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Abstract. The paper presents the approach aimed at building modularized 
knowledge bases in a systematic, context-aware way. The paper focuses on 
logical modeling of such knowledge bases, including an underlying SIM 
metamodel. The architecture of a comprehensive set of tools for knowledge-
base systems engineering is presented. The tools enable an engineer to design, 
create and edit a knowledge base schema according to a novel context approach 
presented elsewhere by the authors. It is explained how a knowledge base built 
according to SIM (Structured-Interpretation Model) paradigm is processed by a 
prototypical reasoner Conglo-S, which is a custom version of widely known 
Pellet reasoner extended with support for modules of ontologies called tarsets 
(also introduced elsewhere under the name of conglomerates). The user 
interface of the system is a plug-in to Protégé ontology editor that is a standard 
tool for development of Semantic Web ontologies. Possible applications of the 
presented framework to development of knowledge bases for culture heritage 
and scientific information dissemination are also discussed. 

Keywords: knowledge base, modularization, OWL API, ontology editor,  
reasoned. 

1 Introduction  

Knowledge bases grow bigger and bigger. The vast amount of information that has to 
be stored and managed in an intelligent way motivated intensive research in the field 
of management of large knowledge bases. One of the hot topics in this field is 
modularization of knowledge bases. In this chapter we present a method of 
modularization that we invented and intend to use in the SyNaT project (see the 
footnote of this page). The method is based on the notion of tarset (previously called 
“conglomerate”) that enables a system to manage a knowledge bases in pieces that 
themselves are (much smaller) knowledge bases. Tarsets can be seen as analogs to 
single relations or groups of relations in a relational database, that can be handled 
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separately (e.g. as views), or as a whole. Upon the structure of tarsets different logical 
structures of a knowledge base can be built. In this chapter we show how the 
contextual approach to design and management of a knowledge base can be realized 
using the tarset-based approach in order to obtain a semantically modularized 
knowledge base.    

This chapter is organized as follows. In the Section 2, that is the main contribution 
of this paper, we present theoretical background of our approach, with recall of basic 
notions that lie behind contexts and tarsets. We also introduce the concept of couplers 
that enable a system to interpret different logical dependencies between tarsets (e.g. 
contextual dependencies). This sections contains also an ontological metamodel for a 
tarset-aware knowledge base. In Section 3we present implementation aspects of our 
framework: an ontology editor especially suited to create and edit contextual 
ontologies, an important component of our framework that is the Conglo-S module 
which is a tarset-aware Description Logic reasoner that is able to interpret tarset 
algebra operators, and then the architecture of the framework that we build to 
implement the ideas presented in the previous sections. Both: Conglo-S and the editor 
use widely known open-source tools, extending them with facilities needed to support 
our approach. In Section 4 we discuss our attitude to application of the framework in 
the SyNaT project. Section 5 gives a comparison with other approaches to 
modularization of knowledge bases, which justifies our approach, and presents 
directions for future work. 

2 Basics: Underlying SIM Metamodel 

In this section we present our vision of what a modular knowledge base really is and 
how it should be utilized. Theoretical foundation for this is the theory of tarsets, 
presented in details in [1], [2], [3]. In the first subsection we recall some basic 
elements of this theory. In the next subsection we introduce the notion of a modular 
knowledge base schema. Then we present the SIM (Structured-Interpretation Model) 
and discuss some problems connected with designing SIM knowledge bases. 

We assume familiarity of the reader with basic assumptions of Description Logics. 
From among less widely used terms we exploit the notion of vocabulary (aka. 
signature), which is a triple (C, R, I) consisting of sets of names of concepts (C), roles 
(R), and individuals (I) respectively. We assume that every Tarski-style interpretation 
of a vocabulary assigns each concept name a subset of a domain, each role a set of 
pairs of domain elements, and each individual name an element of a domain. 

2.1 Theory of Tarsets 

The theory of tarsets was already presented [4]. Here we recall only some of its 
properties important for the rest of the paper. A knowledge base is defined as a freely 
chosen subset of the set of all possible tarsets K. An element of this set, a tarset M, is 
defined as a pair (S, W) of a vocabulary S and a set W containing all intended models 
of S. Using S(M) and W(M) we describe the two parts of a tarset M. “Intended 
models” mean the models of S which are allowed by the creator of a given tarset. 
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Tarsets are semantic modules and are defined in a way which disregards the exact 
form of a language (like DL). They focuses only on (Tarski-style) interpretations. 
However, the only known way to describe them is a language. So we say that a tarset 
satisfies a particular sentence α, denoted M £ α, iff ∀I ∈ W(M): I £ α. Now we can 

regard a tarset M as a representation of an ontology, defined as a set of sentences, 
whose all of the sentences are satisfied by every interpretation contained in W(M). 

The tarsets contained by the set K are related to each other. There exists a way to 
describe these relationships. The theory defines an algebra of tarsets allowing to cover 
some of them. We can perceive the operations of the algebra as predicates describing 
relations between tarsets or as functions producing new tarsets from old ones. The list 
of the operations is as follows: 

Intersection: M1 ' M2 = (S(M1) ( S(M2), W(M1) ' W(M2)) 
Union: M1 ( M2 = (S(M1) ( S(M2), W(M1) ( W(M2)) 
Difference: M1 - M2 = (S(M1) ( S(M2), W(M1) - W(M2)) 
Renaming: ργ(M) = (γ(S(M)), γ(W(M))) 
Projection: πS(M) = (S, {I|S: I œ W(M)}) 

Selection: σα(M) = (S(M), {I œ W(M): I £ α}) 

Intersection, union and difference are obvious. Renaming ργ involves a function γ 
giving a new name a’ to an element a of S(M) and assigning all interpretations of a to 
a’ in W(M). Projection πS changes the vocabulary S(M) into S and cuts the 
interpretation in W(M) in the way that all relationships between original concepts, 
roles, and individuals whose names remain in the vocabulary are preserved. Selection 
σα leaves in W(M) only the interpretation satisfying the sentence α. 

Using the algebra we can manipulate our knowledge base by producing new 
modules (or choosing them from K) and in this way changing the state of the base. 

2.2 Knowledge Base Schema 

From the engineer’s point of view such a definition of a knowledge base, as presented 
above, is insufficient. A properly defined engineer’s methodology should allow to 
constrain users in their activities during all stages of a system’s life. There are some 
essential questions a designer should answer during the design stage: 

• Which modules are removable, and which are not? 
• Which modules are unchangeable? 
• What relationships exist between modules? 
• Which relationships are removable, and which are not? 
• How to create new modules and new relationships? 

All above questions are very important but they take into account only the technical 
aspect of the knowledge base dynamics. Equally important is the semantic aspect: 
how those activities correspond to the semantics of the modeled problem: 
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• What does a module to be added represent? 
• What is the meaning of a relationship between  two modules? 
• What do our actions mean (from semantic point of view) when we add or remove a 

module/relationship? 
• Why some of the modules/relationships are removable and some are not? 
• Why some of the modules should be unchangeable? 

To address these problems we decided to define a knowledge base schema and a 
knowledge base instance. Generally speaking, a knowledge base instance is its state. 
Every time a user changes something in a knowledge base he/she produces its new 
instance. A knowledge base schema is a set of constraints imposing restrictions on 
users’ activities. From another point of view a schema is a description which 
categorizes modules and relationships between modules. By creating this description 
a designer explains semantics of modules and relationships. 

2.2.1   Expressions, Equalities and Inequalities  
In order to make clear what a schema is, it is necessary to introduce some new 
notions. The first is a tarset algebra expression. The definition bases on the fact that 
the operations of the algebra produce new tarsets from old ones. 

Definition 1 (tarset algebra expression) 
An expression of the tarset algebra for the domain D is a formula of the form: F, G := 
F ( G | F ' G | F – G | πS(F) | ργ(F) | σα(F) | d, where S, γ, α and d respectively mean 
a vocabulary, a renaming function, a sentence and an element of D. É 

The simplest choice of D is a subset of K. It is the only situation where we can 
perceive an expression as a complex operation producing a tarset as a result. 

The other domains are also very useful, e.g. a set of tarset variables. A tarset 
variable can be a name chosen from a set of allowed variable names (the set is defined 
by a specific implementation), which has to be assigned a value from K during the 
instantiation process. The symbol |v| means a value assigned to the variable v. 

In order to define equality and inequality of tarsets, we assume that every tarset is 
reduced. A reduced tarset is a tarset whose vocabulary and set of models are also 
reduced. A reduced vocabulary [S(M)] is a vocabulary S(M) modified by removing all 
words with unrestricted meaning accordingly to all interpretations from W(M) (i.e. 
such words x for which M = πS(M)(πS(M) – {x}(M))). Then a reduced set of models 
[W(M)] is produced from W(M) by projection to the reduced vocabulary. 

Such an assumption facilitates comparing tarsets because it allows for neglecting 
insignificant differences between vocabularies. A greater tarset is simply a tarset with 
greater set of models (i.e. M1 > M2 ‹ W(M1) û W(M2)). Moreover, with this 
assumption, it is easy to define an empty tarset, which is the only one in the space of 
reduced tarsets and has the form M0 = {¯, ¯}. 

Now we can define predicative expressions: tarset equality and inequality: 
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Definition 2 (tarset equality and inequality) 
An algebraic equality of tarsets for a domain D (a tarset equality) is a formula of the 
form: F = G, and an algebraic inequality of tarsets is a formula of the form F > G, F < 
G, F ≥ G or F ≤ G, where F, G are expressions of the tarset algebra for the domain D. É 

In general a choice of a domain D is arbitrary as long as its elements refer to tarsets 
(the domain may, apart from trasets, embrace e.g. tarset functions, or tarset variables). 
In the most straightforward situation, when D Œ K, the satisfaction of a predicative 
expression depends only on the relationship between tarsets being the results of F and 
G. The way of satisfying expressions for other domains should be independently 
defined. 

2.2.2   Tarset Knowledge Base, Schema and Instance 
It is clear that the old definition of knowledge base is not sufficient to define rules 
allowing to control the contents of an instance. In order to achieve this goal the 
definition of a knowledge base should be enriched with new elements. In this 
subsection we redefine the notion of a knowledge base, taking into consideration its 
static (a schema) and dynamic (an instance) aspects. The form of the definition is 
strongly determined by the kinds of possible changes we can distinguish: 

1. Changes of the contents of a tarset: 
(a) vocabulary changes, i.e. adding new words (general or individual names); in 

order to keep monotonicity we do not expect removing words, 
(b) semantic changes, i.e. adding new axioms describing relations between general 

names from the vocabulary, 
(c) factual changes, i.e. accepting new facts about individual names from the 

vocabulary. 
2. Adding and/or removing tarsets. 
3. Adding or removing relationships between tarsets. 

These forms of changes will be discussed in next subsections. 

Changes of the contents of a tarset 
This kind of change is equivalent to addition of a new axiom to a tarset. It is not an 
addition itself, as a tarset is not a syntactic entity and does not contain sentences. Thus 
when we speak about “adding a sentence” α, we mean something like executing the 
operation of selection σα. As a result we get a new set of interpretations, that is a new 
tarset from the set K. According to the old definition the result of such a change is a 
new knowledge base: a new set of tarsets. The conclusion is that it is much better to 
perceive a knowledge base as a set of tarset variables than a set of tarsets. The 
described change would not alter this set but only an assignment of (at least one of) 
the variables. 

The decision that a knowledge base is a set of tarset variables allows us to define a 
new kind of elements controlling the contents of tarsets. 

 



262 K. Goczyła et al. 

Definition 3 (coupler) 
Let V be a set of tarset variables. A coupler over V is a predicative expression (tarset 
equality or inequality) for the domain V.  É 

A coupler s is satisfied iff the predicative expression is satisfied after mapping all 
tarset variables into elements of V. We assume that in a knowledge base the only 
accepted changes are the changes satisfying all its couplers. The couplers represent 
the aforementioned relationships between tarsets. 

Adding or removing tarsets or relationships between tarsets 
This kind of changes is much more difficult to control but is the most essential from 
the modular knowledge bases point of view. Adding or removing a tarset is connected 
with the change of the set of tarset variables. This change, on the other hand, imposes 
a change of the set of couplers. But the last change has also be under control. Thus 
there is a need to introduce new elements: types of tarsets and types of couplers. The 
purpose of these elements is to categorize groups of tarsets and couplers w.r.t their 
properties and to take control over this kind of changes. 

Types of tarsets make a structure ordered by the inheritance relation. This structure 
is called a hierarchy of tarset types: 

Definition 4 (hierarchy of tarset types) 
A hierarchy of tarset types is a strict partial order (TK, 0), where TK is called a set of 
tarset variable types, and 0 is called the inheritance relation. We say that t1 extends 
(inherits from) t2 iff t1 0 t2 (t1, t2 œ TK).  É 

It is possible to put a hierarchy of tarset types on a given set of tarset variables. 

Definition 5 (establishing types) 
Let VK be a finite set of tarset variables. Establishing types by putting a hierarchy (TK, 
0) on the set VK consists in setting a function fin: TK ö P(VK), where P(VK) is the 

powerset of VK. The function fin takes into account transitivity of the relation 0 in the 
way that "t1, t2 œ TK "vœVK ((t1 0 t2 - v œ fin(t2)) → v œ fin(t1))). Every variable v 
assigned to t œ TK, i.e. such that v œ fin(t) , is called a variable of the type t. fin is called 
a result of establishing types.  É 

It is worth to note that tarset types are types of tarset variables. Two variables of 
different types may be assigned the same value. 

The other kind of types, coupler types, are used to categorize couplers. 

Definition 6 (coupler types) 
Let VK be a finite set of tarset variables with types established by a structure (TK, 0, 
fin). A coupler type over VK is a predicative expression (tarset equality or inequality) 
for a domain of slots L. A slot l œ L is a pair (v, t), where t œ TK and v œ VK or v is a 
variable, whose range of assignment is fin(t).  É 

A given coupler s is of the type ts iff it is a formula resulting of the substitution of all 
slots (v, t) in ts by v, where v œ VK, or by |v| otherwise. 
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Having coupler types defined, we can introduce the notion of tarset types. A tarset 
type consists of constraints describing the requirements against tarsets conforming to 
the type. We can formulate the definition of tarset type constraints as follows: 

Definition 7 (tarset type constraints) 
Let TS be a set of coupler types. Tarset type constraints over TS are constraints of the 
form: 

cardinality constraint for a given tarset type t is a triple (ts, l, N), where ts œ TS, l is 
a chosen slot, and N is a subset of the set of the natural numbers; 

editing constraint for a given tarset type t is a value from the set {noTerminology, 
noFacts, noInstances}.  É 

Now we are ready to define a schema and an instance of a knowledge base. A schema 
is its fixed part; we assume that by changing a schema we define a new knowledge 
base. 

Definition 8 (tarset knowledge base schema) 
A tarset knowledge base schema is a structure (KS, VKS, (TK, 0), finS, TS, C, fo, wKS), 
where: 

• KS — subset of K, 
• VKS — a set of tarset variables, 
• (TK, 0) — a hierarchy of tarset types, 
• finS — the result of establishing (TK, 0) on VKS, 
• TS — a set of coupler types, 
• C — a set of tarset type constraints over TS, 
• fC — a function mapping a subset of C to every type from TK; fc takes into 

account transitivity of the relation 0, mapping to every type all 
constraints assigned to the inherited types in such a way that t1 0 t2 fl 
fC(t1) Œ fo(t2), 

• wKS — a partial function VKS ö KS. 

All the sets mentioned above are finite. É 

The elements KS and VKS allow to predefine a part of an instance during the designing 
stage. In other words, every schema can contain predefined tarset variables and tarsets 
(constants). As members of a schema they cannot be removed. 

Unlike a schema, which is a fixed part of a base, an instance is its temporary state. 
Every change generates a new state and a new instance comes into existence (or is 
chosen from the universe of all possible instances). 

Definition 9 (tarset knowledge base instance) 
An instance of a tarset knowledge base Σ = (KS, VKS, (TK, 0), finS, TS, C, fC, wKS) is a 
structure (Σ, (K, VK, S, wK), fin, fsin), where: 

• K — subset of K, 
• VK — a set of tarset variables, 
• S — a set of couplers, 
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• wK — a function VK ö K, 
• fin — the result of establishing (TK, 0) on VK, 
• fsin — a function S ö TS. 

All the elements of the structure have to satisfy the following conditions, called the 
schema adjustment conditions: 

• the condition of constants preservation: K û KS, 
• the condition of variables preservation: VK û VKS, 
• the condition of constant values preservation: wK û wKS, 
• the condition of proper tarsets typing: fin û finS, 
• the condition of couplers satisfaction: all the couplers from the set S have to be 

satisfied, 
• the condition of proper couplers typing: for every s œ S: s has to be of the type 

fsin(s), 
• the condition of constraints preservation: for every tarset type t and every tarset 

variable v from fin(t), all the constraints from the set fC(t) have to be satisfied, i.e.: 
─ every cardinality constraint (ts, l, N) is satisfied, when the number of couplers 

from S, created by substitution of every l by v and such that fsin(s) = ts, belongs 
to N, 

─ every editing constraint E is satisfied.                                                                  É 

Strict mathematical description of the meaning of an editing constraint E would take 
too much space. Simplifying, we can say that if E = noInstances then it is forbidden to 
create new tarsets of a given type (i.e. fin(t) = finS(t)); if E = noTerminology then 
adding any terminological axioms to a tarset of a given type is forbidden; if E = 
noFacts then adding new facts is forbidden. 

2.3 Ontological Description of the Metamodel 

The mathematical metamodel of a tarset knowledge base presented above has been 
described in the ontological way The ontology is expressed in the OWL DL language 
and was edited using Protégé (http://protege.stanford.edu/). It consists of three 
modules: Algebraization, SchemaBasicTBox and InstanceBasicTBox. The modules 
are standard, flat ontologies connected with commonly used option called import. 

The module Algebraization contains definitions of the elements representing the 
algebraic and predicative expressions. There are concepts allowing to describe main 
entities, like SKBPredicativeExpression or SKBExpression, the operators (e.g. 
SKBIntersection, SKBUnion, SKBProjection, etc.), operands (e.g. SKBExpression 
Variable) and some auxiliary entities (among others: AxiomSet, NameSet and operations 
on them). The relations between concepts are described by 12 roles, e.g.: 
hasSKBOperand (domain: SKBOperation, range: SKBExpression), isRestrictedBy 
(domain: SKBSelection, range: AxiomSet), etc. This module is very important as it is the 
essential part of coupler type definitions. 
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 class SchemaBasicTBox

TarsetType

- canCreate:  boolean
- canAlterTBox:  boolean
- canAlterABox:  boolean

CouplerTypeSKBExpressionVariable

CouplerTypeRole

RoleConstraint

CardinalityRoleConstraint

- minCardinal ity:  int
- maxCardinali ty:  int

BinaryCouplerType

1

hasTargetRole

1

1

hasSourceRole

1

0..*

concernsRole

1

0..*

requiresType

1

0..*

extends

0..*
1

hasRole

0..*

1

hasRoleConstraint

0..*

0..*

extends

0..*

  

Fig. 1. Metamodel of a knowledge base schema 

The module SchemaBasicTBox defines the metamodel of a tarset knowledge base 
schema. It is shown in Fig. 1. Classes represent concepts and associations represent 
roles. The main concepts are TarsetType and CouplerType. The former is extended by 
BinaryCouplerType, because such a type is expected to be used most frequently. As 
we see, the concept CouplerTypeRole inherits from the concept 
SKBExpressionVariable and, in this way, implements also the notion of a slot. There 
is one more role not depicted in this diagram: it is called isRealizedBy and connects 
the concept CouplerType with SKBPredicativeExpression. This connection is 
essential for the definition of a coupler type. 

The module InstanceBasicModule is focused on the notions related to knowledge 
base instances. It imports SchemaBasicTBox as every element of an instance has to be 
connected with the corresponding element of a schema. The concepts Tarset and 
Coupler are connected with ConceptType and CouplerType respectively with the role 
hasType. The role assigns connects RoleAssignment with CouplerTypeRole. Figure 2 
presents the metamodel of a knowledge base instance. From this figure it is easy to 
see what is the reason for defining BinaryCouplerType. The concept BinaryCoupler is 
directly connected with the concept Tarset without mediation of the concept 
RoleAssignment. Thanks to this, the schema of an instance is much simpler. 
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 class InstanceBasicTBox

SchemaBasicTBox::
TarsetType

- canCreate:  boolean
- canAlterTBox:  boolean
- canAlterABox:  boolean

SchemaBasicTBox::
CouplerType

SKBExpressionVariable

SchemaBasicTBox::
CouplerTypeRole

Tarset

Coupler

RoleAssignment

SchemaBasicTBox::
BinaryCouplerType

BinaryCoupler

0..*

assigns

1 1

hasRole0..* 0..*

extends

0..*
0..*

requiresType
1

0..*

hasType

1..*

1

hasAssignment0..*

0..*

extends

0..*

0..*

givesRoleTo1

0..*

hasType

1

1

hasSourceRole

1

1

hasTargetRole

1

0..*

hasTarget

1

0..*

hasSource

1

0..*

hasType

1

 

Fig. 2. Metamodel of a knowledge base instance 

The main idea behind using the ontological form of a description is to deliver a 
basis for practical solutions for future implementations. We assume that every 
implementation of tarset knowledge base will also be described ontologically as an 
extension of the metamodel. Figure 3 shows a possible architecture. 

The block named “Basic terminology” is the metaontology itself. The ontologies 
inside form the common part of all knowledge bases and are available as an internet 
resource. Every knowledge base (the blocks “Knowledge Base 1”, “Knowledge Base 
2”, etc.) has its own schema (the fixed part) and instance (the dynamic part), both 
described ontologically. The schema imports the basic terminology. It may be 
extended with new general terms, but by doing this one cannot change the semantics 
of the metaontology. Such an extension is called “conservative extension” (see [5]). 
Any extension of the terminology here has only a local meaning because it is assumed 
that the tarset reasoning process is aware only of the language defined by the basic 
terminology. 
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 class Main architecture

<ontology>

Knowledge Base 1

<ontology>

Basic terminology

<ontology>

<ontology>

InstanceBasicTBox

SchemaBasicTBox

Schema

Instance

<ontology>

Knowledge Base 2

<ontology>

Schema

Instance

<ontology>

Knowledge Base n

<ontology>

Schema

Instance

<ontology>

Algebraization

<imports>

<imports>

<imports>

<imports><imports>

<imports>

<imports>

<imports>

 

Fig. 3. Architecture of ontological descriptions of tarset knowledge bases 

The instance ontology consists of facts (is an ABox), constantly changes (yet 
preserving monotonicity), and imports the schema ontology. Every tarset and every 
coupler is represented as an individual, but their contents are kept in separate 
ontologies, pointed by special annotations. It is convenient to describe the contents of 
a tarset in the form of sentences using the notion of L-(2)-D-representation (see the 

next part of the paper). This kind of representation assumes that every module is 
represented by a set of sets of sentences. It is convenient to keep every set of 
sentences in a separate ontology. 

2.4 SIM Contextualized Knowledge Bases  

In [4] we described shortly the SIM methodology so now we discuss only the most 
important of its properties needed to understand the rest of the paper. More 
information may be found in [6][7][8]. 
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SIM (Structured-Interpretation Model) is an extension of Description Logic 
formalism allowing to define modular ontologies of a specific form. As a normal DL 
ontology it consists of a terminology (a contextualized TBox) and a world description 
(a contextualized ABox). Both these parts are divided into modules which are 
connected to each other by three types of relations. 

A contextualized TBox is a poset ({Ti}iœI, 1) with a single least element Tm. The 
indexed set {Ti} contains terminological modules (TBoxes), called context types. 
Context types are ordered by the inheritance relation 1. The Tm is called the root 
context type and is the ancestor of all other context types in the structure. 

The semantics of such a structure impose that every successor inherits all axioms 
defined in its ancestors. It is equivalent to importing the contents of the “less” module 
to the “greater” module. 

A contextualized ABox of the contextualized TBox ({Ti}iœI, 1) is a structure that 
contains three elements: ({Aj}jœJ, finst, a). The set {Aj} contains modules with 
descriptions of facts (ABoxes). These modules are called context instances. finst is a 
function {Aj} ö {Ti}, called instantiation function, assigning every context instance 
to a single context type. This connection also resembles an OWL import, since a 
context instance imports all the contents from its context type and its ancestors. 

 

Fig. 4. An example of a SIM knowledge base 
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The last element of the structure is the aggregation relation a. This relation is also 
a partial order with exactly one least element. 

The both relations (1 and a) and the function finst determine the paths of flow of 
conclusions during reasoning. In the case of aggregation relation the flow has the 
direction from aggregated to aggregating instances. All sentences must be taken into 
account, but due to the fact that the attached TBox is more general some information 
must be reinterpreted in more general terms. Figure 4 depicts three aggregating 
context instances: A1, A3 and A4. 

It is worth stressing that if levels of generality (introduced by context types) are 
properly chosen, we can aggregate information from context instances holding 
contradictory assertions without making the knowledge base inconsistent. 

The main principle of SIM structures is that the higher level of hierarchy, the 
bigger set of individuals is described in more general way. 

Properties of the SIM method allow us to achieve one more aim. It is easy to 
establish the boundary between a schema (a fixed part of a knowledge base) and an 
instance (a changeable part). In [8] this problem is discussed more precisely. Here, 
not going into details, we can say that a SIM knowledge base schema is a contextual 
TBox with so called admissible places of aggregation pointing out places where 
instances of a given context type should be aggregated. On the other hand a SIM 
knowledge base instance is a contextual ABox built regarding to the requirements 
imposed by the schema. 

2.5 SIM Modules as Tarsets 

To explain the correlation between the two described above models we have to refer 
to the analogy with relational databases. While designing a new database, we first 
prepare an E-R diagram, in which we introduce relationships between entity sets. 
Each kind of relationships may be expressed in relational algebra, but they are only a 
fraction of all kind of relationships expressible in this way. In other words, during the 
high level design we discard variety of possibilities offered by the algebra and focus 
on selected, most important, kinds of relationships. 

We perceive the role of a SIM schema similarly as this of E-R. The model captures 
the most important factors connected with contextual modeling (like e.g. change of 
perspective) and, as such, is an ideal candidate for providing a core set of 
relationships between semantic modules.  

It is very important that all the constraints imposed by SIM models are expressible 
in tarset algebra. This allowed us to create a uniform, general system of defining 
knowledge base schemas, in which we treat SIM elements as a vital part of every 
tarset knowledge base (depicted in Fig. 3 as Knowledge Base 1..n). 

In practice the task has been carried out by development of an additional OWL 
ontology named SIMMetaschema. This ontology has been integrated within the 
described framework. For each kind of SIM relation (inheritance, instantiation, 
aggregation) it introduces an appropriate binary coupler type. The tarsets themselves 
are divided into two types: context types, and context instances.  
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Figure 5 presents an excerpt from the ontology, where the individual inheritance is 
defined as a type of coupler. Indeed, inheritance is a binary coupler requiring tarsets 
of the type “context type” for its both roles (ancestor and descendant). The coupler is 
described by an inequality with two slots (for the two roles) and the inequality itself is 
a formula D b D ' A, which simply means that all the axioms from an ancestor are 
“imported” by a descendant. All the other required inequalities are defined in a 
similar fashion. 

 sd context inheritance

Schema -- Inheritance

ContextType : 
ConglomerationType

Inheritance : 
BinaryCouplerType

Ancestor : 
CouplerTypeRole

Descendant : 
CouplerTypeRole

InheritanceReal : 
SKBInequality

Intersection1 : 
SKBIntersection

requiresType

hasTargetRole

requiresType

hasSourceRole

hasLeftExpression

isRealizedBy

hasSKBOperandhasSKBOperand

hasRightExpression

 

Fig. 5. An excerpt from the SIMMetaschema ontology 

The achieved result is notable, as on the one hand it indicates that the tarset algebra 
is powerful enough to fully represent the SIM model, and on the other hand SIM 
introduces important relations that are very useful for organizing the design of  
knowledge bases of various kinds in a systematic way.  

The resulting framework integrates both methods and allows for exploiting their 
strengths. We assume that a typical way of use of the framework is to design a 
“backbone” of a knowledge base only with use of SIM relations, and then augmenting 
it in the next steps with more specialized couplers. Such course of actions would be 
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similar to creating an E-R backbone design of a database, and then preparing 
specialized triggers in order to fulfill more sophisticated requirements. 

This framework constitutes a base for a set of tools addressed to designing modular 
knowledge bases described in the next section of this chapter. 

3 The Tools 

For the theoretical framework presented above to be realized in software 
practitioners’ environments, a set of supporting tools is needed. This section is 
devoted to presentation of such a set of tools. We stress that some crucial components 
of this set are required to fulfill needs of knowledge-based systems engineers; these 
are: a context-aware modular ontology editor (Section 3.1), an appropriate reasoner 
(Section 3.2), and a general architecture of the framework with use-case analysis 
(Section 3.3).  

3.1 Protégé Plugin 

During the SyNaT project we strive to achieve the aim of developing a suite of tools 
allowing for designing and using SIM knowledge bases. For the first task we 
developed an extension (in the form of a set of plugins) in for a well-known and 
widely used ontology editor – Protégé. 

While designing an editor interface of contextual plug-ins, we aimed at obtaining 
an interface as similar to standard Protégé editor interface as possible. Thus, while 
presenting this interface, names of consequent elements of interface are taken from 
standard OWL editor. The terms “window” and “tab” are defined analogically as in 
operating system. Additionally, we use the term “view” as one of the elements of the 
specified tab.  

The standard set of tabs, normally used in the OWL editor, is supplemented by a 
new tab (Structure Tab) containing elements allowing to navigate and edit the main 
structures of a SIM knowledge base. The functionality of the standard set is 
unchanged: it allows to view and edit OWL ontologies. As SIM modules are, in 
general, ontologies, the set is also useful for editing their contents. In some cases, 
though, some possibilities are restricted (e.g. inserting assertions into TBox modules 
has been prohibited). 

The Structure tab help the user with creating the ontological description of the 
knowledge base (cf. Sec 2.3) by hiding its details and presenting the structure of a 
SIM knowledge base. The view named Context Type Hierarchy shows the hierarchy 
of context types in the similar way to the Class Hierarchy view showing the hierarchy 
of concepts. Selecting any context type causes the hierarchy of context instances 
being instances of selected context type to be displayed in the view named Context 
Instances. Additional view allows for designing several knowledge bases within one 
instance of Protégé editor, and choosing one as an active base. 
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Fig. 6. Structure tab selected within Protégé editor 

3.2 Reasoning with Conglo-S 

Conglo-S inference engine (its name being a shortcut for Conglomerated Sentencer) is 
a reasoner integrated with Protégé system. It is designed for processing tarset 
knowledge bases with use of one standard OWL reasoning services (currently, by 
default, it uses Pellet [12] as its internal reasoner, though it is possible to configure 
it—with use of Preferences Tab—to use any of reasoners integrated with Protégé). 
Conglo-S reasoner is an extension of a previously developed tool, and the extension is 
towards handling schemas: i.e. module variables and couplers. 

3.2.1   Sentential Representation of Tarsets 
In order to meet its basic requirements, Conglo-S needs to convert the semantic 
modules to a form which will be readable by standard reasoning systems. For this 
purpose we exploit the theory of sentential representation of tarsets. 

It is obvious that there are situations when a single module may be represented 
with a set of sentences expressed in some language L. For such representation one 

must be able to create exactly the set of satisfying interpretations as for the original 
module. The notion of L-representability formalizes the idea (by Sig(O), where O is a 

set of sentences, we understand a vocabulary of all terms used in the sentences): 
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Definition 10 (L-representability and L-representation) 

A set of sentences O Œ L is an L-representation of a tarset M iff Sig(O) Œ S(M) and 

W(M) = {I: I £ O}. 

Tarset M is L-representable iff there exists a set of sentences O Œ L being its L-

representation. É 
 

While some operations (like ') preserve the L-representability (i.e. while  performed 

on L-representable modules, they produce a module which is also L-representable), it 

is not always the case, as it can be seen in the following example. 
Consider a module M = M({A m B}) ( M({B m A}). While it seems that it may be 

represented with an empty set of sentences (because from M we cannot draw any 
sensible conclusion which can be expressed with a single sentence), in fact it cannot, 
because M carries some subtle information, which can be seen by performing M ' 
M({A * ¬B(a), ¬A * B(b)}): in the result, we obtain the empty module. 

The second source of trouble with representing tarsets in sentential form is 
connected with the operation of projecting. It may turn out that the reduced signature 
of the module is “not enough” to represent all the interrelationships between 
remaining terms. A simple example of this is the module 
M = π{A, B}(M({A m B, A(a)})). The original module contained an assertion A(a) whose 
effect on the set of models was that it excluded all the interpretations with empty A 
(and, consequently, B). There is no way of expressing such a constraint while using 
only the names A and B. 

The above discussion indicates that the notion of L-representability has to be 

extended at least towards handling alternative sets of models (like in the case of the 
union) and towards handling projection. The first problem can be solved by using 
multiple sets of sentences instead of a single one. Each set can now determine a 
separate set of models, and can be treated as a one of several “alternatives”. The 
second problem is tackled with by introducing a set of “auxiliary” names from a 
special set D which can be used regardless of a signature of a module. The 
simultaneous use of both proposed solutions leads to the new notion of L-(2)-D-

representability. 

Definition 11 (L-(2)-D-representabiliy) 

Tarset M is L-(2)-D-representable iff there exists a (finite) set of sets of sentences 

S = {Oi}i ∈ [1..k], k ∈ N, each Oi Œ L, being its L-(2)-D-representation (denoted M ~L-

(2)-D S), which means that »i ∈ [1..k] Sig(Oi) Œ S(M) ( D and W(M) = (»i ∈ [1..k] {I:  I £ 

Oi})|S(M).  É 

 
It can be shown that with such a definition of L-(2)-D-representability the core of 

algebraic operations preserves this feature. An outline of the proof is presented below: 
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1. If M1 ~L-(2)-D S1, S1 = {O1:i}i ∈ [1..k] and M2 ~L-(2)-D S2, S2 = {O2:j}j ∈ [1..m], then 

M1 ( M2 ~L-(2) -D S1 ( S2. 

2. If M1 ~L-(2)-D S1, S1 = {O1:i}i ∈ [1..k] and M2 ~L-(2)-D S2, S2 = {O2:j}j ∈ [1..m], then 

M1 ' M2 ~L-(2) -D {O1:i ( O2:j: i ∈ [1..k], j ∈ [1..m]}. 

3. If M ~L-(2)-D S, S = {Oi}i ∈ [1..k], then πS(M) ~L-(2)-D {γS(M) ‒ S → D(Oi): i ∈ [1..k]}; 

where by γS(M) ‒ S → D we understand a function renaming terms not included in S to 
terms from D. 

4. If M ~L-(2)-D S, S = {Oi}i ∈ [1..k], then ργ(M) ~L-(2)-D {γ(Oi): i ∈ [1..k]}. 

Various reasoning tasks can be performed with use of L-(2)-D-representation. For 

instance checking the consistency of the tarset can be performed by checking the 
consistency of each of the sets in the representation. Consequently, to check if the 
module entails a given axiom α, one has to check if every set of the representation 
entails α.  

3.2.2   Module Variables and Couplers in Conglo-S 
Conglo-S is extended by functions to manage a knowledge base schema. Apart from 
administering “contents” of each module, which is done in a way sketched in the 
previous section, Conglo-S is able to handle schemas: module variables with contents 
changing over time, and couplers, which bind together specific variables with a 
relationship described by an algebraic inequality. 

A user of the system is presented with an interface which allows for creating, 
updating, and dropping modules. Originally each module is perceived by the user as 
an ontology (or a set of sentences). Update operations comprise of adding new 
sentences and retracting the previously added ones. The sentences provided by a user 
forms the “core” part of each module variable in the knowledge base. 

The schema of the knowledge base may be altered by addition (or by dropping) a 
coupler. Conglo-S currently allows only for using couplers in the form of M < E, 
where M is a single module variable, and E is an algebraic expression which may 
contain all the defined variables.  

Conglo-S interprets couplers in a fix-point fashion. It means that, after each update 
the contents of every module variable is recalculated by “firing” every coupler (by 
performing the assignment M := E), and the operation is repeated until the fix-point is 
reached. While the “core” module contents is preserved, for the sake of enabling 
updates, the contents visible to the user is in fact the result of performing algebraic 
operations contained in the couplers. 

3.3 Architectural Considerations 

The tools presented in the previous subsections were developed in a way which 
allows for using them in different software configurations. It is possible to use them 
also outside of Protégé. The two factors that support this feature are: use of standard 
OWL API and component design with use of OSGi framework. 
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In fact different configurations, i.e. collaboration between standard (non context-
aware) and SIM tools, were analyzed during very early stages of development. The 
comparison of various configurations is presented in Table 1 (see next page). In the 
Ontology column it is specified if user works with standard ontology or SIM 
knowledge base. In the  Editor column it is specified if user works with Protégé 
without extensions (Standard) or works with Protégé with SIM plug-in (Context-
aware). The next column Reasoner defines if user works with standard reasoner 
(Standard; e.g. Pellet [9]) or Conglo-S reasoner (Context-aware). The last column 
Comment contains remarks on a specific configuration. 

The set of SIM tools works correctly in all the enlisted configurations. It was 
achieved by integration with OWL API, especially by the exploit of flow of events 
provided by OWLOntologyManager. 

Table 1. Comparison of various configurations of collaboration between standard and context-
aware tools 

No. Ontology Protégé Reasoner Comment 

1 Standard Standard Standard - 
2 Standard Standard Context-

aware 
Context-aware reasoner can 
cooperate with standard ontologies. It 
works analogically to the first 
configuration. 

3 Standard Context-
aware 

Standard Standard ontology can be edited by 
context-aware plug-in, analogically 
as for non-extended Protégé. 

4 Standard Context-
aware 

Context-
aware 

Works analogically to the second and 
third configurations.  

5 Context-
aware 

Standard Standard Context-aware ontology can be 
edited in Protégé only by expert 
users, familiar with ontological 
description of the metamodel (see 
Sec. 2.3 and 2.5). Reasoner provides 
sound (but not complete) 
conclusions. 

6 Context-
aware 

Standard Context-
aware 

Context-aware ontology can be 
edited in Protégé only by expert 
users familiar with ontological 
description of the metamodel (see 
Sec. 2.3 and 2.5). Reasoner provides 
sound and complete conclusions. 

7 Context-
aware 

Context-
aware 

Standard Context-aware ontology is edited 
with use of designated views. 
Reasoner provides sound conclusions 
but not complete ones. 

8 Context-
aware 

Context-
aware 

Context-
aware 

Complete set of context-aware tools 
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OWLOntologyManager is a standard OWL API interface so, as it was previously 
mentioned before, we can also integrate SIM tools into systems that are devoid of 
Protégé components. An example of such a system is a Conglo-S console, which 
function as a demonstrator of tarset algebra for users, and allows for formulating 
commands in dedicated query/command language developed in ANTLR [13] (cf.  
Fig. 7). 

 

Fig. 7. Grammar for console command in Conglo-S (from ANTLR-works tool [14]) 

Further possibilities of interoperability stem from using OSGi component-based 
framework. This decision allows us to easily embed the tools into any system 
exploiting this standard (including Eclipse RCP) and is important for the further plans 
of deployment of the tools into SYNAT project YADDA platform [16]. 

4 Possible Applications for Cultural Heritage 

This section contains a discussion about possible applications of the introduced ideas 
within the SyNaT system designed for facilitation of management and use of digital 
objects connected with cultural heritage. 

4.1 Improving the Efficiency of Reasoning 

Let us consider use of SIM model for improving the efficiency of inference from a 
knowledge base organized in accordance with CIDOC CRM. The motivation behind 
this work is strictly connected with work (see [15]) of PCSS (Poznan Supercomputing 
and Networking Centre; a partner in SyNaT). PCSS prepared a rich source of linked 
data on the basis of the contents of D-Libra system: a system designated for indexing 
library resources in digital form.  

PCSS puts a great effort into adjusting the data in compliance with the 
requirements of CIDOC. The resulting base is very large and can be processed only 
by reasoners performing variants of pD* inference, like OWLIM.  Such inference is 
attractive because of computational properties, but it is not as exhaustive as standard 
DL reasoning. 
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Loading the base in its original form to a standard reasoner is an infeasible task. 
Tests performed by us indicate that for a terminology of such complexity an 
efficiency barrier occurs at about 3000 individuals. Because the base is several orders 
of magnitude larger, modularization seems to be a viable solution. 

We propose to introduce two-dimensional contextual breakdown of the structure of 
the base. A “vertical” breakdown would consists in separating the terminology into 
conceptual units embracing: time-space information, events, agents, and objects. A 
“horizontal” breakdown would concern the description of the world (context 
instances) and would consist in separating information objects coming from different 
libraries. 

We plan to perform experiments in order to answer the question whether such 
decomposition would be enough to perform full OWL reasoning (with Open World 
Assumption), and what would be the cost of combining knowledge from different 
contexts in order to answer more comprehensive queries. 

4.2 Introduction of Contextual Reasoning to Library Catalogs 

Another very interesting stream of our work on contextualization of the SyNaT 
knowledge base is connected with library catalogs. Books (and other digital objects) 
are currently organized in accordance with a special catalog of terms (hierarchical 
thesaurus) called KABA. Use of KABA gives great advantages in unifying library 
information records, but it also has some disadvantages. 

KABA in the present form cannot be treated as a viable source of terminological 
information for inference engines. One of the reasons is the fact that it carries only 
loose relationships between terms. KABA distinguishes between broader and 
narrower words and expression, but this hierarchy should not be confused with 
concept taxonomy. For example, a lighthouse has a broader term rescue missions, 
while naturally there is no subsumption between the terms. However, to some extent, 
we may say that a book about lighthouses carries some knowledge potentially useful 
for carrying out rescue missions. 

Our aim here is to introduce contextual method of knowledge base organization to 
distinguish different fragments of KABA hierarchy, and to determine which parts of it 
and under what assumptions may be treated as proper taxonomies. This is an 
ambitious task because most probably it would require us to exploit some kind of 
meta-description (in order to differentiate between various parts of KABA) and to 
deploy a method of converting parts of PCSS knowledge base ABox containing 
KABA terms to context types.  

While the difficulty of the task seems to be vast, the potential advantages are very 
appealing. KABA constitutes a large portion of PCSS knowledge base (close to the 
number of 300,000 individuals), and using it for improving semantic search seems 
very natural. Meta-knowledge about how to relate different categories of queries to 
different portions of the hierarchy would greatly facilitate and improve the process of 
answering. Moreover, the specific fragments of KABA may be used as starting-point 
ontologies for describing various fields of scientific knowledge. Furthermore, out of 
the necessity, KABA has to be maintained on the current basis (as it is used for 
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indexing new papers, journals, and books) and should keep pace with the 
development of science and technology, so that such ontologies may be automatically 
or semi-automatically kept up-to-date. 

5 Related and Further Work 

The approach presented in the paper is not the only one concerning knowledge base 
modularity. In fact there are several notable methods in the field, with probably most 
prominent E-Connections [17] and Distributed Description Logics [18]. In the both 

approaches authors take as a starting point a pair of ontologies and relate their terms 
with use of special syntactic constructions: axiom with linking relations in the case of 
E-Connections, and bridge rules in the case of DDL. 

Another very significant stream of works connected with modularity is the research 
concerning conservative extensions ([5], [19]). While potential applications of the 
theory seem to be very broad, the most notable studies in the area concern ontology 
evolution (preparing new versions and assessing their influence on possible prior 
extensions), and improvement of reasoning performance (with use of automated 
division of an ontology into modules). 

Also within the research area there were formulated proposals of algebras for 
ontologies. One of the examples is described in [20]; without going into details, the 
authors postulate treatment of ontologies as graphs and try to use an algebra of graphs 
including mainly set-theoretic operations (like intersection, union etc.). 

Summarizing the above short analysis we should clearly state that probably every 
element of the proposed here framework can be related to ongoing research. While we 
are aware of importance of such comparison (and, in fact, performed it, e.g. in [21]), 
we stress the fact that we primarily perceive the strength of the framework in its 
wholeness and uniformity. We introduce relatively simple mathematical apparatus 
and consequently build over it additional elements, driven by the idea that modularity 
should be considered as one of the fundamental factors in ontology engineering. 
Through such course of work we managed to integrate several dissipated areas of 
interest (like ontology evolution, integration, querying, and design) into one 
consequential stream of works, which would hopefully lead to creation of a model 
and a suite of tools for knowledge bases comparable in maturity and flexibility to 
relational databases. 

The holistic framework presented in this chapter, although mature from the 
theoretical point of view, is currently under development. Our work concentrates on 
preparing a basic set of tools, which would allow us go through a process of designing 
a tarset knowledge base, as a proof concept for our approach and as an example of 
practical application of presented theories.  

To sum up: Our main goal is to create a set of conceptual and development tools 
that will make development of knowledge-based systems as natural for a software 
engineer as it is now in the case of data-based systems. This follows the idea that we 
call “New Knowledge Engineering Initiative” (NKEI) that we promote among 
researchers and practitioners. To this end, we, among others, plan to implement a 
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subset of KQL [22] as a suitable and semantically adequate language for querying 
modularized knowledge bases. In parallel, further theoretical work will be conducted. 
Among others, we plan to investigate other types of dependencies between tarsets 
than those that support context-aware knowledge-bases. This would enable us to 
construct modularized knowledge bases with definable modalities, according to the 
needs of complicated reality that we live in and that knowledge engineering must 
face. 
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