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Abstract. It is known that the security evaluation can be done by
smoothing of Rényi entropy of order 2 in the quantum setting when
we apply universal2 hash functions. This fact can be extended to the
case when we apply ε-almost dual universal2 hash functions, which is
a generalized concept of universal2 hash functions. Demonstrating the
smoothing of Rényi entropy of order 2, we derived security bounds for
universal composability and mutual information criterion under the con-
dition in the quantum setting.

1 Introduction

Evaluation of secrecy is one of important topics in classical and quantum in-
formation theory. In order to increase the secrecy, we apply a hash function.
Bennett et al. [4] and H̊astad et al. [14] proposed to use universal2 hash func-
tions for privacy amplification and derived two universal hashing lemma, which
provides an upper bound for the universal composability based on Rényi entropy
of order 2. Renner [6] extended their idea to the quantum case and evaluated the
secrecy with universal2 hash functions based on a quantum version of conditional
Rényi entropy order 2.

In order to apply Renner’s two universal hashing lemma to a realistic setting,
Renner [6] attached the smoothing to min entropy, which is smaller than the
above quantum version of conditional Rényi entropy order 2 in the classical
case. That is, he proposed the application of universal hashing lemma to a state
approximating the true state. In this method, it is not easy to find a suitable
approximating state. Hayashi [11] found such a suitable approximating state in
the sense of Rényi entropy order 2. That is, he applied the smoothing to Rényi
entropy order 2. Then, he evaluated the universal composability criterion after
universal2 hash functions based on Rényi entropy order 1+s. Since Rényi entropy
order 2 gives a tighter security bound than the min entropy, the smoothing for
Rényi entropy order 2 yields a better security bound than the min entropy.
Indeed, it has been showed that the method [11] yields the optimal exponential
decreasing rate in the n-fold independent and identical case.

However, in other cases (quantum case and classical case with the mutual
information criterion), no study attached the smoothing to the quantum version
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of conditional Rényi entropy order 2. The purpose of this paper is to attach
the smoothing to the quantum version of conditional Rényi entropy order 2.
and to obtain an evaluation for secret key generation from correlated random
number in two kinds of criteria (universal composability and the modified mutual
information) in the quantum settings. As our result, first, we obtain a lower
bound of the exponential decreasing rate with the quantum i.i.d. settings for
secret key generation when Alice and Bob share the same random number and
Eve has a correlated random number, i.e., the secret key generation without
error correction.

Indeed, the obtained evaluation can be applied to a more general case. Re-
cently, Tsurumaru et al [13] proposed the concept “ε-almost dual universal hash
functions” as a generalization of linear universal hash functions. This concept is
defined for a family of hash functions. On the other hand, Dodis and Smith [7]
proposed the concept “δ-biased family” for a family of random variables. The
concept “ε-almost dual universal hash functions” can be converted to a part
of “δ-biased family”[7,13]. Indeed, Dodis et al.[7] and Fehr et al.[8] showed a
security lemma (9). Employing this conversion and the above security lemma,
Tsurumaru et al [13] obtained a variant of two universal hashing lemma for “ε-
almost dual universal hash functions”. This lemma can be regarded as a kind of
generalization of two universal hashing lemma by Renner [6]. Therefore, our eval-
uation can be applied to the class of “ε-almost dual universal hash functions”,
which is a wider class of hash function.

The remaining part of this paper is the following. In section 2, we introduce
the information quantities for evaluating the security and derive several useful
inequalities. We also give a clear definition for security criteria. In section 3,
according to Tsurumaru et al [13], we introduce several class of hash functions
(universal2 hash functions and ε-almost dual universal2 hash functions). We
clarify the relation between ε-almost dual universal2 hash functions and δ-biased
family. We also explain an ε-almost dual universal2 version of Renner’s two
universal hashing lemma [6, Lemma 5.4.3](Lemma 10) based on Lemma for δ-
biased family given by Dodis et al.[7] and Fehr et al.[8].

In section 4, we attach the smoothing to the obtained upper bound and obtain
a security upper bound under the universal composability criterion, which is the
main result of this paper. In section 5, we derive an exponential decreasing rate
when we simply apply hash functions and there is no error between Alice and
Bob. All proofs are omitted and are given in [16]. Further analysis are also
presented in [16].

2 Preparation

2.1 Information Quantities for Single System

In order to discuss the quantum case, we prepare several useful properties of
information quantities in single quantum system: First, we define the following
quantities:
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D(ρ‖σ) := Tr ρ(log ρ− log σ) (1)

ψ(s|ρ‖σ) := logTr ρ1+sσ−s (2)

ψ(s|ρ‖σ) := logTr ρ
1+s
2 σ−s/2ρ

1+s
2 σ−s/2 (3)

with s ∈ R. Then, we obtain the following lemma:

Lemma 1. The functions s �→ ψ(s|ρ‖σ), ψ(s|ρ‖σ) are convex.

For a proof for ψ(s|ρ‖σ), see Hayashi [9, Exercises 2.24]. For ψ(s|ρ‖σ), see
Hayashi [16].

Since lims→0
1
sψ(s|ρ‖σ) = D(ρ‖σ), and lims→0

1
sψ(s|ρ‖σ) = D(ρ‖σ), we ob-

tain the following lemma.

Lemma 2. ψ(s|ρ‖σ)
s and

ψ(s|ρ‖σ)
s are monotone increasing concerning s ∈ R. In

particular,

sD(ρ‖σ) ≤ ψ(s|ρ‖σ) (4)

sD(ρ‖σ) ≤ ψ(s|ρ‖σ) (5)

for s > 0.

For any quantum operation Λ, the following information processing inequalities

D(Λ(ρ)‖Λ(σ)) ≤ D(ρ‖σ), ψ(s|Λ(ρ)‖Λ(σ)) ≤ ψ(s|ρ‖σ) (6)

hold for s ∈ (0, 1][9, (5,30),(5.41)]. However, this kind of inequality does not fold
for ψ(s|ρ‖σ) in general.

2.2 Information Quantities in Composite System

Next, we prepare several information quantities in a composite system HA⊗HE ,
in which, HA is a classical system spanned by the basis {|a〉}. In the following,
a sub-state ρ is not necessarily normalized and is assumed to satisfy Tr ρ ≤ 1.
A composite sub-state ρ is called a c-q state when it has a form ρ = ρA,E =∑

a P
A(a)|a〉〈a| ⊗ ρEa with PA(a) ≥ 0, in which the conditional state ρEa is

normalized. Then, the von Neumann entropies and Renyi entropies are given as

H(A,E|ρA,E) := −Tr ρA,E log ρA,E

H(E|ρE) := −Tr ρE log ρE

H1+s(A,E|ρA,E) := −1

s
logTr (ρA,E)1+s

H1+s(E|ρE) := −1

s
logTr (ρE)1+s
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with s ∈ R. When we focus on the total system of a given density ρA,E and
the density matrix ρ describes the state on the composite system HA ⊗ HE ,
H(A,E|ρA,E) and H1+s(A,E|ρ) are simplified to H(ρ) and H1+s(ρ).

A quantum version of the conditional entropy and two kinds of quantum
versions of conditional Renyi entropy are given for s ∈ R:

H(A|E|ρ) := H(A,E|ρ)−H(E|ρE)
H1+s(A|E|ρ) := −1

s
logTr ρ1+s(IA ⊗ (ρE)−s)

H1+s(A|E|ρ) := −1

s
logTr ρ

1+s
2 (IA ⊗ (ρE)−s/2)ρ

1+s
2 (IA ⊗ (ρE)−s/2).

These quantities can be written in the following way:

H(A|E|ρ) = log |A| −D(ρ‖ρAmix ⊗ ρE) (7)

H1+s(A|E|ρ) = log |A| − 1

s
ψ(s|ρ‖ρAmix ⊗ ρE) (8)

H1+s(A|E|ρ) = log |A| − 1

s
ψ(s|ρ‖ρAmix ⊗ ρE). (9)

When we replace ρE by another normalized state σE on HE , we obtain the
following generalizations:

H(A|E|ρ‖σE) := log |A| −D(ρ‖ρAmix ⊗ σE)

H1+s(A|E|ρ‖σE) := log |A| − 1

s
ψ(s|ρ‖ρAmix ⊗ σE)

H1+s(A|E|ρ‖σE) := log |A| − 1

s
ψ(s|ρ‖ρAmix ⊗ σE).

Then, we obtain

H(A|E|ρ‖σE) = H(A|E|ρ) +D(ρE‖σE) ≥ H(A|E|ρ). (10)

Using Lemma 2, we obtain the following lemma.

Lemma 3. H1+s(A|E|ρ‖σE) and H1+s(A|E|ρ‖σE) are monotone decreasing
concerning s ∈ R. In particular,

H(A|E|ρ‖σE) ≥ H1+s(A|E|ρ‖σE), (11)

H(A|E|ρ‖σE) ≥ H1+s(A|E|ρ‖σE) (12)

and

H1+s(A|E|ρ‖σE) ≤ H1+s(A|E|ρ‖σE) (13)

for s > 0.
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When we apply a quantum operation Λ on HE , since it does not act on the
classical system A, (6) implies that

H(A|E||Λ(ρ)‖Λ(σE)) ≥ H(A|E|ρ‖σE) (14)

H1+s(A|E|Λ(ρ)‖Λ(σE)) ≥ H1+s(A|E|ρ‖σE). (15)

When we apply the function f to the classical random number a ∈ A,
H(f(A), E|ρ) ≤ H(A,E|ρ), i.e.,

H(f(A)|E|ρ) ≤ H(A|E|ρ). (16)

For a deeper analysis, we introduce another information quantity φ(s|A|E|ρA,E):

φ(s|A|E|ρA,E) := logTrE(TrA(ρ
A,E)1/(1−s))1−s

= logTrE(
∑

a

PA(a)1/(1−s)ρ1/(1−s)a )1−s. (17)

Taking the limit s→ 0, we obtain

dφ(s|A|E|ρA,E)
ds

|s=0 = lim
s→0

φ(s|A|E|ρA,E)
s

=H(E|A|ρA,E)−H(E|ρA,E) +H(A|ρA,E) = −H(A|E|ρA,E). (18)

Then, we obtain the following lemma:

Lemma 4. The relation

max
σ

sH1+s(A|E|ρA,E‖σE) = −(1 + s)φ(
s

1 + s
|A|E|ρA,E) (19)

holds for s ∈ (0,∞). The maximum can be realized when
σE = (TrA(ρ

A,E)1+s)1/(1+s)/TrE(TrA(ρ
A,E)1+s)1/(1+s).

For a proof, see Hayashi [16].

2.3 Criteria for Secret Random Numbers

Next, we introduce criteria for quantifying information leaked to the system HE .
Using the trace norm, we can evaluate the secrecy for the state ρA,E as follows:

d1(A : E|ρA,E) := ‖ρA,E − ρA ⊗ ρE‖1. (20)

Taking into account the randomness, Renner [6] defined the following criteria
for security of a secret random number:

d′1(A|E|ρA,E) := ‖ρA,E − ρAmix ⊗ ρE‖1, (21)

which is called the universal composability.
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Renner[6] defined the conditional L2-distance from uniform of ρ relative to a
state σ on HE :

d2(A : E|ρ‖σ)
:=Tr ((I ⊗ σ−1/4)(ρ− ρAmix ⊗ ρE)(I ⊗ σ−1/4))2

=Tr ((I ⊗ σ−1/4)ρ(I ⊗ σ−1/4))2 − 1

|A|Tr (σ
−1/4ρEσ−1/4)2

=e−H2(A|E|ρ‖σ) − 1

|A|Tr (σ
−1/4ρEσ−1/4)2

Using this value, we can evaluate d′1(A : E|ρ) as follows [6, Lemma 5.2.3] when
the state σ is a normalized state on HE :

d′1(A : E|ρ) ≤
√
|A|

√
d2(A : E|ρ|σ). (22)

3 Ensemble of Hash Functions

3.1 Ensemble of General Hash Functions

In this section, we focus on an ensemble {fX} of hash functions fX from A to B,
where X is a random variable identifying the function fX. In this case, the total
information of Eve’s system is written as (E,X). Then, by using ρfX(A),E,X :=∑

a∈f−1
X (b),x P

X(x)|b〉〈b| ⊗ ρEa ⊗ |x〉〈x|, the universal composability is written as

d′1(fX(A)|E,X|ρfX(A),E,X) =‖ρfX(A),E,X − ρBmix ⊗ ρE,X‖1
=
∑

x

PX(x)‖ρfX=x(A),E − ρBmix ⊗ ρE‖1

=EX‖ρfX(A),E − ρBmix ⊗ ρE‖1. (23)

We say that a function ensemble F is ε-almost universal2 [1,2,13], if, for any
pair of different inputs a1,a2, the collision probability of their outputs is upper
bounded as

Pr [fX(a1) = fX(a2)] ≤ ε

|B| . (24)

The parameter ε appearing in (24) is shown to be confined in the region

ε ≥ |A| − |B|
|A| − 1

, (25)

and in particular, an ensemble {fX} with ε = 1 is simply called a universal2
function ensemble.

Two important examples of universal2 hash function ensembles are the
Toeplitz matrices (see, e.g., [3]), and multiplications over a finite field (see, e.g.,
[1,4]). A modified form of the Toeplitz matrices is also shown to be universal2,
which is given by a concatenation (X, I) of the Toeplitz matrix X and the iden-
tity matrix I [12]. The (modified) Toeplitz matrices are particularly useful in
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practice, because there exists an efficient multiplication algorithm using the fast
Fourier transform algorithm with complexity O(n log n) (see, e.g., [5]).

The following lemma holds for any universal2 function ensemble.

Lemma 5 (Renner [6, Lemma 5.4.3]). Given any composite c-q sub-state
ρA,E on HA⊗HE and any normalized state σE on HE. Any universal2 ensemble
of hash functions fX from A to {1, . . . ,M} satisfies

EXd2(fX(A) : E|ρA,E‖σE) ≤ e−H2(A|E|ρA,E‖σE). (26)

More precisely, the inequality

EXe
−H2(fCX

(A)|E|ρA,E‖σE)

≤(1− 1

M
)e−H2(A|E|ρA,E‖σE) +

1

M
eψ(1|ρ

A,E‖σE) (27)

holds.

3.2 Ensemble of Linear Hash Functions

Tsurumaru and Hayashi[13] focused on linear functions over the finite field F2.
Now, we treat the case of linear functions over a finite field Fq, where q is a
power of a prime number p. We assume that sets A, B are F

n
q , F

m
q respectively

with n ≥ m, and f are linear functions over Fq. Note that, in this case, there is
a kernel C corresponding to a given linear function f , which is a vector space of
n−m dimensions or more. Conversely, when given a vector subspace C ⊂ F

n
q of

n−m dimensions or more, we can always construct a linear function

fC : Fnq → F
n
q /C

∼= F
l
q, l ≤ m. (28)

That is, we can always identify a linear hash function fC and a code C.
When CX = Ker fX, the definition of ε-universal2 function ensemble of (24)

takes the form
∀x ∈ F

n
q \ {0}, Pr [fX(x) = 0] ≤ q−mε, (29)

which is equivalent with

∀x ∈ F
n
q \ {0}, Pr [x ∈ CX] ≤ q−mε. (30)

This shows that the ensemble of kernel {CX} contains sufficient information for
determining if a function ensemble {fX} is ε-almost universal2 or not.

For a given ensemble of codes {CX}, we define its minimum (respectively, max-
imum) dimension as tmin := minX dimCX (respectively, tmax := maxr∈I dimCX).
Then, we say that a linear code ensemble {CX} of minimum (or maximum) di-
mension t is an ε-almost universal2 code ensemble, if the following condition is
satisfied

∀x ∈ F
n
q \ {0}, Pr [x ∈ CX] ≤ qt−nε. (31)

In particular, if ε = 1, we call {CX} a universal2 code ensemble.
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3.3 Dual Universality of a Code Ensemble

Based on Tsurumaru and Hayashi[13], we define several variations of the uni-
versality of an ensemble of error-correcting codes and the linear functions as
follows.

First, we define the dual code ensemble {CX}⊥ of a given linear code ensemble
{CX} as the set of all dual codes of CX. That is, {CX}⊥ = {C⊥

X}. We also
introduce the notion of dual universality as follows. We say that a code ensemble
{CX} is ε-almost dual universal2, if the dual ensemble C⊥ is ε-almost universal2.
Hence, a linear function ensemble {fX} is ε-almost dual universal2, if the kernels
CX of fX form an ε-almost dual universal2 code ensemble.

An explicit example of a dual universal2 function ensemble (with ε = 1)
can be given by the modified Toeplitz matrices mentioned earlier [10], i.e., a
concatenation (X, I) of the Toeplitz matrix X and the identity matrix I. This
example is particularly useful in practice because it is both universal2 and dual
universal2, and also because there exists an efficient algorithm with complexity
O(n log n).

With these preliminaries, we can present the following theorem as an extension
of [13, Theorem 2] to the case of the finite field Fq:

Theorem 1. Any universal2 linear function ensemble {fX} over the finite field
Fq is q-almost dual universal2 function ensemble.

3.4 Permuted Code Ensemble

In order to treat an example of ε-almost universal2 functions, we consider the
case when the distribution is invariant under permutations of the order in F

n
q .

Now, Sn denotes the symmetric group of degree n, and σ(i) = j means that
σ ∈ Sn maps i to j, where i, j ∈ {1, . . . , n}. The code σ(C) is defined by
{xσ := (xσ(1), . . . , xσ(n))|x = (x1, . . . , xn) ∈ C}. Then, we introduce the per-
muted code ensemble {σ(C)}σ∈Sn of a code C. In this ensemble, σ obeys the
uniform distribution on Sn

For an element x = (x1, . . . , xn) ∈ F
n
q , we can define the empirical distribution

px on Fq as px(a) := #{i|xi = a}/n. So, we denote the set of the empirical
distributions on F

n
q by Tq,n. The cardinality |Tq,n| is bounded by (n + 1)q−1.

Similarly, we define T+
q,n := Tq,n \{10}, where 10 is the deterministic distribution

on 0 ∈ Fq. For given a code C ⊂ F
n
q , we define

εp(C) :=
qn#{x ∈ C|px = p}
|C|#{x ∈ Fnq |px = p} . (32)

and

ε(C) := max
p∈T+

q,n

εp(C). (33)

Then, we obtain the following lemmas, which are generalization of lemmas in
[13] to the case of the finite field Fq.
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Lemma 6. The permuted code ensemble {σ(C)}σ∈Sn of a code C is ε(C)-almost
universal2.

Proof. For any non-zero element x′ ∈ F
n
q , we fix an empirical distribution p :=

px′ . Then, x′ belongs to σ(C) with the probability #{x∈C|px=p}
#{x∈Fn

q |px=p} . That is, the

probability that x′ belongs to σ(C) is less than ε(C)|C|
qn .

Lemma 7. For any t ≤ n, there exists a t-dimensional code C ∈ F
n
q such that

ε(C) < (n+ 1)q−1. (34)

Proof. Let {CX}X be a universal2 code ensemble. Then, any p ∈ T+
q,n satisfies

EXεp(CX) ≤ 1. The Markov inequality yields

Pr{εp(CX) ≥ |Tq,n|} ≤ 1

|Tq,n| (35)

and thus

Pr{∃p ∈ T+
q,n, εp(CX) ≥ |Tq,n|} ≤ |Tq,n| − 1

|Tq,n| . (36)

Hence,

Pr{∀p ∈ T+
q,n, εp(CX) < |Tq,n|} ≥ 1

|Tq,n| . (37)

Therefore, there exists a code C satisfying the desired condition (34).

3.5 δ-Biased Ensemble: Classical Case

Although the contents of this section has a overlap with Tsurumaru and
Hayashi[13], we explain the relation with δ-biased ensemble of random variables
{WX}, which has been introduced by Dodis and Smith[7] because the relation
is too complicated. For a given δ > 0, an ensemble of random variables {WX}
on F

n
q is called δ-biased when the inequality

EX(EWX(−1)x·WX)2 ≤ δ2 (38)

holds for any x ∈ F
n
q .

We denote the random variable subject to the uniform distribution on a code
C ∈ F

n
q , by WC . Then,

EWC (−1)x·WC =

{
0 if x /∈ C⊥

1 if x ∈ C⊥. (39)

Using the above relation, as is suggested in [7, Case 2], we obtain the following
lemma.
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Lemma 8. When the l-dimensional code ensemble {CX} is ε-almost dual uni-
versal, the ensemble of random variables {WCX} on F

n
q is

√
εq−m-biased.

In the following, we treat the case of A = F
n
q . Given a composite state ρA,E

on HA ⊗ HE and a distribution PW on A, we define another composite state
ρA,E ∗ PW :=

∑
w P

W (w)
∑

a P
A(a)|a + w〉〈a + w| ⊗ ρEa . Then, we obtain the

following.

Lemma 9 ([8, Theorem 3.2]). For any c-q sub-state ρA,E on HA ⊗HE and
any normalized state σE on HE, a δ-biased ensemble of random variables {WX}
on A satisfies

EXd2(A : E|ρA,E ∗ PWX‖σE) ≤ δ2e−H2(A|E|ρA,E‖σE). (40)

More precisely,

EXd2(A : E|ρA,E ∗ PWX‖σE) ≤ δ2(1 − 1

M
)e−H2(A|E|ρA,E‖σE). (41)

Indeed, applying Lemma 9 to the concept of “ε-almost dual universal”, we obtain
the following lemma.

Lemma 10. Given a c-q sub-state ρA,E on HA ⊗ HE and a normalized state
σE on HE . When {CX} is an m-dimensional and ε-almost dual universal2 code
ensemble, the ensemble of hash functions {fCX}C∈C satisfies

EXd2(fCX(A) : E|ρA,E‖σE) ≤ εe−H2(A|E|ρA,E‖σE). (42)

More precisely,

EXe
−H2(fCX

(A)|E|ρA,E‖σE)

≤ε(1− 1

M
)e−H2(A|E|ρA,E‖σE) +

1

M
eψ(1|ρ

A,E‖σE). (43)

For a proof for the binary case, see Tsurumaru and Hayashi [13], and for the
general case, see Hayashi [16].

Lemma 10 essentially coincides with Lemma 9. However, the concept “δ-
biased” does not concern a family of linear hash functions while the concept
“ε-almost dual universal2” does it because the former is defined for the family of
random variables. That is, the latter is a generalization of universal2 linear hash
functions while the former does not. Hence, Lemma 9 cannot directly provide the
performance of linear hash functions. Lemma 10 gives how small the leaked in-
formation is after the privacy amplification by linear hash functions. Therefore,
in the following section, using Lemma 10 we treat the exponential decreasing
rate when we apply the privacy amplification by ε-almost dual universal2 linear
hash functions.
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4 Security Bounds with Rényi Entropy

Similar to Renner [6], combining (22) and Lemma 10, we obtain the following
security bound based on the Renyi entropy order 2. Indeed, Renner [6] showed
the following inequality with ε = 1 when the ensemble of linear hash functions
{fX}X is universal2.

Lemma 11. Given a normalized state σ on HE and c-q sub-states ρA,E and
ρ′A,E on HA ⊗HE. When an ensemble of linear hash functions {fX}X from A
to {1, . . . ,M} is ε-almost dual universal2, we obtain

EXd
′
1(fX(A) : E|ρA,E) ≤√

εM
1
2 e−

1
2H2(A|E|ρA,E‖σE) (44)

EXd
′
1(fX(A) : E|ρA,E) ≤2‖ρ− ρ′‖1 +

√
εM

1
2 e−

1
2H2(A|E|ρ′A,E‖σE). (45)

For a proof, see Hayashi [16].
In order to obtain a better upper bound for EXd

′
1(fX(A) : E|ρA,E), we

have to choose a suitable ρ′ in (45). Choosing a suitable state ρ′ with the
condition ‖ρ − ρ′‖1 ≤ c is called smoothing. Renner [6] applies smoothing to
min-entropy Hmin(A|E|ρA,E‖σE) := − log ‖(IA ⊗ σE)−1/2ρA,E(IA ⊗ σE)−1/2‖.
However, H2(A|E|ρA,E‖σE) is larger than Hmin(A|E|ρA,E‖σE). Hence, the
smoothing for H2(A|E|ρA,E‖σE) yields a better bound for EXd

′
1(fX(A) :

E|ρA,E) than the smooth min entropy. In fact, Hayashi [11] applies the smooth-
ing to H2(A|E|ρA,E‖σE) in the classical case. In the following, applying the
same kind of smoothing to the quantum case, we obtain the following lemma.

Lemma 12. Given any c-q sub-state ρA,E on A and HE and any normalized
state σE on HE. When an ensemble of linear hash functions {fX}X from A to
{1, . . . ,M} is ε-almost dual universal2, we obtain

EXd
′
1(fX(A) : E|ρA,E) ≤ (4 +

√
v
√
ε)M s/2e−

s
2H1+s(A|E|ρA,E‖σE), (46)

for s ∈ (0, 1], where v is the number of eigenvalues of σ.

Further, the inequalities with ε = 1 hold when the ensemble of linear hash
functions {fX}X is universal2.

The next step is the choice of a suitable σE . The optimal σE is given in Lemma
4. Hence, the combination of Lemmas 4 and 12 yields the following lemma.

Lemma 13. Further, when ρA,E is normalized,

EXd
′
1(fX(A) : E|ρA,E) ≤ (4 +

√
v′
√
ε)M s/2e

1+s
2 φ( s

1+s |A|E|ρA,E) (47)

for s ∈ (0, 1], where v′ is the number of eigenvalues of TrAρ
1+s.

5 Asymptotic Evaluation

Next, we consider the case when our state is given by the n-fold independent
and identical state ρ, i.e., ρ⊗n. In this case, we focus on the optimal generation
rate
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G(ρA,E)

:= sup
{(fn,Mn)}

{

lim
n→∞

logMn

n

∣
∣
∣ lim
n→∞ d′1(fn(An) : En|(ρA,E)n) = 0

}

.

As is shown in [15,6], the amount is calculated to

G(ρ) = H(A|E|ρ). (48)

In order to treat the speed of this convergence, we focus on the exponentially
decreasing rate (exponent) of d′1(fn(A) : E|ρ⊗n) for a given R. Due to Lemma
12, when a function ensemble fXn from An to {1, . . . , �enR�} is ε(n)-almost
universal2 and ε(n) increases polynomially at most,

lim inf
n→∞

−1

n
log EXnd

′
1(fXn(An) : En|(ρA,E)⊗n) ≥ eφ,q(ρ

A,E |R), (49)

where

eφ,q(ρ
A,E |R) := max

0≤s≤1
−1 + s

2
φ(

s

1 + s
|ρA,E)− s

2
R

= max
0≤t≤ 1

2

− 1

2(1− t)
φ(t|ρA,E)− t

2(1− t)
R.

6 Conclusion

We have derived an upper bound of exponential decreasing rate for the leaked
information in the mutual information criterion and the universal composability
in the quantum case when we apply a family of ε-almost dual univeresal2 hash
functions for privacy amplification. Although the class of families of ε-almost
dual univeresal2 hash functions larger than the class of families of univeresal2
linear hash functions, our bounds is quite similar to the known bound [11,12].
Hence, the obtained result suggests a possibility of the existence of an effective
privacy amplification protocol with a smaller complexity than known privacy
amplification protocols.
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