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Abstract. We study search by quantum walk on a finite two di-
mensional grid. The algorithm of Ambainis, Kempe, Rivosh [AKR05]
uses O(

√
N logN) steps and finds a marked location with probability

O(1/ logN) for grid of size
√
N × √

N . This probability is small, thus
[AKR05] needs amplitude amplification to get Θ(1) probability. The am-
plitude amplification adds an additional O(

√
logN) factor to the number

of steps, making it O(
√
N logN).

In this paper, we show that despite a small probability to find a
marked location, the probability to be within O(

√
N) neighbourhood

(at O( 4
√
N) distance) of the marked location is Θ(1). This allows to skip

amplitude amplification step and leads to O(
√
logN) speed-up.

1 Introduction

Quantum walks are quantum counterparts of random walks [Amb03, Kem03].
They have been useful to design quantum algorithms for a variety of problems
[CC+03, Amb04, Sze04, AKR05, MSS05, BS06]. In many of those applications,
quantum walks are used as a tool for search.

To solve a search problem using quantum walks, we introduce marked loca-
tions corresponding to elements of the search space we want to find. We then
perform a quantum walk on search space with one transition rule at unmarked
locations and another transition rule at marked locations. If this process is set
up properly, it leads to a quantum state in which marked locations have higher
probability than unmarked ones. This method of search using quantum walks
was first introduced in [SKW03] and has been used many times since then.

We study spatial search on a finite two-dimensional grid [Ben02, AA03, AKR05].
In this problem, we have a grid of size

√
N × √

N on which some locations are
marked. In one time step, we are allowed to examine the current location or
move one step on the grid. The task is to find a marked location.

Ambainis et al. [AKR05] showed that this problem can be solved via quantum
walk. Namely, after O(

√
N logN) steps a quantum walk on 2D grid with one

or two marked locations reaches a state that is significantly different from the
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state of a quantum walk with no marked location. If this state is measured,
the probability to obtain a marked location is O(1/ logN). This probability is
small, thus [AKR05] uses amplitude amplification. Amplitude amplification adds
an additional O(

√
logN) factor to the number of steps, making it O(

√
N logN).

In case of two-dimensional grid it is logical to examine not only the marked
location but also its close neighbourhood. We show that despite a small probabil-
ity to find marked location, the probability to be within O(

√
N) neighbourhood,

i.e. at O( 4
√
N) distance from the marked location, is Ω(1). This allows us to skip

amplitude amplification step and leads to O(
√
logN) speed-up.

Similar speed-up has been already achieved by other research groups, by dif-
ferent methods. Their approaches to this problem are based on modification of
the original algorithm [Tul08] or both the algorithm and the structure of the
grid [KM+10].

Our result shows that the improvement of the running time to O(
√
N logN)

can be achieved without any modifications to the quantum algorithm, with just
a simple classical post-processing.

2 Quantum Walks in Two Dimensions

Suppose we haveN items arranged on a two dimensional lattice of size
√
N×√

N .
We will also denote n =

√
N . The locations on the lattice are labelled by their x

and y coordinate as (x, y) for x, y ∈ {0, . . . , n− 1}. We assume that the grid has
periodic boundary conditions. For example, going right from a location (n−1, y)
on the right edge of the grid leads to the location (0, y) on the left edge of the
grid.

To define a quantum walk, we add an additional ”coin” register with four
states, one for each direction: | ⇑〉, | ⇓〉, | ⇐〉 and | ⇒〉. At each step we perform
a unitary transformation on the extra register and then evolve the system ac-
cording to the state of the coin register. Thus, the basis states of quantum walk
are |i, j, d〉 for i, j ∈ {0, . . . , n − 1}, d ∈ {⇑,⇓,⇐,⇒} and the state of quantum
walk is given by:

|ψ(t)〉 =
∑

i,j

(αi,j,⇑|i, j,⇑〉+ αi,j,⇓|i, j,⇓〉+ (1)

αi,j,⇐|i, j,⇐〉+ αi,j,⇒|i, j,⇒〉)
A step of the coined quantum walk is performed by first applying I × C, where
C is unitary transform on the coin register. The most often used transformation
on the coin register is the Grover’s diffusion transformation D:

D =
1

2

⎛

⎜
⎜
⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟
⎟
⎠ (2)
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Then, we apply the shift transformation S:

|i, j,⇑〉 → |i, j − 1,⇓〉
|i, j,⇓〉 → |i, j + 1,⇑〉
|i, j,⇐〉 → |i− 1, j,⇒〉
|i, j,⇒〉 → |i+ 1, j,⇐〉

(3)

Notice that after moving to an adjacent location we change the value of the direc-
tion register to the opposite. This is necessary for the quantum walk algorithm
of [AKR05] to work.

We start quantum walk in the state

|ψ(0)〉 = 1

2
√
N

∑

i,j

(|i, j,⇑〉+ |i, j,⇓〉+ |i, j,⇐〉+ |i, j,⇒〉)

It can be easily verified that the state of the walk stays unchanged, regardless of
the number of steps. To use quantum walk as a tool for search, we ”mark” some
locations. In unmarked locations, we apply the same transformations as above. In
marked locations, we apply −I instead of D as the coin flip transformation. The
shift transformation remains the same in both marked and unmarked locations.

If there are marked locations, the state of this process starts to deviate from
|ψ(0)〉. It has been shown [AKR05] that after O(

√
N logN) steps the inner prod-

uct 〈ψ(t)|ψ(0)〉 becomes close to 0.
In case of one or two marked locations [AKR05] algorithm finds a marked

location with O(1/ logN) probability. For multiple marked locations this is not
always the case. There exist marked location configurations for which quantum
walk fails to find any of marked locations [AR08].

3 Results

In this paper we examine a single marked location case only. However, we note
that numerical experiments give very similar results in the case of multiple
marked locations.

Suppose we have an
√
N×√

N grid with one marked location. The [AKR05] al-
gorithm takesO(

√
N logN) steps and finds the marked location withO(1/ logN)

probability. The algorithm then uses amplitude amplification to get Θ(1) prob-
ability. The amplitude amplification adds an additional O(

√
logN) factor to the

number of steps, making it O(
√
N logN).

Performing numerical experiments with [AKR05] algorithm, we have noticed
that probability to be close to the marked location is much higher than probabil-
ity to be far from the marked location. Figure 1 shows probability distribution
by distance from the marked location for 1024× 1024 grid on logarithmic scale.

We have measured the probability within O(
√
N) neighbourhood of the

marked location (at O( 4
√
N) distance)1 for different grid sizes (figure 2) and

have made the following conjecture:

1 Another logical choice of the size of the neighbourhood would be O(
√
N logN) - the

number of steps of [AKR05] algorithm.
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Fig. 1. Probability by distance, one marked location, grid size 1024×1024, logarithmic
scale

Hypothesis 1. The probability to be within O(
√
N) neighbourhood, i.e. at

O( 4
√
N) distance, of the marked location is Θ(1).

In the next section we present a strict analytical proof of the conjecture.
This allows us to replace amplitude amplification with a classical post-

processing step. After the measurement we classically check O(
√
N) neighbour-

hood of the outcome. This requires extra O(
√
N) steps but removes O(

√
logN)

factor. Therefore, the running time of the algorithm stays O(
√
N logN).

Before going into details of the proof, we would like to give the reader some
understanding of the final state of the algorithm (state before the measurement).
Denote Pr[0] the probability to find a marked location and Pr[R] the probability
to be at distance R from the marked location. For small R values (R � √

N),
the numerical experiments indicate that:

Pr[R] ≈ Pr[0]

R2

There are 4R points at the distance R from the marked location (we use Manhat-
tan or L1 distance). Thus, the total probability to be within

√
N neighbourhood

of the marked location is:



Search by Quantum Walks on Two-Dimensional Grid 91

Fig. 2. Probability to be within
√
N neibourghood from the marked location

S =

4√
N∑

R=1

4R×O

(
Pr[0]

R2

)
= Pr[0]×

4√
N∑

R=1

O

(
1

R

)
= Pr[0]×O(logN).

As probability to find the marked location is O(1/ logN), we have

S = O

(
1

logN

)
×O(logN) = const.

4 Proofs

In this section, we show

Theorem 1. We can choose t = O(
√
N logN) so that, if we run a quantum

walk with one marked location (i, j) for t steps and measure the final state, the
probability of obtaining a location (i′, j′) with |i− i′| ≤ N ε and |j − j′| ≤ N ε as
the measurement result is Ω(ε)2.

2 Here, |i− i′| ≤ Nε and |j− j′| ≤ Nε should be interpreted “modulo N”: |i− i′| ≤ Nε

if (i− i′) mod N ∈ {−Nε,−Nε + 1, . . . , Nε}.
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The proof of Theorem 1 consists of two steps. First, in Lemma 1, we derive an
approximation for the state of quantum walk, at the time t = O(

√
N logN)

when the state of quantum walk has the biggest difference from the starting
state. Then, in section 5, we use this approximation to derive our main result,
via a sequence of algebraic transformations and approximations.

4.1 Approximation of the State of the Quantum Walk

Let

|ψ〉 =
√
N−1∑

j=0

√
N−1∑

j′=0

∑

d

αtj,j′,d|j, j′, d〉

be the state of the quantum walk after t steps.

Lemma 1. We can choose t = O(
√
N logN) so that for any set

S ⊆ {0, ...,
√
N − 1}2,

we have

∑

(j,j′)∈S
|αtj,j′,⇑|2 ≥ C2

∑

(j,j′)∈S
(f(j, j′)− f(j − 1, j′))2 + o(1)

where

f(j, j′) =
∑

(k,l) 
=(0,0)

1

2− cos 2kπ√
N

− cos 2lπ√
N

ωkj+lj
′
,

ω = e
2πi√
N and C = Θ( 1√

N logN
).

Proof. We will repeatedly use the following lemma.

Lemma 2. [BV] Let |ψ〉 =∑m
i=1 αi|i〉 and |ψ′〉 =∑m

i=1 βi|i〉. Then, for any set
S ⊆ {1, 2, . . . ,m},

∑

i∈S

∣
∣|αi|2 − |βi|2

∣
∣ ≤ 2‖ψ − ψ′‖.

We recast the algorithm for search on the grid as an instance of an abstract
search algorithm [AKR05]. An abstract search algorithm consists of two unitary
transformations U1 and U2 and two states |ψstart〉 and |ψgood〉. We require the
following properties:

1. U1 = I − 2|ψgood〉〈ψgood| (in other words, U1|ψgood〉 = −|ψgood〉 and, if |ψ〉 is
orthogonal to |ψgood〉, then U1|ψ〉 = |ψ〉);

2. U2|ψstart〉 = |ψstart〉 for some state |ψstart〉 with real amplitudes and there
is no other eigenvector with eigenvalue 1;

3. U2 is described by a real unitary matrix.
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The abstract search algorithm applies the unitary transformation (U2U1)
T to

the starting state |ψstart〉. We claim that under certain constraints its final state
(U2U1)

T |ψstart〉 has a sufficiently large inner product with |ψgood〉.
For the quantum walk on

√
N ×√

N grid,

|ψgood〉 = 1

2
|i, j,⇑〉+ 1

2
|i, j,⇓〉+ 1

2
|i, j,⇐〉+ 1

2
|i, j,⇒〉,

where i, j is the marked location and

|ψstart〉 = 1

2
√
N

√
N−1∑

i,j=0

(|i, j,⇑〉+ |i, j,⇓〉+ |i, j,⇐〉+ |i, j,⇒〉) .

Since U2 is described by a real-value matrix, its eigenvectors (with eigenvalues
that are not 1 or -1) can be divided into pairs: |Φ+

j 〉 and |Φ−
j 〉, with eigenvalues

eiθj and e−iθj , respectively. In the case of the walk on the 2-dimensional grid,
these eigenvalues were calculated in Claim 6 of [AKR05]:

Claim 1. Quantum walk on the 2-dimensional grid with no marked locations has
N−1 pairs of eigenvalues e−iθj that are not equal to 1 or -1. These values can be
indexed by pairs (k, l), k, l ∈ {0, 1, . . . ,√N−1}, (k, l) �= (0, 0). The corresponding
eigenvalues are equal to e±iθk,l , where θk,l satisfies cos θk,l =

1
2 (cos

2πk√
N
+cos 2πl√

N
).

We use |Φ+
k,l〉 and |Φ−

k,l〉 to denote the corresponding eigenvectors. According to

[MPA10, pages 3-4], these eigenvectors are equal to |Φ+
k,l〉 = |ξk〉 ⊗ |ξl〉 ⊗ |v+k,l〉,

|Φ−
k,l〉 = |ξk〉 ⊗ |ξl〉 ⊗ |v−k,l〉 where |ξk〉 =

∑√
N−1

i=0 ωki 1
4√N |i〉,

|v+k,l〉 =
i

2
√
2 sin θk,l

⎡

⎢⎢
⎣

e−iθk,l − ωk

e−iθk,l − ω−k

e−iθk,l − ωl

e−iθk,l − ω−l

⎤

⎥⎥
⎦ , |v−k,l〉 =

i

2
√
2 sin θk,l

⎡

⎢⎢
⎣

ωk − eiθk,l

ω−k − eiθk,l

ωl − eiθk,l

ω−l − eiθk,l

⎤

⎥⎥
⎦ .

The order of directions for the coin register is: | ⇓〉, | ⇑〉, | ⇒〉, | ⇐〉. The sign of
|v−k,l〉 has been adjusted so that

1√
2
|Φ+
k,l〉+

1√
2
|Φ−
k,l〉 = |ξk〉 ⊗ |ξl〉 ⊗ |δ〉 (4)

where |δ〉 = 1
2 | ⇓〉+ 1

2 | ⇑〉+ 1
2 | ⇒〉+ 1

2 | ⇐〉.
We can assume that |ψgood〉 = |0〉 ⊗ |0〉 ⊗ |δ〉. This gives us an expression of

|ψgood〉 in terms of the eigenvectors of U2:

|ψgood〉 = 1√
N

∑

k,l

|ξk〉 ⊗ |ξl〉 ⊗ |δ〉

=
1√
N

|ψstart〉+
∑

(k,l) 
=(0,0)

(
1√
2N

|Φ+
k,l〉+

1√
2N

|Φ−
k,l〉
)
.
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Using the results from [AKR05], we can transform this into an expression for the
final state of our quantum search algorithm. According to the first big equation
in the proof of Lemma 5 in [AKR05], after t = O(

√
N logN) steps, we get a

final state |ψ〉 such that ‖|ψ〉 − |φfinal〉‖ = o(1), where |φfinal〉 = |φ′
final〉

‖φ′
final‖ and

|φ′final〉 =
1√
N

|ψstart〉+ 1√
2N

∑

(k,l) 
=(0,0)

ak,l|Φ+
k,l〉+ bk,l|Φ−

k,l〉 (5)

and

ak,l = 1+
i

2
cot

α+ θk,l
2

+
i

2
cot

−α+ θk,l
2

,

bk,l = 1 +
i

2
cot

α− θk,l
2

+
i

2
cot

−α− θk,l
2

.

We now replace
∑

(j,j′)∈S |αtj,j′,d|2 by the corresponding sum of squares of am-

plitudes for the state |φfinal〉. By Lemma 2, this changes the sum by an amount
that is o(1).

From [AKR05], we have α = Θ( 1√
N logN

), min θk,l = Θ( 1√
N
) and max θk,l =

π −Θ( 1√
N
). Hence, we have ±α+ θk,l = (1 + o(1))θk,l and we get

|φ′final〉 =
1√
N

|ψstart〉+
∑

(k,l) 
=(0,0)

1√
2N

(
1 + i(1 + o(1)) cot

θk,l
2

)
|Φ+
k,l〉+

1√
2N

(
1− i(1 + o(1)) cot

θk,l
2

)
|Φ−
k,l〉. (6)

This means that ‖|ψfinal〉 − |φfinal〉‖ = o(1) where |ψfinal〉 = |ψ′
final〉

‖ψ′
final

‖ and

|ψ′
final〉 = |ψgood〉+

∑

(k,l) 
=(0,0)

1√
2N

i cot
θk,l
2

(
|Φ+
k,l〉 − |Φ−

k,l〉
)
. (7)

Again, we can replace a sum of squares of amplitudes for the state |φfinal〉 by
the corresponding sum for |ψfinal〉 and, by Lemma 2, the sum changes by an
amount that is o(1).

We now estimate the amplitude of |j, j′,⇑〉 in |ψfinal〉. We assume that (j, j′) �=
(0, 0). Then, the amplitude of |j, j′,⇑〉 in |ψgood〉 is 0. Hence, we can evaluate the
amplitude of |j, j′,⇑〉 in

∑

(k,l) 
=(0,0)

1√
2N

i cot
θk,l
2

(|Φ+
k,l〉 − |Φ−

k,l〉) (8)

and then divide the result by Θ(
√
logN), because ‖ψ′

final‖ = Θ(
√
logN).

From the definitions of |Φ±
k,l〉 and |v±k,l〉,

1√
2
|v+k,l〉 −

1√
2
|v−k,l〉 =

i

4 sin θk,l

⎡

⎢
⎢
⎣

2 cos θk,l − 2ωk

2 cos θk,l − 2ω−k

2 cos θk,l − 2ωl

2 cos θk,l − 2ω−l

⎤

⎥
⎥
⎦ .
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The amplitude of | ⇑〉 in this state is i
2 sin θk,l

(cos θk,l − ω−k). The amplitude

of |j〉 in |ξk〉 is 1
4√N ω

kj . The amplitude of |j′〉 in |ξl〉 is 1
4√N ω

lj′ . Therefore, the

amplitude of |j, j′,⇑〉 in 1√
2
|Φ+
k,l〉 − 1√

2
|Φ−
k,l〉 is

1√
N
ωkj+lj

′ i

2 sin θk,l
(cos θk,l − ω−k)

and the amplitude of |j, j′,⇑〉 in (8) is

1√
2N

∑

(k,l) 
=(0,0)

i cot
θj
2

· i

2 sin θk,l
(cos θk,l − ω−k)ωkj+lj

′
.

By using sin θk,l = 2 sin
θk,l

2 cos
θk,l

2 , we get that the amplitude of |j, j′,⇑〉 is

1√
2

∑

(k,l) 
=(0,0)

1

4N

(

− cos θk,l

sin2
θk,l

2

ωkj+lj
′
+

1

sin2
θk,l

2

ωk(j−1)+lj′
)

=

1√
2

∑

(k,l) 
=(0,0)

1

4N

(

2ωkj+lj
′ − 1

sin2
θk,l

2

(ωkj+lj
′ − ωk(j−1)+lj′ )

)

, (9)

with the equality following from cos 2x = 1− 2 sin2 x.
We can decompose the sum into two sums, one over all the first components,

one over all the second components. The first component of the sum in (9) is
close to 0 and, therefore, can be omitted. Hence, we get that the amplitude of
|j, j′,⇑〉 in the unnormalized state

|ψ′
final〉 can be approximated by

1√
2

∑

(k,l) �=(0,0)

1

4N

1

sin2 θk,l

2

(−ωkj+lj′ + ωk(j−1)+lj′) = Θ

(
1

N

)
· (f(j − 1, j′)− f(j, j′)).

To obtain the amplitude of |j, j′,⇑〉 in |ψfinal〉, this should be divided by ‖ψ′
final‖

which is of the order Θ(
√
logN). This implies Lemma 1. ��

5 Bounds on the Probability of Being Close to the
Marked Location

We start by performing some rearrangements in the expression f(j, j′).
Let n =

√
N and S be the set of all pairs (k, l) such as k, l ∈ {0, 1, . . . , n− 1},

except for (0, 0). We consider

f(j, j′) =
∑

(k,l)∈S

1

2− cos 2kπ
n − cos 2lπ

n

ωkj+lj
′

=
∑

(k,l)∈S

cos 2(kj+lj′)π
n + sin 2(kj+lj′)π

n i

2− cos 2kπ
n − cos 2lπ

n

. (10)
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Since the cosine function is periodic with period 2π, we have cos 2lπ
n =cos 2(l−N)π

n .
Hence, we can replace the summation over S by the summation over

S′ =
{
(k, l)|k, l ∈

{
−
⌊n
2

⌋
, 1, . . . ,

⌊n
2
− 1
⌋}}

\ {(0, 0)}.

This implies that the imaginary part of (10) cancels out because terms in the
sum can be paired up so that, in each pair, the imaginary part in both terms
has the same absolute value but opposite sign. Namely:

– If none of k, l,−k and −l is equal to n
2 , we pair up (k, l) with (−k,−l).

– If none of k and −k is equal to 0 or n
2 , we pair up (−n

2 , k) with (−n
2 ,−k)

and (k,−n
2 ) with (−k,−n

2 ).
– The terms (−n

2 , 0), (0,−n
2 ) and (−n

2 ,−n
2 ) are left without a pair. This does

not affect the argument because the imaginary part is equal to 0 in those
terms.

Hence, we have

f(j, j′) =
∑

(k,l)∈S′

cos 2(kj+lj′)π
n

2− cos 2kπ
n − cos 2lπ

n

.

We define a function g(j, j′) = f(j, j′) − f(j − 1, j′). By Lemma 1, Cg(j, j′) is
a good approximation for the amplitude of |j, j′,⇑〉 in the state of the quantum
walk after t = O(

√
N logN) steps.

Lemma 3 ∑

0<j′,j<M

g2(j, j′) = Ω(n2 lnM)

where M = nε and ε = Ω(1), and ε = 1−Ω(1).

The proof of the lemma can be found in [AB+11]. Together with Lemma 1, this
implies that the sum of amplitudes of |j, j′,⇑〉, 0 < j′, j < M is Ω( logMlogn )− o(1).

Since logM
logN = ε, this would complete the proof of Theorem 1.
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