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Abstract. We show that the computational problem of testing the be-
haviour of quantum circuits is hard for the class QMA of problems that
can be verified efficiently with a quantum computer. This result general-
izes techniques previously used to prove the hardness of other problems
on quantum circuits. We use this result to show the QMA-completeness of
a weak version of the problem of detecting the insecurity of a symmetric-
key quantum encryption system or alternately the problem of determin-
ing when a quantum channel is not private.

1 Introduction

Testing the behaviour of a computational system is a problem central to the
study of quantum computing. This is the problem faced by an experimentalist
who has implemented a quantum computation and wants to check that the im-
plementation behaves (approximately) correctly on all input states. An efficient
solution to this problem would allow for the verification that a circuit provided
by an untrusted party correctly implements some desired operation. Unfortu-
nately we show in a general model that even a weak version of this problem is
likely to be computationally intractable. The problem we consider is, given a
quantum circuit, to decide between two cases: either the circuit acts in the de-
sired way on all input states or the circuit misbehaves, acting in some malicious
way on a large subspace of input states. This problem is QMA-hard even when
both the desired and malicious behaviours are known in advance (i.e. are a part
of the problem definition).

The class QMA is the set of all (promise) problems that can be verified up
to bounded error on a quantum computer. Several problems are known to be
complete for QMA: these problems can be thought of as alternate characteriza-
tions of the class as they capture exactly the power of the model. The first of
these complete problems is the problem of determining the ground state energy
of a local Hamiltonian [11]. The problem of determining if local descriptions of a
quantum system are consistent is also known to be QMA-complete [12], though
only under Turing reductions. Other problems related to finding ground states
of physical systems are also complete for QMA [16,17].

A different set of QMA-complete problems involve quantum circuits. The first
of these is the Non-identity check problem [10]: given a unitary quantum circuit
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as input, the problem is to decide if there is an input on which the circuit acts non-
trivially or if the circuit is close to the identity for all input states. The problem
of determining if a circuit is close to an isometry (i.e. a reversible transformation
that maps pure states to pure states) is also known to be QMA-complete [15].

In this paper we generalize the hardness proofs of [10,15] to show the QMA-
hardness of testing the properties of the outputs of quantum circuits. Specifically,
we define the circuit testing problem, which has as parameters two uniformly
generated families of quantum circuits C0 and C1. The problem is to decide,
given an input circuit C, whether C acts like circuits from the family C0 on
a large input subspace, or whether C acts like circuits from C1 for all input
states. It is important to note that the circuit families C0, C1 are part of the
problem definition: each choice of circuit families gives a different problem and
an algorithm for a specific one of these problems may depend on these families
in a non-uniform way. The main result of the paper is a proof that this circuit
testing problem is QMA-hard for any circuit families C0, C1 for which the problem
is well-defined. Using this result we reprove the QMA-hardness of non-identity
check and non-isometry testing as well as proving the hardness of a few other
circuit problems. This is done by choosing specific families C0 and C1 for which
these problems reduce to the associated circuit testing problems.

We then apply the hardness result to the problem of detecting insecure quan-
tum encryption. This is the problem of deciding, given a quantum circuit that
takes as input a quantum state as well as a classical key, whether this circuit
is close to a perfect encryption scheme (i.e. a private quantum channel [2,4]),
or whether there is a large subspace of input states that the circuit does not
encrypt. To prove hardness, we argue that this problem contains as a special
case an instance of the circuit testing problem. Finally, we give a QMA verifier
for this problem to prove that it is QMA-complete.

2 Preliminaries

Throughout the paper the set of density matrices on a Hilbert spaceH is denoted
D(H) while T(H,K) is is the set of channels that map D(H) to D(K). To
measure the distance between states we will make extensive use of the trace
norm, ‖X‖tr, which for a linear operator X is given by the sum of the absolute
values of the singular values of X . One important property of the trace distance
‖ρ− σ‖tr is that it does not increase under the application of quantum channels.

We will also need the intuitive property that two states that are close together
in the trace norm produce similar measurement outcomes: this follows from the
fact that an expression involving the trace norm gives the maximum probability
that states can be distinguished [9].

Lemma 1. Let X ∈ L(H) satisfy 0 ≤ X ≤ 1. Then tr(Xρ) ≤ tr(Xσ) +
‖ρ− σ‖tr
In addition to the trace norm, we will also need a distance measure on quantum
channels. Such a measure is given by the diamond norm, which for a linear map
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Φ : L(H) → L(K) is defined as ‖Φ‖� = supX∈L(H⊗H) ‖(Φ⊗ 1H)(X)‖tr / ‖X‖tr.
In the case that Φ is the difference of two completely positive maps, we may
replace the supremum in the definition with a maximization over pure states in
the space H⊗H [14]. As in the case of the trace norm, the diamond norm can
be used to characterize the distinguishability of two quantum channels: here the
reference system captures the fact that the optimal strategy to distinguish two
channels may need entanglement.

Since we consider computational problems on quantum channels, we must
specify how they are to be given as input. For this we use the mixed-state circuit
model [1], where circuits are composed of some (universal) collection of the usual
unitary gates, plus a gate that introduces ancillary qubits in the |0〉 state and
a gate that traces out (i.e. discards) qubits. For simplicity we assume that all
Hilbert spaces we encounter are composed of qubits, though this is not essential
to our results. We use this circuit model because it can (approximately) represent
any quantum channel and in the case of efficient quantum circuits the size of this
representation polynomial in the number of input qubits. Using circuits does not
(significantly) restrict the applicability of our hardness results: they apply also
in any model that can efficiently simulate the circuit model.

2.1 QMA

A promise problem P = (Pyes, Pno) ∈ QMA if there is a quantum poly-time
verifier V such that

1. if x ∈ Pyes, then there exists a witness ρ such that Pr[V accepts ρ] ≥ 1− ε,
2. if x ∈ Pno, then for any state ρ, Pr[V accepts ρ] ≤ ε.

The exact value of ε is not significant: any ε < 1/2 that is at least an inverse
polynomial suffices [13].

Let P be an arbitrary promise problem in QMA, and let x be an arbitrary
input string. Our goal will be to encode the QMA-hard problem of deciding P
into the problem of detecting an insecure encryption circuit. To do this it will
be convenient to represent the verifier as a unitary circuit V , which represents
the algorithm of the verifier in a QMA protocol on some input x. We may “hard-
code” the input string x into the circuit for V , since the circuit V needs only to
be efficiently generated given x. The algorithm implemented by the verifier in
an arbitrary QMA protocol is as follows: the verifier receives a witness state |ψ〉,
applies the unitary V on the witness state and any ancillary qubits needed, and
finally measures the first output qubit to decide whether or not to accept. Any
qubits not measured are traced out. One of the main results of this paper is a
reduction from an arbitrary QMA verifier to the problem of testing the behaviour
of quantum circuits.

2.2 Private Quantum Channels

Quantum channels that are secure against eavesdroppers are those channels for
which the input state cannot be determined by the output. These channels can
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also be viewed as encryption systems: the key is the environment, which, when
combined with the output state, allows the input to be recovered. We restrict
attention to the private channels that allow the input to be recovered not with
the quantum state of the environment but instead with a classical key that can
be pre-shared between two parties. These channels, called private channels, were
introduced and studied in [2,4].

An important example of a private quantum channel is the completely depo-
larizing channel. This is the channel Ω that maps any input to the completely
mixed state. This channel can be efficiently implemented by applying a ran-
dom Pauli operator to each qubit. In order to use the completely depolarizing
channel as a private channel we must add a key. This can be done by apply-
ing a key-selected Pauli operator to each of the input qubits. We will refer to
this channel as Ωk when a specific key is used. Notice that if Ωk ∈ T(H), then
|k| = 2 log dimH, i.e. we use two key bits for each encrypted qubit. In the case of
a perfect encryption channel this key rate is optimal [2,4,5]. When k is unknown
and uniformly distributed, the channel Ωk is identical to Ω, i.e. if the key k is
uniformly distributed in {1, . . . ,K} we have

∑
kΩk/K = Ω.

We use the following definition of a private quantum channel (i.e. secure en-
cryption).

Definition 2. Let E be a channel that takes inputs k ∈ {1, . . . ,K} and a state
in H and produces an output in K, where dimH ≤ dimK. For fixed k we write
Ek(·) = E(k, ·). E is ε-private if

1. There exists a polynomial-size circuit D : {1, . . . ,K} ⊗D(K) → D(H) such
that for all k ‖Dk ◦ Ek − 1H‖� ≤ ε.

2. Without k, the output of E is random, i.e. ‖∑k Ek/K −Ω‖� ≤ ε.

The use of the diamond norm in this definition is significant: we require that
both conditions hold even for part of an entangled state. Specifically, a chan-
nel satisfying this definition both preserves any entanglement encrypted state
and remains secure even against an entangled eavesdropper. We use this strong
definition because one of the main results of the paper is a hardness result: distin-
guishing secure and insecure encryption is hard even when the secure encryption
is promised to be secure in this model. Our results are also true in the weaker
model using the trace norm.

This definition is a strengthened version of the model used by Ambainis and
Smith [3], who define security in a similar way, but only against adversaries
that are not entangled with the input state. The model considered by Hayden
et al. [8] uses a stronger bound involving the operator norm under which our
hardness result does not apply, as it is ultimately derived from the definition of
QMA, and the probability that the Verifier in a QMA protocol can be made to
accept is more naturally modelled by the trace norm.

3 Testing Circuits

The problem of testing the behaviour of a circuit can be informally stated as:
given a circuit C decide if the circuit acts like some known circuit C0 on a large
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subspace of the input or if the circuit acts like some other known circuit C1

on the whole input space. We use uniform circuit families C0 and C1 as it is
important that the circuits C, C1, and C2 agree on input and output spaces.

Problem 3 (Circuit Testing). Let 0 < ε < 1, 0 < δ ≤ 1, and C0, C1 be two
uniform families of quantum circuits. The input is a circuit C ∈ T(X ,Y). Let
C0, C1 be the circuits from C0 and C1 that take as input states on X . The promise
problem is to decide between:

Yes: There exists a subspace S of X with dimS ≥ (dimX )1−δ such that for
any reference space R and any ρ ∈ D(S ⊗R),

‖(C ⊗ 1R)(ρ)− (C0 ⊗ 1R)(ρ)‖tr ≤ ε.

No: ‖C − C1‖� ≤ ε, i.e. for any R, ρ ∈ D(H⊗R),

‖(C ⊗ 1R)(ρ)− (C1 ⊗ 1R)(ρ)‖tr ≤ ε.

When the values of ε, δ, C0, and C1 are important we will refer to this problem
as CT(ε, δ, C0, C1).
This problem is well-defined only for families C0 and C1 that do not violate
the promise, i.e. any circuits whose output is not too close together. These are
the circuits C0 and C1 such that there does not exist a subspace T of X of
size dimT ≥ dimX δ such that for any input states ρ ∈ D(T ⊗R) we have
‖(C0 ⊗ 1R)(ρ)− (C1 ⊗ 1R)(ρ)‖tr ≤ 2ε, i.e. there does not exist a large subspace
of pure states on which C0 and C1 produce output that is close together. This
condition can be difficult to verify but for many families of circuits it is easy to
see that they are not too close together. As an example, the application of this
hardness result to detecting insecure encryption takes C0 as the identity and
C1 as the completely depolarizing channel, and these two circuits never agree
on pure states. We show that this problem is QMA-hard for any circuit families
that satisfy this condition.

Note the special case δ = 1: here the CT problem asks if there are any inputs
on which the circuit C behaves like C0 or if it behaves like C1 for all inputs. In
this case the problem is well-defined for any families C0 and C1 that do not agree
on the whole space (up to error 2ε).

Concerning the parameters ε and δ, we may choose ε = 2−p for any polynomial
p using an amplification result for QMA [13] and we may choose δ any constant
satisfying 0 < δ ≤ 1.

3.1 Testing Circuits Is QMA-Hard

To show the hardness of CT we reduce from an arbitrary problem in QMA. This
involves embedding the verifier in a QMA protocol into an instance of CT with
the property that the resulting circuit runs C0 if the Verifier can be made to
accept and runs C1 if the Verifier cannot be made to accept.
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Formalizing this notion, let P be an arbitrary promise problem in QMA and
let x be an input string. The QMA-complete problem is to decide whether or
not x ∈ Pyes. Since P ∈ QMA, there exists some unitary circuit V : H⊗A → K
which can be constructed efficiently from x such that if x ∈ Pyes, there exists a
pure state |ψ〉 ∈ H such that measuring the first qubit of V (|ψ〉 ⊗ |0〉) results in
|1〉 with probability at least 1 − ε, whereas if x ∈ Pno, then for any state |ψ〉 a
measurement of V (|ψ〉 ⊗ |0〉) results in |1〉 with probability at most ε. By using
standard error-reduction techniques for QMA, we may take ε to be negligible
in the size of the circuit for V [13]. Notice that the restriction to pure witness
states |ψ〉 can be made without loss of generality by a convexity argument.

Our goal is to show that CT is hard for as many choices of parameters as
possible. To this end, let δ > 0 be constant and let C0 and C1 be uniform circuit
families on which the problem CT(3

√
ε, δ, C0, C1) is well-defined. These are any

families Ci = {Ci,n : n ≥ 1}, where the circuit Ci,n takes an n qubit input state,
such that for any n the circuits C0,n and C1,n do not produce outputs that are
too close together on some large subspace of pure input states. In particular, we
require that for all n, there does not exist a subspace T of the n-qubit input
space X with dimT ≥ dimX δ such that for any states ρ ∈ D(T ⊗R) we have

‖(C0 ⊗ 1R)(ρ)− (C1 ⊗ 1R)(ρ)‖tr ≤ 6
√
ε.

The key idea to the reduction is that we construct a circuit that takes an input
state and applies the unitary V to a portion of it, makes a ‘copy’ of the output
bit with a controlled-not gate, and then applies V ∗. If the result of the QMA
protocol would have been the verifier accepting (i.e. the copy of the output qubit
is measured in the |1〉 state), then we apply the circuit C0. On the other hand,
if the output qubit was in the |0〉 state, we apply the circuit C1. The resulting
circuit applies C0 if and only the input is a state the Verifier in the QMA proof
system accepts. In order to guarantee that the subspace of accepting states is
large enough, we add dummy input qubits that are ignored by the circuit V
but are acted on by either C0 or C1. By adding enough of these qubits, we can
ensure that if V accepts at least one state then the result is a large subspace of
accepted states.

The full construction of the circuit produced by the reduction is shown in
Figure 1. Before describing the circuit, we fix notation: let C0 and C1 be circuits
drawn from C0 and C1 implementing transformations in T(X ,Y), where X =
F ⊗H and Y = F ⊗K, using the spaces H,K from the QMA Verifier for P .
Further, we may let dimF =

⌈
dimH(1−δ)/δ

⌉
, since we are free to take any

polynomial number of input qubits to C0 and C1. We also assume without loss
of generality that these circuits are implemented by circuits that apply unitary
circuits mapping X ⊗A → Y ⊗ G, where the space A holds any ancillary qubits
needed by the circuit (initially in the |0〉 state) and the space G represents the
qubits traced out at the end of the computation. Any mixed-state circuit can be
efficiently transformed into a circuit of this form by moving the introduction of
ancillary qubits to the start of the circuit and delaying any partial traces to the
end of the circuit. We may also assume that both the circuit V and the circuits
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Fig. 1. Circuit output by the reduction. V is the unitary circuit applied by the original
QMA verifier and Ui is the unitary circuit obtained from Ci by removing the gates that
introduce ancillary qubits and trace out qubits.

C0 and C1 use ancillary spaces A,G of the same size, by simply padding the
circuits using a smaller space with unused ancillary qubits.

Let C be the circuit in Figure 1. This circuit takes as input a quantum state
ρ on the space X = F ⊗H. This circuit first applies V to the portion of ρ
in H as well as any needed ancillary qubits in the space A. Next, the circuit
makes a classical copy of the ‘output bit’ of V , which is used as a control for
the application of the circuits C0 and C1. The circuit V

∗ is then applied, so that
the result (provided that V accepts or rejects with high probability) is a state
that is close to the input state plus a qubit that indicates whether V accepts
or rejects the input state. The circuit then applies C0 if V accepts and C1 if V
rejects. These circuits use the same ancillary space A as the circuits V and V ∗,
but as long as the Verifier V either accepts of rejects the input state with high
probability, these ancillary qubits will be returned to the |0〉 state, up to trace
distance 2

√
ε.

Before proving the correctness of the reduction, it will be convenient to write
down some of the states produced by running the constructed circuit C. Let ρ
be an arbitrary input state in D(H⊗F) and let |ψ〉 ∈ H ⊗ F ⊗R be a purifi-
cation of ρ. The order of the spaces H and F has been changed for notational
convenience. Applying the unitary V to the portion of |ψ〉 in H results in the
state

|φ〉 = (V ⊗ 1F ⊗ 1R)(|ψ〉 ⊗ |0〉),
where the |0〉 qubits are in the space A. Then, there exist states |φ0〉, |φ1〉 on all
but the first qubit of K ⊗F ⊗R such that

|φ〉 =
√
1− p|0〉 ⊗ |φ0〉+√

p|1〉 ⊗ |φ1〉

where 0 ≤ p ≤ 1 is exactly the probability that the Verifier accepts in the original
protocol on input trF ρ. Applying the controlled-not gate results in

|φ′〉 =
√
1− p|00〉 ⊗ |φ0〉+√

p|11〉 ⊗ |φ1〉.
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We then bound the trace distance of |φ′〉 to |0〉|ψ〉 and |1〉|ψ〉. In the case of
|0〉|ψ〉 we have

‖|φ′〉〈φ′| − |0〉〈0| ⊗ |φ〉〈φ|‖tr = 2

√

1− |〈φ′|0φ〉|2 = 2
√
1− (1− p)2 < 3

√
p, (1)

and in the similar case of |1〉|ψ〉 we have

‖|φ′〉〈φ′| − |1〉〈1| ⊗ |φ〉〈φ|‖tr = 2

√

1− |〈φ′|1φ〉|2 = 2
√
1− p2 < 3

√
1− p. (2)

These two equations show that, when p is close to 0 or 1, the fact that we make a
classical copy of the output qubit does not have a large effect on the state of the
system. (This fact can also be argued from the Gentle Measurement Lemma [18].)
The remainder of the circuit then applies V ∗ and, depending on the value of the
control qubit, one of C0 and C1. We consider two cases, which are argued in two
separate propositions.

Proposition 4. If x ∈ Pyes, then there exists a subspace S of X with dimS ≥
dimX 1−δ such that for any reference system R and any |ψ〉 ∈ S ⊗R

‖(C ⊗ 1R)(|ψ〉〈ψ|) − (C0 ⊗ 1R)(|ψ〉〈ψ|‖tr ≤ 3
√
ε.

Proof. If x ∈ Pyes, then there is some input state |ψ〉 on which the Verifier
accepts with probability p ≥ 1− ε. Applying the remainder of the circuit, up to
the partial trace, to the state |1〉|φ〉 results in the state |1〉⊗ (U1⊗1R)(|ψ〉⊗|0〉).
Tracing out the space G as well as the copy of the output qubit, results in exactly
the state trG(U1 ⊗ 1R)(|ψ〉〈ψ| ⊗ |0〉〈0|)(U∗

1 ⊗ 1R) = (C1 ⊗ 1R)(|ψ〉〈ψ|). This is
not quite equal to the output of the constructed circuit C, however, as we have
replaced the state |φ′〉 with the state |1〉|φ〉. However, using the monotonicity of
the trace norm under quantum operations, the remainder of the circuit cannot
increase the norm, and so by Equation (2) we have

‖(C ⊗ 1R)(|ψ〉〈ψ|) − (C0 ⊗ 1R)(|ψ〉〈ψ|)‖tr ≤ 3
√
1− p ≤ 3

√
ε. (3)

It remains to show that this occurs on a large subspace of X = H ⊗ F . Since
we have assumed the Verifier V accepts with high probability on the state |ψ〉,
this implies that there is some state |γ〉 ∈ H for which V also accepts with
probability at least 1 − ε, as V ignores the qubits in F . Then, since |ψ〉 was
arbitrary, Equation (3) also applies to |γ〉 ⊗ |ξ〉 ∈ H ⊗ F for any state |ξ〉 ∈ F .
The subspace S of states whose reduced state on H is equal to |γ〉 has dimension
dimF . Then, since dimF =

⌈
dimH(1−δ)/δ

⌉
, we have

dimX = dimH⊗F ≤ dimFδ/(1−δ) dimF = dimF1/(1−δ),

which implies that dimF ≥ dimX 1−δ, as required. Thus, when x ∈ Pyes the
Verifier V can be made to accept, and so the result is a yes instance of CT. �

The remaining case is when x ∈ Pno, i.e. the Verifier V rejects every state with
high probability.
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Proposition 5. If x ∈ Pno then ‖C − C1‖� ≤ 3
√
ε.

Proof. This proof is similar to the proof of Proposition 4. If x ∈ Pno, then V
accepts any state |ψ〉 with probability p ≤ ε. If we consider applying V ∗ and the
remainder of the circuit to the state |0〉|φ〉, the result is (C1 ⊗ 1R)(|ψ〉〈ψ|),
similarly to the previous case. Once again, we do not run the the circuit
on this state, but the state |φ′〉 which is very close to it. Once again we
apply the monotonicity of the trace norm and Equation (1) to show that
‖(C ⊗ 1R)(|ψ〉〈ψ|) − (C1 ⊗ 1R)(|ψ〉〈ψ|)‖tr ≤ 3

√
p ≤ 3

√
ε. Since this equation

applies for all reference systems R and all states |ψ〉, this proves that if x ∈ Pno,
then we have ‖C − C1‖� ≤ 3

√
ε. �


Taken together, these two proposition prove the hardness of the CT problem.
Note once again that in order for the CT problem to be well defined (i.e. the
set of ‘yes’ instances does not intersect the set of ‘no’ instances) we require that
circuits from the two families are not too close together on any large subspaces
of pure inputs. See the discussion following Problem 3 for a technical condition
that is equivalent to this requirement. It is straightforward to verify that the
reduction is efficient.

Theorem 6. CT(ε, δ, C0, C1) is QMA-hard for any 0 < ε < 1 with ε ≥ 2−p for
some polynomial p, any constant 0 < δ ≤ 1, and any uniform circuit families C0,
C1 for which the problem is well-defined.

3.2 Applications

In this section we apply Theorem 6 to prove the hardness of some new and old
problems.

The first problem we consider is a slightly generalized version of the prob-
lem Non-identity Check [10], who show that it is QMA-complete. Our ver-
sion of the problem differs in that we do not require that the input circuit C
is unitary. We do require, however, that if C deviates from the identity, then it
does so in a way similar to some efficient unitary circuit U . This restriction is
not needed for hardness but it is not clear that the problem is in QMA without
it.

Problem 7 (Mixed Non-identity Check [10]). Let 0 < ε < 1. On input
C ∈ T(X ,X ):

Yes: ‖C − 1‖� ≥ 2 − ε and there exists an efficient unitary U such that on
some pure state |ψ〉 ∈ X we have ‖C(|ψ〉〈ψ|) − U |ψ〉〈ψ|U∗‖tr ≤ ε and
‖U |ψ〉〈ψ|U∗ − |ψ〉〈ψ|‖tr ≥ 2− ε.

No: ‖C − 1‖� ≤ ε.

The QMA-hardness of this problem follows from Theorem 6 and the fact that
CT(ε, 1,U ,1) is a special case of the problem, where U is any uniform family of
quantum circuits that are not close to the identity (one example are the circuits
that apply Pauli X to the first qubit).
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The next problem we consider is the problem of detecting whether a (mixed-
state) circuit is close to an isometry, which was shown to be QMA-complete
in [15].

Problem 8 (Non-isometry [15]). Let 0 < ε < 1/2. On input a circuit C ∈
T(X ,Y):

Yes: There exists |ψ〉 ∈ X such that ‖(Φ⊗ 1X )(|ψ〉〈ψ|)‖∞ ≤ ε,
No: For all |ψ〉 ∈ X , ‖(Φ⊗ 1X )(|ψ〉〈ψ|)‖∞ ≥ 1− ε.

Theorem 6 shows the QMA-hardness of this problem, asCT(ε, 1, Ω,1) is a special
case, where Ω is the completely depolarizing channel. The norm ‖·‖∞ used in
this problem is the operator norm.

We can also apply Theorem 6 to show the hardness of the problem of deter-
mining if a channel has a pure fixed point. This problem can be stated as follows.

Problem 9 (Pure Fixed Point). Let 0 < ε < 1. On input a circuit C ∈
T(X ,X ):

Yes: There exists |ψ〉 ∈ X such that ‖C(|ψ〉〈ψ|) − |ψ〉〈ψ|‖tr ≤ ε
No: For any |ψ〉 ∈ X , ‖C(|ψ〉〈ψ|) − |ψ〉〈ψ|‖tr ≥ 2− ε

The QMA-hardness of this problem follows from the fact that CT(ε, 1,1, Ω) is
a special case.

4 Detecting Insecure Encryption

In this section we consider the problem of detecting when a two-party symmetric
key quantum encryption system is insecure. We first use Theorem 6 to show
that this problem is hard, and then give a QMA-verifier to show that it is QMA-
complete.

Problem 10 (Detecting Insecure Encryption). For 0 < ε < 1 and 0 < δ ≤
1 an instance of the problem consists of a quantum circuit E that takes as input
a quantum state as well as a m classical bits, such that for each k ∈ {0, 1}m the
circuit implements a quantum channel Ek ∈ T(H,K) with dimK ≥ dimH. The
promise problem is to decide between:

Yes: There exists a subspace S of H with dimS ≥ dimH1−δ such that for any
reference spaceR, any ρ ∈ D(S ⊗R), and any key k, ‖(Ek ⊗ 1R)(ρ) − ρ‖tr ≤
ε.

No: E is an ε-private channel, i.e.
∥
∥Ω− 1

2m

∑
k∈{0,1}m Ek

∥
∥
� ≤ ε, where Ω is the

completely depolarizing channel in T(H,K), and there exists a polynomial-
size quantum circuit D such that for all k we have ‖Dk ◦ Ek − 1H‖� ≤ ε.

For specific values of ε and δ, we refer to this problem as DIε,δ.

Theorem 11. DIε,δ is QMA-hard for all 0 < ε < 1/2 and all 0 < δ ≤ 1.
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Proof. Let Ek = {Ωk,n} where Ωk,n is the n-qubit channel that applies the
kth Pauli operator to the input qubits. Averaging over all keys k results in
the completely depolarizing channel on n qubits. Then, Theorem 6 implies that
CT(ε, δ,1k, Ek) is hard for QMA, where 1k is the channel that discards the key
k and does nothing to the quantum input. The problem CT(ε, δ,1k, Ek) is a
modification of the problem CT to include both a quantum input as well as a
classical input k. This is done by including k as part of the quantum input that
is immediately measured in the computational basis. CT(ε, δ,1k, Ek) remains
hard after this modification.

The QMA-hardness of DIε,δ then follows from the fact that the problem of de-
tecting insecure encryption isCT(ε, δ,1k, Ek) with a weakened promise. Since the
sets of ‘yes’ instances of the two problems are identical, we need only verify the
‘no’ instances. Let the circuit C ∈ T(H,K) be a ‘no’ instance of CT(ε, δ,1k, Ek)
and let Ck(·) = C(|k〉〈k| ⊗ ·) be the circuit defined by hardcoding the ‘key’
portion of the input space. Then, for any input ρ and any key k, we have
‖Ck −Ωk‖� ≤ ε, since this follows for the versions of these circuits without
a hardcoded key (which is just a restriction of the input space). The triangle
inequality then implies ‖Ω −∑

k Ck/2
m‖� ≤ ∑

k ‖Ωk − Ck‖� /2m ≤ ε, which is
the property required by ‘no’ instances of DI. To see further that the output of
Ck can be decrypted with knowledge of k, observe that Ω−1

k ◦Ωk = 1, and so

∥
∥Ω−1

k ◦ Ck − 1
∥
∥
� =

∥
∥Ω−1

k ◦ Ck −Ω−1
k ◦Ωk

∥
∥
� ≤ ‖Ck − Ωk‖� ≤ ε,

which implies that instances of CT(ε, δ,1k, Ek) are equivalent to instances of
DIε,δ. �


4.1 QMA Protocol

To test the security of an encryption system in QMA the Verifier needs a tool to
compare two quantum states. Such a tool is provided by the swap test, introduced
in [6], though here we essentially use it to test the purity of quantum states as
is done in [7]. The swap test is an efficient procedure that makes the projective
measurement onto the symmetric and antisymmetric subspaces of a bipartite
space. LetW be the swap operation onH⊗H, i.e.W (|ψ〉⊗|φ〉) = |φ〉⊗|ψ〉 for all
|ψ〉, |φ〉 ∈ H. The swap test performs the two-outcome projective measurement
given by the projection onto the symmetric subspace, (1H⊗H +W )/2, and the
projection onto the antisymmetric subspace, (1H⊗H −W )/2.

Given two pure states |ψ〉, |φ〉, the swap test returns the symmetric outcome

with probability (1+ |〈ψ|φ〉|2)/2. Applied to mixed states ρ, σ the result is sym-
metric with probability (1+tr(ρσ))/2 [7]. This implies that given two copies the
swap test can estimate the purity of a state.

The idea behind the protocol is that if the encryption system specified by
E is insecure then, regardless of the key, it acts trivially on some subspace of
the input. In this case a proof consists of two copies of some pure state in this
subspace. The Verifier runs E on both of these states and tests that they have
not been changed by with the swap test. In the case that the circuit is insecure,
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this proof state will cause the Verifier to obtain the symmetric outcome with
probability approaching 1.

If E represents a secure encryption system, then without knowledge of the key,
the output of E is close to the completely mixed state, regardless of the input
state. In this case the Verifier performs the swap test on two highly mixed states
and the result is antisymmetric with probability close to 1/2. This protocol can
be formalized as follows.

Protocol 12. On input a circuit E : {1, . . . ,K}⊗D(H) → D(K), an instance of
DIε,δ, as well as a quantum proof |φ〉 in D((H⊗R)⊗2) (where dimR = dimH):

1. The Verifier generates random keys k1, k2 ∈ {1, . . . ,K}.
2. The Verifier applies (Ek1 ⊗ 1R)⊗ (Ek2 ⊗ 1R) to the state |φ〉.
3. The Verifier applies the swap test, accepting if the outcome is symmetric.

The space R appears in this protocol, but Problem 10 places no upper bound on
this space, by the properties of the diamond norm, we may take dimR = dimH
without loss of generality.

Proposition 13. For 0 < ε < 1/8, Protocol 12 is a QMA protocol for DIε,δ.

Proof. If E is a ‘yes’ instance of DIε,δ, then there exists a state |ψ〉 ∈ H ⊗R
such that for any key k ∈ {1, . . . ,K} we have

∥
∥Êk(|ψ〉〈ψ|) − |ψ〉〈ψ|∥∥

tr
≤ ε,

where throughout this proof we use the shorthand notation Êk = Ek ⊗ 1R. Let
the input state be |φ〉 = |ψ〉 ⊗ |ψ〉. Fixing notation further, let Êk(|ψ〉〈ψ|) = σk.
Applying Êk1 ⊗ Êk2 to |ψ〉 ⊗ |ψ〉 results in a state σk1 ⊗ σk2 that satisfies

‖σk1 ⊗ σk2 − |ψ〉〈ψ| ⊗ |ψ〉〈ψ|‖tr ≤ 2ε,

which follows from the triangle inequality. Then, since the state |ψ〉〈ψ| ⊗ |ψ〉〈ψ|
is symmetric and the swap test performs a projective measurement, Lemma 1
implies that the swap test returns the symmetric outcome on σk1 ⊗ σk2 with
probability at least 1 − 2ε. This implies that when the circuit E is not secure
the Verifier accepts with high probability.

It remains to show that when the circuit E is a ‘no’ instance of DIε,δ the
Verifier does not accept any proof state with high probability. In this case∥
∥
∑K

k=1 Ek − Ω
∥
∥
�/K ≤ ε. Once more, a straightforward argument using the

triangle inequality can be used to argue that the tensor product of two copies
satisfies the equation

∥
∥∑K

k,j=1 Ek ⊗ Ej − Ω ⊗ Ω
∥
∥
�/K

2 ≤ 2ε. This implies that
regardless of the proof state |ψ〉 the input to the swap test is within trace dis-
tance 2ε of the completely mixed state. On such a state, Lemma 1 implies
that the swap test returns the symmetric outcome with probability at most
1/2− tr[(1K/ dimK)2]/2 + 2ε = 1/2− 1/(2 dimK) + 2ε, and so the probability
the Verifier accepts is bounded above by 1/2+ 2ε. Thus, when ε < 1/8, there is
a constant gap between the acceptance probabilities in the two cases. �

Combining the previous Proposition with Theorem 11 we obtain the main result.

Theorem 14. For 0 < ε < 1/8 and 0 < δ ≤ 1, the problem DIε,δ is QMA-
complete.
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