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Abstract. We introduce a new family of quantum secret sharing pro-
tocols with limited quantum resources which extends the protocols pro-
posed by Markham and Sanders [14] and Broadbent, Chouha, and Tapp
[2]. Parametrized by a graph G and a subset of its vertices A, the proto-
col consists in: (i) encoding the quantum secret into the corresponding
graph state by acting on the qubits in A; (ii) use a classical encoding to
ensure the existence of a threshold. These new protocols realize ((k, n))
quantum secret sharing i.e., any set of at least k players among n can re-
construct the quantum secret, whereas any set of less than k players has
no information about the secret. In the particular case where the secret
is encoded on all the qubits, we explore the values of k for which there
exists a graph such that the corresponding protocol realizes a ((k, n))
secret sharing. We show that for any threshold k ≥ n − n0.68 there ex-
ists a graph allowing a ((k, n)) protocol. On the other hand, we prove
that for any k < 79

156
n there is no graph G allowing a ((k, n)) protocol.

As a consequence there exists n0 such that the protocols introduced by
Markham and Sanders in [14] admit no threshold k when the secret is
encoded on all the qubits and n > n0.

Keywords: Quantum Cryptography, Secret Sharing, Graphs, Graph
States.

1 Introduction

Secret sharing schemes were independently introduced by Shamir [20] and Blak-
ley [1] and extended to the quantum case by Hillery [10] and Gottesman [4,7]. A
quantum secret sharing protocol consists in encoding a secret into a multipartite
quantum state. Each of the players of the protocol has a share which consists of
a subpart of the quantum system and/or classical bits. Authorized sets of play-
ers are those that can recover the secret collectively using classical and quantum
communications. A set of players is forbidden if they have no information about
the secret. The accessing structure is the description of the authorized and for-
bidden sets of players. The encrypted secret can be a classical bit-string or a
quantum state.

A threshold ((k, n)) quantum secret sharing protocol [10,4,7] is a protocol by
which a dealer distributes shares of a quantum secret to n players such that any
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subset of at least k players is authorized, while any set of less than k players
is forbidden. It is assumed that the dealer has only one copy of the quantum
secret he wants to share. A direct consequence of the no-cloning theorem [22]
is that no ((k, n)) quantum secret sharing protocol can exists when k ≤ n

2
– otherwise two distinct sets of players can reconstruct the secret implying a
cloning of the quantum secret. On the other hand, for any k > n

2 a ((k, n))
protocol has been introduced in [4] in such a way that the dimension of each
share is proportional to the number of players. The unbounded size of the share is
a strong limitation of the protocol, as a consequence several schemes of quantum
secret sharing using a bounded amount of resources for each player have been
introduced [14,2,13]. In [14] a quantum secret sharing scheme using particular
quantum states, called graph states, and such that every player receives a single
qubit, has been introduced. The graph-state-based protocols are also of interest
because graph states are at the forefront in terms of implementation and have
emerged as a powerful and elegant family of entangled states [9,21].

Only few threshold quantum secret sharing schemes have been proved in the
literature to be achievable using graph states: ((3, 5)) can be done using a C5

graph (cycle with 5 vertices) [14], and for any n, an ((n, n)) protocol using the
complete graph can be done, up to some constraints on the quantum secret [15].
Independently [2] introduced an ((n, n)) protocol for any n. This protocol is
based on the GHZ state [8] which is locally equivalent to a complete graph state
[9].

We introduce a new family of secret sharing protocols using graph states.
Like in [14] the quantum secret is encoded into a graph state shared between
the players, but in order to obtain threshold protocols, an additional round is
added to the protocol. This round consists in encrypting the quantum secret
with a classical key which is then shared between the players using a classical
secret sharing protocol. This technique extends the one presented in [2] in which
the secret is partially encrypted and then shared using a fixed quantum state,
namely the GHZ state which is equivalent to the complete graph state. The
technique which consists in encrypting the quantum secret before to encode it
into a larger state is also used in [16] in such a way that some players have a
classical share but no quantum share.

The family of protocols we introduce in the present paper is parametrized by
a pair (G,A) where G = (V,E) is a graph and A is a non empty set of vertices of
the graph. We explore the possible values of k for which there exists a pair (G,A)
leading to a ((k, n)) protocol. One of our main results is to introduce an infinite
family of graphs which can realize any ((k, n)) protocol when k > n−n0.68. This
result proves that graph states secret sharing can be used not only for ((n, n))
protocols, but also for any threshold larger than n−n0.68. The second main result
of the paper is the proof that there is no graph G such that (G, V ) realizes a
((k, n)) protocols when k < 79

156n. This lower bound also applies in the protocol
introduced by Markham and Sanders. Moreover, it suggests that secret sharing
protocols with a threshold closed to half of the players cannot be achieve with
shares of bounded size.
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In terms of communication complexity, the protocols we introduce use a max-
imal share of one qubit and two classical bits (using an ideal classical secret
sharing scheme) for a one-qubit secret. In the literature, upper bounds for the
information rate (size of the secret divided by the the size of the largest share)
for general accessing structures have been derived in [18] and the analysis of
different access structures have been studied in [19]. Independently, a hybrid
classical-quantum construction of quantum secret sharing has been recently pro-
posed in [6] where they optimize the quantum communication complexity when
the size of the secret is greater than the number of players, and as a consequence,
when the size of the shares is unbounded.

This paper is organized as follows. First, we present the schemes for sharing a
classical (cQSS) or quantum (qQSS) secret using graph states as defined in [14].
We show that these cQSS protocols are perfect (every set of players is either
authorized or forbidden), and we provide a graphical characterization of the
accessing structures for both cQSS and qQSS protocols. Then, we extend these
protocols and define a new family of perfect quantum secret sharing protocol
(qQSS*). Finally, we prove upper and lower bounds for qQSS* threshold schemes:
in section 3 we build a family of protocols that realize any ((k, n)) threshold
scheme for k > n−n0.68; and in section 4, we prove that no qQSS* protocol can
realize ((k, n)) threshold scheme for k < 79

156n. As a consequence, we derive an
impossibility result for the existence of qQSS protocols.

2 Graph State Secret Sharing

2.1 Sharing a Classical Secret Using a Graph State

For a given graph G = (V,E) with vertices v1, . . . , vn, the corresponding graph
state |G〉 is a n-qubit quantum state defined as

|G〉 = 1√
2n

∑

x∈{0,1}n

(−1)q(x) |x〉 (1)

where q(x) is the number of edges in the induced subgraphG(x) = ({vi ∈ V | xi =
1}, {(vi, vj) ∈ E | xi = xj = 1}).

Graph states have the following fundamental fixpoint property: given a graph
G, for any vertex u ∈ V ,

XuZN(u) |G〉 = |G〉 (2)

where N(u) is the neighborhood of u in G, X = |x〉 �→ |x̄〉, Z = |x〉 �→ (−1)x |x〉
are one-qubit Pauli operators and ZA =

⊗
u∈A Zu is a Pauli operator act-

ing on the qubits in A. As a consequence, for any subset D ⊆ V of vertices,⊗
u∈D XuZN(u) |G〉 = |G〉. Since X and Z anti-commute and Z2 = X2 = I,

(−1)|D∩Odd(D)|XDZOdd(D) |G〉 =
⊗

u∈D

XuZN(u) |G〉 = |G〉 (3)
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where Odd(D) := {v ∈ V s.t. |N(v)∩D| = 1 mod 2} is the odd neighborhood of
D. On occasion use of the graphG as subscript (NG, OddG) will avoid ambiguity.

We study a family of quantum protocols for sharing a classical secret (cQSS)
parametrized by a graph G and a non empty subset A of the vertices of the
graph. This family of protocols has been introduced in [14]. Obviously, sharing
a classical bit can be done using a classical scheme, like [20], instead of using
a quantum state. It has been shown recently this family of cQSS protocols can
be simulated by purely classical schemes [11]. However, the study of the cQSS
protocols, and in particular the characterization of their accessing structure (see
corollary 1) are essential for the next sections where the sharing of a quantum
secret is considered.

To share a classical secret s ∈ {0, 1} between n players, the dealer prepares
the state |Gs〉 = Zs

A |G〉 where |G〉 is a graph state on n qubits, Z0
A is the identity

and Z1
A consists in applying the Pauli operator Z on each qubit of A. The dealer

sends each player i the qubit qi of |Gs〉. Regarding the reconstruction of the
secret, a set B of players can recover the secret if and only if tr(ρB(0)ρB(1)) = 0,
i.e. if the set of players can distinguish perfectly between the two states ρB(0)
and ρB(1), where ρB(s) = trV \B(|Gs〉 〈Gs|) is the state of the subsystem of the
players in B. On the other hand, a set B of players has no information about
the secret if and only if ρ(0) and ρ(1) are indistinguishable, i.e. ρ(0) = ρ(1).

Sufficient graphical conditions for a set to be authorized or forbidden have
been proved in [12]:

Lemma 1 ([12]). Given a cQSS protocol (G,A), for any B ⊆ V ,
– If ∃D ⊆ B s.t. D ∪Odd(D) ⊆ B and |D ∩A| = 1 mod 2 then B is authorized.
– If ∃C ⊆ V \B s.t. Odd(C) ∩B = A ∩B then B is forbidden.

According to the previous lemma, for a given set of players B ⊆ V , if ∃D ⊆ B
s.t. D∪Odd(D) ⊆ B and |D∩A| = 1 mod 2 then B can recover the secret. More
precisely, the players in B perform a measurement of their qubits according to the
observable (−1)|D∩Odd(D)|XDZOdd(D). This measurement produces a classical
outcome s ∈ {0, 1} which is the reconstructed secret [12].

We prove that the sufficient graphical conditions are actually necessary con-
ditions, and that the cQSS protocols are perfect, i.e. any set of players is either
authorized or forbidden.

Theorem 1. Given a graph G = (V,E) and A ⊆ V , for any B ⊆ V , B satisfies
exactly one of the two properties:
i. ∃D ⊆ B,D ∪Odd(D) ⊆ B and |D ∩A| = 1 mod 2
ii. ∃C ⊆ V \B,Odd(C) ∩B = A ∩B

Proof. For a given B ⊆ V , let ΓB be the cut matrix induced by B, i.e. the sub-
matrix of the adjacency matrix Γ of G such that the columns of ΓB correspond
to the vertices in B and its rows to the vertices in V \ B. ΓB is the matrix
representation of the linear function which maps every X ⊆ B to ΓB.X =
Odd(X) ∩ (V \ B), where the set X is identified with its characteristic column
vector. Similarly, ∀Y ⊆ V \B, ΓV \B.Y = Odd(Y )∩B where ΓV \B = Γ T

B since Γ
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is symmetric. Moreover, notice that for any set X,Y ⊆ V , |X∩Y | mod 2 is given
by the matrix product Y T .X where again sets are identified with their column

vector representation. Equation (i) is satisfied iff ∃D s.t.
(

(A∩B)T

ΓB

)
.D =

(
1
0

)

which is equivalent to rank
(

(A∩B)T

ΓB

)
= rank

(
(A∩B)T | 1

ΓB | 0

)
= rank

(
0 | 1

ΓB | 0

)
=

rank(ΓB) + 1. Thus (i) is true iff π(B) = 1 where π(B) := rank
(

(A∩B)T

ΓB

)
−

rank(ΓB). Similarly equation (ii) is satisfied iff ∃C s.t. ΓV \B.C = A ∩ B iff
rank(ΓV \B |A ∩ B) = rank(ΓV \B). Thus (ii) is true iff π(B) = 0. Since for any
B ⊆ V , π(B) ∈ {0, 1} it comes that either (i) is true or (ii) is true. �

Corollary 1. Given a graph G = (V,E), the cQSS protocol (G,A) is perfect
and

B is authorized ⇔ ∃D ⊆ B,D ∪Odd(D) ⊆ B and |D ∩ A| = 1 mod 2
B is forbidden ⇔ ∃C ⊆ V \B,Odd(C) ∩B = A ∩B

2.2 Sharing a Quantum Secret

Following [14], the cQSS protocols are extended to qQSS schemes for sharing
a quantum secret |φ〉 = α |0〉 + β |1〉. Given a graph G and A a non empty
subset of vertices, the dealer prepares the quantum state |Gφ〉 = α |G0〉+β |G1〉.
Notice that the transformation |φ〉 �→ |Gφ〉 is a valid quantum evolution – i.e.
an isometry – whenever |G0〉 is orthogonal to |G1〉 which is guaranteed by A �=
∅. Then, the dealer sends each player i the qubit qi of |Gφ〉. Regarding the
reconstruction of the secret, it has been proved in [14], that a set B of players can
recover the quantum state |φ〉 if and only if B can reconstruct a classical secret
in the two cQSS protocols (G,A) and (GΔA,A), where GΔA = (V,EΔ(A×A))
and XΔY = (X ∪ Y ) \ (X ∩ Y ) is the symmetric difference. In other words
GΔA is obtained by complementing the edges of G incident to two vertices in
A. We introduce an alternative characterization of authorized sets of players
(those who are able to reconstruct a quantum secret) which does not involved
the complemented graph GΔA:

Theorem 2. Given a graph G = (V,E), a set B of players is authorized in the
qQSS protocol (G,A) if and only if B is authorized and V \ B is forbidden in
the protocol cQSS (G,A).

Proof. First notice that for any X , if |X ∩ A| = 1 mod 2 then OddGΔA(X) =
OddG(X)ΔA. Thus for any X,Y , if |X ∩ A| = 1 mod 2, OddGΔA(X) ∩ Y =
∅ ⇐⇒ (OddG(X)ΔA) ∩ Y = ∅ ⇐⇒ (OddG(X) ∩ Y )Δ(A ∩ Y ) = ∅ ⇐⇒
OddG(X) ∩ Y = A ∩ Y .
(⇒) Assume that B can reconstruct the quantum secret, so B can reconstruct
the classical secret in GΔA. Thus ∃D ⊆ B s.t. OddGΔA(D) ∩ (V \ B) = ∅. Ac-
cording to the previous remark, it implies that OddG(D)∩V \B = A∩ (V \B),
so V \B cannot reconstruct the secret.
(⇐) Assume V \ B cannot recover the classical secret and B can. So ∃C ⊆ B
s.t. OddG(C) ∩ B = A ∩ B. If |C ∩ A| is even, let C′ := CΔD where |D ∩ A|
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is odd and OddG(D) ∩ B = ∅. Such a set D exists since B can reconstruct
the classical secret in G. If |C ∩ A| is odd, then let C′ := C. In both cases,
|C′ ∩ A| = 1 mod 2 and OddG(C

′) ∩ B = A ∩ B, so according to the previ-
ous remark, OddGΔA(C

′) ∩ B = ∅, as a consequence B is authorized secret
in GΔA. �

In any pure quantum secret sharing protocol a set of players can reconstruct a
quantum secret if and only if its complement set of players has no information
about the secret (see [7]). As a consequence:

Corollary 2. Given a qQSS protocol (G,A), a set B of players is forbidden if
and only if B is forbidden and V \B is authorized in the protocol cQSS (G,A).

Sets of players that can reconstruct the secret and those who have no information
about the secret admit simple graphical characterisation thanks to the simple
reduction to the classical case. However, unlike the cQSS case, there is a third
kind of set players, those who can have some information about the secret but not
enough to reconstruct the secret perfectly. For instance for any n > 1 consider
the qQSS protocol (Kn, {v1, . . . , vn}) where Kn is the complete graph on the n
vertices v1, . . . vn. For any set B of vertices s.t. |B| �= 0 and |B| �= n, both B and
V \B cannot reconstruct a classical secret in the corresponding cQSS protocol,
so B cannot reconstruct the quantum secret perfectly but has some information
about the secret.

Corollary 3. Given a graph G = (V,E), the qQSS protocols (G,A) and
(GΔA,A) have the same accessing structure. In particular, the protocols (G, V )
and (G, V ) have the same accessing structure, where G is the complement graph
of G.

2.3 Threshold Schemes

Given a graph G = (V,E) on n vertices and a non empty A ⊆ V , the accessing
structures of the qQSS protocol (G,A) can be characterized. For secret sharing
protocols, it is often interesting to focus on ((k, n)) threshold protocols. In [7], it
has been proved that if the dealer is sending a pure quantum state to the players,
like in the qQSS protocols, then the threshold, if there exists, should be equal
to n+1

2 where n is the number of players. This property which is derived from
the no-cloning theorem, is very restrictive. It turns out that there is a unique
threshold for which a qQSS protocol is known. This protocol is a ((3,5)) scheme
using as graph the cycle graph on 5 vertices. However, in general a qQSS protocol
corresponds to a ramp secret sharing scheme [17] where any set of players smaller
than n− k is forbidden and any set greater than k is authorized.

In this section we show how these ramp schemes can be turned into threshold
schemes by adding a classical secret sharing round. First we define graphical
properties that are used to characterize the access structures, then we prove
that it is possible to build quantum threshold schemes by defining the protocols
qQSS* that encodes the quantum secret in a subset of vertices A. Finally we
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motivate the analysis of the case where the secret is encoded on all the vertices
by giving a reduction from the general case where A is an arbitrary non empty
subset of vertices.

Definition 1. Given a graph G = (V,E) of order n and A ⊆ V a non empty
subset of vertices. Let κQ(G,A) be the minimal 
 such that for any B ⊆ V , if
|B| > 
 then ∃CB , DB ⊆ B such that: |DB ∩ A| = 1 mod 2, Odd(DB) ⊆ B and
Odd(CB) ∩B = A ∩B. We also define κQ(G,A) = n− κQ(G,A).

Theorem 3. Given a graph G over n vertices, a non empty subset of vertices
A, and an integer k > κQ(G,A), there exists an ((k + c, n+ c)) quantum secret
sharing protocol for any c ≥ 0 in which the dealer sends one qubit to n players
and uses a (k+ c)-threshold classical secret sharing scheme on the n+ c players.

The rest of the section is dedicated to define a family of protocols called qQSS*
satisfying the theorem.

Inspired by the work of Broadbent, Chouha and Tapp [2], we extend the qQSS
scheme adding a classical reconstruction part. In [2], a family of unanimity – i.e.
the threshold is the number of players – quantum secret sharing protocols have
been introduced. They use a GHZ state which is equivalent to the graph state
|Kn〉 where Kn is the complete graph on n vertices. We extend this construction
to any graph, using also a more general initial encryption of the quantum secret.

Quantum Secret Sharing with Graph States and Classical Recon-
struction (qQSS*). Given a graph G = (V,E), a non empty A ⊆ V ,
and k > κQ(G,A), suppose the dealer wishes to share the quantum secret
|φ〉 = α |0〉+ β |1〉.
– Encryption. The dealer chooses uniformly at random bx, bz ∈ {0, 1}. and

apply XbxZbz on |φ〉.The resulting state is |φ′〉 = α |bx〉+ β(−1)bz
∣∣bx

〉
.

– Graph State Embedding. The dealer embeds |φ′〉 to the n-qubit state
α |Gbx〉+ β(−1)bz |Gbx

〉.
– Distribution. The dealer sends each player i the qubit qi. Moreover using

a classical secret sharing scheme with a threshold k, the dealer shares the
bits bx, bz.

– Reconstruction. The reconstruction of the secret for a set B of players s.t.
|B| ≥ k is in 3 steps: first the set DB such that D∪Odd(D) ⊆ B and |D∩A|
is odd, is used to add an ancillary qubit and put the overall system in an
appropriate state; then CB such that Odd(C) ∩ (V \ B) = A ∩ (V \ B), is
used to disentangled the ancillary qubit form the rest of the system; finally
the classical bits bx and bz are used to recover the secret:

– (a) The players in B applies on their qubits the isometry UDB := |0〉 ⊗
P0 + |1〉⊗P1 where Pi are the projectors associated with observable ODB =

(−1)|DB∩Odd(DB)|XDBZOdd(DB), i.e. Pi :=
I+(−1)iODB

2 . The resulting state

is α |bx〉 ⊗ |Gbx〉+ β.(−1)bz
∣∣bx

〉⊗ |Gbx
〉.

– (b) The players in B apply the controlled unitary map ΛVCB
= |0〉 〈0| ⊗

I + |1〉 〈1| ⊗ VCB , where VC := (−1)|C∩Odd(C)|XCZOdd(C)ΔA. The resulting

state is α |bx〉 ⊗ |G〉+ β.(−1)bz
∣∣bx

〉⊗ |G〉 = (
α |bx〉+ β.(−1)bz

∣∣bx
〉)⊗ |G〉.
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– (c) Thanks to the classical secret sharing scheme, the players in B recover
the bits bx and bz. They apply Xbx and then Zbz for reconstructing the
quantum secret α |0〉+ β |1〉 on the ancillary qubit.

Note that this reconstruction method can be used for the qQSS protocols defined
in [12] and for which the reconstruction part was not explicitly defined.

Lemma 2. Given a graph G = (V,E), a non empty A ⊆ V , and k > κQ(G,A),
the corresponding qQSS* protocol is a ((k, n)) secret sharing protocol, where
n = |V |.
Proof. The classical encoding ensures that any set of size smaller then k is forbid-
den. ODB is acting on the qubits DB∪Odd(DB) ⊆ B. Moreover Pi |Gs〉 = |Gs〉 if
i = s and 0 otherwise, so the application of the isometry UDB produce the state
α |bx〉 ⊗ |Gbx〉 + β.(−1)bz

∣∣bx
〉 ⊗ |Gbx

〉. Regarding step b of the reconstruction,
since Odd(C)∩ (V \B) = A∩ (V \B), C ∪ (Odd(C)ΔA) ⊆ B, so VC is acting on
the qubits in B. Moreover VC produces the states

(
α |bx〉+ β.(−1)bz

∣∣bx
〉)⊗|G〉.

Finally the classical secret scheme guarantees that the players in B have access
to bx and bz so that they reconstruct the secret. �

Proof of Theorem 3. The correctness of the qQSS* protocol implies that
given a graph G = (V,E) of order n, a non empty A ⊆ V , and k > κQ(G,A),
the corresponding qQSS* protocol is a ((k, n)) secret sharing protocol. In order
to finish the proof of Theorem 3 this protocol is turned into a ((k + c, n + c))
protocol for any c ≥ 0. The qQSS* protocol is modified as follows, following the
technique used in [16]. During the distribution stage, the dealer shares bx and bz
with all the n+ c players with a threshold k+ c, but sends a qubit of the graph
state to only n players chosen at random among the n + c players. During the
reconstruction, a set of k + c players must contain at least k players having a
qubit. These k players use the reconstruction steps (a) and (b) and then the last
step (c) is done by all the k + c players. �
In the next sections, we focus on the protocols of the form (G, V ), where G =
(V,E). This restriction is motivated by the fact that, for any (G,A), there exists
a graph G′ = (V ′, E′) such that κQ(G

′, V ′) = κQ(G,A). In other words:

Theorem 4. If (G,A) realizes a ((k, n)) qQSS* protocol, then there exists G′ =
(V ′, E′) such that (G′, V ′) realizes a ((k + 
, n+ 
)) qQSS* protocol, where 
 =
2n− 2k + 1.

Proof. Let G′ = (V ′, E′) be the graph G = (V,E) augmented with an indepen-
dent set X of size n− k and a clique Y of size n− k+1, such that every vertex
in Y is connected to the all the vertices in X ∪ (V \A).

Let B ⊆ V ′ s.t. |B| = 2n − k + 1. Since |B ∩ V | ≥ k, ∃C,D ⊆ B ∩ V s.t.
|D ∩ A| = 1[2], Odd(D) ∩ V ⊆ B ∩ V , and (Odd(C) ∩ V ′ \ B) ∩ V = (A ∩
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V ′ \ B) ∩ V . We construct C′, D′ ⊆ V ′ s.t. |D′| = 1 mod 2, Odd(D′) ⊆ B and
Odd(C′) ∩ V ′ \B = V ′ \B as follows:

– if |D| = 1 mod 2 then |D ∩ V ′ \A| = 0[2] so Odd(D) ∩ Y = ∅, thus D′ := D.
– if |D| = 0 mod 2 and B ∩ X �= ∅, then Y ⊆ Odd(D) and for any x ∈ X ∩ B,
Odd(D ∪ {x}) = Odd(D)ΔN(x) ⊆ B, so D′ := D ∪ {x}.
– if |D| = 0 mod 2 and B ∩ X = ∅, then B = V ′ \ X , so for any u ∈ V ,
Odd({u}) ⊆ B, thus D′ := {u}.
– if |C| = 0 mod 2 then Odd(C) ∩ V ′ \B = A ∩ V ′ \B, thus for any y ∈ Y ∩B,
Odd(C ∪ {y}) ∩ V ′ \B = V ′ \B, so C′ := C ∪ {y}.
– if |C| = 1 mod 2 and X ∩ B �= ∅ then for any (x, y) ∈ (X ∩ B) × (Y ∩ B),
Odd(C ∪ {x} ∪ {y}) ∩ V ′ \B = V ′ \B, so C′ := C ∪ {x} ∪ {y}.
– if |C| = 1 mod 2, and X ∩ B = ∅ then V ′ \ B = X , so for any y ∈ Y ,
Odd({y}) ∩ V ′ \B = V ′ \B, so C′ := {y}. �

In the following, for any G = (V,E), we consider protocols of the form (G,A)
where A = V , as a consequence A is omitted in the notations e.g., κQ(G) (resp.
κQ(G)) denotes κQ(G, V ) (resp. κQ(G, V )).

3 Building ((n − n0.68, n))-qQSS* Protocols

We give a construction of an infinite family of quantum secret sharing schemes

((k, n)) where k = n− n
log(3)
log(5) < n− n0.68. To achieve this, we build a family of

graphs Gi such that, for all i, κQ(Gi) ≥ n0.68, where n is the order of Gi. This
construction can be defined recursively from cycle over 5 vertices (C5) which
has been used in Markham and Sanders [14] to build a ((3,5)) quantum secret
sharing protocol.

We recall the definition of the lexicographic product • between two graphs.
Given G1 = (V1, E1) and G2 = (V2, E2), G1 • G2 = (V,E) is defined as V :=
V1×V2 and E := {((u1, u2), (v1, v2)) | (u1, v1) ∈ E1 or (u1 = v1∧(u2, v2) ∈ E2)}.
In other terms, the graph G is a graph G1 which vertices are replaced by copies
of the graph G2, and which edges are replaced by complete bipartitions between
two copies of the graph G2.

Lemma 3. For any two graphs G1, G2, κQ(G1 •G2) ≥ κQ(G1).κQ(G2).

Proof. First we show that for any set B ⊆ V of size k with k = n1n2 −
κQ(G1)κQ(G2)+1 there exists a set DB such that |DB| = 1 mod 2, Odd(DB) ⊆
B. For any set B ⊆ V and any vertex v1 ∈ V , let B2(v1) = {v2 ∈
V2 s.t. (v1, v2) ∈ B} and B1 = {v1 ∈ V1 s.t. |B2(v1)| > κQ(G2)}. We
claim that for all set B ⊆ V of size |B| = k, the size of the set B1 verifies
|B1| > κQ(G1). By contradiction, notice that B =

⋃
v2∈B2(v1),v1∈V1

{(v1, v2)}.
Therefore: |B| = |V | − ∑

v1∈B1
|V2 \ B2(v1)| −

∑
v1∈V1\B1

|V2 \ B2(v1)|. Thus
|B| ≤ n1n2 − |V1 \ B1|.κQ(G2) ≤ k − 1 if |B1| < κQ(G1). Now we consider
any set B ⊆ V of size |B| = k. As |B1| ≥ k1, there exists a set D1 ⊆ B1

with |D1| = 1 mod 2 and D1 ∪ Odd(D1) ⊆ B1. Furthermore for any v1 ∈ B1,
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|B2(v1)| > κQ(G2) and thus there exists D2(v1) ⊆ B2(v1)) with |D2(v1)| =
1 mod 2 and D2(v1) ∪ Odd(D2(v1)) ⊆ B2(v1) and there exist C2(v1) ⊆ B2(v1)
with V2 \ B2(v1) ⊆ Odd(C2(v1))). Let C0

2 (v1) = C2(v1) if |C2(v1)| = 0 mod 2
and C0

2 (v1)ΔD2(v1) otherwise, and let C1
2 (v1) = C0

2 (v1)ΔD2(v1). We partition
V1 in 4 subsets and define for any vertex v1 a set S2(v1) ⊆ V2 as follows

⎧
⎪⎪⎨

⎪⎪⎩

If v1 ∈ D1 ∩ (V1 \Odd(D1)) , S2(v1) = D2(v1)
If v1 ∈ D1 ∩Odd(D1) , S2(v1) = C1

2 (v1))
If v1 ∈ V1 \ (D1 ∩ (V1 \Odd(D1))) , S2(v1) = ∅

If v1 ∈ V1 \ (D1 ∩Odd(D1)) , S2(v1) = C0
2 (v1)

Consider the set DB =
⋃

v1∈V1
{v1} × S2(v1), DB ⊆ B

and |DB| =
∑

v1∈D1∩(V1\D1)
|D2(v1)| +

∑
v1∈D1∩Odd(D1)

|C1
2 (v1)|

+
∑

v1∈V1\D1∩Odd(D1)
|C0

2 (v1)|. Therefore |DB| = |D1| = 1 mod 2. For

each v = (v1, v2) ∈ V \ B, |NG(v) ∩DB| = |NG2(v2) ∩ S2(v1)| +∑
u1∈NG1 (v1)

|S2(u1)|. If v1 ∈ V1 \ D1, then |S2(v1)| = 0 mod 2, thus

|NG(v) ∩DB| = |NG2(v2) ∩ S2(v1)| + |NG1(v1) ∩D1| mod 2. Furthermore,
if v1 ∈ V1 \ D1, |NG2(v2) ∩ S2(v1)| = |NG1(v1) ∩D1| = 0 mod 2 and if
v1 ∈ Odd(D1), |NG2(v2) ∩ S2(v1)| = |NG1(v1) ∩D1| = 1 mod 2. Therefore
|NG(v) ∩DB| = 0 mod 2 which implies that DB ∪Odd(DB) ⊆ B. Furthermore,
we use the property of the lexicographic product G1 •G2 = G1 • G2. From
Corollary 3 and Theorem 3, κQ(G1) = κQ(G1) and κQ(G2) = κQ(G2).
Therefore, in G1 •G2 there exists a set D′

B such that its odd neighborhood
in the complementary graph satisfies OddG1•G2

(D′
B) ∩ V \ B = ∅ thus

OddG1•G2(D
′
B) ∩ V \B = V \B and D′

B is a valid CB (as used in Definition 1)
to define an ((k, n)) qQSS* protocol. �
Theorem 5. For all i ∈ N

∗, the graph C5
•i = C5 • C5 • · · · • C5︸ ︷︷ ︸

i times

realizes a

((n, n− n
log(3)
log(5) + 1)) protocol (with n = 5i).

C5
•i+1 =

C5
•i

C5
•i

C5
•iC5

•i

C5
•i

Proof. An induction from Lemma 3 gives κQ(C5
•i) ≥ κQ(C5)

i. Since κQ(C5) =
3, κQ(C5

•i) ≥ 3i. We have |C5
•i| = 5i, so, thanks to Theorem 3, the graph C5

•i

realizes a ((n− n
log(3)
log(5) + 1, n)) protocol (with n = 5i). �

4 Lower Bound

By the no-cloning theorem, this is not possible to get two separated copies of the
secret starting from only one copy. Thus, if we consider a quantum secret sharing
protocol with parameters ((k, n)) we must have k > n

2 . We derive here less trivial
lower bounds for the qQSS* protocols and for the qQSS protocols defined in [14].
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Lemma 4. If G = (V,E) realizes a qQSS* ((k, n)) protocol, then for any set
B ⊆ V of size k, there exists a set X ⊆ B such that |X | ≤ 2

3 (n− k + 1) and
either (X ∪Odd(X) ⊆ B and |X | = 1 mod 2) or B ⊆ Odd(X).

Proof. First, let ΓB ∈ Mk,n−k(F2) be a cut matrix of G corresponding to the
cut (B, V \ B). We can see ΓB as the linear map that maps a set D ⊆ B to its
odd neighborhood in V \ B: Consequently, any set D with D ∪ Odd(D) ⊆ B
corresponds to a linear combination of the columns of the matrix ΓB which
equals the null vector. Therefore, {D ⊆ B, D ∪ Odd(D) ⊆ B} = Ker(ΓB),
and t = dim(Ker(ΓB)) = k − dim(Im(ΓB)) ≥ 2k − n. As |XΔY | = |X | +
|Y | mod 2, the sets D1 = {D ⊆ B, |D| = 1 mod 2 and D ∪ Odd(D) ⊆ B}
and C1 = {C ⊆ B,C ∪ (V \ (C)) ⊆ B} are two affine subspaces having the
same vector subspace D0 = {D ⊆ B, |D| = 0 mod 2 and D ∪ Odd(D) ⊆ B}.
The dimension of D0 is t − 1, therefore, by gaussian elimination its exists a set
X0 ⊆ B, |X0| = t− 1 such that there exists sets C1 ∈ C1 and D1 ∈ D1 satisfying
X0 ∩ C1 = X0 ∩ D1 = ∅. Thus |C1 ∪ D1| ≤ k − t + 1 ≤ n − k + 1. Therefore
2|D1∪C1| = |D1|+ |C1|+ |D1ΔC1| ≤ 2(n− k+1) which implies that one of the
three sets have cardinality smaller than 2(n− k+1). as D1 ∪Odd(D1) ⊆ B and
|D1| = 1 mod 2, C1 ∪ (V \ Odd(C1)) ⊆ B and (D1ΔC1) ∪ (V \ (D1ΔC1)) ⊆ B
at least one of the has a cardinality smaller than 2(n− k + 1)/3 �

Using this lemma and a counting argument we prove the following lower bound:

Theorem 6. There exists no graph G that has a ((k, n)) qQSS* protocol with
k < n

2 + n
157 .

Proof. We consider a graph G = (V,E) which realizes a ((k, n)) secret sharing
protocol. Any set D ⊆ V , with |D| = 1 mod 2 satisfies |D ∪ Odd(D)| ≥ n −
k + 1, otherwise B = V \ (D ∪ Odd(D) of size greater than k would not be
authorized. Consequently, given a set D, with |D| = 1 mod 2, there exists at

most
(n−(n−k+1)
k−(n−k+1)

)
=

(
k−1

2k−n−1

)
sets B of size k containing D∪Odd(D). Similarly,

for any set C ⊆ V , |C ∪ (V \Odd(C))| ≥ n−k+1, otherwise B = Odd(C)\C of
size greater than k would not be authorized. Therefore, given a set C ⊆ V the
number of sets B of size k containing C and such that C ∪ (V \ Odd(C)) ⊆ B
is at most

(
k−1

2k−n−1

)
. With Lemma 4, each set B ⊆ V of size k contains either a

set D with D ∪Odd(D) ⊆ B of size odd or a set C with C ∪ (V \Odd(C)) ⊆ B
such that |D| ≤ 2

3 (n − k + 1) or |C| ≤ 2
3 (n − k + 1). Thus by counting twice

all the sets of cardinality smaller then 2
3 (n − k + 1) we can upper bound the

set of possible cuts of size k with
(
n
k

) ≤ 2
∑ 2

3 (n−k+1)
i=1

(
n
i

)(
k−1

2k−n−1

)
. The previous

inequality implies that k > n
2 + n

157 when n → ∞. �

The previous theorem directly implies that the protocols defined in [14] admit
no threshold k when the secret is encoded on all the qubits and the number of
players satisfies n > 79.

Corollary 4. For any graph G = (V,E) with |V | ≥ 79, (G, V ) is not a threshold
qQSS protocol.
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Proof. By Gottesman’s characterization [7] a qQSS protocol has a threshold
((k, 2k−1)). Moreover, k ≥ n/2+n/157 using the previous lower bound. There-
fore k ≤ 159/4 and the number of players n = 2k − 1 ≥ 79. �
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