourou, P., Fich, F.E., Ruppert, E.: Time-space tradeoffs for implementations
of snapshots. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on
Theory of Computing, STOC 2006, pp. 169–178. ACM, New York (2006)

18. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchro-
nization. J. ACM 45(5), 843–862 (1998)

19. Helmi, M., Higham, L., Pacheco, E., Woelfel, P.: The space complexity of long-
lived and one-shot timestamp implementations. In: Proceedings of the 30th An-
nual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC 2011, pp. 139–148. ACM, New York (2011)

20. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 123–149 (1991)

21. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(2), 858–923 (1999)

22. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

23. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

24. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking
implementations. SIAM J. Comput. 30(2), 438–456 (2000)

25. Lamport, L.: On interprocess communication; part I and II. Distributed Comput-
ing 1(2), 77–101 (1986)

26. Moir, M.: Fast, long-lived renaming improved and simplified. Sci. Comput. Pro-
gram. 30(3), 287–308 (1998)

27. Styer, E., Peterson, G.L.: Tight bounds for shared memory symmetric mutual
exclusion problems. In: Proceedings of the Eighth Annual ACM Symposium on
Principles of Distributed Computing, PODC 1989, pp. 177–191. ACM, New York
(1989)

An Analysis Framework
for Distributed Hierarchical Directories

Gokarna Sharma and Costas Busch

School of Electrical Engineering and Computer Science, Louisiana State University
Baton Rouge, LA 70803, USA

{gokarna,busch}@csc.lsu.edu

Abstract. We provide a novel analysis framework for distributed hierarchical
directories for an arbitrary set of dynamic (online) requests. We prove a general
O(η ·ϕ ·σ3 ·h) competitive ratio for any distributed hierarchical directory, where
η is a write set size related parameter, ϕ and σ are stretch and growth related pa-
rameters, and h is the number of levels in the hierarchy. Through this framework,
we give bounds for several known distributed directory protocols. In general net-
work topologies, we obtain O(log2 n · logD) competitive ratio, where n and D
are the number of nodes and the diameter, respectively, of the network. Moreover,
we obtain O(logD) competitive ratio in constant-doubling metric topologies. To
the best of our knowledge, this is the first (competitive) dynamic analysis for
distributed hierarchical directories.

1 Introduction

Distributed hierarchical directories are data structures that enable one to access shared
objects whenever needed. These directories are used to implement fundamental coor-
dination problems in distributed systems, including distributed transactional memory
[9,13], distributed queues [5], and mobile object tracking [4]. These directories support
access to the shared objects in a network through three basic operations : (i) publish,
allowing a shared object to be inserted in the directory so that other nodes can find it;
(ii) lookup, providing a read-only copy of the object to the requesting node; and (iii)
move, allowing the requesting node to write the object locally after the node gets it.

The hierarchical structure is constructed based on some well-known clustering tech-
niques (e.g., sparse covers, maximal independent sets) which organize the nodes in
multiple level clusters and the cluster sizes grow exponentially towards the root level.
Hierarchical directories provide a better approach than pre-selected spanning tree based
implementations [2,5,12,14] which do not scale well, since the stretch of the spanning
tree can be as much as the diameter of the network, e.g. in ring networks.

The three basic operations of distributed directories are applied in different coor-
dination problems. In distributed transactional memory [2,9,13,14], each transaction
accesses several shared objects for read or write. A shared object ξ originating at some
node u is inserted in the directory through a publish operation; a lookup operation fa-
cilitates a requesting node v to locate ξ for read; a move operation allows v to move ξ
explicitly to its cache for write. A distributed queue [5,10] is implemented through a
shared object ξ which is the head of the queue. Initially the object (the head) is inserted

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 378–392, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Analysis Framework for Distributed Hierarchical Directories 379

through a publish operation; enqueue requests are realized through move operations
which insert new requests at the tail of the queue. In mobile object (user) tracking [3,4],
given a mobile object ξ which is being observed by the network, a search request for
the location of the object is implemented through a lookup operation. When the object
is moved, the hierarchy is updated through a move operation issued at its new location.

We present a novel analysis framework for distributed hierarchical directories for
an arbitrary set of dynamic (online) requests. In our analysis, the goal is to minimize
the total communication cost for the request set. Previous dynamic analysis approaches
were only for spanning tree based implementations Arrow [10] and Relay [15], and
they can not be directly extended to analyze hierarchical directories. To the best of
our knowledge, ours is the first formal dynamic performance analysis of distributed
hierarchical directories which are designed to implement a large class of fundamental
coordination problems in distributed systems.

In order to analyze distributed hierarchical directories, we model the network as a
weighted graph, where graph nodes correspond to processors and graph edges corre-
spond to communication links between processors. The network nodes are organized
into h + 1 levels. In every level, we select a set of leader nodes; higher level leaders
coarsen the lower level set of leaders. At the bottom level (level 0) each node is a leader,
while in the top level (level h) there is a single special leader node called the root.

We consider an execution of an arbitrary set of dynamic (online) requests, e.g. pub-
lish, lookup, and move, which arrive at arbitrary moments of time at any (bottom level)
node. We bound the competitive ratio (i.e., stretch), which is the ratio of the total com-
munication cost (measured with respect to the edge weights) of serving the set of dy-
namic requests in the hierarchy to the optimal communication cost of serving them
through some shortest path in the original network.

We prove O(η · ϕ · σ3 · h) competitive ratio for any distributed hierarchical direc-
tory for any arbitrary set of (online) move requests in dynamic executions, where η is a
write size related parameter, ϕ is a stretch related parameter, and σ is a growth related
parameter on the hierarchy, respectively. A node u in each level k has a write set of
leaders which helps to implement the move requests. The parameter η expresses what
is the maximum size of the write set of leaders of the node u among all the levels in the
hierarchy; the parameter ϕ expresses how far the leaders in the write set of u can ap-
pear beyond a minimum radius around u; and the parameter σ expresses the minimum
radius growth ratio. It seems that the linear dependency on η cannot be avoided because
possible shortening of the route using sub-linear number of write sets may introduce
race conditions in the concurrent executions as noticed in [9,13]. We focused only on
move requests since they are the most costly operations. (The cost due to a publish
operation is the fixed initial cost which is compensated by the move and lookup oper-
ations issued thereafter, and the lookup operations have always small cost even when
considered individually.) Further, we consider only one shared object as in [10,15].

We apply our framework to analyze three variants of distributed hierarchical
directory-based protocols, Spiral [13], Ballistic [9], and Awerbuch and Peleg’s tracking
a mobile user [3,4] (hereafter AP-algorithm), and we obtain the following results.

– Spiral: O(log2 n · logD) competitive ratio in general networks, where n is the
number of nodes and D is the diameter, respectively, of the network. Spiral is

380 G. Sharma and C. Busch

designed for the data-flow distributed implementation of software transactional
memory in large-scale distributed systems, where transactions are immobile (run-
ning at some particular node) and shared objects are moved to those nodes that
need them [2,5,9,13,15]. In a previous work [13], we have shown that Spiral is
O(log2 n · logD) competitive in both sequential executions which consists of non-
overlapping sequence of requests and one-shot concurrent executions where all re-
quests appear simultaneously. Here, we provide the analysis for arbitrary dynamic
requests which subsumes these previous bounds.

– AP-algorithm: O(log2 n · logD) competitive ratio in general networks. The AP-
algorithm is appropriate for a general mobile user tracking problem that arises
in many applications in the distributed setting, e.g. sensor networks. It has been
proven in [4] that the algorithm is O(log n · logD+ log2D/ logn) competitive in
sequential executions and O(log2 n · logD + log2D/ logn) competitive in one-
shot concurrent executions. Our analysis subsumes these results, since it considers
the more general case of arbitrary dynamic executions.

– Ballistic: O(logD) competitive ratio in constant-doubling dimension networks.
This protocol is also for the data-flow distributed implementation of software trans-
actional memory. It is shown in [9] that Ballistic is O(logD) competitive in both
sequential and one-shot executions. Again, our analysis subsumes these results.

The logarithmic factors in the competitive ratio are mainly due to the properties of the
hierarchical clustering techniques used in the protocols. Utilizing improved clustering
techniques and/or considering specific networks may result in better factors in the com-
petitive ratio. The general network bounds for Spiral and AP-algorithm are within a
poly-log factor far from optimal, in light of the Ω(log n/ log logn) lower bound proved
by Alon et al. [1] in certain topologies, for the Awerbuch and Peleg’s mobile user track-
ing problem [3,4]. To the best of our knowledge, this is the first (competitive) dynamic
analysis for distributed hierarchical directories. (This framework also gives competitive
ratio for these protocols when requests can execute concurrently.)

Someone may use the spanning tree T of Gupta [7] (constructed by transforming
the randomized tree structure of Fakcharoenphol et al. [6]), which guarantees that the
expected distance in the tree T for every two nodes in the graph is at most O(log n)
times their distance in the graph, and run the Arrow protocol on T . An expected bound
on the stretch can be proved using the dynamic analysis of Herlihy et al. [8] for the
Arrow protocol on the spanning tree T . However, the (worst-case) stretch for T can
be still as large as D. This is because, for example, in ring networks, the minimum
distance is 1 and the maximum distance is n/2 between every two nodes in the graph.
This results in a competitive ratio of (D · logD), which is significantly larger than
the polylogarithmic competitive ratio of our solution. That is, our solution yields good
behavior every time for any arbitrary set of dynamic requests, whereas this solution
yields good behavior only in the expected case.

Our analysis framework captures both the time and the distance restrictions in order-
ing dynamic requests through a notion of time windows. For obtaining an upper bound,
we consider a synchronous execution where time is divided into windows of appropri-
ate duration for each level. For obtaining a lower bound, given an optimal ordering of
the requests, we consider the communication cost provided by a Hamiltonian path that

An Analysis Framework for Distributed Hierarchical Directories 381

visits each request node exactly once according to their order. The lower bound holds
for any asynchronous execution of the requests. We perform the analysis level by level.
The time window notion combined with a Hamiltonian path allows to analyze the com-
petitive ratio for the requests that reach some level. After combining the competitive
ratio of all the levels, we obtain the overall competitive ratio.

Related Work. There have been endeavors analyzing the dynamic performance of
distributed protocols that are based on pre-selected spanning trees. An analysis of the
Arrow protocol [5] given in [8,10] for an arbitrary set of (online) ordering requests gen-
erated over a period of time shows that Arrow isO(s · logD)-competitive, where s and
D, respectively, are the stretch and the diameter of the spanning tree on which Arrow
operates. Note that s can be as large as D, as for example, in ring networks, giving
a competitive ratio O(D · logD), which is significantly larger than ours. The Arrow
protocol, originally developed for distributed mutual exclusion [12], is one of the sim-
plest distributed directory protocol based on spanning trees. Along the lines of Arrow,
an analysis of the Relay protocol [14] is presented in [15], for dynamic (online) move
requests in the context of distributed transactional memory, and shown that Relay is
O(s · logD)-competitive, for a set of transactions that request the same object.

Outline of the Paper. The rest of the paper is organized as follows. We give a generic
distributed hierarchical directory algorithm in Section 2. In Section 3, we present a
novel dynamic analysis framework based on time windows. We analyze the generic
algorithm of Section 2 in Section 4. Through the framework, we analyze Spiral, Bal-
listic, and AP-algorithm in Section 5. Proofs are omitted from the paper due to space
limitations.

2 An Online Algorithm

Network Model. We model a distributed network as a weighted graph G = (V,E,w),
where the nodes V represent network machines, |V | = n, the edges E represent inter-
connection links between machines, and the weight function w : E → R

+ corresponds
to the latency of communication links. The weight of a link is equal to the communi-
cation cost of sending a message over the link. We assume that w(u, u) = 0 for any
u ∈ V . We take G to be connected, i.e., there is a path of nodes (with respective se-
quence of edges connecting the nodes) between any pair of nodes in G. Let dist(u, v)
be the shortest path length (distance) between nodes u and v, with respect to the weight
function w. The k-neighborhood of a node v is the set of nodes which are within dis-
tance at most k from v (including v). The diameter is D = maxu,v∈V dist(u, v), which
denotes the maximum shortest path distance over all pairs of nodes in G. We assume
that nodes and links do not crash and there is FIFO communication between nodes (i.e.
no overtaking of messages occurs).

Hierarchy. Algorithm 1 presents a generic distributed hierarchical directory algorithm.
It is based on a hierarchy with h levels of leaders Z = {Z0, Z1, . . . , Zh} of a network
G = (V,E), such that Zk+1 ⊆ Zk. In other words, the leaders are partitioned recur-
sively such that, at level 0, each node v ∈ V is a leader by itself, namely, Z0 = V ;

382 G. Sharma and C. Busch

and the highest level Zh contains a single leader root with leader node r (the root of
Z). Communication between leader nodes occurs through shortest paths. We consider a
single hierarchical structure per object similar to previous directory protocols [9,13].

Each node v ∈ V has, at level k, a write set of leaders, Writek(v) ⊆ Zk, and
a read set of leaders Readk(v) ⊆ Zk (Lines 1–6 of Algorithm 1). For convenience,
Write0(v) = Read0(v) = v. The write set of leaders are used to route move requests
from requesting nodes to their predecessor nodes, and the read set of leaders are used
to route lookup requests from requesting nodes to the current owner node of the object
ξ (we provide details on how this is done in Algorithm 1).

We define the following parameters which will be useful later in the analysis.

– φk: a maximum radius of the farthest node in Writek(v) from node v. In other
words, ∀u ∈ Writek(v), dist(v, u) ≤ φk .

– φ′
k: a minimum radius such that if two nodes are within distance φ′

k , then they
must have a common leader in their write sets at level k. In other words, ∀u, v ∈
V, dist(v, u) ≤ φ′

k =⇒Writek(u) ∩Writek(v) �= ∅.
– ϕ: the stretch of maximum versus minimum radius in the write set, that is, ϕ =
max0≤k≤h

φk

φ′
k

. Typically, ϕ ≥ 1, since φk ≥ φ′
k.

– σ: is the minimum radius growth ratio, such that φ′
k = σk−1, for k > 0. Typically,

σ ≥ 2.
– η: the maximum write set size for any node v in any level of the hierarchy, namely,
η = max0≤i≤h,v∈V |Writei(v)|.

Shared Object Operations. Let ξ be a shared object which we want to access through
the distributed directory. At any time there is an owner node, denotedOwner(ξ), which
holds the object and is allowed to modify it. The directory hierarchyZ is a data structure
that enables one to find and modify the object whenever needed. The directory supports
the following three operations.

– publish(ξ): when invoked by node s, it sets s to be the current owner of ξ, i.e.,
Owner(ξ)← s. This operation is issued when the object is created at s.

– lookup(ξ): when invoked by vertex v, this operation delivers a search query from v
to Owner(ξ), and an object copy is delivered to v without updating the directory.

– move(ξ): when invoked at some vertex v, this operation delivers a move request
from v to Owner(ξ), which moves ξ to the new location v, and at the same time
the directory is updated so that Owner(ξ) ← v.

We now describe how the algorithm A supports publish, lookup, and move in Z. Each
leader node t at some level k has a Pointert(ξ) pointing towards one of the leaders
in level k − 1 (otherwise it is ⊥ (null)). A downward chain of pointers will lead to the
owner of the object at level 0.

Suppose that some node s issues a publish(ξ) operation. Node s initiates an update
of pointer directions from level 1 up to level h such that any downward chain leads
to s. At each vertex t in Writek(s) the pointer is set Pointert(ξ) to point toward
any leader in Writek−1(s) (Lines 7–9 of Algorithm 1). Note that after the publish the
Pointerr(ξ) at the root will not be ⊥ thereafter.

In order to implement a lookup(ξ) operation, the requesting node v successively
queries the vertices in its read set, Read(v), until hitting a vertex t at level k that has

An Analysis Framework for Distributed Hierarchical Directories 383

Algorithm 1. A generic distributed hierarchical directory algorithm for an object
ξ

1 Initialization:
2 On input graph G = (V,E) build a hierarchy of leaders Z = {Z0, Z1, · · · , Zh}, such

that:
3 Zk+1 ⊆ Zk, 0 ≤ k < h;
4 Every node v ∈ V at Z0 is a leader by itself;
5 Zh consists of a single leader with leader node r (the root of the hierarchy);
6 Each node v ∈ V has a write set of leaders at level k, Writek(v) ⊆ Zk, and a read

set Readk(v) ⊆ Zk (with Write0(v) = Read0(v) = v);

7 Publish object ξ by node s:
8 For all layers 1 ≤ k ≤ h and for all t ∈ Writek(s) do:
9 Set downward pointer of t, Pointert(ξ), to point towards any leader in

Writek−1(s);

10 Lookup object ξ by node v:
11 k ← 1;
12 Until Pointert(ξ) �= ⊥ for any t ∈ Readk(v) do
13 k ← k + 1;
14 Go to Owner(ξ) following the chain of downward pointers, and send a copy of ξ to v;

15 Move object ξ to node v:
16 k ← 1;
17 Until Pointert(ξ) �= ⊥ for any t ∈ Writek(v) do
18 Set Pointert(ξ) of all t ∈ Writek(v) to point to any leader in Writek−1(v);
19 k ← k + 1;
20 old ← Pointert(ξ) (where Pointert(ξ) �= ⊥ and t ∈ Writek(v));
21 Set Pointert(ξ) of all t ∈ Writek(v) to point to any leader in Writek−1(v);
22 Go to Owner(ξ) following the chain of downward pointers starting from old, and at

the same time set older downward pointers to ⊥;
23 As soon as Owner(ξ) is reached, move ξ to v (hence, Owner(ξ) ← v);

a non-null pointer Pointert(ξ), which leads to the current owner of ξ (Lines 10–14 of
Algorithm 1). Therefore, following the chain of downward pointers the owner node can
be reached, and a copy of the object can be obtained by v.

The execution of a move(ξ) operation, invoked at some requesting node v, consists
of: (i) inserting the pointer Pointerv(ξ) pointing to any leader in Writei−1(v) for all
the leaders t ∈ Writei(v) at each level i < k (effectively setting Owner(ξ) ← v
through the new chain of downward pointers) until hitting a vertex t at level k that has a
pointer Pointert(ξ) leading to the current owner s of ξ; and (ii) deleting Pointert(ξ)
at all the vertices t in the the chain of downward pointers towards s (Lines 15–23 of
Algorithm 1). As soon as the current owner is reached, ξ is moved to v.

In concurrent execution scenarios the operations in the algorithm require coordina-
tion to avoid deadlocks or blocking. For example, updates to the pointers of the write
set of a node should all occur in an atomic manner. The various instantiations of the
generic algorithm that we describe in Section 5 take care of this issue by using different
distributed coordination techniques.

384 G. Sharma and C. Busch

Fig. 1. Illustration of time windows for σ = 2

3 Analysis Framework

We now proceed with describing the framework to analyze the generic online Algorithm
A (Algorithm 1) for a set of arbitrary move requests. We identify a move request r by
the tuple r = (u, t) where u is the leaf node in the cluster hierarchy Z that initiates
the move request and t ≥ 0 is the time when the request is initiated. We denote by
R = {r0 = (v0, t0), r1 = (v1, t1), . . .} the arbitrary finite set of dynamic (online)
move requests, where the requests ri ∈ R are indexed according to their arrival time,
i.e., i < j =⇒ ti ≤ tj .

Since passing the object from one owner to the next can take some time, the effect
of Algorithm A to the distinct move requests is similar to a distributed queue which
orders the requests. Each requesting node will eventually receive the object according
to the provided order. Suppose that a request r1 = (v1, t1) is ordered by Algorithm 1
after another request r2 = (v2, t2). The ordering of r1 from a node v1 is considered
complete as soon as v2 is informed that r1 is the successor of r2.

Windows. Time windows is an essential ingredient of our analysis framework. We di-
vide time into fixed duration periods which allows us to obtain upper bounds for the
communication cost and also respective lower bounds. At each level k a window repre-
sents the time that a node needs to reach and modify the pointers of all the leader nodes
in its write set (this is O(η · φk)).

In order to define windows we assume a synchronous communication model such
that all the network nodes share the same clock. Upon receiving a message, a node is
able to perform a local computation and send a message in a single atomic step. We
assume that a time unit is of duration required for a message sent by a node to reach a
destination node that is a unit distance far from it. We make an assumption that message
delays respect the triangle inequality. The number of time steps that it takes to deliver
the message is equal to the (ceiling rounded integral) distance between the sender and
receiver.

We define for level k the time window of time duration Wk = O(η ·φk), 1 ≤ k ≤ h,
and O(1) for k = 0. Assuming an execution starts at time 0, we can have the sequence
of windows for each level k, 0 ≤ k ≤ h, i.e., Wk = {W 0

k ,W
1
k , . . .}, where W 0

k is the
first window at level k, W 1

k is the second window at level k, and so on. These windows
have the property that W j+1

k starts immediately after W j
k expires. When the notations

are clear, we simply denote by Wk one of the windows in Wk.

An Analysis Framework for Distributed Hierarchical Directories 385

Hereafter, assume for simplicity the worst value for φk, namely ϕ · σk−1 = φk (this
doesn’t affect the results of the analysis). We also consider σ ≥ 2, which is the case
for the algorithms in Section 5. The windows are aligned in such a way that Wk and
one of Wk−1 start at the same time. For one window at level h, there are σ windows at
level h − 1, σ2 windows at level h − 2, and so on, so that there are σh−k windows at
level k. When we consider the windows of all the levels, there are h overlapping aligned
windows for one window at the root level as depicted in Fig. 1 for σ = 2.

The requests that arrive to the system at level 0 are forwarded to level 1 at the end
of the window W0 for level 0. Level 1 leaders forward requests to level 2 at the end of
the window W1. This proceeds at higher levels and in a similar way to the downward
direction.

Therefore, at the end of a window, each level k leader node can exchange a message
with its leader neighbors at level k + 1 or level k − 1. A leader node yk at level k
forwards the request to a leader node yk+1 at level k + 1 at the end of its window Wk

(see paths of ri and rj in Fig. 1). Similarly, a leader node yk may forward the request to
a leader node yk−1 at level k − 1 at the end of its window Wk . There may be the case
that the current window Wk+1 at level k + 1 is not yet expired when the window Wk

is ready to send the requests at its end. In this case, the requests that need to be sent to
level k+1 (to level k− 1) from level k are sent as soon as a new Wk+1 window (a new
Wk−1 window) starts, respectively (see path of rj in Fig. 1).

We can show the following basic results on windows. Assume that when in the same
window requests update the same pointers then higher priority is given to older requests.
In many occasions we will use request ri to refer to the respective node vi.

Lemma 1. Let ri = (vi, ti) ∈ R and rj = (vj , tj) ∈ R be two requests that reach
level k inside respective windows W i

k and W j
k , and j − i − 1 = m for some integer

m > 1. Then the difference in their arrival time is at least tj − ti ≥ (m− 1) · η · φk.

Lemma 2. Suppose ri = (vi, ti) ∈ R and rj = (vj , tj) ∈ R, j > i, are the two
requests that reach level k. If they both fall inside the same window W i

k−1 at level k−1

and also the same window W j
k at level k, then dist(ri, rj) ≥ σk−2.

Lemma 3. Suppose ri = (vi, ti) ∈ R and rj = (vj , tj) ∈ R, j > i, are the two
requests that reach level k. If dist(ri, rj) < σk−1 then there must exist some re-
quest rl with arrival time between ri and rj , such that either dist(ri, rl) ≥ σk−4 or
dist(rl, rj) ≥ σk−4.

4 Analysis of the Online Algorithm

We proceed with necessary definitions. We denote by Sj
k the total count of the number

of requests that reach level k inside some window W j
k . We call the level k windows

which have Sj
k ≥ 3 the dense windows and the rest of the level k windows (which have

Sj
k < 3) the sparse windows. The reason behind considering the windows with Sj

k ≥ 3

and Sj
k < 3 separately is that we need always at least �Sj

k/2� ≥ 2 requests inside any
window that are at least σk−2 far from each other in the graph G (as implied by Lemma

386 G. Sharma and C. Busch

2). This will help to establish a non-trivial lower bound in the communication cost for
ordering all the requests in R that reach level k. For Sj

k < 3 windows (i.e. sparse
windows), the goal is to transform them into the case of dense windows and apply a
similar analysis.

We are interested in obtaining bounds for the communication cost measured as the
sum of the distances traversed by all messages. We will bound the competitive ratio
CRA = maxRC(R)/C∗(R), where C(R) and C∗(R) are the total communication
cost and the optimal cost, respectively, of serving all the requests in R using the online
algorithm A and the optimal algorithm. For convenience, we analyze the competitive
ratio of A for the dense windows and the sparse windows separately. Hence, CRA ≤
CRA(R) + CRB(R), where CRA(R) is the competitive ratio of A for serving all the
requests inside dense windows and CRB(R) is the competitive ratio of A for serving
all the requests inside sparse windows.

4.1 Dense Windows

In this section, we analyze the total communication cost CA(R) and the opti-
mal cost C∗

A(R) for dense windows, and bound the competitive ratio CRA(R) =

CA(R)/C∗
A(R). We will first focus on a single dense window W j

k (i.e., a window
with Sj

k ≥ 3). We give bounds for the total and the optimal communication cost for W j
k

which will be useful when we later analyze the performance for all the dense windows
in Wk.

We denote by CA(W
j
k (R)) the total communication cost of serving requests that

reach level k inside a dense windowW j
k by the online algorithmA, and byC∗

A(W
j
k (R))

the respective optimal communication cost. Note that, for simplicity, we consider only
the cost incurred by the up phase of each move request. When we consider the down
phase of each request the cost increases by a factor of 2 only. We can prove the following
lemmas (using Lemma 2).

Lemma 4. CA(W
j
k (R)) ≤ 2 · Sj

k · η · φk.

Lemma 5. C∗
A(W

j
k (R)) ≥ �(Sj

k − 1)/2� · σk−2.

Among all the dense windows Wk for level k, we define a subsequence of dense win-
dows Wα

k = {Wα
k ,W

α+λd

k ,Wα+2λd

k , · · · } ⊂ Wk such that α ∈ {0, 1, · · · , λd − 1}
for λd = 3. Thus, there will be λd dense subsequences in Wk. The intuition behind
including every third dense window in a dense subsequence is to guarantee that all the
requests in window Wα+iλd

k are arrive in the system at least η · φk time before any

request in window W
α+(i+1)λd

k , i ≥ 0, arrives in the system (Lemma 1). We prove the
following lemma.

Lemma 6. For any two requests ra = (va, ta) ∈ Wα+jλd

k , rb = (vb, tb) ∈
W

α+(j+1)λd

k , j ≥ 0, in the dense subsequence Wα
k , tb − ta ≥ η · φk .

We proceed with giving an upper bound in the total communication cost CA(W
α
k (R))

for all the requests in the dense subsequence Wα
k . We fix Sα

k =
∑|Wα

k |
i=1 Si

k, the total
number of requests inside all the windows of the dense subsequence Wα

k , where |Wα
k |

is the total number of windows in Wα
k . The following result follows from Lemma 4.

An Analysis Framework for Distributed Hierarchical Directories 387

Lemma 7. For the requests in a dense subsequenceWα
k , CA(W

α
k (R)) ≤ 2 ·Sα

k ·η ·φk .

We now bound the optimal cost C∗
A(W

α
k (R)) for all the requests in the dense subse-

quence Wα
k . The main idea here is to show that C∗

A(W
α
k (R)) is at least the cost due to

a minimum cost Hamiltonian path that visits each vertex of Wα
k (R) exactly once. On

our way, we use a notion of directed dependency graph. Note that the lower bound is
for any asynchronous execution for the involved requests.

We start with necessary definitions. Let R = {r1, r2, · · · } ⊂ R denote a subset of
requests in R. The directed dependency graph H(R) = (V ′, E′,w′) has requests as
vertices V ′, where |V ′| = |R|, a directed edge from any vertex u′ ∈ V ′ to any other
vertex v′ ∈ V ′ such that (u′, v′) ∈ E′ and (v′, u′) ∈ E′, and edge weight function
w′ : E′ → R

+. Note that H(R) is a directed complete graph − there are two directed
edges between every pair of vertices. The directed edge weights in H(R) are assigned
as given below:

∀i, j,w′(vi, vj) = max {dist(vi, vj), ti − tj} .

Note that w′(vi, vj) may be different than w′(vj , vi). We argue that the time in
w′(vi, vj) translates to the communication cost as there is always a request that is
searching for the predecessor node as soon as it is initiated in the system until it is
ordered behind the predecessor.

Each possible ordering for any algorithm for the requests in R is given by a directed
Hamiltonian path, that visits each vertex exactly once, on the graph H(R). Out of the
possible orderings, the order which minimizes the ordering cost will be the lowest cost
directed Hamiltonian path. Since the graph H(R) is a directed complete graph, there
is always a Hamiltonian path. An example of a Hamiltonian path is given in Fig. 2 for
Wα

k with |Wα
k | = 4, where Ns is the starting node and Nt is the ending node.

Observation 1. The optimal communication cost C∗(R) for the requests R is at least
the lowest cost directed Hamiltonian path in the graph H(R).

We now consider the directed dependency graph H(Wα
k (R)) for all the requests in the

dense subsequence Wα
k . We divide vertices in H(Wα

k (R)) into |Wα
k | groups, denoted

as Hi, 1 ≤ i ≤ |Wα
k |, such that Hi corresponds to a window W i

k ∈ Wα
k , where |Wα

k |
is the total number of windows in the dense subsequence Wα

k . In other words, a group
constitutes a dense window in Wα

k . We order the groups Hi from left to right. If we
look at a particular groupHi, there are some directed edges between vertices inside Hi,
some directed edges going out to the groups in both sides (left and right of Hi), and
some directed edge coming into Hi from the groups in its both sides (see Fig. 2). We
focus on a subgraph Hsub(Wα

k (R)) of the graph H(Wα
k (R)) such that, for any two

vertices u, v ∈ Hi, dist(u, v) ≥ σk−2. As argued in Lemma 5, there will be at least
�Si

k/2� vertices in each group Hi after removing such vertices. Denote by P some
directed Hamiltonian path on Hsub(Wα

k (R)) (see Fig. 2) and by P ∗ the lowest cost
directed Hamiltonian path among all P . We can make the following observations (with
the help of Lemma 1).

Observation 2. For any two requests ra = (va, ta) ∈ Hi and rb = (vb, tb) ∈ Hi,
w′(va, vb) = w′(vb, va) ≥ dist(va, vb) ≥ σk−1.

388 G. Sharma and C. Busch

Fig. 2. Illustration of a Hamiltonian path P starting from the node Ns ∈ H1 and ending in the
node Nt ∈ H3 for the dense subsequence Wα

k with |Wα
k | = 4. The left boundary edges of a

group H3 are E
b,left
3 = 2 and the right boundary edges of H3 are E

b,right
3 = 2. Moreover, the

left external edges of H3 are Eext,left
3 = 1 and the right external edges of H3 are Eext,right

3 = 1.

Observation 3. For any two requests ra = (va, ta) ∈ Hi and rb = (vb, tb) ∈ Hj ,
j > i, w′(va, vb) ≥ 0 and w′(vb, va) ≥ (j − i) · η · φk .

In each groupHi, there are two types of edges, internal and external. The internal edges
Eint

i are all the edges (u′, v′) from any vertex u′ ∈ Hi to any other vertex v′ ∈ Hi.
The external edges Eext

i are all the edges (u′, v′) from any vertex u′ ∈ Hi to any other
vertex v′ ∈ Hj , j �= i.Moreover, the external edgesEext

i of Hi are of two types, that go
to the groups on the left (H<i), which we denote by Eext,left

i (the left external edges),
and that go to the groups on the right (H>i), which we denote by Eext,right

i (the right
external edges). We have that Eext

i = Eext,left
i + Eext,right

i .
We define the boundary of Hi as a dotted vertical line on its right (see Fig. 2)

which shows the interaction between H>i and H≤i. Consider a Hamiltonian path P
on Hsub(Wα

k (R)). We define the boundary edges as follows (see Fig. 2). For Hi, let

E
b,right

i (the right boundary edges) be the set of edges (u′, v′) in P which satisfy the

condition that u′ ∈ H≤i and v′ ∈ H>i. All the right boundary edges E
b,right

i will cross

the boundary of Hi and point to right groups. Similarly, let E
b,left

i (the left boundary
edges) be the set of edges (u′, v′) in P which satisfy the condition that u′ ∈ H>i and

v′ ∈ H≤i. All the left boundary edges E
b,left

i will cross the boundary of Hi and point

to it or the groups on the left of it. We can prove the following relation between E
b,left

i

and Eext,left
i for any group Hi.

Lemma 8. |Eb,left

i | ≥ |Eext,right
i | − 1 for each group Hi.

The following observation is straightforward.

Observation 4.
∑|Wα

k |
i=1 |E

b,left

i | ≥
∑|Wα

k |
i=1 |E

ext,left
i |.

In a directed Hamiltonian path P due to the optimal algorithm, some edges (u, v) are
between the vertices of a particular group Hi, 1 ≤ i ≤ |Wi

k| (denoted Pint), and

An Analysis Framework for Distributed Hierarchical Directories 389

some are between the vertices of groups Hi and Hj , j �= i (denoted Pext). Thus, the
Hamiltonian path P = Pint ∪ Pext (union of the edges from both groups). Denote by

C(P) = C(Pint) + C(Pext)

= C(Pint) + C(Pext,left) + C(Pext,right)

the total cost of any Hamiltonian path P , where Pext,left is the edges in P due to left
external edges Eext,left

i , 1 ≤ i ≤ |Wα
k | and Pext,right is the edges in P due to right

external edges Eext,left
i , 1 ≤ i ≤ |Wα

k |. We now put bounds on the minimum cost by
any Hamiltonian path P . The following observation is straightforward from the way we
defined Hsub(Wα

k (R)).

Observation 5. C(Pint) ≥
∑|Wα

k |
i=1 |Eint

i | · σk−2.

Lemma 9. C(Pext,left) ≥
∑|Wα

k |
i=1 |E

b,left

i | · η · φk.

We are now ready to prove the lower bound C∗
A(W

α
k (R)) for the requests in the dense

subsequence Wα
k .

Lemma 10. For the requests in a dense subsequence Wα
k , C

∗
A(W

α
k (R)) ≥ 1

8 · Sα
k ·

σk−2.

We now bound the total communication cost CA(R) of the online algorithm A and the
optimal communication cost C∗

A(R) for serving all the requests in R that are inside
dense windows.

Lemma 11. For the execution R, the total communication cost of the online algorithm
A for all the requests inside the dense windows (of all the levels) is CA(R) ≤ 2 ·∑h

k=1

∑λd−1
α=0 (Sα

k · η · φk).

Lemma 12. For the execution R, the optimal communication cost for all the requests
inside dense windows (of all the levels) isC∗

A(R) ≥ 1
8 ·max1≤k≤h ·maxα

(
Sα

k · σk−2
)
.

We are now ready to put bounds on the competitive ratio CRA(R) for the dense win-
dows.

Theorem 1. CRA(R) = O(η · ϕ · σ · h).

4.2 Sparse Windows

In this section, we analyze the total communication cost CB(R) and the optimal com-
munication cost C∗

B(R) for serving requests inside sparse windows, and bound the
competitive ratio CRB(R) = CB(R)/C∗

B(R). Recall that a level k window W j
k is

sparse if Sj
k ≤ 2. We consider a subsequence of sparse windows of Wk (the set of all

windows at level k) for the competitive ratio.
Due to Sj

k ≤ 2 requests inside each sparse window, it may not always be the case
that these (at most) 2 requests satisfy the requirements for the lower bound derivation.

390 G. Sharma and C. Busch

Therefore, our goal in the analysis that follows is to transform each sparse window
scenario into a dense window case such that there are exactly two requests in each
sparse window that are at least σk−4 far in the graph G. Note that in dense windows the
distance lower bound was σk−2; here however it becomes σk−4 because of Lemma 3.

Similar to the subsequences of dense windows, we consider the subsequence
of sparse windows Wβ

k = {W β
k ,W

β+λs

k ,W β+2λs

k , · · · } ⊂ Wk such that β ∈
{0, 1, · · · , λs − 1} for λs = 3. Thus, there will be λs sparse subsequences in Wk.
Similar to Lemma 6, for any two requests ra = (va, ta) ∈ W β+jλd

k and rb = (vb, tb) ∈
W

β+(j+1)λd

k , j ≥ 0, of Wβ
k , tb − ta ≥ η · φk.

Next, we will focus on a sparse subsequence Wβ
k . We give bounds on the total and

the optimal communication cost for all the requests in the sparse subsequence Wβ
k and

these results extend to all sparse windows in Wk.
Denote by Pβ

k = {r1, r2, r3, · · · } a sequence of requests in the sparse subsequence
Wβ

k such that each window W i
k ∈Wβ

k has one request ri (chosen arbitrarily among the
two it contains). In other words, |Pβ

k | = |W
β
k |. As Sj

k ≤ 2, for each windowW j
k ∈Wβ

k ,
the total cost computed via Pβ

k for Wβ
k will increase by a factor of 2 only.

We define a notion of request pair that is useful later in the discussion. A request pair
is defined as a set of two consecutive requests in Pβ

k . Pβ
k can be seen as a collection of

request pairs Pβ
k = {(r1, r2), (r2, r3), (r3, r4), · · · }.

Each request pair (ra, ra+1) ∈ Pβ
k has the property that ta+1− ta ≥ η ·φk, however

there may be the case that dist(ra, ra+1) < σk−1. We define another sequence of
request pairs P̃β

k = {(r′1, r′′1), (r′2, r′′2), (r′3, r′′3), · · · } for the sequence of requests in
Pβ
k using a transformation given below.

i. If dist(ra, ra+1) ≥ σk−1 in the graph G for any two subsequent requests ra ∈ Pβ
k

and ra+1 ∈ Pβ
k , we fix r′a = ra and r′′a = ra+1.

ii. if dist(ra, ra+1) < σk−1 in the graph G for any two subsequent requests ra ∈ Pβ
k

and ra+1 ∈ Pβ
k , then according to Lemma 3, there exists an ordering request rc (it

can be from the same level k or the lower) after ra and before ra+1 in time such that
either dist(ra, rc) ≥ σk−4 or dist(rc, ra+1) ≥ σk−4. We fix r′a and r′′a following
the criteria given below:

a. If there is the case that dist(ra, rc) ≥ σk−4, then we fix r′a = ra and r′′a = rc.
b. If there is the case that dist(rc, ra+1) ≥ σk−4, then we fix r′a = rc and r′′a =

ra+1.

The transformation fromPβ
k to P̃β

k guarantees that dist(r′a, r
′′
a) ≥ σk−4 for any request

pair (r′a, r′′a) ∈ P̃
β
k . However, the timing requirement of at least η · φk for the any two

requests r1 and r2 in the subsequent request pairs of P̃β
k may be violated. We satisfy

the timing requirement through special sparse subsequences on P̃β
k .

The special sparse subsequence P̂γ
k has exactly two requests in each window it con-

tains and the requests in subsequent windows satisfy the timing property. Therefore,
each request pair in P̂γ

k can be treated as a group Hi in the dense window analysis.
From this point on, the analysis proceeds similar to the case of dense windows, where

An Analysis Framework for Distributed Hierarchical Directories 391

now each pair corresponds to a “dense window” (note that a pair may not actually re-
side in the same window, but we will assume it does, without affecting correctness, in
order to perform the lower bound analysis). Similar to Theorem 1, we can obtain the
following theorem for the competitive ratio CRB(R) for the sparse windows (the term
σ3 comes from using the σk−4 distance in the pairs).

Theorem 2. CRB(R) = O(η · ϕ · σ3 · h).

4.3 Complexity of the Online Algorithm

We now prove the main theorem of the analysis. Since the execution R is arbitrary, we
obtain from Theorem 1 of the dense window analysis (Section 4.1) and Theorem 2 of
the sparse window analysis (Section 4.2), the competitive ratio of the online algorithm
A bounded by CRA ≤ CRA(R) + CRB(R).

Theorem 3. The competitive ratio of the online algorithm A is CRA = O(η ·ϕ ·σ3 ·h)
for any arbitrary set of (online) move requests in dynamic executions.

5 Analysis of Existing Directories

In this section, we analyze three existing distributed hierarchical directory based proto-
cols: Spiral [13], Ballistic [9], and AP-algorithm [3,4].

The Spiral Protocol: it uses a hierarchical sparse cover (details in [13]). It has h+1 =
O(logD) levels. The sparse cover hierarchy of Spiral can be converted to the hierarchy
of leaders Z by considering only the leader nodes of clusters that include a node. The
Spiral hierarchy has the property that η = O(log n), φk = O(2k logn), and φ′

k = 2k−1

for any level 0 ≤ k ≤ h, since σ = 2. Therefore, ϕ = φk/φ
′
k = O(2k logn)/2k−1 =

O(log n). We note that distributed coordination is achieved by performing the η pointer
accesses per level separately at sub-levels according to a labelling of the clusters. Hence,
from Theorem 3, we obtain:

Theorem 4. CRSpiral = O(log2 n · logD) in dynamic executions.

The Ballistic Protocol: it uses a sequence of connectivity graphs as a directory hier-
archy (details in [9]), obtained using a distributed maximal independent set algorithm
(e.g. [11]), on a constant-doubling metric network. It has h+1 = O(logD) levels. Due
to the use of maximal independent set of leaders, the Ballistic hierarchy directly trans-
lates to the hierarchy of leaders Z. Since σ = 2 in Ballistic, η = O(1), φk = O(2k),
and φ′

k = 2k−1 for any level 0 ≤ k ≤ h. Hence, ϕ = O(1). Therefore, from Theorem
3 we obtain:

Theorem 5. CRBallistic = O(logD) in dynamic executions.

392 G. Sharma and C. Busch

The AP-algorithm: it uses a hierarchical directory composed of a hierarchy of h =
�logD� + 1 regional directories RDi, 1 ≤ i ≤ h (details in [4]). The regional direc-
tory construction is based on the concept of regional matching. This matching concept
is based on a read set Read(v) ⊆ V and a write set Write(v) ⊆ V , defined for
every vertex v, similar to the one given in Section 2. In AP-algorithm, we have that
η = O(log n) and ϕ = O(log n) in dynamic executions, and σ = 2. Therefore, from
Theorem 3, we obtain:

Theorem 6. CRAP−algorithm = O(log2 n · logD) in dynamic executions.

References

1. Alon, N., Kalai, G., Ricklin, M., Stockmeyer, L.J.: Lower bounds on the competitive ratio for
mobile user tracking and distributed job scheduling. Theor. Comput. Sci. 130(1), 175–201
(1994)

2. Attiya, H., Gramoli, V., Milani, A.: A Provably Starvation-Free Distributed Directory Pro-
tocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366,
pp. 405–419. Springer, Heidelberg (2010)

3. Awerbuch, B., Peleg, D.: Sparse partitions. In: Proceedings of the 31st Annual Symposium
on Foundations of Computer Science (FOCS), vol. 2, pp. 503–513 (1990)

4. Awerbuch, B., Peleg, D.: Concurrent online tracking of mobile users. SIGCOMM Comput.
Commun. Rev. 21(4), 221–233 (1991)

5. Demmer, M.J., Herlihy, M.P.: The Arrow Distributed Directory Protocol. In: Kutten, S. (ed.)
DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

6. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)

7. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 220–227 (2001)

8. Herlihy, M., Kuhn, F., Tirthapura, S., Wattenhofer, R.: Dynamic analysis of the arrow dis-
tributed protocol. Theor. Comp. Sys. 39(6), 875–901 (2006)

9. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Dis-
tributed Computing 20(3), 195–208 (2007)

10. Kuhn, F., Wattenhofer, R.: Dynamic analysis of the arrow distributed protocol. In: Proceed-
ings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pp. 294–301 (2004)

11. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J.
Comput. 15(4), 1036–1053 (1986)

12. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput.
Syst. 7(1), 61–77 (1989)

13. Sharma, G., Busch, C., Srinivasagopalan, S.: Distributed transactional memory for general
networks. In: Proceedings of the 2012 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1045–1056 (2012)

14. Zhang, B., Ravindran, B.: Brief Announcement: Relay: A Cache-Coherence Protocol for Dis-
tributed Transactional Memory. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS
2009. LNCS, vol. 5923, pp. 48–53. Springer, Heidelberg (2009)

15. Zhang, B., Ravindran, B.: Dynamic analysis of the relay cache-coherence protocol for dis-
tributed transactional memory. In: Proceedings of the 2010 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1–11 (2010)

SMT-Based Model Checking

for Stabilizing Programs�,��

Jingshu Chen and Sandeep Kulkarni

Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, 48824, US

Abstract. We focus on the verification of stabilizing programs using
SMT solvers. SMT solvers have the potential to convert the verification
problem into a satisfiability problem of a Boolean formula and utilize
efficient techniques to determine whether it is satisfiable. We focus on
utilizing techniques from bounded model checking to determine whether
the given program is stabilizing. We illustrate our approach using three
case studies. We also identify tradeoffs between verification with SMT
solvers and existing approaches.

Keywords: Verification, Stabilization, Model checking.

1 Introduction

A program is stabilizing if it is guaranteed to recover to a legitimate state even if
its initial state is arbitrary. Hence, stabilization is very helpful in providing fault
tolerance, especially in coping with the case where the program is perturbed
by unpredictable transient faults. For this reason, several distributed algorithms
(e.g., leader election, mutual exclusion, routing, spanning tree maintenance etc.
[9, 10, 17]) are designed to be stabilizing.

Although the ability to recover from an arbitrary state is desirable from the
perspective of a user of a stabilizing program, it is challenging from the perspec-
tive of the designer of that program. Moreover, if stabilization is used to provide
assurance, e.g., for ensuring that the program does not stay outside legitimate
states forever no matter what the (transient) fault does, it is important to verify
this property. Hence, it is valuable to use automated techniques for verifying this
property.

One of the successful automated approaches is model checking [13]. Model
checking is a technique to automatically verify whether a given model meets a
given property. If the program does not meet the given property, the process
of model checking typically produces a counterexample. However, using model
checking techniques to verify stabilization is exacerbated by the fact that one
needs to consider all possible states as opposed to reachable states.

� This work is sponsored in part by AFOSR FA9550-10-1-0178 and NSF CNS Grant
0914913.

�� Part of this work is accepted as a brief announcement in SSS 2012.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 393–407, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

394 J. Chen and S. Kulkarni

Techniques such as symbolic model checking have the potential to mitigate
the state space explosion. Examples of such techniques include binary decision
diagrams (BDDs) [3], SAT solvers [14, 18, 24] and SMT solvers [8, 12]. These
techniques allow one to model programs and specifications in terms of Boolean
formulae. Moreover, efficient techniques are developed to manage state space
exploration. Finally, the verification property itself is expressed in terms of a
Boolean formula.

Previously, model checking of stabilization using BDDs is considered in [4,29].
Specifically, in these approaches, the program and the specification is modeled
using Boolean formulae. Subsequently, they utilize SMV [22,23] for verification.

In this paper, we evaluate the effectiveness of SMT solvers in verifying sta-
bilization with the use of bounded model checking [2]. The process of using
bounded model checking to verify stabilization consists of two parts, (1) ver-
ification of closure and (2) verification of convergence. Specifically, the former
requires that if the program begins in a legitimate state then it remains in legiti-
mate states. And, the latter requires that if the program starts in a state outside
its set of legitimate states then it eventually reaches a legitimate state. The proof
of closure requirement only requires one to analyze execution of one step of the
program. However, for convergence, the number of steps is unknown. We con-
sider the verification of the convergence property with parameter k that identifies
the permissible number of steps in the convergence. Specifically, we first encode
the program behavior within k (a given parameter) steps into a propositional
formula Ψv and utilize an SMT solver to determine its satisfiability. Depending
upon the answer, one can either determine that the given program is stabilizing
or that there exists a program computation where the program does not reach
a legitimate state even after executing k program steps. We also utilize a simple
cycle detection approach to determine if the given program may not reach a
legitimate state.

Contributions of the Paper

– We describe an approach for verifying stabilization with SMT solvers.
– We evaluate the approach with three case studies, namely Dijkstra’s token

ring [9], Ghosh’s Mutual Exclusion [15] and Stabilizing tolerant version of
tree-based mutual exclusion algorithm [28]. One of these case studies demon-
strates the feasibility of verifying a stabilizing program with infinite state
space.

– We argue that SMT solvers are more likely to be effective when one considers
synchronous execution of the given program where each process executes (if
it can) in each step.

– We evaluate the effectiveness of decomposition and convergence stair [19] in
expediting the verification of stabilizing programs. Due to space limitations,
we present the details of this approach in [5].

Organization of the Paper. In Section 2, we give the formal definition of the
program, state space, computations and stabilization. In Section 3, we present
the approach for verifying stabilization with SMT solvers by utilizing techniques

SMT-Based Model Checking for Stabilizing Programs 395

from bounded model checking. Section 4 presents the experimental results for
our case studies. Section 5 identifies how program computations in synchronous
semantics can be used to reduce the time for verifying stabilization. Section 6
presents the related work. Finally, Section 7 identifies concluding remarks and
future work.

2 Preliminaries

In this section, we present the formal definition of programs, state space, com-
putations and stabilization. These definitions are based on previous work in
[1, 11, 16].

Definition 1. (Program) A program, P, is described as 〈VP , AP 〉, where VP =
{v0, v1, . . . , vn}, n ≥ 0 is a finite set of variables and AP = {a0, a1, . . . , am} is a
finite set of program actions. Each variable, vi ∈ VP , is associated with a finite
or infinite domain of values, Di. Each action, ai ∈ AP , is defined as follows:
ai :: gi −→ sti; where gi is a Boolean formula involving program variables and
sti is a statement that updates a subset of program variables.

For such a program, we define the notion of state, state space and state predicate.

Definition 2. (State) A state, s, of program P is identified by assigning each
variable in VP a value from its respective domain. ��

Definition 3. (State space) The state space, SP , of P is the set of all possible
states of P. ��

Definition 4. (State predicate) A state predicate of P is a Boolean expres-
sion defined over the program variables VP . Thus, a state predicate C of P iden-
tifies the subset, SC ⊆ SP , where C is true in a state s iff s ∈ SC . ��

Let X be a state predicate of program P and let s be a state of program P . We
use the notation X (s) to denote a predicate that is true iff X is true in state
s, i.e., the boolean expression corresponding to X evaluates to true when it is
instatiated with variable values in state s.
Remark. For compactness of the formulae, we do not include the name of the
program (e.g., XP) in specifying its state predicates. In this paper, the program
corresponding to the predicate should be clear from the context. We use similar
approach for other formulae as well.

Definition 5. (Enabled) The action ai:: gi → sti, is enabled in a state s iff
gi is true in s. ��

Observe that action in a program corresponds to a set of transitions (s0, s1)
where s0 is the initial state and s1 is the next state that is obtained by executing
the statement of the action that is enabled in s0. Thus, program transitions are
defined as follows:

396 J. Chen and S. Kulkarni

Definition 6. (Transitions) Transitions of P are defined by the following set:
{(s0, s1) | s0, s1 ∈ SP ,∧(∃ai ∈ AP :: gi is true in s0 and s1 is obtained by
executing sti from s0) } ∪
{(s0, s0) |s0 ∈ SP ∧ (∀ai ∈ AP :: gi is false in state s0)}.

Let δP be the set representing transitions of program P . We use the notation
T (s0, s1) to denote a predicate that is true iff (s0, s1) ∈ δP .

Definition 7. (Closed) Let Sc be a state predicate, then Sc is closed in a pro-
gram P iff (∀ (s0, s1) : (s0, s1) ∈ δP : (s0 ∈ Sc ⇒ s1 ∈ Sc)) . ��

Definition 8. (Computation) An infinite sequence of states, σ = 〈s0, s1, ...〉
is a computation of P iff ∀j : j > 0 : (sj−1, sj), is a transition of P.

Definition 9. (Stabilization) Let P be a program and let I be a state predi-
cate of P. We say that P is stabilizing for I iff:

1. closure: if (s0, s1) is a transition of P and s0 ∈ I, then s1 ∈ I;
2. convergence: every computation of P reaches I, i.e., ∀σ : σ is of the form
〈s0, s1, s2, . . .〉 and σ is computation of P : (∃j :: sj ∈ I). ��

Remark. The predicate I used in Definition 9 is called the legitimate state
predicate (invariant) of P .

3 Approach for Verifying Stabilization with SMT Solvers

In this section, we present the approach of verifying self-stabilization properties
with SMT solvers by utilizing techniques from bounded model checking. Veri-
fication of stabilization consists of two parts: (1) verification of closure and (2)
verification of convergence. In Section 3.1, we identify the formula whose satisfi-
ability can be used to determine whether closure property is satisfied. In Section
3.4, we identify an algorithm for verifying convergence by using the formulae
developed in Sections 3.2 and 3.3.

3.1 Verification of Closure

Let P be the given program and let I be the legitimate state predicate used
in Definition 9 to conclude that P is stabilizing. Let T be the predicate that
characterizes transitions of P . Observe that the closure property requires that if
(s0, s1) is a transition of program P and state s0 is a legitimate state then state
s1 is also a legitimate state. Thus, this can be captured by formula ¬Ψl, where
Ψl = (I(s0) ∧ T (s0, s1) ∧ ¬I(s1))

Remark. For compactness, the formula Ψl does not explicitly specify the pro-
gram or the set of legitimate states that are inputs in deciding closure. In this
paper, these two parameters can be determined based on the context. We use
similar approach for other formulae as well.

Based on whether Ψl is satisfiable or not, we have two scenarios, SC1 and
SC2:

SMT-Based Model Checking for Stabilizing Programs 397

1. SC1 : if Ψl is satisfiable then it proves that it is possible to begin in a
legitimate state, execute a program transition and be in a state that is not
a legitimate state. This implies that the closure property is not satisfied.
Moreover, in this case, assignment to s0 and s1 (which in turn includes values
of variables of the program in state s0 and s1) provides a counterexample.

2. SC2 : if Ψl is unsatisfiable then this implies that the closure property is
satisfied.

3.2 Verification of Convergence

To verify convergence, we use approach from bounded model checking [2]. We
verify convergence by checking that starting from an arbitrary state, the pro-
gram, say P , reaches a legitimate state (in I) in k steps, where k is a given
parameter used in the verification. Observe that the convergence property re-
quires us to consider a sequence of states, s0, s1, · · · , sk such that each successive
transitions are program transitions. Moreover, to verify (negation of) conver-
gence requirement, we require that I(sk) should be false. Additionally, in this
verification, we can utilize the closure requirement to add additional constraints
requiring that I(sj), 0 ≤ j ≤ k, should be false. Additionally, in bounded model
checking, one typically adds constraint about what the initial state should be.
However, in convergence, the initial state can be arbitrary and, hence, there
is no corresponding constraint for the initial state. Thus, the formula used for
verifying convergence is as follows:

Ψv = T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk)
¬I(s0) ∧ ¬I(s1) ∧ · · · ∧ ¬I(sk)

Based on whether Ψv is satisfiable or not, we have the following two scenarios:

1. SC3 : if Ψv is satisfiable, convergence cannot be achieved in k steps. In this
case, the number of steps needs to be increased. If the state space of the
program is finite and k equals the number of states in the program then this
implies that the convergence property is not satisfied. However, a simple
cycle detection algorithm (discussed next) can be used to conclude that the
program is not stabilizing for smaller values of k.

2. SC4 : if Ψv is unsatisfiable, then it proves that even if we begin in an arbitrary
state, it is impossible for the program to be in an illegitimate state if it
executes for k steps. In other words, the convergence property is satisfied.

3.3 Resolving Ambiguity by Cycles Detection

As discussed in Section 3, when Ψv is satisfiable, either the given program is not
stabilizing or the value of k is too small. To distinguish between these scenarios,
we use an approach of resolving ambiguity by checking for an existence of a cycle
outside legitimate states. The main idea of this approach is to check whether
the given program can run into a cycle that is outside legitimate states.

398 J. Chen and S. Kulkarni

To check whether the given program can execute a cycle that is outside legit-
imate states, we consider the behavior of the given program for k steps. Hence,
we construct a formula similar to that of Ψv. Additionally, the computation cre-
ated by Ψv creates a cycle iff some state is repeated in this path. This can be
checked by adding another constraint that two of the states visited are identical.
In other words, the added constraint is that there exists two states sj and sk,
where j < k and sj = sk.

Note that in case of stabilization, the initial state is arbitrary. Hence, if there
exists a cycle where sj = sk then there exists a suffix of the given computation
that begins with sj . In other words, it suffices to check whether state s0 is
repeated in the given computation. Hence, the formula used for detecting cycle
is as follows:

Ψy = Ψv∧ (s0 ∼= s1) ∨ (s0 ∼= s2) ∨ · · · ∨ (s0 ∼= sk)

In the above formula, we use (s0 ∼= s1). One implementation of this is to require
s0 = s1. However, in certain cases, it may be sufficient to reach a state that is
similar to the initial state. Such similarity is application dependent. One example
of this is based on symmetry of processes and values.

Based on whether Ψy is satisfiable or not, we have two scenarios: SC5 and
SC6:

1. SC5 : if Ψy is satisfiable then this implies that there is a computation of the
given program that starts in state s0 and revisits state s0 without reaching
a legitimate state in between. This implies that there is a possibility that
the program may never reach a legitimate state. In other words, the given
program is not stabilizing.

2. SC6 : if Ψy is unsatisfiable then there are two possibilities: either the given
program is stabilizing and, hence, such a cycle cannot exist or the number
of steps is insufficient to create a cycle.

3.4 Combining Verification of Convergence and Cycle Detection

Depending upon the satisfiabilty of Ψv and Ψy, we have four possibilities. Con-
sidering these four possibilities, we can determine whether the given program
is stabilizing or not. We illustrate this checking process by Algorithm 1. Line 1
first constructs formula Ψvand Ψy. Then, the algorithm utilizes bounded model
checking techniques to check the satisfiability of the two formulas in the loop
starting from Line 2 and ending at Line 12. If the condition identified in Line 3 is
satisfied, the algorithm concludes that the program is stabilizing. If the condition
identified in Line 6 is satisfied, the algorithm concludes that the program is not
stabilizing. And if the condition identified in Line 9 is satisfied, the algorithm
simply increases the value of k and repeat checking the conditions identified in
Line 3, 6 and 9.

SMT-Based Model Checking for Stabilizing Programs 399

Algorithm 1. Checking Whether a Program is Stabilizing.

Input: P : program to be verified; I: set of legitimate states.
1: Construct Ψvand Ψyfor P&I.
2: for k = 1 → · · · do
3: if Ψvis unsatisfiable then
4: print given program is stabilizing.
5: end if
6: if Ψy is satisfiable then
7: print given program is not stabilizing.
8: end if

{Since Ψy ⇒ Ψl it is impossible for Ψyto be satisfiable and Ψlto be unsatisfiable.
}

9: if Ψvis satisfiable and Ψyis unsatisfiable then
10: increase the value of k;
11: end if
12: end for

Note that the above algorithm begins with k = 1. However, a better approach
is to begin with k to be the expected number of steps for convergence. Also,
the algorithm can be tuned in terms of how k is increased. Note that for finite
state program, the above program is guaranteed to terminate. For infinite state
programs, however, it may not. This is expected given that the halting problem
can be trivially reduced to verification of stabilization.

4 Experimental Results

In this section, we present our case studies. These case studies include K-state
token ring program [9] and Ghosh’s mutual exclusion program [15] and Stabiliz-
ing Tree based mutual exclusion [28]. We use the SMT solver Yices [12] to verify
the stabilization property. We note that we have also used Z3 [8]. While the ex-
act numbers associated with Z3 are different, the observations and conclusions
from this section still hold. Hence, the results for Z3 are not presented in this
paper.

4.1 K-State Token Ring Program

In this section, we first present the K-state program. Then, we present the results
for verifying the K-state program with an SMT solver. Although the algorithm
in Section 3.4 attempts different values of k to decide whether the program is
stabilizing, in this section, we only focus on the value of k for which we can
conclude that the program is stabilizing (respectively, not stabilizing). This is
due to the fact that several heuristics (e.g., analysis of the program to evaluate
expected number of steps) can be used to limit the values of k used in Section
3.4. Hence, we only focus on the value of k for which the algorithm terminates.

400 J. Chen and S. Kulkarni

The token ring program is as follows: The program consists of N+1 processes,
numbered from 0 to N . Each process p.i, 0 ≤ i ≤ N , has one variable x.i.
The domain of x.i is {0, 1, . . . , K − 1}. These processes are organized in a
unidirectional ring. The program consists of two types of actions. The first type
is for process 0. This action is enabled when x.0 equals x.N . When p.0 executes
its action, it increments x.0 by 1 in modulo K arithmetic. The second type of
action is for process p.i, i �= 0. This action is enabled when x.i is not equal to
x.(i− 1). When p.i executes its action, it copies x.(i− 1). Thus, the actions are
as follows:

K0:: x.0= x.N −→ x.0 = (x.0 + 1) mod K;
Ki:: x.i �= x.(i− 1) −→ x.i = x.(i − 1);

Remark 1. We consider three variations of this program: In the first variation,
K is set to N + 1. In the second variation, value of x is unbounded and, hence,
K0 simply increments x.0. Finally, we consider the value of K = 2 in Section 5.

Legitimate states. The state where x values of all processes is 0 is a legitimate
state. In this state, only process 0 is enabled. After process 0 is executed, x.0
is assigned 1 and all other x values are still 0. In this state, only process 1 is
enabled. Hence, it can be executed and change x.1 to 1. Continuing executing
the enabled processes further, eventually, we reach a state where all x values are
1 where process 0 is the only enabled process and process 0 will increment x.0
to 2. The legitimate states of the K-state program are equal to all the states
reached in such subsequent execution.

Performance evaluation. We evaluate the performance of the token ring pro-
gram for both bounded and unbounded setting. Tables 1 and 2 respectively
illustrate the time for verifying the closure and the convergence property for the
bounded and unbounded version of the token ring.

As we can observe, the verification time is significantly lower for unbounded
version of the token ring. In particular, for the case where x values are un-
bounded, it is possible to verify the convergence property of a ring with 5 pro-
cesses in less than a second. However, the corresponding time for program with
bounded x value is 214 seconds.

One of the reasons for this is that the bounded version utilizes a modulo
operation. One can attempt to revise the token ring program to simplify the
mod operation to gain a substantial benefit. Specifically, Table 3 considers the
case where action K0 is split into two actions: The first action executes only if
x.0 is not equal to K− 1. And, it increments the value of x.0. The second action
executes only if x.0 equals K − 1. And, it resets x.0 to 0. With this change, the
verification time for five processes reduces from 214 seconds to 33 seconds.

4.2 Ghosh’s Binary Mutual Exclusion Protocol

Our second case study is Ghosh’s binary mutual exclusion protocol [15]. This
protocol considers a program of 2m(m ≥ 2) nodes, numbered from 0 to 2m− 1.
The neighbor relation is defined as follows:

SMT-Based Model Checking for Stabilizing Programs 401

Table 1. Verification Time for Ψv for Token Ring with Unbounded Variables

Number of nodes
Number of steps
for convergence

Execution time(s)

for convergence

Execution time(s)

for closure

3 4 0.0044 0.003928
4 14 0.01229 0.004257
5 25 0.209468 0.005399
6 39 154.1079279 0.004608

Table 2. Verification Time for Ψv for Token Ring with Bounded Variables

Number of nodes state space
Number of steps
for convergence

Execution time(s)

for convergence

Execution time(s)

for closure

3 101 4 0.008944 0.005617
4 102 14 0.494496 0.005979
5 103 25 214.0957 0.013349

Table 3. Verification Time for Ψv for Token Ring with Split Actions for K0

Number of nodes State space
Number of steps
for convergence

Execution time(s)

for convergence

Execution time(s)

for closure

3 101 4 0.005855 0.005387
4 102 14 0.090116 0.006480
5 103 25 33.526028 0.006716

– n0 has one neighbor n1;
– n2i−1(1 ≤ i ≤ m− 1) has three neighbors n2i−2, n2i, and n2i+1;
– n2i(1 ≤ i ≤ m− 1) has three neighbors n2i−2, n2i−1, and n2i+1;
– n2m−1 has one neighbor n2m−2.

The state si of each node ni can be either 0 or 1. Each node can read its own
state and the state of its neighbor nodes. The protocol defines the four types of
actions as follows:

Gn0 ::
s0 �= s1 −→ s0= 1− s0;

Gn2m−1 ::
s2m−1 =s2m−2 −→ s2m−1 =1− s2m−1;

Gn2i−1(1 ≤ i ≤ m− 1) ::
s2i−2 = s2i−1 = s2i ∧ s2i−1 �= s2i+1 −→ s2i−1 =1− s2i−1;

Gn2i(1 ≤ i ≤ m− 1)::
s2i−2 = s2i−1 = s2i+1 ∧ s2i �= s2i+1 −→ s2i =1− s2i;

Performance evaluation. Table 4 gives the performance results of Ghosh’s
program. In this program, the time for verification is very small for upto 12 pro-
cesses. After this, the time for verification (along with number of steps necessary
for convergence) increases substantially.

402 J. Chen and S. Kulkarni

Table 4. Verification Results for Ghosh’s Program Using SMT Solver

Number of nodes State space
Number of steps
for convergence

Execution time(s)

for convergence

Execution time(s)

for closure

8 102 9 0.040316 0.007433
10 103 16 0.470958 0.012232
12 103 25 11.166705 0.009348
14 104 36 314.851055 0.015544

4.3 Stabilizing Tolerant Version of Tree-Based Mutual Exclusion
Algorithm

Our third case study is a stabilizing tolerant version of tree-based mutual exclu-
sion algorithm [28]. In this program, the processes are arranged in a fixed 1 tree,
called the parent tree. A holder tree is created by assigning directions to each
tree edge. We denote the holder variable for process j by h.j. Thus, for process
j, if h.j is k then this implies that j should request k for the token when it needs
it. In turn, if h.j equals j then it implies that j has the token and can access
critical section.

In this example, we only focus on actions for correcting the holder relation if
it is corrupted to an arbitrary state. We denote neighbors of each process j by
NBR.j and parent node of each proces j by prt.j. Thus, the program has three
actions. The first action ensures that the holder of a process is a tree neighbor.
The second action ensures that on any edge between j and (prt.j), either holder
of j is same as prt.j or the holder of prt.j is j. And, the third action ensures
that holder relation does not have cycles. Thus, the convergence actions of this
program are as follows:

R1 ::
h.j �= NBR.j ∪ j

−→ h.j = prt.j;
R2 ::

j �= prt.j ∧ h.j �= prt.j ∧ h.(prt.j) �= j
−→ h.j = prt.j;

R3 ::
j �= prt.j ∧ h.j = prt.j ∧ h.(prt.j) = j

−→ h.(prt.j) = prt.(prt.j);

Performance evaluation. Table 5 gives the performance results for verifying the
stabilizing tolerant version of tree-based mutual exclusion algorithm. In this
program, the time for verification is very small for upto 9 processes. After this,
the time for verification (along with number of steps necessary for convergence)
increases substantially.

1 By fixed, we mean that the parent of j (prt.j) is fixed and hard coded in the actions
themselves and, hence, cannot be corrupted.

SMT-Based Model Checking for Stabilizing Programs 403

Table 5. Verification Results for Stabilizing Tolerant Version of Tree-based Mutual
Exclusion Algorithm Using SMT Solver

Number of nodes State space
Number of steps
for convergence

Execution time(s)

for convergence

Execution time(s)

for closure

3 101 5 0.007162 0.005046
7 105 8 1.377709 0.004943
9 108 9 125.644908 0.005432

5 Verification of Token Ring in Synchronous Semantics

The computation model we considered in Definition 8 corresponds to interleaving
semantics where in each step one of the actions is executed. Another computation
model uses synchronous semantics. Here, the program actions are partitioned
into groups and for every group there is a corresponding process responsible for
executing those actions. Furthermore, in each step, every process executes one
of its enabled actions (unless it has no enabled action in that state). Since the
number of steps needed for convergence affects the verification time with SMT
solvers significantly, in this section, we consider execution of the program in
synchronous semantics and evaluate its effect on verification.

Verification of the program under synchronous semantics can assist in two
scenarios: One scenario is that one can verify the stabilization property under
synchronous semantics. In this case, the program is guaranteed to reach a legiti-
mate state under synchronous semantics. One can utilize a program that is cor-
rect under synchronous semantics and compose it with the alternator in [20]. This
alternator ensures that given a program that is stabilizing under synchronous
semantics, it transforms into a program that is correct under read/write model.
Specifically, in this case, the process in the transformed program either reads
the state of its neighbor or writes its own state. In other words, the transformed
program guarantees that it will reach a legitimate state even if one process ex-
ecutes at a time, i.e., the transformed program is stabilizing under interleaving
semantics. Hence, in this scenario, we can obtain a program that is stabilizing.
Another scenario is that one can identify a counterexample (illustrating the lack
of stabilization) for the synchronous program. This counterexample can in turn
be transformed into a counterexample for the original program.

Assisting Verification by Using Synchronous Semantics. We begin with
the first scenario. We consider the execution of the token ring protocol under syn-
chronous semantics. Results from Table 6 show the verification cost under syn-
chronous semantics. These results show that the verification under synchronous
semantics is substantially faster for both bounded and unbounded token ring. As
discussed above, this can allow us to obtain a stabilizing program that ensures
that a legitimate state is reached even if only one process executes at a time.

404 J. Chen and S. Kulkarni

Table 6. Verification Results for Token Ring under Synchronous Semantics

No.
of Nodes

Number of Steps
for Convergence

Execution time(s)

for Convergence

(for Bounded Variables)

Execution time(s)

for Convergence

(for UnBounded Variables)

3 3 0.006714 0.005945
4 5 0.049422 0.008152
5 7 0.306879 0.012003
6 9 1.150117 0.018864
7 11 11.837923 0.030548
8 13 7.741610 0.049720
9 15 18.389602 0.077605
10 17 42.7424 0.130185
11 19 789.75117 0.241754
12 21 324.921817 0.907359
17 23 N/A 22.63948

Identifying Cyclic Computations by Using Synchronous Semantics.
To illustrate the second scenario, we consider the case where the given program
works in read/write model where in each step, a process can read the state
of its neighbor or write its own state but not both. In such a program, the
variables can be partitioned into a public variables (variables that can be read
by more than one process) and private variables (variables that can be read by
only one process. Thus, in read/write model, the read action corresponds to the
case where a process reads public variable(s) of one of its neighbors and saves a
copy of it in its private variable(s). In write action, the process utilizes its own
public/private variables to update them.

Observe that if P is a program in read/write model then for each computation
of P in synchronous semantics there is a corresponding computation in inter-
leaving semantics. Intuitively, in the computation in interleaving semantics, one
transition of the program in synchronous semantics is split into several steps.
Hence, if we can find a counterexample to show that P is not stabilizing under
synchronous semantics then it implies that P is not stabilizing under interleaving
semantics either.

To exploit this observation, we consider the execution of the token ring pro-
tocol under read/write model. In this case, x.j is a public variable of process
j. The action K0 in Section 4.1 is not in read/write model since it reads x.N
and updates x.0. Read/write model requires that these two tasks be separated
into one read action (of x.N) and one write action (of x.0). To obtain the corre-
sponding program in read/write model, we introduce y.j that maintains a copy
of the x value of the predecessor. Furthermore, each action is split into a read
action to read the value of the predecessor and a write action that utilizes the
local copy. Thus, the actions of the token ring protocol in read/write model are
as follows:

SMT-Based Model Checking for Stabilizing Programs 405

K0r :: y.0 �= x.N −→ y.0 = x.N ; // read x.N
K0w :: x.0 = y.0 −→ x.0 = (x.0 + 1) mod K;
Kjr :: y.j �= x.(j − 1) −→ y.j = x.(j − 1); //read x.(j − 1)
Kjw :: x.j �= y.j −→ x.j = y.j;

It is well-known that the above protocol can be thought of as the original token
ring protocol with 2(N +1) processes, where the variables of these processes are
x.0, y.1, x.1, y.2, · · · , y.N, x.N, y.0.

Now, we consider the execution of the token ring protocol with N processes
under interleaving semantics. If we choose K = 2 this program is not stabi-
lizing. We can identify this by checking that Ψy is satisfiable when it is used
in the context of the token ring program with N processes using interleaving
semantics. Alternatively, the lack of stabilization can also be proved by consid-
ering execution of the token ring program with 2N processes under synchronous
semantics.

With this intuition, we evaluate the time for verifying satisfiability of Ψy for
different processes. Table 7 shows the verification time with interleaving and syn-
chronous semantics respectively. We observe that for 20 processes under inter-
leaving semantics, it took 40 steps to detect a cycle and the time was 100.605236.
However, the same property can also be verified under synchronous semantics
with 30 processes in 4 steps and the time was 0.040200. Moreover, as discussed
above, the latter verification suffices to conclude that the 20 process token ring
program is not stabilizing under interleaving semantics if K = 2.

Table 7. Verification Result for Cycle Detection under Interleaving/Synchronous Se-
mantics

Under Interleaving Semantics Under Synchronous Semantics
No.

of Nodes
No.

of Steps Execution time(s)
No.

of Steps Execution time(s)

10 20 0.253376 4 0.009663
20 40 100.605236 8 0.048594
30 N/A N/A 4 0.040200
50 N/A N/A 4 0.103919
100 N/A N/A 8 0.849282
200 N/A N/A 16 9.9811778

6 Related Work

Automated verification of stabilization has been studied both in the context of
theorem proving and model checking. In the context of theorem proving existing
literature includes [21,25,26]. Specifically, [21,26] focus on using theorem proving
K-State token ring protocol using the theorem prover PVS. In [25], authors
present an approach for verifying stabilizing programs via theorem proving.

406 J. Chen and S. Kulkarni

In the context of model checking, in [4, 29], the problem has been studied
with BDDs. Specifically, in [29] authors focus on modeling stabilizing programs
in SMV. In [4], authors present the tradeoff between verification of stabilization
with and without fairness.

To the best of our knowledge, ours is the first work that focuses on verification
of stabilization with the help of SMT solvers. We utilized yices [12] in present-
ing results in this paper. Several of these results were also conducted with Z3.
Although the results with Z3 are not included in this paper, the observations
from Sections 4 and 5 hold true with Z3.

Our approach for verifying stabilization is based on the use of bounded model
checking. Bounded model checking has been useful in the context of verifying
many programs [6, 7, 27]. Our work builds upon this existing work.

7 Conclusion

We investigated the effectiveness of SMT solvers in verification of stabilization
in this paper. We found that the effectivenss of SMT solvers in this context is
mixed. Specifically, compared with existing approaches [4, 29] that utilize BDD
based model checkers to verify stabilization, the time for verification is larger
with SMT solvers. However, BDD based tools require one to identify the order
of program variables in the BDD. An incorrect ordering of variables can increase
the verification time by orders of magnitude making it significantly worse than
the corresponding verification time with SMT solvers. Also, the results in [4,29]
apply only for verifying finite state programs. By contrast, the results in this
paper demonstrate the feasibility of verifying infinite state program.

We also considered execution of the given program under synchronous seman-
tics. We argued that this has a potential to reduce the cost of verification and
utilize a transformation approach to achieve a program that is stabilizing under
interleaving semantics and/or read/write model. We showed that execution un-
der synchronous semantics can reduce the time for identifying a counterexample
illustrating that the given program is not stabilizing.

References

1. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11) (1993)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: Proc. of the Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (1999)

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986)

4. Chen, J., Abujarad, F., Kulkarni, S.: Effect of Fairness in Model Checking of Self-
stabilizing Programs. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010.
LNCS, vol. 6490, pp. 135–138. Springer, Heidelberg (2010)

5. Chen, J., Kulkarni, S.: Smt-based model checking for stabilizing programs. Tech-
nical Report MSU-CSE-12-13, Computer Science and Engineering, Michigan State
University, East Lansing, Michigan (October 2012)

SMT-Based Model Checking for Stabilizing Programs 407

6. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Journal of Form. Methods Syst. Des. (2001)

7. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.Y.: Benefits of Bounded Model Checking at an Industrial Setting. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer,
Heidelberg (2001)

8. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974)

10. Dolev, S.: Self-stabilizing routing and related protocols. Journal of Parallel and
Distributed Computing 42(2) (1997)

11. Dolev, S.: Self-Stabilization. MIT Press (2000)
12. Dutertre, B., De Moura, L.: The yices smt solver. Technical report, Computer

Science Laboratory, SRI International (2006)
13. Grumberg, O., Clarke, E.M., Peled, D.A.: Model Checking. The MIT Press (2000)
14. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
15. Ghosh, S.: Binary self-stabilization in distributed systems. Information Processing

Letter 40(3) (1991)
16. Ghosh, S.: Distributed Systems: An Algorithmic Approach. CRC Press (2006)
17. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader elec-

tion. Information Processing Letters (1996)
18. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: Proceedings

of the Conference on Design, Automation and Test in Europe, DATE 2002 (2002)
19. Gouda, M.G., Multari, N.: Stabilizing communication protocols. IEEE Trans. Com-

put. 40(4), 448–458 (1991)
20. Kulkarni, S.S., Bolen, C., Oleszkiewicz, J., Robinson, A.: Alternator in read/write

model. Information Processing Letters (2005)
21. Kulkarni, S.S., Rushby, J.M., Natarajan, S.: A case-study in component-based

mechanical verification of fault-tolerant programs. In: Workshop on Self-stabilizing
System, pp. 33–40 (1999)

22. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
23. McMillan, K.L.: The smv system for smv version 2.5.4. Technical report, Carnegie

Mellon University (2000)
24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-

ing an efficient sat solver. In: Proceedings of the 38th Annual Design Automation
Conference, DAC 2001 (2001)

25. Prasetya, I.S.W.B.: Mechanically verified self-stabilizing hierarchical algorithms.
In: Proceedings of the Third International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, pp. 399–415 (1997)

26. Qadeer, S., Shankar, N.: Verifying a self-stabilizing mutual exclusion algorithm.
In: IFIP International Conference on Programming Concepts and Methods,
PROCOMET 1998 (1998)

27. Rabinovitz, I., Grumberg, O.: Bounded Model Checking of Concurrent Programs.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97.
Springer, Heidelberg (2005)

28. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems (TOCS) 7, 61–77 (1989)

29. Tsuchiya, T., Nagano, S., Paidi, R.B., Kikuno, T.: Symbolic model checking for
self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst. 12, 81–95 (2001)

Deployment and Evaluation of a Decentralised

Runtime for Concurrent Rule-Based
Programming Models

Marko Obrovac and Cédric Tedeschi

IRISA. Université de Rennes 1 / INRIA, France
{firstname.lastname}@inria.fr

Abstract. With the emergence of highly heterogeneous, dynamic and
large distributed platforms, declarative programming, whose goal is to
ease the programmer’s task by separating the control from the logic of
a computation, has regained a lot of interest recently, as a means of
programming such platforms. In particular, rule-based programming is
regarded as a promising model in this quest for adequate programming
abstractions for these platforms. However, while these models are gaining
a lot of attention, there is a demand for generic tools able to run such
models at large scale.

The chemical programming model, which was designed following the
chemical metaphor, is a rule-based programming model, with a non-
deterministic execution model, where rules are applied concurrently on a
multiset of data. In this paper, we explore the experimental side of con-
current rule-based models, by deploying a distributed chemical runtime
at large scale.

The architecture proposed combines a peer-to-peer communication
layer with an adaptive protocol for atomically capturing objects on
which rules should be applied, and an efficient termination-detection
scheme. We describe the software prototype implementing this architec-
ture. Based on its deployment over a real-world test-bed, we present
its performance results, which confirm analytically obtained complexi-
ties, and experimentally show the sustainability of such a programming
model.

1 Introduction

One challenge of distributed systems stands in finding the right abstractions to
program them. The emergence of a novel distributed computing platform calls for
adequate programming models able to simply leverage its computing capacities.
The global computing platform which is today emerging on top of the Internet
allows to interconnect a virtually infinite number of computing devices, which,
aggregated, represent a tremendous computing power. However, due to the scale,
dynamics and heterogeneity of such a platform, actually leveraging this power
remains a wide open issue.

Abstracting out the technical details of the low-level machinery of the platform
appears to be a prerequisite to actually being able to efficiently compute over it.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 408–422, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Decentralised Runtime for Rule-Based Models 409

In other words, the logic of the computation (which does not change, whatever
the underlying platform characteristics are) should be separated from its low-
level implementation.

This situation advocates the use of declarative programming [1], whose goal
is to separate the logic of a computation (“what we want to do”) from its control
(“how to achieve it”). More precisely, while the “what” is to be defined by the
programmer, the “how” becomes implicit, hidden in the system. In particular,
rule-based programming, where the logic is expressed as a set of rules, is very
attractive for parallel and distributed systems, as the parallelism and distribu-
tion, and their intrinsic difficulties, are hidden from the programmer. Recently,
some work has gone into showing how to concretely apply rule-based program-
ming to the specification of distributed systems. For instance, in [2], it has been
shown how communication protocols and peer-to-peer applications can be speci-
fied using a rule-based language. In [3], the same programming style is applied to
web-based data management. On the computing side, rule-based programming
was also used as a building block for workflow management systems [4, 5].

In this paper, we focus on the chemical programming model, which is a
chemistry-inspired rule-based model. It associates rule-based programming with
an implicitly-parallel runtime, and has been advocated as a promising paradigm
for the high-level specification of emerging platforms [6–9].

Metaphorically speaking, in such a model, a program is envisioned as a chem-
ical solution where molecules of data float and react according to some reaction
rules specifying the program, to produce new data (the products of reactions).
More formally speaking, it relies on concurrent multiset rewriting : the solution is
a multiset of objects (molecules), and reactions are rewriting rules to be applied
on it. At run time, these reactions can be triggered concurrently and reactions
are carried out until the state of inertia — a stable state in which no more
reactions are possible — has been reached. The order in which rules are to be
triggered is not specified. In other words, it is left to the implementer of the
runtime. In this area, the Higher-Order Chemical Language (HOCL) is a full-
featured rule-based language [10], providing the higher order: rules themselves
are molecules in the multiset and can be consumed or produced at runtime.
Hence, one can model programs able to evolve at run time. In HOCL, reaction
rules are of the form replace P by M if V where P is the pattern of reac-
tants, V is a condition on them and M is the product of the reaction. Note that
the applied rule itself is not deleted in the reaction. An HOCL program is a
solution of molecules, that is to say, a multiset of non-ordered atoms (A1, . . . ,
An) which can be constants (integers, booleans, etc.), sub-solutions (denoted
< Mi >), tuples (denoted M1 : M2 : · · · : Mn) or reaction rules. Let us illustrate
the paradigm with a simple HOCL program couting the characters in a multiset
of words:

let count = replace s :: string by len(s) in
let aggregate = replace x :: int, y :: int by x+ y in
< “nel”, “mezzo”, “del”, “cammin”, “di”, “nostra”, “vita”, count, aggregate >

410 M. Obrovac and C. Tedeschi

The rule count replaces a string by its length. The aggregate rule produces the
sum of two consumed integers. At run time, these rules are triggered repeatedly
and concurrently, the first one producing inputs for the second one. Note that the
order in which rules are triggered is not deterministic; only the atomic capture
of reactants is ensured. A possible succession of states is the following, the last
one being inert and “↓ ∗” denoting the concurrent application of the rules:

< “nel”, “mezzo”, “del”, “cammin”, “di”, “nostra”, “vita”, count, aggregate >
↓ ∗

< 3, 3, 4, 6, “mezzo”, “di”, “nostra”, count, aggregate >
↓ ∗

< 10, 6, 5, 2, 6, count, aggregate >
↓ ∗

< 29, count, aggregate >

1.1 Motivation Example

Let us now illustrate the model in context by providing an example of an au-
tonomic server, i.e., a server able to run in the most efficient and reliable way
given the characteristics of the targeted platform exposed above. More concretely
speaking, considering a simple task continuously requested by some clients, and
for which several implementations (or services) exist on the platform, we want to:
(1) select the best service implementation according to some predefined policy, (2)
change the optimisation policy dynamically if the criterion changes, and (3) re-
cover automatically after the failure of the service implementation currently in use.

Fig. 1. An HOCL-based autonomic
service

Figure 1 illustrates an HOCL
implementation of such a self-adaptive
service. The multiset (on the left-hand
side of the figure) interfaces with two sys-
tem components that achieve two respec-
tive tasks. The first one discovers available
service implementations able to perform
the desired task and injects them in
the solution as Si:<free cpui, net tputi>
molecules. This molecule contains an id
and a sub-solution indicating the service’s
performance. The list of indicators can

be arbitrarily extended. The second connected system service acts as a failure
detector of the currently active service (denoted by the Binding:Si molecule)
and introduces a “failure detected” molecule upon detection. Let us now review
the rules that drive the execution. First, the repair rule reacts to the presence
of the molecule indicating the current service bounded failed. Once triggered, it
binds the task to another service implementation:

let repair = replace Binding:Si, Si:<ωi>, Sj :<ωj>, “failure detected”
by Binding:Sj , Sj :< ωj >

Decentralised Runtime for Rule-Based Models 411

Let us now review an optimising rule, named optimise cpu. A reaction following
the optimise cpu rule is triggered when a service molecule Sj with a better CPU
availability is found in the multiset. This rule corresponds to the decision taken
by the system to select services based on their CPU availability:

let optimise cpu = replace Binding:Si,
Si:<free cpui, net tputi>, Sj:<free cpuj , net tputj>
by Binding:Sj ,
Si:<free cpui, net tputi>, Sj :<free cpuj , net tputj>
if (free cpuj > free cpui)

Similarly, an optimise net rule may consider the services’ network capabilities.
Having different policies brings more flexibility to the adaptation but creates the
need for dynamic switching from one to the other based on a criterion, in this
case meaning optimise cpu might have to be put aside in favour of optimise net.
This can be achieved through the higher order, using the following rule, which
is triggered when the criterion changes:

let switch to net policy = replace optimise cpu, criterion::string
by optimise net
if (criterion = “Net”)

Note that, as illustrated on Figure 1, other rules, for instance
switch to cpu policy, can be similarly constructed and introduced in the
solution concurrently. They can coexist smoothly in the solution, as the
criterion can take only one value at a time, preventing concurrent reactions
of contradictory switching rules. Finally, note that for the sake of simplicity,
the example deals with only one service. However, it can be easily extended
so as to deal with many services distributed over the nodes of a large scale
platforms, each area of the platform having its own criteria and policies changing
concurrently.

1.2 Contribution and Organisation of the Paper

Our goal is to provide a generic distributed platform dedicated to the execution
of chemical programs. We envision a high number of nodes willing to collabo-
rate, with each collaborating node equipped with an engine executing rules on
the molecules they hold. The four following issues need to be tackled: (i) commu-
nication abstraction: each node has to be able to communicate with every other
node; (ii) molecule discovery: molecules are now dispatched over the network,
meaning suitable reaction candidates have to be found efficiently in spite of the
scale of the platform; (iii) atomic capture: once the appropriate molecules have
been located, a node must grab all of them atomically, as other nodes may try to
fetch them as well at the same time; and (iv) detection of termination: to secure
the termination of a program, we need to ensure to detect the fact that no more
reactions are possible. This detection, when done in a centralised way, has a
combinatorial complexity, as every combination of molecules has to be checked

412 M. Obrovac and C. Tedeschi

against the rules (yielding m! tests for a program containing m molecules). This
suggests that relying on intelligent information retrieval techniques is mandatory
in order to circumvent the problem.

This paper builds upon the preliminary work in [11], which gave a conceptual
view of our proposal solving the four previously mentioned issues, and which is
summarised in Section 2. The resolution of the first two items highly relies on
the presence of a distributed hash table (DHT), while the resolution of the third
one relies on a recently proposed protocol to capture several objects atomically
in concurrent settings. Finally, the inertia detection is based on a second infor-
mation retrieval layer built on top of the DHT. In [11], the validation of such a
platform was only based on analysis. The present paper, in contrast, focuses on
its experimental validation. Firstly, a software prototype implementing the con-
cepts is detailed. Secondly, real deployments of chemical programs undertaken
are presented and their results are discussed. To sum up, this paper provides the
“how” of distributed concurrent rule-based programming, allowing programmers
to concentrate on the “what”.

Section 2 summarises the global architecture, its data structures and algo-
rithms. The software prototype is presented in Section 3, and the conducted
experiments are discussed in Section 4. Section 5 concludes.

2 Platform Overview

Fig. 2. The platform

We will now give a short overview of
the platform. For a complete descrip-
tion and details about the exact al-
gorithms and their complexities, we
refer the reader to [11]. The concep-
tual view of the distributed execution
platform is depicted on Figure 2. The
platform itself is built on top of an
overlay network, organising the par-
ticipants in a ring-like structure. While we have chosen to rely on Pastry [12],
DHTs with different topologies [13] could be used. The DHT assures that nodes
are able to communicate efficiently regardless of their number while preserving
the communication pattern in spite of joins, leaves and failures. An external ap-
plication holding the program to be executed may transfer it to a node of the
platform, or may itself join the execution.

The remainder of this section details the initialisation, execution and termi-
nation of a program running on this platform.

2.1 Initialisation

The node contacted by the external application is called the source node since it
represents the data’s entry point in the system. Additionally, upon termination,
the inert solution, i.e. the result, is transferred from the source node to the
external application.

Decentralised Runtime for Rule-Based Models 413

Data Distribution. After receiving the data from the application, the source
node scatters the data molecules uniformly across the system according to their
hash values, in this way globally load-balancing access to molecules. Each node
holds a subset of the program’s datamolecules with high probability, if the number
of molecules is high enough, and all of the rules, enabling a high level of parallelism
and concurrency in performing reactions. By tracing the molecules’ paths, a tree,
rooted at the source node, is created. The source node uses this multicast tree to
diffuse the rules contained in the program. Furthermore, this multicast tree will
be used during the termination phase to collect the resulting inert solution.

Fig. 3. Double layer: the key space of the
uniform layer coincides with that of the
order-preserving layer

Fig. 4. Order-preserving layer: as a
meta-molecule’s state changes, it reposi-
tions itself in the second layer

Meta-molecules. Since molecules are spread throughout the system, nodes
must be able to find suitable candidates for reactions. In order to increase the
platform’s scalability on top of the existing DHT layer (referred to as the uni-
form layer), we place a second DHT layer (referred to as the order-preserving
layer), serving a storage of meta-molecules arranged around the key space in an
order-preserving manner (Figure 3). This allows participants to use range-query
techniques [14, 15] to search for the existence of a particular molecule, or a set
thereof, during the execution phase.

Meta-molecules offer a lightweight indexing and look-up mechanism because
instead of exchanging heavier objects like molecules, nodes are able to query and
exchange only their lighter counterparts — the meta-molecules. Each molecule
is associated a state in its meta-molecule. Initially, a meta-molecule’s state is
set to free, indicating that nodes can freely take the molecule it describes and
combine it with other molecules to perform reactions. At a later stage, during
execution, a meta-molecule’s state may be set to inert, which denotes that a
suitable combination for its molecule has not been found thus far.

The order-preserving layer is split in two parts: the one containing only free
meta-molecules, within the id range [0, ks2 − 1], and the other consisting of only

inert meta-molecules, within the id range [ks2 , ks− 1], where ks is the size of the
key space. The position of a meta-molecule is based on the molecules’s value in
the total ordering of values of a specific molecule type and its state — free or
inert. As a consequence, when a meta-molecule’s state changes, its identifier is
recalculated, relocating it to the other half of the key space (Figure 4).

414 M. Obrovac and C. Tedeschi

2.2 Execution

The distributed platform presented adopts intelligent reactant searching, in
which the system is explored for molecules with specific properties matching
a rule’s pattern and condition, such as an integer greater than 3, allowing it to
efficiently detect inertia.

Algorithm 1. Main execution
loop.
1 while not inert do
2 meta mol1 = random mol(state =

free);
3 if meta mol1 = null then
4 break;

5 meta mol2 =
find candidate(meta mol1, rule);

6 if meta mol2 = null then
7 meta mol1.state = inert;
8 store(meta mol1);
9 continue;

10 if
grab molecules(meta mol1,meta mol2)
then

11 execute reaction(rule, mol1,
mol2);

12 store(new mol1, new mol2);
13 store ack(meta new mol1,

meta new mol2);
14 remove(meta mol1,

meta mol2);

The main execution loop, executed by
every node, is described in Algorithm 1.
For the sake of clarity, the algorithm is
presented in a simplified form, in which
only one rule involving a pair of molecules
is considered. Nevertheless, it is easily ex-
pandable to multiple rules and multiple
molecules per rule. It consists of three
steps: (i) getting a random meta-molecule
and testing inertia (lines 2—4), (ii) finding
a candidate it can react with (lines 5—
9) and (iii) atomically grabbing the cor-
responding molecules and performing the
reaction (lines 10—14).

Random Meta-molecule Fetch. Dur-
ing the first step, a node tries to obtain a
random meta-molecule, the state of which

is set to free. random mol guarantees a free meta-molecule will be returned, in
case one exists. If, on the other hand, no meta-molecule can be found, it means
the system could not find any candidate for the currently present molecules,
implying their states are set to inert. This signals to the requesting node that
inertia has been reached. It then stops executing the main loop (line 4).

Fig. 5. Meta-molecule
fetch example: n6 sends
a request to n2, which
propagates it in parallel

Search for Candidates. Obtaining a free meta-
molecule triggers the second execution step (lines 5—
9). The node now asks the system to find it a suitable
meta-molecule by supplying the meta-molecule found
in step one and the rule which needs to be applied on
the molecules to the find candidate routine (line 5).
This routine searches in parallel for a meta-molecule
matching the provided rule’s pattern and reaction con-
dition (Figure 5).

Molecule Capture and Reaction Execution.
Step three (lines 10—14) concludes an execution loop iteration. The node tries
to capture the molecules described by the previously obtained meta-molecules.
Given the fact that a molecule can be consumed only once, i.e. it can be used in
at most one reaction during its lifetime, it is imperative that nodes grab all of

Decentralised Runtime for Rule-Based Models 415

the molecules needed in an atomic fashion. For this task, we rely on a capture
protocol able to dynamically self-adapt in regard to the probability of conflicts
when trying to capture the molecules. As the capture is not our primary con-
cern here, we refer the reader to [16] for more information about the protocol.
If the grab molecules routine succeeds, it ensures no other node can obtain
these molecules, triggering the actual execution of the reaction, after which the
meta-molecules describing the newly created molecules are produced.

2.3 Termination

Inertia has been detected once random mol (Algorithm 1, line 2) can no longer
find a free meta-molecule in the system1. This marks the end of execution and
the beginning of the termination phase. Upon inertia detection, each node sends
its molecules back up the multicast tree, after which the source node transfers
the now inert solution to the external application.

3 Software Prototype

Following the model of the platform laid out in Section 2, we developed a fully-
functional software prototype in Java2. Figure 6 shows its logical view.

3.1 Entities

Overlay Network. The abstraction from the underlying physical network is
handled by this entity. Its main component is FreePastry [17], an open-source
DHT coded in Java and developed and maintained by the authors of Pastry.

Molecule Holder. This entity is the implementation of the uniform DHT layer
and as such it serves as a container for molecules held by the node. In order
to store, index and retrieve molecules more easily, they are grouped by their
molecule types and sorted based on their hash identifiers. The molecule holder
is contacted during the atomic capture step and is in charge of deciding whether
and to which node a molecule it holds will be given, according to the capture
protocol.

Meta-molecule Holder. Analogously, this entity represents the implemen-
tation of the order-preserving DHT layer and is, thus, a repository of meta-
molecules. It manages the insertion, retrieval and deletion of meta-molecules
requested by other nodes. Note that when a retrieval request is received, the
meta-molecule is not removed. Instead, its copy is returned to the requesting
node. Moreover, it handles random meta-molecule fetches and candidate re-
quests. If it cannot satisfy the request, it communicates with meta-molecule

1 The fact that being unable to find a free meta-molecule ensures that the inertia has
been globally reached was formally established in [11].

2 The sources are available in the branches/devel-distrib directory of the svn repository
located at http://gforge.inria.fr/scm/?group id=2125.

416 M. Obrovac and C. Tedeschi

holders on other nodes to complete it, as specified by the algorithm devised
previously.

Tree Manager. The multicast tree created during the initialisation phase is
constructed by this entity. It maintains the node’s local state (consisting of its
parent and children) and uses it to spread the rules down the tree and to send
its and its children’s remaining molecules to its parent.

Central Unit. This is the main entity in the prototype. It communicates with
the application (taking the program to execute from it and returning the inert
result to it) and executes the main execution loop (Algorithm 1).

3.2 Execution Cycle

Initialisation. A first step is for the application to transfer the program to
execute to the central unit. It then hashes the molecules and dispatches them to
the overlay network, which spreads them in the uniform layer. During this period,
the tree manager monitors the overlay network traffic and when it stumbles upon
a molecule, it adds the destination node to its local state. Once the molecules
have been disseminated, the central unit hands the rules over to the tree manager,
which sends them to its children in the local state.

On the receiving end, when a node receives a molecule, it stores it in the
molecule holder. This entity creates a meta-molecule for each held molecule and
routes it in the order-preserving layer through the overlay network. The node
then receives the rules to execute, upon which the tree manager completes its
local state by assigning the node’s parent in the tree (the node which has sent
it the rules). Now the nodes are ready to start the execution.

Fig. 6. Logical view of the entities
forming the prototype

Execution. At this point, the central
unit on each node starts the main ex-
ecution loop. It asks the meta-molecule
holder to find it a random meta-molecule
in the network. A rule is randomly cho-
sen from which the type of one of its re-
actants is extracted. The meta-molecule
holder then sends out requests in the free
half of the order-preserving layer to find
such a meta-molecule. This process is re-
peated for each rule until a meta-molecule
has been returned. Then, the central unit
translates the pair (rule, meta− molecule) into a range query request by in-
jecting the meta-molecule’s identifier in the rule. The request is, again, handed
over to the meta-molecule holder which tries to find a candidate meta-molecule
satisfying the range query in the order-preserving layer. The process of search-
ing for a candidate is repeated for as many reactants the rule needs, each time
introducing the newly acquired meta-molecule into the rule and constructing a
new range query for the next candidate to be located. If the candidates cannot

Decentralised Runtime for Rule-Based Models 417

be found, a delete request is sent to the random meta-molecule’s holder. Its state
is then changed to inert (changing its identifier) and stored in the second DHT
layer.

Following Algorithm 1, the final step of the execution phase consists in grab-
bing atomically the molecules and performing the reaction. For capturing the
molecules, the capture protocol in [16] was implemented. In this protocol, the
central unit plays the role of the molecule requester. It extracts the identifiers of
the molecules to grab and sends the fetch requests to the corresponding nodes.
Their molecule holders then evaluate each its own request and decide whether
to send back the molecules. Only in case all of the molecules have been received
the node performs the reaction. Then, as per Algorithm 1, the products of the
reaction and their meta-molecules are stored in the DHT (each in their respec-
tive layer) and delete requests for the consumed molecules’ meta-molecules are
sent.

Termination. Once there are no more free meta-molecules in the order-
preserving layer, the nodes enter the final, termination step of the execution.
A node starts this phase when its meta-molecule holder is not able to find a ran-
dom meta-molecule. At that point, the tree manager awaits the node’s children’s
molecules. These are then combined with the molecules held by the molecule
holder and sent to the parent up the tree. Finally, the central unit of the source
node delivers the inert solution to the requesting application.

3.3 Optimisations

Even though the prototype follows the description of the system model dis-
cussed in earlier sections, it carries two slight improvements dealing with local
meta-molecule search and meta-molecule retrieval. Both of the enhancements
are implemented in the meta-molecule holder.

The first optimisation exploits the principle of locality: whenever the central
unit requests a meta-molecule, the meta-molecule holder first checks whether it
can satisfy the request right away without querying other nodes. This method
is applied to both random meta-molecule and candidate search requests. At the
beginning of the execution, nodes which are located in the free half of the key
space will be able to benefit directly from it, seeing that during that time most
of the meta-molecules’ states are set to free, enabling nodes to pick a random
meta-molecule from their local meta-molecule holders. Towards the end of the
execution, on the other hand, nodes located in the other half of the key space
can benefit from the principle during the candidate search step, since most meta-
molecules will be labelled as inert at that point.

The second improvement is introducing a small decision-making mechanism
into the meta-molecule holder. Whenever it receives a retrieval request, it tries
to return the meta-molecule closest to the requested identifier. It is thus possible
for the same meta-molecule to be sent to more than one node. Even though the
capture protocol assures a molecule is going to be consumed in only one reaction,
giving the same meta-molecule to different nodes generates superfluous network

418 M. Obrovac and C. Tedeschi

traffic as some grab requests will be aborted. Therefore, the meta-molecule holder
keeps track of the number of times each meta-molecule has been handed out to
nodes. Doing so, it is able to return the meta-molecule which satisfies the request
criteria but has been handed out less times than other meta-molecules. Such a
slight refinement ultimately minimises the number of conflicts between nodes
over molecules and consequently the network overhead due to capture aborts.

4 Evaluation

In this section we present the evaluation of the software prototype described
above. To better capture the viability of the proposed platform we tested it on
two programs with different properties. They are presented in Section 4.1, while
the results obtained are detailed in Section 4.2.

4.1 Test Programs

We present now two distinct classes of programs on which we tested the proposed
platform: highly-parallel and producer/consumer ones.

Highly-Parallel Programs. In such applications, the same operation is ap-
plied to the whole of the input data. It is thus interesting to investigate the
behaviour of a decentralised execution environment when faced with such pro-
grams. We chose to represent them with GetMax. It is a simple single-rule pro-
gram containing only integer molecules. The rule consumes two such molecules
and produces a new one holding the higher value of the two. In addition to being
highly parallel, this program resembles most data-processing applications, where
multiple input variables are processed to give an output.

From the point of view of the execution of chemical programs, the interest of
GetMax stands in that it represents a program with a decreasing complexity —
the number of molecules declines with every reaction. Furthermore, regardless
of the course of the execution the total number of reactions performed during
its execution is always constant.

Producer/Consumer Programs. The second category of applications is the
producer/consumer one, whose interest stands in that it imposes the sequential-
ity of events — a producer has to produce the input for the consumer — on an
implicitly parallel paradigm executing in decentralised settings. While highly-
parallel programs designate data-processing applications, producer/consumer
ones can be seen as their temporal compositions — workflows.

The experiments were conducted with StringManip — a program comprised
of two rules manipulating string molecules. The logic of StringManip consists in
splitting and packing together string molecules in such a way that the resulting
string molecules have a predefined length, denoted λ. The first rule, SplitStr,
consumes one molecule whose string’s length is greater than λ and produces two
molecules; one is composed of the first λ characters of the original molecule’s

Decentralised Runtime for Rule-Based Models 419

string, while the other contains its remainder. The second rule, ConcatStr, takes
two molecules as input and outputs one which is their concatenation. Thus,
SplitStr produces the molecules which are going to be consumed by ConcatStr.

The course of the execution of StringManip, as well its outcome, is non-
deterministic. While it is known that at the end of the execution the molecules’
strings are going to have a length of λ, their contents depend on the succession
of reactions performed by the system, which is influenced by the asynchronous
nature of the platform. In other words, the outcome is conditioned by the re-
actions performed by each node, their input molecules, and the order in which
they actually take place. Hence, the number of reactions done throughout the
execution varies from run to run. Furthermore, the two rules are circularly de-
pendent on each other — ConcatStr might produce molecules which are going
to be consumed by SplitStr —, in this way bringing a partial sequentiality into
the program.

4.2 Experimental Results

We conducted experiments using Grid’50003, the French national grid test-bed.
The nodes were spread across nine geographically-distant sites. Each experiment
was run ten times, and here we present the average of the values obtained. For
every run the nodes were randomly chosen to obtain different network topologies.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 100 200 300 400 500 600 700 800 900 1000

Ex
e

c
u

tio
n

 t
im

e
 (

s)

Number of nodes

GetMax

Fig. 7. Execution time of GetMax contain-
ing 50, 000 molecules

 110

 120

 130

 140

 150

 160

 170

 180

 190

 100 200 300 400 500 600 700 800 900 1000

Ex
e

c
u

tio
n

 t
im

e
 (

s)

Number of nodes

StringManip

Fig. 8. Execution time of StringManip

with 20, 000 molecules

Experiment 1. Firstly, we evaluated the viability of the platform by execut-
ing the two programs while varying the number of nodes participating in the
execution. Figures 7 and 8 show the execution times obtained for GetMax and
StringManip, respectively.

In both cases there is a decrease in execution time when increasing the number
of nodes carrying out the computation, which is in compliance with the results
of the complexity analysis in [11]. Moreover, significant speed-ups were obtained.
However, one can notice that the speed-up obtained for GetMax is greater than

3 http://www.grid5000.fr

420 M. Obrovac and C. Tedeschi

that for StringManip. This is due to the difference of the programs’ characteris-
tics. On the one hand, the number of molecules in the system strictly decreases
after each reaction when executing the GetMax program, while the trend is not
known for StringManip — it may stay constant, decrease or increase. On the
other, the execution time of StringManip depends on the sequentiality of events:
certain reactions cannot be carried out before others are. In contrast, GetMax is
a highly-parallel program where the maximum possible number of reactions can
be performed in any given point in time. Finally, the execution takes more time
to complete for 1000 nodes than for 750 when executing StringManip. This is
the result of the program’s sequentiality: more nodes are in conflict over a subset
molecules since not all available molecules can be used straight away, in this way
prolonging the execution.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r o

f
m

e
ss

a
g

e
s

(x
10

6)

Number of nodes

GetMax

Fig. 9. Number of messages sent during
the execution of GetMax

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r o

f
m

e
ss

a
g

e
s

(x
10

6)

Number of nodes

StringManip

Fig. 10. Number of messages sent during
the execution of StringManip

Experiment 2. During the execution of the programs we also monitored the
generated network traffic. Figures 9 and 10 depict the total number of messages
sent. Note that the number of messages in the case of GetMax is higher than
that of StringManip due to the fact that there are more molecules in the initial
solution of GetMax. Both of them show a linear augmentation in the number of
messages, which conforms to the findings of the complexity analysis. We can see,
however, that the curve for GetMax is steeper than that of StringManip. This is
due to the fact that, because of the constant number of reactions, when there are
more nodes involved in the computation there are more conflicts over molecules
during the capture phase. In spite of this effect, one can notice that the actual
number of messages per node declines with the growth of the network, which
leads to the conclusion that the platform is scalable in terms of network load.
We can thus conclude that the platform scales well.

Experiment 3. In this experiment we fixed the number of nodes to 500 while
varying the number of molecules contained in the GetMax program. Figure 11
shows that the execution time linearly grows with the increase of the size of the
problem. The same effect can be observed when looking at the network traffic,
depicted in Figure 12. Both figures confirm the analysis’ findings: the system is

Decentralised Runtime for Rule-Based Models 421

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 10 20 30 40 50 60 70 80 90 100

Ex
e

c
u

tio
n

 t
im

e
 (

s)

Number of molecules (x1000)

GetMax

Fig. 11. Execution time of
GetMax on 500 nodes

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r o

f
m

e
ss

a
g

e
s

(x
10

6)

Number of molecules (x1000)

GetMax

Fig. 12. Number of mes-
sages (GetMax)

 140

 160

 180

 200

 220

 240

 260

 280

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r o

f
m

e
ss

a
g

e
s

p
e

r r
e

a
c

tio
n

Number of molecules (x1000)

GetMax

Fig. 13. Number of mes-
sages per reaction (GetMax)

scalable with regard to the size of the problem to be solved (i.e. the number of
molecules). It is interesting to note that the number of messages needed to per-
form one reaction, illustrated in Figure 13, decreases. Indeed, when the number
of molecules increases while keeping the number of nodes constant, there are less
conflicts between nodes over molecules, and thus less communication is needed
to carry out a reaction.

5 Conclusion

Declarative programming has been recently identified as a promising, high-
level model to develop distributed systems in a simple manner. However, this
calls for mechanisms able to make it real over large scale platforms. In the
area of declarative programming, concurrent rule-based programming (and its
chemistry-inspired representative) appears to offer an adequate level of abstrac-
tions in different areas of distributed computing.

Thus, the large-scale execution of chemical programs has to be tackled in or-
der to put the attractive characteristics of declarative programming into practice
over large scale platforms. Note that previous works attempting at running the
chemical model at large scale only considered some specific parallel architec-
tures [18–20]. More information about these works can be found in [11].

This paper proposes a generic framework to solve this issue over a distributed
platform. On top of a two-layer DHT, the framework relies on two distributed
protocols, the first one capturing molecules in a highly concurrent system, the
second one efficiently detecting inertia. These concepts have been used to im-
plement a software prototype, which was tested on a real-world test-bed. The
experiments conducted corroborate the findings of the theoretical analysis about
the sustainability of the proposed execution runtime.

References

1. Lloyd, J.W.: Practical advtanages of declarative programming. In: Joint Confer-
ence on Declarative Programming (GULP-PRODE 1994), pp. 18–30 (1994)

2. Grumbach, S., Wang, F.: Netlog, a Rule-Based Language for Distributed Program-
ming. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 88–103.
Springer, Heidelberg (2010)

422 M. Obrovac and C. Tedeschi

3. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, E.: A rule-based language for
web data management. In: Proceedings of the Thirtieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2011, pp. 293–304.
ACM, New York (2011)

4. Wang, Y., Li, M., Cao, J., Tang, F., Chen, L., Cao, L.: An ECA-Rule-Based Work-
flow Management Approach for Web Services Composition. In: Zhuge, H., Fox,
G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp. 143–148. Springer, Heidelberg (2005)

5. Laliwala, Z., Khosla, R., Majumdar, P., Chaudhary, S.: Semantic and rules based
Event-Driven dynamic web services composition for automation of business pro-
cesses. In: Services Computing Workshops, SCW 2006, pp. 175–182. IEEE (2006)

6. Banâtre, J.-P., Radenac, Y., Fradet, P.: Chemical specification of autonomic sys-
tems. In: 13th ISCA International Conference on Intelligent and Adaptive Systems
and Software Engineering, pp. 72–79 (2004)

7. Fernandez, H., Priol, T., Tedeschi, C.: Decentralized Approach for Execution of
Composite Web Services Using the Chemical Paradigm. In: 17th IEEE Interna-
tional Conference on Web Services (2010)

8. Mostefaoui, A.: Towards a Computing Model for Open Distributed Systems. In:
Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 74–79. Springer, Heidel-
berg (2007)

9. Di Napoli, C., Giordano, M., Pazat, J.-L., Wang, C.: A Chemical Based Middleware
for Workflow Instantiation and Execution. In: Di Nitto, E., Yahyapour, R. (eds.)
ServiceWave 2010. LNCS, vol. 6481, pp. 100–111. Springer, Heidelberg (2010)

10. Banâtre, J.-P., Fradet, P., Radenac, Y.: Generalised Multisets for Chemical Pro-
gramming. Mathematical Structures in Computer Science 16 (2006)

11. Obrovac, M., Tedeschi, C.: When Distributed Hash Tables Meet Chemical Pro-
gramming for Autonomic Computing. In: 15th International Workshop on Nature
Inspired Distributed Computing (NIDisC 2012), in conjunction with IPDPS 2012,
May 21. IEEE, Shanghai (to appear, 2012)

12. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

13. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer-to-peer computing (2002)

14. Candan, K., Tatemura, J., Agrawal, D., Cavendish, D.: On overlay schemes to
support point-in-range queries for scalable grid resource discovery. In: Fifth IEEE
International Conference on Peer-to-Peer Computing, P2P 2005 (2005)

15. Schmidt, C., Parashar, M.: Squid: Enabling search in DHT-based systems. Journal
of Parallel and Distributed Computing 68(7) (2008)

16. Bertier, M., Obrovac, M., Tedeschi, C.: A Protocol for the Atomic Capture of Mul-
tiple Molecules on Large Scale Platforms. In: Bononi, L., Datta, A.K., Devismes,
S., Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129, pp. 1–15. Springer, Heidelberg
(2012)

17. Freepastry (June 2012), http://www.freepastry.org
18. Huang, L., Tong, W., Kam, W., Sun, Y.: Implementation of GAMMA on a Mas-

sively Parallel Computer. Journal of Computer Science and Technology 12 (1997)
19. Lin, H., Kemp, J., Gilbert, P.: Computing Gamma Calculus on Computer Cluster.

International Journal of Training and Development 1(4) (2010)
20. Gladitz, K., Kuchen, H.: Shared memory implementation of the Gamma-operation.

Journal of Symbolic Computation 21(4-6), 4–6 (1996)

http://www.freepastry.org

Weak Read/Write Registers

Gadi Taubenfeld

The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract. In [2], Lamport has defined three classes of shared registers which
support read and write operations, called —safe, regular and atomic—depending
on their properties when several reads and/or writes are executed concurrently.
We consider generalizations of Lamport’s notions, called k-safe, k-regular and
k-atomic. First, we provide constructions for implementing 1-atomic registers
(the strongest type) in terms of k-safe registers (the weakest type). Then, we
demonstrate how the constructions enable to easily and efficiently solve classi-
cal synchronization problems, such as mutual exclusion and �-exclusion, using
single-writer multi-reader k-safe bits, for any k ≥ 1. We also explain how, by us-
ing k-registers, it is possible to provide some level of resiliency against memory
reordering.

Keywords: k-safe, k-regular and k-atomic registers, shared memory, memory
ordering, memory barriers, synchronization, mutual exclusion, �-exclusion.

1 Introduction

It is common to assume that operations on the same memory location are atomic –
they occur in some definite order. However, this assumption can be relaxed allowing
the possibility of concurrent operation on the same memory location. In [2], Lamport
has defined three classes of shared registers which support read and write operations,
called —safe, regular and atomic—depending on their properties when several reads
and/or writes are executed concurrently. Below we consider natural generalizations of
Lamport’s notions, motivate their use and investigate their properties. Unless otherwise
stated, it is assumed that each register is a single-writer multi-reader register. Such a
register can be written by one predefined process and can be read by all the processes.
Let k be a positive integer.

– The weakest possibility is a k-safe register, in which it is assumed that a read not
concurrent with any write obtains one of the k most recently written values. No
assumption is made about the value obtained by a read that overlaps a write, except
that it must obtain one of the possible values of the register. We consider the initial
value as the first written value.

– The next stronger possibility is a k-regular register, in which it is assumed that
a read not concurrent with any write obtains one of the k most recently written
values. A read that overlaps a write obtains either the new value or one of the
k most recently written values. That is, a read that overlaps any series of writes
obtains either one of the values being written or one of the k most recently written
values before the first of the writes.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 423–427, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

424 G. Taubenfeld

– The final possibility is a k-atomic register, in which the reads and writes behave as
if they occur in some definite order, and a read obtains one of the k most recently
written values. In other words, for any execution, there is some way of totally order-
ing the overlapping reads and writes so that the value returned by the each read is
one of the k most recently written values in the execution which has no overlapping.
(Operations that do not overlap should take effect in their “real-time” order.)

We observe that Lamport’s familiar notions of safe, regular and atomic registers are
equivalent to the notions of 1-safe, 1-regular and 1-atomic registers, respectively. We
will use the notion k-register as an abbreviation for k-safe, k-regular and k-atomic
registers, when the exact type of a register is not important.

Our study is of both theoretical and practical interest. Various optimizations enable
reordering memory references as it allows much better performance. When a correct
operation depends on ordered memory references, memory barriers are used to prevent
reordering. Memory barriers are required to enable good performance and scalability.
The reason for that is the fact that CPUs are orders of magnitude faster than are both
the interconnects between them and the memory they are attempting to access [3].

Without using memory barriers, as a result of reordering, a read from an atomic
register may obtain some older value when compared to the value this read would return
in the in order execution of the original program code. Suppose that in some setting
where reordering is possible, a read may obtain, in the worst case, one of the 5 most
recently written values when compared to the value it would return in the in order
execution. In such a case, no harm done, if the program which uses 1-atomic registers,
was designed in the first place to work correctly assuming that communication is done
via 5-atomic registers.

Consider the following design strategy: Design your algorithms to be correct when
k-atomic registers are used for some k > 1. Now replace the k-atomic registers with
the stronger 1-atomic registers. In such algorithms the use of memory barriers may not
be necessary in some cases, even when reordering is possible. Thus, there is a tradeoff
between the number of memory barriers needed to ensure correctness and the type of
k-registers used. Put another way, proving correctness w.r.t. k-registers while actually
using 1-registers provides some level of resiliency against memory reordering. Finding
the exact level of resiliency provided using such a design strategy, as a function of k, is
an interesting research topic which is not covered in this paper.

Our results are about computability and complexity of using k-registers. We show
that for any k ≥ 1, k-safe registers and 1-atomic registers have the same computational
power. More precisely, it is possible to wait-free implement multi-writer multi-reader
multi-valued 1-atomic registers using single-writer single-reader k-safe bits, for any
k ≥ 1. We present simple and efficient constructions that enable to easily and efficiently
solve classical synchronization problems, such as mutual exclusion and �-exclusion [4],
using single-writer multi-reader k-safe registers, for any k ≥ 1.

2 Preliminaries

We focus on an architecture in whichn processes, denoted p1, ..., pn, communicate asyn-
chronously via shared registers. A register can be either a single-writer single-reader

Weak Read/Write Registers 425

(SWSR) register, a single-writer multi-reader (SWMR) register or a multi-writer multi-
reader (MWMR) register. Unless explicitly stated, we assume that a register is a SWMR
register. Asynchrony means that there is no assumption on the relative speeds of the pro-
cesses. Processes may fail by crashing, which means that a failed process stops taking
steps forever. We require that the constructions presented in this paper satisfy the wait-
freedom progress condition. Wait-freedom guarantees that every process will always be
able to complete its pending operations in a finite number of its own steps.

3 The Constructions

We present two constructions of registers, by indicating how write operations and read
operations are performed. The first construction implements a single-writer multi-reader
multi-valued k-safe, k-regular or (k+1)-atomic register, denoted r, from single-writer
single-reader multi-valued k-safe, k-regular or k-atomic registers, respectively.

Construction 1. Let k be an arbitrary natural number, and let r1, ..., rn be SWSR
multi-valued k-registers, where each ri (i ∈ {1, ..., n}) can be written by the same sin-
gle process and read by process pi. We construct a SWMR multi-valued k-register r as
follows:

– The write operation r := value is performed as follows: for i = 1 to n do ri :=
value;

– The read operation of r by process pi is performed by letting pi read the value of
ri.

The above construction is similar to Construction 1 from [2] which was designed for
1-registers. We prove the following theorem for the general case of k-registers.

Theorem 1. The following claims are correct w.r.t. Construction 1, for any k ≥ 1,

1. If r1, ..., rn are SWSR k-safe registers or r1, ..., rn are SWSR k-regular registers
then r is a SWMR k-safe register or a SWMR k-regular register, respectively.

2. If r1, ..., rn are SWSR k-atomic registers then r is a SWMR (k+1)-atomic register.
3. If r1, ..., rn are SWSR k-atomic registers then r is not a SWMR k-atomic register.

Proof. A read of r by process pi that does not overlap a write of r, also does not overlap
a write of ri. If ri is k-register (i.e., if ri is k-safe, k-regular or k-atomic), then this read
must obtain one of the k most recently written values into r. This is enough to show
that if ri is k-safe then r is k-safe. If a read of ri by process pi overlaps a write of ri,
then it overlaps a write of the same value to r. In such a case, if ri is k-regular then
this read must obtain either the last value written or one of the k most recently written
values into ri (and hence into r). This implies that if ri is k-regular then r is k-regular.

Now, assume that ri is k-atomic, and that a read of ri by process pi overlaps a write
of the value v into r. Then (1) if v was already written into ri, this read must obtain
either the value v or one of the k−1 most recently written values into ri before v; or (2)
if v was not written into ri yet, this read must one of the k most recently written values
into ri. Since the linearization point of write of v into r might be before the linearization

426 G. Taubenfeld

point of the read of v, in both cases above, the returned value is one of the k + 1 most
recently written values into r. This implies that if ri is a SWSR k-atomic register then
r is a SWMR k + 1-atomic register.

Assume that r1, ..., rn are k-registers. If a read of r by two different processes pi and
pj both overlap the same write of value v into r, it is possible for pi to get the new value
v and for pj to get the kth written value into r before the value v was written. This is
possible even in the case where the read by pi precedes the read by pj . This possibility
is not allowed by a k-atomic register. Thus, r is not a k-atomic register. ��
The second construction implements a SWMR multi-valued 1-safe or 1-regular register
from SWMR multi-valued k-safe or k-regular registers, respectively.

Construction 2. Let k be an arbitrary natural number, and let r′ be a SWMR multi-
valued k-registers. We construct a SWMR multi-valued 1-register r as follows:

– The write operation r := value is performed as follows: for i = 1 to k do r′ :=
value;

– The read operation of r by process p is performed by letting p read the value of r′.

Theorem 2. The following claims are correct w.r.t. Construction 2, for any k ≥ 1,

1. If r′ is a SWMR k-safe register or a SWMR k-regular register then r is a SWMR
1-safe register or a SWMR 1-regular register, respectively.

2. If r′ is a SWMR k-atomic register then r is not a SWMR 1-atomic register.

Proof. A read of r by process p that does not overlap a write of r, also does not overlap
any of the latest k writes of r′. Thus, all the k most recently written values into r′ are
identical and equal the most recent value written into r′. Since r′ is k-register, in the
case of no overlap, a read of r must obtain one of the k most recently written values
into r′, and thus it must obtain the most recent value written into r′. This is enough to
show that if r′ is k-safe then r is 1-safe.

If a read of r′ by process p overlaps a write of r′, then it overlaps a write of the same
value to r. In such a case, if r′ is k-regular then this read must obtain either the new
value or one of the k most recently written values into r′ (and hence into r). However,
since each value is written k times, each of the k most recently written values equals
either the new value or the most recent value written before the new value. This implies
that if r′ is k-regular then r is 1-regular.

We have assumed that r′ is a k-register. Thus, during a write of r, the k most recently
written values into r′ equals either the new value or the most recent value written before
the new value. If a read of r by two different processes pi and pj both overlap the same
write of value v into r, it is possible for pi to get the new value v and pj the old value.
This is possible even in the case where the read by pi precedes the read by pj . This
possibility is not allowed by a 1-atomic register. Thus, r is not a 1-atomic register. ��
We notice that Construction 2 can be used for implementing a 2-atomic register from
k-atomic registers. It would be interesting to find a similar simple and efficient con-
struction also for implementing 1-atomic register from k-atomic registers.

Theorem 3. It is possible to construct a MWMR 1-atomic register using SWSR k-safe
bits.

Weak Read/Write Registers 427

Proof. It follows immediately from Construction 1 and Construction 2 that it is possible
to implement a SWMR 1-safe bit using SWSR k-safe bits. A well known result is that it
is possible to implement a MWMR multi-valued 1-atomic register from SWMR 1-safe
bits (see Chapter 4 of [1]). The result follows. ��
The known constructions of a MWMR multi-valued 1-atomic register from SWMR 1-
safe bits, are complicated and are not practically useful for transforming algorithms that
use strong type of registers into algorithms that use weak type of registers.

4 Algorithms Using k-Safe Bits

There are several classical synchronization algorithms that only use SWMR 1-safe reg-
isters, for interprocess communication [4]. Using Construction 2, such algorithms can
be easily and efficiently modified to use only k-safe registers, for any k ≥ 1. In the full
version of the paper ([5]), we demonstrate how this idea is used for solving the mutual
problem and the �-exclusion problem, using SWMR k-safe registers, for any k ≥ 1.

5 Discussion

We have introduced the new notions of k-safe, k-regular and k-atomic registers, and
showed how to implement 1-atomic registers (the strongest type) in terms of k-safe
registers (the weakest type). We presented simple and efficient constructions that en-
abled us to solve classical synchronization problems, such as mutual exclusion and
�-exclusion, using single-writer multi-reader k-safe bits, for any k ≥ 1. On most mod-
ern microprocessors memory operations are not executed in the order specified by the
program code. Memory reordering is used to fully utilize the different caches installed
in such machines. Using k-registers provides some level of resiliency against memory
reordering. The idea is to design an algorithm using k-registers and then (after proving
its correctness w.r.t. the k-registers) to replace the k-registers with 1-registers. During
run time, as a result of memory reordering, the 1-registers may exhibit a behavior of
k-registers (w.r.t. the in order execution of the original program code), but that should
not cause a problem as the algorithm was designed in advance to be correct when us-
ing k-registers. Exploring how the use of weak objects (like k-registers) can provide
some level of resiliency against memory reordering and reduce the number of memory
barriers required, is an interesting research topic.

References

1. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, 508 pages. Morgan Kauf-
mann Publishers (2008)

2. Lamport, L.: On interprocess communication, parts I and II. Distributed Computing 1(2),
77–101 (1986)

3. Mckenney, P.E.: Memory barriers: a hardware view for software hackers (2009)
4. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming, 423 pages.

Pearson/Prentice-Hall (2006) ISBN 0-131-97259-6
5. Taubenfeld, G.: Weak read/write registers (2012), The full version is avaliable at

http://www.faculty.idc.ac.il/gadi/Publications.htm

http://www.faculty.idc.ac.il/gadi/Publications.htm

Fast Leader (Full) Recovery Despite Dynamic Faults�

Ajoy K. Datta1, Stéphane Devismes2, Lawrence L. Larmore1, and Sébastien Tixeuil3

1 Department of Computer Science, UNLV, USA
{Firstname.Lastname}@unlv.edu

2 VERIMAG, Université de Grenoble, France
Stephane.Devismes@imag.fr

3 LIP6, UPMC Sorbonne Universités & Inria, France
Sebastien.Tixeuil@lip6.fr

Abstract. We give a leader recovery protocol that recovers a legitimate configu-
ration where a single leader exists, after at most k arbitrary memory corruptions
hit the system. That is, if a leader is elected before state corruptions, the same
leader is elected after recovery. Our protocol works in any anonymous bidirec-
tional, yet oriented, ring of size n, and does not require that processes know n,
although the knowledge of k is assumed. If n ≥ 18k + 1, our protocol recov-
ers the leader in O(k2) rounds using O(log k) bits per process, assuming unfair
scheduling. Our protocol handles dynamic faults in the sense that memory cor-
ruption may still occur while the network has started recovering the leader.

1 Introduction

Self-stabilization [1] is often regarded as a strong forward recovery mechanism that
recovers from any transient failure. Informally, a self-stabilizing protocol is able to
recover correct behavior in finite time after arbitrary faults and attacks placed the sys-
tem in some arbitrary initial state. Its generality comes at a price: extra memory could
be needed in order to crosscheck inconsistencies; symmetries occurring in the initial
state could cause a given problem (e.g. leader election or mutual exclusion) to be
impossible to solve deterministically, and when few faults hit the network, “classic”
self-stabilization does not generally guarantee a smaller recovery time.

The intuition that when few faults hit the system, it should be possible to impose
more stringent constraints on the recovery than just a basic “eventual” correctness has
proven to be a fertile area in recent research [2–5]. Defining the number of faults hitting
a network using some kind of Hamming distance,1 variants of the self-stabilization
paradigm have been given, e.g., k-stabilization [2] guarantees that the system recovers
when the initial configuration is at distance at most k from a legitimate configuration.
This notion is weaker than self-stabilization, as this latter permits recovering from any
configuration. In the literature, weakened forms of self-stabilization have been used
for (1) circumventing impossibility results in self-stabilization (e.g. deterministic leader
election or recovery in anonymous networks) and (2) obtaining recovery times that only

� See www-verimag.imag.fr/Technical-Reports,264.html?lang=en&
number=TR-2012-18 for the full version.

1 The minimal number of processes whose state must be changed to recover a correct
configuration.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 428–433, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

file:www-verimag.imag.fr/Technical-Reports,264.html?lang=en\&number=TR-2012-18
file:www-verimag.imag.fr/Technical-Reports,264.html?lang=en\&number=TR-2012-18

Fast Leader Recovery 429

depend on the number of faults k (as opposed to n or D, the network size or diameter).
The algorithm given here recovers in O(k2) rounds, and satisfies both conditions.

The concept of only-k-dependent recovery time has been refined under the name of
time adaptivity (or fault locality) [3–5], when the recovery time depends on the actual
distance f to a legitimate configuration in the initial state. Initial work on time adaptivity
required the initial distance to be not greater than k (that is, they are k-stabilizing),
but the latest work [3] does not have this limitation and is thus also self-stabilizing.
However, it is important to note that it distinguishes between “output” stabilization
(which considers only the output variables of each process that are mentioned in the
problem specification) and the “state” stabilization (which considers the global state,
i.e., all variables used by the protocol). In all aforementioned work, only the output is
corrected quickly (that is, depending on f or k), while the global state is recovered more
slowly (that is, the recover time depends on D or n). Output vs. state stabilization has
an important practical consequence: if a new fault occurs after output stabilization yet
before state stabilization, output complexity guarantees are not maintained after the new
fault. For networks that are subject to intermittent failures, protocols should strive to
provide state stabilization. As a consequence, the “fault gap” (defined as the minimum
time between consecutive faults that can be handled by the protocol [6]) remains large.

The problem of correcting global states quickly using self-stabilizing algorithms was
investigated for the purpose of fault containment [6–9] (that is, preventing local memory
corruptions from propagating to the whole network). The state of the art in this matter
nevertheless requires that only a single process is corrupted [6], faulty processes are
surrounded by many correct ones so that few faults can be caught quickly [8], the net-
work is fully synchronous [7], or that the recovery guarantee is only probabilistic [9].
The “fault gap” that results from those approaches is significantly reduced, as only a
delay that depends on the fault span must separate consecutive faults.

Our Contribution. We give a leader recovery protocol, LE(k), that recovers a legiti-
mate configuration where a single leader exists, after at most k arbitrary memory cor-
ruptions hit the system. That is, if a leader is elected before state corruption, the same
leader is elected after recovery. Our protocol works for an anonymous bidirectional,
yet oriented, ring of size n, and does not require that processes know n, although the
knowledge of k is assumed. If n ≥ 18k + 1, our protocol recovers the leader in O(k2)
rounds using O(log k) bits per process, assuming unfair scheduling.

With respect to “output stabilization”, our protocol recovers the full correct state
quickly (O(k2) rounds). With respect to fault-containment, LE(k) can handle up to
k faults, faults can be arbitrarily spread, the network is fully asynchronous, and the
scheduling is unfair, and finally the recovery property is deterministic.

LE(k) also exhibits an interesting property with respect to the “fault gap” metric.
In our approach, the k tolerated memory corruptions need not occur in the initial state.
In fact, they may occur in a dynamic way after the network has started recovering the
leader. In other words, faults that can be handled by our protocol are not only arbitrarily
placed, but also arbitrarily timed. For a particular set of k faults, the fault gap between
those faults is optimal, that is, zero. However, a delay, that depends on k, still must be
observed between sets of k faults in a computation.

430 A.K. Datta et al.

2 Preliminaries

Model. We consider distributed systems of n deterministic anonymous processes or-
ganized into an oriented ring : each process p distinguishes one of its neighbors as its
successor, and the other its predecessor. The orientation is consistent: the successor of
the predecessor of any process p is p.

Communication between neighboring processes is carried out using a finite number
of locally shared variables. Each process has its own set of shared variables which it
can write and which its two neighbors can read, i.e., the ring is bidirectional.

The state of a process is defined to be the vector of values of its variables. A con-
figuration of the system consists of a state for each process. A process can change its
state by executing its local algorithm. We assume uniformity, that is, all processes have
the same local algorithm. The set of local algorithms defines a distributed algorithm on
the ring. The local algorithm executed by each process is described using a finite set of
guarded actions of the form: If 〈guard〉 then 〈statement〉. The guard of an action at
process p is a Boolean expression involving only variables of p and its neighbors. The
statement of an action of p updates some variables of p. An action can be executed only
if its guard is true. An action of a process p is enabled in a configuration γ if its guard
is true in γ, and p is said to be enabled in γ if at least one of its actions is enabled in γ.

k-Stabilization. LetA be a distributed algorithm. An ordered pair (γ, γ′) is a step ofA
if there exist a non-empty subset S of processes enabled in γ such that γ′ is the result of
the atomic execution one enabled action per process of S on γ. An ordered pair (γ, γ′)
is a fault of A if there is exactly one process of the network which has a different state
in γ′ than in γ, and if γ′ does not follow from γ by any step ofA. A k-fault computation
of A is a sequence of configurations γ0γ1 · · · such that: (1) there are at most k choices
of i for which (γi, γi+1) is a fault of A, (2) for all other i, (γi, γi+1) is a step of A, and
(3) the sequence is either infinite, or ends at a final configuration, where no process is
enabled.A is silent if all its k-fault computations end at a final configuration.
k-fault computations are driven by a daemon that chooses when the faults occur

and which processes execute an action when there is a step. We assume the unfair
distributed daemon, which is otherwise unconstrained. In particular, it can choose to
never select an enabled process in any step, unless it is the only enabled process.

Let L be a non-empty set of final configurations of A. For a given integer k > 0,
A is said to be k-stabilizing w.r.t. L if every k-fault computation of A which begins
at some configuration λ ∈ L is finite and ends at λ. L is called the set of legitimate
configurations of A. In the problem we address L has n members; for each process �,
there is exactly one legitimate configuration in which � is the leader.

3 Algorithm LE(k)

In a legitimate configuration of LE(k), there is one leader process �, and no action
of LE(k) is enabled. Once a fault occurs, LE(k) starts. If at most k faults occur, the
computation will end, and the last configuration will be the same as the first.

Define the interval of relevance of a process p to be the set of all processes within
distance 3k of p, which has 6k + 1 processes in all. Every process has a vote, and in a

Fast Leader Recovery 431

legitimate configuration, every process within �’s interval of relevance votes for �, while
every other process’ vote is ⊥. Since the system is anonymous, a process p’s vote for a
process q is a relative address, namely i where q is i steps to the right of p, or −i if q
is i steps to the left of p. In particular, in a legitimate state, � will be the unique process
whose vote is 0.

Since a fault can change any variable, it can change the vote of a process. A single
fault can cause up to three processes to change their votes, but not more. Thus, through-
out any k-fault computation of LE(k), there will be at least 3k + 1 votes for �, and at
most 3k votes for any process other than �.

Every process p has a rumor field as well, which is either ⊥, or is the “rumor” that
some process, say q, is the leader. In a legitimate configuration the rumor fields of all
processes are the same as their votes.

Processes do not change their votes easily, but rumors spread rapidly. If the rumor
field of a process p is different from its vote, it must decide whether to change its vote
to match the rumor. To make this decision, p initiates a query to count votes for the
rumored leader. A rumored leader is called a candidate. If the rumor field is ⊥, p can
initiate a query where the candidate is the process that p is voting for.

A query has a home process and a candidate process. The home process is the one
that initiated the query, and the candidate of the query is the one of its home process.

A query traverses a path of query variables called its query path. During that traver-
sal, the query visits every process within the interval of relevance of its candidate pro-
cess, say q, and counts all votes for q. Upon returning to p, it reports the count of votes.
If q receives at least 3k+1 votes, p concludes that q is the leader; otherwise, p concludes
q is not the leader.

There are three query tracks, which span the entire ring, each intersecting each pro-
cess at a query variable. A query consists of one live query token, which is located in
one of the query tracks. The process at which the live token is located is called the host
of the query. The traversal of a query consists of (1) moving along the first query track
toward the leftmost process in the interval of relevance of its candidate, then (2) cross-
ing to the second query track and traversing (rightward) the whole interval of relevance
of the candidate to count the votes for it, and finally (3) crossing to the third query track
and moving leftward along that track until returning to its home process to report the
total number of votes for the candidate.

A query moves by forward copying and rear deletion. When a live token is copied to
the next query variable in the path, the old copy is designated dead and must be deleted
before the live token can be copied forward.

During the time the query is outstanding, its home process p will not change its
vote (unless it faults) but its rumor field might change. If the candidate of the query
differs from p’s vote, and if the query reports that the candidate has at least 3k + 1
votes in the interval of relevance, then p changes its vote to be for that candidate and
initiates a new rumor that the candidate is the leader, unless its rumor variable is already
for that candidate. Otherwise, i.e., the query reports no more than 3k votes for the
candidate, p does not change its vote (or changes it to ⊥ if the vote was already for
the candidate) and initiates a denial, which floods the interval of relevance with the
information that the candidate is not the leader, and then self-deletes. That denial wave

432 A.K. Datta et al.

(unless it is interrupted by a fault or a higher priority denial wave) causes all rumors for
the candidate to be deleted.

If p’s rumor field is⊥, but p is voting for a process q, then p initiates a query where q
is the candidate. If the query counts at least 3k+1 votes for q, then p changes its rumor
to q; but if the query counts at most 3k votes, p changes its vote to ⊥ and also issues a
denial for q.

If a process p is voting for a false leader, it will eventually change to vote to be for
true leader, �. If another process, say q, is voting for � but has a rumor supporting some
other candidate, say m, it initiates a query with m as the candidate. When q discovers
that m is not the leader, it issues a denial of the rumor. If another false rumor spreads to
q, it will again send out a query. Eventually, q will send a query whose candidate is �.
When this query returns with the information that � has at least 3k+1 votes, q will issue
the rumor that � is the leader. Processes voting for false leaders will see this rumor, and
will then initiate their own queries, confirming that � is the leader.

Rogue Queries. Faults can create rogue queries. A query is rogue if its home is a
process p but p did not initiate it. One fault can cause up to nine rogue queries to be
created. In the worst case, there is no way to distinguish a rogue query from one that
was initialized normally. Thus, LE(k) cannot specifically delete rogue queries.

Lost Queries. If a process p initializes a query and that query is deleted due to a fault,
then p could, in principle, wait forever for the query to return. If p suspects that its query
has been deleted, it sends out a probe wave, either to the left or the right, whichever is
the direction of the missing query, and if it receives back the report that there is no
query, it returns to the resting state, allowing it to initiate a new query if necessary.

We use two additional variables to count the number of consecutive processes to the
left (resp. right) of a process, including the process itself, which have no query, probe,
or report token. The value of these variables are only eventually correct, this is why we
cannot directly used them to decide that a query is missing. Rather, we use them to stop
generating probe waves: while the count is less or equal to 6k+1 in some direction, the
process p does not generate a probe in that direction, because there could exist a token
up to 6k + 1 hops away from p in that direction, and its home could be p.

Deadlock Prevention. As with denials, the rumors, probes, and reports can overwrite
others with lower priority. This ensures that these waves cannot be deadlocked.

However, the query tracks should be carefully addressed. To avoid congestion in
the query tracks, LE(k) never allows two neighboring processes to be querying simul-
taneously. There is a resource between each pair of adjacent processes, (think of the
chopstick between two philosophers in the classic Dining Philosophers problem), and a
process must have both adjacent resources to initiate a query, and must hold onto both
while it is querying. A resource can be held by only one of its two neighboring pro-
cesses. It is implemented using two flags, one at each node. To prevent contention, we
allow a process to pass a token query flag to its neighbor, but not to seize the token.

The number of outstanding queries never exceeds the number of legitimate queries
plus the number of rogue queries. Because of the flags, no more than half of the pro-
cesses can have legitimately initiated outstanding queries, and there are no more than
9k rogue queries. So, the number of outstanding queries never exceeds n

2 + 9k < n

Fast Leader Recovery 433

Thus, assuming n ≥ 18k+1, the third query track cannot be deadlocked because there
is always some empty place in that track. Similarly, the other query tracks also cannot
be deadlocked.

References

1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11),
643–644 (1974)

2. Beauquier, J., Genolini, C., Kutten, S.: k-stabilization of reactive tasks. In: PODC, p. 318
(1998)

3. Burman, J., Herman, T., Kutten, S., Patt-Shamir, B.: Asynchronous and Fully Self-stabilizing
Time-Adaptive Majority Consensus. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 146–160. Springer, Heidelberg (2006)

4. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. TCS 220(1), 93–111 (1999)
5. Kutten, S., Peleg, D.: Fault-local distributed mending. J. Algorithms 30(1), 144–165 (1999)
6. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing dis-

tributed protocols. Distributed Computing 20(1), 53–73 (2007)
7. Ghosh, S., He, X.: Scalable self-stabilization. JPDC 62(5), 945–960 (2002)
8. Beauquier, J., Delaët, S., Haddad, S.: Necessary and sufficient conditions for 1-adaptivity. In:

IPDPS (April 2006)
9. Dasgupta, A., Ghosh, S., Xiao, X.: Probabilistic Fault-Containment. In: Masuzawa, T.,

Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 189–203. Springer, Heidelberg (2007)

Addressing the ZooKeeper Synchronization

Inefficiency

Babak Kalantari and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
{babak.kalantari,andre.schiper}@epfl.ch

Abstract. ZooKeeper provides an event like synchronization mecha-
nism, which notifies the clients upon state change on the server. This
mechanism leads to very inefficient implementation of synchronization
objects. We propose a new solution to this problem. The solution is to
handle a sequence of client operations completely on the server through
a generic API. We have developed a prototype that allows very efficient
implementation of synchronization objects. The solution requires a de-
terministic multi-threaded server. Experiments show the significant gain
in efficiency of our solution on producer-consumer queues and synchro-
nization barriers.

1 Introduction

A coordination service is a middleware that provides fault-tolerant high level
primitives for distributed applications to achieve a complex task in a coordi-
nated fashion. Examples of coordination are: reliable state management, locks
and queues, leader election, etc. ZooKeeper [1] is the most recent, promising
development providing coordination. In ZooKeeper coordination is facilitated
by allowing client processes to access a shared hierarchical name space, similar
to file system, called znodes. Znodes can store application states/data and have
children nodes. Fault tolerance in ZooKeeper is achieved by replicating this name
space using state machine replication. The basic operations allow the client to
add/delete znodes, to read/write the data stored in znodes and to obtain the chil-
dren of a znode. These operations are all non-blocking which releases ZooKeeper
from having to address the problem of faulty clients. Instead, a watch mechanism
is provided to notify clients upon state change of znodes. As we discuss in Sec-
tion 2, this mechanism causes serious efficiency problems that cannot be solved
easily within ZooKeeper. In Section 3 we address this problem by introducing
a new coordination framework, which shares some concepts with ZooKeeper. In
our framework, servers handle the clients’ requests in a minimal kernel with a
deterministic scheduler, providing semaphores to allow clients synchronization
in an elegant and efficient manner.

2 Limitations of Synchronization in ZooKeeper

Synchronization in ZooKeeper can be only achieved by using a watch primi-
tive. Since a watch is just a notification facility, the resulting synchronization

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 434–438, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Addressing the ZooKeeper Synchronization Inefficiency 435

is rather weak.1 Watches also introduce herd-effect. In order to better under-
stand the deficiencies of ZooKeeper, we discuss the implementation of a very
basic coordination object, namely a producer-consumer queue with operations
enqueue() and dequeue().

Queue example: A queue in ZooKeeper can be represented by a regular znode,
say zn, and its children. The name zn is the queue name and each child of zn
represents a queue item. Therefore, creating or deleting a child to/from zn is
in fact adding or removing a queue item. To produce an item, a znode child
with a unique sequence number appended to its name is created under zn. This
sequence number is incremented atomically by ZooKeeper whenever a child is
created. To consume an item, the client has to read all the children of zn using
the getChildren operation, and sort them according to their sequence numbers.
The child with the smallest sequence number is the queue head. This child is
then removed using the delete operation. Note that the delete may fail if in the
meantime this child was removed by another client. If this happens, removing
the next (smallest) child in the list has to be tried. If the queue is empty (zn
has no child), then a watch is left on zn to get notified whenever zn is modified
(child added). After notification, the clients execute again the above procedure
(getChildren, sorting and deleting). If several consumers are blocked by an empty
queue, all of them concurrently execute the procedure but only one will succeed. 2

Discussion: From the above description, we see several sources of inefficiency
in the queue implementation. When consuming an item, requiring the client to
read all the queue items plus to order them is highly inefficient. When several
consumer clients are blocked because the queue is empty, awaking all of them
when an item is added to the queue is inefficient: all consumers — except one
— will have to block again. Why not add locks or semaphores to ZooKeeper?
To answer this question, assume for a while that ZooKeeper provides locks with
lock/unlock operations. A client could typically, using a mutex lock, execute the
following operations: (1) lock(mutex), (2) read/write znodes, (3) unlock(mutex).
The problem is the crash of the client between (1) and (3): ZooKeeper would
have to handle the problem. For this reason, by design, ZooKeeper excludes
providing locking mechanisms. ZooKeeper calls the lock operation a non wait-
free operation, and requires that all operations provided to clients are wait-free.

3 Addressing the ZooKeeper Inefficiency

To explain our solution, we start from the example introduced above, where a
client has to execute the following sequence of operations:

lock(mutex); read/write znodes; unlock(mutex).

1 This is because: (a) clients can miss state updates since watch event is one-time, (b)
notifications do not contain the state, (c) upon a change all watchers are notified.

2 This can be avoided using ”lock without herd effect” of [1], however, it is more com-
plex and slower method because of its linear search and extra znode create/delete.

436 B. Kalantari and A. Schiper

The atomicity property is violated if the client crashes before executing un-
lock(mutex). The problem is not solved using transactions: transactions also
would require ZooKeeper to repair partial state changes after the crash of clients,
but this is excluded by design. The solution we propose is to send the whole se-
quence of operations, including blocking and unblocking operations, to the server.
Even if the client crashes afterwards, the server is able to execute the full se-
quence of operations. In [2] we explain how this is done. The server executes the
following tasks:

1. Reception of client requests;
2. Ordering of client requests (atomic broadcast);
3. Execution of client requests;
4. Sending results to clients.

Step 3 is usually done by one single thread to ensure deterministic execution.
In our server, this is done by several threads that are scheduled deterministi-
cally, using a kernel based on a coroutine library. 3 This kernel implements also
semaphores, which allows the synchronization of client processes. Several threads
are needed in our server, precisely because threads, handling client requests, can
be blocked by semaphores. Revisiting the queue example, the produce operation
becomes:

P (semaphore1); deposit the item; V (semaphore2),

where semaphore1 is initialized to the size of the queue, and semaphore2 is
initialized to 0. The consume operation becomes:

P (semaphore2); consume an item; V (semaphore1).

4 Performance Evaluation

We evaluate experimentally the cost of the ZooKeeper synchronization and the
alternate implementation we have described, called GESMAS (GEneric State
Machine and Application Service). Here we present only our results for the queue
object. Discussion of results as well as the experiments for the barrier object and
the herd-effect are presented in [2].

Our server consists of three machines 4 each running one replica. We have
used ZooKeeper release 3.3.4. Our GESMAS state machine is implemented using
JPaxos [4].

Latency: We measured the latency of the produce and the consume operations,
including the latency as a function of the number of items5 in the queue. Figure 1
shows the latency measurements for the produce operation. To measure the cost
of N produce operations, the client invokes the operation on the queue, waits
until the response is received, performs the next produce operation, etc. This is

3 We use Java Continuations provided by JavaFlow, an Apache Common library [3].
4 Single-core 2.8 GHz, 1GB RAM running Linux-2.6.18 connected via 1 Gbps links.
5 Each item in the queue stores only one integer, hence very few bytes.

Addressing the ZooKeeper Synchronization Inefficiency 437

Fig. 1. Latency of produce operation Fig. 2. Latency of consume operation

repeated N times and the total duration is measured. We can see in Figure 1
that ZooKeeper has lower latency compared to GESMAS. This can be explained
by the fact that the produce operation in ZooKeeper requires only the creation
of one file, while in GESMAS it involves additionally to write to the headTail
file.6 To measure the latency of N consecutive consume operations, the queue
was first filled with N items. The result is shown in Figure 2. The figure shows
that the latency of the consume operation in ZooKeeper is much higher than
the latency of the produce operation, and also much higher than the latency of
the consume operation with GESMAS.

Fig. 3. Dependency to no. items in the
queue. Latency of 1000 consume operation.

Fig. 4. Throughput of combined pro-
duce/consume operations

This result is not surprising, considering the discussion in Section 2. This is
in contrast to GESMAS, where the consume operation involves steps similar to
those of the produce. Finally, we studied the latency of the consume operations
as a function of the number of items in the queue. We measured the latency
of 1000 consume operations, for different initial queue sizes, starting with 1000.
The results appear in Figure 3: in GESMAS the latency is constant, while in
ZooKeeper it increases linearly with the queue size.

Throughput: We measured the maximum number of operations per second
that can be executed on a queue. In order to generate high loads, we had to

6 This file keeps track of the head and tail indices.

438 B. Kalantari and A. Schiper

consider more than one client. For produce operation, we measured the number
of operations executed on the server during 1 second. The load was continuously
increased by adding clients, and the number of operations per second was mea-
sured. The maximum throughputs of 1260 for ZooKeeper and 1041 for GESMAS
were reached. For consume operations, we could not proceed in the same way
for ZooKeeper and GESMAS. For GESMAS, before running the experiments,
we initialized the queue with “enough” elements such that consume would never
block. Then, we did the measurements in the same way as for produce operations.
This resulted in 1265 consume operations per seconds. For ZooKeeper, the same
procedure would lead to very bad results.7 Therefore, we did the measurements
differently. We considered four clients, two producers and two consumers, and
a queue initially empty. All clients were started at the same time: each client
sends a request, waits for the response, and then sends the next request imme-
diately. We ran the same experiment also for GESMAS to show the relevance of
the experiment. The results in Figure 4 show the number of operations per sec-
ond, as a function of the total number of operations executed by each client. For
ZooKeeper the maximum of 442 at 1000 operations per client is reached. Exclud-
ing the contribution of the produce operation results in 270 consume operations
per second, to be compared with the 1265 consume per second in GESMAS.8

5 Conclusion

In the paper we have addressed an important source of inefficiency in the Zoo-
Keeper coordination service with a radically different approach. The way we
provide synchronization in one hand and the openness of the client API on the
other hand, enables rather easy building of efficient and sophisticated coordina-
tion objects. The open API however raises security and resource usage issues. A
simple restrictive solution would be to allow sending the object implementation
(i.e., sequence of operations) to the server by well identified, trusted, expert, code
developers. Sandboxing techniques can be used in addition for more protection
of server’s resources.

References

1. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: wait-free coordina-
tion for internet-scale systems. In: Proceedings of the 2010 USENIX Conference,
USENIXATC 2010, p. 11. USENIX Association, Berkeley (2010)

2. Kalantari, B., Schiper, A.: Addressing the Zookeeper Synchronization Inefficiency.
Technical Report 181690, EPFL (October 2012)

3. http://commons.apache.org/sandbox/javaflow/

4. Santos, N., Konczak, J., Zurkowski, T., Wojciechowski, P., Schiper, A.: JPaxos:
State machine replication based on the Paxos protocol. Technical Report 167765,
EPFL (July 2011)

7 About 40 operations per second with initial queue size of 10000 and four clients.
8 A similar derivation for GESMAS, gives 1269 consume operations per second [2].

http://commons.apache.org/sandbox/javaflow/

Compact TCAM: Flow Entry Compaction in TCAM
for Power Aware SDN

Kalapriya Kannan1 and Subhasis Banerjee2

1 IBM Research, India
kalapriya@in.ibm.com
2 IIIT-Delhi, New Delhi, India
subhasis@iiitd.ac.in

Abstract. Low latency lookup (typically single cycle) has made Ternary Con-
tent Addressable Memory (TCAM) indispensable in high performance network
switching devices. However, high power dissipation of TCAM makes it incongru-
ous in switches for today’s power sensitive emerging network framework, viz.,
Software Defined Network (SDN). In this paper we propose Compact TCAM, an
approach that reduces the size of the flow entries in TCAM. We use shorter tags
for identifying flows than the original number of bits used to store the flow entries
for SDN switches. We leverage the dynamic programming capability of SDN to
route the packets using these tags. We show that our approach can be easily im-
plemented using the new SDN framework while optimizing the TCAM space.
Our experiments with real world and synthetic traffic show average reduction of
TCAM power by 80% in SDN switching devices for a given number of flows.

1 Introduction

TCAMs due to their fast lookup are part of every high performance network switch.
With Emerging SDN frameworks, the volume of flow entries is expected to grow sev-
eral orders higher than the traditional L2/L3 networks (about 72,000/min estimated in
[4] in SDN’s). It requires TCAMs of much larger size (upto 18Mbit are commercially
available), but the notoriously high power dissipation and extreme complexity of circuit
structure makes is infeasible to architect large sized TCAM. The key challenge in de-
signing TCAM in high speed switching devices is to optimize its size to fit within the
power budget [2].

In this paper, we propose Compact TCAM, an approach that exploits the SDN’s
features such as programming interface to the switches and dynamic determination of
actions for each flow at the switches. We reduce the size of bits to store information that
are essential to classify packets to a flow. To do so, we assign a Flow-ID for each flow
that can uniquely identify packets in a given flow. The packets headers are modified at
the ingress switches to carry the Flow-ID that can be used by other switches on the path
for classifying the packets. We show that the flow tuple size of 15 fields defined in SDN
(15 fields tuple is stored in 356 bits) can be effectively reduced to 16 bits, an entry that is
compact compared to the original 356 bits. By reducing this to 16 bits, our experiments
indicate savings of about 80% power dissipation and optimizes cost by increasing the
number of flows that can now be stored in the same flow tables.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 439–444, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

440 K. Kannan and S. Banerjee

The rest of the paper is organized as follows: Our approach of Flow-ID based flow
entry condensation is presented in section 2. We present assessment and evaluation of
our approach in section 3. We describe the prior work in section 4. Finally we conclude
in section 5.

2 Compacting Flow Entries Using Flow-ID

The flow entries in a table classify incoming packets into different flows. Once a flow
entry is identified, subsequent packets belonging to the flow need not match the entire
flow entry. The size of the entry can now be compacted and replaced with a shorter ID
for classification. Hence we introduce the notion of “Flow-ID”. Flow-ID is a numeric
identifier used to identify the flows uniquely. In the switch flow table, the flow entry
can be reduced to the size of the Flow-ID and associated actions. All routings are then
performed based on the Flow-ID.

(a) Components and Steps (b) Compact TCAM Hardware

Fig. 1. (a) System overview, (b) Compact TCAM hardware design

Fig. 1(a) shows the SDN architecture consisting of the controller, OpenFlow switches
and host machines. In OpenFlow the first packet of a new flow arriving at an interface
of a switch (Step 1)is forwarded to the controller (Step 2). The controller generates a
Flow-ID for the flow and stores it in its local reference table (Step 3). The controller
responds back to the switch with an OpenFlow action message consisting of the actions
to be performed on the packets of the flow as demonstrated in Step 4 of the Figure. We
augment the ‘action’ part of the rule with a boolean ‘COMPACT’ flag. If the flag is set
the switch utilizes the Flow-ID and performs operations on the packets corresponding to
the Flow-ID and output it to specific port as given in the action part. Compact operation
consists of insertion of the Flow-ID into the header of the packet after the delimiter field
of the L2 layer. In OpenFlow enabled switches, this operation can be performed by the
‘PUSH’ tag (this is supported in OpenFlow specification).

The controller sends a flow insert operation to all the switches along the path of the
packet (Step 5 of Fig. 1(a)). This flow entry consists of a Flow-ID and associated actions
to it. The intermediate switches just perform the normal lookup operations on Flow-ID.

Compact TCAM: Flow Entry Compaction in TCAM for Power Aware SDN 441

For the egress switches, the controller sends a flow insert operation that contains the
Flow-ID and actions to remove the Flow-ID from the header of the packets. Step 6
in Figure illustrates the flow insert operation specified by the controller to the egress
switch. The header that was in the original packet without the Flow-ID is forwarded to
the output port to deliver to the end hosts (Step 7).

Fig. 1(b) illustrates the design with Compact TCAM as part of switching device
(refer to the pipeline reference architecture in [6]). The hardware consists of a buffer
to hold the packet for assigning Flow-ID. Flow-ID is copied at the selected bits of
the buffer. Packet header parser which will now extract the Flow-ID bits is instructed
through the bit selection logic. An edge switch acts both as ingress for one set of flow
and egress for another set of flows. When a packet arrives, the header either contains a
Flow-ID (as an egress) or a full header (as an ingress). This will require two flow tables,
one with Flow-IDs and another with unmodified flow entries. We propose to use two
separate TCAMs (Egress TCAM and Ingress TCAM). One TCAM stores the Flow-
ID and associated action and the other stores the complete flow entry with complete
header along with COMPACT flag. Due to this separate TCAM’s power gains on the
edge switches are lesser than 50% than those obtained from the core switches.

3 Assessment and Evaluation

Our objective is to measure the following: (1) Power gains and (2) Overall cost re-
duction. We consider three configurations for our experiments: (a) L2 based switching
device consisting of 60 bit (48 bit for source MAC + 12 bit for VLAN tag) flow entry,
(b) OpenFlow standard based switching device consisting of 356 bits flow entries (15
tuple flow entries) and (c) Compact TCAM based switching device consisting of 16 bits
flow entries. We have considered three different data center (DC) topologies: Fat tree
(cloud), 2-tier multi rooted tree (Enterprise), multi-tiered multi rooted tree (University).
Flow characteristics are obtained from existing studies [3]. We develop a discrete event
simulator in Java to simulate the network behavior following these traffic characteris-
tics. Flows are generated with the header, tuple, duration, length, size and Flow-ID. We
collect the statistics of bin granularity of one sec.

3.1 Power Gain

We study two effects: (a) power saving in core and edge switches and (b) power saving
per flow. In the former, we generate flows and study the power consumption per unit
time. In the latter case power is measured by generating certain number of flows and
associating a path for it. Power on the switches is the function of the read and the write
operations on the memory subsystems such as TCAMs/SRAMs. As the lookup in mem-
ory subsystem contributes the most in the total power for switch fabric, the following
equation 1 is used to calculate the power consumption:

PTOTAL � PLOOKUP = ESRAMNSRAM Write + ESRAMNSRAM Read+

ETCAMNTCAM Write + ETCAMNTCAM Read

(1)

442 K. Kannan and S. Banerjee

ETCAM/SRAM denotes the energy to access TCAM/SRAM memory and
N∗ Read/Write denotes the number of read/write per second. We use TCAM
modeling tool available in [1] to obtain the power consumption for different sizes.

Fig. 2 (a) and (b) presents the power consumption in Watts on the core switches and
at edge switches for Enterprise and Univ DC’s respectively. At the core switches, a L2
switching fabric would consume about 2.5 times more power and a OpenFlow enabled
switch will consume about 12 times more compared to a Compact TCAM based switch
when the number of flows are observed in the range of 1200-1300 flows/sec. Therefore,
in core switches Compact TCAM based design gives best power saving. This gain is
lower in the edge switch as the power saving is obtained only for the egress flows. Thus
about 80% overall power saving can be observed using Compact TCAM.

0 20 40 60 80 100 120
0

10

20

30

40
Core Switch Power Consumption

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

Time (in sec)

P
ow

er
 D

is
si

pa
tio

n
(in

 W
at

t)

356 b lookup
60 b lokup
16 b lookup

356 b lookup
60 b lookup
16 b lookup

TCAM

SRAM

(a) Power consumption in core switches)

0 20 40 60 80 100 120
0

5

10

15

20

25
Edge Switch Power Consumption

0 20 40 60 80 100 120
0

0.1

0.2

0.3

Time (in sec)

P
ow

er
 D

is
si

pa
tio

n
(in

 W
at

t)

50% 356b lookup+Scissor
50% 60b lookup+Scissor

50% 356b lookup+Scissor
50% 60b lookup+Scissor

(b) Power consumption in edge switches

Fig. 2. Power consumption – core and edge switches, for Enterprise and University DC

Univ − 1 Enterp. − 1 Enterp. − 2 Fat tree −1 Fat tree − 2
0

200

400

600

800

1000

1200

1400

1600

1800

P
ow

er
 c

on
su

m
pt

io
n

in
 W

at

Power consumption in switching fabric

Compact TCAM
60 bit L2 TCAM
356 bit SDN TCAM

of flow = 2700/s
Flow arrival, IAT 30ms
duration of flow monitored = 1 s
of hops= 3tiered − 7 hops, 2tiered − 5 hops
inter rack − 3 hops

Fig. 3. Power consumption in switching fabric with different configuration.

Fig. 3 shows the average power consumption for the flows considering different
topology. On an average about 2700flows are generated every bin. In the university
topology, savings can be achieved up to 30-40% compared to a 60 bit L2 switching
device and about 87% compared to a 356 bit line SDN switching. This is due to the

Compact TCAM: Flow Entry Compaction in TCAM for Power Aware SDN 443

fact that in university data Centers the amount of traffic that leaves the rack and trav-
els through the network is about 80% ie., increasing the number of hops visited by the
flows. The saving are lesser in a enterprise DC setting as majority of the traffic (about
80%) is intra rack.

3.2 Cost Saving

An important fall out of this optimization is the reduction in the size of the flow entry.
This implies that by applying Compact TCAM one can accommodate more
number of flow entries in the table compared to the one that does not apply the COM-
PACT operations. For instance, a 2Mbit TCAM can accommodate around 33,000
flow entries of size of 60 bit while it can accommodate 125,000 entries of 16 bits.
Thus either smaller sized TCAM’s can be used for the same number of flows to be
accommodated as in 60 bit TCAM or the number of entries can be increased with the
same TCAM size.

4 Related Work

We classify the existing literature along three broad categories and compare our work.
They are: (a) algorithmic optimizations (b) reducing the amount of information stored
in the high performance memory(c)architectural solutions. We differentiate our work
from these existing work along two dimensions. Firstly, these algorithms assume pre-
fixes. In SDN networks, there is lesser incentive (although not ruled out completely)
for storing prefixes. SDN is designed to provide the flexibility of fine grained traffic
management by defining the concept of ‘micro-flows’ by increasing the number of tu-
ples. Secondly, these algorithms suffer from unacceptably slow updating (insert/delete)
of the forwarding table. In SDN as insert operations are likely to be dominant (1 in ev-
ery three packets can result in a insert operation [4]) these algorithms are less scalable.
Finally, Our work is along the lines of reducing the information stored in the flow table
and can be used to complement other compression techniques (which has limitations
due to fields required for routing). Further detail of our work is given in the technical
report [5].

5 Conclusions

In an attempt to have combined gain on power and cost we have identified TCAMS
as an optimization target. We propose Compact TCAM that deals with the redundant
information stored in the TCAM required for the flow processing. Compact TCAM
exploits the emerging SDN framework and utilizes OpenFlow a standard for SDN to
eliminate the redundant information. We show that the switch fabric power gain can
be about 2.5 times of a standard L2 switch and 80% gain in power compared to SDN
switches.

444 K. Kannan and S. Banerjee

References

1. Agrawal, B., Sherwood, T.: TCAM Delay and Power Model,
http://www.cs.ucsb.edu/˜arch/mem-model/

2. Agrawal, B., Sherwood, T.: Modeling TCAM power for next generation network devices.
In: of IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Austin, TX (March 2006)

3. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild.
In: Proceedings of the 10th Annual Conference on Internet Measurement, pp. 267–280 (2010)

4. Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.: Devoflow:
scaling flow management for high-performance networks. SIGCOMM Comput. Commun.
Rev. 41(4), 254–265 (2011)

5. Kannan, K., Banerjee, S.: Compact TCAM: Flow entry compaction in tcam for power aware
SDN. IIIT-Delhi Technical Report (2012),
www.iiitd.edu.in/˜subhasisb/researchpapers/compact-tcam.pdf

6. Naous, J., Erickson, D., Covington, G.A., Appenzeller, G., McKeown, N.: Implementing an
openflow switch on the netfpga platform. In: Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS 2008, pp. 1–9. ACM,
New York (2008)

http://www.cs.ucsb.edu/~arch/mem-model/
www.iiitd.edu.in/~subhasisb/researchpapers/compact-tcam.pdf

A Media Access and Feedback Protocol

for Reliable Multicast over Wireless Channel

Ashutosh Bhatia and R.C. Hansdah

Dept. of Computer Science and Automation
Indian Institute of Science, Bangalore

{ashutosh.b,hansdah}@csa.iisc.ernet.in

Abstract. A link level reliable multicast requires a channel access pro-
tocol to resolve the collision of feedback messages sent by multicast data
receivers. In this paper, we propose a virtual token based channel access
and feedback protocol (VTCAF), which can trade off between reliability
and access delay. The protocol uses the virtual (implicit) token passing
mechanism based on carrier sensing to avoid the collision of feedback
messages. We have simulated our protocol using Castalia network sim-
ulator to evaluate the performance parameters. Simulation results show
that our protocol is able to considerably reduce average access delay
while ensuring very high reliability at the same time.

Keywords: Wireless Multicast, Reliable Multicast, Media Access Con-
trol (MAC).

1 Introduction

Multicast has been used effectively by several applications including multimedia
conferencing, multi-party games, distributed computing and many more, over
the IP network. New set of wireless network applications have emerged in the
last couple of years with the rapid growth of Wireless Sensor Network (WSN) and
Mobile Ad-Hoc NETwork (MANET). Many of these applications require reliable
and efficient multicast, which includes periodical beacons, alarm signals, route
discovery in on-demand routing protocols, clock synchronization and multicast
video streams. However, the degree of required reliability may be different for
different multicast applications. The execution of these applications relies heavily
on reliable and efficient MAC layer multicast. Moreover, for wireless networks,
ensuring reliability of multicast data at MAC layer is necessary to realize end-
to-end reliability across multiple hops because Bit Error Rate (BER) in wireless
networks is high in comparison to that in wired networks. In this paper, we focus
on reliable multicast transmission at MAC layer in wireless networks.

Many reliable multicast protocols have been proposed in literature at the MAC
layer. In [1], Broadcast Support Multiple Access (BSMA) protocol uses NACK
based approach to reduce the delay required for reliable multicast. The proto-
col does not provide any solution for NACK collisions. In broadcast protocol,
Broadcast Medium Window [2], the source sends multicast frame to individual

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 445–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

446 A. Bhatia and R.C. Hansdah

group members on a peer-to-peer basis. The protocol provides high reliability
with a very large overhead. In [3], after sending the multicast data to all receiver
nodes using a single transmission, the source sends request to ACK (RAK) mes-
sage to individual nodes one by one to confirm the status of transmission. This
approach imposes less overhead as compared to that in [2]. The protocol in [4]
uses time division multiple access (TDMA) to transmit feedback messages and
thereby eliminates RAK messages, and reduces access delay. The broadcast pro-
tocols proposed in [2,3] and [4] could avoid the collision problem and ensure high
reliability because of their deterministic nature. But, they still suffer from large
access delay and feedback explosion, and are not suitable when the group size is
large. Kuri et al. [5] have proposed a novel mechanism, called a leader based pro-
tocol (LBP), for reliable multicast with a very less access delay. In LBP, one of
the multicast receivers works as a leader which replies with an ACK frame. The
LBP only provides probabilistic reliability because reception of data at leader
does not always guarantee that the data has been received successfully at all the
receives.

In the design of the above protocols, there is a general perception that ac-
cess delay needs to be reduced as much as possible while ensuring reliability at
the same time. It is also to be noted that 100% reliability is not required by
all multicast applications. In other words, different multicast applications may
have different reliability requirements. For example, in military applications, re-
liability requirement is very high, but access delay of the order of a second may
be tolerated. However, in case of clock synchronization protocol or multimedia
applications, reliability requirement is high, but not necessarily 100%. On the
other hand, delay requirement is of the order of millisecond. Hence, there is a
case for designing multicast protocols which can trade-off reliability for reduced
access delay, and vice versa. In this paper, we propose such a protocol for reliable
multicast using a novel approach. The approach is based on virtual token rotat-
ing among the receivers, and we refer to this protocol as the virtual token-based
channel access and feedback (VTCAF) protocol.

2 Informal Description of the Protocol

Essentially,we have used a combination of ACK-based andNACK-based approach
together with TDMA and virtual token based channel access mechanism to design
our protocol. The transmission of ACK messages by the receivers using ACK ap-
proach, triggers the frame loss detection at those receivers which did not receive
the data. Increasing the number of receivers, which transmit ACK message would
lead to more number of ACK transmission. Hence, it would result in larger ac-
cess delay, but would ensure guaranteed frame loss detection at individual nodes,
and therefore, would provide higher reliability. The number of receivers that use
ACK approach can be conveniently varied to tune the reliability of our protocol.
The number of receivers transmitting NACK can also affect the reliability and
access delay of our protocol. If only a single node transmits the NACK, and the
NACK is lost, the reliability would be compromised. On the other hand, trans-
mission of NACK message by all the receivers which received ACK, but not data,

A Media Access and Feedback Protocol 447

Fig. 1. MAC frame structure

may lead to NACK explosion. In our protocol, to improve reliability, if a receiver
using NACK approach receives a threshold number of NACK messages, then it
does not transmit NACK even though it has not received data. The threshold for
NACK transmission can be selected according to the reliability requirement of
the application, and the channel condition. The proposed channel access mecha-
nism not only avoids collision between ACK/NACK messages, but also reduces
the access delay. Access delay can be reduced if we can ensure that only those
nodes which have transmitted the NACKmessage should contribute to the major
part of access delay. The receivers with ACK approach use TDMA channel access
mechanism whereas the receivers using NACK approach use proposed virtual to-
ken based channel access mechanism, as given below.

When it is the turn of a receiver X to transmit the feedback message, it can
either transmit NACK message or does not transmit anything. If the receiver
X does not transmit anything, other receivers can detect this fact using Clear
Channel Assessment (CCA) operation in much less time than the time required
to transmit ACK/NACK message. In such a case, the next node Y in the order
after node X will get its turn immediately after it finishes CCA operation. If
the node X transmits NACK message, the next node Y in the order after X has
to wait to get its turn until X finishes transmitting NACK. The above transfer
of turn from node X to node Y can be viewed as transfer of virtual token from
node X to node Y, and we shall refer to the time for which a receiver node holds
the virtual token as the token-holding period.

3 Channel Access and Feedback Protocol

In the proposed protocol, the receivers of multicast data are ordered from 1
to n. Timeline is considered slotted with slot size equal to the time required to
perform CCA operation. All the receivers with order less than or equal to ACKth

use ACK approach, and the others use NACK approach. A receiver node with
ACK approach transmits ACK if it has received the data. On the other hand, a
receiver node using NACK approach only transmits NACK if it has not received
the data, received at least one ACK, and received less than NACKth number of
NACKs. The Figure 1 shows the Media Access Control (MAC) frame structure.
The MAC frame is divided into two parts namely Time Division Multiple Access
(TDMA) and Carrier Sense Multiple Access with Virtual Token (CSMA-VT).
The length of TDMA portion is fixed and it is used by the nodes with ACK
approach. A node i can transmit its ACK message at slot id (i − 1) ∗ Tack + 1.

448 A. Bhatia and R.C. Hansdah

The length of CSMA-VT section is variable and is used by the receiver nodes
using NACK approach. The duration of the token holding period is one slot if
the node remains idle, otherwise it consists of a fixed number of slots Tnack,
required to transmit a NACK message. The first receiver using NACK approach
gets the token at slot id (ACKth ∗ Tack) + 1. All other receiver nodes using
NACK approach and the sender node perform CCA operation in the first slot
of the token-holding period to figure out when the token holding period of the
first receiver gets over. Note that, the CCA operation may fail in the presence
of hidden nodes, and therefore, proposed channel access mechanism does not
completely avoid the collision between NACK messages.

The steps of the protocol to be executed by a receiver node i using NACK
approach while it is waiting for the token, are as follows.

1. Initialize the token-holding period index with 1 at the slot (ACKth∗Tack)+1,
and the number of NACKs received to 0.

2. Perform the following actions until token-holding period index becomes i.
– Perform CCA at the first slot of every token-holding period.
– If the channel is free, the duration of current token-holding period is

considered as 1 slot, otherwise equal to number of slots required for
NACK transmission.

– At the end of current token-holding period, increment token-holding pe-
riod index by 1 and also update the number of NACKs received.

The steps of the protocol to be executed by the source node are as follows.

1. Note down the ACK received from each of the receiver node with device
order i such that i ≤ ACKth.

2. Initialize the token-holding period index with 1 at the slot (ACKth∗Tack)+1,
and the number of NACKs received to 0.

3. Perform the three actions executed by a receiver in step 2 of its protocol
until the token-holding period index becomes n−ACKth.

4. At the end of n−ACKth token-holding period, retransmit the data if received
at least one NACK or not received ACK from any of the node with device
order i, such that i ≤ ACKth.

4 Simulation Results

We have used Castalia Simulator [6] to study the performance of VTCAF pro-
tocol. All receivers are distributed randomly within 100mX100m area. The size
of ACK/NACK and duration of clear channel assessment are 100 bits and 128μs
respectively. The simulation results for the proposed protocol have been com-
pared with those of TDMA, BMMM [3] and LBP [5]. In figure 2, Tavg access with
respect to p for different ACKth values has been plotted. Tavg access increases
with the increase of p for all the cases. As we can see, the LBP incurs minimum
delay since only leader node transmits ACK. The VTCAF protocol always per-
forms better than the BMW and BMMM. Figure 3 shows the effect of pmean

on Fp for various ACKth and NACKth values and the comparison of VTCAF
protocol with LBP [5]. The VTCAF protocol outperforms LBP in every case.

A Media Access and Feedback Protocol 449

 1

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
a

v
g

-a
c

c
e

s
s
 (

#
s
lo

ts
)

Pmean

n = 10

q = 0.2

NACKth = 2

Pvar = 0

ACKth = 1
ACKth = 3
ACKth = 5
ACKth = 7

TDMA
BMMM

LBP

 1

 10

 100

 1000

 10000

 100000

T
a

v
g

-a
c

c
e

s
s
 (

#
s
lo

ts
)

Pmean

n = 10

q = 0.2

ACKth = 2

Pvar = 0

NACKth = 1
NACKth = 3
NACKth = 5
NACKth = 7

TDMA
BMMM

LBP

Fig. 2. Tavg access vs pmean

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
p
(%

)

Pmean

n = 10

q = 0.05

NACKth = 2

Pvar = 0

ACKth = 1
ACKth = 3
ACKth = 5

ACKth = 7
LBP

 0

 10

 20

 30

 40

 50

 60

 70

F
p
(%

)

Pmean

n = 10

q = 0.05

ACKth = 2

Pvar = 0

NACKth = 1
NACKth = 3
NACKth = 5
NACKth = 7

LBP

Fig. 3. Fp vs p

5 Conclusions and Future Work

The VTCAF protocol has unique feature that given the reliability and access
delay requirement, parameters can be tuned to achieve the desired performance
for a given channel condition. The simulations results show that very high re-
liability can be achieved by appropriately setting ACKth and NACKth values
while ensuring reasonably low access delay at the same time. Future works in-
clude avoiding the collision of NACK messages due to hidden node problem and
extending the protocol for multicast reliability in multihop wireless networks.

References

1. Tang, K., Gerla, M.: Random access mac for efficient broadcast support in ad hoc
networks. In: Wireless Communications and Networking Conference, WCNC 2000,
vol. 1, pp. 454–459. IEEE (2000)

2. Tang, K., Gerla, M.: Mac reliable broadcast in ad hoc networks. In: Military Com-
munications Conference, MILCOM 2001, vol. 2, pp. 1008–1013 (2001)

3. Sun, M., Huang, L., Arora, A., Hwang Lai, T.: Reliable mac layer multicast in ieee
802.11 wireless networks. In: ICPP 2002, pp. 527–536. IEEE Computer Society (2002)

4. Peng, J.: A new arq scheme for reliable broadcasting in wireless lans. IEEE Com-
munications Letters 12(2) (February 2008)

5. Kuri, J.: Reliable multicast in multi-access wireless lans. Wireless Networks, 359–369
(1999)

6. http://castalia.npc.nicta.com.au/pdfs/CastaliaUserManual.pdf

http://castalia.npc.nicta.com.au/pdfs/CastaliaUserManual.pdf

POSTER: Distributed Lagrangean Clustering

Protocol

Ravi Tandon, Biswanath Dey, and Sukumar Nandi

Indian Institute of Technology Guwahati
r.tandon@alumni.iitg.ernet.in,

{bdey,sukumar}@iitg.ernet.in

Abstract. Heterogeneity in sensor nodes may be caused because of dif-
ferences in transmission capabilities, different terrains or different dis-
tribution of event occurrences. A distributed, energy efficient clustering
protocol, Distributed Lagrangean Clustering Protocol (DLCP) based on
Lagrangean Surrogate optimization is proposed for heterogenous net-
works. DLCP uses residual energy and position of the sensor nodes for
the election of cluster heads. Cluster head election is modeled as a facility
location problem. Simulation study reveals that DLCP forms better clus-
ters than HEED (Hybrid Energy Efficient Distributed Clustering) and
LEACH. DLCP prolongs network lifetime by distributing energy usage
in a more uniform manner.

1 Introduction

Election of cluster heads has been modeled as a service placement problem. Fa-
cility providers (cluster heads) provide data forwarding and data aggregation
facilities to demand points (member nodes). The problem of electing cluster
heads can be modeled as a p-median facility location problem. The p-median
problem is the problem of locating p medians so as to minimize the transmission
cost from each of the demand points to its nearest facility. Lagrangean Surro-
gate heuristic is an optimization technique that is used to find an approximate
solution [2] to the p-median problem.

2 Related Work

Heterogeneous clustering protocols [1, 3, 4] elect cluster heads based on residual
energy of sensor nodes. HEED [4] elects cluster heads based on a secondary
parameter such as node proximity or node degree. LEACH [1] elects cluster heads
in a stochastic and periodic manner. Heterogeneous version of LEACH requires
global knowledge of sensor nodes’ energy which incurs excessive overheads. SEP
[3] assigns probability of becoming a cluster head to each sensor node based up
on its initial energy. Stochastic election of cluster heads [1,3,4] may lead to low
energy sensor nodes becoming cluster heads. Thus, network life is reduced.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 450–451, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

DLCP 451

3 Contribution

Protocol Description: DLCP is a two phase distributed clustering protocol.
The first phase (referred to as Centralized phase) lasts only a single round and
is initiated by the Base Station. In the centralized phase Base Station acts as
the central authority which elects cluster heads using Lagrangean clustering.
The second phase (referred to as Distributed phase) lasts up to network death.
Clustering is initiated at the advent of each round. Clustering phase is divided
into two stages. Stage I consists of cluster formation by Lagrangean Scheme and
stage II consists of cluster formation by a fully distributed weight based clus-
tering scheme. In the second phase, Lagrangean clustering is applied on each
cluster by the respective cluster head. Lagrangean scheme reduces the problem
of clustering to that of optimizing a cost factor. The cost factor takes into con-
sideration position and residual energy sensor nodes.

Results: A simulation study was performed, which compared the performance
of DLCP with LEACH and HEED. DLCP improves network stability (period
before the death of first sensor node) by 61% over a variation of heterogeneity.
DLCP aggregates 85% more reliable data (data sent during the stability period)
than HEED and LEACH. DLCP improves the standard deviation of residual
energy by 32% over other protocols.

4 Conclusion

We have proposed an energy-efficient distributed clustering approach for ad-hoc
sensor networks. Our approach is a hybrid approach. The Base Station elects
cluster heads according to a Lagrangean Surrogate heuristic. The Lagrangean
clustering scheme uses residual energy of sensor nodes as a cost metric. Sensor
nodes which do not lie within the transmission range of any cluster head broad-
cast a weighted metric. Each sensor node that has the highest weight amongst its
neighborhood becomes a cluster head. This protocol is referred to as Distributed
Lagrangean Clustering Protocol (DLCP).

References

1. Cambridge, M.A., Chandrakasan, A.P., Heinzelman, W.B., Balakrishnan, H.:
An application-specific protocol architecture for wireless microsensor networks 1,
660–670 (2002)

2. Senne, E.L.F., Lorena, L.A.N.: A Lagrangean/Surrogate Approach To p-Median
Problems. In: 22nd Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM 2003), pp. 2842–2852 (2003)

3. Smaragdakis, G., Matta, I., Bestavros, A.: SEP: A Stable Election Protocol for clus-
tered heterogeneous wireless sensor networks. In: Second International Workshop on
Sensor and Actor Network Protocols and Applications, SANPA 2004 (August 2004)

4. Younis, O.: HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach
for Ad Hoc Sensor Networks 3, 366–379 (2004)

POSTER: Broadcasting in Delay Tolerant

Networks Using Periodic Contacts

Prosenjit Dhole, Arobinda Gupta, and Arindam Sharma

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur - 721302, India

Delay Tolerant Networks (DTN) are characterized by intermittent connectivity
between nodes causing parts of an end-to-end path to be formed at different
times, though a complete end-to-end path may not exist at any time. In such
networks, messages are buffered at nodes, and forwarded as and when a contact
with the next hop is made. Typically, broadcasting in DTNs uses some variation
of flooding. Such schemes generate a large number of extra messages that may
need to be buffered and may not work well in resource-constrained scenarios
such as low buffer size at nodes or nodes with energy constraints.

In many mobility patterns seen in practice, the contacts between nodes oc-
cur in some time sequence and are repeated over certain periods. As an exam-
ple, a person will usually go to the office at certain time everyday, coming in
contact with similar officegoers in the bus, train, carpool etc. After reaching
the office he/she will come in contact with certain people at around the same
time every day. In this paper, we propose and evaluate a broadcast algorithm
called P-PREF (Probabilistic Path Restricted Flood) that effectively utilizes the
knowledge about this sequencing and the periodicity of the contacts to improve
broadcast performance in resource-constrained DTNs.

Periodic contacts can be represented using a Probabilistic Contact Graph [3],
where nodes correspond to nodes in the network, and edges between two nodes
contain the time and probability of contact between the nodes. In order to send
a message from one node to another along a path in the probabilistic contact
graph, it is required to find a sequence of contacts that will occur one after an-
other in increasing time sequence in the future. Path probability of such a time
sequenced path is calculated by multiplying the probability of all edges in the
path. Two nodes in such a probabilistic contact graph can have multiple time
sequenced paths with different path probabilities. When a message originates
in a certain node at a certain time, P-PREF calculates the maximum proba-
bility paths from the source node to all other nodes in the network occurring
within the next one period, and joins these paths efficiently to form a structure
called a broadcast subgraph. To do this, P-PREF assumes that every node has
the probabilistic contact graph apriori. Messages are forwarded only along the
edges of this subgraph as and when these contacts happen. However, since the
contacts are probabilistic and the contact for an edge in the broadcast subgraph
may not occur sometimes, P-PREF also performs a probabilistic flooding along
other edges of the broadcast subgraph to explore a small number of redundant

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 452–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Broadcasting in Delay Tolerant Networks Using Periodic Contacts 453

alternate paths to ensure that the message reaches all nodes and to reduce the
average message delivery time.

We have simulated P-PREF and compared average delivery ratio (fraction of
total messages delivered to all nodes), average delivery time, and total number of
messages generated of P-PREF with that of Flood [1] andHypergossiping [2] with
1000 randomly generated messages. The mobility models used are Random Way-
point Model (RWP), Map Based Mobility Model (MBM) [4], and an Educational
Campus Model (ECM) [3]. The buffer policies used are FIFO (default), LIFO and
random. The buffer size at each node is varied from 25 to 250 (no. of messsages).

In general, it is seen thatP-PREF performs the best in terms of delivery ratio in
the ECM model, with delivery ratio much higher than both Flood and Hypergos-
siping for all buffer sizes. This is due to the highly periodic nature of the contacts
in the ECMmodel, which models the movements of faculty and students in a cam-
pus, that P-PREF is able to exploit effectively. On the other extreme, RWP shows
complete random connection pattern and hence P-PREF does not perform well
in this case, with delivery ratio lower than Flood and comparable with Hypergos-
siping. The MBM model, which models movements in a city, exhibits a behavior
somewhat in between the two extremes, with delivery ratio of P-PREF compa-
rable to that of Flood and much higher than that of Hypergossiping for all buffer
sizes. The total number of message generated by P-PREF is always significantly
less than both Flood andHypergossiping for anymobility model and for any buffer
size. However, the average delivery time of P-PREF is usually higher than that
in the other two protocols, which can be reduced by increasing the flood proba-
bility. As far as different buffer policies are concerned, Flood and P-PREF show
their best results with FIFO and random buffer policy, and perform the worst with
LIFO policy for any mobility model. For ECM and MBM model, P-PREF per-
forms better thanFlood andHypergossiping for all buffer policies, but the scenario
is exactly the opposite for the RWP model.

The results indicate that for mobility models that show some degree of pe-
riodicity, P-PREF will perform very well, achieving a high delivery ratio at a
fraction of total number of messages generated. However, the average delivery
time may be higher. Since DTN applications are not real time, P-PREF can be
an efficient broadcasting strategy in DTNs.

References

1. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks.
Technical Report 200006, Duke University (2000)

2. Khelil, A., Marrón, P.J., Becker, C., Rothermel, K.: Hypergossiping: A generalized
broadcast strategy for mobile ad hoc networks. Ad Hoc Networks 5(5), 531–546
(2007)

3. Gupta, A., Jathar, R.: Probabilistic routing protocol using contact sequencing in
delay tolerant networks. In: Second International Conference on Communication
Systems and Networks, COMSNETS 2010, pp. 1–10 (2010)

4. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE Simulator for DTN Protocol Eval-
uation. In: Second International Conference on Simulation Tools and Techniques,
SIMUTools 2009, New York, NY, USA. ICST (2009)

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 454–455, 2013.
© Springer-Verlag Berlin Heidelberg 2013

POSTER: Cryptanalysis and Security Enhancement
of Anil K Sarje’s Authentication Scheme

Using Smart Cards

Chandra Sekhar Vorugunti1 and Mrudula Sarvabhatla2

1 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhi Nagar, India

Vorugunti_Chandra_Sekhar@daiict.ac.in
2 Sri Venkateswara University, Tirupati, India

mrudula.s911@gmail.com

Abstract. In 2010 Anil k Sarje et al. proposed an improved remote user
authentication scheme based on Wang et al. authentication scheme using smart
cards. In this paper, we will show that in Anil k Sarje scheme, ID and Password
can be computed by adversary. Hence it is vulnerable to all traditional attacks.
We propose an efficient and secure authentication scheme with smart cards
which requires minimum computational cost.

1 Authentication Scheme Proposed by Anil K Sarje et al.

Fig. 1. Graphical view of our Anil K Sarjee et al. authentication scheme

1.1 Revealing User ID and Password Ui to Adversary

E can frame Ni⊕Ai⊕Bi = h(x)⊕IDi⊕h(yi)⊕yi. (4), CIDi = h(IDi|yi)⊕h(h(x)|t) (7).
From (7), ‘E’ can frame h(IDi | yi) = CIDi ⊕ h(h(x)|t). (8), Mi = h(IDi |h(x)|yi|t). (9)
(h(IDi|yi) is unique for each user), From (4) ‘E’ can frame: Ni ⊕ Ai ⊕ Bi ⊕h(x) = IDi ⊕h(yi) ⊕ yi. (5). From (5) ‘E’can frame: Ni ⊕ Ai ⊕ Bi⊕ h(x) ⊕ h(yi) ⊕ yi = IDi.
(6). from (8), the adversary gets an equation which relates IDi and yi. Substituting (6)
in (8) ‘E’ gets: h(Ni⊕Ai⊕Bi⊕h(x)⊕h(yi)⊕yi|yi) = CIDi⊕ h(h(x)|T) (10). Adversary

Cryptanalysis and Security Enhancement of Anil K Sarje’s Authentication Scheme 455

can perform dictionary guessing attack for ‘yi’ on (10) guesses a secret value yi* and
checks h(Ni ⊕ Ai ⊕ Bi ⊕ h(x) ⊕ h(yi*) ⊕ yi*| yi*) = CIDi ⊕h(h(x)|T). As the value
CIDi ⊕ h(h(x)|T) is unique because it is equal to h(IDi| yi). If they are equal then the
secret value chosen by server S for the user Ui is yi*. Once the adversary calculates yi
of user Ui, the adversary can calculate IDi and Pi.

2 Proposed Remote User Authentication Scheme

Fig. 1. Graphical view of our proposed authentication scheme using smart cards

2.1 Security Analysis of the Proposed Scheme

As legal user knows IDi, Pi, bi. can do following operations. Compute (x1|yi)
=Bi⊕h(IDi| pi |bi). Concatenate bi to (x1| yi) to get (x1|yi |bi). Substitute (x1| yi |bi) in
(2). Compute (x2|yi) =Ai ⊕h(Pi| IDi | bi)⊕h(x1|yi|bi). The values (x1|yi) and (x2|yi)
are unique to each legal user. It is not possible for the legal user to guess x1, yi, x2 in
a real polynomial time. In our scheme the legal adversary E must guess IDi, bi, Pi, x1,
x2, yi of Ui and its not possible for E to frame a single equation with single unknown
variable. Therefore in our scheme no secret value of either server or legal user is
revealed to others. Hence it’s impossible for E to perform vulnerability attacks.

References

1. Wang, Y., Liu, J., Xiao, F., Dan, J.: A more efficient and secure Dynamic ID-based Remote
User Authentication scheme. Computer Communications 32(4), 583–585 (2009)

2. Sood, S.K., Sarje, A.K., Singh, K.: An Improvement of Wang et al.’s Authentication
scheme Using Smart Cards. In: National Conference on Communications (NCC 2010),
IIT-Madras, pp. 1–5 (2010)

POSTER: A New Approach
to Impairment-Aware Static RWA in Optical

WDM Networks

Sebastian Zawada, Shrestharth Ghosh, Fangyun Luo, Sriharsha Varanasi,
Arunita Jaekel, and Subir Bandyopadhyay

School of Computer Science, University of Windsor, Canada N9B 3P4

In order to set up a number of lightpaths to satisfy user requirements for data
communication, the static (also called offline) Route and Wavelength Assign-
ment (RWA) problem must be solved. The quality of transmission (QoT) of an
optical signal propagating through an optical network degrades, due to physi-
cal layer considerations such as optical noise, chromatic and polarization mode
dispersion, four wave mixing, cross-phase modulation and cross-talk [4]. This
leads to an increase in the Bit Error Rate (BER) of the optical signal and the
corresponding lightpath becomes infeasible for communication if the BER value
crosses a certain threshold limit. We have used an analytical model proposed by
Pereira et al [3] to estimate the BER. The interdependence between the physical
and the network layers makes the RWA problem in the presence of impairments
a cross-layer optimization problem [1]. To address this problem, a number of
approaches are emerging, usually referred to as impairment-aware-RWA (or IA-
RWA) algorithms that take into account the interaction between the network
and the physical layers. Our objective is to design a transparent network, where
the IA-RWA algorithm must provision lightpaths so that the BER value of each
lightpath never exceeds a given threshold.

The objective of this heuristic is to carry out static RWA for a set R of
requests for data communication, taking into consideration both class 1 and
class 2 physical layer impairments [1]. Here each request is denoted by a pair
of nodes (s, d), meaning that a source node s wishes to communicate with a
destination node d. If RWA is successful for a pair of nodes (s, d) ∈ R, it means
that a transparent lightpath may be deployed from node s to d, using some path
Ψs
d from node s to node d, and a channel c that is not used by any lightpath

using any edge on the path Ψs
d . The heuristic takes an iterative approach to RWA

where, in a given iteration, lightpaths are assigned to as many source, destination
pairs in setR as possible. In a given iteration, the heuristic considers each request
in R that has not yet been assigned a lightpath successfully and i) determines,
if possible, an appropriate path Ψs

d on the physical layer, for the request being
considered, ii) determines, if possible, the best channel c for the request, iii)
determines whether the impairments on all the lightpaths, including this new
one, meet the QoT requirements. These impairments we consider are due to a)
class 1 impairments on this new lightpath, b) class 2 impairments on existing
lightpaths, if this new proposed lightpath is set up, iii) class 2 impairments on
this new proposed lightpath due to existing lightpaths. If all these steps are
successful, the request is deemed to be “handled” in this iteration. We include
the pair (s, d), the path Ψs

d and the channel number c in the list of established

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 456–457, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A New Approach to Impairment-Aware Static RWA 457

lightpaths and remove the pair (s, d) from the set of requests R. Otherwise,
the request is retained in R for subsequent iterations. The process terminates
either when all requests have been handled or when no other paths remain for
the requests currently under consideration. The heuristic consists of 3 phases as
follows. Using some relatively large value for k, phase 1 generates a set P s

d of k
or fewer shortest paths from s to d, for each request (s, d) in set R. For each
remaining request (s, d) in set R, phase 2 selects, if possible, a path Ψs

d ∈ P s
d

from s to d. For each route Ψs
d found in phase 2, phase 3 assigns a valid channel

to set up a transparent lightpath from s to d, whenever possible.
In order to evaluate the proposed heuristic, we have compared it to the follow-

ing approaches i) Classical RWA, ii) Shortest Path First (SPF) [2], iii) Longest
Path First (LPF) [2]. Classical RWA assumes an ideal physical layer, with no im-
pairments and the corresponding results provide an upper bound on the number
of successful connections. Fig. 1 shows the percentage of demands that could be
successfully handled for different network sizes, when presented with a demand
set of 50 demands. We see that our proposed heuristic consistently outperforms
both SPF and LPF. The amount of improvement varies with the network size
and ranges from about 10.33% (13.42%) for a 10-node network to 4.41% (5.56%)
for a 30-node network compared to SPF (LPF) and is also quite close to cRWA
(which provides the upper bound).

Fig. 1. Comparison of successfully routed demands for different network sizes

References

1. Christodoulopoulos, K., Manousakis, K., Varvarigos, E.: Offline routing and wave-
length assignment in transparent wdm networks. IEEE/ACM Transactions on Net-
working 18(5), 1557–1570 (2010)

2. Ezzahdi, M.A., Al Zahr, S., Koubaa, M., Puech, N., Gagnaire, M.: Lerp: a quality of
transmission dependent heuristic for routing and wavelength assignment in hybrid
wdm networks. In: Proceedings of the15th International Conference on Computer
Communications and Networks, ICCCN 2006, pp. 125–136 (October 2006)

3. Pereira, H.A., Chaves, D.A.R., Bastos-Filho, C.J.A., Martins-Filho, J.F.: Osnr
model to consider physical layer impairments in transparent optical networks. Jour-
nal of Photonic Network Communications 18, 137–149 (2009)

4. Shen, G., Tucker, R.S.: Translucent optical networks: the way forward. IEEE Com-
munications Magazine 45, 48–54 (2007)

POSTER: Using Directional Antennas

for Epidemic Routing in DTNs in Practice

Rajib Ranjan Maiti, Niloy Ganguly, and Arobinda Gupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur-721602, India

{rajibrm,niloy,agupta}@cse.iitkgp.ernet.in

Introduction: In this paper, we investigate the effect of using directional an-
tennas (DA) for routing in Delay Tolerant Networks (DTNs) where agents move
following some realistic mobility patterns. In particular, the performance of clas-
sical SIRS epidemic dynamics [1] for routing in DTNs using a combination of
omnidirectional antennas (OAs) and DAs is investigated using the SLAW (Self-
similar Least Action Walk) model [2] for human daily life mobility patterns. We
analyze the performance by placing DAs on randomly chosen agents and orient
the DAs in randomly chosen directions. The broad goal of this paper is to initiate
a study of using directional antennas for routing in DTN in practice.

Directional Antenna: Unlike OA which transmits its signal to all the direc-
tions equally, a DA [3] transmits its signal maximally in the directions of focus
with a beamwidth γ. Compared to an OA, the range of a DA with the same
power as an OA is much larger in the directions of γ; however, the range is
much smaller in other directions. Also, the direction of focus can be changed by
rotating the antenna.

Mobility Model: We choose SLAW mobility model [2] which can produce a
variety of mobility patterns (primarily varying Hurst parameter H) similar to
the mobility for different real sites (such as several university campuses and
several social gatherings). In this paper, two different sites, State Fair, (SF) and
NCSU campus, (NCSU), are chosen to reflect two dissimilar means of gathering.

Performance Metrics: We use two measures to evaluate the performance of
the epidemic protocol- message delivery delay, t, (the time when a destination
receives a particular message generated by a particular source for the first time)
and hop count, h (the number of intermediate agents required to reach the des-
tination for the first time from a source).

Simulation Setup: A fraction of the agents ρDA are chosen randomly to carry
DA with the same γ. The antenna is rotated at each time step with a probability
prot. A message is generated from a randomly chosen agent for a destination
located at a distance Dinit from the source at time of message creation. The
results are compared with that of a similar setting where all the agents carry
OA, we measure the delay improvement factors It and hop improvement factor

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 458–460, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

POSTER: Using Directional Antennas 459

Ih defined as follows. Let tp and tq are the delays by using some DA and by
using only OA respectively, then It = (tp - tq)/tp; Ih is defined similarly.

Representative Results: As a representative result, Figure 1 shows how the
delay and the hop count vary with Dinit. The results show that the use of DA
can certainly reduce both the delay and the hop count when Dinit is beyond
a threshold, below which both are actually increased. The use of DAs helps
to spread information to larger distances faster because of the larger range in
the direction of γ. However, many nearby neighbors which would have got the
message in one hop in case of an OA-only system are now not covered by the
DA; they get the message via other agents increasing both the delay and the
hop count.

0 20 40 60
−4

−2

0

2
A: I

t
 vs. D

init

D
init

I t

SF,H=0.75 SF,H=0.66 NCSU,H=0.75 NCSU,H=0.66

100 200 400 500 600
0

0.2
0.4
0.6
0.8

1

D
init

I t

0 20 40 60
−0.4

−0.2

0

0.2
B: I

h
 vs. D

init

D
init

I h

100 200 400 500 600
−0.4

−0.2

0

0.2

0.4

D
init

I h

Fig. 1. Variations of It and Ih with initial distance Dinit for the sites SF and NCSU
with alternate Hurst values H={0.66,0.75} when ρDA=0.2 with prot=0.3

Effect of Other Parameters: We have studied the effect of other parameters
such as prot, ρDA, γ, number of agents and H . With a fixed ρDA, it is seen that
It is higher with higher prot irrespective of agent density. However, the rate of
increase in It diminishes beyond a prot (>0.5). A similar result is seen with ρDA

in case of It. Though higher agent density helps reducing the delay, the reduction
is much lower at a low agent density. As a DA with smaller γ can throw a signal
to a larger distance, It is higher with smaller γ. Analyzing the impact of H , it
turns out that It is positive for all practical values of H . This indicates that the
use of DA can be helpful to reduce the routing delay in presence of human daily
life mobility patterns.

However, analyzing performance in terms of the hop count, it is seen that
Ih is much more sensitive to the parameters used. For example. at a low agent
density, either smaller prot or smaller ρDA actually increases the hop count. This
indicates that the use of DA might incur more cost than an OA-only. A detailed
investigation of the performance of the protocol using DA in practice is necessary
to properly understand it impact on a variety of metrics before employing them
in DTNs in practice; this can help in devising a learning algorithm to efficiently
place and orient the DAs among the agents.

460 R.R. Maiti, N. Ganguly, and A. Gupta

References

1. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Dis-
eases: Model Building, Analysis and Interpretation. Wiley (2000)

2. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: A mobility model for human
walks. In: Proceedings of INFOCOM, Rio de Janeiro, Brazil (April 2009)

3. Peruani, F., Maiti, A., Sadhu, S., Chat, H., Roy, R., Choudhury, Ganguly, N.: Mod-
eling broadcasting using omnidirectional and directional antenna in delay tolerant
networks as an epidemic dynamic. IEEE JSAC 28(4), 524–531 (2010)

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 461–462, 2013.
© Springer-Verlag Berlin Heidelberg 2013

POSTER: A Secure and Efficient Cross Authentication
Protocol in VANET Hierarchical Model

Chandra Sekhar Vorugunti1 and Mrudula Sarvabhatla2

1 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhi Nagar, India

Vorugunti_Chandra_Sekhar@daiict.ac.in
2 Sri Venkateswara University, Tirupati, India

mrudula.s911@gmail.com

Abstract. In 2011, Abhijith Das et al. [1] proposed a protocol based on
hierarchical model for node authentication in group communication in VANETs
and claimed that their protocol is robust against conventional security attacks.
In this paper we will show that Abhijith Das et al. [1] scheme cannot withstand
to various conventional security attacks and fails to provide authentication. We
then present our improved scheme.

1 Authentication Scheme Proposed by Abhijith Das et al.

Abhijith Das et al. [1] scheme is based on VANET hierarchical Model and
Polynomial Interpolation Scheme. (for PIS reading Shamir et al. and Mounita et al.)

1.1 Analysis of Weakness of Abhijith Das et al. Scheme

‘E’ can decrypt the message DK(M||T||NA) and can do following actions.

W1. Alter the identity NA i.e EK(M||T||NR). and sends the altered message to B.
W2. Alter the message and broadcast an altered safety message EK(M’||T||NR).

 C.S. Vorugunti and M. Sarvabhatla 462

W3. Create arbitrary new false identities and frame safety messages like
EK(M1||T||NR1), EK(M2||T||NR2) etc.
W4. Add delay into the message EK(M||T+Δt||NR). These actions by adversary leads
to timing attack, node impersonation attack, sybil attack, failure of assuring message
integrity and entity authentication.

2 Our Proposed Authentication Protocol

In our scheme the session key is shared in very secure manner by the message
EPubKeyB{M3|SK||T3||GK}. The decryption must be done with private key of B only.
In our scheme A sends the message SigPriKeyA{MAC(ESK(M4),SK)} to B. Signing the
message with the private key of A ensures that the message is from A only. Without
providing the valid certificate issued by supervision CA, no intended receiver will
respond to the invitation message. In the first place it’s not possible for A to create
fake certificates. Hence in our scheme sybil attack is not possible. The certificate
CertV[VPubKey] = VPubKey|| SigPriKeyCA[VPubKey||IDCA] are digitally signed by the
CA with his private key. In our scheme ESK[M4||T],SigPriKeyA{MAC(ESK(M4||T),SK),
the time stamp is concatenated to safety message. It’s not possible for any insider
other than the intended recipient to decrypt the message using the session key SK.
Hence our scheme resists all the major attacks. Once a new vehicle enters, the
Abhijith Das et al. [1] scheme executes complete key generation algorithm which
requires O(n2) operations where n is number of vehicles.

Reference

1. Abhijith, D., Dipanwitha, R.C., Anshul, R.: An Efficient Cross Authentication Protocol in
VANET Hierarchical Model. International Journal of Mobile & Adhoc Network 1(1), 128–136
(2011)

POSTER: Approximation Algorithm

for Minimizing the Size of Coverage Hole
in Wireless Sensor Networks

Barun Gorain, Partha Sarathi Mandal, and Sandip Das

1 Indian Institute of Technology, Guwahati, India
2 Indian Statistical Institute, Kolkata, India

Abstract. Covering a bounded region withminimumnumber of homoge-
neous sensor nodes is an NP-complete problem [1]. In this article we have
introduced a variation of area coverage problem inwhich the boundary sen-
sor nodes of a coverage hole are allowed to move towards the hole for min-
imizing the size of the hole. We have shown that this problem is NP-hard.
A ρ−approximation algorithm is proposed to solve this problem, where
2 ≤ ρ ≤ 3 and O(Δ logΔ+ k2) is the time complexity.

1 Introduction

Random deployment of static sensor nodes on an area of interest (AoI) does
not guarantee complete coverage. Introducing limited mobility over the static
sensor nodes, it is possible to improve the coverage by reducing overlaps with
neighboring nodes and allowing them to move towards the uncovered region. In
literature some heuristics [1,2] are proposed for coverage improvement. To the
best of our knowledge, no approximation algorithm has been found in literature
in the area coverage problem by mobile sensor nodes. In this article we have
considered homogeneous sensor nodes, which are the sensing disks with radius
r, centering at the nodes. The coverage hole is an area bounded by sensing disks
or combination of sensing disks and part of boundary of the AoI, and the area
is not in the range of any sensor node. We denote H for coverage hole or simple
‘hole’. We denote B(H) as the set of sensor nodes which are on the boundary of
H. Let L(H) be the hole after removal of B(H). We define extreme points of H
are the points of intersection of the boundary sensing disks of L(H), which are
on the boundary of L(H).

Problem Definition: Given a set of sensor nodes with a random deployment
over an AoI, find the movements of the boundary nodes of a hole, if exists, such
that the area of the hole is minimized without creating any further hole.

Theorem 1. The above problem is NP-hard.

A hole is called a simple hole if it has the following properties: (i.) No sensor
node on the boundary of the hole is a part of any other hole, (ii.) Every node
on the boundary of the hole must have at least one non-boundary neighbor and
at most two boundary neighbors.

D. Frey et al. (Eds.): ICDCN 2013, LNCS 7730, pp. 463–464, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

464 B. Gorain, P.S. Mandal, and S. Das

Let H be a simple hole surrounded by k boundary nodes Sh1 , Sh2 , · · · , Shk
,

where Shi−1 and Shi+1 are the boundary neighbors of Shi . The area of H will
be minimized if Shi moves towards H and places on the perpendicular bisector
of Shi−1 and Shi+1 . The final position of Shi is the point on the bisector for
which at least one extreme point located on the perimeter of the sensing disk of
Shi and other extreme points are inside the disk. The line joining between the
initial and the final positions of the node is called the optimal movement vector
(OMV). We have proposed following approximation algorithm for reducing area
of a simple hole.

The Algorithm: Suppose k nodes are located on the boundary of a hole H.
There are following two cases:

1. k is even or boundary of H is union of nodes and part of AoI
boundary: In this case we partition the boundary nodes by taking alterna-
tive nodes into two disjoint sets X1 and X2. The OMV for a node depends
only on the position of its two boundary neighbors. Therefore, in the above
partition, OMV of a node does not depend on the movement of the other
nodes in the same set. Hence, all nodes of a particular set can move together
along their individual OMV. The set of nodes which reduce maximum area
of the hole after movement will move first. After that each node in the other
set updates OMV and then moves.

2. k is odd and H is a hole surrounded by only sensor nodes: In this
case it is not possible to partition into two disjoint sets X1 and X2 like
Case 1 as there are odd number of nodes. One node gives trouble to move
independently along their OMV for all possible choice of two sets. If one
particular node keeps aside then the other nodes can be partitioned into two
disjoint sets like Case 1. One partition is possible for a choice of one particular
node, total k partitions are possible. We choose the partition corresponding
to the set for which the reduced area of the hole is maximum. Then execute
the node movements of this partition as Case 1. Then move the node which
corresponds this partition to cover the hole after updating its OMV.

Theorem 2. The proposed algorithm is 2 (or 2(1 + 1
k−1))-approximation for

covering a hole if the hole is surrounded by even (or odd) number of boundary
nodes or the boundary is combination of nodes and part of boundary of the AoI.

The time complexity of the proposed algorithm is O(Δ logΔ + k2), where Δ is
maximum degree of nodes and k is the number of nodes on the boundary.

References

1. Li, J., Wang, R., Huang, H., Sun, L.: Voronoi-based coverage optimization for di-
rectional sensor networks. Wireless Sensor Network 1(5), 417–424 (2009)

2. Wang, G., Cao, G., LaPorta, T.F.: Movement-assisted sensor deployment. IEEE
Trans. Mob. Comput. 5(6), 640–652 (2006)

Author Index

Afek, Yehuda 225

Baldoni, Roberto 102
Bandyopadhyay, Subir 133, 456
Banerjee, Subhasis 439
Bartos, Radim 57
Bhatia, Ashutosh 445
Biswas, Subir 208
Busch, Costas 378

Chauhan, Himanshu 176
Chen, Jingshu 393
Chen, Xiaowei 270
Chu, Xiaowen 270

Das, Sajal K. 192, 315
Das, Sandip 463
Das, Shantanu 330
Das Sarma, Atish 11
Datta, Ajoy K. 148, 428
Datta, Anwitaman 42
Davtyan, Seda 27
Delporte-Gallet, Carole 161, 363
Devismes, Stéphane 148, 428
Dey, Biswanath 450
Dhole, Prosenjit 452
Di Francesco, Mario 192, 315
Di Luna, Giuseppe Antonio 102
Dong, Bo 208

Epema, Dick H.J. 270

Fauconnier, Hugues 161, 363
Feldmann, Anja 285

Gafni, Eli 225, 363
Ganguly, Niloy 458
Garg, Vijay K. 176, 240
Ghosh, Preetam 192
Ghosh, Shrestharth 456
Gorain, Barun 463
Gupta, Arobinda 452, 458
Guyennet, Herve 300

Hansdah, R.C. 445
Hu, Xinhui 285
Huo, Qiong 208

Imon, Sk Kajal Arefin 315

Jaekel, Arunita 456
Jia, Adele Lu 270

Kalantari, Babak 434
Kannan, Kalapriya 439
Khan, Adnan 315
Khatua, Manas 118
Konwar, Kishori 27
Kothapalli, Kishore 255
Kulkarni, Sandeep 393
Kutten, Shay 330, 348

Larmore, Lawrence L. 148, 428
Lehsaini, Mohamed 300
Li, Ying 57
Lotker, Zvi 330
Luo, Fangyun 456

Maiti, Rajib Ranjan 458
Mandal, Partha Sarathi 463
Maurer, Alexandre 87
Misra, Sudip 118
Molla, Anisur Rahaman 11

Nandi, Sukumar 450
Nazi, Azade 192

Obrovac, Marko 408
Oggier, Frederique 42

Pamies-Juarez, Lluis 42
Pandurangan, Gopal 11, 348
Peleg, David 348
Pemmaraju, Sriram V. 255
Pouwelse, Johan A. 270

Querzoni, Leonardo 102

Raj, Mayank 192
Rajsbaum, Sergio 363
Richa, Andrea 285

466 Author Index

Robinson, Peter 348
Russell, Alexander 27

Sardeshmukh, Vivek 255
Sarvabhatla, Mrudula 454, 461
Schiper, André 434
Schmid, Stefan 285
Sen, Arunabha 133
Seshia, Sanjit A. 1
Shahriar, Mehrab 315
Sharma, Arindam 452
Sharma, Gokarna 378
Shirazipourazad, Shahrzad 133
Shou, Yanbo 300
Shvartsman, Alexander 27
Swan, James 57

Tandon, Ravi 450
Taubenfeld, Gadi 423
Tedeschi, Cédric 408
Tixeuil, Sébastien 87, 428
Tran-The, Hung 161
Trehan, Amitabh 348
Tseng, Lewis 72

Upfal, Eli 11

Vaidya, Nitin 72
Varanasi, Sriharsha 456
Vorugunti, Chandra Sekhar 454, 461

Zawada, Sebastian 456

	Title
	Preface
	Conference Organization
	Table of Contents
	Verifying High-Confidence Interactive Systems: Electronic Voting and Beyond
	Introduction
	Electronic Voting
	Preliminaries
	Verifying Independence, Determinism, and Injectivity
	Systematic Human-Driven Testing
	Extensions

	Conclusions and Future Work
	References

	Fast Distributed PageRank Computation
	Introduction
	Background and Related Work
	Distributed Computing Model
	PageRank

	A Distributed Algorithm for PageRank
	Analysis
	Correctness of PageRank Approximation
	Time Complexity

	A Faster Distributed PageRank Algorithm (for Undirected Graphs)
	Description of Our Algorithm
	Analysis

	A Faster Algorithm for Directed Graphs
	Description of Our Algorithm
	Analysis

	Conclusion
	References

	Dealing with Undependable Workers in Decentralized Network Supercomputing
	Introduction
	Model of Computation and Definitions
	Algorithm Description
	Algorithm Analysis
	Analysis for Model Ffp
	Failure Model Fpl

	Conclusion
	References

	Decentralized Erasure Coding for Efficient Data Archival in Distributed Storage Systems
	Introduction
	Background
	Decentralizing the Data Archival Process
	Problem Statement
	A Motivating Example
	General Code Construction

	Evaluation
	Fault Tolerance Analysis
	Obtaining an (6,3) MDS Code
	Reduction of the Encoding Traffic

	Related Work
	Conclusions
	References

	Transport Protocol with Acknowledgement-Assisted Storage Management for Intermittently Connected Wireless Sensor Networks
	Introduction
	Related Works
	Transport Protocol with Acknowledgement-Assisted Storage Management
	Protocol Overview
	Congestion Control and Flow Control
	Block Size Calculation
	Storage Management

	Simulator and Experiments
	Simulator and Experiment Setup
	Experiment Results and Performance Evaluation
	Single Source.
	Multiple Sources.
	Different Block Sizes.

	Conclusions and Future Work
	References

	Iterative Approximate Byzantine Consensus under a Generalized Fault Model
	Introduction
	Main Contributions

	Models
	Iterative Approximate Byzantine Consensus (IABC) Algorithms
	Necessary Condition
	Preliminaries
	Necessary Condition

	Algorithm 1
	Sufficiency: Correctness of Algorithm 1
	Matrix Preliminaries
	Transition Matrix Representation
	Construction of the Transition Matrix
	Validity and Convergence of Algorithm 1

	Summary and Discussion
	References

	A Scalable Byzantine Grid
	Introduction
	Our Algorithm
	Hypotheses
	Network Topology
	Informal Description of the Protocol
	Complete Description of the Protocol

	Construction of a Reliable Node Set
	Proof of the Claims
	Worst-Case Placement
	Random Distribution

	Conclusion
	References

	Collaborative Detectionof Coordinated Port Scans
	Introduction
	Related Work
	Problem Overview
	Network Domain Model
	Collaborative Layer Model
	 Group Attack Aggregation
	Separation of Adversaries

	System Architecture
	Evaluation
	Experimental Results

	Limitation, Conclusion and Future Work
	References

	Exploiting Partial-Packet Information for Reactive Jamming Detection:Studies in UWSN Environment
	Introduction
	Motivation
	Contributions
	Organization of the Paper

	Related Work: Challenging Their Suitablity and Correctness for Use in UWSNs
	Network and Jamming Model
	Network Model
	Jamming Model

	Partial-Packet Measurement
	Message Formats
	Metrics for Short-Duration Channel Monitoring

	Reactive Jamming Detection
	Generalized Architecture
	CUSUM-Based Detection Scheme Design

	Simulation and Evaluation
	Effectiveness of the PPRSS Metric
	Average Detection Delay
	Average Missed Detection Ratio
	Average Residual Energy

	Conclusion
	References

	Fault-Tolerant Design of Wireless Sensor Networks with Directional Antennas
	Introduction
	Computational Complexity
	Approximation Algorithm for the TCA
	Experimental Results
	Conclusions
	References

	Self-stabilizing Silent Disjunction in an Anonymous Network
	Introduction
	Related Work
	Outline of the Paper

	Preliminaries
	DISJ
	Definition of DISJ
	Legitimate Configurations

	Self-stabilization and Silence
	Legitimacy and Silence
	Characteristics of a Legitimate Configuration
	Energy
	Silence
	Time Complexity of DISJ

	References

	Uniform Consensus with Homonyms and Omission Failures
	Introduction
	Model and Definitions
	Consensus with Send-Omission Failures
	Consensus with General-Omission Failures
	Numerate Processes
	Innumerate Processes

	Conclusion and Perspectives
	References

	Democratic Elections in Faulty Distributed Systems
	Introduction
	Preliminaries
	Model
	Byzantine Social Choice (BSC)
	Impossibilities
	Possibilities

	Byzantine Social Welfare (BSW)
	Simulation Results
	Discussion
	Future Work
	Conclusion
	References

	Robust Deployment of Wireless Sensor Networks Using Gene Regulatory Networks
	Introduction
	Background and Motivation
	Applications of Gene Regulatory Networks to WSNs
	Motivation for Using GRN Topologies in WSNs

	Bio-inspired WSNs
	Extraction of GRN Sub-networks
	Determining Locations of Sensor Nodes in Bio-inspired WSNs

	Evaluation of Bio-inspired WSNs
	Structural Properties of Bio-inspired WSNs
	Simulation Scenario
	Experimental Results

	Conclusion and Future Work
	References

	Cellular Pulse Switching: An Architecture for Event Sensing and Localization in Sensor Networks
	Introduction
	Related Work
	Pulse Realization Using UWB Impulse Radio
	Sensor Cells and Event Localization
	Pulse as Protocol Data Unit
	Cellular Event Localization

	Cellular Pulse Switching
	Joint MAC-Routing Frame Structure
	Route Discovery
	Pulse Forwarding in the Localization Area
	Response Mechanism
	Protocol State Machine

	Energy Saving Measures
	Energy Saving via Intra-frame Interface Shut-Down
	Pulse Merging
	Spatial Pulse Compression

	Error Analysis
	Protection from False Positive Pulses
	Immunity from Pulse Loss

	Performance Evaluation
	Pulse Transmission Count
	Impacts of Spatial Pulse Compression
	Pulse Error Analysis

	Conclusions
	References

	Asynchrony from Synchrony
	Introduction
	Related Work

	Model
	TOUR Network Solves RWWF - Direct Argument
	TOUR Network Solves RWWF - Via Reduction
	 TP is Equivalent to TOUR
	TP Network Colors a Subdivided Simplex
	The PAIRS Protocol-Complex at an End of a Round

	Conclusions
	References

	Maximal Antichain Lattice Algorithms for Distributed Computations
	Introduction
	Background: Posets with Implicit Representation
	 Maximal Antichain Lattice
	Incremental Algorithms to Construct Lattice of Maximal Antichains
	The ILMA Algorithm
	The OLMA Algorithm

	Traversal Based Algorithms for Enumerating Lattice of Maximal Antichains
	Application of Lattice of Maximal Antichains
	References

	On the Analysis of a Label Propagation Algorithm for Community Detection
	Introduction
	Preliminaries
	Results
	Related Work

	Analysis of Max-LPA on a Path
	Analysis of Max-LPA on Clustered Erdös-Rényi Graphs
	Clustered Erdös-Rényi Graphs
	Analysis

	Empirical Results on Sparse Erdös-Rényi Graphs
	Future Work
	References

	How to Survive and Thrive in a Private BitTorrent Community
	Introduction
	Methodology
	A General View: The Rich Are Rich and the Poor Are Poor
	Long Seeding Time: The Expense of High Downloading Speed
	Long Seeding Times, Even for Poor Peers
	Possible Reasons?

	Why the Poor Are Poor and How to Become Rich?
	Community level
	Torrent Level

	Discussion
	Related Work
	Conclusion
	References

	Optimal Migration Contracts in Virtual Networks: Pay-as-You-Come vs Pay-as-You-Go Pricing
	Introduction
	Economical Service Migration
	Migration Strategies
	Pay-as-You-Come
	Pay-as-You-Go

	Quantitative Comparison
	A First Look at Online Migration
	Related Work
	Conclusion
	References

	Parallel Scalar Multiplication on Elliptic Curves in Wireless Sensor Networks
	Introduction
	Basic Concepts of Elliptic Curve
	Parallelization of Scalar Multiplication
	Parallel Scalar Multiplication in Wireless Sensor Networks
	Experimental Studies
	Conclusion
	References

	PeerVault: A Distributed Peer-to-Peer Platform for Reliable Data Backup
	Introduction
	PeerVault Architecture
	Distributed Storage Scheme
	Characterization of Storage Peers
	Managing Storage Requests
	Data Dissemination and Retrieval
	Estimating Available Resources

	A Distributed Peer Monitoring Scheme
	Analysis of DistMonitor

	Performance Evaluation
	Simulation Setup
	Experimental Results

	Related Work
	Conclusion
	References

	Distributed Verification Using Mobile Agents
	Introduction
	The Model and the Problems
	Local Verification Model
	Mobile Verification Model
	Verification Problems

	Preliminaries
	Space Complexity of Mobile Verification
	Mobile Agents with Logarithmic Memory
	Agents with O(log(logn)) Memory
	Mobile Agents with Finite Memory

	Randomized Algorithms for Mobile Verification
	Time Complexity of Mobile Verification
	Verification in Anonymous Networks
	Conclusions
	References

	Sublinear Bounds for Randomized Leader Election
	Introduction
	Our Main Results
	Technical Contributions
	Distributed Computing Model

	Randomized Leader Election in Complete Networks
	Randomized Leader Election in General Graphs
	Lower Bound
	Conclusion
	References

	Linear Space Bootstrap Communication Schemes
	Introduction
	Model
	Preliminaries
	Broadcast
	Non Blocking Emulation of SWMR Registers
	The Algorithm
	Lower Bound

	Wait Free Emulation of SWMR Registers
	Concluding Remarks
	References

	An Analysis Framework for Distributed Hierarchical Directories
	Introduction
	An Online Algorithm
	Analysis Framework
	Analysis of the Online Algorithm
	Dense Windows
	Sparse Windows
	Complexity of the Online Algorithm

	Analysis of Existing Directories
	References

	SMT-Based Model Checking for Stabilizing Programs
	Introduction
	Preliminaries
	Approach for Verifying Stabilization with SMT Solvers
	Verification of Closure
	Verification of Convergence
	Resolving Ambiguity by Cycles Detection
	Combining Verification of Convergence and Cycle Detection

	Experimental Results
	K-State Token Ring Program
	Ghosh's Binary Mutual Exclusion Protocol
	Stabilizing Tolerant Version of Tree-Based Mutual Exclusion Algorithm

	Verification of Token Ring in Synchronous Semantics
	Related Work
	Conclusion
	References

	Deployment and Evaluation of a Decentralised Runtime for Concurrent Rule-Based Programming Models
	Introduction
	Motivation Example
	Contribution and Organisation of the Paper

	Platform Overview
	Initialisation
	Execution
	Termination

	Software Prototype
	Entities
	Execution Cycle
	Optimisations

	Evaluation
	Test Programs
	Experimental Results

	Conclusion
	References

	Weak Read/Write Registers
	Introduction
	Preliminaries
	The Constructions
	Algorithms Using k-Safe Bits
	Discussion
	References

	Fast Leader (Full) Recovery Despite Dynamic Faults
	Introduction
	Preliminaries
	Algorithm LE(k)
	References

	Addressing the ZooKeeper Synchronization Inefficiency
	Introduction
	Limitations of Synchronization in ZooKeeper
	Addressing the ZooKeeper Inefficiency
	Performance Evaluation
	Conclusion
	References

	Compact TCAM: Flow Entry Compaction in TCAM for Power Aware SDN
	Introduction
	Compacting Flow Entries Using Flow-ID
	Assessment and Evaluation
	Power Gain
	Cost Saving

	Related Work
	Conclusions
	References

	A Media Access and Feedback Protocol for Reliable Multicast over Wireless Channel
	Introduction
	Informal Description of the Protocol
	Channel Access and Feedback Protocol
	Simulation Results
	Conclusions and Future Work
	References

	POSTER: Distributed Lagrangean Clustering Protocol
	Introduction
	Related Work
	Contribution
	Conclusion
	References

	POSTER: Broadcasting in Delay Tolerant Networks Using Periodic Contacts
	References

	POSTER: Cryptanalysis and Security Enhancement of Anil K Sarje’s Authentication Scheme Using Smart Cards
	Authentication Scheme Proposed by Anil K Sarje et al
	Revealing User ID and Password Ui to Adversary

	Proposed Remote User Authentication Scheme
	Security Analysis of the Proposed Scheme

	References

	POSTER: A New Approach to Impairment-Aware Static RWA in Optical WDM Networks
	References

	POSTER: Using Directional Antennas for Epidemic Routing in DTNs in Practice
	References

	POSTER: A Secure and Efficient Cross Authentication Protocol in VANET Hierarchical Model
	Authentication Scheme Proposed by Abhijith Das et al
	Analysis of Weakness of Abhijith Das et al. Scheme

	Our Proposed Authentication Protocol
	Reference

	POSTER: Approximation Algorithm for Minimizing the Size of Coverage Hole in Wireless Sensor Networks
	Introduction
	References

	Author Index

