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Abstract. We present an analysis of Wiesner’s quantum money scheme,
as well as some natural generalizations of it, based on semidefinite pro-
gramming. For Wiesner’s original scheme, it is determined that the op-
timal probability for a counterfeiter to create two copies of a bank note
from one, where both copies pass the bank’s test for validity, is (3/4)n

for n being the number of qubits used for each note. Generalizations in
which other ensembles of states are substituted for the one considered
by Wiesner are also discussed, including a scheme recently proposed by
Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on
higher dimensional quantum systems. In addition, we introduce a vari-
ant of Wiesner’s quantum money in which the verification protocol for
bank notes involves only classical communication with the bank. We
show that the optimal probability with which a counterfeiter can suc-
ceed in two independent verification attempts, given access to a single
valid n-qubit bank note, is (3/4 +

√
2/8)n. We also analyze extensions of

this variant to higher-dimensional schemes.

1 Introduction

Wiesner’s protocol for quantum money [36] was a formative idea in quantum
information processing. In this protocol, a bank generates a bank note composed
of n qubits: each qubit is initialized to a state chosen uniformly at random
from the set {|0〉 , |1〉 , |+〉 , |−〉}, and this choice of states is kept secret by the
bank. The bank can later check the authenticity of a given note by performing a
measurement on each of its qubits, in accordance with its secret record of their
original states. (Each bank note is labeled with a unique serial number, so that all
of the bank notes in circulation may be treated independently.) The security of
Wiesner’s scheme rests on the principle that quantum states cannot be cloned—
that is, a malicious attacker, given access to a fixed supply of authentic bank
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notes, cannot generate a larger quantity of valid bank notes than those to which
he was initially given access.

Although Wiesner’s scheme was introduced almost three decades ago, to the
best of our knowledge no rigorous analysis with explicit bounds on the security
of the scheme exists in the literature. The intuition that the scheme’s security
follows from the no-cloning principle appears in [20], and quantitatively one
should be able to obtain exponential security guarantees from results such as
proofs of the security of the BB84 quantum key exchange protocol [6,30,24] or of
uncloneable encryption [17]. In this paper we prove tight bounds on the security
of Wiesner’s quantum money scheme, through a simple and easily extended
argument based on semidefinite programming.

We consider the specific situation in which a counterfeiter, given access to a
single authentic bank note, attempts to create two bank notes having the same
serial number that independently pass the bank’s test for validity. We will call
such attacks simple counterfeiting attacks. Our first main result is the following.

Theorem 1. The optimal simple counterfeiting attack against Wiesner’s quan-
tum money scheme has success probability exactly (3/4)n, where n is the number
of qubits in each bank note.1

Other types of attacks are not analyzed in this paper, but we must note their
existence! For instance, a counterfeiter might use several distinct bank notes
in an attempt to copy one of them, or a counterfeiting attempt might involve
multiple interactions with the bank. By substituting one of two qubits of a Bell
state for each qubit of a bank note, for example, a counterfeiter can succeed in
passing the bank’s test for validity with probability 2−n, and then conditioned
on having succeeded the counterfeiter will be guaranteed to hold a second valid
bank note.2 One would therefore expect that the bank would charge a small
fee for testing validity, for otherwise counterfeiters have a positive incentive to
attack the protocol. Generally speaking, an analysis of attacks of this nature
would seem to require a limit on the number of verification attempts permitted,
or the specification of a utility function that weighs the potential gain from
counterfeiting against the costs for multiple verifications. We expect that the
semidefinite programming methods used to prove Theorem 1 would be useful for
analyzing such attacks, but we do not investigate this question further in this
paper.

We also consider simple counterfeiting strategies against quantum money
schemes that generalize Wiesner’s original scheme. These are the schemes ob-
tained by varying the set of possible states that a quantum bank note may store,
as well as the underlying probabilities for those states. We show that there is

1 Wiesner [36] in fact arrived at a similar bound, but through a not-so-rigorous argu-
ment!

2 Lutomirski [22] considered a related scenario where the bank kindly provides coun-
terfeiters with access to a bank note’s post-measurement qubits, regardless of
whether validity was established. He proved that O(n) verification attempts are
sufficient to break the protocol in this setting.
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a scheme based on the repetition of a 4-state single-qubit scheme (i.e., having
the same structure as Wiesner’s) for which the optimal simple counterfeiting
attack has success probability (2/3)n, which is optimal among all schemes of
that form. Furthermore, we observe that any money scheme based on the use
of d-dimensional bank notes is subject to a simple counterfeiting attack with
success probability at least 2/(d + 1), and we describe a scheme for which this
is the best one can do.

One drawback of Wiesner’s money scheme is that, not only does it involve
communicating with a centralized bank in order to establish the authenticity
of a given bank note,3 but it also requires quantum communication: bank notes
have to be sent to the bank for verification. Gavinsky [16] recently introduced an
alternative scheme in which bank notes can be authenticated using only classical
communication with the bank.

We consider the following procedure for classical verification of an n-qubit
bank note, constructed as in Wiesner’s scheme. The bank sends the user a ran-
dom challenge c ∈ {0, 1}n. An honest user should measure the i-th qubit in the
computational basis if ci = 0, or in the Hadamard basis if ci = 1, and send the
measurement outcomes b ∈ {0, 1}n to the bank. The bank validates the bank
note if and only if bi describes the correct outcome whenever ci corresponds to
the basis in which qubit i was encoded, for each i ∈ {1, . . . , n}. (We note that a
similar scheme was independently proposed in [28], and that both schemes share
the same structure as the protocol originally introduced by Gavinsky [16].)

Our second main result is then the following.

Theorem 2. For the classical-verification analogue of Wiesner’s quantum money
scheme, the optimal simple counterfeiting attack has success probability exactly(
3/4 +

√
2/8

)n
, for n being the number of qubits in each bank note.

As for Theorem 1, our proof of Theorem 2 follows from the use of semidefinite
programming techniques. In addition we show that, contrary to the quantum-
verification setting, the classical-verification analogue of Wiesner’s scheme is
optimal as long as one considers only qubits: either changing the bases used to
encode each qubit or increasing the number of possible bases will not improve
the scheme’s security against simple counterfeiting attacks. We also consider
a natural generalization of this scheme to bank notes made of d-dimensional
qudits, and prove that the optimal simple counterfeiting attack against it has
success probability exactly (3/4 + 1/(4

√
d))n.

Related Work. The no-cloning theorem [37] states that there is no perfect quan-
tum cloning machine. This impossibility result relies on two assumptions: that
we are trying to clone all possible states (of a given dimension), and that we are
trying to do so perfectly. Relaxing either or both assumptions opens the way for
a fruitful exploration of the possibility of approximate cloning machines. Most

3 There has also been work in recent years on creating quantum money schemes that
do not require any communication with the bank in order to verify a bank note, but
this is only possible under computational assumptions [15,23,1].
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work in this area focuses on obtaining universal cloners—required to work for
all possible input states—but that may not be perfect.

To quantify the quality of a cloner, one has to settle on a figure of merit. Two
main figures have been considered: the minimum (or, alternately, the average)
overlap between one of the two output clones with the input state, or the joint
overlap of both output clones with a tensor product of the input state with
itself.4 Bužek and Hillery [9] determined the optimal universal qubit cloner in
the first case, while Werner [35] solved the general problem with respect to the
second figure of merit.

In the setting of quantum money, however, the first assumption is also relaxed:
a counterfeiter only needs to be successful in cloning the specific states that are
used to create the bank notes. Work in this direction includes that of Bruß
et al. [8], who determined the optimal cloner for the states used in Wiesner’s
original money scheme, and for the first figure of merit discussed above. While
in this work we consider the second figure of merit, which is the one appropriate
to the context of quantum money, our results can easily be extended to the first.

We use a semidefinite programming formulation of the problem, in which one
can numerically determine the success probability of an optimal cloner, given any
desired possible set of input states and underlying distribution. The connection
between cloning of quantum states and semidefinite programming was observed
by Audenaert and De Moor [5], and has been used in the study of cloning by
other researchers. (See, for instance, the survey of Cerf and Fiurášek [10].) The
formulation that we use is closely related to one used in [26], and can also be
seen as a special case of a semidefinite programming framework for more general
quantum strategies developed in [18].

Recent work of Pastawski et al. [28] contains an analysis of a 6-state variant of
Wiesner’s money scheme, obtaining a tight bound of (2/3)n on optimal simple
counterfeiting attacks. In addition, they show that the scheme can be made
error-tolerant—the bank will accept a bank note as long as say 99% of the qubit
measurements are correct, allowing for the money state to be slightly perturbed
and still undergo a successful authentication.5 They also consider a classical-
verification variant of the scheme that is similar to (but somewhat less efficient
than) the one we propose, obtaining exponential security guarantees. Pastawski
et al. [28] also show that auxiliary access to the bank’s verification procedure
does not help, provided the only information returned by the bank is a single bit,
indicating success or failure. Intuitively speaking, this situation may be reduced
to one in which the cloner has no access to such a verification oracle simply by
guessing; most verification attempts will result in failure (for otherwise we would
already have a successful cloner), and so the bits returned cannot contain very
much information.

4 In both cases, the specific distance measure used can also be varied. For instance,
the trace distance and the Hilbert-Schmidt distance on density matrices have been
considered.

5 Our analysis can also be extended to this setting; see Section 3.4 for more details.
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Gavinsky [16] also considers more general attacks against his money scheme
with classical verification. Compared to his scheme, ours (like the one in [28]) is
somewhat simpler. For instance, Gavinsky’s protocol requires the user to perform
two-qubit measurements. We prove stronger security bounds, albeit against more
restricted kinds of attacks: Gavinsky obtains security bounds of the form 2−nc

for some constant c < 1.
Aaronson and Christiano [3] consider general types of attacks against quantum

money schemes in a generic setting. They sketch a proof of how it is possible to
obtain protocols secure against a very general class of attacks based on protocols
secure against simple counterfeiting attacks, as analyzed in our paper. (They also
refer to a forthcoming paper by Aaronson [2], which is to include further details
on this argument.)

2 Preliminaries

We assume the reader is familiar with the basics of quantum information theory,
and suggest Nielsen and Chuang [27] to those who are not. The purpose of this
section is to summarize some of the notation and basic concepts we make use of,
and to highlight a couple of concepts that may be less familiar to some readers.
The lecture notes [34] may be helpful to readers interested in further details on
these topics.

2.1 Basic Notation, States, Measurements and Channels

For any finite-dimensional complex Hilbert space X we write L(X ) to denote
the set of linear operators acting on X , Herm(X ) to denote the set of Hermitian
operators acting on X , Pos(X ) to denote the set of positive semidefinite operators
acting on X , Pd(X ) to denote the set of positive definite operators acting on
X , and D(X ) to denote the set of density operators acting on X . For Hermitian
operators A,B ∈ Herm(X ) the notations A ≥ B and B ≤ A indicate that A−B
is positive semidefinite, and the notations A > B and B < A indicate that A−B
is positive definite.

Given operators A,B ∈ L(X ), one defines the inner product between A and
B as 〈A,B〉 = Tr(A∗B). For Hermitian operators A,B ∈ Herm(X ) it holds that
〈A,B〉 is a real number and satisfies 〈A,B〉 = 〈B,A〉. For every choice of finite-
dimensional complex Hilbert spaces X and Y, and for a given linear mapping of
the form Φ : L(X ) → L(Y), there is a unique mapping Φ∗ : L(Y) → L(X ) (known
as the adjoint of Φ) that satisfies 〈Y, Φ(X)〉 = 〈Φ∗(Y ), X〉 for all X ∈ L(X ) and
Y ∈ L(Y).

A register is a hypothetical device that stores quantum information. Associ-
ated with a register X is a finite-dimensional complex Hilbert space X , and each
quantum state of X is described by a density operator ρ ∈ D(X ). Qubits are reg-
isters for which dim(X ) = 2. A measurement of X is described by a set of positive
semidefinite operators {Pa : a ∈ Σ} ⊂ Pos(X ), indexed by a finite non-empty
set of measurement outcomes Σ and satisfying the constraint

∑
a∈Σ Pa = 1X
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(the identity operator on X ). If such a measurement is performed on X while
it is in the state ρ, each outcome a ∈ Σ is obtained with probability 〈Pa, ρ〉. A
quantum channel is a completely positive and trace-preserving linear mapping
of the form Φ : L(X ) → L(Y) that describes a hypothetical physical process that
transforms each state ρ of a register X into the state Φ(ρ) of another register Y.
The identity channel that does nothing to a register X is denoted 1L(X ).

2.2 Linear Mappings on Spaces of Operators

Let d = dim(X ) and assume a fixed orthonormal basis {|1〉 , . . . , |d〉} of X has
been selected. With respect to this basis, one defines the Choi-Jamio�lkowski
operator J(Φ) ∈ L(Y ⊗ X ) of a linear mapping Φ : L(X ) → L(Y) as

J(Φ) =
∑

1≤i,j≤d

Φ(|i〉 〈j|) ⊗ |i〉 〈j| .

The mapping J is a linear bijection from the space of mappings of the form
Φ : L(X ) → L(Y) to L(Y ⊗ X ). It is well-known that Φ is completely positive
if and only if J(Φ) ∈ Pos(Y ⊗ X ), and that Φ is trace-preserving if and only if
TrY(J(Φ)) = 1X [11,19]. It is also well-known, and easy to verify, that

〈φ|Φ(|ψ〉 〈ψ|) |φ〉 =
〈
φ⊗ ψ

∣
∣J(Φ)

∣
∣φ⊗ ψ

〉
(1)

for any choice of vectors |ψ〉 ∈ X and |φ〉 ∈ Y, with complex conjugation taken
with respect to the standard basis.

2.3 Semidefinite Programming

Semidefinite programming is a topic that has found several interesting appli-
cations within quantum computing and quantum information theory in recent
years. Here, we provide just a brief summary of semidefinite programming that
is narrowly focused on the aspects of it that we use. More comprehensive dis-
cussions can be found in [32,21,12,7], for instance.

A semidefinite program is a triple (Φ,A,B), where

1. Φ : L(X ) → L(Y) is a Hermiticity-preserving linear mapping, and
2. A ∈ Herm(X ) and B ∈ Herm(Y) are Hermitian operators,

for some choice of finite-dimensional complex Hilbert spaces X and Y. We asso-
ciate with the triple (Φ,A,B) two optimization problems, called the primal and
dual problems, as follows:

Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ Pos(X ).

Dual problem

minimize: 〈B, Y 〉
subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm(Y).



Optimal Counterfeiting Attacks and Generalizations 51

The optimal primal value of this semidefinite program is

α = sup{〈A,X〉 : X ∈ Pos(X ), Φ(X) = B},
and the optimal dual value is

β = inf{〈B, Y 〉 : Y ∈ Herm(Y), Φ∗(Y ) ≥ A}.
(It is to be understood that the supremum over an empty set is −∞ and the
infimum over an empty set is ∞, so α and β are well-defined values in R ∪
{−∞,∞}. In this paper, however, we will only consider semidefinite programs
for which α and β are finite.)

It always holds that α ≤ β, which is a fact known as weak duality. The
condition α = β, which is known as strong duality, does not hold for every
semidefinite program, but there are simple conditions known under which it
does hold. The following theorem provides one such condition (that has both a
primal and dual form).

Theorem 3 (Slater’s theorem for SDPs). Let (Φ,A,B) be a semidefinite
program and let α and β be its optimal primal and dual values.

1. If β is finite and there exists a positive definite operator X ∈ Pd(X ) for which
Φ(X) = B, then α = β and there exists an operator Y ∈ Herm(Y) such that
Φ∗(Y ) ≥ A and 〈B, Y 〉 = β.

2. If α is finite and there exists a Hermitian operator Y ∈ Herm(Y) for which
Φ∗(Y ) > A, then α = β and there exists a positive semidefinite operator
X ∈ Pos(X ) such that Φ(X) = B and 〈A,X〉 = α.

In words, the first item of this theorem states that if the dual problem is feasible
and the primal problem is strictly feasible, then strong duality holds and the
optimal dual solution is achievable. The second item is similar, with the roles of
the primal and dual problems reversed.

3 Wiesner’s Quantum Money and Simple Generalizations

Wiesner’s quantum money scheme, and straightforward generalizations of it,
may be modeled in the following way. An ensemble of pure quantum states E =
{(pk, |ψk〉) : k = 1, . . . , N} is fixed, and assumed to be known to all (including
any would-be counterfeiters). When preparing a bank note, the bank randomly
selects each key k ∈ {1, . . . , N} with probability pk. The bank note’s quantum
system is initialized to the state |ψk〉, and the note is labeled by a unique serial
number. The bank records the serial number along with the secret key k.

When an individual wishes to verify a bank note, she brings it to the bank.
The bank looks up the key k and measures the note’s quantum state with respect
to the projective measurement {Π,1−Π}, for Π = |ψk〉 〈ψk |. The measurement
outcome associated with Π causes the bank note to be declared valid, while the
outcome associated with 1−Π causes the bank note to be declared invalid.



52 A. Molina, T. Vidick, and J. Watrous

A simple counterfeiting attack against a scheme of the form just described
attempts to create two copies of a bank note from one, and is considered to be
successful if both copies independently pass the bank’s verification procedure.
We take the original bank note’s quantum state to be stored in a register X
having associated Hilbert space X . The registers storing the quantum states
corresponding to the two copies of the bank note produced by the counterfeiter
will be called Y and Z. The Hilbert spaces Y and Z associated with these registers
are taken to be isomorphic to X , but will retain distinct names for the sake of
our analysis.

Mathematically speaking, a simple counterfeiting attack is described by a
quantum channel Φ transforming X to (Y,Z), taking the state ρ ∈ D(X ) to
the state Φ(ρ) ∈ D(Y ⊗ Z). In order to be physically realizable, at least in an
idealized sense, the channel Φ must correspond to a completely positive and
trace preserving linear mapping of the form Φ : L(X ) → L(Y ⊗Z). Conditioned
on the bank having chosen the key k, the probability of success for an attack
described by Φ is given by 〈ψk ⊗ ψk |Φ(|ψk〉 〈ψk |) |ψk ⊗ ψk〉. Averaging over the
possible choices of k, the overall success probability of a counterfeiting attack is

N∑

k=1

pk 〈ψk ⊗ ψk |Φ(|ψk〉 〈ψk |) |ψk ⊗ ψk〉 . (2)

3.1 An SDP Formulation of Simple Counterfeiting Attacks

We now describe how the optimal success probability of a counterfeiting strat-
egy, which is represented by the supremum of the probability (2) over all valid
channels Φ : L(X ) → L(Y ⊗ Z), may be represented by a semidefinite program.
A similar semidefinite programming formulation may be found in [5,10,26], for
instance.

The formulation makes use of the Choi-Jamio�lkowski representation J(Φ) of
a given channel Φ, as described in Section 2. Combining the characterization
of all such representations that correspond to quantum channels given there
together with (1) and the expression (2), it is not hard to see that the optimal
success probability of any simple counterfeiting strategy is given by the following
semidefinite program:

Primal problem

maximize: 〈Q,X〉
subject to: TrY⊗Z(X) = 1X

X ∈ Pos(Y ⊗ Z ⊗ X )

Dual problem

minimize: Tr(Y )

subject to: 1Y⊗Z ⊗ Y ≥ Q

Y ∈ Herm(X )

where

Q =

N∑

k=1

pk
∣
∣ψk ⊗ ψk ⊗ ψk

〉 〈
ψk ⊗ ψk ⊗ ψk

∣
∣ .

(The dual problem is obtained from the primal problem in a routine way, as
described in Section 2.)
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Because the primal and dual problems are both strictly feasible (as follows
by taking X and Y to be appropriately chosen multiples of the identity, for
example), it follows from Theorem 3 that the optimal values for the primal and
dual problems are always equal, and are both achieved by feasible choices for X
and Y .

3.2 Analysis of Wiesner’s Original Scheme (Single-Qubit Case)

To analyze Wiesner’s original quantum money scheme, we begin by considering
the single-qubit (or n = 1) case. The analysis of the scheme for arbitrary values
of n will follow from known results concerning product properties of semidefinite
programs, as is described later in Section 3.4.

In the single-qubit case, Wiesner’s quantum money scheme corresponds to the
ensemble

E =

{(
1

4
, |0〉

)
,

(
1

4
, |1〉

)
,

(
1

4
, |+〉

)
,

(
1

4
, |−〉

)}
,

which yields the operator

Q =
1

4
(|000〉 〈000| + |111〉 〈111| + |+ + +〉 〈+ + +| + |− − −〉 〈− − −|)

in the semidefinite programming formulation described above. We claim that the
optimal value of the semidefinite program in this case is equal to 3/4. To prove
this claim, it is sufficient to exhibit explicit primal and dual feasible solutions
achieving the value 3/4. For the primal problem, the value 3/4 is obtained by
the solution X = J(Φ), for Φ being the channel

Φ(ρ) = A0ρA
∗
0 +A1ρA

∗
1,

where

A0 =
1√
12

⎛

⎜
⎜
⎝

3 0
0 1
0 1
1 0

⎞

⎟
⎟
⎠ and A1 =

1√
12

⎛

⎜
⎜
⎝

0 1
1 0
1 0
0 3

⎞

⎟
⎟
⎠ .

For the dual problem, the value 3/4 is obtained by the solution Y = 3
81X , whose

feasibility may be verified by computing ‖Q‖ = 3/8.

3.3 Optimal Single-Qubit Schemes

It is natural to ask if the security of Wiesner’s original scheme can be improved
through the selection of a different ensemble E in place of the one considered
in the previous section. The answer is “yes,” as follows from our analysis of
Wiesner’s original scheme together with the results of [28], wherein the authors
consider the ensemble

E =
{(

1
6 , |0〉

)
,
(
1
6 , |1〉

)
,
(
1
6 , |+〉) , ( 1

6 , |−〉) ,
(

1
6 ,

|0〉+i|1〉√
2

)
,
(

1
6 ,

|0〉−i|1〉√
2

)}
.
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The operator Q that one obtains is given by

Q =
1

rank(Π)

(
1L(Y) ⊗ 1L(Z) ⊗ T

)
(Π) (3)

for Π being the projection onto the symmetric subspace of Y ⊗ Z ⊗ X and T
being the transposition mapping with respect to the standard basis of X .

The optimal value of the corresponding semidefinite program is 2/3. Indeed,
a primal feasible solution achieving the value 2/3 is given by X = J(Φ) for Φ
being the channel

Φ(ρ) = A0ρA
∗
0 +A1ρA

∗
1,

where

A0 =
1√
6

⎛

⎜
⎜
⎝

2 0
0 1
0 1
0 0

⎞

⎟
⎟
⎠ and A1 =

1√
6

⎛

⎜
⎜
⎝

0 0
1 0
1 0
0 2

⎞

⎟
⎟
⎠ .

(This channel is the optimal qubit cloner of Bužek and Hillery [9].) A dual feasible
solution achieving the bound 2/3 is given by Y = 1

31X (with this solution’s
feasibility following from a calculation of ‖Q‖ = 1/3).

It is interesting to note that the same bound 2/3 can be obtained by a four-
state ensemble

E =
{(

1
4 , |τ1〉

)
,
(
1
4 , |τ2〉

)
,
(
1
4 , |τ3〉

)
,
(
1
4 , |τ4〉

)}
,

where {|τ1〉 , . . . |τ4〉} are any four states forming a single qubit SIC-POVM [29].
The operator Q corresponding to any such ensemble is identical to the one (3)
from the six-state ensemble above, and therefore yields the same optimal value
for the semidefinite program.

The schemes just mentioned are the best possible single qubit schemes. To
see this, one may simply consider the performance of Φ (i.,e., the Bužek–Hillery
cloner), for which it follows by a direct calculation that

〈ψ ⊗ ψ|Φ(|ψ〉 〈ψ|) |ψ ⊗ ψ〉 =
2

3

for every state |ψ〉. This shows that the optimal primal value, and therefore the
optimal counterfeiting probability, is always at least 2/3.

3.4 Parallel Repetitions of Generalized Wiesner Schemes

Wiesner’s original scheme may be viewed as the n-fold parallel repetition of
a scheme wherein the spaces X , Y, and Z each represent a single qubit, and
where the initial state of each bank note is a state chosen uniformly from the
set {|0〉 , |1〉 , |+〉 , |−〉}. That is, the preparation and verification of each n-qubit
bank note is, from the bank’s perspective, equivalent to the independent prepa-
ration and verification of n single-qubit bank notes; and a successful counterfeit-
ing attack is equivalent to a successful counterfeiting attack against all n of the
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single-qubit notes. The value of n plays the role of a security parameter, given
that it becomes increasingly hard to successfully counterfeit n single-qubit bank
notes in a row, without failure, as n grows large.

Now, there is nothing that forces a counterfeiter to attempt to counterfeit an
n-qubit bank note by treating each of its n qubits independently. However, it
is easily concluded from the semidefinite programming formulation above that
a counterfeiter gains no advantage whatsoever by correlating multiple qubits
during an attack. This, in fact, is true for arbitrary choices of the ensemble E ,
as follows from a general result of Mittal and Szegedy [25] regarding product
properties of some semidefinite programs. (In our case, this property follows
from the fact that the operator Q defining the objective function in the primal
problem is always positive semidefinite.)

In greater detail, let us consider the n-fold repetition of a scheme, in which a
single repetition of the scheme gives rise to a semidefinite program determined
by Q ∈ Pos(Y ⊗ Z ⊗ X ). Let us write Xj , Yj , and Zj to denote copies of
the spaces X , Y, and Z that represent the j-th repetition of the scheme, for
j = 1, . . . , n, and let us write X⊗n = X1 ⊗ · · · ⊗ Xn, Y⊗n = Y1 ⊗ · · · ⊗ Yn,
and Z⊗n = Z1 ⊗ · · · ⊗Zn. The semidefinite program that describes the optimal
simple counterfeiting attack probability for the n-fold repetition is as follows:

Primal problem

maximize:
〈
WQ⊗nW ∗, X

〉

subject to: TrY⊗n⊗Z⊗n(X) = 1X⊗n

X ∈ Pos(Y⊗n ⊗Z⊗n ⊗X⊗n)

Dual problem

minimize: Tr(Y )

subject to: 1Y⊗n⊗Z⊗n ⊗ Y ≥WQ⊗nW ∗

Y ∈ Herm(X⊗n)

In this semidefinite program,W is a unitary operator representing a permutation
of Hilbert spaces:

W |(y1 ⊗ z1 ⊗ x1) ⊗ · · · ⊗ (yn ⊗ zn ⊗ xn)〉
= |(y1 ⊗ · · · ⊗ yn) ⊗ (z1 ⊗ · · · ⊗ zn) ⊗ (x1 ⊗ · · · ⊗ xn)〉 ,

for all choices of |xj〉 ∈ Xj , |yj〉 ∈ Yj , and |zj〉 ∈ Zj , for j = 1, . . . , n.
If the optimal value of the semidefinite program is α in the single-repetition

case, then the optimal value of the semidefinite program for the n-fold repetition
case is necessarily αn. This may be proved by considering the primal and dual
solutions

X = W (X1 ⊗ · · · ⊗Xn)W ∗ and Y = Y1 ⊗ · · · ⊗ Yn,

for X1, . . . , Xn being optimal primal solutions and Y1, . . . , Yn being optimal dual
solutions for the single-repetition semidefinite program. The values obtained by
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these solutions are both αn. Primal feasibility of X is straightforward, while dual
feasibility of Y follows from the fact that A ≥ B ≥ 0 implies A⊗n ≥ B⊗n for all
positive semidefinite A and B.

3.5 Threshold Results

One may also consider noise-tolerant variants of Wiesner’s scheme, as was done
in [28]. In the setting discussed in the previous subsection, where n repetitions of
a particular scheme are performed, we may suppose that the bank’s verification
procedure declares a bank note valid whenever at least t out of n repetitions
succeed, for some choice of t < n, as opposed to requiring that all n repetitions
succeed.

One might hope that a similar analysis to the one in the previous subsection
leads to an optimal counterfeiting probability of

∑

t≤j≤n

(
n

j

)
αj(1 − α)n−j (4)

for such a scheme, for α being the optimal counterfeiting probability for a single
repetition. This is the probability of successful counterfeiting when each repe-
tition is attacked independently. In general, however, this bound may not be
correct: the main result of [26] demonstrates a related setting in which an anal-
ogous bound does not hold, and explains the obstacle to obtaining such a bound
in general.

However, for some schemes, including Wiesner’s original scheme and all of the
other specific schemes (including the classical verification ones in Section 4.2)
discussed in this paper, this bound will be correct. Letting d = dim(X ), the
specific assumptions that we require to obtain the bound (4) are that

N∑

k=1

pk |ψk〉 〈ψk | =
1

d
1, (5)

and that Y = α
d1X is an optimal dual solution to the single-repetition semidefi-

nite program (from which it follows ‖Q‖ = α
d ).

To prove that these requirements are sufficient, let us introduce the following
notation. We will write Q1 in place of Q to denote the operator that specifies
the semidefinite program representing a successful counterfeiting attack, and we
will also define

Q0 =

N∑

k=1

pk (1Y⊗Z − |ψk ⊗ ψk〉 〈ψk ⊗ ψk |) ⊗
∣
∣ψk

〉 〈
ψk

∣
∣ ,

which has a complementary relationship to Q1; it represents a failure to coun-
terfeit in a given repetition. The semidefinite program describing the optimal
counterfeiting probability for the n-fold repetition scheme, where successes in t
repetitions are required for a validation, is then as follows:
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Primal problem

maximize: 〈WRW ∗, X〉
subject to: TrY⊗n⊗Z⊗n(X) = 1X⊗n

X ∈ Pos(Y⊗n ⊗Z⊗n ⊗X⊗n)

Dual problem

minimize: Tr(Y )

subject to: 1Y⊗n⊗Z⊗n ⊗ Y ≥WRW ∗

Y ∈ Herm(X⊗n)

where
R =

∑

a1,...,an∈{0,1}
a1+···+an≥t

Qa1 ⊗ · · · ⊗Qan .

To prove that the optimal value of this semidefinite program is given by the ex-
pression (4), it suffices to exhibit primal and dual feasible solutions achieving this
value. As for the standard n-fold repetition case described in the previous sub-
section, it holds that X = W (X1⊗· · ·⊗Xn)W ∗ is a primal feasible solution that
achieves the desired value, where again X1, . . . , Xn are optimal primal solutions
to the single-repetition semidefinite program. (This solution simply corresponds
to an attacker operating independently and optimally in each repetition.) For
the dual problem, we take

Y = ‖R‖1X⊗n ,

which is clearly dual-feasible. The condition (5) implies that

Q0 =
1

d
1Y⊗Z⊗X −Q1,

and a consideration of spectral decompositions of the commuting operators Q0

and Q1 reveals that

‖R‖ =
1

dn

∑

t≤j≤n

(
n

j

)
αj(1 − α)n−j ,

which establishes the required bound.

3.6 Optimal Schemes in Higher Dimensions

We have observed that the best single-qubit variant of Wiesner’s quantum money
scheme has an optimal counterfeiting probability of 2/3, and we know that the n-
fold parallel repetition of this scheme has an optimal counterfeiting probability of
(2/3)n. Thus, bank notes storing a quantum state of dimension d = 2n can have
an optimal counterfeiting probability of (2/3)n. It is natural to ask whether one
can do better, using a scheme that is not given by the n-fold parallel repetition
of a single qubit scheme.
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The answer is that there are better schemes (provided n > 1). More generally,
for every d representing the dimension of the state stored by a quantum bank
note, there exist schemes whose optimal counterfeiting probability is equal to
2/(d + 1), which is the best that is possible: Werner’s quantum cloning map
[35] will always succeed in counterfeiting any quantum bank note of dimension
d with probability 2/(d + 1). The following proposition shows that there exists
a scheme that matches this bound in all dimensions d.

Proposition 1. Let E = {pk, |ψk〉} be any ensemble of d-dimensional states for
which the operator

Q =

N∑

k=1

pk
∣∣ψk ⊗ ψk ⊗ ψk

〉 〈
ψk ⊗ ψk ⊗ ψk

∣∣

is given by

Q =
1

rank(Π)

(
1L(Cd) ⊗ 1L(Cd) ⊗ T

)
(Π), (6)

where T is the transposition mapping with respect to the standard basis of Cd

and Π is the orthogonal projector onto the symmetric subspace of Cd⊗C
d⊗C

d.
Then no simple counterfeiting strategy can succeed against the money scheme
derived from E with probability greater than 2/(d+ 1).

Before proving the proposition, we note that any ensemble E obtained from a
complex projective (3, 3)-design (also known as a quantum 3-design [4]) satis-
fies (6), and thus leads to an optimal d-dimensional money scheme. This also
suggests that one might obtain more efficient schemes (i.e., involving less possi-
ble states for each part of the note) with security properties similar to the ones
described here if approximate designs are considered instead.

Proof (of Proposition 1). Because we are looking for an upper bound on the max-
imum counterfeiting probability, it suffices to construct a good feasible solution
Y to the dual SDP described in Section 3.1. We will choose Y = ‖Q‖1X , which
is a feasible dual solution with corresponding objective value Tr(Y ) = d‖Q‖. We
indicate how results from [13] may be used to show that ‖Q‖ = 2/(d(d + 1)),
proving the proposition.

The operator Q commutes with all operators of the form U ⊗ U ⊗ U , where
U is any unitary acting on C

d. In Section VI.A of [13] it is shown that any
such operator can be written as a linear combination of six conveniently chosen
Hermitian operators S+, S−, S0, S1, S2, S3 (for a definition see Eqs. (25a)–(25f)
of [13]). For our operator Q we obtain the decomposition

Q =
1

rank(Π)

(1

3
S+ +

d+ 2

6

(
S0 + S1

))
, (7)

where

S+ =
1 + V

2
− 1

2(d+ 1)

(
X +XV + V X + V XV

)
,

S0 + S1 =
1

d+ 1

(
X +XV + V X + V XV

)
,
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V is the operator that permutes the first two registers on which Q acts, and X
the partial transpose of the operator permuting the last two registers. Moreover,
as shown in [13], S+ and S0 are mutually orthogonal projections, S0S1 = S1S0 =
S1, S+S1 = S1S+ = 0, and S2

1 = S0. Hence, the decomposition (7) shows that
the operator norm of Q satisfies

‖Q‖ =
1

rank(Π)

d+ 2

3
=

2

d(d+ 1)
,

as rank(Π) =
(
d+2
3

)
.

4 Money Schemes with Classical Verification

In this section we introduce a natural variant of Wiesner’s scheme, as well as
higher-dimensional generalizations of it, in which the verification is done through
classical communication with the bank. To distinguish the corresponding bank
notes from the ones discussed in the previous section, we will call them tickets.6

4.1 Description of Quantum Tickets

A quantum ticket is defined in the same way as a bank note: it is a quantum
state |ψk〉, where k is a secret key kept by the bank, together with a unique
serial number. We consider schemes in which the classical verification proce-
dure has the following simple form. The user first identifies herself to the bank
by announcing her ticket’s serial number. The bank then sends her a classical
“challenge” c ∈ C chosen uniformly at random, where C is some fixed finite set.
Depending on c, an honest user will perform a measurement Πc = {Πa

c }a∈A on
her ticket, and report the outcome a to the bank. The bank then looks up the
secret key k associated with the user’s ticket, and accepts a if and only if the
triple (a, c, k) falls in a fixed, publicly known set S of valid triples.7

A simple counterfeiting attack against such a scheme will attempt to use just
one quantum ticket in order to successfully answer two independent challenges
from the bank. Such a counterfeiter may be modeled by a collection of POVMs
Ac1c2 = {Aa1a2

c1c2 }a1a2 , and its success probability is

N∑

k=1

pk
1

|C|2
∑

c1,c2

∑

(a1,a2):
(a1,c1,k)∈S
(a2,c2,k)∈S

〈ψk |Aa1a2
c1c2 |ψk〉 , (8)

6 As we will see, successful verification of a ticket necessarily entails its destruction.
This is unavoidable, as shown in [16]. One may still concatenate together many
tickets, each equipped with its own serial number, to create a single bank note.
The bank note will then be able to go through as many verification attempts as it
contains tickets.

7 For instance, the bank could accept all “plausible” answers, i.e., all a such that
〈ψk |Πa

c |ψk〉 > 0. This condition ensures that honest users are always accepted.



60 A. Molina, T. Vidick, and J. Watrous

which is the “classical-verification” analogue of (2). By letting registers Y and Z
contain the answers a1 and a2 respectively, and X contain the counterfeiter’s in-
put (the state |ψk〉 and the two challenges c1, c2), the problem of maximizing (8)
over all possible counterfeiting strategies can be cast as a semidefinite program
of the same form as the one introduced in Section 3.1, with the corresponding
operator Q defined as

Q =

N∑

k=1

pk
1

|C|2
∑

c1,c2

∑

(a1,a2):
(a1,c1,k)∈S
(a2,c2,k)∈S

|a1〉 |a2〉 |c1, c2, ψk〉 〈a1| 〈a2| 〈c1, c2, ψk | .

As Q is diagonal on the first 4 registers, without loss of generality an optimal
solution X to the primal problem may be taken to be block-diagonal,

X =
∑

a1,a2,c1,c2

|a1, a2, c1, c2〉 〈a1, a2, c1, c2| ⊗Xa1a2
c1c2 ,

and the SDP constraints are immediately seen to exactly enforce that {Xa1a2
c1c2 }a1a2

is a POVM for every (c1, c2).
We note that the problem faced by the counterfeiter can be cast as a special

instance of the more general state discrimination problem. Indeed, the counter-
feiter’s goal is to distinguish between the following: for every pair of possible
answers (a1, a2), there is a mixed state corresponding to the mixture over all
states |c1〉 |c2〉 |Ψk〉 that for which (a1, a2) would be a valid answer. (Each state
is weighted proportionally to the probability of the pair (c1, c2) of being chosen
as challenges by the bank, and of |Ψk〉 being chosen as a bank note.) As such,
the fact that the optimal counterfeiting strategy can be cast as a semidefinite
program follows from similar formulations for the general state discrimination
problem (as the ones considered in e.g. [14]).

4.2 Analysis of a Simple Class of Qudit Schemes

We further restrict our attention to a natural class of extensions of the classical-
verification variant of Wiesner’s scheme described in the introduction. The
schemes we consider are parametrized by a dimension d and two fixed bases{ ∣∣e00

〉
, . . . ,

∣∣e0d−1

〉 }
and

{ ∣∣e10
〉
, . . . ,

∣∣e1d−1

〉 }
of Cd.8 Each scheme is defined as

the n-fold parallel repetition of a basic scheme in which N = 2d, the states
|ψ(t,b)〉 are the

∣
∣ebt

〉
for t ∈ {0, . . . , d − 1} and b ∈ {0, 1}, the random challenge

is a bit c ∈ {0, 1}, and the valid answers are a = t if b = c, and any a if b �= c.
Valid answers may be provided by an honest user who measures his ticket in
the basis corresponding to c. By writing out the corresponding operator Q and
constructing a feasible solution to the dual SDP, we show the following lemma,
from which Theorem 2 follows directly.

8 It is easy to see that increasing the number of bases will only result in weaker
security: indeed, the more the bases the less likely it is that the bank’s randomly
chosen challenge will match the basis used to encode each qudit.
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Lemma 1. For every simple counterfeiting attack against the n-qudit
classical-verification scheme described above, the success probability is at most(
3
4 +

√
c
4

)n
, where c = maxs,t

∣
∣〈e0s|e1t

〉∣∣2 is the effective overlap.9

If d = 2, there is always a counterfeiting strategy that achieves this bound.

Proof. We first analyze simple counterfeiting attacks against the basic single-
qudit scheme. Note that if both challenges from the bank are identical, the
counterfeiter can answer both correctly with probability 1 by making the appro-
priate measurement on his qubit.

By symmetry, it suffices to consider the case where the first challenge is c1 = 0
and the second is c2 = 1. In this case the operator Q becomes

Q =
1

2d

d−1∑

s,t=0

|s〉 〈s|Y ⊗ |t〉 〈t|Z ⊗ ( ∣∣e0s
〉 〈
e0s
∣∣
X + |e1t 〉〈e1t |X

)
.

For s, t ∈ {0, . . . , d−1}, let Vs,t =
∣
∣e0s

〉 〈
e0s
∣
∣
X +

∣
∣e1t

〉 〈
e1t
∣
∣
X . As Q is block-diagonal,

the dual SDP is

minimize: Tr
(
Y
)

subject to: Y ≥ 1

2d
Vs,t (for all s, t) (9)

Y ∈ Herm(Cd).

Vs,t is a rank-2 Hermitian matrix whose eigenvalues are 1 ± ∣∣〈e0s|e1t 〉
∣∣. Hence,

Y = 1+
√
c

2d 1 is a feasible solution to the dual problem with objective value
(1 +

√
c)/2, leading to an upper bound on the best counterfeiting strategy with

overall success probability at most 3/4 +
√
c/4.

To finish the proof of the upper bound it suffices to note that the SDP has
the same parallel repetition property as was described in Section 3.4.

Finally, we show the “moreover” part of the claim. Relabeling the vectors if
necessary, assume |〈e00|e10〉| =

√
c. Let |u0〉 be the eigenvector of V0,0 with largest

eigenvalue 1 +
√
c, and |u1〉 the eigenvector with smallest eigenvalue. Using the

observation that |〈e01|e11〉| =
√
c, it may be checked that

X = |0, 0〉 〈0, 0| ⊗ |u0〉 〈u0| + |1, 1〉 〈1, 1| ⊗ |u1〉 〈u1|
is a feasible solution to the primal SDP corresponding to (9) (as expressed in
Section 3.1) with objective value (1 +

√
c)/2, proving that the optimum of (9)

is exactly (1 +
√
c)/2.

4.3 A Matching Lower Bound

Let d be a fixed dimension. We introduce a quantum ticket scheme for which
the upper bound derived in the previous section is tight. For d = 2 our scheme

9 For any two bases of Cd, c ≥ 1/d, and this is achieved for a pair of mutually unbiased
bases. This quantity also arises naturally in the study of uncertainty relations (see
e.g. [31]), of which our result may be seen as giving a special form.
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recovers the one that is derived from Wiesner’s original quantum money. Let Xd

and Zd be the generalized Pauli matrices, acting as Xd : |i〉 → |(i+ 1) mod d〉
and Zd : |i〉 → ωi |i〉, where ω = e2iπ/d. Let F be the quantum Fourier transform
over Zd,

F : |i〉 → 1√
d

∑

j

ωij |j〉 ,

and note thatXd = FZdF
†. Let

{∣∣e0t
〉}

be the basis defined by
∣
∣e0t

〉
= (Xd)t |0〉 =

|t〉, and
{∣∣e1t

〉}
the Fourier-transformed basis

∣
∣e1t

〉
= F

∣
∣e0t

〉
= (Zd)tF |0〉 for ev-

ery t. Then
∣
∣〈e0s|e1t 〉

∣
∣ =

∣
∣〈s|F |t〉∣∣ =

1√
d

for every s, t: the corresponding overlap is c = 1/d. Lemma 1 shows that the
optimal cloner achieves success at most 3/4 + 1/(4

√
d). The following lemma

states a matching lower bound.

Lemma 2. There is a cloner for the n-qudit ticket scheme described above that
successfully answers both challenges with success probability

(
3
4 + 1

4
√
d

)n
.

Proof. We describe a cloner that acts independently on each qudit, succeeding
with probability 3

4 + 1
4
√
d

on each qudit.10 Let

|ψ〉 =
(
2 + 2/

√
d
)−1/2

(|0〉 + F |0〉),
and for every (s, t) let Ps,t be the rank 1 projector on the unit vector Xs

dZ
t
d |ψ〉.

As a consequence of Schur’s lemma,
∑

s,t
1
dPs,t = 1, so that

{
Ps,t/d

}
is a POVM.

The cloner proceeds as follows: if the challenge is either 00 or 11, he measures
in the corresponding basis and sends the resulting outcome as answer to both
challenges. In this case he is always correct. In case the challenge is either 01 or
10, he measures the ticket using the POVM {Ps,t/d}, and uses s as answer to the
challenge “0” and t as answer to the challenge “1”. Because the two challenges
are distinct, only one of them corresponds to the actual basis in which the ticket
was encoded. Without loss of generality assume this is the “0” basis, so that the
ticket is

∣
∣e0s

〉
= |s〉. The probability that the cloner obtains the correct outcome

s is

1

d

∑

t

Tr
(
Ps,t |s〉 〈s|

)
=

1

d

∑

t

∣∣ 〈s|Xs
dZ

t
d |ψ〉

∣∣2

=
1

d

∑

t

∣
∣ 〈0|Zt

d |ψ〉
∣
∣2

=
∣
∣〈0|ψ〉∣∣2.

To conclude, it suffices to compute

∣
∣〈0|ψ〉∣∣2 =

1

2 + 2/
√
d

∣
∣〈0|0〉 + 〈0|F |0〉∣∣2 =

1

2

(
1 +

1√
d

)
.

10 The analysis is very similar to one that was done in [33], in a different context but
for essentially the same problem.
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