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Preface

Quantum interaction (QI) is an emerging field which applies quantum theory
(QT) to domains such as economics, organizations and social interaction, psy-
chology, artificial intelligence, human language, cognition, information retrieval,
biology, and political science. The application areas addressed typically oper-
ate at a macroscopic scale and could not be considered quantum in a quantum
mechanical sense, they may share many key properties with quantum systems
including: non-commutativity of measurement, indeterminacy, non-separability,
contextuality, and harmonic oscillations.

After highly successful previous meetings (QI 2007 at Stanford, QI 2008 at
Oxford, QI 2009 in Saarbruecken, QI 2010 in Washington DC, and QI 2011 in
Aberdeen), the 6th International Symposium on Quantum Interaction took place
during June 27–29, 2012, in Paris, France.

QI 2012 received 32 submissions. All contributions were reviewed by at least
two reviewers. In total, 23 papers were accepted for presentation at the confer-
ence. Two keynote speakers were featured. Michel Bitbol (Department of Episte-
mology, École Polytechnique Paris) gave a presentation on “Quantum Theory in
the Light of a Relational Conception of Knowledge.” Philippe Grangier (Depart-
ment of Physics, École Polytechnique Paris) gave a talk on “Quantum Informa-
tion: From Fundamental Ideas to Experimental Implementations.” The sympo-
sium hosted three tutorials: “Conceptual Spaces” given by Peter Bruza, “Quan-
tum Indeterminacy in Social Sciences: From a Theory of Knowledge to a Theory
of Decision-Making and Behavior” given by Ariane Lambert-Mogiliansky, and
“Quantum Search” given by Dominic Widdows.

These proceedings include the 21 accepted papers that were presented and
revised based on the reviewers’ comments and the discussion at the symposium.

We would like to take the opportunity to thank everybody who made this
symposium possible: the Steering Committee, the Program Committee members
for their reviewing job, the Proceedings and the Publicity Chairs, those responsi-
ble for the website design and management, and all the conference participants
and presenters. We are grateful for the support given by the Paris School of
Economics and the Conservatoire National des Arts et Métiers.

September 2012 Jerome R. Busemeyer
François Dubois

Ariane Lambert-Mogiliansky
Massimo Melucci1

1 The work of Massimo Melucci in these proceedings has received funding from the EU
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 247590.
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The Quantum Inspired Modelling of Changing

Attitudes and Self-organising Societies

Kirsty Kitto1, Fabio Boschetti2,3, and Peter Bruza1

1 Information Systems School, Queensland University of Technology
{kirsty.kitto,p.bruza}@qut.edu.au

2 Marine Research, Commonwealth Scientific and Industrial Research Organisation
3 School of Earth and Geographical Sciences, The University of Western Australia

fabio.boschetti@csiro.au

Abstract. We utilise the quantum decision models, now well-developed
in the QI community, to create a higher order social decision making
model. A simple Agent Based Model (ABM) of a society of agents with
changing attitudes towards a social issue is presented, where the private
attitudes of individuals in the system are represented using a geometric
structure inspired by quantum theory. We track the changing attitudes
of the members of that society, and their resulting propensities to act, or
not, in a given social context. A number of new issues surrounding this
“scaling up” of quantum decision theories are discussed, as well as new
directions and opportunities.

Keywords: Attitudes, QuantumDecision Theory, Context, Information
Minimisation, Self-organisation.

1 Introduction

The quantum inspired modelling of human decision making has become quite
advanced in recent years [1,2,3,4], and could now be regarded as a relatively
mature field in the Quantum Interaction (QI) community. In this paper we
propose that these theories can be ‘scaled up’ into the realm of social modelling.
In particular, we will show that the notion of an attitude as it arises in Social
Psychology [5] provides a natural candidate for a quantum state, and introduce a
simple extension to the quantum approach which considers the manner in which
the attitudes of a society of decision making agents will be influenced by two
broad factors: each agent’s natural internal disposition; and the social context
in which they are embedded (i.e. the other agents in the system).

When considering social systems, the notion of an attitude is a key, indis-
pensable concept [6]. Attitudes drive an individual’s overall evaluation of people
(including themselves), objects and issues [7], and so play a critical role in the

choices people make regarding their own health and security as well as
those of their families, friends, and nations. From purchase decisions
provoked by liking for a product to wars spurned by ethnic prejudices,

J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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attitudes help to determine a wide variety of potentially consequential
outcomes. [7]

However, this very potentiality of attitudes makes them extremely difficult to
model. How will a given person think about ‘global warming’ vs ‘climate change’?
What if their daughter has just had her house flooded? Or if they are about to
make a very large tax payment that includes a carbon component? People’s
attitudes are not static immutable objects, but change in response to persuasion
[8], and the demands of cognitive consistency [9]. We often express different
attitudes and opinions in accordance with the social scenario we find ourselves
in [10,11], and it is frequently the case that an explicitly expressed attitude is
quite different from an internally held one [12].

Two models of attitude change arose in the 1970’s; the Elaboration Likelihood
Model (ELM) [13]; and the Heuristic-Systematic Model (HSM) [14]. Both utilise
a dual-process approach that takes a form of mental effort as its key switch-
ing variable. Where individuals are motivated to pay attention to a message, or
have the cognitive capacities to consider it carefully, an attitude change requires
relatively high amounts of mental effort. In these high elaboration processes,
people’s attitudes will be determined by an effortful examination of all relevant
information, and so changing them will expend high amounts of cognitive en-
ergy. In contrast, other processes of persuasion require relatively little mental
effort on the part of the persuadee, resulting in attitudes that are determined
by factors like emotions, ‘gut feeling’, liking, and reference to authority. Sim-
ilar amounts of attitude change can be produced via either process, however,
the changes induced by the high mental effort processes are postulated to be
more persistent, resistant to counter-persuasion, and predictive of behaviour,
than low effort attitude changes. The difference between these two processes has
a number of implications for public policy. In an era of high-frequency press
reporting periods (i.e. the 24 hour news cycle) we have entered a climate where
low effort attitudes appear to predominate [15,16], and the transitional nature
of this process could be seen to result in the apparent increase in undecided or
swinging voters in the modern age. However, few mathematically oriented or
computationally implementable models of these low effort processes exist, and
those that do tend to make unrealistic commitments to the ontological status of
attitudes, implying that these are held in some objective sense and always have
a well defined value [17]. We consider this unlikely to be the case; people tend to
form their low effort attitudes ‘on the fly’, frequently changing them in response
to the social context in which they are currently embedded.

We have recently proposed [18] that the very contextuality of the low effort
processes makes them prime candidates for a quantum inspired model. This
paper will summarise that model in section 2 before moving onto a consideration
in section 3 of the implications that this model has for the QI community. We
will emphasise our model’s divergence from the more direct application of the
quantum formalism that tends to be utilised by QI members, drawing attention
to it’s novel time evolution paradigm.



Changing Attitudes and Self-organising Societies 3

2 A Geometric Model of Attitude Change

The social model that we shall present here is a large scale agent based model
(ABM), roughly based upon the quantum decision theory (QDT) reviewed by
Busemeyer et. al [2]. In this section we shall briefly introduce the notion of an
agent, A, making a decision to act that is affected by their attitude within a
particular social context. Thus, our agent might be answering a question, they
might be voting for a particular politician, perhaps they need to work out if they
should immunise their child, or drive to work. In order to maintain generality in
the model that follows we shall term all of these different decisions as actions,
and treat them equivalently. We note here that this is not a particularly realistic
scenario, and that different actions will have a very different meaning in different
contexts. We shall return to this point in the conclusions, but for now shall
continue with the presentation of our model.

Importantly, our agent has not yet made a decision, and how they eventu-
ally do choose to act will depend upon both their own attitudes (implicit and
explicit), and on the attitudes of those that surround them (i.e. their social con-
text). Note that an agent with the same initial cognitive state may choose a
different course of action if they find themselves in a different context, and this
uncertainty should lie in the mind of the agent. Seating uncertainty in the mind
of the agent further implies that even if the same agent is presented with the
same context then they might choose something different, a situation that we
feel reflects the true uncertainty of human decision making (and its modelling).
Finally, we draw attention to the recursive nature of attitudes within a system
of this form; the actions of our agent will likely affect the social context of other
agents in the system, so changing their attitudes and hence their decisions.

2.1 A Quantum-Like Decision

We shall represent the cognitive state of our agent as |A〉, which A may not have
direct access to (i.e. A may not be aware of this state for reasons of context
to be explained below). If A has decided to act then we shall denote this state
of action using the symbol |1〉, to represent a situation where it is true that
they have chosen to act (in contrast to a state of inaction which we denote as
|0〉). However, a decision to act (or not) depends on the context in which it is
made; we are immediately faced with the dilemma that our social agent cannot
be described as making a decision without reference to a context. Thus, we must
specify that within a given context, say p, our agent will have a certain probability
of acting, and note that a change in context might change this probability.

In what follows, we shall represent both the current state of an agent, and
that of their context explicitly. This is done by expanding the notion of a state
from that of a point in a space, to that of a vector in a Hilbert space, which is
a real or complex inner product space that is also a complete metric space with
respect to the distance function induced by the inner product [19]. At this point
we can start to ask what the state of our undecided agent might be. Requiring
that they have a probability of acting in any way whatsoever that is equal to 1
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|0p >

|1p >

a0

a1

|1q >

|0p >

|1p >

q >|0

a0

b0

b1

a1

|A>

(a) (b)

Fig. 1. An agent attempts to decide whether or not to act. (a) Their probability of
action is proportional to the length squared of the projection of their state onto the
axes labelled |0p〉 (no action) and |1p〉 (action); (b) The changing context of a decision.
The probability of the agent acting changes between the two contexts p and q.

(as is standard), then there is one obvious choice for the representation of the
current state of our agent, |A〉, in some context p:

|A〉 = a0|0p〉+ a1|1p〉, where |a0|2 + |a1|2 = 1, (1)

a situation that is illustrated in Figure 1(a). Here, {|0p〉, |1p〉} are taken to define
an orthonormal basis, the inner product (denoted in the quantum formalism as
〈.|.〉) of which returns 0 or 1: 〈0p|0p〉 = 〈1p|1p〉 = 1 and 〈1p|0p〉 = 〈0p|1p〉 = 0.
Thus, we have used the orthonormal basis {|0p〉, |1p〉} to represent the set of ‘not
act’ or ‘act’ decisions to be made by our agent in the context p. We note that
in this case orthogonality is entirely appropriate as an agent cannot do both,
however, before they make their decision, the agent can be genuinely undecided;
in a different context their probability of choosing an action may change quite
significantly. QDT extracts this probability from the cognitive state of an agent
using a notion of measurement, and we take the position that the same can be
done for social scenarios. Thus, when a person responds to a survey they could
be said to be undergoing a social measurement of their attitudes, and the same
can be said of all actions as they were defined above. The decision to act (or not)
entails the measurement of a state of an agent, but this very act of measurement
may itself affect the decision to act. For example, consider push polling [20], or
the manner in which the framing of a question in a positive or negative light can
lead to risk averse or risk taking behaviour [21]. Such results suggest that the
act of measurement can itself influence the outcomes that are obtained, but the
geometric formulation of decisions that is used by QDT can easily incorporate
such effects [2].

Measurement of the state (1) is defined in this approach with respect to a
projection operator V , where

V = |0p〉〈0p|+ |1p〉〈1p| = V0 + V1. (2)
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Thus, the basis vectors {|0p〉, |1p〉} define the current context p of our agent,
which in turn affects their decisions about whether or not to perform an action
during the process of measurement. This effect is reflected in the probability of
our agent acting in a given context p, which is given by

P =〈A|V1|A〉 (3)

=〈A|1p〉〈1p|A〉 (4)

=
(
a∗0〈0p|1p〉+ a∗1〈1p|1p〉

)× (a0〈1p|0p〉+ a1〈1p|1p〉
)

(5)

=|a1|2. (6)

Similarly, their probability of inaction in the context p is given by |a0|2.
Perhaps the most important feature of this new model arises from a consid-

eration of context itself; it is not just a label. We can immediately develop a
far richer notion of context by asking: what would happen if the social context
of our agent A changed? QT provides us with a particularly elegant mechanism
for dealing with this scenario via a change of basis. Consider figure 1(b), which
is an elaboration of figure 1(a), and represents the changing probabilities of ac-
tion that arise in the case of two different contexts, p and q. With reference
to figure 1(b) we can quickly see that while our agent is highly likely to act in
context q, this is not the case in context p, where A is much less likely to act
(since by examination of the figure we can see that while |a0| > |a1| in context
p, |b1| > |b0| in context q).

2.2 Social Agents Minimise Cognitive Loads

We shall now extend the framework of QDT with a consideration of the uncer-
tainty that an agent experiences. An agent who has decided to act has reduced
their uncertainty about a situation, as has one who has decided not to act. In
contrast, an agent who is most undecided (i.e. has a current state that forms a
45◦ angle between choosing to act and choosing not to act in the context p) is
highly uncertain about their future action in that context, and we consider this
a state that people tend not to enjoy finding themselves in. Certainly, they tend
not even to make decisions (i.e. to ‘act’ or ‘not act’) when they find themselves
in such situations of uncertainty [22,3].

This leads us to introduce a minimisation principle which takes as its basis
the desire of people to be ‘decided’. That is, we assume that people tend not
to enjoy living in states of uncertainty, and that they will preferentially seek
a state in which they can maximise their chances of being decided about an
action. In order to model this behaviour we require a way in which to quantify
the uncertainty that an agent experiences in their current context, and binary
entropy provides a suitable measure of this notion. Defined as the entropy of a
Bernoulli trial (e.g. a two-outcome random variable such as a coin toss), with a
probability of success given by P , it is specified as:

Hb(P ) ≡ −P log2 P − (1− P ) log2(1− P ), (7)
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which is a concave function taking its minimum values at P = 0 and P = 1, and
its maximum at P = 1/2.

Our agent, who is uncomfortable with uncertainty, will seek to minimise the
binary entropy associated with their current attitude through time, by aligning
their state with the context in which they are currently making a decision to
act. Thus, we require that agents seek to minimise the binary entropy associated
with their current state or attitude, in whatever frame is currently relevant to
the agent. This means that the time evolution of |A〉 will reduce Hb(P ) for
the context p by moving towards one of the basis states {|0p〉, |1p〉}. Referring
to figure 1(a), we can rewrite the binary entropy (7) for our agent within the
context p as

Hb(P ) = −|a1|2 log2(|a1|2)− |a0|2 log2(|a0|2) (8)

= −cos2θ. log2(cos2θ)− sin2θ. log2(sin
2θ) (9)

where θ is the angle between the |1p〉 basis state and the state of the agent |A〉.
Rewriting (7) in this manner draws attention to the way in which the entropy
of the agent will change if either (a) the agent undergoes a change in state, or
(b) finds themselves in a changed context. However, we are yet to propose the
manner in which the social context of our agent might emerge.

2.3 The Local and Global Framing of an Issue

A final extension of QDT is required; we shall assume that multiple frames (i.e.
contexts) can be used by a society to understand an issue, and that these can
work at two different scales. Thus, agents in a society will make decisions to
act in both local and global contexts, representing their individual and private
understanding’s of an issue, as well as a collective and global understanding of
that same issue.

For example, each member of a society will have an attitude towards a public
issue (e.g. the need to combat climate change, or the ‘pro-life’ lobby) but this
will quite often remain local and un-shared. When an agent is exposed to an
argument about that issue, they will frequently form an opinion, or choose to
act, according to that argument but we will consider such decisions to be lo-
cal and broadly unshared with the other agents in the society. A local context
might depend upon a wide range of both external and internal factors, such as
the agent’s socioeconomic status, educational background, race etc. and so is a
highly complex, and multidependent variable, although the implementation in
this paper takes a simple two dimensional form.

In addition to these local and private decisions, sometimes agents interact,
leading them to make decisions of a more global form (e.g. they might be asked to
vote in an election, or be polled). In this situation, issues are considered in a frame
that is somehow aggregated from the attitudes of each member in the society
(such as the spin of a major political party, or a voting card that represents
all of the candidates in an election and their policies). We note here that a
society frequently understands an issue from a small number of broadly definable
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perspectives (e.g. capitalism vs socialism, or pro-green vs pro-development etc.),
and so it seems likely that more than one global frame may exist in a society
at any one time (and these will not necessarily be orthogonal). This leads us
to surmise that for every issue confronting a society, a set of global frames will
gradually emerge. Agents would then align their understanding of an issue with
a particular global frame, and make their choices on this basis. However, these
actions can in turn influence the society’s understanding of that issue; the global
frame might itself evolve.

The model presented below considers the orientation of each agent’s local
frame as resulting from an attempt to navigate two different drives for cognitive
consistency:

1. A desire for internal cognitive consistency. This results in a drive to minimise
the binary entropy that applies to their decisions through a choice of local
frame that results in their current state being maximally decided.

2. A desire to ‘fit in’ with the society and its current norms. This desire is
expressed by a pull of their local frame towards the current global frame to
which they belong.

These two drives may prove to compete with one another in the mind of the
agent, and indeed, they might have a different pull for agents of different per-
sonality types (e.g. a ‘conformist’ agent vs a highly ‘individualistic’ one). In what
follows, we shall define Θ as the angle between the agent’s current state |A〉, and
the |1〉 axis, in the global context to which they currently belong, and take θ
to perform a similar function in their local frame. This allows us to define an
individual entropy measure for each agent

H(|A〉, θ) = wi(A)Hb(p(θ)) + ws(A)Hb(p(Θ)) (10)

where the weights wi(A) and ws(A) refer to agent A’s need for internal consis-
tency and social conformity respectively. These weights can range over a popu-
lation of agents, giving a rough parameterisation of a society’s social make-up.

2.4 Updating the State and the Local Frame

A previously undecided agent who has chosen to act in a certain context will
experience some cognitive dissonance, meaning that this decision will not reflect
the agent’s perceived internal state, and this will result in psychological discom-
fort [9]. This gives people a drive to either alter their existing cognitions, or
to reframe their interpretation of a situation, through a re-orientation of their
local frame. We note that since an agent has no direct control over the global
frame they may not always be able to minimise their uncertainty as represented
by (10), however, depending upon their personality type, they may be able to
reduce it over time if the global frame remains relatively stable.

Rather than positing a collapse of the agent’s cognitive state to whichever
axis represents their decision, this model updates |A〉 after a decision by shifting
it towards the axis representing the decision by a certain amount. The size of
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this shift will depend upon the agent’s personality variables (wi and ws), and
upon the angle θ between the state at time t, |At〉, and the frame in which the
decision is being made (as represented by context p, {|0p〉, |1p〉}). Writing θ0
for the angle between the agent’s state and the |0p〉 axis, and θ1 for the angle
between their state and the |1p〉 axis, the new angle between the agent’s state
and the relevant frame is defined to become:

if A decides

{
to act: θ1(|A〉t+1, w(A)) = θ1(|At〉)× (1 + w(A))
not to act: θ0(|A〉t+1, w(A)) = θ0(|At〉)× (1− w(A))

(11)

where w(A) depends upon the comfort ofA with holding two dissonant attitudes;
if A’s decision is being made in a global frame then w(A) = ws(A), whereas if it
is being made in their local frame then w(A) = wi(A). Thus, the state of agents
who decide to act will rotate by a certain distance towards the relevant |1〉 axis,
and the state of agents who decide not to act will exhibit a rotation in the
opposite direction. This means that agents who are comfortable with dissonance
will likely be able to maintain attitudes that do not conform to their actions,
while those who prefer a consistent cognitive state will experience significant
swings in attitude as a result of actions that they choose to take.

Over time, we expect the agents to self-organize towards a scenario where
they are highly aligned within groups who all hold similar ideologies (or global
frames). This process will be measured by the total entropy of the system, given
by a summation of each agent’s individual entropy

H =

N∑
i=1

H(|i〉, θi). (12)

The next section will briefly discuss a computational implementation of this
social model of low effort attitude change, the interested reader can find far
more details in the longer paper [18].

2.5 Computational Implementation

A computational implementation of this model has been performed using MAT-
LAB, where attitudes and frames evolve in a simple two dimensional space. This
model is currently only at the proof of concept stage, and will be further de-
veloped in a more realistic higher dimensional space in future work. At present,
simulations can be run with a varying collection of agents, with varying weight-
ings of personality variables, and different numbers of global frames. Clustering
was utilised to find a specified number of global frames in this implementation.
In this case the vertex substitution heuristic (VSH) algorithm was used [23]. It is
also important to note that the current model is obviously symmetric, and agents
who are at precisely 180◦ to one another will exhibit the same probabilities of
action in the one global frame. This should be remembered when considering
the figures below.

In figures 2 and 3 we see a society of 100 agents, with their current states
represented by long black lines, the global frames in the system by large red
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Fig. 2. The time-wise behaviour of a typical run with only one global frame

dots, and the local frames of each agent by the short red lines. These are seen to
evolve over 100 timesteps, and even with this particularly simple implementation
we can illustrate two key effects that are of interest to social modelling.

Firstly, the vast majority of runs have demonstrated the anticipated timewise
minimisation of the total entropy of the system. Thus, over time the value of
equation (12) decreases, which represents a lessening of the uncertainty of most
agents in the system about their actions. In figure 2 we see a typical system
run with one global frame specified, and consistency and conformity randomly
assigned according to a normal distribution. This run starts from a random
distribution of states, but quickly settles into a scenario where clusters of agents
are centred around the global frame, with a couple of other groupings also in
existence. The total entropy of this system is seen to quickly settle down to a
low value, but we note that some runs have seen well defined spikes arise in this
measure of system uncertainty, denoting a scenario where an unstable global
frame undergoes a marked shift, which requires the agents to re-evaluate their
current attitudes.

Fig. 3. Guided Self-Organisation example. Time evolution patterns for a system of 100
agents all characterised by the same personality values (consistency and conformity
=.5). After 50 iterations the system reaches a stable state with 2 global frames and all
agents aligned to their local frames as well as to one of the global frame. At iteration
51 an external perturbation rotates one of the global frames 30◦ clockwise. At iteration
55 and 60 we see the system re-organising. After 100 iterations the system reaches a
new, different stable state. The rightmost panel shows the time evolution of the total
entropy measure, clearly displaying the effect of the intervention at iteration 51.

This shift in global frames suggests that it may be possible for a policy maker
or interested party to identify places where they could potentially interfere in
a system of this form. Indeed, entropy measures might be utilised to identify
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‘tipping points’ from which a social system might be manipulated towards a
desired outcome. We have briefly investigated such a scenario in figure 3, where
a perturbation of one global frame at step 51, in a system with two global
frames, causes the system to reconfigure an eventually settle down into a new
stable position. The entropy mapped in figure 3(e) shows the spike in entropy
that results from this manipulation, so linking the entropy to such shifts in global
frame.

3 New Time Evolution Paradigms

At this point it is worth taking a step back from the model itself and considering
its implications for the broader QI paradigm. This is because while the model
is quantum inspired, it has characteristics that do not satisfy a standard quan-
tum model. Specifically, no continuous time evolution satisfying the Schrödinger
equation takes place, and while agents change their state in response to mea-
surement they do not exhibit complete collapse.

We note that the evolution operator given in equation (11) can be defined in
such a manner that it is invertible by setting θ−1

1 = θ0 and vice versa. This has
the result of implying that the time evolution in this system is unitary [19]:

UθU
†
θ = 1. (13)

However, this time evolution equation is different from the time evolution of
standard quantum mechanics, and so provides us with a genuinely new form of
probability conserving time evolution. We anticipate that many other forms of
evolution exist, and propose that the QI community should strive to identify
them and classify their behaviour.

We have designated this model as geometric rather than quantum due to
its reliance upon Pythagoras’ theorem in the extraction of probabilities, and
suggest that it forms part of a class of non-classical models which do not exhibit
completely quantum behaviour.

4 Conclusions, Shortcomings and Projected Future Work

The model presented in section 2 is obviously very simplistic, and has many defi-
ciencies. For example, a genuine model of attitude change must be implemented
in more than a two dimensional plane. A current project involves trying to iden-
tify a suitable set of relevant variables from social psychology that could take
the role of basis states. This higher dimensional setting would entail significant
new complexities. Measurement in particular would require the specification of
some sort of plane or cut through the higher dimensional space before a frame
could be suitably defined. However this extra complexity would serve to further
clarify the notion of an action. For example, we anticipate that the designation of
relevant dimensions from social psychology would restrict the notion of an action
to the system of interest. Thus, a model that was designed to explore political
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ideologies, and their influence upon environmental decisions would perhaps not
include a dimension that could be used to explore an attitude towards immu-
nisation, or a propensity to donate to charity, and so the decisions that were
modelled would be of a similar type. The different psychological effort involved
in carrying out some actions compared to others is also a factor that needs to be
explored, and future work will investigate the possibility of incorporating this
model as a module into an existing ELM-style model (e.g. [17]).

We note that this model has not been designed to exhibit either interference,
or non-separability effects at this stage, although this is not in principle ruled
out. The design of the model is such that interference effects between competing
decisions to be made by an individual should be evident, with choices made in
one frame affecting choices in another etc., as has already been discussed in a
number of QDT’s (e.g. [2,3]). A more novel phenomenon would centre around
interference effects between different agents in a society. Indeed, depending upon
how a global frame is defined, we could anticipate scenarios where the decisions
of one agent might have pronounced effects upon other agents in the system. For
example, it would not be difficult to define a ‘presidential’ agent, whose decisions
shape a specific global frame in the system, and so interfere with the decisions of
all other agents. We might then ask what would be signified by the emergence of
a new global frame — perhaps the emergence of a new set of political ideologies?

More broadly, the ability to represent and computationally model effects such
as cognitive dissonance and low elaboration attitude change is undoubtedly use-
ful for broader social analysis, which is frequently dominated by either compu-
tational models that are overly simplified and physically motivated, or social
models that are too qualitative to be of use in predicting large scale behaviour.
Much has been learned from this new model, even at this preliminary stage.
We believe that the geometric representation employed in this paper allows nat-
ural scientists and engineers to model, and thus more easily accept, a set of
models that social scientists hold particularly dear. Similarly, the adoption of
our proposed framework may in some cases provide social scientists with some
confidence that important aspects of social theory can be considered within
quantitative models, so making them to relevant to the real world problems that
they are seeking to address. For the QI community, we see a new way forwards,
towards a class of quasi-quantum systems displaying contextualised probabilistic
behaviour, but within a new set of measurement paradigms. This further opens
up the field towards a new broader class of formalisms able to treat context in
a sophisticated manner, of which quantum mechanics is only one example.
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Abstract. We consider variational problems where the velocity depends
on a scale. After recalling the fundamental principles that lead to classical
and quantum mechanics, we study the dynamics obtained by replacing
the velocity by some physical observable at a given scale into the ex-
pression of the Lagrangian function. Then, discrete Euler-Lagrange and
Hamilton-Jacobi equations are derived for a continuous model that in-
corporates a real-valued discrete velocity. We also examine the paradigm
for complex-valued discrete velocity, inspired by the scale relativity of
Nottale. We present also rigorous definitions and preliminary results in
this direction.

Keywords: quantum operators, scale relativity.

1 Some Philosophical Principles for Physics

In this contribution, we first introduce some general philosophical hypotheses
that are also widely discussed by several authors (see e.g. Bitbol [1], d’Espagnat
[4], Filk and von Müller [5] among others). We set three hypotheses. The two first
ones are of ontological type and the third one is concerned with experiments.

(H1)-Principle of Reality. It exists a reality which is independent of any
observer.

(H2)-Continuous Space-time. The space-time is a continuous manifold on
which the movement of particles can be described by continuous trajectories.

(H3)-Measurement and Scale. The measurement of a physical quantity
(time, space, velocity, energy, etc) involves a notion of scale.

In classical physics, hypothesis (H2) is more constrained: trajectories are sup-
posed to be differentiable or more regular. In this case, the particle velocity is
uniquely defined by v = dq

dt which is independent of the scale. Observe that if
the trajectory is not regular (continuous but nowhere differentiable) or if some
general hypothesis of continuous but non-differentiable space-time is done (as in
scale relativity [12]), hypothesis (H3) remains true but the previous velocity has
no meaning. On the contrary, a discrete velocity associated with a given scale
can still be well-defined.
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This framework leads to a first paradigm (labelled by the letter “a” in ta-
ble 1) of continuous classical physics. We recall in section 2 the main point
about Euler-Lagrange and Hamilton-Jacobi equations. As noticed by Gondran
[7], a complexification of the Hamilton-Jacobi framework provides a natural in-
troduction to the Schrödinger equation. This second paradigm (letter “b” in
table 1) is shortly displayed in section 3. As a consequence the differentiabil-
ity of the trajectories is lost and they can be interpreted in terms of Brownian
motion (see e.g. Nelson [11]).

In this contribution, we develop a scale point of view based on the analysis
of reality associated with observations at a given discrete scale. We develop in
section 4 a paradigm (labeled with the letter “c” in table 1) based on the knowl-
edge of real-valued discrete velocities. In other words, the velocity at a given
scale remains a real number. The idea of introducing discrete operators as fun-
damental principles of mechanics and quantum mechanics has been proposed by
several authors as Greenspan [8], Friedberg and Lee [6] and recently by Khren-
nikov et al. [9,10] as well as Odake and Sasaki [13]. Nevertheless, our approach
does not follow the paradigms suggested by the above references. Our objective
is to develop our understanding of the ideas of Nottale [12] who introduced a set
of discrete complex velocities (see the label “d” in table 1). We propose some
preliminary remarks in this direction in section 5.

Table 1. Proposition of four paradigms

Continuous Geometry Given Scale Geometry

Classical Physics a© Hamilton-Jacobi c© Real-valued velocity

Quantum Physics b© Schrödinger d© Complex-valued velocity

2 Some Classical Results on Hamilton-Jacobi Equations

In order to reduce the notations, a Lagrangian function L(x, v) independent of
the time is given. To fix the ideas, this Lagrangian can be chosen as

L(x, v) =
1

2
mv2 − ϕ(x) . (1)

The potential energy ϕ(x) structures the space-time with objects governed by

physical laws (H1), whereas the kinetic energyK(v) ≡ mv2

2 catches the dynamics
through the velocity. Consider a regular trajectory θ �−→ X(θ) for 0 ≤ θ ≤ t
and the associated action

A(t,X(•)) =
∫ t
0
L
(
X(θ),

d

dθ
X(θ)
)
dθ .

For an arbitrary variation δt and for all C1-functions X and associated varia-
tions δX , we introduce the variation δA of the action. It is given by:
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δA
(
t,X(•)

)
= L
(
X(t),

d

dθ
X(t)
)
δt

+

∫ t
0

[
∂xL
(
X(θ),

d

dθ
X(θ)
)
δX(θ) + ∂vL

(
X(θ),

d

dθ
X(θ)
) d

dθ
δX(θ)

]
dθ

and after integrating by parts:

δA = L
(
X(t),

d

dθ
X(t)
)
δt+

∫ t
0

d

dθ

[
∂vL
(
X(θ),

d

dθ
X(θ)
)
δX(θ)

]
dθ

+

∫ t
0

(
∂xL
(
X(θ),

d

dθ
X(θ)
)
− d

dθ

[
∂vL
(
X(θ),

d

dθ
X(θ)
)])

δX(θ) dθ .

(2)

Let q0 be fixed and consider the class of functions C1q0(0, t) = {X ∈ C1(0, t) such
that X(0) = q0}. Notice that the difference between two functions of C1q0(0, t)
belongs to C10(0, t). Thus, if δX ∈ C10(0, t), then δX(0) = 0. Vanishing the first
variations of the action leads to the well-known Euler-Lagrange equation given by

∂xL
(
X(θ),

d

dθ
X(θ)
)
− d

dθ

[
∂vL
(
X(θ),

d

dθ
X(θ)
)]

= 0 ,

withX(0) = q0 , X(t) = q .
(3)

Moreover, for any arbitrary time t > 0 and any arbitrary state q, let Xopt(•; t, q)
be the solution X(•) in C1q0(0, t) of the Dirichlet boundary problem given by
the Euler-Lagrange equation (3). Observe that Xopt(•; t, q) is parameterized by
the time of arrival t and the value q, as precised in (3). At fixed time t and
position q, the optimal trajectory Xopt(•; t, q) is supposed to exist and to be
unique. We have the initial condition Xopt(0; t, q) = q0 and the final condition
Xopt(t; t, q) = q. Moreover the trajectory θ �−→ Xopt(θ; t, q) has a velocity at

time t and position q equal to ∂θX
opt(θ; t, q)

∣∣∣
θ=t

that can also be considered as

a “natural” velocity dq
dt (t) = ∂θX

opt(θ; t, q)
∣∣∣
θ=t

.
Let the momentum p(t, q) be defined by

p(t, q) = ∂vL
(
q, ∂θX

opt(t; t, q)
)

(4)

and the optimal action S(t, q) as the action along the optimal trajectory :

S(t, q) = A
(
t, Xopt(•; t, q)

)
. (5)

At fixed time t, due to the Euler-Lagrange equation (3), we deduce from (2) that
δA
(
t,Xopt(•)

)
= ∂vL

(
q ∂θX

opt(t; t, q)
)

= p(t, q). In other words, the first
variation of the optimal action with respect to the final state is the momentum,
namely

∂qS(t, q) = p(t, q) . (6)

If time t is varying and considering the optimal trajectory θ �−→ Xopt(θ; t, q),
we have ∂tA

(
t, Xopt(•)

)
= L
(
q, ∂θX

opt(t; t, q)
)
. Wrinting that this quantity is

the time variation of the optimal action (5) and taking into account the velocity
of the optimal trajectory at the location q, we deduce

∂tS + ∂qS • ∂θXopt(t; t, q) = ∂tA
(
t, Xopt(•)

)
= L
(
q, ∂θX

opt(t; t, q)
)
. (7)
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Introduce now the Legendre transform of the Lagrangian L relatively to the
second variable v. Suppose that the function v �−→ y = ∂vL(x, v) is invert-
ible and denote by V (x, y) its inverse. The Hamiltonian H(y, x) is classically
defined by

H(y, x) = y •V (x, y)− L
(
x, V (x, y)

)
.

Observe that if (4) holds then ∂θX
opt(t; t, q) = V (q, p) and H(p, q) = p •V (q, p)

−L(q, V (q, p)). We deduce from (7),

L
(
q, ∂θX

opt(t; t, q)
)
= ∂tS +

(
∂qS
)
• ∂θXopt(t; t, q)

= ∂tS + p(t, q) •V
(
q, p(t, q)

)
.

This leads to the well-known Hamilton-Jacobi equation

∂tS + H
(
∂qS, q

)
= 0 . (8)

3 How to Derive the Schrödinger Equation ?

The “break through” from classical Hamilton-Jacobi equations to quantum dy-
namics is due to Schrödinger [14]. Introduce the wave function ψ according to

ψ = exp
(
i
S

�

)
(9)

and inject this relation into (4) and (8). We get i
�
dS = 1

ψ dψ and due to (6),

we have p = �

i
1
ψ ∂qψ. Then Schrödinger transforms the momentum p into the

so-called momentum operator P defined by P •ψ ≡ −i � ∂qψ. Observe that
the momentum P becomes now a complex derivative operator. Starting from the
usual Lagrangian, we observe that the good generalisation of quantum mechanic
of v2 is not |v|2 (or PP ∗) but vv (or PP in the classical formalism). Then the

Hamiltonian H takes the expression H = 1
2m P 2 + ϕ(q) = − �

2

2m Δ + ϕ(q)
and the Schrödinger equation

i � ∂tψ = − �
2

2m
Δψ + ϕ(q)ψ (10)

is a direct consequence of the Hamilton-Jacobi equation (8).
An other way to derive the Schrödinger equation has been proposed by Nottale

[12]. The idea consists in replacing the classical trajectory derivative d
dt ≡ ∂t +

v • ∂q by the complex Dynkin operator d
dt ≡ ∂t+v •∂q−i �

2m Δ. Then, equation

(7) takes the form: L = ∂tS + v •
(
∂qS
) − i �

2m ΔS and ∂tS + 1
m (∂qS)

2 −
i �

2m ΔS + ϕ(q) − m
2

(
1
m ∂qS

)2
= 0. Following Gondran [7], one can derive a

complex Hamilton-Jacobi equation

∂tS +
1

2m
(∂qS)

2 + ϕ(q) − i
�

2m
ΔS = 0 . (11)
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If we decompose the complex optimal action S into its real and imaginary
parts, id est S = Σ− i � logR, an elementary calculus allows to transform the
complex Hamilton-Jacobi equation (11) into the form proposed by Bohm and
Hiley [2]:

∂tΣ +
1

2m
(∂qΣ)2 + ϕ(q) − �

2m

∂qR

R
= 0 , ∂tR

2 + div
(R2

m
∂qΣ
)

= 0 . (12)

The quantum potential Q ≡ − �

2m
∂qR
R is the quantity that has to be added to

transform the classical Hamilton-Jacobi equation (8) into the real part of the
complex Hamilton-Jacobi equation (11).

Introduce now the change of variables (9) into the complex Hamilton-Jacobi
equation (11). If we derive once again the relation i

�
∂qS = 1

ψ ∂qψ towards the

space variable q, we get i
�
∂2qS = − 1

ψ2

(
∂qψ
)2

+ 1
ψ ∂

2
qψ. The left hand side of

the complex Hamilton-Jacobi equation (11) is now equal to

1

ψ

[�
i
∂tψ +

1

2mψ
(
�

i
∂qψ)

2 + ϕ(q)ψ − i
�

2m

�

i

(− 1

ψ

(
∂qψ
)2

+ ∂2qψ
)]

and the Schrödinger equation (10) is established.

4 Real-Valued Discrete-Measured Velocity at a Given
Scale

We consider now that the classical velocity is not a relevant observable. We
introduce a given strictly positive scale parameter ε, a “fat” initial condition
q0 ∈ C([−ε, 0]) as a continuous function and the classical discrete so-called finite
difference operators(

d−ε q
)
(θ) ≡ 1

ε

(
q(θ)− q(θ − ε)

)
,
(
d+ε q
)
(θ) ≡ 1

ε

(
q(θ + ε)− q(θ)

)
. (13)

Let us notice that the velocity v±ε = d±ε q is now measured at the given scale ε
by two possible schemes (13), as a consequence of the hypothesis (H3). We
consider a given (final) time t strictly positive and a continuous trajectory(
[−ε, t] 
 θ �−→ q(θ)

) ∈ C([−ε, t]) with the initial condition q0. This ini-
tial condition is not classical, q0 is not anymore given at a time t = 0, but on a
small interval depending on the scale ε. It has to be considered in the following
sense: restricted to the interval [−ε, 0], function q is equal to the given function
q0. As in the classical case described in section 2, we introduce an action A
based on a regular Lagrangian L(x, v) which is similar to that introduced at
the relation (1):

A(t, q) ≡
∫ t
0
L
(
q(θ), d−ε q(θ)

)
dθ . (14)

In the following, we examine the choice of d−ε q as the observed velocity. Thus
the paradigm based on this choice and (14) is studied. We have just formally
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replaced velocity v in the second argument of the Lagrangian (1) by the discrete
velocity vε = d−ε q. We have the following result.

Proposition 1. Variation of the discrete action
The variation δA of the action A defined in (14) when trajectory q is varying
by an increment δq and time by an increment δt is given by

δA = L δt− 1

ε

∫ 0

−ε
∂vL(θ + ε) δq(θ) dθ

+

∫ t
t− ε

[
∂xL+

1

ε
∂vL
]
(θ) δq(θ) dθ

+

∫ t− ε

0

[
∂xL− d+ε

(
∂vL
)]
(θ) δq(θ) dθ .

(15)

The first integral in (15) is null a priori since initial condition q0 is supposed to
be fixed between −ε and 0.

Proof of Proposition 1.
Since Lagrangian L in (1) is a regular function, differentiating (14) yields

δA = L δt+

∫ t

0

(
∂xL
)
δq(θ) dθ +

∫ t

0

(
∂vL
) 1
ε

(
δq(θ)− δq(θ − ε)

)
dθ

= L δt+

∫ t

0

(
∂xL
)
δq(θ) dθ+

1

ε

∫ t

0

(
∂vL
)
δq(θ) dθ− 1

ε

∫ t−ε

−ε

(
∂vL
)
(θ+ε) δq(θ) dθ

= L δt − 1

ε

∫ 0

−ε

(
∂vL
)
(θ + ε) δq(θ) dθ

+

∫ t−ε

0

(
∂xL− 1

ε

[(
∂vL
)
(θ + ε)− (∂vL)(θ)]) δq(θ) dθ

+

∫ t

t−ε

[
∂xL+

1

ε
∂vL
]
(θ) δq(θ) dθ ,

so that (15) is a consequence of the definition of the operator d+ε given by
(13). �

We deduce from relation (15) that an optimal trajectory satisfies the discrete
version of the Euler-Lagrange equation, that is

∂xL
(
q(θ), d−ε q

)− d+ε
[
∂vL
(
q(θ), d−ε q

)]
= 0 , 0 ≤ θ ≤ t− ε . (16)

This discrete-time dynamics is formally very similar to the classical Euler-
Lagrange dynamics (3). Remark that it is nothing but an implicit finite difference
scheme:

∂xL
(
q(θ),

1

ε

(
q(θ)− q(θ − ε)

)) − 1

ε
∂vL
(
q(θ + ε),

1

ε

(
q(θ + ε)− q(θ)

))
+

1

ε
∂vL
(
q(θ),

1

ε

(
q(θ)− q(θ − ε)

))
= 0 .

(17)
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From (17), it is clear that the dynamics of the optimal trajectory is that of a
delay system, and more precisely,

q(θ) is a function of θ, q (θ − ε), q(θ − 2 ε) . (18)

Function q is the solution of the two-step finite-difference scheme (17). Because
q0(θ) is known for −ε ≤ θ ≤ 0, the knowledge of q(θ) for 0 ≤ θ ≤ ε is generi-
cally sufficient for solving the scheme (17) under the form (18). The knowledge
of q0 on [−ε, ε] is equivalent to the knowledge of the discrete derivative d+ε q(θ)
for −ε ≤ θ ≤ 0. Let us define this initial variation

(
d+ε q)0 as(

d+ε q
)
0
(θ) =

1

ε

(
q(θ + ε)− q(θ)

)
, −ε ≤ θ ≤ 0 . (19)

From the knowledge of q0(θ) and
(
d+ε q)0 we construct a priori without major

difficulty the continuous trajectory q solution of (17) of the type (18) for 0 ≤ θ ≤
t. We obtain in this way a “final state” qf which is now a piece of trajectory q:

qf(θ) = q(t+ θ) , −ε ≤ θ ≤ 0 .

This leads to the functional Qt : (d+ε q)0 �−→ qf = Qt

(
(d+ε q)0

)
defined from

C([−ε, 0]) to C([−ε, 0]), for q0 fixed. We suppose this functional to be one to
one. In consequence, we can suppose the optimal trajectory parameterized by
the final state qf ∈ C([−ε, 0]). We denote by S

(
t, qf
)
the corresponding optimal

action. We observe that at fixed q0, it depends only on the final time t and the
final state qf whereas the action A is a functional of all the states along the
whole trajectory.

Proposition 2. Derivative of the optimal action
Under a variation δqf of the final state, the optimal action admits a variation
δS
(
t, qf
)
given by

δS
(
t, qf
) ≡ ∂S

∂qf
• δqf =

∫ t
t− ε

[
∂xL+

1

ε
∂vL
](
q(θ),
(
d−ε q
)
(θ)
)
δq(θ) dθ . (20)

Proof of Proposition 2.
Due to the discrete Euler-Lagrange equations (16), the optimal trajectory van-
ishes the third term of the right hand side of the relation (15). The first one is
identically null because the initial condition q0 remains fixed. The result is then
a simple consequence of the relation (15) when time t is fixed. �

In the right hand side of relation (20) the final state is not explicit. In order
to exhibit the variation δqf we introduce

Γ (t, qf)(θ) ≡ (∂vL+ ε ∂xL
)(
q(t+ θ),

(
d−ε q
)
(t+ θ)

)
, −ε ≤ θ ≤ 0 . (21)

Then, Γ (t, qf) ∈ C([−ε, 0]) and relation (20) can be also written as

∂S

∂qf
• δqf =

1

ε

∫ 0

−ε
Γ (t, qf)(θ) δqf(θ) dθ . (22)
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Let us observe that expression Γ (t, qf) is a good candidate for a momentum
variable analogous to the one that satisfies the relation (6) in differentiable
mechanics.

The natural question is now to determinate the “total variation” with time
of the optimal action, id est the discrete analogous of the expression (7). This
is not possible if we restrict to solely continuous trajectories. Nevertheless we
propose a result for a discrete variation in time of amplitude exactly equal to
ε. We denote by q̃f the trajectory obtained from the final state qf after a time
extension of amplitude ε: q̃f(θ) ≡ q(t + ε + θ) for −ε ≤ θ ≤ 0. Then we have
a simple expression for the difference S(t + ε, q̃f) − S(t, qf) because the two
integrals in (14) operates on the same optimal trajectory:

S(t+ ε, q̃f)− S(t, qf) =

∫ t+ ε

t
L
(
q(θ),
(
d−ε q
)
(θ)
)
dθ . (23)

Proposition 3. Discrete variation of the optimal action
Let ξ be a continuous function in the space C([−ε, 0]). We have

S(t, qf + ξ)− S(t, qf) =
1

ε

∫ 0

−ε
[ ∫ 1

0
Γ (t, qf + η ξ)(θ) dη

]
ξ(θ) dθ . (24)

Proof of Proposition 3.
We introduce Φ(η) ≡ S(t, qf + η ξ) for 0 ≤ η ≤ 1. It is a derivable function of
the real variable η and we have

dΦ

dη
=

∂S

∂qf
(t, qf + η ξ) •

d

dη

(
qf + η ξ

)
=

∂S

∂qf
(t, qf + η ξ) • ξ

=
1

ε

∫ 0

−ε

Γ (t, qf + η ξ)(θ) ξ(θ) dθ.

Then the relation (24) is obtained by integration relative to η ∈ [0, 1] and using
Fubini theorem. �
Then, we present here the main result of this contribution.

Proposition 4. Discrete temporal variation of the optimal action
Let Γε(t, q

f) be a mean value at final time t of the momentum introduced in (21):

Γε(t, q
f)(θ) ≡

∫ 1

0

Γ
(
t+ε, qf+ε η

(
d−ε q
)
(t+ε+θ)

)
(θ) dη , −ε ≤ θ ≤ 0 . (25)

The following discrete Hamilton-Jacobi type equation holds

d+ε S +
1

ε

∫ 0

−ε
Γε(t, q

f)(θ)
(
d−ε q
)
(t+ ε+ θ)

)
dθ

− 1

ε

∫ t+ ε

t
L
(
q(τ),
(
d−ε q
)
(τ)
)
dτ = 0 .

(26)
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Proof of Proposition 4.

We recall that d+ε S ≡
1

ε

(
S(t+ε, qf)−S(t, qf)). Then we have the decomposition

ε d+ε S = −(S(t+ ε, q̃f)− S(t+ ε, qf)
)
+
(
S(t+ ε, q̃f)− S(t, qf)

)
.

We remark also that q̃f(θ)− qf(θ) = q(t+ε+θ)− q(t+θ) = ε
(
d−ε q
)
(t+ε+θ).

Then we have from (24) with ξ = ε
(
d−ε q
)
(t+ ε+ θ) :

S(t+ ε, q̃f)− S(t+ ε, qf) =

=
1

ε

∫ 0

−ε

[ ∫ 1

0

Γ
(
t+ ε, qf + ε η

(
d−ε q
)
(t+ ε+ θ)

)
(θ) dη
] (
q̃f(θ)− qf(θ)) dθ

=
1

ε

∫ 0

−ε

[ ∫ 1

0

Γ
(
t+ε, qf+ε η

(
d−ε q
)
(t+ε+θ)

)
(θ) dη
]
ε
(
d−ε q
)
(t+ε+θ) dθ

and the second term of the left hand side of the relation (26) is clear. The
end of the proof is a consequence of the decomposition of ε d+ε S and relation
(23). �
The analogy between the classical Hamilton-Jacobi equation (8) and the discrete
version (26) is clear. We observe that the Lagrangian is replaced by its mean value
on an interval of size ε.Moreover the natural associated momentum Γε(t, q

f)(θ)
defined at relation (25) is not a priori strictly equal to the momentum Γ (t, qf)(θ)
introduced at relation (21). This splitting at the discrete scale of the moment p
satisfying both relations (4) and (6) is a real difficulty that we will consider in a
future contribution.

5 Towards Complex-Valued Discrete-Measured Velocity

The discrete scaled velocity vε = d−ε q introduced in section 4 is purely real. We
consider now a complex discrete velocity vε. Following an idea proposed by Not-
tale [12], we introduce a discrete complex derivation operator �ε according to

(
�εq
)
(θ) ≡ 1

2 ε

(
q(θ + ε)− q(θ − ε)

)
+

i μ

2 ε

(
q(θ + ε)− 2 q(θ) + q(θ − ε)

)
, (27)

with μ2 = 1. We decompose the discrete operator �εq under the form
�εq ≡ � r

εq + i μ� i
εq. We have

(
� r

εq
)
(θ) ≡ 1

2 ε

(
q(θ + ε)− q(θ − ε)

)
=

1

2

(
d+ε q(θ) + d−ε q(θ)

)
(
� i

εq
)
(θ) ≡ 1

2 ε

(
q(θ + ε)− 2 q(θ) + q(θ − ε)

)
=

1

2

(
d+ε q(θ)− d−ε q(θ)

)
.

(28)

The real part � r
ε q is the standard time derivative for regular trajectories when

ε goes to 0. The imaginary part � i
ε q is asymptotically null for a regular function

and accounts for the slope jump at a given time. This framework has been proven
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to be well-posed by Cresson and Greff [3] introducing a limit when ε goes to
zero in a well-defined projection functional space.

As remarked previously, the appropriate generalization of the kinetic energy
m
2 v

2 is obtained by taking the (complex) square of the momentum operator. So
in the expression of the Lagrangian we have to replace v2 by (�εq)

2. We set

Kε ≡ m

2
(�εq)

2 =
m

2

[(
� r

εq
)2 − (� i

εq
)2

+ 2 i μ
(
� r

εq
) (

� i
εq
)]
. (29)

If Kε is real, i.e. ImKε = 0, the product
(
� r

εq
) (

� i
εq
)

is null and two cases
occur.

(i) If Kε ≥ 0, then � i
εq = 0 and we have a natural reference to a regular

trajectory.
(ii) If Kε < 0, then then � r

εq = 0. The position q(θ) is essentially unchanged
during one ε-step but the jump is not null and the direction of the trajectory
has changed abruptly.

If the kinetic energy is imaginary, ReKε = 0 and we have
(
� r

εq
)2

=
(
� i

εq
)2

that implies d+ε q(θ) = 0 or d−ε q(θ) = 0. The particle has not moved just before
time t or just after!

We consider now the iterate of the operator �ε with itself. This type of
algebraic formula is natural for the extension of d

dt

(
m d

dt

)
in the Euler-Lagrange

equation. We emphasise the role of μ2 = 1 when we consider the composed
operator. We have{

Re
(
(�ε ◦�ε)q

)
= (1− μ2)

(
� r

ε ◦� r
ε

)
q + μ2

(
� r

ε
2
◦� r

ε
2

)
q

Im
(
(�ε ◦�ε)q

)
= 2μ
(
� r

ε ◦� i
ε

)
q .

Roughly speaking the product “jump by jump” allows to recover some regularity
at a smaller scale ε/2.

We propose to introduce the following complex action for q ∈ C([−ε, t+ ε]) :

Aε(t, q) ≡
∫ t
0
L
(
q(θ), (�εq)(θ)

)
dθ =

∫ t
0

[ m
2
(�εq)

2 − ϕ
(
q(θ)
) ]

dθ .

Our working plan follows the ideas presented in sections 2 and 3. In an analogous
way as the one proposed in section 3, we will consider the Euler-Lagrange op-
timality condition, introduce the optimal trajectories, derive a Hamilton-Jacobi
like equation for the optimal value of the action. Then make the change of
variable (9) to transform the evolution equation (26) into a Schrödinger type
equation.
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1. Bitbol, M.: Mécanique quantique, une introduction philosophique. Champs-
Flammarion, Paris (1997)



On Least Action Principles for Discrete Quantum Scales 23

2. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of
Quantum Theory. Routledge, New York (1993)

3. Cresson, J., Greff, I.: Non-differentiable embedding of Lagrangian systems and
partial differential equations. Journal of Mathematical Analysis and Applica-
tions 384(2), 626–646 (2011)
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der Physik 79, 361–376; Über das Verhältnis der Heisenberg Born Jordanischen
Quantenmechanik zu der meinen. Annalen der Physik 79, 734–756 (1926)



Real, Complex, and Binary Semantic Vectors

Dominic Widdows1 and Trevor Cohen2

1 Microsoft Bing
2 University of Texas School of Biomedical Informatics at Houston

Abstract. This paper presents a combined structure for using real, com-
plex, and binary valued vectors for semantic representation. The theory,
implementation, and application of this structure are all significant.

For the theory underlying quantum interaction, it is important to
develop a core set of mathematical operators that describe systems of
information, just as core mathematical operators in quantum mechanics
are used to describe the behavior of physical systems. The system de-
scribed in this paper enables us to compare more traditional quantum
mechanical models (which use complex state vectors), alongside more
generalized quantum models that use real and binary vectors.

The implementation of such a system presents fundamental computa-
tional challenges. For large and sometimes sparse datasets, the demands
on time and space are different for real, complex, and binary vectors. To
accommodate these demands, the Semantic Vectors package has been
carefully adapted and can now switch between different number types
comparatively seamlessly.

This paper describes the key abstract operations in our semantic vec-
tor models, and describes the implementations for real, complex, and
binary vectors. We also discuss some of the key questions that arise in
the field of quantum interaction and informatics, explaining how the wide
availability of modelling options for different number fields will help to
investigate some of these questions.

1 Introduction

The contribution described in this paper is a learning and representation system
that enables vector models to be built easily using real, complex, or binary
numbers as coordinates for semantic vectors.

Quantum mechanics, statistical machine learning, and hyperdimensional com-
puting have used some notion of state-vector or feature-vector for decades. While
these and many other fields use common mathematical vector-space theories, in
practice they often differ in their choice of a ground-field, or basic number type.
That is, if a vector is a list of coordinates, what sort of numbers should the
coordinates be?

In quantum mechanics, and other areas of physics including electromagnetism,
complex numbers are indispensable. The Schrödinger equations and Pauli
matrices involve complex numbers explicitly, complex numbers are part of the
relationship between positions and momenta, and complex Hilbert spaces are

J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 24–35, 2012.
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so normal that the logic of projections in Hilbert space is sometimes called a
Standard Logic [1, Ch 1].

Logical semantics and computer science, on the other hand, use mainly binary
and set theoretic representations, stemming from George Boole’s innovation of
describing an Aristotelian predicate as a mapping from a set of objects to the
binary numbers [2]. Representations in information theory and modern comput-
ing assume an underlying quantized bit-vector, and in software engineering, a
‘real number’ is really a string of bits mediated by IEEE standards. Standard
logic in these fields is Boolean logic.

The growing community of practice in statistical machine learning uses real
vectors for most representations. Feature vectors are used to describe items to
be classified or ranked, and the features are most often measurable quantities
(such as the redness of a pixel in an image, or the weight of a particular term in
a given document). This makes idea of using real numbers as features intuitively
practical, and standard statistical distributions and techniques are so readily
available that the use of ‘real’ mathematics leaves little to be desired in many
successful applications to date [3].

Today, the sciences of intelligence are part of this arena as well. Artificial
intelligence and computational linguistics have grown, and partly shifted from
an emphasis on binary and logical representations to real and statistical ones.
Psychological and cognitive applications of real vectors and their similarities in-
clude Prototype Theory [4], Pathfinder Networks [5], and the Conceptual Spaces
of Gardenförs [6]. Kanerva’s hyperdimensional computing [7] (and of course,
Boole’s Laws of Thought [8]) use binary representations to model cognitive pro-
cesses of learning, remembering, and reasoning. The use of complex numbers
to model cognitive processes is still apparently in its infancy (see for example
[9,10]), but we might well expect this area to grow as well.

Another rapidly growing area is the application of more sophisticated product
operations in semantic vector space models. For many decades, the main oper-
ations used in vector space models were just vector addition for composition
and the cosine or related measures for judging similarity. Though many other
operations are well-known in the theoretical literature (for summaries, see e.g.,
[11,12]), practical implementations have lagged behind, partly for computational
reasons. This has changed dramatically over the past few years: several opera-
tors have been used successfully in practice to model word-order dependencies
[13,14] and operations such as verb-argument binding [15,16], adjective-noun
modification [17], and formal ontological relationships [18]. The old notion that
distributional semantics is a ‘bag-of-words’ methodology has been comprehen-
sively superseded, at least in the research literature.

The accelerated development of so many sciences and technologies has natu-
rally left many possible combinations of empirical challenge and mathematical
representation unexplored. That is (for example), there are many cognitive mod-
els or machine learning tasks to which complex or binary vector representations
have not been applied. Of course, if complex numbers, including their so-called
‘imaginary’ parts, turned out to be a key to modelling mental processes, we
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might be surprised and skeptical: but perhaps no more surprised than we should
already be at the usefulness of imaginary numbers in electrical engineering.

Some strides have already been made in statistical learning using complex
numbers [10] (with theory based on [9]), and with binary numbers [19] (with
theory based on [7]). The project undertaken by the authors, and reported in
this paper, is to unify these mathematical options in a system that makes it pos-
sible to easily experiment with all three (and potentially more) standard ground
fields for vector representations. The system is implemented and released in the
Semantic Vectors package [20], an open-source package that can be freely down-
loaded from semanticvectors.googlecode.com. For real, binary, and complex
vectors, the package now supports training of term and document based semantic
models, and makes available a range of product operators for learning similarity,
directional, and logical relationships.

This paper is organized as follows. Section 2 describes the mathematical ab-
stractions supported in all representations. Sections 3, 4, and 5 describe the
specific operators and implementation decisions for real, complex, and binary
vectors respectively. Section 6 discusses the relationship with quantum interac-
tion in more detail. The models used in practice have some significant similarities
and differences with the ‘classical’ quantum mechanical model of complex Hilbert
space, and this can be used to shed fresh insight on the important question of
what generalizations are appropriate in generalized quantum structures. While
this section draws some points in conclusion, readers whose primary interest is
in quantum interaction and generalized quantum structures may consider read-
ing Section 6 first. Section 7 briefly refers to experiments conducted using the
system. These experiments are described in full in a separate paper.

2 Common Mathematical Operators

This section owes much to the theoretical framework of Kanerva’s hyperdimen-
sional computing [7], and the experimental implementation and notation used
in [19]. Some of the core concepts are from the literature on Vector Symbolic
Architectures (see [9,12,11] and others). Please refer to these papers for detailed
motivation: due to space constraints, many of the more subtle points are not
discussed in this section.

The goal (as with much of abstract mathematics) is to define a core set of
operations that all semantic vector models should support, and rules surrounding
these operations. The most basic rules are listed in Table 2. To date, it is better
to think of these as rules of thumb, rather than formal axioms that described an
algebraic structure such as a group or lattice: such a hardened theory may arise
from this work in the future, but it is not yet here.

There are many key discussion points that make these vector systems
functionally appealing. In high dimensions, they are easy to build. Randomly al-
located elemental vectors are overwhelmingly likely to be unrelated (e.g., pseudo-
orthogonal), and large numbers of these elemental vectors can be created before
there is any appreciable danger of confusing two vectors. It follows from this that

semanticvectors.googlecode.com
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Table 1. The core mathematical operations performed on representation vectors

– Generate Random Vector. Creates a random vector that can be used to rep-
resent an elemental concept.

– Measure Overlap. Measures the similarity between two vectors A and B: a real
number, A · B, typically between 0 (no similarity) and 1 (exact match). Negative
values are possible. The overlap between two randomly generated elemental vectors
should be near to zero (or some other value that means ‘no significant overlap’).

– Superpose. Takes two vectors A and B and generates a third vector A+B, such
that A · (A+B) and B · (A+B) are relatively large. Superposition is sometimes
called bundling in the literature.

• Superpositions can be weighted by any real (in practice, double-precision float-
ing point) number.

• This, and the presence of a zero vector, gives us the practical ability to perform
regular ‘scalar multiplication’, at least with real number scaling factors.

– Normalize Takes a vector A and rescales it to a vector Â such that Â · Â = 1.
– Bind. Takes two vectors A and B and generates a third vector A⊗ B, such that

A · (A⊗B) and B · (A⊗B) are usually near to zero.
– Release. Inverse of bind, written as A � B. Should behave in such a way that

(A� (A⊗B)) · B ≈ 1.

Operator precedence when written is as expected: + comes before ⊗ which comes
before � which comes before ·.

superposition is normally quite easy and natural to define (natural in the math-
ematical sense, that a choice of overlap measure makes some particular choice of
superposition operator appealing).

Binding is different: given a choice of overlap measure, there are usually many
options for defining an appropriate binding operation. This leaves much freedom
for choosing options that are computationally appealing: as we will see in the
implementation sections, this is important for building tractable systems. Since
many binding operations are available, hybrid systems that use more than one
binding operation to represent different semantic combination operations are
quite likely to emerge.

Training a model — that is, the process of deriving semantically significant
representation vectors from elemental vectors and a training corpus — can then
be performed in linear time by taking linear combinations of elemental vectors.
Many details of available training processes are available in our earlier works, e.g.,
[20]. There are several more algorithmically sophisticated training techniques
available, including singular value decomposition (see [21] and related literature).

In practice, these core vector operations are declared by a Vector interface and
implemented by all vector types. Note that the use of an interface (as opposed
an abstract base class containing some shared implementation) means that we
are making no presuppositions about the physical representation of vectors: in
particular, we do not explicitly assume that vectors are lists of coordinates. The
implementations so far released in Semantic Vectors are indeed coordinate-based,
but coordinate-free representations are not unthinkable.
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Other mathematical operations including orthogonalization are supported as
utility functions derived from the primitive operations. This allows represen-
tations to make use of quantum-logical connectives for search (see [22, Ch 8]).
Optimized linear-time search and k-nearest-neighbour ranking are implemented.
Each vector implementation is also required to implement common serialization
operations, for e.g., writing to long-term storage hardware. In practice, each
vector implementation comes with lightweight (often sparse) representations to
support large numbers of elemental vectors, and more costly representations for
dense semantic vectors.

This concludes our summary of the operations common to all vectors. We will
now proceed to describe the three implementations available so far, for vectors
using real, complex, and binary numbers as coordinates.

3 Real Vectors

The use of real vectors for representation in empirical learning is by far the
most common choice of ground-field to date. In the Semantic Vectors package,
real vectors are implemented using single-precision, 4-byte floating point num-
bers. Randomly-generated elemental vectors are sparse ternary vectors: ternary,
meaning that they use only values from the set {−1, 0, 1}, and sparse, meaning
that most values are left as zero. Superposition is implemented using standard
component-wise vector addition, and overlap is measured using cosine similarity
[22, Ch 5].

For binding, options in the literature include:

– Superposition after permutation of coordinates (introduced by [14]). That
is, A⊗B is implemented by permuting the coordinates of B and then super-
posing with A. Since there are n! possible permutations, there are n! possible
binding operations. The availability of so many options has been used to give
different permutations based on the number of words between two terms [14],
and to represent different semantic relationships from a knowledge base [19].

– Convolution of vectors, as described in [9]. This was used to model word-
order relationships by [13].

Due to computational considerations, the operation used for binding real vec-
tors in the Semantic Vectors package is permutation of coordinates, though an
implementation of circular convolution using fast Fourier transforms is available
in codebase.

We note in passing that traditional LSA (that is, the creation of a reduced
term-document matrix using singular value decomposition) is only available for
real vectors.

4 Complex Vectors

The use of complex numbers for semantic representation is discussed in [9] and
was first introduced to the Semantic Vectors package in [10]. The extra richness
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over real representations comes largely from complex multiplication, which has
a an angular or ‘turning’ effect. This has powerful consequences. For example,
since complex multiplication can effectively turn a vector through a right angle,
multiplication can turn a cosine similarity of 1 to a cosine similarity of 0. This
makes multiplication an effective candidate for the bind operation. The variety of
effective options available has encouraged us to implement two different modes
for complex vectors: a Cartesian mode where rectilinear options are used by
default, and a polar mode where circular operations are used. In more detail,
the operations for complex numbers implemented in Semantic Vectors are as
follows.

Random elemental vectors have coordinates that are either zero, or elements
of the unit circle group U(1) of complex numbers whose modulus is 1. This is
an apt generalization of elemental real ternary vectors, since the set {−1, 1} is
the intersection of the circle group U(1) and the real line. Both sparse vectors
(mainly zeros) and dense vectors (all coordinates members of U(1)) have been
used in practice, and changing this is an easy command-line configuration. As an
optimization, a lookup table for sines and cosines of angles is created, and many
of the procedures involving complex number multiplication are implemented
using addition of keys in this table. Such a key is often called a phase angle.

In polar mode, entries remain confined to the unit circle, and normalization
is implemented by projecting each complex coordinate (that is, each pair of
real coordinates) to the corresponding angle on the unit circle. Of course, this
projection is undefined for zero entries. For this reason, we have introduced a
zero element in the angle lookup table, with expected the rule that the zero
element maps any other value to zero under multiplication.

The main operations in each mode are as follows:

– Measure Overlap
• In polar mode, normalized sum of differences between each pair of cor-
responding phase angles.

• In Cartesian mode, the cosine similarity of the corresponding real vec-
tors: in other words, the real part of the standard Hermitian scalar prod-
uct.

– Superposition
• In polar mode, the weighted average of the corresponding phase angles.
This operation is not associative: angles added later in the process have
more significance.

• In Cartesian mode, standard complex vector addition.
– Normalization

• In polar mode, mapping each complex number to the corresponding
phase angle.

• In Cartesian mode, scaling each coordinate so that the sum of the squares
is equal to 1.

– Binding
• In polar mode, circular convolution. The key observation here is that,
because the representation is already in a phase angle form, it is in the
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‘frequency domain’ and no Fourier transform is necessary for optimiza-
tion. Thus, circular convolution is simply the addition of phase angles
[9,10].

• In Cartesian form, no such optimization is so naturally available, and
permutation of coordinates is used instead.

– Release naturally used the inverse of the corresponding bind operations.

Thus the system for complex semantic vectors has the option of treating a com-
plex number as essentially a rectilinear construct, or as essentially a circular
construct. These could be combined further by introducing a modulus repre-
sentation as well as the phase angle representation. We have not done this yet,
partly for computational performance reasons, and partly because the virtues of
the two representations are still actively under investigation, and we feel that
conflating them may be premature.

5 Binary Vectors

The binary vector representation utilized in Semantic Vectors follows the ap-
proach originated by Pentti Kanerva, known as the Binary Spatter Code (BSC)
[23]. The BSC depends upon hyperdimensional (d on the order of 10,000) bi-
nary vectors. As in our other representations, these can be categorized as el-
emental vectors and semantic vectors, where elemental vectors are randomly
constructed so as to be approximately orthogonal to one another, and semantic
vectors are generated by superposition of elemental vectors during the training
process. However, there are a number of important differences between this and
the other representations we have discussed up to this point.

Firstly, distance in the binary space is measured using the Hamming Dis-
tance (HD), a count of the number of bits that differ between two vectors (for
example, HD(1001, 0111) = 3). Orthogonality is defined as a HD of half the di-
mensionality of the space [24] — a normalized HD of 0.5. This is in keeping with
the construction of elemental vectors, which are constructed by distributing an
equal number of 1’s and 0’s at random across the dimensionality of the space.
While these vectors are therefore not sparse in the sense of having mostly zero
values, the space is sparsely occupied in the sense that elemental vectors tend
to be far apart from one another. A set of elemental vectors constructed in this

manner will have a mean pairwise HD of d
2 , with a standard deviation of

√
d
2

As the pairwise distances are normally distributed, this implies that in a 10,000
dimensional space, we’d anticipate approximately 99.7 percent of elemental vec-
tors having a HD from one another of between 4700 and 5300. This sparseness
of the space confers a level of robustness to the model, as an elemental vector
can be distorted considerably while remaining closer to its original self than to
any other elemental vector in the space.

Superposition of binary vectors occurs by summing up the number of 1’s and
0’s in each dimension across all of the binary vectors added. If there are more
1’s than 0’s in a dimension, the superposition is assigned the value 1. If there
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are more 0’s, a zero is assigned, and ties are broken at random (this can only
occur when an even number of vectors are superposed). So the superposition of
01 and 00 could be either 00 or 01, each with a probability of 0.5. The need to
keep track of the votes in each dimension raises an interesting implementation
issue, as the memory requirements of retaining an exhaustive voting record for a
set of 10,000 dimensional vectors prohibit assigning a floating point number to
each dimension, and Semantic Vectors often retains a store of term or document
vectors in memory during the superposition process.

Consequently, we have opted for a space-optimized implementation of the vot-
ing record, comprising of an ordered array of binary vectors, implemented using
Lucene’s OpenBitSet class. This implementation also allows for superposition to
occur using efficient bitwise operators, without the need for iteration across the
O(10,000) dimensions individually, as illustrated in Table 2. This is accomplished
by maintaining a temporary ’cursor’ vector, of the same dimensionality as the
rows, and performing a series of sequential bitwise XOR and NOT operations.
The superposition can be weighted by initiating the process at an appropriate
level of the voting record, and the size of the voting record can be constrained
by maintaining a global minimum value and ensuring that only values beyond
this are stored in the record.

Table 2. Space Optimized Superposition. VR = Voting Record. CV = Cursor Vector
(initially, the vector to be superposed). V̂R = altered Voting Record (VR XOR CV).
ĈV = altered Cursor Vector (CV NOT V̂R).

Row VR CV V̂R ĈV

1 1 0 1 1 0 1 0 0 0 1 0 1

2 0 1 1 1 0 1 1 1 0 0 0 1

3 0 0 0 0 0 1 0 0 1 0 0 0

Value 1 2 3 2 2 4

Once the voting is complete, the value in each dimension is calculated. If
this is more than a half of the number of votes in total, a one is assigned to
the superposition product in this dimension. If it is less than half, a zero is
assigned, and ties are broken at random. The binary vector implementation
also facilitates binding, which is an invertible multiplication-like operator that is
used to combine vectors with one another. In the BSC [23], elementwise exclusive
OR (XOR) is used to accomplish binding. As this operator is its own inverse,
is also used to reverse the binding process. It is also possible to accomplish
reversible transformation using a permutation, by shifting or swapping the bits
of a vector. As elementwise operations on hyperdimensional binary vectors are
computationally inconvenient, Semantic Vectors implements permutation 64 bits
at a time, by shifting or swapping the elements of the array of long integers that
underlie Lucene’s binary vector (OpenBitSet) implementation.
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In addition to the fundamental Vector Symbolic operations of superposition
(or bundling) and binding [12], we have implemented binary approximations of
orthogonalization, and quantum disjunction [25]. Orthogonality in binary vector
space is defined by a HD of a half of the dimensionality of the space. Give two
similar vectors, A and B, A can be rendered almost-orthogonal to B by introduc-
ing random noise in dimensions that these vectors have in common. Conversely,
two vectors with a HD of more than half the dimensionality can be rendered
orthogonal by randomly selecting dimensions in which these vectors differ, and
changing them accordingly. The binary approximation of orthogonalization fa-
cilitates a binary approximation of quantum disjunction. This operator involves
transforming the component vectors for disjunction into a subspace made up of
mutually orthogonal vectors using the Gram-Schmidt procedure, so that no in-
formation is redundantly represented. Subsequently, a vector C can be compared
to this subspace by measuring the length of C’s projection in the subspace, Ĉ,

and comparing this to the length of C (‖Ĉ‖
‖C‖ is the cosine of the angle between C

and the subspace). In binary space, we approximate this projection by adding to-
gether the normalized HD - 0.5 between the vector C and each of the components
of the subspace, to provide a measure of the extent to which the cumulative sim-
ilarity between the vector C and all of the components of the subspace is greater
than what one would anticipate by chance.

6 Typed Vectors and Quantum Interaction

This section examines the mathematical structures we have developed from the
point of view of quantum interaction and informatics. Our hope here is that
comparing the behaviour of real, binary, and complex vectors will help to answer
one of the most pertinent questions in Quantum Interaction: what makes a
system “quantum” at all?

Some strong candidate answers to this question have been proposed. Some
have suggested that Born’s rule for probabilities is key, Aerts et al. have con-
centrated on the Bell inequalities [26], Bruza and Kitto on entanglement [27].
In information retrieval, quantum formalisms are central to the geometric mod-
els described by [28] and [22], the former focussing particularly on representing
conditionals, and the latter on representing logical connectives.

There is an accompanying debate on how central the quantum properties
should be: for example, is it proper to talk more about quantum-like or General-
ized Quantum Systems following Khrennikov [29]. The situation is complicated
by history: several properties of vector spaces (especially the logic of projection
onto subspaces) were explored in the service of quantum mechanics, and even
with hindsight it is not always easy to say which parts of the theory are neces-
sarily quantum, and which would be better described as properties of all vector
space models.

One property common to all our high-dimensional models is the sparseness
of point distribution. Semantic vectors are not all sparse in the sense of having
most coordinates equal to zero, but they are sparse in the sense of being very
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spread out in their spaces: there are very few actual elemental or semantic vectors
compared with the number of points available. Thus, even those spaces that are
continuous in theory (such as those based on real and complex numbers) are
sparse and thus highly “quantized” in practice.

Thus, many of the quantized properties of semantic vector models arise gener-
ally, and not because of any special parallel with the quantum mechanical model
of complex Hilbert space. For example, there is no preference yet discovered for
self-adjoint operators in semantic vector models.

Here, our work has a particular contribution to make. We can now do many
experiments in textual informatics while comparing complex, real, and binary
vector space models. If a strong correspondence with quantum mechanics itself
actually exists, we would expect to see complex Hilbert space representations to
be distinctly superior for at least some modelling operations.

If, on the other hand, real or binary representations work best, we may come
to the more guarded conclusion that our semantic models are (obviously) vector
models, as are quantum Hilbert space models, but the similarity between seman-
tic models and quantum mechanics goes no further. Such findings would even
further motivate the question “What characterizes quantum systems?”, rather
than especially quantum mechanical systems. Consider the way the voting record
for binary vectors is maintained during learning and quantized to binary values
during normalization: the practical benefits of quantization itself are clearer in
the binary representation than in either the real or complex representation. Many
‘quantum’ properties (such as entanglement and non-commutativity of observ-
ables) may be formulated with vectors and matrices over any ground field.

We note also that there our particular use of Vector Symbolic Architectures,
which owes much to [9] and [7], is a specific class of vector models in which
product operations yield other vectors. The mathematical options are of course
much richer and sometimes demand more computational resources: for recent
and empirically successful examples, see the use of tensor products [16] and
matrices by [17].

7 Experiments and Evaluation

Using the system described in this paper, detailed experiments (using especially
complex and binary vectors) have already been conducted on using multiple
cues for analogical reasoning. These experiments use quantum disjunction to
model the many possible relationships that could be used as premises to deduce
new semantic relationships. Due to space constraints, these experiments are not
described here but in a separate paper [30]. These experiments also introduce
an innovative notion of ‘binary quantum disjuction’, which is altered from the
standard real or complex version, partly because the average similarity between
unrelated binary vectors is the normalized Hamming distance of 0.5. Of course,
these are (we hope) the first of many experiments that will compare and adapt
real, complex and binary techniques.

What we do present in the current paper is an appropriate computational
framework (if you will, a laboratory) in which such experiments will be conducted.
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We sincerely hope that comparisons between different ground fields for semantic
representation will become the norm rather than the exception. If so, this will
catalyze technological progress and lead to core scientific insight.
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Abstract. People use conjunctions and disjunctions of concepts in ways
that violate the rules of classical logic, such as the law of compositional-
ity. Specifically, they overextend conjunctions of concepts, a phenomenon
referred to as the Guppy Effect. We build on previous efforts to develop a
quantum model [1,2,3], that explains the Guppy Effect in terms of inter-
ference. Using a well-studied data set with 16 exemplars that exhibit the
Guppy Effect, we developed a 17-dimensional complex Hilbert space H
that models the data and demonstrates the relationship between overex-
tension and interference. We view the interference effect as, not a logical
fallacy on the conjunction, but a signal that out of the two constituent
concepts, a new concept has emerged.

Keywords: theory of concepts, quantum cognition, Guppy effect,
concept combination, interference.

1 The Guppy Effect – Introduction

A concrete formal understanding of how concepts combine is vital to significant
progress in many fields including psychology, linguistics, and cognitive science.
However, concepts have been resistant to mathematical description because peo-
ple use conjunctions and disjunctions of concepts in ways that violate the rules
of classical logic; i.e., concepts interact in ways that are non-compositional [4].
This is true also with respect to properties (e.g., although people do not rate
talks as a characteristic property of Pet or Bird, they rate it as characteristic of
Pet Bird) and exemplar typicalities (e.g., although people do not rate Guppy as a
typical Pet, nor a typical Fish, they rate it as a highly typical Pet Fish [5]). This
has come to be known as the Pet Fish Problem, and the general phenomenon
wherein the typicality of an exemplar for a conjunctively combined concept is
greater than that for either of the constituent concepts has come to be called the
Guppy Effect, although further investigation revealed that the Pet Fish Problem
is not a particularly good example of the Guppy Effect, and that other concept
combinations exhibit this effect more strongly [6].

One can refer to the situation wherein people estimate the typicality of an
exemplar of the concept combination as more extreme than it is for one of the
constituent concepts in a conjunctive combination as overextension. One can
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refer to the situation wherein people estimate the typicality of the exemplar
for the concept conjunction as higher than that of both constituent concepts
as double overextension. We posit that overextension is not a violation of the
classical logic of conjunction, but that it signals the emergence of a whole new
concept. The aim of this paper is to model the Guppy Effect as an interference
effect using a mathematical representation in a complex Hilbert space and the
formalism of quantum theory to represent states and calculate probabilities. This
builds on previous work that shows that Bell Inequalities are violated by concepts
[7,8] and in particular by concept combinations that exhibit the Guppy Effect
[1,2,3,9,10], and add to the investigation of other approaches using interference
effects in cognition [11,12,13].

Our approach is best explained with an example. Consider the data in Tab.
1. It is based on data obtained by asking participants to estimate how typi-
cal various exemplars are of the concepts Furniture, Household Appliances, and
Furniture and Household Appliances [14].

Table 1. Interference data for concepts A=Furniture and B=Household Appliances.
The probability of a participant choosing exemplar k as an example of Furniture or
Household Appliances is given by μ(A)k or (μ(B)k, respectively. The probability of a
participant choosing a particular exemplar k as an example of Furniture and Household
Appliances is μ(A and B)k. The classical probability would be μ(A)k+μ(B)k

2
. The quan-

tum phase angle θk introduces a quantum interference effect. Values are approximated
to their third decimal, and angles to their second decimal.

μ(A)k μ(B)k μ(A and B)k
μ(A)k+μ(B)k

2 θk λk βk

A=Furniture, B=Household Appliances
1 Filing Cabinet 0.079 0.040 0.062 0.059 87.61 -0.056 -87.61
2 Clothes Washer 0.026 0,118 0.078 0.072 84.01 0.055 84.01
3 Vacuum Cleaner 0.017 0,118 0.051 0.068 112.21 -0.042 -112.21
4 Hifi 0.056 0.079 0.090 0.067 70.58 0.063 70.58
5 Heated Waterbed 0.089 0.050 0.082 0.070 79.28 -0.066 -79.28
6 Sewing Chest 0.075 0.058 0.061 0.067 94.74 0.066 94.74
7 Floor Mat 0.052 0.023 0.031 0.037 100.87 -0.034 -100.87
8 Coffee Table 0,100 0.025 0.050 0.062 104.78 0.048 104.78
9 Piano 0.084 0.020 0.043 0.052 101.67 0.040 101.67
10 Rug 0.056 0.019 0.028 0.037 106.58 0.031 106.58
11 Painting 0.057 0.014 0.021 0.035 120.16 -0.024 -120.16
12 Chair 0.099 0.030 0.047 0.065 109.41 -0.052 -109.41
13 Fridge 0.042 0,117 0.085 0.079 85.23 0.070 85.23
14 Desk Lamp 0.066 0.079 0.085 0.072 79.85 -0.071 -79.85
15 Cooking Stove 0.037 0,118 0.088 0.078 81.57 -0.066 -81.57
16 TV 0.065 0.092 0.099 0.078 61.89 0.075 61.89

Although Hampton’s original data was in the form of typicality estimates, for
the quantum model that we built it is more appropriate for data to be in the
form of ‘good examples’. Thus we calculated from Hampton’s typicality data es-
timates for the following experimental situation. Participants are given the list of
exemplars in Tab. 1 and asked to answer the following questions. Question A is
‘Choose one exemplar that you consider a good example of Furniture’. Question
B is ‘Choose one exemplar that you consider a good example of Household Ap-
pliances’. Finally, Question A and B is ‘Choose one exemplar that you consider
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a good example of Furniture and Household Appliances’. Hence, concretely, the
data in Tab. 1 were not collected by asking the three ‘good example’-questions
but calculated from Hampton’s data, derived from an experiment in which par-
ticipants were asked to give typicality estimates. This transformation of Hamp-
ton’s data retains the basic pattern of results because estimated typicality of an
exemplar is strongly correlated with the frequency with which it is chosen as a
good example [15].

2 A Quantum Model

In this section we build a quantum model of the Guppy Effect by modeling
Hampton’s data in complex Hilbert space for the pair of concepts Furniture and
Household Appliances, and their conjunction Furniture and Household Appli-
ances. The way in which we calculated the ‘good example’ data from Hampton’s
‘typicality’ data is by normalizing for each exemplar the typicality estimates of
each participant giving rise to an estimate of the extent to which this exemplar
constitutes a ‘good exemplar’. We then average on all the participants obtaining
μ(A)k, μ(B)k and μ(A and B)k (see Tab. 1). We interpret the resulting val-
ues as estimates of the probability that exemplar k is chosen as an answer for
Questions A, B, and ‘A and B’, respectively. Tab. 1 gives the probabilities of
responses. Hampton’s original typicality data, which ranged between -3 and +3,
were rescaled to a [0, 6] Likert scale to avoid negative values, and then afterwards
normalized and averaged for each of the three concepts (A, B and, ‘A and B’)
(see Tab.1).

The ‘good example’ measurement has 16 possible outcomes, namely each of
the considered exemplars, and hence is represented in quantum theory by means
of a self-adjoint operator with spectral decomposition {Mk | k = 1, . . . , 16}
where eachMk is an orthogonal projection of the Hilbert space H corresponding
to exemplar k from the list in Tab. 1. The concepts Furniture and Household
Appliances are represented by orthogonal unit vectors |A〉 and |B〉 of the Hilbert
spaceH, and the combination Furniture and Household Appliances is represented
by 1√

2
(|A〉 + |B〉), which is the normalized superposition of |A〉 and |B〉. It is

by means of this superposition that the quantum framework can describe how a
new concept ‘A and B’, emerges out of A and B. In the following, the standard
rules of quantum mechanics are applied to calculate the probabilities, μ(A)k,
μ(B)k and μ(A and B)k

μ(A)k = 〈A|Mk|A〉 μ(B)k = 〈B|Mk|B〉 (1)

μ(A and B)k = 1
2 (〈A|+ 〈B|)Mk(|A〉 + |B〉)

= 1
2 (〈A|Mk|A〉+ 〈B|Mk|B〉+ 〈A|Mk|B〉+ 〈B|Mk|A〉)

= 1
2 (μ(A)k + μ(B)k) + �〈A|Mk|B〉 (2)

where �〈A|Mk|B〉 is the interference term. Let us introduce |ek〉 the unit vector
on Mk|A〉 and |fk〉 the unit vector on Mk|B〉, and put 〈ek|fl〉 = δklcke

iγk . Then
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we have |A〉 =
∑16

k=1 ake
iαk |ek〉 and |B〉 =

∑16
k=1 bke

iβk |fk〉, and with φk =
βk − αk + γk, this gives

〈A|B〉 = (
∑16

k=1 ake
−iαk〈ek|)(

∑16
l=1 ble

iβl |fl〉) =
∑16

k=1 akbkcke
i(βk−αk+γk)

=
∑16

k=1 akbkcke
iφk (3)

μ(A)k = (
∑16

l=1 ale
−iαl〈el|)(akeiαk |ek〉) = a2k (4)

μ(B)k = (
∑16

l=1 ble
−iβl〈fl|)(bkeiβk |fk〉) = b2k (5)

〈A|Mk|B〉 = (
∑16

l=1 ale
−iαl〈el|)Mk|(

∑16
m=1 bme

iβm |fm〉)
= akbke

i(βk−αk)〈ek|fk〉 = akbkcke
iφk (6)

which, making use of (2), gives

μ(A and B)k =
1

2
(μ(A)k + μ(B)k) + ck

√
μ(A)kμ(B)k cosφk (7)

We choose φk such that

cosφk =
2μ(A and B)k − μ(A)k − μ(B)k

2ck
√
μ(A)kμ(B)k

(8)

and hence (7) is satisfied. We now have to determine ck in such a way that

〈A|B〉 = 0. Note that from
∑16

k=1 μ(A and B)k = 1 and (7), and with the choice

of cosφk made in (8), it follows that
∑16

k=1 ck
√
μ(A)kμ(B)k cosφk = 0. Taking

into account (3), which gives 〈A|B〉 =∑16
k=1 akbkck(cosφk+i sinφk), and making

use of sinφk = ±
√
1− cos2 φk, we have

〈A|B〉 = 0⇔∑16
k=1 ck

√
μ(A)kμ(B)k(cosφk + i sinφk) = 0 (9)

⇔∑16
k=1 ck

√
μ(A)kμ(B)k sinφk = 0 (10)

⇔∑16
k=1±
√
c2kμ(A)kμ(B)k − (μ(A and B)k − μ(A)k+μ(B)k

2 )2 = 0 (11)

We introduce the following quantities

λk = ±
√
μ(A)kμ(B)k −

(
μ(A and B)k − μ(A)k + μ(B)k

2

)2
(12)

and choose m the index for which |λm| is the biggest of the |λk|’s. Then we take
ck = 1 for k �= m. We now explain the algorithm used to choose a plus or minus
sign for λk as defined in (12), with the aim of being able to determine cm such
that (11) is satisfied.

We start by choosing a plus sign for λm. Then we choose a minus sign in
(12) for the λk for which |λk| is the second biggest; let us call the index of
this term m2. This means that 0 ≤ λm + λm2 . For the λk for which |λk| is the
third biggest – let us call the index of this term m3 – we choose a minus sign if
0 ≤ λm + λm2 − |λm3 |, and otherwise we choose a plus sign, and in the present
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case we have 0 > λm + λm2 − |λm3 |. We continue this way of choosing, always
considering the next biggest |λk|, and hence arrive at a global choice of signs for
all of the λk, such that 0 ≤ λm +

∑
k �=m λk. Then we determine cm such that

(11) is satisfied, or more specifically such that

cm =

√
(−∑k �=m λk)2 + (μ(A and B)m − μ(A)m+μ(B)m

2 )2

μ(A)mμ(B)m
(13)

We choose the sign for φk as defined in (8) equal to the sign of λk. The result
of the specific solution thus constructed is that we can take Mk(H) to be rays
of dimension 1 for k �= m, and Mm(H) to be a plane. This means that we can
make our solution still more explicit. Indeed, we take H = C17, the canonical
17-dimensional complex Hilbert space, and make the following choices

|A〉 =
(√

μ(A)1, . . . ,
√
μ(A)m, . . . ,

√
μ(A)16, 0

)
(14)

|B〉 =
(
eiβ1
√
μ(B)1, · · · , cmeiβm

√
μ(B)m, · · · ,

eiβ16
√
μ(B)16,

√
μ(B)m(1− c2m)

)
(15)

βm = arccos

(
2μ(A and B)m−μ(A)m−μ(B)m

2cm
√

μ(A)mμ(B)m

)
(16)

βk = ± arccos

(
2μ(A and B)k−μ(A)k−μ(B)k

2
√

μ(A)kμ(B)k

)
(17)

where the plus or minus sign in (17) is chosen following the algorithm introduced
for choosing the plus and minus sign for λk in (12). Let us construct this quantum
model for the data in Tab. 1. The exemplar that gives the biggest value of |λk|
is TV, and hence we choose a plus sign and get λ16 = 0.0745. The exemplar that
gives the second biggest value of λk is Desk Lamp, and hence we choose a minus
sign, and get λ14 = −0.0710. Next comes Fridge having |λ13| = 0.0698, and since
λ16 + λ14 < 0, we choose a plus sign for λ13. We determine in a recursive way
the signs for the remaining exemplars. Tab. 1 gives the values of λk calculated
following this algorithm. From (13) it follows that c16 = 0.564.

Making use of (14), (15), (17) and (16), and the values of the angles given in
Tab. 1, we put forward the following explicit representation of the vectors |A〉
and |B〉 in C17 representing concepts Furniture and Household appliances.

|A〉 = (0.280, 0.161, 0.131, 0.236, 0.299, 0.274, 0.229, 0.316, 0.289, 0.236, 0.238,

0.315, 0.205, 0.257, 0.193, 0.255, 0) (18)

|B〉 = (0.200e−i87.61◦ , 0.343ei84.01
◦
, 0.343e−i112.20◦, 0.281ei70.58

◦
, 0.225e−i79.28◦,

0.242ei94.73
◦
, 0.151e−i100.87◦, 0.157ei104.78

◦
, 0.140ei101.67

◦
, 0.137ei106.58

◦
,

0.119e−i120.16◦, 0.174e−i109.41◦, 0.342ei85.23
◦
, 0.280e−i79.85◦,

0.344e−i81.57◦, 0.171ei61.89
◦
, 0.250). (19)

This proves it is possible to make a quantum model of the [14] data such that
the values of μ(A and B)k are determined from the values of μ(A)k and μ(B)k
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as a consequence of quantum interference effects. For each exemplar k, the value
of θk in Tab. 1 gives the quantum interference phase.

3 Visualization of Interference Probabilities

A previous paper provided a quantum representation of the concepts Fruits and
Vegetables and their disjunction Fruits or Vegetables, and gave a way to graphi-
cally represent possible quantum interference patterns that result when concepts
combine [10]. Here we follow this procedure to generate a graphical representa-
tion for the concepts Furniture, Household Appliances, and their conjunction
Furniture and Household Appliances. Each concept is represented by complex
valued wave functions of two real variables ψA(x, y), ψB(x, y) and ψAandB(x, y).
We choose ψA(x, y) and ψB(x, y) such that the square of the absolute value of
both wave functions is a Gaussian in two dimensions, which is always possible
since we only have to fit 16 values, namely those of |ψA|2 and |ψB|2 for each of the
exemplars of Tab. 1. These Gaussians are graphically represented in Figs. 1 a)
and 1 b), and the exemplars of Tab. 1 are located in spots such that the Gaussian
distributions |ψA(x, y)|2 and |ψB(x, y)|2 properly model the probabilities μ(A)k
and μ(B)k in Tab. 1 for each of the exemplars.

For example, for Furniture (Fig. 1 a)), Coffee Table is located in the centre
of the Gaussian because it was most frequently chosen in response to Question
A. Chair was the second most frequently chosen, hence it is closest to the top
of the Gaussian. Note that in Fig. 1 b) there is one point labelled by X , which
is the maximum of the Gaussian representing μ(B). We preferred not to locate
the highest value of typicality by the maximum of the Gaussian, because do-
ing so did not lead to an easy fit of both Gaussians. For Household Appliances,
represented in Fig. 1 b), X is located in the maximum of the Gaussian, and
since Clothes Washer and Vacuum Cleaner are the most frequently chosen (with
exactly the same frequency) they are located closest to X at an equal distance
radius. Cooking Stove was the third most frequently chosen, then Fridge and so
on, with Painting as the least chosen ‘good examples’ of Household Appliances.
Metaphorically, we could regard the graphical representations of Figs. 2 a), 2 b)
as the projections of a light source shining through two holes such that a screen
captures it and the holes make the intensity follow a Gaussian distribution when
projected on the screen. The centre of the first hole, corresponding to Furniture,
is located where exemplar Coffee Table is at point (0, 0), indicated by 8 in both
figures. The centre of the second hole, corresponding to Household Appliances,
is located where point X is at (10,4), indicated by 17 in both figures. In Fig. 1
c) the data for Furniture and Household Appliances are graphically represented.
This is not ‘just’ a normalized sum of the two Gaussians of Figs. 2 a) and b),
since it is the probability distribution corresponding to 1√

2
(ψA(x, y)+ψB(x, y)),

which is the normalized superposition of the wave functions in Figs. 2 a) and b).
The numbers are placed at the locations of the different exemplars, according
to the labels of Tab. 1, with respect to the probability distribution 1

2 |ψA(x, y) +
ψB(x, y)|2 = 1

2 (|ψA(x, y)|2 + |ψB(x, y)|2) + |ψA(x, y)ψB(x, y)| cos θ(x, y), where
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Fig. 1. A representation of our quantum model of Furniture, Household Appliance
and Furniture and Household Appliance by a double slit interference situation. The
brightness of the light source in a region corresponds to the probability that an exemplar
in this region is chosen as a ‘good example’ of the concept Furniture in figure a),
Household Appliance in figure b), and Furniture and Household Appliance in figure c).
Numbers indicate the exemplars as numbered in Table 1.
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|ψA(x, y)ψB(x, y)| cos θ(x, y) is the interference term and θ(x, y) the quantum
phase difference at (x, y). The values of θ(x, y) are given in Tab. 1 for the lo-
cations of the different exemplars. The interference pattern in Fig. 1 c) is very
similar to well-known interference patterns of light passing through an elastic
material under stress. In our case, it is the interference pattern corresponding to
Furniture and Household Appliances. Bearing in mind the analogy with the light
source and holes for Figs. 1 a) and b), in Fig. 1 c) we can see the interference
pattern produced when both holes are open. (For the mathematical details –
the exact form of the wave functions and the calculation of possible interference
patterns – and other examples of conceptual interference, see [10].)

4 Interpretation of Interference in Cognitive Space

If we consider equations (2) and (7), the fundamental interference equations
used in this quantum model, we see that μ(A and B) becomes equal to the
average 1

2 (μ(A) + μ(B)) in case of no interference, i.e., if the interference terms
are zero. Thus the description of the conjunction as a no interference situation
does not coincide with what is obtained using the minimum rule from fuzzy set
theory. Note that in the double slit situation, a classical particle passing through
with both slits open gives rise to a probability distribution on the screen which is
equal to 1

2 (μ(A)+μ(B)), i.e. the average of the probabilities with only one of the

Fig. 2. a) Estimations of concept combination probabilities. The horizontal axis cor-
responds to the exemplar label denoted by k in Tab.1 and the vertical axis measures
estimated probability. The two grey curves represent the minimum and maximum for
each k of the probabilities μ(A)k and μ(B)k. The black curve represents the prob-
ability μ(A and B)k obtained from the data, and the dashed curve represents the
average between μ(A)k and μ(B)k. b) Comparison between the concept conjunction
probability, and the classical average and minimum probabilities of the concepts A
and B. μ̄k = μ(A)k+μ(B)k

2
is the the classical average probability (third column) and

mink = min{μ(A)k, μ(B)k} is the minimum probability (fifth column). The fourth
(sixth) column shows the deviation of the average (the minimum) with respect to the
concept combination probability. The probability μ(A and B)k deviates 0.011 from the
average μ̄k, but 0.026 from the minimum.
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two slits open. Hence, in both the interference quantum model and its double
slit representation, the average plays the role of the classical default, not the
minimum, as one would expect to be the case if the conjunction were modeled
using fuzzy set theory.

This aspect of our model needs further explanation. First, as in an earlier
interference based model of disjunction [10], for the conjunction, the average is
the classical default, not the maximum, as would follow from a fuzzy set theory
model. Second, if we consider Hampton’s data, the average 1/2(μ(A) + μ(B)) is
effectively closer to the frequency of the combined concept μ(A and B) than the
fuzzy set minimum value. More concretely, on average, the probability for the
combined concept differs 0.011 from the classical average, but 0.026 from the
fuzzy set minimum measure (Fig.-Tab. 2). Also, calculation of the correlation
between the probability for the combined concept and the average and the min-
imum, yields 0.899 and 0.795 respectively, which indicates that experimentally
the average is a better estimate than the minimum.

The findings that (1) the average is the classical default in our quantum model,
and in the double slit representation of it, and (2) the average is also a better ex-
perimental approximation than the minimum, indicate that the connective ‘and’
in a conjunction of concepts does not play the role that we imagine it to play in-
tuitively and from our experience with logic. Similarly, the connective ‘or’ in a
disjunction of concepts does not play the role we imagine it to play [10]. A similar
phenomenon was identified for Hampton’s data on membership weights of exem-
plars with respect to conjunctive and disjunctive combinations of pairs of con-
cepts. This was resolved by showing that the state space is a Fock space with two
sectors, the first sector describing this ‘non logical and interference role’ of con-
junction and disjunction, with indeed the average as classical default, and a second
sector describing the logical role of conjunction and disjunction, with minimum
and maximum as classical defaults in the case of conjunction and respectively dis-
junction, and quantum entanglement as a quantum effect [3]. We believe that this
is also the state of affairs here, and that we have only described the ‘first sector
Fock space’ part in the present article, hence the interference part, with the aver-
age as classical default, and a role of conjunction that is not the one of logic. Since
the present model describes the interference part in the first sector of Fock space,
but not the entanglement part in the second sector of Fock space, it can be seen as
complementary to an entanglement quantum model that was worked out for the
Pet-Fish concept combination in a tensor product Hilbert space [1].

An more intuitive way of looking at this is that when it comes to first sector of
Fock space effects, hence interference effects, participants mainly consider ‘Fur-
niture and Household Appliances’ in its root combination ‘Furniture–Household
Appliances’, without taking into account the ‘and’ as a logical connective. The
‘and’ merely introduces an extra context on this root combination, which, for
example, will be different from the extra context introduced by the ‘or’ on the
root combination.

At first sight it may seem that our interference quantum model does not incor-
porate order effects, which are known to exist experimentally. More concretely,
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experiments on the combination ‘A and B’ will often lead to different data than
experiments on the combination ‘B and A’. However, order effect can be mod-
eled without problems in our interference approach, because in the first sector
of Fock space, although ‘A and B’ and ‘B and A’ are described by the same
superposition state, the phase of this state is different, leading to different in-
terference angles, and hence different values for the collapse probabilities. This
is how the first sector of a Fock space interference model copes in a natural way
with order effects.

The double slit representation also helps clarify aspects of the situation and
thus provides new insight into concept combination. The role of the two slits
is played by Furniture and Household Appliances, and the role of the specific
positions on the detection screen where the interference pattern is formed are
played by the measuring locations for the exemplars. We can see clearly that
the mind is not working with these concepts in a classical manner. If this were
the case, each individual would simply substitute the combined concept Fur-
niture and Household Appliances by one of the two constituent concepts – in
a manner similar to how the classical particle passes through one of the two
slits. This would result in a perfect average, and hence no interference. How-
ever, on many occasions individual judgements of typicality for the conjunction
deviate from the average, in a manner similar to how the statistical average of
typicality deviates from the average. This means that interference is operating,
similar to the interference pattern observed in quantum mechanics even with
single quantum ‘particles’ in a double slit set-up [16]. Physicists introduced the
term ‘self-interference’ to indicate this behavior. The above suggests that the
individual ponders each of the constituents of a combined concept and this pro-
cess takes place ‘in superposition’ when referring to the individual constituents
of the combination. This is the expression of the emergence of a new concept for
this combination. Other aspects of the origin of conceptual interference effects,
and their implications for cognition and creativity, are analyzed and discussed
elsewhere [2,3,9,17,18].

Let us finish this section by returning to the issue of overextension of the con-
junction. Since from our analysis it follows that the average, a first order classical
default (namely the default of the first sector of Fock space), is stronger than the
minimum, the classical default (of the second sector of Fock space), the notion of
‘overextension’ no longer covers correctly the ‘deviation from classicality’. How-
ever, an interesting relation with interference can be found. Overextension takes
place when

μ(A and B)k −min{μ(A)k, μ(B)k} > 0 (20)

which is equivalent to

max{μ(A)k, μ(B)k} > μ(A)k + μ(B)k
2

−�〈A|Mk|B〉 (21)

Overextension occurs when the average modulated by the interference term can-
not equal the largest of the constituent typicalities. This is consistent with the
contention that ‘Conjunctions tend to be overextended to include exemplars
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that are good members of one class, but are marginal to the other’ [14]. Only
for double overextension is interference necessary. On the other hand, situations
where one concept in the conjunction is very atypical, while the other is highly
typical, a situation traditionally considered unproblematic, could require a large
interference deviation from the classical average.

5 Conclusions

We presented a quantum model that demonstrates how the Guppy Effect can be
modeled as interference. A data set for two concepts and their conjunction – with
an ontology of 16 exemplars – was modeled in a 17-dimensional Hilbert space
H. The non-compositionality of the conjunction of concepts was identified by
its close convergence to the classical average of probabilities, while the quantum
interference appears as a modulation to fit the effect of the logical connectives.
Our core finding is that this effect produces a quantifiable deviation from classical
analyses, signalling the emergence of a new concept. One implication is that
in some situations, particularly when new content emerges, cognitive processes
cannot be described using classical logic.
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Abstract. The Ellsberg and Machina paradoxes reveal that expected
utility theory is problematical when real subjects take decisions under
uncertainty. Suitable generalizations of expected utility exist which at-
tempt to solve the Ellsberg paradox, but none of them provides a sat-
isfactory solution of the Machina paradox. In this paper we elaborate a
quantum model in Hilbert space describing the Ellsberg situation and
also the Machina situation, and show that we can model the specific as-
pect of the Machina situation that is unable to be modeled within the
existing generalizations of expected utility.

Keywords: Ellsberg paradox, Machina paradox, ambiguity aversion,
quantum modeling.

1 Introduction

In economics, the predominant model of decision making is the Expected Utility
Theory (EUT) [1,2]. Notwithstanding its simplicity, mathematical tractability
and predictive success, the empirical validity of EUT at the individual level
is questionable. Indeed, examples exist in the literature which show an incon-
sistency between real preferences and the predictions of EUT. These devia-
tions were put forward by considering specific situations of uncertainty often
commonly referred to now as paradoxes [3,4].

EUT was formally developed by von Neumann and Morgenstern [1]. They pre-
sented a set of axioms that allow to represent decision–maker preferences over
the set of acts (functions from the set of states of the world into the set of conse-
quences) by the functional Epu(.), for some real–valued Bernoulli utility function
u on the set of consequences and an objective probability measure p on the set
of states of the nature. An important aspect of EUT concerns the treatment of
uncertainty. Knight had highlighted the difference between risk and uncertainty
reserving the term risk for ventures that can be described by known (or physical)
probabilities, and the term uncertainty to refer to situations in which agents did
not know the probabilities associated with each of the possible outcomes of an
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Table 1. The payoff matrix for the Ellsberg paradox situation

Act red yellow black

f1 12$ 0$ 0$
f2 0$ 0$ 12$
f3 12$ 12$ 0$
f4 0$ 12$ 12$

act [5]. However, probabilities in the von Neumann and Morgenstern modeling
are objectively or, physically, given. Later, Savage extended EUT allowing agents
to construct their own subjective probabilities when physical probabilities are
not available [2]. Then according to Savage’s model, the distinction put forward
by Knight seems to be irrelevant. Ellsberg’s experiments instead showed that
Knightian’s distinction is empirically meaningful [3]. In particular, he presented
the following experiment. Consider one urn with thirty red balls and sixty balls
that are either yellow or black, the latter in unknown proportion. One ball will
be drawn from the urn. Then, free of charge, a person is asked to bet on one of
the acts f1, f2, f3 and f4 defined in Table 1.

When asked to rank these gambles most of the persons choose to bet on f1
over f2 and f4 over f3. This empirical result cannot be explained by EUT. In fact,
we can see that individuals’ ranking of the sub–acts [12 on red; 0 on black] versus
[0 on red; 12 on black] depends upon whether the event yellow yields a payoff of
0 or 12, contrary to what is suggested by the Sure–Thing principle, an important
axiom of Savage’s model. Nevertheless, these choices have a direct intuition: f1
offers the 12 prize with an objective probability of 1/3, and f2 offers the same
prize but in an element of the subjective partition {black, yellow}. In the same
way, f4 offers the prize with an objective probability of 2/3, whereas f3 offers the
same payoff on the union of the unambiguous event red and the ambiguous event
yellow. Thus, in both cases the unambiguous bet is preferred to its ambiguous
counterpart, a phenomenon called by Ellsberg ambiguity aversion.

After the work of Ellsberg many extensions of EUT have been developed
to represent this kind of preferences, all replacing the Sure–Thing Principle by
weaker axioms. The first extension is Choquet Expected Utility, also known as
expected utility with non–additive probabilities [6]. This model considered a
subjective non–additive probability (capacity) over the states of nature instead
of a subjective probability. Thus, decision–makers could underestimate or over-
estimate probabilities in the Ellsberg experiment and the ambiguity aversion
is equivalent to the convexity of the capacity (pessimistic beliefs). A second
approach is the Max −Min Expected Utility, or expected utility with multi–
prior [7]. In this case the lack of knowledge about the states of nature of the
decision–maker cannot be represented by a unique probability measure, instead
he or she thinks are relevant a set of probability measures, then an act f is pre-
ferred to g if minp∈P Epu(f) > minp∈P Epu(f), where P is a convex and closed
set of additive probability measures. The ambiguity aversion is represented by
the pessimistic beliefs of the agent which takes decisions considering the worst
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Table 2. The payoff matrix for the Machina paradox situation

Act E1 E2 E3 E4

f1 202 202 101 101
f2 202 101 202 101
f3 303 202 101 0
f4 303 101 202 0

probabilistic scenario. The third model is Variational Preferences [8], and it is a
dynamic generalization of the Max-Min expected utility. In this case agents rank
acts according to the criterion: infp∈	{Epu(f) + c(p)}, where c(p) is a closed
and convex penalty function associated with the probability election. Finally,
the Second Order Probabilities approach [9] proposes a model of preferences over
acts such that the decision–maker prefers an act f to an act g if and only if
Eμφ(Epu(f)) ≥ Eμφ(Epu(g)), where E is the expectation operator, u is a von
Neumann–Morgenstern utility function, φ is an increasing transformation, and
μ is a subjective probability over the set of probability measures p that the
decision–maker thinks are feasible. In this kind of model the ambiguity aversion
is represented by the concavity of the transformation φ.

Notwithstanding the models above have been widely used in economics and
finance, they are not absent of critics (see, e.g., [4,10]). In the same spirit as Ells-
berg, Machina proposed an example introducing a trade off between ambiguity
aversion and Bayesian advantages that cannot be represented by the Choquet ex-
pected utility model [4]. Recently it has been proved that no one of the mentioned
extensions of EUT can represent the behavior described by the Machina paradox
[11]. For the Machina paradox an experiment is considered consisting of an urn
with four kind of different balls identified with a number between 1 and 4. The
amount of balls with the number 1 plus the amount of balls with the number 2 is
fifty and the amount of balls with the number 3 plus the amount of balls with the
number 4 is fifty–one. Agents are asked to rank the set of acts in Table 2.

The event Ej indicates that a ball with a number j has been drawn from
the urn, the act f1 has been defined as contingent payoff in each event, so that
in E1, f1 pays 202, in E2, f1 pays 202, and so on. Equally are defined f2,
f3 and f4. Then, free of charge a person is asked to bet on f1 or to bet on
f2, if he or she are sufficiently uncertainty averse then will prefer f1 instead f2,
because f1 has not ambiguity in its payoffs although f2 presents a slight Bayesian
advantage due to the 51 balls may yield 202. The person is also asked to bet on
f3 or f4. In this case, both acts present ambiguity in their payoffs, there is not
an informational advantage between them. Thus a decision–maker who values
unambiguous information would be indifferent between f3 and f4. On the other
hand f4 benefits from the 51 balls, hence in this case the Bayesian advantage
implies that f4 � f3. The paradox appears because none of the reviewed models
can represent this dual behavior. As a consequence, the Machina paradox, as
well as the construction of a unified framework explaining both the Ellsberg and
Machina paradoxes, are still open problems in decision making.
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Ambiguity in economics is typically considered as a situation without a unique
probability model describing it as opposed to risk, which is defined as a situation
with such a probability model describing it. It is however presupposed usually
that a classical probability model is considered, defined on a σ–algebra of events.
In the above approaches generalizing EUT [6,7,8,9], more general structures are
considered than that of a single classical probability model on a σ–algebra. Hav-
ing looked in detail at the above mentioned structural generalizations, it can be
noticed however that they all envisage generalizations of some specific aspects
of the traditional situation of one classical probability model on one σ–algebra.
Recently we have also proposed an approach to this problem, introducing the
notion of contextual risk, inspired by the probability structure of quantum me-
chanics, which is intrinsically different from a classical probability on a σ-algebra,
the set of events is indeed not a Boolean algebra [12,13,14,15].

In the present article we work out a direct mathematical representation of the
Ellsberg and Machina paradox situations, in the standard formalism of quantum
mechanics, hence by using a complex Hilbert space, and representing the prob-
ability measures by projection valued measures on this complex Hilbert space.
As we will see when we explain the details of the Hilbert space representation
of Ellsberg and Machina, it is not only the structure of the probability mod-
els which is essentially different from the known approaches – projection valued
measures instead of σ–algebra valued measures – but also the way in which
states are represented in quantum mechanics, i.e. by unit vectors of the Hilbert
space, brings in an essential different aspect, coping both mathematically and
intuitively, with the notion of ambiguity as introduced in economics.

2 A Quantum Model for the Ellsberg Paradox

To work out a quantum model for the Ellsberg paradox situation we consider
the example resumed in Tab. 1, Sec. 1. We will realize the quantum model in the
three dimensional complex Hilbert space C3. Let us denote its canonical basis
by the vectors {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉}.

For the sake of clarity, we introduce the model in different steps. First, we
define the part of the model, which we will refer to as the conceptual Ellsberg
entity, as it consists of the Ellsberg situation without considering the different
actions and also without considering the person and the bet to be taken. Hence
it is the situation of the urn with 30 red balls and 60 black and yellow balls in
unknown proportion. In the next steps we will add the remaining elements.

Already in the first part the presence of the ambiguity can be taken into
account mathematically in a specific way by the quantum mechanical formalism.
To this aim we introduce a quantum mechanical context e, represented by means
of the spectral family {Pr, Pyb}, where Pr is the one dimensional orthogonal
projection operator on the subspace generated by the vector |1, 0, 0〉, and Pyb is
the two dimensional orthogonal projection operator on the subspace generated
by the vectors |0, 1, 0〉 and |0, 0, 1〉, {Pr, Pyb} is indeed a spectral family, since
Pr ⊥ Pyb and Pr+Pyb = �. Contexts, or more specifically measurement contexts,
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are indeed represented by spectral families of orthogonal projection operators,
or by a self–adjoint operator determined by such a family. A state in quantum
mechanics is represented by a unit vector of the complex Hilbert space. For
example, the vector

|vry〉 = |1/
√
3 · eiθr ,

√
2/3 · eiθy , 0〉 (1)

can be used to represent a state describing the Ellsberg situation C3. Indeed, we
have

|〈1, 0, 0|vry〉|2 = 〈vry|1, 0, 0〉〈1, 0, 0|vry〉 =‖ Pr|vry〉 ‖2= 1/3 (2)

which shows that the probability for ‘red’ in the state represented by |vry〉 equals
1/3. On the other hand, we have

‖Pyb|vry〉‖2 = 〈0,
√
2/3 · eiθy , 0|0,

√
2/3 · eiθy , 0〉 = 2/3 (3)

which shows that the probability for ‘yellow or black’ in the state represented
by |vry〉 is 2/3. But this is not the only state describing the Ellsberg situation,
the set of all such states (Ellsberg state set) is

ΣElls = {pv : |v〉 = |1/
√
3 · eiθr , ρyeiθy , ρbeiθb〉 | 0 ≤ ρy, ρb, ρ

2
y + ρ2b = 2/3} (4)

which is a subset of C3. A state contained in ΣElls, together with the context e
represented by the spectral family {Pr, Pyb}, delivers a quantum description of
the Ellsberg situation.

We come now to the second step, namely the introduction of a description of
the different actions f1, f2, f3 and f4. Here a second measurement context is
introduced which we denote by g. It describes the ball taken out of the urn, and
its color verified, red, yellow or black. Also g is represented by a spectral family of
orthogonal projection operators {Pr, Py, Pb}, where Pr is already defined, while
Py is the orthogonal projection operator on |0, 1, 0〉 and Pb is the orthogonal
projection operator on |0, 0, 1〉. This means that the probabilities, given a state
pv represented by the vector |v〉 = |ρreiθr , ρyeiθy , ρbeiθb〉, are

μr(g, pv) =‖ Pr|v〉 ‖2= 〈v|Pr|v〉 = ρ2r (5)

μy(g, pv) =‖ Py|v〉 ‖2= 〈v|Py |v〉 = ρ2y (6)

μb(g, pv) =‖ Pb|v〉 ‖2= 〈v|Pb|v〉 = ρ2b (7)

where μr(g, pv), μy(g, pv) and μb(g, pv) are the probabilities to draw a red ball, a
yellow ball and a black ball, respectively, in the state pv. Of course, if pv ∈ ΣElls

we require that ρ2r = 1/3 and ρ2y + ρ2b = 2/3.
The different actions f1, f2, f3 and f4 are observables, and hence represented

by self-adjoint operators, built all on the spectral decomposition {Pr, Py , Pb}.

f̂1 = 12$Pr f̂2 = 12$Pb f̂3 = 12$Pr + 12$Py f̂4 = 12$Py + 12$Pb = 12$Pyb

(8)
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Let us analyze now the expected payoffs connected with the different acts, or the
utility. Let us remark here that for reasons of simplicity, we identify the utility
with the expected payoff, although of course in general the utility is a much
more general variable. This implies that we are considering a risk neutral agent.
Hence, consider an arbitrary state pv ∈ ΣElls and the acts f1 and f4. We have

U(f1, g, pv) = 〈v|f̂1|v〉 = 12$〈v|Pr|v〉 = 12$ · 1/3 = 4$ (9)

U(f4, g, pv) = 〈v|f̂4|v〉 = 12$〈v|Pyb|v〉 = 12$ · 2/3 = 8$ (10)

which shows that both these utilities are completely independent of the consid-
ered state of ΣElls. They are ambiguity free. Consider now the acts f2 and f3,
and again an arbitrary state pv ∈ ΣElls. We have

U(f2, g, pv) = 〈v|f̂2|v〉 = 12$〈v|Pb|v〉 = 12$μb(g, pv) (11)

U(f3, g, pv) = 〈v|f̂3|v〉 = 12$〈v|(Pr + Py)|v〉 = 12$(μr(g, pv) + μy(g, pv))(12)

which shows that both utilities depend heavily on the state pv, due to the am-
biguity where the two acts are confronted with.

Let us now take into account some extreme cases to see explicitly the depen-
dence on the state. Consider, e.g., the states pvry , introduced in (1), and pvrb
represented by the vector |vrb〉 = |1/

√
3 · eiφr , 0,

√
2/3 · eiθb〉. These states give

rise for the act f2 to utilities

U(f2, g, pvry ) = 12$μb(g, pvry ) = 12$ · 0 = 0$ (13)

U(f2, g, pvrb) = 12$μb(g, pvrb) = 12$ · 2/3 = 8$. (14)

This shows that a state pvrb exists within the realm of ambiguity, where the
utility of act f2 is greater than the utility of act f1, and also a state pvry exists
within the realm of ambiguity, where the utility of act f2 is smaller than the
utility of act f1. If we look at act f3, we find for the two considered extreme
states the following utilities

U(f3, g, pvry ) = 12$(μr(g, pvry ) + μy(g, pvry )) = 12$(1/3 + 2/3) = 12$ (15)

U(f3, g, pvrb) = 12$(μr(g, pvrb) + μy(g, pvrb)) = 12$(1/3 + 0) = 4$. (16)

We are in a very similar situation, namely one of the states gives rise to a greater
utility, while the other gives rise to a smaller utility than the independent one
obtained in act f4.

We come finally to the third step, and take into account the presence of
the ambiguity in a proper way. Relying on quantum mechanical modeling of
situations that violate the Sure–Thing Principle, such as the Hawaii situation
[17], we put forward the hypothesis that the two extreme states pvry and pvrb play
a role in the mind of the person that is asked to bet. Hence, it is a superposition
state of these two states that will guide the decision of the person to bet. Let us
construct a general superposition state pvs of these two states. Hence the vector
|vs〉 representing pvs can be written as follows

|vs〉 = aeiα|vrb〉+ beiβ|vry〉 (17)
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where a, b, α and β are chosen in such a way that 〈vs|vs〉 = 1, which means that
1 = (ae−iα〈vrb| + be−iβ〈vry|)(aeiα|vrb〉 + beiβ |vry〉) = a2 + b2 + 2ab/3 · cos(β −
α+ θr − φr), whence

cos(β − α+ θr − φr) = 3(1− a2 − b2)/2ab (18)

Straightforward calculations show that the transition probabilities in the super-
position state pvs are given by

|〈1, 0, 0|vs〉|2 = 1/3 · (3− 2a2 − 2b2) = μr(g, pvs) (19)

|〈0, 1, 0|vs〉|2 = 2/3 · b2 = μy(g, pvs) (20)

|〈0, 0, 1|vs〉|2 = 2/3 · a2 = μb(g, pvs) (21)

and that we can represent a general superposition state as

|vs〉 = 1/
√
3 · |aei(α+φr) + bei(β+θr),

√
2bei(β+θy),

√
2aei(α+θb)〉 (22)

and that the utilities corresponding to the observables of the different actions
are given by

U(f1, g, pvs) = 〈vs|f̂1|vs〉 = 12$ · 1/3 · (3 − 2a2 − 2b2) = 4$ · (3− 2a2 − 2b2) (23)

U(f2, g, pvs) = 〈vs|f̂2|vs〉 = 12$ · 2/3 · a2 = 4$ · 2a2 (24)

U(f3, g, pvs) = 〈vs|f̂3|vs〉 = 12$ · 1/3 · (3 − 2a2 − 2b2) + 12$ · 2/3 · b2 = 4$ · (3− 2a2) (25)

U(f4, g, pvs) = 〈vs|f̂4|vs〉 = 12$ · 2/3 · b2 + 12$ · 2/3 · a2 = 4$(2a2 + 2b2) (26)

We can see that it is not necessarily the case that μr(g, pvs) = 1/3, which means
that choices of a and b can be made such that the superposition state pvs is not a
state contained in ΣElls. The reason is that ΣElls is not a linearly closed subset
of C3. A conservative choice within our quantum modeling is that we require
the superposition state to be an element of ΣElls – we plan in future work to
explore situations where this is not the case, e.g. situations of interference with
respect to Ellsberg-type examples – and this leads to

1/3 = μr(g, pvs) = 1/3 · (3− 2a2 − 2b2)⇔ a2 + b2 = 1 (27)

which implies that cos(β − α+ θr − φr) = 0 and hence β = π/2 + α − θr + φr .
Let us construct now two examples of superposition states that conserve the 1/3
probability for drawing a red ball, and hence are conservative superpositions,
and express the ambiguity as is thought to be the case in the Ellsberg paradox
situation. The first state refers to the comparison for a bet between f1 and f2.
The ambiguity of not knowing the number of yellow and black balls in the urn,
only their sum to be 60, as compared to knowing the number of red balls in
the urn to be 30, gives rise to the thought that ‘eventually there are perhaps
almost no black balls and hence an abundance of yellow balls’. Jointly, and in
superposition, the thought also comes that ‘it is of course also possible that there
are more black balls than yellow balls’. These two thoughts in superposition, are
mathematically represented by a state pvs . The state pvs will be closer to pvry , the
extreme state with no black balls, if the person has a lot of ambiguity aversion,



A Quantum Model for the Ellsberg and Machina Paradoxes 55

while it will be closer to pvrb , the extreme state with no yellow balls, if the person
is attracted by the ambiguity. Hence, these two tendencies are expressed by the
values of a and b in the superposition state. If we consider again the utilities,
this time with a2 + b2 = 1, we have

U(f1, g, pvs) = 4$ U(f2, g, pvs) = 4$ · 2a2 (28)

U(f3, g, pvs) = 4$ · (3− 2a2) U(f4, g, pvs) = 8$ (29)

So, for a2 < 1/2, which exactly means that the superposition state pvs is closer
to the state pvry than to the state pvrb , we have that U(f2, g, pvs) < U(f1, g, pvs),
and hence a person with strong ambiguity aversion in the situation of the first
bet, will then prefer to bet on f1 and not on f2. Let us choose a concrete state
for the bet between f1 and f2, and call it pv12

s
, and denote its superposition state

by |v12s 〉. Hence, for |v12s 〉 we take a = 1/2 and b =
√
3/2 and hence a2 = 1/4

and b2 = 3/4. For the angles we must have β − α+ θr − φr = π/2, hence let us
choose θr = φr = 0, α = 0, and β = π/2. This gives us

|v12s 〉 = 1/2
√
3 · |1+

√
3eiπ/2,

√
2
√
3eiπ/2,

√
2〉 = 1/2

√
3 · |1+ i

√
3, i
√
6,
√
2〉 (30)

On the other hand, for 1/2 < a2, which means that the superposition state
is closer to the state pvrb than to the state pvry , we have that U(f3, g, pvs) <
U(f4, g, pvs), and hence a person with strong ambiguity aversion in the situation
of the second bet, will then prefer to bet on f4 and not on f3. Also for this case
we construct an explicit state, let us call it pv34

s
, and denote it by the vector

|v34s 〉. Hence, for |v34s 〉 we take a =
√
3/2 and b = 1/2 and hence a2 = 3/4 and

b2 = 1/4. For the angles we must have β−α+θr−φr = π/2, hence let us choose
θr = φr = 0, α = 0, and β = π/2. This gives us

|v34s 〉 = 1/2
√
3 · |
√
3 + eiπ/2,

√
2eiπ/2,

√
2
√
3〉 = 1/2

√
3 · |
√
3 + i, i

√
2,
√
6〉 (31)

3 A Quantum Model for the Machina Paradox

In this section we elaborate a quantum model for the Machina paradox which
is similar to the model constructed for the Ellsberg paradox. To this aim let us
consider again the payoff matrix for the Machina situation in Tab. 2, Sec. 1.

We consider the four dimensional complex Hilbert space C4 endowed with the
canonical basis {|1, 0, 0, 0〉, |0, 1, 0, 0〉, |0, 0, 1, 0〉, |0, 0, 0, 1〉}. First, we describe the
conceptual Machina entity, consisting of the Machina situation without the dif-
ferent actions and also without the person and the bet to be taken. Hence it
is the situation of the urn with 50 balls of type 1 or type 2 and 51 balls of
type 3 or type 4. This is described by the context e represented by the spec-
tral family {P12, P34}, where P12 is the two dimensional orthogonal projection
operator on the subspace generated by {|1, 0, 0, 0〉, |0, 1, 0, 0〉}, and P34 is the
two dimensional orthogonal projection operator on the subspace generated by
{|0, 0, 1, 0〉, |0, 0, 0, 1〉}.
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Then, as in Sec. 2, let us define the set of states of the Machina situation
which we call the Machina state set

ΣMach = {pv : |v〉 = |v1, v2, v3, v4〉 | |v1|2+|v2|2 = 50/101, |v3|2+|v4|2 = 51/101}.
(32)

A state contained in ΣMach delivers a quantum description of the Machina sit-
uation, together with the measurement e represented by the spectral family
{P12, P34} in C4.

We come now to the second step, we provide a description of the different
actions f1, f2, f3 and f4, by means of the introduction of a second measure-
ment context which we denote by g, and which describes how a ball is taken
from the urn, and it is verified whether it is of type 1, 2, 3 or 4. Hence g is
represented by the spectral family {P1, P2, P3, P4}, where P1, P2, P3 and P4 are
the orthogonal projection operators on the subspaces generated by |1, 0, 0, 0〉,
|0, 1, 0, 0〉, |0, 0, 1, 0〉 and |0, 0, 0, 1〉, respectively. Thus, the probability μj(g, pv)
to draw a ball of type j, j = 1, 2, 3, 4, in the state pv represented by the vector
|v〉 = |v1, v2, v3, v4〉, is given by

μ1(g, pv) = 〈v|P1|v〉 = |v1|2, μ2(g, pv) = 〈v|P2|v〉 = |v2|2, (33)

μ3(g, pv) = 〈v|P3|v〉 = |v3|2, μ4(g, pv) = 〈v|P4|v〉 = |v4|2, (34)

Let us then calculate the expected utilities associated with each of the fea-
sible acts, proceeding as in the Ellsberg case. The acts f1 to f4 are observ-
ables, we represent them by self-adjoint operators built on the spectral family
{P1, P2, P3, P4} in the following way: f̂1 = $202P1 +$202P2 +$101P3 +$101P4,

f̂2 = $202P1+$101P2+$202P3+$101P4, f̂3 = $303P1+$202P2+$101P3+$0P4

and f̂4 = $303P1 + $101P2 + $202P3 + $0P4. Then we find

U(f1, pv) = 202 · |v1|2 + 202 · |v2|2 + 101 · |v3|2 + 101 · |v4|2 = 151 (35)

U(f2, pv) = 202|v1|2 + 101|v2|2 + 202|v3|2 + 101|v4|2 (36)

U(f3, pv) = 303|v1|2 + 202|v2|2 + 101|v3|2 (37)

U(f4, pv) = 303|v1|2 + 101|v2|2 + 202|v3|2 (38)

and see that only U(f1, pv) is independent of pv. Finally, as we did in the case
of Ellsberg, let us calculate the utility for the three acts f2, f3 and f4 for the
Machina entity being in the extreme states pv13 and pv24 represented by the
vectors

|v13〉 = |
√
50/101 · eiθ1 , 0,

√
51/101 · eiθ3 , 0〉 (39)

|v24〉 =| 0,
√
50/101 · eiθ2 , 0,

√
51/101 · eiθ4〉 (40)

We have U(f2, pv13) = 202, U(f3, pv13) = 201, U(f4, pv13) = 252, U(f2, pv24) =
101, U(f3, pv24) = 100 and U(f4, pv24) = 50, which shows that for the state pv13
the utilities of all three acts f2, f3 and f4 are maximal, and much bigger than
the utility of f1 as state independent act without ambiguity. On the contrary,
for the state pv24 , we are in the inverse situation, for all three acts f2, f3 and
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f4 the utilities are minimal, and much smaller than the utility of act f1. Let us
consider a superposition state |vs〉 of these two extreme states

|vs〉 = aeiα|v13〉+ beiβ|v24〉 (41)

where a, b are such that a2 + b2 = 1, and α and β are arbitrary, because indeed
this makes 〈vs|vs〉 = 1, since |v13〉 and |v24〉 are orthogonal. We have

〈1, 0, 0, 0|vs〉 = aeiα〈1, 0, 0, 0|v13〉+ beiβ〈1, 0, 0, 0|v24〉 = a
√
50/101ei(α+θ1)(42)

〈0, 1, 0, 0|vs〉 = aeiα〈0, 1, 0, 0|v13〉+ beiβ〈0, 1, 0, 0|v24〉 = b
√
50/101ei(β+θ2)(43)

〈0, 0, 1, 0|vs〉 = aeiα〈0, 0, 1, 0|v13〉+ beiβ〈0, 0, 1, 0|v24〉 = a
√
51/101ei(α+θ3)(44)

〈0, 0, 0, 1|vs〉 = aeiα〈0, 0, 0, 1|v13〉+ beiβ〈0, 0, 0, 1|v24〉 = b
√
51/101ei(β+θ4)(45)

which shows that

|〈1, 0, 0, 0|vs〉|2 = 50a2/101 = μ1(g, pvs) (46)

|〈0, 1, 0, 0|vs〉|2 = 50b2/101 = μ2(g, pvs) (47)

|〈0, 0, 1, 0|vs〉|2 = 51a2/101 = μ3(g, pvs) (48)

|〈0, 0, 0, 1|vs〉|2 = 51b2/101 = μ4(g, pvs) (49)

This means that for the utilities in the superposition state pvs we find

U(f1, pvs) = 202 · 50a2/101 + 202 · 50b2/101 + 101 · 51a2/101 + 101 · 51b2/101
= 2 · 50(a2 + b2) + 51(a2 + b2) = 151 (50)

U(f2, pvs) = 202 · 50a2/101 + 101 · 50b2/101 + 202 · 51a2/101 + 101 · 51b2/101
= 2 · 50a2 + 50b2 + 2 · 51a2 + 51b2 = 202a2 + 101b2 (51)

U(f3, pvs) = 303 · 50a2/101 + 202 · 50b2/101 + 101 · 51a2/101
= 3 · 50a2 + 2 · 50b2 + 51a2 = 201a2 + 100b2 (52)

U(f4, pvs) = 303 · 50a2/101 + 101 · 50b2/101 + 202 · 51a2/101
= 3 · 50a2 + 50b2 + 2 · 51a2 = 252a2 + 50b2 (53)

Before we further our quantum description, we stress that there is ample and
convincing experimental evidence showing that ambiguity aversion is not related
to the size of the payoffs involved [16]. This means that if we want to model the
effect of ambiguity, we should identify it mainly on the level of the states of
the Ellsberg and Machina situations, and only on the level of the utilities as far
as we take into account that it should not be linked to the size of the payoffs.
This is exactly what we have done in our quantum model in the case of the
Ellsberg paradox situation. Indeed, in (17), we have considered a superposition
state of the two extreme ambiguity states, and put forward the hypothesis that
depending on the ambiguity aversion of a person, he or she will consider the
Ellsberg conceptual entity in a state closer to one, or to the other, of the extreme
states. Let us analyze the Machina situation in an analogous way now.
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Consider first the situation of a bet on f1 or f2. There is no ambiguity on
f1, since all states give rise to the same payoff, whereas there is a lot of ambi-
guity on f2. A person with strong ambiguity aversion will consider the Machina
conceptual entity to be in a superposition state close to the extreme state pv24 ,
hence the value of a will be small, and the value of b large. Let us introduce the
following values as an example to make a quantitative calculation possible, we
take a = 1/

√
10 and b = 3/

√
10. Then we have U(f1, pv) = 151, and U(f2, pv) =

202/10 + 101 · 9/10 = 20.2 + 90.9 = 111.1. Hence, U(f2, pv) < U(f1, pv), and
this person will bet on f1 and not on f2. Consider now the situation of a bet
on f3 or f4. In this case, for both actions there is an equal amount of ambi-
guity. This means that in principle no preference is present on the level of the
‘ambiguity choice’ with respect to the superposition state that a person will
consider the Machina conceptual entity to be in. Statistically this amounts to
the superposition state being with equal values of a and b and hence we have
a = b = 1/

√
2. Let us calculate for these values of a and b the utilities cor-

responding to these actions. We have U(f3, pv) = 201/2 + 100/2 = 150.5 and
U(f4, pv) = 252/2 + 50/2 = 151. This means that U(f3, pv) < U(f4, pv) and
hence the person will bet on f4 and not on f3.

We conclude with some remarks on the novelties of our quantum modeling.
(i) We incorporate the subjective preference, hence the subjective probabili-

ties, of traditional economics approaches in the quantum state, which represents
the conceptual entity of the Ellsberg and Machina paradox situations. The quan-
tum state is indeed introduced as describing the ‘conceptual entity’, and not the
‘physical entity’. At variance with existing proposals, the subjective preference
can be in our case different for each one of the acts fj , since it is not derived from
the mathematical structure of the state space of the Machina situation model-
ing. In the other approaches such a mathematical rule exists, which renders the
Machina situation with f1 preferred to f2 and f4 preferred to f3 impossible. We
have just seen that this is not impossible in our modeling scheme.

(ii) Since in our approach there is no mathematical rule for the subjective
probability measure that arises from the interaction of the person with the
Machina conceptual entity, hence, from the interaction between the conceptual
landscape carried by the person and the Machina conceptual entity, there is no
problem to construct the exact probability measure, i.e. superposition, that will
model the eventually collected experimental data for the Machina example.

(iii) All existing proposals mathematically lead to a subjective probability,
hence in our quantum model, to a specific superposition state, ‘as if this subjec-
tive probability i.e. superposition state, could be determined from a theoretical
perspective’. We believe that the specific structure of this probability depends
instead on the interaction of the betting person with the Ellsberg or Machina
situation, and its values should be determined experimentally.

We have not yet introduced the quantum model of the bet itself. This is
indeed another aspect of the quantum formalism where an essential deviation
from the existing approaches occurs. Indeed, the bet itself, as a decision process,
can be modeled in the same quantum formalism, by means of a spectral family of
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projection operators. We have already done this for the Ellsberg situation, and
were able to model the experimental data on the Ellsberg paradox we collected
in [13]. We leave this part of the quantum model of Ellsberg and Machina for a
forthcoming publication. In future work we also plan to investigate the relation
to the already existing and fruitful approaches of introducing quantum structures
in situations of decision under uncertainty in economics and decision theory [18].
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Abstract. Recently it is pointed out that there exists the experimen-
tal data in Escherichia coli ’s metabolism which violate the law of total
probability in classical probability. In this report, we propose a model
which describes such phenomenon based on adaptive dynamics.
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1 Introduction

Recently, it was pointed out [1] that a complex microscopic biological dynamics
of metabolism violates one of basic laws of classical probability theory – the law
of total probability, which is crucial in Bayesian analysis.

In biology, the gene regulation of glucose/lactose metabolism has been studied
well with a bacterium, Escherichia coli (E.coli). The energy for E.coli ’s activity
is produced by metabolizing sugar such as glucose, lactose, etc. Many microbi-
ological studies demonstrated that E.coli has a preference for carbon resources,
that is, E.coli likes glucose better than lactose. When E.coli is incubated in a
test tube containing both glucose and lactose, E.coli will digest glucose first
and lactose second. In this phenomenon, the functioning unit of genes which
is called lactose operon plays an important role. Since the operon theory was
proposed in 1956–1961 [2], the regulatory system of lactose operon has been ex-
tensively studied and its molecular mechanism were mostly figured out. Here it
is important to notice that E. coli ’s metabolism is context dependent; E. coli
is adaptive to the context of the surroundings (lactose/glucose concentrations).
In such system, the conditional probability can not be defined well within usual
mathematical framework: classical probability theory. The formula of total prob-
ability is based on the classical definition of conditional probability (Bayes rule).
We show that this formula is violated by experimental statistical data for E.
coli ’s methabolism. Hence, we do not proceed with the classical definition of
conditional probability.
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In this report based on the paper [3], we describe the E. coli ’s metabolism
system as a model based on non-Kolmogorovian probability inspired by the quan-
tum phenomena. We call it quantum-like models [4]. We define a new conditional
probabilities by the idea of adaptive dynamics [4,5], we express the adaptive dy-
namics of the gene regulation in cells by operators on complex Hilbert spaces,
quantum channel and lifting map. We analyze statistical data obtained from
biological experiments [7], and we compute the degree of E.coli ’s preference in
adaptive dynamics. We do not need difficult simulation of complex biochemical
systems. We use only simple calculation based on adaptive dynamics and its
operational representation.

2 New Mathematical Law Computing the Probability in
Adaptive Dynamics for Glucose Effect of E.coli

Let us introduce a state vector |x0〉 which is written by

|x0〉 = 1√
2
|e1〉+ 1√

2
|e2〉 = 1√

2

(
1
1

)
with {|e1〉 = (0, 1)t, |e2〉 = (1, 0)t}. Before the detection of lactose or glucose,
the initial state of E. coli is given by

ρ0 = |x0〉 〈x0| = 1

2

(
1 1
1 1

)
on Hilbert space C2. The basis {|e1〉 , |e2〉} denotes the detection of lactose (or
glucose) by E. coli, and we express these events as L (or G). When the E. coli
recognizes these molecules, the following state change occurs;

ρ0 → ρD ≡ Dρ0D
∗

tr
(
|D|2 ρ0

) =

(|α|2 αβ∗

α∗β |β|2
)
,

where D is an operator given by a complex diagonal matrix

D =

(
α 0
0 β

)
with |α|2 + |β|2 = 1. The operator D represents E. coli ’s adaptive effect for
surroundings (concentration of lactose or glucose), and it is called detection op-
erator. Note that |α|2 and |β|2 imply the probabilities for the events L and G,
that is, PD(L) and PD(G). The state σD ≡ DD∗ means the distribution of P (L)
and P (G). In this sense, the state σD is derived from the solution concentrations
of lactose and glucose. The state determining the activation of the operon in E.
coli depends on the detection state ρD. We can give such state by the following
state change



62 M. Asano et al.

ρD → ρop ≡ Qρ0Q
∗

tr
(
|Q|2 ρ0

) =
1

|aα+ bβ|2 + |cα+ dβ|2

×
( |aα+ bβ|2 (aα+ bβ) (cα+ dβ)

∗

(aα+ bβ)
∗
(cα+ dβ) |cα+ dβ|2

)
,

where

Q =

(
a b
c d

)
a, b, c, d ∈ C

is an operator representing the state change of lactose operon and we call it
activation operator. The correlation between the activity of lactose operon and
concentrations of lactose and glucose is described as the lifting (map)

E∗D,Q(ρ) = Λ∗
QΛ

∗
Dρ⊗ Λ∗

Dρ,

with a chanel (map) Λ∗
Xρ ≡ XρX∗/tr |X |2 ρ. With this lifting E∗D,Q, one can

define the joint probabilities as

PD(+, L) ≡ tr(E1 ⊗ E1)E∗D,Q(ρ0),

PD(−, L) ≡ tr(E2 ⊗ E1)E∗D,Q(ρ0),

PD(+, G) ≡ tr(E1 ⊗ E2)E∗D,Q(ρ0),

PD(−, G) ≡ tr(E2 ⊗ E2)E∗D,Q(ρ0),

where E1 and E2 are projection operator given by

E1 = |e1〉 〈e1| =
(
1 0
0 0

)
, E2 = |e2〉 〈e2| =

(
0 0
0 1

)
.

Also one can define conditional probability as

PD(+|L) ≡ tr(E1 ⊗ I)E∗D,Q(E1) =
|a|2

|a|2 + |b|2 , (1)

PD(+|G) ≡ tr(E1 ⊗ I)E∗D,Q(E2) =
|b|2

|a|2 + |b|2 , (2)

PD(−|L) ≡ tr(E2 ⊗ I)E∗D,Q(E1) =
|c|2

|c|2 + |d|2 , (3)

PD(−|G) ≡ tr(E2 ⊗ I)E∗D,Q(E2) =
|d|2

|c|2 + |d|2 (4)
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and

PD(+|L ∪G) ≡ tr(E1 ⊗ I)E∗D,Q(ρ0)

=
|aα+ bβ|2

|aα+ bβ|2 + |cα+ dβ|2 ,

PD(−|L ∪G) ≡ tr(E2 ⊗ I)E∗D,Q(ρ0)

=
|cα+ dβ|2

|aα+ bβ|2 + |cα+ dβ|2 .

The above definition of the conditional probability is different from classical one.
We remark the following property;

PD(±|L) �= PD(± ∩ L)
PD(L)

and PD(±|L) �= PD(± ∩G)

PD(G)

From Eqs.(1) - (4), we can decompose the activation operator as

Q =

(√
PE1(+|L)

√
PE2(+|G)√

PE1(−|L)
√
PE2(−|G)

)(
kL 0
0 kGe

iθ

)
(5)

with some real numbers kL, kG and θ. Then we can express the conditional
probabilities PD(+|L ∪G) as

PD(+|L ∪G)=
PE1(+|L)P (L)

√
kL

kG
+PE2(+|G)P (G)

√
kG

kL
+2δcosθ

P (L)
√

kL

kG
+P (G)

√
kG

kL
+2δ̃cosθ

(6)

with

δ=
√
PE1(+|L)PE2(+|G)P (L)P (G),

δ̃=
√
P (L)P (G)

[√
PE1(+|L)PE2(+|G)+

√
PE1(−|L)PE2(−|G)

]
.

Note that, iff kL/kG = 1 and θ = π/2, the total probability law (TPL) is hold;

PD(±|L ∪G) = PE1(±|L)PD(L) + PE2(±|G)PD(G).

However, for general kL, kG and θ , TPL is violated;

PD(±|L ∪G) �= PE1(±|L)PD(L) + PE2(±|G)PD(G).

The violation of TPL means that E. coli prefers glucose (of lactose), and

{kL/kG,θ} specify these preference.

Remark 1. (Comparison with classical probabilistic transformations) In clas-
sical probability theory, transition probability matrix is used in the following
way; (

P (+)
P (−)
)

=

(
P (+|L) P (+|G)
P (−|L) P (−|G)

)(
P (L)
P (G)

)
. (7)
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This is nothing else than encoding of the law of total probability. As we have
seen, the experimental data on activation of lac operon violates the formula of
total probability.

Table 1. Results of beta-galactosidase assay. (The symbol ’+’ or ’-’ means
the genotype of each strain. The values with † are cited from the paper
(Inada et al. 1996) and the values with ‡ are cited from the online page
http://ro119.com/archive/nagoya.cool.ne.jp/planta/bio/lac operon.htm

data A B C D E

strain W3110 W3110 ML30 ML308 ML308-2

lacI + + + - -

lacY + + + + -

preculturing LB Gly LB LB LB

MU(1) 2920† 957 1763 2563 6140

MU(2) 33† 5 14 1592 3062

MU(3) 3000†,2200‡ 1059 3133 2438 5326

MU(4) 43† 486 184 2074 2668

MU(5) 64‡ 421 78 2050 862

3 Comparison of Preferences among Several
Types of E.coli

In this section, we show the E. coli ’s preferece {kL/kG,θ} calculated from exper-
imental data. This calculation is based on the idea of new probabilities explained
in the previous section.

3.1 E.coli’s Preference for Lactose or Glucose

By the method of beta-galactosidase assay (Miller 1972), we measured the values
of Miller unit (MU) in five different situations: E. coli grown in the media con-
taining (1) 0.4% lactose; (2) 0.4% glucose; (3) 0.2 mM IPTG; (4) 0.1% glucose
and 0.4% lactose; (5) 0.4% glucose and 0.4% lactose. In this experiment, we used
four types of E.coli (Bechwith and Zipser 1970); W3110, ML30, ML308 (lacI−),
ML308-2 (lacI−, lacY −). We also used two types of preculture condition; grown
in minimal medium with 0.4% glycerol(Gly) or in Luria broth(LB). The Table
1 shows the results of our experiment.

In data A and C, we can see that both MU(4) and MU(5) are similarly small
values as MU(2). The strains of W3110 and ML30 are wild type E. coli, and these
show stronger preference for glucose than for lactose. On the other hand, as seen
in data D, the strain ML308 has weak preference for glucose since MU(4) and
MU(5) are as small as MU(2). ML308 is a mutant of repressor minus (lacI−), so
that the beta-galactosidase is produced in the cell even in the presence of high
concentration of glucose. As seen in data E, ML308-2 shows different behaviour
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from other strains; MU(4) and (5) is smaller than MU(1) in data E. ML308-2 is a
mutant which is not only repressor minus but also lactose transport system minus
(lacY −), so that, data E is different from data D. The Table 1 also shows the
result for two different preculture conditions as seen in data A and B. We clearly
see that the value of MU(4) and MU(5) in data B is very high in comparison to
those in data A. This result shows that E. coli ’s preference are affected by the
preculture condition.

From the added concentration of lactose and glucose, we can calculate the
probabilities PD(L) and PD(G). For example, the probabilities in the case of (4)
is calculated as

PD(L)=
0.4%

0.4%+0.1%
=0.8, PD(G)=

0.1%

0.4%+0.1%
=0.2,

and the detection operator is determined as

D =

(√
0.8 0

0
√
0.2

)
.

Similarly, the probabilities in the case of (5) is calculated as

PD′(L) = 0.5, PD′(G) = 0.5,

and the detection operator is determined as

D′ =
(√

0.5 0

0
√
0.5

)
.

Also we can calculate the conditional probabilities {PE1(±|L), PE2(±|G),
PD(+|L ∪ G), PD′(+|L ∪ G)} from the obtained MU values. For example, we
can calculate them with MU(3)-(5) of data C as follows.

PE1(+|L) =
1763

3133
, PE2(+|G) =

14

3133
,

PD(+|L ∪G) =
184

3133
, PD′(+|L ∪G) =

78

3133
.

The probabilities for each data (A)-(E) are shown in Table 2.
One can confirm that the probabilities in data A and C do not satisfy TPL;

PD(+|L ∪G)

is not equal to
PE1(+|L)PD(L) + PE2(+|G)PD(G).

On the other hand, one can see that the probabilities in data (D) satisfy TPL
approximately. The strain of ML308 is a mutant which can not produce the re-
pressor protein. Therefore, beta-galactosidase is always produced in the cell of
ML308. ML308-2 is not only lacI− but also lacY −, so that the lactose trans-
porting system of ML308-2 is defective and different from that of other strains.
Hence, the violation of TPL is also seen in data (E).
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Table 2. Calculated probabilities for data A,B,C,D and E

A B C D E

PD(L) 0.8 0.8 0.8 0.8 0.8

PD′(L) 0.5 0.5 0.5 0.5 0.5

PE1(+|L) 0.973 0.904 0.563 1.000 1.000

PE2(+|G) 0.011 0.005 0.005 0.653 0.575

PD(+|L ∪G) 0.014 0.459 0.059 0.851 0.501

PD′(+|L ∪G) 0.029 0.398 0.025 0.841 0.462

PE1(+|L)PD(L) + PE2(+|G)PD(G) 0.780 0.723 0.117 0.722 0.660

PE1(+|L)PD′(L) + PE2(+|G)PD′(G) 0.492 0.455 0.284 0.827 0.788

Table 3. E. coli ’s preferences calculated from each data

A B C D E
√

kL/kG 0.066 0.406 0.190 0.838 0.697

cos θ −0.842 1.000 −0.461 0.251 −0.733

Here, let us remember the Eq.(6) in order to calculate lactose/glucose prefer-
ences {kL, kG, θ}. By assigning these values of probabilities {PD(L), PE1(+|L),
PE2(+|G), PD(+|L ∪ G)} and {PD′(L), PE1(+|L), PE2(+|G), PD′(+|L ∪G)} to
Eq.(6), we have two equations:

PE1(+|L) {PD′(L)Δ− PD(L)Δ′} kL
kG

+ {PD(+|L ∪G)Δ′ − PD′(+|L ∪G)Δ}
√
kL
kG

+ PE2(+|G) {PD′(G)Δ− PD(G)Δ′} = 0, (8)

cosθ=
PD(+|L∪G)−

{
PE1(+|L)P (L)

√
kL

kG
+PE2(+|G)P (G)

√
kG

kL

}
2Δ

, (9)

where

Δ = PD(−|L ∪G)
√
PE1(+|L)PE2(+|G)PD(L)PD(G)

+ PD(+|L ∪G)
√
PE1(−|L)PE2(−|G)PD(L)PD(G),

Δ′ = PD′(−|L ∪G)
√
PE1(+|L)PE2(+|G)PD′(L)PD′(G)

+ PD′(+|L ∪G)
√
PE1(−|L)PE2(−|G)PD′(L)PD′(G).

From Eqs.(8) and (9), we can obtain
√
kL/kG and cos θ, and Table 3 shows these

values for each data.
We remark that the values of

(√
kL/kG, cos θ

)
in data A is different from

those in data B. This result means that the preculture condition affects on E.
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(b) Effect from lacI gene and lacY gene

Fig. 5. Computed values of PD(+|L ∪G) with respect to PD(L)

coli ’s preference. With those values, we can compute PD(+|L∪G) with respect

to PD(L) by assigning the preferences
(√

kL/kG, θ
)
to Eq. (6). For each data,

we plot the values of PD(+|L ∪G) with respect to PD(L) in Fig. 5. The Figure
5(a) shows how much the preculture condition affects the behaviour of lactose
operon. The PD(+|L∪G) of W3110(Gly) in Fig. 5(a) is increasing rather linearly
than that of W3110(LB). Therefore, the violation of TPL for W3110 precultured
on glycerol is smaller than that for W3110 precultured in LB. The Figure 5(b)
shows how much lacI gene or lacY gene affects the behaviour of lactose operon.
The PD(+|L ∪ G) of ML308 in Fig. 5(b) is linearly-increasing with respect to
PD(L), so that the computed result shows that TPL is not violated so much in
case of ML308.
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Abstract. Self-similarity properties of fractal structures, including the
logarithmic spiral, are related to quantum dissipative dynamics, gener-
alized squeezed coherent states and noncommutative geometry in the
plane. The rôle played by the fractal Hamiltonian which actually turns
out to be the fractal free energy is discussed. Time evolution charac-
terized by the breakdown of time-reversal symmetry is controlled by
the entropy. Coherent boson condensation induced by the generators of
the coherent states is shown to control the formation of fractals. Vice-
versa, coherent generalized states are recognized to possess self-similar
fractal structure. The global nature of fractals appears to emerge from
irreversible coherent local deformation processes.

Keywords: fractals, logarithmic spiral, dissipation, squeezed coherent
states, noncommutative geometry.

1 Introduction

In Refs. [1,2] it has been shown that the self-similarity property of deterministic
fractals can be studied in the framework of the theory of entire analytical func-
tions, which are the mathematical tool adopted in the construction of coherent
states in the Fock–Bargmann representation [3]. There it has been discussed
also the functional realization of fractals in terms of the q-deformed algebra of
squeezed coherent states. In the present paper I further pursue these studies
considering the relation between scale free (fractal) structures and quantum dis-
sipation. I consider in particular the case of the logarithmic spiral, also related, in
the specific case of the golden spiral, to the Fibonacci progression, which provides
a most interesting example of self-similarity. My discussion also applies to other
examples of fractals and in general to deterministic fractals. The conclusions
of Refs. [1,2] are confirmed with the additional result that a relation emerges
between fractals, quantum dissipation and noncommutative geometry. The plan
of the paper is the following. The geometrical properties of the logarithmic spi-
ral necessary to our discussion are summarized in Section 2. Self-similarity and
dissipative time evolution are discussed in Section 3. In Section 4 is presented
the formalism of quantum dissipation, and are discussed thermal properties and
the fractal fee energy. Dissipation is finally related to noncommutative geometry
in Section 5. Section 6 is devoted to conclusions.
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2 Geometrical Properties of the Logarithmic Spiral

The defining equation for the logarithmic spiral in polar coordinates (r, θ) is [4]

r = r0 e
d θ , (1)

with r0 and d arbitrary real constants and r0 > 0. The anti-clockwise versus
(left-handed or direct) spiral has the factor q ≡ ed θ > 1; the clockwise versus
(right-handed or indirect) spiral has q < 1 (see Fig. 1). When θ is shifted by a
given quantity, say θ → θ+2 π, the radius vector of the curve scales in geometric
progression with the ratio e2 π d :

r1 = r0 e
d θed 2 π = r e2π d, r2 = r (e2π d)2, ..., rm = r (e2π d)m, (2)

for θ → θ+ 2mπ, m = 1, 2, .... The rate of variation of the radius as θ changes,
i.e. the logarithmic derivative of r with respect to θ, is:

1

r

dr

dθ
= d . (3)

d thus provides a measure of how “tight” is the spiral. Eq. (1) can be represented
by the straight line of slope d in a log-log plot with abscissa θ = ln eθ:

d θ = ln
r

r0
, (4)

and we see that Eq. (3), which also holds for rm for any m, is nothing but the
derivative of such a straight line f(θ) = ln r(θ) in the log-log plot (ln r, θ = ln eθ).
Eq. (4) is invariant under θ-scaling, i.e. rescaling of θ by the scale factor n, i.e.
θ → n θ, affects the ratio r/r0 by the power (r/r0)

n since d n θ = n ln(r/r0)).
We thus have a power law; in geometrical terms, the self-similarity property of
the logarithmic spiral is expressed by the constancy of the angular coefficient
tan−1 d of the straight line in the log-log plot, which reflects in the constancy, at
any of the points of the spiral curve, of the angle δ between the tangent line and
the radius at that point: cot δ = d. This shows that the spiral degenerates into
the circle of radius r0 in the limit d→ 0 (i.e., δ → π/2). For d→∞ it approaches
asymptotically to a straight half-line (δ → 0). The curvature χ(θ) ≡ 1/ρ(θ), with
ρ(θ) the curvature radius at θ, is given by χ(θ) = sin δ/r(θ) = e−d θ sin δ/r0. Thus
the “zero curvature” is obtained only asymptotically, either in the case d→∞,
consistently with the fact that in such a limit it approaches (asymptotically)
to a straight half-line, or, for finite non-vanishing d, after an infinite number of
2 π rotations, θ → 2 πm, with m → ∞. For finite non-vanishing (positive) d,
the infinite curvature is obtained and the origin O is asymptotically reached by
“undoing” an infinite number of 2 π rotations, θ → θ − 2 πm, m → ∞. So the
curve has a singularity at the “origin” O. This singularity at the origin should
be excluded since starting from there no point on the curve can be reached with
a finite number of 2 π rotations for finite non-vanishing d. On the other hand,
the length of the arc lP of the curve at a certain θP , defined to be the measure
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from the (singular) origin O to the point P of the curve, is lP = rP / cos δ, with
rP ≡ r(θP ). The length of the arc lPQ between any two points P and Q of the
curve, thus excluding the singularity at the origin, is lPQ = (rQ − rP )/ cos δ.

The logarithmic spiral is called the golden spiral [4] when at θ = π/2 in Eq. (1)
one has r/r0 = ed (π/2) = φ, with φ denoting the golden ratio, φ = (1 +

√
5)/2 .

In such a case, we may put dg ≡ (lnφ)/(π/2), where the subscript g stays for
golden and the polar equation for the golden spiral is rg(θ) = r0 e

dg θ.
The radius of the golden spiral grows in geometrical progression of ratio φ as

θ grows of π/2: rg(θ + nπ/2) = r0 e
dg (θ+nπ/2) = r0 e

dg θ φn and rg,n ≡ rg(θ =
nπ/2) = r0 φ

n, n = 0, 1, 2, 3, .... A good “approximate” construction of the
golden spiral is obtained by using the so called Fibonacci tiling, obtained by
drawing in a proper way [4] squares whose sides are in the Fibonacci progression
{Fn}: 1, 1, 2, 3, 5, 8, 13, ..... The Fibonacci spiral is then made from quarter-
circles tangent to the interior of each square and it does not perfectly overlap
with the golden spiral. The reason is that the ratio Fn/Fn−1 → φ in the n →
∞ limit, but is not equal to φ for given finite n and n − 1. I recall that the
generic number in the Fibonacci progression is defined by Fn = Fn−1 + Fn−2,
with F0 = 0; F1 = 1 and, in terms of the golden ratio φ and its “conjugate”
ψ = 1 − φ = −1/φ = (1 − √5)/2, Fn is given by the Binet-de Moivre formula
Fn = (φn − ψn)/(φ − ψ) .

The results obtained in this paper apply also to the golden spiral. The loga-
rithmic spiral and the golden spiral and the relation to the Fibonacci progression
is of great interest since these spirals and the Fibonacci progression appear in
many phenomena, ranging from solid state physics to cosmology, from botany to
physiological and functional properties in living systems. In Ref. [5] their role has
been analyzed also in an evolutionary context in connection with morphogenesis
problems (e.g., how to explain the appearance and the apparent optimization of
forms). Even in linguistics, the Fibonacci progression is known to play a relevant
rôle [5,6]. Analyzing these phenomena is not the aim of this report. However,
since many of these phenomena are dissipative ones, I am led to consider, in
the following Section, the dissipative properties of the logarithmic spiral and of
fractals in general.

Fig. 1. The anti-clockwise and the clockwise logarithmic spiral
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3 Self-similarity and Dissipative Time Evolution

Before considering dissipation in fractal dynamics, let me summarize the rela-
tion between self-similarity properties of Koch curve (and other fractals such as
the Sierpinski gasket and carpet, the Cantor set, etc.) and q-deformed coherent
states. As usual [1,2,7,8], let the n-th step or stage of the Koch curve construc-
tion be denoted by un,q(α), with α = 4 and q = 1/3d. Setting the starting stage
u0 = 1, one has [1,2]

un,q(α) = (q α)n = 1, for any n, (5)

from which the fractal dimension or self-similarity dimension [4] d = ln 4/ ln 3 ≈
1.2619 is obtained. Notice that self-similarity is properly defined only in the
n → ∞ limit. Note also that use of q = e−d θ, with d the fractal dimension,
allows us to write the self-similarity equation q α = 1 in polar coordinates as
u = u0 α e

d θ, which is similar to Eq. (1). By considering in full generality the
complex α-plane, and putting q = e−d θ, Eq. (5) is written as d θ = ln α and
the functions un,q(α) are, apart the normalization factor 1/

√
n!, nothing but the

restriction to real q α of the functions

un,q(α) =
(q α)n√

n!
, n ∈ N+ , q α ∈ C , (6)

which form a basis in the space F of the entire analytic functions. Thus, the
study of the fractal properties is carried on in F , by restricting, at the end,
the conclusions to real q α, q α→ Re(q α) [1,2]. The connection between fractal
self-similarity properties and coherent states is then readily established since one
realizes that F is the vector space providing the so-called Fock-Bargmann repre-
sentation of the Weyl–Heisenberg algebra [3] and the frame where the (Glauber)
coherent states are described. By setting q = eζ , ζ ∈ C, the q-deformed al-
gebraic structure is obtained by introducing the finite difference operator Dq.
The n-th iteration stage of the fractal is “seen” by applying (a)n to |qα〉 and
restricting to real qα

〈qα|(a)n|qα〉 = (qα)n = un,q(α), qα→ Re(qα). (7)

The operator (a)n thus acts as a “magnifying” lens [1,2,7]. Thus the fractal
n-th stage of iteration, with n = 0, 1, 2, ..,∞, is represented, in a one-to-one
correspondence, by the n-th term in the coherent state series. |qα〉 is actually a
squeezed coherent state[19], ζ = ln q is the squeezing parameter.

By proceeding for the logarithmic spiral in a similar fashion, its relation
with squeezed coherent states may be shown and thus the logarithmic spiral
also appears to be a macroscopic quantum system arising from the q-deformed
(squeezed) coherent states through coherent boson condensation processes. Such
a conclusion is obtained also by a closer analysis of the parametric equations of
the logarithmic spiral [9]:

x = r(θ) cos θ = r0 e
d θ cos θ , (8a)

y = r(θ) sin θ = r0 e
d θ sin θ . (8b)
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The point on the curve in the complex z-plane is given by z = x+i y = r0 e
d θ ei θ,

and it is fully specified only when the sign of d θ is assigned, thus specifying one
of the two components of the (hyperbolic) basis {e− d θ, e+ d θ}. Actually, the
completeness of the basis {e−d θ, e+ d θ} requires that both the factors e± d θ

must be considered. On the other hand, this is suggested also by the fact that in
many instances in nature, as e.g. in phyllotaxis studies, the direct (q > 1) and
the indirect (q < 1) spirals are both realized in the same system.

Thus, I consider z1 and z2 given by:

z1 = r0 e
− d θ e− i θ , z2 = r0 e

+ d θ e+ i θ , (9)

where opposite signs for the imaginary exponent i θ have been chosen for con-
venience. By introducing the parameter t, θ = θ(t), one realizes that z1 and z2
solve the equations

m z̈1 + γ ż1 + κ z1 = 0 , (10a)

m z̈2 − γ ż2 + κ z2 = 0 , (10b)

respectively, provided the relation

θ(t) =
γ

2md
t =

Γ

d
t (11)

holds (up to an arbitrary additive constant c, here set equal to zero for simplic-
ity). As usual, “dot” denotes derivative with respect to t; m, γ and κ are positive
real constants. The notations Γ ≡ γ

2m , Ω2 = (1/m)(κ − γ2/4m) = Γ 2/d2 and
κ > γ2/4m also will be used. At T = 2 π d/Γ it is θ(T ) = 2 π.

Thus, the solutions of Eqs. (10a) and (10b), z1(t) = r0 e
− i Ω t e−Γt and z2(t) =

r0 e
+ i Ω t e+Γ t, are the parametric expressions for the logarithmic spiral. At

t = mT , z1 = r0 (e
− 2 π d)m, z2 = r0 (e

2π d)m, with the integer m = 1, 2, 3...
The above discussion suggests to us that the parameter t can be interpreted

as the time parameter. Then, Eqs. (10a) and (10b) for the damped and ampli-
fied harmonic oscillator describe the time-evolution of the system of direct and
indirect spirals. The spiral “angular velocity” is given by | d θ/dt | = |Γ/d |.

I remark that the oscillator z1 is an open non-hamiltonian system and we
are able to set up the canonical formalism only provided that we consider the
closed system (z1, z2), made by z1 and its time-reversed image z2 [10]. The closed
system Lagrangian, from which Eqs. (10a) and (10b) are both derived, is

L = mż1ż2 +
1

2
γ(z1ż2 − ż1z2)− κz1z2 . (12)

The canonical momenta are:

pz1 =
∂L

∂ż1
= mż2 − 1

2
γz2 , pz2 =

∂L

∂ż2
= mż1 +

1

2
γz1 . (13)

This brings us to the following crucial remark in our analysis. The “two copies”
(z1, z2) of the z-coordinate (the logarithmic spiral and its time-reversed copy)
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can be viewed as describing the forward in time path and the backward in time
path in the phase space {z, pz}, respectively, and is well known that as far as
z1(t) �= z2(t) the system exhibits quantum behavior and quantum interference
takes place [11,12,13,14]. This can be explicitly proven, for example by following
Schwinger [15], by considering the double slit experiment in quantum mechan-
ics [11,12,13,14]. Also in the quantum mechanical formalism of the Wigner func-
tion and density matrix it is required, in order to have quantum interference,
that the forward in time action A(z− z1, t) must be different from the backward
in time action A(z−z2, t) [11,12]. The classical behavior of the system is obtained
only when z1(t) ≈ z2(t) ≈ zclassical(t). When, on the contrary, z1(t) �= z2(t) at
the same time t, then the system behaves in a quantum mechanical fashion. Of
course, when z is actually measured there is only one classical zclassical. This
scenario also agrees with ’t Hooft conjecture, which states that provided some
specific energy conditions are met and some constraints are imposed, classical,
deterministic systems presenting loss of information (dissipation) might behave
according to a quantum evolution [16,17]. Thus, the logarithmic spiral and its
time-reversed double manifest themselves as macroscopic quantum systems, in
agreement with the conclusion already reached above. It is evident that our con-
clusions for the logarithmic spiral can be immediately extended to other fractals
by considering also for them their parametric equations in the z plane starting
from their self-similarity equation u = u0 α e

d θ mentioned above. I will present
some details of the quantum formalism in the following Section.

4 Free Energy and Coherent States

For brevity I only summarize few features of the quantum formalism since it is
available in the quoted references. The canonical commutators are [ z1, pz1 ] =
i � = [ z2, pz2 ], [ z1, z2 ] = 0 = [ pz1 , pz2 ]. As customary, the annihilation and
creation operators are then introduced:

a ≡
(

1

2�Ω

) 1
2
(
pz1√
m
− i
√
mΩz1

)
, b ≡

(
1

2�Ω

) 1
2
(
pz2√
m
− i
√
mΩz2

)
, (14)

and their hermitian conjugate a† and b†, with [ a, a† ] = 1 = [ b, b† ], [ a, b ] = 0 =
[ a, b† ]. Use of the linear canonical transformation A ≡ 1√

2
(a+b), B ≡ 1√

2
(a−b),

with commutation relations [A,A†] = 1 = [B,B†], [A,B] = 0 = [A,B†], allows
us to obtain the quantum Hamiltonian [10] for the closed system described by
the Lagrangian Eq. (12): H = H0 +HI , with

H0 = �Ω(A†A− B†B), HI = i�Γ (A†B† −AB), (15a)

which I will call the fractal Hamiltonian. Its group structure is that of SU(1, 1):

J+ = A†B† , J− = J†
+ = AB , J3 =

1

2
(A†A+B†B + 1) , (16)
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generate the su(1, 1) algebra: [ J+, J− ] = −2J3, [ J3, J± ] = ±J±, with the
Casimir operator C: C2 ≡ 1

4 + J2
3 − 1

2 (J+J− + J−J+) = 1
4 (A

†A − B†B)2. The
Hamiltonian (15) then can be written as

H0 = 2�ΩC , HI = i�Γ (J+ − J−) ≡ −2�ΓJ2 , (17)

with [H0,HI ] = 0.
Let {|nA, nB〉} denote the set of simultaneous eigenvectors of A†A and B†B,

with nA, nB non-negative integers. The eigenvalue of H0 is the constant (con-
served) quantity �Ω(nA − nB). For the ground state (the vacuum) |0〉 ≡ |nA =
0, nB = 0〉, A|0〉 = 0 = B|0〉, we have H0|0〉 = 0. Its time evolution is given by

|0(t)〉 = 1

cosh(Γt)
exp
(
tanh(Γt)J+

)|0〉 , (18)

namely an su(1, 1) generalized coherent state, produced by condensation of cou-
ples of (entangled) A and B modes: (AB)n, n = 0, 1, 2 ....∞ [3,10]. The single
mode Glauber coherent state obtained for the logarithmic spiral and the Koch
curve is now upgraded to the coherent state of two entangled modes (Eq. (18))
upon closing the system z with its time-reversed copy. For any t, 〈0(t)|0(t)〉 = 1.
As t→∞ we have

lim
t→∞〈0(t)|0〉 = lim

t→∞ exp
(− ln cosh(Γt)

)→ 0 , (19)

which expresses the decay (dissipation) of the vacuum under the time evolution
operator U(t) ≡ exp (−itHI/�). This equation gives the ratio r0/r(t) (cf. Eqs. (4)
and (11)) and the limit consistently expresses the (unbounded) growth of r(t)).
The action of the operator U induces the Bogoliubov transformations:

A→ A(t) = e−i t
�
HIAei

t
�
HI = A cosh (Γt)−B† sinh (Γt) , (20a)

B → B(t) = e−i t
�
HIBei

t
�
HI = −A† sinh (Γt) +B cosh (Γt) . (20b)

The su(1, 1) generalized coherent state |0(t)〉 is known to be a thermal state [10]
and the time evolution induced by HI may be written as [10,14]:

|0(t)〉 = exp

(
−itHI

�

)
|0〉 = exp

(
−1

2
SA(t)
)
exp
(
A†B†)|0〉 , (21)

where
SA(t) ≡ −

{
A†A ln sinh2

(
Γt
)−AA† ln cosh2

(
Γt
)}

, (22)

and similar expression for |0(t)〉 can be obtained with SA(t) replaced by SB(t)
where B and B† replace A and A†, respectively. Thus, one simply writes S for
either SA or SB . S in Eq. (22) is recognized to be the entropy for the dissipative
system [10] (see also [14,18]).

The fractal Hamiltonian H then turns out to be the fractal free energy for the
coherent boson condensation process out of which the fractal is formed. We can
identify H0/� = 2 Ω C with the “internal energy” U and 2 J2/� with the entropy
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S. Putting kB = 1, the defining equation for the temperature T , ∂ S/∂ U = 1/T
gives T = �Γ . The heat contribution in F = U −T S is given by 2Γ J2. We also
have (∂ F/∂ T )|Ω = −2 J2/�. It is remarkable that the temperature T = �Γ is
proportional to the background zero point energy: �Γ ∝ �Ω/2 [13,14,17]. Fi-
nally, the Planck distribution for the A and B modes is obtained by extremizing
the free energy functional [10,13,14,18].

I remark that the fact that it is the entropy S that actually controls the
time evolution signals the breakdown of time-reversal symmetry, i.e. the time
arrow in the fractal formation process; in the case of the logarithmic spiral the
breakdown of time-reversal symmetry manifests itself in the chirality of the spi-
ral: the indirect (right-handed) spiral is the time-reversed image of the direct
(left-handed) spiral and they are separate from each other by a chirality trans-
formation (Fig. 1).

Let me now comment on the fact that |0(t)〉 is a squeezed state. I only observe
that the operator U(t) written as [14,19]

U(t) = exp

(
−Γt

2

((
a2 − a†2

)− (b2 − b†2
)))

, (23)

appears to be the two mode squeezing generator with squeezing parameter ζ =
−Γ t [9,14,19]. A similar observation, which here I omit for brevity, can be made
for the case of the Koch curve and other fractals (see [9]).

Finally, I remark that so far for simplicity my discussion has been framed in
the context of quantum mechanics. However, it is important to stress that the
correct mathematical framework to study quantum dissipation is the quantum
field theory (QFT) framework [10,14], where one considers an infinite number of
degrees of freedom. This is also physically more realistic, because the realizations
of the logarithmic spiral and in general of fractal structures in the many cases
they are observed in nature involve an infinite number of elementary degrees
of freedom, as it always happens in solid state and many-body physics. The
interested reader may find details of the QFT formalism necessary to study the
quantum dissipation process presented above in Refs. [9,10,14]. I also remark
that the whole construction here presented may be “reversed”, in the sense that
the statement that the squeezed coherent state |0(t)〉 possesses self-similarity
fractal properties or fractal geometry also holds.

In conclusion, the logarithmic spiral and other fractals, in their many real-
izations in nature, appear as a global system emerging from local microscopic
quantum condensation process. The quantum dynamical scheme here depicted
seems to underly the morphogenesis processes which manifest themselves in the
global, macroscopic appearances (forms) of the fractals. Vice-versa, one may also
conclude that coherent generalized states possess self-similar fractal structure.

5 Dissipation and Noncommutative Geometry

In this Section I show that in the case of the two mode description of the log-
arithmic spiral and other fractals, dissipation, which is related to the squeez-
ing parameter (cf. Eq. (23)), induces noncommutative geometry in the plane.
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In Refs. [1,2], in the case of the Koch curve represented by a single mode q-
deformed (squeezed) coherent state, it has been shown that noncommutative
geometry in the (x1, x2) plane is induced by the q-deformation (squeezing). The
q-deformation parameter plays indeed the rôle of the noncommutative geometric
length L:

[x1, x2] = iL2. (24)

Then the quantum interference phase ϑ (of the Aharanov-Bohm type) between
two alternative paths P1 and P2 in the plane [13,14,20] is determined by the
noncommutative deformation parameter q and the enclosed area A : ϑ = A/q2.
The deformation parameter also controls the zero point uncertainty relation (we
are using � = 1) Δx1Δx2 ≥ (q2/2).

Let me consider now the case of the two mode description of the logarithmic
spiral and other fractals discussed in previous Sections. In the (z1, z2) plane,
introducing for simplicity the index notation + ≡ 1 and − ≡ 2 and using Eq. (13)
for the momenta pz± , the components of forward in time and backward in time
velocity v± = ż± are given by

v± =
1

m
(pz∓ ∓

1

2
γz±) (25)

and they do not commute

[v+, v−] = −i γ

m2
. (26)

A canonical set of conjugate position coordinates (ξ+, ξ−) may be defined by
putting ξ± = ∓(m/γ)v±, so that

[ξ+, ξ−] = i
1

γ
. (27)

Equation (27) characterizes the noncommutative geometry in the plane (z+, z−).
Since in the present case L2 = 1/γ, the quantum dissipative interference phase
ϑ associated with the two paths P1 and P2 in the noncommutative plane is
ϑ = A/L2 = A γ, provided z+ �= z−.

Thus, in the case of the two mode description of the logarithmic spiral and
other fractals the interference phase appears as a “dissipative interference phase”
[11,20], which provides a relation between dissipation and noncommutative
geometry in the plane of the doubled coordinates.

In order to sheds some light on the physical meaning of the relation between
dissipation (which is at the origin of q-deformation), noncommutative geometry
and the non-trivial topology of paths in the phase space [22,23] (see also [24]),
I observe that in the formalism of the algebra doubling the noncommutative q-
deformed Hopf algebra plays a relevant rôle [13,14,22]. The map A → A1 ⊗A2

which duplicates the algebra is the Hopf coproduct map A → A⊗ 1 + 1 ⊗A.
The Bogoliubov transformations of “angle” Γ t (cf. Eqs. (20)) are obtained by
convenient combinations of the deformed coproductΔa†q = a†q⊗q1/2+q−1/2⊗a†q,
where a†q are the creation operators in the q-deformed Hopf algebra [22]. These
deformed coproduct maps are noncommutative and the q-deformation parameter
is related to the coherent condensate content of the state |0(t)〉.
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6 Conclusions

In this paper I have discussed the realization of the logarithmic spiral and other
self-similar fractal structures in terms of SU(1, 1) generalized coherent states,
which are squeezed thermal states [10]. The dynamics underlying the forma-
tion of the fractals and the logarithmic spiral appears to be the one of boson
condensation processes in quantum field theory and therefore fractals appear to
emerge as the macroscopic result of microscopic coherent quantum dynamics:
they are examples of macroscopic quantum systems, in the specific sense that
their macroscopic properties cannot be derived without recurring to the under-
lying quantum dynamics. This has been shown to be controlled by the fractal
free energy and the rôle played by the entropy in the system time-evolution thus
has been recognized. Quantum dissipation characterizes the fractal dynamics,
and is related with quantum deformation and squeezing of the coherent state
fractal representation [1,2]. Dissipation is therefore at the root of the fractal self-
similarity properties observed at a macroscopic level. This is also in agreement
with the observation [25] that in a crystal submitted to deforming stress actions
the so produced crystal lattice defects (dislocations) form, at low temperature,
self-similar fractal patterns. These are the result of non-homogeneous coherent
phonon (boson) condensation [18,14] and provide an example of “emergence of
fractal dislocation structures” [25] in nonequilibrium (dissipative) systems.

It is remarkable that the entropy controls the system time-evolution. This
is consistent with the breakdown of time-reversal symmetry characteristic of
dissipative systems and the arrow of time is clearly manifest in the observed
formation processes of fractals; it is for example related to the chirality in the
logarithmic spiral where the indirect (right-handed) spiral is the time-reversed,
but distinct, image of the direct (left-handed) spiral (or vice-versa). These fea-
tures of the fractal formation, or growth, suggest that the quantum dynamics
here analyzed is actually at basis of the morphogenesis processes responsible of
the fractal macroscopic appearance. An interesting question is the one of the
relation of the quantum coherent dynamical processes controlled by the entropy
operator as described above and the so called laws of the form in biology (see,
e.g. Ref. [5] and references there quoted).

The noncommutative geometry has been shown to be implicit in the fractal
squeezed coherent state and the dissipative quantum interference phase between
two alternative paths in the plane is determined by the enclosed area between
the paths and the noncommutative length scale, which is related to the squeezing
parameter and to the zero point fluctuations in the coordinates. For practical
applications, the link between fractals and noncommutative geometry may open
interesting perspectives in condensed matter physics, in quantum optics and in
quantum computing and in many applications where quantum dissipation cannot
be actually neglected. The results here presented provide a powerful predictive
tool, since experimental measurements representable by a straight line with given
non-vanishing slope in a log-log plot may signal that a specific coherent state
dynamics underlies the phenomenon under study. Such a kind of theorem has
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been positively confirmed in some applications in neuroscience [2,21] and more
applications will be studied in the future.

Also interesting for applications is the fact that the proof that fractals prop-
erties may be described in terms of coherent states may be reversed in the state-
ment that coherent states have fractal properties, namely there is a “geometry”
characterizing coherent states which may exhibit fractal properties. This may
have practical consequences in view of the important rôle played by coherent
states in many applications, ranging from condensed matter physics to quantum
optics and molecular biology, elementary particle physics and cosmology. The
general emerging perspective is the one of an integrated ecological vision which
appears “fractal modulated” by coherence, rather than “hierarchically layered”
in isolated compartments as it would appear in the nave multi-coded collections
of isolated systems (solid state matter, living matter, sea phenomena, earth phe-
nomena, atmospheric phenomena, etc.). Many different coherent domains may
coexist, although always among them entangled. Fractal modulation points to
a unique, although complex, code incorporating the whole set of deformation
parameters of the basic coherent state of Nature.
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Abstract. Quantum decision models have been recently proposed to ac-
count for findings that have resisted explanation by traditional decision
theories. This paper compares quantum versus Markov models of decision
making for explaining a puzzling empirical finding from human decision
making called dynamic inconsistency – that is the failure of decision
makers to carry out their planned decisions. A large data set that em-
pirically investigated dynamic inconsistency was used to quantitatively
evaluate the quantum and Markov models. In this application, the quan-
tum model reduces to the Markov model when one of the parameters is
set to zero. The parameters of the quantum model were estimated using
Hierarchical Bayesian estimation. The distribution of the key quantum
parameter was clearly located in the quantum regime and far below zero
as predicted by the Markov model. These results provide further support
for quantum models as compared to the traditional models of decision
making.

1 Introduction

Several new quantum models of decision making have been introduced to account
for decision making paradoxes that have resisted explanations by “classical”
type of decision theories (Busemeyer, Wang, Lambert-Mogiliansky [3]; Lambert-
Mogiliansky, Zamir, Zwirn [5]; Khrennikov and Haven [4]; Pothos & Busemeyer
[6]; Yukalov & Sornette [8]). Perhaps quantum models succeed where classic
models fail simply because quantum models are more complex and have greater
model fitting flexibility (after all they are based on complex numbers). The
purpose of this paper is to examine this issue by comparing a classic type of
Markov model with a quantum model using Hierarchical Bayesian parameter
estimation methods [2]. The model comparison is based on a large experiment
designed to examine dynamic inconsistency in choices among two stage gambles
[1]. Dynamic consistency is a principle of decision making required for backward
induction when applied to decision trees. Dynamic consistency requires that a
planned course of action for a future decision is implemented as planned when
that decision is finally realized. Barkan and Busemeyer [1] observed systematic
violations of dynamic consistency, and they used a random utility version of
prospect theory to account for these findings. But more recently, Yukalov and
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Sornette argued that quantum theory can also account for these findings [9].
Therefore, in this paper, two different types of models are proposed to explain
these findings: a Markov model and a quantum decision model [6].

The paper is organized as follows. First we review the Barkan and Busemeyer
[1] experimental methods and results. Second, we describe the two models that
are being compared. Third, we present fits to the mean data for each model
to get a rough idea about how well each model accounts for the findings (but
this is not our main concern). Fourth, we present the results of the Hierarchi-
cal Bayesian parameter (which is our main concern). Finally, we draw some
preliminary conclusions from this model comparison analysis.

2 Barkan and Busemeyer (2003)

A two stage gambling paradigm was used to study dynamic consistency, which
was a modification of the paradigm used by Tversky and Shafir [7] to study the
disjunction effect. A total of 100 people participated and each person played the
17 gambles involving real money shown in Table 1 twice except for the first one.
Each gamble had an equal chance of producing a win or a loss. The columns
labeled ‘win’ and ‘loss’ indicate the money that could be won or lost for each
gamble (one unit was worth one cent). For each gamble in Table 1, the person
was forced to play the first round, and then contingent on the outcome of the
first round, they were given a choice whether or not to play the second round
with the same gamble. On each trial the person was first asked to make a plan
for the second play contingent on each possible outcome of the first play. In
other words, during the planning stage they were asked two questions: “if you
win the first play, do you plan to play the second gamble? and “if you lose
the first play, do you plan to play the second gamble?” Following the plan, the
outcome of the first gamble was revealed, and then the person was given a final
choice: decide again whether or not to play the second gamble after observing
the first play outcome. To incentivize both plan and final choices, the computer
randomly selected either the planned choice or the final choice to determine
the real monetary payoff for each trial. The final payment for the trial was then
shown to the person at the end of each trial. Participants were paid by randomly
selecting four problems from the entire set, randomly selecting either their plan
or final choice, and randomly selecting an outcome for each gamble to determine
the actual payment.

Table 1 displays the results obtained after averaging across the two repli-
cations for each person, and after averaging across all 100 participants. The
probability of planning to take the gamble is shown under the column labeled
“Plan.” There was little or no difference between the probabilities of taking
the gamble, contingent on each planned outcome of the first gamble, and so the
results shown here are averaged across the two hypothetical outcomes during the
plan. See Barkan and Busemeyer [1] for the complete results listed separately
for each contingent outcome. The probability of taking the gamble during the
final stage is shown under the column labeled “Final.” The columns under the
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label “Gamble” display the amount to win and lose for each gamble. Changes in
probabilities down the rows of the Table show the effect of the gamble payoffs
on the probability of taking the gamble. The difference between the planned and
final columns indicates a dynamic inconsistency effect. Notice that following a
win (the first 4 columns), the probability of taking the gamble at the final stage
was always smaller than the probability of taking the gamble at the planning
stage. In other words, participants changed their minds and became more risk
averse after experiencing a win as compared to planning for a win. Notice that
following a loss (the last 4 columns), the probability of taking the gamble at the
final stage was always greater than the probability of taking the gamble at the
planning stage. In other words, participants changed their minds and became
more risk seeking after experiencing a loss as compared to planning for a loss.

Table 1. Barkan and Busemeyer (2003) Experiment

Gamble Win First Play Gamble Lose First Play

Win Loss Plan Final Win Loss Plan Final

200 220 0.46 0.34 80 100 0.36 0.44

180 200 0.45 0.35 100 120 0.47 0.63

200 200 0.59 0.51 100 100 0.63 0.64

120 100 0.70 0.62 200 180 0.57 0.69

140 100 0.62 0.54 160 140 0.68 0.69

200 140 0.63 0.53 200 160 0.67 0.72

200 120 0.74 0.68 160 100 0.65 0.73

200 100 0.79 0.70 180 100 0.68 0.80

200 100 .85 .82

3 Decision Models

3.1 Quantum Decision Model

The quantum model used to account for the dynamic inconsistency effect is
the same model that was previously developed by Pothos and Busemeyer [6]
to account for the disjunction effect. The essential idea is that the decision
maker uses a consistent utility function for plans and final decisions and always
incorporates the outcomes from the first stage into the decision for the second
stage. The planned decision differs from the final decision, because the plan is
based on a superposition over possible first stage outcomes that will be faced
during the final stage.

The two stage game involves a set of four mutually exclusive and exhaus-
tive outcomes {WT,WR,LT, LR} where for example WT symbolizes the event
‘win the first stage’ and ‘take the second stage gamble,’ and LR represents
the event ‘lose the first stage’ and ‘reject the second stage gamble.’ These
four events correspond to four mutually exclusive and exhaustive basis states
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{|WT 〉, |WR〉, |LT 〉, |LR〉} . The four basis states are represented in the quan-
tum model as four orthonormal basis vectors that span a four dimensional vec-
tor space. The state of the decision maker is a superposition over these four
orthonormal basis states.

|ψ〉 = ψWT · |WT 〉+ ψWR · |WR〉+ ψLT · |LT 〉+ ψLR · |LR〉, (1)

|| |ψ〉 ||2 = 1.

The initial state is represented by a 4 × 1 matrix ψI containing elements ψij

i = W,L and j = T,R which is the amplitude distribution over the four basis
states. Initially, during the planning stage, an equal distribution is assumed so
that ψI has elements ψij = 1/2 for all four entries. The state following experience
of a win is updated to ψW which has 1/

√
2 in the first two entries and zeros in

the second two. The state following experience of a loss is updated to ψL which
has 1/

√
2 in the last two entries and zeros in the first two entries. Note that(

ψ†
W · ψL

)
= 0, and also we can write ψI = 1√

2
ψW + 1√

2
ψL.

Evaluation of the payoffs causes the initial state ψI to be ”rotated” by a
unitary operator U into the final states used to make a choice about taking or
rejecting the second stage gamble:

ψF = U · ψI (2)

U = exp
(
−i · π

2
· (H1 +H2)

)
where

H1 =

⎡⎢⎢⎢⎢⎢⎣
hW√
1+h2

W

1√
1+h2

W

0 0

1√
1+h2

W

−hW√
1+h2

W

0 0

0 0 hL√
1+h2

L

1√
1+h2

L

0 0 1√
1+h2

L

−hL√
1+h2

L

⎤⎥⎥⎥⎥⎥⎦ , H2 =
−γ√
2

⎡⎢⎢⎣
1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1

⎤⎥⎥⎦ . (3)

The upper left corner of H1 is defined by the payoffs given a win; and the
bottom right corner of H1 is defined by the payoffs given a loss (this is described
in more detail below). The matrixH2 aligns beliefs and actions by amplifying the
potentials for states WT,LR and and attenuating potentials for states WR,LT.
The parameter γ is a free parameter that allows changes in beliefs during the
decision process.

The utilities for taking the gamble or not are mapped into the parameters hW
and hL in H1, and the latter must be scaled between −1 to +1. To accomplish
this, the parameter hW used to define H1 is defined as

hW =
2

1 + e−DW
− 1, (4)

DW = u(G|Win)− xaW ,

u(G|Win) = (.50) · (xW + xW )a + (.50) · (xW − xL)
a, if (xW − xL) > 0

u(G|Win) = (.50) · (xW + xW )a − (.50) · b · |(xW − xL)|a , if (xW − xL) < 0
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where xW represents the amount won on gamble G. The parameter hL used to
define H1 is defined as

hL =
2

1 + e−DL
− 1 (5)

DL = u(G|Loss)− (−b · xaL)
u(G|Loss) = (.50) · (xW − xL)

a − (.50) · b · (xL + xL)
a, if (xW − xL) > 0

u(G|Loss) = −(.50) · b · |(xW − xL)|a − (.50) · b · (xL + xL)
a, if (xW − xL) < 0

where xL represents the amount lost on gamble G. Parameters a and b are risk
aversion and loss aversion parameters respectively. The projection matrix

M =

[
T 0
0 T

]
, T =

[
1 0
0 0

]
. (6)

is used to map states into the response for taking the gamble on the second
stage. The probability of planning to take the second stage gamble equals

p(T |Plan) = ||M · U · ψI ||2. (7)

The probability of taking the second stage game following the experience of a
win equals

p(T |Win) = ||M · U · ψW ||2. (8)

The probability of taking the second stage game following the experience of a
loss equals

p(T |Loss) = ||M · U · ψL||2. (9)

If γ �= 0 then we find that the quantum model produces interference that helps
account for the observed dynamic inconsistency effects:

||M · U · ψI ||2 =
1

2
· ||M · U · (ψW + ψL)||2 (10)

=
1

2
· ||M · U · ψW +M · U · ψL||2

=
1

2
· ||M · U · ψW ||2 + 1

2
· ||M · U · ψL||2

+
1

2
· (ψ†

W · U ·M) · (M · U · ψL)

+
1

2
· (ψ†

L · U ·M) · (M · U · ψW ).

In sum, this quantum model has only three parameters: a and b are used to
determine the utilities; the third is the parameter γ for changing beliefs to align
with actions. These three parameters were fit to the 33 data points in Table 1
(each gamble played twice expect for the first), and the best fitting parameters
(minimizing sum of squared error) are a = .7101, b = 2.5424, and γ = −4.4034.
The risk aversion parameter is a bit below one as expected, and the loss param-
eter b exceeds one, as it should be. The model produced an R2 = .8234 and an
adjusted R2 = .8120 (the adjusted R-square includes a penalty that depends on
the number of model parameters fit to the data).
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3.2 Markov Decision Model

The Markov model is a special case of the quantum model when the key param-
eter, γ, is set to zero. In this case (γ = 0) there are no interference effects:

U = exp
(
−i · π

2
·H1

)
=

[
U1 0
0 U2

]
, (11)

M · U · ψW =
1√
2

[
T · U1

0

]
,

M · U · ψL =
1√
2

[
0

T · U2

]
,

(ψ†
W · U ·M) · (M · U · ψL) = 0.

So if we force γ = 0, then the quantum model no longer produces ’quantum like’
interference effects. Instead, the choice probability for the plan is an equal weight
average of the two choice probabilities produced after either winning or losing
the first stage: p(T |plan) = (.50) · p(T |Win)+ (.50) · p(T |loss), where p(T |Win)
is defined by Equation 8 with γ = 0 and p(T |loss) is defined by Equation 9
with γ = 0. This model was fit to the results in Table 1 by using only two
parameters a and b for the quantum model (with γ = 0), and it produced an
R2 = .7854 and an adjusted R2 = .7787 which still falls below the adjusted R2

for the three parameter quantum model, and so the γ parameter is making a
useful contribution in this application.

In summary, comparing the two key models on the basis of fitting the means,
we find that the quantum model with γ �= 0 produces an increase in adjusted
R-square over the Markov model when the two models are fit to the means.
However, the next section provides a Hierarchical Bayesian estimation of the
key quantum parameter to determine whether or not its posterior distribution
lies near zero or within a quantum regime.

4 Hierarchical Bayesian Model Comparison

4.1 Log Likelihood for Each Person

The Bayesian model estimation was computed using the 33 choice trials ob-
served from each person. On each trial, a gamble was presented and the per-
son made both a plan for an outcome and a final choice after observing that
same outcome. For person i on trial t we observe a data pattern Xi (t) =
[xTT (t) , xTR (t) , xRT (t) , xRR (t)] defined by xij (t) = 1 if event (i, j) occurs
and otherwise zero, where TT is the event “planned to take gamble and finally
did take the gamble,” TR is the event “planned to take gamble but changed
and finally rejected gamble.” RT is the event “planned to reject the gamble but
changed and finally did take the gamble” and RR is the event “planned to reject
gamble and finally did reject the gamble.” The data for the 33 trials from a sin-
gle person is represented by the 33 tuple Xi = [Xi (1) , ..., Xi (33)] . Finally, the
data for all 100 participants is defined by the 4×100 tuple X = [X1, ..., XN=100] .
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Two allow for possible dependencies between a pair of choices within a single
trial, an additional memory recall parameter was included in each model. For
both models, it was assumed that there is some probability m, 0 ≤ m ≤ 1 that
the person simply recalls and repeats the planned choice for the final choice, and
there is some probability 1 −m that the person forgets or ignores the planned
choice when making the final choice. After including this memory parameter,
the prediction for each event becomes

pTT = p(T |plan) · (m · 1 + (1−m) · p(T |final)) (12)

pTR = p(T |plan) · (1−m) · p(R|final)
pRT = p(R|plan) · (1−m) · p(T |final)
pRR = p(R|plan) · (m · 1 + (1−m) · p(R|final))

Using these definitions for each model, the log likelihood function for the 33
trials from a single person can be expressed as

lnL (Xi (t)) =
∑

xjk (t) · ln (pjk) (13)

lnL (Xi) =

33∑
i=1

lnL (Xi (t)) .

The predictions pjk used in the formulas shown above depend on the four
model parameters θi = [ai, bi,mi, γi] for person i. Therefore, the likelihood of
the data for person i given the model parameters is then equal to L (Xi|θi) =
exp (lnL (Xi)) .

4.2 Grid Analysis of Log Likelihood Function

Each model has four parameters θi = (a, b,m, γ) , a risk aversion parameter, a
loss aversion parameter, a memory parameter, and a choice model parameter.
The first three parameters were common across both models and they only
differ with respect to the fourth parameter. We used a fine grid of 21 points per
parameter.

a ∈ [.400, .45, ..., .85, .90, .95, ..., 1.35, 1.40] , (14)

b ∈ [.50, .60, ..., 1.40, 1.50, 1.60, ...2.40, 2.50] , (15)

m ∈ [.00, .05, ..., .45, .500, .55, ..., .95, 1.00] , (16)

γ ∈ [−5.00,−4.5, ...,−.5, 0.0, .5, ..., 4.5, 5.00] (quantum). (17)

This grid generated 214 combinations, and we evaluated the log likelihood func-
tion for each model at each combination. These ranges were chosen on the basis
of past fits of these models. The risk aversion parameter ranges from risk aversion
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to risk seeking; the loss aversion parameter ranges across loss insensitivity to loss
sensitivity; and the memory parameter ranges from no recall to perfect recall.
The key γ parameter ranges from positive to negative values for the quantum
model. Define [ai, bi,mi, γi] = [θi1, θi2, θi3, θi4] = θi as the 4-tuple of parameters
from a single person i, and define θ = [θ1, .., θN ] as the 4 · N tuple of the four
parameters for N = 100 participants.

4.3 Hierarchical Parameters

The hierarchical parameters are used to determine the distribution of θi across
individuals. Define π = [π1, π2, π3, π4] as a 4-tuple containing four hierarchical
parameters, where πj is the hierarchical parameter used to determine the distri-
bution of θij across the individuals i. Each hierarchical parameter was evaluated
by a grid of 19 points πj ∈ [.05, .10, ..., .90, .95] which generated a grid of 194

combinations.
Define r (π) as the prior distribution over the hierarchical parameters. We

assumed an independent uniform so that r (π) = 19−4. Define q(θi|πi) as the
prior distribution over model parameter θi given the hierarchical parameter πi.
For this prior we assumed an independent binomial distribution across the 21
values of each model parameter

q (θi|π) =
4∏

j=1

q (θij |πj) , q (θij = θk|πj) =
(
21
k

)
· πk

j · (1− πj)
21−k . (18)

The joint distribution of data and parameters then equals

p (π, θ,X) = r (π) ·
N=100∏
i=1

q (θi|π) · L (Xi|θi) . (19)

We marginalize over θ to obtain the joint distribution of hierarchical parameters
and data

p (π,X) =
∑
θ

p (π, θ,X) . (20)

Finally, we obtain the posterior distribution over the hierarchical parameters

p (π|X) =
p (π,X)∑
π p (π,X)

. (21)

The posterior distribution for each hierarchical parameter is plotted in Figure
1 shown below. The top left distribution indicates that the risk aversion hierar-
chical parameter distribution is located below .50, which implies that the mean
of the risk aversion parameter equals .6518, indicating somewhat strong risk
aversion, which is a common finding in the literature. The top right distribution
indicates that the loss aversion hierarchical parameter distribution is located
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above .50, which implies that the mean of the loss aversion equals 1.97, higher
sensitivity to losses, which is also a common finding in the literature. The bot-
tom left distribution indicates that the hierarchical memory parameter is slightly
above .50, which implies that the mean of the memory parameter equals .5932,
so that a little more than half the time people were simply recalling their pre-
vious choices. The bottom right distribution shows the hierarchical distribution
for the key quantum parameter. According to the Markov model, this should
be located around .50 to produce a mean value equal to zero. Contrary to this
expectation, the entire distribution lies below .50, which implies a mean value
equal to −2.67.
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Fig. 1. Posterior distribution of hierarchical parameters of the quantum decision model

5 Conclusions

This paper presents the first hierarchical Bayesian estimation of the parameters
used in a quantum decision model. A classic Markov model is a special case of
the quantum model when the key quantum parameter is zero. The posterior
distribution of the key quantum parameter was entirely below the value expected
by the Markov model, providing strong evidence that the parameter lies within
a quantum regime. Of course, it is much too soon to conclude that the quantum
model is always superior to a Markov model. The models need to be compared
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using other data sets from various other experiments. Even within the same
data set, various other prior distributions need to be examined. Further, with
the two stage gambling paradigm, the learned model could be used to predict
the next result with cross-validation methods. But the surprising lesson learned
from this model comparison exercise was that contrary to expectations, there is
clear evidence for the quantum model parameter.
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Abstract. This paper addresses the issue of analogical inference, and its
potential role as the mediator of new therapeutic discoveries, by using disjunction
operators based on quantum connectives to combine many potential reasoning
pathways into a single search expression. In it, we extend our previous work in
which we developed an approach to analogical retrieval using the Predication-
based Semantic Indexing (PSI) model, which encodes both concepts and the re-
lationships between them in high-dimensional vector space. As in our previous
work, we leverage the ability of PSI to infer predicate pathways connecting two
example concepts, in this case comprising of known therapeutic relationships. For
example, given that drug x TREATS disease z, we might infer the predicate path-
way drug x INTERACTS WITH gene y ASSOCIATED WITH disease z, and
use this pathway to search for drugs related to another disease in similar ways.
As biological systems tend to be characterized by networks of relationships, we
evaluate the ability of quantum-inspired operators to mediate inference and re-
trieval across multiple relations, by testing the ability of different approaches to
recover known therapeutic relationships. In addition, we introduce a novel com-
plex vector based implementation of PSI, based on Plate’s Circular Holographic
Reduced Representations, which we utilize for all experiments in addition to the
binary vector based approach we have applied in our previous research.

Keywords: Distributional Semantics, Vector Symbolic Architectures,
Literature-based Discovery, Abductive Reasoning.

1 Introduction

The field of Literature-based Discovery (LBD) has been an important application area
for quantum-inspired methodologies in recent years [1,2]. In particular, the ability of
quantum-inspired approaches to measure implicit relatedness between composite rep-
resentations of concepts holistically offers advantages in scalability and efficiency over
rule-based approaches that require the decomposition of conceptual representations into
their atomic components. In previous work, we have shown that these holistic ap-
proaches can be used to facilitate analogical retrieval across a set of object-relation-
object triplets, or predications extracted from the biomedical literature, to solve simple
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proportional analogy problems of the form “A is to B as ? is to C” [2]. This mechanism
provides the means to infer the predicate pathway connecting a disease to a drug that
is known to treat it, and also to use the vector representation of this pathway to search
for treatments connected to some other disease in the same way. However, the identi-
fication and re-use of individual pathways is of limited utility for the discovery of new
therapies, as drugs tend to activate multiple pathways and targets simultaneously [3].
This suggests that modeling analogical retrieval across multiple pathways may facili-
tate the identification of novel therapeutic relationships. In this paper, we use quantum
models of disjunction and superposition to achieve this end, allowing us to combine
many compound stimuli to perform searches that would be brittle and computationally
prohibitive using traditional symbolic methods. In doing so, we create a superposition
of compound systems that has not been (and probably cannot be) represented as a prod-
uct of two individual simple systems, a phenomenon known in the quantum literature as
“entanglement”. It is our hypothesis that modeling multiple pathways will improve the
quality of analogical retrieval, and we evaluate this hypothesis by comparing the extent
to which retrieval across individual and multiple pathways facilitates recovery of a held
out set of cancer therapies. We evaluate these approaches in both binary and complex
vector space, leveraging recent enhancements to the Semantic Vectors package [4].

2 Background

Distributional models of language, such as Latent Semantic Analysis (LSA) [5] derive
human-like estimates of the semantic relatedness between terms from large volumes of
unannotated natural language text. A desirable property of some distributional models is
the ability to learn meaningful associations between terms that do not co-occur directly
in the text concerned. This ability has been termed indirect inference and it has been ar-
gued that it is essential to LSA’s human-like performance on a number of cognitive tasks
[5]. Indirect inference is also a fundamental concern of the field of Literature-based Dis-
covery (LBD), which aims to promote scientific discovery by identifying meaningful
connections between terms, and concepts, in the scientific literature that have not yet
occurred together in any published document [6], and several authors have explored the
ability of distributional models to facilitate discoveries of this nature [7,8,9]. A limita-
tion of the use of these models for LBD is that they capture general relatedness between
terms or concepts only, without encoding the nature of the relationships concerned. As
economic constraints limit the number of candidate therapies that can be advanced for
further testing, there is a pressing need for the development of methods that selectively
emphasize plausible therapeutic hypotheses. In recognition of the limitations of general
relatedness, LBD researchers have recently begun exploring the notion of a discovery
pattern, a sequence of relationship types that suggests a potential discovery [10]. For
example, if a certain drug were known to inhibit a gene associated with a particular
disease, it would follow that this drug may be a potential candidate therapy for this dis-
ease. These patterns have largely been pursued using rule-based approaches in which
concepts, and the relationships between them, are represented as discrete entities each
of which must be explored stepwise to find a pathway from treatment to disease (see
for example [11]). However, given the rapid expansion of the number of logical connec-
tions between concepts in the biomedical literature [12,13], the development of methods



92 T. Cohen et al.

to directly identify meaningful connections across specific patterns of relationships is
a desirable alternative. To this end, we have developed PSI [2,14,15], which encodes
concepts and their relations as vectors in high-dimensional space, facilitating efficient
search and indirect inference without the need to unpack and explore individual rela-
tionships. In previously published work, we have shown that PSI can be used to infer
relationship paths (such as INHIBITS-ASSOCIATED WITH) from one concept to an-
other, and that these inferred pathways can be used to direct search through predication
space for concepts related to a third concept in the same way [2]. However, the iden-
tification and re-use of individual pathways is of limited utility for discovery of new
therapies, as drugs tend to activate multiple pathways simultaneously [3]. In this paper,
we evaluate the utility of the PSI model as a means to identify therapeutic relationships
by accommodating drug-disease relationships that include multiple relationship paths.
In some cases, the quantum disjunction operator [16] is applied to measure the relat-
edness between concepts that are connected across multiple relationship paths, and in
others we use superposition of vectors to achieve this end. In the section that follows,
we introduce the fundamental operations that mediate PSI, and the notation used to
describe them. We then illustrate the way in which analogy occurs in PSI space, and
proceed to describe the empirical component of this work, in which we use analogical
relations drawn from one disease, or set of diseases, to seek treatments for another.

3 Mathematical Structure and Methods

The methods in this paper all use high-dimensional vectors to represent concepts. There
are many ways of generating such representations. Ours is based upon the Random In-
dexing paradigm using terminology as described in [9] and developed in [2], in which
semantic vectors are built as superpositions of randomly generated elemental vectors,
during the process of training. Throughout this paper we will write E(X) and S(X) for
the elemental and semantic vectors associated with the conceptX. In addition to concept
vectors, we include vectors for relations. For example, E(R) would denote the elemen-
tal vector for the relation R. Many relationships are directional, and we will use Rinv to
denote the inverse of R, so that A R B and B Rinv A carry the same external meaning
(though they may in some cases be represented by different vectors). To encode typed
relations into high-dimensional vector spaces, we utilize two members of a family of
representational approaches collectively known as Vector Symbolic Architectures [17].
VSAs originated from Smolenksy’s tensor-product based approach [18], but differ from
it in that they depend on vector operations that produce products of the same dimension-
ality as the component vectors. The VSAs we will use in our experiments are Kanerva’s
Binary Spatter Code (BSP) [19], which uses high-dimensional binary vectors as a rep-
resentational unit, and Plate’s Circular Holographic Reduced Representation (CHRR)
[20], which uses circular vectors, vectors in which each dimension represents an angle
between −π and π. CHRRs have recently been used to encode information related to
word order in a distributional model [21]. Before we discuss further distinctions be-
tween these models, we will describe the fundamental operations of VSAs, which are
common to both of them. The primary operations facilitated by VSAs are binding and
bundling. Binding is a multiplication-like operator through which two vectors are com-
bined to form a third vector C that is dissimilar from either of its component vectors A
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and B. We will use the symbol “⊗” for binding, and the symbol “�” for the inverse of
binding throughout this paper. It is important that this operator be invertible: if C = A⊗
B, then A� C = A� (A⊗ B) = B. In some models, this recovery may be approximate,
but the robust nature of the representation guarantees that A � C is similar enough to
B that B can easily be recognized as the best candidate for A � C in the original set
of concepts. Thus the invertible nature of the bind operator facilitates the retrieval of
information encoded during the binding process. Bundling is an addition-like operator,
through which superposition of vectors is achieved. For example, vector addition fol-
lowed by normalization is a commonly employed bundling operator. Bundling results
in a vector that is maximally similar to its component vectors. We will write the usual
“+” for bundling, and the computer science “+=” for “bundle the left hand side with
the right hand side and assign the outcome to the symbol on the left hand side.” So for
example, S(A) += E(B) could also be expressed as S(A) = S(A) + E(B), and is a
standard operation in training. Table 1 summarizes the differences between the binary
(BSP) and complex (CHRR) vector implementations used in this work.

Table 1. Comparison between CHRR and BSP

Implementation Complex/Circular Binary

Semantic vectors S(X)
Complex (circular) vectors
d O(1000)

Binary vectors
d O(10,000)

Elemental vectors E(X) Dense complex [−π, π] Dense binary {0,1}
Bundling (Superposition) Pairwise vector sum Majority vote

Binding
Convolution
(mod 2π addition of angles)

Pairwise XOR
(mod 2 addition)

Release Convolution with inverse Pairwise XOR

In the case of the spatter code, pairwise exclusive or (XOR) is used as a binding oper-
ator: X⊗Y = X XOR Y . As it is its own inverse, the binding and decoding processes
are identical (⊗=�). For bundling, the spatter code employs a majority vote: if the com-
ponent vectors of the bundle have more ones than zeros in a dimension, this dimension
will have a value of one, with ties broken at random (for example, bundling the vec-
tors 011 and 010 may produce either 010 or 011 with equal probability). In the case of
CHRR, binding is accomplished using circular convolution, accomplished by pairwise
multiplication:X⊗Y = {X1Y1, X2Y2, .....Xn−1Yn−1, XnYn}, which is equivalent to
addition of the phase angles of the circular vectors concerned, as they are of unit length.
The inverse of binding is obtained by binding to the inverse of the vector concerned:
X � Y = X ⊗ Y −1, where the inverse of a vector Y , Y −1 is the vector with a phase
angle that when added to that of Y produces a phase angle of 0. As each dimension in a
circular vector can be represented as a vector on the unit circle, superposition is accom-
plished in a pairwise manner by adding the unit circle vectors in a given dimension, and
normalizing the result for each circular component of the vector. In the implementation
used in our experiments, normalization is delayed until after training has concluded, so
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that the sequence in which superposition occurs is not relevant. Once a vector represen-
tation for a concept has been built up by binding and/or bundling, it is possible to apply
an operator that reverses the binding process to the vector as a whole, allowing us to
direct search in PSI space without explicitly representing the individual relations of a
concept. This property is appealing for the purpose of modeling analogy, as similarity
is measured on the basis of a superposed product without the need to decompose it [20].

Predication-Based Semantic Indexing: PSI takes as input sets of concept-relation-
concept triplets, or predications. For these experiments, as well as those in our previous
work, the PSI space is derived from a set of 22,669,964 predications extracted from
citations added to MEDLINE over the past decade by the SemRep natural language
processing system [22], which extracts predications from biomedical text using domain
knowledge in the Unified Medical Language System [23]. For example, the predication
“fluoxetine TREATS Major Depressive Disorder” (MDD) is extracted from “patients
who have been successfully treated with fluoxetine for major depression.” In a recent
evaluation of SemRep, Kilicoglu et al. report .75 precision and .64 recall (.69 f-score)
[24]. The first step in PSI is the generation of semantic and elemental vectors for each
concept, S(C) andE(C). We also generate elemental vectors for each relation, or pred-
icate E(P). We then encode each predication in the set by binding E(C1) to E(P) and
bundling this into S(C2). The reverse of this process is also performed. In practice
statistical weighting metrics are used to decrease the influence of frequently occurring
concepts, and in some cases predicates. In the implementation we utilized for these
experiments, we used inverse document frequency (idf ) as a global weighting metric,
and log(1+frequency of predication) as a local metric. For example, the predication
”thalidomide INHIBITS cyclooxygenase 2” (cox2) would be encoded as follows:

S(thalidomide)+=E(INHIBITS)⊗ E(cox2)× idf(cox2)× gw

S(cox2)+=E(INHIBITSinv)⊗ E(thalidomide)× idf(thalidomide)× gw

idf(C) = log
total predications

predications containing C

gw = log (1 + occurrences of thalidomide INHIBITS cox2)

For the sake of brevity, we will describe future encoding operations without explicitly
referring to idf or gw. This process is repeated across all of the predications in the
database, to generate a set of trained semantic vectors for each concept.

Analogical Retrieval: As the binding process is invertible, it is possible to retrieve
a dual-predicate path connecting two concepts:

Training:

S(multiple myeloma)(MM)+=E(ASSOCIATED WITH)⊗ E(cox2)

S(thalidomide)+=E(INHIBITS)⊗ E(cox2)
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Inference:

S(MM)� S(thalidomide) ≈E(ASSOCIATED WITH)⊗ E(cox2)

� (E(INHIBITS)⊗ E(cox2))

≈E(ASSOCIATED WITH)� E(INHIBITS)

⊗ E(cox2)� E(cox2)

≈E(ASSOCIATED WITH)� E(INHIBITS)

These inferred relationships can then be used to find concepts relating to a third con-
cept in the same way that these cue concepts relate to one another. The ability of VSAs
to capture relational similarity has led to their utilization as a means to model aspects
of analogical thought [25,20,26]. In previous work, we have shown that this facility
of VSAs can be used to solve proportional analogy problems, by inferring predicate
paths between cue concepts, and using the vector representations of these paths to di-
rect search through predication space [2]. This is accomplished with either the retrieved
path (e.g. E(ASSOCIATED WITH) � E(INHIBITS)) or the noisy approximation
of it derived from the cue concept vectors (e.g. S(MM) � S(thalidomide) ). The vec-
tor representations of these inferred paths can be applied to another concept to direct
search through PSI space to facilitate analogical retrieval as follows:

Training:

S(fluoxetine)+=E(INHIBITS)⊗ E(serotonin)

S(MDD)+=E(ASSOCIATED WITH)⊗ E(serotonin)

Inference:

S(MDD)�(E(ASSOCIATED WITH)� E(INHIBITS))

≈E(ASSOCIATED WITH)⊗ E(serotonin)

� (E(ASSOCIATED WITH)� E(INHIBITS))

≈E(ASSOCIATED WITH)� E(ASSOCIATED WITH)

⊗ E(INHIBITS)⊗ E(serotonin)

≈E(INHIBITS)⊗ E(serotonin) ≈ S(fluoxetine)

4 Multiple Pathways and Quantum Disjunction

In previous work [2], we restricted our study of analogical retrieval to proportional
analogies in which a single predicate path (consisting of one or two predicates) inferred
from a cue pair (e.g. S(MM) � S(thalidomide)) is used to direct search toward con-
cepts connected to a third target concept (e.g. S(MDD) in the same way as the cue pair
relate to one another (e.g. z INHIBITS y, y ASSOCATED WITH x), thereby solving a
proportional analogy problem of the form “what relates to MDD as thalidomide relates
to MM”. However, analogies used in science tend to have more complex structure than
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this [27], and drugs tend to be connected to the diseases they treat across networks in-
volving multiple biological entities [3]. Consequently, in this paper we evaluate the abil-
ity of PSI to perform analogical inference and retrieval across multiple predicate paths.
In order to do so, we require a way to measure the similarity between an individual vec-
tor, representing a potential treatment, and a set of vectors representing the permitted
paths from the target disease to this vector. One approach we evaluate in this paper in-
volves comparing candidate therapies to the superposition of a set of inferred predicate
paths. However, as we would like to identify both treatments that are strongly connected
across a single path (such as INHIBITS:ASSOCIATED WITH) and treatments that are
connected across multiple paths (such as INHIBITS:ASSOCIATED WITH; INTER-
ACTS WITH:CAUSES), we also utilize for this purpose the span of vectors, described
in logic as the quantum disjunction operator by Birkhoff and Von Neumann [28] and ap-
plied to information retrieval by Widdows and Peters [16]. This operator measures the
proportion of a vector (in our case a treatment) that can be projected onto a subspace
spanned by a set of component vectors (in our case the predicate paths of interest bound
to the disease of interest). In addition, we introduce a binary vector approximation of
this operator, compared with the continuous implementation in Table 2.

Table 2. Continuous and Binary Implementations of Quantum Disjunction

Implementation Steps Continuous Binary

(1) Component vectors
Real/complex vectors
d O(1000)

Binary vectors
d O(10,000)

(2) Orthogonalize vectors
A - A’s projection on B such
that cos(Â,B) = 0

Introduce/eliminate identical dimen-
sions until HD(Â,B) = d

2
.

(3) Projection Project into subspace Compare with component vectors

(4) Comparison
Cosine of angle between pro-
jection and original vector

Count of overlap with orthogonal-
ized component vectors

5 Evaluation

To evaluate PSI’s ability to mediate analogical inference, we utilize the same set of
22,669,964 predications as in our previous work. From this, we extract predications
involving predicates in the set {AFFECTS; AUGMENTS; CAUSES; DISRUPTS; IN-
HIBITS; PREDISPOSES; STIMULATES; ASSOCIATED WITH; COEXISTS WITH;
INTERACTS WITH}, which were selected on the basis of their potential as
justification for therapeutic hypotheses. Predications with the predicate TREATS, and
any predications involving a direct relationship between a pharmaceutical substance
(UMLS semantic type ”phsu”) and neoplastic process (UMLS semantic type ”neop”,
which represents types of cancer), were excluded from training. In addition, predica-
tions involving a concept with a global frequency greater than or equal to 100,000 were
excluded, as these concepts tend to be general in nature and relatively uninformative.
From the remaining predications, we generated two PSI spaces, one of which utilized
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binary vectors with dimension 32,000, and one of which utilized complex vectors with
dimension of 4,000. We will refer to these spaces as BSP and CHRR respectively, in ac-
cordance with the methodology used to generate them. As a test set, we extracted 1,158
types of cancer (or neoplastic processes: UMLS semantic type ”neop”) with the pre-
requisite that each extracted neoplastic process occur in a TREATS relationships with
a pharmaceutical substance represented in our spaces. Inclusion in the set does not,
however, guarantee that a dual-predicate pathway between the cancer concerned and
this treatment exists. We use this set to evaluate analogical retrieval, with the following
approaches.

Collective Cues: This is an approach we have pursued in our recent work [29], in which
dual-predicate pathways are inferred from a set of 48,204 known TREATS relationships
between diseases or syndromes (UMLS semantic type “dsyn”) and pharmaceutical sub-
stances (UMLS semantic type “phsu”). For each pair, the dual-predicate path connect-
ing the concepts concerned is inferred by generating the composite cue vector S(dysn)
� S(phsu) and searching through the set of vectors generated by pairwise combination
of the vectors representing individual predicate paths, E(PRED1) � E(PRED2). From
the original set of seventeen predicate vectors (7 directional x 2 = 14 + 3 that commute
= 17), a set of 136 binary ( 17×16

2 ) and a set of 272 complex (17×16) dual-predicate path
vectors were generated. With complex vectors, twice as many paths are generated, as
unlike XOR, the convolution operator is not its own inverse - the order of application of
operators is of importance. Paths connecting pharmaceutical substances and diseases or
syndromes were inferred by retrieving dual-predicate path vectors with a similarity to
the composite cue vector S(dysn) � S(phsu) greater than 1 SD above the mean simi-
larity between 1000 randomly generated vectors of the same vector type and dimension-
ality. The number of times each possible predicate path was retrieved with a similarity
above this threshold to the cue vector was counted, and the five most popular paths for
both binary and complex vector spaces were retained. These paths are illustrated in Ta-
ble 3. Most paths are readily interpretable, as the ASSOCIATED WITH predicate links
diseases to related biological entities, and a drug that interacts with such entities may
be a plausible therapy. Some pathways are more difficult to interpret, and we refer the
interested reader to a related publication [29] concerned primarily with identification,
interpretation and application of such pathways. Of interest for our present purposes,
directionality of the predicate paths is encoded in the complex case only. So complex
pathways are easier to interpret, and binary pathways are less constrained.

Individual Cues: Cues in this case consist of other neoplastic processes drawn from
the set. For each neoplastic process, we draw at random another neoplastic process,
cue neop, and retrieve all of its TREATS relationships from the predication database.
The dual predicate paths are compared to the subspace derived from this set of treat-
ments using the quantum disjunction operator. The components of this subspace (prior
to orthogonalization) consist of the set { S(cue neop)� S(treatment1) ...S(cue neop)
� S(treatmentn) }. Only pathways with an association strength above empirically de-
termined thresholds of 6SD (binary vectors) and 2.5SD (complex vectors) above the
mean pairwise relatedness between 1000 randomly generated vectors of the same type
and dimensionality are retained. Random cue selection is repeated until an example
with more than one above-threshold predicate path is found.
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Table 3. Most Popular Predicate Paths in Binary and Complex Space

Binary Count Complex Count

ASSOCIATED WITH
COEXISTS WITH

925
COEXISTS WITH
ASSOCIATED WITH

900

ASSOCIATED WITH
INTERACTS WITH

201
ASSOCIATED WITH
INTERACTS WITH

827

ASSOCIATED WITH
INHIBITS

82
ASSOCIATED WITH
INHIBITS

284

COEXISTS WITH
CAUSES

71
ASSOCIATED WITH
COEXISTS WITH

264

CAUSES-INV
INTERACTS WITH

69
COEXISTS WITH
AFFECTS

248

Application of Pathways: To evaluate the ability of our models to infer (i.e. rediscover)
TREATS relationships pertinent to the types of cancer under evaluation, we generate a
composite cue vector, or subspace, from the vector representing the target neoplastic
process, S(target neop), using three approaches. In the first of these, which we will
term MAX, only the most strongly associated predicate path is utilized. The cue vec-
tor is constructed as S(target neop) � E(predicate path1). In the second, which we
will term SUP, all of the relevant predicate paths (n=5 for composite cues, and n >=
2 for individual cues) are superposed to generate a composite cue vectors constructed
as S(target neop) � E(predicate path1) + S(target neop) � E(predicate path2)
+ .... + S(target neop) � E(predicate pathn). In the third approach, which we will
designate SUB, the same set of vectors used to generate SUP are combined, but rather
than superposing these we generate a subspace from them using the quantum disjunc-
tion operator. For each of the 1,158 target neoplasms, the MAX, SUP and SUB cues are
compared with the semantic vectors for all of the pharmaceutical substances in the PSI
space (n = 16,337) . For each of the three cue types we retrieve all of the pharmaceutical
substances with a similarity to the composite cues above a series of statistically deter-
mined thresholds of association for each of the 1,158 target neoplasms. This approach is
used rather than a fixed number of nearest neighbors, as we anticipate that only a subset
of target neoplasms will be connected in accordance with the dual predicate pathway
cues. With a threshold, concepts connected in this way should be selectively retrieved.

6 Results and Discussion

Figures 1 and 2 show the results of our experiments in binary and complex space re-
spectively. The y axis shows the total number of rediscovered therapeutic relationships
at a given threshold for the set of 1,158 neoplastic processes. The x axis shows the
mean number of candidate therapies retrieved at this threshold, so higher threshold val-
ues correspond to lower values on the x axis. Therefore, one interpretation of the results
in Figure 1 (left) is that the binary SUB model recovered approximately two treatments
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Fig. 1. Binary Vector Results. Left: Collective Cues. Right: Individual Cues. �=SUB; +=SUP;
�=MAX. Y axis = no. discoveries. X axis = mean no. retrieved.

per disease in the test set while returning on average sixty results per search. However,
this is not to say that treatments were found for every test case. The most productive
models returned treatments in only around one third of the cases, even at the lowest
thresholds tested. It may be the case that this approaches the proportion of this test set
for which TREATS relationships corresponding to dual-predicate paths exist, and that
models incorporating longer paths are required to recover the remaining treatments.
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Fig. 2. Complex Vector Results. Left: Collective Cues. Right: Individual Cues. A. �=SUB;
+=SUP; �=MAX. Y axis = no. discoveries. X axis = mean no. retrieved.

With respect to the collective cues (left), there is a clear pattern of improved re-
covery for the models that capture connectedness across multiple pathways, with
the quantum disjunction based SUB (�) model retrieving more treatments than the
SUP (+) model, and both of these retrieving considerably more than MAX (�).
With individual cues (right) the distinction is less clear, with SUP and, in the bi-
nary case, SUB having a slight advantage over MAX at higher thresholds only, and
MAX most productive at lower thresholds. This can be explained in part by the
ASSOCIATED WITH:INTERACTS WITH pattern, which captures drug-gene-disease
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relationships. This was the second-ranked path for both collective cue sets, and conse-
quently was not considered by MAX in these cases. However, this predicate path was
usually the highest-ranked, and as such the predominant pathway used by MAX, with
individual cues. One interpretation of this finding is that tight constraints on analogi-
cal retrieval are particularly hazardous when mapping from one domain (diseases other
than cancer) to another. Overall, the quantum disjunction based SUB model with col-
lective cues recovered the most treatments.

7 Conclusion

In this paper, we evaluate the ability of the PSI model to mediate retrieval across mul-
tiple relationships holistically and efficiently, without decomposing the representation
of either the cue or the target. We find that models that facilitate retrieval across multi-
ple predicate paths are better able to recover therapeutic relationships when the scope
of these paths is relatively broad. The best performance was obtained with the quan-
tum disjunction operator using collective cues derived from diseases other than cancer.
As the predicate pathways concerned were not readily retrieved from individual can-
cer cues, the advantages of this model can be attributed to the application of relations
derived from another domain, the hallmark of scientific analogy [27].

Acknowledgments. This research was supported by the US National Library of
Medicine grant R21 LM010826, and the Intramural Research Program of the National
Institute of Health, National Library of Medicine.
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Abstract. The Type Indeterminacy model is a theoretical framework
that uses some elements of quantum formalism to model the construc-
tive preference perspective suggested by Kahneman and Tversky. In a
dynamic decision context, type indeterminacy provides a framework for
investigating the emergence and evolution of identity as the outcome of
the interaction between multiple potential selves (eigentypes). We define
a dynamic game among the selves with individual identity (preferences)
as the state variable. In the Markov perfect equililibrium of the game,
identity arises as ”a relational property” that does not pre-exist the de-
cision context. The approach allows to characterize generic personality
types and derive some comparitive static results.

Keywords: indeterminacy, decision-making, identity.

1 Introduction

The idea that an individual’s choice of action (behavior) determines her inner
characteristics (preference, attitudes and beliefs) rather than (exclusively) the
other way around has been present in people’s mind throughout history and
has been addressed in philosophy, psychology as well as more recently in eco-
nomics. Nevertheless the dominating view in particular in economics, is based
on a postulate: individuals are endowed with an identity (preferences, attitudes
and beliefs) that explains their behavior. This postulate is hard to reconcile with
a host of experimental evidence that behavior shapes identity. For a systematic
review of experimental evidences see [3].

Psychologists developed several theories to account for these experimental
facts. In particular self-perception theory which is based on two postulates: 1.
”individual come to ”know” their own attitude and other internal states partially
by inferring them from observations of their own behavior and/or the circum-
stances in which behavior occurs. 2. Thus the individual is functionally in the
same position as an outside observer, an observer who must necessarily rely
upon those same external cues to infer the individual inner state.” (p. 2 in [3]).
Self-perception theory does not clearly give up the classical postulate. Neverthe-
less we argue that its own postulates are fully consistent with the hypothesis of
(quantum) indeterminacy which overturns the classical postulate of pre-existing
identity, attitudes and preferences.

J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 102–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Recently Benabou and Tirole address the issue of identity in a series of papers
(e.g., [4, 5]). They write ”When contemplating choices, (people) take into account
what kind of a person each alternative would make them”and the desirability of
those self-views” ([5] p. 806-807). A common feature to Benabou and Tirole’s and
our approach is that todays’ behavior affects tomorrows’ identity i.e., effective
preferences. In the last section we argue that the three assumptions they use are
equivalent to assuming (quantum) type indeterminacy.

Under the last decade scholars from social sciences and psychology have
contributed to the development of a ”quantum-like” decision theory based on
the premises of (non-classical) indeterminacy (see e.g., [8–14, 20, 21]). This line
of research has shown itself very fruitful to explain a wide variety of behavioral
phenomena ranging from cognitive dissonance to preferences reversal, the inverse
fallacy or the disjunction effect.

The starting point for our approach is that we depart from the classical dogma
that individuals are endowed with preferences and attitudes that motivate their
behavior. Instead, we propose that the motivational underpinning of behavior is
intrinsically uncertain i.e., indeterminate. It is only at the moment the individual
selects an action that a specific type(preferences) is actualized. It is not merely
revealed but rather determined in the sense that prior to the choice, there is an
irreducible multiplicity of potential types. This idea, imported from Quantum
Mechanics to the context of decision and game theory, is very much in line
with Tversky and Simonson (in [19]), according to whom “There is a growing
body of evidence that supports an alternative conception according to which
preferences are often constructed not merely revealed in the elicitation process.
These constructions are contingent on the framing of the problem, the method
of elicitation, and the context of the choice”.

The basic model of static decision-making with Type Indeterminate agents,
the TI-model, is formulated in [21]. As we consider dynamic individual op-
timization, the TI-model induces a game among potential incarnations of the
individual. In each period these potential incarnations represent conflicting de-
sires or propensities to act. We formulate the decision problem in terms of a game
between a multiplicity of (one-period lived) players, the selves. They are linked
to each other through two channels: (i) the selves share a common interests in
the utility of the future incarnations of the individual and (ii) they are connected
to each other in a process of state transition (which captures indeterminacy). In
each period the current selves form intentions to act. One action is played by
the individual but the whole profile of (intended) actions matters to tomorrow’s
identity by force of the state transition process. This creates a strategic concern
among contemporaneous selves. In particular when the selves pool, the individ-
ual’s preferences are unchanged while if they choose different actions preferences
are modified. We define a Markov Perfect Equilibrium among the selves where
the state variable is the individual’s identity. The model features the emergence
of identity as the corollary of individual action which itself obtains as the re-
sult from the interaction between conflicting selves in a given decision context.
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Identity is ”a relational property” (see [6]) that does not pre-exist the decision
context but is created anew each time the individual is called upon to act.

2 The Model

The kind of situations we have in mind is a sequence of (at least) two consecutive
decision situations (DS). An example is as follows. Alice must decide whether
to keep to her rutin work or accept a challenging task. The second decision
situation is between a week of thalasso therapy or a week vacation in the family
house. The two situations appeal to different but related (in a sense to be made
clear below) type characteristics: the first DS appeals to her preference toward
risk: cautious (θ1) risk loving (θ2). The second decision situation appeals to her
attitude toward others: (τ1) egoistic versus generous/empathetic (τ2). We next
develop the general theory and return to the two options example to illustrate
some implications.

2.1 The Players

In each period the individual faces a Decision Situation (DS ) At corresponding
to a finite set of available actions in period t. We restrict the one-period players’
strategy set to pure actions. The possible preferences over the profiles of actions
(one action for each self) are denoted by eM,i ∈ EM , where M ∈ M (M is
the set of all complete measurements) corresponds to an elicitation procedure
that fully reveals the preferences in At. A choice in DS At is generally a coarse
measurement. We refer to the eM,i as the selves or the ”eigentypes” ofM.1 They
are the players of our game.

In each period t the individual is represented by his state or type (we use the
terms interchangeably), a vector |st〉 ∈ S, where S is a (finite) n−dimensional
Hilbert space and the bracket |.〉 denotes a (ket) vector in Dirac’s notation which
is standard when dealing with indeterminacy. The eigentypes eM,i of M are as-

sociated with the eigenvector
∣∣eM,i

〉
of the operator which form a basis of the

state space. The state vector can therefore be expressed as a superposition2:
|st〉 = ∑n

i=1 λ
t
i

∣∣eM,i

〉
, λi ∈ R,

∑
i (λ

t
i)

2
= 1. This formulation means that the

individual cannot generally be identified with a single true self. Instead he is
intrinsically ”conflicted” which is expressed by the multiplicity of the poten-
tial selves. The coefficients λi, also called amplitude of probability, provides a
measure of the relative strength of potential self eM,i.

We assume throughout this chapter that there is common knowledge among
the players (selves) about the current state, the utility function of all players
and about the state transition process (see below). We also assume that the
individual is aware of his own indeterminacy and act consistently within the

1 An eigentype corresponds to an eigenvalue of the operator.
2 A superposition is simply a linear combination such that the square of the coefficients
sum up to 1.
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cognitive limitations implied by indeterminacy.3 This hypothesis is captured
in an assumption of rationality (in a way to be defined below) and common
knowledge of rationality at the level of the selves.

2.2 Identity: The Ephemeral Outcome of Interacting Selves

In each period, the selves form intentions to play and eventually one action is
taken by the individual. Decision-making is modelled as the measurement of
individual preferences and it is associated with a transition process from the
initial state and (intended) actions to a new state. The rules that govern the
state transition process reflect the intrinsic indeterminacy of the individual’s
type or preferences. It features the minimal perturbation principle that defines a
measurement operation which is formalized by the von Neumann (or its stringent
version Luder’s) projection postulate: if the initial state is t and the chosen action
is a1 then the new state is the normalized projection of t onto the eigenspace
belonging to a1.

4

Formally, a transition process is a function from the initial state and (in-
tended) actions to a new state. It can be decomposed into an outcome mapping
μAt : S→ ΔA where ΔA is the unit simplex of actions and a transition mapping
τM,a : S → S. The first mapping defines the probability for the possible choices
of action when an individual in state s is confronted with DS A. The second
mapping τM,a indicates where the state transits as we confront the individual
with DS A and obtain outcome a.

Let the initial state be |st〉 =
∑

i λ
t
i

∣∣etM,i

〉
. The standard Hilbert space for-

mulation yields that if we, for instance, observe action a1, the state transits onto∣∣st+1
〉
=
∑
j=1

λ′tj
∣∣etM,,j

〉
(1)

where λ′j =
λj√∑

kt λ2
k(s∗k=aj)

and
∑

kt λ2k
(
s∗k = atj

)
is the sum over the probabili-

ties for the selves who pool in choosing aj . This is of course equivalent to Bayesian
updating i.e., the state transition seems purely informational. The value of this
more general formulation comes when dealing with a sequence of non-commuting
DS . To see that the formal equivalence breaks down, we have to express

∣∣st+1
〉

in terms of
∣∣eN,i

〉
where N is the new (non-commuting) measurement in period

t+1 corresponding to DS At+1 and
∣∣eN,i

〉
are its eigenvectors. The eigenvectors

of N also form a (alternative) basis of the state space. And this is where the ear-
lier mentioned correlations between selves from different periods enter into play.

3 Type indeterminacy corresponds to cognitive limitations in the following sense. An
individual cannot have simultaneous determined preferences in incompatible decision
situations. Hence he cannot have determined preferences over the universal set of
alternatives as requested in classical rational decision theory.

4 We talked about ”eigenspace” associated with an eigenvalue ”a” of a measurement
operator if the eigenvalue is degenerate i.e., if several linearly independent vectors
yield the same outcome of the measurement.
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The correlations link the two sets of basis vectors: the eigenvectors of M can be
written as linear combinations of the eigenvectors of N with the correlations as
the coefficients of superposition - see below.

These correlations captures the extent of overlap between the states.5 In a
classical world all distinct atomic states are orthogonal. So in a classical world
either type characteristics are mutually exclusive or they can be combined. The
novelty with indeterminacy is that type characteristics can overlap in the sense
that they are non-orthogonal atomic states. For instance, in our example the
risk-loving type and the cautious type are orthogonal but the risk-loving type
and the egoistic type are not. Nevertheless, the three are complete descriptions
of the individual i.e., they are atomic states.

Let BMN denote the basis transformation matrix that links the two non-
compatible type characteristics M and N:

∣∣eM,i

〉
=
∑

j γij
∣∣eN,j

〉
where γij are

the elements of the basis transformation matrix γij =
〈
eN,j

∣∣ eM,i

〉
.6 Substituting

into (1) and collecting the terms we write

∣∣st+1
〉
=
∑
j

(∑
i

λ′iγij

) ∣∣eN,i

〉
=
∑
i

ηt+1
i

∣∣eN,i

〉
.

According to Bohr’s rule the probability for eigentype
∣∣eN,1

〉
(if the agent is

confronted with DS At+1 that (coarsely) measures type characteristics N) is

TP : p
(
eN,1

∣∣ st+1
)
=

(∑
i

λ′iγ1i

)2

(2)

TP is not a conditional probability formula where the γ2ij are statistical corre-
lations between the eigentypes at the two stages. The probabilities for the N-
eigentypes depend on the M-eigentypes’ play in DS At. When no player chooses
the same action, the choice of ati separates out a single player (some eM,i), the
sum in parenthesis involves one term only. While when several players pool in
choosing the same action, the term in parenthesis involves several terms. As a
consequence, the probabilities for the different players are given by the square
of a sum, implying cross terms called interference effects - and not the sum
of squares (as we would have in a classical setting). Since the amplitudes of
probability can be negative numbers, the interference effect may be negative or
positive.

We note that the state transition process is deterministic by the, earlier men-
tioned, von Neumann’s postulate which says that under the impact of a mea-
surement a pure state transits into another pure state. In this chapter we are

5 ”In physics, the expression transition probability generally refers to dynamical in-
stability. Our use of the term is not directly related to instability rather we follow
von Neuman’s terminology. The transition probability between two states is meant
to represent intuitively a measure of their overlapping. Actual transition from one
state to another is triggered by a measurement.” [2].

6
〈
eN,,j

∣
∣ eM,i

〉
is a scalar product.
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only dealing with pure types. If we observe at1 (as the result of applying At) the
state∣∣st〉 =∑

i

λti
∣∣eM,i

〉
transits onto

∣∣st+1
〉
=
∑
j=1

λ′tj
∣∣eM,,j

〉
=
∑
i

ηt+1
i

∣∣eN,i

〉
.

that is
∣∣st+1
〉
is a pure state. Yet, predictions on the outcome of (applying) At+1

are probabilistic because of indeterminacy i.e.,
∣∣st+1
〉
is a superposed state.

2.3 Utility

When dealing with multiple selves, the question as to how to relate the utility of
the selves (here the players) to that of the individual has no self-given answer.7

We adopt the following definition of the utility of self (or player) eM,i of playing

of ati when the −i other t−period players play at−i

UeM,i
(ati) + δeM,i

T∑
i=t

EU(si+1
(
ati, a

t
−i; s

t
∣∣ at = ati

)
) (3)

where at denotes the actual play of the individual.
The utility for eM,i of playing a

t
i is made of two terms. The first term is the

utility in the current period evaluated by player eM,i. This term only depends
on the action chosen by eM,i. The second term is the expected utility of the in-

dividual evaluated by the future selves conditional on at = ati. The second term
depends indirectly on the whole profile of (intended) actions in the current pe-
riod through the state transition process st+1 (ati; s

t). The summation term in (3)

can be collapsed into a single term EUT (st+1 (at; st)) =
∑T

i=tEU
∗(si+1 (at; st)).

Which is the expected utility when all future selves in all periods play an equi-
librium pure strategy.8 Utility thus writes

UeM,i
(ati; s

t) + δeM,i
EUT (st+1

(
at; st
∣∣ at = ati

)
) (4)

in each period the payoff relevant history of play is captured by the state variable
representing the current state or identity. The formulation in (4) means that he
maximizes utility conditional on surviving. A self is defined as rational when he
maximizes his conditional utility which is well-defined for any sequence of DS.

2.4 The Equilibrium

In each period, the current selves move simultaneously. They know the current
state resulting from the previous (actual and intended) play. We have common

7 One reason is that while the selves are incarnations of the same individual, they are
short-lived. Another is that they might not recognize the ”legitimacy” of some future
possible incarnations. For instance a current compassionate self may not value the
utility of a future spiteful incarnation.

8 For the case when there exist mutiple equilibria, we assume that the current selves
share the same beliefs about which equilibrium is played.
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knowledge among the selves about the payoff functions of all selves current and
future and common knowledge of rationality. We restrict ourselves to Markov
strategies: a strategy for a self is a function S → At from the current state to
the set of actions available at period t.

Definition 1. AMarkov Perfect Equilibrium of the game is characterized by at∗i :

at∗i = arg max
ai∈At

UeM,i
(ati; s

t) + δeM,i

T∑
τ=t+1

EU∗(sτ
(
at; st
)
).

in all periods t = 1, ...T and for all eM,i, M ∈M, i = 1, ...n.

The equilibrium is found by backward induction in a standard way.9 The novelty
lies in the technology for the state transition process which captures indeter-
minacy. So in particular the state variable are the preferences themselves and
they evolve in a non-monotonic way reflecting the dynamics of measurement
operations and the correlations between non-commuting DS.

Remark 1. For the case all DS commute with each other, the model is the one
of an individual who does not initially know his preferences and learns through
Bayesian updating as he observes the actions he takes.

In the TI-model, the concern for identity arises exclusively as a consequence of
the non-commutativity of successive DS. But we should keep in mind that the
kind of preference instability that we describe in the next section does not apply
within a sequence of commuting DS.

Remark 2. For the special case with δeM,i
= 0 for all selves in all periods, we

are back in the basic TI-model. There is no self-control. For δeM,i
�= 0 for some

selves in some periods, the equilibrium path of action may exhibit some extent of
self-control. The model suggests a classification of individual traits and behavior
as we show below.

The case with δeM,i
= 1, for all selves in all periods, is interesting because a

classical agent would not face any self-control problem. In contrast, for a type
indeterminate decision-maker, the issue of self management arises - see example
below.

2.5 Generic Personalities

The 2 types, two actions and two periods case with non-commuting DS allows to
illustrate some basic comparative statics results. For the ease of presentation we

9 Although we know that a MPE exists in mixed strategies (cf theorem 13.1 [16]), we
have no proof of existence for the case we restrict ourselves to pure strategies as we
do here.
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shall use the following notation. The potential types relevant to the first choice
are: etM,i = θi, i = 1, 2 and to the second and last choice et+1

M,i = τi, i = 1, 2.

|θ1〉 = α1 |τ1〉+ α2 |τ2〉
|θ2〉 = β1 |τ1〉+ β2 |τ2〉

where

(
α1 α2

β1 β2

)
is a rotation matrix. Since time ends after period 2, the τi−

eigentype act with no concern for future identity. Our focus will be on the
behavior of the θi−eigentypes. The τi eigentypes are associated with a utility
corresponding to their optimal choice, U∗ (τ1) we assume U∗ (τ2) > U∗ (τ1) .

The TI-model distinguishes between two situations characterized by the sign
of the interference effect applying to the high utility option U∗ (τ2). Interference
effects are the signature of indeterminacy. When the individual is in a superposed
state |s〉 both θ eigentypes are simultaneously present in his mind and they
interact. The sign of interferences effect depends on the operators associated with
the decisions. It is a structural properties of the state space which is common
to all individuals. Each individual is characterized by his state, a vector in a
potentially very high dimensional space. Whether interference effects are positive
or negative is an empirical question.

Self-Control by Inner Agreement. In this section we assume, that the inter-
ference effects (IE) favor the high utility option x2. We shall see that a positive
IE is a factor that favors behavioral (and intertemporal) consistency. Assume we
have EU (θ2) < EU (θ1) < EU (t) .We recall that by definition the first DS as a
measurement of type characteristics θ10 so we must also have: Uθ1 (a1) > Uθ1 (a2)
and Uθ2 (a1) < Uθ2 (a2) where {a1, a1} is the action set in DS1. The θ−selves
have conflicting short-run interests.

When considering a sequence of non-commuting DS, the model distinguishes
between two classes of individuals: the balanced individual, an individual whose
selves manage to agree on a common choice, and the conflicted individual whose
selves make separating choice more precisely:

Definition 2. A balanced individual is characterized by a MPE that is a pooling
equilibrium. It obtains whenever

Uθ1 (a1) + δ1EU (θ1) ≤ Uθ1 (a2) + δ1EU (t) (5)

or
Uθ2 (a2) + δ2EU (θ2) ≤ Uθ2 (a1) + δ2EU (t) (6)

or both. Otherwise, the individual is conflicted i.e., her inner equilibrium is
characterized by separation.

The inequalities (5) or (6) capture the selves’ incentives to refrain from choosing
their preferred action (exerting self restraint) given that the other self chooses

10 This means that when considered in isolation, DS1 separates between the θ−types.
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his preferred first period action. When an inequality is falsified it is a dominat-
ing strategy for that self to choose his preferred first period action. Since we
have conflict of interest, when neither of them holds, the choices are separat-
ing. This means that the first period action triggers state transition onto one of
the eigentypes i.e., identity is modified. As a consequence, behavior will exhibit
inconsistency (e.g., preference reversal). So this suggests that individuals who
are quite extreme in their judgment and have clear-cut preferences also exhibit
behavioral inconsistency. Recall that this applies to non-commuting DS. So in
particular in a sequence DS1-DSA-DS1 where DSA commutes with DS1, the
individual that we characterized as conflicted, will not exhibit any behavioral
instability.

In contrast the balanced individual is characterized by selves who are willing
to reach an agreement, they make a pooling choice. This occurs at the expenses of
one of the selves who chooses to forego his preferred option in period 1. This is an
instance of self-control. The balanced individual has no clear-cut preferences, he
retains the freedom to value options from different perspectives. A pooling MPE,
triggers no state transition. If the selves were pooling in all periods, the individual
would simply behave as a an individual endowed with stable but stochastic
preferences. He does not qualify as behaviorally or dynamically inconsistent.

We would like to emphasize that our model features self-control by means
of identity management. In this respect we stand closer to Benabou and Tirole
([5]). In particular, we do not address the question related to taking actions
(commitment) to limit future behavior as in Gul and Pesendorfer ([17, 18]) and
Fudenberg and Levine ([15]).

Definition 3 allows us to derive some simple comparative statics. For
that purpose we write the inequalities as follows: Uθi (ai) − Uθi (aj) ≤ (>)
γi [EU (t)− EU (θi)].

Proposition 1. i. The larger γi, i = 1, 2 the more likely we are dealing with a
balanced type.

ii. The larger the interference effect, the more likely we have pooling.
iii. The larger [Uθi (ai)− Uθi (aj)], more likely the individual will turn out a

conflicted person.

(i) The coefficients γi captures the weight put by self θi on the individual’s
identity relative to the self’s utility. Quite naturally it also reads as a discount-
ing factor. An individual composed of impatient selves behaves erratically as a
conflicted person. The more patient and or the more concerned by identity the
selves are the more likely we are dealing with a balanced individual (cf. Benabou
Tirole ([5], Prop. 2.c).

(ii) The interference effect is preserved when the types pool but it is lost
when they separate. In our context, the IE increases the probability for the type
associated high utility alternative, this creates incentives to pool. Note further
that we have EU (t)− EU (θ2) > EU (t)− EU (θ1) , so, if the cost of foregoing
the preferred alternative are the same for both selves, an individual who exerts
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self-control through identity management will choose to ”behave well” in the
first period in order to ”behave well” in the second period (cf. Benabou and
Tirole ([5], Prop. 2.d).

(iii) The utility difference [Uθi (ai)− Uθi (aj)] is the cost of foregoing the pre-
ferred action. It captures the degree of conflict between the selves. Not surpris-
ingly, when the potential selves have strong preferences, they will have a hard
time agreeing (pooling) and the individual is likely to behave as a conflicted
individual.

Positive IE with respect to the type associated with the high utility alterna-
tive, means that indeterminacy with respect to DS1 is generally advantageous
for the individual.11 Under these circumstances, we are likely to observe a sig-
nificant extent of individuals behaving as balanced persons. Pooling occurs most
of the time on the action preferred by the first period eigentype most closely
related to the preferred eigentype in period 2.

The correlation between DS and the associated interference effect can be
viewed as the hardware of the mind. A conjecture is that preferences traits
that are in some sense ”close” while distinct, are expected to be associated with
non-commuting DS. So for instance cautiousness and altruism are neither the
same trait nor orthogonal, instead they could be described as ”over-lapping”.
What the sign of IE concerns, we could expect the hardware of the human mind
to evolve toward an efficient structure from a survival point of view.

When considering the mind as a whole, we are likely to have personal traits
related to operators characterized by positive IE and other by negative IE. So
it is in place to ask what behavior do we expect when the relevant interference
effect is negative for the high utility alternative? In the next sub-section we
briefly consider such a case.

Negative interference effect: agreeing to disagree Consider the case when
EU (t) < EU (θ2) < EU (θ1) which obtains in the example by inversing the
signs of β1 and α2. The selves’ incentives are described unambiguously by the
inequalities

Uθ1 (a1) + δ1EU (θ1) > Uθ1 (a2) + δ1EU (t) (7)

and

Uθ2 (a2) + δ2EU (θ2) > Uθ2 (a1) + δ2EU (t) . (8)

This implies that both types prefer separation in DS1. So we have a case of
”agreement to disagree”. With respect to DS linked by negative interference
effects, the individual behaves as a conflicted person.

11 With positive IE we may also have

EU (θ2) < EU (t) < EU (θ1)

if e.g., the initial state is strongly skewed toward θ2 e.g., λ2 =
√
.9. The only pooling

equilibrium would be on a1 and the only condition would be that (5) is not verified.
This reflect the fact that the magnitude of the IE depends on the initial state.
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3 Discussion

In this section we discuss the relation between the present work and some of
the literature in economics. There exists a vast theoretical literature pioneered
by Strotz ([26]) dealing with inner conflict and leading to time inconsistency. A
large share of this literature has focused on inconsistency that arises because the
individual does not discount the future at a constant rate. A contribution of this
chapter is to demonstrate that there exists other sources of inner conflict i.e., not
related to time preferences. A type indeterminate individual is in each period
characterized by a multiplicity of conflicting selves (competing desires). All selves
are equally rational and care about the future expected utility of the individual.
This allows formalizing the ”inner bargaining” (cf [1]) as a sequential game
and characterize the circumstances when individual behavior exhibits preference
instability and intertemporal inconsistency.

Our approach brings us close to the questions investigated in Benabou and
Tirole ([4, 5]). They depart from homo economicus by assuming 1. imperfect
self-knowledge; 2. imperfect recall; 3. imperfect will power. These three assump-
tions are in many respect equivalent with giving up the classical dogma of a
pre-existing (deterministic) individual identity and replacing it by indetermi-
nacy. Indeterminacy implies imperfect knowledge because of intrinsic uncer-
tainty: there exists no ”true preferences” to be learned. Indeterminacy implies
imperfect recall because no type is the true type forever. Indeterminacy implies
”imperfect will power” because it implies multiple selves both simultaneously
(multiplicity of potentials) and dynamically (by force of the non-commutativity
of decision situations). Moreover, in a world of indeterminate agents, actions
aimed at shaping one’s identity are fully justified from an instrumental point of
view. In particular there is no need for any additional concerns about self-image
(as in Benabou and Tirole or the diagnostic utility theory (see [7]).

Our results including some comparative statics are in many respects similar
to those in Benabou and Tirole and consistent with a host of empirical data
including those mentioned in the Introduction. The contribution of this chapter
is to propose an alternative explanation in terms of a fundamental characteristics
of the mind: its intrinsic indeterminacy. The postulate stating the existence of
a true self together with the hypothesis that we ignore it and keep forgetting
about it, is in itself not very convincing. In addition Benabou and Tirole have
to assume imperfect control. But as we argued above those hypotheses are in
effect intimately related to the one single hypothesis of type indeterminacy.
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Abstract. We have recently elaborated Quantum Model Theory
(QMod) to model situations where the quantum effects of contextuality,
interference, superposition, entanglement and emergence, appear inde-
pendently of the microscopic nature of the entities giving rise to these sit-
uations. We have shown that QMod models without introducing linearity
for the set of the states. In this paper we prove that QMod, although not
using linearity for the state space, provides a method of identification
for entangled states and an intuitive explanation for their occurrence.
We illustrate this method for entanglement identification with concrete
examples.

Keywords: Quantum cognition, QMod, entanglement, concept
combination.

1 Introduction

We have recently presented Quantum Model Theory (QMod) [1], a modeling
theory worked out to describe situations entailing effects, such as, interference,
contextuality, emergence and entanglement, which are typical of the micro-world
but also occur at macroscopic level and even outside physics [2–5]. QMod rests
on a generalization of the standard Hilbert space quantum formalism, namely
the State Context Property (SCoP) formalism [6], developed in Brussels when
investigating the structure of concepts, and how they combine to form sentences
and texts [7–9]. The SCoP formalism was further used to analyze aspects of
concepts and inspired contextual approaches [7, 10–18]. However, the SCoP for-
malism is very general, hence QMod has been developed to be a formalism closer
to the complex Hilbert space of standard quantum theory but, at the same time,
general enough to cope with the modeling of the main quantum effects identified
in the domains different from the micro-world.

QMod makes it possible to describe not only concepts and their combinations,
but any kind of entity in which the above quantum effects play a relevant role.
Furthermore, it is a generalization of classical and quantum theory in a very
similar way to how the relativistic manifold formalism is a generalization of
special relativity.
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In this paper we focus on entanglement and emergence, and show that these
effects find a very natural description in QMod. We first repeat in Sec. 2 the
representation theorem which we proved in [1], and which shows how one can
construct a real or complex representation for a general entity. Then, we apply
this theorem to model three specific examples in Sec. 3. In the first example, we
consider the concept The Animal Acts, which is a combination of the concepts
Animal and Acts. By using the experimental data collected in [18] we analyze
the entanglement between these two concepts (Sec. 3.1). In the second example,
we consider the entity Vessel of Water, and show that states of this entity can
be prepared which are not product states, i.e. they are entangled (Sec. 3.3). In
the third example, we finally show that our QMod representation coincides with
the standard quantum representation in the case of the entanglement between
two genuine quantum entities (Sec. 3.4).

2 A Representation Theorem

In this section we resume the essentials of the representation theorem proved
in detail in [1] that are needed to attain our results in the following sections.
Let us begin with the abstract description of an entity in QMod. An entity is a
collection of aspects of reality that hang together in such a way that different
states exist without loosing the possibility of identification of the same entity in
each of these states. Sometimes only one state exists, this is then the limiting
case, and we say that the entity is a situation, in this case

Definition 1. We consider an entity S that can be in different states, and de-
note states by p, q, . . ., and the set of states by Σ. Different measurements can
be performed on the entity S being in one of its states, and we denote mea-
surements by e, f, . . ., and the set of measurements by M. With a measure-
ment e ∈ M and the entity in state p, corresponds a set of possible outcomes
{x1, x2, . . . , xj , . . . , xn}, and a set of probabilities {μ(xj , e, p)}, where μ(xj , e, p)
is the limit of the relative frequency of the outcome xj, the situation being re-
peated where measurement e is executed and the entity S is in state p. We denote
the final state corresponding to the outcome xj by means of pj.

Let us now come to the representation theorem. It states that it is always possible
to realize the situation in Def. 1 by means of a specific mathematical structure
using a space of real numbers where the probabilities are derived as Lebesgue
measures of subsets of real numbers. Moreover, a complex number realization
exists as well, where the probabilities are calculated by making use of a scalar
product similar to the one used in the quantum formalism [1].

Theorem 1. Consider a measurement e ∈ M and a state p ∈ Σ, and the
set of probabilities {μ(xj , e, p)}, where {x1, . . . , xj , . . . , xn} is the set of possible
outcomes given e and p. Then, it is possible to work out a representation of
this situation in Rn where the probabilities are given by Lebesgue measures of
appropriately defined subsets of Rn, and a representation in Cm where the mea-
surement is modeled within the mathematical formalism of standard quantum
theory defined on C

m as a complex Hilbert space.
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We do not repeat here the steps of the construction required to prove Th. 1 (see
again [1]), for the sake of brevity, but we will apply this construction to specific
cases. We limit ourselves to observe that Th. 1 is an application of the hidden
measurement approach elaborated in Brussels during the eighties and nineties of
the foregoing century, with the aim of formulating a contextual hidden variable
model for quantum theory [19–28]. With the theorem above we have constructed
a representation of the collection of states and experiments that lead to the same
set of outcomes. In this sense, the Rn model and the Cm that we have constructed
is a model for the interaction between state and experiment. The set of outcomes
constitutes a context in which this interaction takes place. In the next section
we investigate in detail the examples to show the relevance of our representation
theorem for the modeling of entanglement.

3 Entanglement in QMod

The representation theorem of QMod stated in Sec. 2 can be applied to specific
entities and situations to show that entanglement, hence quantum structures,
appear if suitable conditions are satisfied.

3.1 Entanglement of Two Concepts

The first example that we take into account is a combination of two concepts.
Let us consider the example of the entity which is the concept Animal, and

let e be a measurement where a person is asked to choose between the animal
being a Horse or a Bear, hence e is associated with two outcomes {H,B}. We
consider only one state for Animal, namely the ground state which is the state
where animal is just animal, i.e. the bare concept, and let us denote it by p. Let
us denote by μ(H, e, p) the probability that Horse is chosen when e is performed,
and by μ(B, e, p) the probability that Bear is chosen in the same measurement.
The following mathematical construction can now be elaborated.

For the measurement e we consider the vector space R2 and its canonical
basis {(1, 0), (0, 1)}. The state p is contextually represented with respects to the
measurement e by the vector v(e, p) = (μ(H, e, p), μ(B, e, p)) in R2. We introduce
the vector λ = (r, 1− r), with 0 ≤ r ≤ 1, such that for (r, 1− r) contained in the
convex closure of (1, 0) and (μ(H, e, p), μ(B, e, p)), we get outcome Bear, while
for (r, 1− r) contained in the convex closure of (μ(H, e, p), μ(B, e, p)) and (0, 1)
we get Horse. Let us calculate the respective lengths and see that we re-obtain
the correct probabilities. Denoting the length of the piece of line from (1, 0) to

(μ(H, e, p), μ(B, e, p)) by d, we have d√
2
= μ(B, e, p), and

√
2−d√
2

= μ(H, e, p).

We can also construct a quantum mathematics model in C2. Therefore we
consider the vector w(e, p) = (

√
μ(H, e, p)eiα(e,p)H ,

√
μ(B, e, p)eiα(e,p)B ) in C2.

We have μ(H, e, p) = |〈(1, 0)|w(e, p)〉|2 and μ(B, e, p) = |〈(0, 1)|w(e, p)〉|2, which
shows that also the C2 construction gives rise to the correct probabilities.

Now, we want to introduce explicitly the data that we collected in an experi-
ment that we performed on test subjects and that is described in detail in [18].
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Of the 81 persons that we asked to choose between Horse and Bear as good
exemplars of the concept Animal, 43 chose for Horse, and 38 for Bear. Calcu-
lating the relative frequencies gives rise to probabilities μ(H, e, p) = 0.53 and
μ(B, e, p) = 0.47. Hence

v(e, p) = (0.53, 0.47) w(e, p) = (0.73 eiα(e,p)H , 0.68 eiα(e,p)B ) (1)

are the vectors that represent the state of the concept Animal with respect to
this measurement and these data in R

2 and in C
2, respectively.

We consider now the entity which is the concept Acts, where Acts denotes here
the action of emitting a sound, and the measurement f , where a person is invited
to choose between Growls or Whinnies. Hence we have two outcomes {G,W}.
Also for the concept Acts we consider only one state, the ground state, which
we denote by q. The probabilities μ(G, f, q) and μ(W, f, q) are respectively the
probability that Growls is chosen when f is performed, and the probability that
Whinnies is chosen in the same experiment. We again make the construction in
R

2 and C
2 for the respective probabilities, giving rise to the vectors v(f, q) =

(μ(G, f, q), μ(W, f, q)) and w(f, q)=(
√
μ(G, f, q)eiα(f,q)G ,

√
μ(W, f, q)eiα(f,q)W ).

The respective constructions allow one to reproduce the correct probabilities also
in this case.

Turning again to the data collected in the experiment described in [18], of the
81 persons there were 39 choosing Growls and 42 choosing Whinnies. This leads
to μ(G, f, q) = 0.48 and μ(W, f, q) = 0.52. Hence the vectors

v(f, q) = (0.48, 0.52) w(f, q) = (0.69 eiα(f,q)G , 0.72 eiα(f,q)W ) (2)

are the vectors that represent the state of the concept Acts with respect to this
measurement and the collected data in R2 and in C2, respectively.

We consider now the combination of both entities, hence the conceptual com-
bination The Animal Acts, and again only one state, namely its ground state,
which we denote r. Let g be an experiment with four possible outcomes, namely
Horse and Growls are chosen, Horse and Whinnies are chosen, Bear and Growls
are chosen, or Bear and Whinnies are chosen. The set of possible outcomes is
then {HG,HW,BG,BW}, and the corresponding probabilities are μ(HG, g, r),
μ(HW, g, r), μ(BG, g, r) and μ(BW, g, r).

If we develop the mathematical construction explained in our representation
theorem, we need to consider R4, and C4 and the corresponding simplex in R4.
This is the crucial aspect that makes it possible to model entanglement, as our
analysis will show.

We firstly recall that R4 is isomorphic to R2 ⊗ R2, and C4 is isomorphic to
C

2⊗C
2, and it are these isomorphisms that allow the modeling of entanglement

in a straightforward way. The canonical basis of R2 ⊗ R2 and of C2 ⊗ C2 is

h1 = (1, 0)⊗ (1, 0) h2 = (1, 0)⊗ (0, 1) (3)

h3 = (0, 1)⊗ (1, 0) h4 = (0, 1)⊗ (0, 1) (4)
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Hence, we have

v(g, r) = μ(HG, g, r)h1 + μ(HW, g, r)h2 + μ(BG, g, r)h3 + μ(BW, g, r)h4 (5)

w(g, r) =
√
μ(HG, g, r)eiα(g,r)HGh1 +

√
μ(HW, g, r)eiα(g,r)HW h2

+
√
μ(BG, g, r)eiα(g,r)BGh3 +

√
μ(BW, g, r)eiα(g,r)BW h4 (6)

and can prove the following theorem.

Theorem 2. v(g, r) equals the product state v(e, p) ⊗ v(f, q) (and then also
w(g, r) equals the product state w(e, p)⊗ w(f, q)) iff the probabilities satisfy

μ(HG, g, r) = μ(H, e, p)μ(G, f, q) μ(HW, g, r) = μ(H, e, p)μ(W, f, q) (7)

μ(BG, g, r) = μ(B, e, p)μ(G, f, q) μ(BW, g, r) = μ(B, e, p)μ(W, f, q) (8)

Proof. We have

v(e, p)⊗ v(f, q) = (μ(H, e, p), μ(B, e, p))⊗ (μ(G, g, q), μ(W, g, q))

= μ(H, e, p)μ(G, g, q)h1 + μ(H, e, p)μ(W, g, q)h2

+μ(B, e, p)μ(G, g, q)h3 + μ(B, e, p)μ(W, g, q)h4. (9)

Analogously, we have

w(e, p)⊗ w(f, q) =
√
μ(H, e, p)μ(G, f, q)eiα(e,p)H eiα(f,q)Gh1

+
√
μ(H, e, p)μ(W, f, q)eiα(e,p)H eiα(f,q)W h2

+
√
μ(B, e, p)μ(G, f, q)eiα(e,p)Beiα(f,q)Gh3

+
√
μ(B, e, p)μ(W, f, q)eiα(e,p)Beiα(f,q)W h4. (10)

��
Let us now consider the data that we collected in the experiment described in
[18], and see that we encountered there an entangled state. From the 81 persons
that participated in the experiment, there were 4 persons that chose The Horse
Growls, 51 persons that choose The Horse Whinnies, 21 persons that choose
The Bear Growls, and 5 persons that chose The Bear Whinnies. This leads to
probabilities μ(HG, g, r) = 0.05, μ(HW, g, r) = 0.63, μ(BG, g, r) = 0.26 and
μ(BW, g, r) = 0.06. This means that

v(g, r) = 0.05 h1 + 0.63 h2 + 0.26 h3 + 0.06 h4 (11)

w(g, r) = 0.22 eiα(g,r)HGh1 + 0.79 eiα(g,r)HW h2

+0.51 eiα(g,r)BGh3 + 0.25 eiα(g,r)BW h4 (12)

are the vectors that represent the state of the concept The Animal Acts with
respect to this measurement and the collected data in R4 and C4, respectively.
It is easy to check that the vectors in (11) and (12) represent a state that is
not a product state in the sense that the probabilities corresponding to the joint
measurement are not equal to the products of the probabilities corresponding
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to the component measurements. What is however much more conclusive with
respect to the state of The Animal Acts being a state of entanglement, is that
it can be proven that no component probabilities can possibly exist that give
rise to the experimental values measured for the joint probabilities. This result
is stated by means of the following theorem.

Theorem 3. There do not exist numbers a1, a2, b1, b2 contained in the interval
[0, 1], such that a1 + a2 = 1, and b1 + b2 = 1, and such that a1b1 = 0.05,
a2b1 = 0.63, a1b2 = 0.26 and a2b2 = 0.06.

Proof. Let us suppose that such numbers do exist. From a2b1 = 0.63 follows
that (1−a1)b1 = 0.63, and hence a1b1 = 1−0.63 = 0.37. This is in contradiction
with a1b1 = 0.05. ��

It is important to observe that in case we do not have the equalities (7) and
(8) for the probabilities satisfied, and hence are in a situation of entanglement,
we can model this within the R2 ⊗ R2 tensor product space, and also in the
C

2 ⊗ C
2 tensor product space. It is just that in this case the vectors v(g, r)

and w(g, r) will not be product vectors, but entangled vectors, i.e. the sum
of product vectors, as can be seen in (5) and (11). We also recall that we do
not need any linear structure at all for the global set of states Σ, it is only the
representation of this set of states due to the representation theorem 1 presented
in section 2, and proven in [1], which is a space of real numbers or contains a
linear structure as a complex space. But, what is most important of all to recall
is that this ‘local contextual real-space or complex-linear structure’ can always
be realized independent of the entity and situation considered. The analogy with
how general relativity has been mathematically constructed as a generalization
of special relativity can now be very well illustrated. Indeed, the real-space or
linear structure is only local, for a fixed set of outcomes. Therefore, the formalism
we propose is a generalization of standard quantum mechanics in the sense that,
when the real space representation is used, no linearity at all is involved, and
when the complex space representation is used, linearity is present only locally.
Moreover, even in the latter representation, it is not necessarily the case that also
globally the set of states can be made into a linear vector space. Only when this
can be done, hence when all the local linearities join into one global linearity, the
formalism we propose reduces to the standard quantum theoretical formalism.
Another way of expressing the above is that QMod is realized by means of a
‘contextual linear formalism’.

3.2 Entanglement of General Entities

The real and complex representations of a state of a compound entity in terms
of the corresponding representations of the states of the component entities that
we have constructed in Sec. 3.1 for two concepts can be extended to two general
entities. In the following theorem we make this construction, for the sake of
completeness, and indicate how entangled states can be identified.



120 D. Aerts and S. Sozzo

Theorem 4. Entangled states can be identified for general compound entities
modeled in QMod

Proof. Let S and T be two entities in the states p and q, respectively, and let
the measurements e and f be performed on S and T , respectively. Suppose that
{x1, . . . , xn} is the set of outcomes of e and {y1, . . . yn} is the set of outcomes of f ,
and denote by μ(xj , e, p), μ(yk, f, q) the corresponding probabilities. Finally, let

v(e, p) = (μ(x1, e, p), . . . , μ(xn, e, p)) (13)

v(f, q) = (μ(y1, f, q), . . . , μ(yn, f, q)) (14)

w(e, p) = (
√
μ(x1, e, p)e

iα(e,p)1 , . . . ,
√
μ(xn, e, p)e

iα(e,p)n) (15)

w(f, q) = (
√
μ(y1, f, q)e

iα(f,q)1 , . . . ,
√
μ(yn, f, q)e

iα(f,q)n) (16)

be the contextual representations of (e, p) and (f, q) in R
n and C

n, respectively.
Finally, let U be the compound entity made up of S and T , in the state r. Let
the measurement of g on U consisting of a measurement of e on S and f on T
so that the set of possible outcomes of g is {(x1, y1), . . . , (xj , yk) . . . , (xn, yn)},
and the set of corresponding probabilities {μ((xj , yk), g, r)}. By repeating the
procedure of Sec. 3.1, we can write

v(g, r) =
∑

j,k μ((xj , yk), g, r)hjk (17)

w(g, r) =
∑

jk

√
μ((xj , yk), g, r)e

iα(g,r)jkhjk (18)

where {hjk|j, k ∈ {1, . . . , n}} is the canonical basis of Rn ⊗ Rn, which is a

n2 dimensional real space, hence isomorphic to Rn2

. Moreover, reasoning as in
Theorem 2, we get that v(g, r) = v(e, p)⊗v(f, q) and w(g, r) = w(e, p)⊗w(f, q))
iff the probabilities satisfy

μ((xj , yk), g, r) = μ(xj , e, p)μ(yk, f, q) (19)

In case (19) is not satisfied, r is an entangled state. ��

3.3 Entanglement of Two Vessels of Water

Let us come to the second example. We consider two vessels of water, each
containing a volume of water, between 0 and 20 liters. We call the state of the
left vessel p and the state of the right vessel q. We consider measurements e and
f for the left and the right vessel respectively, that consist in pouring out the
water by means of a siphon, collecting it in reference vessels, where we can read
of the volume of collected water. We attribute the outcome M if the volume is
more than 10 liters and the outcome L if it is less than 10 liters. We introduce
the probabilities μ(M, e, p) and μ(L, e, p) for the outcomes M and L of e on the
left vessel, and the probabilities μ(M, f, q) and μ(L, f, q) for the outcomes M
and L of f on the right vessel.
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We then consider the joint entity consisting of the two vessels of water and
denote the state of this joint entity by r. The measurement g consists in pouring
out the water of the left vessel with the siphon, and also of the right vessel,
with another siphon. Volumes of water are collected at left and at right in two
reference vessels, and four outcomes are considered {MM,LM,ML,LL}. The
outcome MM corresponds to left as well as right vessel giving rise to the col-
lection of more than 10 liters, and outcome LL corresponds to left as well as
right vessel giving rise to the collection of less than 10 liters. The other two
outcomes ML (LM) correspond to the left vessel giving rise to more (less) than
10 liters and right vessel giving rise to less (more) than 10 liters. The proba-
bilities {μ(MM, g, r), μ(LM, g, r), μ(ML, g, r), μ(LL, g, r)} correspond to these
four outcomes. Obviously, if nothing extra happens between the two vessels, the
joint probabilities will be product probabilities, which means that we have

μ(MM, g, r) = μ(M, e, p)μ(M, f, q) (20)

μ(LM, g, r) = μ(L, e, p)μ(M, f, q) (21)

μ(ML, g, r) = μ(M, e, p)μ(L, f, q) (22)

μ(LL, g, r) = μ(L, e, p)μ(L, f, q). (23)

This shows that there is no entanglement, and that in the local contextual model
in R2⊗R2 and C2⊗C2, we can represent the state r by means of product states
v(e, p)⊗ v(f, q) and w(e, p)⊗ w(f, q).

Let us propose a situation which is more concretely defined, and allows us
to derive some numerical values for the probabilities. Thus, we suppose that,
for each vessel, the states of different volume are equally probable. As a conse-
quence of this extra hypothesis, the numerical values for all the probabilities are
determined from reasons of symmetry, and we have

μ(M, e, p) = μ(L, e, p) = μ(M, f, q) = μ(L, f, q) =
1

2
(24)

μ(MM, g, r) = μ(LM, g, r) = μ(ML, g, r) = μ(LL, g, r) =
1

4
. (25)

We want to consider now another state of the two vessels, and show that this
new state is entangled. It is a state where we connect the two vessels of water by
a tube, such that they form ‘connected vessels of water’, and we put exactly 20
liters of water in the whole of the connected vessels. Let us denote this state by s.
Knowing that the measuring of the volume of each vessel consist of pouring out
the water by a siphon, for the state s, we find that the volume of both vessels, i.e.
the water being collected by the siphons, is strictly correlated. Indeed, if we find
less than 10 liters in the left vessel, we find more than 10 liters in the right vessel,
and vice versa. This means that we never get outcome MM and LL, and hence
we have 0 = μ(MM, g, s) = μ(LL, g, s), while 1 = μ(ML, g, s) + μ(LM, g, s).
Let us investigate whether s is an entangled state. To this aim, we suppose that
s is a product state, and see what follows from this hypothesis. If s is a product
state we have

0 = μ(M, e, p)μ(M, f, q) = μ(L, e, p)μ(L, f, q) (26)
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which implies that μ(M, e, p) = 0 and μ(L, f, q) = 0 or μ(M, f, q) = 0 and
μ(L, e, p) = 0. Hence, this means that the left vessel contains with certainty
less than 10 liters, and the right vessel contains with certainty more than 10
liters, or vice versa. Suppose we have μ(M, e, p) = 0 and μ(L, f, q) = 0. Then
μ(L, e, p) = 1 and μ(M, f, q) = 1, but hence μ(LM, g, r) = μ(L, e, p)μ(M, f, q) =
1 and μ(ML, g, r) = 0. This is only possible if the siphon of the left vessel would
pour out no water at all, and all the water would be poured out by the siphon
of the right vessel. This is very improbable, not to say impossible, and hence in
case of a realistic situation we have both μ(LM, g, r) and μ(ML, g, r) different
from zero, which means that s is an entangled state.

Let us again introduce an extra hypothesis that will allow us to derive numeri-
cal values for the probabilities in the state s, and prove that s is entangled. Thus,
we suppose that both siphons are chosen at random to be applied to the left or
to the right, and also all other parameters involved in applying the siphons are
chosen at random, e.g. the starting time of siphoning is at random. In this case,
we have probability one half that the left siphon will pour out more than 10 liters
– and in this case the right siphon pours out less than 10 liters – and probability
one half that the right siphon will pour out more than 10 liters of water – and
in this case the left siphon pours out less than 10 liters. This means that

μ(ML, g, s) = μ(LM, g, s) =
1

2
. (27)

If we compare (25) with (27), we see that if the extra hypothesis is satisfied,
the state s is not a product state. Hence s is an entangled state. Again, like
in the case of the example The Animal Acts, we can show that no component
probabilities can exist to give rise to these joint probabilities.

Theorem 5. There do not exist numbers a1, a2, b1, b2 contained in the interval
[0, 1], such that a1+a2 = 1, and b1+ b2 = 1, and such that a1b1 = 0, a2b1 = 0.5,
a1b2 = 0.5 and a2b2 = 0.

Proof. Let us suppose that such numbers do exist. From a2b1 = 0.5 follows that
(1 − a1)b1 = 0.5, and hence a1b1 = 1 − 0.5 = 0.5. This is in contradiction with
a1b1 = 0. ��
The entangled states that we identity in the way shown above do not contain
already the best known characteristic of entanglement, namely the violation
of Bell-type inequalities. The reason for this is that locally, hence if only one
measurement context is considered, Bell-type inequalities cannot even be defined.
Different measurement contexts need to be confronted with each other to come
to an investigation of the violation of Bell-type inequalities. In [18] we show that
for the data with respect to the combination of concepts Animal and Acts, in
effect, also Bell-type inequalities are violated in case more measurement contexts
are considered for this entity The Animal Acts. That the vessel of water example
also violates Bell-type inequalities of more measurement contexts are considered
was shown by one of the authors in earlier work [29, 30]. In forthcoming work
we will show how the consideration of different contexts on QMod allows the
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identification of compatibility and non compatibility, again without the necessity
of linearity. It will also be proven that the violation of Bell-type inequalities is
due to the presence of both aspects entanglement and non compatibility.

3.4 Entanglement of Two Quantum Entities

We conclude this paper by illustrating howQMod works for two genuine quantum
entities. In particular, let S be a spin-1/2 quantum particle in the pure state p,
and let eu be a spin measurement along direction u to be performed on S. As we
know, the standard quantum representations of p and eu are given by the unit
vector |ψ〉 and by the self-adjont operator (up to a factor �/2) σ ·u, respectively
(σi are the Pauli matrices). The measurement eu is associated with the set of
outcomes {+1,−1}. Let us denote by μ(+1, eu, p) (μ(−1, eu, p)) the probability
of getting outcome +1 (−1) when measuring eu on S in the state p. The QMod
representations in R2 and C2 can be constructed at once, as follows.

The state p is contextually represented with respects to the measurement
eu by the vector v(eu, p) = (μ(+1, eu, p), μ(−1, eu, p)) in the canonical basis
{(1, 0), (0, 1)} of R2. Let λ = (r, 1 − r), 0 ≤ r ≤ 1, be the vector such that,
for (r, 1 − r) contained in the line between (1, 0) and (μ(+1, eu, p), μ(−1, eu, p))
((μ(+1, eu, p), μ(−1, eu, p)) and (0, 1)), we get outcome +1 (−1). As usual, if we
denote by d the distance between (1, 0) to (μ(+1, eu, p), μ(−1, eu, p)), we get the
right probabilities, that is, d√

2
= μ(+1, eu, p), and

√
2−d√
2

= μ(−1, eu, p).
As expected, the QMod representation in C

2 coincides with the standard quan-
tum representation. We choose as basis {|+u〉 = (1, 0), |−u〉 = (0, 1)} of the
Hilbert space C2, the eigenvectors of σ · u, which means that σ · u = σz , is the
self-adjoint operator representing the spin measurement along direction u (or,
with other words, we have chosen the z-direction of our three dimensional coordi-
nation system along u). We then have |w(eu, p)〉 =

√
μ(+1, eu, p)e

iα(eu,p)+ |+u〉+√
μ(−1, eu, p)eiα(eu,p)− |−u〉. The quantum probabilities are given by μ(+1, eu, p)

= |〈+u|w(e, p)〉|2 and μ(−1, eu, p) = |〈−u|w(e, p)〉|2.
Now, let S and T be two spin-1/2 quantum particles in the pure states p and

q, respectively, let the spin measurements eu and fw along directions u and w
be performed on S and T , respectively, so that {+1,−1} is the set of outcomes
of both eu and fw, and denote by μ(+1, eu, p), μ(−1, eu, p), μ(+1, fw, q) and
μ(−1, fw, q) the corresponding probabilities. Finally, let

v(eu, p) = (μ(+1, eu, p), μ(−1, eu, p)) v(fw, q) = (μ(+1, fw, q), μ(−1, fw, q))

|w(eu, p)〉 =
√
μ(+1, eu, p)e

iα(eu,p)+ |+u〉+
√
μ(−1, eu, p)eiα(eu,p)− |−u〉

|w(fw , q)〉 =
√
μ(+1, fw, q)e

iα(fw ,q)+ |+w〉+
√
μ(−1, fw, q)eiα(fw ,q)− |−w〉

be the contextual representations of (eu, p) and (fw, q) in R2 and C2, respectively.
Finally, let U be the compound entity made up of S and T , in the state r. Let the
measurement of g on U consisting of a measurement of eu on S and fw on T so
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that the set of possible outcomes of g is {(+1,+1), (+1,−1), (−1,+1), (−1,−1)},
and the corresponding probabilities μ((xj , yk), g, r), xj , yk = ±1. We have

v(g, r) = (μ((+1,+1), g, r), μ((+1,−1), g, r), μ((−1,+1), g, r), μ((−1,−1), g, r)) ∈ R
4

|w(g, r)〉 =
√
μ((+1,+1), g, r)eiα(g,r)++ |+u〉 ⊗ |+w〉

+
√
μ((+1,−1), g, r)eiα(g,r)+− |+u〉 ⊗ |−w〉

+
√
μ((−1,+1), g, r)eiα(g,r)−+ |−u〉 ⊗ |+w〉

+
√
μ((−1,−1), g, r)eiα(g,r)−− |−u〉 ⊗ |−w〉 ∈ C

4

We get from Theorem 2 that v(g, r) = v(eu, p) ⊗ v(fw, q) and |w(g, r)〉 =
|w(eu, p)〉 ⊗ |w(fw, q)〉 iff μ((xj , yk), g, r) = μ(xj , eu, p)μ(yk, fw, q), xj , yk = ±1.

The entanglement of two quantum entities identified in QMod obviously coin-
cides with the quantum entanglement recognized in standard quantum theory.

References

1. Aerts, D., Sozzo, S.: Quantum Model Theory (QMod): Modeling Contex-
tual Emergent Entangled Interfering Entities. In: Busemeyer, J.R., Dubois, F.,
Lambert-Mogiliansky, A. (eds.) QI 2012. LNCS, vol. 7620, pp. 126–137. Springer,
Heidelberg (2012)

2. Aerts, D.: Quantum Structure in Cognition. J. Math. Psych. 53, 314–348 (2009)
3. Aerts, D.: Quantum Particles as Conceptual Entities: A Possible Explanatory

Framework for Quantum Theory. Found. Sci. 14, 361–411 (2010)
4. Aerts, D.: Interpreting Quantum Particles as Conceptual Entities. Int. J. Theor.

Phys. 49, 2950–2970 (2010)
5. Aerts, D.: A Potentiality and Conceptuality Interpretation of Quantum Physics.

Philosophica 83, 15–52 (2010)
6. Aerts, D.: Being and Change: Foundations of a Realistic Operational Formalism.

In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Me-
chanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 71–110. World
Scientific, Singapore (2002)

7. Gabora, L., Aerts, D.: Contextualizing Concepts Using a Mathematical General-
ization of the Quantum Formalism. J. Exp. Theor. Art. Int. 14, 327–358 (2002)

8. Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations I: The
Structure of the Sets of Contexts and Properties. Kybernetes 34, 167–191 (2005)

9. Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations II: A Hilbert
Space Representation. Kybernetes 34, 192–221 (2005)

10. Gabora, L.: Cultural Evolution Entails (Creativity Entails (Concept Combina-
tion Entails Quantum Structure)). In: Bruza, P., Lawless, W., van Rijsbergen, K.,
Sofge, D. (eds.) Proceedings of the Association for the Advancement of Artificial
Intelligence (AAAI) Spring Symposium 8: Quantum Interaction, March 26-28, pp.
106–113. Stanford University, Stanford (2007)

11. Nelson, D.L.: Entangled Associative Structures and Context. In: Bruza, P.,
Lawless, W., van Rijsbergen, K., Sofge, D. (eds.) Proceedings of the Association for
the Advancement of Artificial Intelligence (AAAI) Spring Symposium 8: Quantum
Interaction, March 26-28. Stanford University, Stanford (2007)



Entanglement of Conceptual Entities in Quantum Model Theory (QMod) 125

12. Gabora, L., Rosch, E., Aerts, D.: Toward an Ecological Theory of Concepts. Ecol.
Psych. 20, 84–116 (2008)

13. Flender, C., Kitto, K., Bruza, P.: Beyond Ontology in Information Systems. In:
Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009.
LNCS, vol. 5494, pp. 276–288. Springer, Heidelberg (2009)

14. Gabora, L., Aerts, D.: A Model of the Emergence and Evolution of Integrated
Worldviews. J. Math. Psych. 53, 434–451 (2009)

15. D’Hooghe, B.: The SCOP-formalism: An Operational Approach to Quantum Me-
chanics. In: AIP Conference Proceedings, vol. 1232, pp. 33–44 (2010)

16. Aerts, D., Czachor, M., Sozzo, S.: A Contextual Quantum-based Formalism for
Population Dynamics. In: Proceedings of the AAAI Fall Symposium (FS-10-08),
Quantum Informatics for Cognitive, Social, and Semantic Processes, pp. 22–25
(2010)

17. Veloz, T., Gabora, L., Eyjolfson, M., Aerts, D.: Toward a Formal Model of the
Shifting Relationship between Concepts and Contexts during Associative Thought.
In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.)
QI 2011. LNCS, vol. 7052, pp. 25–34. Springer, Heidelberg (2011)

18. Aerts, D., Sozzo, S.: Quantum Structure in Cognition: Why and How Concepts Are
Entangled. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat,
S. (eds.) QI 2011. LNCS, vol. 7052, pp. 116–127. Springer, Heidelberg (2011)

19. Aerts, D.: A Possible Explanation for the Probabilities of Quantum Mechanics. J.
Math. Phys. 27, 202–210 (1986)

20. Aerts, D.: Quantum Structures due to Fluctuations of the Measurement Situations.
Int. J. Theor. Phys. 32, 2207–2220 (1993)

21. Aerts, D.: Quantum Structures, Separated Physical Entities and Probability.
Found. Phys. 24, 1227–1259 (1994)

22. Aerts, D.: Quantum Structures: An Attempt to Explain Their Appearance in Na-
ture. Int. J. Theor. Phys. 34, 1165–1186 (1995)

23. Aerts, D., Aerts, S.: The Hidden Measurement Formalism: Quantum Mechan-
ics as a Consequence of Fluctuations on the Measurement. In: Ferrero, M.,
van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quan-
tum Physics, pp. 1–6. Springer, Dordrecht (1997)

24. Aerts, D., Aerts, S., Coecke, B., D’Hooghe, B., Durt, T., Valckenborgh, F.: A
Model with Varying Fluctuations in the Measurement Context. In: Ferrero, M., van
der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum
Physics, pp. 7–9. Springer, Dordrecht (1997)
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Abstract. In this paper we present Quantum Model Theory (QMod), a
theory we developed to model entities that entail the typical quantum ef-
fects of contextuality, superposition, interference, entanglement and emer-
gence. The aim of QMod is to put forward a theoretical framework that
is more general than standard quantum mechanics, in the sense that,
for its complex version it only uses this quantum calculus locally, i.e. for
each context corresponding to a measurement, and for its real version
it does not need the property of ‘linearity of the set of states’ to model
the quantum effect. In this sense, QMod is a generalization of quantum
mechanics, similar to how the general relativity manifold mathematical
formalism is a generalization of special relativity. We prove by means
of a representation theorem that QMod can be used for any entity en-
tailing the typical quantum effects mentioned above. Some examples of
application of QMod in concept theory and macroscopic physics are also
considered.

Keywords: Quantum modeling, contextuality, interference, QMod.

1 Introduction

Over the years it has become clear that quantum structures do not only appear
within situations in the micro-world, but also arise in the macro-world [1–7].
In this respect, more recently [4–7], four major effects have been put forward
which also appear in macroscopic situations, and give rise to the presence of
quantum structures. These effects are ‘interference’, ‘contextuality’, ‘emergence’
and ‘entanglement’. Sometimes it has been possible to use the full quantum
apparatus of linear operators in complex Hilbert space to model these effects as
they appear in macroscopic situations. But, in quite some occasions a formalism
more general than standard quantum theory in complex Hilbert space is needed.

When investigating the structure of concepts, and how they combine to form
sentences and texts, we already proposed a generalization of the standard quan-
tum formalism, which we called a State Context Property, or SCoP, formalism,
specifically designed to model concepts and their combinations [8]. This gener-
alization was inspired by work on quantum axiomatics [9], and later also used to
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analyze aspects of concepts, or inspire contextual approaches [10–18]. However,
the SCoP formalism is very general, which led us to reflect about a formalism
closer to the complex Hilbert space of standard quantum theory, more specific
and hence mathematically more efficient than SCoP, but at the same time gen-
eral enough to cope with the modeling of the main quantum effects identified in
the domains different from the micro-world.

In this article we aim to propose a general modeling theory capable of model-
ing situations in which the effects of contextuality, emergence, entanglement and
interference appear. We will call this modeling theory Quantum Model Theory,
or QMod. It is not just a broad modeling scheme, because a specific powerful
mathematical representation theorem is the heart of it. It is due to this represen-
tation theorem that the mathematical structure of QMod contains the potential
to describe entanglement and emergence. We will see that the standard quantum
mechanical formalism is a special case of QMod, where emergence and entangle-
ment are consequences of respectively the linear structure of the Hilbert space
and the tensorproduct procedure for compound quantum systems. In QMod no
linearity is needed in principle, although it can be introduced if useful. This is
the fundamental reason why QMod constitutes a powerful and helpful generaliza-
tion of the quantum formalism. We will also see that QMod is a concretization of
SCoP in a specific way when it is used to model concepts and their combinations.
However,QMod is not only meant to model concepts and their combinations, like
it was the case for SCoP. It aims at modeling all situations of entities where the
effects of interference, contextuality, emergence and entanglement play a role,
and in this sense it is more general than SCoP in its applications.

Proceeding by analogy, we could say that QMod is a generalization of classical
and quantum theory in a very similar way to how the general relativistic mani-
fold formalism is a generalization of special relativity. Indeed, general relativity
theory assumes that, for each point of space-time, hence locally, space-time can
be considered operationally in an Euclidean way. Similarly, QMod assumes that,
whenever a given measurement is considered, hence again locally, the probabil-
ities are defined operationally and locally for this one measurement, and for an
arbitrary set of states of the considered entity. For one fixed state and when
an event space is defined on the set of outcomes, one can, for example, assume
Kolmogorov’s axioms to be valid. Remark that since an arbitrary set of states
is considered locally, the probability structure will not be a single Kolmogoro-
vian probability space, but a set of Kolmogorovian models, one for each state. Of
course, we expect the overall general probability model to be non-Kolmogorovian
in QMod if different measurements and different states are considered, as we
expect that a non-Euclidean model arises if different points of space-time are
considered in general relativity theory.

For the sake of completeness, let us briefly resume the content of this paper.
We introduce the essentials of QMod in Sec. 2, where we prove a represen-
tation theorem providing the steps needed to construct a quantum modeling.
More specifically, the representation theorem states that any entity that can
be described by means of its states, its contexts and specifically corresponding
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operationally defined probabilities admits a mathematical modeling in Rn and
Cm, with n and m suitably chosen. Successively, we supply in Sec. 3 applications
that illustrate how QMod concretely works. Indeed, we firstly consider a concep-
tual entity (Sec. 3.1), then a macroscopic entity (Sec. 3.2). These two examples
admit real and complex representations in R2 and C2, respectively. Finally, an
abstract example in three dimensions (Sec. 3.3) is provided which admits a real
representation in R3 and a complex representation in C3. The treatment of a
specific quantum effect, namely interference, concludes the paper (Sec. 4). The
latter allows one to understand how a mixed state differs from a superposition
state within QMod [19–26].

2 A Representation Theorem

Let us introduce the fundamental notions we need for our purposes. We will
model ‘entities’ where the notion of entity is to be understood in its most general
sense. An entity is a collection of aspects of reality that hang together in such a
way that different states exist without loosing the possibility of identification of
the same entity in each of these states. Sometimes only one state exists, this is
then the limiting case, and the entity is then just a situation. Let us right away
give two examples that we will be using in the course of this article to illustrate
different aspects of the quantum modeling scheme we introduce.

A first example of an entity that we consider is the concept Animal. The
concept Animal can indeed be in different states, for example Ferocious Animal
and Sweet Animal are two such possible states, and many more exists. Each
time an adjective is put in front of the concept Animal another state of Animal
is realized. But also each sentence, or paragraph, or piece of text, surrounding
the concept Animal, places it in a different state. Also exemplars of the concept
Animal, such as Horse and Bear can be considered to be states of the concept
Animal. So clearly a large set of different states exist for the concept Animal.
A second example of an entity that we consider is a Vessel of Water. Different
volumes of water that the vessel can contain are different states of the Vessel of
Water.

Along with the notions of entity and state we introduce the notions of mea-
surement and outcome. A measurement consists of a specific context that is
realized for the entity being able to be in different states, which is the rea-
son that in some cases, e.g. in SCoP, we use the term ‘context’ to indicate the
measurement or measurement context. This context affects generally the state
of the entity in different ways and as a consequence different outcomes to the
measurement defined by this context can occur for a specific state of the entity.
Usually the state of the entity is changed by the measurement, and the resulting
state after the measurement on the entity can be identified with each of the
outcomes. If this is the case, such an outcome can also be represented by this
state. This is in fact why we did not introduce the notion of outcome in SCoP,
because contexts, i.e. measurements in SCoP, always change a state of a concept
into different possible new states, and hence the outcomes of this measurement
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context are identified with these states in the case of SCoP. Now, we explicitly
want to introduce the notion of outcome in QMod, because we also want to be
able to model situations where the state after a measurement is not identified.
We also introduce the notion of probability of occurrence of an outcome, a mea-
surement being performed, with the entity being in a state, as the limit of the
relative frequency of this outcome by repetition. It is for this limit of relative
frequency for a fixed state, after defining events related to the outcome set, for
which Kolmogorov’s axioms of probability can be supposed to be valid. In the
case of SCoP, this probability is a transition probability from the state before
the measurement context to the state after the measurement context.

Definition 1 (Entity, State, Measurement, Outcome, Probability). We
consider the situation of an entity S that can be in different states, and denote
states by p, q, . . ., and the set of states by Σ. Different measurements can be per-
formed on the entity S being in one of its states, and we denote measurements by
e, f, . . ., and the set of measurements byM. With a measurement e ∈M and the
entity in state p, corresponds a set of possible outcomes {x1, x2, . . . , xj , . . . , xn},
and a set of probabilities {μ(xj , e, p)}, where μ(xj , e, p) is the limit of the relative
frequency of the outcome xj, the situation being repeated where measurement e is
performed and the entity S is in state p. We denote the final state corresponding
to the outcome xj by means of pj.

The following theorem proves that it is always possible to realize the above in-
troduced situation by means of a specific mathematical structure making use of
a space of real numbers where the probabilities are derived as Lebesgue mea-
sures of subsets of real numbers. We also prove that on top of this real number
realization a complex number realization exists, where the probabilities are cal-
culated by making use of a scalar product similar to the one used in the quantum
formalism.

Theorem 1 (Representation theorem). Let us consider a measurement e ∈
M and a state p ∈ Σ, and introduce the set {μ(xj , e, p) | j = 1, . . . , n} of
probabilities, where {x1, . . . , xj , . . . , xn} is the set of possible outcomes given e
and p. Then, it is possible to work out a representation of this situation in Rn

where the probabilities are given by Lebesgue measures of appropriately defined
subsets of Rn, and a representation in Cm where the measurement is modeled in
an analogous way as this is the case in the mathematical formalism of standard
quantum theory defined on Cm as a complex Hilbert space.

Proof. We introduce the space Rn, and its canonical basis h1 = (1, . . . , 0, . . . , 0),
h2 = (0, 1, 0, . . . , 0), . . . , hj = (0, . . . , 1, . . .), . . . , hn = (0, . . . , 1). The situation
of the measurement e and state p can be represented by the vector

v(e, p) =
n∑

j=1

μ(xj , e, p)hj (1)

which is a point of the simplex Sn(e), the convex closure of the canonical basis
{h1, . . . , hj , . . . , hn} in R

n. We call Aj(e, p) the convex closure of the vectors
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{h1, h2, . . . , hj−1, v(e, p), hj+1, . . . , hn}. We use this configuration to construct
a micro-dynamical model for the measurement dynamics of e for the entity in
state p. This micro-dynamics is defined as follows, a vector λ contained in the
simplex Sn(e), hence we have

λ =
n∑

j=1

λjhj 0 ≤ λj ≤ 1
n∑

j=1

λj = 1 (2)

determines the dynamics of the measurement e on the state p in the following
way. If λ ∈ Aj(e, p), and is not one of the boundary points (hence λ is contained
in the interior of Aj(e, p)), then the measurement e gives with certainty, hence
deterministically, rise to the outcome xj , with the entity being in state p. If λ
is a point of the boundary of Aj(e, p), then the outcome of the experiment e,
the entity being in state p, is not determined. Let us prove that from the above
construction we can derive the probabilities μ(xj , e, p) from just Lebesgue mea-
suring the sets of relevant real numbers as subsets of Sn(e). Of course, we make
the hypothesis that the micro-dynamical modeling of the measuring process is
such that the vector λ is chosen at random in the simplex Sn(e) with a ran-
domness modeled by the Lebesque measure on this simplex. Then, following the
formulation of the micro-dynamics of the measurement process e for S being in
state p, we have that the μ(xj , e, p), being the probability to obtain outcome xj ,
is given by the Lebesgue measure of the set of vectors λ that are such that this
outcome is obtained deterministically, hence this are the λ contained in Aj(e, p),
divided by the Lebesgue measure of the total set of vectors λ, which are the λ
contained in Sn(e). This means that

μ(xj , e, p) =
m(Aj(e, p))

m(Sn(e))
. (3)

To calculate the Lebesgue measures, let us introduce the following notations. If
h1, h2, . . . , hn are vectors in Rn, we denote byM(h1, h2, . . . , hn) the n×nmatrix,
where Mjk = (hj)k. We denote by det(h1, h2, . . . , hn) the determinant of this
matrixM(h1, h2, . . . , hn), and by Par (h1, h2, . . . , hn) the parallelepiped spanned
by the n vectors. If we consider the two parallelepipeds Par (h1, h2, . . . , hn) and
Par (h1, h2, . . . , hj−1, v(e, p), hj+1, . . . , hn), then they are constructions with the
same heights over bases which are the simplexes Sn(e) and Aj(e, p). This means
that the volumes of these parallelepipeds, as n dimensional subsets of Rn, are
equal to the volumes of the simplexes Sn(e) and Aj(e, p), multiplied by the
same constant number c(n), which is a number depending on the global di-
mension n. Now, the volumes of the two parallelepipeds, let us denote them
m(Par (h1, h2, . . . , hn)) andm(Par (h1, h2, . . . , hj−1, v(e, p), hj+1, . . . , hn)) can be
calculated by means of the determinants of their matrices, and hence we can also
calculate the volumes of the simplexes by these determinants. More specifically
we have
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m(Sn(e)) = c(n)m(Par (h1, h2, . . . , hn)) (4)

m(Par (h1, h2, . . . , hn)) = det
(
h1 . . . hj . . . hn

)
(5)

m(Aj(e, p)) = c(n)m(Par (h1, h2, . . . , v(e, p), . . . , hn)) (6)

m(Par (h1, h2, . . . , v(e, p), . . . , hn)) = det
(
h1 . . . v(e, p) . . . hn

)
(7)

and calculating the determinants of the matrices we get

det
(
h1 . . . hj . . . hn

)
= 1 (8)

det
(
h1 . . . v(e, p) . . . hn

)
= μ(xj , e, p). (9)

From (4) and (6) follows that

m(Aj(e, p))

m(Sn(e))
=
m(Par (h1, h2, . . . , v(e, p), . . . , hn))

m(Par (h1, h2, . . . , hn))
. (10)

And from (5), (7), (8) and (9) follows (3).
For the quantum representation we introduce a set of orthogonal projection

operators {Mk |k = 1, . . . , n} on a complex Hilbert Cm space, with n ≤ m ≤
n2, that form a spectral family. This means that Mk ⊥ Ml for k �= l and∑n

k=1Mk = �, and we take the Mk such that they are diagonal matrices in Cm.
More concretely, each Mk is a matrix with 1’s at some of the diagonal places,
and zero’s everywhere else. The number of 1’s is between 1 and n, for each Mk,
and the collections of 1’s hang together, their mutual intersections being empty,
and the union of all of them being equal to the collection of 1’s of the unit matrix
�. The state is represented by a vector w(e, p) of Cm, such that

μ(xk, e, p) = 〈w(e, p) |Mk |w(e, p)〉 =‖Mk|w(e, p)〉 ‖2 . (11)

A possible solution is

w(e, p) =

m∑
j=1

aje
iα(e,p)jhj with aj =

1

b

√
μ(xj , e, p) (12)

where hj is the canonical basis of Cm, and b is the dimension of the projector
Mk if hj is such that Mkhj = hj . But this is not the only solution, and it might
also not be the appropriate solution for the situation we want to model. It shows
however that a solution exists, which proves that it is always possible to built
this local quantum model. ��
The above theorem is an application of the ‘hidden measurement’ approach that
we elaborated in our Brussels research group during the eighties and nineties of
the foregoing century, with the aim of formulating a contextual hidden variable
model for quantum theory [2, 27–32].

With the above theorem we have constructed a representation of the collection
of states and experiments that lead to the same set of outcomes. In this sense, the
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Rn model and the Cm model that we have constructed are models for the inter-
action between state and experiment. The set of outcomes constitutes a context
in which this interaction takes place.

Concluding this section, it is important to observe that the representation
theorem proved above allows one to identify some quantum–like aspects without
the necessity of assuming an underlying linear structure. This aspect will man-
ifestly emerge from the treatment of entanglement in a forthcoming paper [33],
where we prove that the tensorproduct structure appears already on the level of
the real space description, and that it is possible to identify entangled states of
an entity without the need of linearity. Although we mentioned also the effect
of ‘emergence’ as one of the characteristic quantum effect, we do not consider
‘emergence’ here or in [33], but give it explicitly attention in [34]. One could say
that QMod is a generalization of standard quantum mechanics in the sense that,
when the real space representation is used, no linearity at all is at play, and when
the complex space representation is used, linearity is present only locally. We do
not insist on this point, for the sake of brevity, and refer to [33] for a detailed
analysis of the linearity issue.

3 Applications of QMod

QMod can be applied to the modeling of any type of entity that can be described
by a set of states, a set of contexts and probabilities defined for outcomes. In the
following, we consider some relevant examples that show how our construction
works. As we have anticipated at the end of the previous section, these examples
will be employed in the description of entanglement in QMod in a forthcoming
paper [33].

3.1 Concepts

Let us consider the example of the entity which is the concept Animal. We
consider a measurement e, where a person is asked to choose between the animal
being a Horse or a Bear, hence there are two outcomes {H,B}. We consider only
one state for Animal, namely the ground state which is the state where animal
is just animal, i.e. the bare concept, and let us denote it p. Let us denote by
μ(H, e, p) the probability that Horse is chosen when e is performed, and by
μ(B, e, p) the probability that Bear is chosen.

Let us now work out a mathematical construction put forward in the rep-
resentation theorem proven in Sec. 2. For the measurement e we consider the
vector space R

2 and its canonical basis {(1, 0), (0, 1)}. The state p is contex-
tually represented with respects to the measurement e by the vector v(e, p) =
(μ(H, e, p), μ(B, e, p)) in R2. We introduce the vector λ = (r, 1 − r), with 0 ≤
r ≤ 1, such that for (r, 1 − r) contained in the convex closure of (1, 0) and
(μ(H, e, p), μ(B, e, p)), we get outcome Bear, while for (r, 1− r) contained in the
convex closure of (μ(H, e, p), μ(B, e, p)) and (0, 1) we get Horse. Let us calculate
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the respective lengths and see that we re-obtain the correct probabilities. De-
noting the length of the piece of line from (1, 0) to (μ(H, e, p), μ(B, e, p)) by d,

we have d√
2
= μ(B, e, p), and

√
2−d√
2

= μ(H, e, p).

We can also construct a quantum mathematics model in C2. Therefore we
consider the vector w(e, p) = (

√
μ(H, e, p)eiα(e,p)H ,

√
μ(B, e, p)eiα(e,p)B ) in C

2.
We have μ(H, e, p) = |〈(1, 0)|w(e, p)〉|2 and μ(B, e, p) = |〈(0, 1)|w(e, p)〉|2, which
shows that also the C2 construction gives rise to the correct probabilities.

3.2 Vessel of Water

As a second example, we consider an entity S that is a vessel of water containing
a volume of water between 0 and 20 liters. Suppose that we are in a situation
where we lack knowledge about the exact volume contained in the vessel, and
call p the state describing this situation. We consider a measurement e for the
vessel that consists in pouring out the water by means of a siphon, collecting it
in a reference vessel, where we can read of the volume of collected water. We
attribute outcomeM if the volume is more than 10 liters and the outcome L if it
is less than 10 liters, hence the set of outcomes for e is {M,L}. We introduce the
probabilities μ(M, e, p) and μ(L, e, p) for the outcomes M and L, respectively.
As in the case of concepts, we construct a mathematical representation in R2 and
its canonical basis {(1, 0), (0, 1)}. The state p is contextually represented with
respects to the measurement e by the vector v(e, p) = (μ(M, e, p), μ(L, e, p)) in
R2. The simplex AM (e, p) is the line connecting the points (μ(M, e, p), μ(L, e, p))
and (0, 1), while the simplex AL(e, p) is the line connecting the points (1, 0)
and (μ(M, e, p), μ(L, e, p)). We introduce the vector λ = (r, 1 − r), with 0 ≤
r ≤ 1, such that for (r, 1 − r) contained in the convex closure of (1, 0) and
(μ(M, e, p), μ(L, e, p)), we get outcome L, while for (r, 1 − r) contained in the
convex closure of (μ(M, e, p), μ(L, e, p)) and (0, 1) we getM . Let us calculate the
respective lengths and see that we find back the correct probabilities. Denoting
the length of the piece of line from (1, 0) to (μ(M, e, p), μ(L, e, p)) = (1/2, 1/2)

by d, we have d√
2
= μ(L, e, p), an

√
2−d√
2

= μ(M, e, p). Thus, d =
√
2
2 allows one

to recover the right probabilities.
The quantum mathematics model in C2 can be constructed as follows. We

consider the orthogonal projection operators MM =

(
1 0
0 0

)
and ML =

(
0 0
0 1

)
,

and the vector w(e, p) = (
√
μ(M, e, p)eiα(e,p)M ,

√
μ(L, e, p)eiα(e,p)L) in C

2. We
have μ(M, e, p) = 〈w(e, p)|MM |w(e, p)〉 and μ(L, e, p) = 〈w(e, p)|ML|w(e, p)〉,
which also gives rise to the correct probabilities.

3.3 Illustration in Three Dimensions

Let S be an entity and let us consider the situation where the measurement e on
S has three possible outcomes {x1, x2, x3}. We denote by μ(x1, e, p), μ(x2, e, p)
and μ(x3, e, p) the probabilities for these outcomes to occur, performing the
measurement e, the entity being in state p. The construction leading to the
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representation theorem takes then place in R3. We have represented the canonical
basis vectors h1 = (1, 0, 0), h2 = (0, 1, 0) and h3 = (0, 0, 1) of R3 in Fig. 1, and
also drawn the simplexes S3(e), A1(e, p), A2(e, p) and A3(e, p).

Fig. 1. A simple 3-dimensional picture showing the construction needed for the repre-
sentation theorem

We now introduce the vector v(e, p) = μ(x1, e, p)h1 + μ(x2, e, p)h2 +
μ(x3, e, p)h3 = (μ(x1, e, p), μ(x2, e, p), μ(x3, e, p)). We have that A1(e, p),A2(e, p)
and A3(e, p) are the convex closures of {v(e, p), h2, h3}, {h1, v(e, p), h3} and
{h1, h2, v(e, p)}, respectively. Then, let the point λ belonging to the simplex S3(e)
be defined as λ = λ1h1+λ2h2+λ3h3 = (λ1, λ2, λ3), with 0 ≤ λ1, λ2, λ3 ≤ 1 and
λ1 + λ2 + λ3 = 1. Finally, measurement e gives outcome xj with certainty when
S is in state p if and only if λ ∈ Aj(e, p), and μ(xj , e, p) = m(Aj(e, p))/m(S3(e)).

Coming to the quantum representation in C3, we introduce the orthogonal
projection operators

M1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ M2 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ M3 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ , (13)

and the vector w(e, p) = (
√
μ(x1, e, p)e

iα,
√
μ(x2, e, p)e

iβ ,
√
μ(x3, e, p)e

iγ).
Then, we have μ(xj , e, p) = 〈w(e, p)|Mj |w(e, p)〉 =‖Mj|w(e, p)〉 ‖2, j = 1, 2, 3.

4 Interference and Superposition

The results obtained in the previous sections can be applied at once to a typical
quantum phenomenon, namely, interference [19–26].

To investigate a situation of interference in our general modeling scheme
we introduce a measurement e with an outcome set {x1, . . . , xj , . . . , xn}, and
sets of probabilities {P (xj , e, p)| j = 1 . . . n}, {P (xj , e, q)| j = 1 . . . n} and
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{P (xj , e, r)| j = 1 . . . n} with respect to states p, q and r. We now wonder
how the probabilities with respect to r are related to the probabilities with re-
spect to p and the ones with respect to q, in case r is a superposition state
of p and q. Let us consider this situation. Hence, we suppose that the vector
w(e, r) is a linear combination of the vectors w(e, p) and w(e, q), more specifi-
cally w(e, r) = aeiαw(e, p) + beiβw(e, q). From this follows that

w(e, r) =

n∑
j=1

√
P (xj , e, r)e

iα(e,r)jhj

=
n∑

j=1

(aeiα
√
P (xj , e, p)e

iα(e,p)j + beiβ
√
P (xj , e, q)e

iα(e,q)j )hj (14)

and hence√
P (xj , e, r)e

iα(e,r)j =
√
a2P (xj , e, p)e

i(α(e,p)j+α) +
√
b2P (xj , e, q)e

i(α(e,q)j+β)

which leads to

P (xj , e, r) = (
√
a2P (xj , e, p)e

−i(α(e,p)j+α) +
√
b2P (xj , e, q)e

−i(α(e,q)j+β)) ·

(
√
a2P (xj , e, p)e

i(α(e,p)j+α) +
√
b2P (xj , e, q)e

i(α(e,q)j+β))

= a2P (xj , e, p) + b2P (xj , e, q)

+2ab
√
P (xj , e, p)P (xj , e, q cos(α(e, p)j − α(e, q)j + α− β). (15)

The third term of Eq. (15) is the interference term. If this term is different from
zero, which is generally the case, the vector v(e, r) is not located on the line
segment between the vectors v(e, p) and v(e, q).
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Abstract. In this paper we develop a general quantum-like representa-
tion of decision making. Here quantum-like representation is based on lin-
ear algebra, the von Neumann-Lüders projection postulate, Born’s rule,
and the quantum representation of the state space of a composite sys-
tem by the tensor product. Our approach generalizes in a natural way the
classical Bayesian inference and explains irrational (non-Bayesian) infer-
ence biased by psychological factors. For the mathematical description of
irrational inference, we use the lifting map, which is important concept
to discuss a general quantum dynamics called adaptive dynamics.

Keywords: quantum-like cognitive model, (non-)Bayesian inference,
lifting map.

1 Introduction

Recently quantum-like cognitive models [2–6, 8–13, 17, 18, 21, 25–31, 33, 37]
attracted a new wave of interest as a consequence of developed research in cog-
nitive psychology and economics. This research is related to the problem of
“irrational decision making” in games of the Prisoner’s Dilemma type [3, 4, 6].
It was shown that in cognitive psychology some experimental studies produce
statistical data [14–16, 38, 39] which cannot be described by classical probabil-
ity theory. In particular, the process of decision making generating these data
cannot be reduced to the classical Bayesian updating. Therefore a number of
quantum-like models of decision making was proposed, see above references.

In this paper we introduce a general quantum-like model of decision making,
which represents in a natural way the classical Bayesian inference, see Sec. 3.
We remark that our model is not about updating on the basis of classical prob-
abilistic mixtures: an event preceding updating has occurred with probability
p and not occurred with probability (1 − p). The state of the brain is really
in a superposition, cf. [8, 9, 37]. Further, we mathematically discuss irrational
inference “biased” by psychological factors. In our formalism, a psychological
factor is described as an “environment” affecting to the “main system” that
provides the usual Bayesian inference. For this description, we use the lifting
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map [1], which describes a general form of quantum dynamics so-called adaptive
dynamics [34, 35]. Lastly, we will discuss an example of irrationality seen in taxi
problem [23]. It is known that in this problem, people frequently get a false solu-
tion with neglecting the base rate, see, e.g., [7, 19, 24, 36]. Some researchers have
proposed that the base-rate effect has its root in the inverse fallacy [22, 32, 41].
Our model will strongly support the latter proposition.

2 Bayesian Inference

Bayesian inference is a method of statistical inference in which Bayes’ theorem
is used to calculate how the degree of belief in a proposition changes due to
evidence. Usually, its method is explained like follows: Let us consider the event
system denoted by S1 = {A,B} where the events A and B are mutually exclu-
sive. A decision-making entity, which is called Alice hereafter, has a belief for the
occurrence of the event A (or B). In the philosophy of Bayesian probability, the
degree of belief is represented by probability, P (A) ( or P (B)) which is called
prior probabilities. Here, another event system S2 = {C,D} is introduced. Alice
knows that this event system S2 is correlated with S1, and she can estimate the
conditional probabilities P (C|A), P (C|B), P (D|A) and P (D|B) for the events
C and D. In such situation, Alice can update her beliefs for the events A and B,
when she sees an “evidence” of the occurrence of the event C or D. The updated
belief is calculated by Bayes’ theorem: If Alice sees the occurrence of C, she can
update P (A) to

P (A|C) =
P (C|A)P (A)

P (C|A)P (A) + P (C|B)P (B)
.

If Alice sees the occurrence of D, she can update P (A) to

P (A|D) =
P (D|A)P (A)

P (D|A)P (A) + P (D|B)P (B)
.

These conditional probabilities are called the posterior probabilities.

3 Quantum-Like Representation

In this section, the process of Bayesian inference is represented in the mathe-
matical framework of quantum mechanics.

Let us consider the situation that Alice estimates prior probabilities P (A)
and P (B) for the events A and B. Many physicists might not feel the need of
quantum mechanics to explain this situation, or they might use the following
description in the term of density operator;

ρ = P (A) |A〉 〈A|+ P (B) |B〉 〈B| ,
where {|A〉 , |B〉} are a set of orthogonal basis defined on Hilbert space H = R2,
and the values of P (A) and P (B) are given as the eigen values of ρ. The states
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|A〉 〈A| and |B〉 〈B| correspond to the events A and B. Here, we have to stress
that this ρ is just a statistical description for the event system S1, and it does
not represent the uncertainty that Alice feels on the occurrence of event in S1.
We represent the uncertainty by the quantum superposition;

ρ = |φ〉 〈φ| , |φ〉 = pA |A′〉+ pB |B′〉 ,
where pA (pB) are real positive numbers satisfying p2A = P (A) (p2B = P (B)),
and {|A′〉 , |B′〉} are orthogonal basis on H = C2. It should be noted that the
states |A′〉 〈A′| and |B′〉 〈B′| does not mean the events A and B, and these are
subjective events relating with Alice’s decision-making;
Event A′: Alice judges “the event A will occur”
Event B′: Alice judges “the event B will occur”.
The state vector |φ〉 represents that Alice is fluctuated between two conflicting
tendencies of judgments A′ and B′. The values of pA and pB are degrees of these
tendencies.

In the theory of Bayesian inference, the correlation with another event sys-
tem S2 = {C,D} is assumed, and the conditional probabilities P (C|A), P (C|B),
P (D|A) and P (D|B) are given. The uncertainty that Alice feels for S1 is cor-
related with the uncertainty for S2, and such situation is represented in the
following state vector on H1 ⊗H2 = C2 ⊗ C2.

|Φ〉 = pA |A′〉 ⊗ (pC|A |C′〉+ pD|A |D′〉)
+pB |B′〉 ⊗ (pC|B |C′〉+ pD|B |D′〉), (1)

where pC|· and pD|· are real positive numbers with p2C|· = P (C|·) and p2D|· =
P (D|·). We call this vector prediction state vector.

The process of Bayesian inference is explained as follows: When Alice obtains
an evidence of the occurrence of the event C in S2, for example, she recognizes
“the event C occurred” and then the possibility of D′ is vanished. In our formal-
ism, such vanish is represented as the reduction of the prediction state θ = |Φ〉 〈Φ|
by the projection operator MC′ = I ⊗ |C′〉 〈C′|:

MC′θMC′

tr(MC′θ)
≡ θC′ . (2)

For the state θC′ , one can calculate

tr(MA′θC′) =
p2C|A · p2A

p2C|A · p2A + p2C|B · p2B
where MA′ = |A′〉 〈A′| ⊗ I. This value is equal to the posterior probability
P (A|C).

4 Biased Bayesian Inference

As mentioned in the previous section, the reduction of the prediction state θ
provides a rational inference consistent with the standard Bayesian scheme. In
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real situations, we empirically know that our behavior is sometime “irrational”
and at the background, there is some psychological situation such that disturbs
the rational process. Our main purpose in this paper is to describe an irrational
inference in the quantum-like formalism. As a mathematical way to do this, we
use an important concept in the quantum information theory, so-called lifting
map, E∗ : S(H) �→ S(H ⊗K). A role of this map is to extend a main system in
S(H) to a compound system combined with an environment in S(K): It is useful
to discuss a state change induced by a correlation with environment system,
and it is closely related to the theory of open system dynamics. We consider the
following lifting map

E∗σ,V (θ) = V θ ⊗ σV ∗. (3)

Here, θ ∈ S(H) is a prediction state, and σ ∈ S(K) implies a psychological
situation biasing rational process of inference, in other words, a generator of
psychological biases. The operator V on H⊗K is assumed to be isometry V V ∗ =
I and specifies all possible psychological biases from σ. We define the form
of V as

V =

dim(K)∑
i=1

Vi ⊗ |fi〉 〈fi| , (4)

where Vi ∈ B(H) is a isometry operator and {|fi〉} is a set of orthogonal basis
on K. We call Vi bias and call fi psychological factor of bias-Vi. A decision-
making entity can hold various kinds of factors to make various psychological
biases. The degree of factor fi is given by the diagonal part of σ, 〈fi|σ |fi〉.
Further, psychological factors are influenced each other in a decision-making
entity’s mental, and such correlations are represented in non-diagonal parts of
σ. We define the biased prediction state θσ,V by

θσ,V ≡ trKE∗σ,V (θ), (5)

and define the biased posterior probability as

Pσ,V (A|C) ≡ tr(MC′MA′MC′θσ,V )

tr(MC′θσ,V )
. (6)

The value of the biased posterior probability is generally different from the stan-
dard one estimated by Bayes’ rule.

In the next section, we focus on an example of irrational inference called
the inverse fallacy, which is well known in psychology and cognitive science.
A decision-making entity with the inverse fallacy estimates his biased posterior
probability as P (C|A), not P (A|C). Such simple fallacy will be explained in a
simple case of our model: We consider the case that the state σ has a unique
factor fk, that is, σ = |fk〉 〈fk|. Then, by using the bias Vk = L, the biased
prediction θσ,V is written as

θσ,V = LθL∗ ≡ θL. (7)
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5 Inverse Fallacy

Bayesian inference is a most objective way of inference which is consistent with
probability theorem. However, in psychology, it is known that people frequently
use heuristics beyond the objective way. The inverse fallacy is induced in such
heuristics. In this section, we focus on the inverse fallacy seen in the taxi prob-
lem [23].

5.1 Taxi Problem

A witness sees a crime involving a taxi in a town. The witness says that the taxi
is blue. It is known from previous research that witnesses are correct 80 % of the
time when making such statements. The police also know that 85% of the taxis
in the town are green, the other 15% being blue. What is the probability that a
blue taxi was involved in the crime?

This problem is solved as follow: Let H and ¬H be events “a blue taxi was
involved in the crime” and “a green taxi was involved in the crime”. Let D be the
event “the witness says that the taxi was blue”. The “base rates” P (H) = 0.15,
P (¬H) = 0.85 and the conditional probabilities P (D|H) = 0.8, P (D|¬H) = 0.2
are given. The solution, the posterior probability P (H |D), is calculated by Bayes’
rule:

P (H |D) =
P (D|H)P (H)

P (D|H)P (H) + P (D|¬H)P (¬H)
≈ 0.41.

Kahneman and Tversky set subjects to solve this problem and found that their
majority answered “0.8” which is the value of P (D|H) [23]. From this result,
such subjects seem to mix up P (D|H) and P (H |D).

5.2 Bias Operator Making Inverse Fallacy

We discuss the bias operator L such that the biased prediction state θL of Eq. (7)
satisfies

PL(H |D) =
tr(MH′MD′MH′θL)

tr(MH′θL)
= P (D|H). (8)

To find such bias L, let us consider the following events,

E : The witness is correct, (9)

¬E : The witness is not correct. (10)

From the sentence in the taxi problem, one can answer the values of probabilities
for these events; P (E) = 0.8 and P (¬E) = 0.2. The event E is interpreted as
the sum event of H ∧ D and ¬H ∧ ¬D; E = (H ∧D) ∨ (¬H ∧ ¬D). Similarly,
¬E = (H ∧ ¬D) ∨ (¬H ∧D). Here, note that the prediction state θ = |Φ〉 〈Φ| is
given by

|Φ〉 = pH |H ′〉 ⊗ (pD|H |D′〉+ p¬D|H |¬D′〉)
+ p¬H |¬H ′〉 ⊗ (pD|¬H |D′〉+ p¬D|¬H |¬D′〉). (11)



Quantum-Like Representation of Irrational Inference 143

From pE = pD|H = p¬D|¬H and p¬E = pD|¬H = p¬D|H , this form is rewritten as

|Φ〉 = pE(pH |H ′〉 ⊗ |D′〉+ p¬H |¬H ′〉 ⊗ |¬D′〉)
+p¬E(pH |H ′〉 ⊗ |¬D′〉+ p¬H |¬H ′〉 ⊗ |D′〉)

≡ pE |E′〉+ p¬E |¬E′〉 (12)

We consider the bias operator L that transforms the vector |E′〉 and |¬E′〉 as

L |E′〉 = cos(λ− ω) |H ′〉 ⊗ |D′〉+ sin(λ− ω) |¬H ′〉 ⊗ |¬D′〉 ,
L |¬E′〉 = cos(λ− ω̃) |H ′〉 ⊗ |¬D′〉+ sin(λ − ω̃) |¬H ′〉 ⊗ |D′〉 . (13)

Here, λ is a constant satisfying cosλ = pH and sinλ = p¬H . Further, let us con-
sider the case of ω−ω̃ = π

2 . Then, the biased prediction state θL = L |Φ〉 〈Φ|L∗ =
|ΦL〉 〈ΦL| is described as

|ΦL〉 = cos(λ− ω) |D′〉 ⊗ (pE |H ′〉+ p¬E |¬H ′〉)
− sin(λ− ω) |¬D′〉 ⊗ (p¬E |H ′〉 − pE |¬H ′〉). (14)

In the above form, the meanings of P (E) and P (¬E) are biased: In the clas-
sical discussion, the probabilities P (E) and P (¬E) correpond to the condi-
tional P (D|H) = P (¬D|¬H) and P (D|¬H) = P (D|¬H). Nevertheless, these
P (E) and P (¬E) in Eq. (14) look like the conditional probabilities P (H |D) =
P (¬H |¬D) and P (¬H |D) = P (H |¬D). It seems that the events H (¬H) and
D (¬D) are mixed up. Actually, one can easily check that the biased posterior
probability explains the inverse fallacy;

PL(H |D) = P (E) = P (D|H).

5.3 Irrational Updating

Most people who solve the taxi problem by the heuristics will not calculate pos-
terior probability by Bayes rule, which is represented as a reduction of prediction
state by a projection operator in our formalism. They will achieve the false solu-
tion directly and intuitively. We assume, they bias their prediction in which the
estimation for the possibility of the event ¬D is almost not considered. Such a
prediction vector is described as

|ΦL〉 ≈ |D′〉 ⊗ (
√
P (E) |H ′〉+

√
P (¬E) |¬H ′〉).

This corresponds to the form of Eq. (14) with ω ≈ λ. People in such situation
will find the solution (but the false solution P (E)) directly, and they will not
feel the occasion of calculating posterior probability.

In a sense, the bias from the ideal |Φ〉 to the above |ΦL〉 is a kind of “updating”.
We call it “irrational updating”. The irrational updating L biases |E〉 and |¬E〉 as

L |E〉 ≈ |H ′〉 ⊗ |D′〉 , L |¬E′〉 ≈ |¬H ′〉 ⊗ |D′〉 .
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These imply that in Alice’s brain doing the irrational updating, the event E is
identified with H ∧D (¬E is identified with ¬H ∧D).

Conventionally, the inverse fallacy is understood as the result of tendency to
undervalue the base rate information P (H), P (¬H) [7, 19, 24, 36]. However,
some researchers have proposed that the base-rate effect was in fact originating
from the inverse fallacy [22, 32, 41]. Our model will strongly support the latter
proposition, because, in our model, the inverse fallacy is represented in the term
of the bias operator L, which biases the base rate information, see Eq. (13).

Further, it should be noted that the base rate is completely neglected in
the irrational updating. This base rate neglect is different from the normative
base rate neglect such that P (H) and P (¬H) are regarded as 1

2 . This point is
consistent with the claim by Villejoubert and Mandel [40]: They pointed out
that the normative base rate and inverse fallacies are different. It is important
that our model can explain the normative base rate neglect by using the bias
operator L with ω = ω̃ = λ − π

4 in Eq. (13), and then, the biased prediction
vector |ΦL〉 is given by

|ΦL〉 =
√

1

2
|H ′〉 ⊗ (

√
P (D|H) |D′〉+

√
P (¬D|H) |¬D′〉)

+

√
1

2
|¬H ′〉 ⊗ (

√
P (D|¬H) |D′〉+

√
P (¬D|¬H) |¬D′〉).

Here, remind the taxi problem, where P (D|H) = P (¬D|¬H) and P (¬D|H) =
P (D|¬H). The biased posterior probability calculated from such |ΦL〉 is PL(H |D)
= P (D|H) that is same with the result of inverse fallacy. It is difficult to find the
difference between the normative base rate and the inverse fallacies in the term
of probability. On the other hand, our quantum-like representation distinguishes
them mathematically in the term of bias operator.

5.4 Conclusion

In this paper, we defined a general framework to describe non-Bayesian inference
in terms of the lifting map, where the concept of bias operator is important, see
Eq. (3). A bias operator represents a psychological factor disturbing a Bayesinan
inference, and the operator L of Eq. (13) is an example, which makes the inverse
fallacy. Further, in Sec.5.3, we pointed out that a bias operator provides an in-
ference without calculation of a posterior probability. Such an inference might
be related to the problem of heuristics. To show the availability of our approach,
we have to find bias operators that can explain other fallacies well-known in the
cognitive science, for example, the violation of sure thing principle or the con-
junction fallacy, and we also have to analyze the consistency with experimental
results for these fallacies. These are our issues in the future.
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Abstract. The paper at hand aims to provide a rational explanation of
why people generously give away personal data while at the same time
being highly concerned about their privacy. For many years, research has
come up with attempts to untangle the privacy paradox. We provide a
thorough literature review on privacy decisions in socio-economic sce-
narios and identify explanatory gaps. To explain paradoxical behavior
in privacy decision making we illuminate (1) generous data disclosure
and (2) high valuation of privacy as two non-commuting observations
of incompatible preferences (types). Abstract risk awareness of privacy
threats and concrete privacy decisions are not interchangeable, i.e. dis-
closing personal data prior to becoming aware of privacy risks does not
equal the raising of risk awareness before revealing personal information.
Privacy decisions do not commute as subjects may alter their preferences
indeterminately, i.e. at the time an actual decision is made, in response
to discomfort arising from conflicting preferences.
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1 Introduction

The unprecedented success of recent internet services dealing with personal data
fulfills the need of many companies to know their customers. As companies
progress in transforming their business by incorporating the collection, storage,
and analysis of vast amounts of consumer data, opportunities for addressing
the right target groups with their individual preferences rises. However, con-
sumers becoming increasingly transparent with regard to their preferences also
raise concerns over the erosion of their privacy. Many surveys witness serious
privacy concerns of consumers1. This appears paradoxical as they easily forget
about their fears provided the right circumstances like entertainment, attention,
or comfort are given, i.e. the benefits received in return for data disclosure.
Moreover, the disparity between stated preferences and actual behavior, i.e. the
privacy paradox, may not only turn out to be disadvantageous for consumers.

1 cf. https://www.cdt.org/privacy/guide/surveyinfo.php
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Also for service providers this may have negative consequences. Consumers con-
fronted with their paradoxical behavior, e.g. when finding out about their per-
sonal data being used without consent, may react with resentment, which may
cause damage to customer relationships[1].

Economically, the privacy paradox is of high relevance. Discrepancies between
attitudes and actual decisions may affect economic welfare[2,3]. A potential
threat to welfare stems from consumers becoming increasingly aware of such
discrepancies. As a consequence an erosion of trust may threaten markets for
services based on the collection and dissemination of personal data. For instance,
trust is likely to erode once consumers find out that provided contact informa-
tion will be used for unwanted marketing phone calls or past purchase orders
will serve as input for price discrimination. Accordingly, for many years research
in economics, psychology, and social studies, has been addressing privacy deci-
sion making as its object of investigation. However, it occurred only recently that
attempts to describe human decision making with the tools borrowed from quan-
tum theory emerged, e.g. [4,5], thereby offering a new perspective of phenomena
like the privacy paradox.

From this perspective, we provide a rational explanation of why people gen-
erously give away personal data while at the same time being highly concerned
about their privacy. We argue that observations of abstract risk awareness of
privacy threats and concrete privacy decisions are not interchangeable, i.e. they
do not commute. Prior to that we come up with a thorough literature review
on privacy decisions in socio-economic scenarios and identify explanatory gaps.
The paper is structured as follows.

In the next section we review empirical studies and explanatory attempts
related to the privacy paradox. Literature stems from several fields like pri-
vacy economics, cognitive psychology, and information systems, and its review
is structured along three descriptive dimensions (1) incomplete information, (2)
bounded rationality, (3) and decision biases. Then, in section 3, we come up with
a formalization of the privacy paradox. By means of a numerical example rep-
resentative for conflicting privacy observations, we show that stated preferences
and actual behavior interfere, i.e. abstract risk awareness and concrete privacy
decisions do not commute. Finally, in section 4, we speculate about how our
results may contribute to transparency and trust on markets of recent internet
services and give an outlook towards future work.

2 Explanatory Gap: The Privacy Paradox

According to Westin (1967) privacy refers to each individual’s right to control,
edit, manage, and delete information about them and decide when, how, and to
what extent information is communicated to others[6]. There are several studies
showing that individuals are quite clear about their valuation and desired level
of privacy. However, when observed in practical situations people’s willingness
to disclose personal data stands in stark contrast to their own privacy claims.
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2.1 Empirical Observations

In the US several polls and surveys support the claim that people care about
their privacy2. Given the success of companies like Google and Facebook as
well as the amount and sensitivity of data disclosed in exchange for using their
services, the privacy paradox appears intuitively evident. Beyond intuition, there
are quite a few behavioral studies witnessing the privacy paradox. As one of the
main schools of privacy research, behavioral economics studies how individual,
social, cognitive and emotional biases influence privacy decision making.

Spiekermann et al. (2001) conducted an experiment with data from 171 par-
ticipants and compared their self-reported privacy preferences with actual data
disclosure[7]. The authors analyzed questionnaire answers to discern privacy
preferences and log files to analyze behavior and found that participants did
not live up their self-reported privacy attitudes when it comes to interactions
with an anthropomorphic shopping bot. Risk awareness was determined by clus-
tering users according to their level of concern. 76% of participants care about
their privacy. 30% are privacy fundamentalists, 26% profiling averse (avoidance
of disclosure of hobbies, interests, health data, etc.), and 20% identity concerned
(avoidance of disclosure of name, address, and email). Only 24% are marginally
concerned.

Norberg et al. (2007) demonstrate the existence of the privacy paradox within
two experimental studies[8]. Their hypothesis draws from individuals’ considera-
tion of risks and trust. The authors are interested in the degree to which privacy
attitudes or intentions might influence actual disclosure behavior. As opposed
to risks, they assume that trust directly influences privacy behavior. Risk con-
siderations have an influence on stated preferences but influence is not strong
enough to have an effect on actual behavior. As environmental factor trust has
stronger effects on actual behavior and outweighs privacy concerns. In contrast,
when asked about intentions to provide personal information it is the other way
round and risk outweighs trust. Privacy intentions or attitudes and actual data
disclosure are paradox as risk awareness dominates in abstract decision situa-
tions and reliance upon trustworthiness dominates in concrete decision making
processes. In their studies the authors found support of risks significantly in-
fluencing privacy intentions. However, they didn’t find trust having an effect
on actual behavior as expected. Nonetheless, Dwyer et al. (2007) showed that
trust and usage goals affect people’s willingness to disclose personal information
in online social networks[9]. They found that Facebook users expressed greater
trust in Facebook than MySpace users did in MySpace. According to this higher
level of trust Facebook users were more willing to disclose data on the site.

Sheehan and Hoy (1999) conducted a study to investigate linkages between E-
mail users’ privacy concerns and their change of behavior[10]. The authors found
that with an increase in privacy concern actual behavior changed. In particu-
lar, respondents with increased privacy awareness were more likely to provide
incomplete information to web sites, or to request removal from mailing lists.
Although they do not claim to have found a causal relationship between stated

2 cf. https://www.cdt.org/privacy/guide/surveyinfo.php
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concerns and actual privacy decisions, the authors revealed a clear correlation
between the two observations.

With regard to trade-offs between costs and benefits Sayre and Horne (2000)
examined privacy decision making in an offline context[11]. They found that
people are willing to give away their personal information in exchange for small
discounts in a grocery store. Here the assumption is that consumers trade benefits
(small discounts) for the costs (risks associated with personal data disclosure).
A trade-off is calculated according to an individual’s utility function which takes
as input costs and benefits.

Awad and Krishnan (2006) deduce benefits from the degree a service is per-
sonalized and fits consumer needs[12]. In contrast, costs are driven by perceived
privacy risks. Personalized product recommendations of online shops are ben-
eficial to consumers in the sense of reduced search efforts. On the other hand,
consumers often don’t know about the way their data is used and protected. This
lack of knowledge incurs costs due to the risks that have to be taken into account.
In privacy decisions users are constantly balancing the costs and benefits of data
disclosure and concealment according to their primary goal of maximizing utility.

In line with trading costs and benefits three major attempts have been put
forth to explain paradoxical behavior in privacy decision making[13,14]. In the
following incomplete information, bounded rationality, and decision biases such
as immediate gratification affecting users’ perception will be discussed with re-
gard to their explanatory shortcomings.

2.2 Incomplete Information

According to homo oeconomicus, the prototype of an economic man, consumers
maximize their utility with rational decisions based on available information.
Consumers under- or overestimate the value of their privacy due to incomplete
information about the costs and benefits of data disclosure. For instance, since
consumers often are not even aware about their data being collected at all, they
do have incomplete information about the market value of their personal data.
Also users do not know about consequences of their data being used for profiling
or linkage with other data sources. From the background of complete informa-
tion about the value of their data (benefits) and potential risks (costs) consumers
would be able to calculate the right balance between costs and benefits and max-
imize utility. Incomplete information prevents users from acting rationally and
maximizing utility. Nevertheless, from their subjective point of view and within
their limited boundaries of reasoning, data disclosure may appear rational for
users themselves. From an objective third person’s point of view, i.e. having com-
plete information, privacy behavior may appear contradictory, cost-neglecting,
and irrational.

Others have argued against the assumption of complete information. Acquisti
and Grossklags (2009) share the view that incomplete information complicates
privacy decision making[15]. Subjects have to consider multiple layers of out-
comes and associated probabilities and not just deterministic outcomes. This
leads to highly imprecise estimates of the likelihood and consequences of adverse



152 C. Flender and G. Müller

events. Eventually, privacy threats and protection modes are ignored altogether.
The authors favor the view that in most privacy decision making situations
it is unrealistic to assume the existence of known or unknown probabilities or
subjective beliefs for probabilities over outcomes. Besides acting on incomplete
information people posses no consistent preferences between alternatives, they
do not chose the utility maximizing option, they do not discount future events
consistently, and they do not know the probability distributions over outcomes.
Instead, individuals’ rationality is bounded, heuristics are applied for privacy
decisions and biases affect consumers’ behavior whenever they compare alter-
natives, perceive risks, and discount values. In contrast to risk-awareness where
probabilities of possible random outcomes are objectively known, uncertain and
ambiguous decision outcomes are not pre-determined and thus probabilities can-
not be objectively known.

2.3 Bounded Rationality

Bounded rationality states that human decision making is bounded by nature
and so decisions often result in wrong or biased conclusions[16]. Consumers
under- or overestimate the risk of data disclosure. Underestimating risks due
to limited cognitive abilities explains paradoxical behavior in privacy decision
making. Like the possibility of having complete information, bounded rationality
assumes the possibility of unbounded rationality leading to objectively right and
unbiased conclusions. Privacy decisions resulting in wrong or biased conclusions
are essentially irrational as outcomes are not Pareto-optimal and thus inefficient.
Again, from a subjective point of view, disclosing personal data despite privacy
concerns may appear quite rational to the subjects themselves. This confusion
of ontological and epistemological categories, i.e. subjective and objective ratio-
nality, however, is problematic. There are no truly rational decisions based on all
facts for or against all possible courses of action. Cumulative aggregations of facts
about the world, by themselves, are meaningless[17]. To capture significance or
involvement, they must be assigned relevance. However, such an assignment of
relevance just adds more meaningless facts, a problem that very quickly leads to
infinite regress. Facts are essentially meaningless because they are indeterminate
up to the point in time an actual decision is made. Nevertheless, uncertain and
ambiguous outcomes may have an effect on privacy decision making. As put forth
by Tversky and Kahnemann (1981), the way a problem or question is framed
affects how subjects respond[18]. For instance, Acquisti and Grossklags (2005)
showed impacts on willingness to accept or reject a privacy-related offer when
consequences of the offer are re-framed in uncertain or ambiguous terms[19].

2.4 Decision Biases

Other attempts to explain the privacy paradox refer to decision biases. For
instance, the time frame costs and benefits are perceived lead to decision bi-
ases. In observations of hyperbolic discounting subjects prefer rewards that ar-
rive sooner[20], e.g. benefits derived from using a search engine, compared to
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long-term risks such as potential data breaches. Such immediate gratification is
stronger than future privacy concerns. For instance, the chance to socialize with
peer group members immediately beyond restrictions of analogous communica-
tion overweighs potential privacy threats.

Besides biases related to time frames the tangibility of decision factors plays
a role in privacy decision making. Privacy, i.e. the right to informational self-
determination, is less tangible than risks associated with physical harm such as
becoming ill or having an accident. Acquisti (2004) presents a model on privacy
behavior grounded in the tendency to trade-off privacy costs and benefits in a
way that may be inconsistent with privacy intentions leading to damages in the
future[21]. Users draw less attention to privacy risks which require their active
intervention, or prevention, than to risks they are exposed to more passively but
which they can imagine more illustratively.

In [15] several other biases are suggested to drive privacy decision making. For
instance, the valence effect refers to the tendency to overestimate the likelihood
of favorable events. People tend to think privacy harms to other users is more
likely than to themselves. Rational ignorance is another effect that occurs when
costs of learning are higher than potential benefits gained from a decision. For
example, consumers may consider costs for reading privacy policies too high
compared to the expected benefit of using a service.

As technical mean to influence biases in privacy decision making privacy state-
ments are meant to foster consumers to act in accordance with their privacy
preferences. However, studies show that simply stating privacy guidelines does
not avoid the privacy paradox[22]. To reduce discrepancies between stated pref-
erences and actual behavior privacy statements do not have an impact on most
users’ behavior. Rather simplified social interaction appears to influence privacy
decision biases. Drawing from[7] Berendt et al. (2005) argue that simplifying
communication plays a role for opinion change in privacy decision making. They
refer to ELIZA, an electronic psychotherapist developed by Joseph Weizenbaum
in the 1960s, who, in the course of interaction, became a trusted interaction part-
ner. This appears to be in accordance with one of the basic drivers in human
communication and language acquisition, i.e. cooperative behavior in terms of
sharing attitudes and informing others helpfully[23].

From a sociological point of view, peer group pressure plays an important role
in privacy decision making. People disclose information to conform and in con-
forming they pose threats to their privacy. Opting out becomes hardly possible if
exclusion from the group is undesirable. For instance, members of social groups
using social networks as their primary communication medium put pressure on
their peer group members to do likewise, i.e. share information and conform to
social norms. Peer group members not conforming to communication and infor-
mation sharing rituals are sanctioned with attention deprivation and exclusion
from the social group. Opting out and privacy protection becomes increasingly
difficult the more group members agree on information sharing as a basic prin-
ciple constituting their affiliation. Social desirability biases may contaminate
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intentions to disclose personal information in such a way that stated preferences
are not predictive for actual disclosure behavior anymore[24].

In summary, there are several fruitful attempts to explain the privacy para-
dox. Incomplete information measures privacy decision outcomes from the back-
ground of complete knowledge of all relevant facts. Bounded rationality measures
decision outcomes from the background of decisions made without cognitive lim-
itations. Eventually, decision biases consider social, cognitive and emotional fac-
tors influencing privacy decision making. Several explanatory gaps can be derived
from the forgoing discussion.

Explanatory attempts discussed so far consider uncertainty to be inherent
in privacy decision making. However, preferences guiding privacy decisions of-
ten are not merely revealed but realized only when the decision is made. In
such cases uncertainty is not due to lack of information where costs and ben-
efits are assumed to be out there readily determined though not yet known.
Rather uncertain events are indeterminate[25]. Thus distinctions between com-
plete and incomplete information as well as bounded and unbounded rationality
become obsolete. Privacy decisions based on preferences which are not due to
lack of information and cognitive limitations are inherently context-dependent.
Explanatory attempts taking decision biases into account point to the right di-
rection by explaining paradoxical behavior with dependence upon contextual
factors. The disparity between stated preferences and actual behavior is not a
contradiction but depends on the psychological and sociological context. Thus
from the background of a high valuation of privacy personal data disclosure is
not necessarily irrational. In the next section, we describe stated preferences and
actual behavior as two non-commuting observations of incompatible preferences
(types).

3 Indeterminacy and Noncommutativity

More recently several attempts to describe human decision making with the tools
borrowed from quantum theory emerged[4,5] thereby offering a new perspective
of phenomena like the privacy paradox. This new perspective allows incorporat-
ing effects like indeterminacy, i.e. the outcome of a decision making process is
determined at the time the decision is made but not prior to it, and noncom-
mutativity, i.e. two decisions A and B are not interchangeable, in descriptions
of privacy decision making. These effects are common in daily situations[26]
but hardly considered in behavioral studies of privacy. To our best knowledge
quantum effects haven’t been considered in a privacy context yet.

In the context of information technology, the quantum formalism has been
applied for several descriptions of indeterminate and contextual phenomena.
Bruza et al. (2008) entangles words and their meanings[27]. In their work they
show that in certain contextual situations, the semantics of words represented as
vectors combine in a way that instances of combined words are neither typical
for one nor the other constituent. Piworawski and Lalmas (2009) come up with a
vector model for information retrieval based on quantum interaction[28]. Flender
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et al. (2009) applies quantum effects to data and process models and describes
how part-whole relationships and view updates appear under a new light[29,30].
One of the earliest approaches to a generalization of quantum effects is the
model of a State-Context-Property (SCoP)-System and can be found in Aerts
and Gabora (2005)[31,32].

With their contribution to behavioral economics, Lambert-Mogiliansky et al.
(2009) present an approach to modeling decision situations in which preferences
(types) of agents emerge indeterminately as the outcome of an interaction pro-
cess between agent and environment[25]. According to quantum theory, decision
situations are modeled as observables, i.e. linear operators. The decision mak-
ing itself is analogous to the measurement process in quantum experiments. It
projects the initial state of an agent into the subspace of the preference space as-
sociated with the eigenvalue corresponding with the choice made, i.e. the type or
preference is not revealed as it wasn’t determined prior to the choice; rather it is
constructed with the choice made. The authors come up with an example from
cognitive psychology showing that cognitive dissonant behavior can be mod-
eled in terms of type indeterminacy. Their example draws from a study about
workers in risky industries neglecting safety regulations. Before starting a risky
job, however, workers were reasonably averse to risk. In cognitive psychology,
this phenomenon is called cognitive dissonance[33]. People modify their types
or preferences in response to discomfort arising from conflicting preferences, e.g.
not using safety tools despite high risk awareness. Both decision situations can
be modeled as observables with eigenvalues of two choices. Job seekers are either
adventurous (1) or habit prone (2) whereas workers are either risk-averse (1)
or risk-loving (2) when it comes to applying safety measures at work. Lambert-
Mogiliansky et al. (2009) showed that both decision situations do not commute
and thus preferences are incompatible.

In the following we consider the privacy paradox in a similar fashion. For a
complete description of the privacy paradox stated preferences and actual behav-
ior are necessary but mutually exclusive observations. Privacy behavior is not
irrational due to incomplete information about risks or limited cognitive capac-
ity. The disparity between the two decisions comes from the fact that subjects
are not in the same state. Like in the job seeking example, the situation where
consumers make a decision about their valuation of privacy is represented by an
operator that does not commute with the operator representing the situation
where consumers actually disclose or conceal data.

Two decision situations involving a sequence of two non-commuting privacy
decisions are given. For each decision there are two choices. For an observable X
there is a decision about privacy valuation to be made. Choice x1 stands for a
high valuation, choice x2 refers to a low valuation. Another observable refers to
Y . Here subjects disclose personal data with choice y1, or they conceal personal
data with choice y2.

In a first scenario users are confronted with decision situation Y . Either they
disclose data (y1) or they refrain from disclosure (y2). The initial state of the user
X is written in terms of a linear superposition of two eigenvectors representing
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choices. Superposition states afford to get actualized in relation to a specific
context, or observation.

|ψ〉 = a1|x1〉+ a2|x2〉 (1)

where a21 + a22 = 1. The vectors can be written in terms of eigenvectors of Y .

|x1〉 = b11|y1〉+ b12|y2〉 (2)

|x2〉 = b21|y1〉+ b22|y2〉 (3)

The superposition state |ψ〉 is now written in terms of of eigenvectors of Y .

|ψ〉 = (a1b11 + a2b21)|y1〉+ (a1b12 + a2b22)|y2〉 (4)

The probability that a subject discloses personal data is expressed as follows.

PrY (y1) = 〈y1|ψ〉2 = (a1b11 + a2b21)
2

= a21b
2
11 + a22b

2
21 + 2a1a2b11b21 (5)

In a second scenario users first value their privacy (X), then they decide if they
disclose personal data (Y ).

PrY X(y1) = PrX(x1)PrY (y1|x1) +PrX(x2)PrY (y1|x2)
= a21b

2
11 + a22b

2
21 (6)

Now we can give a formal representation of the privacy paradox.

PrYX(y1) < PrY (y1) (7)

The privacy paradox occurs in case of a positive interference between both de-
cision situations, i.e. 2a1a2b11b21 > 0. In quantum physics, the interference ef-
fect occurs due to matter and energy both exhibiting wave-like and particle-like
properties but not both at the same time, i.e., not within the same context.
In different contexts or experimental arrangements some matter seems more
particle-like than wave-like. With reduced values of energy (change of context)
the same matter will be more likely to show wave-like qualities than particle-like
properties. All the information about a particle is encoded in its wave function,
which is analogous to the amplitude of a wave at each point in space. This func-
tion evolves according to a differential equation (the Schrödinger equation) and
so gives rise to interference. Interference occurs when the interaction of two or
more waves, e.g., one wave representing observer and the other one standing for
the observed system, influences their direction of propagation characterized by
crests and troughs. When two or more waves reach the same point in space at
the same time, they either add up (the crests arrive together which is called
in-phase) or cancel each other out (the crest from one wave meets a trough from
another wave which is called out-of-phase). The state of a wave-like property is
called superposition or potentiality state and represented as a vector |ψ〉. Its lin-
ear combination, the superposition or addition of two or more states, resembles
an interference pattern typical of waves.
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We assume data is disclosed |ψ〉 = |y1〉. Moreover, we assume that most users
disclose personal data while at the same time being highly concerned about their
privacy. This assumption is reasonable as empirical studies witness generous
data disclosure despite high risk awareness (cf. section 2). Let Pr(x1|ψ) = 0.8
and Pr(x2|ψ) = 0.2. Accordingly, |a1| =

√
0.8 and |a2| =

√
0.2 and likewise

|b11| =
√
0.8 and |b21| =

√
0.2.

In order to get the probability of y1 in Y we use (5).

1 = 〈y1|ψ〉2 = a21b
2
11 + a22b

2
21 + 2a1a2b11b21

= 0.64 + 0.04 + 2a1a2b11b21

= 0.68 + 2a1a2b11b21 (8)

(8) implies that the interference effect is positive and equals 1− 0.68 = 0.32. In
context X the probability for disclosing data is given by (6). It is the same sum
as in (5), but without the interference term.

PrY X(y1) = 0.68 (9)

The privacy paradox occurs due to PrY (y1) > PrYX(y1). The choices between
low/high privacy valuation and data disclosure/concealment are observations of
two incompatible types (or preferences) represented by two noncommuting ob-
servables. Privacy valuation refers to an abstract perception of risk. The decision
to disclose data refers to a motivational perception of concrete benefits. The two
modes are incompatible, the subject is cognitively dissonant.

4 Transparency and Trust

Our economy increasingly relies on personal data. Many service providers offer
their services for free and collect personal data in exchange. At the same time
consumers become increasingly transparent with regard to their preferences and
this raises concerns over the erosion of their privacy. Moreover, the disparity be-
tween stated preferences and actual behavior, i.e. the privacy paradox, may not
only turn out to be disadvantageous for consumers. Also for service providers
this may have negative consequences. Consumers confronted with their para-
doxical behavior, e.g. when finding out about their personal data being used
without consent, may react with resentment, which may cause damage to cus-
tomer relationships[1].

From an economic point of view, the challenge is to find the right balance
of measures to ensure trusted relationships between market participants. There
are several options to handle privacy. Ensuring privacy through law usually lacks
behind and privacy-enhancing technology is hardly accepted. Policy makers sug-
gest providing more information about possible privacy threats will help them to
make better decisions. Such information may be provided by companies, peers, or
consumer advocacy groups. However, it is questionable that even with complete
transparency and unbounded rationality individuals would act consistently.
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As proposed here abstract risk awareness of privacy threats and concrete pri-
vacy decisions are not interchangeable, i.e. disclosing personal data prior to be-
coming aware of privacy risks does not equal the raising of risk awareness before
revealing personal information. Privacy decisions do not commute as subjects
may alter their preferences indeterminately, i.e. at the time an actual decision
is made. Signaling consumers that there is uncertainty in their privacy deci-
sions which is not due to lack of information but indeterminacy may prevent
them from reacting with resentment once they find out about the state of their
privacy.

In the near future we will look at transparency mechanisms bearing the po-
tential to reduce the disparity between stated preferences and actual behavior.
Privacy statements were not found to be effective[22]. They rather suggest an
information surfeit.
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Abstract. There exist several phenomena (systems) breaking the clas-
sical probability laws. In this report, we present a new mathematical
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1 Introduction

Several phenomena (systems) breaking the usual probability laws in such as quan-
tum interference in cognitive science, the game of prisoner’s dilemma (PD game),
the lactose-glucose interference in E. coli growth have been considered[1]–[13].
The PD game was considered by taking account of the players’ minds [13, 14].
The lactose-glucose interference is studied by the quantum interference [15].

These phenomena (systems) will require us to change the usual probability
law. One of our trials is to make a new rule of probability which is the updat-
ing the Bayesian law [16]. It is important to notice that these phenomena are
contextual dependent, so that they are adaptive to the surroundings.

In such systems, the conditional probability can not be defined in usual math-
ematical framework. It is well-known that in quantum systems the conditional
probability does not exist (see the section 3) in the sense of classical systems,
so that the naive total probability law should be reconsidered. Same situation is
occurred even in non-quantum systems.

Let us consider a simple and intuitive example: When one takes sugar S and
chocolate C and he is asked whether it is sweet (1) or not so (0). Then the simple
classical probability law may not be satisfied, that is,

P (C = 1) �= P (C = 1|S = 1)P (S = 1) + P (C = 1|S = 0)P (S = 0)

J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 160–171, 2012.
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because the LHS P (C = 1) will be very close to 1 but the RHS will be less than
1
2 . After taking very sweet sugar, he will taste the chocolate is not so sweet.
Taking sugar changes his taste, i.e., the situation of the tongue changes. The
conditional probability should be defined on the basis of such a change, so that
it is observable-adaptive quantity. The P (C = i|S = j) should be written as
Padap(C = i|S = j) and its proper mathematical description (definition) should
be given, that is, we will give a mathematical formula to compute the LHS and
the RHS above.

In this report, we present a mathematical framework for the study of these
context dependent systems.

2 Adaptive Dynamics

The idea of the adaptive dynamics has implicitly appeared in series of papers
[18, 19, 21–27] for the study of compound dynamics, chaos and the SAT algo-
rithm. The name of the adaptive dynamics was deliberately used in [28]. The AD
has two aspects, one of which is the ”observable-adaptive” and another is the
”state-adaptive”. The observable-adaptive dynamics is a dynamics characterized
as follows: (1) Measurement depends on how to see an observable to be measured.
(2)The interaction between two systems depends on how a fixed observable exists.
The state-adaptive dynamics is a dynamics characterized asfollows: (1)Measure-
ment depends on how the state to be used exists. (2)The correlation between two
systems interaction depends on how the state of at least one of the systems at one
instant exists. The idea of observable-adaptivity comes from studying chaos. We
claimed that any observation will be unrelated or even contradicted to mathe-
matical universalities such as taking limits, sup, inf, etc. Observation of chaos is
a result due to taking suitable scales of, for example, time, distance or domain,
and it will not be possible in the limiting cases. Examples of the observable-
adaptivity are used to understand chaos [19, 26] and examine the violation of
Bell’s inequality, namely the chameleon dynamics of Accardi [29]. The idea of the
state-adaptivity is implicitly started in constructing a compound state for quan-
tum communication [17, 18, 20, 21]. Examples of the state-adaptivity are seen
in an algorithm solving NP complete problem, i.e., a pending problem for more
than 30 years asking whether there exists an algorithm solving a NP complete
problem in polynomial time, as discussed [23, 24, 27].

3 Conditional Probability and Joint Probability in
Quantum Systems

The conditional probability and the joint probability do not generally exist in
quantum system, which is an essential difference from classical system. First of
all, let us fix the notations to be used throughout in this paper. We will review
these facts for the sequel uses.
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Let H, K be the Hilbert spaces describing the system of interest, S(H) be the
set of all states or probability measures on H, O(H) be the set of all observables
or events on H and P(H) ⊂ O(H) be the set of projections in O(H).

In classical probability, the joint probability for two eventsA and B is μ(A∩B)
and the conditional probability is defined by

μ(A ∩B)

μ(B)
.

In quantum probability, if the von Neumann-Lüder projection rule is correct,
after a measurement of F ∈ P(H), a state ρ is considered to be

ρF =
FρF

trρF
.

When we observe an event E ∈ P(H), the expectation value becomes

trρFE =
trFρFE

trρF
=

trρFEF

trρF
. (1)

This expectation value can be a candidate of the conditional probability in QP
(quantum probability).

There is another candidate for the conditional probability in QP, which is a
direct generalization of CP (classical probability).

This alternative expression of joint probability and the conditional probability
in QP are expressed as

ϕ(E ∧ F ) and
ϕ(E ∧ F )

ϕ(F )
, (2)

where ϕ is a state (a measure) and ∧ is the meet of two events (projections)
corresponding to ∩ in CP, and for the state describing by a density operator, we
have

ϕ(·) = trρ(·).
We ask when the above two expressions (1) and (2) in QP are equivalent. From
the next proposition, ϕ(·∧F )/ϕ(F ) is not a probability measure (state) on P(H).

Proposition 1. (1) When E commutes with F , the above two expressions are
equivalent, namely,

ϕ(FEF )

ϕ(F )
=
ϕ(E ∧ F )

ϕ(F )
.

(2) When EF �= FE, ϕ(·∧F )
ϕ(F ) is not a probability on PH, so that the above two

expressions are not equivalent.

Proof. (1) EF = FE implies E ∧ F = EF and FEF = EFF = EF 2 = EF , so
that

ϕ (E ∧ F )

ϕ (F )
=
ϕ (FEF )

ϕ (F )
=
ϕ (EF )

ϕ (F )
.
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(2) Put Kϕ (E | F ) ≡ ϕ(E∧F )
ϕ(F ) and put z ∈ linsp {x, y} , z �= x, y for any x, y ∈

H. Take the projections Px = |x〉 〈x| , Py = |y〉 〈y| , Pz = |z〉 〈z| such that
(Px ∨ Py) ∧ Pz = Pz and Px ∧ Pz = 0 = Py ∧ Pz . Then

Kϕ (Px ∨ Py | Pz) = Kϕ (Pz | Pz) �= 0, Kϕ(Px | Pz)+Kϕ (Py | Pz) = 0.

Therefore
Kϕ (Px ∨ Py | Pz) �= Kϕ (Px | Pz) +Kϕ (Py | Pz)

so that Kϕ (· | Pz) is not a probability measure on PH.

In CP, the joint distribution for two random variables f and g is expressed as

μf,g (Δ1, Δ2) = μ
(
f−1 (Δ1) ∩ g−1 (Δ2)

)
for any Borel sets Δ1, Δ2 ∈ B (R). The corresponding quantum expression is
either

ϕA,B (Δ1, Δ2) = ϕ (EA (Δ1) ∧EB (Δ2)) or ϕ(EA (Δ1) · EB (Δ2))

for two observables A, B and their spectral measures EA(·), EB(·) such that

A =

∫
aEA (da) , B =

∫
bEB (da) .

It is easily checked that neither one of the above expressions satisfies neither the
condition of probability measure nor the marginal condition unless AB = BA,
so that they can not be the joint quantum probability in the classical sense.

Let us explain the above situation, as an example, in a physical measurement
process. When an observable A has a discrete decomposition like

A =
∑
k

akFk, Fi⊥Fj (i �= j),

the probability obtaining ak by measurement in a state ρ is

pk = trρFk

and the state ρ is changed to a (conditional) state ρk such that

ρk =
FkρFk

trρFk
.

After the measurement of A, we will measure a similar type observable B (i.e.,
B =
∑

j bjEj , (Ei⊥Ej (i �= j)) and the probability obtaining bj after we have
obtained the above ak for the measurement of A is given by

pjk = (trρFk) (trρkEj) = trρFkEjFk = Pρ (Ej |Fk) trρFk., (3)

where Pρ(Ej |Fk) = trρkEj . This pjk satisfies∑
j,k

pjk = 1,
∑
j

pjk = trρFk = pk, (4)
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but not ∑
k

pjk = trρEj

unless EjFk = FkEj (∀j, k) so that pjk is not considered as a joint quantum
probability distribution. More intuitive expression breaking the usual classical
probability law is the following:

pjk = P (B=bj |A=ak)P (A=ak) and P (B=bj) �=
∑
k

P (B=bj |A=ak)P (A=ak)

Therefore we conclude in quantum system that the above two candidates can not
satisfy the properties of both conditional and joint probabilities in the sense of
classical system.

The above discussion shows that the order of the measurement of two observ-
ables A and B is essential and it gives us a different expectation value, hence
the state changes.

4 Lifting and Joint Probability

In order to partially solve the difficulty of the nonexistence of joint quantum
distribution, the notion of compound state satisfying the marginal condition is
useful. In this section we discuss a bit general notion named ”lifting”[27] to
discuss new scheme of probability containing both classical and quantum.

Definition 1. Let A1,A2 be C*-algebras and let A1 ⊗ A2 be a fixed C*-tensor
product of A1 and A2. A lifting from A1 to A1⊗A2 is a weak ∗-continuous map

E∗ : S(A1)→ S(A1 ⊗A2)

If E∗ is affine and its dual is a completely positive map, we call it a linear lifting;
if it maps pure states into pure states, we call it pure.

The algebras A1, A2 can be considered as two systems of interest, for instance,
A1 is an objective system for a study and A2 is the subjective system or the
surrounding of A1.

Note that to every lifting from A1 to A1⊗A2 we can associate two channels:
one from A1 to A1, defined by

Λ∗ρ1(A1) ≡ (E∗ρ1)(A1 ⊗ 1) ; ∀A1 ∈ A1

another from A1 to A2, defined by

Λ∗ρ1(A2) ≡ (E∗ρ1)(1⊗A2) ; ∀A2 ∈ A2

In general, a state ϕ ∈ S(A1 ⊗A2) such that

ϕ |A1⊗1= ρ1 ; ϕ |1⊗A2= ρ2
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is called a compound state of the states ρ1 ∈ S(A1) and ρ2 ∈ S(A2). Remark
here that the above compound state is nothing but the joint probability in CP.

The following problem is important in several applications: Given a state
ρ1 ∈ S(A1) and a channel Λ∗ : S(A1) → S(A2), find a standard lifting E∗ :
S(A1)→ S(A1⊗A2) such that E∗ρ1 is a compound state of ρ1 and Λ

∗ρ1. Several
particular solutions of this problem have been proposed by Ohya, Ceccini and
Petz, however an explicit description of all the possible solutions to this problem
is still missing, which might be related to find a new scheme of probability theory.

However it is not true that one can resolve the difficulty of quantum probability
if one can solve this problem. The compound state corresponds to the joint prob-
ability in classical systems, but there is still ambiguity to define the conditional
state in quantum systems. As pointed out in Introduction, the usual conditional
probability meets an inadequacy to interpret a certain phenomenon, in which it
is important not to manage to set the conditional state by mimicking the classical
one but to make a mathematical rule to set new treatment of probabilistic aspects
of such a phenomenon.

Definition 2. A lifting from A1 to A1⊗A2 is called non-demolition for a state
ρ1 ∈ S(A1) if ρ1 is invariant for Λ∗ i.e., if for all a1 ∈ A1

(E∗ρ1)(a1 ⊗ 1) = ρ1(a1)

The idea of this definition being that the interaction with system 2 does not alter
the state of system 1.

Definition 3. A transition expectation from A1 ⊗ A2 to A1 is a completely
positive linear map E∗ : A1 ⊗A2 → A1 satisfying

E∗(1A1 ⊗ 1A2) = 1A1 .

Let an initial state (resp. input signal) is changed (resp. transmitted) to the
final state (resp. output state) due to a dynamics Λ∗ (resp. channel). Here A1

(resp. A2) is interpreted as the algebra of observables of the input (resp. output)
system and E∗ describes the interaction between the input and the output. If
ρ1 ∈ S(A1) is the initial state, then the state ρ2 = Λ∗ρ1 ∈ S(A2) is the output
state.

In several important applications, the state ρ1 of the system before the in-
teraction (preparation, input signal) is not known and one would like to know
this state knowing only Λ∗ρ1 ∈ S(A2), i.e., the state of the apparatus after the
interaction (output signal). From a mathematical point of view this problem is
not well posed, since the map Λ∗ is usually not invertible. The best one can do in
such cases is to acquire a control on the description of those input states which
have the same image under Λ∗ and then choose among them according to some
statistical criterion.

Let us show some important examples of liftings and channels below

Example 1. : Isometric lifting.
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Let V : H1 → H1 ⊗H2 be an isometry V ∗V = 1H1 . Then the map

E : x ∈ B(H1)⊗B(H2)→ V ∗xV ∈ B(H1)

is a transition expectation in the sense of Accardi, and the associated lifting
maps a density matrix w1 in H1 into

E∗w1 = V w1V
∗

in H1 ⊗H2. Liftings of this type are called isometric. Every isometric lifting is
a pure lifting. In this case the channel Λ∗ : H1 → H1 is given by trH2E∗.
Example 2. Quantum measurement: If a measuring apparatus is prepared by
an positive operator valued measure {Qn} then the state ρ changes to a state
Λ∗ρ after this measurement, ρ→ Λ∗ρ =

∑
nQnρQn.

Example 3. Reduction (Open system dynamics): If a system Σ1 interacts with
an external system Σ2 described by another Hilbert space K and the initial
states of Σ1 and Σ2 are ρ1 and ρ2, respectively, then the combined state θt of
Σ1 and Σ2 at time t after the interaction between two systems is given by

θt ≡ Ut(ρ1 ⊗ ρ2)U
∗
t ,

where Ut = exp(−itH) with the total Hamiltonian H of Σ1 and Σ2. A channel
is obtained by taking the partial trace w.r.t. K such as

ρ1 → Λ∗ρ1 ≡ trKθt.

Example 4. : The compound lifting.

Let Λ∗ : S(A1)→ S(A2) be a channel. For any ρ1 ∈ S(A1) in the closed convex
hull of the external states, fix a decomposition of ρ1 as a convex combination of
extremal states in S(A1)

ρ1 =

∫
S(A1)

ω1dμ

where μ is a Borel measure on S(A1) with support in the extremal states, and
define

E∗ρ1 ≡
∫
S(A1)

ω1 ⊗ Λ∗ω1dμ

Then E∗ : S(A1)→ S(A1 ⊗A2) is a lifting, nonlinear even if Λ∗ is linear, and it
is a nondemolition type.

The most general lifting, mapping S(A1) into the closed convex hull of the
extremal product states on A1 ⊗ A2 is essentially of this type. This nonlinear
nondemolition lifting was first discussed by Ohya to define the compound state
and the mutual entropy for quantum information communication [18, 20]. The
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above is a bit more general because we shall weaken the condition that μ is
concentrated on the extremal states used in [18].

Therefore once a channel is given, by which a lifting of convex product type can
be constructed. For example, the von Neumann quantum measurement process
is written, in the terminology of lifting, as follows: Having measured a compact
observable A =

∑
n anPn (spectral decomposition with

∑
n Pn = I) in a state

ρ, the state after this measurement will be

Λ∗ρ =
∑
n

PnρPn

and a lifting E∗, of convex product type, associated to this channel Λ∗ and to a
fixed decomposition of ρ as ρ =

∑
n μnρn (ρn ∈ S(A1)) is given by :

E∗ρ =
∑
n

μnρn ⊗ Λ∗ρn.

Finally we note that a channel is determined by a lifting and coversely a lifting
is constructed by a channel.

5 New Views of Probability Both in Classical and
Quantum Systems

In this section, I will discuss how to use the concept of lifting to explain phe-
nomena breaking the usual probability law.

Let A,B be C*-algebras describing the systems for a study, more specifically,
let A,B be the sets of all obserbales in Hilbert spaces H, K; A = O(H), B =
O(K). Let E∗ be a lifting from S (H) to S (H⊗K), so that its dual map E is a
mapping from A ⊗ B to A. There are several liftings for various different cases
to be considered: (1) If K is C, then the lifting E∗ is nothing but a channel from
S (H) to S (H) . (2) If H is C, then the lifting E∗ is a channel from S (H) to
S (K) . Further K or H can be decomposed as K = ⊗iKi (resp. ⊕iKi), and so for
H, so that B can be ⊗iBi (resp. ⊕iBi) and so for A.

The adaptive dynamics is considered that the dynamics of a state or an ob-
servable after an instant (say the time t0) attached to a system of interest is
affected by the existence of some other observable and state at that instant. Let ρ
∈ S (H) and A ∈ A be a state and an obserbable before t0, and let σ ∈ S (H⊗K)
and Q ∈ A⊗B be a state and an observable to give an effect to the state ρ and
the observable A.In many cases, the effect to the state is dual to that to the
observable, so that we will discuss the effect to the state only. This effect is
described by a lifting E∗σQ,so that the state ρ becomes E∗σQρ first, then it will be
trKE∗σQρ ≡ ρσQ. The adaptive dynamics is the whole process such as

Adaptive Dynamics : ρ⇒ E∗σQρ⇒ ρσQ = trKE∗σQρ
That is, what we need is how to construct the lifting for each problem to be
studied. The expectation value of another observable B ∈ A or A ⊗ B in the
adaptive state ρσQ is

trρσQB = trHtrKBE∗σQρ.
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Now suppose that there are two quantum event systems A = {ak ∈ R, Fk ∈ A}
and B = {bj ∈ R, Ej ∈ B} ,where we dot not assume Fk, Ej are projections but
they satisfy the conditions

∑
k Fk = I,

∑
j Ej = I as POVM (positive operator

valued measure) corresponding to the partition of a probability space in classical
system. Then the ”joint-like” probability obtaining ak and bj might be given by
the formula

P (ak, bj) = trFk � EjE∗σQρ, (5)

where � is a certain operation (relation) between A and B, more generally one
can take a certain operator function f(Fk, Ej) instead of Fk � Ej . If σ,Q are
independent from any Fk, Ej and the operation � is the usual tensor product
⊗ so that A and B can be considered in two independent systems or to be com-
mutative, then the above ”joint-like” probability becomes the joint probability.
However if not such a case, e.g., Q is related to A and B, the situation will be
more subtle. Therefore the problem is how to set the operation � and how to
construct the lifting E∗σQ in order to describe the particular problems associated
to systems of interest.

5.1 State Change of Tongue for Sweetness

The first problem is not so sophisticated but very simple and common one. As
considered in Introduction, when one takes sugar S and chocolate C and he is
asked whether it is sweet (1) or not so (0). Then the simple classical probability
law may not be satisfied, that is,

P (C = 1) �= P (C = 1|S = 1)P (S = 1) + P (C = 1|S = 0)P (S = 0)

because the LHS P (C = 1) will be very close to 1 but the RHS will be less than
1/2. Here we start from the following neutral pure state ρ because we consider
two sweet things. Let e1 and e0 be the orthogonal vectors describing sweet and
non-sweet states, respectively. The initial state of tongue is neutral such as

ρ ≡ |x〉 〈x| ,
where x = 1√

2
(e0 + e1) . It is enough for us to take the Hilbert space C2 for this

problem, so that e0 and e1 can be set as
(
1
0

)
and
(
0
1

)
, respectively.

When one takes ”sugar”, the operator corresponding to taking ”sugar” will
be given as

S =

(
λ0 0
0 λ1

)
,

where |λ0|2 + |λ1|2 = 1. This operator can be regarded as the square root of the
sugar state σS ;

σS = |λ0|2E0 + |λ1|2E1, E0 =

(
1

0

)
(10), E1 =

(
0

1

)
(01).

Taking sugar, he will taste that it is sweet with the probability |λ1|2 and non-

sweet with the probability |λ0|2 , so |λ1|2 should be much higher than |λ0|2 for a
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usual sugar. This comes from the following change of the neutral initial tongue
(i.e., non-adaptive) state:

ρ→ ρS = Λ∗
S(ρ) ≡

S∗ρS

tr |S|2 ρ ,

which is the state when he takes the sugar. This is similar to the usual expression
of state change in quantum dynamics, although it is adaptive for sugar. Note
here that if we kill the subjectivity (personal character?) of one’s tongue, then
the state of tongue can be understood as

ρ̄S ≡ E0ρSE0 + E1ρSE1,

which is the unread objective state as usual in quantum measurement. We can
use the above two expressions ρS and ρ̄S which give us the same result for the
computation of the probability.

For some time duration, the tongue becomes dull to sweetness, so the tongue

state can be written by means of a certain ”exchanging” operator X =

(
0 1
1 0

)
such that

ρaS = XρSX,

where ”a” means the adaptive change: This operation by X is given in the
situation Ssug that he took the sugar. Then similarly as sugar, when one takes
a chocolate, the state will be ρaS→C given by

ρaS→C = Λ∗
C(ρ

a
S) ≡

C∗ρaSC

tr |C|2 ρaS
,

where C will be given as

C =

(
μ0 0
0 μ1

)
with |μ0|2 + |μ1|2 = 1. Common experience tells us that |λ1|2 ≥ |μ1|2 ≥ |μ0|2 ≥
|λ0|2 and the first two are much larger than the last two.

As discussed in Sec. 4, the adaptive set {σ,Q} is the set {S (= σS) , X,C},
we introduce the following nonlinear demolition lifting:

E∗σQ(ρ)(= E∗S (=σS)XC(ρ)) ≡ ρS ⊗ ρaS→C = Λ∗
S(ρ)⊗ Λ∗

C(XΛ
∗
S(ρ)X),

which implies the joint probabilities P (S = j, C = k) (j, k = 0, 1) as

P (S = j, C = k) = trEj ⊗ EkE∗σQ(ρ).

The probability that one tastes sweetness of the chocolate after tasting sugar is

P (S = 1, C = 1) + P (S = 0, C = 1) =
|λ0|2 |μ1|2

|λ0|2 |μ1|2 + |λ1|2 |μ0|2
.



170 M. Asano et al.

Note that this probability is much less than

P (C = 1) = trE1Λ
∗
C(ρ) = |μ1|2 ,

which is the probability of sweetness tasted by the neutral tongue ρ. In this
sense, it seems that the usual probability law

P (C = 1) = P (S = 1, C = 1) + P (S = 0, C = 1)

is not satisfied. As mentioned in the introduction, this violoation of law is natural,
because the probability of LHS and the one of RHS are estimated in the different
situations denoted by S¬sug and Ssug, that is, PS¬sug (C = 1) �= PSsug (C = 1).

The double-slit experiment in quantum mechanics and others are discussed
by A. Khrennikov and Y. Tanaka in this conference. It is possible to explain
these context-dependent phenomena by taking proper adaptive dynamics.
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Abstract. Modelling how a word is activated in human memory is
an important requirement for determining the probability of recall of
a word in an extra-list cueing experiment. Previous research assumed
a quantum-like model in which the semantic network was modelled as
entangled qubits, however the level of activation was clearly being over-
estimated. This paper explores three variations of this model, each of
which are distinguished by a scaling factor designed to compensate the
overestimation.

1 Introduction

A crucial aspect of producing models that predict the probability of recall is mod-
elling the activation of a target word in memory prior to cuing. Much evidence
shows that for any individual seeing or hearing a word activates words related
to it through prior learning. Seeing “planet” activates the associates “earth”,
“moon”, and so on, because “planet-earth”, “planet-moon”, “moon-space” and
other associations have been acquired in the past. This activation aids compre-
hension, is implicit, and provides rapid, synchronous access to associated words.
Therefore, some models of activation fundamentally rely on the probabilities of
such associations.

Conventionally, the way in which words are represented in memory is modelled
using a semantic network comprising the target word and its most common
associates in a directed weighted graph (see Fig. 1 for an example). However, the
notion of relational weighting has been challenged with an alternative viewpoint
which suggests only the existence of a relationship between the words in the
graph is required in the model (i.e., a 1 or 0 representing the presence or absence
of a link). This {1, 0}measure often seems to provide a better practical predictor
of activation level than the weighted probability measure. Theoretically the use of
the {1, 0}measure implies that, when a link is activated, it is activated regardless
of how strongly it is represented in its local network (i.e., strength of activation is
not important). Activation must provide extremely fast access to the entirety of
its semantic links regardless of their strength because relatively weaker meanings
are often what are needed in the immediate future for a given context [7]. In our
view, the strength of a link becomes critically important when one word is used
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as a cue for recalling a related word because it can activate many words other
than the one needed. In this case, the strength of the link between the cue and
its target word is critical in determining success. Hence, we think of activation
as being all or none for each link, and strength as varying along a continuum
when using a cue to sample related information in the semantic network.

Three models are proposed and tested to identify whether this binary seman-
tic network representation would provide a better model of activation that the
Spooky-action-at-a-distance model, which is based on the links in the semantic
network being weighted. Given that no existing knowledge exists surrounding
the nature between Spooky-action-at-a-distance[4], and the new “all or none”
approach to link weights, both the average activation, average error (when fitted
against a Probability of Recall), and correlation with probability of recall will
be performed.

2 Activation Models

In order to aid in understanding the implementation of the three models con-
sider the following situation of a hypothetical target with two associates, a single
associate-to-target and associate-to-associate links, all of which can be repre-
sented using the Markov Chain Matrix as given in Table 1.

Fig. 1. A hypothetical target with two associates and single associate-to-target and
associate-to-associate links [4]

Table 1. Matrix corresponding to hypothetical target shown in Fig. 1. Free association
probabilities are obtained by finding the row of interest(the cue) and running across
to the associate word obtained [2].

Target (t) Associate 1 (a1) Associate 2 (a2)

Target (t) 0.2 0.1
Associate 1 (a1) 0.6
Associate 2 (a2) 0.7
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2.1 Spooky Action at a Distance

The Spooky-action-at–distance model of target activation is computed via the
following formula:

S(T ) =
∑
i

ST,i +
∑
i

Si,T +
∑
i

∑
j

Si,j (1)

where,

Si,T = Pr(Wordi | T ) , ST,i = Pr(Wordi|T ) , Si,j = Pr(Wordi |Wordj) (2)

and,
Wordi,j ∈ Target Associates

Noting that Si,T , ST,i and Si,j represent free association probabilities, i.e. Si,j =
Pr(Wordi | Wordj) represents the probability that Wordi is produced when
Wordj is used as cue in free association experiments [1]. Taking the example
from Fig. 1,

S(T ) = (0.1 + 0.2) + (0 + 0.7) + (0.6 + 0) = 1.6.

2.2 Entanglement Activation Model

One method used to model activation is to view a target’s network as a composite
quantum system as discussed by [6]. Using the example of Fig. 1 to view a target’s
association network, this would translate into a quantum system modelled by
three qubits. Fig. 2 depicts this system, where each word is in a superposed state
of being activated (denoted by the basis state |1〉) or not activated (denoted by
the basis state |0〉). Thus the states of the words in the associative network are
represented as,

|t〉 = π̄t |0〉+ πt |1〉 , |a1〉 = π̄a1 |0〉+ πa1 |1〉 , |a2〉 = π̄a2 |0〉+ πa2 |1〉 (3)

While the amplitudes of the respective qubits can be derived from the matrix
depicted in Table 1. Consider the column associate a2. The two non-zero values
in this column represent the level and the number of times associate a2 is recalled
in a free association experiment. Intuitively, the more non-zero entries and the

Fig. 2. Three bodied quantum system of words [1]



Modelling Word Activation in Semantic Networks 175

Table 2. Matrix corresponding to hypothetical target system shown in Fig. 1 where
all of the link weightings not equal to zero have been set to 1

Target (t) Associate 1 (a1) Associate 2 (a2)

Target (t) 0 1 1
Associate 1 (a1) 0 0 1
Associate 2 (a2) 1 0 0

higher the values, the more a2 is activated. [6] formalized this by taking the
square root of the average of these values as being the amplitude. For example
πa2 =

√
0.35. In the “all or none” approach, we no longer consider the strength

of the relationships in ascribing the amplitudes, rather the existence (or non-
existence) of a relationship. Consequently, the original semantic network depicted
in Table 1 now takes the form in Table 2. The intuition behind entanglement
activation is that the target t “activates its associative structure in synchrony”
[2]. This intuition is modelled using an entangled state,

ψ
′
t =

√
p0 |000〉+√p1 |111〉 , (4)

which represents a situation in which the entire associative structure is either
completely activated (|111〉) or not activated at all (|000〉). The entanglement
model is fundamentally different to the existing models found in the psycholog-
ical literature (predominantly that of the spreading activation model as well as
the spooky-action-at-a-distance model) as it models the target and its associative
network as a non-separable structure [3].

The question remains how to ascribe values to the probabilities p0 and p1. One
approach is to assume the target is not activated. Given that p1 refers to the
probability of the target being activated, this reflects the strength of activation,
namely S(T ) as proposed by [6]:

p1 = S(T ) = 1− (1− Pr(T ))
∏
i

(1− Pr(Wordi)) . (5)

Eq. 5 is known to overestimate activation, particularly as the number of words in
the semantic network increases [6]. This paper will contribute three entanglement
models, each of which suggests a different approach to re-scaling the activation,
with the intention of alleviating this overestimation problem. Each model will
retain Eq. 5’s structure, however the Pr(Wordi) (the square of the amplitude)
is redefined for each of the three models according to a different scaling factor.

2.3 Entanglement Binary V1

The Entanglement Binary V1 Activation Model assumes that the Pr(Wordi)’s
strength is scaled by the ratio of the number of associate to word links to the
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number of words (n) within the network, namely:

S(T ) = 1− (1− Pr(T ))
∏
i

(1− Pr(Wordi)) . (6)

Pr(Wordi) =
#{Pr(Wordi|Pr(Wordj)) �= 0; ∀j �= i}

n
. (7)

Taking the example from Fig. 1, the target’s and associate’s probabilities are

Target (t) Associate 1 (a1) Associate 2 (a2)
Pr(Word) 1

3
1
3

2
3

and the corresponding probability of target activation is given by,

S(T ) = 1−
(
1− 1

3

)(
1− 1

3

)(
1− 2

3

)
= 0.851851852. (8)

2.4 Entanglement Binary V2

The Entanglement Binary V2 Activation Model assumes that the Pr(Wordi)’s
strength is scaled by ratio of the number of associate to word links to the total
number of possible links within the network (excluding self resonant links), i.e.,

S(T ) = 1− (1− Pr(T ))
∏
i

(1− Pr(Wordi)) . (9)

Pr(Wordi) =
#{Pr(Wordi|Pr(Wordj)) �= 0; ∀j �= i}

n(n− 1)
(10)

Taking the example from Fig. 1, the target’s and sssociate’s probabilities are:

Target (t) Associate 1 (a1) Associate 2 (a2)
Pr(Word) 1

3(3−1)
1

3(3−1)
2

3(3−1)

and the corresponding probability of target activation is given by

S(T ) = 1−
(
1− 1

6

)(
1− 1

6

)(
1− 2

6

)
= 0.537037037. (11)

2.5 Entanglement Binary V3

The Entanglement Binary V3 Activation Model assumes that the Pr(Wordi)’s
strength is scaled by the ratio of the number of associate to word links with the
number of actual links within the network m (excluding self resonant links),i.e.,

S(T ) = 1− (1− Pr(T ))
∏
i

(1− Pr(Wordi)) (12)

Pr(Wordi) =
#{Pr(Wordi|Pr(Wordj)) �= 0; i �= j}

m
(13)

m = #{Pr(Wordi|Wordj) �= 0; ∀i, j; i �= j}. (14)
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Taking the example from Fig. 1, the target’s and associate’s probabilities are

Target (t) Associate 1 (a1) Associate 2 (a2)
Pr(Word) 1

4
1
4

2
4

and the corresponding probability of target activation is now given by

S(T ) = 1−
(
1− 1

4

)(
1− 1

4

)(
1− 2

4

)
= 0.71875. (15)

3 Analysis of Activation Models

The focus of this paper lies on modelling the activation for each of the three mod-
els and evaluating their performance against the Spooky-action-at-a-distance
model as a baseline for comparison. This model was chosen as it is currently the
best performing model for target activation in the literature.

The University of South Florida supplied the data set used for the testing,
which was comprised of 4068 individual target-cue pairs, and a probability of
recall of the target with respect to the cue. The probability of recall was estab-
lished by human subjected in extra-list cuing experiments [5]. In the analysis
to follow the probability of activation of a target S(T ) was computed using the
Spooky-action-at-a-distance formula (1), and each of the the three entanglement
models, equations (6),(9) and (12).

Two sets of analysis were performed for this process. The first area of analysis
involved assessing the whether the binary network representations better suited
modelling target activation. The mean probability of target activation was chosen
as the figure for comparison pending all the three model’s fitted values could be
definitively shown to follow a Normal Distribution. A key feature of normality is
that it allows for the standard measure of centrality, i.e. the mean, median and
mode, coupled with the standard deviation to aid in understand the distribution
of the results. Secondly, an analysis was performed on the error: probability of
activation minus the probability of recall. As the cue process is ignored in this
error analysis, a negative mean error would be expected for a good model of
target activation model. This is because cue probabilities and target activation
probabilities combine to estimate the probability of recall of the target given the
cue. The purpose of the error analysis was to again seek a normal like distribution
to justify the use of the mean as a characteristic for comparison, but furthermore
to gain an understanding as to how the model compared to the observed data.
Finally the activation probabilities of all models were correlated with the actual
probability of recall.

3.1 Spooky Action at a Distance

The Spooky Action at a Distance Activation was computed against all test cases
produced the results depicted in Table 3.

Here we observe that on average the activation is fairly low (Mean = 0.327),
coupled with an almost matching median and low standard deviation is it fair
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Table 3. Descriptive Statistics on Spooky-Activation-at-a-Distance

Target Activation

Mean 0.3272031
Median 0.3030769
Standard Deviation 0.1431615
Range 1.6775
Minimum 0.0525
Maximum 1.73

to suppose that its distribution would be fairly centred, dense and akin to that
of a true Normal Distribution. The maximum value of 1.73 is greater than 1,
as unlike traditional activation models which are probabilistic; the activation
level for this model is not a probability. However, as values greater than 1 were
rarely observed, these were treated as flaws/outliers for the purposes of this
analysis and the spooky activation modelled was thereby assumed to generate
a probability of recall. To reinforce this, a further investigation was made into
measuring the target activation against the probability of recall, the results of
which are shown in Fig. 3, which indicates that there is strong evidence that the
errors are Normally Distributed, and from which the original proposition to use
the Mean (0.3272031) as a basis is supported.

Fig. 3. Histogram of Spooky-Activation-at-a-Distance Activation Recall minus Prob-
ability of Recall (μ = −0.2196072, σ = 0.2679344)

These results show why Spooky performs well in modelling activation — the
underfitting of the probability of recall is to be expected in a good model.

3.2 Entanglement Binary V1

The Entanglement Binary V1 Model was computed against all test cases pro-
ducing the results shown in Table 4.

Here we observe that on average the activation is extremely high (Mean =
0.9500141), coupled with an almost matching median and particularly low stan-
dard deviation implies that it would be fair to conclude that its distribution



Modelling Word Activation in Semantic Networks 179

Table 4. Descriptive Statistics on Entanglement Binary V1

Target Activation

Mean 0.9500141
Median 0.9661007
Standard Deviation 0.04912377
Range 0.3276542
Minimum 0.67232
Maximum 0.9999742

Fig. 4. Histogram of Entanglment Binary V1 probability of target activation minus
Probability of Recall (μ = 0.420401, σ = 0.2643495)

would be analogous to that of a Normal Distribution. The error anlaysis shown
in Fig. 4 indicates that there is sufficient evidence that the errors are Normally
Distributed, and from which the original proposition to use the Mean (0.9500141)
as a basis is supported. The over-fitting of the probability of recall is is even worse
than for the entanglement activation model reported in [6]. Clearly, using the
number of associates (n) as a scaling factor in the entangled representation of
the binary semantic network has not compensated for the overestimation docu-
mented in [6].

3.3 Entanglement Binary V2

The Entanglement Binary V2 Model was computed against all test cases pro-
ducing the results depicted in Table 5.

Here we observe that on average the activation is quite low (Mean= 0.2285645),
coupled with an almost matching median and particularly low standard deviation
implies that it would be fair to conclude that its distribution would resemble that
of a Normal Distribution. The target activation against the probability of recall
error analysis is shown in Fig. 5, which indicates that there is strong evidence that
the errors are Normally Distributed, and from which the original proposition to
use the Mean (0.2285645) as a basis is supported. These results show a greater
promise for development than that of the previous model.
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Table 5. Descriptive Statistics on Entanglement Binary V2

Target Activation

Mean 0.2285645
Median 0.2062454
Standard Deviation 0.0976225
Range 0.55611115
Minimum 0.07351845
Maximum 0.6296296

Fig. 5. Histogram of Entanglement Binary V2 probability of target activation minus
Probability of Recall (μ = −0.3010487, σ = 0.2583977)

Here, by scaling by the number of possible links between associates n(n− 1),
the overestimation documented in [6] has been compensated, but the mean error
is greater than that of Spooky-action-at-a-distance (μ = −0.3010487 vs. μ =
−0.2196072).

3.4 Entanglement Binary V3

The Entanglement Binary V3 model was computed against all test cases pro-
ducing the results shown in Table 7.

Table 6. Descriptive Statistics on Entanglement Binary V3

Target Activation

Mean 0.6561066
Median 0.6529113
Standard Deviation 0.01069147
Range 0.0772161
Minimum 0.6415339
Maximum 0.71875

Here we observe that on average the activation is fairly strong (Mean =
0.6561066), coupled with an almost matching median and particularly low
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Fig. 6. Histogram of Entanglement Binary V3 Activation Recall vs Probability of Re-
call (μ = 0.1264935, σ = 0.2648446)

Table 7. Descriptive Statistics on the PIER2 model

V1 V2 V3 Spooky

ρ 0.1248266704 0.3473200375 0.0972704901 0.0104764534
Mean Error -0.0330907371 0.191858518 -0.0079025998 -0.2307347387
St Dev Error 0.2572710404 0.2405896058 0.2603335278 0.26892291

standard deviation (relative to the mean) implies that it would be fair to con-
clude that its distribution would resemble that of a Normal Distribution.

The results of the error analysis are shown in Fig. 6, which indicates that there
is strong evidence that the errors are Normally Distributed, and from which the
original conjecture to use the Mean (0.6561066) is supported. V3 performs the
best empirically as its average mean error is lowest for all models. The number
of actual links (m) within the network appears to be a robust feature for scaling
activation probabilities.

4 Discussion

The primary focus of this paper was to investigate whether the binary seman-
tic network representation would lead to improved models of target activation.
As stated previously the methods developed were to be benchmarked against
the Spooky-action-at-a-Distance model; given its quantum nature, its origins
in classical psychological modelling and its proven performance on empirical
data [4].

The Entanglement Binary V1, V2 and V3 models all worked on generating
probabilities of target activation by scaling the number of associate to word
links to features based on the semantic network. All three exhibited relatively



182 D. Galea et al.

loose normal distributions, yet produced robust normal distributions when fit-
ted against the Probability of Recall allowing us to use the mean as a basis
for comparison. Given the respective averages are Spooky = 0.3272031 , En-
tanglement Binary V1 = 0.9500141 , V2 = 0.2285645, V3 = 0.6561066. We see
that the V1,V3 overfit and V2 underfits with respect to probabilities of activa-
tion computed by the Spooky-action-at-a-distance baseline; however V3 is far
more stable. When fitted against a Probability of Recall the respective aver-
age errors are Spooky = −0.2196072 , Entanglement Binary V1 = 0.420401 ,
V2 = −0.3010487, V3 = 0.1264935. As the error is proportional to the scaling
method used, Entanglement Binary V1 and V2 scale too strongly and weakly re-
spectively, whilst V3 not only outperforms V1 and V2 empirically, it also reduces
the average error of Spooky by ∼ 30%.

5 Summary and Outlook

In summary, this article uses a binary semantic network representation for mod-
elling the activation of words in memory as entangled states. A previously pub-
lished entanglement model overestimated the level of activation. Three entangle-
ment models were analysed with respect to mean level of activation and average
error with respect to probability of recall. These models differed only in the
means employed to scale the level of activation as a means of addressing the
aforementioned propensity to overestimate. The well known Spooky-action-at-
a-distance model of activation was used as a baseline for comparative perfor-
mance. It was found that by scaling the level of activation by the actual number
of links in the network significantly reduced the average error with respect to
the probability of recall, even though this method still has a propensity to over-
estimate target activation. Therefore a significant step in the right direction has
been taken and further work will consist of further tuning this factor in order to
combat the overestimation problem.

We anticipate that future empirical analysis will be broadened to include the
cue process. One way to pursue this is to use the well know PIER2 model [8]
to generate estimates of the probability of recall. In this way the cue process
is held constant and alternative models of activation can be manipulated as a
parameter and their mean error with respect to the probability of recall used as
a comparative performance measure. A preliminary analysis of binary activation
models (V1, V2, V3) on the PIER2 model against the Spooky model which
yielded the following results;

Using the correlation coefficient as a performance indicator, V2 is the most
well behaved model, whereas taking the Mean Error, V3 is the best. Similar
issues arise when comparing the distributions of the models and the need of a
single or grouped set of performance indicators is required for the models to be
properly assessed.
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Abstract. Similar formalisms have been independently developed in
psychology, to deal with the issue of selective influences (deciding which
of several experimental manipulations selectively influences each of sev-
eral, generally non-independent, response variables), and in quantum
mechanics (QM), to deal with the EPR entanglement phenomena (de-
ciding whether an EPR experiment allows for a “classical” account). The
parallels between these problems are established by observing that any
two noncommuting measurements in QM are mutually exclusive and
can therefore be treated as analogs of different values of one and the
same input. Both problems reduce to that of the existence of a jointly
distributed system of random variables, one variable for every value of
every input (in psychology) or every measurement on every particle in-
volved (in an EPR experiment). We overview three classes of necessary
conditions (some of them also sufficient under additional constraints) for
the existence of such joint distributions.

Keywords: Bell-CHSH-Fine inequalities, cosphericity test, EPR
paradigm, joint distribution criterion, linear feasibility test, non-
commuting measurements, pseudo-quasi-metrics on random variables,
quantum entanglement, selective influences.

1 Introduction

Given a set of inputs into a system and a set of stochastically non-independent
outputs, what is the precise meaning and means of ascertaining that a given
output is not influenced by a given input? This paper reviews the developments
related to this question.

The problem can be illustrated on the following diagram of selective influences:

α1 = {w, x, y}

��

α2 = {x}

��

α3 = {w, z}

��
A1 A2 A3

(1)

J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 184–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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A1, A2, and A3 here are random outputs, w, x, y, z are inputs (usually referred
to as external factors in psychology and as measurement settings in QM), and
arrows indicate the relation “may influence”: thus, the diagram does not say
that A2 is necessarily influenced by x, but rather that A2 is not influenced
by w, y, z. The diagram is shown in the canonical form, i.e., the inputs are
redefined, {w, x, y} into α1, {x} into α2, etc., so that each output Ai may only
be influenced by a single input αi that may not influence other outputs. We say
then, for brevity, that

(
A1, A2, A3

)
are selectively influenced by

(
α1, α2, α3

)
and

write this as (
A1, A2, A3

)
�
(
α1, α2, α3

)
. (2)

Inputs
(
α1, α2, α3

)
are treated as deterministic quantities, i.e., even if they are

random variables, the joint distribution of the outputs is always conditioned
on their specific values. Each input can have one of several values, and the joint
distribution of

(
A1, A2, A3

)
is known for each allowable treatment, a combination

of input values. Thus, if w, x, y, z are all binary, then α1, α2, α3 may be viewed
as inputs with 8, 2, and 4 values, respectively, but the number of allowable
treatments cannot exceed 16 < 8× 2× 4. It can be less than 16 because some of
the combinations may be physically impossible or simply not used or observed.

As a motivating example, consider a double-detection experiment in which
two stimuli, say brief flashes, are presented simultaneously (right-left) or in a
succession (first-second), each on one of two levels of intensity. The observer is
asked to state, for each of the two observation areas (i.e., locations or time in-
tervals), whether it contains a flash (Yes/No). The results of such an experiment
are statistical estimates of 16 probabilities

p
(
A1, A2|α1, α2

)
= Pr

[
A1 :

{
Y es
No

,A2 :

{
Y es
No

∣∣∣∣ α1 :

{
α1
1

α1
2
, α2 :

{
α2
1

α2
2

]
, (3)

where αi (i = 1, 2) is the input representing the ith observation area (with values
αi
1, α

i
2), and Ai is the response (Yes or No) to the ith observation area. Assume

that A1 and A2 for a given
(
α1
i , α

2
j

)
are not independent (due to attention

fluctuations, perceptual learning, fatigue, etc.) In what sense then can we say
that
(
A1, A2

)
�
(
α1, α2

)
, and by what means can we find out if this is true?

Many empirical situations have precisely the same formal structure. In QM,
an example is provided by the Bohmian version of the EPR paradigm [3]: two
subatomic particles are emitted from a common source in such a way that they
retain highly correlated spins as they run away from each other. An experiment
may consist, e.g., in measuring the spin of electron 1 along one of two axes,
α1
1 or α1

2, and (in another location but simultaneously in some inertial frame
of reference) measuring the spin of electron 2 along one of two axes, α2

1 or α2
2.

The outcome of a measurement on electron 1, A1, is a random variable with
two possible values, “up” or “down,” and the same holds for A2, outcome of a
measurement on electron 2. The question here is: for i = 1, 2, can we say that
Ai may only depend on αi, even though A1 and A2 are not independent? What
makes this situation formally identical with the double-detection example is that
the measurements along different axes, αi

1 and αi
2, are noncommuting, i.e., they
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cannot be performed on the ith particle simultaneously. This makes it possible to
consider them (measurements performed, not to be confused with their recorded
outcomes) as mutually exclusive values of input αi. The results of such an ex-
periment are described by (3), with Yes/No interpreted as spin up/down. In the
original EPR paradigm [14] the non-commuting measurements are those of mo-
mentum and location, each with a continuum of possible values. Our parallel with
the issue of selective influences requires that the measurements of the momen-
tum and of the location of a given particle be interpreted as mutually exclusive
values of one and the same input, “(measurement of the) momentum-location of
the particle.” This may be less intuitive than the analogous interpretation of the
spins along different axes.

The question of selective influences cannot generally be decided based on the
marginal distributions of the outputs alone. The most important example here
is the classical CHSH experiment [4] where the marginal distributions of A1

and A2 (in the case of two electrons) remain constant, with Pr [spin up] = 1/2.
Examples from psychology are also readily available, especially if one adopts
a copula view of the joint distributions. Thus, α1 and α2 may represent two
stimuli presented in a succession (each having several values), and A1, A2 be
response times quantiles. The marginal distributions then are always the same,
unit-uniform.

2 A Historical Note

The issue of selective influences was introduced to psychology in Sternberg’s in-
fluential paper [22], in the context of studying consecutive “stages” of information
processing. Sternberg acknowledged that selective influences can hold even if the
durations of the stages are not stochastically independent, but he lacked math-
ematical apparatus for dealing with this possibility. Townsend [24] proposed to
formalize the notion of selectively influenced and stochastically interdependent
random variables by the concept of “indirect nonselectiveness”: the conditional
distribution of the variable A1 given any value a2 of the variable A2, depends on
α1 only, and, by symmetry, the conditional distribution of A2 at any A1 = a1

depends on α2 only. Under the name of “conditionally selective influence” this
notion was mathematically characterized and generalized in [5]. Thus, if all com-
binations of values of inputs α1, α2 are allowable and random outputs A1, A2 are
discrete, the diagram

(
A1, A2

) cond← (a1, a2), where cond← means “is conditionally
selectively influenced,” holds if and only if Pr

[
A1 = a1, A2 = a2

∣∣ α1
x, α

2
y

]
can be

presented as
f12
(
a1, a2
)
f1
(
a1, α1

x

)
f2
(
a2, α2

y

)
f
(
α1
x, α

2
y

)
, (4)

for all values
(
a1, a2
)

of
(
A1, A2

)
at all treatments

(
α1
x, α

2
y

)
. Conditional selec-

tivity is a useful notion, but it is not a satisfactory formalization of the intuitive
notion of selective influences. The reason is that

(
A1, A2

) cond← (a1, a2) can be
shown [5] to violate the following obvious property of an acceptable definition:
the marginal distributions of A1 and A2 do not depend on, respectively, α2 and
α1 (“marginal selectivity” [25]).
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A different approach to selective influences, reviewed below, is based on
[6,7,9,10,11,12,19]. As it turns out1 this approach parallels the development in
QM of the issue of whether an EPR experiment can have a “classical” explana-
tion (in terms of non-contextual local variables). The Joint Distribution Criterion
which is at the heart of this development (see below) was indirectly introduced
in the celebrated work of Bell [2], and explicitly in [15,16,23].

3 Basic Notions

Aimed at providing a broad overview of concepts and results, the content of this
paper partially overlaps with that of several previous publications, especially
[11,12,19].

Random variables are understood in the broadest sense, as measurable func-
tions X : Vs → V , with no restrictions on the sample spaces (Vs, Σs, μs) and
the induced probability spaces (distributions) (V,Σ, μ). In particular, any set
X of jointly distributed random variables (functions on the same sample space)
is a random variable, and its distribution (V,Σ, μ) is referred to as the joint
distribution of its elements. We use symbol ∼ in the meaning of “has the same
distribution as.” A random variable in the narrow sense is a special case of a
random entity, with V a finite product of countable sets and intervals of reals,
and Σ the smallest sigma-algebra containing the corresponding product of power
sets and Lebesgue sigma-algebras. Note that a vector of random variables in the
narrow sense is a random variable in the narrow sense.

Consider an indexed set α =
{
αλ : λ ∈ Λ}, with each αλ being a set referred

to as a (deterministic) input, with the elements of {λ} × αλ called input points.
Input points therefore are pairs of the form x = (λ,w), with w ∈ αλ, and should
not be confused with input values w. A nonempty set Φ ⊂∏λ∈Λ α

λ is called a set
of (allowable) treatments. A treatment therefore is a function φ : Λ→ ⋃λ∈Λ α

λ

such that φ (λ) ∈ αλ for any λ ∈ Λ.
Let there be a collection of sets of random variables Aλ

φ (λ ∈ Λ, φ ∈ Φ),

referred to as (random) outputs, with distributions
(
V λ, Σλ, μλ

φ

)
. Let

Aφ =
{
Aλ

φ : λ ∈ Λ} , φ ∈ Φ, (5)

be a random variable with a known distribution (the joint distribution of all Aλ
φ

in Aφ) for every treatment φ ∈ Φ. We define

Aλ =
{
Aλ

φ : φ ∈ Φ} , λ ∈ Λ, (6)

with the understanding that Aλ is not generally a random variable, i.e., Aλ
φ for

different φ are not necessarily jointly distributed. The definition of the relation{
Aλ : λ ∈ Λ}� {αλ : λ ∈ Λ} , (7)

1 This was first pointed out to us by Jerome Busemeyer (personal communication,
November 2010), for which we remain deeply grateful.
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interpreted as “for each λ ∈ Λ, Aλ may be influenced by αλ only,” can be given
in three equivalent forms:

(SI1) there are independent random variables C,
{
Sλ : λ ∈ Λ}, and functions{

Rλ
(
w,C, Sλ

)
: w ∈ αλ, λ ∈ Λ} , (8)

such that, for any treatment φ ∈ Φ,{
Rλ
(
φ (λ) , C, Sλ

)
: λ ∈ Λ} ∼ Aφ; (9)

(SI2) there is a random variable C and functions{
Pλ (w,C) : w ∈ αλ, λ ∈ Λ} , (10)

such that, for any treatment φ ∈ Φ,{
Pλ (φ (λ) , C) : λ ∈ Λ} ∼ Aφ; (11)

(JDC) there is a set of jointly distributed random variables

H =
{
Hλ

w : w ∈ αλ, λ ∈ Λ} (12)

(one random variable for every value of every input), such that, for any
treatment φ ∈ Φ, {

Hλ
φ(λ) : λ ∈ Λ

}
∼ Aφ. (13)

The latter statement constitutes the Joint Distribution Criterion (JDC) for se-
lective influences, and H is called the JDC (indexed) set. The proof of the equiva-
lence [10] obtains essentially by the definition of a joint distribution, which seems
to have been overlooked in the earlier derivations [15,16]. If Λ = {1, . . . , n} and
all outputs Aλ are random variables in the narrow sense, then C in SI2 and
C, S1, . . . , Sn in SI1 can also be chosen to be random variables in the narrow
sense; moreover, their distribution functions can be chosen arbitrarily, provided
they are continuous and strictly increasing on their domains, e.g., unit uniform
[11].

Two important consequences of (7) are as follows:

1. (nestedness) any subset Λ′ of Λ,
{
Aλ : λ ∈ Λ′}� {αλ : λ ∈ Λ′}; in particu-

lar,
{
Aλ : λ ∈ Λ′} may not depend on inputs outside Λ′ (complete marginal

selectivity);
2. (invariance with respect to input-value-specific transformations) for any set

of measurable functions
{
Fλ
w (a) : w ∈ αλ, λ ∈ Λ, a ∈ V λ

}
,(

Bλ : λ ∈ Λ)� {αλ : λ ∈ Λ} (14)

where Bλ =
{
Bλ

φ : φ ∈ Φ
}
, and Bλ

φ = Fλ
φ(λ)

(
Aλ

φ

)
.
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These properties should be viewed as desiderata for any reasonable definition of
selective influences.

In QM, SI1 corresponds to the existence of a “classical” probabilistic expla-
nation. In psychology, statement SI1 combined with auxiliary assumptions was
used in [8] and [20] to analyze the representability of same-different pairwise
discrimination probabilities by means of Thurstonian-type models in which two
stimuli being compared are mapped into random entities (distributed in some
hypothetical space of mental images) that in turn are mapped (deterministically
or probabilistically) into a response, “same” or “different.” Statement SI1 was
also used to analyze the response time distributions for parallel-serial networks
of mental operations with selectively influenced components [13]. Note that the
representation of the outputs Aλ as functions of the corresponding inputs αi and
unobservable sources of randomness, Aλ-specific (Sλ) and common (C), includes
as special cases all conceivable generalizations and combinations of regression
and factor analyses, with our term “input” corresponding to the traditional “re-
gressor,” and the term “source of randomness” to the factor-analytic “factor.”
This observation alone shows the potentially unlimited sphere of applicability
of SI1.

Statement SI2 (corresponding in QM to “classical” determinsitic explanation)
and JDC turn out to be more convenient in dealing with certain foundational
probabilistic issues [9] and for the construction of the working tests (necessary
conditions) for selective influences [10,11,12,19]. The tests are discussed below.

The following is a table of correspondences between the general terminology
used in dealing with the issue of selective influences, and that of QM in dealing
with EPR.

Selective Probabilistic Causality (general) Quantum Entanglement Problem

observed random output outcome of a given measurement
on a given particle

input (factor) set of noncommuting measurements
on a given particle

input value one of noncommuting measurements
on a given particle

joint distribution criterion joint distribution criterion
diagram of selective influences “classical” explanation
representation in the form SI1 probabilistic “classical” explanation
representation in the form SI2 deterministic “classical” explanation

4 Tests for Selective Influences

Let H =
{
Hλ

w : w ∈ αλ, λ ∈ Λ} be a hypothetical JDC-set, i.e., a set satisfying
(13) but not necessarily jointly distributed. Denoting{

Hλ
φ(λ) : λ ∈ Λ

}
= Hφ, φ ∈ Φ, (15)
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let H be a set of constraints imposed on possible distributions of Hφ. For in-
stance, H may be the requirement that all Hλ

φ be composed of Bernoulli vari-
ables, or multivariate-normally distributed.

A statement S (Hφ1 , . . . , Hφs), with φ1, . . . , φs ∈ Φ, is called a test for the
relation (7) under constraints H, if

1. (observability) its truth value only depends on the distributions of Hφ1 , . . . ,Hφs ;
2. (non-emptiness) it is not true for all possible distributions of Hφ1 , . . . ,Hφs satis-

fying H,
3. (necessity) it is true if H is jointly distributed.

If S (Hφ1 , . . . , Hφs) is false for all distributions of Hφ1 , . . . , Hφs satisfying H un-
less H is jointly distributed, the test is called a criterion for (7). In the following
we assume that H always includes the requirement of complete marginal selec-
tivity: for any Λ′ ⊂ Λ, the joint distribution of

{
Aλ

φ(Λ′)∪φ(Λ−Λ′) : λ ∈ Λ′
}

does
not depend on φ(Λ − Λ′). If this condition is violated, (7) is ruled out trivially.

4.1 Pseudo-Quasi-Distance Tests

A function d : H × H → R is a pseudo-quasi-metric (p.q.-metric) on H if, for
any H1, H2, H3 ∈ H ,

(i) d (H1, H2) only depends on the joint distribution of (H1, H2),
(ii) d (H1, H2) ≥ 0,
(iii) d (H1, H1) = 0,
(iv) d (H1, H3) ≤ d (H1, H2) + d (H2, H3).

The conventional pseudometrics (also called semimetrics) obtain by adding the
property d (H1, H2) = d (H2, H1); the conventional quasimetrics are obtained by
adding the property Pr [H1 = H2] < 1⇒ d (H1, H2) > 0. A conventional metric
is both a pseudometric and a quasimetric.

A sequence of input points

x1 = (λ1, w1) , . . . , xl = (λl, wl) , (16)

where wi ∈ αλi for i = 1, . . . , l ≥ 3, is called treatment-realizable if there are
treatments φ1, . . . , φl ∈ Φ (not necessarily pairwise distinct), such that

{x1, xl} ⊂ φ1 and {xi−1, xi} ⊂ φi for i = 2, . . . , l. (17)

If a JDC-set H exists, then for any p.q.-metric d on H we should have

d
(
Hλ1

w1
, Hλl

wl

)
= d
(
Aλ1

φ1 , A
λl

φ1

)
(18)

and
d
(
Hλi−1

wi−1
, Hλi

wi

)
= d
(
A

λi−1

φi , Aλi

φi

)
, i = 2, . . . , l, (19)

whence

d
(
Aλ1

φ1 , A
λl

φ1

)
≤

l∑
i=2

d
(
A

λi−1

φi , Aλi

φi

)
. (20)
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This chain inequality constitutes a p.q.-metric test for selective influences. If this
inequality is found not to hold for at least one treatment-realizable sequence of
input points, selectivity (7) is ruled out [12].

It turns out that one needs to check the chain inequality only for irreducible
treatment-realizable sequences x1, . . . , xl, i.e., those with x1 �= xl and with the
property that the only subsequences {xi1 , . . . , xik} with k > 1 that are sub-
sets of treatments are pairs {x1, xl} and {xi−1, xi}, for i = 2, . . . , l. Inequality
(20) is satisfied for all treatment-realizable sequences if and only if it holds for
all irreducible sequences [12]. The situation is even simpler if Φ =

∏
λ∈ΛW

λ

(all logically possible treatments are allowable). Then (20) is satisfied for all
treatment-realizable sequences if and only if this inequality holds for all tetradic
sequences of the form x, y, s, t, with x, s ∈ {λ1} × αλ1 , y, t ∈ {λ2} × αλ2 , x �= s,
y �= t, λ1 �= λ2 [10].

Order-distances constitute a special class of p.q.-metrics, defined as follows.
Let the distribution of Hλ

w ∈ H be
(
V λ, Σλ, μλ

w

)
. Let

R ⊂
⋃

(λ1,λ2)∈Λ×Λ

V λ1 × V λ2 , (21)

and let us write a ' b for (a, b) ∈ R. Let R be a total order (transitive, reflexive,
and connected). We assume that for any (λ1, λ2) ∈ Λ × Λ, Pr

[
Hλ1

w1
' Hλ2

w2

]
is

well-defined, i.e.,
{
(a, b) : a ∈ V λ1 , b ∈ V λ2 , a ' b

}
belongs to the product sigma-

algebra over Σλ1 and Σλ2 . Then the function

D
(
Hλ1

w1
, Hλ2

w2

)
= Pr
[
Hλ1

w1
≺ Hλ2

w2

]
, (22)

where ≺ is the strict order induced by ', is well-defined, and it is a p.q.-metric
on H , called order-distance [12].

As a simple example, consider the results of a CHSH type experiment with
two spin axes per each of two entangled 1/2-spin particles. Enumerate the spin
axes 1, 2 for either particle, enumerate the two outcomes (up and down) of each
measurement 1, 2 for particle 1 and 1′, 2′ for particle 2, and denote

Pr
[
H1

i = k,H2
j = l′
]
= Pr
[
A1

(i,j) = k,A2
(i,j) = l′

]
= pkl|ij , (23)

where i, j, k, l ∈ {1, 2}. Define the order-distance D1 by putting 1 ) 1′ ≺ 2 ) 2′,
where ) is equivalence induced by '. We have then the chain inequality

p12|12 = D1(H
1
1 ,H

2
2 )

≤ D1(H
1
1 ,H

2
1 )+D1(H

2
1 ,H

1
2 )+D1(H

1
2 ,H

2
2 ) = p12|11+p21|21+p12|22.

(24)

Consider next a similar inequality for the order-distance D2 defined by 1 ) 2′ ≺
2 ) 1′:

p11|12 = D2(H
1
1 ,H

2
2 )

≤ D2(H
1
1 ,H

2
1 )+D2(H

2
1 ,H

1
2 )+D2(H

1
2 ,H

2
2 ) = p11|11+p22|21+p11|22.

(25)
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By simple algebra, denoting

Pr
[
H1

i = k
]
= pk·|i·, Pr

[
H2

j = l′
]
= p·l|·j, (26)

the conjunction of (24) and (25) can be shown to be equivalent to

−1 ≤ p11|11 + p11|21 + p11|22 − p11|12 − p1·|2· − p·1|·1 ≤ 0. (27)

One derives analogously

−1 ≤ p11|12 + p11|22 + p11|21 − p11|11 − p1·|2· − p·1|·2 ≤ 0,
−1 ≤ p11|21 + p11|11 + p11|12 − p11|22 − p1·|1· − p·1|·1 ≤ 0,
−1 ≤ p11|22 + p11|12 + p11|11 − p11|21 − p1·|1· − p·1|·2 ≤ 0.

(28)

The four double-inequalities (27)-(28) can be referred to as the Bell-CHSH-
Fine inequalities [15,16], necessary and sufficient conditions for the CHSH type
experiment to have a “classical” explanation.

4.2 Cosphericity Tests

Let the outputs Aλ
φ all be random variables in the narrow sense. Denote, for any

distinct λ1, λ2 ∈ Λ and any φ ∈ Φ with φ (λ1) = w1 and φ (λ2) = w2,

Cor
[
Hλ1

w1
, Hλ2

w2

]
= Cor

[
Aλ1

φ , Aλ2

φ

]
= ρλ1λ2

w1w2
, (29)

where Cor designates correlation. Let φ1, φ2, φ3, φ4 ∈ Φ be any treatments with

φ1 (λ1) = φ2 (λ1) = w1; φ1 (λ2) = φ3 (λ2) = w2

φ4 (λ1) = φ2 (λ1) = w′
1; φ4 (λ2) = φ3 (λ2) = w′

2.
(30)

Then, as shown in [19], if the components of H are jointly distributed,∣∣∣ρλ1λ2
w1w2

ρλ1λ2

w1w′
2
− ρλ1λ2

w′
1w2

ρλ1λ2

w′
1w

′
2

∣∣∣
≤
√
1−
(
ρλ1λ2
w1w2

)2√
1−
(
ρλ1λ2

w1w′
2

)2
+

√
1−
(
ρλ1λ2

w′
1w2

)2√
1−
(
ρλ1λ2

w′
1w

′
2

)2
,

(31)

This is the cosphericity test for (7), called so because geometrically (31) de-
scribes the possibility to place four points (w1, w2, w

′
1, w

′
2) on a unit sphere in

3D Euclidean space so that the angles between the corresponding radius-vectors
have cosines equal to the correlations. Note that an outcome of this test does not
allow to predict the outcome of the same test applied to nonlinearly input-value-
specifically transformed random variables. Due to (14), this creates a multitude
of cosphericity tests for one and the same initial set of outputs Aλ

φ .
In the all-important for behavioral sciences 2× 2 factorial design (Λ = {1, 2},

each input is binary, and Φ consists of all four possible treatments), the cospheric-
ity test is a criterion for

(
A1, A2

)
�
(
α1, α2

)
if (perhaps following some input-

value-specific transformation) the outputs are bivariate normally distributed for
all four treatments [19].
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4.3 Linear Feasibility Test

The Linear Feasibility Test (LFT) is a criterion for selective influences in all
situations involving finite sets of inputs/outputs, Λ = {1, . . . , n}, with the ith
input and ith output having finite sets of values, {1, . . . , ki} and {1, . . . ,mi},
respectively [11]. In other situations LFT can be used as a necessary condition
because every set of possible values can be discretized. The distributions of
Hφ =

(
H1

j1
, . . . , Hn

jn

)
are represented by probabilities

Pr
[
H1

j1 = a1, . . . , H
n
jn = an

]
= Pr
[
A1

φ = a1, . . . , A
n
φ = an

]
, (32)

with φ = (j1, . . . , jn) ∈ Φ and

(a1, . . . , an) ∈ {1, . . . ,m1} × · · · × {1, . . . ,mn} . (33)

We consider this probability the [(a1, . . . , an) , (j1, . . . , jn)]th component of the
m1 · · ·mnt-vector P (with t denoting the number of treatments in Φ). The joint
distribution of H in JDC, if it exists, is represented by probabilities

Pr
[
H1

1 = h11 . . . , H
1
k1

= h1k1
, . . . , Hn

1 = hn1 , . . . , H
n
kn

= hnkn

]
, (34)

with(
h11, . . . , h

1
k1
, . . . , hn1 , . . . , h

n
kn

) ∈ {1, . . . ,m1}k1 × . . .× {1, . . . ,mn}kn . (35)

We consider this probability the
(
h11, . . . , h

1
k1
, . . . , hn1 , . . . , h

n
kn

)
th component of

the (m1)
k1 · · · (mn)

kn -vector Q. Consider now the Boolean matrix M with rows
corresponding to components of P and columns to components ofQ: letM (r, c) =
1 if and only if

1. row r corresponds to the [(j1, . . . , jn) , (a1, . . . , an)]th component of P ,
2. column c to the

(
h11, . . . , h

1
k1
, . . . , hn1 , . . . , h

n
kn

)
th component of Q, and

3. h1j1 = a1, . . . , h
n
jn

= an.

Clearly, the vector Q exists if and only if the system

MQ = P, Q ≥ 0 (36)

has a solution (is feasible). This is a linear programming task in the standard
form (with a constant objective function). Let L (P ) be a Boolean function equal
to 1 if and only if this system is feasible. L (P ) is known to be computable, its
time complexity being polynomial [18].

The potential of JDC to lead to LFT and provide an ultimate criterion for
the Bohmian entanglement problem has not been utilized in quantum physics
until relatively recently, when LFT was proposed in [26,27] and [1]. But the
essence of the idea can be found in [21]. Given a set of numerical (experimentally
estimated or theoretical) probabilities, computing L (P ) is always preferable to
dealing with explicit inequalities as their number becomes very large even for
moderate-size vectors P . The classical Bell-CHSH-Fine inequalities (27)-(28) for
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n = 2, k1 = k2 = 2, m1 = m2 = 2 (assuming that the marginal selectivity
equalities hold) number just 8, but already for n = 2, k1 = k2 = 2 with m1 =
m2 = 3 (describing, e.g., an EPR experiment with two spin-1 particles, or two
spin-1/2 ones and inefficient detectors), our computations yield 1080 inequalitiies
equivalent to L (P ) = 1. For n = 3, k1 = k2 = k3 = 2 and m1 = m2 = m3 =
2, corresponding to the GHZ paradigm [17] with three spin-1/2 particles, this
number is 53792. Lists of such inequalities can be derived “mechanically” from
the format of matrix M using well-known facet enumeration algorithms (see, e.g.,
program lrs at http://cgm.cs.mcgill.ca/~avis/C/lrs.html). Once such a system
of inequalities S is derived, one can use it to prove necessity (or sufficiency) of
any other system S′ by showing, with the aid of a linear programming algorithm,
that S′ is redundant when added to S (respectively, S is redundant when added
to S′).

Acknowledgments. This research has been supported by the NSF grant SES-
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University of Jyväskylä.
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Abstract. Bohmian mechanics is an example for a classical theory with
a (Newtonian) ontology which reproduces all features of quantum me-
chanics. It is often used as a “classical” formulation of quantum mechan-
ics, but in this article we invert the argument: Bohmian mechanics proves
that there are classical systems which can show a quantum-like behavior;
in particular, such models are able to explain non-classical probabilities.
We analyze the general structure of Bohmian-type models and argue,
that neural processes related to the correlates of mental states are likely
to follow a dynamics which is similar to this class of models. Therefore,
it may not be too surprising that cognitive phenomena under certain
circumstances show a quantum-like behavior.

Keywords: Non-classical probability, Bohmian mechanics, Neural cor-
relates of mental processes.

1 Introduction

One of the fundamental laws of probability theory states that the probability
of the union of two disjoint events E1 and E2 (i.e., the probablity for the event
E1 ∪ E2 which is interpreted as “E1 OR E2”) is equal to the sum of the single
probabilities:

P (E1 ∪ E2) = P (E1) + P (E2) (if E1 ∩E2 = ∅) . (1)

This law seems to be violated in quantum theory: pure states can be represented
by vectors in a Hilbert space, events are associated with amplitudes derived from
the scalar product of such vectors, and the probability is equal to the absolute
square of such amplitudes.

For instance, in the famous double-slit experiment one first determines the
amplitudes ψ1(x) and ψ2(x) associated to the processes where a particle propa-
gates through one of the possible slits (slit 1 or slit 2, respectively) and hits the
screen at position x, and then one obtains the probability for a hit at x for the
case that both slits are open and the particle can propagate through “slit 1 OR
slit 2” according to

P1&2(x) =
1

2
|ψ1(x) + ψ2(x)|2 . (2)

J.R. Busemeyer et al. (Eds.): QI 2012, LNCS 7620, pp. 196–206, 2012.
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This way of calculating probabilities — adding amplitudes associated to disjoint
events and determining the probability from the absolute square of the sum of
amplitudes — is sometimes called quantum probability.1 In general, amplitudes
are complex valued and the intesity, calculated as the absolute square of the
sum of amplitudes, can exhibit constructive and destructive interference leading
to many of the counter-intuitive effects in quantum mechanics. In the follow-
ing, whenever probabilities seem to violate eq. (1), we speak of non-classical
probabilities, while the special case of eq. (2) is called quantum probability.

Non-classical probabilities have also been observed in many situations related
to human behavior (see, e.g., [1, 14, 2, 8–10] as well as the special issue in the
Journal of Mathematical Psychology [17]). As quantum theory is the most promi-
nent scientific theory for which a consistent non-classical probability calculus is
known to exist, the mathematical formalism of quantum theory seems to be a
natural structure to apply also to these situations. The obvious question — why
should the formalism of quantum theory be applicable to psychological or social
systems — remains unanswered and gives rise to many speculations.

Several attemps have been made to explain a quantum-like behavior for cog-
nitive processes. One explanation is based on the assumption that quantum
mechanics actually does play a prominent role in cognitive processes (for a re-
view of this and other “quantum approaches to consciousness” see, e.g., [3]). A
second type of explanation is based on the observation that quantum theory on
the one hand and consciousness on the other share common conceptual notions
and, therefore, are likely to exhibit similar phenomena, even though this does
not imply a direct relation between the two [13]. A third explanation utilizes
non-trivial partitions of the state space of complex classical systems due to a
limited and/or biased epistemic access [5, 4].

In this article, I will propose a new and promising explanation of why a funda-
mentally classical system can exhibit quantum-like behavior and, in particular,
non-classical probabilities. The explanation is based on a very general class of
models among which so-called Bohmian mechanics is a special case. In gen-
eral, Bohmian mechanics is considered as a classical interpretation of quantum
mechanics, however, here we invert the argument by noticing that Bohmian me-
chanics is a classical (Newtonian) theory which reproduces all known effects of
quantum mechanics. This implies that there exist classical models which show
quantum-like behavior. The main purpose of this article will be to extract from
this type of classical models the general features which allow them to appear
quantum-like and to argue why it is not unlikely that similar features are real-
ized in cognitive processes and their neural correlates in the brain.

Bohmian mechanics was developed by David Bohm [7] in 1952 as a counter-
example for a famous theorem of John von Neumann [19], according to which
an extension of quantum mechanics by so-called hidden variables, which could

1 We should remark that this expression is also used for several related but not identi-
cal mathematical structures: It can denote the attribution of positive operator valued
measures (POVMs) to events, it can also refer to the expectation value functional
for random variables which are elements of non-commutative C∗-algebras.
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explain the non-deterministic behavior of quantum theory as a statistical effect,
is not possible. Already in 1927 Louis deBroglie proposed a simplified version of
this model [11], however, based on a detailed analysis of the measurement process
in the framework of this model, Bohm could prove that this “classical” model
is able to reproduce all observed effects of quantum theory. The main objective
against Bohmian mechanics — the non-locality of the quantum potential — shall
not concern us in this context, because I will use Bohmian-type models only on
a phenomenological level as a possible explanation of non-classical probabilities.

In Section 2, I will briefly introduce the main concepts and ideas of Bohm’s
model, while a sketch of the mathematics is put into an Appendix. In Section
3, I will generalize Bohm’s model by extracting the essential features necessary
to develop the probability calculus related to this type of models. I will show
that there exists a broad spectrum of non-classical probabilities which can be
obtained in this way. Finally, in Section 4, I will speculate about how this type
of dynamics may possibly be realized in neural processes such that mental states
and mental events exhibit a non-classical behavior with respect to probabilities.
The final conclusions not only summarize the main content of this article but
also extend the speculations to other fields of applications.

2 Bohmian Mechanics

This section describes the essential concepts of Bohmian mechanics. A brief
sketch of the mathematics is given in the Appendix. The reader who is interested
in the mathematical details is referred to the standard literature (e.g., [7, 16, 12,
15]).

The essential ideas of Bohmian mechanics can be summarized as follows:

1. The wave function ψ(x) serves as a “guidance field”2 (sometimes also called
“pilot wave”) for a particle, i.e., particles are assumed to exist in the sense
of Newtonian mechanics, but their trajectories q(t) are determined by Schrö-
dinger’s wave function. Wave functions have a similar ontology as the
potential energy in classical mechanics.

2. The dynamics of a particle in the background of the Schrödinger field — i.e.,
it’s trajectory q(t) — is such that the probability density P (q) of finding a
particle in a particular location q is equal to the absolute square of the wave
function: P (q) = |ψ(q)|2.

3. The dynamics of wave functions is determined by Schrödinger’s equation.
Wave functions can be superimposed leading to interference patterns. The
trajectories of the particles follow these interference patterns, which leads
to the observed probabilities for particle detection. Quantum probability
(in the sense mentioned in the introduction) follows immediately from this
dynamics.

2 This expression was first used in the context of general relativity where it referred to
the connection derived from a metric; in relativity the connection form determines
the trajectories of particles.



Quantum-Like Behavior of Classical Systems 199

While in standard quantum theory a (pure) state can be described by the wave
function ψ(x), in Bohmian mechanics a pure state is given by the pair (ψ(x), q),
i.e., in addition to the wave function also the position q of the particle is needed in
order to fix a pure state of the system. The position q can only be determined by a
measurement which, however, intervenes with the wave function. Furthermore,
the uncertainty relations for observable quantities also hold in the framework
of Bohmian mechanics, and as any measuring process is subject to the laws
of physics (in this case the laws of Bohmian mechanics), it is not possible to
determine the initial location q and the momentum p = mq̇ simultaneously. In
this sense q(t) is a “hidden” variable. The ontologically pure states of Bohmian
mechanics can never be measured or specifically prepared, or, in other words,
the initial conditions for the hidden variable can never be known and utilized
for future predictions beyond the limits set by the uncertainty relations.

For an N -particle system the wave function is an element of the N -fold tensor
product of the single-particle Hilbert spaces, which makes the quantum potential
to a field in configuration space. The same holds for the potential in Newtonian
mechanics. Generalizations of the formalism to spin variables shall not concern
us here (see, e.g., [6]). Bohm has proven that this extension of quantum me-
chanics reproduces all experimentally observable features of standard quantum
mechanics. Actually, the most difficult part of the theory is the description of
the measurement process.

The most prominent objective against Bohmian mechanics is related to “non-
locality”: in order to explain quantum correlations (and the observed violation of
Bell’s inequalities), the wave function (and, thereby, the quantum potential) has
to change instantaneously everywhere in space as the result of a local measure-
ment. As we are using Bohmian mechanics as a phenomenological model (e.g.,
describing specific neural processes), this objective against Bohmian mechanics
shall not concern us here.

3 Classical Dynamics Which Looks Quantum

In this section we will generalize the concepts of Bohmian mechanics (Sect. 3.1),
clarify the relation between “events” and “conditions” in these models (Sect.
3.2) and derive a generalized non-classical relation for probabilities (Sect. 3.3).

3.1 Conceptual Generalization of Bohmian Mechanics

In order for a classical theory to exhibit quantum features (and, in particular,
the effects of quantum probability), Bohmian mechanics suggests the following
ingredients (it should be emphasized that these are neither necessary nor suf-
ficient conditions for observing non-classical behavior, they are merely a good
starting point):

1. There are two dynamical entities: (1) a spatially extended “background ac-
tivity” which can be described by a field ψ(x) and which replaces the guiding
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field (in more complicated situations one can even think of several types of
background fields, i.e., ψ(x) can be a multi-component field), and (2) a more
localized entity for which the dynamics is “guided” by the background field.
In Bohmian mechanics this second entity is the particle, but one can also
think of a second type of activity which is also described by a field for which
the support is more local.

2. The dynamics of the background activity can be quite general, but in order to
mimick quantum probability, the dynamics of this field should be described
by a linear equation such that with any two solutions ψ1(x) and ψ2(x) also
(possibly normalized) superpositions αψ1(x) + βψ2(x) are a solution. Note,
however, that this is not a necessary condition for the observation of “non-
classical probabilities”, it only makes the similarity to quantum mechanics
more obvious.
In order to observe interference patterns, the field should have the property
to assume positive and negative values which, when superimposed, can cancel
each other. Interference-like solutions, however, can also occur for non-linear
equations.

3. The dynamics of the guided entity can also be quite general but it should
be such that the probability of finding the guided entity at a location x is a
function of the guiding (background) activity ψ(x). In Bohmian mechanics
this probability is proportional to the absolute square of the background
activity.
The correlates of this guided entity are observed, but indirectly the obser-
vation of this entity probes the background activity.

There are many examples of this type of dynamics, in particular in the realm
of chemistry or biology: The background field can be the concentration ρ(x)
of some chemical or nutrition in a solution and the guided entity can be some
bacterium which propagates along the gradient of increasing concentration of the
nutrition. In many cases this leads to a “classical” probability for the location
of the bacterium, in particular, if the probability of finding the bacterium is
proportional to the concentration of the nutrition and this concentration follows
a linear dynamics.

If, however, the probability P (x) is a non-linear function of ρ(x) and, in par-
ticular, if the dynamics of ρ(x, t) is more complicated (one may think of two
nutritious components which interact like in a Belousov-Zhabotinsky reaction)
also the probability of finding a bacterium behaves non-classically and (in the
case of the BZ reaction) even can show interference-like patterns.

3.2 Events and Conditions

We now elaborate on the relation between “events” E (the occurence or prepa-
ration of particular situations) and observed probabilities P (E) in this class of
models in more detail.

Strictly speaking, we should distinguish between two types of events which are
associated to the two entities (the guided and the guiding entity) of Bohmian
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models. One type of events will be symbolized by “x” and refers to the “ob-
servation of the guided entity at location x”. The other type of events will be
symbolized by “E” and refers to the “contextual situation E which leads to
the event x”. In the case of the double-slit experiment, the event x denotes the
registration of the particle at a position x on the screen, and E refers to the
condition of the slits: “slit 1 open”, “slit 2 open”, “slit 1 and 2 open”. PE(x)
denotes the probability of detecting the particle at location x on the screen un-
der the condition of situation E. Expressing it this way, PE(x) is a conditional
probability for the event x with E being the condition. However, if we assume
that the possible conditions E exhaust all possibilities for a particle to arrive
at x and that disjoint conditions (like “slit 1 open” and “slit 2 open”) do no
interfer when fulfilled both, we arrive at

PE1∪E2(x) = PE1(x) + PE2(x) , (3)

which is the analogue of eq. 1. This last assumption is not valid in quantum
theory. The identification of a condition (one slit or both slits being open) with
an “event” (the particle passes exactly one of the possible slits in the same way
as it would do if the other slit were closed) is not justified in both, quantum
theory and Bohmian mechanics: In standard quantum theory the assumption
that “the particle passes one of the possible slits” is usually rejected and in
Bohmian mechanics the assumption “as it would do if the other slit were closed”
is wrong.

In a similar sense, the “set of all pet-fishes” may be the intersection of the
“set of all fishes” and the “set of all pets”. But asking questions like whether a
guppy is a fish, a pet, or a pet-fish sets certain conditions, and the concept of
“pet-fish” may induce interferences between the concepts of “fish” and “pet”.
This remark refers to the famous Pet-Fish experiment in psychology ([20]).

3.3 Non-classical Probabilities

In quantum mechanics and also in Bohmian mechanics, the result of the prepa-
ration of the system and the conditions E are mathematically encoded in the
quantum state and can be described by a field ψE(x). In general, the observed
probability PE(x) of finding the guided entity at location x will be some function
of the local value of the background field ψE(x):

PE(x) = F (ψE(x)) . (4)

In quantum mechanics we have PE(x) = |ψE(x)|2.
For two mutually exclusive conditions E1 and E2 corresponding the back-

ground fields ψ1(x) and ψ2(x), respectively, we consider the situation E1 ∪ E2

(“E1 OR E2”), which shall be described by a background field

ψ1&2(x) = G(ψ1(x), ψ2(x)) . (5)

For quantum mechanics we simply have G(ψ1, ψ2) = ψ1 + ψ2 (up to a possible
normalization), but for more general situations this function maybe non-linear.
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The probability for the observation of the entity at location x is now given by:

PE1∪E2(x) = F (G(ψ1(x), ψ2(x))) . (6)

In general, the right hand side is not equal to the sum PE1 + PE2 , and in these
cases the probabilities follow a non-classical behavior.

4 A Bohmian Model for Cognitive Processes

In this section, I will speculate about a possible scenario for neural processes
which may fall into the class of models discussed in this article. First, I identify
the guiding and the guided entity:

1. Suppose the “guiding field” ψ(x) describes the general activity of neural
assemblies, i.e., essentially it is a measure for the local activity of populations
of neurons. A specific situationE (e.g., an external stimulus) induces a neural
activity described by ψE(x).

2. The “guided entity” shall correspond to a particular class of neural activities
to which I will refer as “neural correlates of mental states”.3 Whatever these
special neural correlates of mental states are, it is conceivable to assume that
they depend on the general neural activity ψ(x) and that their dynamics is
“guided” by this general activity. Whether these guided neural activities are
related to the synchronization of firing patterns or realized in other ways is
not important. What is important, and this seems to be a plausible assump-
tion, is that these “neural correlates of mental states” are most likely to be
found where the intensity of the general neural activity is high.

In many psychological experiments the observed reaction of a subject is related to
the mental state of this subject. This means that what is observed are “cognitive
events” which are assumed to be correlated to the guided neural activity of the
proposed model. Therefore, in contrast to Bohmian versions of quantum theory
where the position of the particle (the hidden variable) is measured directly, in
psychological experiments only the mental correlates of the guided neural activ-
ity are observed. In the following we will neglect this additional feature. Relevant
for the proposed scenario is only the existence of certain neural activities which
are correlated to the mental states and that these particular neural activities are
more or less localized within the general neural activity. (Localization does not
necessarily refer to a 3-dimensional localization in the brain but can refer to an
abstract configuration space: the “space of all possible mental states”.)

This simple and quite general scenario fulfills all the requirements needed
for a generalized Bohmian-type mechanics: Two activities, one of which can be
described by a field and the other being dependend on this first activity in the
sense that it is most likely to be found where the first activity is large. If there is

3 Mental state is just a placeholder for any other concept — awareness, intentionality,
consciousness, etc. — which may be relevant in the psychological context.
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any non-linearity in the dependencies one can expect non-classical probabilities
in the correlations between the experimental context and the observed reactions.

Up to now, the model only explains the observation of non-classical probabil-
ities in cognitive systems. As mentioned in the introduction, many experiments
support the observation of non-classical probabilities in cognitive processes.
Whether they prove the validity of quantum probability (in the sense of eq. 2) may
be a matter of debate. Of course, in order to close up with quantum theory and, in
particular, to realize quantum probabilities, the dynamics for the neuronal activ-
ities ψ(x) and the dependencies between this background activity and the guided
activity should be made more precise.

However, we can refine the model in such a way that it even comes close to
Bohmian mechanics. Let us assume that the local neuronal activity is not only
described by a rate but also by a phase (as realized, e.g., by the phases of spiking
trains). In this case the neural activity can be described by a complex field ψ(x)
where the amplitude corresponds to the firing rate and the angular argument to
the phase. Such a field allows for superpositions in a similar way as the quantum
mechanical wave function. In particular, two activities can “cancel” each other
at locations where the neuronal activities are “out of phase” and reinforce each
other at locations where they are synchronized. In order to make the similarity to
quantum theory (almost) complete, the guided activities of the neural correlates
of mental states should be such that they are found more likely in locations
where this synchronization (in addition to the firing rate) is large and less likely
in locations where this synchronization is low.

In our point of view, the proposed scenario comes close to a plausible de-
scription of the actual neuronal activities and their relations to mental states.
Therefore, the occurrence of correlations which obey non-classical probabilities
may find a surprising but natural explanation. Conversely, detailed measure-
ments of the non-classical relations between probabilities may allow to draw
conclusions about the dynamics of the guided neural correlates of mental states
in the background neural activity.

5 Conclusions

We have shown that Bohmian-type models are quite general and can lead to
non-classical probabilities, even though they are based on a classical ontology.
In particular, it is not inconceivable that neural dynamics on the level of neuronal
assemblies is similar to such a Bohmian-type model, which would explain the
observation of non-classical probabilities with respect to particular situations in
human behavior.

The general scenario suggested by Bohmian-type models — a guiding field and
a guided entity — are very likely to be found also in other fields, in particular
in the social or economic sciences. Public opinion, e.g., may guide individual
opinions, etc. We already mentioned examples from chemistry, and it is not
difficult to find also examples in evolutionary biology, developmental biology
and population dynamics.
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The main reason why “non-classical probabilities” usually are not considered
as relevant for these situations seems to be that both, the guiding quantity as
well as the guided quantity, can be observed, which makes the classical structure
behind the observed pattern obvious. However, in quantum theory as well as in
many cases in the cognitive sciences, only one part of the two entities is observed
— the particle in case of quantum mechanics and mental aspects in case of psy-
chological experiments. The observed quantity seems to behave non-classically
because the dynamics of this quantity in the background of the underlying guid-
ing field is neither observed nor known and, therefore, it is not possible to take
this dynamics directly into account. However, indirectly it manifests itself in the
occurence of non-classical probabilities.
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Appendix: A Sketch of Bohmian Mechanics

Starting point is Schrödinger’s equation for a complex field ψ(x, t):

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m
ΔΨ(x, t) + V (x)Ψ(x, t) . (7)

We express the complex field in polar coordinates

Ψ(x, t) = R(x, t) exp

(
i

h̄
S(x, t)

)
(8)

where now R(x, t) and S(x, t) are real fields and satisfy the differential equations:

∂R(x, t)

∂t
= − 1

2m

(
R(x, t)ΔS(x, t) + 2∇R(x, t) ·∇S(x, t)

)
, (9)

∂S(x, t)

∂t
= −
[
(∇S(x, t))2

2m
+ V (x)− h̄2

2m

ΔR(x, t)

R(x, t)

]
. (10)

Replacing the amplitude R(x, t) by the absolute square of the wave function
P (x, t) = |ψ(x, t)|2 = R(x, t)2 one obtains the differential equations:

∂P (x, t)

∂t
= −∇ ·

(
P (x, t)

∇S(x, t)

m

)
, (11)

∂S(x, t)

∂t
= − (∇S(x, t))2

2m
− V (x) +

h̄2

4m

[
ΔP (x, t)

P (x, t)
− 1

2

(∇P (x, t))2

P (x, t)2

]
. (12)
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The second equation is well-known in the Hamilton-Jacobi formulation of clas-
sical mechanics: the trajectories of particles are orthogonal to the surfaces of
constant S(x, t), and the velocity v(x, t) of a particle (following a trajetory which
at time t is at point x) is given by v(x, t) = ∇S(x, t)/m. Using this expression,
the differential equation for P (x, t) assumes the form:

∂P

∂t
+∇ · (Pv) = 0 . (13)

This is a continuity equation for P (x, t) = |ψ(x, t)|2.
Up to now, everything is completely within the framework of standard quan-

tum theory. It is just a reformulation of Schrödinger’s equation, and the con-
tinuity equation expresses the “conservation of probability” (the unitarity of
time evolution). The essential step beyond standard quantum theory is the in-
troduction of “hidden variables” q(t) associated to the position of real, existing
particles. P (x, t) is now interpreted as the probability distribution for an ensem-
ble of trajectories: for t fixed, P (x, t) is the density of trajectories {q(t)} in this
ensemble at point x, and the continuity equation guarantees that this interpre-
tation remains valid for all t. The Newtonian equation of motion corresponding
to eq. (12) is

m
d2q

dt2
= −∇

(
V (q(t)) − h̄2

2m

ΔR(q(t))

R(q(t))

)
, (14)

where, apart from the classical potential V (x), also the so-called quantum po-
tential

U(x) = − h̄2

2m
.
ΔR

R
=

h̄2

4m

[
ΔP

P
− 1

2

(∇P )2

P 2

]
(15)

appears. This quantum potential is responsible for the non-classical patterns
which are observed, e.g., the interference patterns in a double-slit experiment.
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Abstract. With insight from linguistics that degrees of text cohesion
are similar to forces in physics, and the frequent use of the energy concept
in text categorization by machine learning, we consider the applicability
of particle-wave duality to semantic content inherent in index terms.
Wave-like interpretations go back to the regional nature of such content,
utilizing functions for its representation, whereas content as a particle can
be conveniently modelled by position vectors. Interestingly, wave packets
behave like particles, lending credibility to the duality hypothesis. We
show in a classical mechanics framework how metaphorical term mass
can be computed.

1 Introduction

The general idea to use physics, prominently both classical and quantum me-
chanics, to model phenomena crucial to managing society has lately made an
interesting debut among significant research questions. To do so, the calculus
being the same as in quantum mechanics, the trick is to switch the probability
type from the variant pertinent in the subatomic domain to the other one which
works in the macroworld [1]. By this, phenomena like financial market evolution
(deterministic and stochastic models of markets), language evolution, or digital
repositories handling term meaning fluctuations become available for extensive
and application-oriented, testable research with implementable results.

At the same time, currently this intellectual tightrope walking is mostly theory
development, with expected immediate practical implications. If one can show
on new use cases such as e.g. media, health, and part text, part signal based
science data that quantum-like modelling works, and yields at least as good or
better results than the benchmark, then one will have to ask for the reason of this
success. One explanation we have at this point is the metaphorically “energetic”
nature of both language [2] and learning (decision making) [3]. Since we perceive
this “energetic” nature based on macroworld observations also underpinned by
microworld calculation methodology, the phenomenon must be underlying both
classical mechanics (CM) and quantum mechanics (QM).

With this caveat, as a next phase in an ongoing thought experiment, below
we will first cite arguments from linguistics to compare kinds of coherence in
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language to types of forces in physics, and suggest the field concept as a pos-
sible unifying metaphor to represent word and sentence semantics both in the
CM and QM frames of thought. Our first observation cites views calling for a
regionally rather than exactly located kind of semantic content to be considered
[4]. Secondly, mathematical objects with physical equivalents, such as sinusoids
standing for e.g. electromagnetic waves and wavelets for impulses (outbursts),
can be used to model the above regional distribution of semantic content [5,6],
also demonstrated for the visible light part of the spectrum [7] – as if, in a sense,
terms and documents had a wave nature. Thirdly, we will postulate that the
same semantic content can be conceived both as a particle and a wave-packet,
arguing for this quasi-dual nature as an essential property enabling new kinds
of experiments.

The topic is heating up because of increasing interest in temporal dynam-
ics [8,9,10,11] and its anticipated connection with the Hamiltonian, a typically
quantum interaction (QI) consideration. As proposed earlier, in both CM and
QM, it is the Hamiltonian which describes the energy stored in a system, and in
order to approach it, finding a way to compute term “mass” is the key.

This paper is organized as follows: Section 2 outlines the concept of energy in
machine learning, Section 3 interprets the Hamiltonian on the constituents of a
term-document matrix and in Section 4 we consider the duality of semantic con-
tent representation. Section 5 is the discussion of some immediate implications
of our observations, with Section 6 offering our brief conclusions.

2 Energy in Machine Learning

The metaphoric use of physics is based on the urge to find better models of text
classification (TC) and information retrieval (IR) by means of machine learning
(ML). We start with arguments from linguistics to compare kinds of coherence
in language to types of force in physics.

As White suggests, linguistics, like physics, has four binding forces [12]:

– The strong nuclear force, which is the strongest “glue” in physics, corre-
sponds to word uninterruptability (binding morphemes into words);

– Electromagnetism, which is less strong, corresponds to grammar and binds
words into sentences;

– The weak nuclear force, being even less strong, compares to texture or co-
hesion (also called coherence), binding sentences into texts;

– Finally gravity as the weakest force acts like intercohesion or intercoher-
ence which binds texts into literatures (i.e. documents into collections or
databases).

Mainstream linguistics traditionally deals with Forces 1 and 2, while discourse
analysis and text linguistics are particularly concerned with Force 3. The field
most identified with the study of Force 4 is information science [12,13,14]. As
the concept of force implies, referring here to attraction, it takes energy to keep
things together, therefore the energy doing so is stored in agglomerations of
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observables of different kinds in different magnitudes, and can be released from
such structures. A notable difference between physical and lingustic systems is
that extracting work content, i.e. “energy” from symbols by reading or copying
them does not annihilate symbolic content, however.

Looking now at the same problem from a different angle, in the above and
related efforts, energy inherent in all four types can be the model of:

– A Type 2, i.e. electromagnetism-like attractive-repulsive binding force such
as lexical attraction, a.k.a syntactic word affinity [15], also called sentence
cohesion, such as by modelling dependency grammar by mutual information
[16]. Once pointwise mutual information replaces mutual information, the
nickname of the effect is “infomagnetism” [17]. In a TC and/or IR setting,
a similar phenomenon is term dependence based on their co-occurrence;

– Decision making, such as in a classification process, both in a supervised and
unsupervised manner;

– Information representation, such as conceiving documents as wave interfer-
ence patterns [7,18].

Again from a different angle, the energy concept used in experiments of the
above types can be mathematical or physical. For mathematical energy, at least
three concepts are current:

– Signal energy in calculations, devoid of physical content (e.g. [6]. A typical
consideration runs like this: “Signals that arise from strictly mathematical
processes and have no apparent physical equivalent are commonly considered
to represent some form of mathematical energy” [19];

– Loss functions in ML. These model the cost of a classification decision as an
energy minimizing process;

– Local density of values within a mathematical object: “Energy of a (part of
a) vector is calculated by summing up the squares of the values in the (part
of the) vector” [20].

For physical energy as a model of content or processes, the applicability of the
metaphor in ML pertains to all kinds of media, images included. With a focus
mainly on clustering, its range is already strikingly broad, spanning the elec-
tromagnetic force [21], gravity [22,23], spin [24], waves [25], wavelets [26], and
wave functions [27,28]. At the same time, the utilization of the energy concept
in ML goes back to the use of potentials. In the examples cited above, there
are two kinds thereof, Coulomb potential vs. gravitational potential, so that de-
cision making (classification, categorization) is minimum or maximum seeking
by gradient descent or ascent on a hypersurface, constructed from statistics de-
scribing the event space. Whereas gravitational force assumes energy from the
mass of particles (i.e., documents) in a cluster, Coulomb potential presupposes
the dipole nature of entities such as belonging to vs. not belonging to a class.

We have to mention here the inherent eigen conjecture in latent semantic
methods, namely that terms have “mass”, i.e. word meaning behaves as if it
had an energetic nature [2]. This conjecture is now reinforced by the explicit
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consideration of mass in the kinetic part of dynamic quantum clustering (DQC)
as well [28].

3 The Role of the Hamiltonian in Evolving Document
Collections

Taking into consideration that H = T +V is the Hamiltonian equation we want
to interpret, where H is the Hamiltonian operator, T is the kinetic energy and
V is the potential energy of a system, respectively, we argue that AAT = H ,
that is, we treat the term co-occurrence matrix as the description of the total
energy of the system. Thereby we also assume that our system is a conservative
one. The same assumption was made by DQC [27,28,29].

Any update of AAT results in an A′A′T state with its corresponding V ′ po-
tential energy, whereas the difference between any two consecutive V ′ goes back
partly to changes in document collection content reflected by different index
term occurrence rates (a.k.a. term frequency), partly to changes in the propor-
tion of referential meaning added to H by sense definitions and sense relations of
index terms. Both T and V can be analyzed by comparing consecutive spectral
decomposition of the same index term over periods.

It is key to the understanding of V to remember that the semantic interpreta-
tion of both A and AAT goes back to term occurrences in context, and thereby
to the distributional hypothesis of word meaning [30]. However, taking a broader
view of the issue, it is clear that at least one more factor, i.e. referential meaning
must play a role in interpreting the above matrices as well. Namely the reason
why terms in a particular context co-occur goes back to their ontological mean-
ing, in a referential relation with their occurrences in sentences. This external,
hidden contribution can be measured e.g. by the inverse relationship between
the number of intensions (features) of a word vs. its extensions (cardinality of
the set of its examples) [31].

Next we bring arguments for the regional nature of semantic content. We
will focus on Euclidean space, i.e. the vector space IR model (VSM) and its
offsprings, where a natural concern is to ask, is semantic content exactly or
inexactly located, i.e. regional? The answer depends on what one wants to model
and by which mathematical objects; however, this ambiguity, the potentially dual
nature of semantic content will be key to our conclusions.

4 Duality in Semantic Representation

4.1 The Regionality of Semantic Content – Wave-Like
Representation

In linguistics, the regional nature of word semantics can be best observed on the
overlap between word senses displayed as semantic fields [32,33]. Priss and Old
model the underlying, language-independent conceptual regions by neighbour-
hood lattices [34]. Further the very concern itself is not new, IR and TC having
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assumed for a long time that the immediate neighbourhood [4] of relevant terms
and documents contains related, and therefore important, information, which
can be used for e.g. relevance feedback [35]. In a QI setting, Bruza and Woods
ascribed word sense disambiguation to the collapse of meaning superpositions
due to disambiguating local term context [36]. Further there is an argument in
[37] about support vector machines (SVM) linked to quantum disjunctions, the
link being regions, meant to solve the problem to be able to say that apple is
a kind of fruit (apple is part of the fruit region, i.e. its hyponym), as opposed
to modeling that apple and fruit have something to do with each other. SVMs
do this by finding the separating hyperplane, but more research is needed to
understand whether the separating hyperplane defines a region. Finally, instead
of regions, [38] measure the distance between subspaces spanned by documents
by projecting them into one another.

In vector models using position vectors content is usually exactly located.
However, reinforcing Dyvik’s and Priss and Old’s argument, e.g. Erk also argues
for the regionality of word meaning, i.e. its inexact location [4]. She departs from
the fact that many models of categorization in psychology represent a concept
as a region, characterized by feature vectors with dimension weights, and offers
two computational models, both of which can host soft region boundaries. Using
so-called type vectors as central vectors, each type vector comes with a vector
β which defines the importance of each dimension, thus the type vector and
its weight vector define a region. Here, regionality implies gradually decreasing
similarity between document, query and term vectors. Another model, of sen-
tence formation and called lexical attraction [15], deals with the likelihood of a
syntactic relation decaying over distance like a force.

Regionality also manifests itself if term vectors are embedded into an L2 space,
assigning sums of sinusoids or wavelets to each term in the function space [39,40].
In these models the length of the period or the length of the support controls the
inexactness of semantic content, and given that terms are arranged according to
a semantic order, this representation may lead to improvement in classification
performance.

Hence both terms and sentence components can be considered as having a
regional interpretation or aspect as well. Interference (pattern) models using
functions to represent semantic content implement this regionality expectation
[18,7] – as do Erk’s token vectors for monosemous vs. polysemous words. By these
means, the question has to remain undecided. However, the applicability of the
concepts of energy, the Hamiltonian, and regional, “smeared out” content beg
for a thought experiment which compares exactly located content to particles,
inexactly located content to waves, and invokes the parallel with particle-wave
duality in QM.

4.2 Meaning and Mass – Particle-Like Representation

The attempt presented here goes back to CM with the implied argument that
if QI methods work on language, terms must have “energies” and, in turn, related
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“mass” equivalents; but then, these must be observable in the much simpler
Newtonian environment as well.

Following this train of thought, given that in CM, force is the product of mass
and acceleration, F = ma in Newton’s 2nd law, we assume that similarity is a
“glue”, i.e. binding force, between entities in vector space [41]: the more similar
two vectors are, the better they attract each other (which is different for example
from electromagnetic attraction and repulsion).

Table 1. Evolution of an indexing vocabulary over time

t = 0 Doping Football Performance Skiing Training

d1 5 2 0 0 0
d2 4 0 0 3 1
d3 0 0 4 0 5
d4 6 0 2 0 0
d5 0 3 0 0 4

t = 1

d1 5 2 0 0 0
d2 4 0 0 3 1
d3 0 0 4 0 5
d4 6 0 2 0 0
d5 0 3 0 0 4
d6 2 3 0 1 1
d7 1 0 0 4 5

t = 2

d1 5 2 0 0 0
d2 4 0 0 3 1
d3 0 0 4 0 5
d4 6 0 2 0 0
d5 0 3 0 0 4
d6 2 3 0 1 1
d7 1 0 0 4 5
d8 5 6 1 1 0
d9 2 1 1 3 0

Thinking back of Salton’s dynamic library with its moving cluster centroids
due to collection update (expansion) [42], we leave the question undecided here
if an updated system is a closed or open one. With a conservative system in
mind, we consider a vector space of many term-document matrices, represent-
ing consecutive updates of the same database with a fixed vocabulary over an
increasing number of documents, so that all the documents and the terms will
have temporal indices as well. This way term and document similarity can be
computed as the cosine of two vectors with the same temporal index, and the
dislocation (i.e. distance, x) of the same term due to database update will be
the cosine of the two respective vectors with consecutive temporal indices. As-
suming updates over units of time, term velocity (v) will be the same as the
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distance between two consecutive positions of the same term. Calculating term
acceleration (a) equals the difference between term velocities over units of time.
Table 1 shows a toy example of a growing document collection indexed by the
same terms in three timesteps. Given this, we depart from Ehrenfest’s theorem
stating that the time-dependent expectation value of the position operator

〈ψ(t)|x|ψ(t)〉 =
∫
ψ(x, t)∗xψ(x, t)dx

satisfies the equation

d2〈x(t)〉
dt2

= 〈ψ(t)|∇V (x)|ψ(t)〉.

This means that the expectation values of the position operator obey their cor-
responding classical equations of motion, that is, the centre of each wave packet
rolls towards the nearest minimum of the potential according to Newton’s 2nd
law. Following this train of thought further, with term similarities at different
times as attraction between them in a symmetric matrix, we insert term accel-
eration in the respective row and column headings and see that |F |/|a| = m for
every term at a given time, i.e. for every term pair compute their time-dependent
masses.

We derive term “mass” the following way. Assuming unit time steps, we cal-
culate term velocities between subsequent time steps based on the Euclidean
distance between the term’s vector at the respective time steps. We only care
about the magnitude. The change in the velocity results in an acceleration value.
At every time step, we regard the force that acts on a term as a sum of dissimi-
larities with every term except itself. This calculation is similar to an interaction
potential that considers n : n relations between particles (or agents) [1, p.157].
This is a considerable simplification as the force that changes the term distri-
bution is at least partially external to an existing distributional pattern. Based
on the absolute value of the acceleration and the force, term “mass” can be
calculated (see Table 2).

Table 2. Calculation of term mass over t0-t1

Doping Football Performance Skiing Training

v1 9 9 0 25 36
v2 49 49 4 16 0
a 40 40 4 -9 -36
F 1.56 1.28 1.24 1.35 1.37
m 0.039 0.032 0.31 0.15 0.038

5 Discussion

Immediate consequences of term representation by wave packets include the
following:
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– When describing the behaviour of index terms in a document collection
expanding over time according to the CM frame of thought, all the numerical
results for variables like force, acceleration or mass, are dimensionless, i.e.
metaphoric. An explanation of the results can be to ascribe constant mass to
terms like in [41] where term occurrences count as such, but variable density,
ρ = mV . Here any word form would count as a unit container, hence V =
const., and variable term density is the result of variable forces acting on the
system in different periods;

– In DQC, Gaussian wave packets model particles [28]. According to Eq 6.4,
”the generalized Gaussian packet shows that the packet center moves along
the classical trajectory for a particle starting with the given initial mean posi-
tion and mean momentum”. A wave packet (or wave train) is a short ”burst”
or ”envelope” of wave action that travels as a unit and can be analyzed into,
or can be synthesized from, an infinite set of component sinusoidal waves of
different wavenumbers, with phases and amplitudes such that they interfere
constructively only over a small region of space, and destructively elsewhere.
Wave packets, while behaving as particles, can reversibly model sentences
as word sequences. If a sentence happens to be a definition of a word sense,
like in Wordnet, they model referential semantics charging words “from the
outside”, i.e. adding extra meaning to words in the term-document matrix
whose only meaning this far was ascribed to the distributional hypothesis
[30];

– The total energy of a classical mechanical or a QM system is described by the
Hamiltonian operator, adding up its kinetic and potential energy. However,
the Hamiltonian may or may not describe a quantum-like system. Further
there are some subtle issues here and we must not jump to conclusions. Inex-
actly located semantic content suggests a distribution as well as some kind of
an uncertainty; in a QL context both stem from the non-commutative nature
of the operators. We only conjecture that the use of such non-commutative
operators is an apt description for semantic content.

6 Conclusions

To further underpin the observation that language may be a quantum-like sys-
tem, we sampled arguments in favour of a metaphorical use of classical and
quantum mechanics to model the static and dynamic behaviour of word mean-
ing. With energy as a concept frequently used in some form in text categoriza-
tion and information retrieval, we contrasted two equally valid approaches to
the representation of semantic content, by its exact vs. inexact location, and
argued that they closely resemble particle-wave duality in QM. One cited exam-
ple, wave packets, interestingly behave like particles, lending credibility to the
duality hypothesis. Further we showed on a toy example in a classical mechanics
framework how metaphorical term mass can be computed. Our future work will
increasingly focus on the interpretation and practical use of the Hamiltonian of
evolving semantic systems.
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Abstract. We study the convergence of the Schrödinger equation, when
the Planck constant tends to 0. Our analysis leads us to introduce
non-discerned particles in classical mechanics and discerned particles in
quantum mechanics. These non-discerned particles in classical mechan-
ics correspond to an action and a density which verify the statistical
Hamilton-Jacobi equations. The indiscernability of classical particles pro-
vides a very simple and natural explanation to the Gibbs paradox. We
then consider the case of a large number of identical non-discerned in-
teracting particles modeled by a mean field. In classical mechanics these
particles satisfy the mean field Hamilton-Jacobi equations. We show how
the analysis of non-discerned particles in classical mechanics can be fruit-
fully applied to some other fields. In economics, we show that the theory
of mean field games, where non-discerned agents are considered inter-
acting with one another, is the analogue of mean field Hamilton-Jacobi
equations.

Keywords: indiscernability, Gibbs paradox, mean field, mean field game,
Hamilton-Jacobi equations.

1 Introduction

The idea that particles can be "indiscernable" has led to some notoriously diffi-
cult problems and misleading interpretations. In fact, the concept of indiscern-
ability is at the origin of the Gibbs paradox (Gibbs, 1899): Indeed, when one
calculates the entropy of two mixed gases, the classical result for distinguishable
particles is double the expected result. If the particles are considered indistin-
guishable, the correct result is recovered because of the indiscernability factor.
A common view is that the introduction of the indiscernability postulate for
quantum particles provides a resolution of this paradox. Moreover, as noted by
Greiner in this book on statistical mechanics, in addition to the Gibbs paradox,
many situations of classical mechanics call for the notion of indistinguishable
particles and distinguishable particles in quantum mechanics [1] p.134 : "Hence,
the Gibbs factor 1

N ! is indeed the correct recipe for avoiding the Gibbs paradox.
From now on we will therefore always take into account the Gibbs correction
factor for indistinguishable states when we count the microstates. However, we
want to emphasize that this factor is no more than a recipe to avoid the contra-
dictions of classical statistical mechanics. In the case of distinguishable objects
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(e.g., atoms which are localized at certain grid points), the Gibbs factor must
not be added. In classical theory the particles remain distinguishable. We will
meet this inconsistency more frequently in classical statistical mechanics."

By studying the convergence of the Schrödinger equation, when the Planck
constant tends to 0, we argue in section 2 that indiscernability is a natural notion
for classical mechanics, while the idea of discerned particles particles appears
as appropriate notion in quantum mechanics. These non-discerned particles in
classical mechanics correspond to an action and a density which satisfy the
statistical Hamilton-Jacobi equations. The indiscernability of classical particles
provides a very simple and natural explanation of the Gibbs paradox.

In section 3, we consider the case of a large number of identical non-discerned
particles interacting with one another for which the interaction can be modeled
by a mean field. In classical mechanics these particles satisfy the mean field
Hamilton-Jacobi equations, the equations of physics at a mesoscopic scale. We
show how the analysis of non-discerned particles in classical mechanics can be
fruitfully applied to some other fields. In section 4, we show that in economics the
theory of mean field game, where non-discerned agents are considered interacting
with one another, is the analogue of mean field Hamilton-Jacobi equations. In
section 5, we provide an application of mean field games to individuals who wish
to form a community. We intend to apply our analysis to the field of humanity
and social science rather economics.

2 The Two Limits of the Schrödinger Equation in the
Semi-classical Approximation

Let us consider the wave function solution to the Schrödinger equation Ψ(x, t):

i�
∂Ψ

∂t
= − �2

2m
,Ψ + V (x, t)Ψ (1)

Ψ(x, 0) = Ψ0(x). (2)

With the variable change Ψ(x, t) =
√
ρ�(x, t) exp(iS

�(x,t)
�

), the Schrödinger
equation can be decomposed into Madelung equations [2] (1926):

∂S�(x, t)

∂t
+

1

2m
(∇S�(x, t))2 + V (x, t)− �2

2m

,√ρ�(x, t)√
ρ�(x, t)

= 0 (3)

∂ρ�(x, t)

∂t
+ div(ρ�(x, t)

∇S�(x, t)

m
) = 0 (4)

with initial conditions

ρ�(x, 0) = ρ�0(x) and S�(x, 0) = S�

0 (x). (5)

We shall consider two cases depending on the preparation procedures of the
particles [3,4].
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Definition 1. - The statistical semi-classical case where
- the initial probability density ρ�0(x) and the initial action S�

0 (x) are regular
functions ρ0(x) and S0(x) not depending on �.

- the interaction with the potential field V (x, t) can be described classically.

This represents a set of non-interacting particles, prepared in the same way: a
free particle beam in a linear potential, an electronic or C60 beam in the Young’s
slits diffraction, or an atomic beam in the Stern and Gerlach experiment.

Definition 2. - The determinist semi-classical case where
- the initial probability density ρ�0(x) converges, when � → 0, to a Dirac

distribution and the initial action S�
0 (x) is a regular function S0(x) not depending

on �.
- the interaction with the potential field V (x, t) can be described classically.

This situation occurs when the wave packet corresponds to a quasi-classical
coherent state, introduced in 1926 by Schrödinger [5].

THEOREM 1. [3,4] For particles in the statistical semi-classical case, the
probability density ρ�(x, t) and the action S�(x, t), solutions to the Madelung
equations (3)(4)(5), converge, when � → 0, to the classical density ρ(x, t) and
the classical action S(x, t), solutions to the statistical Hamilton-Jacobi equations:

∂S (x, t)
∂t

+
1

2m
(∇S(x, t))2 + V (x, t) = 0 (6)

∂ρ (x, t)
∂t

+ div

(
ρ (x, t)

∇S (x, t)
m

)
= 0 ∀ (x, t) (7)

ρ(x, 0) = ρ0(x) and S(x, 0) = S0(x). (8)

The statistical Hamilton-Jacobi equations correspond to a set of independent
classical particles, in a potential field V (x, t), and for which we only know, at
the initial time, the probability density ρ0 (x) and the velocity v(x) = ∇S0(x,t)

m .

Definition 3. - N identical particles, prepared in the same way, with the same
initial density ρ0 (x), the same initial action S0(x), and evolving in the same
potential V (x, t) are called non-discerned.

We refer to these particles as non-discerned and not as indistinguishable be-
cause, the knowledge of their initial positions give automatically the informa-
tion on their trajectories. Nevertheless, when one counts them, they will have
the same properties as the indistinguishable ones. Thus, if the initial density
ρ0 (x) is given, and one randomly chooses N particles, the N! permutations are
strictly equivalent and correspond to the same configuration of indistinguishable
particles. This indistinguishability of classical particles provides a very simple
and natural explanation to the Gibbs paradox.

In the statistical semi-classical case, the uncertainty about the position of a
quantum particle corresponds to an uncertainty about the position of a classical
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particle, whose initial density alone has been defined. In classical mechanics,
this uncertainity is removed by giving the initial position of the particle. It would
illogical not to do the same in quantum mechanics. We assume that for the
statistical semi-classical case, a quantum particle is not well described by its
wave function. One therefore needs to add its initial position and it follows that
we introduce the so-called de Broglie-Bohm trajectories [6,7] with the velocity
v�(x, t) = 1

m∇S�(x, t).
The convergence study of the determinist semi-classical case is mathematically

very difficult. We only study the example of a coherent state where an explicit
calculation is possible.

For the two dimensional harmonic oscillator, V (x) = 1
2mω

2x2, coherent states
are built [8] from the initial wave function Ψ0(x) which corresponds to the density

and initial action ρ�0(x) = (2πσ2
�
)−1e

− (x−x0)2

2σ2
� and S0(x) = S�

0 (x) = mv0 ·x with

σ� =
√

�

2mω . Here, v0 and x0 are still constant vectors and independent from �,
but σ� will tend to 0 as �. With initial conditions, the density ρ�(x, t) and the
action S�(x, t), solutions to the Madelung equations (3)(4)(5), are equal to [8]:

ρ�(x, t) =
(
2πσ2

�

)−1
e
− (x−ξ(t))2

2σ2
� and S�(x, t) = +mdξ(t)

dt ·x+g(t)−�ωt, where ξ(t)
is the trajectory of a classical particle evolving in the potential V (x) = 1

2mω
2x2,

with x0 and v0 as initial position and velocity and g(t) =
∫ t
0 (− 1

2m(dξ(s)ds )2 +
1
2mω

2ξ(s)2)ds.

THEOREM 2. - When � → 0, the density ρ�(x, t) and the action S�(x, t)
converge to

ρ(x, t) = δ(x− ξ(t)) and S(x, t) = m
dξ(t)

dt
· x+ g(t) (9)

where S(x, t) and the trajectory ξ(t) are solutions to the determinist Hamilton-
Jacobi equations:

∂S (x, t)
∂t

|x=ξ(t) +
1

2m
(∇S(x, t))2|x=ξ(t) + V (x)|x=ξ(t) = 0 (10)

dξ(t)

dt
=
∇S(ξ(t), t)

m
(11)

S(x, 0) = mv0 · x and ξ(0) = x0. (12)

Therefore, the kinematic of the wave packet converges to the single harmonic
oscillator described by ξ(t). Because this classical particle is completely defined
by its initial conditions x0 and v0, it can be considered as a discerned particle. It
is then possible to consider, unlike in the statistical semi-classical case, that the
wave function can be viewed as a single quantum particle. The determinist semi-
classical case is in line with the Copenhagen interpretation of the wave function
which contains all the information on the particle. A natural interpretation is
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proposed by Schrödinger [5] in 1926 for the coherent states of the harmonic
oscillator: the quantum particle is a spatially extended particle, represented by
a wave packet whose center follows the classical trajectory.

3 Mean Field of Non-discerned Particles in Quantum
Mechanics and Classical Mechanics

Let us consider N non-discerned identical particles (N - 1). We assume that
an interaction exists between them and we can make the assumption of mean
field, meaning that we consider that each particle is sensitive to a potential field
V (x, ρ, t) depending on the particles’ density.

In quantum mechanics, it is for instance the case of the single-particle wave
function in a Bose-Einstein condensate (BEC). This single-particle wave function
satisfies the Gross-Pitaevskǐi equation in which one replaces the potential V (x, t)
in the Schrödinger (1) and the Madelung equation (3) by

V (x, ρ, t) = Vext(x, t) +Ng|Ψ(x, t)|2 (13)

with ρ(x, t) = N |Ψ(x, t)|2 and g = 4π�2a
m where a is the scattering length char-

acterizing the interaction between two atoms at low-energy.
In classical mechanics, replacing V (x, t) by V (x, ρ, t), implies that the statisti-

cal Hamilton-Jacobi equations (6)(7)(8) become the Mean Field Hamilton-Jacobi
equations:

∂S (x, t)
∂t

+
1

2m
(∇S(x, t))2 + V (x, ρ, t) = 0 (14)

∂ρ (x, t)
∂t

+ div

(
ρ (x, t)

∇S (x, t)
m

)
= 0 ∀ (x, t) (15)

ρ(x, 0) = ρ0(x) and S(x, 0) = S0(x). (16)

Those are the equations of physics at a mesoscopic scale.
As we have just shown, the Mean Field Hamilton-Jacobi equations in classic

mechanics exhibit some features of quantum mechanics: non-discerned particles
and mean field. It is also possible to transpose these features to other fields of
science is possible. This is the purpose of the next section.

Mean Field Hamilton-Jacobi equations are obtained in the semi-classical limit

when the quantum potential − �
2

2m

	
√

ρ�(x,t)√
ρ�(x,t)

converges to 0, when � → 0. The

non locality deduced from the quantum potential is then lost: the interferences
in the double-slit experiments and the non local correlations of EPR-B exper-
iments. Therefore, one uses a nonlocality deduced from a potential dependent
on the density V (x, ρ, t). In social systems, this potential is deduced from the
information exchanged between agents.
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4 Indiscernability of Agents and Mean Field in Economics

In the above sections, we saw the consequences of both non-discerned particles
and mean field assumptions on equations in mechanics. In this section, we il-
lustrate the role played by these two hypotheses in economics through a new
branch of game theory: Mean Field Games. This former was defined recently in
the seminal papers by J.-M. Lasry and P.-L. Lions [9,10,11] and is characterized
by four assumptions:

1.Rational expectations
2.Continuum of agents
3.Anonymity of the agents
4.Social interactions of the mean field type

We present the usual assumption from the literature [12] and then, we will
present a new possible reading of them.

"The first three assumptions are common in game theory. The first one - the
rational expectation assumptions - was introduced around the 60’s and is now
well accepted among game theorists."

"The second one is often used to model games with a large number of play-
ers. It’s a rather well accepted approximation that has been used for tractability
purposes and here, for mean field games, the limit of a game with N players as
N goes to infinity has been studied in [11] to support this assumption."

The first assumption has no counterpart in physics. The second one is not
fundamental.

"The third one has always been implicit in game theory but is worth recalling.
Basically, it says that agents are anonymous in the sense that any permutation
of the agents does not change the outcome of the game."

The third assumption is central for the purpose of this article. The fact that
any permutation of the agents does not change the outcome of the game is implic-
itly a way of considering non-discerned agents. In mechanics, the non-discerned
particles hypothesis leads to statistical Hamilton-Jacobi equations and the mean
field of non-discerned particle hypothesis leads to Mean Field Hamilton-Jacobi
equations. The mean field of non-discerned particles exactly illustrates the speci-
ficity of Mean Field Games theory as it is explained below.

"The fourth assumption is specific to mean field games and is a hypothesis on
interactions between players. The main idea is that a given agent cannot influ-
ence by himself (but marginally) the distribution of the population of players and
therefore the strategies of others. By his behavior, however, a given agent con-
tributes marginally to the statistics that are used by agents to decide upon their
strategies. A consequence of this hypothesis is that changes either for character-
istics or for strategies that concern any finite number of players do not change
the outcome of the game."

Concerning the structure of the MFG equations (in the case of dynamic
games), it is always a forward/backward structure that combines backward (Bell-
man) equations for the determination of individual strategies and forward (trans-
port) equations to describe the global evolution of the game. It’s indeed quite
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common to have such a structure. Since players find their optimal strategy using
backward induction processes, the backward equation is natural and corresponds
to a Bellman equation or a Hamilton-Jacobi-Bellman equation (HJB equation).
Furthemore, to take into account the evolution of the game, a forward equation
is needed and is often of the Kolmogorov-Fokker-Planck type.

These coupled forward/backward equations define Mean Field Games and
can be applied to numerous economic problems: long-run oil production [13],
labor market, growth theory [12] and also for population issues [14]. In the next
section, we give more details about this last subject: population issues.

5 Application of Mean Field Games to Population Issues

This example does not directly deal with economics since it is an application
of mean field games to individuals who want to form a community. It concerns
individuals who want to be distributed as close as possible to each other but
cannot form a Dirac distribution in presence of noise.

Mean Field Games are a natural framework to deal with population issues
in which individuals optimize their position to satisfy their willingness to be
with or without their peers in addition to being at a given location for in-
stance. Many setups can be imagined going from people who all want to live
near a given location but do not want to live near their peers to people who
want just to live with their peers anywhere as long as they are gathered as a
community.

Let us consider a continuum of individuals who have preferences about living
with their peers. This type of problem is typically of the mean field game sort
where individuals pay a price to move form one point to another and have a
utility flow that is a function of the overall distribution of individuals in the
population. It is possible to model it as follows.

Each agent lives in an n-dimensional space.
Each agent has a "utility" function than can be decomposed in two parts:
- Part 1: A pure preference part g (where g is increasing in the model to

willingness to be together) that represents what it gets from being in a position
x at time t. The function g depends on ρ(x, t) the distribution function of the
population. In other words, g is a function of ρ(x, t).

- Part 2: A pure cost part h that corresponds to the price incurred to make a
move to size α. In other words, h is a function of α.

The problem we have just presented can therefore be written as a control
problem. The control problem consists in evaluating a Bellman function at each
time t. The Bellman function u(x,t) is defined by the maximization under the
control α of the mean of the integral over [t,T] of the discount "utility" function
just defined above. The maximization is on the mean of the integral because
each agent is moved by a Brownian motion in dimension n with the standard
deviation σ. But this could be also done in a deterministic framework. We can
therefore write the problem as a control one [14]:
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u(x, t) =Max(α−s)s>t,Xt=x E[

∫ T

t

(g(ρ(Xs, s))− h(|α(Xs, s)|))e−λ(s−t)ds] (17)

with dXt = α(Xt, t)dt+ σdWt.
As for any mean field game we use [9,10] to write the associated system of

partial differential equations:

∂u

∂t
+H(∇u)− λu + g(ρ) +

σ2

2
Δu = 0 (Hamilton− Jacobi) (18)

∂ρ

∂t
+ div(ρH ′(∇u))− σ2

2
Δρ = 0 (Kolmogorov) (19)

where H(p) = maxα(αp− h(α)) and with the additional conditions

ρ(x, 0) = ρ0(x) and u(x, T ) = 0. (20)

H is the Hamiltonian. The quadratic cost framework is characterized by a simple
Hamiltonian (H(p) = 1/2p2) and therefore the system is simplified:

∂u

∂t
+ 1/2|∇u|2 − λu + g(ρ) +

σ2

2
Δu = 0 (Hamilton− Jacobi) (21)

∂ρ

∂t
+ div(ρ∇u)− σ2

2
Δρ = 0 (Kolmogorov) (22)

In the example, the Bellman function u plays the role of the action S in the
Madelung equations.

Remark 1. It is important to point out a difference between the Mean Field
Hamilton-Jacobi equations in mechanics and the Mean Field Games equations in
economics. The difference occurs in the initial conditions. Indeed, the Hamilton-
Jacobi-Bellmann equation in the MFG theory is a backward equation because the
initial conditions are on final time T. This due to the fact that it is an optimal
control problem.

6 Conclusion

Mean Field Hamilton-Jacobi equations (MFHJ)present two specific features: in-
discernability and mean field.

The mean field limit is specific to macroscopic equations where the interaction
between particles are non local as in Vlasov’s equation of plasma. In social
systems, the non local potential is deduced from the information exchanged
between agents.

Indiscernability is often considered as specific to the quantum mechanics. We
have shown that it is possible to extend it to classical mechanics without use of
the Planck constant, with the Mean Field Hamilton-Jacobi equations (MFHJ).

In short, MFHJ equations can be seen as fluid equations in the mean field
limit for non-discerned particles.
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Abstract. We propose ab initio the existence of social-psychological harmonic 
oscillators (SPHO) acting computationally in the minds of an intelligent audience 
that a self-regulated collective exploits to solve problems, resolve complex issues, 
or entertain itself. Using computational intelligence, our ultimate goal is to self-
regulate systems composed of humans, machines and robots. We conclude in an 
overview that self-regulation, characterized by our solution of the nonlinear 
tradeoffs between Fourier pairs of Gaussian distributions, affects decision-making 
differently for organizations and systems: When set inside of a democracy to 
solve well-defined problems, optimum performance requires command decision-
making along with maximum cooperation among an organization’s multitaskers 
(few challenges maximize oscillations); but, to solve ill-defined problems across a 
system requires maximum competition among participants and organizations 
(challenges minimize oscillations). 

Keywords: Interdependence, incomplete information, conservation of 
information. 

1 Introduction 

We have previously established theoretically that computational intelligence can exist 
to control organizations, systems, and systems of systems [30]. Less well-established 
are the mathematical foundations to control the system [27]. We continue to develop 
self-regulation from a social physics perspective, mathematics to support our findings, 
and weaknesses where known.  

Self-regulation is an important element of self-organization. Solving a control 
theory for self-regulation will not only increase our understanding of organizations 
and systems, but also the capability of organizations and systems to manage 
themselves with computational intelligence. The age of smart systems approaches;1 
e.g., during the last Iraqi war, four predator pilotless drones were aloft; in the war in 

                                                           
1 Wall Street Journal (2012, 3/5), “The Car of the Future Will Drive You”. 
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Afghanistan today,2 many tens are aloft at a time.3 But even though partially 
autonomous, by lacking intelligent interactions among them, these systems are not 
computationally intelligent. Smart systems fit with the two goals of Artificial 
Intelligence: to build intelligent machines; and to understand intelligent behavior [45].  

Our prior research [30] has established that cooperation is required for 
organizational effectiveness, especially as organizations grow in size in their need to 
reduce instability and gain market control. We also concluded that illusions drive 
social dynamics (oscillations). But in an attempt to reduce oscillations by encouraging 
members to adhere to a single worldview along with punishment for those who do 
not, increased cooperation reduces an organization's ability to innovate. Illusions like 
rumors occur in all forms of social structures [19], often at odds with an 
organization’s single worldview. In command organizations, leaders use censorship 
for control [34], but rumors are difficult to stop with threats alone.4,5 At one extreme, 
in a system isolated from competition [39], social well-being collapses and social 
evolution ceases (e.g., North Korea). In less extreme examples where government 
commands large swaths of the economy (e.g., China), forced cooperation increases 
corruption, reduces effectiveness in responding to national emergencies (e.g., 
financial collapses), and reduces social welfare.6 And at the other extreme, in a highly 
competitive environment where organizations struggle to survive, Darwin [17] 
stressed that cooperation in a competitive environment becomes important to those in 
collectives who are “ready to warn each other of danger, to aid and defend each 
other” to survive.7 In democracies, rumors are directly challenged and dampened [31].  

If an organization or system is operated perfectly [14], the organization emits zero 
additional information [15], compared to a baseline composed of the individuals who 
comprise the organization, making a perfectly run organization appear to be "dark" to 
outsiders and itself [31], possibly accounting for the negligible associations found 
between managers and the performance of their firms [8]. Inversely, the turmoil in a 
competitive society produces more information than its absence, a paradox involving 
tradeoffs underlying the physics of the conservation of information (COI).  

                                                           
2 The USAF alone now “flies at least 20 Predator drones—twice as many as one year ago—

over vast stretches of hostile Afghan territory each day”, New York Times (2010), “Drones are 
playing a growing role in Afghanistan”, retrieved 3/14/2012 from nytimes.com.  

3 It is predicted that 30,000 drones will be in use domestically by 2020. (The New York Times 
(2012, 2/21), “A scary, and useful, technology”, retrieved 3/14/12 from nytimes.com ) 

4 New York Times (2012, 3/30), “Coup Rumors Spur China to Hem in Social Networking Sites” 
5 “Perhaps the new leadership that emerges after this fall's Party Congress will be forced to announce 

a new reform program to repair the regime's battered image. But as long as the decisions are made 
behind closed doors, the rumors will continue to fly.” Wall Street Journal (2012, 4/11), “Murder 
and Bo Xilai. China's latest purge exposes the Communist Party's dirty laundry.” 

6 China is one of the most polluted countries on the planet (fully 90% of its shallow 
groundwater is contaminated, in Science (2011, 11/11), “China to Spend Billions Cleaning Up 
Groundwater”). 

7 Inadvertently exemplifying the importance of cooperation inside of organizations, Abigail 
Thernstrom became famous for saying that American universities are “islands of repressions 
in a sea of freedom.” (Magee, 2002, p. 255) 
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Efficiency minimizes redundancy and waste. For classical computational models 
of quantum interactions, Feynman [21] called them inefficient. He claimed that only a 
quantum computer running quantum interactions would be efficient. We have made 
similar claims that the traditional models of dynamic states of interdependence, like 
game theory, would be inefficient [30]. Indeed, game theory is an unsatisfactory 
model of interdependence [42].  

That interdependence produces incommensurable stories is not only the foundation 
of game theory, but also the first mathematical solution to the Prisoner's Dilemma 
Game, known today after Nash (1951), its author, as an example of Nash equilibria 
(NE). Game theory was one of the first methods to model interdependence rationally 
and to solve it with NE in the laboratory for two sets of non-cooperative opponents. 
NE are "toy" problem solutions which Luce and Raiffa [33] concluded produced 
unfair distributions of a game's resources. But Luce and Raiffa also warned that it was 
unlikely that "any sociology be derived from the single assumption of individual 
rationality" (p. 196). Axelrod [1] claimed that NE solutions are adverse to social 
welfare, asserting that for the evolution of cooperation, society should forcibly 
replace individual "self-interests" with cooperation. But from our perspective based 
on organizational and system tradeoffs, the problem with "rationality" is that only 
unopposed self-interests can be rationalized whereas the conflict associated with 
opposed self-interests precludes rational explanations [31]. Asked why he was against 
attempts by the present U.S. Congress to regulate stock market derivatives, Becker [6] 
stated that "competitive interest groups … [preclude] a systematic bias … [but that] 
Markets are hard to appreciate." 

When two different groups are governed by self-interests, it means the existence of 
biases between them. For example, confirmation bias [16] makes it difficult for open 
discussions between “believers” in opposing camps. But, competing self-interests 
control biases and illusions, the foundation for juries, the practice of science, free 
speech, and free markets [30]. That is why dictatorships censor opposing viewpoints, 
inadvertently promoting rumors.8  

In contrast to traditional and rational approaches to social science and bounded 
rationality, and based on models of interdependent uncertainty, we have concluded 
that Nash equilibria (NE) are invaluable to society just as entanglement is to quantum 
computation. Traditionally, an NE occurs when participants cannot improve their self-
interests based on rational choices they and others make. We reinterpret an NE as a 
set of opposed positions motivated by self-interests of social groups. Those who 
occupy an NE drive their views into relatively stable oppositions with the ultimate 
goal of obtaining social, financial, or political support for their and their tribes’ self-
interests. From our perspective [30], however, with reality being not easy to access or 
capture, an NE plus feedback provides sufficient information and knowledge for a 
system to solve computationally difficult, intractable, or otherwise ill-posed problems. 

Despite the evidence against conventional game theory, we consider our 
mathematical approach to be high-risk research. Deriving a theory of complementary 
uncertainty among conjugate variables as Bohr [9] advised was considered by Von 
Neumann & Morgenstern (p. 148 [44]) to be "inconceivable".  

                                                           
8 China censored media accounts of its bullet train disaster; Wall Street Journal (2011, 10/3), 

“China Bullet Trains Trip on Technology”.  
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2 Self-regulation: Two Field Studies 

Case Study 1: The U.S. Department of Energy (DOE). We began our field studies 
with trying to understand the mismanagement of U.S. military nuclear wastes 
generated during the production of nuclear weapons. Lilienthal [32], the first chair of 
the U.S. Atomic Energy Commission (AEC), replaced by the Energy Research and 
Development Administration (ERDA) and now by DOE, recognized that AEC's 
policy of self-regulation, isolated from competitive challenges, would compromise 
the practices of its scientists. Hidden behind claims of national security, it was easy 
for military nuclear managers to assert that they were protecting the environment. 

Until 1983, isolated from competition by national security, DOE maintained to the 
U.S. Congress that it was protecting the air, water and soil (p. I-1 [20]). But DOE 
alone determined that its environmental protections were equivalent to or exceeded 
Federal and State regulations for commercial facilities. However, after extraordinary 
environmental contamination across the entire DOE complex was exposed [29], the 
public and Congress forced DOE to comply with the US Environmental Protection 
Agency (EPA) and State regulations. The estimate today is about $200 billion alone 
just to cleanup Hanford, WA and Savannah River Site (SRS), SC, the two sites in 
DOE with the largest budgets. Self-regulation for a isolated system had failed.  

The DOE cleanup after 1983 has become more competitive and successful. Today, 
DOE faces competitive threats to its interpretations and its oversight from multiple 
sources. The National Academy of Sciences, the Defense National Facilities Safety 
Board, and DOE's Citizen Advisory Boards (CABs) have joined with EPA and State 
regulators, and sometimes with the Nuclear Regulatory Commission, to check DOE's 
decisions. In this new environment, DOE has made significant strides in cleaning up 
its complex, especially at SRS [30].  

Case Study 2: DOE and Citizen Advisory Boards (CABs). The second case study 
provides comparative data on CAB decisions. In agreement with Ostrom [37] that a 
resource commons can be better self-regulated by a wide association of users better 
than could the government, nine different DOE sites across its complex asked for help 
from citizen advisors across the DOE system. The results for these CABs are 
categorized by whether they were governed by either consensus or majority rules.  

Comparing decisions by consensus rules with majority rules produced the first ever 
prediction for social physics [30]: DOE had collected the recommendations of its 
scientists to speed the shipment of its Transuranic wastes to its WIPP repository in 
NM. It presented these recommendations to its nine CABs. Three of four consensus-
ruled CABs rejected that advice, compared to four of five majority ruled boards, 
supporting DOE’s scientists. 

DOE’s Hanford site has a consensus ruled CAB; the SRS site has a majority ruled 
CAB. But by increasing cooperation among DOE's citizen advisors, consensus rules 
contributed to "gridlock" and conflicts at DOE Hanford site that sometimes were not 
resolved until adjudicated by U.S. Federal courts [30]. We attributed gridlock to the 
number of unchallenged risk perceptions (illusions). In contrast to the conflict from 
the consensus-ruled board at DOE Hanford, the competition from majority rules 
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among citizen advisors, scientists and DOE not only challenged illusions, but also 
accelerated DOE's cleanup, especially at DOE-SRS.  Majority rules relied on the best 
arguments available, including scientific facts.  

The U.S. Federal Reserve Board, European Union, Roman Catholic Church, and 
commercial enterprises9 are examples of self-regulated organizations. In these cases, 
self-regulation depends on "transparency" to meet public objectives. However, when 
the rules for self-regulation are determined solely by the organization or system and 
closed to the public, "transparency" is an illusion, unless driven by competition.   

3 Mathematics Model 

To develop interdependence theory, we adapted Cohen's [13] interpretation of the 
classical uncertainty principle for signal processing. With Rieffel [40], we linked 
quantum entanglement and social interdependence theory. Next, we initially assumed 
that interdependence could be simplified with bistable models. An example of 
bistability is in Figure 1.  

Fig. 1A. On the left is an image of an Abrams M1A1 Main Battle Tank that generates a stable 
interpretation (e.g., www.army-technology.com/projects/abrams). All who view the tank reach 
the same interpretation. Fig. 1B. On the right is a bistable illusion of two-women that creates a 
bistable interpretation (an older woman looking downward and to the observer’s left; or a 
younger women looking away over her right shoulder). For bistable illusions, observers cannot 
"see" both interpretations of its single data set at the same time [10]. 

Social-Psychological Harmonic Oscillators 
Collecting information from well-defined networks or organizations for social 
network analysis (SNA) is relatively straightforward. But even when the information 
is readily available, the signals collected from social networks have not led to valid 
predictions about their actions or stability [36]. This failure with SNAs, game theory, 
and organizations in general [38] led to a request for new social theory to better 
understand the effects of interdependence in social networks and organizations [28].  

An NE acts as a point of conflict that draws an audience and drives its attention 
back and forth as a conflict is driven across time by self-interests, generating a model 
of a social-psychological harmonic oscillator (SPHO). We have associated findings 
from the literature that link moderated conflict and competition to improved learning 
                                                           
9 Wall Street Journal (2010, 4/28), “Documents Show BP Opposed New, Stricter Safety Rules”. 

These new rules might have prevented BP’s oil spill in the Gulf in 2010.  
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[18], political processes [30], decision-making in the courtroom [23], and 
environmental cleanup decisions [30]. SPHOs are integral to an audience's suspension 
of disbelief in entertainment [41]. In contrast, the repression of SPHO oscillators in a 
system characterizes consensus-driven minority rule such as a dictatorship (e.g., 
China), which significantly reduces social welfare.  

Conservation of Information (COI). The key to building abstract representations 
necessary to construct an SPHO is to locate opposing clusters and a neutral audience 
in Hilbert space for the shared geospatial interpretations of concepts. A Hilbert space 
is an abstract space defined so that vector positions and angles permit distance, 
reflection, rotation and geospatial measurements, or subspaces with local 
convergences where measurements can occur.  

We specify the state of bistable system with a state column vector |ψ>. If an 
operator An maps another state vector n onto itself plus a coefficient xn,  

An |n> = xn |n>, (1)

then |n> is an eigenvector, its coefficient xn is its eigenvalue, and n is the index 
number of the bistable state of a two-state social system (e.g., guilty-not guilty). 
When it exists, a complete set of eigenfunctions forms a basis for |ψ> = ∑n an |n>, 
where |an|

2 is the probability that a measurement of An collapses it into |n> with 
observable x, unless |ψ> is already one (e.g., a classical image of a military tank 
transforms into a tank, but the interpretation of states oscillating between |ψ> and |ϕ> 
for a bistable state--e.g., a bistable illusion--is transformed into the other 
interpretation as attention shifts; [30]). an is the coefficient of an orthonormal basis, 
normalizing |an|

2.  
Operators map state vectors into eigenfunctions; the outer product from two 

eigenvalues, |n><n|, is a projector, Pn. It maps a eigenvector into an observable,  

Pn |ψ> = |n><n||ψ> = an |n>,      (2) 

where the expectation value of a projector is the likelihood that a measurement 
produced that state, 

<ψ| Pn |ψ> = |an|
2,       (3) 

and where projectors for an operator form a spectral representation of its 
eigenvectors,  

An = ∑n xn |n><n|. (4) 

We represent a function of an operator as  

f(An) = ∑n f(xn) |n><n|. (5) 

The commutator of two operators A and B is:  

[A,B] = AB – BA.       (6) 

When the eigenvalues of the two operators are equal (Equation 6), as it  
should be in rational discourse under command authorities and in dictatorships, the 
commutator vanishes, i.e., [A,B] = 0. However, when the commutator exists, then  
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[A,B] = AB - BA = iC ≠ [B,A]. In that case, the two eigenfunctions for community 
operators A and B are different, producing an "oscillator" when they form an 
orthonormal couple or SPHO with commutator C before an audience of neutrals.  

The oscillation defines a social-psychological decision space embedded within an 
organization or system. It is called an "oscillator" because decision-making occurs 
during rapid-fire turn-taking sessions that "rotate" attention for the topic under 
discussion in the minds of listeners or deciders first in one valence direction (e.g., 
"endorsing" a proposition) followed by the opposite (e.g., "rejecting" a proposition) to 
produce a "rocking" or back and forth process for an SPHO, like the merger and 
acquisition (M&A) negotiations between a hostile predator organization and its prey 
target, as commonly witnessed by investors.10 But oscillations likely do not occur in 
the minds of the agents who drive them [30].  

This becomes at the atomic level the Heisenberg uncertainty principle ∆A∆B 
>1/2<C> (p. 256, [24]). It models the variance around the expectation value of two 
operators along with the expectation value of their commutator. But how to proceed at 
the social level? 

We believe that with his checkerboard illusion, Adelson [2] established a floor 
effect (see Figure 2). Adelson found that a photometer, but not a human, could 
distinguish that the two cells in the illusion below were of the same darkness. Humans 
are biased by grouping processes and experiences to misjudge the illusion.  

 

Fig. 2. The Checkerboard illusion [2]. The brain construes the shadowed area in checker square 
B to be lighter than the darkened square in A, but both are equally dark. 

With signal detection theory (SDT; see [13]), the uncertainty principle in Equation 
[6] becomes a Fourier pair consisting of standard deviations that models tradeoffs for 
individuals, organizations and systems: 

σAσ B > ½ .       (7) 

From Equation (7), as variance in factor A broadens, variance in factor B narrows. At 
the social level, to model social welfare across a system or between two 
organizations, we used Lotka-Volterra type equations with its limit cycles to capture 
the effects of NE [34]. Moreover, by letting Equation 6 represent an inner or simple 
dot product, where cos 90 deg = 0, because a limit cycle produces 90 deg rotations 
                                                           
10 Daines, R.M., Nair, V.B., & Drabkin, D. (2006), Oracle's Hostile Takeover of PeopleSoft. 

Harvard Business Review.  
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Fig. 3. Instead of as a limit cycle (N1 versus N2; in [34]), the data are displayed with N over 
time, t.  Left: Arbitrary parameters produce "frictionless" oscillations. We interpret N1 and N2 to 
be in competition at time 1 (and t = 3.5, 6 and 7). The public acts at time 2 (and t = 3, 4 and 5) 
to produce social stability. Right. Despite the arbitrary nature of the data in the left graph, the 
2012 Republican campaign for Presidential Nominee in Michigan captures the limit cycle on 
the left at about the middle of February 2012 (at the far left, Governor Romney is on top, falls 
and then raises above his Challenger Sen. Santorum by the end of the primary. 

[7], the orthogonal beliefs of a NE and a limit cycle become synonymous, linking 
linear algebra to social macro effects.  

Self-Reports (σObservation) and Action (σAction). Often, subjective reports disagree with 
action; e.g., self-esteem and academics [5]; management and firm performance [8]; or 
book knowledge and air-to-air combat [30]. We propose that context and responses to 
queries can be parallel or orthogonal; e.g., knowing that at a given time, t, 
conservatives (A) and liberals (B) viewing the same data agree implies that 
community states [A,B] are commutative (i.e., parallel, where cos 0 deg = 1),11 but 
otherwise they are not (i.e., orthogonal, where cos 90 deg = 0).12 With ψneutral as the 
state of an individual neutral, and say |0> representing a neutral’s view of reality and 
|1> reflecting its behavior, then for orthogonal action-observations or orthogonal 
beliefs held by a neutral individual forms a superposition: ψneutral>= a|0> + b|1>.  

Self-reports cannot be relied upon [31].13 The reasons are many; e.g., confirmation 
biases affect processing new information [16]. Even experts misjudge the causes of 

                                                           
11 For an example of agreement between the Journal and Times, see: Emshwiller, J.R. & Fields, 

G. (2012, 3/27), “Prosecutors Are Rarely Punished Over Disclosure” The Wall Street 
Journal; and Savage, C. (2011, 11/21), “Court-Appointed Investigator Offers Scathing 
Report on Prosecution of Senator Stevens”, The New York Times.  

12 For an example of disagreement in the Wall Street Journal alone over climate change, see the 
Op-Ed “"No Need to Panic About Global Warming" (2012, 1/ 27), followed by the first reply 
in Letters: The Anthropogenic Climate-Change Debate Continues (2012, 2/7). 

13 Despite the supposed adherence by the women who reported taking HIV prevention pills 
95% of the time, the measure of effective drug levels in their blood near the time of infection 
was <26% (News, 2012, Science, 335: 1291).  
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their behavior [43]. It is possible as we have argued that self-reports of behaviors and 
actual behaviors are mutually exclusive [31]. And it is possible that the state of 
orthogonality has survival value; e.g., normative beliefs. 

Further, neutrals do not belong to factions. Accepting this as correct, an 
interdependent state for a dyad of neutrals is non-factorable: |ψdyad> = 1/√2(a|00> + 
b|11>). Thus, measuring individual or groups of neutrals in a state of interdependence 
produces incomplete information. 

4 Discussion 

Per Bohr [9], complementarity between actors and observers and incommensurable 
cultures generate conjugate or bistable information couples that he and Heisenberg 
[26] suggested paralleled the uncertainty principle at the atomic level. Our model tests 
their speculation and extends it to society with NEs in the form of Fourier pairs 
(Equation 7; [30]). Unlike a repressed society (China, Cuba), free markets require 
random exploration and stochastic resonance (religion, science, business, politics, 
entertainment, philosophy, etc.). Our model indicates the existence of a measurement 
problem that cannot be erased, but it can be exploited. Measuring the  participants of 
a pole at an NE leads to the expression of biases. However, neutrals, by definition, are 
unable to capture both sides of the argument they have heard (Equation 10).  

Thus, the information available to humans, organizations, or systems is incomplete 
and uncertain, requiring debate for resolution. Carley (2002) concluded that humans 
became social to reduce uncertainty. But we have concluded that this uncertainty has 
a minimum irreducibility that promotes the existence of tradeoffs between any two 
factors in an interaction (e.g., uncertainty in worldviews, stories or business models, 
σPlans, and their execution, σExecution).  

The lack of an SPHO identifies decisions made by minority (consensus) or 
authoritarian rules (e.g., decisions common to military, authoritarian government or 
CEO business decisions; cf. [30]). Unlike an organization's central command, a 
democratic space is defined for a system as a space where decisions characterized by 
SPHOs are made by majority rule (e.g., jury, political, or scientific debate). SHPOs 
generalize to entertainment; e.g., Hasson and his colleagues [25] found that a Clint 
Eastwood movie engages an audience's attention with this rocking process. This 
insight suggests that the reverse engineering of forcibly darkened (e.g., terrorists, 
Mafia) or highly skilled organizations is possible [30]. 

5 Summary and Future Directions 

The operators A and B are community interaction matrices that locate social objects 
interdependent in social space (shared conceptual space) and are in turn anchored 
(embedded) geospatially. Interdependent states are non-separable and non-classical; 
but disturbances from measurement collapse interdependent states into classical 
information states. Two agents, Einstein and Bohr, meet in Copenhagen to discuss 
their interpretations of conjugate variables in quantum mechanics, each holding a skill 
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set needed by science that permits the two to debate while both are aware of their 
different functions and social standing in science, generating bistable social 
perspectives that reflect separate social constituencies in opposing world views that 
profoundly disturbed science and society even in the theater today (e.g., [22]). 
Classical interpretations of quantum--and socially interdependent--realities inescapably 
produce endless debate that can degenerate into violence unless moderated by neutrals. 
Based on physics, this finding alone significantly advances our understanding of 
human systems and underscores how an audience or the larger society moderates 
conflict and exploits it to solve problems (NE). 

Our theory of interdependence has made significant progress. However, we are 
only scratching the surface. Knowledge does not produce entropy [15]. But since 
power laws are prevalent [4], does self-regulation and interdependence convert 
Gaussians into fat-tailed distributions that, say, change the view of the stock market 
as a random walk into an interdependent random walk? And does it include emotion 
[30]? That is, with COI, can social emotion produce the contagion associated with 
stock market bubbles and panics?  
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