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Abstract. A correlated equilibrium is a fundamental solution concept
in game theory that enjoys many desirable mathematical and algorith-
mic properties: it can achieve more fair and higher payoffs than a Nash
equilibrium and it can be efficiently computed for a vast class of games.
However, it requires a trusted mediator to assist the players in sampling
their moves, which is a major drawback in many practical applications.

A computational solution to this problem was proposed by Dodis,
Halevi and Rabin [DHR00]. They extended the original game by adding
a preamble stage, where the players communicate with each other and
then they perform the original game. For this extended game, they show
that the players can achieve payoffs at least as high as in any correlated
equilibrium, provided that the players are computationally bounded and
can communicate before the game.

The introduction of cryptography with computational security in game
theory is of great interest both from a theoretical and more importantly
from a practical point of view. However, the main game-theoretic ques-
tion remained open: can we achieve any correlated equilibrium for 2-
player games without a trusted mediator and also unconditionally?

In this paper, we provide a positive answer to this question. We show
that if the players can communicate via a quantum channel before the
game, then for 2-player games, payoffs at least as high as in any cor-
related equilibrium can be achieved, without a trusted mediator and
unconditionally. This provides another example of a major advantage of

� Most of the work was done when the authors visited Centre of Quantum Technologies
(CQT), Singapore in early January, 2011, under the support of CQT. I.K.’s research
was also supported by French projects ANR-09-JCJC-0067-01, ANR-08-EMER-012
and the project QCS (grant 255961) of the E.U. S.Z.’s research was supported
by China Basic Research Grant 2011CBA00300 (sub-project 2011CBA00301), Re-
search Grants Council of Hong Kong (Project no. CUHK418710, CUHK419011),
and benefited from research trips under the support of China Basic Research Grant
2007CB807900 (sub-project 2007CB807901).

K. Iwama, Y. Kawano, and M. Murao (Eds.): TQC 2012, LNCS 7582, pp. 13–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



14 I. Kerenidis and S. Zhang

quantum information processing: quantum communication enables play-
ers to achieve a real correlated equilibrium unconditionally, a task which
is impossible in the classical world.

More precisely, we prove that for any correlated equilibrium p of a
strategic game G, there exists an extended game (with a quantum com-
munication initial stage) Q with an efficiently computable approximate
Nash equilibrium σ, such that the expected payoff for both players in σ
is at least as high as in p.

The main cryptographic tool used in the construction is the quantum
weak coin flipping protocol of Mochon [Moc07].

1 Introduction

Game theory is a research area of great importance that studies the behavior
of two or more players, when interacting with each other in order to achieve
individual goals. It has found far reaching applications in the fields of economics,
biology, computer science, sociology, political sciences, the study of Internet and
stock markets, among others.

Most games fall into two broad categories: 1) Strategic games, where all play-
ers choose their strategies simultaneously or without knowing the other players’
moves. The payoffs depend on the joint strategy that is performed by all play-
ers, and the game is usually described in a matrix form when there are only
two players. 2) The extensive games, where the players take turns in making
moves. Examples of strategic games include the Battle of the Sexes, Prisoner’s
Dilemma, Vickrey auction, etc. Examples of extensive games include chess, the
eBay auction system, etc.

In order to study stable behaviors in games, the concept of an equilibrium has
been put forward [vNM44]. A Nash equilibrium, the most fundamental notion
of an equilibrium, is a joint strategy of all players, such that no player has any
incentive to change her own strategy given that all other players retain theirs.
One of the seminal results in this area is that every game with finite players and
finite strategies has a mixed Nash equilibrium [vNM44, Nas51], i.e. one where
the strategy of each player is a distribution over deterministic strategies. Note
that these distributions are uncorrelated across different players and hence, each
player can sample independently her strategy.

Even though the importance of Nash equilibria is undisputed, there are some
drawbacks. First, the recent breakthrough results by [DGP09, CDT09] have
shown that finding a Nash equilibrium is a computationally hard problem. To
make matters worse, in many games there are more than one Nash equilibrium
and it is really unclear whether the players will end up in one of them, and if
yes, which one and how. Note that in many cases these equilibria are not fair,
and thus different players have a preference for a different equilibrium.

Let us see a simple example, the Battle of the Sexes. A couple needs to decide
where to go for holidays. Partner A prefers Amsterdam to Barcelona, and Partner
B prefers Barcelona to Amsterdam. But both players prefer going to the same
place than ending up in different places; see the following payoff Table, where
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the pair of numbers in each entry represents the payoffs of the two partners in
order.

Amsterdam Barcelona
Amsterdam (4,2) (0,0)
Barcelona (0,0) (2,4)

So where should they go? There are two pure Nash equilibria in the above game.
They both go to Amsterdam, and hence have payoffs 4 and 2 respectively, or
both go to Barcelona and have payoffs 2 and 4 respectively. Even though these
are Nash equilibria, none of them is fair, causing the battle of the sexes. There is
actually a third Nash equilibrium, a mixed one, where each player independently
flips a coin and decides to go to their preferred place with probability 2/3 and
to the preferred place of the other player with probability 1/3. In this case, the
expected payoff is the same for both players and equal to 4/3. Even though this
is a fair equilibrium, it is pretty inefficient, since now both players have payoff
even less than in the case of the unfair pure equilibrium. Moreover, there is a
5/9 chance the couple goes in different places, which they really do not prefer.

One simple way to rectify all of these problems is the introduction of the
notion of a correlated (Nash) equilibrium [Aum74]. In such an equilibrium, we
allow the strategies of the players to be drawn from a correlated distribution p,
and same as for a Nash equilibrium, we require that each player has no incentive
to deviate given the current sample of his strategy and the information of the
distribution p (but not the sampled strategies of the other players). There are
many nice properties of these equilibria. First, they form a superset of Nash
equilibria and hence they always exist. Moreover, it is not hard to exhibit games
with a correlated equilibrium which enjoys fairness and whose social welfare (i.e.
the total payoff of the players) is arbitrarily better than that of any Nash equi-
librium. Second, unlike Nash equilibria, it is computationally easy to compute
an optimal correlated equilibrium by solving an LP, for many types of games,
including constant-player, polymatrix, graphical, hypergraphical, congestion, lo-
cal effect, scheduling, facility location, network design and symmetric games
[PR08, VNRT07]. In our previous example, a correlated equilibrium is the strat-
egy where with probability 1/2 the couple goes to Amsterdam or to Barcelona.
The expected payoff for each player is then 3 and the couple is equally happy.

However, in general it is hard to sample from a correlated distribution. In
fact, even for the case of two players and the distribution of the correlated equi-
librium being just one fair coin, it is well known that without any computational
assumptions, it is impossible to achieve just that; actually in any classical pro-
tocol one player has a strategy to get his/her desired outcome with probability
1. A canonical solution to this problem is to introduce a trusted mediator, who
in this case flips the fair coin. However, for many real life scenarios, trusted
mediators are simply not available.

A computational solution to this problem was proposed by Dodis, Halevi and
Rabin [DHR00], who showed that classical cryptographic protocols can provide
an elegant way to achieve a correlated equilibrium under standard computational
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hardness assumptions. Both in their paper and in ours, by achieving a correlated
equilibrium, we mean that the players achieve payoffs which are at least as high
as the ones in the correlated equilibrium, but not that they necessarily sample
the joint strategies with the distribution according to the correlated equilibrium.
It is an open question if this stronger property is achievable.

More specifically, for any strategic game where the correlated equilibrium can
be efficiently computed, Dodis et al. do the following: Before playing the game,
the players communicate in order to sample a joint strategy from the equilibrium
distribution, in such a way that each player at the end of the protocol only knows
her strategy and has no information about the other players’ moves apart from
the fact that they come from the equilibrium distribution. The privacy and
correctness of this procedure are guaranteed by the fact that the players are
computationally bounded and the assumption that a primitive, equivalent to
Oblivious Transfer, exists. Then, the players play the original game. Since they
have no information about the other players’ strategies and the joint strategy
is sampled from a correlated equilibrium of the original game, they have no
incentive to deviate. In other words, being honest during the communication
phase and playing the move that resulted from the communication phase is a
Nash equilibrium of the new extended game that achieves payoff equal to the
correlated equilibrium of the original game. The introduction of cryptography
in game theory is a very promising idea that nevertheless needs to be used with
caution due to the many nuances in the two models. Note, last, that the use
of cryptography by Dodis et al. provides a solution only when one is willing to
accept the notion of computational equilibria, which are very different than the
equilibria used by game theorists. Since then, a series of works have studied
the relation between cryptography and game theory [FS02, LMPS04, IML05,
ADGH06].

In our paper we show that, in fact, one need not resort to computational equi-
libria, if we allow the players to communicate via a quantum channel instead of
a classical one. This provides another example of a major advantage of quantum
information processing: quantum communication enables players to achieve a
real correlated equilibrium. Note that we only make the communication before
the game quantum but the game itself remains a classical one.

A priori, it is not clear that quantum communication can provide any sig-
nificant advantage, since we know that Oblivious Transfer, the primitive that
Dodis, Halevi and Rabin need for their construction, is impossible even in the
quantum world [Lo97]. We overcome this problem by providing a new way to
extend any game with an efficient correlated equilibrium into a new game that
has an efficient Nash equilibrium achieving equal or even better payoffs (up to
an arbitrarily small ε). The construction is based on the existence of a weaker
primitive, called Weak Coin Flipping. This primitive is impossible classically
without any computational assumptions. In the quantum world, however, Mo-
chon [Moc07] has showed in a powerful result that there exists a quantum coin
flipping protocol, where player A prefers Head and player B prefers Tail (which
is exactly the case in the Battle of the Sexes), such that if one player plays the
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honest strategy, then no matter how the other player plays, the bias of the coin
cannot exceed an arbitrarily small ε.

Let us first focus on a subset of all correlated equilibria, that we call Nash-
support correlated equilibria, where the distribution is over joint strategies that
are pure Nash equilibria. Such correlated equilibria exist whenever the game has
pure Nash equilibria and in many cases are optimal. For example, in the Battle of
the Sexes, and more generally in all coordination games, the optimal correlated
equilibrium is a uniform distribution over the two pure Nash equilibria.

As in Dodis et al., we construct an extended game, in which the players first
exchange messages, then play the original game by choosing strategies. A Nash
equilibrium in the extended game is a sequence of moves of all players such that
no unilateral deviation by one player can increase her payoff. At a high level,
the new game we construct has the following stages: 1) Communication stage:
the players use as a subroutine the quantum weak coin flipping protocol in order
to sample a joint strategy from the distribution of the original Nash-support
correlated equilibrium. 2) Game stage: the players play the original game and
their payoff is the same as in the original game.

It is not hard to see that being honest during the communication stage and
playing the strategy that corresponds to the sampled Nash equilibrium is an
approximate Nash equilibrium and it achieves payoff (almost) equal to the cor-
related equilibrium of the original game. Let us assume that one of the players
is dishonest while the other is playing the honest strategy. The cheating player
can deviate during the coin flipping process but this only increases his payoff by
at most ε by the security of the coin flipping protocol. Then, he can deviate by
not playing the suggested strategy, but since the suggested strategy is a Nash
equilibrium, he cannot increase his payoff.

Theorem 1. For any Nash-support correlated equilibrium p of a game G with
at most n strategies for each player, there exists an extended game Q with an
ε-Nash equilibrium σ computable in time poly(n, 1/δ, 1/ε), such that the expected
payoffs for both players in σ is at least as high as in p minus δ.

For general correlated equilibria, we further extend our game as follows. Since
we do not preserve privacy of the moves, it may be to someone’s advantage
to change their strategy instead of following the suggestion. We remedy this
situation by adding a final stage to the game and by using the usual “Punishment
for Deviation” method. Therefore, in 3) Checking stage: the players submit an
Accept/Reject move, where a player plays Reject if the strategy of the other
player during the second stage is not equal to the suggested one. The payoff of
the players is equal to the one in the original game if they both play Accept in
the last phase, and 0 otherwise. Note that we do not need the Accept/Reject
moves to be simultaneous and that without loss of generality we assume that all
payoffs are in [0, 1].

Again, it is not hard to see that being honest during the communication stage
and playing the suggested move is an approximate Nash equilibrium for this
game and it achieves payoff equal to the correlated equilibrium of the original
game. Let us assume that one of the players is dishonest while the other is
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playing the honest strategy. The cheating player can deviate during the coin
flipping process but this will only increase his payoff by at most an ε fraction
by the security of the coin flipping protocol. Then, in the second stage, he can
deviate by not playing the suggested strategy, but then his payoff will be 0 since
the honest player will play Reject in the Checking stage. Hence, there is no
significant advantage for any player to deviate from the honest strategy.

Theorem 2. For any correlated equilibrium p of a game G with at most n strate-
gies for each player, there exists an extended game Q with an ε-Nash equilibrium
σ computable in time poly(n, 1/δ, 1/ε), such that the expected payoffs for both
players in σ is at least as high as in p minus δ.

Let us make a more detailed comparison with the results of Dodis, Halevi and
Rabin [DHR00]. They describe an extended game, first introduced by Barany
[Bár92], that involves a communication stage and then the game stage. In the
communication stage, they securely compute a functionality that they call Cor-
related Element Selection. This consists of two players sampling a joint strategy
from a correlated distribution, with the extra privacy property that at the end
each player knows only his/her own move. Then, in the second stage, the players
play the original game. If a player catches the other one cheating during the
communication stage, then he plays his minmax move in the second stage, i.e.
the move that minimizes the other players’ payoff.

On one hand, in our protocol, the communication stage achieves something
weaker. We sample from the correlated distribution in a way that at the end,
both players know the joint strategy. By removing the privacy constraint we are
able to achieve the sampling using the weaker primitive of Weak Coin Flipping.
A nice property of our procedure is that the honest player is guaranteed to
have an output, regardless of the dishonest player’s strategy. For the case of
the Nash-support correlated equilibria, we do not have to resort to the minmax
punishment, since even if the honest player catches the other player cheating, he
can still play the suggested move. In the case of general correlated equilibria, we
need to be more explicit in our punishment by adding the Accept/Reject stage,
in order to dissuade the players from deviating from the suggested move.

On the other hand, we achieve something much stronger than before, which
is that we do not make any assumptions about the computational power of
the players. Hence we are able to use quantum communication to achieve a
real correlated equilibrium for a large array of different types of games with
unconditionally powerful players and without a trusted mediator.

A few remarks are in order for this extra checking stage that we add in the
case where the correlated equilibrium has support on joint strategies that are
not Nash equilibria. First, note that all the equilibria remain unchanged, since
we specified the payoffs of any joint strategy with a Reject move as 0. Hence,
sampling a correlated equilibrium in the new game is equivalent to sampling
a correlated equilibrium in the original game. This means that the quantum
advantage comes from the sampling part and not due to the checking part.
For a fair comparison, we can also augment the classical game with the choice
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of Accept/Reject. It is not hard to see that the players still cannot sample a
correlated equilibrium in this new game; otherwise they would have been able
to do a strong coin flipping which is impossible.

Second, in many practical situations, breaking preagreed rules is considered
losing (and thus given the least payoff) automatically. Many games in sports
are of this nature. For example, when the referee tosses a coin to decide the
side of the court for each team, both teams know the outcome of this random
process and are not allowed to disagree no matter the outcome; otherwise the
team will be claimed to lose by the referee immediately. Moreover, in extensive
games, the checking phase is already implicitly present. In the middle of a chess
game, only a subset of moves is compatible with the stage of the game and hence
if a player decides to play some other move, then the other player will Reject
either immediately or at the end of the game. Hence, adding an Accept/Reject
stage only makes explicit what is implicitly present in any game, that if a player
breaks the rules then the other one rejects the outcome of the game.

Third, our Accept/Reject stage is not simultaneous. One has to be very careful
with adding simultaneous moves to a game, since two players can flip a fair coin
with a simultaneous move where each plays one of two possible moves at random.
If the two moves are the same then the coin is Head and if different the coin is
Tail. Here, we do not add the ability to play simultaneously.

Fourth, one may wonder why the honest player would prefer to reject and
receive 0 payoff — she could instead choose to accept even though the other
player cheated and receive a possibly positive payoff. Note that this is not a defect
of our protocol, rather, it is an inherent property of Nash equilibria in extensive
games. As explained in Dodis et al. where there was again a punishment step,
the Nash equilibrium property requires merely local optimality by considering
the scenario where at most one player deviates from the protocol; nothing is
guaranteed if both players cheat. Moreover, the insistence of the honest player
to punish the cheater forces the other player not to cheat in the first place (or to
stop cheating if the game is repeated). One possible way to remedy the situation
would be to consider subgame perfect equilibria, however neither our protocol
nor the one in Dodis et al. has this property.

Note that our protocol does not provide a quantum algorithm to compute a
Nash equilibrium. However, it almost renders this question moot. Instead of a
quantum algorithm to compute a Nash equilibrium, there is a quantum protocol
where the players can generate a correlated equilibrium, which enjoys desirable
properties such as fairness and higher payoff.

Since our protocol uses quantum channels, one may wonder whether the power
of two-way quantum communication enables us to achieve any quantum equilib-
rium with payoff higher than any classical correlated equilibrium. This is actually
not possible: Any quantum protocol eventually generates a joint strategy s ac-
cording to some correlated distribution p. If the players’ behaviors in the protocol
form a Nash equilibrium, then the resulting distribution p is a quantum corre-
lated equilibrium of the quantized game, because otherwise the players would
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like to change their behaviors in the last step. By an observation in [Zha12], p
is also a (classical) correlated equilibrium of the original (classical) game, which
the present paper already gives a way to generate.

2 Preliminaries

GameTheory. In a classical strategic gamewith n players, labeled by {1, 2, . . . , n},
each player i has a set Si of strategies. We use s = (s1, . . . , sn) to denote the
joint strategy selected by the players and S = S1 × . . . × Sn to denote the set
of all possible joint strategies. Each player i has a utility function ui : S → R,
specifying the payoff or utility ui(s) to player i on the joint strategy s. For
simplicity of notation, we use subscript −i to denote the set [n]− {i}, so s−i is
(s1, . . . , si−1, si+1, . . . , sn), and similarly for S−i, p−i, etc.

In a classical extensive game with perfect information, the players take moves
in turns and all players know the entire history of all players’ moves. An extensive
game can be transformed into strategic form by tabulating all deterministic
strategies of the players, which usually results in an exponential increase in size.

A game is [0, 1]-normalized if all utility functions are in [0, 1]. Any game can
be scaled to a normalized one. For a fair comparison, we assume that all games
in this paper are normalized.

A Nash equilibrium is a fundamental solution concept in game theory. Roughly,
it says that in a joint strategy, no player can gain more by changing her strategy,
provided that all other players keep their current strategies unchanged.

Definition 1. A pure Nash equilibrium is a joint strategy s = (si, . . . , sn) ∈ S
satisfying

ui(si, s−i) ≥ ui(s
′
i, s−i), ∀i ∈ [n], ∀s′i ∈ Si.

Pure Nash equilibria can be generalized by allowing each player to independently
select her strategy according to some distribution, leading to the following con-
cept of mixed Nash equilibrium.

Definition 2. A (mixed) Nash equilibrium (NE) is a product probability distri-
bution p = p1 × . . . × pn, where each pi is a probability distributions over Si,
satisfying
∑

s−i

p−i(s−i)ui(si, s−i) ≥
∑

s−i

p−i(s−i)ui(s
′
i, s−i), ∀i ∈ [n], ∀si, s′i ∈ Si with pi(si) > 0.

Definition 3. A correlated equilibrium (CE) is a probability distribution p over
S satisfying

∑

s−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i

p(si, s−i)ui(s
′
i, s−i), ∀i ∈ [n], ∀si, s′i ∈ Si.

If the correlated equilibrium is a distribution over pure Nash equilibria, then we
call it a Nash-support correlated equilibrium.
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We will also need an approximate version of equilibrium, which basically says
that no Player i can gain much by changing the suggested strategy si. Depending
on whether we require the limit of the gain for each possible si in the support
of p or on average of p, one can define worst-case and average-case approximate
equilibrium. It turns out that the average-case one, as defined below, has many
nice properties, such as being the limit of a natural dynamics of minimum regrets
([VNRT07], Chapter 4) and hence it is the one we will use.

Definition 4. An ε-correlated equilibrium is a probability distribution p over S
satisfying

Es←p[ui(s
′
i(si), s−i)] ≤ Es←p[ui(si, s−i)] + ε,

for any i and any function s′i : Si → Si. An ε-correlated equilibrium p is an
ε-Nash equilibrium if it is a product distribution p = p1 × · · · × pn.

We can also define equilibria for extensive games by defining the corresponding
equilibria on their strategic form.

Cryptography. We provide the formal definition of a weak coin flipping protocol.

Definition 5. A weak coin flipping protocol between Alice and Bob is a protocol
where Alice and Bob interact and at the end, Alice outputs a value cA ∈ {0, 1}
and Bob outputs a value cB ∈ {0, 1}. If cA = cB, we say that the protocol outputs
c = cA. If cA �= cB then the protocol outputs c = ⊥.

An (a, ε)-weak coin flipping protocol (WCF (a, ε)) has the following properties:

– If c = a, we say that Alice wins. If c = 1− a, we say that Bob wins.
– If Alice and Bob are honest then Pr[Alice wins] = Pr[Bob wins] = 1/2.
– If Alice cheats and Bob is honest then P ∗A = Pr[Alice wins] ≤ 1/2 + ε.
– If Bob cheats and Alice is honest then P ∗B = Pr[Bob wins] ≤ 1/2 + ε.

P ∗A and P ∗B are the cheating probabilities of Alice and Bob. The cheating prob-
ability of the protocol is defined as max{P ∗A, P ∗B}.
Note that in the definition the players do not abort, since a player that wants
to abort can always declare victory rather than aborting without reducing the
security of the protocol.

We will use the following result by Mochon.

Proposition 1. [Moc07] For every ε > 0 and a ∈ {0, 1}, there exists a quantum
WCF (a, ε) protocol P .

Moreover, the protocol uses a number of qubits and rounds which is polynomial
in 1

ε . Note that this is a weaker definition of a usual coin flip, since here, we assign
a winning value for each player. Even though each player cannot bias the coin
towards this winning value, he or she can bias the coin towards the losing value
with probability 1. Weak coin flipping is possible using quantum communication,
though for the strong coin flipping the optimal cheating probability for any
protocol is 1/

√
2 [Kit03, CK09].
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In the following section we will use weak coin flipping as a subroutine for
the following cryptographic primitive, that enables two players to jointly sample
from a correlated distribution, in a way that no dishonest player can force a
distribution which is far from the honest one.

Definition 6. A Correlated Strategy Sampling protocol between two players P1

and P2 is an interactive protocol where the players receive as input a game G with
an efficiently computable correlated equilibrium1 p and at the end, P1 outputs a
joint strategy s = (s1, s2) ∈ S1×S2 and P2 outputs a joint strategy s′ = (s′1, s

′
2) ∈

S1× S2. If s = s′, we say the protocol outputs s = (s1, s2). If s �= s′ then we say
the protocol outputs ⊥.

An (ε, δ)-Correlated Strategy Sampling procedure satisfies the following prop-
erties:

1. If both players follow the honest strategy, then they both output the same
joint strategy s = (s1, s2), where s← ph for some distribution ph, s.t.

for both i ∈ {1, 2}, Es←ph
[ui(s)] ≥ Es←p[ui(s)]−δ

2. If Player 1 is dishonest and Player 2 is honest (similarly for the other case),
then Player 2 outputs a joint strategy s distributed according to some q, s.t.

Es←q[u2(s)] ≥ Es←ph
[u2(s)]− ε, Es←q [u1(s)] ≤ Es←ph

[u1(s)] + ε.

Note again, that similar to the case of the weak coin flip, the players do not
abort, since a player that wants to abort can always choose the joint strategy
that is best for him rather than aborting without reducing the security of the
protocol.

3 The Extended Game

For simplicity, we consider a two-player strategic game G with at most n strate-
gies for each player, but our results easily extend to more players. We describe
how to derive an extended game Q from any such G.

Similar to the DHR extended game, we assume that the players can communi-
cate with each other before they start playing the game, but now via a quantum
channel. In this preamble stage they perform a quantum protocol that we call
Correlated Strategy Sampling.

In the following section we show how to implement this procedure uncondi-
tionally, using a Weak Coin Flipping subroutine with bias ε′= O(ε/ logn).

Then, we extend the original game G to a 2-stage game, where the first stage
is identical to the game G and for the second stage, which we call the Checking
stage, the available moves for each player are Accept or Reject. We define the
payoff for any joint strategy where some player outputs Reject in the second
stage to be 0.

1 A correlated equilibrium p is efficiently computable if there is a Turing machine that,
on an input game, output p in time polynomial in the input size.
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Extended Game Q

1. Communication Stage: The two players perform the Correlated Strat-
egy Sampling procedure for the game G and correlated equilibrium p.

2. Game Stage: The two players play the original game G.
3. Checking Stage: The two players each play a move from the set {A,R}.

We can now restate and prove our main theorem.

Theorem 2. For any correlated equilibrium p of the game G with at most n
strategies for each player, and for any ε, δ > 0, there exists an extended game Q
with an ε-Nash equilibrium σ that can be computed in time poly(n, 1/δ, 1/ε) and
such that the expected payoff for both players in σ is at least as high as the one
in p minus δ.

Proof. We describe Player 1’s strategy in the ε-Nash equilibrium σ as follows
(Player 2’s strategy is symmetric): In the Communication Stage, Player 1 is
honest and obtains an output s = (s1, s2). In the Game Stage, he plays the
move s1. In the Checking Stage, he plays A if Player 2’s move in the Game
Stage was s2 and R otherwise.

Let us show that this is indeed an ε-Nash equilibrium. A dishonest player
(assume Player 1) can try to increase his payoff by first deviating from the
protocol in the Communication Stage. If Player 2 outputs a joint strategy s =
(s1, s2) then we know from the security of the Correlated Strategy Sampling
procedure that this is a sample from a distribution q s.t.

Es←q[u1(s)] ≤ Es←ph
[u1(s)] + ε. (1)

Hence, if Player 1 is dishonest during Stage 1 and then plays s1 in Stage 2,
then his gain is at most ε. If he decides to change his move, then the honest
player would play R in Stage 3, so his payoff would be 0. Overall, no matter
what strategy the dishonest player follows he cannot increase his payoff more
than ε from the honest strategy mentioned above, and hence this strategy is an
ε-approximate Nash equilibrium.

Note that from the security of the Correlated Strategy Sampling procedure we
also have

Es←q[u2(s)] ≥ Es←ph
[u2(s)]− ε. (2)

Hence, we have the following interesting corollary

Corollary 1. In the extended game Q, the expected payoff of the honest player
will not decrease by more than ε, no matter how the dishonest player deviates,
unless the dishonest player makes both players’ payoff equal to 0.

In other words, the honest strategy remains an equilibrium even if the objective
of a player is not to maximize his own payoff but rather maximize the difference
between the players’ payoffs.
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In the special case of a Nash-support correlated equilibrium, the extended
game consists only of the first two stages. Similarly to the general case, we can
prove that the honest strategy is an approximate Nash equilibrium. Note that
now, the reason the dishonest player cannot increase his payoff by deviating
from the suggested joint strategy is because the joint strategy is a pure Nash
equilibrium, which, by definition, leaves each player no incentive to deviate even
if she knows the other players’ pure strategies to be played. Hence we do not
need the checking stage.

4 The Correlated Strategy Sampling Procedure

Let us first describe the intuition behind our procedure. First, we think of all
distributions as uniform distributions over a multiset of joint strategies of sizeK,
and hence sampling a joint strategy is equivalent to uniformly sampling a number
in [K]. Then, we sample sequentially logK bits. At each step, the players declare
the value of the bit they prefer, by calculating their expected payoffs conditioned
on the already sampled bits. If the players agree on the value, then this is the
sampled bit. If they disagree, then they perform a weak coin flip in order to
sample the bit. The fact that the weak coin flip is almost perfect, implies that
no dishonest player can bias the distribution by a lot.

We now provide the technical details. In a two-player game G with at most
n strategies for each player, let p be an efficiently computable correlated equi-
librium that the players know and aim to generate. A typical scenario is that
p is the lexicographically first correlated equilibrium that maximizes the total
payoff. If the distribution is not uniform we can emulate it by a uniform dis-
tribution p̄ on a multiset S of joint strategies of size K = 2k ∈ [n/δ, 2n/δ] for
some integer k, such that the distance between the two distributions is at most
δ. We can equivalently think of the distribution p̄ as a distribution on {0, 1}k by
associating each element s̄ ∈ {0, 1}k with an element s ∈ S.

Let p̄h be the distribution on {0, 1}k that arises from our procedure when both
players are honest and q̄ the distribution of the honest player’s output when the
other player is dishonest. The distributions p̄h and q̄ naturally give rise to the
distributions ph and q on the set of joint strategies (where the probability of s
in ph is the sum of the probabilities according to p̄h of the elements in {0, 1}k
that correspond to s).

For a probability distribution μ over X = X1× · · ·×Xk, we use the standard
notation μ(·|xm+1...xk) to denote the conditional distribution on X1×· · ·×Xm,
i.e. μ conditioned on the last k − m variables being xm+1...xk. We also use
μ(x1...xm) to denote the probability in the marginal distribution on the first
m variables. By x ← μ, we mean to draw a sample x from distribution μ. Let
sign(a) be the function which is 1 if a ≥ 0 and −1 if a < 0. The protocol appears
in the following figure.
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(ε, δ)-Correlated Strategy Sampling Protocol

Input: A game G with at most n strategies for each player, and an efficiently
computable correlated equilibrium p.

1. Each Player i computes locally the equilibrium p and emulates p by a
uniform distribution p̄ on a multiset of joint strategies (i.e. on {0, 1}k),
with k = O(log n).

2. for j = 1 to k
(a) Each Player i computes and announces his preference aji =

sign
(
Es̄j+1...s̄k←p̄h(·|s̄1...s̄j−10)[ui(s)]−Es̄j+1...s̄k←p̄h(·|s̄1...s̄j−11)[ui(s)]

)
.

(b) if aj1a
j
2 = −1,

Run WCF (aj1, ε/k). Let the outcome of Player i be s̄ji ∈ {0, 1}.
else
Set s̄j1 = s̄j2 to be their commonly desirable value.

3. Each Player i outputs s according to the jointly flipped coins s̄ = s̄1i ...s̄
k
i .

Analysis. First, if both players are honest then their expected utility is at least
as high as in the original CE, up to an additive error δ due to the precision of
using k bits to emulate p. If in all rounds they flip a fair coin then their expected
utility is exactly the same as in p. If at some round they both agree on a preferred
value then this increases both players expected utility.

We now prove that no dishonest player can increase his utility by much. Let
us assume without loss of generality that Player 1 is dishonest and Player 2 is
honest. We prove that after round m,

Claim. For any m = 1, ..., k, we have
∑

s̄1···s̄m
(q̄(s̄1 · · · s̄m)− p̄h(s̄

1 · · · s̄m))
∑

s̄m+1···s̄k
p̄h(s̄

m+1 · · · s̄k|s̄1 · · · s̄m)u1(s)

≤
∑

s̄1···s̄m−1

(q̄(s̄1 · · · s̄m−1)− p̄h(s̄
1 · · · s̄m−1))

∑

s̄m···s̄k
p̄h(s̄

m · · · s̄k|s̄1 · · · s̄m−1)u1(s) +
ε

k
.

(3)

The proof is in Appendix. Adding the inequalities in the claim for all m, we have

∑

s̄1···s̄k
(q̄(s̄1 · · · s̄k)− p̄h(s̄

1 · · · s̄k))u1(s) ≤ ε.

By going back to the space of joint strategies we have Es←q[u1(s)] ≤
Es←ph

[u1(s)] + ε.
Moreover, for the honest player we have, by a similar argument (changing u1

to u2, ε/k to −ε/k, and changing the direction of the inequality in Claim 4), it
is also easy to show the claimed Eq.(2).

The same analysis holds when Player 2 is dishonest. Also, it is easy to see that
the complexity of the protocol is polynomial in n/δ and 1/ε. This completes the
proof of our main theorem.
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A final remark is that the same protocol can be used for general k-player
games. In each round, some players prefer s̄m to be 0 and some players prefer
1. We can then let two representatives, one from each group, to do the weak
coin flipping, at the end of which the representatives announce the bits. If one
representative lies, then the other reject in the third stage. The previous analysis
then easily applies to this scenario as well.
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A Proof of Claim 4

For the convenience of notation, we sometimes write u1(s̄) to mean u1(s) where s
corresponds s̄. First by expanding the probability to marginal times conditional
probabilities, we have

∑

s̄1···s̄m
(q̄(s̄1 · · · s̄m)− p̄h(s̄

1 · · · s̄m))
∑

s̄m+1···s̄k
p̄h(s̄

m+1 · · · s̄k|s̄1 · · · s̄m)u1(s)

=
∑

s̄1···s̄m−1

(
q̄(s̄1 · · · s̄m−1)

∑

s̄m

q̄(s̄m|s̄1...s̄m−1)− p̄h(s̄
1 · · · s̄m−1)

∑

s̄m

p̄h(s̄
m|s̄1...s̄m−1)

)

·
∑

s̄m+1···s̄k
p̄h(s̄

m+1 · · · s̄k|s̄1 · · · s̄m)u1(s).

For those s̄1 · · · s̄m−1 that the two players have the same preference on s̄m, the
best for Player 1 is then just to follow the honest protocol. Thus the correspond-
ing part in the inequality in Claim 4 is true even without the ε/k term. For
the rest s̄1 · · · s̄m−1, the two players have different preferences; without loss of
generality, assume that Player 1 prefers s̄m to be 0. Then the best for Player 1
raising her utility is to try to bias s̄m in the coin flipping to 0 as much as pos-
sible. By the security of the weak coin flipping (which holds against a dishonest
player that may possess a quantum auxiliary input, hence includes the situation
where the dishonest player may try to entangle the different executions of the
coin flips), the above quantity is at most

∑

s̄1...s̄m−1

(
q̄(s̄1...s̄m−1)

(1
2
+

ε

k

) ∑

s̄m+1...s̄k

p̄h(s̄
m+1...s̄k|s̄1...s̄m)u1(s̄

1...s̄m−10s̄m+1...s̄k)

+ q̄(s̄1...s̄m−1)
(1
2
− ε

k

) ∑

s̄m+1...s̄k

p̄h(s̄
m+1...s̄k|s̄1...s̄m)u1(s̄

1...s̄m−11s̄m+1...s̄k)

− p̄h(s̄
1...s̄m−1)

1

2

∑

s̄m+1...s̄k

p̄h(s̄
m+1...s̄k|s̄1...s̄m)u1(s̄

1...s̄m−10s̄m+1...s̄k)

− p̄h(s̄
1...s̄m−1)

1

2

∑

s̄m+1...s̄k

p̄h(s̄
m+1...s̄k|s̄1...s̄m)u1(s̄

1...s̄m−11s̄m+1...s̄k)
)
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=
∑

s̄1···s̄m−1

(q̄(s̄1 · · · s̄m−1)− p̄h(s̄
1 · · · s̄m−1))

∑

s̄m

p̄h(s̄
m|s̄1...s̄m−1)

∑

s̄m+1···s̄k
p̄h(s̄

m+1 · · · s̄k|s̄1 · · · s̄m)u1(s) +
ε

k

∑

s̄1...s̄m−1

q̄(s̄1...s̄m−1)

∑

s̄m+1...s̄k

p̄h(s̄
m+1...s̄k|s̄1...s̄m)

· [u1(s̄
1...s̄m−10s̄m+1...s̄k)− u1(s̄

1...s̄m−11s̄m+1...s̄k)].

≤
∑

s̄1···s̄m−1

(q̄(s̄1 · · · s̄m−1)− p̄h(s̄
1 · · · s̄m−1))

∑

s̄m···s̄k
p̄h(s̄

m · · · s̄k|s̄1 · · · s̄m−1)u1(s)+
ε

k
.

where we used the fact that p̄h(s̄
m|s̄1...s̄m−1) = 1/2 in the equality, and the fact

that the game is [0, 1]-normalized in the inequality.
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