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2 Depto. de Matemática Aplicada, Technical University of Madrid, Spain

3 IMI, Universidad Complutense de Madrid, Spain
4 University of Amsterdam (UvA), The Netherlands

Abstract. Entropic uncertainty relations are quantitative characteriza-
tions of Heisenberg’s uncertainty principle, which make use of an entropy
measure to quantify uncertainty. We propose a new entropic uncertainty
relation. It is the first such uncertainty relation that lower bounds the
uncertainty in the measurement outcome for all but one choice for the
measurement from an arbitrary (and in particular an arbitrarily large) set
of possible measurements, and, at the same time, uses the min-entropy
as entropy measure, rather than the Shannon entropy. This makes it
especially suited for quantum cryptography.

As application, we propose a new quantum identification scheme in
the bounded-quantum-storage model. It makes use of our new uncer-
tainty relation at the core of its security proof. In contrast to the original
quantum identification scheme proposed by Damg̊ard et al. [4], our new
scheme also offers some security in case the bounded-quantum-storage
assumption fails to hold. Specifically, our scheme remains secure against
an adversary that has unbounded storage capabilities but is restricted to
(non-adaptive) single-qubit operations. The scheme by Damg̊ard et al.,
on the other hand, completely breaks down under such an attack.

1 Introduction

In this work1, we propose and prove a new general entropic uncertainty relation.
Entropic uncertainty relations are quantitative characterizations of Heisenberg’s
uncertainty principle, which make use of an entropy measure (usually Shannon
entropy) to quantify uncertainty. Our new entropic uncertainty relation dis-
tinguishes itself from previously known uncertainty relations by the following
collection of features:

1. It uses the min-entropy as entropy measure, which is a stronger type of un-
certainty than Shannon entropy. Since min-entropy allows for privacy am-
plification, such entropic uncertainty relations are useful tools in quantum
cryptography.

1 The full version of this paper can be found online [2].
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2. It lower bounds the uncertainty in the measurement outcome for all but one
choice for the measurement from an arbitrary, and in particular arbitrarily
large, family of possible measurements. This is clearly stronger than typical
entropic uncertainty relations that lower bound the uncertainty on average
(over the choice of the measurement).

3. The measurements can be chosen to be qubit-wise measurements, in the
computational or Hadamard basis, and thus the uncertainty relation is ap-
plicable to settings that can be implemented using current technology.

To the best of our knowledge, no previous entropic uncertainty relation satisfies
(1) and (2) simultaneously, let alone in combination with (3). Indeed, as pointed
out in the recent overview article by Wehner and Winter [13], little is known
about entropic uncertainty relations for more than two measurement outcomes,
let alone when considering min-entropy.

In the remainder of this introduction, we explain the statement of our new
uncertainty relation and we discuss an application: we propose a new password-
based quantum identification scheme, whose security (in the bounded-quantum-
storage model) relies on the new uncertainty relation.

Our Result Explained. To better understand our new uncertainty relation, we
find it helpful to first discuss a simpler variant, which does not satisfy (1), and
which follows trivially from known results. Fix an arbitrary family {B1, . . . ,Bm}
of bases for a given quantum system (i.e., Hilbert space). The maximum overlap
of such a family is defined as c := max{|〈φ|ψ〉| : |φ〉 ∈ Bj , |ψ〉 ∈ Bk, 1≤ j < k≤
m}, and we write d := − log(c2). Let ρ be an arbitrary quantum state of that
system, and let X denote the measurement outcome when ρ is measured in one
of the bases. We model the choice of the basis by a random variable J , so that
H(X |J = j) denotes the Shannon entropy of the measurement outcome when
ρ is measured in basis Bj. It follows immediately from Maassen and Uffink’s
uncertainty relation [8] that H(X |J= j) +H(X |J=k) ≥ − log(c2) = d for any
j �= k. As a direct consequence, there exists a choice j′ for the measurement so
that H(X |J= j) ≥ d

2 for all j ∈ {1, . . . ,m} with j �= j′. In other words, for any
state ρ there exists j′ so that unless the choice for the measurement coincides
with j′, which happens with probability at most maxj PJ (j), there is at least
d/2 bits of entropy in the outcome X .

Our new high-order entropic uncertainty relation shows that this very state-
ment essentially still holds when we replace Shannon by min-entropy, except that
j′ becomes randomized: for any ρ, there exists a random variable J ′, independent
of J , such that2

Hmin(X |J=j, J ′=j′) � d

2
∀ j �= j′ ∈ {1, . . . ,m}

no matter what the distribution of J is. Thus, unless the measurement J co-
incides with J ′, there is roughly d/2 bits of min-entropy in the outcome X .

2 The approximate inequality � will be made rigorous in the main body.



An All-But-One Entropic Uncertainty Relation, and Application 31

Furthermore, since J ′ is independent of J , the probability that J coincides with
J ′ is at most maxj PJ(j), as is the case for a fixed J ′.

Note that we have no control over (the distribution of) J ′. We can merely
guarantee that it exists and is independent of J . It may be insightful to interpret
J ′ as a virtual guess for J , guessed by the party that prepares ρ, and whose goal
is to have little uncertainty in the measurement outcome X . The reader may
think of the following specific way of preparing ρ: sample j′ according to some
arbitrary distribution J ′, and then prepare the state as the, say, first basis vector
of Bj′ . If the resulting mixture ρ is then measured in some basis Bj, sampled
according to an arbitrary (independent) distribution J , then unless j = j′ (i.e.,
our guess for j was correct), there is obviously lower bounded uncertainty in
the measurement outcome X (assuming a non-trivial maximum overlap). Our
uncertainty relation can be understood as saying that for any state ρ, no matter
how it is prepared, there exists such a (virtual) guess J ′, which exhibits this very
behavior: if it differs from the actual choice for the measurement then there is
lower bounded uncertainty in the measurement outcome X . As an immediate
consequence, we can for instance say thatX has min-entropy at least d/2, except
with a probability that is given by the probability of guessing J , e.g., except
with probability 1/m if the measurement is chosen uniformly at random from
the family. This is clearly the best we can hope for.

We stress that because the min-entropy is more conservative than the Shannon
entropy, our high-order entropic uncertainty relation does not follow from its
simpler Shannon-entropy version. Neither can it be deduced in an analogue way;
the main reason being that for fixed pairs j �= k, there is no strong lower bound
on Hmin(X |J= j) +Hmin(X |J=k), in contrast to the case of Shannon entropy.
More precisely and more generally, the average uncertainty 1

|J|
∑

jHmin(X |J =

j) does not allow a lower bound higher than log |J |. To see this, consider the
following example for |J | = 2 (the example can easily be extended to arbitrary
|J |). Suppose that ρ is the uniform mixture of two pure states, one giving no
uncertainty when measured in basis j, and the other giving no uncertainty when
measured in basis k. Then, Hmin(X |J = j) = Hmin(X |J = k) = 1 and so is
their average. For a similar reason, we cannot hope to get a good bound for all
but a fixed choice of j′; the probabilistic nature of J ′ is necessary (in general).
Hence, compared to bounding the average uncertainty, the all-but-one form of
our uncertainty relation not only makes our uncertainty relation stronger in that
uncertainty for all-but-one implies uncertainty on average (yet not vice versa),
but it also allows for more uncertainty.

Note that by using asymptotically good error correcting codes, one can con-
struct families {B1, . . . ,Bm} of bases that have a large value of d, and thus
for which our uncertainty relation guarantees a large amount of min-entropy.
These families consist of qubit-wise measurements in the computational or the
Hadamard basis, and thus are implementable with current technology.

The proof of our new uncertainty relation is rather involved. First, we extend
a technique used in (the journal version of) [3], which is based on a norm inequal-
ity for the sum of orthogonal projectors, and then we combine this with some



32 N.J. Bouman et al.

involved probability reasoning to prove the existence of the random variable J ′

as required.

Application. As an application of our entropic uncertainty relation, we propose
a new quantum identification scheme. Informally, the goal of (password-based)
identification is to prove knowledge of a possibly low-entropy password w, with-
out giving away any information on w (beyond what is unavoidable).

It is known (see [4]) that any quantum identification scheme can be broken
by a dishonest participant having unbounded quantum storage and unbounded
quantum-computation capabilities. Damg̊ard et al. [4] showed the existence of
such an identification scheme3 in the bounded-quantum-storage model (BQSM),
where an upper bound is assumed on the number of qubits that the dishonest
server can store. If, however, this assumption fails to hold, then the security of the
scheme of Damg̊ard et al. breaks down completely. Hence, it would actually be
desirable to have an identification scheme for which unbounded quantum storage
and unbounded quantum-computation capabilities are necessary to break it. Our
new scheme can be appreciated as a first step towards achieving this, in that
large quantum storage and non-trivial quantum computation capabilities are
necessary for a successful attack. A disadvantage of our scheme is that it only
offers security in case of a perfect quantum source, which emits precisely one
qubit when triggered (i.e., there is no multi-photon emission or the like). Since
current technology only admits (close to) perfect quantum sources under “lab
conditions,” our scheme is currently mainly of theoretical interest.

Our uncertainty relation gives us the right tool to prove security of the new
quantum identification scheme in the BQSM. Additionally, we prove security
of our new scheme in the so-called single-qubit-operations model (SQOM), i.e.,
against a dishonest server that has unbounded quantum-storage capabilities and
can reliably store all the qubits communicated during the course of the scheme,
but is restricted to single-qubit operations and measurements (i.e., cannot oper-
ate on several qubits coherently). Proving security of our scheme in the SQOM
is non-trivial.

2 Preliminaries

We write D(H) for the set of all density matrices on Hilbert space H.

Definition 1 (Min-Entropy [10,7]). For any density matrix ρXE ∈ D(HXE)
with classical X, the min-entropy of X when given HE is defined as

Hmin(X |E) := − log pguess(X |E)

where the guessing probability pguess(X |E) := max{Mx}
∑

x PX(x) tr(Mxρ
x
E) is

the maximal success probability of guessing X by a positive operator-valued mea-
surement {Mx} of E.

3 Actually, [4] proposed two such schemes: QID and QID+. QID offers security against
impersonation attacks, and QID+ additionally offers security against man-in-the-
middle attacks but is not truly password-based. In this work, we focus on imperson-
ation attacks only (with truly password-based security).
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For classical random variables X and Y , the conditional min-entropy
Hmin(X |Y ) simplifies to H(X |Y ) = − log

∑
y PY (y)maxx PX|Y (x|y) =

− log
∑

y maxx PXY (x, y).

For a matrix ρ, the trace norm is defined as ‖ρ‖1 := tr
√
ρρ∗, where ρ∗ denotes

the Hermitian transpose of ρ.

Definition 2 (Trace Distance [9]). The trace distance between two density
matrices ρ, σ ∈ D(H) is defined as δ(ρ, σ) := 1

2‖ρ− σ‖1.
If two states ρ and σ are ε-close in trace distance, i.e. 1

2‖ρ − σ‖1 ≤ ε, we use
ρ ≈ε σ as shorthand.

Definition 3 (Distance to Uniform). For a density matrix ρXE ∈ D(HX ⊗
HE) with classical X, the distance to uniform of X given E is defined as

dunif(X |E) := 1
2‖ρXE − ρU ⊗ ρE‖1,

where ρU := 1
dim(HX) IX .

Definition 4 (Conditional Independence [4]). For a density matrix on
D(HX ⊗ HY ⊗ HE) with classical X and Y for which the random variable X
is independent of the quantum subsystem E when given the random variable Y ,
we write ρX↔Y↔E , i.e.,

ρX↔Y↔E :=
∑

x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE .

3 Formal Statement and Proof of the Main Result

To obtain our entropic uncertainty relation that lower bounds the min-entropy of
the measurement outcome for all but one measurement, we first state an uncer-
tainty relation that expresses uncertainty by means of the probability measure
of given sets.

As above, {B1, . . . ,Bm} is an arbitrary but fixed family of bases for the state
space H of a quantum system, and c denotes the maximum overlap. For simplic-
ity, we restrict our attention to an n-qubit system, such that H = (C2)⊗n for
n ∈ N, but our results immediately generalize to arbitrary quantum systems.

Theorem 5 (Theorem 4.18 in [12]). Let ρ be an arbitrary state of n qubits.
For j ∈ [m], let Qj(·) be the distribution of the outcome when ρ is measured in
the Bj-basis. Then, for any family {Lj}j∈[m] of subsets Lj ⊂ {0, 1}n, it holds
that ∑

j∈[m]

Qj(Lj) ≤ 1 + c (m− 1) · max
j �=k∈[m]

√
|Lj ||Lk|.

A special case of Theorem 5, obtained by restricting the family of bases to
{B+,B×} with B+ = {|x〉}x∈{0,1}n and B× = {H⊗n|x〉}x∈{0,1}n (i.e., either the
computational or Hadamard basis for all qubits), is an uncertainty relation that
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was proven and used in the original paper about the BQSM [3]. The proof of
Theorem 5 (Appendix A.2) goes along similar lines as the proof in the jour-
nal version of [3] for the special case outlined above. It is based on the norm
inequality (see Appendix A.1)

∥
∥A1 + . . .+Am

∥
∥ ≤ 1 + (m− 1) · max

j �=k∈[m]

∥
∥AjAk

∥
∥

for arbitrary orthogonal projectors A1, . . . , Am, where ‖ · ‖ denotes the operator
norm.

We can reformulate Theorem 5 in terms of a “good event” E with lower
bounded probability, and if it occurs, then the measurement outcome has high
min-entropy. The statement is obtained by choosing the sets Lj in Theorem 5
appropriately (see Appendix A.3).

Because we now switch to entropy notation, it will be convenient to work with
a measure of overlap between bases that is logarithmic in nature and expressed
relative to the number n of qubits. Hence, we define δ := − 1

n log(c2) .

Corollary 6. Let ρ be an arbitrary n-qubit state, let J be a random variable
over [m], and let X be the outcome when measuring ρ in basis BJ .

4 Then, for
any 0 < ε < δ/4, there exists an event E such that

∑

j∈[m]

Pr[E|J=j] ≥ (m− 1)− (2m− 1) · 2−εn

and Hmin(X |J=j, E) ≥
(δ

2
− 2ε

)
n

for j ∈ [m] with PJ|E(j) > 0.

We will now state and prove our main result.

Theorem 7 (Our New Uncertainty Relation). Let ρ be an arbitrary n-
qubit state, let J be a random variable over [m], and let X be the outcome when
measuring ρ in basis BJ . Then, for any 0 < ε < δ/4, there exists a random
variable J ′ such that (1) J and J ′ are independent and (2) there exists an event
Ω with Pr[Ω] ≥ 1− 2 · 2−εn such that5

Hmin(X |J = j, J ′ = j′, Ω) ≥
(δ

2
− 2ε

)
n− 1

for all j, j′ ∈ [m] with j �= j′ and PJJ′|Ω(j, j′) > 0.

Proof (of Theorem 7). From Corollary 6 we know that for any 0 < ε < δ/4,
there exists an event E such that

∑
j∈[m] Pr[E|J = j] = m − 1 − α, and thus

∑
j∈[m] Pr[Ē |J = j] = 1 + α, for −1 ≤ α ≤ (2m − 1)2−εn. We make the case

distinction between α = 0, α > 0 and α < 0. We will only proof the case α = 0

4 I.e., PX|J (x|j) = Qj(x), using the notation from Theorem 5.
5 Instead of introducing such an event Ω, we could also express the min-entropy bound
by means of the smooth min-entropy of X given J = j and J ′ = j′.
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here; the other two cases are proved in Appendix A.4, by reducing them to
the case α = 0 by “inflating” and “deflating” the event E appropriately. The
approach for the case α = 0 is to define J ′ in such way that E ⇐⇒ J �= J ′,
i.e., the event J �= J ′ coincides with the event E . The min-entropy bound from
Corollary 6 then immediately translates to Hmin(X |J = j, J ′ �= J) ≥ (δ/2−2ε)n,
and to Hmin(X |J = j, J ′ = j′) ≥ (δ/2 − 2ε)n for j′ �= j with PJJ′(j, j′) > 0, as
we will show. What is not obvious about the approach is how to define J ′ when
it is supposed to be different from J , i.e., when the event E occurs, so that in
the end J and J ′ are independent.

Formally, we define J ′ by means of the following conditional probability dis-
tributions:

PJ′|JXĒ(j
′|j, x) :=

{
1 if j = j′

0 if j �= j′

PJ′|JXE(j′|j, x) :=
{

0 if j = j′
Pr[Ē|J=j′]
Pr[E|J=j] if j �= j′

We assume for the moment that the denominator in the latter expression does
not vanish for any j; we take care of the case where it does later. Trivially,
PJ′|JXĒ is a proper distribution, with non-negative probabilities that add up to
1, and the same holds for PJ′|JXE :

∑

j′∈[m]

PJ′|JXĒ(j
′|j, x) =

∑

j′∈[m]\{j}
PJ′|JXĒ(j

′|j, x) =
∑

j′∈[m]\{j}

Pr[Ē |J = j′]
Pr[E|J = j]

= 1,

where we used that
∑

j∈[m] Pr[Ē |J = j] = 1 (because α = 0) in the last equality.

Furthermore, it follows immediately from the definition of J ′ that Ē =⇒ J = J ′

and E =⇒ J �= J ′. Hence, E ⇐⇒ J �= J ′, and thus the bound from Corollary 6
translates to Hmin(X |J = j, J ′ �= J) ≥ (δ/2− 2ε)n. It remains to argue that J ′

is independent of J , and that the bound also holds for Hmin(X |J = j, J ′ = j′)
whenever j �= j′.

The latter follows immediately from the fact that conditioned on J �= J ′

(which is equivalent to E), X, J and J ′ form a Markov chain X ↔ J ↔ J ′,
and thus, given J = j, additionally conditioning on J ′ = j′ does not change
the distribution of X . For the independence of J and J ′, consider the joint
probability distribution of J and J ′, given by

PJJ′(j, j′) = PJ′JE(j′, j) + PJ′JĒ(j
′, j)

= PJ(j)Pr[E|J = j]PJ′|JE(j′|j) + PJ (j)Pr[Ē |J = j]PJ′|JĒ(j
′|j)

= PJ(j)Pr[Ē |J = j′],

where the last equality follows by separately analyzing the cases j = j′ and
j �= j′. It follows immediately that the marginal distribution of J ′ is PJ′(j′) =∑

j PJJ′ (j, j′) = Pr[Ē |J = j′], and thus PJJ′ = PJ · PJ′ .
What is left to do for the case α = 0 is to deal with the case where there

exists j∗ with Pr[E|J = j∗] = 0. Since
∑

j∈[m] Pr[Ē |J = j] = 1, it holds that
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Pr[Ē |J = j] = 0 for j �= j∗. This motivates to define J ′ as J ′ := j∗ with
probability 1. Note that this definition directly implies that J ′ is independent
from J . Furthermore, by the above observations: E ⇐⇒ J �= J ′. This concludes
the case α = 0; the rest of the proof is found in Appendix A.4.

4 A New Quantum Identification Scheme

The goal of (password-based) identification is to “prove” knowledge of a password
w (or PIN) without giving w away. More formally, given a user U and a server
S that hold a pre-agreed password w, the user wants to convince the server that
he indeed knows w, but in such a way that he gives away as little information
on w as possible in case he is actually interacting with a dishonest server. We
use the security definitions of [4].

Definition 8 (Correctness). An identification protocol is said to be ε-correct
if, after an execution by honest U and honest S, S accepts with probability 1− ε.

Definition 9 (Server Security). An identification protocol for two parties U,
S is ε-secure for the server S against (dishonest) user U∗ if the following holds:
whenever the initial state of U∗ is independent of W , then there exists a ran-
dom variable W ′ (possibly ⊥) that is independent of W such that if W �= W ′

then S accepts with probability at most ε. Furthermore, the common state ρWE

after execution of the protocol (including S’s announcement to accept or reject)
satisfies

ρWW ′E|W �=W ′ ≈ε ρW↔W ′↔E|W �=W ′ .

Definition 10 (User Security). An identification protocol for two parties U,
S is ε-secure for the user U against (dishonest) server S∗ if the following holds:
If the initial state of S∗ is independent of W , then its state E after execution of
the protocol is such that there exists a random variable W ′ that is independent
of W and such that

ρWW ′E|W �=W ′ ≈ε ρW↔W ′↔E|W �=W ′ .

Our new identification scheme, Q-ID, is shown below, where F is a universal
class of functions6 from {0, 1}n to {0, 1}� and G is a strongly universal class
of functions from [m] to {0, 1}�. We use the following simple construction for
the family {B1, . . . ,Bm} of bases. For a suitable binary code C ⊂ {0, 1}n of
size m, minimum distance d and encoding function c : [m] → C, the basis Bj

measures qubit-wise in the computational or the Hadamard basis, depending
on the corresponding coordinate of c(j). The maximum overlap of the family
obtained this way is directly related to the minimum distance d of C, namely
δ = − 1

n log(c2) = d/n.

6 A class of functions F is called universal, if for any distinct x, y ∈ X , it holds that
Pr[f(x)=f(y)] ≤ 2−� when picking f uniformly from F . The class is called strongly
universal, if the random variables F (x) and F (y) are independent and uniform if F
is uniform in F .
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Protocol Q-ID

(1) U picks x ∈ {0, 1}n at random and sends Hc(w)|x〉 to S.
(2) S measures in basis c(w). Let x′ be the outcome.
(3) U picks f ∈ F randomly and independently and sends it to S
(4) S picks g ∈ G randomly and independently and sends it to U
(5) U computes and sends z := f(x)⊕ g(w) to S
(6) S accepts if and only if z = z′ where z′ := f(x′)⊕ g(w)

It is easy to see that Q-ID perfectly satisfies correctness. It is unconditionally
secure against an arbitrary dishonest user U∗.

Theorem 11. Q-ID is ε-secure for the server with ε =
(
m
2

)
2−�.

The proof of this claim can be found in the full version [2]. In the BQSM, we
achieve the following security for the user.

Theorem 12. Let S∗ be a dishonest server whose quantum memory is at most
q qubits at Step (3) of Q-ID. Then, for any 0 < κ < δ/4, Q-ID is ε-secure for
the user with

ε = 2−
1
2 ((δ/2−2κ)n−1−q−�) + 4 · 2−κn.

The proof follows quite easily from our new uncertainty relation and vitally
relies on its all-but-one feature. We show the first (and most important) part of
the proof below, the rest of the proof can be found in Appendix A.5. To prove
Theorem 12 we will use the following lemma.

Lemma 13. For any density matrix ρ on HXYE with classical X and Y and E
consisting of q qubits, it holds that

Hmin(X |Y E) ≥ Hmin(X |Y )− q.

The proof of this lemma can be found in the full version [2].

Proof (of Theorem 12). We consider and analyze a purified version of Q-IDwhere
in step (1) instead of sending |X〉c to S∗ for a uniformly distributedX , U prepares
a fully entangled state 2−n/2

∑
x |x〉|x〉 and sends the second register to S∗ while

keeping the first. Then, in step (3) when the memory bound has applied, U mea-
sures his register in the basis c(W ) in order to obtainX . Note that this procedure
produces exactly the same common state as in the original (non-purified) version
of Q-ID. Thus, we may just as well analyze this purified version.

The state of S∗ consists of his initial state and his part of the EPR pairs, and
may include an additional ancilla register. Before the memory bound applies,
S∗ may perform any unitary transformation on his composite system. When
the memory bound is applied (just before step (3) is executed in Q-ID), S∗ has
to measure all but q qubits of his system. Let the classical outcome of this
measurement be denoted by y, and let E′ be the remaining quantum state of
at most q qubits. The common state has collapsed to a (n+ q)-qubit state and
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depends on y; the analysis below holds for any y. Next, U measures his n-qubit
part of the common state in basis c(W ); letX denote the classical outcome of this
measurement. By our new uncertainty relation (Theorem 7) and subsequently
applying the min-entropy chain rule that is given in Lemma 13 (to take the q
stored qubits into account) it follows that there exists W ′, independent of W ,
and an event Ω that occurs at least with probability 1− 2 · 2−κn, such that

Hmin(X |E′,W = w,W ′ = w′, Ω) ≥ (δ/2− 2κ)n− 1− q.

for any w,w′ such that w �= w′.
It remains to show via privacy amplification that this bound implies the claim,

this is done in Appendix A.5.

Before stating our user-security result in the single-qubit-operations model
(SQOM), we briefly introduce this model; the motivations behind the model
and its full description are given in [2]. A dishonest server S∗ in the SQOM
may reliably store the n-qubit state |x〉c(w) = |x1〉c(w)1 ⊗ · · ·⊗ |xn〉c(w)n received
in Step (1) of Q-ID. At the end of the scheme, in Step (5), it may choose an
arbitrary sequence θ = (θ1, . . . , θn), where each θi describes an arbitrary or-
thonormal basis of C2, and measure each qubit |xi〉c(w)i in basis θi to observe
yi ∈ {0, 1}. The choice of θ may depend on all the classical information gathered
during the execution of the scheme, but we assume here a non-adaptive setting
where θi does not depend on yj for i �= j, i.e., S∗ has to choose all of θ before
performing any measurement. Under these restrictions, we achieve the following
security result.

Theorem 14. Let S∗ be a dishonest server with unbounded quantum storage
that is restricted to single-qubit operations, as specified above. Then, for any
0 < β < 1

4 , Q-ID is ε-secure for the user with

ε ≤ 1
22

1
2 �− 1

4 (
1
4−β)d +

(
m
2

)
22� exp(−2dβ2)

The proof is quite involved. Since the dishonest server can store all the qubits and
then decide in the end how to measure them, depending on all the information
obtained during the scheme, standard tools like privacy amplification are not
applicable. The proof, which relies on a certain minimum-distance property of
random binary matrices and makes use of Diaconis and Shahshahani’s XOR
inequality [5], can be found in the full version [2].
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2. Bouman, N.J., Fehr, S., González-Guillén, C., Schaffner, C.: An all-but-one entropic

uncertainty relation, and application to password-based identification (2011), full
version http://arxiv.org/abs/1105.6212

http://arxiv.org/abs/1105.6212


An All-But-One Entropic Uncertainty Relation, and Application 39

3. Damg̊ard, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: 46th Ann. IEEE FOCS, pp. 449–458 (2005); also in
SIAM Journal on Computing 37(6),1865–1890 (2008)

4. Damg̊ard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure Identification and QKD
in the Bounded-Quantum-Storage Model. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)

5. Diaconis, P.: Group Representations in Probability and Statistics. Lecture Notes
— Monograph series, vol. 11. Inst. of Math. Stat., Hayward (1988)

6. Kittaneh, F.: Norm inequalities for certain operator sums. Journal of Functional
Analysis 143(2), 337–348 (1997)

7. König, R., Renner, R., Schaffner, C.: The operational meaning of min-and max-
entropy. IEEE Tran. Inf. Th. 55(9), 4337–4347 (2009)

8. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev.
Lett. 60(12), 3 (1988)

9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
1st edn. Cambridge University Press (2000)

10. Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zürich
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A Proofs

A.1 A Useful Norm Inequality (Proposition 16)

Before stating the inequality, we recall some basic properties of the operator
norm ‖A‖ := sup ‖A|ψ〉‖, where the supremum is over all norm-1 vectors |ψ〉 ∈
H. First of all, it is easy to see that

∥
∥
∥
∥

(
A 0
0 B

)∥
∥
∥
∥ = max {‖A‖, ‖B‖} .

Also, from the fact that ‖A‖ = sup |〈ψ|A|ϕ〉|, where the supremum is over all
norm-1 |ψ〉, |ϕ〉 ∈ H, it follows that ‖A∗‖ = ‖A‖, where A∗ is the Hermitian
transpose of A, and thus that for Hermitian matrices A and B:

‖AB‖ = ‖(AB)∗‖ = ‖B∗A∗‖ = ‖BA‖ .
Furthermore, if A is Hermitian then ‖A‖ = λmax(A) := max{|λj | :
λj an eigenvalue of A}. Finally, the operator norm is unitarily invariant, i.e.,
‖A‖ = ‖UAV ‖ for all A and for all unitary U, V .

Lemma 15. Any two n× n matrices X and Y for which the products XY and
Y X are Hermitian satisfy

‖XY ‖ = ‖Y X‖

http://arxiv.org/abs/quant-ph/0512258
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Proof. For any two n×n matrices X and Y , XY and Y X have the same eigen-
values, see e.g. [1, Exercise I.3.7]. Therefore, ‖XY ‖ = λmax(XY ) = λmax(Y X) =
‖Y X‖.

We are now ready to state and prove the norm inequality. We recall that an
orthogonal projector P satisfies P 2 = P and P ∗ = P .

Proposition 16. For orthogonal projectors A1, A2, . . . , Am, it holds that

∥
∥A1 + . . .+Am

∥
∥ ≤ 1 + (m− 1) · max

1≤j<k≤m

∥
∥AjAk

∥
∥.

The case m = 2 was proven in [3], adapting a technique by Kittaneh [6]. We
extend the proof to an arbitrary m.

Proof. Defining

X :=

⎛

⎜
⎜
⎜
⎝

A1 A2 · · · Am

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎠

and Y :=

⎛

⎜
⎜
⎜
⎝

A1 0 · · · 0
A2 0 · · · 0
...

...
...

Am 0 · · · 0

⎞

⎟
⎟
⎟
⎠

yields

XY =

⎛

⎜
⎜
⎜
⎝

S 0 · · · 0
0 0 · · · 0
...
...

...
0 0 · · · 0

⎞

⎟
⎟
⎟
⎠
, and Y X =

⎛

⎜
⎜
⎜
⎝

A1 A1A2 · · · A1Am

A2A1 A2 · · · A2Am

...
...

. . .
...

AmA1 AmA2 · · · Am

⎞

⎟
⎟
⎟
⎠

where S := A1 +A2 + . . .+Am. The matrix Y X can be additively decomposed
into m matrices according to the following pattern

Y X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗
∗

· · ·

∗
∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∗
0

· · · · · ·

0 ∗
∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ . . . +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ∗
∗ 0

· · · · · ·

0
∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the ∗ stand for entries of Y X and for i = 1, . . . ,m the ith star-pattern
after the diagonal pattern is obtained by i cyclic shifts of the columns of the
diagonal pattern.
XY and Y X are Hermitian and thus we can apply Lemma 15. Then, by

applying the triangle inequality, the unitary invariance of the operator norm
and the facts that for all j �= k : ‖Aj‖ = 1, ‖AjAk‖ = ‖AkAj‖, we obtain the
desired statement.
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A.2 Proof of Theorem 5

For j ∈ [m], we define the orthogonal projectors Aj :=
∑

x∈Lj |x〉j〈x|j . Using
the spectral decomposition of ρ =

∑
w λw|ϕw〉〈ϕw | and the linearity of the trace,

we have
∑

j∈[m]

Qj(Lj) =
∑

j∈[m]

tr(Ajρ) =
∑

j∈[m]

∑

w

λwtr(A
j |ϕw〉〈ϕw |)

=
∑

w

λw

( ∑

j∈[m]

〈ϕw |Aj |ϕw〉
)

=
∑

w

λw〈ϕw |
( ∑

j∈[m]

Aj

)

|ϕw〉

≤
∥
∥
∥
∥

∑

j∈[m]

Aj

∥
∥
∥
∥ ≤ 1 + (m− 1) · max

j �=k∈[m]

∥
∥AjAk

∥
∥,

where the last inequality is the norm inequality (Proposition 16 in Appendix A.1).
To conclude, we show that ‖AjAk‖ ≤ c

√|Lj ||Lk|. Let us fix j �= k ∈ [m]. Note
that by the restriction on the overlap of the family of bases {Bj}j∈[m], we have
that |〈x|j |y〉k| ≤ c holds for all x, y ∈ {0, 1}n. Then, with the sums over x and y
understood as over x ∈ Lj and y ∈ Lk, respectively,

∥
∥
∥AjAk|ψ〉

∥
∥
∥
2

=

∥
∥
∥
∥

∑

x

|x〉j〈x|j
∑

y

|y〉k〈y|k|ψ〉
∥
∥
∥
∥

2

=

∥
∥
∥
∥

∑

x

|x〉j
∑

y

〈x|j |y〉k 〈y|k|ψ〉
∥
∥
∥
∥

2

=
∑

x

∣
∣
∣
∣

∑

y

〈x|j |y〉k 〈y|k|ψ〉
∣
∣
∣
∣

2

≤
∑

x

(∑

y

∣
∣〈x|j |y〉k 〈y|k|ψ〉

∣
∣
)2

≤ c2
∑

x

(∑

y

∣
∣〈y|k|ψ〉

∣
∣
)2

≤ c2
∣
∣Lj

∣
∣
∣
∣Lk

∣
∣.

The third equality follows from Pythagoras, the first inequality holds by triangle
inequality, the second inequality by the bound on |〈x|j |y〉k|, and the last follows

from Cauchy-Schwarz. This implies ‖AjAk‖ ≤ c
√|Lj ||Lk| and finishes the proof.

��

A.3 Proof of Corollary 6

For j ∈ [m] define

Sj :=
{
x ∈ {0, 1}n : Qj(x) ≤ 2−(δ/2−ε)n

}

to be the sets of strings with small probabilities and denote by Lj := Sj
their

complements7. Note that for all x ∈ Lj , we have that Qj(x) > 2−(δ/2−ε)n and
therefore |Lj | < 2(δ/2−ε)n. It follows from Theorem 5 that

∑

j∈[m]

Qj(Sj) =
∑

j∈[m]

(1 −Qj(Lj)) ≥ m− (1 + (m− 1) · 2−εn)

= (m− 1)− (m− 1)2−εn.

7 Here’s the mnemonic: S for the strings with Small probabilities, L for Large.
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We define E := {X ∈ SJ ∧ QJ(SJ ) ≥ 2−εn} to be the event that X ∈ SJ and at
the same time the probability that this happens is not too small. Then Pr[E|J=
j] = Pr[X ∈ Sj ∧ Qj(Sj) ≥ 2−εn|J = j] either vanishes (if Qj(Sj) < 2−εn) or
else equals Qj(Sj). In either case, Pr[E|J = j] ≥ Qj(Sj) − 2−εn holds and thus
the first claim follows by summing over j ∈ [m] and using the derivation above.
Furthermore, let p = maxj PJ (j), then

Pr[Ē ] =
∑

j∈[m]

PJ(j)Pr[Ē |J=j] ≤ p
∑

j∈[m]

Pr[Ē |J=j]

≤ p(m− (
∑

j∈[m]

Qj(Sj)− 2−εn)) ≤ p(1 + (2m− 1) · 2−εn),

and Pr[E ] ≥ (1 − p)− p(2m− 1) · 2−εn

Regarding the second claim, in case J = j, we have

Hmin(X |J=j, E) = − log

(

max
x∈Sj

Qj(x)

Qj(Sj)

)

≥ − log

(
2−(δ/2−ε)n

Qj(Sj)

)

= (δ/2− ε)n+ log(Qj(Sj)).

As Qj(Sj) ≥ 2−εn by definition of E , we have

Hmin(X |J=j, E) ≥ (δ/2− 2ε)n.

��

A.4 Remainder of the Proof of Theorem 7

What remains to prove are the cases where α �= 0. We start with the case α > 0.
The idea is to “inflate” the event E so that α becomes 0, i.e., to define an event E ′

that contains E (meaning that E =⇒ E ′) so that
∑

j∈[m] Pr[E ′|J = j] = m− 1,

and to define J ′ as in the case α = 0 (but now using E ′). Formally, we define E ′

as the disjoint union E ′ = E ∨ E◦ of E and an event E◦. The event E◦ is defined
by means of Pr[E◦|E , J = j,X = x] = 0, so that E and E◦ are indeed disjoint,
and Pr[E◦|J = j,X = x] = α/m, so that indeed

∑

j∈[m]

Pr[E ′|J = j] =
∑

j∈[m]

(Pr[E|J = j] + Pr[E◦|J = j])

= (m− 1− α) + α = m− 1 .

We can now apply the analysis of the case α = 0 to conclude the existence of
J ′, independent of J , such that J �= J ′ ⇐⇒ E ′ and thus (J �= J ′) ∧ Ē◦ ⇐⇒
E ′ ∧ Ē◦ ⇐⇒ E . Setting Ω := Ē◦, it follows that

Hmin(X |J = j, J �= J ′, Ω) = Hmin(X |J = j, E) ≥ (δ/2− 2ε)n ,

where Pr[Ω] = 1 − Pr[E◦] = 1 − α/m ≥ 1 − (2m − 1)2−εn/m ≥ 1 − 2 · 2−εn.
Finally, using similar reasoning as in the case α = 0, it follows that the same
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bound holds for Hmin(X |J = j, J ′ = j′, Ω) whenever j �= j′. This concludes the
case α > 0.

Finally, we consider the case α < 0. The approach is the same as above,
but now E ′ is obtained by “deflating” E . Specifically, we define E ′ by means
of Pr[E ′|Ē , J = j,X = x] = Pr[E ′|Ē ] = 0, so that E ′ is contained in E , and
Pr[E ′|E , J = j,X = x] = Pr[E ′|E ] = m−1

m−1−α , so that

∑

j∈[m]

Pr[E ′|J = j] =
∑

j∈[m]

Pr[E ′|E ] · Pr[E|J = j] = m− 1 .

Again, from the α = 0 case we obtain J ′, independent of J , such that the event
J �= J ′ is equivalent to the event E ′.

It follows that

Hmin(X |J = j, J �= J ′) = Hmin(X |J = j, E ′) = Hmin(X |J = j, E ′, E)
≥ Hmin(X |J = j, E)− log(P [E ′|E , J = j]) ≥ (δ/2− 2ε)n− 1 ,

where the second equality holds because E ′ =⇒ E , the first inequality holds
because additionally conditioning on E ′ increases the probabilities of X condi-
tioned on J = j and E by at most a factor 1/P [E ′|E , J = j]), and the last
inequality holds by Corollary 6) and because P [E ′|E , J = j]) = m−1

m−1−α ≥ 1
2 ,

where the latter holds since α ≥ −1. Finally, using similar reasoning as in the
previous cases, it follows that the same bound holds for Hmin(X |J = j, J ′ = j′)
whenever j �= j′. This concludes the proof. ��

A.5 Remainder of the Proof of Theorem 12

We will use the following theorem.

Theorem 17 (Privacy amplification, [10,11]). Let ρXE be a hybrid state
with classical X. Let g : R× X → {0, 1}� be a universal hash function, and let
R be uniformly distributed over R, independent of X and E. Then K = g(R,X)
satisfies

dunif(K|RE) ≤ 1

2
· 2− 1

2 (Hmin(X|E)−�) .

Because U chooses F independently at random from a 2-universal family, privacy
amplification guarantees that

dunif(F (X)|E′F,W = w,W ′ = w′)

≤ ε′ :=
1

2
· 2− 1

2 ((δ/2−2κ)n−1−q−�) + 2 · 2−κn,

for any w,w′ such that w �= w′. Recall that Z = F (X) ⊕G(W ). By security of
the one-time pad it follows that

dunif(Z|E′FG,W = w,W ′ = w′) ≤ ε′, (1)
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for any w,w′ such that w �= w′. To prove the claim, we need to bound,

δ(ρWW ′E|W �=W ′ , ρW↔W ′↔E|W �=W ′)

= 1
2‖ρWW ′E′FGZ|W �=W ′ − ρW↔W ′↔E′FGZ|W �=W ′‖1

≤ 1
2‖ρWW ′E′FGZ|W �=W ′ − ρWW ′E′FG|W �=W ′ ⊗ 2−�

I‖1
+ 1

2‖ρWW ′E′FG|W �=W ′ ⊗ 2−�
I− ρW↔W ′↔E′FGZ|W �=W ′‖1 (2)

where the equality follows by definition of trace distance (Definition 2) and the
fact that the output state E is obtained by applying a unitary transformation to
the set of registers (E′, F , G, W ′, Z). The inequality is the triangle inequality;
in the remainder of the proof, we will show that both terms in (2) are upper
bounded by ε′.

1
2‖ρWW ′E′FGZ|W �=W ′ − ρWW ′E′FG|W �=W ′ ⊗ 2−�

I‖1
=

∑

w �=w′
PWW ′|W �=W ′(w,w′) dunif(Z|E′FG,W = w,W ′ = w′) ≤ ε′,

where the latter inequality follows from (1). For the other term, we reason as
follows:

1
2‖ρWW ′E′FG|W �=W ′ ⊗ 2−�

I− ρW↔W ′↔E′FGZ|W �=W ′‖1
= 1

2

∑

w �=w′
PWW ′|W �=W ′(w,w′) ‖ρw,w′

E′FG|W �=W ′ ⊗ 2−�
I− ρw

′
E′FGZ|W �=W ′‖1

= 1
2

∑

w �=w′
PWW ′|W �=W ′(w,w′) ‖ρw,w′

E′FG|W �=W ′ ⊗ 2−�
I

−
∑

w′′
s.t. w′′ �=w′

PW |W ′,W �=W ′(w′′|w′)ρw
′′,w′

E′FGZ|W �=W ′‖1

= 1
2

∑

w′
PW ′|W �=W ′(w′) ‖

∑

w
s.t. w �=w′

PW |W ′,W �=W ′(w|w′)ρw,w′

E′FG|W �=W ′ ⊗ 2−�
I

−
∑

w′′
s.t. w′′ �=w′

PW |W ′,W �=W ′(w′′|w′)ρw
′′,w′

E′FGZ|W �=W ′
∑

w
s.t. w �=w′

PW |W ′,W �=W ′(w|w′)‖1

= 1
2

∑

w �=w′
PWW ′|W �=W ′(w,w′) ‖ρw,w′

E′FG|W �=W ′ ⊗ 2−�
I− ρw,w′

E′FGZ|W �=W ′‖1

=
∑

w �=w′
PWW ′|W �=W ′(w,w′) dunif(Z|E′FG,W = w,W ′ = w′) ≤ ε′,

where the first equality follows by definition of conditional independence and by
a basic property of the trace distance; the third and fourth equality follow by
linearity of the trace distance. The inequality on the last line follows from (1).
This proves the claim.
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