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Lotfi Zadeh in his office at the University of California at Berkeley,
Soda Hall in August 2011.



A Foreword

When I started looking at the material in this awesome volume, the first thought
that came to mind was “social network.” While this term has been greatly overused
nowadays by the media, this volume is clearly a social network with Lotfi Zadeh at
the center. The term is even more appropriate in the case of Zadeh, who in addition to
being a thinker of historical note, is an extremely social human being. In addition
to providing inspiring technical ideas that have allowed many people in this network
to carve out impressive careers of their own, Lotfi has often provided advice on mat-
ters both professional and personal to members of this network. Lotfi was never too
busy to listen to the problems of others. I often observed that Lotfi had more pa-
tience listening to other’s social problems than technical matters. These pieces help
to provide views of Zadeh as if looking into a big house through different windows.

This volume, in addition to providing insights to the individual contributors’ ex-
periences with Lotfi either socially or technically, even more interestingly it provides
the opportunity to experience in many cases, another dimension of the contributors.
While I have known most of the contributors to this volume for many years, this is
one of few, if not only occasion, I have had to read their writings on a non-technical
and more personal subject. In many cases, I found this to be a rewarding and an eye
opening experience as I am sure other readers of this book will find.

The inclusion of pictures tremendously enhances the pleasure of this volume. Not
only are there pictures of Lotfi but enjoyable pictures of other members of the com-
munity. The pictures in this volume almost span the life of the idea of fuzziness.
They include black and white pictures vintage pictures from the pre-digital days that
are almost invaluable. These pictures inspire warm memories. For me, it was quite
notable to observe the consistency of Lotfi’s physical appearance over the long his-
tory that these pictures cover.

Lotfi spent many years on the outside trying to convince people of the value of his
idea of fuzzy sets before the successful applications in Japan showed its usefulness.
It is worth noting that these pioneering applications in Japan occurred at a time when
Japan was a rapidly raising star in the world’s technological and economic order; a
fact that amplified and accelerated the worlds appreciation for fuzzy sets. In many
ways Lotfi is still an outsider, in this case in his own fuzzy set community. Most
of the applications of fuzzy sets are based on the Mamdani-Sugeno model. This
paradigm is a kind of disjunctive approach, as we get more information we add
possibilities. Zadeh’s perspective, as conveyed with his paradigm of restriction-based
semantics, is a kind of conjunctive approach, as we get more information we reduce
possibilities.



VIII Foreword by Ronald R. Yager

Even now as he marches into his nineties and is unable to attend conferences
and interact with fellow attendees as he so enjoys, Lotfi continues to build a social
network. This time using the latest technology, the Internet, he has built a social
network around his inspired idea of the Berkeley Initiative in Soft Computing. Every
day I receive messages from people around the world via this network of interrelated
scholars. These messages usually involve interesting ideas rather then simply being
announcements of conferences as is the case with some other groups. The most
interesting and challenging are those that come from Lotfi, particularly those related
to his attempt to deal with the issue of causality.

The editors Rudolf Seising, Enric Trillas, Claudio Moraga and Settimo Termini
are to be congratulated for coming up with such a wonderful idea to help celebrate a
life as rich and human as Zadeh’s in this manner.

Ronald R. Yager
New York City, July, 2012

Fig. 0.1. Lotfi A. Zadeh and Ron R. Yager talking in the living room of Zadeh’s house in
Berkeley, CA, on September 12, 2011. This talk is printed in Mathware & Soft Computing –
The magazine of the European Society for Fuzzy Logic and Technology, vol 18 (1), December
2011, pp. 4-14.



Foreword by the Editors

It is without any kind of doubt that the work of Professor Lotfi A. Zadeh is of a great
relevance in both the scientific and technological sides. His is a work that not only
meant an important departure, but also a clear cut, from some old views on which
thinking and research were anchored. He also spread his work all around the world
through many lectures in many countries, and offered and continues to offer exciting
new views to open-eyed people wishing to do research without being blocked by
some old formal ways of looking at some theoretic or practical problems, impeding
to pose them in a path allowing for its treatment.

It could be said that Zadeh opened a new paradigm in, at least, Science and Tech-
nology that was initially marked by the then surprising possibility of controlling
physical systems whose behavior is empirically described by a set of linguistic rules
with imprecise terms, but not by an ’exact’ system of differential equations, when it
exists, being usually computationally difficult to solve to obtain good enough values
of its outputs. A new wave of researchers arose that, today, is followed by hundreds
of researchers and engineers located in almost all parts of the world. Of this wave
those authors contributing to this book are but a sample.

At the very beginning of the ’fuzzy adventure’, just the presentation of the idea of
’Fuzziness’ not only provoked violent oppositions, as it is often the case for innova-
tive ideas, but also triggered, and, in a sense ’forced’, a rethinking of a few crucial
and debated problems aroused at the beginning of last Century in the field of the
foundations of Mathematics and Logic. Also some papers tried to axiomatize the
notion of ’fuzzy set’ in order to take it as the starting point of a subsequent building
of Mathematics. Besides remembering these first reactions to the then new emerging
notion, we can today certainly affirm that the notion of Fuzziness stands as one of
the really new concepts that have recently enriched the world of Science in the same
good company of the ones of Computation, Information and Complexity, but also of
Bohr’s Complementarity. Science grows not only through technical and formal ad-
vances on one side and useful applications on the other side, but also by introducing
and assimilating new concepts in its corpus. These, in turn, produce new develop-
ments and applications. Fuzziness has done all these things and will remain as one
of the few new concepts aroused in the XX Century.

It is not usual that the founder of a new line of research can see in his life both
the theoretical growing of it, as well as the success of some technological applica-
tions actually important from both the economical and the business points of view, as
those coming from Fuzzy Logic and Soft Computing. This is the case with Profes-
sor Zadeh, an electrical engineer passionated by posing problems in mathematical



X Foreword by the Editors

terms that not only introduced the theoretical basis of Fuzzy Logic, but who also
contributed a lot in its technological side with the insights coming from some of
his many and single authored papers. Zadeh is not only well credited as the intro-
ducer of Fuzzy Logic and Soft Computing, but also and around twelve years ago, of
the new field of ’Computing with Words’ from which a new frontier for Computer
Sciences is clearly visible and that can allow to afford yet unanswered questions in
Philosophy, Linguistics, Science, Sociology, Technology and, last but not least, In-
dustry. To qualify Zadeh as the ’father of fuzzy logic’ is a good short description of
its personality.

It is well known how broad is the spectrum covered by the work of Lotfi Zadeh.
In a way, this seems to be reflected in the variety of contributions building this book.
Some authors that contribute to this book chose to speak of personal meetings with
Lotfi; others, about how particular papers of Zadeh opened for them a new research
horizon. There are contributions documenting results obtained following ideas of
Zadeh, thus implicitly acknowledging the inspiration he gave for those achievements.
Finally, there are contributions of several ’third generation fuzzysists/softies’ who
were first lead into the world of Fuzziness by a disciple of Lotfi Zadeh, who, follow-
ing his example, took care of opening for them a new road in science.

This book just aims at homaging both Professor Lotfi A. Zadeh’s personality and
work, once he surpassed his ninety years and is happily creative. His gentle atti-
tude towards all people he met, as well as his wide tolerance with those that tried
to contradict, and sometimes to blame, his contributions, is a characteristic of him
that helped to approach many people to his ideas. Zadeh never refused the contact
with and the offer of advise to young or yet inexpert people; never refused to gentle
discuss in either a public or a private space on his thinking, and this in both spoken or
written form. Zadeh is always in the opposite side of those kinds of great researchers
who like to be distant and elevated from other people. For short, Zadeh is a nice
human being who, aside of taking an exquisite care of his creature, likes to be in a
close intellectual contact with people of all conditions.

The four editors of this book in homage to Professor Zadeh, all of them working
from time ago in different areas of Fuzzy Logic or Soft Computing, would like to
thank the multitude of authors contributing to its two volumes. This amount of peo-
ple is a clear signal of the world-wide recognition reached by Zadeh’s ideas.

Rudolf Seising, Enric Trillas, Claudio Moraga, Settimo Termini,
Mieres (Asturias, Spain), and Palermo (Italy),

October, the 30th, 2012



Genesis of the Book

I. Pre-history

When we started planning this book, born from discussions by the editors at the Eu-
ropean Centre for Soft Computing (ECSC), we wrote the following letter to more
than 500 scientists in the field of Soft Computing whose e-mail addresses we knew :

Dear colleagues,

In 2012 it will be 50 years that Professor Lotfi A. Zadeh used the word
“fuzzy” for the first time in a scientific paper:

“..., we need a radically different kind of mathematics, the mathematics of
fuzzy or cloudy quantities which are not describable in terms of probability
distributions.”1

It is also not to be forgotten that in about three and a half years, the theory
of Fuzzy Sets and Systems (FSS) will be 50 years old, and that in this year
2011 its founder Lotfi A. Zadeh celebrated his 90th anniversary! It is our
opinion that this 50 years long development of a now well-known theory
that is used in technology, economics and other fields should have a mirror
in the scientific literature. To this end we would like to edit a book entitled
“On Fuzziness”.

At this remarkable point of time we think that it is important to have a
printed collection of documents showing the history, the present stage and
the future expectations from the own views of the protagonists.

We will publish this documentation in a book and we invite you as well as
other protagonists in the field of FSS, to contribute to this “homage” to the
life-long work of Lotfi A. Zadeh. Furthermore, we also would like to invite
and encourage scientists and researchers who have not been enthusiastic
with FSS but who accompanied with their criticisms the genesis and the
development of that field to participate in this book project, since, without
their contribution, both the history and the prospect for its future would
remain incomplete.

1 Zadeh, Lotfi A.: From Circuit Theory to System Theory, Proceedings of the IRE, May
1962, pp. 856-865: 857.



XII The Genesis of This Book

Hence, we ask you to contribute with a short paper “on fuzziness” (about
five (5) pages) from your personal point of view. We would like to ask you to
mention in this non-technical contribution to the book how you did arrive to
the field of FSS and to present your views and expectations “on fuzziness”.

We also kindly ask you to include, if available, one or two photographs
from the times that you will mention in your contribution.

We do not want to publish papers glorifying Lotfi A. Zadeh, because no
one likes this kind of papers, nor he would like to see such a book.

We hope that you will contribute to this book and that you will help us
to create a very good document on the history, the presence and the future
views on our area of science and technology.

Please, send us your contribution as a Word-file before January 15, 2012!

When the first reactions appeared, we did not expect that we would have to create a
two-volumes-book, but after some weeks it became clear that we would have to work
with the manuscript of a collection of many pages. At the end of this procedure we
had to distribute all the contributions on two volumes and it was almost impossible
to find reasonable partitions of the different paper types. As a most sensible and fair
solution we chose the alphabetical order relating to the first authors of each contribu-
tion. To have two volumes of almost the same size the first includes the papers “A -
Ma” and the second includes the papers “Me – Z” and a Postscriptum of four special
papers (see below).

II. Historical Troubles

Already one of the first examples that Lotfi Zadeh used in his seminal article “Fuzzy
Sets” was the “class of all real numbers which are much greater than 1” – others were
as we all know the “class of all beautiful women” and the “class of all tall men”. He
wrote that these classes “were not classes or sets in the usual mathematical sense of
these terms” and “that it was a fact that such imprecisely defined ‘classes’ played
an important role in human thinking, especially in the fields of pattern recognition,
communication of information and abstraction.”2

Today we know that they also play an important role in finishing book manus-
cripts. Most authors wrote that they would send their manuscripts “before the end of
[x]” where x ∈ { January, February, March, ..., December } and also the year could
have been 2011 or 2012. Some authors asked for waiting some time by using fuzzy
concepts as the following examples show: “Give me a couple of days please.” or “I
need few more days.” or “Certainly 10 days should be enough.” or “Please wait for
me. This weekend I will finish.”

2 Zadeh, Lotfi A.: Fuzzy Sets and Systems. In: Fox, Jerome (Ed.): System Theory, Mi-
crowave Research Institute Symposia, Series XV. Broooklyn, New York: Polytechnic
Press, 1965. pp. 29–37: 29.



The Genesis of This Book XIII

We got e-mails including the sentence “I will try to finish mine before he finishes
his :-).” – And until we worked with this book manuscript for over one year, we
are sure that the meaning of the following sentence is pretty fuzzy: “I will do my
best.”

Concerning the requested contribution of “about five (5) pages” we got – indeed
– papers of 5 pages but as the reader of the book will notice very quickly, there are
also a couple of shorter papers and there are many longer papers. We cede it to our
interested readers to find the right membership function of the class of papers of
“about five (5) pages” in these two volumes.

III. More Historical Troubles

There are always exceptions! For some of the submitted contributions to this book
we would not find anybody who would say that it has “about five (5) pages”. Thus,
the membership values of these papers as an element to the set of “about five (5)
pages’-papers” is almost zero. Even one of the editors used to think that fuzzi-
fied on page-numbers! We considered that these papers deserved not to be reduced,
since they represent a comprehensive review of the past/present and a dream of the
future. How was to handle these contributions? – We decided to have a “Postscrip-
tum” at the end of this book (volume II) and we put these four contributions into
this part.

IV. Figures and Photographs

There are two kinds of figures or pictures in these two volumes: usually authors of
scientific papers use pictures, paintings, statistics, etc. to illustrate their findings and
results in figures. Consequently, there are many of those figures in this book but we
also asked the authors to look for old photographs that show themselves with Lotfi
Zadeh and/or with other protagonists of the fuzzy community. Many of the authors
went into cellars, attics, garages or any other crawl space where they assumed that
they have such pictures – lost from view. They opened boxes, folders, binders, photo
albums and yearbooks – may be for the first time since many years or decades – and
therefore we received a huge amount of unknown pictures.

We are very glad that we can publish such photographs in these two volumes
because some of them are important contemporary documents or at least nice mem-
orabilia. Most of the photograph are privately owened by the authors and we publish
them with their courtesy. Other photographs we have taken from the archive of one
of the editors.3

3 Figs. 0.1, 83.1, 86.1, 89.2 and 102.1 as well as the photographs that show Lotfi Zadeh page
7 of volume I (Thanks to Lotfi Zadeh for this gift!) and the one on page 7 of volume II of
this book.



XIV The Genesis of This Book

V. Additional Thanks

The editors are most thankful to the authors for their willingness to write their papers,
to Prof. Dr. Janusz Kacprzyk for accepting the book in his series Studies in Fuzziness
and Soft Computing, to Prof. Ron R. Yager for writing the Foreword, and last but not
least to the Springer Verlag (Heidelberg) and in particular to Dr. Thomas Ditzinger,
Leontina Di Cecco, and Holger Schäpe for helping this edition find its way to the
publisher’s list.

We thank the reviewers of the papers very much, particularly for their help we
thank Luis Argüelles, Christian Borgelt, Lluis Godo, and Alejandro Sobrino; special
thanks for proofreading a big number of contributions go to Brian R. Gaines!

VI. End

Finally, after having survived to all that without a single nervous attack, the last
pending paper arrived, the last pictures were selected, and the editors could exclaim
‘Good heavens! The book is ended!’. But then one of them, in low voice, added ‘Not
yet. The last section deserves a few lines with wishes for Lotfi’. Thus,

In the name of all those who contributed to this book, the editors would like to
finally add: ’Long life to Professor Zadeh!’

Fig. 0.2. The editors of this book at the Second Saturday’s Scientific Conversations (SSC) in
Palazzo Steri, Palermo, Sicily, May 14, 2011. May be in this moment they were agreed to
prepare the book in hand!

RS+ET+CM+ST,
Mieres (Asturias, Spain), and Palermo (Italy),

October, the 30th, 2012
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Interval Type-2 Fuzzy Logic in Hybrid Neural Pattern
Recognition Systems

Patricia Melin

Abstract. We describe in this paper an overview of new methods that we have been
working on for building intelligent systems for pattern recogni-tion using type-2
fuzzy logic and soft computing techniques. Soft Computing (SC) consists of several
computing paradigms, including type-1 fuzzy logic, neural networks, and genetic
algorithms, which can be used to create powerful hybrid intelligent systems. In this
paper, we are reviewing the use of a higher order fuzzy logic, which is called type-2
fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we are
able to build powerful hybrid intelligent systems that can use the advantages that
each technique offers in solving pattern recognition problems.

63.1 Introduction

Fuzzy logic is an area of soft computing that enables a computer system to reason
with uncertainty [2]. A fuzzy inference system consists of a set of if-then rules
defined over fuzzy sets. Fuzzy sets generalize the concept of a traditional set by al-
lowing the membership degree to be any value between 0 and 1. This corresponds,
in the real world, to many situations where it is difficult to decide in an unambigu-
ous manner if something belongs or not to a specific class. The main disadvantage
of fuzzy systems is that they can’t adapt to changing situations. For this reason, it
is a good idea to combine fuzzy logic with neural networks or genetic algorithms,
because either one of these last two methodologies could give adaptability to the
fuzzy system. On the other hand, the knowledge that is used to build these fuzzy
rules is uncertain. Such uncertainty leads to rules whose antecedents or consequents
are uncertain, which translates into uncertain antecedent or consequent membership
functions. Type-1 fuzzy systems, like the ones mentioned above, whose member-
ship functions are type-1 fuzzy sets, are unable to directly handle such uncertainties.
We also consider in this paper, type-2 fuzzy systems, in which the antecedent or
consequent membership functions are type-2 fuzzy sets. Such sets are fuzzy sets
whose membership grades themselves are type-1 fuzzy sets; they are very useful in
circumstances where it is difficult to determine an exact membership function for
a fuzzy set. Type-2 fuzzy systems have been applied with relative success in many
real-world applications, like in control, time series prediction, classification and deci-
sion, diagnosis, and pattern recognition. Uncertainty is an inherent part of intelligent
systems used in real-world applications. The use of new methods for handling in-
complete information is of fundamental importance [1]. Type-1 fuzzy sets used in
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conventional fuzzy systems cannot fully handle the uncertainties present in intelli-
gent systems. Type-2 fuzzy sets that are used in type-2 fuzzy systems can handle
such uncertainties in a better way because they provide us with more parameters.
Neural networks are computational models with learning (or adaptive) characteris-
tics that model the human brain [3]. Neural networks can be classified in supervised
and unsupervised. The main difference is that in the case of the supervised neural
networks the learning algorithm uses input-output training data to model the dynamic
system, on the other hand, in the case of unsupervised neural networks only the input
data is given. In the case of an unsupervised network, the input data is used to make
representative clusters of all the data. It has been shown, that neural networks are
universal approximators, in the sense that they can model a continuous and bounded
function to a specified accuracy and for this reason neural networks have been ap-
plied to problems of system identification, control, diagnosis, time series prediction,
and pattern recognition. We have worked on special structures called modular and
ensemble neural networks. Basically, a modular or ensemble neural network uses
several monolithic neural networks to solve a specific problem. The basic idea is
that combining the results of several simple neural networks we will achieve a better
overall result in terms of accuracy and also learning can be done faster and fuzzy
logic is the best approach to combine or aggregate the outputs of the modules Ge-
netic algorithms and evolutionary methods are optimization methodologies based on
principles of nature [4]. Both methodologies can also be viewed as searching al-
gorithms because they explore a space using heuristics inspired by nature. Genetic
algorithms are based on the ideas of evolution and the biological process that occur
at the DNA level. Basically, a genetic algorithm uses a population of individuals,
which are modified by using genetic operators in such a way as to eventually obtain
the fittest individual. Any optimization problem has to be represented by using chro-
mosomes, which are a codified representation of the real values of the variables in
the problem. Both, genetic algorithms and evolutionary methods can be used to opti-
mize a general objective function. In particular, evolutionary methods can be used to
optimize the structure and parameters of neural networks and fuzzy systems, which
is required in applications to achieve optimal results.

63.2 Type-2 Fuzzy Logic Applications in Pattern Recognition

One approach that we have worked on for face recognition uses modular neural net-
works with a fuzzy logic method for response integration [4]. The method for achiev-
ing response integration is based on the fuzzy Sugeno integral and type-2 fuzzy logic.
Response integration is required to combine the outputs of all the modules in the
modular network. We have applied the new approach for face recognition with a real
database of faces from students and professors of our institution. The results of the
modular neural network approach gives excellent performance overall and also in
comparison with the monolithic approach. Also, the method for achieving response
integration is based on the fuzzy Sugeno integral. Response integration is required
to combine the outputs of all the modules in the modular network. Another approach
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has been the use of neural networks, fuzzy logic and genetic algorithms for voice
recognition [4]. In particular, we have considered the case of speaker recognition
by analyzing the sound signals with the help of intelligent techniques, such as the
neural networks and fuzzy systems. We use the neural networks for analyzing the
sound signal of an unknown speaker, and after this first step, a set of type-2 fuzzy
rules is used for decision making. We need to use fuzzy logic due to the uncertainty
of the decision process. We also use genetic algorithms to optimize the architecture
of the neural networks. We have also considered the use of three modular neural net-
works as systems for recognizing persons based on the iris biometric measurement
of humans [5]. In these systems, the human iris database is enhanced with image
processing methods, and the coordinates of the center and radius of the iris are ob-
tained to make a cut of the area of interest by removing the noise around the iris. The
inputs to the modular neural networks are the processed iris images and the output
is the number of the person identified. We also have worked on human recognition
from ear images as bio-metric using modular neural networks with preprocessing
ear images as network inputs [5]. In this case, we have proposed a modular neural
network composed of twelve modules, in order to simplify the problem making it
smaller. Comparing with other biometrics, ear recognition has one of the best per-
formances, even when it has not received much attention. The Recognition results
achieved with this approach were excellent.

Fig. 63.1. Prof. Zadeh with the Mexican hat at the IFSA 2007 Congress
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We have also proposed a new approach for human recognition using as informa-
tion the combination of three biometric measures, iris, ear, and voice of a person [5].
Now we have considered the integration of these three biometric measures to im-
prove the accuracy of human recognition. The new approach integrates the informa-
tion from three main modules, one for each of the three biometric measures. The new
approach consists in a modular structure that contains three basic modules: iris, ear,
and voice. The final decision is based on the results of the three modules and uses
type-2 fuzzy logic to take into account the uncertainty of the outputs of the modules.

Fig. 63.2. Prof. Zadeh receiving an Award during the IFSA 2007 banquet

63.3 Motivation by Prof. Zadeh’s Work

The inspiring ideas and research work of Prof. Zadeh have been fundamental in
my own work [6], [7], [8]. He has always supported my research group’s work and
kindly accepted our invitation to offer a keynote lecture at the World IFSA 2007
Congress that was held in Cancun, Mexico in 2007 (in which I was Program Chair),
which was a very important lecture, especially for Latin America and Mexico. In
Figure 63.1 we show a photo of Prof. Zadeh with the classical Mexican hat during
the banquet of IFSA 2007. Also, in Figure 63.2 Prof. Zadeh is receiving an Award
from Prof. Melin during the banquet of IFSA 2007.
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63.4 Conclusions

In this paper an overview of new methods for building intelligent sys-tems for pattern
recognition using type-2 fuzzy logic and soft computing techniques was presented.
Type-2 fuzzy logic is of fun-damental importance in the area of pattern recognition
as a way to manage uncertainty in decision making and will be used with more
frequency in the future. We are grateful to Prof. Zadeh’s original work in this area
and also for his support to work along this line of research.
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Type-2 Fuzzy Sets and Beyond

Jerry M. Mendel

64.1 Introduction

This chapter explains why I started working on type-2 fuzzy sets and systems and
the contributions made by my students, colleagues and myself to this field. It also
predicts a very rosy outlook for this field.

64.2 Entry into Type-2 Fuzzy Sets

After working on type-1 fuzzy sets (T1 FSs) for close to a decade (see [18] for some
history about how I started working on T1 FSs and some of our contributions) I
shifted my attention to type-2 fuzzy sets (T2 FSs). Why? My earlier background
in estimation theory and statistical signal processing moved me in the direction of
trying to understand how a fuzzy logic system (FLS) could handle uncertainties.
It seemed to me that the fuzzy sets that everyone was using did not have enough
flexibility for them to incorporate an uncertainty such as non-stationary noise, or
a histogram of consequents, as might be established from a group of subjects all
of whom did not provide the same consequents for a rule. In Zadeh’s 1975 three-
part magnum opus [26] he introduced fuzzy sets of type-2 (now called T2 FSs) in
which membership grades were themselves fuzzy sets. One could call such fuzzy
sets “fuzzy-fuzzy sets.” A T2 FS was exactly the kind of fuzzy set that we needed in
order to continue our work [17], [19].

Another reason that I moved into T2 FSs may be amusing to the reader. Between
1994 and 1995 I supervised a sophomore undergraduate student, Matt Martin, who
wanted to do some research on fuzzy sets and systems. We agreed that by the end of
the academic year we would write an article that explained fuzzy logic (FL) to high
school students. It very quickly became apparent that we needed a really good ap-
plication. After some brainstorming, we agreed that flirtation would be an excellent
application, because it would be of great interest to high school boys and girls, and
because of the familiar flirtation adage “I’m getting mixed signals,” and the potential
for this to be explained in terms of firing of more than one rule and aggregating their
outputs, all using FL. It was during this work that we carried out surveys of groups
of students and encountered three situations that we felt could not be handled by T1
FSs: (1) survey data about rule consequents led to a histogram of consequent possi-
bilities for each rule; (2) survey data about the relative importance of the indicators
of flirtation also led to a histogram of weight possibilities for each indicator; and,
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(3) survey data about membership function values for the terms used to describe the
indicators of flirtation, as well as flirtation, demonstrated that there was serious dis-
agreement about this information. All of this led us to examine type-2 fuzzy sets.
The report [14] that we wrote about this work can be downloaded from my website
(http://sipi.usc.edu/ mendel). Many people have told me that they enjoyed learning
about FL by reading this report.

64.3 Historical Background of Our Early T2Works

A1 T2 FS2 was introduced by Zadeh in [26]; however, until the works of Karnik and
Mendel [5] no one had extended a T1 FLS (e.g., [25]) to a T2 FLS. In retrospect, the
major obstacles to doing this were: (1) characterization of T2 FSs; (2) performing
operations with T2 FSs; (3) inferencing with T2 FSs; and (4) going from the output
of a T2 inference engine (see Fig. 1), which is a T2 FS, to a defuzzified value, which
is a type-0 set. All of these obstacles were overcome with the introduction of some
new concepts, which are briefly described next.

Characterizing a T2 FS is not as easy as characterizing a T1 FS. Instead of being
two-dimensional, as a T1 FS is, a T2 FS is three-dimensional3. It is this additional
dimension that lets uncertainty be handled within the framework of FL. The concept
of a footprint of uncertainty,4 along with the associated concepts of lower and upper
membership functions (first described in [16]) lets us easily characterize T2 FSs. The
concept of an active branch (first described in [11]) of a lower or upper membership
function lets us design an interval T2 FLS-IT2 FLS (i.e., a T2 FLS whose T2 FSs
use interval sets to characterize their fuzziness5).

1 Portions of this section are taken from Section 1.3 of [17].
2 A type-2 fuzzy set can be thought of as a type-1 fuzzy set on steroids. Its membership

function no longer has a single value at each value of the primary variable, but instead is a
blurred version of that function, i.e., at each value of the primary variable the membership
is itself a function, called a secondary membership function. When the secondary member-
ship function is a constant equal to 1, the type-2 fuzzy set is called an interval type-2 fuzzy
set or an interval-valued fuzzy set; otherwise, it is called a general type-2 fuzzy set.

3 The membership function of a T2 FS is three-dimensional, with x-axis called the primary
variable, y-axis called the secondary variable (or primary membership) and z-axis called
the MF value (or secondary MF value). A vertical slice is a plane that is parallel to the
MF-value axis.

4 The FOU of a T2 FS lies on the x-y plane (i.e., the primary and secondary variable plane)
and includes all points on that plane for which the MF value is non-zero. It is the 2D-
domain on which sit the secondary membership values. The term FOU does not appear
in the earliest works of Karnik and Mendel [5], [6], [7]. It was coined by Mendel as a
simple way to verbalize and describe the two-dimensional domain of support for a T2 FS’s
membership function, and appears for the first time in [10] and [8].

5 Because an IT2 FS is a T2 FS all of whose secondary MF values equal one, there is no
information contained in those secondary MF values, and so an IT2 FS is characterized
just by its FOU.
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We who use T1 FS theory are so used to performing the common operations of
union, intersection, and complement that we take them for granted. How to per-
form these operations is covered in every book about (T1) FSs and logic. Operating
with T2 FSs-obtaining their union, intersection, and complement-is another matter.
Although some work on how to do this existed in the literature before the works
of Karnik and Mendel (e.g., [8]), it had not been developed far enough to be very
practical. By focusing on a very special but very useful kind of T2 FS-the interval
T2 set (also called an interval-valued FS)-and using the concepts of lower and upper
membership functions, it is very easy to perform all of these operations.

The sup-star composition is the fundamental mapping from the fuzzy input sets
that excite the inference mechanism (Fig. 64.1) to its output. All T1 FLSs make
use of it, and it can be viewed as a nonlinear mapping of a T1 input fuzzy set into
another T1 output set. A comparable result for T2 FSs needed to be developed. This
was done by using Zadeh’s Extension Principle, and is called the extended sup-star
composition.6 All type-2 FLSs make use of it, and it can be viewed as a nonlinear
mapping of a T2 input fuzzy set into another T2 output fuzzy set. To perform the
calculations associated with the extended sup-star composition one needs to use the
operations of union and intersection for T2 FSs; so, the developments of practical
algorithms for these operations came in quite handy.

Fig. 64.1. Fuzzy logic system

Going from the output of a T2 inference engine (see Fig. 64.1), which is a T2 FS,
to a defuzzified value, which is a type-0 set, was virgin territory. Inspired by what we
do in a T1 FLS, when we defuzzify the (combined) output of the inference engine

6 Dubois and Prade [2], [3] gave a formula for the composition of type-2 relations, using the
minimum t-norm as an extension of the type-1 sup-min composition. Karnik and Mendel
[5], [6], [7] demonstrated the validity of their formula for product as well as minimum
t-norms.
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using a variety of defuzzification methods many of which do some sort of centroid
calculation, it became clear that the concept of the centroid of a T2 FS was needed.
Using the Extension Principle, Karnik and Mendel [6], [9] defined the centroid of a
T2 FS; it is a T1 FS. Associated with this new concept are the related new concepts
of embedded T2 and T1 FSs7 (first described in [6]). These sets are easy to visualize
on the FOU of a T2 FS, and let us interpret a T2 FLS as a collection of T1 FLSs.

Computing the centroid of a general T2 FS can be very intensive, because the
number of its embedded T2 FSs can be enormous; however, for an interval T2 FS
(IT2 FS), an exact method for computing its centroid was developed [6], [9]. This
was possible because the centroid of an IT2 FS is an IT1 FS. Interval sets are com-
pletely characterized by their left- and right-end points; hence, computing the cen-
troid of an IT2 FS only requires computing the centroid of two embedded T1 FSs
one each for the left- and right-end points of this centroid. The method for com-
puting the centroid is encapsulated in two algorithms, called the Karnik-Mendel
(or KM) Algorithms. These algorithms are iterative; however, they converge very
quickly [13], [20]. One of them computes the left-end of the centroid and the other
computes the right-end of the centroid.

Returning to the output of the inference engine in a T2 FLS, it is a T2 FS. In
fact, one gets one such set for each rule that is fired by the input to the inference
engine, and, in general, (just as in a T1 FLS) more than one rule will be fired. These
T2 FSs can be combined in different ways, just as they can be in a T1 FLS. The
result is another T2 FS. The operation that maps this T2 FS into a T1 FS is called
type-reduction (first described in [5], [6], [7]), which was also a new concept.

Just as there are many different kinds of centroid-based defuzzifiers, there are
many different and comparable type-reducers, but all are based on computing a cen-
troid. Type-reduction is easy for IT2 FSs, and leads to an IT1 FS. Going from it
to a defuzzified output for the IT2 FLS is simple-just average the end-points of the
interval type-reduced set.

Putting all of these new concepts together lets us mathematically describe an IT2
FLS, just as we can mathematically describe a T1 FLS. Doing this then lets us de-
velop design procedures for IT2 FLSs that are analogous to those that have already
been developed for T1 FLSs.

Extensions of these results from IT2 FLSs to general T2 FLSs are now well un-
derway (e.g., [12], [22], [24]). Some contributors to the T2 literature are shown in
Fig. 64.2.

64.4 Is Type-Reduction Needed?

Type-reduction may be an obstacle to using T2 FLSs in real-time applications, be-
cause of the iterative nature of the KM algorithms, which may introduce an unaccept-
able time-delay into a system. For non-real time applications TR is not a problem.

7 An embedded T2 FS sits on a T1 FS that is contained within the FOU (and is also called
an embedded T1 FS) and has a non-zero MF value that sits atop that T1 FS. So, it is a very
simple T2 FS. The FOU is covered by the embedded T1 FSs of the T2 FS.
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All sorts of ways have been developed to bypass TR. Instead of describing them, I
would like to focus on the more fundamental question: Is TR needed?

Karnik and Mendel [5], [6] introduced the following fundamental design require-
ment for a T2 FLS: When all sources of [membership function] uncertainty disap-
pear, a T2 FLS must reduce to a comparable T1 FLS. This design requirement is
analogous to what happens to a probability density function when random uncertain-
ties disappear. In that case, the variance of the pdf goes to zero, and a probability
analysis reduces to a deterministic analysis. So, just as the capability for a determin-
istic analysis is embedded within a probability analysis, the capability for a T1 FLS
is embedded within a T2 FLS.

Fig. 64.2. Photo taken at FUZZ-IEEE 2005, Reno, Nevada. Front row (right-to-left): Woei
Wan Tan, Jerry M. Mendel, and Dongrui Wu (who had just received the best student papers
award), and Salang Musikasuwan. Back row (right-to-left): Jon Garibaldi, Bob John, Simon
Coupland and Chris Lynch (student of Hani Hagras who is not in the photo).

All of Karnik and Mendel’s TR methods satisfy this fundamental design require-
ment, because when all sources of MF uncertainty disappear, each of the TR methods
reduces to its comparable T1 defuzzification method.

Interestingly enough, TR became burned into the architecture of a T2 FLS because
Karnik and Mendel first developed all of their T2 concepts and calculations for a
general T2 FS and FLS. Because TR was so simple for an IT2 FLS it was kept in the
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architecture of the much simpler IT2 FLS [11], [21]. There is nothing wrong with
doing this; however, in retrospect we may have been blind-sided by the need for TR
in a general T2 FLS from asking the question “Is TR really needed in an IT2 FLS?”

In fact, there are many ways to go from an IT2 FLS to a number that bypass TR
and still satisfy the fundamental design requirement.

A student in a class that I taught some years ago asked: “Instead of performing
TR, why can’t we just use a combination of two T1 FLSs, one that uses only the lower
membership functions and the other that uses only the upper membership functions?”
My answer at that time was: “You can’t do this because each end-point of the type-
reduced set uses a mixture of lower and upper membership function information.”
While my answer was technically correct, it was predicated on using type-reduction,
rather than on what the student had suggested. My answer today would be: “You
can do what you are suggesting, and this can be done in different ways; however,
by bypassing TR you may not be able to provide a measure of the uncertainties
that have flowed through all of the IT2 FLS computations (analogous to a standard
deviation).” For example, you could begin with the architecture of an IT2 FLS as a
linear combination of two T1 FLSs, as in [1], or as the centroid of the average of the
lower and upper membership functions of the aggregated rule fired sets [23]. More
ways for using a mixture of the lower and upper membership functions can be found
in [4]. All of these IT2 FLSs go directly to the defuzzified output value and they all
satisfy the fundamental design requirement.

64.5 Looking into the Future

The outlook for T2 FSs, both IT2 and general T2, as well as for IT2 FLSs and general
T2 FLSs is very good. As of December 15, 2011, searches on Google Scholar under
“type-2 fuzzy” revealed about 1,390,000 results, “type-2 fuzzy sets” revealed about
403,000 results, and “type-2 fuzzy systems” revealed about 316,000 result, whereas
a search under8 “fuzzy sets” revealed about 2,210,000 results, and “fuzzy systems”
revealed about 2,390,000 results.

Much has already occurred for all kinds of T2 FSs and T2 FLSs with major
advancements made in their theories, computation and applications. For a light-
hearted history of the T2 FSs and systems, see [15]. Much research is now occurring
about general T2 FSs and FLSs, because a general T2 FS can be expressed, loosely
speaking, as the union of IT2 FSs over a parameter called either alpha [12], [22] or
zed [24]. Everything that has been learned about IT2 FSs and IT2 FLSs can now be
used for general T2 FSs and FLSs.

Will we go beyond T2? Why not? Once we run out of things to do with general
T2 FSs and we can demonstrate that e.g., a T3 FS is a better uncertainty model than
a T2 FS, then I see no reason why we will not take the next step up to a T3 FS.
Perhaps, lurking in the bushes is a general linguistic uncertainty decomposition that
is in terms of T1, T2, T3, etc. FSs. I would love to explore such bushes, but I am

8 “Fuzzy” is too ambiguous a term, and so it is not included here.
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afraid that this will have to be done by younger and more adventurous explorers. I
do believe, though that it will be done.
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65

Memories of a Crisp Engineer

Claudio Moraga

65.1 The Fuzzification

I think that the first time I heard a talk on fuzzy sets was at one of the early Interna-
tional Symposiums on Multiple-valued Logic, (ISMVL), and the speaker was Prof.
Lotfi A. Zadeh. Of course, I felt that the message was very interesting, but at that
time, I was fully concentrated on multiple-valued switching theory, where by defi-
nition, everything was precise and crisp, i.e., as far from fuzziness as only possible.
Things however were meant to change. A few years later, (in 1980) at the Interna-
tional Symposium on Multiple-valued Logic, in Evanston, Illinois, I met Prof. Enric
Trillas, and that was the beginning of a deep, long lasting and “most dangerous”
friendship: I started to be systematically exposed to the world of fuzzy, in a series of
fuzzy related Seminars and Summer Schools organized by Prof. Trillas at different
places in Spain, to which I was always invited. In one of the early Seminars he gave
me as a present his recently published book on Fuzzy Sets [15]. I had no longer an
excuse and I started to learn fuzzy sets and fuzzy logic. When in 1986 I became
a Professor at the Department of Computer Science in the University of Dortmund,
Germany, I introduced for the first time at the Department, seminars on fuzzy sys-
tems, which paved the way for my later Courses on “Intelligent Systems”, (there is
no accepted German equivalent for “Soft Computing”), as well as for several Master
and Ph.D. Theses in the area.

When I first attended a lecture on fuzzy sets, as mentioned above, Prof. Zadeh was
a regular participant at that ISMVL. In 1995, the year of the 30th Anniversary of the
seminal first paper on fuzzy sets [18], I had the honour of chairing the Special Ses-
sion at that year’s ISMVL, hosted by the University of Indiana, where Prof. Zadeh
delivered the Main Lecture as a Keynote Speaker. I had later the privilege of attend-
ing a sequence of Main Lectures of Prof. Zadeh at the series of “Dortmund Fuzzy
Days” Conferences in Dortmund, as well as at several other conferences. Moreover
I had the unique experience of attending his Special Lectures, both when he received
the Honorary Doctorate from the University of Dortmund (1993), and later, from the
Technical University of Madrid (2007).

65.2 Neuro-Fuzzy

At the time when I was finishing my Ph.D., Threshold Logic became popular for
the design of digital circuits. Since my Thesis was on Ternary Switching Theory,
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it was natural that after obtaining my Degree, I would work on developing aspects
of a “Ternary Threshold Logic” [4], later generalized to Multiple-valued Thresh-
old Logic. It is easy to understand that, with that background, as soon as neural
networks had their re-birth in the middle of the 80’s, I gladly moved to that area
and, particularly I started being interested in neuro-fuzzy systems [5]. I knew that
I would not be the only one with the idea of exploiting synergy by combining the
most relevant features of both systems: I had read of on going research in Japan and
in France. What I did not know was, that at that time Jyh-Shing Roger Jang was
writing his Ph.D. Thesis in Berkeley on a neuro-fuzzy system, and his advisor was
Prof. Zadeh! Yes, Jang successfully obtained sound results and produced the system
ANFIS [3], which became a worldwide known neuro-fuzzy system, that following
the training constraints for a neural network, was able to learn from data, the pa-
rameters of a Takagi-Sugeno rule-based model of the corresponding original system.
Having been interested in compensating systems, which are not properly modelled
with fuzzy rule bases operating with t-norms and t-conorms, but with aggregation
functions or linear and non-linear combinations of t-norms and t-conorms, I suc-
ceeded to show that the front end of ANFIS could be used and adapted to learn e.g.
the Gamma Operator (Zimmermann and Zysno, 1983) [8], [10] or the Weighted Op-
erators (Dubois, 1983) [10]. In his Dissertation at the University of Granada (1998),
José Manuel Benítez obtained a very nice result, showing that the hidden proces-
sors of a feedforward neural network using a sigmoid as activation function could
have a formal transformation allowing to deduce an equivalent if-then fuzzy rule,
based on the symmetric summation (introduced by Silbert in 1971). The rule would
have an expression as a symmetric sum of sigmoids, each applied to a different sin-
gle input. This result was published in [1]. With my Colleague Karl-Heinz Temme
(University of Dortmund) we extended the result of Benítez et al. to a family of
functions, which we called “S-functions”. A function f : R → (0,1) is said to be an
S-Activation (or simply S-function) if it satisfies the following conditions: f is con-
tinuous, strictly monotonously increasing; for any x in R, if f (x) = y then f−1(y) is
well defined and returns x; for all x in R, f (−x) = 1− f (x); finally, limx→−∞ f (x) = 0
and limx→∞ f (x) = 1. If f is an S-function, the symmetric sum of y1 = f (x1) and
y2 = f (x2) is given by f ( f−1(y1)+ f−1(y2)). A sigmoid is obviously an S-function,
but among others, the Elliot function divided by 2, the function 1/(1+ a−x) with a
real and larger than one [14], and some trigonometric functions are also S-functions.
Furthermore the graphic representation of an S-function shows that it can be inter-
preted as a (half open) fuzzy set. At the same time, the value of S(wixi) gives the
membership degree of the i-th argument to the fuzzy set represented by S with pa-
rameter wi. We interpreted the obtained rule analog to a Takagi-Sugeno rule of order
0 and the conclusion of the rule was calculated as the symmetric sum induced by f ,
of the membership degrees of the arguments to their corresponding parameterized
S-functions. The premises of the rule were connected as usual, by and, but we did
not give this connective an unnatural interpretation based on the symmetric summa-
tion, other than the natural linguistic interpretation that the premises are satisfied (to
a corresponding degree) at the same time [7].
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65.3 Evo-Fuzzy

When I started to search for synergy between fuzzy systems and evolutionary algo-
rithms, there were already quite a lot of works devoted to applications of evolution-
ary algorithms to optimize fuzzy if-then rules and even to optimize full fuzzy rule
bases. Possibly [2] represents a first important reference book on the subject. My
first steps in the evo-fuzzy world were the other way around: I discussed genetic
algorithms with “fuzzy fitness”, borrowing from fuzzy control the idea of using the
knowledge of experienced workers in the area of the problem to linguistically judge
the quality, i.e. the fitness, of evolving individuals [6]. From the Trillas’ School
I had learnt that a fuzzy set representation of a linguistic term had to be designed.
One possible scenario considers asking the users, in which interval of a given uni-
verse they would all agree “without but” that the predicate which representation is
being designed, is satisfied. This would give the core of the corresponding fuzzy set.
Similarly the users would be asked, when would they all agree that the predicate is
not at all satisfied. That would give the co-support of the fuzzy set. Now, our expe-
rience as human beings when thinking of predicates is that the transitions between
not-at-all and indeed-yes are continuous and monotone. If no further information is
available (and this is quite frequently the case at the linguistic level), linear transi-
tions are a reasonable first choice. This leads to a trapezoidal representation of the
fuzzy sets corresponding to given predicates. When data driven modeling of a sys-
tem based on if-then fuzzy rules is considered, the input-output samples of data may
contain the missing information to determine the shape of the sides of the otherwise
trapeziums used to represent the linguistic terms. With Rodrigo Salas, then a Ph.D.
Student at the Technical University Federico Santa María, Valparaíso, Chile, we fol-
lowed this hypothesis. We parameterized the sides of trapezoidal linguistic terms
by using order automorphisms to introduce nonlinearities, but preserving continuity
and monotonicity. The parameters were adjusted with simulated annealing. A lower
mean square approximation error on a non-trivial test problem was obtained [9]. One
last degree of freedom, (more precisely, degree of responsibility), when using if-then
fuzzy rules is the choice, or better, the design, of the corresponding operations for
the and conjunction of the premises and the then transfer to the conclusion. The
case of choosing operations has been carefully analyzed in a series of works, be-
ginning with the last section of [15] and the latest being [17]. In a joint work with
Michio Sugeno and Enric Trillas, operations of a fuzzy rule base for approximation
of the same test problem mentioned earlier were “data-driven designed” by means
of parameterized order automorphisms applied to the product, and adjusted with dis-
tributed genetic algorithms. The mean square approximation error was smaller than
the one obtained when using the (non-adapted) product, the t-norm of Łukasiewicz
or the minimum [11].

65.4 Computing with Words

My first approach to the area of Computing with Words was in 2003, when right
after my retirement from the University of Dortmund, I received an invitation of the
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Ministry of Education of Spain, to become a Visiting Researcher at the Department
of Computer Science of the Technical University of Madrid, and work with Prof.
Enric Trillas, who at that time was interested (among other things, of course) in
the representation and properties of antonyms within the formalism of fuzzy sets.
We had lots of interesting discussions on the subject, which finally lead to [12].
On March 2006 I joined the newly founded European Centre for Soft Computing
(Mieres, Asturias, Spain) and I started doing work on fuzzy formal languages. A
few months later, Prof. Enric Trillas also joined the Centre and he soon started an
internal weekly Seminar on Computing with Words. This Seminar was the right en-
vironment to clarify concepts, exchange ideas and gain a better understanding of the
challenges and possibilities in this new area. Moreover, since Prof. Zadeh was the
Chairman of the Scientific Committee that advices and controls the research work
of the Centre, when he was in Mieres for a Meeting of the Committee, we had the
privilege of attending an always motivating Lecture of him, related to his latest re-
flections on Computing with Words. At the IFSA/Eusflat Conference 2009, a result
of a joint work with Prof. Trillas was presented, showing an analogy between lin-
guistic terms and linguistic modifiers on the one side, and classes of sentences and
their semantic modifiers, on the other [13]. This was followed by an essay on the
linguistic interpretation of Mamdani Systems [13].

65.5 Closing Remark

From the late 70’s until today I have had the privilege of receiving from the right
people, at the right time, the right motivation to dedicate research efforts to contribute
to the further development of fuzzy systems, followed by soft computing systems. It
has been a most rewarding fuzzinating experience!
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On Fuzziness in Mathematics

John N. Mordeson

I received my Ph. D. in mathematics from Iowa State University in 1963. My spe-
cialty was in abstract algebra. That same year I obtained a position in the Mathemat-
ics Department at Creighton University. For the first 20 years or so, I carried out a
research program in traditional mathematics. In an attempt to reach out to other dis-
ciplines, I began collaborating with members of the Health Sciences at Creighton. It
was then that I began to feel that some form of mathematics (not probability) dealing
with imprecision would be useful in the health sciences. I found a book on fuzzy
logic in the library. It seemed to me that this was exactly what I was looking for.
However, I did not pursue the matter further at this time. It was later that I more fully
appreciated the importance of the ideas of Lotfi Zadeh regarding uncertainty [1].

The classical mathematical theories, by which certain types of certainty can be
expressed, are the classical set theory and probability theory. In terms of set theory,
uncertainty is expressed by any given set of possible alternatives in situations where
only one of the alternatives may actually happen. Uncertainty expressed in terms of
sets of alternatives results from the nonspecificity inherent in each set. Probability
theory expresses uncertainty in terms of a classical measure on subsets of a given
set of alternatives. The set theory, introduced by Zadeh, presents the notion that
membership in a given subset is a matter of degree rather than that of totally in or
totally out. This concept is captured in [1] by defining a fuzzy subset of a universal
set X to be a function from X into the closed interval [0,1].

Another broad framework for dealing with uncertainty is the fuzzy measure theory
founded by Sugeno [2], [3]. The fuzzy measure theory replaces the classical mea-
sure theory by replacing the additivity requirement with the weaker requirements of
monotonicity, with respect to set inclusion and the continuity or semicontinuity of
fuzzy measures. The earliest challenge to classical measure theory was by C. Cho-
quet when he developed a theory in 1954 called the theory of capacities [4]. Other
major contributions were by Dempster [5] and Shafer [6] and by Zadeh’s introduc-
tion of possibility theory [7].

As noted in [8], the evolution of the fuzzification of mathematics can be broken
into four stages: (1) Straightforward fuzzification during the sixties and seventies;
(2) Exploration of numerous possible choices in the generalization process during
the eighties; (3) Standardization, axiomatization and L-fuzzification in the nineties;
(4) Deeper development of many areas of fuzzy mathematics in the 21st century.
The years 2001-2009 found an expansion of the frontier of many areas in fuzzy
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mathematics, such as axiomatics of structures and concepts, fuzzy logic in the narrow
sense, interval valued fuzzy sets and fuzzification of mathematical disciplines.

During the sixties and seventies nearly every domain of pure mathematics was
fuzzified. The definition of a suitable fuzzification of the classical notions was un-
dertaken, i.e., suitable in the sense that when the extension is applied to the classical
case, the classical notion is obtained. During the eighties many possible choices
in the generalization process occurred. The discovery of triangular norms and con-
forms that had been introduced to probabilistic metric spaces influenced the process
of generalization. There also occurred a study of the alternative operations of dis-
junction, conjunction, implication in logic as well as union, intersection, and inclu-
sion in fuzzy set theory. Pawlak introduced the concept of a rough set in 1982 [9].
This concept is fundamental to the examination of granularity in knowledge. The
main themes of research in the nineties in fuzzy mathematics were the standardiza-
tion, axiomatization, L-fuzzification and a comparison of the fuzzy model to other
recently developed models for the representation and manipulation of imprecision
and uncertainty. A comparison occurred between the fuzzy model and other models
such as rough sets, subdefinite sets, and intuitionistic fuzzy sets .

The development of fuzzy set theory has been described many places. It is worth
mentioning that Krassimir Atanassov introduced the notion of the degree of non-
membership in the definition of a fuzzy subset [10]. This idea is incorporated with
the notion of membership in a fuzzy subset and the resulting structures is called an in-
tuitionistic fuzzy set. H"ohle showed that large parts of fuzzy set theory are subfields
of sheaf theory. Consequently, fuzzy set theory is closer to mainstream mathematics
than one might think. Fuzzy logic was first invented as a representation scheme and
calculus for uncertain or vague notions. It is an infinite-valued logic that allows more
human-like interpretations and reasoning. With fuzzy set theory, one obtains a logic
in which statements may be true or false to different degrees rather than the bivalent
situation of being true or false. Consequently, certain laws of bivalent logic do not
hold, e.g., the law of the excluded middle and the law of contradiction. This resulted
in an enriched scientific methodology.

C. L. Chang introduced the notion of a fuzzy topology of a set in 1968 [11]. Much
of the early work in fuzzy topology was based on its similarity with another branch
of topology on a lattice, namely local theory. Methods of local theory were used
to study problems not involving points in fuzzy topology. Many problems on fuzzy
topological spaces must involve the notion of point. A summary of the work can be
found in the book by Liu and Luo [12].

Dr. Malik, a member of the Mathematics Department at Creighton, showed me the
seminal paper [13] on fuzzy group theory by Professor Azriel Rosenfeld. Rosenfeld
was inspired by the work of Chang on fuzzy topological spaces. Rosenfeld wrote the
entire paper while on a flight to a conference. This paper opened a whole new area in
fuzzy mathematics, namely fuzzy abstract algebra. Dr. Malik and I began a long last-
ing research association in fuzzy abstract algebra. We created a center for research
in fuzzy mathematics. Dr. George and Mrs. Sally Haddix believed strongly enough
in the goals of the center to provide it with a generous endowment. The goals of the
center were to support the paradigm shift in the sciences with respect to uncertainty
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and to support our colleagues in countries overseas working in fuzzy mathematics.
To these ends, the center hosted visiting scholars from China, India, Korea, Japan,
and Saudi Arabia. Members of the center collaborated with members of the depart-
ments of Neurology and Psychiatry at the University of Illinois, College of Medicine
at Chicago and also the Center for Research in Osteoporosis at Creighton. Members
of the center and members of the Department of Education at Creighton have carried
out joint research with the staff of Omaha Hearing School and Madonna School, a
school devoted to children with special needs. We responded to the requests of many
graduate students from the University of Baghdad for reprints of papers on fuzzy
mathematics. Dr. Sen, a visiting scholar from India, together with Dr. Malik and I
became immersed in fuzzy algebraic automata theory. Our work led Dr. Malik and
I to write a book in the area. In fact, members of the center have written over 100
papers and 10 books on various areas in fuzzy mathematics. Members of the center
attended conferences on fuzzy theory and technology where they met and were in-
fluenced by leaders in the field such as Paul Wang, George Klir, Azriel Rosenfeld,
and Lotfi Zadeh himself.

In another attempt to reach out to other departments at Creighton, I contacted Dr.
Clark of the Political Science Department in 2005. Dr. Wierman of the Computer
Science Department joined us soon after. We produced a research agenda joining
formal theoretical work with empirical research. We felt that standard mathematics
is too precise to model human thinking and action. One of the most important devel-
opments of our collaboration is the involvement of students in our research. We work
with students from political science, mathematics, and economics. Our collaboration
has led me to develop an honors course that focuses on using fuzzy mathematics to
model global issues. Some of the global issues we have tackled with students are
nuclear stability, children with special needs, economic freedom, smart power, polit-
ical stability, cooperative threat reduction, failed states, economic stability, creative
economy, quality of life, solar energy, wind energy, college freshman weight gain,
population management of Sub-Saharan Africa, safe skies, remittances, health care,
nuclear deterrence, developmental disorders in children, human development, and
globalization. However, the main project of the research group deals with spatial
modeling. Spatial models in political science typically assume that political actors
possess an ideal preference that is mapped in n-dimensional space as a single point.
Fuzzy set theory permits scholars to assume instead that actors are indifferent over a
large number of alternatives that are mapped as regions within which all options are
equally preferred. The goals of the fuzzy spatial modeling project are (1) to improve
the capacity of models to predict stable outcomes and (2) to improve the empirical
validity of those predictions. In so doing, the project illustrates the ability of fuzzy
mathematics to deal with vagueness in human thinking and provides a touchstone for
further applications of fuzzy mathematics in the social sciences.

The potential for the future application of fuzzy mathematics looks to be quite
promising. One such possible application is causality. Albert Einstein stated that
development of Western science is based on two great achievements: the invention
of the formal logic system and the discovery of the possibility to determine causal
relationships by systematic experiment. Judea Pearl states that in the last decade
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(the 1990s) owing partly to advances in graphical models, causality has undergone
a major transformation. Practical problems relying on causal information that long
were regarded as unmanageable can now be solved using elementary mathematics.
Pearl [14] stresses that basic concepts of probability theory and graph theory is all
that is needed for one to begin solving causal problems that are too complex for
the unaided intellect. Many support the notion that problems of causality can be
studied profitably by the use of mathematics uncertainty and basic concepts from
graph theory.

The interested reader may find the papers [8], [15], and [16] pertinent to this paper.
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A Mathematician’s Naive Perspective on Fuzzy Sets
and Fuzzy Logic

Takehiko Nakama

I imagine that when Enric Trillas and Rudolf Seising asked me to contribute to this
book, they expected me to provide a naive perspective on fuzzy sets and fuzzy logic
from a mathematician’s point of view—they know that I am a mathematician and
that I am a novice in this field. As indicated by the title, I shall attempt to comply
with their expectation. At the European Center for Soft Computing (ECSC), I con-
tinually engage in thought-provoking discussions on various aspects of fuzzy sets
and fuzzy logic with prominent researchers in the field, and my perspective on the
subject matter continues to evolve. In this essay, I report my nascent thoughts.

I do find fuzzy set theory and fuzzy logic fascinating. Although they have been
successfully applied to a variety of real-world problems, their applications have very
little to do with my interests in them; it is the theories, not their applications, that
intrigue me intellectually. (Perhaps I should develop a better appreciation for inge-
nious applications.) Having said that, I believe that the fuzzy theories provide ef-
fective mathematical formulations of human reasoning or behavior, and I intuitively
understand why their applications have been hugely successful in various areas. For
instance, humans are remarkably capable of controlling a number of different de-
vices, so it is wise to use the fuzzy theories to develop formal characterizations of
how we control them and to implement them in machines.

It seems that, even today, some people are still strongly dismissive of the fuzzy
theories; my colleagues at ECSC occasionally tell me about their experiences with
such people. On the one hand, I understand the criticisms directed toward studies
that simply apply fuzzy concepts to various practical problems without attempting
to develop any theoretical basis or framework for their methodologies. On the other
hand, I do not understand those who do not accept fuzzy set theory and fuzzy logic by
claiming that they are not logically or mathematically well-founded. To me, repre-
senting sets not only by characteristic functions (also known as indicator functions)
but also by other functions is a rather natural and important progression in gener-
alizing the classical set theory. Similarly, I consider many-valued logics a natural
generalization of the classical two-valued logic. Just as we can establish connections
(isomorphisms) among the classical set theory, propositional logic, and boolean al-
gebra, we can establish analogous connections between fuzzy set theory and fuzzy
logic. Hence I do not believe that their theoretical foundation is weaker than that of
the classical set theory or two-valued logic. (Russell, Whitehead, and Gödel demon-
strated that even the foundation of the classical mathematical logic is, unfortunately,
rather “shaky” or “incomplete”.) One of the criticisms that I have observed is that
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fuzzy set theory and fuzzy logic are flawed because they lack the law of excluded
middle and the law of contradiction. (It is also mysterious that those who support the
argument do not seem to be particularly bothered by the lack of some other instances
of tautology, such as those used as inference rules, in the fuzzy theories.) First of
all, Enric Trillas has recently elucidated conditions under which the two laws hold
in fuzzy logic. Second of all, in mathematics, one can find results that hold in one
domain but not in another domain (for example, examine results in Real Analysis
and Complex Analysis), but it would be considered absurd to claim that mathemat-
ics must exclude a domain of analysis for that reason. A healthy dose of skepticism
should always be appreciated (think about how Russell identified some fundamental
problems in mathematical logic, for instance), but some of the criticisms against the
fuzzy theories seem to indicate blind unreceptiveness.

After all, it has been “only” about 50 years since fuzzy set theory was founded
by Zadeh. In mathematics, some of the concepts that seem indispensable, self-
explanatory, or highly valuable today took a lot of time to gain acceptance. One of the
primary examples of such concepts is the imaginary number,

√−1, which took sev-
eral hundreds of years to get fully incorporated in mathematics. (Other “unnatural”
numbers, such as zero and negative numbers, also have interesting histories.) Thus
one could say that fuzzy sets and fuzzy logic have gained wide acceptance rather
quickly. Extending the field of real numbers to include complex numbers should be
considered one of the most important generalizations in mathematics, and it led to
innumerable theoretical and practical breakthroughs. (Hadamard is often quoted as
saying that the shortest path between two truths in the real domain passes through the
complex domain.) The inclusion of fuzzy sets in set theory, which dealt with only
“crisp” sets for many years, can be considered somewhat analogous to the inclusion
of complex numbers in mathematics. I believe that incorporating fuzzy sets in set
theory is important to develop the theory to its fullest; limiting it to crisp sets would
be terribly detrimental to its progress.

Extending an existing framework or theory to include fuzzy sets often requires a
stimulating intellectual challenge for mathematicians. A prime example can be found
in statistics. In classical hypothesis-testing procedures such as t-tests and analysis of
variance, real-valued random variables are used to express statistical models. To
extend these procedures to analyze fuzzy data (i.e., data consisting of fuzzy sets),
Hilbert space-valued random variables are often used to express statistical models.
Thus, to establish analogous statistical procedures for fuzzy data, we need to extend
classical theorems in probability theory, such as laws of large numbers and central
limit theorems, to Hilbert space-valued random variables. Hence mathematicians
can find an abundance of problems to solve by trying to extend existing mathemati-
cal theories to fuzzy sets. Many research fields have emerged as a result of extending
existing mathematical theories to fuzzy sets—fuzzy group theory, fuzzy topology,
fuzzy game theory, and fuzzy graph theory, to name a few. I expect that more and
more existing mathematical theories will be extended to incorporate fuzzy sets. Con-
sequently, the complexity of the theories will increase substantially. More efforts
to simplify them by removing superfluities, to unify them, and to gain insightful



67 A Mathematician’s Naive Perspective on Fuzzy Sets and Fuzzy Logic 461

perspectives that help better understand them will have to be made to counteract the
trend.

Some engineers seem to think that mathematicians are making the theories more
and more complex just because they can, without any meaningful objective in mind.
I have two slightly conflicting thoughts on this matter. On the one hand, I believe
that it is important for researchers, including mathematicians, to examine the signifi-
cance of their own research as they engage in it. Here I do not think that there is any
universal measure for significance in research; different researchers have different
criteria for evaluating it (for instance, the most valuable attribute may be practicality
for application-oriented engineers but conceptual elegance or rigor for mathemati-
cians), and I consider the diversity important for enriching a research field. Despite
the lack of universal criteria, I believe that trying to identify important problems and
to conduct studies that address them can result in quality research.

On the other hand, I believe that it is critical that complete freedom be warranted
in theoretical research because it is often difficult, or virtually impossible, to figure
out what concept turns out to be truly significant, especially in mathematics. For
instance, RSA, which revolutionized cryptography and secure communication on the
Internet, is based on a handful of old results in number theory (Euclid’s algorithm,
Euler’s totient function, and the Fermat-Euler theorem) that did not seem to have
anything to do with cryptography; it is safe to say that Euclid, Fermat, and Euler
never thought about contributing to cryptography or secure communication on the
Internet when they established the results. Some mathematical ideas that appear to
have no practical use initially can turn out to be tremendously useful for solving real-
world problems in the distant future. Thus I believe that it is terribly detrimental for
mathematical research to restrict endeavors or initiatives to immediate practicality; it
will hinder progress not only in theory but also in applications. Let me conclude this
essay with the following remark to those who are critical of mathematicians for not
producing practical results: Let mathematicians pursue mathematical truths freely;
though you might have to wait for many years, you could benefit enormously from
the fruits of their labor.

Acknowledgement. The author thanks Mary Kathleen Kemp for helpful discus-
sions.
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On Fuzziness and Ordinary Reasoning

María G. Navarro

In 1685, in The Art of Discovery, Leibniz set down an extraordinary idea: “The only
way to rectify our reasonings is to make them as tangible as those of the Mathemati-
cians, so that we can find our error at a glance, and when there are disputes among
persons, we can simply say: Let us calculate [calculemus], without further ado, to
see who is right.” Calculemus. Much has been written about that celebrated expres-
sion, but if I had to remember the moment when the famous Leibnizian motto once
again brought back to mind, in a way, artefacts of the present and the future, that
moment would be connected with a seminar organised by Verónica Sanz at the Phi-
losophy Institute of the Spanish Council for Scientific Research (CSIC), when she
was the coordinator of the Seminario Internacional de Jóvenes Investigadores (the
International Seminar for Young Researchers). At that seminar, Sergio Guadarrama
presented the challenge of computing with words. It was then, if I was not mistaken
and I really understood what was being explained to me, that I discovered that after
all, Leibniz had something to do with a man named Lotfi A. Zadeh. I liked this, be-
cause it meant that the problem of formalising the modes of reasoning we all use was
so important that many reputable researchers wanted to help the world to calculate.
Alerting others to the importance of calculating and being aware of the effective real-
isation of a calculation when it is reasoned, is not the same as offering answers about
how we can achieve this individually and even collectively, in the physical world and
in the virtual one.

When it is not misinterpreted, we all tend to like Leibniz’ expression; everyone
likes the idea of calculating with words. Calculating by reasoning is something we
normally do. A constant calculation which unites us with everyone else in a kind
of endless mathematical operation, but which we accept as finished at certain mo-
ments, is an invitation to imagine ourselves as really complex creatures. Enric Trillas
showed me more things about the problem of ordinary reasoning in the first “Alfredo
Deaño” Seminar on Ordinary Reasoning organised by the Foundation for the Ad-
vancement of Soft Computing and the European Centre of Soft Computing (ECSC)
in 2011. Here different research projects were discussed, relating to the challenge
of Soft Computing, and the meaning of our reasoning in everyday life. The concept
which I found most enthralling was the ‘conjecture’ which Enric Trillas spoke about.

One could say his entire discourse was imbued with the spirit of the Novum
Organon Renovatum which led William Whewell to state that deduction is a nec-
essary part of induction. At first glance, it is as paradoxical for a mathematician
to sustain and develop a philosophical discourse based on this thesis, as it is for a
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Fig. 68.1. Details of the mechanisms of the Leibniz calculator, the most advanced of its time.
Illustration in “Theatrum arithmetico-geometricum” das ist Schau-Platz der Rechnen- und
Mess-Kunst. . . , [1].

philosopher to exclaim “let us calculate”, advising us to learn to weight our reason-
ing appropriately when we enter into disputes which can be resolved if we gradually
find out how to present them more tangibly. It struck me that Trillas’ adherence to
this thesis was leading him to criticise the prejudice shared by many philosophers
that all objects can be precisely defined. Trillas shares this concern with Zadeh, who
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has defined himself as a fervent believer in the power of mathematics. Both for Tril-
las and for Zadeh, it is a mistake of classical mathematics to think you can divide
objects into two sub-classes: that of the objects which are examples of the concept,
and that of those which are not. If we think about the paradoxical expression which
Leibniz invites us to always bear in mind (calculemus) perhaps it is not so strange to
see two fervent believers in mathematics inviting us to look at the world exactly as
we all know it to be: a reality in which there are no defined (or defining) frontiers,
where we understand that a pinch of salt cannot be replaced by an exact amount,
or that the meaning of better than, good or high cannot be defined according to the
classical pattern mentioned above.

There is no precise definition dividing into two the class of all objects, nor is there
a deduction mechanism based on the rules of inference operating on the meaning of
utterances; only on their abstract form. This is what makes so attractive the fact that
human beings, and living organisms in general, reason, aware that our conclusions
are not definitive, but merely provisional. However, despite the incompleteness, not
only of our reasoning but of the theories we construct with them, neither can we
conclude that our inferences lack informational value. We use powerful systems to
represent the world in which we manipulate our beliefs, so that many people refuse
to believe that this has anything to do with logical calculation. Do we calculate?
Do we rebuild information without adding new semantic content? How do semantic
representations, or representations of content, affect formal mechanisms to produce
inferences? Answering these questions does not look easy, but it may be an interest-
ing strategy to ask why we do things this way.

Let us suppose our semantic representations influence the formal mechanism to
produce inferences. What use to us is it to do it this way? One of the explanations
which have been given is that circumstances usually oblige us to make decisions
and/or to act long before we know all the relevant facts. Not all the information is
available to us, because the world has not finished happening. This is the idea under-
lying the concept of goal-directed reasoning: we all establish reasoning which goes
from the premise to the conclusion, which does not prevent us returning immediately
from the conclusion to the premise. The inference rules we use justify the beliefs we
select and adopt. But what for? A common answer is that it is to be able to act and
live in time. In a way this is like saying it is in our interests to be able to think this
way (in two directions) because our reasoning is goal-directed: it is in our interests
to reason this way. However, it seems paradoxical that our interest in reasoning fol-
lowing a model of reasoning directed to interest makes us select an imperfect model
of reasoning. This option is certainly the most consistent one if we bear in mind that,
as Zadeh reminds us, we do not live in a world in which we divide objects into two
sub-classes: that of the objects which are examples of the concept, and that of those
which are not. If we read this idea in relation with the subject of reasoning, the result
is that, through reasoning, we can live in a world where we can recant our inferences.
Something so apparently simple ends up being very useful: ordinary goal-directed
reasoning invites us to examine the theories of epistemic justification (externalism,
internalism, contextualism, reliabilism, etc.). Perhaps this analysis of epistemic
justification still does not answer the question of why (why are we normally
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unable to restructure information without adding new semantic content?), but it of-
fers different answers to the question of how.

Do all people share the same notion of inferential validity? If a self-description
(‘I think it’s red’; ‘Zadeh says yes’; ‘I like eating with other people!’) means the im-
mediate production of a given context for the expression of states of consciousness –
and this is the context which enables us to understand those expressed thoughts – it
is pertinent to ask if we all share the same notion of inferential validity. Something
may lead us to think, to begin with, that we do not. We have all experienced dis-
agreement and misunderstanding. We often have experience as to whether or not we
get things right when reproducing a given context to make states of consciousness
and representational content understandable, or if we do this successfully, but then
fail to infer other representational content, for example, the intentions, plans, beliefs,
judgments or commitments which make up collective attitudes.

To understand more about what ‘inferential validity’ means and why this process
is susceptible to every kind of cognitive bias, we must refer to the discoveries in the
psychology of reasoning of Peter C. Wason. The results of Wason’s experimental
research are a paradigm of how concepts of inferential validity do not satisfacto-
rily account for the phenomena of ordinary reasoning. In 1960 some experimental
psychologists began to take an interest in the nature of human reasoning. A series
of experiments led them to conclude that most human beings ordinarily make basic
mistakes in deductive order in their inferences. This research led to the emergence
of the concept of ‘inferential competence’.

The definition of inferential competence proposed by the experimental psycho-
logists was not shaped by all the principles and rules of classical logic. This research
would later be enriched by the application of a tentative hypothesis according to
which the experiment subjects made more formally consistent inferences when pre-
sented with a concrete version of the inferential tasks, i.e., when they were asked to
resolve these tasks while still using natural language, and not through formalisations
in an object language.

The research of these experimental psychologists chimes with the discovery of
cognitive bias or systematic errors when making inferences. From the point of view
of cognitive psychology, cognitive biases are one of the core concepts of the psy-
chology of reasoning, because they let us infer that there is a certain type of context,
conditions and situations in which a cognitive mechanism (with inferential or induc-
tive effects) produces cognitive results which are not correct.

This cognitive heuristic itself represents an example in which we see that infer-
ential and representational processes are dealt with in ordinary reasoning based on
interpretive components and processes. Thus, in the case of epistemic biases, the
previous interpretation of the contexts in which cognitive mechanisms (e.g., an in-
ference, a representation) is what guides the subject when producing justified or
acceptable cognitive mechanisms.

In their studies on defeasible inferences authors such as Keith Stenning and
Michiel Van Lambalgen have drawn our attention to how little importance is usu-
ally given to the three dimensions present in interpretation (the logical, semantic
and pragmatic dimensions) in the mastery of logic and the philosophy of language.
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Fig. 68.2. Cover of the book edited by Peter C. Wason and P. N. Johnson-Laird, [2]

Defeasible inferences are the opposite of deductive arguments, which are not defea-
sible. If a conclusion follows deductively from a set of premises P, it can never be
valid if P is increased, or in other words, an inference cannot be valid if, among other
aspects, more information is obtained based on the inference.

For example, defeasible inferences are constantly used in historical research and
reasoning. In fact, the functions which some historians who call themselves recon-
structionists confer on historical reasoning are not in agreement with the nature of
the inferences used in developing the reasoning: they construct historic reasoning
based on a deductive conception of this reasoning. However, we find that in history,
there is no place for deduction; history is an eminently defeasible space.

In everyday life too, our inferences are defeasible inferences. We can see this,
for example, in some of the most important revocable or defeasible inferences, such
as conditional inferences, within which we can highlight so-called conversational
implicatures, as well as abductive inference, which I regard as the logical pattern
inherent in the cognitive process called ‘interpretation’.

Ordinary reasoning enables us to have a closer relationship with reality (because
it is eminently fuzzy), and fuzzy logic - as far as I have been able to understand until
now - establishes the conditions of possibility to carry out the sophisticated calcula-
tion through words with which Lotfi A. Zadeh invites us to contemplate ourselves.
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On Present Logico-Methodological Challenges
to Fuzzy Systems

Vesa A. Niskanen

69.1 Introduction

Today fuzzy systems play an important role in the quantitative research. This is due
to their novel approach to reasoning and concept formation. On the other hand,
fuzzy systems have been controversial in particular among the philosophers and
mathematicians. Hence, the dissemination of these new ideas has encountered many
problems. Additional criticism has arisen because various logico-methodological
approaches to the fuzzy systems are adopted as well as we still have quite many
unresolved problems in our basic theories.

Below we consider some basic problems which still arise in the theories of fuzzy
systems. We also sketch some tentative resolutions for them.

69.2 In the Beginning There Was Fuzziness

The first problem arises at the core of fuzzy systems, viz. the meaning of the concept
fuzzy. From the etymological standpoint, this expression probably stems from the
old German word fussig (spongy). Today researchers assume that fuzziness at least
means imprecision. However, other concepts are also used, and prior to the fuzzy
era, philosophers used such concepts as vague or even inexact instead [6, 14]. Many
researchers also use the concept uncertain in this context.

If we assume that fuzziness in fact means imprecision, the mainstream interpre-
tation is that fuzziness is included in certain linguistic expressions, and we consider
them in the light of the extensional semantics. Hence, we may establish that a linguis-
tic expression is imprecise, or fuzzy, if it refers to such entities (e.g., sets or relations)
which have borderline cases. For example, young person is imprecise if its corre-
sponding extension, the set of young persons, includes borderline cases [14]. In ad-
dition to this approach, we may consider imprecision from the linguistic standpoints
of intensional semantics, syntax or pragmatism. Outside linguistics, epistemologi-
cal and ontological approaches are also available [14]. This jungle of interpretations
already provides us with various possible confusions. The concept of vagueness, in
turn, is quite close to imprecision, but if we like to draw a distinction between these
two, we may assume that vagueness also includes generality.

Uncertainty, with its various meaning components, is still fairly widely used
within the fuzzy systems as a synonym for imprecision. In a strict sense, uncertainty
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is nevertheless an epistemological concept, i.e., related to our knowledge, whereas
imprecision mainly belongs to semantics. Hence, this distinction should be clear.
However, we have the everlasting debate on the meanings of imprecision and uncer-
tainty within the fuzzy systems, and no consensus seem to appear [9].

Uncertainty is also examined in its “correct” form within the probability theory.
In such approaches we may apply imprecise variables and probability distributions.
Examples are the expressions probability is fairly high or approximately normally
distributed [23]. The possibility theories, in turn, are also at least partially related
to uncertainty and probability. On some occasions they are regarded as being the
preliminary stages of probability [23].

Even though the linguistic aspects of fuzziness or imprecision have aroused discus-
sions, the corresponding quantitative interpretations have been almost unanimous.
They all apply traditional mathematics, and fuzziness is examined according to the
membership functions. Hence, if the extension of an expression includes borderline
cases, from the mathematical standpoint this means that some objects have only par-
tial degrees of membership to its extension. This idea is a generalization of the char-
acteristic function, and in traditional mathematics an isomorphism holds between
these functions and the crisp sets. Hence, within fuzzy systems, we are not operating
with fuzzy entities directly, but rather with the corresponding membership functions
in our theory formation and model construction.

Since our research work is in practice based on such mathematical entities as
membership functions of fuzzy sets and intensities of fuzzy relations, we have en-
countered some problems for finding a full correspondence between this logico-
mathematical world and the linguistic world containing imprecise expressions. In
addition, we should also find a correspondence between these and the real world.
We will consider next this subject matter.

69.3 Correspondence between Fuzzy Systems
and the Real World

In brief, within fuzzy systems we should find correspondences between the linguistic,
logico-mathematical and real worlds. The linguistic world contains vocabularies as
well as syntactic, semantic and pragmatic entities of languages. Within fuzzy systems
our goal has been to specify such formal or quasi-natural languages which correspond
well with the natural languages, and Lotfi Zadeh has performed a valuable work in
this area [22, 19, 20, 21, 23, 24, 25]. A typical fuzzy quasi-natural language contains
linguistic variables with such values as primitive terms, linguistic modifiers (hedges),
connectives, quantifiers and qualifiers. Examples of such expressions are young, very
young, not old, young or very young, most fuzzy pioneers are old, or fuzzy systems
very likely replace many traditional models in engineering. At the core we usually
apply Osgood scales for linguistic values in which case our linguistic scales are such
as

P – more or less P – neither P nor Q (neutral value) – more or less Q – Q
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in which Q is the antonym of P. These scales usually contain an odd number of values
(mostly five or seven). For example, given the linguistic variable Age, P and Q may
be young and old, respectively. A more challenging task is nevertheless to integrate
our linguistic framework in the logical structures, and this issue is considered next.

69.3.1 Reasoning and the Real World

In the worlds of fuzzy logics, we should operate fluently with our formal language,
logical operators and inference rules and simultaneously our logics should mimic
well the true human reasoning. From the mathematical standpoint, our mathematical
operations should meet the foregoing challenges and still base on simple calculations.
Typical crucial problems in this area are related to truth valuation and quantification,
and we will consider them briefly.

In truth valuation the fuzzy community usually applies explicitly or implicitly the
correspondence theory of truth, and this idea is also maintained in Alfred Tarski’s
well-known definition that [6, 9]

expression X is P is true if and only if X is P.

Hence, we assume that truth manifests the relationship between the linguistic and
real world. For example, the linguistic expression Snow is white is true if and only
if snow is white in the real world. However, various interpretations on this idea
are available in fuzzy systems, in particular, when truth valuations are specified in
practice.

Within fuzzy systems we also have to bear in mind that we apply many-valued
logic. However, one crucial problem seems to be that confusions still prevail when
non-true truth values are considered. In this context we should notice that within
fuzzy logics there is a clear distinction between the values true, false, not true and
not false. Unlike in the bivalent logics, true is now distinct from not false and false
is distinct from not true. This is due to the fact that not true means anything else but
true and not false means anything else but false. Hence, not true includes false and
not false includes true.

We should thus apply these metarules when the truth values are assigned (iff =d f

if and only if) [14]:

1. X is P is true iff X is P.
2. X is P is false iff X is the antonym of P.
3. X is P is not true iff X is not P.
4. X is P is not false iff X is not the antonym of P.

For example,

1. John is young is true iff John is young.
2. John is young is false iff John is old.
3. John is young is not true iff John is not young.
4. John is young is not false iff X is not old.
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If we are unable to find an appropriate antonym for the expression P, we may use its
negation. Another challenge is to apply modified values in an appropriate manner.
For example, if X is more or less P is true, what is the truth value of the expression
X is P?

The author has also applied the idea of the Osgood scale in this context, and hence,
also bearing in mind the foregoing metarules, we may evaluate truth according to
the degrees of similarity between the given expressions and their true counterparts.
True expressions have maximal and false expressions minimal degrees of similarity,
respectively. In other words, we consider the similarity between P and R when

X is P, provided that X is R.

in which R is the true counterpart of P. The higher the degree of similarity between
P and R, the closer our truth value is to truth. Hence, with true expressions it holds
that P = R. As regards the modified expressions, we may establish, for example,

1. John is more or less young is fairly true, provided that John is young.
2. John is middle-aged is neither true nor false (“half-true”), provided that John is

young.
3. John is more or less old is fairly false, provided that John is young.
4. John is old is false, provided that John is young.

This idea may also be applied to fuzzy quantifiers even though in this context we
still have various unresolved problems. If our one extreme quantifier value is all, the
other may be none. Hence, for example, we may apply the Osgood scale

none – some – many – most – all

In fuzzy numbers they could mean approximately 0 %, 25 %, 50 %, 75 % and 100 %,
respectively. In this case the traditional existential quantifier, ∃ , means not none. In
truth valuation we should now combine the foregoing metarules with our quantifier
rules [6, 14]. Hence, we may start with the Tarskian-type metarule

All Swedes are tall is true iff all Swedes are tall.

However, semantic and pragmatic problems arise when we should evaluate the truths
of such expressions as

1. All Swedes are tall, provided that none of the Swedes are tall.
2. All Swedes are tall, provided that all Swedes are short.
3. All Swedes are tall, provided that all Swedes are more or less tall.
4. All Swedes are tall, provided that all Swedes are more or less short.
5. Most Swedes are tall, provided that some Swedes are tall.
6. Most Swedes are tall, provided that some Swedes are more or less tall.
7. Some Swedes are more or less tall, provided that many Swedes are more or less

short.
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Hence, certain basic problems should be resolved in an appropriate manner when
fuzzy quasi-natural languages and their semantics are formulated.

The foregoing situation becomes even more problematic when the correspond-
ing quantitative meanings, i.e., fuzzy set-theoretic and logical operations, should be
assigned to the linguistic entities. The extension principle is widely used in this
context [1], but it often yields inappropriate outcomes from the standpoint of actual
human reasoning and our linguistic formulations. In particular in quantification we
still expect plausible operations for connecting the linguistic entities to fuzzy set-
theoretic entities.

This problem also applies to fuzzy syllogisms. From the linguistic and intuitional
standpoints such typical fuzzy syllogisms as the fuzzy modus ponens and modus tol-
lens seem plausible, but when we operate with their quantitative meanings in model
construction, our outcomes do not correspond well with the linguistic framework.
For example, the mainstream inference methods in a computer environment, the
Mamdani and Takagi-Sugeno reasoning, do not correspond sufficiently well with
the actual human reasoning even though they are good universal approximators in
computer modeling. In fact, they are mathematical models for interpolation with
fuzzy sets and useful in this sense. Hence, we still lack such inference engines in
which both the inputs and outputs are plausible and normalized fuzzy sets.

69.3.2 General Methodology and the Real World

Resolutions in fuzzy reasoning provide us a basis for general methodological issues.
Below we focus briefly on probability theory, hypothesis verification and approxi-
mate theories and explanations.

If we consider uncertainty in its mainstream sense as an epistemological issue, we
should at least draw a distinction between objective and epistemic approaches. In the
former case we assume that uncertainty may be an intrinsic property of entities or
phenomena of the real world and thus independent of our knowledge. An example
of this is the frequency approach to probability theory. In the epistemic approaches,
such as subjective uncertainty, we assume that uncertainty, and probability, exist
in the human minds and are thus dependent upon our knowledge. The degrees of
uncertainty may now vary among persons.

As was already implicitly assumed above, probability theories usually provide
us with useful methods for considering uncertainty. When an objective approach
is adopted, we have viable fuzzy resolutions principally suggested by Zadeh [23].
These include the examinations on fuzzy probability variables and distributions
[5, 10]. However, still more studies should be performed in particular in statistical
analysis, for example, in statistical tests, reasoning and hypothesis verification. In
the long term, fuzzy statistical systems should be included fluently in the traditional
statistics and thus they may enhance these methods for coping with non-parametric
and non-linear systems. Examples of these applications are cluster analysis, dis-
criminant analysis, analysis of variance, analysis of covariance, time series analyses
and various regression analyses. Special attention should be devoted to the novel
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dimension reduction methods because these are essential in both fuzzy and tradi-
tional modeling and the prevailing principal component and factor analyses are only
appropriate to linear models.

The fuzzy epistemic approaches to uncertainty and probability are more challeng-
ing because then we often consider the probabilities of the unique occurrences on
the psychological and purely logical grounds. For example, what is the probabil-
ity that there is life on Mars? Hence, the resolutions provided by the experts may
vary. In fact, in this context we evaluate the degrees of confirmation between our hy-
potheses and the given evidence [2, 17]. Unfortunately, the objective and epistemic
approaches to probability are sometimes confused and this has led to the consider-
ations of quasi-problems. Within the epistemic approaches the fuzzy systems are
valuable if we apply their conceptions on truth to hypothesis verification. Hence,
instead of only accepting or rejecting the hypotheses, we may assess their degrees
of acceptance or rejection in a formal and logical manner. The application of the
fuzzified modus ponens and modus tollens may open new prospects for this subject
matter [11].

Another new frontier would comprise studies on approximate theories and scien-
tific explanations. Today we apply these ideas more or less implicitly in the conduct
of inquiry [15], but such novel approaches as Zadeh’s fuzzy extended logic [25],
would provide a more formal and consequential basis for these. If we consider the
structures of theories from the standpoint of theory formation and their role in the
conduct of inquiry, we usually examine the relationship between the theories and the
real world. Hence, our theories may have truth values and their contents are more or
less expected to correspond with the facts of the real world, in particular in scientific
realism [4], [7], [8], [16], [18]. In this sense, approximate theories and explanations
are in the neighborhood of their true counterparts [9, 12, 16, 18, 25]. For example,
many precise theories are only true in idealized conditions and thus they only more
or less approximately correspond with the real world. Hence, in fact we operate with
their non-true counterparts in practice. In particular, this applies to many mathemat-
ical and statistical theories. The planets in our Solar System do not have exact ellip-
tical orbits, or empirical statistical data sets are never exactly normally distributed.
We also encounter this situation within the scientific explanations. They may only
be true in the idealized conditions, and thus their non-true approximations are only
available in practice.

As above, we may consider the truths of the theories and explanations in the light
of their true counterparts. The closer they are to their true counterparts, the closer
they are to truth, and Zadeh’s fuzzy extended logic is a good roadmap for this exam-
ination [12, 13, 25]. However, much further studies should still be performed in this
area.

The qualitative research, which is widely applied to the human sciences, also
encounters many of foregoing logico-methodological problems. In addition, even
though they principally apply imprecise entities and approximate reasoning, most of
their research work is still based on manual work [3]. Hence, fuzzy systems may
provide them with usable computer models if their linguistic models are transformed
into fuzzy quasi-natural languages and fuzzy reasoning is also applied. Examples of
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qualitative research are content analysis, discourse analysis, action research, ethno-
graphic research, phenomenographic research and various case studies. The most
challenging tasks in this area are the modeling of the human interpretation and inten-
tional behavior in a computer environment [3,18]. For example, how we can interpret
well a given document in an automated manner and even write an abstract of it, or
how we can also apply teleological explanations when we model the intentions, mo-
tives and other underlying factors which affect on person’s behavior. Hence, in the
qualitative research fuzzy systems still await for their golden age.

Fig. 69.1. From left to right: Erkki Oja, Vesa A. Niskanen, Lotfi Zadeh and Teuvo Kohonen
in August 2000 at the Helsinki summer school on Soft Computing “Top Learning on Top of
Europe”

69.4 Conclusions

We considered fuzzy systems from the logico-methodological standpoint. The fuzzy
systems with such novel results as Zadeh’s fuzzy extended logic open new prospects
for the conduct of inquiry. They enable us to consider better such subject matters as
scientific reasoning, theory formation, model construction, hypothesis verification
and scientific explanation. Prior to the fuzzy systems, imprecise entities were only
considered in an informal manner although their existence was already recognized
in the scientific community.
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However, we still encounter many problems and meet various challenges within
the basic logico-methodological principles of fuzzy systems. Examples of these were
truth valuation, quantification, fuzzy reasoning, probability modeling and approxi-
mate theories and explanations. These issues aroused problems at linguistic, logical
and computer-modeling levels.

By resolving these problems we may provide a firm basis for our future studies as
well as apply more intelligible methods to the conduct of inquiry.
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How Ideas of L.A. Zadeh Gave Rise
to Mathematical Fuzzy Logic

Vilém Novák

70.1 Introduction

Everybody who heard Zadeh’s plenary talks in various conferences could realize that
Lotfi never gave the same talk twice, despite the fact that he was giving each year
about 60 lectures all over the world. And even when repeating something, he always
explained the matter from different points of view or shed a different light on it. His
talks are never too detailed, but they are always full of inspiration, suggesting new
ideas, new concepts. Though one cannot always agree with his way of solution of the
given problem, his suggestions and ideas sooner or later found fertile soil and made
us think about our problems from a new perspective. His work, personality, way of
life, permanent good and positive mood are never ending source of inspiration for
which we are grateful to him.

In this short paper, I want to underline that Lotfi Zadeh’s ideas stand also
behind one of the noble mathematical theories of today — the mathematical
fuzzy logic (MFL). This is a deeply elaborated theory capable of modeling the
vagueness phenomenon and having high potential for applications. Moreover, MFL
originated in the Czech Republic and so, I will also mention Zadeh’s relations to this
country.

70.2 L.A. Zadeh in the Czech Republic

Zadeh’s work became known in the Czech Republic very early since the fuzzy set
theory was recognized as an interesting mathematical theory providing a working
model of the vagueness phenomenon (in a way similar to probability theory that
provides the same for uncertainty). This was interesting especially for logicians and
so, his work soon found its followers. In 1976, Czech mathematician J. Pavelka
defended a PhD thesis devoted to rigorous mathematical elaboration of fuzzy logic.
Besides the early Zadeh’s papers, e.g. [26, 27] it was also strongly influenced by the
paper [6] written by the J. A. Goguen. The thesis was published in a sequence of
three seminal papers [24] and it can be taken as one of the turning points for the
development of MFL.

The popularity of fuzzy set theory in the Czech Republic was also positively af-
fected by the book [12] written by the author of this paper. This book was quite
successful and so, it was published as revised English edition [13] and then again in

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 479–486.
DOI: 10.1007/978-3-642-35644-5_70 © Springer-Verlag Berlin Heidelberg 2013



480 70 How Ideas of L.A. Zadeh Gave Rise to Mathematical Fuzzy Logic

Fig. 70.1. L. A. Zadeh and I. Perfilieva at IFSA’97 World Congress in Prague listening to the
concert of participants
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Czech [15]. Let us emphasize that fuzzy set theory was for the first time explained in
this book in a unified way from the point of view of MFL. Moreover, the book also
underlined the role of natural language in connection with fuzzy sets for construction
of more realistic models.

One of the reasons for popularity of the the work of L. A. Zadeh was the fact that
he recognized the power of one of the distinguished features of natural language —
the vagueness of its semantics. Zadeh proposed interesting way how vagueness of
semantics of natural language can be captured using a simple mathematical tool —
the fuzzy set theory. Since there is a long tradition in the Czech linguistic school1,
his ideas could not be left unnoticed.

Fig. 70.2. L. A. Zadeh with his friends, I. Perfilieva, R. R. Yager and D. Filev at IFSA’97
World Congress in Prague

Because of the popularity of fuzzy sets, each visit of L. A. Zadeh in the Czech
Republic was eagerly expected. He visited it four times during the past 30 years.
His first visit was at International Conference Coling’82 which took place in Prague
in 1982. This was also occasion for the author of this paper to get acquainted with
L. A. Zadeh. He was from the very beginning extremely friendly and we talked as if
being already old friends.

1 Famous Czech linguists in seventies and eighties are P. Sgall, E. Hajičová and J. Panevová.
One of their most important publications is the book [25].
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The second visit was again in Prague at IFSA’97 World Congress 1997. This con-
gress was very successful with over 350 participants. Two memories on this congress
are in Figures 70.1 and 70.2.

But Czech Republic is not only Prague. My native town, Ostrava, became during
years important center both of the theory as well as of various kinds of applications
of fuzzy logic and related techniques. A very important event in its history was
the award of the title Doctor Honoris Causa given to L. A. Zadeh by the University
of Ostrava in 1998. Actually, it was his 10th Dr. H. C. title and the first honorary
doctorate given to foreign scientist by the University of Ostrava. As always, Lotfi
came to Ostrava full of joy and energy. Though being the top world scientist, he
remained modest and spent many hours in discussions with people from our institute,
most of them being very young. His ceremonial speech was very impressive, because
he not only presented his road to fuzzy logic but also mentioned serious political and
social concerns and warned our young democracy against various bad phenomena of
the “advanced capitalism”, such as advertisements, bureaucracy, etc.

Fig. 70.3. 10th Dr.H.C. title given to L. A. Zadeh by the University of Ostrava in the Czech
Republic

The last visit of Lotfi in the Czech Republic was in 2007 at the occasion of
EUSFLAT 2007 Ostrava International Conference which was organized by our insti-
tute. One remembrance to this conference is in Figure 70.4.
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Fig. 70.4. L. A. Zadeh and I. Perfilieva at EUSFLAT 2007 International Conference in Ostrava

70.3 On the Concept of Fuzzy Logic

Though the concept of fuzzy logic was inherent in the early Zadeh’s papers, it is
not clear, who and when indeed used this term for the first time. In early seventies,
though, it was used in many papers written not only by Zadeh but also by other
authors. Moreover, this term from the very beginning was ambiguous.

In 1976, Gaines in his paper [5] distinguished three meanings of fuzzy logic:

(a) Fuzzy logic as a basis for reasoning with vague or imprecise statements. Gaines
argues that this is consistent with the colloquial use of the term “fuzzy” so that
this term replaces previous usage of terms such as “inexact” or “vague”.

(b) Fuzzy logic as a basis for reasoning with imprecise statements using fuzzy sets
theory for the fuzzification of logical structures. This is more specific version of
(a) consistent with many papers of Zadeh.

(c) A multivalued logic in which truth values lay in [0,1]. Fuzzy logic is thus taken
as a generalization of classical mathematical logic.

It should be emphasized that Zadeh himself did not consider fuzzy logic in the sense
(c) but mainly in the sense (b) and introduced several now well known concepts:
fuzzy IF-THEN rule, compositional rule of inference, linguistic hedges modeled us-
ing special operations over fuzzy sets, fuzzy quantifiers (see [28,29,27,31] and newly
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also [32, 33]). All these ideas fertilized the grounds for developing of fuzzy logic in
the sense (c). Unfortunately, during years the meaning of the term “fuzzy logic” was
still more and more widened up to denoting, in fact, all kinds of applications that
use fuzzy sets. To avoid various misunderstandings special terms were introduced
instead. The former wide meaning is sometimes called fuzzy logic in wide sense. But
in fact, it is preferable in this case not to speak about fuzzy logic at all.

Fuzzy logic in the sense (c) is developed as a mathematical fuzzy logic and now
called fuzzy logic in narrow sense (FLn). Note that Goguen in his seminal paper [6]
replaced the term fuzzy logic by the “logic of inexact concepts”. Following Goguen’s
and Zadeh’s ideas Pavelka in his PhD thesis introduced a deeply developed formal
system of FLn which is now called fuzzy logic with evaluated syntax EvŁ. The pa-
pers [24] contain full description of the formal system of propositional EvŁ including
algebraic analysis of possible structures of its truth values, its metatheory and a com-
plicated algebraic proof of syntactico-semantical completeness of EvŁ. We can say
without exaggeration that Pavelka’s work started the development of FLn as a noble
mathematical theory. It is important to note that this logic goes thoroughly along the
principal concept of fuzziness by assuming not only truth values between 0 and 1
but enabling also axioms not to be fully convincing, i.e. a formula A can be axiom
only in some (arbitrary) degree. As a consequence, we arrive at the concept of prov-
ability degree of a formula A. A very important is the metatheorem stating that if
we consider a residuated lattice on [0,1] and the implication (residuation) operation
is not continuous then it is not possible to form a syntactico-semantically complete
fuzzy logic with evaluated syntax. Consequently, the only plausible structure of truth
values on [0,1] for this logic are the standard Łukasiewicz MV-algebra and its iso-
morphs. The author of this paper followed the ideas of J. Pavelka and developed a
predicate version of EvŁ in his PhD thesis defended in 1988 (see [13, 15, 14]). The
EvŁ logic is in detail presented in the book [23].

A great impulse for further development of FLn came from the Czech logician
P. Hájek who in his book [8] presented MFL to great depth and significantly helped
fuzzy logic to be recognized also by mathematicians coming from outside fuzzy
community. At present, many top mathematicians all over the world contribute to
MFL (cf. [1, 7] and the citations therein). Unified efforts of them crowned Zadeh’s
and Goguen’s great ideas, besides others, by proving that all systems of FLn are
complete, i.e. that a formula A is provable in a theory T iff it is true in the degree 1
in all models of T . In case of predicate EvŁ, the following nice generalization of the
Gödel-Henkin completeness theorem holds:

T �a A ⇐⇒ T |=a A

for all fuzzy theories T and formulas A where by T �a A we mean that a formula A
is provable in a degree a in T and by T |=a A, that it is true in a degree a.

Zadeh’s seminal ideas concerning fuzzy logic in the sense (b) above led to estab-
lishing the paradigm of fuzzy logic in the broader sense (FLb-logic) in [16]. This
logic is an extension of FLn and so, it also belongs to mathematical fuzzy logic.
Its program is to develop a formal theory of natural human reasoning, which is
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characterized by the use of natural language. At present, FLb-logic consists of the
following special theories:

(a) A formal theory of evaluative linguistic expressions ( [19, 18]).
(b) A formal theory of fuzzy/linguistic IF-THEN rules and reasoning based on them

( [4, 17, 21, 22]).
(c) A formal theory of intermediate and generalized quantifiers ( [3, 9, 11, 20]).

It should be noted that the paradigm of FLb-logic partially overlaps with the paradigm
of commonsense reasoning proposed by J. McCarthy in [10]. The main drawback of
these formalizations of commonsense reasoning is neglecting vagueness present in
the meaning of natural language expressions (cf. [2] and the citations therein). There-
fore, it is notable that the possibility to use fuzzy logic in commonsense reasoning
was proposed by Zadeh already in 1983 in the paper [30].

70.4 Conclusion

We may conclude that the ideas of L. A. Zadeh inspired J. A. Goguen to its “logic of
inexact concepts”. Ensuing deep elaboration especially by the Czech mathematicians
led to establishing mathematical fuzzy logic both in narrow as well as in broader
sense. While the former nontrivially generalizes classical mathematical logic, the
latter is a thorough mathematical elaboration of Zadeh’s ideas to make fuzzy logic
as a basis for reasoning with imprecise statements using fuzzy set theory for the
fuzzification of logical structures. It should be emphasized that Zadeh showed that
the theories proposed by him can have a lot of various kinds of applications and his
ideas touched many disciplines ranging from abstract theory, such as philosophical
logic through linguistics up to engineering.

Acknowledgement. The paper has been supported by the European Regional De-
velopment Fund in the IT4 Innovations Centre of Excellence project (CZ.1.05/
1.1.00/02.0070).
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Fuzzy Sets Seemed to Work

Hannu Nurmi

71.1 The First Encounter

Perhaps it is appropriate – given the nature of the subject matter – that it is difficult
for me to date my first encounter with fuzzy sets in any degree of certainty. Some
bounds for the time frame can, however, be given. I presented my doctoral thesis
in 1974 and, while systems theory played a role in it, fuzzy sets were not dealt
with [6]. My next book-length work was published in 1977 by Societas Scientiarum
Fennica [8]. It was a collection of essays and one of them unmistakably refers to
fuzzy sets: „On Fuzzy Games“. On closer inspection it turns out that in a paper
published in 1975 I already dealt with fuzzy sets, albeit in a very cursory manner
( [7], p. 242-243) The paper was published in proceedings of the Second European
Meeting on Cybernetics and Systems Research held in 1974 in Vienna. The series of
meetings was held immediately after Easter on even-numbered years starting 1972.
This puts my first exposure to fuzzy sets to the spring of 1974.

The notion of fuzzy sets seemed to open possibilities for addressing issues that I
had been uncomfortable with from the beginning of my post-graduate work. More
specifically, the formal apparatus used in social sciences in dealing with complexity
appeared somehow inadequate inter alia since it made intuitively too sharp distinc-
tions between categories. The ways to deal with imprecision were mostly derived
from probability theory and tended to equate impreciseness with randomness which
intuitively struck me – and many others – as inappropriate. Ours was, rather, a view
that social imprecision does not evaporate after “the experiment” (e.g. tossing a
coin) has been conducted, but is inherent in the events themselves. A set concept
applicable to the characterization of notions like “substantial increase in energy con-
sumption”, “highly esteemed colleague” etc. looked to me very promising especially
from the view point of the social sciences. Therefore, Zadeh’s concept of fuzzy set
was welcomed with open arms. [21]

71.2 Modes of Impreciseness

In his well-known article Weaver made a distinction between degrees of complex-
ity dealt with in history of science. [20] Problems of simplicity involve basically
two-variable relationships. That was the domain in which – according to Weaver
– physical science operated till the end of the 19’th century. Problems of disorga-
nized complexity emerged also in physics when it became necessary to deal with
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large numbers of variables. The techniques of probability theory and statistical me-
chanics were devised to tackle these problems. Weaver’s third category, organized
complexity, in a sense falls between simplicity and disorganized complexity. To wit,
these are problems involving “a sizable number of factors which are interrelated into
an organic whole.” [20] Arguably fuzzy sets can help solving problems in each of
the three categories since it seems that impreciseness that takes on degrees is simply
missing in Weaver’s characterization.

The last statement brings us to the subject of my talk at the Conference on Sub-
jective Probability, Utility and Decision Making (SPUDM) in Warsaw in 1977.1 By
then I had studied Bellman and Zadeh’s seminal work on individual decision making
in fuzzy environments. [1] What I wanted to explain in my talk were the conceptual,
epistemic and methodological differences between probability and fuzziness in con-
texts that are relevant for decision theory. I found the concept of verisimilitude (truth-
likeness) particularly useful in this endeavor. Intuitively, verisimilitude is a matter
of degree in the same way as membership in a fuzzy set. An yet somewhat confus-
ingly, the word for verisimilitude in many languages, Wahrscheinlichkeit (German),
sannolikhet (Swedish), todennäköisyys (Finnish), is interpreted as probability. To
be sure, there are instances in which fuzziness and probability co-exist. It may, for
example, be the case that the perceived degree of strength of a speech condemning
a certain act – i.e. the degree of its membership in the set of condemning speeches
or stands – can be derived from the relative frequency (“empirical probability”) of
condemning utterances in the speech, provided that the latter can be unambiguously
determined. Indeed, I found it (and still do) futile to try to replace either probability
with fuzziness or vice versa. They just seem to refer to different things. So, a rea-
sonable way to go is to take full advantage of the potential that these two notions and
their underlying methodologies have.

71.3 Fuzzy Games

After defending my thesis on causality and complexity, I embarked on a long journey
to the world of decision and game theory. In preparing lectures on the subject I
encountered the well-known game of Prisoner’s Dilemma.2 By now it is taught to
first-year students in social sciences, but in mid-1970’s it was still a challenging
novelty and seemed to present a paradox of sorts in showing that a dominant strategy
choice on the part of players leads to a (Pareto) non-optimal outcome. Thus, a clear
conflict between individual and collective rationality emerges. This is the normative
aspect of Prisoner’s Dilemma. Empirical observations suggest that it is not the case
that when called upon to play a Prisoner’s Dilemma game people would in general
choose the dominating, non-cooperative strategy. Hence, the predictive accuracy
of the strongest principle of rationality is called into question. Since many social

1 The talk was much later published in the conference proceedings [15].
2 The lectures eventually developed into a Finnish elementary textbook [10]. A seminal

account of Prisoner’s Dilemma is [19]. See also [18]. My early overview of “solutions” to
Prisoner’s Dilemma is given in [9].



71.4 Fuzzy Social Choice 489

situations can be described as Prisoner’s Dilemmas, it makes sense to look at the
underlying parameters of the game. In similar vein, it would also seem plausible to
approach Prisoner’s Dilemma from the viewpoint of fuzzy sets.

Fuzzy sets can be introduced to game models in several ways. One obvious way
is to generalize the payoffs. Instead of sums of money, one could invoke fuzzy goal
sets. Another way is to deem the strategies as fuzzy sets. In Prisoner’s Dilemma,
the degree of cooperativeness of a strategy would seem a plausible way to proceed.
A combination of these two ways results in a fuzzy game where each strategy has
a membership degree in the cooperativeness subset and each strategy combination
of players leads to a non-fuzzy outcome with its associated membership degrees in
the players’ fuzzy goal sets. This is the basic idea underlying the notion of fuzzy
Prisoner’s Dilemma.

Another approach to fuzzy games resorts to a representation of games as fuzzy
automata [11]. A finite deterministic automaton is defined by means of a state transi-
tion function which, for each of the finite number of (present) states and each input,
assigns the (next) state to which the automaton moves. A non-deterministic automa-
ton, in turn, specifies, again for any given state and any input, a subset of states.
When considering games, the inputs are the strategies of players. In Zadeh’s defini-
tion the next state is fuzzy, i.e. characterizable by a membership function [22]. This
apparatus is well-suited for representation of repeated two-person games.

71.4 Fuzzy Social Choice

In the 1970’s the literature of social choice theory started to grow rapidly. One
of the main motivations of the theory was voting. The present writer’s interest in
fuzzy voting games was due to its potential in accounting for heretofore unexplained
empirical findings. Roughly simultaneously I started to work on solution concepts
for fuzzy voting games. In these works the concept of fuzzy goal set and fuzzy
preference relation devised by Zadeh was of crucial importance [21].

71.4.1 Explaining Experimental Puzzles

The voting game experiments conducted by Fiorina and Plott in late 1970’s resulted
in several puzzling observations [4]. The experiments focused on voting behavior in
spatial context where each experimental subject was given an ideal point and (circu-
lar) indifference curves in a two-dimensional Euclidean space. The outcomes of the
voting game were determined by pairwise majority votes between proposed alterna-
tives in the space. The ideal point of each voter represents the maximum payoff for
this voter and the further – in terms of Euclidean distance measure – away from the
voter’s ideal point a proposal lies, the smaller is its associated payoff for the voter.
The purpose of the experiment was to evaluate the effects of various parameters of
the voter positions and payoffs to the outcomes ensuing from the pairwise majority
voting. In particular the experimenters wanted to assess the predictive accuracy of
a solution concept known as the core, i.e. the set (typically singleton or empty) of
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Fig. 71.1. Mysterious photo perhaps from 1975; in the middle: Lotfi A. Zadeh sitting next to
Ellen Hisdal; behind them: Christer Carlsson and Hannu Nurmi

majority un-dominated points in the space. Several puzzling observations were made
by Fiorina and Plott. Firstly, the core point was a better predictor of voting outcomes
when the payoffs were relatively larger than when they were small. Secondly, the
theoretical equilibrium – the core – was not stable, but in some experiments the core
alternative was defeated by another alternative. Thirdly, some experiments ended up
with Pareto-suboptimal outcomes. Fourthly, when a slight modification was made
in the ideal point configuration so that the core became empty, the outcomes still
tended to concentrate in the neighborhood of the point where the core existed before
the modification.

The second and third observations were particularly disturbing since they call
into question the very rationality of the experimental subjects. By fuzzifying the set-
ting suitably – i.e. by introducing “thick” indifference curves and assuming that the
experimental subjects’ preferences were fuzzy – it turned out possible to accommo-
date most of the experimental anomalies encountered in the non-fuzzy setting [12].
Admittedly, since no data on the subjects’ fuzzy preferences and subjective indif-
ference regions was available, the explanations in terms of these notions remain
conjectural.3

3 The same holds for the solutions to paradoxes encountered in individual decision making
(e.g.Allais’ paradox) [14].
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71.4.2 Fuzzy Solutions to Voting Games

Could a social choice theory, then, be built on the assumption that the individuals
are endowed with fuzzy rather than crisp preference relations? This idea was first
pursued by Blin and Winston and somewhat later by Bezdek et al. [3], [2]. Another
line of research sought to introduce fuzzy analogs for crisp solution concepts [13].
Thus, for example, the set of α-consensus winners, i.e. alternatives preferred to any
other alternative with a preference degree of at least α , is a simple generalization
of the notion of unanimity winner. Similarly many other solutions were introduced
and related to each other [13]. In similar vein, some tournament solution concepts
have been transformed to suit fuzzy environments [17]. Hence, fuzzy social choice
theory is not only possible, but it already exists, albeit in a rudimentary form. But
is it needed? Perhaps it is, since quite a few paradoxes in crisp choice theory can be
solved in the fuzzy framework [16]. Thus, perhaps we should agree with Hillinger
who argues that in the crisp social choice theory we are faced with “... a new ‘paradox
of voting’: It is theorists’ fixation on a context dependent and ordinal preference
scale; the most primitive scale imaginable and the mother of all paradoxes.” [5].

Acknowledgement. The author is deeply indebted to Mario Fedrizzi, Janusz
Kacprzyk, Settimo Termini, Sławomir Zadrożny and the late Maria Nowakowska for
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From Fuzzy Deformable Prototypes
to Fuzzy Web Search

José A. Olivas

Abstract. It is presented a resume of my scientific relationship with Prof. Zadeh and
the BISC group, starting with the way of reasoning using patterns and prototypes
(in the framework of AI) and going to fuzzy Web search and text understanding
(semantics).

72.1 Fuzzy Deformable Prototypes

I had the pleasure of meeting Prof. Zadeh at the ISMVL conference (organized by
Senen Barro, Alberto Bugarín and Alejandro Sobrino), held in Santiago de Com-
postela, Spain, in 1996 (see Picture 72.1). My early conversations with Prof. Zadeh
were about how people make inferences and reasoning based in patterns, adapting
the experience acquired patterns (or “prototypes”) to the real situations that a human
can approach. As an example, we can observe the act of driving a car in a hailstorm:
If it starts to hail while we are driving, we adjust to our “driving under potentially
dangerous conditions” scheme. In other words, we associate a fact or a set of facts
with a paradigm so that the paradigm interprets the situation and the actions we carry
out depend on it. To generalize, many of the actions we carry out in our daily life
depend on our forming an interpretation, on our finding the most similar paradigm
or prototype for the circumstances of the problem. In AI developments, many times
we try to simulate the expert’s capacity for interpreting the situations and finding the
prototype or prototypes of the observed phenomena that is most appropriate in the
current conditions.

So I worked in those ideas and I presented my PhD. Thesis in 2000 [6], Prof. E.
Trillas was my advisor, introducing the Fuzzy Deformable Prototypes (from now on
FDPs), that can provide an adequate formal framework for working with this idea.
FDPs come from the confluence of two interesting approaches to the concept of pro-
totype: the “deformable prototypes” of Bremermann [2], introduced in the late sev-
enties from the field of pattern recognition, and the fuzzy prototypes of Zadeh [15],
result of a controversy with cognitive psychologists [7]. Below is a brief descrip-
tion of both concepts. In the framework of ’deformable prototypes’ a real element is
classified according to the minimum energies required for physically deforming the
closest prototype. In turn, a fuzzy prototype is not an element – usually the best rep-
resentative of a set or class –, but a reunion of good, bad and borderline elements of
a category. Zadeh mentioned the classical prototype theories from the point of view

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 493–502.
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of psychology, criticizing precisely what we have just pointed out: that these theo-
ries do not fit the function that a prototype should have. Zadeh’s approach to what
must be taken as a prototype is less intuitive than the conceptions of psychological
theories but is more rational and closer to the meaning of a prototypical concept dis-
played in a more detailed examination. In general, we have observed that Zadeh’s
idea suggests a concept that encompasses a set of prototypes, which represent the
high, medium, or low compatibility of the samples with the concept.

Fig. 72.1. Santiago Fernández-Lanza, Alejandro Sobrino, Lotfi A. Zadeh, Senén Barro and
José A. Olivas, ISMVL 1996, Santiago de Compostela, Spain

Taking into account these approaches, FDP can be defined as a linear combination
of Fuzzy Prototypical Categories (described as tables of attributes) able to be adapted
to any real situation, where the coefficients are the degrees of membership to each of
these Fuzzy Prototypical Categories. Broadening the combination described in the
concept of Deformable Prototype to the case of affinity with more than one Fuzzy
Prototypical Category, the definition of a real situation would be:

Creal(w1 . . .wn) =
∣
∣∑μ pi(ν1 . . .νn)

∣
∣ (72.1)

where:

Creal Real case.
(w1, . . . ,wn) Parameters describing the real case.
pi Degrees of compatibility with Fuzzy Prototypical Categories

different to 0.
(v1, . . . ,vn) Parameters of these Fuzzy Prototypical Categories.
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Many applications of this approach had been accomplished, such as the ones related
to Information Systems and Software Engineering applications ( [5], [8]), traffic con-
trol [1], health documents management [10], social sciences [12] or Information Re-
trieval and Web Search.

72.2 Fuzzy Web Search

I did my postdoc visiting scholarship at Berkeley’s BISC. I interacted with Prof.
Zadeh and many other BISC visitors, mainly with Tomohiro Takagi, Tru Cao and An-
dreas Nürnberger (72.2), together with Marcin Detyniecki and Mori Anvari, working
in the organization of the first conference on Fuzzy Logic and Internet, FLINT 2001
(72.3). Due to these interesting interactions, when I came back to my University in
Spain, I established the SMILe (Soft Management of Internet and Learning) research
team.

Fig. 72.2. Tru Cao, Tomohiro Takagi, José A. Olivas and Andreas Nürnberger at Berkeley’s
BISC office in summer 2001

My conclusion was that nowadays there are not commercial Fuzzy Searchers
and Soft computing and Fuzzy Logic could play an interesting role in Web Search
and Meta-search engines. So some relevant topics could be improved with Soft
computing techniques:



496 72 From Fuzzy Deformable Prototypes to Fuzzy Web Search

72.3 The Role That Nowadays Fuzzy Logic Plays in Search and
Meta-search Engines

If it is done a search in Google with the words “fuzzy searcher” many results appear.
Selected those that we consider to be relevant, we observe that the fuzzy character
that some commercial searchers assume is based exclusively on the use of a syntactic
fuzzy matching; this is, in a fitting of the word included and possibly badly messed
with another from a dictionary that the searcher contains or the searcher accedes and
which is correctly written. The result is that the searcher sends a sign of notice (writ-
ten text) that says: Did you mean?. . . Evidently, though the utility of this function
is, to name a searcher as “fuzzy” for implementing it is excessive. The proposal is
that a searcher will be fuzzy when it implements approximate semantic searches; this
is, when it includes in the searches semantic approximate criteria, not only syntactic
ones. Some aspects that there would be considered are presented.

Fig. 72.3. Ana García-Serrano, Lotfi A. Zadeh, José A. Olivas, Andreas Nürnberger, Marcin
Detyniecki, María José Martín-Bautista and Mori Anvari, BISC FLINT 2001 in Berkeley

72.3.1 The Use of a Dictionary of Synonymous and Thesaurus (Ontology)

When a user searches for a single word, the search can be facilitated by the use
of a dictionary of synonyms. The dictionary will allow searches not only for the
source word, but for its synonyms and will make possible to calculate the synonymy
degree, having to contemplate this degree in the relevancy of the retrieved pages
as response to the source terms. The search can also be improved using thesaurus
and ontologies. Nowadays, there are many ontologies referring to different domains,
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that improve several aspects in some applications, but they all have been hand-made
following different methodologies. On the other hand, automatic ontology building
is a focus in current research where the results hitherto have not been too satisfactory.
As an example, we developed FIS-CRM [4] as a model for representing the concepts
contained in any kind of document. It can be considered an extension of the vector
space model (VSM) [11]. Its main characteristic is that it is fed on the information
stored in a fuzzy synonymy dictionary [3] and several fuzzy thematic ontologies. The
dictionary stores the synonymy degree between every pair of recognized synonyms.
The ontology stores the generality degree between every word and its more general
words. The way of calculating this value is the one proposed by Widyantoro and Yen
at FLINT 2001 [14]. The key of the FIS-CRM model is first to construct the base
vectors of the documents considering the number of occurrences of the terms (what
we call VSM vectors) and afterwards readjust the vector weights in order to represent
concept occurrences, using for this purpose the information stored in the dictionary
and the ontologies. The readjusting process involves sharing the occurrences of a
concept among the synonyms which converge to the concept and give a weight to
the words that represent a more general concept than the contained ones.

Fig. 72.4. Lotfi A. Zadeh, Vesa Niskanen and José A. Olivas, Berkeley’s bar in summer 2001

72.3.2 Sentences Search and Deduction Capabilities

If the search includes sentences, besides the dictionary of synonymous, thesaurus
and ontologies, suitable fuzzy connectives should be used, to discriminate for exam-
ple between a search “A and B” where A and B have common information, of the
search “A and B” where A and B are completely independent. Something similar
can happen with the relation “A or B”. Another desirable aspect is that the searcher
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keeps the meaning of the words in mind under the synonymy relation, to choose the
best similarity function. But the problem can be bigger in the case of “causal” re-
lations. First, it is very difficult to detect a causal relation in a written sentence (a
query or a text). For example, the text could be: “stormy and dark”, that could be
understood by a person as: “If the weather is stormy, the sky gets dark”. How can a
search engine distinguishes the conjunctive ’and’ and the causal one? Nowadays is
rather impossible, even if there is some knowledge about the context. Second, it is
very difficult to find the most adequate implication function to represent the sentence
(it is well known that there is a huge variety of fuzzy implications). The detec-
tion and management of causal relations (interesting conversations with Prof. Zadeh
and V. Niskanen, see picture 72.4) could be very important for developing Question
Answering Systems. To detect the causal relationships that exist in a collection of
documents, a starting point could be to detect conditional phrases. Nevertheless, this
is not an easy task. Descartes could not have possibly imagined that to propose his
famous phrase “I think, therefore I am”, would have given birth to so many con-
jectures and interpretations for centuries after. In reality, what did he want to say,
“First I think and after I am a person”, or “As I am capable of thought, I am a
person”. To sum up, even on this occasion the intention of Descartes seems clear
when he expressed his maxim, it is not easy to interpret and format the informa-
tion expressed in natural language, especially when it involves complex sentences
with complicated turns. With the aim of detecting conditional phrases, some basic
systems of detecting structures and a classification of sentences have been devel-
oped [9] which allow to locate, in terms of basic components (verb tenses, adverbs,
linguistic turns, etc.), some causal forms. To accomplish the grammatical analysis,
it is observed on the one hand, that it is possible to separate certain causal relation-
ships based on the verb form used, while on the other hand it is possible to separate
others based on the adverbs used in the sentences. Both analyses give rise to some
causal rules that can be used to make an automatic extraction of knowledge. In
the same way, every structure is subdivided into two structures which correspond
to the antecedent and consequence of the causal relationship, and a parameter that
measures the degree of certainty, conjecture, or compliance of the said causal rela-
tionship. In other words, it is not the same to form a sentence such as: “If I win
the lottery, I will buy a car”, in which there is no doubt that if the antecedent comes
true the consequence will come true, as to form the sentence “If we had bought
a ticket in Sacramento, we could have won the lottery” which leaves many more
doubts and conjectures, in which you cannot be sure that the completion of the an-
tecedent guarantees the consequences. But this is still a Natural Language Process-
ing complex problem. There are some other very interesting approximations, such as
the one of Trillas [13] (see picture 72.5, with other SMILe members) for represent-
ing conditional sentences with fuzzy implications. On the other hand, an approach
based on PNL and protoforms could be a promising work line, such as Prof. Zadeh
proposes:1

1 Seminar: Web Intelligence, World Knowledge and Fuzzy Logic. Lotfi A. Zadeh, Septem-
ber 14; 2004, University of California, Berkeley.



72.3 The Role That Nowadays Fuzzy Logic Plays in Search and Meta-search Engines 499

“Existing search engines – with Google at the top-have many remarkable capabili-
ties; but what is not among them is deduction capability – the capability to synthesize
an answer to a query from bodies of information which reside in various parts of the
knowledge base.”
“In recent years, impressive progress has been made in enhancing performance of
search engines through the use of methods based on bivalent logic and bivalent-
logic-based probability theory. But can such methods be used to add nontrivial
deduction capability to search engines, that is, to upgrade search engines to question-
answering systems? A view which is articulated in this note is that the answer
is‘No´.”
“The problem is rooted in the nature of world knowledge, the kind of knowledge that
humans acquire through experience and education.”
“It is widely recognized that world knowledge plays an essential role in assessment
of relevance, summarization, search and deduction. But a basic issue which is not
addressed is that much of world knowledge is perception-based, e.g., “it is hard to
find parking in Paris,” “most professors are not rich,” and “it is unlikely to rain in
midsummer in San Francisco.” The problem is that (a) perception-based information
is intrinsically fuzzy; and (b) bivalent logic is intrinsically unsuited to deal with
fuzziness and partial truth.”
“To come to grips with the fuzziness of world knowledge, new tools are needed. The
principal new tool – a tool which is briefly described in this note – is Precisiated Nat-
ural Language (PNL). PNL is based on fuzzy logic and has the capability to deal with
partiality of certainty, partiality of possibility and partiality of truth. These are the
capabilities that are needed to be able to draw on world knowledge for assessment
of relevance, and for summarization, search and deduction.”

Fig. 72.5. Javier de la Mata, Jesús Serrano-Guerrero, Lotfi A. Zadeh, Enric Trillas and José A.
Olivas, NAFIPS 2004 in Banff (Canada)
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72.3.3 Combination of Fuzzy Values, Fuzzy Clustering and Web Meta-search
Engines Architecture

A Meta-searcher has to carry out a combination of logics (the algorithms that ev-
ery searcher uses) in order to combine the local similarities in a global similarity
or final order. But the local similarities are not based on fuzzy criteria. Therefore,
the orders of relevant pages are not approximate. Usually Meta-searchers consider
the searchers according to the prestige that they grant for the question that the users
do and, depending on it, they qualify its results to incorporate them into the final
list. In this case, the approximation comes for a criterion of market, but, again, not
for a linguistic criterion. It would be interesting to apply this criterion, first, as it
is previously indicated, doing that searchers make fuzzy semantic searches. Later,
achieving that Meta-searchers arrange the pages in a final list combining the rele-
vancy of the searchers with the confidence degrees associated with every result of
its local obtained list, not only with the word got in the search box, but also using
its related (synonyms. . . ) words, the measures of similarity used in the calculation
of the degree of linguistic relations and the fuzzy operators used in searches with
sentences. Each of these searches would answer, therefore, to a fuzzy logic used
by the searchers, which the Meta-searcher would have to combine to provide the fi-
nal order. The use of the links that provides the order that the Meta-searcher gives
might be useful as a test bench to check hypothesis on the combination of fuzzy log-
ics. Another important problem appears when it is necessary to aggregate several
different fuzzy values from various sources. Two words (concepts) can have more
than one linguistic relations (each one with its fuzzy value), such as hyponymy and
synonymy. For example “football” and “soccer” are synonyms but the first is also
more general than the last. A causal relation can also exist between both words (con-
cepts). Moreover, a fuzzy relation based on the physical distance (same sentence,
paragraph, chapter. . . ) could be considered. Then, it is necessary to join all these
different fuzzy values into only one, to be applied in representation and search tasks.
How to aggregate these fuzzy values is still an open problem.

Document classification or text categorization (as used in information retrieval
context) is the process of assigning a document to a predefined set of categories
based on the document content. However, the predefined categories are unknown in
a real repository of documents. Text clustering methods can be applied to structure
the resulting set of documents, so they can be interactively browsed by the user.
Therefore, using a clustering process, it is possible to achieve the splitting up of the
collection of documents in a reduced number of groups made up of documents with
enough conceptual similarity. There are a lot of fuzzy clustering and classification
proposals.

Fuzzy logic could also play a fundamental role in an agent based architecture,
mainly in the task of joining the information from different sources (agents) and
managing the results in an efficient and satisfactory way.



References 501

72.4 Conclusions

It was very interesting and productive for me my interaction with Prof. Zadeh and
the BISC members. Taking into account these presented reflections, among others,
would make possible to have really fuzzy searchers, or what is the same, searchers
that do searches in terms of approximate meanings. The main focus of these engines
must be the Web, not for general search artefacts but for Meta-search tools, because
they use General Web Search engines as a basis. Having fuzzy searchers would of-
fer the possibility to do interesting tests and experiments. The Artificial Intelligence
is an area of mixture of logics, because the approaches in the formal analysis of a
sentence can be very different. Then, the logical form of the following phrase, a
bit long, but not strange: “I suppose that you believe that I will pick you up a little
bit earlier”, implies using different logics: belief, non monotonic, fuzzy, temporal,
. . . But the problem is more complex yet, because, for the words with vague mean-
ing, there can be also several modalities of fuzzy logics. The election has not been
studied too much. Meta-searchers could provide a useful frame, restricted by the lan-
guage that it lets, to research on the variety of formalisms that fuzzy logic provides.
Using user profiles in Web Meta-search engines could provide some advantages to
improve the search. The user profile can be another parameter to take into account
for expanding the query (with profile-related concepts: synonyms, broader than. . . ),
for selecting the search engines and adapting the queries to them and for choosing
and ranking the results of the search. Soft computing techniques can help in learning
and representation tasks.

Meta Question-answering Systems?, perhaps the next goal to achieve would be
Meta Web Question-answering Systems, which analyze the user question and gen-
erate a set of precise queries (expanded queries) to the more suitable major Search
engines and Directories, to get the correct answer to the query. Soft computing and
mainly fuzzy logic, as tools closer to human expression nature, can play an essential
role for detecting the human user correct meaning and intention.
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My Journey to Fuzziness in Berkeley

Sergei Ovchinnikov

73.1 Moscow

Fuzzy set theory has been well-known and accepted in the Soviet Union since Lotfi
Zadeh presented a talk at the Cybernetics Congress in the Soviet Union in 1965. In
fact, it was the first presentation of his new brainchild. It was not until 1976 that I
became really interested in the theory after reading Zadeh’s monograph The Concept
of a Linguistic Variable and its Application to Approximate Reasoning published in
Russian [1]. The monograph was a translation of three Lotfi’s preprints that were
published about the same time as papers in Information Sciences. It immediately
became apparent to me that the methodology of fuzzy set theory could be useful in
the work that I was engaged in with my PhD student V.B. Kuz’min. I was right and
by 1978 we wrote three papers in which fuzzy set theory was successfully applied to
various decision problems. Two of these papers [2, 3] were submitted to the journal
Fuzzy Sets and Systems that was lounched in the same year. My own studies in
the area of fuzzy sets and systems were greatly influenced by the pioneering Zadeh’s
paper Similarity relations and fuzzy orderings [4]. In September of 1979, I submitted
a paper on fuzzy binary relations [5] to Fuzzy Sets and Systems. During 1979, I was in
the process of waiting for permission to leave the Soviet Union and could not submit
the paper through the official channels. The paper was smuggled to Hans-Juergen
Zimmermann who was the Editor-in-Chief of the journal at the time.

For the last three years of my life in the former Soviet Union, my research work
was mainly in the area of fuzzy sets. I recall many seminars and colloquia were talks
on the subject were presented and numerous discussions about applications of fuzzy
set theory that I witnessed. The theory remains popular in Russia today. This subject
is part of curricula in many universities and other institutions of higher education.
Lotfi’s 1965 talk at the Cybernetics Congress had a great impact on the development
of fuzzy set theory and its applications in Russia.

73.2 Vienna

On sunny winter morning of January 25, my small family (my wife, our daughter,
and I) arrived in Vienna on an Airflot flight from Moscow. We lived in Vienna in
a small communal apartment until our departure to the United States on May 14,
1980. My main activity during this tough time was writing job application letters to
various academic and research institutions in the US. Naturally, my first letter was

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 503–506.
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sent to Lotfi Zadeh. Very soon I received an invitation from Hans Zimmermann to
visit RWTH Aachen (Aachen Institute of Technology, Operations Research). It took
some time to get appropriate refugee documents so I could travel to Germany. Upon
my arrival in Aachen I was greeted by a charming gentleman smoking a pipe. Hans
introduced me to his team of young engineers some of them working in the area of
fuzzy sets. I spent a productive week in Aachen enjoying numerous conversations
with Hans. Just before my trip to Aachen I received a letter from Lotfi in which he
told me that he cannot help me while I am in Vienna but could try to do something if
I would be in the Bay Area. When I told Zimmermann about this letter, he strongly
advised me to go to San Francisco. Lotfi is a very helpful man, he told me. I remain
very thankful to Hans for his support and advice that I needed so much during that
difficult transition into a new life.

73.3 Berkeley

Tolstoy Foundation—the organization that sponsored our immigration to the US—
settled us in a motel on Polk street in San Francisco. One day later, I received a
telephone call from Lotfi who was informed by the Tolstoy Foundation that I arrived
in San Francisco. After that call everything started developing very fast. That day
Lotfi took us to his house in Berkeley where we were greeted by his wife Fay. We
were then taken to a Chinese restaurant (of course). Very soon Lotfi told me that
he managed to secure support for me from some grants to work at UC Berkeley for
one year. We moved to the Shuttack Hotel in Berkeley and then to a nice furnished
apartment near the UC campus that Fay Zadeh found for us. It is impossible to
underestimate how much help and support my family received from Lotfi and Fay
during our first years in Berkeley. We will be always indebted to the Zadehs for all
the good things that they have done for us.

On the first day of my employment, I recall it was June 1, 1980, I came to Lotfi’s
office and asked him to describe my duties. In turn, he inquired if I have any prob-
lems to work on. I replied that I do have a list of problems. Then Lotfi plainly told me
that working on these problems is my duty. I knew already from my conversations
with Zimmermann that there is no “fuzzy lab” in Berkeley and that Lotfi is working
alone. However, there were students working under Lotfi’s supervision and, most
importantly, visitors doing research work in fuzzy set theory. My first collaborator
was Teresa Riera1, a graduate student from Barcelona, with whom we wrote a paper
on fuzzy classifications that she presented at the International Congress on Applied
Systems Research & Cybernetics, Acapulco, December 1980.

I was very lucky to meet Enric Trillas in Berkeley in the fall of 1980. Our long
conversations had a great influence on my work in the area of fuzzy sets. Several
papers which I wrote later on logical connectives were influenced by Enric’s own
research. Our collaboration continued for many years thereafter. I visited Spain

1 Presently, Teresa Riera Madurell is a member of the European Parliament.



73.3 Berkeley 505

on numerous occasions during the 80s and early 90s and established good working
relations with Spanish “fuzzy community”. My last paper published in Fuzzy Sets
and Systems was written with Llorenç Valverde2, a former student of Enric Trillas.

Fig. 73.1. Enric Trillas, Lotfi Zadeh, Sergei Ovchinnikov, and Elie Sanchez in the living room
of Lotfi’s house

My active interactions with the fuzzy community started in 1981 when I attended
two conferences in the United States. In May, I presented a talk at the 11th Interna-
tional Symposium on Multiple-Valued Logic, Oklahoma City, Oklahoma, where for
the first time I met Ronald Yager. There was also a group of young Spanish scientists
headed by Enric Trillas. That fall, Elie Sanchez stayed in Berkeley with his family.
In December of 1981, I drove our two families to San Diego where Elie and I at-
tended the 20th IEEE Conference on Decisions and Control. As far as I remember
the photo in Fig. 73.1 was taken in the fall of 1981.

For more than three decades I have participated in various capacities in many
activities of the international “fuzzy community”. Initiating meetings that I attended
include NAFIPS’84 meeting in Hawaii, the first IFSA Congress in Mallorca (1985),
and IPMU’86 in Paris. In 1988 I organized NAFIPS Conference in San Francisco
and was awarded the K.S. Fu Certificate of Appreciation. I am a proud Fellow of the
International Fuzzy Systems Association (IFSA).

I remember that during my first year in Berkeley it came as a big surprise to me
the attitude of most professors in UC Berkeley and other universities towards fuzzy

2 Presently Dr. Llorenç Valverde i Garcia is Vice President of the Universitat Oberta de
Catalunya.
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theory that was ranging from ignorance to hatred. During the next several years
I observed a strong contrast of this attitude in the United States with worldwide
acceptance of the theory. I recall that in 1982 I had to “smuggle” my presentation at
the seminar ran by Kenneth Arrow (Nobel Prize in economics, 1972) by removing
every appearance of the word “fuzzy” in the summary of my talk. Of course, the
term surfaced during my presentation making some people clearly unhappy. The
situation is not very much different today despite exponentially growing body of
evidence supporting soft computing, computing with words, and fuzzy set theory
as a backbone of these applied areas. In my humble opinion, fuzzy set theory and
methodologies based on it are here to stay for a long time if not forever. Those who
disbelieve in these theories remind me of the people in caves from Plato’s Allegory
of the Cave. These people are unable to free themselves from the cave and to step
out to see the reality.
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Encounters with Fuzziness and Ambiguity
in Patterns – A Memorable Journey

Sankar K. Pal

74.1 Background

I joined the Indian Statistical Institute (ISI), Calcutta on March 01, 1975 to work on
a PhD in the area of pattern recognition and man-machine communication by voice
as a CSIR Senior Research Fellow of the Government of India. I had no idea about
pattern recognition and neither were there any text books on this subject; only a few
edited volumes, mostly by Prof. K.S. Fu, were available in our library or in the mar-
ket. From these, I started to pick up the basics of sequential pattern recognition using
statistical approaches. One day my thesis advisor, Prof. D. Dutta Majumder, gave me
a typewritten note, of about four pages titled something like “Pattern classification
with property sets”, written by Prof. Ramesh Jain who had presented the concept in
a seminar in Calcutta. From it, I got some idea of the fuzzy properties of a pattern
and the concept of its multi-class belonging based on them - which appealed to me
very much as it seemed to be very natural for decision-making in real-life problems.
There, I also got the reference of Prof. Zadeh’s famous paper, “Outline of a New
Approach to the Analysis of Complex Systems and Decision Processes”, which had
appeared in the IEEE Transactions on SMC (vol. 3, pp. 28–44), in 1973.

At that time my own institute (ISI) library was not subscribing to almost any
IEEE transaction, as Electrical Engineering or Computer science was not consid-
ered to be a core subject of research there. However, I collected a copy from the
Institute of Radiophysics and Electronics, Calcutta University where I had done
my B.Tech and M.Tech, and then subsequently got the other two seminal pa-
pers of Zadeh e.g., Information Control (1965) and Information Sciences (1967).
Apart from these three papers, I also bought an edited volume from my research
grant, which I consulted often. It was titled “Fuzzy Sets and their Applications
to Cognitive and Decision Processes” by Zadeh, Fu, Tanaka and Shimura, pub-
lished by Academic Press in 1975. The Institute library subsequently acquired
another book on fuzzy sets, by A. Kaufmann, titled “Introduction to Theory of
Fuzzy Subsets: Fundamental and Theoretical Elements”, Academic Press, 1975,
though only in the later part of my doctoral work. These were the only in-
formation sources on fuzzy sets to begin with, in the early part of my research
career.
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74.2 Visualizing Fuzziness

“Fuzzy sets are NOT fuzzy!”

In the following, I shall explain how I encountered fuzziness/ ambiguities in various
problems of pattern recognition and image analysis, got motivated to handle them
with fuzzy set theory, and subsequently continued to develop from time to time dif-
ferent hybrid technologies in the soft computing framework, as and when required
to meet the then need. While doing so, I shall also describe the road map that I fol-
lowed, acknowledging some persons concerned, and the different situations I faced
on the way.

A pattern recognition system (PRS) has basically three blocks, namely, measure-
ment space, feature space and decision space. Uncertainties arise from deficiencies
of information available in a situation. Deficiencies may result from incomplete,
imprecise, ill-defined, not fully reliable, vague, contradictory information in various
stages of a PRS. For example, vagueness can occur in the measurement space due
to experimental error, limitation in instrument/ measurement to go for finer details,
and availability of input in linguistic form. Sometimes, it may be convenient and
appropriate to express the input feature value in interval form, or having one side of
the interval unknown or even both sides fuzzy. In case of handwritten characters, for
instance, vagueness comes from badness in writing, not from randomness. Accord-
ingly, the resulting classes in the decision space may become non-convex, elongated,
and overlapping, thereby making them intractable. These necessitate the design of
classifiers with the capability of generating linear to highly nonlinear boundaries,
or modeling overlapping class boundaries efficiently. In case of overlapping bound-
aries, it is natural and appropriate to make a multi-valued or fuzzy decision on an
unknown pattern, i.e., a pattern has the possibility of belonging to more than a class
with a graded membership. Depending on the distribution of membership values
over different classes, the output decision on a pattern with respect to a class may
therefore be soft and linguistically quantified as - “definitely belongs”, “definitely
does not belong”, “combined choice”, “2nd choice” etc. For a doubtful pattern it is
always better to say “doubtful”, rather than misclassifying it. In that case the afore-
said multi-valued decisions have at least an opportunity to get the pattern correctly
classified with some higher level information (e.g., syntactic, semantic), if available.
This, in turn, dictates that a good classifier should be able to restrict the misclassified
samples within less number of classes. Dispersion Index (Pattern Recognition, 45,
pp. 2690–2707, 2012) quantifies this characteristic.

I was interested in working on speech and speaker recognition problems. Speech,
being patterns of biological origin, their characteristics depend greatly on speak-
ers’ health, sex, age, temperament, spirit and mind; thereby resulting in consider-
able amount of fuzziness in them and overlapping among the classes. For exam-
ple, the same word uttered by a speaker at different times in a day may have dif-
ferent characteristic features. Accordingly, I started developing methodologies for
nonparametric classification and recognition, and published my first IEEE paper -
“Fuzzy Sets and Decision-making Approaches in Vowel and Speaker Recognition”,
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IEEE Transactions on SMC, vol. 7, pp. 625–629, 1977. Subsequently, I published
on plosive recognition and self-supervised adaptive recognition systems, and sub-
mitted my PhD thesis to Calcutta University in 1978 titled “Some Studies on Pattern
Recognition and Man-machine Communication by Voice with Fuzzy Set Theoretic
Approach”. The foreign examiner of my thesis was Prof. K. S. Fu, the father of
pattern recognition, Purdue University, USA. While appreciating the work as a pi-
oneering contribution, he envisaged a future problem to study the sensitivity of dif-
ferent fuzzifiers and hedges, which were used in the distance function and similarity
measure, on recognition performance. Prof. Zadeh mentioned in the Foreword of
my 1992 IEEE Press book, co-edited with Jim Bezdek, that “S. K. Pal first applied
fuzzy sets to the speech recognition problems in 1977”.

Meanwhile, I started realizing that the processing of gray images could be another
good candidate area for fuzzy set theory application. Since it is gray, the basic con-
cepts of image regions, segments, edges, skeletons and relations among them etc,
do not lend themselves to precise definition. For example, a question like – “Where
is the boundary?” – has no precise answer. Whatever hard decision that one may
make for extracting those features/ primitives would always lead to an uncertainty.
In other words, it is appropriate and also natural to consider the various tasks of pro-
cessing of a gray image to be fuzzy, NOT hard, to manage the associated uncertainty
in processing as well as in recognizing the content. Again, in an image recogni-
tion or vision system, once an uncertainty is caused in edge detection, segmentation,
skeleton extraction etc. on account of the application of hard decisions (0 or 1) at
the processing stage, it is likely to propagate further to the primitive extraction stage
and may finally affect the decision-making process where one needs to identify the
image contents. This further justifies the significance of fuzzy processing whereby
the uncertainty can be minimized at the final stage of a vision system by retaining the
gray information in the preceding stages as much as possible, and the ultimate output
will not then be biased/ affected much by lower level decisions. One may note that
gray information is very informative and expensive too; once they are made crisp by
a threshold, the information is lost and can no way be retrieved. At the point of final
decision-making at the highest level, one can always make them binary.

I was then looking for an opportunity to work in image processing. At that time,
labs with complete software and hardware facilities for working in (gray) image pro-
cessing were not readily available in many universities/ institutes, not even in the
developed nations. Luckily, I got a Commonwealth Scholarship to study at Impe-
rial College, London in 1979. (Though there was a possibility to work at Purdue
University, USA, as a Post-doc Fellow with Prof. K. S. Fu, I chose to go to Impe-
rial College.) The digitized image data (in paper tape) was collected from Philips
Research Laboratory, Redhill, Surrey. I then started developing various algorithms
for enhancement including image definition, edge detection, primitive extraction and
image entropy measures using fuzzy sets, and publishing them in IEEE Transactions
and Electronics Letters, and obtained another PhD in early 1982 in the area of fuzzy
image processing. In a gray image there are two types of ambiguities, namely, gray-
ness ambiguity and spatial ambiguity. The former is concerned with whether a pixel
can be considered to be black or white, and depends only on the gray value, whereas,
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the latter is concerned with both the gray level and location of pixels characteriz-
ing the geometry of image subsets. In the process of formulating the algorithms,
Zadeh’s contrast enhancement operator (INT), S & π membership functions, max &
min operators, index of fuzziness, and entropy of fuzzy sets were used. With con-
trast enhancement of a fuzzy image around a fixed cross-over point, the difficulty in
deciding whether a pixel is black or white reduces, and accordingly the values of its
index of fuzziness and entropy decrease (IEEE Transactions on PAMI, vol. 4, pp.
204–208,1982). Similarly, given a set of fuzzified versions of an image, the one with
minimum index of fuzziness or entropy gives the best segmented output for object
extraction.

As an application, we choose the problem of identifying different stages of skele-
tal maturity (growth) with age from x-ray images of radius and ulna of wrist. The
problem is significant from the point of determining the various stages of malnutri-
tion of babies. We collected the image data from Prof. L.F. Turner, Institute of Sick
Children, London. Here the shapes of radius and ulna at several stages of growth
have overlapping character, i.e., they look alike. Accordingly, these were handled
with fuzzy syntactic recognition approach, where both the primitives (e.g., vertical,
horizontal & oblique lines, and curves) and the relations among them were consid-
ered to be fuzzy in developing the unambiguous grammars using production rules.
Since the same set of production rules with different membership functions charac-
terizes more than a class, the number of rules required is less, as compared to those
using deterministic rules (IEEE Transactions on SMC, vol. 16, pp. 657–667, 1986.)

It may be mentioned here that my thesis advisor Dr. Robert A. King, Department
of Electrical Engg., was basically an expert in the area of signal processing, and
had not worked earlier on fuzzy set theory or image processing, till I joined him.
However, he was convinced about my ideas and allowed me to work independently to
develop the subject. One may further note that there was another pioneering group on
fuzzy image processing led by Prof. Azriel Rosenfeld, Univ. of Maryland, College
Park, father of image processing, working since late seventies, particularly in fuzzy
geometry, connectedness and topology on image subspace, among others.

After returning to India in May 1983, I started developing, with my students,
multi-valued recognition systems with linguistic input, fuzzy syntactic recognition
methods, and various entropy measures and image segmentation algorithms, among
others. We have defined correlation between fuzzy sets, and fuzzy operators using
ordinary sets. Problems like estimating the entire class from a set of few sampled
patterns, selected randomly, were dealt with fuzzy sets. In the area of image anal-
ysis, we have given various definitions of image entropy based on exponential gain
function, and other quantitative indices for image processing tasks. The exponen-
tial gain function relies on the fact that a better measure of ignorance is (1− pi)
rather than 1/pi (as used by Shannon), where pi is the probability in receiving the
ith event (IEEE Transactions on SMC, vol. 21, pp.1260–1270, 1991). Accordingly,
we have defined higher order fuzzy entropy, image entropy and hybrid entropy. As
the order of image entropy increases, the validity of the segmented outputs, with
respect to minimizing uncertainty, becomes more meaningful and valid. Hybrid en-
tropy takes care of both probabilistic and fuzzy entropy and has significance in digital
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communication, particularly in noisy environment, where the concern is whether a
bit is transmitted or not in a noisy channel and if its exceeds a threshold or not.

During 1986-1987, I visited the University of California, Berkeley and the Uni-
versity of Maryland, College Park as a Fulbright Fellow. That was the first time I
met Prof. Lotfi A. Zadeh and Prof. Azriel Rosenfeld in person. Among the several
characteristics of Lotfi, two features that appeared to be unusual and thus impressed
me are - when I wanted to write a paper with him, Lotfi told me that he loves to work
alone (showing his list of publications), and advised me not to put his name; and he
never discussed fuzzy sets when we were together, whether in a car, or a restaurant
or at his house.

Fig. 74.1. Lotfi Zadeh and his wife (Fay) at his residence in December 1986

My reminiscences would remain incomplete, if I do not mention the criticism
that I received often, like many other fuzzy researchers, from my colleagues when
delivering lectures or seminars within my Institute and outside. The situation can be
felt easily considering that I have been in an organization named, Indian Statistical
Institute, surrounded by probabilists and statisticians. However, we have always
viewed it as follows:

• Fuzzy set theoretic approach supplements the probabilistic approach and it is not
a competitor, rather provides enrichment.
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• We find a better solution to a crisp problem by looking at a larger space at first,
which has different (usually less) constraints and therefore allows the algorithm
more freedom to avoid errors by commission to hard answers in intermediate
stages – notion of embedding.

74.3 Neuro-Fuzzy and Rough-Fuzzy Computing

In the late nineteen-eighties, I got interested in neural networks, and started develop-
ing various neuro-fuzzy models mainly for classification, clustering, rule generation
and connectionist knowledge base systems. The idea of synergistic integration was to
enable ANNs to accept linguistic input (low, medium, high, missing features) in addi-
tion to numerical input; exploit the ANN characteristics like adaptivity, robustness,
ruggedness, speed via massive parallelism, optimality and capability in generating
highly nonlinear boundary; and uncertainty handling capability of fuzzy sets in the
input, output and during training. This greatly enhances the application domain of
ANNs. Our article - “Multi-layer perceptron, fuzzy sets and classification” (IEEE
Transactions on TNN, vol. 3, pp. 683–697, 1992) received the Outstanding paper
award from IEEE Neural Networks Council. We have developed a series of generic
models and demonstrated their applications to noisy/overlapping fingerprint identi-
fication, speech recognition, atmospheric science, image processing etc. Through
integration, it has also been possible to make a layered network, which is usually
used as supervised classifier, act as an unsupervised classifier using the index of
fuzziness and fuzzy entropy as error detectors.

To enhance the computational intelligence characteristics of the said fuzzy net-
works, particularly for mining large data sets, we then started integrating the merits
of rough sets and genetic algorithms into them. I had become interested in rough
sets (RS) and genetic algorithms (GA) when I was visiting the NASA Johnson Space
Center, Houston, TX during 1990-92 and 1994 as an NRC Senior Research As-
sociate. I had attended several seminars on rough sets organized in the Software
Technology Branch, Information Technology Division. Two features of rough sets,
namely, granular computing with information rules and uncertainty analysis with
lower and upper approximations drew my attention. Since RS has the capability in
extracting the domain knowledge, whether supervised or unsupervised, with reduced
dimension in the form of information granules/rules, these can be encoded as initial
network parameters for reducing its learning time significantly. Similarly, GA based
learning (with chromosomes based on the network parameters, and modified genetic
parameters) can replace the traditional gradient descent search technique which is
slow and often gets stuck at local minima. The aforesaid synergistic integration of
the four tools in the soft computing paradigm results in gain in terms of performance,
computation time and compactness of the network, among others (IEEE Transac-
tions on KDE, vol. 15, pp.14–25, 2003). So, it has wide application in mining data
sets with large dimension and size, and in knowledge discovery.
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Fig. 74.2. IIZUKA-96, Fukuoka, Japan: (L-R) Sushmita Mitra, Lotfi Zadeh, Elie Sanchez and
Sankar Pal

Meanwhile I also realized that since both fuzzy sets and rough sets provide al-
gorithms for different kinds of uncertainty, why not integrate them to have a much
stronger paradigm for uncertainty handling than either of them. In 1997 I visited
Prof. Andrzej Skowron, Warsaw University, Poland under an INDO-POLISH col-
laborative project; there I met Prof. Z. Pawlak, father of rough sets. Andrzej and I
edited a volume – Rough-Fuzzy Hybridization: A New Trend in Decision Making,
Springer, Singapore, 1999, which is the first of its kind.

One may note that Pawlak’s rough set theory is based on the concept of crisp set
and crisp granules, and provides a framework of handling uncertainty arising from
granularity in the domain of discourse or limited discernibility of objects,. However,
in real life problems, one or both of them may be fuzzy. A gray image is such an
example where the set (e.g., object region) can be fuzzy and the granules (e.g., pixel
windows) may be overlapping. In order to model this, we have recently defined
generalized rough sets (IEEE Transactions on SMC, vol. B-39, pp. 117-128, 2009),
where the set and granules could be crisp as well as fuzzy. Accordingly one could
use “granular fuzzy computing” or “fuzzy granular computing” depending on the
application.

For example, in an image nearby gray levels have limited discernibility, i.e.,
nearby gray levels roughly resemble each other and the values at nearby pixels have
rough resemblance. Therefore, in the rough-fuzzy computing framework image
ambiguity may be viewed as resulting from fuzzy boundaries of regions + rough
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resemblance between nearby gray levels + rough resemblance between nearby pix-
els. Accordingly, we defined generalized rough-fuzzy entropy based on lower and
upper approximations. Its merits over fuzzy entropy and the significance of fuzzy
granules have been demonstrated, for example, on image segmentation problems.

Fig. 74.3. BISC International Workshop Computational Intelligence in Bioinformatics and
Cybersearch (FLINT-CIBI-03), Berkeley: Sankar Pal with Lotfi and his wife in the Banquet
in Dec 2003

Merits of rough sets and fuzzy sets have also been integrated judiciously in clus-
tering problems where rough sets deal with vagueness and incompleteness in class
definition, and fuzzy sets enable handling of overlapping partitions. Each cluster
here is represented by a cluster prototype, a crisp core (lower approximation) and a
fuzzy boundary. Membership values are unity for the objects in the crisp core region,
and are in [0,1] for those in the fuzzy boundary region. In other words, rough-fuzzy
clustering provides a balanced mixture between restrictive partition of hard cluster-
ing and descriptive partition of fuzzy clustering. Therefore, it is faster than fuzzy
clustering and is capable of better uncertainty handling/ performance (IEEE Trans-
actions on SMC-B, vol. 37, pp. 1529-1540, 2007). Thus, wherever fuzzy c-means
or c-medoids have been found to be useful in the past four decades, rough-fuzzy
clustering would be superior.
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74.4 CWW and Z-Numbers: Future Work

Let us now consider one of our current research problems of computing with words
(CWW) and the significance of the Z numbers, as recently explained by Zadeh (In-
formation Sciences, vol. 181, pp. 2923–2932, 2011). The CWW paradigm is in-
spired by the astounding ability of the human brain to perform tasks on the basis of
concepts encoded in the words and phrases that frame natural language statements.
It aspires to induce this amazing decision-making ability in the computer - a step to-
wards evoking M-IQ in a computer. CWW is imperative when a) the information to
be conveyed lacks numeric precision; b) the situational imprecision can be exploited
to arrive at robust, low-cost solutions; c) numeric computing principles cannot be ap-
plied; and d) words express a lot more than numbers. Potential areas of application
of CWW are in semantic-web searching, linguistic summarization of text samples or
complex phenomenon, and subjective decision-making.

We envision the paradigm as a model of the natural, intuitionistic process of com-
prehension; and aspire to apply its principles to the development of systems capable
of formulating subjective judgments on the basis of natural language descriptions of
related events. The systems should ideally be working in real-time and incorporate
the ’emotional’ element and recognize ’behavioral aspects’ of natural language. As
such the prime areas that we have begun addressing are:

• Modeling word-perceptions, where words are inherently ’uncertain’ –
a) The same adjective may convey different (even if subtle) meanings across in-

dividuals [inter-uncertainty];
b) The same adjective may bring in different interpretations across time – at any

time instant [intra-uncertainty], as well as with experience;
c) A single word may have multiple meanings – that depend on the context;
d) A word may have multiple syntactic forms – tense-forms, pluralization, parts

of speech;
e) Words are often not used literally.

• Word-sense disambiguation from synonyms or from words along the spatial lo-
cality of reference - evaluation of the perception of the sentence in its entirety.

• Adapting the machine vocabulary to include new words and concepts pertaining
to a context.

• Identification of the context-relevance of natural language statements and appro-
priate handling of absolutely irrelevant statements.

• Formulation of the rules of computation on the basis of the word-perception model
and the antecedent-consequent relations within the context.

• Granulation of the sentences into sub-contexts for faster processing and simula-
tion of the human process of cognition.

The Interval-Type 2 fuzzy set has long been proved as being capable of model-
ing the intra-uncertainty and the inter-uncertainty of word-perceptions. We believe
that the concepts of fuzzy-grammar, fuzzy-entropy and fuzzy-granules, are essen-
tial for the purpose of text annotation, context-relevance measures and granulating
sentences into sub-contexts.
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An investigative insight into the concept of the Z-number, proposed by Zadeh in
2011, depicts the Z-number as to being able to provide the perfect environment of
amalgamation of all the concepts mentioned. The methodology moreover, incor-
porates a parameter that indicates the ’uncertainty’ of the information conveyed by
the sentences - which could be exploited to merge CWW and behavioral computing.
Using the Z-number as a framework for CWW is our current line of thought.

Prof. Lotfi Zadeh visited the Indian Statistical Institute, Calcutta in February 2006
when I was the Director, and he was conferred with Honorary Doctorate degree to
acknowledge his everlasting contribution to science. He also interacted with our
students and faculty members of the Center for Soft Computing Research regarding
their activities.

Fig. 74.4. Visiting CSCR, Indian Statistical Institute, Calcutta in February 2006: (L to R)
Dwijesh Dutta Majumder, Lotfi Zadeh and Sankar Pal
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My Way to Fuzzy Control

Rainer Palm

In the 80’s of the last century I was member of the robotic Lab of the academy of sci-
ences in East-Berlin. Our task was to develop robot skills for industrial manipulators
mainly equipped with tactile sensors, intelligent grippers and force/torque sensors.
The main application of our robot skills were technological tasks like welding, grind-
ing, glueing tasks etc. performed on the basis of contour following algorithms.

The mixture of pure control theoretic aspects and technological expert knowledge
makes the control of such tasks quite cumbersome. So we were looking for means
to overcome these difficulties.

At that time within the academy several symposia were organized with pure math-
ematical character and also with topics with engineering aspects. One of those sym-
posia was held in 1985 in Leipzig where Steffen Bocklisch from the University of
Karl-Marx-Stadt (now Chemnitz) gave a talk on a strange but interesting area named
Fuzzy Logic. This scope caught my attention from the beginning, and I went back
to Berlin with the will to learn more about it, the theoretical bases and practical
consequences for my work in robotics.

In the mid 80’s textbooks on fuzzy logic/control were quite rare. So I mostly read
editorials – for example the book “Foundations of Fuzzy Reasoning” published by
Elsevier, 1977, edited by B. R.Gaines. This book gave me some insight into the ideas
of fuzzy reasoning, the construction of fuzzy relations and fuzzy rules and some hints
to build fuzzy controllers. The advantage of an editorial is that – in the absence of
good textbooks – it shines a light on a scientific field from different prospectives.

In the next period of time Steffen Bocklisch and also Siegfried Gottwald from
the University of Leipzig organized meetings on fuzzy logic to one of which I was
invited to give a talk on my special field: Application of fuzzy control to the field
of robotics. At this meeting a polish scientist was also invited to give a talk. It was
Witold Pedrycz – an internationally known expert in fuzzy logic. To my pleasure
he liked my talk and encouraged me to submit a paper to “Fuzzy Sets and Systems”
which was accepted and published under the title “Fuzzy controller for a sensor
guided robot manipulator” Volume 31 Issue 2, 26 June 1989.

Shortly after a precipitating event changed our life especially in the East drasti-
cally: The fall of the wall. This made a close collaboration between the academy and
the Fraunhofer Society in West-Berlin possible which worked on similar problems
in the field of robotics.

Initiated by the upcoming “fuzzy boom” in the late 80’s especially in Japan
and the US, Siemens R & D started to build up a so-called ’fuzzy task force’ in

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 519–523.
DOI: 10.1007/978-3-642-35644-5_75 © Springer-Verlag Berlin Heidelberg 2013
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Fig. 75.1. Examples of Fuzzy groups and their programs in East Germany
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Fig. 75.2. The Fuzzy group at Siemens R & D, 1995, from left to right: K. Heesche, Uli
Rehfuss, Th. Runkler, R, Berstecher, J. Hollatz, R. Palm, P. T. Pilgram

Munich, Germany, in order not to fall behind their competitors in this field of re-
search and application. At the end of the year 1990 I got a call from Michel Reinfrank
from Munich in which he asked me whether I wouldn’t like to join his group. Af-
ter some serious consideration I agreed and joined his group in spring 1991. Apart
from M. Reinfrank this group started with a just a few members: Erwin Gerstor-
fer (Austria), Paul-Theo Pilgram (Germany), Hans Hellendoorn (The Netherlands)
and myself. After a while this relatively small group attracted people from several
places in Europe and the US. Our focus was directed both to theoretical problems
of fuzzy logic/control and practical applications like fuzzy washing machine, vac-
uum cleaner, and exhaust measuring systems. Theoretical aspect were fuzzy sliding
mode, defuzzification methods and – last but not least – the development of a fuzzy
tool TILShell 3.0 (later SieFuzzy 1.0) a mutual development between Siemens and
Togai InfraLogic located in Irvine CA, USA.

The first fuzzy conferences brought us together with the leading scientists in the
field: Hans Zimmermann, Siegfried Gottwald, Witold Pedrycz, Rudolf Kruse, Peter
Klement, Ron Yager, Jim Bezdek, Jim Keller, Didier Dubois and Henri Prade, and
many others and, of course, the founder of fuzzy logic: Lotfi Zadeh.

Lotfi’s interest in our work was mainly focussed on Siemens applications of fuzzy
logic. On a fuzzy symposium in Munich 1992 organized by Siemens R & D he
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Fig. 75.3. Lotfi Zadeh visiting Siemens Fuzzy Group, 1992, from left to right: E. Gerstorfer,
R. Palm, L. Zadeh, H. Hellendoorn

visited our Lab to inform himself about our progress in the fields of theory and
practical applications .

A very close collaboration took place especially with Dimiter Driankov from
Linkoeping University in Sweden who visited us for several years. He initiated the
publication of many Journal and conference papers and books e.g. “Introduction to
fuzzy control” (1993/96) in collaboration with spanish and australian scientists and
later the book “Model based fuzzy control” (1996).

After a few years the fuzzy group merged with our neural net group led by Bernd
Schuermann. The fuzzy aspect did not play a prominent role any more but appeared
to be a useful and recognized tool for many industrial solutions and projects. In the
field of fuzzy control the modeling and identification aspect got more and more into
the focus. As a modeling tool fuzzy clustering was represented by Thomas Runkler
who leads the Lab since a couple of years.

Since my retirement in 2004 I work as an adjunct professor and guest scientist at
the Oerebro University/Sweden at a Robotic Lab led by D. Driankov.

Although my main research interest went back to my old field robotics, fuzzy
modeling and control remain a field of research and a scientific attraction.
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Fig. 75.4. R. Felix, H. Hellendoorn, D. Driankov and son Stefan (from left to right) at
FuzzIEEE in Orlando 1994
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The Role of Fuzzy Sets in Information Retrieval

Gabriella Pasi and Gloria Bordogna

76.1 Introduction

Our journey in the land of Fuzzy Logic started in 1990, at the Italian National Council
of Research (CNR), where we were young researchers, who, coming from research
experiences in distinct groups, were excited at the idea to start an independent and
challenging research activity. We came across the world of Information Retrieval
(before Web search engines’ birth) not by chance, but because we were both working
at a project aimed at defining and implementing an IR system (IRS) for managing
the research papers produced by the researchers of CNR.

In the phase of understanding the complexity of the IR task as well as its open
problems, we focused on the central role of the concept of relevance of documents
to users’ information needs, and on the potential application of Fuzzy Set Theory
to model it. In analyzing this topic we had the opportunity of reading some papers
written by Tadeusz Radecki and, subsequently, by Donald Kraft. In his seminal pa-
per of 1979, titled “Fuzzy set theoretical approach to document retrieval”, Radecki
proposed a first generalization of the Boolean retrieval model (the first formal model
of an Information Retrieval System) [11]; this proposal was later followed by several
others. The main issue underlying this generalization was that Information Retrieval
is a decision making activity which relies on subjective and approximate needs that
an automatic system may only guess, and that it shall somehow model to produce
possibly meaningful results. We discovered that Fuzzy Set Theory (FST) and Fuzzy
Logic had been proposed by several researchers such as Donald H. Kraft, Abra-
ham Bookstein, Ducan Buell, Rita de Caluwe, Etienne Kerre, as an adequate formal
framework for modeling document’s relevance as a gradual property of documents,
and for shaping IR systems that can rank documents based on their estimated rele-
vance to user queries [4] , [7], [8].

This approach fascinated us at such a point that (jointly with our colleague Paola
Carrara) we developed our first contribution, that was published in the Information
Processing and Management Journal, in 1991 (Query term weights as constraints
in fuzzy information retrieval) [2]. But what we remember as the most important
opportunity to explore the potentials of FST in the context of modeling systems for
information access, as well as the true initiation to the fuzzy community was the First
International Conference on Fuzzy Systems (Fuzz-IEEE) in San Diego, in 1992. We
presented at that time a paper titled “Extending Boolean Information Retrieval: a
Fuzzy Model based on Linguistic Variables”. This event was fundamental in deter-
mining a big part of the research activities we did undertake in subsequent years.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 525–532.
DOI: 10.1007/978-3-642-35644-5_76 © Springer-Verlag Berlin Heidelberg 2013
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At that conference we met people with whom we started beautiful personal and pro-
fessional relationships.

We met Donald H. Kraft, who was the chair of our session at the conference, and
with whom we had an interesting working lunch in which we talked about the content
of our proposals as well as the links to his works. We remember the presentation on
OWA operators given by Ronald Yager with whom we had later the chance to talk;
as a consequence of the discussions with him, we envisioned the usefulness of OWA
operators for defining flexible query languages for IR systems, that we first proposed
in 1995 in our paper titled Linguistic Aggregation Operators of selection Criteria
in fuzzy information retrieval [3]. In San Diego we also met Patrick Bosc, who
invited us to submit a paper in his and Janusz Kacprzyk’s seminal edited volume
on fuzzy databases; we met at that conference Didier Dubois and Henry Prade, Jim
Bezdek, Piero Bonissone and several other people who we would have seen and met
in numerous subsequent events. Last but not least, we met Lotfi Zadeh, a guru for
us, who became an important reference for the evolution of our research experience.
What especially surprised us was his kindness, availability and curiosity in talking to
us, in giving us advices. Overall we found a greater openness and enthusiasm of this
scientific community with respect to other scientific communities. Several years have
passed from that conference, and with the birth of the World Wide Web the problem
of defining systems able to provide users with an easy access to information relevant
to specific needs has become still more crucial: a huge dynamic data/information
repository acquires worth if its contents are accessible as effective answer to specific
needs.

Fig. 76.1. Lotfi Zadeh, Gabriella Pasi and Rachel Yager at the reception of the 11th IPMU
Conference on July 2-7, 2006 in Paris, France
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However, retrieval is still a quite difficult task, and the tradeoff between systems’
efficiency and their effectiveness has resulted in the definition of various though
“simple” models of both documents (basic retrievable units of information), and
query languages. The main issue related to the IR task still concerns the fact that
the complexity of natural languages cannot be fully captured by a computer applica-
tion; the uncertain and vague nature of the IR task has been deeply exploited from
1990 to now, and several approaches based on probability theory, machine learn-
ing techniques, and natural language analysis have been proposed. Since then, also
Fuzzy Set Theory has proven to be a valuable means to define flexible approaches
in this context, ranging from the definition of flexible query languages, fuzzy
associative mechanisms, adaptive document’s representations, and personalized sys-
tems [5], [6], [9], [10].

However, despite of the big developments underlying the technologies for man-
aging and accessing information of interest to specific needs, state of the art and
commercial search engines are still mainly based on keyword-based processing, with
seldom use of knowledge resources to face the problem of word disambiguation. The
complexity of natural languages, with their nuances and their subjective usage is still
far to be effectively captured by computer applications.

An interesting computational approach, with a big potential, but which has not
been sufficiently exploited in this context is offered by the “computing with words”
paradigm, as well outlined by Lotfi Zadeh in [12], [13], [14].

In the next section we shortly overview the history of Fuzzy Set Theory in IR.

76.2 A Synthesis of the Main Approaches to Model Fuzziness
in IR

The application of Fuzzy Set Theory to Information Retrieval was mainly aimed to
the definition of retrieval techniques capable of modeling, at least to some extent, the
subjectivity, vagueness and imprecision that is intrinsic to the process of locating in-
formation relevant to users’ needs. In particular, Fuzzy Set Theory has been applied
in the context of IR to the following main purposes:

• to deal with the imprecision and subjectivity that characterize the document in-
dexing process, i.e., the process by which the content of a text is automatically
synthesized and represented on the basis of keywords extracted from (or associ-
ated with) it;

• to capture and manage vagueness in query formulation: user requests are usu-
ally expressed by a few terms, whose intended semantics shall be disambiguated
depending on both the user and query context, and whose importance in character-
izing the search topics varies depending on both their specificity, position within
the query string, collection searched and other factors;

• to “soften” associative mechanisms, such as thesauri and algorithms for docu-
ments’ clustering, which are often employed to extend the functionalities of an
IRS. Within classic thesauri the considered relations between pairs of terms are
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crisp, while in natural languages they are not Boolean; they are more adequately
represented by fuzzy relations, where a degree in [0,1] expresses the strength of
association of two terms/concepts. Traditional clustering techniques partition doc-
uments into disjoint sets to reflect the distinct topics they are centered on; however
a crisp partitioning hardly reflects the variety of topics dealt by texts;

• to define flexible decision strategies in meta search engines and in distributed IR
for fusing the ranked lists of documents retrieved by several search engines, or
for selecting the most adequate sources of information to query based on their
contents, reputation, user needs;

• to represent and inquiry semi-structured information (XML document reposito-
ries) by allowing users to specify degrees of preference on the documents subparts
they consider as the most significant to their needs, as well as flexible constraints
on both document structure and content.

As previously outlined, the first approaches that applied Fuzzy Set Theory to In-
formation Retrieval were aimed at generalizing the Boolean IR model to the main
purpose of overcoming the binary modeling of the concept or document’s relevance
to a user’s query. Within the fuzzy framework relevance was conceived as a gradual
property of documents with respect to a user’s query, with the consequence of mak-
ing an Information Retrieval System able to produce a document ranking [2], [11].
In a fuzzy IR model a document is formally represented as a fuzzy subset of index
terms (the membership value associated with a term represents its index term weight,
computed based on statistic models of terms significance in document’s texts, first
studied by Luhn in 1950s). By means of Fuzzy Set Theory two main generalizations
of the Boolean query language have been proposed: the introduction of query term
weights and a generalization of the aggregation operators (the connectives AND and
OR in the Boolean query language).

A query term weights is interpreted as the specification of the importance of that
term as a descriptor of the user’s needs, and it is formally defined as a flexible con-
straint on the fuzzy document representation. By such an extension, the structure of
a Boolean query is maintained, by allowing weighted query terms to be aggregated
by the AND, OR connectives and negated by the NOT operator. In this way the exact
matching of the Boolean model is relaxed to a partial matching, where the matching
degree of a document to a query (the so called Retrieval Status Value of a document)
is computed by the evaluation of the flexible constraints on the document represen-
tation. In the context of Fuzzy Set Theory the connectives AND and OR are defined
as aggregation operators belonging to the classes of T-norms and T-conorms respec-
tively. Usually, the AND is defined as the min (minimum) aggregation operator, and
the OR as the max (maximum) aggregation operator.

In the first fuzzy models query term weights were defined as numeric val-
ues in the range [0,1]. The flexible constraint identified by a query term weight
depends on its semantics; several semantics have been proposed for query term
weights, corresponding to distinct fuzzy generalizations of the Boolean model (dis-
tinct fuzzy IR models) [4], [7]. The three main semantics for query term weights are:
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the relative importance semantics (query weights express the relative importance
of pairs of terms in a query), the threshold semantics (a query weight expresses
a threshold on index term weights), and the ideal index term weight semantics (a
query weight expresses the “perfect” index term weight). The choice of one out of
the three proposed query weight semantics implies a distinct modeling of the retrieval
function evaluating a query against documents’ representations.

Fig. 76.2. Gloria Bordogna and Gabriella Pasi, Lotfi Zadeh, Maria Amparo Vila, Carlos
Molina, Nicolás Marín, and at the right Janusz Kacprzyk at the 2005 IFSA Conference in
Bejing

It is important to notice that among the IR models that proposed the use of query
term weights, the Fuzzy IR models were the only ones to consider the problem of
the possible distinct semantics of the query term weights.

As the association of a numeric value forces the user to quantify the qualitative
concept of importance of query terms, some late models proposed in the literature
have introduced linguistic extensions of the Boolean query language, based on the
concept of linguistic variable [1], [4]. By using linguistic query weights, query terms
can then be labeled by words such as important, very important. Analogously to the
evaluation of numeric query term weights, also linguistic query term weights express
flexible constraints on index term weights.
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Fig. 76.3. Lotfi Zadeh, Gabriella Pasi and Fay Zadeh at the Welcome reception to the World
Conference on Soft Computing in San Francisco, 2011

A second kind of generalization of the Boolean query language has concerned the
definition of soft aggregation operators (to improve query formulation with respect
to the use of the AND and OR Boolean aggregation operators) [3]. In fact, when the
AND is used for aggregating N (weighted) keywords in a user query, a document
indexed by all keywords but one is not retrieved, thus causing the possible rejection
of useful items. The opposite behavior characterizes the aggregation by OR. To
express more flexible aggregations, the use of linguistic quantifiers (formally defined
within Fuzzy Set Theory) was proposed. Linguistic quantifiers, such as at least 2 and
most, specify more flexible document selection strategies. Linguistic quantifiers have
been formally defined as averaging aggregation operators, the behavior of which lies
between the behavior of the AND and the OR connectives, which correspond to the
all and the at least one linguistic quantifiers. Notice that our proposal, formulated
in 1995 [3] to use linguistic quantifiers as soft aggregations of query terms makes it
possible to rank documents retrieved by taking into account not only the significance
of terms representing documents, but also the number of the query terms that index
a retrieved document. This feature is now one of the criteria used by search engines
to rank documents, so that in the first positions appear documents containing most
of the query terms, and in the lower positions documents with only a few terms.

Another historical application of Fuzzy Set Theory to IR has concerned the defini-
tion of fuzzy associative retrieval mechanisms, which were first proposed in 1983 [9];
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they are based on the concept of fuzzy association [1], [4], [6]. In Information Re-
trieval, different kinds of fuzzy associations can be modeled; examples of fuzzy
associative mechanisms are offered by fuzzy pseudo-thesauri, and fuzzy clustering
techniques. Fuzzy associative mechanisms based on thesauri or clustering techniques
have been employed to cope with the incompleteness characterizing either the rep-
resentation of documents or the users’ queries. In the former case their usage allows
to expand the index terms of documents with those terms that are more strongly
associated with them in the fuzzy thesaurus or pseudo-thesaurus.

76.3 Conclusions

To summarize, Fuzzy Set Theory has provided early ideas for modeling important
features of current IR systems, that later have been independently proposed and im-
plemented within ad hoc heuristic models and proved their effectiveness.

We think that fuzzy set theory can still be a promising framework for shaping
search engines of the future. In this respect the future of Information Retrieval cannot
be conceived by disregarding the Semantic Web.

An interesting and promising field for the definition and development of a new
generation of search engines is constituted by the research on meme identification
and tracking.

The word “meme” has been coined in 1976 by Richard Dawkins to indicate “the
basic unit of cultural transmission or imitation”: as well outlined by Susan Black-
more [1]: “Memes, like genes, are replicators, that is, they are information that
is copied with variation and selection. Because only some of the variants survive,
memes (and hence human cultures) evolve”.

As it may be easily figured out, the Web constitutes a huge information repository,
and several Internet based-services and applications represent a quite rich soil for
memes’ growth and evolution. Let us think about blogs, e-mails, news resources
and social networks applications (like Twitter and Facebook). In the context of the
Web, the concept of Internet Meme has been introduced as a unit of information
(idea) replicated and propagated through the Web by one or more of the previously
mentioned applications. An interesting and critical aspect related to the various and
easy means for information spreading and replication on the Internet is related to a
potential lack of human control in the memes evolutionary process.

To the aim of both studying memes on the Internet (e-meme) and defining the fu-
ture search engines capable of identifying e-memes and of tracking their spread and
evolution over the Internet, we think that the “computing with words” paradigm,
coupled with fuzzy associative mechanisms can provide a suitable and feasible
approach.

This will enable future search engine to retrieve not just isolated web pages, but
e-memes, i.e., connected Web pages that refelect the meme spreading and evolution
over the Web.
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Fuzzy Sets: A Brief Retrospect and Beyond

Witold Pedrycz

In this brief note, my intent is to offer some personal views at fuzzy sets - a paradigm
that has brought an innovative and fresh perspective to numerous endeavors to nu-
merous disciplines in sciences, humanities, and engineering. Obviously, any histori-
cal notes of this nature are sketchy, incomplete, and highly subjective. By no means
they pretend to be a fully reflective of the rich history, landscape and people forming
the fuzzy set community.

77.1 My Way to Fuzzy Sets

Fuzzy sets appeared as my research area quite early almost after I finished my MSc in
1977 and started working at the Silesian University of Technology, Gliwice, Poland.
At that time Poland was a part of the Eastern block and the iron curtain had a visi-
ble impact on all aspects of our everyday life including academic affairs. There was
a shortage of current literature, journals were scarce, international interaction quite
limited and in many areas almost non-existent. I was fortunate in some sense as hav-
ing an opportunity to visit Japan for about 2 months and staying with the electronic
company (Anritsu) while at the same time taking part in some research seminars.
During one of them I met Kaoru Hirota, who at that time was completing his PhD on
probabilistic sets – a topic very closely linked with fuzzy sets [1]. This was perhaps
the first time I got acquainted with the world of fuzzy sets. A few months later, in
Poland, it was late Professor Ernest Czogala who brought the ideas of fuzzy sets,
especially fuzzy control and fuzzy controllers. Ernest was not only an outstanding
researcher bursting with brilliant ideas. His enthusiasm was contagious. The support
he offered was paramount. In 1978, I started my PhD in the area of fuzzy relational
equations and fuzzy systems completed two years later in 1980. Then there was a
one-year postdoctoral fellowship at the Delft University of Technology – a very for-
tunate event, which crystallized main directions of my research in fuzzy sets. Delft
offered the very best what the academic environment could ever provide: the best
tradition of solid, creative and applied research done in a highly collaborative envi-
ronment. It was the first time that I started to appreciate the term applicability (not
applications) of research ideas. There were outstanding mentors, just to mention
Professors Dijkman, van Naute Lemke, Backer [4], and Lootsma. At the early of the
80ties there were very few regular publications in fuzzy sets. Professor Dijkman and
his group published a series of interesting internal reports covering various areas of
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fuzzy sets. From these days I can recall some interesting meeting with Walter Kick-
ert (who at that time was at the University of Nijmegen). He was somewhat moving
away from fuzzy sets but had developed interesting views about the area.

The fuzzy set research community in Poland and Eastern Europe was very sup-
portive and, in spite of obvious limitations, led to a number of long-lasting research
interactions and friendships. Janusz Kacprzyk, Siegfried Gottwald, Laszlo Koczy,
Arkady Borisov, Vilem Novak – I have been fortunate having known them for many
years.

77.2 First Meetings with Lotfi

I can vividly recall my early meetings with Lotfi. The first one was at the IFSA
Congress in Tokyo. His plenary talk was inspiring with so lucidly posed arguments
– for myself this opened new perspectives and helped me position the research known
from the literature in a completely new, very much enriched perspective. The time
was hectic and Lotfi surrounded by the crowds was not easily accessible. We had a
brief conversation. What I found striking was his ability to listen, offer advise, and
encourage. From a broader perspective, this second IFSA Congress was successful
indeed and very much important to the developments of fuzzy sets worldwide. Japan
was booming at this time; fuzzy sets were on a rise, the term fuzzy was en vogue, a
plethora of applications of fuzzy sets was embraced by the Japanese industry (Sendai
railway system, home appliances, to recall the most visible examples). The presen-
tations made by the pioneers and eminent Japanese researchers and engineers were
highly attractive and influential - for the first time what had been known in the lit-
erature about fuzzy controllers was showed in its full galore through a large number
of experimental setups so much enjoyed by the participants of the Congress. The
Congress was a turning point for the academia and industry – an event loaded with
enthusiasm, dedication, and ingenuity of the young and rapidly growing community.

The next meeting with Lotfi took place in a quite different environment and hap-
pened during my postdoctoral research stay in the Netherlands. Lotfi came to Delft
to give a seminar; this must have been one of the stops during his busy trip to Europe,
I suppose. The talk was again enlightening and there was more time for discussion in
a far more relaxed environment than the one during the IFSA Congress. I think it was
the time Lotfi was very much preoccupied by the ideas of PRUF (used for test-score
semantics for natural languages and meaning representation) and this framework was
at the center of our discussion.

77.3 Fuzzy Sets – A Retrospective

Going back several decades, it is interesting and informative to put some develop-
ments in fuzzy sets in a broader perspective.
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77.3.1 Fuzzy Modeling

Fuzzy models and fuzzy modeling emerged at the very early stages of fuzzy sets
as a natural consequence of some papers of Lotfi along with the highly influential
principle of incompatibility. Interestingly enough, the studies were mostly focused
on the conceptual level addressing the burning question about the new quality and
modeling horizons fuzzy sets could bring to the area. Not surprising, there were far
less developments at the level of detailed estimation procedures, learning, validation
of the models. Just the idea was the most attractive and the detailed design was left.
I can clearly recall early works by Wenstop [7], Kickert [3], van Naute Lemke [2],
Kandel [5], and Tong [6], to mention only a few names. The term linguistic modeling
seemed to be quite visible and influential and had started to become associated with
fuzzy sets as one of its most visible landmarks. It has various dimensions not only
by forming a backbone of system modeling with fuzzy sets, but contributing to the
realization of structures of human decision-making and pattern recognition.

77.3.2 Fuzzy Control

Fuzzy control or being more specific, fuzzy controllers, were one of these concepts
that became very much visible and became a flagship of applied fuzzy sets. For the
first time, the omnipresent and some entrenched dogma of control theory and con-
trol engineering has been challenged. Control strategies were inherently tied with
a model. At some point it was somewhat overlooked or forgotten that control does
not concern system control (which is tied with reality) but model control. Likewise a
control performance index (better be a quadratic one) is a must so that control prob-
lem translates into an optimization task. The underlying principle of fuzzy controller
is definitely attractive: the rules capture both the performance index and a feasible
control strategy. The problems of system identification were bypassed, the control
started to become more in rapport with the particular needs of the problem. Yet, on
the more formal note, there were no comprehensive tools to analyze the closed-loop
control behavior of the system, discuss stability, come up with a suite of thorough de-
sign practices. Even today, time-to-time we witness some critical comments coming
from the camp of “classic” control even though a lot of progress has been done. Per-
haps still some points call for better clarification and more dialogue with the control
community.

77.3.3 Computational Intelligence and Soft Computing

There was an important development in the discipline of intelligent systems and
fuzzy sets. The eighties have brought a flurry of new ideas under the banner of Com-
putational Intelligence or Soft Computing (whether correct or not, these two names
are used quite interchangeably). Computational Intelligence stressed a synergy of
the contributing technologies including neurocomputing, fuzzy sets and evolution-
ary optimization- a tendency that was important and of significant relevance and
was, to a significant extent, inevitable. We have seen hybrids: neurofuzzy systems,
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evolutionary -fuzzy architectures. New, sometimes difficult to decipher, acronyms
appeared. Fuzzy sets gained some new capabilities (especially at the learning end),
expanded a scope of algorithmic pursuits and applications. There was, however, a
visible shift from emphasis on knowledge representation (which is profoundly asso-
ciated with fuzzy sets) to striving to achieve high accuracy of the resulting fuzzy set
constructs.

77.4 The Prospects and Challenges

Fuzzy sets, after almost 50 years, achieved a remarkable level of maturity and as-
sumed a visible and well-recognized position on the arena of the fundamentals and
technology of intelligent systems. How could the future is going to look like and
what could we envision in the years to come? Nobody has a crystal ball however
some main directions can be envisioned:
mastering, abstracting and fostering the development of the well-established con-
cepts and algorithms of fuzzy sets. This is a natural tendency – one tries to build
upon what has been established and has already shown some interesting applica-
tions. Undoubtedly, the pursuits in this realm will continue by building a body of
knowledge and contribute to the progression of the area.
mathematization of the area and a silent abandonment of the fundamental principles
of fuzzy sets. This tendency has already appeared. Fuzzy sets are used in a mechan-
ical fashion. They become merely mathematical constructs loosing their semantics.
We have witnessed constructs with 20+ fuzzy sets defined in a universe of discourse.
It becomes difficult to imagine that such fuzzy sets could carry any meaning. Fuzzy
sets are over-precisiated. Fuzzy sets are generalized – no matter whether such gen-
eralizations do make sense, are justified or any applicability of such constructs could
be envisioned. Fuzzy control becomes an area of mathematical manipulation of sym-
bols - we are back to square one- we require a model (nowadays it is a fuzzy one)
and a performance index to do any number crunching.
further progression of the concepts and building upon the fundamentals of fuzzy sets.
This tendency leads to the significant expansion of the area and. Here Granular
Computing (as introduced by Lotfi [8] and just recently lucidly elaborated in his
paper [9]) comes as a representative and useful example along this line. It is very
likely we will be witnessing a substantial progress in this domain.

77.5 Closing Thoughts

We have traveled a long way but it looks that many things happened just yesterday.
No doubt, a lot of new exciting developments are awaiting us in the years to come.
We will be seeing intriguing, surprising and completely unanticipated twists, which
could direct fuzzy sets in new, uncharted territories and unexpected application do-
mains. Undoubtedly, we will be seeing some re-discoveries. What remains certain,
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though, is the visibility and importance of the main paradigm of fuzzy sets and its
human-centricity facets forming an overarching principle, over which numerous in-
telligent systems are built.
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Fuzzy Relational Equations – From Theory to
Software and Applications

Ketty Peeva

78.1 Motivation

In 1977 I finished my PhD Thesis on categories of stochastic machines. The main
attention was paid on computing behavior, establishing equivalence of states and
equivalence of stochastic machines, as well as on reduction and minimization. All
these problems were solved for stochastic machines, using linear algebra: they re-
quire solving linear system of equations with traditional algebraic operations, estab-
lishing linear dependence or linear independence of vectors, Noetherian property.
After 1980 I was interested in similar problems, but for finite fuzzy machines.

Finite fuzzy machines were proposed and first studied by Santos [23]. Santos
set equivalence, reduction and minimization problems for finite max-min fuzzy ma-
chines and for finite max-product fuzzy machines [24], [25]. Most of the results
presented in [24], [25] have counterparts in the theory of stochastic sequential ma-
chines [1]. Nevertheless that stochastic machine seems to be similar to fuzzy ma-
chine, the main obstacle was that linear algebra and fuzzy algebras are completely
unrelated. In order to investigate fuzzy machines, two types of algebras, called
max-min algebra and max-product algebra have been developed [25], [26]. The role
played by these algebras in the theory of max-min and max-product fuzzy machines
is supposed to be the same as that played by linear algebra in the theory of stochastic
machines. But these algebras propose tremendous manipulations for solving prob-
lems for fuzzy machines. Supplementary, there are several issues in [24], that are
either incomplete or confused [6]. This motivated the author to develop theory, algo-
rithms and software for finite fuzzy machines (FFMs). Obviously developing theory
and software for solving problems for FFMs requires first to develop theory and soft-
ware for fuzzy relational calculus and then to implement it for FFMs. At this time
these problems were open and I intended first to develop method, algorithm and soft-
ware for solving FLSEs when the composition is max-min, then to implement it to
FFMs. In 1980 I had no idea whether the solution exists and how long it will take me
to solve the problems. Just now, after 30 years, I have positive answers to all these
questions. My first results for FLSEs were published in [8], [10] (1985-1992), but
in fact their natural development and extension is given in the monograph [12] and
in papers [4], [5], [11], [15], presenting analytical methods, algorithms and software
for solving FLSEs in fuzzy algebras with applications in various subjects, in which
I worked during the years with my bachelor, master and PhD students: fuzzy ma-
chines [6], [9], [16], linear dependence [18], [19], optimization [14], [17], [20], [21],
artificial intelligence and expert systems [3], [12], [13].
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78.2 Fuzzy Relational Equations

Publications for FLSEs demonstrate long period of investigations for discovering
methods and procedures to solve them. The traditional linear algebra methods can-
not be used - operations in fuzzy algebras are different from classical addition and
multiplication. First the following max-min and min-max fuzzy linear systems of
equations were studied:

A•X = B (78.1)

A◦X = B (78.2)

where A= (ai j)m×n stands for the matrix of coefficients, X = (x j)n×1 – for the matrix
of unknowns, B = (bi)m×i is the right-hand side and the composition “•” for 78.1 is
max-min, while “◦” is min-max for 78.2.

The main problems (like in linear algebra) are: is the FLSEs consistent or not, and
if it is consistent – how to find its solution(s).

For 78.1 and 78.2 the first and most essential were Sanchez results [22]: formu-
las that permit to determine the potential maximal (minimal, resp.) solution in case
of max-min (min-max, resp.) composition law. Then in references attention was
paid on the complete solution set. Various methods were proposed to find solutions:
algebraic-logical approach, characteristic matrix, covering, binding variables, parti-
tions and irreducible paths, solution based matrix, etc. The main ideas in [10] – to
distinguish three categories of coefficients (greater, equal or less than right-hand side
term of the equation) and to order equations in FLSEs helped the algebraic-logical
approach from [8], [10] and provided the first software [10], [28]. This was also
the theoretical background for the next step with list operations: to propose general
approach, universal and exact method, algorithms and software for solving FLSEs in
some BL-algebras (in Gödel algebra, when the composition is max-min or min-max,
and in Goguen algebra in case of max-product composition): the potential extremal
solution of the FLSEs is used to obtain its consistency and to list the coefficients that
contribute to its solvability. Then list operations are used to drop redundant branches
and to reduce the complexity (the time complexity of the problem is exponential [2])
of the exhaustive search. If the system is inconsistent, we obtain the equations that
cannot be satisfied by potential extremal solution. Computational and memory com-
plexity are also analyzed. The software realization is available [27]. It is worth to
mention that up to now there does not exist other software for solving FLSEs. The
packages are created by Zl. Zahariev [27] and Y. Kyosev [28], both of them – PhD
students of the Technical University of Sofia.

78.3 Linear Dependency

It is almost obvious that establishing linear dependence or linear independence of
vectors in the above fuzzy algebras (Gödel, Goguen, etc.) means to solve FLSEs. We
investigate these problems with my PhD and Master Students in [14], [18], [19], [20].
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Fig. 78.1. PhD and Master Students I. Atanasov, D. Petrov, Zl. Zahariev, G. Pantaleeva 35th
International Conference Applications of Mathematics in Engineering and Economics, So-
zopol, Bulgaria, 2009

78.4 Linear Optimization Problem

Solving linear optimization problem under FLSEs constraint is provided by the so-
lution of FLSEs. The problem is to optimize the linear objective function

Z =
n

∑
j=1

c jx j, c j ∈ ℜ, 0 ≤ x j ≤ 1,1 ≤ j ≤ n, (78.3)

with traditional addition and multiplication, if c = (c1, . . . ,cn) is the cost vector, sub-
ject to the FLSEs as constraint. In [4], [14], [17], [20], [21] we present the solu-
tion when the constraint is FLSEs in various fuzzy algebras: max-min, min-max,
max-product, some BL-algebras. My PhD and Master students Zl. Zahariev and I.
Atanasov won the second students’ price on Fourth International IEEE Conference
on Intelligent Systems (2008) for optimization of linear objective function with fuzzy
relational constraint [21].

78.5 Finite Fuzzy Machines

In order to investigate FFMs, suitable methods and algorithms in fuzzy relation cal-
culus were developed for direct and for inverse problem resolution: direct problem
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Fig. 78.2. I.Atanasov, K. Peeva, J. Kazprzyk, Zl. Zahariev and G. Klir Fourth International
IEEE Conference on Intelligent Systems, Sept. 2008, Varna, Bulgaria

resolution [12], [26], [27] provides computing the behavior of FFMs; solving FLSEs
provides equivalence, reduction and minimization of FFMs. The most essential the-
oretical results [4], [16] include: computing the behavior matrix, establishing equiv-
alence of states and solving reduction and minimization problems (reduction of the
number of states, finding reduced machine, minimization with respect to the num-
ber of states, finding minimal machine, etc.). Software created by Zl. Zahariev (the
only one on the subject [26]) is proposed in [28] for computing behavior, for solving
equivalence, reduction and minimization problems. The results are valid for finite
max-min, min-max and max-product fuzzy machines.

78.6 Software

There exist some software packages for fuzziness [26], but only two for fuzzy
relation calculus [27] and [28]. They are created to solve direct and inverse prob-
lems in fuzzy relation calculus. The first package [28] deals mainly with max-
min composition and its applications, the second [27], named Fuzzy Calculus Core
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(or FC2ore) is focused on working with various fuzzy algebras. This package can
also solve related problems in fuzzy optimization and for finite fuzzy machines. In
both packages the software is developed in (and for) MATLAB environment and is
supposed to be used for solving concrete problems as well as to be used as a base of
other applications.

Fig. 78.3. Technical University of Sofia – Senate – the Vice Rector Prof. Dr. R. Pranchov
congratulates I. Atanasov and Zl Zahariev on their success

78.7 Other Applications

Other applications of FLSE are developed in team with students (bachelor, master,
PhD) and colleagues from the Technical University of Sofia in some artificial intel-
ligence areas – diagnosis, prediction and decision making in textile engineering and
chemistry [3], [12], [13], syntactic pattern recognition [7], [12].

78.8 Conclusions

Next investigations for all these problems will be on generalization of the results for
t-norms and t-conorms.
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Fuzzy Set Theory Utility for Database
and Information Systems

Frederick E. Petry

79.1 Introduction

Information systems are often thought of as encompassing database systems as well
as information retrieval systems [4]. Fuzzy set theory has had a significant impact in
all of these systems. For both areas various fuzzy set representations for imprecise
data have been utilized. Additionally fuzzy matching approaches have been applied
in database querying and information retrieval.

79.2 Development of Similarity – Based Fuzzy Databases

Our earliest approach to fuzzy databases involved the use of fuzzy similarity relations
in a database. It generalized the concept of null and multiple-valued domains where
the crisp relational database remained a special case [1]. An example of the values
for such a domain is a set of linguistic terms and the fuzzy model uses a similarity
relationship to allow the comparison of these linguistic terms.

The identity relation used in ordinary relational databases induces equivalence
classes (most frequently singleton sets) over a domain, D, which affects the results
of certain operations and the removal of redundant tuples. The identity relation is
replaced in the fuzzy similarity database by an explicitly declared similarity relation
of which the identity relation is a special case.

A key aspect of most fuzzy relational databases is that domain values need not
be atomic. A domain value, di, where i is the index of the attribute in the tuple, is
defined to be a subset of its domain base set, Di, that is, any member of the power
set P(Di). So a fuzzy relation R is a subset of the set cross product P(D1)×P(D2)×
·· · ×P(Dm). Membership in a specific relation, r, is determined by the underlying
semantics of the relation. A fuzzy tuple, t, is any member of both r and P(D1)×
P(D2)× ·· · × P(Dm). An arbitrary tuple is then of the form ti = [di1,di2, ...,dim]
where di j ⊆ D j.

An interpretation α = [a1,a2, . . . ,am] of a tuple ti = [di1,di2, ...,dim] is any value
assignment for the relation’s attributes such that a j ∈ di j for all j. Note that in an
ordinary relational database a tuple is equivalent to its interpretation.

A domain value, di j, consists of one or more elements from the domain base set,
D j. That is, di j ⊆ D j where i = 1, . . . ...,n, is the tuple index and j = 1,⊆,m, is the
domain index. Given a domain, D j, in a relation, the similarity threshold is defined
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to be: T hres(Di) = mini {min[s(x,y)]} ;x,y ∈ di j. Note that in a crisp database, the
cardinality of di j = 1 and s(x,x) = 1, so T hres(D j) = 1 for all j. A very significant
concept is that a minimal threshold value given a priori can be used to determine
which tuples may be combined by direct set union of the respective domain values.

In a crisp database, a tuple is redundant if it is exactly the same as another tu-
ple. Any operation over a nonfuzzy relation at least implicitly entails removing
redundant tuples. That is, any interpretation of the domains can be found in at
most one tuple in the relation. In a fuzzy database, a tuple is redundant if it can
be merged with another through the set union of corresponding domain values.
The merging of tuples, however, is subject to constraints on the similarity thresh-
olds. So tuples ti = [di1,di2, · · · ,dim] and tk = [dk1,dk2, · · · ...,dkm] are redundant if
Level(D j) ≤ min[s(x,y)],x,y ∈ di j ∪ dk j for j = 1, . . . ,m and a Level(D j) given a
priori.

An important property for this database is related to redundant tuples. The lack
of redundant tuples in an ordinary database is equivalent to the absence of multiple
occurrences of the same interpretation and so for any interpretation of the domains,
a fuzzy relation should contain at most one tuple with that interpretation. This is
significant as it avoids the possibility of creating anomalies during updating.

We were then able to prove that in our approach, if a fuzzy relation has no redun-
dant tuples then Ti ∩Tj = � if i �= j, where Ti is the set of possible interpretations
for tuple ti. The converse of this was also true, if no two tuples can be interpreted
in an identical manner, then there exist level values for the domains under which
no two tuples are redundant. Additionally the desirable property of the removal of
redundancy having only one outcome was also proven, i.e. a fuzzy relation derived
by merging redundant tuples is unique.

A related important early development for fuzzy similarity databases was our ap-
proach to information-theoretic characterizations which could measure the overall
uncertainty in an entire relation [2]. Fuzzy entropy may be measured as a function
of a domain value or as a function of a relation. Intuitively, the uncertainty of a do-
main value increases as its cardinality |di j | increases or when the similarity s j(x,y)
decreases. So if a domain value in a relational scheme, di j , consisting of a single
element represents exact information and multiple elements are a result of fuzziness,
then this uncertainty can be represented by entropy. Adapting the DeLuca and Ter-
mini entropy to a fuzzy database, the entropy Hfz(di j), for a domain value di j ⊆ D j

((x,y ∈ di j)) would be

Hfz(di j) =−∑
x,y
[s j(x,y)log2(s j(x,y))+ (1− s j(x,y))log2(1− s j(x,y))] (79.1)

Note that Hfz(di j) is directly proportional to |di j| and inversely proportional to
s j(x,y)> 0.5.

This definition could not be directly extended to tuples, so a Shannon probabilistic
entropy measure was needed for an entire tuple. Let αi be the number of possible
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interpretations for the ith tuple, ti, i.e., the cardinality of the cross product of the
domain values, |di1 × di2 ×·· ·× dim|. Viewing all interpretations as a priori equally
likely, the entropy of tuple ti could be defined as

Hpb(ti) =−
αi

∑
k=1

(1/αi)log2(1/αi) =−log2(αi)

For a nonfuzzy database, clearly αi = 1 and Hpb(ti) = 0.
If the choice of a tuple in a relation r is independent of the interpretation of the

tuple, the joint probabilistic entropy Hpb(r, t) of a relation can be expressed as

Hpb(r, t) =−
n

∑
i=1

αi

∑
k=1

(nαi)
−1log2[(nαi)

−1]

where there are n tuples.
Since the domains in a fuzzy database may be both ordinary and fuzzy sets, some

combined information estimate is desirable. One possible approach would be an
entropy combining Shannon information and fuzzy information.

Fig. 79.1. FUZZ-IEEE / IFES ’95 – March 1995 – Yokohama Japan From the left: Walter
Karplus and wife; back row – Fred Petry, Bob Marks, Jim Bezdek Photo courtesy Kaori
Yoshida, Kyushu Institute of Technology

79.3 Background of My Research

A 1974 survey paper in the journal Science which described fuzzy sets was my first
exposure to the ideas and concepts of fuzzy set theory. I retained a copy of this
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Fig. 79.2. IFSA’ 97 Prague - June 25-29, 1997 at University of Economics On far right are
Fred Petry and 2 of his graduate students: From the left: Y. Prada; Fred Petry (back to camera
– with backpack); Ashley Morris

paper in my files from the time I first read it when I was on the Ohio State faculty.
A few years later at the University of Alabama in Huntsville, I introduced several
possible fuzzy set applications for projects in a computer science course. This led
to the development of the similarity fuzzy database with Bill Buckles in the late
1970s. This work then first appeared in Fuzzy Sets and Systems in 1982 [1] and was
also presented at the first NAFIPS conference (1982) in Logan Utah. It was at this
NAFIPS conference that I first encountered Lotfi Zadeh and in discussions with him
was greatly encouraged to continue my research in this area.

Subsequently I participated in about 15 Nafips conferences and several IFSAs and
FUZZ-IEEEs (see Figures 79.1, 79.2. A particular notable opportunity occurred in
1984 when I was a participant in the NSF sponsored, Sino-American Symposium on
Fuzzy Methodology and its Applications, Beijing, China which had 9 participants
from the US including Zadeh, Yager, Bezdek, Ruspini and Paul Wang (see the pho-
tograph in figure 79.3). Other significant events related to fuzzy sets in which I was
involved include the time when I was General Chair of the 1996 Fuzz-IEEE and two
NAFIPS (1986 and 2002) all held in New Orleans, US.
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Fig. 79.3. Sino-American Symposium on Fuzzy Methodology and its Applications, Beijing,
China, July 1984. From the left: P. Wang, R. Yager, J. Bezdek, S. Bedrosian, L. McAllister,
D. Buell, F. Petry, L. Zadeh, E. Ruspini.

79.4 Other Research Areas and Future Directions

Other developments in the database area in which I was involved was the develop-
ment of an object-oriented fuzzy database [9] again using similarity relations for
representation of class hierarchies. An alternative database representation for impre-
cise data using a combination of fuzzy set and rough set theory [11] has also been an
on-going topic of interest of mine and several colleagues. Additionally early appli-
cations of fuzzy sets in genetic algorithms were developed for applications to both
image recognition [3] and information retrieval [7]. In the mid 1990s I became very
interested in the use of fuzzy sets to manage the complexities found in dealing with
spatial data [5], [8]. This area has complex issues that will continue in the future.
Another topic that also should continue to attract research interest is the application
of fuzzy sets in data mining [6], [10].

Acknowledgement. We would like to thank the Naval Research Laboratory’s Base
Program, Program Element No. 0602435N for sponsoring this research.
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Fuzzy Sets in Foundations of Quantum Mechanics

Jarosław Pykacz

80.1 Introduction

Three times in my scientific life I fell in love. For the first time, in the middle of the
Seventies of the XX Century the object of my love was (and still is, since real love
never ends) the theory of quantum logics. Quantum logics are mathematical struc-
tures that are encountered in the very foundations of quantum mechanics. Formally,
they are order-theoretic structures more general than Boolean algebras: orthomodu-
lar partially ordered sets or lattices, that are believed to represent properties of quan-
tum objects in the same way as Boolean algebras represent properties of objects that
conform to laws of classical physics.

The object of my second scientific love was fuzzy set theory. From the very
beginning of my acquaintance with this theory the very idea of a set the boundaries
of which are not sharp but vanish gradually was for me so visible and beautiful that
I could not resist. Specially, that very soon it occurred that the objects of my first
and second scientific love intertwine or, more precisely, the second one embraces the
first. But this needs more detailed explanation.

80.2 Mączyński’s Functions and Giles Weakly Disjoint Sets

Professor Maciej Mączyński, the supervisor of my PhD Thesis, proved in 1973 [1]
that any quantum logic possessing so called ordering set of probability measures
(only such quantum logics are interesting from the physical point of view!) can be
isomorphically represented as a family of [0,1]-valued functions L such that:

a) 0 (the null function) belongs to L,
b) if f belongs to L, then 1− f also belongs to L,
c) for any (finite or countable) sequence fi of functions that belong to L such that

fi + f j ≤ 1 (such functions were called in [1] pairwise orthogonal), pointwise
algebraic sum of these functions belongs to L,

and, conversely, any family of functions fulfilling conditions a) - c) is a quantum
logic in the traditional, order-theoretic sense.

Obviously, I was well acquainted with Mączyński’s Functional Representation
Theorem, so as soon as I learned the rudiments of fuzzy set theory I noticed that
Mączyński’s functions could be treated as membership functions of fuzzy sets and
that out of his three conditions that characterize any quantum logic in its functional
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form, the first two conditions could be in a straightforward way expressed in the
language of fuzzy set theory. Some time later I noticed that also a part of the third of
Mączyński’s conditions is easily expressible in the language of fuzzy sets: pairwise
orthogonality of functions defined by the condition fi + f j ≤ 1 is in fact equivalent
to the condition: fi ∩ f j = 0, where ∩ denotes intersection of fuzzy sets defined by
f ∩g = max( f +g−1,0) This intersection was called bold intersection by Giles [2]
who was the first to study it in the domain of fuzzy sets. Nowadays it is usually
called Łukasiewicz intersection. Since Giles called in [2] weakly disjoint two fuzzy
sets f and g such that f ∩g= 0, Mączyński’s conditions can be expressed as follows:

a’) the empty set belongs to L,
b’) if f belongs to L, then its fuzzy complement also belongs to L,
c’) for any (finite or countable) sequence of pairwise weakly disjoint sets that belong

to L, their pointwise algebraic sum also belongs to L.

As we can see, after such reformulation only the second part of the third condition
is not expressed by standard fuzzy set operations. Therefore, my clear aim was to
replace algebraic sum that appeared in the condition c’) by a “genuine” fuzzy set
operation. In the meantime, the results stated above were announced at the Second
International Fuzzy Systems Association Congress held in Tokyo in July 1987 [3].

80.3 Finally, Only Łukasiewicz Operations

Expressing quantum logic entirely in terms of “genuine” fuzzy set operations was not
an easy task and it took me a couple of years before I made it. Finally, it occurred that
it is De Morgan triple consisting of the standard fuzzy complement and Łukasiewicz
operations (union being defined via De Morgan law: f &g = ( f ′ ∩ g′)′ = min( f +
g,1)) that solves the problem. However, it occurred that in order to replace pointwise
algebraic sum appearing in the condition c’) by Łukasiewicz union, it was necessary
to add one more, fortunately very natural, condition. The result, announced for the
first time in [4], was as follows:

Any quantum logic with an ordering set of probability measures can be isomor-
phically represented as a family L of fuzzy sets such that:

a”) the empty set belongs to L,
b”) if f belongs to L, then its fuzzy complement also belongs to L,
c”) for any (finite or countable) sequence of pairwise weakly disjoint sets that belong

to L, their Łukasiewicz union also belongs to L.
d”) the empty set is the only set in L that is weakly disjoint with itself,

and, conversely, any family of fuzzy sets satisfying a”) - d”) is a quantum logic in the
traditional, order-theoretic sense. Let us note that the condition c”) is obviously ful-
filled in any family of crisp sets when fuzzy operations are degenerated to traditional
set-theoretic operations.
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80.4 Philosophical Consequences

Elements of quantum logics represent properties of studied physical systems (I shall
keep the word “quantum” by an abuse of language since these structures represent
also properties of classical physical systems). On the other hand in the developed
fuzzy set representation of quantum logics these elements are represented by fuzzy
subsets of a set of all pure states (phase space) of a studied physical system. If a
physical system obeys deterministic laws of classical physics, then, whatever is a
state of this system, it either possesses or does not possess each of its properties.
This implies that a subset of a phase space representing a property is a crisp set and
it occurs that a “quantum logic” of such a system is a Boolean algebra.

Quantum mechanics is not a deterministic theory. According to the nowadays
most popular interpretation its laws allow only to calculate probabilities of results of
future experiments, in particular experiments designed to check whether a quantum
system possesses or not any of its properties. In the developed fuzzy set representa-
tion these probabilities are reinterpreted as degrees to which a quantum system that
is in a specific pure state possesses all its properties even before they are measured.

It should be mentioned that according to the orthodox Copenhagen interpretation
of quantum mechanics one is not even allowed to say that a quantum system pos-
sesses or not any of its properties before a suitable experiment is carried out, which
gave rise to the famous statement: Unperformed experiments have no results [5]. Ac-
cording to the propounded “fuzzy interpretation” of quantum mechanics one should
replace this statement by a statement: Unperformed experiments have all their pos-
sible results, each of them to the degree defined by suitable quantum-mechanical
calculations.

It is nothing strange, of course, that according to the propounded interpretation
a quantum system can possess a property to the degree, say, a, and simultaneously
does not possess it to the degree 1− a. For example a photon that is in a state of
linear polarization oriented under the angle α to the direction of a polarization filter
possesses the property of being able to pass through the filter to the degree cos2α
and simultaneously it possesses the property of not being able to pass through the fil-
ter to the degree 1−cos2α = sin2α . This results in the fact that when an experiment
is repeated many times, the fraction cos2α of identically prepared photons passes
through the filter and the fraction sin2α does not.

80.5 Possible Mathematical Consequences

Another argument that the statement unperformed experiments have no results is
true, seems to come from mathematics. Already in 1964 J. S. Bell [6] proved
that an attempt to endow quantum objects with well-defined sharp properties be-
fore they are measured in some cases leads to numerical results not compatible with
quantum-mechanical calculations that were many times confirmed by experiments.
These results took form of the famous Bell inequalities which are in some cases
violated by quantum objects. Obviously, Bell’s considerations were based on the
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classical paradigm according to which a property of an object can be only either en-
tirely possessed or entirely not possessed by the object, and on utilizing the classical
Kolmogorovian probability calculus based on the Boolean algebra of crisp random
events. Therefore, basing these considerations on fuzzy set concepts, in particular
on the concept that an object can possess a property “partially”, should allow to an-
nihilate the apparent discrepancy between the “common sense” considerations and
experimental results.

Moreover, it is possible to show that Bell-type inequalities do not have to hold in
some versions of fuzzy probability calculus [7], which again indicates that the math-
ematical formalism of quantum mechanics should be rather based on fuzzy mathe-
matics than traditional crisp mathematics.

Another problem is the problem of the possibility of constructing phase-space rep-
resentation of quantum mechanics considered already by E. Wigner in 1932 [8] with
the aim of making quantum mechanics “more similar” to classical statistical mechan-
ics. Although Wigner succeeded in constructing such representation, his “pseudo-
probability distribution” is cursed with one unacceptable feature: it unavoidably
becomes negative in some regions of the phase space. In my opinion this might
be an artifact caused by unjustified use of traditional crisp mathematics in the area
where fuzzy mathematics is a proper tool.

80.6 Prospects for the Future

According to the results reported in the previous Sections of this note, fuzzy set
ideas, like the idea that a physical object can possess its properties only partially,
seem to be better suited for description of quantum objects than traditional, crisp
ones. I do hope that changing the language of description of quantum objects from
the traditional language based on crisp sets to the language based on fuzzy sets would
allow to avoid numerous paradoxes that plague quantum mechanics and will make
this theory more comprehensible.
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Real-Valued Realizations of Boolean Algebras
Are a Natural Frame for Consistent Fuzzy Logic

Dragan Radojevic

Fifty years ago, Lotfi Zadeh, as a visionary, realized a need for radically differ-
ent mathematics to deal effectively with the systems which were generally orders
of magnitude more complex than man-made systems [1]. Soon afterwards, he inge-
niously introduced the notion of gradation in the theory of fuzzy sets [2] and in fuzzy
logic in a wider sense. The use of fuzzy logic, based on the notion of gradation, first
of all, enables a drastic reduction of the complexity immanent to the classical mathe-
matical approaches in real problems. Thus, accordingly, fuzzy approaches are much
more feasible due to their lower complexity compared to the classical approaches.
Actually, a graded approach is much more descriptive than a classical two-valued
(black and white) approach. From my point of view, the main drawback of the con-
ventional fuzzy logics, in a wider sense, based on the truth functional principle, is
the fact that they are not within the Boolean framework and hence these approaches
are not Boolean consistent generalizations of the classical techniques.

81.1 Fuzzy Logic in a Boolean Framework

Realizing fuzzy logic in the Boolean framework means that all Boolean axioms and
theorems are valid in the general case and in the case of gradation. Since the corre-
sponding classical techniques are based on Boolean algebras, i.e. on their two-valued
realizations, a consistent generalization or a consistent fuzzy case should be based on
real-valued realizations of Boolean algebras. The real-valued realization of a finite
or atomic Boolean algebra [4, 5, 6] is briefly illustrated here.

The main problem of the conventional approaches is the fact that they are based
on the truth-functionality principle, which is taken from the two-valued logics. Ac-
cording to the Boolean algebraic point of view, this principle can only be adequate
or valid in the classical two-valued case. The reason is very simple: Boolean func-
tions, in the general case, have a vector nature, but in the classical case the attention
is paid only to one component (which is determined by the 0− 1 values of free vari-
ables). In the general case, such as the treatment of gradation, it is necessary to
include in computation more than one or even all components of the vector imma-
nent to the Boolean function. In order to illustrate the main idea, we use the Boolean
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function of two free variables x and y, from the famous Boole’s paper dated from
1848 [3]:

φ(x,y) = φ(1,1)xy+φ(1,0)x(1− y)+

+φ(0,1)(1− x)y+φ(0,0)(1− x)(1− y).
(81.1)

Actually, this equation is a special case of the Boolean polynomial [4]:

φ⊗(x,y) = φ(1,1)x⊗ y+φ(1,0)(x− x⊗ y)+

+φ(0,1)(y− x⊗ y)+φ(0,0)(1− x− y+ x⊗ y).
(81.2)

Free variables in the general case take the values from the unit interval x, y ∈ [0,1].
⊗ is a generalized product [4] or t-norm with the following property:

max(x+ y− 1,0)≤ x⊗ y ≤ min(x,y).

81.1.1 Boolean Polynomials

The real valued realization of a finite (atomic) Boolean algebra is based on Boolean
polynomials. Any Boolean function can be uniquely transformed into the corre-
sponding Boolean polynomial [6].

Example 1: Using equation 81.2 relations of equivalence, exclusive disjunction and
implication are, respectively:

a. φ(x,y) =de f x ⇔ y
φ(1,1) = 1; φ(1,0) = 0; φ(0,1) = 0; φ(0,0) = 1;

x ⇔ y = 1− x− y+ 2x⊗ y .

b. φ(x,y) =de f x∨y
φ(1,1) = 0; φ(1,0) = 1; φ(0,1) = 1; φ(0,0) = 0;

x∨y = x+ y− 2x⊗ y .

c. φ(x,y) =de f x ⇒ y
φ(1,1) = 1; φ(1,0) = 0; φ(0,1) = 1; φ(0,0) = 1;

x ⇒ y = 1− x+ x⊗ y .

The finite (atomic) Boolean algebra BA(Ω ) = P(P(Ω)), is generated by the set of
free variables Ω = {x1, . . .xn}, where: P(Ω) is a power set of Ω (a set of all subsets
of Ω ). The atomic elements of the analyzed Boolean algebra BA(Ω ) are [6]:
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α(S)({x1, . . .xn}) =
∧

xi∈S

xi

∧

x j∈Ω\S

x̄ j, S ∈ P(Ω). (81.3)

The Atomic Boolean Polynomials α⊗(S)(x1, . . .xn) uniquely correspond to the
atomic elements α(S)(x1, . . .xn) and they are defined by the following equations [6]:

α⊗(S)(x1, . . .xn) = ∑
C∈P(Ω\S)

(−1)|C| ⊗
xi∈C∪S

xi, S ∈ P(Ω). (81.4)

Example 2: The atomic Boolean polynomials for the Boolean algebra generated by
Ω = {x,y} are:

α⊗ ({x,y}) = x⊗ y;

α⊗ ({x}) = x− x⊗ y;

α⊗ ({y}) = y− x⊗ y;

α⊗ ({ }) = 1− x− y+ x⊗ y.

The values of the atomic polynomials in the real valued case are non-negative
α⊗(S)(x1, . . . ,xn) ∈ [0,1], S ∈ P(Ω), but their sum is identically equal to 1. In the
example described by equation 81.2 for x,y ∈ [0,1]:

x⊗ y+(x− x⊗ y)+(y− x⊗ y)+(1− x− y+ x⊗ y)≡ 1.

The classical two-valued case is the only special case which also satisfies this fun-
damental identity, since only the value of one atom is equal to 1 and all others are
identical to 0.

Any Boolean function, an element of the analyzed Boolean algebra, φ(x1, . . . ,
xn)∈ BA(Ω ) can be uniquely represented in the disjunctive canonical form (disjunc-
tion of relevant atomic elements):

φ(x1, . . . ,xn) =
∨

S∈P(Ω)

σφ (S)α(S)(x1, . . . ,xn). (81.5)

Where: σφ (S), (S ∈ P(Ω)) is a relation of the inclusion of the corresponding atom
α(S)(x1, . . . ,xn) in the analyzed Boolean function φ(x1, . . . ,xn), defined in the fol-
lowing way:

σφ (S) =de f φ(χS(xi) | i = 1, . . . ,n),

(

χS(xi) =de f

{

1, xi ∈ S

0, xi /∈ S

)

,(S ∈ P(Ω)).

(81.6)
Inclusion relationships define which atoms are included in the analyzed Boolean
function

σφ (S) =

{

1, α(S)(x1, . . . ,xn)⊂ φ(x1, . . . ,xn)

0, α(S)(x1, . . . ,xn) �⊂ φ(x1, . . . ,xn)
,(S ∈ P(Ω)). (81.7)

(values of the corresponding relation of the inclusion equal to 1) and which are not
included (values of the relation of the inclusion equal to 0).



562 81 Real-Valued Realizations of Boolean Algebras

A Boolean polynomial corresponds unequally to any Boolean function, as a figure
of 81.6:

φ⊗(x1, . . . ,xn) = ∑
S∈P(Ω)

σφ (S)α⊗(S)(x1, . . . ,xn), (x1, . . . ,xn ∈ [0,1]). (81.8)

A Boolean polynomial, equation 81.8, can be presented as a scalar product of two
vectors:

φ⊗(x1, . . . ,xn) =σσσφααα⊗(x1, . . . ,xn) , x1, . . . ,xn ∈ [0,1]). (81.9)

• σσσφ =
[

σφ (S) | S ∈ P(Ω)
]

is a structure of the analyzed Boolean function
φ(x1, . . . ,xn) ∈ BA(Ω ), i.e. a vector of relations of the inclusion of the atomic
functions in it.

• ααα⊗(x1, . . . ,xn) = [α(S)(x1, . . . ,xn) | S ∈ P(Ω)]T is a vector of the atomic polyno-
mials of the analyzed finite Boolean algebra BA(Ω )

Example 3: Structures of the analyzed Boolean functions from Example1 are

σσσ x⇔y = [1 0 0 1 ] , σσσ x∨y = [0 1 1 0 ] , σσσ x⇒y = [1 0 1 1 ] .

and vector of the atomic polynomials of two variables is:

ααα⊗(x1,x2) = [x1 ⊗ x2 x1 − x1 ⊗ x2 x2 − x1 ⊗ x2 1− x1 − x2 + x1 ⊗ x2]
T .

Structural Functionality Principle: The structure of any combined Boolean func-
tion can be calculated directly on the basis of its component structures using follow-
ing identities:

σσσφ∧ψ = σσσφ ∧σσσψ σσσφ∨ψ =σσσφ ∨σσσψ σσσ¬φ = ¬σσσ φ = 1−σφ

The famous truth functionality principle is a figure of the structural functionality on
the value level only in the case of a two-valued realization. In the general case (multi-
valued or real-valued realization), the truth functionality principle is not able to pre-
serve all Boolean algebraic properties. This is the reason why the fuzzy approaches
based on the truth functionality principle cannot live in the Boolean framework.

The structures of the Boolean functions preserve all Boolean algebraic laws [6]:

Monotone Laws

Associativity
σσσφ ∨ (σσσψ ∨σσσζ ) = (σσσφ ∨σσσψ )∨σσσζ ;

σσσφ ∧ (σσσψ ∧σσσζ ) = (σσσφ ∧σσσψ )∧σσσζ
(81.10)
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Commutativity

σσσφ∨ψ =σσσψ∨φ , σσσψ ∨σσσφ =σσσφ ∨σσσψ ;

σσσφ∧ψ =σσσψ∧φ , σσσψ ∧σσσφ =σσσφ ∧σσσψ
(81.11)

Distributivity
σσσφ ∧ (σσσψ ∨σσσζ ) = (σσσφ ∨σσσψ )∧ (σσσφ ∨σσσζ )

σσσφ ∨ (σσσψ ∧σσσζ ) = (σσσφ ∨σσσψ )∧ (σσσφ ∨σσσζ )
(81.12)

Identity

σσσφ ∧0 = 0; σσσφ ∧1 =σσσφ ; σσσφ ∨0 = σσσφ ; σσσφ ∨1 = 1 (81.13)

Idempotence
σσσφ ∨σσσφ =σσσ φ ; σσσφ ∧σσσφ =σσσφ (81.14)

Absorption

σσσφ ∧ (σσσφ ∨σσσζ ) = σσσφ ; σσσφ ∨ (σσσ φ ∧σσσζ ) =σσσφ (81.15)

Non-monotone Laws

Complementation
σσσφ ∨σσσ¬φ = 1; σσσφ ∧σσσ¬φ = 0. (81.16)

De Morgan laws

¬(σσσ φ ∧σσσψ ) = σσσ¬φ ∨σσσ¬ψ ; ¬(σσσ φ ∨σσσψ ) = σσσ¬φ ∧σσσ¬ψ . (81.17)

According to this approach, all Boolean algebraic laws are preserved in any valued
realization (from the classical two-valued until the real-valued realizations), inde-
pendently of the chosen generalized products.

Complementation or non-contradiction and excluded middle are also valid in the
general case! The classical definition of the excluded middle and non-contradiction
are correct only in the classical two-valued case. However, in the general case of the
real-valued realization or in the Boolean consistent fuzzy logic, one proposition can
simultaneously have both a property and its opposed property in such a way that the
sum of their intensities is identical to 1. In the Boolean consistent fuzzy set theory,
one element can have the analyzed property with some intensity and then it must
have a complementary property with the complementary intensity so that the sum
of their intensities is identical to 1. In the general case, non-contradiction means
that there is nothing in common between the analyzed property and its complemen-
tary property and the excluded middle means that anything that is not contained in
the analyzed property is contained in its complementary property. Actually, for an
arbitrary property, the excluded middle and the non-contradiction principles uniquely
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define its complementary property and consequently these laws are fundamental and
unavoidable for cognition in general.

This can be illustrated with the simple example of a glass of water. In the setting
of the classical two-valued case, the glass can only be either full or empty. Be-
ing empty is the complement of being full and vice-versa. In the general case, a
glass can simultaneously be partially full and then it is simultaneously empty with a
complementary intensity, so that the sum of the intensities of “full” and “empty” is
identical to 1. It is clear that, besides the fact that properties “empty” and “full” do
not have anything in common, they simultaneously apply to the same glass.

A Boolean function of the analyzed finite or atomic Boolean algebra either con-
tains relevant atoms or can be represented as a union of relevant atoms – disjunctive
canonical form. A complementary Boolean function contains all the atoms that are
not contained in the analyzed Boolean function – excluded middle –, and there is
no atom that is common to the analyzed Boolean function and to its complementary
function – non contradiction. In the classical case, only one atom has a value equal
to 1 and all others equal to 0 and, consequently, if an analyzed Boolean function has
a value 1 then its complementary function is equal to 0 or vice versa. In the general
case of the gradation, all atoms can have non-negative values but their sum is identi-
cal to 1. Since the intersection of the analyzed Boolean function and its complement
doesn’t have any atom, it is always identical to 0, and their union contains all atoms
and, consequently it is always identical to 1.

Introducing intensity of the realization – gradation of Boolean variables and func-
tions –,finite Boolean algebras are adequate for all real problems thanks to the
descriptiveness of the gradations. Any classical theory based on a finite Boolean
algebra using the fuzzy logic in the Boolean framework can be generalized immedi-
ately [6]. This is very important for many interesting applications which are logically
much more complex, such as: AI, mathematical cognition, theory of prototypes in
psychology, theory of general concepts, etc.

So, with real-valued realizations of Boolean algebras, it is immediately possible
to generalize all classical results based on two-valued realizations of finite Boolean
algebras, and besides Aristotle, in the Boolean framework there is enough space for
Zadeh’s ideas as well. [5].
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The Meeting with Fuzzy Mathematics as the Great
Adventure of My Life

Elisabeth Rakus-Andersson

82.1 Introduction

It has passed over twenty five years since I encountered fuzzy mathematics for the
first time but I can still feel this excitement, which I have experienced during that
meeting with an unknown mathematical domain. This was different from other clas-
sical mathematical fields but I immediately felt that the concept of imprecision would
be expected to have a fine future. Since that day in 1987, when I held in my hand the
first available paper on the medical applications [9] of fuzzy relations it was obvious
for me that I could devote my time to investigate the topic much deeper.

I made an acquaintance with the creator of fuzzy mathematics, Professor Lotfi
Zadeh, in Budapest in 1999. I expected to be confronted with a self-confident and
outstanding scientist who was not going to talk to unknown people. Instead I saw a
very nice and modest man speaking to everybody in a very friendly manner, espe-
cially to new members of the fuzzy society. His behavior awoke in me sympathy and
gratitude for his kindness and I wanted to meet him again.

The idea of editing a book, based on our memories and experiences concerning
fuzzy mathematics, is really great. Let me thus tell you about my own scientific
carrier in which fuzzy mathematics has played a dominant role.

82.2 The Promising Start with Applications of Fuzzy Systems

During the 80ties of the twentieth century I was employed as a consult of mathemat-
ics in the Medical Academy of Łódź in Poland. Mostly I used statistics to help
medi-cal researchers to make proper conclusions assisting their clinical data sam-
ples. After some years I found this occupation to be mechanic and dull; therefore
I wanted to learn something more, which could inspire me to do another kind of
medical applica-tions. The problem of selecting the most probable diagnosis was
promoted to be solved at that time. Accidentally, I came into contact with a mathe-
matician who had just returned from an international conference. He gave me a paper
proposing the solution of the diagnostic choice by means of a strange theory called
fuzzy set theory. After reading this dissertation I had the impression that I should
extend my knowledge about this new subject. It was not so easy since the access
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to international literature was rather poor. We could buy books [1], [3] written in
Polish. Apart from these two basic encyclopedias some conference papers and pub-
lications from Fuzzy Sets and Systems were delivered to us by friendly colleagues.
The mathematician who showed me the paper on medical applications, my younger
colleague and I constituted a group of enthusiasts who wanted to know more about
fuzzy set theory. We studied the papers available during our leisure to explain their
contents to each other. In that way we were continually extending the number of new
definitions concerning fuzzy sets [10], fuzzy relations [1], [3], fuzzy numbers [2] and
other concepts to make the first application trials. In 1988 I managed to reveal the
effects of a composition of fuzzy relations, adapted by me to the medical diagnosis
purpose, during some seminars at the Medical Academy. The expectations to di-
agnose a patient in the controversial way proposed by fuzzy set theory were huge,
thus the leading professor in parasitological sciences provided me with clinical data
to check her primarily stated diagnoses. By means of fuzzy relations her diagnoses
were confirmed in the very substantial percent. This made me proud of yielding the
efficient solution of the diagnostic task to the medical staff. Diagnosis estimation
together with evaluation of medicine level action was included in the main part of
my doctoral dissertation in fuzzy sets, which was the first one composed in the field
of fuzziness in my home city Łódź in 1991.

82.3 Further Developments of Applicable Fuzzy Set Theory

In spite of the growing interest in applications of fuzzy set theory in medicine in
Po-land I had to interrupt my scientific investigations between 1993 and 1995 for
the sake of personal reasons. I married a Swedish citizen and moved to Sweden.
At the short time after my arrival to another country I got employments at Swedish
universi-ties as a lecturer in mathematics. Mostly I taught the classical mathematical
subjects to young students but I was still keen on studying the advances in fuzzy set
theory. It was not easy to combine a lot of teaching with research. Nevertheless, I
sent new papers to international conferences during the 90ties. The access to internet
publica-tions was already essentially expanded that resulted in getting more informa-
tion about the latest progresses. The number of my papers published by well known
international sources grew rapidly. This fact allowed me obtaining the Associate
Professor competence in 2001. In Sweden fuzzy set theory was not so very popular
at the end of the twentieth century and I, as each pioneer, had to arrange seminars
to explain the main ideas of fuzzy sets treated by some researchers as other kinds of
probability distributions. I did not bother about these attitudes and I prepared new
papers to solve the classification of internet protocols [5] and the choice of the most
efficacious medicines made by fuzzy decision making [5]. I also found a space of
verbal fuzzy numbers [4] and the algorithm of generating the least eigen fuzzy set
of a fuzzy matrix [5]. At that time about 2004 my students noticed new applicable



82.4 The Latest Progress 569

possibilities of fuzzy logic (they called fuzzy mathematics in this way). This interest
inspired me in preparing the material to the course in fuzzy mathematics and its
applications, which was held for the first time in 2005. The course gathered many
adherents of the theory among Master of Science students and doctoral students.

To keep the contact with the fuzzy society members I participated in each inter-
national conference of the substantial importance. I met plenty of nice and engaged
people who became my friends. We have kept warm contacts during many years
by cooperating in the arrangement of special sessions and common invited lectures.
Even the exchange of important information about new conferences and other events
let me be updated in the fuzzy subject in my new country. I remember the very kind
and friendly atmosphere among the conference participants when attending lecture
sessions or organizing common excursions to sightsee new places (see Figure 82.1).

Each international meeting furnished me with a new power to continue my re-
search and encouraged me in my efforts to fight for spreading the achievements of
fuzzy set theory among my university colleagues and students. I was supported in
my engagement by funds granted by the Royal Swedish Academy of Sciences.

82.4 The Latest Progress

At last the success came in 2007. After collecting my research results in the book [5]
I could successfully apply for the professor position. This gave me more freedom in
planning my research. Together with doctoral students I developed my own version
of fuzzy games to prove them in medicine and technical sciences [7]. The new
concept of fuzzy probability of continuous events was found by me in 2010 [8]. From
2008 up to now I have been granted by the county hospital in Blekinge, Sweden, for
testing fuzzy techniques to find new approaches to the estimation of survival length
and the surgery decision. I have proved control systems and different hybrids of
fuzzy systems combined with neural networks, evolutionary algorithms and immune
methods to give answers to questions posed by physicians when setting the clinical
data as input data. A large number of publications have followed the achieved results
(see all publications on http://www.bth.se/tek/amn/era.nsf).

Together with other prominent professors I edited a book in decision making sys-
tems in 2009 [6].

Another course in computational intelligence and fuzzy systems was established
at my university by me in 2010.

Even if I have been rewarded with prestigious prizes for my scientific progress I
am mostly satisfied with giving a chance to young people to do research in fuzzy set
theory. Many students have chosen fuzzy mathematics topics to discuss their genuine
applications in Master of Science and doctoral theses. Together with the students I
am still presenting the results of current research at international conferences (see
Figure 82.2).
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Fig. 82.1. The ICAICS 2002 Conference in Zakopane, Poland. From the left: Janusz
Kacprzyk, Lotfi Zadeh, Elisabeth Rakus-Andersson, Eulalia Szmidt.
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Fig. 82.2. The presentation of results at The Bioinformatics 2011 Conference, Rome, Italy.
From the left: Hang Zettervall, Elisabeth Rakus-Andersson.

82.5 Conclusions

After going through the events that have been important for the development of my
achievement range I should come to the main conclusion. Namely, I could not have
done such broad and successful research without meeting fuzzy set theory. It was my
life chance to engage myself in these individual studies to learn more and more from
accessible sources. Since I am fond of applications then I can help other researchers
to find solutions of problems unsolvable by methods of classical mathematics. The
representatives of new generations help me in this effort, which means that someone
will continue my work to create more models in fuzzy set theory.

Who provided me and others with such essential ability to expand Professor
Zadeh’s concepts? Professor Zadeh himself stimulated us to be involved in his new
ideas which he, as a very skilful teacher, portrayed to us during conference plenary
speeches. I can only express my highest respect and gratitude for this researcher who
gave us fuzzy set theory.
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83

Uncertainty and Knowledge Repositories in the Web
of Data

Marek Z. Reformat

83.1 Uncertainty and Web Information

Millions of people relay on the Internet to do their work, to discover new things, to
learn what is happening around them, or to find entertainment for themselves.

The utilization of the web should provoke such questions as: how much can we
relay on the web to discover new things? how many sources of data are trustwor-
thy? how much imprecision and incorrectness is out there? All this becomes very
relevant when we take into consideration the fact that the users’ involvement in
creating and shaping the web is growing. Tweets, posts, blogs, e-mails, pieces of
text, and documents are examples of the users’ direct, spontaneous, and uncontrolled
contributions.

There is no doubt that uncertainty is an integral component of information and
knowledge. As stated by Lotfi Zadeh, many concepts we deal with are without
precise definitions, or with unknown facts, missing or inaccurate data [13]. The
Internet is not different – the users should be aware that imprecision and ambigu-
ity are present on the web. The web is a large uncensored network and anyone
can contribute to it by providing truthful or false information. In general, infor-
mation acquired from websites is equipped with some degree of uncertainty. We
can talk about two contributors to uncertainty: trust in data sources, and quality of
information.

Trust in Data Sources. Not every data source on the web is equally trustworthy.
There are a number of research activities that are focused on assigning trust val-
ues to different sources, as well as methods dedicated to aggregation and inference
of trust values. The following trust strategies have been proposed to rationale about
trust: optimistic, pessimistic, centralized, trust investigation, and trust transitivity [6].
Each of these approaches deals with uncertainty and tries to discover aspects of the
environment that are relevant to reduce uncertainty.

Quality of Information. The quality of information relates to the amount of missing
or ambiguous information. The quality-based information uncertainty can be divided
into three categories [5, p. 1] non-specificity (imprecision) – manifested when two or
more pieces of information are left unspecified, this may be the result of generaliza-
tion, simplification, imprecision, or simply time constraints imposed on information
collecting processes; 2) fuzziness (vagueness) – characterized by the lack of definite
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or sharp distinction among pieces of information and may result from vagueness or
any variety of indecisiveness. In some cases, especially for linguistic-based knowl-
edge representation, terms and facts can be ambiguous due to differences in meaning
as perceived by authors of the information; and 3) strife or discord – characterized by
disagreement in a selection process among pieces of information, this may happen
due to dissonance, incongruity, discrepancy, and conflict.

This indicate not only overwhelming existence of uncertainty, but also points to
positive influence the uncertainty could and should play in building knowledge. In
this context, the importance of uncertainty can be expressed via the following facts:

• uncertainty triggers learning: a state of ambiguity forces an individual to search
for more information and facts to resolve the vagueness;

• uncertainty enables adaptability: a constant state of not being sure means that
an individual has to be prepared for a possible change of his/her opinion, in such
a case it is easier to accept a change;

• uncertainty prevents misjudgment: processes of induction and deduction of
new facts should have the ability to deal with situations which are not clearly true
or false, it is not desirable to simplify everything to those two values;

• uncertainty leads to more accurate models of reality: the real world is not
just black and white, it is full of gray areas, i.e., vagueness and ambiguity – any
models real phenomena should be able to accommodate uncertainty.

This short paper provides a brief description of one of possible views on uncertainty
as a key component influencing searching for, processing, analysis, and assimilation
of web information for the purpose of building users’ personal knowledge reposito-
ries. It gives a glimpse on a new web paradigm called Web of Data, and postulates
that uncertainty and methods of handling it, developed around fuzziness and possibil-
ity theory [11] [12], will thrive in creating knowledge repositories in the environment
of the Web of Data.

83.2 The Web of Data

An ultimate contribution of the Semantic Web [4] is utilization of ontology as the
knowledge representation form. Resource Description Framework (RDF) [3] is in-
troduced as an underlying framework for using ontology in the web environment.
The RDF data model treats each piece of information as a triple: subject-property-
object [3].

In the last few years, the RDF as a data representation format has become a very
popular way of representing data on the web [7]. Over time, the term Linked Data
(LD), or more general the Web of Data, has been used to describe the network of data
sources using RDF triples as information representation [1]. The power of this new
web paradigm, in contrary to hypertext web, is that entities from different sources
and locations are linked to other related entities on the web. This enables one to view
the web as a single global data space [1]. In other words, hypertext web connects
documents in a naive way – links point to documents. However, in the Web of Data
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single information items are connected – links point to other pieces of information
stored at different physical locations.

As stated, pieces of information are expressed as RDFs, i.e., triples: subject, prop-
erty, and object, where each one of these entities is represented by a single URI. This
means a process of finding a specific piece of information on the Web of Data is fa-
cilitated with the help of interpretable URIs, and there are no restrictions regarding
their locations.

83.3 Uncertainty as Necessary Component of Learning and
Exploration

In the current web, documents or web pages are treated as units of information.
This is very different in the Web of Data. The granularity of information units is
much smaller – the smallest piece of information is a triple. Multiple triples are
“connected” via mutual entities, i.e., a single entity can be a part of many triples. All
triples constitute a structure built from stars of triples: each star is a bunch of triples
with a common entity, and describing this entity. In other words, all triples are linked
together, and the information in the Web of Data is composed of interconnected stars.

The fact that we are able to deal with individual triples creates an opportunity to
develop different, and hopefully better, ways for searching and collecting informa-
tion. The most important benefit of this information representation is the ability to
closely “relate” single pieces of information with their levels of uncertainty, and use
this uncertainty as a key factor influencing processes of looking for new information,
and assimilating it.

The idea presented here is based on the application of multiple agents continu-
ously crawling the web and looking for new information on the user’s behalf. As
a result, a user’s personal knowledge repository is built based on the information
triples found by the agents. The repository reflects the user’s state of knowledge. In
order to truly represent the user’s level of understanding of collected information, the
agents have to be equipped with methods suitable for:

• determining a degree of novelty of information found on the web when compared
with the information already known; done via application of similarity evaluation
methods based on possibility theory [2];

• integrating a new information with the user’s personal knowledge repository, and
estimating confidence in the user’s information after the integration; done via
fuzzy- and possibility-based aggregation mechanisms applied to stars of triples;

• assessing levels of compatibility between information in the user’s repository and
the web contents; done with mechanisms of fuzziness and possibility theory used
for comparison of stars of triples representing descriptions of entities and frequen-
cies of their occurrence.

The personal knowledge repository, created and maintained in such a way, contains
the information and facts experienced by the user – her agents – on the web, together
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with measures of its quality. We can assert that the respiratory reflects the user’s
perception of trust and her confidence in the information found on the web.

For knowledge building processes, uncertainty can be also linked with novelty of
information – new information introduces and modifies uncertainty. In this context,
we can distinguish three scenarios how different processes of assimilating web infor-
mation contribute to the user’s knowledge repository and how they influence levels
of uncertainty.

• Updating existing knowledge – change of confidence in facts already existing in
the user’s repository; uncertainty associated with correctness of known informa-
tion is updated; pieces of information used for this update have to be evaluated
and their uncertainty determined.

• Modifying existing knowledge – change of facts existing in the repository; the ac-
ceptance of changes requires knowledge of confidence in assimilated information;
a range of modifications depend on estimated levels of uncertainty.

• Increasing existing knowledge – addition of new facts to the repository; assim-
ilation procedures capable of handling uncertainty; for example, regulations are
required to determine up to what degree of uncertainty new pieces of information
can be accepted.

All this indicates that we can see uncertainty as a driving force behind finding infor-
mation on the Web of Data, and creating knowledge based on this information. In
such a context, knowledge is not just a collection of information pieces (triples), but
an integrated network of such pieces and levels of confidence in their correctness.
Construction of such a repository would not be possible without recognizing and a
proper handling of uncertainty associated with individual triples.

The capability to “recognize” uncertainty at such low levels of granularity has
also a significant impact on the way a new information is searched for. For example,
once we determine the levels of truthfulness associated with individual information
triples, we can initiate a verification process that involves sending agents to search
for pieces of evidence proving or disproving facts contained in the repository.

Once the repository is built, it can constitute a base for information analysis and
learning processes. The structure of the repository – a network of interconnected
triples – allows us to treat stars of triples as definitions of entities. This means that
definitions of entities, and concepts represented by these entities, can be expressed
as fuzzy sets, like in [10]. Different fuzzy sets operations can be used for comparing
these definitions, and constructing fuzzy relations based on them. Further, we can
use operations of fuzzy relations to infer about their characteristics.

The interconnected entities and their descriptions can be seen as a environment
suitable for application of participatory learning mechanisms [8] [9]. If we treat
information triples as propositions and the uncertainty levels associated with as
weights, the approximate reasoning inference mechanism can be applied to generate
new facts to ensure consistency of the repository, and its compatibility with newly
found information.
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83.4 Opportunity and Benefits

The usefulness of the concept of fuzziness and uncertainty in the process of creating
personal knowledge repositories based on pieces of information found on the Web of
Data is obvious.

The utilization of fuzzy sets allows for bringing mechanisms of fuzzy set opera-
tions. For example, they can be used to: 1) construct fuzzy sets based on information
triples found on the Web of Data that represent different concepts; 2) determine de-
grees of belonging of information pieces to constructed fuzzy sets (concepts); 3)
determine relations between multiple concepts; and 4) make projections at different
dimensions to investigate different views of concepts. In other words, thanks to the
application of fuzzy-based technologies we will be able to better explore multi-value
and multidimensional nature of information collected on the web.

It is anticipated that the results of applications of techniques and methods related
to fuzziness and possibility theory will allow for building human-centric systems
able to harvest knowledge from the web and analyze it, and to decrease our burden
of dealing with unreliable and faulted information.

Fig. 83.1. Fltr: Asli Celikyilmaz, Lotfi Zadeh, Farley Nobre and Marek Reformat at the 2012
Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2012,
Berkeley, CA, August 6-8, 2012
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The Influence of Lotfi Zadeh on Informatik I in
Dortmund

Bernd Reusch

“Around 1970 I met Lotfi for the first time — young, innocent, and as com-
pletely unknown as I was. When I reached his office, there was a note for
me, ‘Sorry, forgot my birthday. Please meet me at (some Bay-Shore restau-
rant)’. Meeting him at his birthday party I was even more impressed by him
than by the amount of shrimps I was able to swallow. He has always been
that way, open to new ideas and people, helpful in the extreme, and a hu-
man in the best sense of the word. Thank you Lotfi, and thank you Fay for
maintaining him so well.”

I wrote this for publication in [1]! Very recently, I have sent Lotfi a fax related to the
BISC-discussion on “causality”. Here is the central part of it: “From a philosophical
point of view we cannot be sure, that something like ‘causality’ or even ‘natural law’
exists at all (Kant, Kritik der reinen Vernunft). All we have are observations or better
statements on observations. In some case we have ‘observation A was made earlier
than observation B”.

Of course, over thousands of years, we have a huge amount of observations (but
at any time “only” finitely many). It seems human to wish to “organize” this set of
observations (better: subsets) more or less elegantly.

The ancient Babylonians recorded their observations concerning sun, moon and
stars and discovered regularities in their “time-series”. They were able to predict
situations concerning sun, moon and stars more accurately than the followers of
Greek science for more than 2000 years! With no assumption of natural laws.

What is “correct”: do we live in a helio-centric or geo-centric world? In both
theories we are able to describe our world sufficiently precise. We choose the
helio-centric version only because it is simpler (Okham’s razor). “Natural laws”
may change: recently some scientists claim to have discovered particles that move
quicker then light! This will have impact on basic natural laws (although I do not
see how they solve the problem of “simultaneousness” which is basic to Einstein’s
“Gedanken-experiment”). What I want to say, that ‘causality’, ‘natural laws’ etc. are
not true or false. They are only more or less useful.”

It is my “strong conjecture” that Lotfi did not like this. He is an engineer! And a
very very good one as he proved in the pre-fuzzy-age. Please forgive me.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 579–583.
DOI: 10.1007/978-3-642-35644-5_84 © Springer-Verlag Berlin Heidelberg 2013



580 84 The Influence of Lotfi Zadeh on Informatik I in Dortmund

Well, what happened between 1970 and 2012? I left GMD (Gesellschaft für Math-
ematik und Datenverarbeitung) in 1972 to co-found the Department of Computer
Science in Dortmund and take responsibility for Chair Informatik I.

This chair was (and still is) one of two theory-oriented groups in the department.
We worked on Boolean Algebras, Finite state machines, Petri-nets, many-valued log-
ics etc. But from the beginning we were engaged in projects to apply this knowledge
to CAD of Micro-electronics together with institutions all over Europe and also with
Industry.

At this time, Computer Science was not well established in Germany. We had to
work hard to find our own definition, did quite well and still have some aspects in
our curriculum that are unique (at least in Germany).

Therefore I forgot almost completely what I had learned about fuzzy-logic, until
for some forgotten reason, Prof. Gisbert Dittrich introduced a course on this topic in
1990 (or 1989?). Dittrich was a member of Chair I as well as Prof. Claudio Moraga,
one of the editors of this volume. Later, after his retirement in East Berlin Prof.
Helmut Thiele also joined the group. In the best tradition of the chair, this group
worked successful in theory, but also in application of fuzzy logic. These activities
are well documented in [2]. Emphasis there is layed on theory (see references from
[2]), but the authors also state:

“Scientific activities of the Dortmund researchers in the fuzzy logic area were
realized in the framework of several projects and applied in cooperation with some
industry units. We mention only some of these application activities. They can be
roughly splitted in to the following areas:

1. Expert Systems Using Fuzzy Logic Rules
(in cooperation with the mechanical engineering departments of the Universities
of Dortmund and Bochum, as well as with the chemical engineering department
of the University of Dortmund).
• Applications in the design of composite materials
• Special composites made of metal and ceramics

2. Optimization of Fuzzy Expert Systems
• Modeling of 1D and2D functions using fuzzy controllers
• mprovement of the rule set
• Evolutionary concepts for the improvement of the performance

3. Fuzzy Logic in Industrial Image Processing
(in cooperation with industry partners Mannesmann, Demag)
• Development of operators for image processing tasks
• Evolutionary optimization of digital filter kernels
• Development of a new way of describing colors: Fuzzy color processing
• Estimation of 3D features using stereo camera systems
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4. Evolution Strategies for the Optimization of Fuzzy Systems
(in cooperation with Mannesmann, Degussa)
• Optimization of the fuzzy rules
• Optimization of membership functions
• Applications in industry

5. Fuzzy Logic and Robot Soccer
• Embedded in the FIRA robot systems
• Development of robots
• Fuzzy logic for the control of the robots and the estimation of the current sit-

uation on the playfield

6. Fuzzy Logic and Medicine
(in cooperation with the University of Essen and University of Witten/Herdecke
and University of Bochum)
• Fuzzy logic based descriptions of human tissues
• Fuzzy image segmentation
• Fuzzy based diagnosis”

After Dittrich’s course we came up with a Conference Series: The Dortmund Fuzzy
Days. This was just 21 years after I met Lotfi for the first time ! There have been 9
Dortmund Fuzzy Days until 2006, the year of my retirement. The next quote is taken
from my introduction 2006.

“For the 9th time since 1991 we invite researchers to participate in the Dort-
mund Fuzzy-Days. I am very glad that our conference has established itself
as an international forum for the discussion of new results in the field of
Computational Intelligence. Again all papers had to undergo a thorough re-
view: each one was judged by five referees to guarantee a solid quality of
the programme.
From the beginning of the fuzzy-Days on Lotfi A. Zadeh felt associated
with the conference. I would like to express my gratitude for his encour-
agement and support and I am particularly glad that he once again delivers
a keynote speech. Much to my pleasure Ewa Orlowska, Radko Mesiar to-
gether with Vilém Novák, Ernesto Damiani together with Tharam Dillon
and Nik Kasabov have also agreed to present new results of their work as
keynote speakers.
Many thanks go to my friends Janusz Kacprzyk and Enric Trillas who to-
gether with Lotfi Zadeh again served as honorary chairmen.”

I may add that invited sessions were presented by Mario Fedrizzi, Krassimir T.
Atanassow, Ernesto Damiani, Enric Trillas, Igor Aizenberg, Arkady Borisov, Janos,



582 84 The Influence of Lotfi Zadeh on Informatik I in Dortmund

Fig. 84.1. From left to right: Prof. Dr. Konrad Zuse (First Dr. h. c. at our department) Prof.
Dr. Bernd Reusch (Chair Computer Science I), Prof. Dr. Lotfi A. Zadeh and Dr. Helmut
Kohls (at that time CEO of Sparkasse Dortmund) during the evening banquet in the festival
room of the Sparkasse Dortmund

Fodor, Irina Perfilieva, Vilém Novák. Together with the people serving at the pro-
gramme committee this almost reads like “who-is-who in fuzzy logic”.

I confess to be proud of this series of conferences. All proceedings, except the
first one, were published by Springer. And Lotfi is the only person (except locals
like me) who attended all 9 conferences!

Usually, my friends attending were invited to our house one evening. These meet-
ings were very nice on the personal level, but also very stimulating on a scientific
level. Lotfi obviously always played the central role. I want to stress, that these
conference as well as the successful working group in Dortmund would never have
happened without the support and stimulating interest of Lotfi. Thank you for all you
did to us!

Lotfi’s commitment to Dortmund was officially recognized in 1993 when we made
him one of still only three “Dr. h. c.” of our department. H. c. really means “honoris
causis”, not “humoris causis” as in some other cases.

P.S.: This text was typed by Mrs. Lippe, my former secretary. “Dear Ulrike” as
Lotfi usually addresses her.
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Fig. 84.2. Prof. Dr. Lotfi A. Zadeh and Prof. Dr. P. Marwedel (at that time Chairman of the
Computer Science Department at the University of Dortmund) during the award
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A Tribute to Lotfi Zadeh with Personal Recollections

John T. (Terry) Rickard, Janet Aisbett, and Greg Gibbon

Isaac Newton once wrote to Robert Hooke that (with slight paraphrasing) “If we
have seen further, it is by standing on the shoulders of Giants.” Life has an interest-
ing way of presenting opportunities for collaboration between us lesser mortals who
are catalyzed by such giants. Certainly that has been our experience in our own col-
laborations over the past several years, with the “giant” in this case being Professor
Lotfi Zadeh. Lotfi’s pervasive inquiries into the nature of human reasoning, and his
assemblage of a sophisticated mathematical apparatus enabling humble machines to
mimic this marvel of cognition, however imperfectly, stand as one of the towering
intellectual accomplishments of the past century. In this tribute, we are pleased to re-
count some of our experiences that have benefitted from a larger view of the horizon
provided by standing upon Lotfi’s broad shoulders.

Terry was introduced to fuzzy logic early on as a graduate student in the early ’70s
by attending a seminar given by Lotfi at UC San Diego. At this time, the elegant and
beautiful theories of probability were the reigning paradigm for dealing with uncer-
tainties of all types. The fundamental notion of the impreciseness of knowledge, as
contrasted to probabilistic uncertainty, had yet to gain much of a foothold. It was
only later, when Terry began grappling with information processing problems above
and beyond classical “signal plus noise” that the true power of fuzzy logic became
apparent. This led him to the adoption of a fuzzy perspective on the world of engi-
neering that has informed his approach to many real-world problems to this day.

In 1999 Professor Peter Gardenförs, a cognitive scientist from the Lund University
Philosophy Department, published a book called Conceptual Spaces: The Geometry
of Thought. He represented concepts in terms of properties defined on geometric do-
mains, and he stressed the importance of similarity in reasoning. The book roamed
over cognitive science, linguistics and psychology but did not present a sound math-
ematical formulation on which to base an implementation.

Terry was by that time a Senior Fellow for Lockheed Martin, concerned with data
fusion applications, and had been working with Ron Yager on fuzzy graph similarity
measures (IEEE Transactions on Fuzzy Systems, vol. 15, 2007). Gardenförs’ work
interested him for its emphasis on similarity and for its acknowledgement that not
only individual properties but their co-occurrence could distinguish a concept.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 585–589.
DOI: 10.1007/978-3-642-35644-5_85 © Springer-Verlag Berlin Heidelberg 2013
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Terry therefore represented concepts as matrices of fuzzy properties and their co-
occurrences, and recast observations as pseudo-concepts to enable their comparison
in classification tasks.

Meanwhile, Janet Aisbett and Greg Gibbon, information technology academics
with pure mathematics backgrounds, had independently begun formalising the the-
ory of conceptual spaces while on sabbatical with Peter Gardenförs. Their formalism
modelled concepts and properties as functions on metric spaces, and provided a pro-
cess model for tasks such as classification. Three years later Janet and Greg spent
some months with a cognitive science group at the University of Indiana in which
they reformulated their work in terms of the basic units of cognition: memory, work-
ing memory, attention and probes (the input) (Cognitive Systems Research, vol. 6,
2005). In this representation, memories were functions from a bounded subspace of
the plane into the unit interval – i.e. fuzzy sets. A neat aspect of the theory was that
concepts and properties had the same form.

Fig. 85.1. Concepts and Similarity – Terry at right (photos from the Bahamas and Papua New
Guinea)

Through a serendipitous coincidence, Terry came across Janet and Greg’s formal-
ism of conceptual spaces as metric spaces, and after making contact via email they
began collaborating on a blending of their theories. Properties and concepts were
defined as fuzzy sets, and similarity was defined using subsethood (Information Sci-
ences, vol. 177, 2007). Working with real world data soon motivated the extension
of the theory to fuzzy concepts, observations and properties. This opened up some of
the intricacies of type-2 and higher order modelling to the three researchers, includ-
ing computations of type-2 and higher order subsethood, unions and intersections.
They investigated type-2 fuzzy sets in terms of Computing with Words and in terms
of classification of fuzzy observations. They showed that any type-2 fuzzy set can be
constructed using what Bellman and Zadeh called fuzzy compatibility of a reference
(an observation) with a linguistic value (a class) (Fuzzy Sets and Systems, vol. 163,
2010).
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The researchers next turned to the aggregation functions used to draw together
a set of observations into a complex ranking or categorisation task. Following
work of Jozo Dujmović, they investigated fuzzy weighted power means. Terry ap-
plied this in a new online service known as Discovery Investing Scoreboard (DIS)
(www.discoveryboard.com), which represents the first commercial application of
Computing With Words. The problem addressed by this system is the lack of
standardized means for investment evaluation of companies that have discovered
resource assets or technologies having large future potential, but which lack the rev-
enues and/or trading history to enable the traditional forms of fundamental or tech-
nical analysis used by the financial community. DIS uses type-2 fuzzy scoring of the
10 factors illustrated in the figure below, along with their importance and designation
as mandatory or merely desirable, to compile a composite score for a company on a
0-10 scale using weighted power means and conjunctive partial absorption operators.
Apart from this online service, Terry has also applied type-2 fuzzy set representations
and manipulations in a wide range of consulting work, from mining to finance (see
Figure 85.2).

On the theoretical side, Janet and Terry are looking at other forms of aggregation.
Recently, they have derived new classes of aggregation operators based upon the
Tsallis q-exponential function, which exhibit thresholding behaviors mimicking an
important trait of human reasoning. As well, they believe type-2 fuzzy sets have an
interesting role in cognitive modelling, particularly in representing working memory
(material directly accessible to cognitive processes).

It thus goes without saying that we owe a great debt to Lofti Zadeh for being
the giant on whose shoulders we have stood. In our view, his most important and
inspired contribution is the Extension Principle, which enables the propagation of
fuzzy membership values through arbitrarily complex mathematical operations. Per-
haps his only legacy with which we’ve sometimes struggled has been the occasion-
ally cumbersome fuzzy set notation, which we believe raises an unnecessary barrier
between fuzzy practitioners and a broader scientific community. In an effort to lower
this barrier, Terry and Janet published a translation of this notation into the more
concise and widespread language of functions and spaces (IEEE Transactions on
Fuzzy Systems, vol. 18, 2010). However, this by no means detracts from the sheer
genius of Lotfi’s creation. He embodies the most exceptional qualities of a scholar
and philosopher, and we shall always be in his debt. His diminutive physical shoul-
ders belie his broad and powerful intellectual shoulders, upon which we and so many
of his colleagues stand.
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Fig. 85.2. Fuzzy evaluation factors of the Discovery Investing Scoreboard
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Fig. 85.3. Aggregation – Janet above, Terry below with Lotfi and Ron Yager (photos from the
memorable Zadeh tribute dinner at the World Conference on Soft Computing, 2011)
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Neither Concepts Nor Lotfi Zadeh are Fuzzy Sets

Eleanor Rosch

In the 1960s and ’70s at the University of California, Berkeley, two people at oppo-
site ends of the campus were doing work that challenged applications of classical set
theory. In the Department of Computer Science, Lotfi Zadeh noticed that phenom-
ena in the world do not necessarily come in the all-or-none packages required by
classical sets (for example, a man may be tall to a degree), and he set out to devise
a mathematical calculus by which matters of degree could be encompassed within
a variant of classical logic. He gave it the name fuzzy logic. In the Department of
Psychology, Eleanor Rosch (who happens to be myself) was doing empirical psy-
chological research on the nature of concepts and categorization, matters that, from
the time of the Greeks, had been assumed to have the basic form of classical sets.
The prevailing belief was that humans categorized by identifying necessary and suf-
ficient conditions for an item to belong to a category; once such criteria were met,
all items that belonged to the category were equivalent with respect to membership;
and the meaning of conceptual combinations could be explained by the operations of
classical logic. My research indicated that nothing about this model was true either
for the representation, processing or use of natural language concepts and catego-
rizations. One of the ways in which people differ from the model is that they see
category membership as a matter of degree (e.g. apple is judged a better fruit than
plum, blueberry, etc.), a finding that is psychologically important because degree of
membership predicts the other psychological operations on categories. It is also a
finding that might, on the surface, appear to unite this research with fuzzy logic.

The work of Zadeh and Rosch developed independently; in fact, both were un-
aware of each other’s existence until the advent of an interdisciplinary cognitive sci-
ence program. Even then, despite developing a friendship, neither of us viewed the
other’s work as a basis for collaborative thought, and the two fields continued to
develop independently. By now, fuzzy logic is a multifaceted international area of
mathematics with many technological, but not psychological, applications. And the
study of concepts and categorization has become a thriving field in psychology and
cognitive science that contains, among other types of research, many rival mathemat-
ical models, but none of them explicitly based on fuzzy logic. Recently, however, a
movement has arisen to seriously consider concepts in the context of fuzzy logic [1].
With a gentle bow to Lotfi Zadeh, I would like to indicate some of the issues that arise
with respect to the possible rapprochement between these two very different fields
of study. (For a more detailed and inclusive exposition of these matters, see [10].)

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 591–596.
DOI: 10.1007/978-3-642-35644-5_86 © Springer-Verlag Berlin Heidelberg 2013
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Are concepts logically fuzzy? To answer “yes,” requires two conditions:

1. That degree of membership in conceptual categories be numerically and psycho-
logically meaningful, and

2. That it be possible to perform deductive operations on those degrees of mem-
bership – that is, once one has defined the appropriate form of the input and of
operations (such as intersection or union) on that input, the conclusion should fol-
low without having to introduce extra material from knowledge about the world
into each case.

In short, concepts need to be fuzzy sets on which one can perform the mathematical
operations of fuzzy logic. Are they?

After close to 40 years of research (my own and that of many others), the first
condition seems clearly to be met. Judgments of goodness of category membership
are readily scalable, and those scales correlate with all the major dependent variables
used in psychological experiments: speed of processing, ease and speed of learn-
ing, expectation, mental representation, associative strength, probability judgments,
inference, judgments of conceptual similarity and distance, and a host of language
measures. Of course, if one explicitly asks for formal definitions, people will strug-
gle to give the necessary and sufficient criteria that constitute a classical definition
such as we have in dictionaries, but this is not a problem for fuzzy set theory since it
includes classical sets as crisp sets.

What of the second condition: can the deductive operations of fuzzy logic be
applied to concepts? Here is where we run into trouble. Concepts don’t occur in
isolation but in a context that includes both the circumstances in which the con-
ceiver finds himself and everything in his knowledge base: his internal dictionary,
encyclopedia, sensory knowledge, repertoire of habits and skills, emotions, beliefs,
autobiographical memories, and everything else comprising the vast pastiche of the
human mind. Given all of this, can we lay out rules for logical operators by which
the meaning and/or goodness of example rating of a conceptual combination can be
deduced from the meaning etc. of the two or more concepts being combined? Here
are some of the difficulties that arise (note that most of the research has been done
on the operation of intersection):

1. Even classical operations don’t work with conceptual intersection. If you have
classically defined groups of material objects, say balls and blocks, each of which
is red or green, then the set of red balls will be unproblematically the logical in-
tersection of balls and red things. But now let’s assume that all of the concepts
in the following example are classical – i.e. that each one in itself has necessary
and sufficient criteria for membership, its boundaries are clear cut, and all of its
members are equally good with respect to membership. Is there anything in the
meaning of the concepts themselves, each taken separately, that will tell us that:
“corporate stationery is used by the corporation and has the corporate logo on it;
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a corporate account is an account that is charged to the corporation; a corporate
car is owned by a corporation and used for business travel; a corporate building
is where the business is carried out; a corporate lawyer is one who works for a
corporation; and a corporate donor is a donor who is a corporation [7, p. 450].” It
is not the fuzziness of these concepts that make it impossible for us to know the
meaning of the combinations from each word alone; it is that we have to know a
great deal more than just each word.

2. Emergent attributes: World knowledge of many sorts enters ad hoc. Emergent at-
tributes are those in which a conjoined concept has attributes possessed by neither
of the concepts separately, and yet these are what determine meaning and good-
ness of example. Here are a few examples (you can think of what a person needs
to know for each to be the case): The attribute long is neither a property of peas
nor of unshelled things, but is given as an attribute of unshelled peas [6]. Talks is
not listed as an attribute for either pet or bird, but shows up for pet bird [3]. And
a typewriter table, unlike either of its constituents, must be of a proper height for
typing and must have side space on which to put one’s papers; how else would
one know this except from a functional relationship with typing? The point of all
this is that a deductive logic of any kind is not designed to incorporate memories
or creative ideas from outside the system brought in ad hoc for each individual
case in order to yield the proper results, yet this is what is needed to produce
emergent properties in conjoined concepts.

3. Non-logical and non-consistent results for intersections, unions, negation and
transitivity. A clock is furniture, Big Ben is a clock, but Big Ben is not furniture.
From experiments using ingeniously worded phrases, Hampton (see summaries
in [4], [5]) provides much evidence for the ad hoc intrusion of world knowledge
and associations into reasoning about fuzzy concepts. The result is that sub-
jects’ endorse mutually inconsistent or non-logical statements. Furthermore, the
boundaries of concepts, i.e. what is or is not judged as a member, can vary with
context of use. It’s easy to see the reasoning behind any given result after the
fact, but hard to see how operations of a deductive fuzzy logic could encompass
all such vagaries in a useful way.

4. Models of the intersection of fuzzy concepts need more than degree of member-
ship to produce their results. Guppy is a poor example of pets and a poor example
of fish, but a very good example of pet fish [8], [9].1 Since such anomalies were
pointed out there have been a number of attempts to model the goodness of ex-
ample of conceptual combinations (see [5] and [7] Chapter 12 for summaries).
In each model, there is a good deal of machinery besides goodness of exam-
ple ratings needed to characterize the two concepts of the combination (such as
schemas in which dimensions of variation and attributes interact). But filling
the slots in the schemas and prescribing how the machinery is to function are

1 Paper [8] was actually a peculiarly misguided attack on fuzzy logic and, through that, on
the relevance of graded structure and prototypes to concepts (see [2] and [10] for critiques),
but it did launch a stream of research papers on conceptual combination.
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dependent upon world knowledge, much of it related to the interaction of the two
concepts so that it must be evoked uniquely for each conceptual pair. And even
with all this “cheating,” none of the models covers more than a limited number
of cases.

86.1 Conclusions

Where have we gotten? Research to date has shown that concepts do fulfill the
criteria of fuzzy sets, but that the deductive operations of fuzzy logic (or of classical
logic) are insufficient for explaining or generating conceptual combinations. The
conceptual system appears to need to be creatively porous in each instance to what
humans know, perceive, and do in order to understand and perform operations on
concepts.

Such a conclusion leads to deeper questions. Is it reasonable or is it misleading
to call concepts fuzzy sets if only degrees of membership apply to them, but they
cannot be deductively manipulated by the operations of fuzzy logic? After all, the
word fuzzy in common language has negative connotations, and if applied to con-
cepts without the full context of fuzzy logic, it could easily lose its mathematical
reference and become an epithet. My inclination is not to use the word loosely.
More importantly, the question arises as to whether there is anything further that the
mathematics of fuzziness has to offer the psychology of concepts? Through its al-
liance with statistics, psychology is already reasonably sophisticated about scaling
and other operations on distributions of numbers, and research on degree of member-
ship in concepts began and has been proceeding without need to refer to the math-
ematical work in fuzzy logic. Can this work be further enriched by technical input
from the mathematics of fuzzy sets?

Perhaps, but probably not in the way psychologists might immediately think, i.e.
not by enabling yet more mathematical models. Mathematical models as such have
a poor track record in psychology. Try the following thought experiment: think of
as many important theories and/or impactful experiments in psychology as you can,
and then ask how many of them were the product of a mathematical model. The
usual answer is none. Such models do not seem to have the appropriate level of
abstraction (not too much, not too little) or the connection to psychological reality
that is generative of new knowledge in the field.

What fuzzy logic has been good at is helping solve particular technological prob-
lems in cases that involve graded rather than all-or-none structures. But these are
not the kind of questions that most psychologists have asked about concepts. Rather,
ever since the fall of the classical view, the quest seems to have been for a gen-
eral theory of concepts that will replace the alleged virtues of necessary and suf-
ficient conditions. That is, researchers have demanded that any factor proposed in
the functioning of concepts provide a stable and lasting meaning for concepts be-
yond the flux of experience and usage, a meaning that will furthermore account for
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conceptual combinations. (For example, these were the demands made of my own
theory of prototypes even though it was explicitly designed as counter to the require-
ments of the classical view.) But neither fuzzy logic nor anything else will provide
this kind of account because it is the wrong question to ask and the wrong demand to
make (see [10] for the full argument as to why). However fuzzy logic may be able to
help at another level entirely, that of modeling and control for very specific situations
of conceptual meaning or change.

There’s more. Paradoxically the real reason why there may yet be fruitful inter-
action between fuzzy logic and the psychology of concepts is the same reason for its
present failure at conceptual combinations. That reason is the vast interactivity and
creativity of the human mind. And that is why the mind of Lotfi Zadeh who initiated
fuzzy logic is greater than and cannot be bound by the structures of fuzzy sets and
fuzzy logic. With all respect and good wishes to Lotfi.

Fig. 86.1. Eleanor Rosch during the discussion after her plenary talk for the conference
NAFIPS 2012 in the Shattuck Hotel in Berkeley, California. In the audience on this picture
among others, fltr: Karin Hutflötz, Thomas Whalen, Sergio Guadarrama, José Angel Olivas,
Daniel Sanchez, Enric Trillas, Lotfi Zadeh, Shahnaz Shahbazova, Nick Pizzi and others.
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On the Meaning of Fuzziness

Enrique H. Ruspini

Abstract. Interpretation of the basic structures of fuzzy logic, notably that of pos-
sibility distribution, is an essential requirement to clarify their value as an important
tool in automated reasoning. Despite its evident value, as shown by the multiplicity
and importance of its applications, much of the discussion to this day about such
notions as “possibility” or the “fuzzy paradigm” typically relies on illustrative exam-
ples while failing to provide clarifying insights into important conceptual matters. In
this paper we review an interpretation of the basic notions of fuzzy logic in terms of
metric and utilitarian notions such as similarity and utility that clarifies major seman-
tic issues while establishing links to existing formal frameworks such as the notion
of possible worlds and the theory of metric spaces. We remark that these ideas were
present, albeit in an implicit fashion, in the pioneering applications of fuzzy logic to
system control. We review also recent extensions of similarity-based interpretations
to fuzzy evidence.

87.1 Introduction

Ever since Zadeh’s seminal paper [35] the theory of fuzzy sets and its subsequent
extensions to approximate-reasoning methods [6, 37, 39, 38] there has been consid-
erable skepticism about the nature of its basic concepts and structures, their possible
relations to probabilistic approaches, and, ultimately, the need for such a formalism.
As pointed out by Zadeh [40] many of these misgivings could be traced to the com-
mon, pejorative, usage of the word "fuzzy" to denote poorly conceived concepts or
ideas. As originally formulated, however, basic notions such as fuzzy sets, possi-
bility distributions, and fuzzy inferential methods were precisely defined making the
formalism clear and unambiguous.

In other cases, reluctance can be traced to misgivings about the potential prob-
abilistic nature of fuzzy logic. The related claims and statements claims are often
made without the benefit of any argument, let alone one that is cogent and con-
vincing. In the few cases where arguments have been advanced they have relied on
axiomatic frameworks purported to show that probability theory is the only frame-
work capable of representing uncertainty [3,20]. As has been pointed out by several
authors [7,17,16] these formalisms are either non-rigorous or are based on question-
able assumptions regarding the requirements that must be satisfied by any approach
to the representation of uncertainty. In yet another twist of flawed logical argumenta-
tion it has been suggested, and purportedly proved, that fuzzy logics are formalisms

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 597–609.
DOI: 10.1007/978-3-642-35644-5_87 © Springer-Verlag Berlin Heidelberg 2013
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that are inconsistent with the possibility of multiple degrees of truth beyond those
of classical logic [9]. Once again these arguments were quickly found to be based
on incorrect assumptions about the nature of fuzzy logic [8,25]. Other skeptics have
also argued against the formalism on philosophical grounds [15] or, more often, on
brief, harsh, assertions where the argument of the critic is usually one of authority
rather than reason (as by D. Scott [15, p. 230]).

It is not the purpose of this paper, however, to review or categorize criticisms of
fuzzy logic.1 Rather, we argue that much of these criticisms stems from lack of un-
derstanding about the conceptual relations between the basic structures of fuzzy logic
and fundamental and philosophical bases of other scientific frameworks. As pointed
out by Bunge [1] one of the major traits distinguishing science from pseudoscience
is the inability of the latter to integrate its epistemological frameworks and domains
with those of established scientific knowledge. In this work we aim to discuss this
essential connection while, at the same time, remarking on the essentially different
nature of probabilistic and possibilistic approaches to the representation and manip-
ulation of uncertainty. In this regard, however, it is not our intention to deprecate
the former to the advantage of the latter but, rather, to provide the bases to under-
stand that both are valid approaches with their own distinguishing characteristics and
advantages.

Our discussion will be based on an interpretation of the basic structures of fuzzy
logic on the basis of the notion of similarity.2 This interpretation, formulated initially
in 1991 [24], has been expanded since then to encompass various formalizations of
the notion of approximate truth [14, 13].

This characterization is closely related to the notion of truthlikeness [21, 22]. In-
formally, the idea of likeness-to-truth approaches is to provide frameworks that are
capable of measuring the degree to which statements, possibly false, differ from
that describing the true state of the world. Stating, for example, that the popula-
tion of Japan is 120,000,000 people is “less false” than stating that it is 50,000,000.
In the context of practical reasoning applications we formally link the utilization
of approximate-reasoning statements in inferential arguments to the potential errors
that may arise in terms of incorrect conclusions, or equivalently, to the utility of
approximately-true premises in the derivation of inferential conclusions

The format of this paper precludes a more thorough discussion of the semantic
models underlying this view of fuzzy concepts and structures. Interested readers may
consult our previous work for further details [24,23]. We shall endeavor, nonetheless,
to emphasize the formal mathematical and logical correctness of the approach while
noting its relevance to the solution of reasoning problems as found in numerous
applications throughout science. It is our contention that the ability to utilize these
approximate, yet valid, inferential formalisms is the reason for the success of fuzzy-
logic schemes as effective tools to solve these problems.

1 A more thorough review of these issues can be found in the work of Entemann [10].
2 For other interpretations and for a discussion of their relations, see, for example, Ruspini

and Esteva [27].
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Fig. 87.1. Fltr: Hamid Berenji, Elie Sanchez, Piero Bonissone, Enrique Ruspini, Lotfi Zadeh
and two other participants of the Second IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE’93), San Francisco, California, 1993

87.2 Similarities and Preferences in a Logical Framework

Our point of departure is the well known concept of similarity relation, introduced
by Zadeh [36] as a generalization of the classical notion of equivalence relation. This
notion is important from various conceptual and practical perspectives.

First, the notion of similarity or, indistinguishability, relation is directly related to
that of dissimilarity or distance. From a mathematical perspective, similarities are
the complement of metrics defined in a universe of discourse X, which take values
between 0 and 1, with 1 corresponding to maximum similarity, or zero distance, and
0 corresponding to maximum dissimilarity or distance. From a logical perspective
these relations provide a valuable tool to model the extent to which statements that
are true in some situation are valid in another.

A key feature of similarity relations is that of extended transitivity, which gener-
alizes the corresponding property of classical equivalence relations:

S(x,y)≥ S(x,z) ∗�S(z,y) , for all x,y,z in X

where ∗� is a continuous triangular norm, or t-norm [19, 30]. Its importance lies on
its ability to generalize the transitivity property of classical inferential schemes

(A → B ,B →C)→ (A →C) .
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This desirable attribute has no similar counterpart in probabilistic schemes where
knowledge that the conditional probabilities P(B|A) and P(C|B) have high values
does not permit, in general, make any conclusion about the value of the conditional
probability P(C|A).

Similarity relations are also important from a conceptual viewpoint because of
their relations to the utilitarian notion of preference [33]. Informally, these concep-
tual relations provide a mechanism to define two situations as similar if they are
equally preferable from various perspectives that gauge their acceptability as solu-
tions of a problem (for example as desirable control actions that steer a dynamical
system into suitable behaviors). If, on the other hand, some action, situation, or out-
come is significantly preferred to another from some relevant perspective, then these
actions are not similar. Preference functions, typically modeled as a fuzzy order rela-
tions, are themselves closely related to the notion of utility functions: mappings from
the universe of discourse X into the [0,1] interval of the real line that assign to each
element of X a number indicating its degree of desirability as a state of the system
being modeled or that of actions influencing its behavior. Modeling of outcomes of
control actions as generalized, elastic, constraints described by utility functions has,
in fact, been the bases for the success of the application of fuzzy logic to practical
problems since the early development of fuzzy-control systems [34].

Finally, it is important to note that similarity-based reasoning is a major cognitive
tool that permits to conclude, by analogy, the applicability of knowledge about cer-
tain situations in similar contexts [32, 31]. Similarity-based interpretations of fuzzy
logic provide this form of reasoning, generally thought as not being a correct inferen-
tial method, a validity based on proper understanding and quantification of the extent
to which knowledge applicable in some case can be extended to another.

87.3 The Similarity Model

The similarity-based interpretation of fuzzy logic is based on the consideration of
similarity relations defined in a logical framework inspired by the notion of possible
world as introduced by Carnap [2] to relate logic and probability theory. In our
discussion, the framework conceived by Carnap in the context of first-order predicate
logic will be simplified by confining ourselves to propositional logic.

87.3.1 The Carnapian Universe

The central structures of the similarity-based interpretation of fuzzy logic are a lan-
guage, or collection of sentences L representing assertions about the state of a sys-
tem and a nonempty set U representing possible states, situations, or behaviors of
that system.

Sentences in the language L are formed by combining, as is customary in propo-
sitional logic frameworks, by combining letters of an alphabet A with the logical
operators ¬,∨,∧,→, and ↔, according to the usual rules.
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Elements of the set U , called the Carnapian universe, or universe for short, are
called possible worlds. We will assume that there exists a non-empty, conventional
subset E of the universe U , called the evidential set. This subset models the possible
states of the system that are consistent with available knowledge or information about
it. If no information exists, then E= U , that is, any possible world may correspond,
for all we know, to the actual state of the system being modeled.

We will also assume that there exists a function, called a valuation, that assigns
one and only one of the truth values T (true) or F (false) to the every possible world
w and every sentence φ in the language L . Abusing the language we will, in the
rest of this paper, use the same notation to denote a subset of possible worlds and the
proposition that is true in all worlds in that subset.

We will augment this framework by addition of a similarity relation S in the uni-
verse U that assigns a number between 0 and 1 to every pair of possible worlds w
and w′.

This function satisfies the axioms:

1. S(w,w′) = 1 , if and only if w = w′,
2. S(w,w′) = S(w′,w) , for all w,w′ in U ,
3. S(w,w′)≥ S(w,w′′) ∗�S(w′′,w′) , for all w,w′,w′′ in U ,

where ∗� is a continuous t-norm.
The similarity function S induces a metric structure in the universe U since its

complement δ = 1− S is a distance satisfying the generalized triangular inequality:

δ (w,w′)≤ δ (w,w′′)⊕ δ (w′′,w′) ,

for all w,w′,w′′ in U , and where ⊕ is a continuous triangular comorm.3

The similarity relation S induces also a graded modal logic structure in U since
members of the family of crisp relations

Rα(w,w
′) if and only if S(w,w′)≥ α ,

where 0 ≤ α ≤ 1, are accessibility relations in the sense of modal logic [18].
In our scheme, the accessibility relations Rα model the degree to which what is

true in a world w is true in another world w′ in the same sense that, statements like
“If q then p is possible,” and “If q then p is necessary,” are interpreted in modal
logic. Having now available, however, an infinite family of accessibility relations we
can describe relations of inclusions between metric neighborhoods of subsets of the
universe U .

Similarity and metric structures are often found and formally characterized in a
variety of fields, notably in pattern recognition, information science, psychology,
and sociology. The ability to characterize the extent to which statements about one
object, situation, or event can be said to apply to another is central to any form of
analogical reasoning.

3 When ⊕ ≡ + this inequality is the triangular inequality satisfied by classical distance
functions.
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In applications of fuzzy logic, however, these structures have been usually defined
in an implicit, indirect, fashion through previous definition of utility structures. In
early, pioneering, applications of fuzzy control [34], for example, the adequacy of
control actions was measured employing a number of performance indexes (comfort,
safety, etc.) that ranked the relative desirability of certain actions. Similar ideas have
also been applied to the control of robots [28] and teams of robots [29]. The underly-
ing notion behind this characterization of similarity is that, whenever the utilities of
two different actions are nearly or equally useful from every significant respect, then
these actions are nearly or completely similar. The work of Valverde [33] exempli-
fies successful efforts to relate the notions of utility (as a fuzzy order) and similarity
relations. Today, however, a generalized theory of similarities paralleling that of
probability theory with its conditional, joint, and marginal distributions is yet to be
formulated.

87.3.2 Probability and Possibility

Introduction of the Carnapian universe as a set of the possible worlds that corre-
spond to possible states of a system permits to make a clearer distinction between
the probabilistic and possibility to the treatment of uncertainty.

This uncertainty arises when a particular proposition, or hypothesis, H cannot be
logically inferred to be true from the knowledge provided by the evidence E .

From the perspective of the universe of discourse U this is equivalent to say
that the subsets corresponding to the propositions H ∧ E and ¬H ∧ E are both
nonempty.

Probabilistic methods endeavor to quantify this state of affairs by quantifying the
relations between a set measure P of those sets:4

P(H ∧E ) : P(¬H ∧E ) ,

or, equivalently, by the values of the related conditional probabilities P(H |E ) and
P(¬H |E ). The characterization thus provided is one of relative weight of sets from
set measures related to the measured or perceived likelihood of the corresponding
events.

By contrast possibilistic structures, as interpreted by similarity-based interpre-
tations, seek to determine how far a hypothesis H should be generalized, or
“stretched,” to encompass the evidence E . The resulting framework generalizes the
transitive structures of classical logic by generalizing the conventional relation of set
inclusion to that of inclusion between their metric neighborhoods.

87.4 Similarities between Subsets

The generalization of the notion of similarity as a relation between pairs of points
in the universe U to a relation between subsets of that universe is based on the

4 Once again, we abuse the language by using the same notation to denote subsets of U and
their corresponding propositions
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well-known method to extend a distance defined on a set to the Hausdorff distance
between subsets of that set [4]. In our case, we will apply the same idea to similarity
relations, which as discussed before, are the dual of distance measures taking values
between 0 and 1. The extended measure permits to measure how a subset q of U
must be enlarged to encompass another set p.

87.4.1 Degree of Implication

The first step in defining similarities between subsets of U , along the lines suggested
by the Hausdorff metric, is to characterize the extent to which a set is included in a
metric neighborhood of another by means of the notion of degree of implication.
Definition: The degree of implication of p by q is the binary relation in the power

set P(U ), that is,
I : P(U )×P(U ) �−→ [0,1] ,

given by the expression

I(p | q) = inf
w′∈q

sup
w∈p

S(w,w′) .

The degree of implication is a ∗�-transitive relation if the similarity relation S is.
Furthermore this relation has a number of properties that are important to explain the
major inferential operation of fuzzy logic: the generalized modus ponens:

1. I(p | q)≥ 0, for all subsets p and q of U ,

2. I(p | q) = 1, if and only if q ⊆ p,

3. I(p | q)≥ I(p | r) ∗�I(r | q), for all subsets p,q and r of U ,

4. I(p | q) = sup
r⊆U

(

I(p | r) ∗�I(r | q)
)

, for all subsets p and q of U .

From the degree of implication it is possible to define a ∗�-transitive similarity func-
tion Ŝ in P(U ) that extends the similarity relation S in U :

Ŝ(p,q) = min
(

I(p | q),I(q | p)
)

.

87.4.2 The Generalized Modus Ponens

The degree of implication permits to characterize the basic possibilistic structures
of fuzzy logic and the inferential rule known as the generalized modus ponens or
compositional rule of inference of Zadeh [39].

This characterization is based on the formal definition of the dual concepts of
necessity and possibility distributions. A necessity distribution NE (p) is a lower
bound of the similarity between any world in the evidential set E and some possible
world where p is true.
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Definition: If E is a nonempty subset of U , then a function NE (·), defined over
subsets of the universe U , is called an necessity distribution for E if

NE (p)≤ I(p | E ) .

Intuitively, the necessity distribution value NE (p) is a lower bound of how similar
is every world in the evidential set E from some world in p, or, in other words, the
extent to which p must be true in any world in E .

Possibility distributions, based a dual notion of the degree of implication called
the degree of consistence, are upper bounds of the similarities between any evidential
world in E and any world in p. Intuitively, a possibility distribution is an upper bound
of the similarity between some world in E to some world in p, or, in other words, the
extent to which p may be true in E .

In what follows, we will limit, for reasons of space, our discussion to necessity
distributions omitting the dual characterization of possibility distributions. Interested
readers may found the full development and associated proofs in our original work
[24].

The notion of conditional independence is defined by means of the pseudoinverse
function associated with a triangular norm ∗� [33]:

Definition: If ∗� is a triangular norm, its pseudoinverse � is the function defined
over pairs of numbers in the unit interval of the real line by the expression a� b =
sup

{

c : b ∗�c ≤ a
}

.

A conditional necessity function measures the proximity of all worlds in the evi-
dential set E to some world in p relative to their proximity to worlds that satisfy a
conditioning proposition q.

Definition: Let E be a nonempty subset of U . A function NE

(·|·)mapping pairs of
subsets of U into [0,1] is called a conditional necessity distribution for E if

NE

(

p|q)≤ inf
w∈E

[

I(p | w)� I(q | w)
]

,

for any subsets p and q.
We are in a position now to state the fundamental inferential operation of fuzzy

logic in terms of unconditioned and conditional necessity distributions. This result,
which generalizes [12,11] the original formulation of Ruspini [24], makes use of the
notion of partition of U :

Definition (Partition of U ): If P = {pi in U , i in I} is a collection of subsets of
possible worlds that satisfy ∪I pi = U , then P is called a partition of U .

Employing this definition we may now state the generalized modus ponens in
terms of two non-empty subsets E and F of the universe U .

Theorem: (Generalized Modus Ponens for Necessity Distributions) : Let {pi, i in I}
be a partition of U and let E and F be nonempty subsets of U . Then, it is

sup
I

[

NF

(

q|pi
) ∗�NE (pi)

]≤ NE∩F (q) .
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This result is the formal validation of the following inferential scheme:

If w is in E , then w is necessarily similar to p,
If w is in F , then

if w is necessarily similar to p,
then it is necessarily similar to q,

If w is in E ∩F , then w is necessarily similar to q.

Note that this result includes two evidential sources E and F . The evidential set E
models available factual evidence while the set F represents conditional knowledge
(i.e., the rules of a knowledge-based system). The result estimates the extent to which
a statement is true if both evidential sources are true.

87.4.3 Extensions to Fuzzy Evidence

Our developments so far have been based on the study the similarity relations be-
tween classical, or crisp, subsets of the universe U . Recently [26] previous results
have been extended to similarity relations between fuzzy subsets of U .

In what follows we shall assume that the universe U is finite. We will denote by
F (U ) the fuzzy power set of U , that is, the set of all fuzzy subsets of U .

Definition: The fuzzy degree of implication induced by a ∗�-transitive similarity re-
lation S is the function IF mapping pairs (p,q) of members of the fuzzy power set
F (U ) into numbers in the [0,1] interval of the real line given by the expression:

IF (p | q) = min
w′

max
w

[

S(w,w′) ∗�(p(w)� q(w′)
) ]

,

where the scope of the max and min operators are all the elements w,w′ in U , re-
spectively.

The fuzzy degree of implication IF generalizes the degree of implication I, that
is, if p and q are crisp sets, then IF (p | q) = I(p | q). In addition, the degree of
implication IF has the following properties:

1. The equation IF (p | q) = 1 is true if and only if q(w)≤ p(w) for all w in U , that
is if the fuzzy set q is a subset of the fuzzy set p.

2. If p ≥ p′ and if q ≤ q′, then it is

IF (p | q)≥ IF (p′ | q) ,

IF (p | q)≥ IF (p | q′) .

3. If S is a ∗�-transitive similarity relation, then the degree of implication IF induced
by S is a ∗�-transitive relation in F (U ).
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4. IF (p | q) = sup
r

[

IF (p | r) ∗�IF (r | q)
]

.

5. The binary relation Ŝ defined by the expression

Ŝ(p,q) = min
(

IF (p | q), IF (q | p)
)

,

is a ∗�-similarity in F (U ).

The properties of the fuzzy degree of implication IF permit to extend the generalized
inferential results presented in Section 87.4.2 to cases where evidence and knowl-
edge are fuzzy. Furthermore, the extended interpretation provides new bases to ex-
amine the relations of similarity-based interpretations with other formalisms such as
possibilistic logic [6, 5].

Fig. 87.2. Fltr: Mayuka F. Kawaguchi, Lotfi Zadeh, Annamária R. Várkonyi-Kóczy, another
participant, and Enrique Ruspini at the 2000 IEEE International Conference on Fuzzy Sys-
tems, San Antonio, Texas, May 2000

87.5 Conclusion

The seminal concepts introduced by Zadeh with his theories of fuzzy set and fuzzy
logic have led to the development of numerous concepts and applications based on
those formalisms. The extent and importance of applications of these ideas in applied
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science is ample evidence of their importance in the solution of problems character-
ized by conditions of imprecision and uncertainty.

The usefulness and validity of these methods would be enhanced and their
acceptability would be wider if the underlying concepts were related to other sci-
entific concepts and their own underlying constructs. Similarity-based interpreta-
tions of fuzzy logic characterizing major concepts and results in terms of metric
structures defined over a logic-based universe—a set of possible worlds as con-
ceived by Carnap—provides the required connections between fuzzy-logic concepts
and those supporting classical logical frameworks, the theory of metric spaces, and
utility theory. Furthermore, the resulting formal structure permits to make a clear,
understandable, distinction between probabilistic and possibilistic approaches as
complementary methodologies for the treatment of uncertainty.
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Fuzzy Control: From Heuristic Rules to Optimization
on Thousands of Decision Variables

Antonio Sala

88.1 Introduction

One of the earliest applications of fuzzy logic was fuzzy control. Indeed, early Lofti
Zadeh’s background was in systems and control engineering and, hence, his way of
thinking was close to that of control engineers, the group of people I belong to.

My personal trajectory in the last 20 years follows a path of formalisation akin
to that of fuzzy control in the a bit more than 40 years that have elapsed since its
original inception.

Indeed, fuzzy control started as a way to incorporate heuristic expert knowledge
in the control loop but nowadays it has evolved into a formal control discipline with
optimization, robustness, stability proofs, etc.

The following sections will present a somehow critical view on the current status
of fuzzy control from its historic perspective. The discussion will only discuss the
“IF-THEN” fuzzy controllers, and hence, will be incomplete: “intelligent” control is
more than fuzzy control (adaptive, dynamic programming, ...) but my biased back-
ground and the book’s motivation made me focus only on such class of controllers.
Due to my background, adaptive fuzzy control issues will not be discussed, either,
even if there are intriguing questions, such as the difference between “adaptive” con-
trol and “learning” control: is proving uniform ultimate boundedness of an error
signal anything related to intelligence or learning?.

88.2 The Original Fuzzy Idea in Control: Heuristic Fuzzy
Control

Somethimes great engineering application results come from a strike of genius by
a clever theorist who gives rise to a new branch on a particular discipline which
gets down to revolutionary changes in applications. However, it is a fact that many
times theoretical calculations justifies what engineers have already made work: the
Wright brothers flew their plane without finite-element Navier-Stokes supercomputer
simulations. In this latter case, theorists come a posteriori, giving refinements and
clearly stating the conditions of applicability of the engineering methodology.

In the specific history of control engineering, there existed both kinds of “clever
ideas” (clever practical ideas which inspire theorists, clever theoretical ideas which
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inspire practitioners) shaping the current status of the discipline. In the clever “practi-
cal” ones, we have PID control, frequency response of amplifiers and, in my opinion
“fuzzy control” (understood as interpolation between binary logic rules, see later).
The clever “theoretical” milestones in control are the differential equation and Lya-
punov theory, convex optimization, generalised-plant robust control, etc. which have
shaped mainstream control in the last five decades.

88.2.1 Who Invented Fuzzy Control?

The early ideas originated heuristic fuzzy control. Basically, fuzzy rules were crafted
encoding “expert knowledge” to control a given industrial process. This heuristic
idea is not what Zadeh’s 1972 paper on fuzzy control (Systems, Man and Cyber-
netics) was envisaging, which was more about (fuzzy) set-valued mappings. How-
ever, although Zadeh had a unique theoretical insight when proposing fuzzy sets,
and some theoretical considerations on fuzzy control were also posed by him, the
actually-working idea in many control applications was more practical and prosaic:
a nice interface for interpolation. No stability proofs or similar were posed in any
early fuzzy control paper.

Actually, in control, the original rulebases might say nothing that many other peo-
ple may have inadvertently used even before the formal “birth” of fuzzy sets: I’m
sure many people will have “interpolated” binary decision rules in order to avoid
continuous “switching” and hard discontinuities in their logic controllers. Indeed,
switching is a daunted enemy in “practical” control (unless used to our advantage,
i.e., sliding-mode control) so dead-zones and interpolators are routinely used to mit-
igate its occurrence in an heuristic way. In fact, proportional control may be con-
sidered to be a smooth interpolation between lower and upper saturation limits of
a control signal, i.e., being exaggerated, we might claim that proportional control
fuzzified preexisting all-or-nothing controllers. “Gain scheduling” is the magic word
in control terms, which was coined and used a few years before fuzziness was born
and, in fact, referred to interpolation of controller parameters. However, the ana-
log electronic technology in the 1960’s didn’t allow for easy interpolation over more
than one variable and, hence, multi-dimensional interpolation in industrial practice
had to wait for 15 more years; by then, fuzzy was already there and people called
their controllers “fuzzy”... Had the term not been coined, maybe fuzzy controllers
might have been called multi-dimensional gain-scheduling.

88.2.2 Fuzzy Control: Revolution or User Interface?

Once the ideas of “fuzzy expert control system” and the like were coined, people
flocked to set up (by hand and trial-and-error) rulebases to control various processes.
The feeling in late 1970s and 80s was that fuzzy control could apply to almost any-
thing and it was a revolutionary, so-much-easier way of controlling than other alter-
natives... and almost math-free because it was “reasoning”!

Jumping onto the bandwagon of the then incipient “artificial intelligence” com-
munity allowed many low-profile researchers (weak in math, physics) to pretend
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they were doing “intelligent control” and claiming that they were doing something
“revolutionary”. Computer scientists, rushing to expand the realm of application of
artificial intelligence, quickly welcomed these “control people” to their club.

However, saying that “I succeeded in hand-tuning some rules for controlling this
system” does not justify the assertion “anything can be controlled with the same
methodology” or “this is a revolutionary idea which will change forever the theory
and practice of control”. Relying into the justification of “expert” knowledge pro-
vides also a very easy explanation of failures: “if it does not work, it’s because you
were not a clever enough expert when hand-tuning”: you are not so “intelligent”, and
intelligent persons “know” how to do things, they don’t need theorems.

However, these kind of universal assertions are not too scientifically sound or
useful: if you just say that your success is due to “your expert knowledge” then that
is not too useful to the research community. That is not the same as saying it is
“useless”: indeed, your expert “knowledge” may be very valuable on a particular
industrial problem, but scientific research requires methodology, explanations and
repeatability. Physical “science” means excruciating the generality from particular
cases, proposing theories that apply to not-yet seen cases. And then, there it comes
Mathematics: axioms and proofs are needed to rigorously determine the power and
the limits of your ideas... fortunately, later interpretations of fuzzy control are better
in these aspects, see below.

In fact, the actual truth on heuristic fuzzy control is that although it gave a con-
venient user interface to account for some subtleties of some systems (introducing
“low” and “high” concepts in the computer, instead of complicated first-principle
concepts such as exponentials of temperatures, trigonometric functions in mechan-
ical systems, ...), it stopped at that in academic research. In fact, the only widely-
applicable rules were, oh surprise!, the fuzzy PD, fuzzy PI and alike ones which
are not philosophically very different to the PD, PI regulators they try to replace
with “intelligent” ones: 90% of rulebases in fuzzy-control literature are basically the
same!, with only a couple of error and error-increment scaling factors as adjustable
parameters (for instance, as in the industrial controller in Figure 88.1). In summary,
although elaborate rulebases did succeed in some industrial control applications, and
they indeed deserve recognition, it is also true that “fuzzy control” was a convenient
term for (some) people to fake research on plain-old hand-tuned PIDs while climbing
the academic ladder.

In summary, for an engineer’s conception, its first aim is “make things work, no
matter why / how”: the end application justifies the means; in this perspective, fuzzy
control is a clear success and industrial applications abound. However, not being able
to tell why or how you achieved your “thing” to work is a kind of “alchemist”-like
conception of technology: getting controllers to work due to your “expert knowl-
edge” is not too different to the “secret formulae” of middle-age incipient explorers
in the world of chemistry. In this context, heuristic fuzzy control quickly got ex-
hausted as a research topic, even if it still appears recurrently in low-level confer-
ences or in non-control journals where somebody used a fuzzy PD rulebase to solve
a control problem.
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Fig. 88.1. Omron™ E5AF: An industrial fuzzy controller of the early 1990’s

88.3 Takagi-Sugeno’s Approach

Another very idolatred concept in fuzzy control are Takagi-Sugeno fuzzy models. In-
deed, the 1985 Takagi-Sugeno paper in IEEE Trans. Systems, Man and Cybernetics
has almost 10000 cites1, and most current fuzzy control designs are based in Takagi-
Sugeno models. However, Takagi’s paper, apart from puting forward the possibility
of such models, does not actually propose any rigorous way of designing controllers
for them (the proposed model was static, i.e., no differential or difference-equations
were considered).

TS models were considered as interpolations of linear system so controllers were
designed for each system and then, it was checked whether the design was lucky
enough to work via extensive simulations.

88.3.1 Present-Day Situation

It’s only after the Linear Matrix Inequality (LMI, in the rest of the chapter) convex
optimization framework was made popular in the nineties (first, in the non-fuzzy
gain scheduling community) that Tanaka and Wang’s papers were actually seminal
in the approach of controlling nonlinear systems via fuzzy TS models: for me this is
the true birth of fuzzy control as it is today.

So, even if Tanaka/Wang humbly root their work in Takagi-Sugeno and Zadeh’s
ideas, the fact is that most of the gain-scheduling community never read Zadeh’s
or Sugeno’s papers and Tanaka/Wang’s seminal line today would have been equally
fruitful without the supposedly seminal ideas from Sugeno and Zadeh.

1 Isaac Newton’s principia mathematica has only 1300 citations, for instance. Takagi-
Sugeno’s paper has 15% more cites than Albert Einstein’s most cited paper (data from
Google Scholar, January 2012). Of course, these numbers are not “scientific” as Google
doesn’t fetch many old non-digital documents.
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The only thing is that, hadn’t Tanaka/Wang included Sugeno and Zadeh in their
citations LMI fuzzy control people would be considered to be plain “non-inteligent”
gain-scheduling control but, due to the fuzzy link we are considered to research on
“intelligent” control, whatever it is, for good or bad.

88.3.2 Are Convex-Optimization-Based Developments “Intelligent” Control?

Defining what is to be understood as “intelligent” is a tough question but the answer
might be negative according to many interpretations.

Indeed, no akin to reasoning and to linguistic interpretability of the results is
present in the latest developments and, furthermore, such linguistic and reasoning
aspects are intentionally avoided (some of the results, even for simple academic ex-
amples involve optimization with hundreds or thousands of decision variables and
constraints... Taylor-series polynomial fuzzy systems exacerbate the computational
needs).

Also, no “learning” is present (in terms of discovering concepts and structures in
the data reaching the controller, in terms of optimising its behaviour based on reward
from the environment), except at most gradient-based adaptation of some controller
parameters.

In summary, which is the interest of LMI semidefinite-programming and Lya-
punov functions to the artificial intelligence community? I don’t think it’s too high...
however, traditionally, we are considered one of them.

88.4 Fuzzy Control’s Place in the (Academic) World

From the previous ideas on the lack of current relevance of the heuristic approach
and the lack of reasoning / intelligent-like designs in semidefinite-programming
Lyapunov-based approach, it is not hard to understand that the fuzzy-control com-
munity feels somehow out of place in many circles.

Indeed, only a handful of current “fuzzy control” researchers contribute mean-
ingful content to top-tier control journals. Major control conferences (IFAC World
Congres, CDC) only receive a small percentage of “fuzzy control” papers once sub-
standard “heuristic control” ones are rejected. However, if you delve away of the
major events, the percentage of substandard fuzzy control papers that get through
(somebody has to attend the event) reaches worrisome levels, and contributes to the
bad overall reputation of fuzzy things in the core control community. Hence, fuzzy
control’s relevance in the control community is scarce.

Conversely, fuzzy “control” plays a marginal role in key fuzzy “Artificial Intelli-
gence” conferences, because no relevant new ideas are usually contributed in “rea-
soning”, which is the main topic of interest to computer scientists and also no relevant
content from the control side is contributed to “fuzzy set theory” which is the topic
of interest of most of the mathematicians attending such fuzzy conferences. Hence,
fuzzy control’s relevance in the computer-science artificial intelligence community
is also scarce, as well as in the set-theorists arena...
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In summary, “serious” fuzzy control researchers find themselves being in the bot-
tom ranks of “topic” popularity (number of paper by keyword) both in the control
conferences (because of being “fuzzy”) and in the fuzzy conferences (because of
being “control”).

88.5 Conclusions

This personal view has expressed a quite critical perspective on the history of fuzzy
control which maybe I wouldn’t have dared to express some time ago. The root of
the criticism is based on two ideas. First: even if wildly cited, the current relevance
of original Zadeh’s and Takagi-Sugeno ideas in automatic control has, as we control
people like to say, decayed in an exponential way, even if routinely cited. Second:
many substandard I-saw-this-rulebase-hundreds-of-times papers keep pouring on too
many places so it’s hard to find another control “speciality” with lower reputation
among mainline control people.

The more relevant ideas in fuzzy control nowadays come from the linear-matrix-
inequality paradigm and polytopic uncertainty / gain scheduling developments of
people who do not consider themselves related whatsoever to the “intelligent control”
community.

Fuzzy control researchers are in a “purgatory” between “hardcore control” and AI.
It has the advantage of being a bridge between both worlds, it has the disadvantage
of not being totally “at home” in any of them.

Anyway, some of my points of view are intentionally exaggerated, giving room
for discussion, and trying to make the book in which this chapter appears something
different to a self-laudatory ode. In fact, current top fuzzy control research is reason-
ably well regarded and a handful of its higher-ranked individuals are active in journal
editorial boards as well as national and international scientific committees.

Perspectives are uncertain because, once heavy maths comes in, the practical rel-
evance of many complex results (delay+uncertain+stochastic+fault modes+. . . ) with
largely intractable LMIs is scarce (after all, I’m an engineer)... but I guess that hap-
pens everywhere: if it were certain that following a certain track would yield sure
key new results, such a topic would be exhausted in a couple of years!.
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A Grain in the Heap

Daniel Sánchez

89.1 An Homage to Professor Lotfi A. Zadeh

Fuzzy Set Theory owe to Prof. L. A. Zadeh not only its existence, but a sustained
effort in guiding and inspiring its development and application. This effort contin-
ues nowadays, Prof. Zadeh providing motivating ideas and discussions that indicate
some of the main paths to follow in this area. There is no doubt that, to a greater
or lesser extent, Prof. Zadeh’s ideas and personal dedication have influenced all the
researchers on Fuzzy Sets. At least, I can say that this is my case. My modest con-
tribution to this book conceived as an homage to Prof. L. A. Zadeh, is to give some
insight into his influence in my personal history with, research about, and view on,
Fuzzy Set Theory (despite the fact that, like Prof. Zadeh, I really feel uncomfortable
when I write about myself).

The title of this contribution will bring to the reader’s mind the well-known Sorites
paradox, for which Fuzzy Sets offer a convenient solution. It also refers to my own
personal research history with Fuzzy Sets as one of the smaller grains of sand in
the heap of the Fuzzy Set Community; a heap of sand grains having at its core the
foundation rock put by Prof. Zadeh in 1965, and which is still growing with his
contributions and those of hundreds of researchers all around the world.

89.2 Getting into the Fuzzy Set Community

I started working with fuzzy sets in 1995 when I entered the Ph.D. programme at
the Department of Computer Science and Artificial Intelligence (DECSAI) of the
University of Granada, under the supervision of Profs. Miguel Delgado and María-
Amparo Vila. I had finished my MSc. in Computer Science the same year, where
I had my first contact with Zadeh’s Fuzzy Set Theory in the course “Knowledge
Engineering” taught by Miguel Delgado.

From September 1995 to July 1997 I attended the courses of the Ph.D. Pro-
gramme, many of them devoted to fundamentals and applications of fuzzy sets and
fuzzy logic, taught by DECSAI members Amparo Vila, Miguel Delgado, Antonio
González, Juan Luis Castro, Francisco Herrera, Serafín Moral, Jose Luis Verdegay,
Ignacio Requena, Luis Miguel de Campos, and María Teresa Lamata, among others.

Eventually, I became assistant lecturer at DECSAI in February 1996. Two im-
portant events gave me the opportunity to meet Prof. L.A. Zadeh in Granada that
same year, for the very first time. First, in June 28, 1996, I attended his investiture as

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 617–624.
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Dr. Honoris Causa by the University of Granada, promoted by DECSAI, being Prof.
Miguel Delgado the Sponsor. The picture in figure 89.1 was taken on that occasion.
Prof. Zadeh’s speech, dedicated to Prof. Enric Trillas and the fuzzy logic community
in Spain, was the first time I heard him talking about Soft Computing, Granularity,
and Computing with Words, including his well-known examples involving among
others the tallness of Swedes.

Shortly afterwards, July 1-5, 1996, the IPMU conference took place in Granada,
organized by DECSAI. This was my first fuzzy conference ever, though I only par-
ticipated by helping the organizers and as attendee. The remarkable anecdote for me
at that conference came after I was commissioned with my colleague José Manuel
Benítez to pick up Prof. Zadeh at his hotel. As we arrived back to the Congress
Centre, Prof. Zadeh’s friends and most important researchers in fuzzy logic came
to greet him, and he kindly introduced us to all of them, one after another, as “Prof.
Benítez and Prof. Sánchez, from University of Granada”. I was not known at all but
to my colleagues in Granada, and I had no paper published at that time! Who can
imagine a better way to get introduced to the “fuzzy” research community? Now
seriously, what I really appreciated in that occasion is something well known for all
the researchers in Fuzzy Sets: Prof. Zadeh’s kind and warm attention to everyone
that approaches him.

89.3 Fuzzy Quantification and Computing with Words

My research topic as a Ph.D. student was about fuzzy data mining. More specifically,
the objective was to study the extension of association rules and approximate depen-
dencies to the case of fuzzy data. For this purpose it is necessary to calculate counts
of items in transactions in order to measure their frequency, that is, the cardinality
of the set of transactions that contain certain itemsets. Since, in the case of fuzzy
data, the membership of items to transactions is a matter of degree, I had to study the
issue of cardinality of fuzzy sets and the strongly related problem of fuzzy quantified
sentences.

Prof. Zadeh was one of the first contributors to both topics. Fuzzy quantification
is about assessing the accomplishment degree in [0,1] of sentences of the form “Q
of D are A”, where D and A are fuzzy subsets of the same reference set X , and Q
is a linguistic fuzzy quantifier defined as a fuzzy subset of the non-negative integers
(absolute quantifiers, e.g. “Approximately between 3 and 8”) or a fuzzy subset of
[0,1] (relative quantifiers, e.g. “Around 40%”, “Most”). Zadeh’s proposal, dating
back to the 80’s, and which he uses still in his talks and papers, is to calculate the
sigma-count of the fuzzy set (the classical scalar cardinality obtained by adding the
membership degrees of all the elements), and then to calculate the membership of
the sigma-count to the fuzzy quantifier. During the following years, and up to 1995,
there have been other proposals and studies by Ronald Yager, Janusz Kacprzyk,
Didier Dubois and Henri Prade, Patrick Bosc et al., and a joint proposal by DECSAI
members Juan-Carlos Cubero, Juan-Miguel Medina, Olga Pons, and María-Amparo
Vila, among others.
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Fuzzy quantification was the topic of my first research papers, presented in the
Spanish conferences about fuzzy logic and technology (ESTYLF) of the years 1997
and 1998. In September 1999 I presented my first two papers in international confer-
ences: one at EUFIT’99 about rules and dependencies, and a second one at the first
EUSFLAT conference that took place, jointly with ESTYLF, in Palma de Mallorca.
This second paper was about fuzzy quantification again, and gave me for the first
time the opportunity to present my research having Prof. Zadeh in the audience.

I was nervous during the presentation, but not only because it was my second
international conference, and I had to present in English, but because my paper in-
cluded some criticisms to Zadeh’s approach to quantification. In my Ph.D., which
I defended in December of the same year, I had proposed a collection of theoret-
ical properties that any method for evaluating quantified sentences should satisfy
and, apart from concluding that no existing method for quantification verified all
the properties, I had also proposed some new methods as more suitable alternatives.
One of the main criticisms was the very strict behaviour of Zadeh’s approach with
crisp quantifiers. The example I proposed was more or less the following: let Qu

be the crisp relative quantifier “Strictly greater than u”, with u > 0, represented by
Qu(x) = 0 if x < u, and 1 otherwise. Let us consider the quantified sentence “Qu of
X are A” with |X |= n and sigma-count(A)/n= u. Then, the evaluation is Qu(u) = 1.
Now, diminishing the membership of any element in the support of A by any amount
ε > 0, no matter how small, gives a sigma-count u′ = u− (ε/n)< u and the evalua-
tion is Qu(u′) = 0, so arbitrarily small changes in the cardinality turn the fulfilment
of the sentence from 1 to 0 and vice versa.

As I expected, after my presentation, Prof. Zadeh raised his hand to make a ques-
tion. But to my surprise, he made no reference to my criticisms about his method.
His question was about how my alternative proposals could be employed in a specific
Computing with Words task, and was similar to the following: Let us suppose that
given a set X we are told that it is partitioned so that around half of the elements in
X satisfy A, a few satisfy B, and most of the rest satisfy C. How many elements are
left?

I had no answer. I was interested in quantification only for the purpose of assess-
ing patterns in fuzzy data mining. But this question made me think. My advisors
Miguel and Amparo, that were also present, agreed that it was a really interesting
question, and in the years following my Ph.D. and up to this date, fuzzy quantifi-
cation and how to use it in the setting of Computing with Words has been one of
our main joint research lines. A research line that took us eventually beyond fuzzy
set theory, as I will explain later, and was motivated by Prof. Zadeh’s provocative
question.

Much later, I could see that my criticisms to Prof. Zadeh’s method were nothing
compared to the concerns that several researchers from the scientific community had
written, or even declared publicly in his presence, about Fuzzy Set Theory. Prof.
Zadeh himself recalls that the first comments on his 1965 paper were “skeptical
or hostile”, and after a presentation in which Prof. Zadeh was explaining his new
notion of Linguistic Variable, he had to hear that his proposals “could be severely,
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ferociously, even brutally criticized” [1]. Prof. Zadeh’s answers to all critics have
always been restrained and educated, according to his high human quality.

89.4 An Alternative View of Fuzziness

After several years it became apparent for us that the properties that had been pro-
posed by several researchers for the evaluation of quantified sentences, including
those of Ingo Glöckner, Alberto Bugarín et al., and my own proposals, could only
be satisfied simultaneously if the logic operations for fuzzy sets verify all the prop-
erties of Boolean logic. For instance if we are told that from ten objects, four are
of type A, one intuitively expects that six are of type ¬A (excluded middle). If
A = B one expects that the amount of objects that are A∧B is the same that the
amount of objects that are A (idempotency), etc. However, at least in the case of
standard Fuzzy Set Theories (FST), it is well known that this is not possible. For
instance, Dubois and Prade showed that no standard FST can satisfy idempotency
(as well as mutual distributivity) together with the laws of excluded middle and non-
contradiction. Zadeh’s method based on the sigma-count is able to avoid some of the
problems since sigma-count(A)+sigma-count(¬A)=|X | using the standard negation,
but has other drawbacks.

This problem led us to work with an alternative representation of fuzzy concepts.
Since our evaluation methods rely on the use of alpha-cuts, a possible solution was
to represent fuzzy concepts by a collection of alpha-cuts whose logical operations
had a Boolean structure. We proposed to perform Boolean operation in each level
independently. In this representation and operation by levels, the result of operations
is not a fuzzy set in general, even if we take as input fuzzy sets represented by alpha-
cuts. Hence, fuzzy sets can be seen as a particular case of representation by levels,
but not closed under operations by levels.

We found that other authors have proposed similar schemes for different purposes.
For instance, Dubois and Prade had proposed the notion of fuzzy elements and grad-
ual sets, which are identical to our scheme, as also the idea of representing a fuzzy
set as a sheaf of sets proposed by Ulrich Höhle, among other proposals. Perhaps the
main novelty in our proposal is not to restrict the representation to be a particular
view or representation of fuzzy sets, but going beyond, and seeing it as a representa-
tion of fuzzy concepts, fuzzy sets being a particular case.

However, we are not leaving behind fuzzy sets. We think that fuzzy sets are
the kind of representations that humans are able to provide and understand. Hence,
our scheme is: ask concepts to users as fuzzy sets, operate by levels, and try to
show the result as a fuzzy set. For the later purpose, a fuzzy set is viewed as a
kind of measure obtained from a random set interpretation of the representation by
levels, using the single-point coverage function. From another point of view, the
idea is that (as also well known), in order to have a Boolean structure we have to
lose the truth-functionality, so concepts are represented by a structure, operations
are performed between structures, and fuzzy memberships (as probability values in
the case of probability measures) are computed from the structure. Summarizing,
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a fuzzy set is the collection of values of a measure of “membership” (nothing to
do with fuzzy entropy), computed from the representation by levels, for the possible
singletons in the universe. Remarkably, when representing fuzzy sets by levels, union
and intersection correspond to minimum and maximum (as it is well known), and
complement yields a representation which does not correspond to a fuzzy set, but
whose single point coverage function is the standard negation of fuzzy sets. Hence,
the operations agree with the standard notions of individual operations with fuzzy
sets, proposed by Prof. Zadeh. This proposal, which we published in [2], is a way to
have a representation of fuzzy concepts with an associated Boolean structure.

Using this proposal we could develop easily a method for evaluating quantified
sentences, satisfying all the Boolean properties. The proposal allows to have an el-
ement satisfying a concept and its negation to some degree at the same time. Other
types of applications needing a Boolean structure can benefit from it and, addition-
ally, extension of crisp operations and definitions to the fuzzy case are straightfor-
ward. As a final point in this development, we submitted a paper to NAFIPS 2012,
that will take place in Berkeley, showing how this proposal can be used in order to
answer questions like that Prof. Zadeh posed to us thirteen years ago. As a final point
in this development, I had the opportunity and pleasure to present some of these re-
sults to Prof. Zadeh in the occasion of NAFIPS 2012, held in Berkeley, showing how
this proposal can be used in order to answer questions like that Prof. Zadeh posed to
us thirteen years ago.

89.5 At the European Centre for Soft Computing

Prof. Zadeh’s contribution to fuzzy sets and the broader field of Soft Computing in-
cludes the promotion or inspiration of several initiatives, like the Berkeley Initiative
in Soft Computing (BISC) at the Electrical Engineering and Computer Sciences De-
partment of the University of California. He also suggested to Prof. Enric Trillas to
create a research centre in Europe for the promotion of research and development in
Soft Computing. This led to the creation of the European Centre for Soft Computing
(ECSC) in 2006. Prof. Zadeh was in the first Scientific Committee of the Centre,
giving his support to the initiative, and is nowadays its Honorary President. In Octo-
ber 2010 I joined the Centre, working as associate researcher at the Computing with
Perceptions Research Unit led by Dr. Gracian Trivino. This unit has the specific
mission to work in the development and practical application of the Computational
Theory of Perceptions, one of the more recent proposals of Prof. Zadeh. Hence, I
owe to him also the opportunity to work and share time and ideas with researchers
at the ECSC, which is being so much fruitful for me at the research but also at the
personal level.

The ideas of Prof. Zadeh about Computing with Words and perceptions are, in my
opinion, one of the main lines of present and future research in Soft Computing. In
my view, fuzzy concepts come exclusively from the human brain, and we use them
in order to describe our perceptions and to communicate with others by means of
natural language. Most of the words and expressions we use daily are affected by
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Fig. 89.2. At the conference Banquet of NAFIPS 2012 in the Berkeley City Club: Daniel
Sanchez and Lotfi A. Zadeh
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fuzziness, among other sources of uncertainty which are independent from it, like
randomness. Hence, fuzziness is a key point in the design of intelligent systems
able to communicate with human beings, and to represent information the way we
perceive it. The representation of fuzziness allows to fill the semantic gap between
the precise, numerical representation of information in computers, and the concepts
and linguistic expressions that we use.

I am collaborating with my colleagues at the ECSC and at DECSAI in researching
on these topics, working on the definition of the use of semantic concepts relative to
images and data by means of representations of fuzziness, and in how to employ
them in order to obtain linguistic descriptions of different kinds of data for practical
purposes. Together with all of them, and following the path inspired by Prof. Zadeh,
I hope to leave a small grain of sand in this heap.

Acknowledgement. I would like to thank the Editors of this book, Enric Trillas,
Rudolf Seising, Claudio Moraga, and Settimo Termini, for their kind invitation to
contribute, that gave me the opportunity to pay my modest homage to Prof. L. A.
Zadeh.
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The Robot and the Butterfly

Elie Sanchez

90.1 What It Is All About

This is a non-technical personal view paper describing how I arrived to the field
of fuzzy sets and systems, getting around on the roads opened by Professor Zadeh.
Then it is followed by some comments on fuzziness and on the future.

90.2 Discovering and Investigating Fuzzy Sets Theory

The first time I heard of fuzzy sets was during a seminar of Arnold Kaufmann (later
on I also read an interview of L.A. Zadeh, called “Les ensembles Flous – un con-
cept précis”, in l’Informatique, 1970) while he was presenting Zadeh’s theory and
his own research. He was carrying with him the manuscript of his first book on
the subject. The book was entitled “Introduction à la Théorie des Sous Ensembles
Flous. Tome I, Eléments Théoriques de Base” (Masson, Paris, 1973). He called
them “sous ensembles flous”, i.e. fuzzy subsets, for the class of points, or objects,
on which membership functions were defined was not fuzzy. This manuscript was
written by hand in India ink on tracing papers. So it was one of my early influences.
When the book appeared, it greatly inspired fuzzy-to-become French people (who
also read Zadeh’s first papers), European researchers too, but particularly after the
English translation of his book: Introduction to the Theory of Fuzzy Subsets: Funda-
mental theoretical elements, Academic Press, 1975. Kaufmann was very prolific and
he took especially care of his readers. He wanted them to simply follow his presen-
tations and proofs with a piece of paper and a pencil, so his books were very easy to
read. Moreover the concepts and properties he presented were fully illustrated with
elaborated examples.

Figure 90.1 is a reproduction of a transparency that I draw for my early lectures
when I introduced fuzzy sets in China (following Kaufmann’s lectures) and in Japan.
The baldness of the human was meant to recall somebody.

One of my early research works was related to Boolean (then in ternary logic), ma-
trix equations: “Matrices et Fonctions en Logique Symbolique (Ph.D. in Mathematics
from the Faculty of Sciences of Marseille, 1972). Then, as indicated above, when
I discovered fuzzy sets (the term ’fuzzy-logic’ was not used until 1973-74) I natu-
rally found and developed an extension of these works to fuzzy relation equations:
“Equations de Relations Floues”, with a proposed application to medical diagno-
sis assistance (Ph.D. in Human Biology from the Faculty of Medicine of Marseille,

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 625–630.
DOI: 10.1007/978-3-642-35644-5_90 © Springer-Verlag Berlin Heidelberg 2013
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1974) This work was still related to Zadeh’s original fuzzy sets with [0,1]-valued
membership functions. Then I extended it to L-fuzzy sets, where L was a complete
Brouwerian lattice. The aim was to propose the largest class of lattice-valued fuzzy
sets to which the resolution methodology could apply. The results appeared in a 1976
paper I wrote as Resolution of Composite Fuzzy Relation Equations (Information and
Control, 30, 1, 38-48, 1976).

Fig. 90.1. Human reasoning versus computer reasoning

Figure 90.2 is a picture of Prof. Zadeh and me. It was taken during the IEEE
Conference on Decision and Control, at New Orleans, Louisiana, on December 1977.

Two years after my first sabbatical research visit to UC Berkeley, following a
preliminary lecture at the National Computer Conference (1976) and a memorandum
at the Electronics Research Laboratory (1977), I wrote a paper which appeared in the
very first issue of the new Journal Fuzzy Sets and Systems, vol. 1, 1978, pp. 69–74.
The paper was Resolution of eigen fuzzy sets equations and it was followed by a much
extended version Eigen fuzzy sets and fuzzy relations, which appeared in the Journal
of Mathematical Analysis and Applications, vol. 81 (2), 1981, pp. 399–421. It is
worth noticing that it was in this very first issue that Zadeh published his important
seminal paper Fuzzy sets as a basis for a theory of possibility, FSS, vol. 1, 1978,
pp. 3–28.

At that time we knew nearly all the papers on fuzzy sets, and personally most
of the people working in the field. Since the beginning I believed in the strong
potential of this theory, and Zadeh opened many research directions, in a multi-
tude of application fields which otherwise would have been very separate from each
other. In fact, we can say that creativity in science comes from bringing together, or
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complementing, two or more domains, or concepts, that originally were distant and
so, provoking the emergence of a new field or of genuine improvements, for example
soft computing, fuzzy logic control, fuzzy logic and neural networks, fuzzy logic and
genetic algorithms, uncertainty reasoning, etc.

Fig. 90.2. L. A. Zadeh and E. Sanchez, New Orleans, Dec. 1977

90.3 On Fuzziness

When I draw figure 90.3, I thought of simply representing how fuzziness, at least
partially, can be illustrated. It consists of a humanoid robot hand gently holding - not
an inverted pendulum - but a delicate butterfly.

Any field can be fuzzified and hence generalized. As expressed by Zadeh, what is
gained through fuzzification is greater generality, higher expressive power, and en-
hanced ability to model real-world problems. But, especially from the beginning, this
fact contributed to multiple criticisms, founded or not. Sometimes, novel and suc-
cessful applications emerged, but sometimes almost trivial results were presented.
It depends on what one fuzzifies: it is natural to do it with data, facts, inputs of a
system etc., corresponding to real-world information and for a model or a system,
for example fuzzy logic control contributed to the credit of fuzzy logic. Let me take
another example from medical diagnosis assistance (Elie Sanchez, Fuzzy logic and
inflammatory protein variations, Clinica Chimica Acta, vol. 270 (1), 9 February
1998, pp. 31–42). It is related to Zadeh’s relational facet, among the four facets,
of fuzzy logic (L.A. Zadeh, plenary lecture Toward a Restructuring of the Founda-
tions of Fuzzy Logic, Actes 3èmes Rencontres Francophones sur la Logique Floue
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Fig. 90.3. The robot and the butterfly

et ses Applications, Lyon, France, déc. 1997, pp. i–ii, Cépaduès Editions, ISBN
2-85428.466.6.)

The model is of special interest in the processing of borderline cases, allowing
a graded assignment of diagnoses to patients. Interpretation of biological analyses
suffers from some arbitrariness, particularly at the boundaries of the quantities that
are measured, or evaluated. But biologists are familiar with normal variation ranges
that are a prerequisite to a proper interpretation of all laboratory tests. So, it is natural
to consider propositions like Haptoglobin is very elevated, where ’very elevated’ is
the result of the fuzzification of a crisp interval. Then, a model can be implemented
with fuzzy if-then rules, involving linguistic variables (as defined by Zadeh and it is
a notion that exists only in fuzzy logic) – see L.A. Zadeh, The Concept of a Linguis-
tic Variable and its Application to Approximate Reasoning, II, Information Sciences,
vol. 8, 1975, pp. 301–357. When information on medical knowledge, from symp-
toms to diagnoses, is established, diagnosis assistance for patients can be processed
using possibility measures (also introduced by Zadeh), yielding many important de-
velopments. These possibility measures are again a fuzzification of a crisp process.
So, fuzzification can be natural or not, depending on problems.

Figure 90.4 is a picture where I am with professors Takeshi Yamakawa and Lotfi
Zadeh. It was taken at Kurashiki, Japan, in 1989, during the first annual meeting of
the Biomedical Fuzzy Systems Association (BMFSA). Note that T. Yamakawa was
the first to design and implement a fuzzy chip, he presented it at a conference in
Hawaii in 1984.

Finally, in the picture of figure 90.5, I am with professors Toshio Terano and Lotfi
Zadeh, it was taken during the International Conference on Fuzzy Logic & Neural
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Networks, Iizuka, Japan, 1990 (organized by T. Yamakawa, chairman of FLSI, the
Fuzzy Logic Systems Institute). T. Terano was the director of the Laboratory for
International Fuzzy Engineering (LIFE) in Japan.

90.4 About the Future

“It is difficult to make predictions, especially about the future.”
Niels Bohr, but also Mark Twain, Albert Einstein, George Bernard Shaw,
Winston Churchill, Groucho Marx, and it is a golden rule for economists

In his paper From Search Engines to Question Answering Systems – The Problems
of World Knowledge, Relevance, Deduction and Precisiation (in: Sanchez, E. (ed.):
Fuzzy Logic and the Semantic Web, 2006, pp. 163–210), Zadeh expressed:

If I were asked, “What is the most challenging problem in the realm of infor-
mation science and technology?” my unequivocal answer would be: con-
ception and design of question-answering systems. And if I were asked what
is likely to be the most important application area for fuzzy logic in coming
years, my answer would be (a) improvement of performance of search en-
gines; and (b) upgrading search engines to question-answering systems, or
Q/A systems for short.

This quotation is related to information science and technology, but there are many
other domains exhibiting rich developments on fuzziness, in theory as well as in prac-
tice. In general, people make predictions in their own research environment, which
is natural. So that it is difficult to bring out a general prediction. Who could have
predicted the successful applications of fuzzy logic control in the 60’s? Moreover
new domains of application of fuzzy logic will surely appear in the future.

As pointed out by Zadeh, fuzzy logic has many facets (see above, but also: L.
A. Zadeh, Is there a need for fuzzy logic? Information Sciences, vol. 178, 2008, pp.
2751–2779). The principal facets are: (a) the logical facet, (b) the fuzzy-set-theoretic
facet, (c) the epistemic facet and (d) the relational facet. Most of the practical appli-
cations of fuzzy logic are associated with its relational facet. The logical facet may
be viewed as a generalization of multivalued logic. The fuzzy-set-theoretic facet is
focused on fuzzy sets. The epistemic facet is concerned with knowledge represen-
tation, semantics of natural languages and information analysis. The relational facet
is focused on fuzzy relations and, more generally, on fuzzy dependencies. The con-
cept of a linguistic variable – and the associated calculi of fuzzy if-then rules – play
pivotal roles in almost all applications of fuzzy logic (cf. the biomedical example
above). So, predictions can be made within the four facets.

Numerous applications are to emerge in the social sciences, in politics, in medical
instrumentation, in economics, in semantic information retrieval, in machine intelli-
gence, in the Semantic Web, etc. The future of fuzzy logic or soft computing will be
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closely associated with systems with high capabilities in intelligent human-like rea-
soning. But this statement is too general and vague. In fact we think that the future
of fuzzy logic will not be encapsulated in a box, there is no limit to where it can go.

Fig. 90.4. T. Yamakawa, E. Sanchez and L. A. Zadeh, Kurashiki, Japan, 1989

Fig. 90.5. T. Terano, L. A. Zadeh and E.Sanchez, Iizuka, Japan, 1990
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The Membership of a Fuzzy Set
as Coherent Conditional Probability

Romano Scozzafava

91.1 Introduction

A well–known view supported by Zadeh concerns the inadequateness of probabil-
ity to capture what is usually treated by fuzzy theory. In particular, in his 2002’s
paper [15] he refers to PT – standard Probability Theory – as not being fit to offer
solutions for many simple problems in which a key role is played by (what he calls)
a “perception–based information”. I agree with Zadeh’s position, inasmuch he spec-
ifies that by PT he means “standard probability theory of the kind found in textbooks
and taught in courses”.

Actually, many traditional aspects of probability theory are not so essential as
they are usually considered; for example, a strict frequentist interpretation, which
unnecessarily restricts the domain of applicability, or the requirement that the set
of all possible “outcomes” should be endowed with a beforehand given algebraic
structure – such as a Boolean algebra or σ–algebra – or the aim at getting, for these
outcomes, uniqueness of their probability values, with the ensuing introduction of
suitable relevant assumptions (such as σ -additivity, maximum entropy, conditional
independence,...).

So our starting point is a synthesis of the available information, expressed by one
or more events: to this purpose, the concept of event must be given its more general
meaning, i.e. it must not be looked on just as a possible outcome – a subset of the so–
called “sample space”, as it is usually done in PT – but expressed by a proposition.

The aim of this paper is to show the embedding of fuzzy set theory – and related
concepts – in a coherent conditional probability scenario, as done in a series of papers
(see, e.g., Coletti & Scozzafava [1], [2], [3], [4], [5] and the book by the same authors
[6]). This allows to deal with perception–based information and with a rigorous
treatment of the concept of likelihood.

A coherent conditional probability is looked on as a general non-additive “uncer-
tainty” measure m(·) = P(E| ·) of the conditioning events. This gives rise to a clear,
precise and rigorous mathematical frame, which allows to define fuzzy subsets and
to introduce in a very natural way the counterparts of the basic continuous T -norms
and the corresponding dual T -conorms, bound to the former by coherence, a concept
that goes back to de Finetti [10].

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 631–635.
DOI: 10.1007/978-3-642-35644-5_91 © Springer-Verlag Berlin Heidelberg 2013
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91.2 Coherent Conditional Probability

An event can be singled-out by a (nonambiguous) statement E , that is a (Boolean)
proposition that can be either true or false (corresponding to the two “values” 1 or 0
of the indicator IE of E).

The “logic of certainty” deals with true and false as final, and not asserted, an-
swers concerning a possible event, while two particular cases are the certain event Ω
(that is always true) and the impossible event /0 (that is always false): notice that only
in these two particular cases the relevant propositions correspond to an assertion. To
make an assertion, we need to say something extra-logical, such as “we know that E
is false” (so that E = /0).

As far as conditional events are concerned, we generalize the idea of de Finetti of
looking at a conditional event E|H, with H �= /0, as a 3–valued logical entity, which is
true when both E and H are true, false when H is true and E is false, “undetermined”
when H is false, by letting instead the third value t(E|H) suitably depend on the given
ordered pair (E,H) and not being just an undetermined common value for all pairs.

It turns out that the above function t(E|H) is a measure of the degree of belief
in the conditional event E|H, which under suitable – and natural – conditions is a
(⊕,�)-decomposable conditional measure (see [7]).

In the case that ⊕,� are, respectively, the usual sum and product, t(E|H) is a
conditional probability (in the sense of de Finetti [9], see also [6], [11], [13],)

Definition 1. Let E = B ×H , with B a Boolean algebra and H an additive set
(i.e., closed with respect to finite logical sums) not containing /0. The function P :
E → [0,1] is a conditional probability if the following conditions hold:

(C1) P(H|H) = 1, for every H ∈ H ,
(C2) for any H ∈ H the function P(·|H) is is a (finitely additive) probability on B ,
(C3) for every A ∈ B, E ∧H ∈ H ,

P(E ∧A|H) = P(E|H)P(A|E ∧H).

We recall also an easy consequence of the above axioms, i.e. the disintegration
formula for the probability of an event E|H with respect to a partition of an event H

P(E|H) =
N

∑
k=1

P(Hk|H)P(E|Hk) (91.1)

The above definition of (conditional) probability is strictly based on the Boolean
structure of the domains. Actually, in real problems, logical conditions on the domain
can be unrealistic: in fact, the expert (or decision maker) usually has information and
interest only on a bunch of (conditional) events.

The concept of coherence, introduced by de Finetti in probability theory, has the
fundamental role to manage partial assessments and its enlargements, i.e. it is a
tool to check whether a function defined on an arbitrary set of (conditional) events is
consistent with a probability and to rule extensions of this function to new conditional
events.
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Definition 2. Given an arbitrary set F = {Ei|Hi} of conditional events, a real func-
tion P on F is a coherent assessment if there exists a conditional probability P′(·|·)
extending P on E = B ×H , with B the Boolean algebra spanned by the events
{Ei,Hi} and H the additive set spanned by the events {Hi}.

We recall also the following fundamental result for conditional probability:

Theorem 1. Let C be any family of conditional events, and take an arbitrary family
K ⊇ C . Let P be an assessment on C ; then there exists a (possibly not unique)
coherent extension of P to K if and only if P is coherent on C .

Notice that what is usually emphasized in the relevant literature – when a condi-
tional probability P(E|H) is taken into account – is only the fact that P(·|H) is a
probability for any given H: this is a very restrictive – and misleading – view of
conditional probability, corresponding trivially to just a modification of the so-called
“sample space” Ω . It is instead essential to regard also the conditioning event H as
a “variable”, i.e. the “status” of H in E|H is not just that of something representing
a given fact, but that of an uncertain event – like E – for which the knowledge of its
truth value is not required. In other words, even if beliefs may come from various
sources, they can be treated in the same way, since the relevant conditioning events
– including both statistical data and any perception–based information – can always
be considered as being assumed propositions: this means, using a terminology due to
Koopman [12], that H must be looked on – even if asserted – as being contemplated.

Moreover, due to its direct assignment as a whole, knowledge – or assessment
– of “joint” and “marginal” unconditional probabilities P(E ∧H) and P(H) are not
required, and the conditioning event H – which must be a possible event – may have
zero probability. So conditioning in a coherent setting gives rise to a general sce-
nario that makes the classic Radon–Nikodym procedure – and the relevant concept
of regularity – neither necessary nor significant (see [4]).

91.3 Membership Function as Coherent Conditional Probability

Let ϕX be any property – in the sequel, to simplify notation we will write simply
ϕ in place of ϕX – related to a random quantity X : notice that a property, even if
expressed by a statement, does not single–out an event, since the latter needs to be
expressed by a nonambiguous proposition that can be either true or false. Consider
now the event Eϕ = “You claim ϕ ” and a coherent conditional probability P(Eϕ |Ax),
looked on as a real function μϕ(x) = P(Eϕ |Ax) defined on CX .

Since the events Ax are incompatible, then – by Theorem 5 of the book [6], p.89
– every μϕ (x) with values in [0,1] is a coherent conditional probability. So we can
define a fuzzy subset in the following way.

Definition 3. – Given a random quantity X with range CX and a related property ϕ ,
a fuzzy subset E∗

ϕ of CX is the pair

E∗
ϕ = {Eϕ , μϕ},

with μϕ(x) = P(Eϕ |Ax) for every x ∈CX .
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So a coherent conditional probability P(Eϕ |Ax) is clearly a measure of how much
You, given the event Ax = {X = x}, are willing to claim the property ϕ , and it plays
the role of the membership function of the fuzzy subset E∗

ϕ .
Notice also that the significance of the conditional event Eϕ |Ax is reinforced by

looking on it as “a whole”, avoiding a separate consideration of the two propositions
Eϕ and Ax.

A fuzzy subset E∗
ϕ is a crisp set when the only coherent assessment μϕ(x) =

P(Eϕ |Ax) has range {0,1}. Then, by Theorem 20 of the book [6], p.225, a fuzzy
subset E∗

ϕ is a crisp set when the property ϕ is such that, for every x ∈ CX , either
Eϕ ∧Ax = /0 or Ax ⊆ Eϕ .

Remark – Let us emphasize that in our context the concept of fuzzy event, as in-
troduced by Zadeh [14], is nothing else than a proposition, i.e., an ordinary event, of
the kind “You claim the property ϕ”. So, according to the rules of conditional prob-
ability – in particular, the “disintegration” formula 91.1, often called in the relevant
literature “theorem of total probability” – we can easily compute its probability as

P(Eϕ) = ∑
x

P(Ax)P(Eϕ |Ax) = ∑
x

P(Ax)μϕ(x) , (91.2)

which coincides with Zadeh’s definition of the probability of (what he calls) a
“fuzzy” event.

Notice that this result is only a trivial consequence of probability rules and not a
definition. It puts also under the right perspective the subjective nature of a mem-
bership function, showing once again that our approach to probability goes beyond
– both syntactically and semantically – the traditional one, denoted PT by Zadeh.

It is now possible to introduce in a very natural way the counterparts of the basic
continuous T -norms and the corresponding dual T -conorms, bound to the former by
coherence. These results and some relevant applications are expounded in the paper
by Coletti & Vantaggi [8] in this book.
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Some of My Experiences and Views
on Zadeh’s Fuzzy Logic

Alejandro Sobrino

The first time I met Lotfi Zadeh was in the XVI Symposium of Multiple-Valued Logic,
meeting that I co-organized with my colleagues at the University of Santiago de
Compostela. Professor Zadeh gave the plenary lecture and I had the opportunity to
personally taste his wisdom and kindness. Zadeh impressed me by his naturalness:
I still have a napkin written by him suggesting me to pursue a topic while taking a
coffee in the airport, before boarding. Some years before, when I began to conduct
my doctoral dissertation, I posted him asking for some papers that he kindly sent me
in a few weeks. A note of the Zadeh’s work that deserves to be highlighted is the
clarity of the ideas and the elegance with which he writes them. Reading his papers,
we find easily that we are facing new and genuine thoughts that introduce us a virgin
field.

My first encounter with fuzzy logic was a Spanish book of logic entitled: ’In-
troducción a la lógica formal’ (Introduction to Formal Logic), 1974, by the Spanish
philosopher and logician, Alfredo Deaño [1]. The book included the section ’Mas
allá de este libro’ (Beyond this book) and Zadeh’s Fuzzy logic was one of the topics
addressed in it. The text approached fuzzy logic in three pages mainly following the
G. Lakoff’s decription of semantic hedges. Of those pages, the phrase that caught
my greatest attention was not inserted in the text, but appeared as a footnote. The
footnote was a explanation of why the author refer to this logic as ’the logic of vague
predicates’ and not as ’fuzzy logic’. He argues that what is fuzzy is not the logic, but
the subject of this logic; i. e., the vague predicates. Using a very lucky metaphor,
he explains his choise saying that, “In other words, this would be like sttutering a
theory on the causes of stutter”. This sentence intrigued me and troubled me at the
same time and caused my calling for fuzzy logic. Fuzzy logic was a crisp logic of
fuzziness, a precise logic of imprecision. It would be a few years later when Prof.
Trillas, the introducer of fuzzy logic in Spain, helped me to understand this statement
in a more informed way, providing me the basics of the Zadeh’s fuzzy logic [7].

My approach to fuzzy logic, as happened with most of people from a humanistic
field, came from the discontent with the excessive constraints that traditional logic
enforces to the natural language and the support for the logical formalism as a way
to clarify our thoughts. Perhaps that is an inevitable tension for someone who likes
the logic of common language.

Zadeh’s Fuzzy logic was a breath of fresh air in an academic environment where
classical logic, its principles and metalogical properties, are unquestioned. Fre-
quently, Philosophy’ students show certain tendency to reject the accuracy, the
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Fig. 92.1. Alejandro Sobriño and Enric Trillas, in the early 1990s or so

immobility, the eternal truths of a discipline that felt far away from their most press-
ing concerns. The majority of books on formal logic cover examples from math-
ematics, but only a few ones include examples on the logical analysis of ordinary
language (I remember that Copi’s Symbolic Logic was perhaps an exception) and
even less of texts including philosophical arguments. Classical logic seemed far
from philosophical issues, even in its more friendly presentations, as natural deduc-
tion calculus. It frequently causes indifference or aversion to Philosophy students.
Indifference to those who thought that Philosophical contents exceed the constraints
of formal logic; aversion to those who think that Logic induces a kind of Philosophy,
the Scientific Philosophy, very related to Science and technology and far from the
humanism that have been the mark of Philosophy from centuries.

The rigidity of classical logic favors the attraction for Zadeh’s fuzzy logic. In
fuzzy logic, as occurs in worldly affairs expressed in natural language, truth is con-
textual rather than universal, imprecise rather than precise and metalogical proper-
ties, as axiomatizability, decidability, consistency and completeness, peripheral than
central, as L. Zadeh pointed out in [2]. Fuzzy logic provides models to represent and
manage imprecise statements and approximate reasoning, offering inferences that
perhaps are not completely necessary, but persuasive, as are the majority of which
occur in philosophical reasonings. Philosophy is not, of course, deterministic and
neccesary, but free and indeterministic, posing problems that evolve throught His-
tory, resolving old opositions in new thesis, in a dialectical movement that seems
to be endless. In this regard, Zadeh’s fuzzy logic meant for some philosophers an
’open door’, as it approaches ordinary reasoning with flexibility, performed by the
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alternatives in the representation of a vague predicate. However, this enthusiasm
soon tempered.

The sense of freedom associated with Zadeh’s fuzzy logic attracted many students
of Philosophy, but many of them did not remain long under the spell, due to what
Deaño emphasized: fuzzy logic is the logic of vague predicates, but it is not a vague
logic, as it is guided by precise rules. Fuzzy Logic, as occurs with Probability Theory
and the uncertainty, is a formal theory of vagueness or imprecision and, as such,
shows a high a degree of determinism about the indeterminism. The illusion to see
fuzzy logic as a vague logic, as the logic coupled with our intimate rational desires,
vanishes. Fuzzy logic has rules, more flexible and adaptable than classical rules, but
rules in the end.

Flexibility and relative normativity are two keys that make Zadeh’s fuzzy logic an
atractive tool for representing and managing approximate reasoning.

Flexibility because defining truth as ’local truth’ it allows incorporate the context
to the logical analysis. In fuzzy logic, the context is provided by the universe of dis-
course. If we evaluate in what degree a ’number is small’, we must know in advance
to what set of numbers we refer. As is obvious, 4 is small with a different degree in
the set 0, . . . ,10 or in the set 0, . . . ,100. Thus, vague predicates are contextual and in
order to represent them adequately we need to define the universe of discurse, which
serves of reference. Usually the universe will be local, adapted to the specific prob-
lem analysed and far from the universes of classical logic, frequently related with
big, universal and numerical sets, as N, Z, R and so on.

Relative normativity as not everything is permitted. For example, fuzzy logic
provides several ways to perform the conjuction of two propositions. If the conjuncts
show no-interaction, the min election is the right choice. But if the conjuncts show
interaction, the product seems to mix better their content. The t-norm of Lukasiewicz
(x∧ y = max {0,x+ y− 1}) is still other election. A metatheoretic finding shows
that, although there are several ways to conjunct, the most common solutions will
fall between the min (the bigger t-norm) and the Lukasiewic’s connective (one of
the smaller t-norms). In fuzzy logic, connectives show flexibility, suited to semantic
peculiarities of the addressed problem, but the flexibility is not totally open; it is
bounded. There are freedom, but with margins. In my view, this result represents a
suggestive contribution not sufficiently exploited by philosophers.

Another fascination caused by Zadeh’s fuzzy logic comes from the applications.
I think it’s a privilege to live the time in which emerge the applications from a loved
theory. Relating classical logic, a theory that I love too, I saw the birth of comput-
ers as domestic devices. Although Philosophy is not very concerned with applica-
tions, the emergence of computers provoked new fields of reflection, as Philosophy
of Mind, Body-Mind interaction, Philosophy of Technology or Philosophy of AI.
For anyone interested in logic, it was fascinating to make a tour from truth-values to
logic gates and circuits. In the same way, interested in fuzzy logic as I was, it was
exciting to found in newspapers advertisements of all types of appliances with the
label ’fuzzy logic controlled’, ’fuzzy logic powered’ or, even better, to know about
the first human voice-controlled helicopter, the prototype developed by Yamaha I had
the opportunity to see. Despite a promising start, I think that fuzzy logic applications
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have stalled in its most successful version: the control of industrial processes. In that
field there is a general consensus that fuzzy logic has got a notable success. The
achievements in control came from using few rules in order to manage complex sit-
uations in scenarios that, if approached by classical methods, need a lot of resources
to reach a similar result. But we must go a step further, guessing a problem in which
Zadeh’s fuzzy logic was essential; an application in which Zadeh’s logic is inevitable
for solving it. In some popular applications, fuzzy logic has been useful but not es-
sential: the same could be achieved with more means using other tools. Fuzzy logic
is essential to manage vague language; threfore, a genuine application will be some
in which vague language has a inevitable and irreplaceable role. Is not easy to find
a ’crucial’ application, but I guess it would be good for the advancement of fuzzy
logic.

Successful theories have shady areas, and fuzzy logic is no exception. Encouraged
by theoretical and applied progress, many researchers embarked on the road of carry
out a massive fuzzyfication of unexpected fields. But even if a subject admits to be
tackled from a fuzzy perspective, it does not mean that it is interesting to do so. The
extensive fuzzification contributes to the discredit of fuzzy logic. Some problems are
visited by fuzzy logic in an irrelevant way, both for the problem and for the fuzzy
logic: for the problem if it doesn’t demand a fuzzy solution; for fuzzy logic if the
provided solution is too local. As we previously said, fuzzy logic is local in the
universe, but not in the rules definition. The exaggerations in the fuzzification and
the mistake confusing local truth with ad hoc solutions led some logicians to speak
about fuzzy logic as a ’techno-logic’ instead of a true ’logic’. Fuzzy logic is both:
there is nothing wrong with logic to be applied if it has local applications based on
theoretical foundations.

It is usual to read in the Zadeh’s papers that vagueness is a common feature of
ordinary language and that it plays a relevant role in the common sense reasoning.
That is undoubtly a matter of fact, but it deserves to ask why. Traditionally, linguis-
tic vagueness has been associated to negative connotations and precision to positive
ones. Thus, a gesture of displeasure often accompanied an expression as “terribly
vague”, but a face of satisfaction is presumably shown whenever someone concludes
something with ’absolute precision’. If vagueness is negative and precision positive,
why natural language is full of vague language instead of precise words seems to be
a pertinent question. I have not any answer to this question but I think it would be
fruitful to inquiring on it. Perhaps it will be advisable to refer the answer to this ques-
tion both in a biological and in a cultural framework. Maybe that we use profusely
imprecise language because our neural or cognitive configuration is better suited to
the use of such words. Or maybe that we abundantly use vague words because we
obtain benefits or advantages in the communication process that could not otherwise
achieve. Perhaps both of these are the head and the tail of the same coin: a brain can
benefit imprecise communication and the success of vague words in imprecise com-
munication favors the neuronal structure that generates it, in a continuous feedback
that contributes to the better adaptation of the human species.
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It is known the Zeki’s paper on the neurology of ambiguity [8], but I don’t know
any similar work on the neurology of vagueness, only a small and peripheral para-
graph from W. Calvin who, in his coauthored book with D. Bickerton – Lingua ex
Machina. Reconciling Darwin and Chomsky with the Human Brain –, wrote: “na-
ture seems to like fuzzy edges, at least at the cellular level of organization. Precision
is accomplished with large committees redundantly trying to do the same task; pre-
cision is often an emergent property of enough imprecise neurons”. Unfortunately,
he did not elaborate more on this topic. I guess that in future neurobiology will
provide keys to progress in the question of why the vague language is so abundant.
Meanwhile, another way is to approach this issue from the advantages that the util-
ity of vague terms involves for communication. As R. Parikh showed in [5], even
though people does’t share the same extension of a vague predicate, its usage can
benefit communication, as their use significantly reduces the answer time to a ver-
bal request. Vague language, far from blocking or impeding the dialogue between
speakers, often becomes a ductile and useful strategy for the exchanging of messages.
Considering both cooperative and noncooperative games, several researchers show
that choosing a vague expression when communicating with the hearer is adapative.
There are situations in communication in which vagueness has a higher utility than
precision. Vagueness is perhaps frequent because it satisfyes some role in language,
either as a representative system or as a communication system. Vagueness is char-
acteristic of our cognitive and perceptive resources, helping to shape us as a species.
Cognitively, linguistic vagueness is often associated both with the limitations of our
memory and perceptive abilities. In general, humans are unable to remember many
things because we have a quite fragmented and fragile memory. Anyone could be
the actor of this story: Suppose you have read in a newspaper the exact number of
victims caused by the recent tsunami at Japan: 10.321. Perhaps for a moment you
can remember the exact figure, but surely after a few minutes, if no extra motivation
appear, that number would be distorted or simply wrong if someone request, again,
the exact information. Perhaps you would be able to approach it in terms of thou-
sands (10.000) or simply saying ’many’. Regarding perception, perhaps you are able
to remember an unfamiliar face a few moments after having seen it, but not perhaps a
few days later. Human memory and perception are quite limited and seem to have an
unstoppable tendency to the economy, to name approximately what is said or seen,
probably to make room for other things that are convenient to remember avoiding
the collapse. So, we can conclude that vagueness is a common and relevant factor of
our cognition, memory and perception.

As previously said, if vagueness is consubstantial to our cognitive and perceptual
apparatus, it should show utility. This happens, perhaps, when we have no well-
defined metrics or the metric are not participated equally, with similar skill, by the
agents of communication. Expressions such as ’high rate of oxigen saturation’ do
more than generalize the information contained in a precise measurement as ’81%’:
the word ’high’, easely understood by anyone, call for ’caution’, ’danger’, ’riskiness’.
If someone hears that a biological parameter is ’high’, he does not need to be a
doctor to know that his health needs care. In the dialogic process of communication,
not always a crisp figure from an expert carries usefulness for an ordinary person;
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in many cases, a vague word says much more about a situation and the actions to
be undertaken than the corresponding precise one. Vagueness, far from blocking
communication, favors it, avoiding the complexity that involves the use of a precise
metric (available equipment, calibration, optimal conditions of measurement, etc. . . ),
perhaps do not required in order to satisfy a goal. F. ex. in the context of deciding
the amount of medication that should be prescribed to a patient, it is often redundant
to know his exact weight. It is enough to discriminate if he is an adult or a child.
The use of a generic and unspecific word as ’adult’ has cognitive savings without
any penalization in the action, i.e., in the correct prescribed dose.

The relevance of vagueness in natural language justified the opportunity of Zadeh’s
fuzzy logic as a tool for modelling imprecise sentences and managing approximate
reasoning. Nevertheless, the concern about the vagueness is not from Zadeh. It can
be traced back to Aristotle who, in his Prior Analytics, said that a sentence as ’To-
morrow will be a naval battle’ is today neither true nor false. Although this sentence
was mainly involved with modal logic instead of fuzzy logic, it questioned the Biva-
lence Principle and, thus, it was considered the origin of the multiple-valued logics,
the germ of fuzzy logic. In the last centuty, was Russell in [6] who argued in favor
of the logical analysis of vagueness and Black [3] the first who made specific con-
tributions to its measurement with his consistency profiles, according to Dubois &
Prade [4], “the ancestors of the membership functions”. Zadeh was not the first that
dealt with vagueness, but was the pioner suggesting a measure of vagueness, in both
senses of quantifying the degree to which an element is a member of a fuzzy set and
how vague is that measure. This gave the chance to study vagueness differently, i.e.,
as a subject about which is possible to provide accurate models and compare them
in order to choose the most appropriate. In fuzzy logic the vague phenomenon is ap-
proached as fuzziness and, since them, two traditions in the study of the imprecision
emerges: the vagueness approach, followed by philosophers critics with fuzzy logic
as it disputes the clasical principles of Bivalence, LEM and so on; and the fuzziness
aproach, that promotes the study of vagueness as a matter of experimental research.
This approach is essentially followed by computer scientists and for some philoso-
phers do not tied by ontic presuppositions. In both traditions, either vagueness or
fuzziness, Zadeh played a key role.

Another marked feature of Professor Zadeh is the ability to baptize new fields.
’Fuzzy’ was certainly a lucky word to describe, so brief, the logic of vague pred-
icates. It’s a short and sonorous label. He promoted also, with great success, the
name ’Soft Computing’ to denote the set of methodologies that share the family re-
semblance of being models to represent and manage the imprecision and uncertainty
in daily language. More recently, he has avanced ’Computing with words’ to ad-
dress a new model of computation, using words instead of numbers; linguistic labels
instead of aritmetic functions. This is the latest but surely not the last invent from
Lotfi. Let me to make finally some comments about the name of this field.

’Computing with words’ is a sonorous label used by Zadeh to refer “a methodol-
ogy in which the objects of computation are words and propositions drawn from a
natural language, e.g., small, large, far, heavy, not very likely, the price of gas is low
and declining, Berkeley is near San Francisco, it is very unlikely that there will be a
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significant increase in the price of oil in the near future, etc”. Note that Zadeh’s ex-
amples focuse preferently on vague words or vague sentences. If vagueness is exclu-
sively what is adressed, we should employ more properly the expression ’computing
with vague words’ than ’computing with words’ to name this new field. Computing
with vague words is a part of computing with words, although probably the main part,
because the presence of vagueness in natural language is overwhelming. But natural
language includes more than vague words. Anaphora, presuppostion, ambiguities,
ellipsis, focus,. . . , are neither mainly crisp nor vague; have their own idiosyncrasies
and requires its own tools for representing and managing the sentences in which they
appear. In language, the dichotomy crisp/vague is too thick.

A not uncommon order in natural language is, f. ex., ’safely close the valve presu-
poses to close before the previous one’. This sentence does not include vague words,
only time and presuppositional aspects, but yet we can reasonably say that, if we
represent this sentence in a way amenable by a computer, we are doing ’computing
with words’. Computing with vague words is a specific task for fuzzy logic, but the
language, in its attempt to denote reality -whatever it is-, uses everything at hand
(vagueness, time, presupposition,. . . ) with no veto to any particular lexico. Comput-
ing with vague words will be a main part of computing with words, but computing
with words is not limited exclusively to computing with vague words.

Finally, let me make a brief sketch of Zadeh. Lotfi Zadeh has been a revolu-
tionary. He has changed the face of logic and computation and he has introduced
vagueness in the contemporary philosophical debate. His contributions are part of
modern Artificial Intelligence and his thoughts a legacy of creativity and depth. I’m
very honored for contributing with this short paper to highlith this qualities and I
thanks to the editors of this book for making me a partner of this initiative.

Fig. 92.2. Santiago Fernández Lanza, Alejandro Sobrino, Lofti A. Zadeh, Senén Barro and
José Angel Olivas in the ISMVL ’96, held in Santiago de Compostela, Spain
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What Is the Source of Fuzziness?

John F. Sowa

Fuzziness is characteristic of the way people use natural languages. Over the
centuries, philosophers, linguists, and logicians independently discovered and com-
mented on many aspects of fuzziness, but without a common foundation for orga-
nizing and relating their discoveries. In their historical survey, Dubois, Ostasiewicz,
and Prade [2] cited numerous examples:

Looking back in time, what is really amazing is the diversity of fields, where
intuitions about fuzziness were expressed and more or less formalized, and
the number of scientists who participated to the emergence of the fuzzy
set concept. Also it is surprising to see how long it took before such a
simple, although powerful, idea of graded membership, could be cast into a
proper, widely accepted mathematical model, due to the far-ranged vision,
the tenacity, and the numerous seminal papers of Lotfi Zadeh.

Dubois et al. presented a thorough survey of the mathematical methods for quan-
tifying and computing with and about fuzziness. Zadeh [14] identified fuzzy logic
and “computing with words” (CWW). Mendel, Zadeh, and others [6] discussed the
challenge of relating the CWW methodology to the semantic issues in linguistics and
the technology for natural language processing (NLP). This article surveys the issues
and suggests some ways for relating them.

93.1 Fuzziness in Language

According to Heraclitus, panta rhei – everything is in flux. But what gives that flux
its form is the logos – the words or signs that enable us to perceive patterns in the
flux, remember them, talk about them, and take action upon them even while we
ourselves are part of the flux we are acting in and on. Modern physics is essentially
a theory of flux in which the ultimate building blocks of matter maintain some sem-
blance of stability only because of conservation laws of energy, momentum, spin,
charge, and more exotic notions like charm and strangeness. Meanwhile, the con-
cepts of everyday life are derived from experience with objects and processes that are
measured and classified by comparisons with the human body, its parts, and its typi-
cal movements. Yet despite the vast differences in sizes, speeds, and time scale, the
languages and counting systems of our stone-age ancestors have been successfully
adapted to describe, analyze, and predict the behavior of everything from subatomic
particles to clusters of galaxies that span the universe.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 645–652.
DOI: 10.1007/978-3-642-35644-5_93 © Springer-Verlag Berlin Heidelberg 2013
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With such a vast range of topics, no language with a finite vocabulary can have a
one-to-one mapping of words to every aspect of every topic. Vagueness is not only
inevitable, it is necessary for language to be robust, flexible, and extensible. Dubois
et al. cited the logician, philosopher, and scientist Charles Sanders Peirce as “one of
the first scholars in the modern age” to point out the importance of vagueness. Peirce
wrote a succinct summary of the issues:

“It is easy to speak with precision upon a general theme. Only, one must
commonly surrender all ambition to be certain. It is equally easy to be cer-
tain. One has only to be sufficiently vague. It is not so difficult to be pretty
precise and fairly certain at once about a very narrow subject.” [8, 4.237]

The narrow subjects for which precision is possible are ones that the speakers or au-
thors selected for a specific purpose. In writing dictionary definitions, lexicographers
start by defining the most typical examples, such as a chair with a back and four legs.
Then they list exceptions that deviate from the type for various reasons. To illustrate
that practice, Lehmann and Cohn [5] drew egg-yolk diagrams such as Figure 93.1.
Typical chairs are shown in the yolk, unusual chairs are in the egg white, and things
that might be used as chairs are just outside the egg.

Fig. 93.1. An egg-yolk diagram for the word chair
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The boundaries of the egg and egg-yolk of Figure 93.1 resemble the level cuts
by Bandler and Kohout [1]. The level 0.9, for example, could be chosen for the
boundary of the yolk, which partitions the most typical chairs from the ones that
omit or modify some typical characteristics. The level 0.6 could be chosen for the
outer edge of the egg. The toilet on the edge of the egg in Figure 93.1 would have
that value. The footstool and the stairs, which are just outside the egg, would have
values slightly less than 0.6. Yet those numbers by themselves cannot distinguish
the significant differences between a folding chair, a rocking chair, a wheelchair,
and a chair that has wheels at the bottom of a pod. The numbers are important for
computing with words, but the reasons why those chairs differ from typical chairs are
also important. Mendel et al. [6] noted “Numbers alone may not activate the CWW
engine.”

In the 19th century, William Whewell and John Stuart Mill debated the methods
for representing and reasoning about variability. Whewell [10] described the practice
of biologists, who base their classifications on a type specimen for each species and
a type species for each genus:

Natural groups are given by Type, not by Definition. And this consideration
accounts for that indefiniteness and indecision which we frequently find in
the descriptions of such groups, and which must appear so strange and in-
consistent to anyone who does not suppose these descriptions to assume any
deeper ground of connection than an arbitrary choice of the botanist. Thus
in the family of the rose tree, we are told that the ovules are very rarely erect,
the stigmata usually simple. Of what use, it might be asked, can such loose
accounts be? To which the answer is, that they are not inserted to distin-
guish the species, but in order to describe the family, and the total relations
of the ovules and the stigmata of the family are better known by this general
statement....
Though in a Natural group of objects a definition can no longer be of any use
as a regulative principle, classes are not therefore left quite loose, without
any certain standard or guide. The class is steadily fixed, though not pre-
cisely limited; it is given, though not circumscribed; it is determined, not by
a boundary line without, but by a central point within; not by what it strictly
excludes, but by what it eminently includes; by an example, not by a precept;
in short, instead of a Definition we have a Type for our director. [10, vol. 2,
pp. 120–122]

Mill [7] dropped the assumption of necessary and sufficient conditions, but he still
assumed that types are defined by a set of features or characters stated in words. He
weakened the requirements to a preponderance of defining characters:

Whatever resembles the genus Rose more than it resembles any other genus,
does so because it possesses a greater number of the characters of that genus,
than of the characters of any other genus. Nor can there be the smallest
difficulty in representing, by an enumeration of characters, the nature and
degree of the resemblance which is strictly sufficient to include any object



648 93 What Is the Source of Fuzziness?

in the class. There are always some properties common to all things which
are included. Others there often are, to which some things, which are nev-
ertheless included, are exceptions. But the objects which are exceptions to
one character are not exceptions to another: the resemblance which fails in
some particulars must be made up for in others. The class, therefore, is con-
stituted by the possession of all the characters which are universal, and most
of those which admit of exceptions. [7, p. 277]

Both Whewell and Mill assume a range of variability in nature, but they propose
different ways of measuring it. Instead of “a boundary line without,” Whewell sug-
gested “a central point within.” But that criterion would require some measure of the
distance between any instance and the type specimen. Instead of using a specimen,
Mill defined his measure of similarity by enumerating the “characters” of a defini-
tion. In theory, Whewell’s method is closer to nature, since it is based on a specimen
taken from nature. In practice, both methods are based on words. Whewell uses de-
scriptions of specimens, and Mill uses definitions abstracted from the descriptions.
Whewell’s method is one step closer to nature, but it depends on the words that
biologists choose to describe nature.

The psychologist Eleanor Rosch wrote her bachelor’s thesis on Wittgenstein’s
classification by family resemblance and her PhD dissertation on its psychological
basis. Rosch and Mervis [9] concluded that family resemblances characterize “pro-
totype formation as part of the general process by which categories themselves are
formed.” They cited Zadeh [13], but their analysis is closer to Whewell and Mill.
They agree with Whewell that prototypes are the basis for classification. But they
also give some support to Mill because the prototypes that people naturally choose
are the ones that have the largest number of attributes or resemblances that character-
ize the category. These observations suggest that the cognitive basis for classification
is a fuzzy kind of similarity, not rigid definitions or identity conditions. But if hu-
man thought is ultimately fuzzy, how is precise reasoning possible in science and
mathematics?

Unlike Rosch and Mervis, who searched for a cognitive source of fuzziness, Im-
manuel Kant [4] maintained that the open-ended variability of nature is the cause of
fuzziness:

Since the synthesis of empirical concepts is not arbitrary but based on ex-
perience, and as such can never be complete (for in experience ever new
characteristics of the concept can be discovered), empirical concepts cannot
be defined. Thus only arbitrarily made concepts can be defined syntheti-
cally. Such definitions ... could also be called declarations, since in them
one declares one’s thoughts or renders account of what one understands by
a word. This is the case with mathematicians. [4, §103, p. 219], [3, p. 142]

In short, a precise definition is only possible when the author has complete control
over the subject matter. But all authors control their subject to some extent. The
critical questions are how, why, and to what extent.
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93.2 Mathematical Language

Most mathematicians and logicians pay little attention to vagueness in ordinary lan-
guage because their language is not vague. They are careful to use consistent defi-
nitions within a single document, but they often use different definitions in different
documents. Therefore, mathematicians cite or restate the critical definitions and as-
sumptions in every publication. Even the word number, the most fundamental in
all of mathematics, has a long history of definitions that evolved over the centuries.
Figure 93.2 shows an egg-yolk diagram for the many meanings of the word number.

Fig. 93.2. An egg-yolk diagram for the word number

The yolk of Figure 93.2 shows the positive integers, which were discovered or
invented by our-stone age ancestors. The egg white includes generalizations that
can be mixed with the integers in the common arithmetic operations: rational num-
bers, irrational numbers, zero, negative numbers, and various encodings designed
for computers. On the border or outside the egg are mathematical systems that use
some of the mathematical operators, but with more variations. All these things called
numbers share a family resemblance, as Wittgenstein [11] said:

Why do we call something a “number”? Well, perhaps because it has a direct
relationship with several things that have hitherto been called number; and
this can be said to give it an indirect relationship to other things we call
by the same name. And we extend our concept of number as in spinning
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a thread we twist fibre on fibre. And the strength of the thread does not
reside in the fact that some one fibre runs through its whole length, but in
the overlapping of many fibres. [11, §67]

Wittgenstein used the word Sprachspiel (language game) for various ways of using
language. He compared the words of language to the pieces in a game of chess. The
rules of chess are as precise as any version of mathematics, but some people define
new rules that use the same pieces in a different way. In mathematics, the oldest
games with numbers are counting, simple arithmetic, bookkeeping, and banking.
But mathematicians have used the same symbols for different games, as Figure 93.2
illustrates. In each game, precision is possible because all the players agree to a fixed
set of rules for using a fixed set of symbols or pieces. The word number has a precise
meaning in each game, but when taken out of context, the word is ambiguous.

93.3 Relating Patterns to Patterns

When words are used to express novel experiences, they acquire new meanings or
senses. But words seldom occur in isolation. They normally occur in larger pat-
terns in which the senses of multiple words shift in a systematic way. Telephones,
for example, led to new patterns for the words talk, call, and conversation. Cell
phones enabled new patterns of activities, which led to further shifts in the senses
of the words that express them. Smart phones combine those patterns with modified
patterns of words for activities related to cameras, computers, GPS location, maps,
games, television, and shopping. At each stage, old words are used in novel combi-
nations, such as cell phone and smart phone. But even words that occur in the old
lexical patterns acquire new senses from the novel activities they express.

In science, collections of patterns form theories. In other fields, they are called
models, blueprints, project plans, or syndromes. Whatever they’re called, collections
of patterns are expressed in notations for which precision is important. Yet scientists
are always aware of the experimental error, which they try to limit by carefully con-
trolled experiments. Engineers express their frustration in a pithy slogan: All models
are wrong, but some are useful. To bridge the gap between theories and the world,
Figure 93.3 shows a model as a Janus-like structure, with an engineering side facing
the world and an abstract side facing the theories. On the left is a picture of the physi-
cal world, which contains more detail and complexity than any humanly conceivable
model or theory can represent. In the middle is a mathematical model that repre-
sents a domain of individuals D and a set of relations R over individuals in D. If the
world had a unique decomposition into discrete objects and relations, the world itself
would be a universal model, of which all accurate models would be subsets. But the
selection of a domain and its decomposition into objects depend on the intentions of
some agent and the limitations of the agent’s measuring instruments. Even the best
models are approximations to a limited aspect of the world for a specific purpose.
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Fig. 93.3. Relating a theory to the world

The two-stage mapping from theories to models to the world can reconcile a
Tarski-style model theory with the fuzzy methods pioneered by Lotfi Zadeh. In
Tarski’s models, each sentence has only two possible truth values: true, false. In
fuzzy logic, a sentence can have a continuous range of values from 0.0 for certainly
false to 1.0 for certainly true. Hedging terms, such as likely, unlikely, very nearly
true, or almost certainly false, represent intermediate values. The two-stage mapping
of Figure 93.3 makes room for both kinds of reasoning: a rigorous two-valued logic
for evaluating the truth of a mathematical theory in terms of a model; and a contin-
uum of fuzzy values that measure the suitability of a particular model for a specific
application. Such two-stage mappings have long been used in science and engineer-
ing: a strict two-valued logic for mathematical reasoning, and a continuum of values
for quantifying experimental error and degree of approximation.

As Peirce said, “Logicians have too much neglected the study of vagueness, not
suspecting the important part it plays in mathematical thought” ( [8], 5.505). In that
same section, he said that the defining characteristic of a vague sentence is a violation
of the law of contradiction: if the sentence s is vague, both s and not s can be true.
Zadeh drew the following distinction [6]:

Fuzzy relates to un-sharpness of class boundaries, while vagueness relates
to insufficient specificity. As an illustration, “I’ll be back in a few minutes”
is fuzzy, but not vague. While “I’ll be back sometime” is both fuzzy and
vague... Usually, what is vague is fuzzy, but not vice-versa.

In practice, the word sometime often becomes never. With that qualification, Zadeh’s
examples are consistent with Peirce’s criterion. But Peirce also distinguished vague-
ness from generality. For example, the general word animal is underspecified in
comparison to raccoon or beaver, but it’s not vague.
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In summary, Lotfi Zadeh should be congratulated for introducing a fruitful
paradigm that has stimulated a large body of research with many valuable
applications.

The CWW methodology has introduced new ways of analyzing language and
applying computable algorithms. But the discussions in the article by Mendel et
al. [6] show that CWW is unrelated to current linguistic research. More collaboration
could help both fields clarify the sources of fuzziness.
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Vague Computing Is the Natural Way to Compute!

Apostolos Syropoulos

94.1 Introduction

Typically, when a computer performs a task, it can be seen as a calculation or a
reckoning. For example, consider a simple arcade video game where the machine
continuously gets input from the user and computes the new position of some “char-
acters” that move on a board, etc. A particularly interesting aspect of computation is
that the majority of people understand it as an exact function. Nevertheless, this is an
excessive expectation or requirement, depending on how one perceives computation.
In particular, users expect computer programs to deliver exact results while computer
programmers work under the assumption that everything is precisely defined and no
vagueness arises anywhere. But is this a reasonable assumption?

The answer to this question is not a simple one. For instance, we are success-
fully using computers that operate in a precise manner for many years and we have
achieved much with these devices. Or is this an oversimplification of what actually
happens in reality, whatever this may mean? Obviously, digital computers execute
software in the expected way as long as hardware operates within some tolerance
range. So one may be tempted to say that everything related to computers is based
on an illusion or a rough assumption. One may argue that this is an exaggeration,
nevertheless, it is a view that may help us understand things differently.

Vagueness is widely accepted to characterize terms that, to some extent, have bor-
derline cases, that is, a case in which it seems impossible either to apply or not to
apply a vague term. The Sorites Paradox, which was introduced by Eubulides of
Miletus, is a typical example of an argument that shows what it is meant by border-
line cases. The term sorites derives from the Greek word soros, which means “heap.”
The paradox is about the number of grains of wheat that make a heap. All agree that
a single grain of wheat does not comprise a heap. The same applies for two grains of
wheat, three grains of wheat, etc. However, there is a point from which the number
of grains becomes large enough to be called a heap, but there is no general agreement
as to where this occurs, hence the paradox.

In general, there are everyday objects and activities that seem to be exact, yet they
are vague! For example, “[e]xperience has shown that no measurement, however
carefully made, can be completely free of uncertainties” [15, p. 3]. Remarks like
this one may have some “unexpected” consequences. For instance, one might go as
far as to argue that vagueness is the norm and exactness the exception! If this is not
an exaggeration, which is not as I will show later on, then one could reasonably argue
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that many, if not most, things are vague by definition. Thus, one should be able to
employ vagueness in computation or, even, she should to be able to perform truly
vague computations, whatever that may mean.

94.2 What Is Vagueness?

Bertrand Russell [9] was perhaps the first thinker who had given a definition of
vagueness: “Per contra, a representation is vague when the relation of the repre-
senting system to the represented system is not one-one, but one-many.” According
to this view, a photograph that is so smudged that it might equally represent three dif-
ferent persons is vague. Building on Russell’s ideas Max Black [2] had argued that
most scientific theories, computability theory included, are “ostensibly expressed in
terms of objects never encountered in experience.” Black [2] proposed as a defini-
tion of vagueness the one given by Charles Sanders Peirce: “A proposition is vague
when there are possible states of things concerning which it is intrinsically uncertain
whether, had they been contemplated by the speaker, he would have regarded them as
excluded or allowed by the proposition. By intrinsically uncertain we mean not un-
certain in consequence of any ignorance of the interpreter, but because the speaker’s
habits of language were indeterminate.” According to Black, the word chair demon-
strates the suitability of this definition. But it is the “variety of applications to objects
differing in size, shape and material” that “should not be confused with the vagueness
of the word.” In different words, vagueness should not be confused with generality.
Russell and Black had argued against this misconception. A term or phrase is am-
biguous if it has at least two specific meanings that make sense in context. Thus, one
should not confuse ambiguity with vagueness.

It is widely accepted that there are three different expressions of vagueness [11]:

Many-Valued Logics and Fuzziness. Borderline statements are assigned truth- val-
ues that are between absolute truth and absolute falsehood. In the case of fuzzi-
ness, truth-values are usually drawn from the unit interval.

Supervaluationism. The idea that borderline statements lack a truth value.
Contextualism. The truth value of a proposition depends on its context (i.e., a per-

son may be tall relative to American men but short relative to NBA players).

94.3 From Exact Computing to Fuzzy Computing

Conceptual computing devices are idealizations of tools that can perform computa-
tions. However, these idealizations tend to overlook details concerning the process
of computation. This is exactly where vagueness, in general, and fuzziness, in partic-
ular, comes into play. I will try to be more specific by presenting two exact models
of computation, namely Turing machines and P systems, and how one can easily
fuzzify these models. Let me start with Turing machines, which are considered to be
the archetypal model of computation.
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Turing machines were introduced by Alan Mathison Turing [16] in order to give
a formal definition of the notion of computation. In addition, the machine was used
in order to give an answer to the entscheidungsproblem posed by David Hilbert (i.e.,
a problem that can be answer with yes or no, in different words a decision problem).
Typically, a Turing machine consists of an infinite tape, a controlling device, and a
scanning head. The tape is divided into an infinite number of cells. The scanning
head can read and write symbols in each cell. The symbols are elements of some
set Σ . At any moment, the machine is in a state qi, which is a member of a finite
set Q. What should happen next depends on the symbol just read and the current
state and this is hardwired into the controlling device. If no action has been specified
for a particular combination of state and symbol, the machine halts. Tuples that
conditionally describe the next action are called configurations.

At this point, it is rather interesting to note that Carole E. Cleland [3] has con-
cluded that “Turing machines may be characterized as providing procedure schemas,
i.e., temporally ordered frameworks for procedure.” In addition, she has claimed that
“Turing machine instructions cannot be said to prescribe actions, let alone precisely
describe them.” Based on these one could argue that Turing machines are not com-
puting devices. Surely, this is an exaggeration, nevertheless, it clearly shows that this
model of computation is not as well-thought-of as it was always considered to be.
Furthermore, Cleland has argued against the idea that Turing machine “symbols” are
genuine symbols.

Such remarks and conclusions clearly show that the Turing machine model of
computation is implicitly vague. Thus, it does make sense to explicitly introduce
vagueness into this model. Indeed, first Lotfi A. Zadeh [17] vaguely described a
fuzzy Turing machine where configurations form a fuzzy subset. Based on Zadeh’s
ideas, Eugene S. Santos [10] had formally defined fuzzy Turing machines. The evo-
lution of fuzzy Turing machine, in particular, and fuzzy computing devices, in gen-
eral, is described in a forthcoming book by this author [13].

P systems is a model of computation that was introduced and popularized by Ghe-
orghe Păun [8]. P systems are conceptual computing devices made up of nested
compartments surrounded by porous membranes that define and confine these com-
partments. Initially, each compartment contains a number of possibly repeated ob-
jects, that is, a multiset of objects. When “computation” commences, compartments
exchange objects according to a number of multiset processing rules that are associ-
ated with each compartment. The activity stops when no rule can be applied. The
result of the computation is equal to the number of objects that reside in a designated
compartment called the output membrane.

As in the case for Turing machines, one can easily see that vagueness is part of this
machinery. First, one can never be sure that membranes contain exact copies of some
object—it is more reasonable to expect copies to be similar. Also, one may argue
that the rules should not be exact, but should give an “outline” of what may happen.
These and other aspects of P systems have been studied by this author [12, 14].
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94.4 The Need for Fuzzy Computing

Unfortunately, the notion of uncertainty is considered by many to be almost equiv-
alent to vagueness, which, of course, is wrong. This is one reason why there is a
debate over the superiority of either fuzzy set theory or probability theory to repre-
sent vagueness. Clearly, this debate is far from settled. Basically, there are three
views—one that naturally claims that fuzzy set theory has nothing new to offer,
one that advocates that fuzzy sets and probabilities are two facets of uncertainty
(e.g., see [18]), and one that assumes that fuzziness is a fundamental property of our
world. There is no question that the first view is deeply flawed. The second view is
also problematic, since it considers vagueness and uncertainty to be the same thing.
The third view, is, in my eyes, the most reasonable approach. In particular, when I
say more fundamental, I mean that most, if not all, natural processes can be char-
acterized as vague, while probabilities are “theoretical quantities which, once the
sets and the measure functional on those sets are chosen (‘the model’), are capable
of being calculated exactly and are perfectly definite (real) numbers which contain
no reference to chance” [4, p. 45]. Last, but certainly not least, Bart Kosko [7] has
also convincingly argued that fuzzy set theory is more fundamental than probability
theory.

One reasonable question that may pop on one’s mind is the following: If vague-
ness is a fundamental property of our world, how should this affect the way we
compute? First, let me stress that until now vagueness was not taken under consid-
eration by any computing device. Engineers have employed various techniques in
order to ensure that a “digital logic” is correctly implemented, yet they did so using
vague constituents! Next, one could argue that just like probabilities are employed
in ordinary (aka crisp) computer programs, one could analogously use fuzziness in
crisp programs. Indeed, one can implement fuzzy databases, fuzzy programming
languages, etc. [6]. Nevertheless, this approach has a serious drawback—it implic-
itly implies that vague computing can be implemented in machines that operate in
an “exact” manner. So, if vagueness is a fundamental property of our world, why
should we add an artificial layer to perform vague computational tasks? The answer
is not easy, but the reason for this apparent disparity lies in the way we have learned
to think. From ancient times, people tried to think in terms of pure and precisely de-
fined objects. In addition, simple things such as reckoning were considered precise
operations. For example, two plus two equals four since when one has two sheep and
gets two more sheep, she has four sheep in the end. However, what happens when
one exchanges two really well-fed animals with two starving animals? In principle,
she still has four animals, but they are not the same! Thus, one can argue that even
arithmetic is the result of an oversimplification. In different words, exactness should
be considered as a limit case and vagueness the norm and not the other way around!

From the discussion so far one may wrongly deduce that there is no fuzzy hard-
ware when, in fact, a good number of researchers is working in the design and con-
struction of real fuzzy hardware.1 Although there is fuzzy hardware, there is nothing

1 For example, see [5] for a not so up-to-date account of fuzzy hardware.
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that can be classified as a general purpose fuzzy computer. Nevertheless, it is more
than necessary to build such a machine in order to be able to fully exploit vagueness
in computing. I expect that such machines will be able to solve more easily every-
day problems that concern ordinary people. Since such machines should be equipped
with the analog of an operating system and the corresponding tools for programming,
editing, etc., more research on fuzzy programming and computing should be carried
out. For instance, the work on the definition of a fuzzy version of the λ -calculus
by Daniel Sánchez Alvarez and Antonio F. Gómez Skarmeta [1] can be seen as step
towards this goal.

Fig. 94.1. Artistic impression of a fuzzy computer. Original drawing by Nikos Amiridis; post-
processing with gimp by Apostolos Syropoulos.
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Fuzziness: Came for the View, Stayed for the Same

Marco Elio Tabacchi

95.1 How I Met Fuzziness

The first time I came across Fuzzy Sets, my first point of contact with Soft Comput-
ing, I was a young and inexperienced student of Computer Science in my hometown
University. I had just completed the first semester, and as an aside of an image
processing curriculum a loud-spoken, very kinetic lecturer spent a couple of hours
introducing us to the mysteries of the idea of degree and Fuzzy arithmetic. The whole
thing had a sort of secret sect bent, something like the secret tools that the powers
to be don’t want you to know and use – a probably unwitting attitude I have seen
many times in the community and that has harmed more than helped, but that on
an unexperienced and young student as myself undeniably had a major fascination.
Such fascination was further built up the same day, when during a routinary trip to
the main street bookstores I found on the Popular Science shelf an italian copy of
Kosko’s Fuzzy Thinking [2]. The coincidence seemed odd, so I bought the book
which is in my bookshelf yet and whose first two chapters I still use as student’s ma-
terial for my AI course, skimmed from the occasional psychobabble here and there –
but hey! what should I have expected from something published by Disney Books?
I swallowed the book whole and in the following days I tackled the lecturer and ex-
pressed my enthusiasm for the field and my appreciation for the elements of oriental
philosophy behind the idea. He slapped me in the head, and with the soft voice of
thunder explained me that the real deal was in the applications, and how the new
concept was perfect for describing phenomena that were much more complicated to
describe otherwise and for operating on them without resorting to the intricacies of
calculus. To demonstrate the point he told me his ideas for a picture search engine
based on fuzzy distances – we were years from google image back then, or even
google itself. This idea resonated with my passion for images, as in a previous pro-
fessional life I was a fine artist, and from this meeting started my first collaboration
to a published scientific paper. My work with the boisterous Vito Di Gesù contin-
ued for the following ten years, first as his student and then as a collaborator, and
all of our common research was focused on applying soft computing methodologies
to classification problems in arts and cognitive science, the label under which I had
then switched my research.

In the meantime I become the Scientific Director at Istituto Nazionale di Ricerche
Demopolis, and once again Soft Computing showed its bacon-saving properties. In
demoscopic research one of the classic “huge pains” is the analysis of so called open
modalities, or the kind of response to a question where the subject can freely express
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opinions using natural language and is not restricted to a serie of choices. This free-
dom brings, as in many other language related problems, a thick layer of complexity,
only aggravated by the sheer multiplicity of contexts – as any subject can choose to
use adjectives, phrasal verbs, entire wikipedia entries and the like – and the cardinal-
ity effect – a typical poll during election weeks ranges between 20k and 30k subjects.
We were able to build a tool that fully exploits Fuzzy Sets Theory’s power of repre-
sentation to discover at a glance powerful connections between opinions expressed
in natural language for a wide range of topics.

The untimely demise of Vito left me without a Fuzzy context for a little while,
but proving that sometimes lightnings can really strike twice, Settimo Termini of
Fuzzy Entropy fame [1] took me as a collaborator. Settimo is a physicist by training,
as Vito was, but his familiarity with both the “two words” of human knowledge
and his sensibility toward the foundational problems of uncertainty have added a
new dimension to my research in Fuzzy Sets. Along the scientific guidance, which
is (appropriately) unmeasurable, Settimo also introduced me to a number of very
interesting people, confirming that you only can do science you like with people
you like. Any list would make omnifarious omissions, but I like to mention Enric
Trillas and Claudio Moraga, Rudi Seising, pictured in Figure 1 along Settimo during
the second edition of the Saturday’s Scientific Conversations, and through him the
Californian wave, people such Ron Yager. Plus I got the honour of being introduced
for the first time to the grandpa of the science himself, Lotfi Zadeh – twice!

I now see applications of Fuzzy Set Theory, such as the work we have recently au-
thored on Esthetic evaluation and Fuzziness, more as a step toward a more coherent
theory of uncertainty, which considers not only degrees of ownership and composi-
tion thereof, but the inherent imprecision of (our representations of) things, and the
pervasiveness of such concept not only in the more traditional human science, where
this is somehow taken for granted, (a malicious person here would specify that this is
not true, and that the recent trend of trying to fit the so-called exact sciences’ models
to humanities has brought disgrace and discredit to both – we state confidently that
33.3% of people like Brand X and then are surprised when opinion polls botch elec-
tions after elections, but I don’t feel evil at the moment) but also in hard science such
as engineering and computing. These years spent in Fuzziness research have surely
widened my views on uncertainty, and changed my expectations about what precise
measurement can really yield -and why this can be a blessing. This is the message I
think is worth passing along to students.

95.2 Where Is Fuzziness Going. . .

The view from my window on Fuzziness is exactly as vast in scope and exciting in
perspective as the one I see when approached this world for the first time. What
fifteen years of research in Soft Computing, countless discussions with mentors, col-
leagues and students, and even more conferences brought to the plate is a more gen-
eral approach to the problem. Some reflections of Settimo Termini [7], on which I
have recently collaborated [9], are worth briefly mentioning here.
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Fig. 95.1. SSC 2011 - Left to right: Seising, Trillas, Termini, Moraga. I am the camera.

95.2.1 A Shift from Fuzziness to Vagueness and Uncertainty

Some changes in our ontologies have forced us to consider something new: Fuzzy
Sets cannot, alone, model vague predicates in a general sense. Terricabras and Tril-
las have nailed the complete aptness of Fuzzy Sets for representing vagueness in
extensional terms using traditional mathematical means [6], but Pultr [4] has demon-
strated that while Fuzzy Sets theory is enriched with a non trivial representation, it
is not powerful enough to really represent vagueness and Uncertainty in an universal
fashion. As such, in the next years we should see a shift from the concept of mem-
bership to more constructive approaches such as Vopenka’s AST [10] or Beeson’s
PST [8].
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95.2.2 The Formalization of a Rigorous Notion of Vagueness

We must look for new, different ways of abstracting away: ways that allow the notion
of vague predicates to work as well as it informally works in natural languages, and in
everyday routine of scientists, without, if possible, losing the representational power
of Fuzzy Sets.

95.2.3 The Re-weakening of Borders between Disciplines

Seising has shown how the “the absence of strict boundaries” has influenced the
development of disciplines in the last century [5]. Such boundaries have been unfor-
tunately rebuilt, especially between hard and soft sciences, but we continually find
analogies between art and technology, showing that the similarities between techno-
logical devices and products of art can be stronger than the ones between science
and technology [3]. In the coming years the search for even more similarities and
analogies should definitively raze such borders to the ground.

95.3 . . . and What We Should Do to Bring It There

Many things, obviously. In this brief recollection of ideas I would like to concentrate
only on two complementary points, which in my opinion really should be discussed
more and brought to the front of the actual debate on how to find the right place for
Soft Computing, Fuzzy Sets Theory and the other methodologies pertaining uncer-
tainty in science. It may seem a bit contradictory to foretell going beyond Fuzziness
while at the same time hoping for it to be taught everywhere, but the contradiction
is only apparent. In my opinion, only by creating in the minds of the people at large
a familiarity with the basic concepts of Fuzziness we can then have further advance-
ments at the high end of the research spectrum.

95.3.1 Teaching Fuzzy Logic in School

The introduction of Set Theory in schools have certainly changed the way children,
and then adults, perceive the basic mathematical concepts, and have decisively fa-
cilitated for more and more people the grasp of basic elements of logic, something
which really makes a difference in the way lives are lead. Now it would probably be
the right time to supplement this knowledge with a small Fuzziness module. A deep
understanding of Fuzzy Sets and Logic seem really to be easy to attain for children:
all basic concepts are easy to grasp due to their natural derivation, and even easier
to illustrate graphically (the great power of representation of Fuzzy Sets has always
been one of the strong suits of the field). Even Computing with Words can proba-
bly be simplified enough to become easily transferrable to children. Such approach
should be preceded by ample testing on both adults and children but I am optimistic
this could be done with success in a reasonable amount of time: in an unpublished
pilot research study in 2002 we have worked on testing the ability of naive young-
sters to understand the basic concept of Fuzzy Logic and its operators using different
representations, with promising results.
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Fig. 95.2. Marco Tabacchi presenting at the 8th WILF International Workshop in Fuzzy Logic
2009, Palermo, Italy, June 9-12, 2009

95.3.2 Establishing University Courses in Fuzzy Logic, Fuzzy Sets Theory
and Uncertainty

Even in a context such as Academia, where Fuzzy Logic is born and breed, Fuzzi-
ness is relegated to a sideline, often being nothing more than an addendum to other
courses. Electronic engineers deal with standard controls and then introduce fuzzy
control as an improvement, advanced courses in logic spare some hour for Fuzzy
Logic, the occasional Computational Methods course has a couple of lectures dealing
with Soft Computing, Quantum Fuzziness is sometimes taught in Quantum Comput-
ing curricula. This is really a pity – today the study of uncertainty from a logic and
computational standpoint is a mature science, with a heavy load of applications, a
sound theoretical foundation and a bright future in expansion. Any CS, EE or VSSP
degree would clearly profit of a specific course dealing with uncertainty. When I
researched this paper, I could only find one University level course in Italy specifi-
cally dedicated to Fuzziness (at Milano’s Statale), and no-one in Spain (though this
may be in part alleviated by ECSC and its links with Oviedo and other universities).
For what else I know situation in other european countries such as France is not that
different. Promoting courses which explicitly deal with uncertainty would prepare a
new class of degree holders with instruments to tackle a lot of real world problems
in a more natural way, and to better deal with the part of our surrounding complexity
due not to the our inability to measure precisely, but to the intrinsic impossibility to
measure. In the hyper-technologic era we are living trough, this would certainly be
a good thing.
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On Fuzziness in Complex Fuzzy Systems

Dan E. Tamir, Mark Last, and Abraham Kandel

96.1 Prologue

Abraham Kandel, one of the pioneers of fuzzy logic research, has numerous theo-
retical and practical contributions in the field of fuzzy systems. Mark Last’s main
contribution to the field of fuzzy logic includes the introduction of fuzzy based auto-
matic perception and info fuzzy networks. Dan Tamir has been active in the area of
formalization of axiomatic fuzzy logic and in applications of fuzzy logic in pattern
recognition. One of the recent research threads pursued by Kandel, Last, and Tamir
is complex fuzzy logic. This chapter provides a brief review of the contribution of
the authors to the field of fuzzy logic as well as a survey on current state of the theory
of complex fuzzy sets, complex fuzzy classes, and complex fuzzy logic.

In 1973 Kandel has published his work on minimization of fuzzy functions and
the formal definition of the fuzzy algebra as an extension to the classical Boolean al-
gebra [13]. That paper has been the initial stage of investigating the subject of fuzzy
switching and automata [15]. Later, the theory established in [13], [15] has resulted
in the applicability of the theoretical developments discussed in [14,16,17]. In 1978
the proceedings of the IEEE published his paper on fuzzy Sets [14]. This has been
the first time that this archival journal has accepted any work in the subject of fuzzy
sets and/or fuzzy logic. References [16] and [17] followed in 1982 and 1986, respec-
tively, representing Kandel’s work on fuzzy techniques in pattern recognition. Refer-
ence [17] has also been used in many graduate courses and short seminars around the
world. The educational efforts using reference [17] aimed to show how fuzzy math-
ematics and its applications – from the simplest notions of fuzzy sets and fuzzy logic
to the complex ideas of fuzzy functions, fuzzy statistics, fuzzy relations and their ap-
plications as developed by Kandel – is indeed a great source of joy and practicality.
In the prologue to reference [17] Professor Lotfi Zadeh says: “Although there is ex-
tensive literature on the theory of fuzzy sets and its applications, it is difficult for one
who wishes to acquire a familiarity with the theory to find a text that both provides a
readable introduction and presents an up-to-date exposition of some of the main ap-
plications of the theory. Professor Kandel’s text serves this purpose with authority,
and his treatment of the subject matter reflects his many important contributions to
both the theory and its applications.” At the time references [13, 15, 14, 16, 17] were
published the theory of fuzzy sets has been controversial, to say the least. Thus, ref-
erence [17] has been highly influential in what Professor Zadeh refers to as the “acid
test” in the prologue [17]: “In coming years, the ability of the theory of fuzzy sets to
provide a basis for a formalization of commonsense reasoning, may well be an acid
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test of its usefulness in artificial intelligence. It is my conviction that the test will
be passed and the theory of fuzzy sets will eventually become a standard tool for the
management of uncertainty in expert systems. Many of the techniques needed for this
purpose are the techniques described in Professor Kandel’s book.” In 1984 Maria Ze-
mankova and Kandel published their work on fuzzy relational databases [50]; which
has been groundbreaking and together with reference [12] on fuzzy linear regression
provided concrete evidence about the applicability of the “fuzzy concept.” In 1978
Professor Kandel was one of the seven researchers who came up with the idea of
creating the first journal in fuzzy logic, “The International Journal of Fuzzy Sets and
Systems.” This initiative had tremendous impact on the field. One must look back at
the beginning of fuzzy logic and understand that for a long time after Zadeh’s first
paper in 1965, the field of fuzzy logic had no journals, no conferences dedicated to
the subject and very little support from the academic community. In 1992 Kandel
initiated the research on fuzzy expert systems followed by the work on fuzzy con-
trol systems in 1994 [18], [19]. An important work on that subject, investigating the
genetic-based approach to fuzzy reasoning and its applications in fuzzy control, is
summarized in [35]. Three years later that work lead to the well-recognized cov-
erage of compensatory neurofuzzy systems [51]. During the last decade Professor
Kandel has performed research on fuzzy dynamical systems, fuzzy differential equa-
tions, complex fuzzy logic [34], and the application of fuzzy logic and info-fuzzy
techniques to anomaly detection algorithms and terrorist detection systems [23].

In 1999 Mark Last has introduced a novel fuzzy logic based method for automat-
ing the human perceptions of visualized data [20]. The method, called “Automated
Perceptions,” is capturing the key features of manual perception. A new concept, the
degree of reliability, is defined as a fuzzy measure of certainty that, from the user’s
point of view, the data is correct [27,28,29]. It is assumed that the relational schema
is partitioned into a subset of input (completely reliable) and a subset of target (par-
tially reliable) attributes. An oblivious decision graph model referred to as “Info-
Fuzzy Network (IFN)” has been constructed to evaluate the information content of
links between input and target attributes. In [21], Mark has presented an anytime
algorithm for feature selection. To monitor the algorithm performance, he has in-
troduced a new measure: Fuzzy Information Gain. Fuzzy set theory is used in [23]
for reducing the dimensionality of a rule set discovered in real-world data, without
losing its actionable meaning. The fuzzification of the rules can be utilized for hid-
ing confidential information from unauthorized users of the published data mining
model. In [22, 25], Last et al., have presented a fuzzy-based approach to automating
the process of detecting and isolating outliers. In [24], he has presented a fuzzy-
based method for automating the process of comparing frequency histograms. The
research uses type-2 fuzzy logic for representing the domain knowledge of human
experts. In [26], Last et al., have improved the performance of genetic algorithms
by providing a new, fuzzy based, extension of the Life Time feature. The method
uses a Fuzzy Logic Controller to adapt the crossover probability as a function of the
chromosomes’ age.
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Tamir has entered the field of fuzzy logic in 1986 considering the application of
fuzzy logic to digital signal processing. One of his first contributions to the field has
been the axiomatization of fuzzy sets [40]. This has been one of the first attempts to
formalize fuzzy logic using the rigor of class theory. In addition, Tamir developed a
new framework for Fuzzy knowledge representation and fuzzy expert systems [42].
Later, he introduced a Pattern Recognition Interpretation of fuzzy Implications [41];
and an Architecture for Rule-Based Knowledge Representation and Parallel Infer-
ence [42, 41]. In recent years, Tamir has investigated methods for discovering fuzzy
quantitative association rules in databases [39]. He conducted a Comparative study
of software testing using artificial neural networks and Info-Fuzzy Networks [1], and
developed a Pyramid Fuzzy C-means Algorithm [43] as well as axiomatic theory of
complex fuzzy logic [44, 45, 46, 47].

96.2 Fuzzy Sets and Fuzzy Logic

In 1965, L. A. Zadeh has established the theory of fuzzy sets where the degree of
membership of an item in a set can get any value in the interval [0,1] rather than
the two values {∈, �∈} [48]. In addition he introduced the notion of fuzzy logic
[11]. Which is a multilevel extension of classical logic where propositions can get
truth values in the interval [0,1], and are not limited to one of the two values {True,
False} (or {0, 1}) [11]. The four decades that followed the introduction of fuzzy sets
and fuzzy logic by Zadeh, has shown a multitude of research work and applications
related to signal processing, knowledge representation, control theory, reasoning,
and data mining [7,38,4]. In 1975 Zadeh introduced the concept of linguistic variable
and the induced concept of type-2 (type-n) fuzzy sets [49,30]. In recent years, type-1
and type-2 along with interval type1/type-2 fuzzy logic and fuzzy systems have been
applied in many areas including signal processing [30, 31], fuzzy clustering [43],
data mining [20, 28], and software testing [1]. Nevertheless, many researchers have
observed that the grade based membership approach is limited in its capability to
deliver a concise and precise formalism for fuzzy logic. Hence, current research in
fuzzy logic, fuzzy class theory, fuzzy mathematics, and its applications is based on
axiomatic theory [2, 6, 32, 10, 3, 9].

96.3 Complex Fuzzy Sets and Complex Fuzzy Logic

Ramot et al., observe that the expressive power of fuzzy sets and fuzzy logic and the
utility of derived applications can be significantly improved via the introduction of
complex fuzzy sets [36]. Their observation is mainly motivated by fuzzy processes
that contain periodical behavior such as the cycles in economic markets. In this
sense, the concept can be used for fuzzy temporal logic. Generally, in these applica-
tions several fuzzy variables interact with each other in a complex way that cannot
be represented effectively via simple fuzzy set operations such as union, intersection,
complement, conjunction and disjunction [36]. The initial formulation of these terms
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stems from the definition of complex fuzzy grade of membership [36, 37]. Ramot et
al., propose an extension of fuzzy set theory and fuzzy logic where the range of de-
grees of membership and the range of truth values is the complex unit circle [36,37].
In order to capture these phenomena in reasoning, they introduce a complex grade
of membership and derive the definition of complex fuzzy sets. Under this notation,
a complex fuzzy set S on a universe of discourse U is defined by a complex-valued
grade of membership function μS(x); (Ramot et al.) [36]:

μS(x) = rS(x)e
( jΦS(x)) ( j =

√

(−1)) (96.1)

This definition utilizes polar representation of complex numbers along with conven-
tional fuzzy set definitions; where rS(x), the amplitude part of the grade of mem-
bership, is a fuzzy function defined in the interval [0,1] and ΦS(x) is a real number
standing for the phase part of the grade of membership. In addition, Ramot et al.,
propose the conventional set of operations on fuzzy sets such as complement, union,
intersection etc. Later, they introduce complex fuzzy logic via relations on complex
fuzzy sets [37]. Their formalism, however, restricts the membership function to rep-
resentation using polar coordinate system where only the radius carries fuzzy infor-
mation. Dick, Kandel, Teodorescu, and several other researchers have extended the
work by Ramot et al., yet their approach is also limited to polar representation with
single fuzzy component [8, 33, 52, 5]. Motivated by similar considerations, Tamir
et al., extend the rigor and applicability of the formalism proposed by Ramot et al.,
and introduce complex class theory where both component of a complex fuzzy grade
of membership carries fuzzy information [44, 45, 46]. They provide further gener-
alization of the concept of complex fuzzy membership function and use a Cartesian
complex fuzzy membership function where both the real part and the imaginary part
are fuzzy functions. Alternatively, polar representation where both the radius and
the phase values of the complex membership function convey fuzzy information, is
utilized [44, 45]. Furthermore, they provide a new interpretation of complex fuzzy
grades of membership as a representation of a complex fuzzy class along with com-
plex fuzzy class operations [44]. This enables reasoning about processes with multi-
dimensional components where each component is carrying fuzzy information and
the interaction between the components cannot be decomposed and represented via
primitive, one dimensional, fuzzy set theory and fuzzy logic operations, such as con-
junction, disjunction, union, and intersection. The Cartesian representation of the
complex grade of membership is given in the following way:

μ(V,x) = μr(V )+ jμi(x) (96.2)

where μr(V ) and μi(x), the real and imaginary components of the complex fuzzy
grade of membership, are real value fuzzy grades of membership. That is, μr(V ) and
μi(x) can get any value in the interval [0,1]. The polar representation of the complex
grade of membership is given by:

μ(V,x) = r(V )e( jφ(x)) (96.3)

where r(V ) and φ(x), the amplitude and phase components of the complex fuzzy
grade of membership, are real value fuzzy grades of membership. That is, they
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can get any value in the interval [0,1]. The transformation from Cartesian to polar
representation and from polar to Cartesian representation of complex predicates can
be defined in a straightforward semantic preserving way [44]. Hence without loss of
generality, in this chapter, we concentrate on the Cartesian representation of complex
predicates.

While this formulation has several advantages over previous formalisms, it is still
based on the definition of graded membership, which is a limiting factor in the abil-
ity to provide a rigorous, axiomatic based, theory. In ref. [46], Tamir et al., develop
an axiomatic based propositional complex fuzzy logic theory that is independent of
complex fuzzy sets, classes, and relations. In addition, they demonstrate the po-
tential use of this formalism for inference in complex systems. The new theory is
compatible with classical logic, as well as with axiomatic fuzzy logic and set the-
ory [2, 6, 32, 10, 3, 9]. Furthermore, the new theory supports Cartesian as well as
polar representation of complex logical fuzzy propositions with two components
of ambiguous information. Hence, this form significantly improves the expressive
power and inference capability of complex fuzzy logic.

A complex fuzzy proposition P = pr + jpi is a composition of two propositions
each of which can accept a truth value in the interval [0,1]. In other words, the
interpretation (i()) of a complex fuzzy proposition is a pair of truth values from the
Cartesian interval [0,1]× [0,1]. Alternatively, the interpretation can be formulated
as a mapping to the unit circle. Formally a fuzzy interpretation of a complex fuzzy
proposition Γ is an assignment of fuzzy truth value of the form i(Γr)+ j× i(Γi), or
of the form i(r(Γ ))× e( j×i(Φ(Γ ))).

For example, consider a complex proposition P of the form “x . . .A . . .B . . .” along
with the definition of linguistic variables and constants. Namely, a linguistic variable
is a variable whose domain of values is formal or natural language words [49]. Gen-
erally, a linguistic variable is related to a fuzzy set; e.g., {very young male, young
male, old male, very old male} and can get any value from the set. A linguistic
constant has a fixed and unmodified linguistic value i.e., a single word or phrase
from formal or natural language. Thus, in a proposition of the form “x . . .A . . .B . . .”
where A and B are linguistic variables, i(pr) (i(r(p))) can be assigned to the term A
and i(pi) (i(Φ(p))) can be assigned to term B.

While the above formalism is general it is not best suited for integer processing
units. For this end, we have presented a formalism for discrete CFL [47]. In [47]
Tamir et al., propose a new complex fuzzy logic (CFL) system that is based on the
extended Post system (EPS) [9] of order P > 2 and demonstrate its utility for reason-
ing with fuzzy facts and rules. Both propositional calculus and first-order predicate
calculus of the EPS based CFL are developed. The application to approximate rea-
soning is described. The new formalism is motivated by the fact that fuzzy systems
are commonly used in environments such as control, digital signal processing (DSP),
embedded systems, and real time applications where generally processors consist of
high performance integer arithmetical and logical units and do not have intensive
floating point processing capabilities [30,31]. In this sense, the EPS developed in [9]
is an excellent tool for rigorous formalization of discrete based fuzzy logic. Never-
theless it lacks the expressive power associated with CFL. The new theory proposed



670 References

in [47] bridges the gap. It can be used to formalize advanced discrete complex fuzzy
logic systems. Moreover, it can be used for inference with type-2 (or higher) fuzzy
systems [49, 30]. Furthermore, the introduction of complex logic can be used for
analysis of periodic temporal fuzzy processes where the period is fuzzy.

96.4 Epilogue

In this chapter we have presented the pioneering work of Prof. Zadeh along with
numerous branches of this work. Some of these branches represent the work of
Kandel, Last, and Tamir. We have concentrated on one important and contemporary
part of this work, namely Complex Fuzzy Sets (CFS) and Complex Fuzzy Logic
(CFL). CFS and CFL can significantly improve the expressive power and inference
capability of numerous fuzzy based systems and applications. We are convinced
that the theory and practice of CFL/CFS will continue to play an important role in
the field of fuzzy sciences and soft computing. In the future, we plan to extend
the theory to multidimensional fuzzy propositional and predicate logic; explore the
utility of the theory for fuzzy temporal logic; and further explore its potential for
usage in advanced complex fuzzy logic systems as well as inference with type 2 (or
higher) fuzzy sets.
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Fuzzy Systems in Brazil and at QMC

Ricardo Tanscheit

97.1 Introduction

When I was asked to contribute to this book I wondered what I could tell about my
personal experiences in the field of fuzzy sets. It occurred to me that perhaps it would
be a good idea to let people know how fuzzy sets and fuzzy control in particular got
under way in Brazil. In the mid-seventies, Brazil was not an emerging country, as it
is classified nowadays, and doing research in novel subjects was much harder than
it is now. I also felt it would be useful to tell something about the days I spent
at Queen Mary College (QMC) in the 1980s, working in Abe Mamdani’s research
group, which was a very pleasant experience. As a conclusion, I return to Brazil,
giving a brief view on how things stand today and what are the expectations of our
scientific community.

97.2 Early Days in Brazil

In the mid-seventies, having graduated in Electrical Engineering, I enrolled in an
M.Sc. programme at the Military Institute of Engineering, in Rio de Janeiro, Brazil.
It must be said that such programmes in Brazil consist of one year of courses and at
least another year dedicated to research in a chosen topic, which must be reported
in a dissertation. After finishing the courses, I was introduced by my supervisor to
a strange subject: Fuzzy Sets. In fact, what motivated us was a paper by Kickert
and van Nauta Lemke on fuzzy control of a heat exchange process [1]. In those
pre-internet times, in an underdeveloped country, access to foreign publications was
not as easy as it is nowadays. Therefore, it took us some time to get access to the
relevant publications on Fuzzy Sets, including Zadeh’s seminal publication and Abe
Mamdani’s papers on fuzzy control ( [2] [3]). To our rigid engineering minds it
was at least puzzling to get acquainted with this novel approach but we became
more and more interested and decided to apply the new notions in the control of a
fluid mixer. Our initial purpose was to build a practical experiment but eventually
several difficulties overcame us and the final work consisted of a simulation. The
paper we wrote was accepted for presentation at the 1978 Brazilian Congress on
Automation, which, in those times, was almost entirely dedicated to the standard
approaches to Control. In the presentation, I had, of course, to give an introduction
to Fuzzy Sets, which were unknown to the engineering community in Brazil. I recall
the bewilderment of the audience to be introduced to such a subject, so that after the
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presentation several people asked me for references an further clarification. As far
as I am aware, that paper was the first one to deal with the application of fuzzy sets
and fuzzy logic to an engineering problem in Brazil.

After that I become more interested in the area and applied for a Ph.D student
position with Abe Mamdani’s research group at Queen Mary College (QMC), Uni-
versity of London.

97.3 Fuzzy Control at QMC

When I arrived at QMC, Abe Mamdani’s students research room (Fig. 97.1) had a
familiar picture on the wall: the famous Christ the Redeemer statue in Rio de Janeiro.
Afterwards, everybody thought I had brought with me, but that was not the case.

Fig. 97.1. Research room at QMC

The pioneering work of Assilian, under Abe Mamdani’s supervision, made QMC
a very attractive place for researchers on Fuzzy Control. In the early 1980s the
main emphasis was placed on investigating aspects and applications of the so-called
Fuzzy Self-Organising Controller (SOC), devised by one of Abe Mamdani’s Ph.D.
students [4]. SOC was able to create a consistent rule-base, depending on the sys-
tem’s behavior when compared to a standard performance index. This was an in-
teresting idea, since the available tools in those times were not the same as today
regarding rule creation and tuning. The structure of SOC consisted of fixed, limited
and discrete universes of discourse, identical for all variables involved. The number
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of linguistic terms and the shapes of membership functions were also identical for all
variables. Tuning consisted of adjusting some scaling factors, which in later develop-
ments could lead to nonlinear mappings. In the lack of automatic tuning procedures,
this had to be done by hand, which could become an ordeal. This approach was, and
still is, very useful for practical and real-time applications, since the strategy can be
summarized in a so-called decision table once all the parameters have been set.

It is interesting to note that Abe himself was moving away from Fuzzy Systems
in the early 80s, preferring to invest in the field of Expert Systems. Nevertheless,
some works with improved and modified versions of SOC were still carried out, also
considering real world applications [5].

Fig. 97.2. Barbecue at Abe Mamdani’s

Some words must be said about Abe Mamdani. His abilities as a researcher are
well known, but he also had some nice personal aspects. He used to drive to College
and home, instead of taking the underground and train combination,as many other
lecturers did. Many times he came to our research room, which faced the main road
he needed to take on his way home. When he noticed that the traffic was heavy, he
would compel us all to go the pub across the road to wait for the traffic to subdue.
He also liked to host Xmas parties and barbecues at his home, as shown in Figure
97.2 below. Albeit being a very busy person, he always made an effort to attend
to his students invitations (Figure 97.3). It was very pleasing to work in such an
environment.
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Having finished my doctorate, I returned to Brazil and made some contact with
the few people who were then operating in the area of fuzzy systems.

Fig. 97.3. Dinner at the house of one of Abe Mamdani’s students

97.4 Computational Intelligence in Brazil

Many researchers – mainly lecturers at universities – returned to the country, after
finishing their doctorates, in the 1980s and early 1990s. The area of Computational
Intelligence (or Intelligent Systems, as it used to be called) was acquiring some status
and courses were created even at the undergraduate level in some universities.

Two important events took place in Brazil at that time: the 1994 Brazil Japan
Joint symposium in Fuzzy Systems, which took place in Campinas, São Paulo state,
and the 1995 IFSA World Congress, held in the city of São Paulo. For us Brazilians
those were memorable occasions and we believe that both conferences were very
successful.

Diverse applications of fuzzy systems and neural networks became commonplace
sice then, so that nowadays this area is well established in the country. Research on
Fuzzy Control has also become widespread, either with the Mamdani-type FIS or
with the TSK structures. These have always been put in the same basket, but many
of us have always been uncomfortable about this. One of these days, talking to Prof.
Fernando Gomide, we agreed that those two structures should not be put in the same
basket. It seems quite clear that the initial idea behind fuzzy control was to emulate
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the actions human operators would take in the control of a given plant. This is done
by the so-called Mamdani-type of controller. This should not be taken as diminishing
the importance of the TSK fuzzy controller, which has his own merits, but should not
be compared to its conunterpart.

I am glad that the question of interpretability has become important in the last
decade. This actually takes us back to the philosophical aspect mentioned above.

The keynote talk of Prof. Luis Magdalena at the 9th International Workshop on
Fuzzy Logic and Applications (WILF 2011) – Some Open Questions in Fuzzy Rule-
Based Systems Design – was very stimulating regarding what has been achieved so
far and was should worry us all regarding the Mamdani-type fuzzy control. There
have been many successful applications in these almost 30 years of its inception, but
there still are many unresolved questions regarding tuning of the several parameters.

In our research group there has been a great interest on clustering and classifica-
tion problems too. There has also been an investment in the robotics area. We see
evolving fuzzy systems as a strong approach to those problems and believe that they
will be of great help to address structure definition.

97.5 Conclusion

The idea here was to give a very quick insight on how Fuzzy Systems an Compu-
tational Intelligence grew in Brazil, an underdeveloped country in the 1970s and an
emerging one, at least, in the 21st century.

In between, I thought it would be interesting to tell something about my days at
QMC, which was a fundamental place for research in fuzzy control.
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On Fuzziness, Its Homeland and Its Neighbour

Settimo Termini

It has been frequently remembered (also in the invitation letter to contribute to the
present volume) that in his 1962 paper [27] which is a sort of proto-manifesto of
fuzzy sets [28], Zadeh among the possible names that could denote the new notion
he was trying to introduce, basides fuzzy, mentioned the term cloudy. If he had
chosen this last one as the name of the theory, today we had contributed to a volume
On Cloudiness.

It is natural to ask the question whether a different choice of the name would had
caused something different in the development of the field. More generally, perhaps,
it is not trivial to investigate in which sense we should take into consideration the fact
that the choice of a name for a new field of investigation is not a neutral and purely
conventional action, but it bears on its shoulders a big bush of different problems,
starting from a reassessment of the meaning (intended meaning) of other words that
had been used before to indicate facts, aspects and nuances of concepts and pieces of
reality which, after the official introduction of a new name, one is naturally induced
to consider as pertaining and belonging to the new field.

The joke about fuzziness and cloudiness, in fact, was intended as an introduction
to at least the following problems:

i) the interaction between informal concepts and their formalizations,
ii) the adequacy of a formalization to all the meaningful nuances and aspects of the

informal notion,
iii) the drift of meaning intrinsic to the use of scientific concepts in a non-routine

(i.e. creative) way.

The emergence of fuzziness as a true new scientific notion, morover, can be fully
understood only in the realm of the epistemological questions posed by the novelty
of some emerging disciplines. It happens in the midst of a not already completed
scientific revolution of the last Century, one that is called with many names, among
which we pick up now the one of “information sciences”, but many others names
have been used and are still used, Cybernetics, System Theory, Cognitive Sciences,
AI, etc. All these names are not completely interchangeble, but anyway, they refer
to more or less extended overlapping subdomains of the overall domain in which
the scientific revolution to which we referred above, is happening. A true problem
is that we do not still have a name for the whole domain. Rudi Seising [16] has
provided a very interesting reconstruction of this creative chaos ponting out that we
must consider the birth and development of fuzzy sets in this general setting if we
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want to understand the real import of the introduction of a new scientific concept like
the one of fuzziness. A personal view on this problem can be found in [19].

But let us ask the following question: is the situation outlined above of an emer-
gent scientific field which is still missing an overall name something usual? We could
also think that since a crucial feature of the new field is interdisciplinarity, we could
look at this domain as something original also from a methodological point of view.
In contrast with such classical disciplines as physics which deals with inanimate
world or biology which deals with living sistems, this new field could be considered
as a new type of science that we could call “science archipelag”, characterized by
the fact that no single domain is definable, but there is a constant interaction between
many subdomains which have specific features. This aspects is certainly present and
is also a central and crucial feature of this field, but let us see whether we can also
try to add to this aspect also something additional and hopefully conceptually new.

As, perhaps, is clear from what I wrote above, the homage to Lotfi presented in
these pages will not involve any comment on personal episodes or of crucial interac-
tions with the fuzzy community or with Lotfi himself (although, while writing these
notes, I am rewieving in my mind episodes which have been relevant for me. Some
of them can be found in the interview to Rudolf Seising which appeared in [20]).

I shall, instead, here try to concentrate in presenting – hopefully in a reasonable
way – some (until now, only personal) attempts to analyze the notion of fuzziness
as such in the light of (and in its interaction with) a few other innovative notions
emerged in the last few decades. The starting point will be the last mentioned ques-
tion: the lack of a name for an important emerging field. This field is the homeland
of the notion of fuzziness, and here we should look for its neighbour.

98.1 Towards a “Physics” of the “Immaterial”?

The thesis I shall present now is that we can pick up a common element in the devel-
opment of the scientific activities subsumed under all the names listed above (Cyber-
netics, Information Sciences, Cognitive Sciences, A.I., System Sciences, etc,) and
this is related to the fact that, for the first time in the history of science, the crucial
notions of fields which are investigated with traditional techniques of hard sciences
like physics present the unusual feature that they do not refer directly to “material”
aspects. All the meaningful notions in the new field of investigation are “immate-
rial” and not rooted into specific “concrete” things. Let me repeat this concept with
slightly different words. What I propose is that a common characterizing feature
of all the investigations recalled above can be found in the fact that we are always
dealing with “something” immaterial.

In this sense it appears an apparent strong similarity with disciplines belonging to
human or social sciences in which there are not such evident crucial parameters as
“position”, “velocity”, and so on. In these disciplines, in fact, the central meaningful
concepts are more “conventional” than in physics in which the notions referred to
above, position, velocity, are “suggested” – in a sense – by Nature itself. Notwith-
standing this fact, the theories of the “immaterial” look more to what is present in
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theoretical physics than to what happens in Sociology, for instance. What does make
the difference?

My hypothesis is that all this have been made possible by the fact that one central
notion in this field, the one of “computation”, presents a very strong stability with
respect to all possible changes we could think to make (different formalizations, dif-
ferent interpretations, different models, different technologies). This makes possible
the “miracle” of having a field in which we can construct very strong and stable
theories formalizing phenomena that are not based on “material” things. Of course,
the “character of the play”, the main actor, the star, is nothing more than the well
known and frequently discussed Church-Turing’s Thesis. However the interpretation
proposed and the role assigned is apparently different from the usual considerations
done on this classical Thesis.

From this point of view it is interesting to observe that – in the setting of informa-
tion sciences (or in the terminology heralded here, in the setting of the “immaterial”)
a few central other notions (that do not possess the unicity of formalization, which
seems to be a unicum of the notion of computation) like Kolmogorov complexity,
became very interesting new scientific concepts (and the innovative concept is also
the basis, the angular stone, of a new interesting theory), just after using some crucial
results of the theory of computation.

In a sense we could affirm that it is only the possibility of using the theory of com-
putabilty that allows us to transform into a universal strong theory a very interesting
intuition and concept, which, however, without the previously mentioned support,
would be deemed to remain only an interesting idea. Incidentally, let me remeber
that 2012 is the Centennial of Alan Turing’s birth. His seminal ideas are still capable
to induce people to think along new paths.

All these flashes of course need to be worked on in more details and also other
different examples should be considered.

98.2 Back to Fuzziness

Fuzziness as part of this play, introduces in the plot the possibility of modelling un-
certainty in innovative ways which make also use of “linguistic” tools [30], opening
the possibility of opening again a dialogue with human sciences.

More specifically, in the setting outlined above, the notion of fuzziness – as pre-
sented by Zadeh – provides a very innovative contribution (first of all of conceptual
type) since it allows to look at the qualitative, informal problem of the presence of un-
certainty in a fresh way, not already regimented by very sophisticated formalizations
like the one of probability, after Kolmogorov axiomatization. It is this conceptual
freedom that allows a Re-Vision of a few crucial aspects present in this field of in-
vestigation. Among them let me recall (but what follows is only a very partial list
biased by my personal experience and preferences):
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a) the generalization of the same notion of logical connective along the lines
envisaged by von Neumann of introducing elements and tools borrowed from
mathematical analysis in the previously purely combinatorial terrain of logical
investigations [11, 12]; such a context allows to these developments to go far
beyond the limits of the original Lukasiewicz setting although fully interpreting
his motivations. This change of mind, in my view is particularly evident in the
approach followed by Enric Trillas, starting from his classical classification of
“negations” [1,24]. It is not a case that recently the same Trillas has been leaded to
reconsider the validity of the logical principles in this extended universe [23, 25].

b) the possibility of confronting probabilistic approaches with Zadeh’s proposal.
These have a long history, but it continues to be an interesting topic [26]. It
is worthwhile to remember also connections with non standard interpretation of
probability like the one proposed by De Finetti [5, 6], as done by Coletti and
Scozzafava ( [15] in this volume and [4]). One must observe also that the connec-
tion found between coherent conditional probability and fuzziness established by
Coletti and Scozzafava does not exaust all the possibilities offered by the devel-
opments of fuzzy set theory along the last decades.

c) the possibility of introducing – through the notion of measure of fuzziness – a more
flexible tool than the measure of information provided by Shannon. The fuzzy
setting allows introducing both more “measures” and more conceptual interpreta-
tions [7,8,9,21,22]. This fact helps in applying in very natural ways this notion in
different fields not only in classical ones as Pattern recognition but also in unusual
domains like the one of quantitative approaches to aestetic theories [18, 3, 14], in
which straighforward applications of Shannon theory had produced ambiguous
results, according to such scholars as Rudolf Arnheim [2].

But there is another central point which is – once again – due to Lotfi. By introducing
the challenge of “computing with words” [31], he has presented a completely new
path of investigation, which – according to the hypothesis done here about the special
role of the notion of computation in the setting of “immaterial sciences” – poses the
notion of fuzziness in a very peculiar and strict connection withe the basic roots of
“immaterial sciences”.

98.3 Fuzziness or Cloudiness? It Does Not Matter, But Fuzzines
AND Computation Does

The question posed at the beginning about Fuzziness or Cloudiness, was obviously
a joke. However every notion carries with itself a burden of suggestions, intuitions
and analogies that can interfere with the technical development of a piece of investi-
gation. So I think that the final choice of fuzziness was a good one since it stresses
more the aspect of the difficulty of focusing which some concepts present instead
that the one of being “cloudy”.
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Anyway Fuzziness is a central part of the creative chaos that in the last few
decades has characterized the birth and development of new scientific notions, theo-
ries, techniques and technological innovations. Three years after publishing his sem-
inal papers, Lotfi Zadeh touched upon the problem of Fuzzy algorithms [29]. This
is not the place to reconstract the history and development of “Fuzzy computatbil-
ity”. I want only mention the analysis provided by Claudio Moraga [10], who shows
that a fuzzy context induces a very great flexibility. We can remain inside classical
computability or go in the direction of computable reals according to the “point” in
which “fuzzy elements” are introduced. When the idea of “computing with words”
will show a few of its potential developments, the notion of computation – while
preserving its strong stability – will be certainly enriched by many innnovative nu-
ances. The two notions of fuzziness and computation will remain as two pillars of
“immaterial sciences”.

Fig. 98.1. Fltr: Teresa Riera, Xavier Domingo, NN, Alicia Casals, Francesc Esteva, Settimo
Termini, Sergei Ovchinnikov, and Enric Trillas in an Indian camp close to Oklahoma City, at
the Eleventh International Symposium on Multiple-Valued Logic, Oklahoma City, May 27-29,
1981
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Wittgenstein and Zadeh, Side by Side

Josep-Maria Terricabras

My first significant contact with issues concerning imprecision and vagueness was
through the work of Ludwig Wittgenstein (1889-1951), when I was preparing in
Germany my doctoral thesis in philosophy for over forty years. I came to Zadeh,
when I read some of his key works and especially in 1985 when I had occasion to
spend a few months near him at the Computer Science Division of UC Berkeley.

Vagueness and imprecision are not a new subject matter of study but a very old
one. In any case, when in contemporary times we talk about vagueness and inde-
terminacy of sense, we are always confronted with the powerful work of Gottlob
Frege (1848-1925), who is the father – now already the grandfather – of the current
rigorous studies on the logic of language. According to Frege, a concept must al-
ways have “sharp boundaries” and this means that the definition of a concept must
always determine with precision and without ambiguity whether a given object falls
within that concept, or not. A concept that is not defined with precision is not it-
self a concept. Frege is assuming, of course, the propositional bivalence: since a
proposition includes concepts that are precise and well determined, any proposition
deserving that name will be either true or false, even if we do not know, at a given
time, whatever it is.

Frege, like Wittgenstein’s Tractatus Logico-philosophicus (1921), is not making
an empirical research but a logical, in fact a mathematical one. He looks at a concept
as being a function, and a mathematical function is well defined only if its truth-value
is unequivocally established for any argument. However, if a complex expression is a
function of the meanings of its constituent parts, then we can only accept absolutely
determined meanings, since any undetermined meaning of a constituent part would
eventually infect the final complex expression. According to this view, indetermi-
nacy should be avoided simply because it is contagious. Therefore, the definition of
a concept must be complete: it has to determine unequivocally whether any object
falls within a given concept, or not.

This is Frege’s thinking and is also Wittgenstein’s thinking when he writes the
Tractatus, where Wittgenstein also accepts bivalent logic and even firstly invents a
truth-table. However, facts do no seem to be in favour of this logical position: like
it or not, ordinary language is full of vagueness and imprecision. Frege and Russell
(1872-1970) believed imprecision to be imperfection, and in front of the imperfec-
tion of ordinary language, they considered it necessary to avoid both things: imper-
fections and ordinary language. So they decided that sciences should completely
diverge from common: they had to dispose of an own ideal language, a rigorously
logical language.
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Wittgenstein shares the idea that ordinary language presents all sort of difficulties,
but he does not evaluate them, he simply states that they exist: in other words, he
recognizes that ordinary language is unavoidably vague but he does not reject the
language in which that vagueness is expressed, because he believes that vagueness
belongs only to the surface of language; after a rigorous logical analysis we can
discover the underlying structure of natural languages, and their structures are ab-
solutely perfect, in excellent logical order. Furthermore: according to Wittgenstein,
this has to be so on philosophical, metaphysical reasons. Language would in no way
reveal which is the configuration of the elements of reality – by definition, specific
and determined – should it not dispose of ultimate elements (names) in strict corre-
spondence with the ultimate elements of reality (objects). At the time, Wittgenstein
feels that the most important point is this: without a strict correspondence between
language and reality (finally, between names and objects), without a language reflect-
ing the precise configuration of objects, we would not be able to talk about sense, let
alone about truth and falsehood. That is basically the “picture theory” of the Trac-
tatus. Language describes definitely definite realities. This is why language makes
sense and why ordinary language, despite its vagueness, also makes sense after being
properly analyzed.

In his Philosophical Investigations (1953), however, Wittgenstein realizes he
made a mistake: when we use language, we are not using a calculus that follows
fixed rules. Rules are always there just as indicators that we can use or not, and
that we can use in very different ways when we use them. Bivalence, bipolarity is
an optional feature of language; vagueness is not at all contagious; vagueness and
precision are given in language without necessarily having to compete against each
other, without having to replace one another. Discussing whether an object is “long”
or “short” may become at times a tedious task, even in the case we agreed before
on the definition of those terms for a given context. To be sure, some speakers may
clearly define an object according with strict criteria of “length” and, nonetheless,
they can come to disagree in the way their own criteria should be applied in a differ-
ent context.

“Long” or “short”, as any other concepts we can imagine, do not only admit de-
grees in use, but also very different uses that will not be reducible to an ultimate,
explanatory essence. The many different uses we cover with a unique term do not
reveal the existence of a unique element common to all of them but they simply
show that they remain related among them through what Wittgenstein calls “family
resemblances”. In fact, among the various uses of the same term it is not necessary
to accept a common feature – the possibility of such a feature is the best proof of
its non necessity –, but just to recognize similarities and differences which remind
us of those we can find in a family. However, some particular uses resemble each
other not because they belong to the same family (as if such families were ready-
made constructs); the other way round is true: we say that they belong to the same
family because they resemble each other. Similarities always depend also on our
outlook, on our interests when we consider them. Many cases of scientific or artistic
progress are due to the fact that someone, at a particular time, has managed to see
some similarities or differences between realities that previously have been seen too
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much distant or too similar. It is also true that at a given point “a family” accepts pro-
totypes, i.e. accepts some uses as best and more significant cases, which do not play
the role of an (inexistent) essence of the whole, but simply turn into a sort of axis
around which other members of the same category may find its place. Prototypes
may, of course, change their positions without provoking any upset or disturbance to
the family resemblance of the rest of members.

For sure, it is good not to lose foot of what we usually call “reality”, though we
will never consider it as “pure reality”. In any case, real language shows us constantly
how prejudiced it is to accept an ideal language, as if there was also to be only one
ideal logic. A definition is inaccurate not because it does not meet a supposed unique
ideal of accuracy, but because it does not meet the demands of understanding in a
particular context. That is why indeterminacy can adopt many forms and cannot be
predicted or avoided in all cases. Many of our own experiences are very fuzzy and
blurred, for example, our visual experiences or memories.

The general diagnosis of Wittgenstein meets some years later Zadeh’s mathemat-
ical analysis. Wittgenstein says that language is not a simple logical calculus; Zadeh
says that logic is not a calculus that simple. In fact, neither Wittgenstein nor Zadeh
are capable to tell us on their own whether a concept is, or is not, accurate or inaccu-
rate, for one simple reason we have already used: accuracy or inaccuracy do not refer
to concepts but to uses of terms. Wittgenstein emphasized the many possibilities of
inaccuracy; Zadeh helps to calculate some of them. In fact, the very wittgensteinian
concept of “family resemblance” may turn out to be too vague. But, so to speak, a
concept cannot exert self-criticism, it requires to be delimitated by its real or possible
uses. Wittgenstein thinks that what specifies and delimitates a term is the language
game in which the term appears. Zadeh contributes to it with the technique of fuzzy
logic.

A concept is useful, usable, applicable, if it is well defined in some cases, so that
we know what falls within the concept and what not, but also how it falls within
it. In fact, a proposition remains being a proposition despite having a vague sense,
as an imprecise limit is still a limit. “Make a heap” is a clear order; “Make the
smallest heap which still counts as such” is not. The first order has no limits but
the concept is correct; the second one aims to have limits, but it is unknown what
those limits may be because they have not been yet established. We can always set
limits, although not always is necessary to set them. Concepts depend on the context
in which they are explicitly examined, a framework that sometimes is deemed suf-
ficient, sometimes, insufficient, incomplete. We now know, however, that when we
say “inaccurate”, “incomplete”, “unfinished”, we are not making a judgment about
reality – as if there was an ideal reality, complete and finished, to which our actions
had to adapt themselves- but we are, in general, saying that we do not like something
and want to change it. On the other side, when we say that what we have is “exact”,
“full”, “finished”, we are expressing our satisfaction. (The satisfaction of a philoso-
pher or a mathematician usually is just provisional. As it is the one of the artist, by
the way.)
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A central contribution of Zadeh’s fuzzy logic is that it provides the technique to
determine the uses that define a given concept. We will have a well defined concept,
even if it is a concept supposedly vague, if we know the range [0,1] for a given col-
lection of objects and if we can establish the degree of membership of those objects
relatively to the range. Once we know the universe of discourse, we can map it in a
thousand different ways. The objects and their membership’s degree may vary, and
this means that sets stay always open to new applications and functions. Obviously,
fuzzy logic includes classical logic, but in no case should be contaminated by it. In
fact, classical logic has not only to be a part of fuzzy logic but it has to become a
marginal form of it. In language and thought creativity is endless. It is not always
true, for instance, that the less different are two fuzzy sets, the more similar have to
be. This is so because “similar” and “different” are not opposites terms in a world
that is not necessarily bipolar. It seems clear that neither Wittgenstein nor Zadeh
want to simply promote vagueness, they are not ready to make just propaganda for
it. Their goals are much more interesting.

In fact, Wittgenstein wants to fight his old vision of the absolute necessity of de-
terminacy of sense. At the beginning of his work he had really thought that a non
determined sense is not sense at all, but it is nonsense. Afterwards he realizes that the
indeterminacy of sense is one way of appearing sense. In terms of the interpretation
of sense this means that is not always necessary to remove doubt or disagreement
in the application of an expression. A use loaded by questions, disputes and dis-
agreements, still remains a legitimate use, a use full of sense. Obviously not with the
degree of sense that will have a unanimously accepted sense. May the last have even
more sense? (This is a silly question, just for the sake of joking. It may happen that I
like more a use of an expression than a different use of it, but this does not mean that
the use I like most has more sense than the other one. A dogmatic definition of sense
is unreasonable. We have to decide about sense case by case. A vague, imprecise or
careless, even erroneous, expression is not condemned to be senseless or useless.)

Zadeh agrees with that. When he says that he is convinced that in the future there
will only exist applied mathematics he is not supposing that in the future mathe-
maticians will devote themselves to mathematics and only later on they will look for
applications of their findings, but that mathematics – at least the major part of it –
will grow out from the sheer necessity of understanding not mathematics itself but
our diverse reality which needs to be managed, measured, used, interpreted.

This is what pushes me to put Wittgenstein and Zadeh side by side. They do not
coincide in what they say, but they have common concerns.
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Aggregation Operators

Vicenç Torra

100.1 Introduction

It was in 1990, when I was still studying my degree in Computer Science, when I
met Prof. Lotfi Zadeh for the first time, if I do not remember wrongly. It was in a
conference I was participating in Barcelona where he gave one of the plenary talks.
I remember clearly that he mentioned fuzzy systems and the successful Japanese
applications of the late 80es. I have always used the applications of fuzzy systems
in class as an example of successful applications of artificial intelligence and related
technologies.

Since then I have met Prof. Zadeh in several conferences and workshops. Among
all those meetings, I have specially memories of my attendance to EFDAN 1997 and
1998, the conferences organized by Dr. R. Felix in Dortmund, where I participated
with Prof. L. Godo (at IIIA-CSIC). Prof. Zadeh was also attending the conference.
Being a small workshop, EFDAN permitted relaxed discussions with Prof. Zadeh as
well as with the other participants.

When I heard Prof. Zadeh for the first time in the early 90s, I was being introduced
into the field of artificial intelligence, where I was going to complete my PhD under
the supervision of Prof. Claudi Alsina and Prof. Ulises Cortés. My topic of research
was information synthesis functions for artificial intelligence.

My first research related to fuzzy sets [21] was about the aggregation of member-
ship functions. In a paper published at the 3rd Spanish conference on fuzzy logic
and technologies (1993) [11], and latter extended and published in Fuzzy Sets and
Systems [12]. Since then, part of my research in the area of fuzzy sets has been
related to aggregation operators, including topics of fuzzy measures and fuzzy inte-
grals. I have also studied fuzzy clustering and used fuzzy systems. This paper gives
a personal view of current research on aggregation operators.

100.2 Aggregation Operators

Techniques based on fuzzy sets and fuzzy systems have an important role when mod-
eling decisions and in information fusion. Aggregation operators [17] permits us to
express how information needs to be fused. In particular, t-norms, t-conorms and all
kind of means are useful functions in this process. Fuzzy measures and integrals [10]
permit us additional flexibility as they permit us to express additional information
about the variables or objects being fused, their interactions and dependences. Sim-
pler aggregation operators as the weighted mean do not have this flexibility.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 691–695.
DOI: 10.1007/978-3-642-35644-5_100 © Springer-Verlag Berlin Heidelberg 2013



692 100 Aggregation Operators

Although there are several issues related to fuzziness that are important in the
aggregation process (e.g. in modeling utilities and preferences), I focus here on the
aggregation functions themselves. Most of my discussion is independent of the type
of data being aggregated. That is, whether data is numerical, categorical, corresponds
to membership functions, and so on. For particular data types some specific issues
are of rellevance, as e.g. the concept of computing with words [22] when data is
categorical.

At present, a large number of aggregation functions have been defined. A few
years ago, in two position papers [14, 18], I mentioned as rellevant for a research
agenda three research topics. I review these topics here, splitting one of them in two.

• Parameter Learning. Aggregation operators usually depend on some parame-
ters. For example, the weighed mean requires a weighting vector, and the Sugeno
integral a fuzzy measure. The definition of the parameters is not always easy, and
due to this, we need methods to determine the parameters from examples or from
the experience that an intelligent system might have.

In the last years, a lot of research has been done on the determination of param-
eters from examples. Methods developed for this purpose assume that we have a
set of examples consisting of the input parameters of the aggregation operators as
well as the expected output. From these examples the parameters are determined
as the ones that minimize the distance between the expected outcome and the real
outcome. This can be expressed in more detail as follows. Let us consider a set of
examples. They are defined in terms of (input(x), output(x)) pairs, and an operator
C with some parameter P to fit, where P is the set of possibles parameters; then,
the parameter is selected so that the divergence between the output of CP(input(x))
and output(x) is minimized. Expressing the divergence as the distance d between
the input and the output, and the total divergence as the sum for all examples
x ∈ Examples, we define the parameter learning problem as follows:

arg min
P∈P

∑
x∈Examples

d(CP(input(x),out put(x)))

Note that this definition does not entail any particular data type in the examples.
That is, with appropriate definitions of d and C, it is valid for numerical and
categorical data, but also for other data types as membership functions or dendro-
grams. Parameter determination in this way is described in some detail in [17].

Other research on parameter determination has focused on the use and inter-
views to experts. This is the case where the weights are inferred using Saaty’s
Analytical Hierarchy Process (AHP) [8]. A mixed approach is the one in [7] for
the OWA operators [20]. In this work, an expert gives a degree of the orness, and
then an optimization problem is formulated to find the optimal weights that satisfy
the orness level. The optimization uses dispersion as the objective function. That
is, the best solution is the one that maximizes dispersion for a given orness.

From the perspective of machine learning, all methods mentioned so far are
basically supervised methods. Unsupervised learning methods, which do not in-
clude information about the output of the system, have also been considered in
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the literature, although in a lesser extend (see e.g. [5] and [9]). A third approach
in machine learning is reinforcement learning. Up to our knowledge, no meth-
ods exist for parameter determination that follows this approach. Reinforcement
learning algorithms use reward/penalty according to good or bad behaviour of the
outcome of the aggregation method.

Taking into account the machine learning perspective, an issue that is not con-
sidered in the literature on aggregation operators is the one of the bias-variance
problem. This is to study the appropriate number of parameters so that the model
is detailed enough but not overfitted to the data. For some of the aggregation
methods, as e.g. the fuzzy integrals, the number of parameters is not a constant
but can be selected according to the complexity of the problem. This is the case
of k-additive measures [4] and m-dimensional distorted probabilities [16], where
with k = 1 or m = 1 we have basically as much parameters as the number of in-
puts. In contrast, for k = |X | we have 2|X | parameters. Research is needed in this
direction.

• Function/Operator Selection. Characterization of functions permits us to select
the appropriate function for a given problem. Most usual functions for numer-
ical data (as e.g. the weighted mean, quasi-arithmetic mean, Choquet integral)
have already been characterized. In addition, families of operators have been es-
tablished, and relationships between some operators and more general ones have
been established. For example, it is well known that the Choquet integral is a
generalization of the weighted mean or, in other words, that the weighted mean is
a particular case of the Choquet integral.

New families of operators have been defined in the last years, some of them for
interval-valued fuzzy sets and other generalizations. Characterizations of these
operators are needed. Families of these operators have to be studied.

In addition, algorithms for automatic selection of the aggregation operator given
a set of examples would be useful. Some research has already been done in this
area. See e.g. [1]. The solution of the bias-variance problem can also help in this
direction.

• Architecture for Information Integration. Within artificial intelligence, aggre-
gation operators are embedded in intelligent systems. In these systems, prior to
the aggregation, data have to be transformed so that the aggregation makes sense.
In the same way, decisions should be made with the result of the aggregation pro-
cess. All these steps define the architecture of information integration. In short,
information integration includes the following four processes: data acquisition,
data preprocessing, information fusion and aggregation, and the final execution
of an action. The architecture explains how these elements are structured for an
optimal performance. Research exist on architectures for information integration,
but additional synergies with the research on aggregation functions might foster
this research.

• Hierarchical Models for Data Aggregation. Aggregation operators can be just
simple functions as the arithmetic mean or the Choquet integral, or composite
models built over more simple functions. Hierarchical models (as the two-step
Choquet integral [6]) are examples of such composite models. It has been proven
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that models based on aggregation operators can approximate any function at the
desired level of detail. See e.g. [13]. This good result is at the expenses of a major
complexity: the hierarchy has to be defined, sets of functions have to be selected,
and their parameters fixed. Due to this, the definition of a hierarchical model is a
difficult task.

Although at present research in this area is focused on the properties of the
models (as in the above mentioned work [6]), some more practical oriented results
also exist (see e.g. [2, 3]). This research links with other research on composite
models as hiearchical fuzzy systems [15, 19]. Further research is needed in this
area.

100.3 Conclusions

In this paper I have outlined some lines of research related to aggregation opera-
tors and some lines for future research. We have mentioned the issues of parameter
learning, function selection, architectures for information integration, and also hier-
archical models.
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On Some Classical Tenets and Fuzzy Logic

Enric Trillas

101.1 Introduction

A fertile seed dropped by Zadeh’s work into the soil of classical logic, refers to the
possibility of reconsidering some of the tenets logicians seems to preserve with al-
most no actual debate with thinkers in the ’fuzzy’ community of researchers. The
flourishing potentiality of that seed is partially due to the different perspective from
which fuzzy logic looks at what is its object in comparison with what the classical
views maintain. Such a different perspective comes, in a first place, by considering
imprecise linguistic terms, linguistic connectives, modifiers and quantifiers as the
objects to be represented, instead of the classical formal ones, and commonsense
reasoning processes instead of formal ones. That is, for instance, for trying to math-
ematically and computationally modeling the Natural Language’s expressions with
which some dynamical systems are described, or can only be described when no pre-
cise mathematical models of them are available. Almost always these expressions are
not representable with classical sets without modifying their meaning as it is given
by their use under some purpose in the corresponding context. Context-sensitive
and purpose-driven meaning are typical characteristics shown by the problems fuzzy
logic deals with.

Since the allowed extension for this paper does not permit a large presentation,
only the following three topics will be shortly taken into account:

• The validility of some formal fuzzy laws, and the design of fuzzy models.
• The universality of the principles of non-contradiction and excluded-middle in

fuzzy logic
• The necessity of fuzzy logic to consider non-deductive reasoning.

101.2 On the Validity of Some Formal (Fuzzy) Laws, and the
Design of Fuzzy Models

Since one of the goals of fuzzy logic is the formal representation of natural language
statements made up with both precise-boolean and imprecise terms, at least involv-
ing the linguistic connectives and, or, not, it is important to have formal frames of
representation able to capture as much as possible the different properties these con-
nectives show in language. Such frames are known as ’algebras of fuzzy sets’ ,or
’fuzzy algebras’, of which no a generally accepted definition is currently known in
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the same form as there are known those of, for instance, ortholattices, and De Mor-
gan algebras. Since natural language is very complex and not static at all, a general
definition of fuzzy algebra is not an easy task. For instance, neither the linguistic
’and’ is always commutative, nor the linguistic ’not’ is always involutive, as they are
considered in the former lattices.

Additionally, since fuzzy sets are at its turn represented by functions with values in
the unit interval, it is also not obvious that the functions representing the before men-
tioned connectives could always be functionally expressible by numerical functions.
For instance, if a operation . between fuzzy sets represents the linguistic ’and’, it
should be distinguished if such representation is, or is not, functionally expressible in
the form, μ ·σ = T ◦(μ×σ), with some numerical function T : [0,1]× [0,1]→ [0,1],
as it is the case if T is a (commutative!) continuous t-norm.

Once assumed that the set of functions [0,1]X = {μ ; μ : X → [0,1]} is partially
ordered by the pointwise ordering,

μ ≤ σ iff μ(x)≤ σ(x), for all x in X ,

a tentative, but general enough definition of fuzzy algebra for the goal of this paper,
is the following [1],

Definition 1. A Basic Formal Fuzzy Algebra (BFFA) is a four-tuple ([0,1]X , ·,+,′ ),
where · and + are binary operations [0,1]X × [0,1]X → [0,1]X, and ′ is a unary
operation [0,1]X → [0,1]X , verifying:

1) If μ ≤ σ , then μ ·λ ≤ σ ·λ , and λ ·μ ≤ λ ·σ ,
If μ ≤ σ , then μ +λ ≤ σ +λ , and λ + μ ≤ λ +σ , for all λ in [0,1]X .

2) μ ·μ0 = μ0 ·μ = μ0, μ ·μ1 = μ1 ·μ = μ ,
μ + μ0 = μ0 + μ = μ , μ + μ1 = μ1 + μ = μ1,
with μ0 and μ1 the constant fuzzy sets respectivelly equal to 0 and 1.

3) μ ′
0 = μ1, and μ ′

1 = μ0

If μ ≤ σ , then σ ′ ≤ μ ′
4) If μ and σ are in {0,1}X, then also μ ·σ , μ + σ and μ ′, are in {0,1}X, and

μ ·σ = min(μ ,σ), μ +σ = max(μ ,σ), μ ′ = 1− μ .

Axiom (4) is necessary to capture the representation of crisp terms. It is easy to prove
that in all BFFA it holds:

a) μ ·σ ≤ min(μ ,σ)≤ max(μ ,σ)≤ μ +σ ;
b) The only BFFA that are lattices are the De Morgan algebras ([0,1]X ;min,max,′ )

provided ′ is involutive;
c) No BFFA is an ortholattice, thus no one is a Boolean algebra.

Notice that it is not supposed that a BFFA is neither with . or + commutatives, nor
associatives, nor that ’ is involutive, nor that distributive or duality laws do hold,etc.
A BFFA is functionally expressible (FE) provided there are three numerical functions
T,S : [0,1]× [0,1]→ [0,1], N : [0,1]→ [0,1], such that μ ·σ = T ◦ (μ ×σ), μ +σ =
S◦(μ×σ), and μ ′ =N ◦σ , for all μ and σ in [0,1]X . This is the case of the Standard
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Fuzzy Algebras in which T is a continuous t-norm, S is a continuous t-conorm, and N
is a strong negation (see [2]), that are those currently considered in both the theoretic
and applied literature on fuzzy logic.

That some imprecise assertive statements can be satisfactorily represented by
means of fuzzy sets, does not imply that all the laws of Boolean algebras can be
applied to, for instance, shortening complex statements. This is the case with state-
ments of the type “(x is P and y is Q) or (x is P and y is not Q)”, that cannot be
always taken as equivalent to “x is P”, since the logical law of perfect repartition,
p ·q+ p ·q′= p, only holds in the setting of Boolean algebras, but neither in proper or-
tholattices, nor in proper De Morgan algebras, and less again in most fuzzy algebras.
The problem lies in finding fuzzy algebras ([0,1]X , ·,+,′ ) in which the representa-
tion of the former statement: (μP · μQ)(x)+ (μP · μ ′

Q)(x), does coincide with μP(x)
for all x in X . That is, the fuzzy algebras where the formal law μ ·σ + μ ·σ ′ = μ ,
holds. The problem is completely solved [3], and also in the case the algebra is
functionally expressible by means of a continuous t-norm T, a continuous t.conorm
S, and a strong negation N, that is, in the particular setting of the Standard Fuzzy
Algebras. The only standard algebras of fuzzy sets in which the corresponding law
μ(x) = S(T (μ(x),σ(x)),T (μ(x),N(σ(x)))) holds for all x in X , are those given by
T = Prodϕ , S =W ∗

ϕ , N = Nϕ , for any order-automorphism ϕ of the unit interval. In
these algebras, that are not lattices, neither any law of duality [1], nor several other
lattice’s laws hold.

The law can be used only in the contexts where and can be modeled by T =Prodϕ ,
or by S = W ∗

ϕ , and not by Nϕ , with the same ϕ . A situation very different of the
classical-boolean, and with some distant similarity with the quantum-orthomodular.
If the involved linguistic terms are imprecise, but representable by fuzzy sets, the law
is only applicable provided the connectives admit the former representations.

This example shows that when imprecise statements in natural language involving
linguistic connectives do be represented in fuzzy terms, it is strictly necessary to
correctly choose the corresponding algebra. At its turn the algebra can force the
non validity of some other laws [4], [6] that, if necessary, can be reached by adding
new connectives. For instance, if in the example it were necessary that “(x is P) and
(x is not P)” always does not hold, it can be considered the Pexider algebra with
two ‘intersections’ ([0,1]X ,Prodϕ ,Wϕ ,W ∗

ϕ ,Nϕ ) (see [5]), in which for the second
conjunction holds μ · μ ′ = Wϕ(μ ×N ◦ μ) = μ0,for all μ in [0,1]X . It should be
noticed that in large linguistic pieces different uses of the connectives can appear
like it is the case of commutative and non-commutative uses of ‘and’.

Nevertheless, in all case concerning the representation of linguistic pieces the first
problem is the design or selection of the membership functions of the predicates
appearing in them, that depends on the context and the purpose in which they are
used. For instance, the usual representation by piecewise linear membership func-
tions could be just erroneous if this kind of functions are not in agreement with what
is known on the use of the corresponding linguistic terms. Concerning the design
or selection of the linguistic connectives, their representations in fuzzy terms do be
choosen accordingly with their meanings. For instance, in the case of a rule "If x is
P, then y is Q’ in which the negation of the antecedent does not play any role (for
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instance, for not having physical sense), it is possible a conjunctive-type representa-
tion of the type T (ϕ(μP(x)),μQ(y)) [16]. Notwithstanding, provided it were known
that it should always be μP(x)≤ μQ(y), the correct representation could be a residu-
ated implication [6], [8] but not a conjunctive-type one.

In any case, before representing anything in terms of fuzzy sets and fuzzy con-
nectives, to capture the best than possible knowledge of the system, or the best un-
derstanding of the linguistic piece and its parts, is essential. A non correct enough
design can conduct to represent in fuzzy terms a problem different from the given
linguistic one, and at least to eventually finding partially unrealistic solutions of the
linguistically posed problem. A good knowledge on the basic mathematical theory
of fuzzy algebras and fuzzy logic is actually important for the designers, and yet it
will be more important in the path towards Zadeh’s Computing with Words in which
larger and more complex natural language’s expressions will play a pivotal role.

101.3 On the Universality of the Principles of Non-contradiction
and Excluded-Middle in Fuzzy Logic

The linguistic term ’impossible’, Aristotle used to state the principle of Non-
Contradiction (NC), was translated by ’false’, by A∩ A′ = /0 in the boolean case
of classical sets, and by μ · μ ′ = μ0 in that of the algebras of fuzzy sets. In the
standard algebras, the principle corresponds with the verification of the equation
T (μ(x),N(μ(x))) = 0, for all μ in [0,1]X , and all x in X. Hence, the solutions (T,N)
of the functional equation T (a,N(a)) = 0, for all a in [0,1], give the cases in which
NC holds. These solutions are T = Wϕ , and N ≤ Nϕ (see [7]. Hence the principle
NC fails in most of the standard algebras of fuzzy sets.

Although Aristotle is very opaque with respect to the principle of Excluded-
Middle (EM),it is currently translated by A U A’ = X with classical sets, and by
μ + μ ′ = μ1 in the algebras of fuzzy sets. In the standard algebras, this corresponds
with the verification of the equation S(μ(x),N(μ(x))) = 1, for all μ and all x. Hence
the solutions (S,N) of the functional equation S(a,N(a)) = 1, give the cases in which
EM holds. These solutions are S =W ∗

ψ , and Nψ ≤ N (see [8], and show that the prin-
ciple EM fails in most of the standard algebras.

Hence, both NC and EM principles do hold in the standard algebras of fuzzy sets
if and only if T =Wϕ , S =W ∗

ψ , and Nψ ≤ N ≤ Nϕ . There are algebras in which only
one of the two principles hold, and both jointly fail in many, many cases.

Nevertheless, if ’impossible’ is translated by ’self-contradictory’, both principles
do hold in all BFFA if posed by:

• NC : μ ·μ ′ ≤ (μ ·μ ′)′, that is, μ ·μ ′ is self-contradictory,
• EM : (μ + μ ′)′ ≤ ((μ + μ ′)′)′, that is (μ + μ ′)′ is self-contradictory,

and it is easy to prove that the two inequalities hold in all BFFA (see [9]).

It should be noticed that provided the operations · and + are commutative, the nega-
tion is involutive, and the laws of duality hold, the former NC and EM inequalities
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reduce to the obviously valid inequality μ ·μ ′ ≤ μ +μ ′. It also should be noticed that
if μ is in {0,1}X , then NC reduces to μ · μ ′ = μ0 and EM reduces to μ + μ ′ = μ1.
In [10], and provided the BFFA is FE but without t-norms and t-conorms, the nu-
merical functions giving the functional expressibility of · and + verifying NC and
EM are characterized. Hence, expressing the principles by understanding ‘impossi-
ble’ as ‘self-contradictory’ or ‘absurd’, both NC and EM principles are universally
valid in all BFFA and, in particular, in the standard algebras of fuzzy sets, something
that sheds a different light on what is usually asserted since, in fact, fuzzy sets never
violate the two Aistotle’s principles. In addition, it does be remarked that the fuzzy
case opens the way towards a deductive study of the the general validity of the two
principles (see [9]), perhaps against the Aristotle’s view that at least NC cannot be
submitted to proof.

101.4 On the Necessity of Formalizing Non-deductive Reasoning

Most of the commonsense reasonings are not deductive, but conjectural. Perhaps no
more than a 25% of the totality of these reasonings are deductively made step by step
and under well known rules of inference. Hence, the remaining 75% is of relevance
for any methodology trying to represent Commonsense Reasoning (CR) throughout
some formalization process that, hence, should necessarily take into account the non-
deductive ways of reasoning. That is, abductive and inductive types of reasoning in
which, and contrarily to deduction, are typical the ’jumpings’ to the conclusions.

Of course, deduction does be considered the only ’safe’ form of reasoning in the
sense that their conclusions are as valid as premises can be, and for any deductive
conclusion its negation is refused as such. Instead, abduction and induction do not
give ’safe’ conclusions since they are not only doubtful with respect to the given
premises, but its negations can be also obtained from the same premises. If in de-
duction all that is concluded just deploys, or necessarily follows from what is in the
premises, in abduction and induction the situation is different since their conclusions
often represent something that is ’new’, in the sense of not being directly deployable
from the premises.

In addition, deduction is monotonic since when new premises are known, no less
conclusions can be deployed. Instead, neither abduction, nor induction can be mono-
tonic; experience shows that in these kind of reasonings new premises can easily
conduct to cancel some previously reached conclusions, that is, and cautiously said,
no more conclusions can be obtained.

At this respect, a first problem is how to define the concept of conjecture in such
a way that deductive, abductive, and inductive conclusions, can be captured as their
only particular cases. Conjectures are viewed as those elements in the frame of rep-
resentation thar are just ’consistent’ with the information conveyed by the premises.

With the goal of not introducing more technical complexities than those that are
strictly necessary, let us try to introduce this new concept (see [11]) in the setting
of the De Morgan algebra of fuzzy sets ([0,1]X ,min,max,1− id), that currently is
maybe the most employed one in the applications of fuzzy logic.
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Definition 2. Let P = {μ1, ...,μn} ⊂ [0,1]X , a set of premises such that μ∧ = min
(μ1, ...,μn) is not self-contradictory, that is μ∧ �≤ 1−μ∧. The set of conjectures from
P, is Con j(P) = {σ ∈ [0,1]X ; μ∧ �≤ 1−σ}.

Obviously, it is P ⊂Con j(P), and

a) If P ⊂ Q, then Con j(Q) ⊂ Con j(P). That is, the ‘operator’ Con j is anti-
monotonic.

b) The operator C(P) = {σ ∈ [0,1]X ; μ∧ ≤ σ}, is extensive: P ⊂C(P), monotonic:
P⊂Q→C(P)⊂C(Q), a clausure: C(C(P))=C(P), and consistent: σ ∈C(P)→
σ ′ �∈C(P): C is a consistent consequence operator.

c) C(P)⊂Con j(P), and Con j(P) = {σ ∈ [0,1]X ;σ ′ �∈C(P)}.
d) It cannot be neither assumed that if σ ∈ Con j(P), then σ ′ �∈ Con j(P), nor that

σ �≤ σ ′.
e) It is supposed that μ∧ summarizes the information conveyed by P.

Result (c) could make to think that conjecturing should necessarily come after de-
duction. Nevertheless, there are operators that can be called of conjectures and that
do not ’follow’ from a consequence operator. For instance,

Con j∗(P) = {σ ∈ [0,1]X ; μ∧ ·σ �≤ (μ∧ ·σ)′},
which although verifying P ⊂ C(P) ⊂ Con j∗(P), and being anti-monotonic, is not
coming from any conjecture operator since the only possible C∗ with which it can be
Con j∗(P) = {σ ;σ �∈ C∗(P)}, is C∗(P) = {σ ; μ∧ ·σ ′ ≤ (μ∧ ·σ ′)′}, that is not a con-
sequence operator. Of course, Con j∗ is obtained after understanding the consistency
with μ∧ as “μ∧ ·σ is not self-contradictory", instead that for Conj is understood by
‘σ is not contradictory with μ∧’. Yet also the operator

Con j∗∗(P) = {σ ∈ [0,1]X ; μ∧ ·σ �= μ0},
obtained by understanding the consistency with μ∧ as ‘non-incompatibility´ with it,
only can come from the operator C∗∗(P) = {σ ; μ∧ ·σ ′ = μ0}, that is not also a con-
sequence operator. Con j∗∗ is anti-monotonic, and verifies P ⊂ C(P) ⊂ Con j∗∗(P)
(see [13]). Hence, it does not seem that conjecturing necessarily comes from a pre-
vious form of logical deduction even if always includes deduction as a particular
case.

Which are the other types of conjectures? Since, Con j(P)−C(P) = {σ ; μ0 <
σ < μ∧}∪{σ ∈Con j(P);σNCμ∧}, with NC shortening ‘not comparable under the
ordering ≤’, and μ0 �∈ Con j(P) since μ∧ ≤ μ1 = μ ′

0, it can be defined {σ ; μ0 <
σ < μ∧} = Hyp(P), and {σ ;σNCμ∧ �≤ σ ′} = Sp(P), the subsets of hypotheses (or
explanative conjectures), and of speculations (or lucubrative conjectures), respectiv-
elly. In this way, since Con j(P) = C(P)∪Hyp(P)∪ Sp(P) is clearly a partition, it
can be said that conjecturing just consists in deducing (obtaining consequences), ab-
ducing (obtaining hypotheses), and inducing (obtaining speculations). In addition,
the set Re f (P) = Con j(P)′ = {σ ;σ ′ ∈ C(P)}, can be called that of the refutations
of P.
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Notice that the partition, [0,1]X = Con j(P) ∪ Re f (P) = (C(P) ∪ Re f (P)) ∪
(Hyp(P)∪ Sp(P)), shows that C(P)∪ Re f (P) is the set of C-decidable elements,
and Hyp(P) U Sp(P) is that of the C-undecidable elements of [0,1]X .

Remarks

a) Notice that by their own definition in the presented model, to find speculations
could force to make ‘jumps’ in the poset ([0,1]X ,≤).

b) If σ ∈ Sp(P), and provided μ∧ ·σ �= μ0, it is μ∧ ·σ ∈Hyp(P), and μ∧+σ ∈C(P).
Hence, once jointly taken with μ∧, speculations can help to obtain hypotheses
and consequences [17]. Something that seems in agreement with how people
sometimes reason.

c) In a slighty different way, also in Con j∗(P) and in Con j∗∗(P), hypotheses and
speculations can be individuated by separating C(P) in them see ( [12] [13]).

d) All that has been presented can be mutatis mutandis translated to the setting of
ortholattices [12] by just substituing the condition that in all P, μ∧ is not self-
contradictory by the weaker condition that the ’intersection’ of all the premises
in P is not nul (in which case it is not self-contradictory, and it is only equivalent
in the particular case of Boolean algebras).

e) With all that has been presented, it is possible to accept that most of reasoning
could be identified with ’deducing+abducing+inducing+refuting’. Of course, if
deducing and refuting are nothing else than deductive processes, there is not yet
clear how the undecidable elements can be systematically obtained in human rea-
soning (see [14]). A way that sometimes people use, is by means of an analogy
with a previously considered similar case.

101.5 Conclusion

This paper just constitutes a reflection on three topics that, differentiating the method-
ologies of classical and fuzzy logics, could be important for the path towards Zadeh’s
Computing with Words. Of course, provided this new subject is, also and addition-
ally, viewed as an enlargement of fuzzy logic with the goal of representing more
complex linguistic expressions than those considered in its current applications.

The first topic tries to support the view under which to deal with non-ambiguous
expressions in Natural Language, it is necessary a correct design of all the fuzzy
terms representing the linguistic elements, from membership functions and connec-
tives to modifiers and quantifiers, since there are no universal ways to represent them.
Between lines, it is also pointed out that a more general concept of what is currently
understood by a fuzzy algebra does be introduced for such enterprise. The axiom of
specification for classical sets (see [15]) has not an immediate translation to fuzzy
sets since, for instance, imprecise predicates usually neither perfectly classify the
universe of discourse, nor have the same membership function in all context.

The second topic tries to notice that there are alternative views allowing to prove
as theorems what formerly has been taken either as axioms, or as failing properties,
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like are the important cases of the NC and EM principles. These alternatives help,
for instance, to see fuzzy logic as founded in more solid grounds, and support the fact
that, although its referent is imprecise, fuzzy logic offers precise ways of formally
dealing with imprecision.

The third topic tries to show that there are new possibilities to go towards seeing
logic as more than the study of deductive systems, by means of some mathematical
formalizations of the non-deductive forms of reasoning, and once they are based on
the concept of ’conjecture’. Something that seems essential for any useful setting of
representation, in which larger parts of Commonsense Reasoning could be mathe-
matically modeled by, for instance, considering most of ’people’s reasoning’ as the
sum ’conjecturing+refuting’.

Anyway, this paper is not conclusive but, thoughout some insights it only tries to
be a ’suggestive’ one.

Fig. 101.1. Surrounding Lotfi Zadeh at the Eleventh IEEE International Symposium on
Multiple-Valued Logic in Oklahoma City, 1981: Settimo Termini, Ronald Yager, Francesc
Esteva, NN, Sergei Ovchinnikov, Teresa Riera, Lorenzo Peña, Enric Trillas.
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102

Fuzzy Regression Models
Beyond Fuzzy Rule Base Models

I. Burhan Türkşen

102.1 Preface

I was introduced to Prof. Dr. Lotfi A. Zadeh in 1970 Summer by Robert Macol,
then the President of Operations Research Society of America (ORSA) at a Nato
Advanced Study Institute meeting in Istanbul Turkey. In 1971, one of my research
students gave me a copy of Zadeh‘s first paper called Fuzzy Sets. In 1972, Prof.
Zadeh came as a member of an accreditation team to visit our Department of In-
dustrial Engineering at the University of Toronto. At our Faculty Club Lunch held
during that visit, Prof. Zadeh told me that he was born in Baku Azerbaijan. From
that moment on, I attended Prof Zadeh‘s lectures at various conferences for the next
5 years or so. In 1976 when I went for my first research leave, I studied Prof Zadeh’s
various papers including “the Concept of a Linguistic Variable”. [7, 8]

Later in the 80‘s I visited Prof Zadeh at Berkeley on several of my research leaves.
As well, I started my research publications with Disjunctive and Conjunctive Normal
Forms discovering their separation forming upper and lower bounds in their fuzzy
versions. After working with fuzzy rule based systems a number of years, I have
introduced Fuzzy Regression Functions in place of Fuzzy Rule Bases. Currently
I am working on the generation of “Full Type-2” fuzzy system models from data
analyses. I have developed an algorithm that generates FULL TYPE2, FULL TYPE3
... system models in a recursive manner.

In most of my research in fuzzy logic, Prof. Zadeh personally and his published
papers, in particular, have always provided a source of inspiration.

102.2 Abstract

We review first the two Fuzzy Rule Based System models such as Sugeno-Yasukawa
and Tagaki-Sugeno approaches which are essentially extensions of Zadeh‘s fuzzy
rulebase model. Next an essential structure of Türkşen‘s approach is reviewed as
a foundation for Fuzzy Regression models which forms the bases of many of our
recently published research papers.

102.3 Background

As a background, we review three distinct approaches which are:

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 707–711.
DOI: 10.1007/978-3-642-35644-5_102 © Springer-Verlag Berlin Heidelberg 2013
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(a) Sugeno-Yasukawa [3] approach where both the right hand side and the left hand
side of a fuzzy rule base are determined either by experts or by fuzzy clustering
algorithms such as FCM (Bezdek, [1]).

(b) Tagaki-Sugeno [5] approach where fuzzy sets of the left hand side of a fuzzy rule
base are determined either by experts or by fuzzy clustering algorithms such as
FCM (Bezdek, [1]) and the right hand sides are regression functions determined
by function estimation methods.

(c) Türkşen’s [6] approach was further investigated by Celikyilmaz and Türkşen [2].
In these papers, a classical regression is enhanced by introduction of member-
ship values and their transformations. This improves the regression constant.
Hence, we introduce “Fuzzy Regression Models” in place of fuzzy rule bases.
In these investigations, a fuzzy clustering algorithm such as FCM (Bezdek, [1])
or IFC (Celikyilmaz-Türkşen [2]) is used to determine the number of such fuzzy
regressions required for an effective solution.

102.4 Fuzzy Regression Models

Türkşen [6] and Celikyilmaz-Türkşen [2] approaches are enhanced regression mod-
els with an introduction of membership values and their transformations to form
Fuzzy Regression Models with LSE, FRM-LSE, which are improved alternatives to
fuzzy rule base systems.

The generalization of LSE for Fuzzy Regression Models, called FRM-LSE for
short, and their various versions requires that a fuzzy clustering algorithm, such as
FCM (Bezdek, [1]), or IFC of Celikyilmaz-Türkşen [2] be available to determine the
interactive (joint) membership values of input-output variables in each of the fuzzy
clusters that can be identified for a given training data set. For this purpose:

Let (Xk,Yk), k = 1, . . . ,nd, be the set of observations in a training data set, such
that Xk =

(

x jk| j = 1, . . . ,nv,k = 1, . . .nd
)

First, one determines the optimal (m∗,c∗) pair for a particular performance mea-
sure, i.e., a cluster validity index, with an iterative search and an application of FCM
or IFC algorithm, where m is the level of fuzziness (in our experiments we usually
take m = 1.4, . . . ,2.6) (Ozkan and Türkşen, [4], Celikyilmaz-Türkşen [2]), and c is
the number of clusters (in our experiments we usually take c = 2, . . . ,10). The well
known FCM algorithm can be stated as follows:

min J(U,V) =
nd

∑
k=1

c

∑
i=1

(uik)
m (‖xk − vi‖A) (102.1)

s.t. 0 ≤ uik ≤ 1, ∀i,k, ∑c
i=1 uik = 1,∀k, 0 ≤ ∑nd

k=1 uik ≤ nd,∀i,

where J is the objective function to be minimized, ‖·‖A is a norm that specifies a
distance-based similarity between the data vector xk and a fuzzy cluster center vi. In
particular, A = I is the Euclidian Norm and A =C−1 is the Mahalonobis Norm, etc.
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Once the optimal pair (m∗,c∗) is determined with the application of FCM or IFC
algorithm, one next identifies the cluster centers for m = m∗ and c = 1, . . . ,c∗ as:

vX |Y, j
m∗

=
(

Xc
1, j,X

c
2, j, . . . ,X

c
nv, j,y

c
j

)

(102.2)

From this, one identifies the cluster centers of the “input space” again for m = m∗
and c = 1, . . . ,c∗ as:

vX | j
m∗

=
(

Xc
1, j,X

c
2, j, . . . ,X

c
nv, j

)

(102.3)

Next, one computes the normalized membership values of each data sample in the
training data set:

(a) First one determines the (local) optimum membership values uik’s and then de-
termines μik’s that are above an α-cut in order to eliminate harmonics generated
by FCM or IFC as:

uik =

⎛

⎝

c

∑
j=1

(

‖xk −νX ,i‖
∥
∥xk −νX , j

∥
∥

) 2
m−1

⎞

⎠

−1

, μik = {uik ≥ α} , (102.4)

where μik denotes the membership value of the kth vector, k = 1, . . . ,nd, in the
ith rule, i = 1, . . . ,c∗ and xk denotes the kth vector and for all the input variables
j = 1, . . . ,nv, in the input space.

(b) Next, one normalizes them as: γik(x j) =
μi j(x j)

∑c
i′=1

μi′ j(x j)
.

Let Γ = (γi j|i = 1, . . . ,c∗; j = 1, . . . ,nν) be the membership values of X data sample
in the ith cluster, i.e., ith rule. Next one determines as a new augmented input matrix
of X for each of the clusters.

As an example of the possible augmented input matrix X
′
i = [1,Γi,X ], we develop

Yi = βi0 +βi1Γi +βi2Xi j, with

X
′
i = [1,Γi,Xi j] =

⎡

⎢
⎢
⎣

1 γi1 xi j1

...
...

...

1 γi1 xi j1

⎤

⎥
⎥
⎦
. (102.5)

Thus the fuzzy regression function Yi = βi0 +βi1Γi +βi2Xi j, that represents the ith
rule corresponding to the ith interactive (joint) cluster in the (Yi,Γi,Xj) space, would
be estimated with the FRM-LSE approach as follows:

The fuzzy regression function Yi = β ∗
i0 + β ∗

i1Γi + β ∗
i2Xi j in (Yi,Γi,Xj) space with

β ∗
i = (X

′T
i j X

′
i j)

−1(X
′T
i j Yi) would be obtained as Y ∗

i = β ∗
i0 +β ∗

i1Γi +β ∗
i2Xi j. The overall

output value is:

Y ∗
i =

∑c∗
i′=1 γiY ∗

i

∑c∗
i′=1 γi

. (102.6)

The overall output value is calculated using each output value one from each cluster
and weighting them with their corresponding membership values.



710 102 Fuzzy Regression Models Beyond Fuzzy Rule Base Models

Fig. 102.1. I. Burhan Türkşen and Madan M. Gupta among others at the first World Conference
on Soft Computing (WConSC’11) in San Francisco, May 23-26, 2011. In the background:
Michio Sugeno.

102.5 Conclusions

We have developed various versions of this fuzzy regression models with success-
ful results. Such investigations can be found in Türkşen [6] and Celikyilmaz and
Türkşen [2] as well as Ozkan and Türkşen [4] studies and their various versions.
Currently, we are developing Full TYPE 2 fuzzy system studies with the application
of our new algorithm called “Full TYPE 2 Fuzzy System Models”.
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On Fuzzy Sets Philosophical Foundations

Luis Adrian Urtubey

103.1 The Emergence of Fuzzy Sets

Doubtlessly the motivations for the development of fuzzy logic are deemed closely
associated with technologically biased concerns. In his 1962 paper -where the term
fuzzy is supposed to appear for the first time in its current usage- Zadeh was primar-
ily attentive to the emergence and evolution of system theory as well as its impact
on the field of electric engineering [9], [10]. Moreover when Zadeh uses the term
fuzzy in this paper, he is not cared about inanimate systems, but he is mostly trou-
bled above animate or biological systems, which are generally orders of magnitude
more complex than man-made systems. It brought himself to claim that it appears
necessary to count on a radically different class of mathematics, one that accounts
for fuzzy or cloudy quantities which are not describable in terms of probability dis-
tributions. Moreover even in the case of man-made systems it turns out apparent the
need of such innovation.1

Ironically, Zadeh also referred there to the fact that in most practical cases the
a priori data as well as the criteria by which a system is judged are far from be-
ing precisely specified or having accurately known probability distributions. I say
ironically, because later on one of the most frequent criticism on the application of
fuzzy sets to deal with vagueness and imprecision -specially from the philosophical
side- has been focussed on the very assignment of determined quantities by means
of fuzzy sets membership functions.2

As someone coming from philosophy, I would like to address here some reflec-
tions about fuzzy sets from a philosophical standpoint, far from these criticisms.
These are not about completely new issues, but I think that they will show themselves
to be significant to look into other connections between philosophy and fuzziness.

103.2 What Logic Has to Do With It

This is a question that many logicians must have likely formulated when they were
confronted with the increasing application of fuzzy logic. For some philosophically-
minded logicians, fuzzy logic seemed to be appropriate for treating the logic of
vagueness. It produced immediate reactions against fuzzy logic led by logicians

1 Rudolf Seising considers the rise and evolution of fuzzy logic over these years. See [5].
2 Carl W. Entemann has dealt with some of this criticisms in [2].

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 713–717.
DOI: 10.1007/978-3-642-35644-5_103 © Springer-Verlag Berlin Heidelberg 2013



714 103 On Fuzzy Sets Philosophical Foundations

who remain stubbornly faithful to classical bivalent logic.3 One can say that many
generations up to now have philosophically grew up under the influence of the un-
favorable reception of fuzzy logic by some notorious philosophers and logicians. I
never had sympathy for this attitude, much less if one considers for example, that it
is likely to draw a parallel between the rise of Aristotle’s syllogistic -according to the
interpretation of some prestigious scholars- and fuzzy logic beginnings. This is one
of the lines I want to pursue here.

Specialists in Aristotle’s logic have paid attention to the influence of geometry and
the theory of proportions in the origins of his syllogistic. In particular, Robin Smith
dares say that Aristotles syllogistic theory is more properly regarded as mathematics
than as logic as understood by most contemporary logicians [6].

Leaving aside most philological details, it turns out that many techniques and
ideas which Aristotle makes use of in the theory of syllogism are borrowed from
harmonic theory, i.e. from the mathematics of music. Moreover many clues split
throughout Aristotles Prior Analitics would suggest a mathematical context much
more than an argumentative one. If things went this way, while working on his
syllogistic, Aristotle could have had in mind something else: a mathematical theory
of epistemology, as R. Smith have called it, ultimately derived from Plato’s Theory of
Forms. The famous passage in Plato’s Republic VI, where mathematics is described
as in some way an image of true knowledge, had already suggested a theory of this
type.

103.3 Fuzzy Sets Epistemimological Foundations

Plausibly one may claim that the epistemological grounds of fuzzy sets have not re-
ceived as much attention as their logic-semantical conundrums. Philosophically the
problem posed by an epistemology of fuzzy sets might be tackled from a Kantian per-
spective, as a consequence of the thesis that properties in itself cannot be perceived,
but only the individual phenomena. Kant’s Critique established that human search
for knowledge is possible because there are phenomena, but at the same time, it intro-
duced an insuperable dichotomy between a subject who perceives the phenomenon
on the one side and the phenomenal object on the other. The property, the Kantian
think in itself, remains impenetrable to the perceiving subject. Consequently the true
perceivable phenomenon is the individuation; the split of properties and the ongoing
participation an individual x has in a property P. The language, as a universal human
mean of representation, aims just at representing these perceptions. Therefore, even
in language, it cannot be either a truly clear-cut determination of predicates by sets
of individuals because properties inexorably escape that sort of determination.

Such a conclusion is the main contempt of the philosophy of knowledge of Arthur
Schopenhauer, one of the most prominent post-kantian and anti-idealist philosophers
of the XIXth century. From the beginning, human search for knowledge confronts
a subject with an object that marks subjects limitations. It is Schopenhauer main

3 For a recent publication covering that issues see [3].
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concern that this opposition never is over. There is no way, including dialectic, of
overcoming this limitation human beings are damned to, therein the Schopenhaue-
rian pessimistic conclusion that see human existence as striving continuously in a
senseless battle [4].

Recently Manuel Tarrazo has also stressed this connection of Schopenhauer epis-
temic framework with the existing concept of fuzziness [7]. That being the case, a
fuzzy set can be seen epistemologically as an accurate and mathematically elaborated
mean to represent the split of properties in many individuals.

According to this interpretation, a fuzzy set contains infinite instances of possible
individual perceptions concerning certain property. Notably all these perceptions can
only involve individuals and then fuzzy sets represent properties only indirectly, by
giving the individual different degrees of participation. In this way properties are
implicitly included in the fuzzy representation of the world. Consequently, degrees
of membership in a fuzzy set, have to be naturally explained by the impossibility of
expressing properties in a direct way.

Zadeh’s computing with words and perceptions approach introduced in the last
years in soft computing, has achieved a more epistemological interpretation of fuzzy
sets [12]. Notably E. Trillas has also emphasized in different places the relationship
between the use of words and fuzzy sets stemming from the worldly interaction of a
subject with objects and properties [8].

103.4 A Literary Digression on Borges and “The Zahir”

It is noteworthy that the story called The Zahir, by the Argentinian writer Jorge
Luis Borges, has an appealing connection with the split-property-approach to fuzzy
sets considered above. The story refers the existence of a fantastic object, the Za-
hir, which has the power of representing universal properties in a single object. In
Buenos Aires at the time of the story -Borges said, not lacking in fine irony- the
zahir is a twenty-cent coin that the story-teller incidentally obtains in a corner-bar-
and-grocery-store: “I asked the owner for an orange gin; with the change I was given
the Zahir; ...The thought struck me that there is no coin that is not the symbol of all
the coins that shine endlessly down throughout history and fable”. [1]

There have been many different objects which embodied the Zahir at different
times all around the world. Among them, “in Gujarat, at the end of the eighteenth
century, Zahir was a tiger” ... “a magic tiger that was the perdition of all who saw
it”. The figure of this tiger was painted in a palace: In “the jail at Nighur, there
was a cell whose floor, walls and vaulted ceiling was covered by a drawing (in bar-
baric colors that time, before obliterating had refined) of an infinite tiger. It was a
tiger composed of many tigers, in the most dizzying of ways; it was crisscrossed
with tigers, striped with tigers, and contained seas and Himalayas and armies that
resembled other tigers”. [1]



716 References

Thinking about the story, one can also figure out a fuzzy set as a mean of express-
ing something like the infinite tiger of that picture. Capturing the infinite non-perfect
individuals that are embraced by a property, a fuzzy set can represent the very prop-
erty as it shows up.

103.5 Conclusion

As L. Zadeh used to say, Fuzzy Logic is not fuzzy. A fuzzy set is a very precise
device to deal with the imprecision of human life. Fuzzy sets and Fuzzy Logic have
innumerable affinities with several areas of human knowledge [11]. I have explored
some relationships of fuzzy sets with mainstream epistemology and metaphysics. I
have also shown that there are antecedents concerning the impact of technologically
motivated developments, as may be the case of Fuzzy Logic, on theoretical under-
pinnings. This fact has been illustrated by appealing to such a prestigious logical
theory as Aristotle’s syllogistic.

Contrasting with the project of a mathematical epistemology of perfectly defined
concepts, which Aristotle might have had in mind while he was elaborating his syllo-
gistic theory, it makes sense to see Fuzzy Logic now as the endeavor for developing
a mathematical epistemology of commonplace imperfect intellectual constructs.

Acknowledgement. I owe special thanks to the Editors for inviting me to participate
in this volume. This work was partially supported by grant PICT2007 BID-1606.
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The Two Cultures of Logic

Kees van Deemter

104.1 C. P. Snow’s Two Cultures

In his famous Rede Lecture of 1959, the physicist, novellist and polymath C.P.Snow
put forward his thesis of the Two Cultures [13]. Snow observed that a gulf had ap-
peared between two academic cultures, with engineers and scientists on one side,
and scholars in the humanities on the other. Snow lamented that little communica-
tion went on across the gulf, so that most representatives of each of the two academic
cultures lacks the most basic understanding, and appreciation, of the other. My the-
sis, in this written homage to Lotfi Zadeh, is that something akin to Snow’s gulf runs
through mathematical logic. For even though logic is a science, there are two types of
logicians: on one side of the gulf are those who insist on using True and False (and,
possibly, Indeterminate or Undefined) as the only possible truth values; on the other
side are those logicians who embrace a wealth of different truth values, with True
and False as the extremes of a continuum; to denote the latter area of work, which
covers a large variety of approaches including (but not limited to) Fuzzy Logic, we
shall loosely use the term multi-valued logic.

This article is a plea for diplomacy across the gulf. My vantage point is the study
of language and communication, first as a theoretical enterprise, then as an area of
language engineering. The gist of my remarks will be that multi-valued logics have
much to offer in both areas, but that cultural and intellectual obstacles are standing
in the way.

104.2 Vagueness in Language and Communication

Vagueness looms large in two research areas in which I have been active: the the-
oretical study of natural language and the practical endeavour of Natural Language
Generation.

104.2.1 Formal Semantics of Natural Language

A strong tradition at the intersection of linguistics and mathematics focusses on the
construction of formal models of meaning, addressing questions like “Does S1 follow
from S2", where S1 and S2 are (for example) English sentences [2]. Despite the rise
of non-classical logics, and despite recent statistical work on textual entailment 1,

1 See [1] for a survey.
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the bulk of this work still relies on “Boolean" logics, based on just two truth values
(plus occasionally a third value for “unknown" or “undefined"). Fuzzy expressions,
such as degree adjectives, pose difficult challenges to this approach. A classic il-
lustration is the ancient sorites paradox. Here is a modern, scientifically enhanced
version 2 based on the experimental finding that differences in amplitude of 0.5 deci-
bel are too small to be perceived by the human ear:

Premisses: (1) −30dB is inaudible; (2) 100db is audible; (3) any statement of the
form “if xdB is inaudible then (x+ 0.5dB) is inaudible”.

−30dB is inaudible (1). Therefore, by 3,
−29.5dB is inaudible. Therefore, by 3,
−29dB is audible. Therefore, by 3, . . . (etc) . . .
100dB is inaudible. But,
100dB is audible (2). Contradiction

Boolean approaches struggle to explain the flaw in this argument because, faced with
the choice between rating (3) as True or False, True seems to be the choice consistent
with experimental findings, which makes the contradictory conclusion difficult to
avoid. There is no shortage of proposed solutions3 but a generally accepted solution
remains elusive. Fuzzy logic attempts to square this circle by allowing truth values
that reflect degrees of truth in between completely True (the value 1) and completely
False (the value 0). These allow us to say that the statements (3) are very nearly true.
Different analyses are possible, depending on how the conditional is analysed. One
of the more attractive analyses uses the following definitions:

‖ϕ‖= 1−‖ϕ‖
‖ϕ ∨ψ‖= max(‖ϕ‖,‖ψ‖)
‖ϕ ∧ψ‖= min(‖ϕ‖,‖ψ‖)
If ‖ϕ‖ ≤ ‖ψ‖ then ‖ϕ → ψ‖= 1 else ‖ϕ → ψ‖= 1− (‖ϕ‖−‖ψ‖)

Suppose we assess the truth value of “−10dB is inaudible” as 1 (completely true) but
the truth value of “−9.5dB is inaudible” as 0.9, the value of “−9dB is inaudible” as
0.85, and so on until we arrive at “−0.5dB is inaudible” with a value of 0. This would
make all the relevant conditionals nearly true, at 0.9. This would allow the Fuzzy
Logician to analyse the argument as based on premisses that are nearly true, but
leading to a conclusion that is completely false. This is an attractive analysis, because
it explains why the sorites argument is wrong yet (at least somewhat) convincing.
Yet, as we shall see below, it does leave something to be desired.

104.2.2 Natural Language Generation

Natural Language Generation (NLG) systems generate (for example) English utter-
ances from nonlinguistic input.4 Examples include medical decision support NLG

2 This version of the paradox, like much else in this chapter, stems from [15].
3 See [10] for a dated but still outstanding collection of famous papers.
4 [12], for a general introduction.
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systems that take clinical time-series data (heart rhythm, temperature, etc.) of a pa-
tient as input, and weather forecasting NLG systems convert computer-generated
numbers into human-digestible text [8] [7]:

Input: Average Windspeed(6:00-12:00) = 37 knots
Output: “Gale force winds are expected in the morning"

In human-authored reports (in both these areas), vague expressions abound. For
example, in the BT-Nurse corpus developed under the Babytalk medical informatics
project [8], one nurse wrote, with vague expressions italicised by me:

Today he managed 1.5 hours off CPAP in about 0.3 litres nasal prong oxy-
gen, and was put back onto CPAP after a desaturation with bradycardia.
However, over the day his oxygen requirements generally have come down
from 30% to 25%. Oxygen saturation is very variable. Usually the desatu-
rations are down to the 60s or 70s (...)

Their frequent use by professionals suggests that vague expressions are thought to
be effective. A substantial amount of research addresses the question when and how
vague expressions should be produced by an NLG system to make these systems
optimally useful.

104.3 Open Questions

I believe that multi-valued approaches to logic have much to offer, both to the the-
oretical understanding of language and to language technology. This conviction,
however, is not widely shared in these research communities. Moreover, even those
who share it differ over the choice of logical system, and over the question how these
systems may be grounded in data.

104.3.1 Can We Bridge the Gulf between Our Own Two Cultures?

Fuzzy and other multi-valued logics5 have reached considerable scientific
respectability and offer attractive solutions to puzzles like sorites. Yet, their influ-
ence on the study of language and communication has so far been modest. I believe
that this may be best explained on sociological grounds: students of language and
communication are educated in a tradition that buys lock, stock and barrel into the
Boolean model. Change glimmers on the horizon though, since recent computational
work on language has emphasised engineering methods based on statistics (hence
real numbers, as in Fuzzy Logic). Although this has temporarily pushed logic to
the background, it seems plausible that once logic reappears on the scene, this will
be in an undogmatic “engineering" spirit, which is likely to be more open towards
multi-valued logics.

5 See [3] for a thorough textbook on fuzzy and multi-valued logic.
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Fig. 104.1. Expressing weather data in a bygone age: Edwardian banjo barometer

104.3.2 Which Multi-valued Logic Models Vague Language Best?

Fuzzy Logic, as it stands, has certain properties that limit its value as a model of
language. Let me explain, re-using an example by Dorothy Edgington. Imagine two
balls, x and y, of equal size, with ‖small(x)‖= 0.5 and ‖small(y)‖= 0.5. Suppose x
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is a much darker shade of black than y, with ‖black(x)‖= 0.9 and ‖black(y)‖= 0.5.
If I ask you to pick up the small black ball, you will surely pick up x, because it is
a better candidate for the description than y. The truth conditions cited in section
104.2.1 fail to predict this, however, since they dictate that ‖small(x)∧black(x)‖ =
min(0.5,0.9) = 0.5, and ‖small(y)∧ black(y)‖ = min(0.5,0.5) = 0.5. To fix the
problem, one might suggest a different set of truth conditions, for example by mul-
tiplying the values of the conjuncts, instead of taking their minimum. But if this is
done, disjunction should be examined as well. Consider a ball z that is halfway be-
tween red and pink, with ‖pink(z)‖= 0.5 and ‖red(z)‖= 0.5. Do we really want to
say that “red or pink" is only a so-so description of y (with ‖red(z)∨ pink(z)‖= 0.5)?
Surely, “Give me the ball that’s red or pink please" is a perfectly apt way to talk about
z. Once again, the truth conditions don’t seem to give us what the analysis of lan-
guage requires.

The latter example brings us to truth conditionality. A logic is truth functional
if the truth value of a complex expression depends functionally on the truth val-
ues of its parts. The truth conditions offered above make Fuzzy Logic truth func-
tional, and this has unwanted consequences. Consider the conditions that make up
the sorites paradox, for example: the definition cited above gives inaudible(x) →
inaudible(x) a truth value of 1, which is reasonable. Assume ‖audible(x)‖ = 0.5,
hence ‖inaudible(x)‖ = 0.5 likewise. Now substitute audible for inaudible in the
conditional (salva veritate), yielding inaudible(x)→ audible(x). This sentence has
a truth value of 1 again, which seems absurd. The cause, this time, is not some detail
of the truth conditions, but the very mechanism of Fuzzy Logic, which wasn’t built
to model penumbral connections [6] between expressions (such as the connection
between red and pink). One is beginning to fear that the truth conditions above were
designed specifically for cases where ϕ and ψ are closely related (as in the sorites
paradox), and that they are lacking generality.

As I have argued elsewhere ( [15], p.213-218.), the solution to these shortcomings
is not to abandon multi-valued logic, but to re-construct it along probabilistic lines.6

Doing so is not to de-value Fuzzy Logic but to acknowledge that some problems to
which it has been applied require a different, though closely related approach.

104.3.3 Empirical Issues

When Fuzzy Logic is applied to a problem in real life, truth values need to be as-
signed to atomic statements. To do this in a well-founded way, careful experimenta-
tion is required.7 Unfortunately, psychologists fail to get much unanimity when they
ask subjects to what degree a vague word applies truthfully to a situation, and they
find that truth degrees depend strongly on expectations [11], with different expres-
sions being sensitive to expectations of different kinds (e.g., hearers’ or speakers’
expectations). If and when the logic implications of these findings are explored,
Fuzzy Logicians could do worse than to be inspired by work in philosophical logic
(in the “other" culture).

6 This position has been defended consistently by Dorothy Edgington, e.g., [4], [5].
7 See for example [16], chapter 14, where there are hints of such an empirical approach.
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Perhaps the most important empirical question is why people express themselves
vaguely. In the economist Lipman’s words, why have we tolerated what appears to be
“a world-wide several-thousand-year efficiency loss" by failing to express ourselves
precisely [9]? Answers have been suggested8, but much is still unclear. It appears to
me that Fuzzy Logic could play a useful role here too. For once we understand fully
why fuzzy approaches can be useful in engineering, this could help us understand
why fuzziness can be useful in human communication too.

Acknowledgement. My first exposure to Fuzzy Logic came at a seminar by Lotfi
Zadeh in Rotterdam around 1984, as an undergraduate student at the University of
Amsterdam. I thank him for setting an inspiring example, and the editors of this
volume for giving me the opportunity for expressing my thanks in published form.
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Fuzzy Approaches in Anytime Systems

Annamária R. Várkonyi-Kóczy

Abstract. Nowadays practical solutions of engineering problems involve model-
integrated computing. Model based approaches offer a very challenging way to in-
tegrate a priori knowledge into the procedure. Due to their flexibility, robustness,
and easy interpretability, the application of soft computing (SC), in particular fuzzy
models, may have an exceptional role at many fields, especially in cases where the
problem to be solved is highly nonlinear or when only partial, uncertain and/or in-
accurate data is available. Nevertheless, ever so advantageous their usage can be, it
is still limited by their exponentially increasing computational complexity. At the
same time, there are other soft computing approaches which can counteract the non-
advantageous aspects of fuzzy (in general SC) techniques.

Anytime processing is the youngest member of the soft computing family. Sys-
tems based on this approach are flexible with respect to the available input data,
time, and computational power. They are able to work in changing circumstances
and can ensure continuous operation in recourse, data, and time insufficient condi-
tions with guaranteed response time and known error. Thus, combining fuzzy and
anytime techniques is a possible way to overcome the difficulties caused by the high
and explosive complexity of the applied models and algorithms. The vagueness of
the design procedure of the models in respect of the necessary complexity can be
vanquished by model optimization and anytime mode of operation because the for-
mer can filter out the redundancy while the latter is able to adaptively cope with the
available, usually imperfect or even missing information, the dynamically changing,
possibly insufficient amount of resources and reaction time. This chapter deals with
the history and advantageous aspects of anytime fuzzy systems.

105.1 Introduction

In the last five decades, new computational techniques and methodologies have been
developed for the solution of of today’s complex and difficult problems in engineer-
ing and science. Fuzzy logic and Anytime algorithms belong to these tools and
compose, together with Neural networks, Evolutionary computations, and Chaotic
systems, a new discipline called Soft Computing (SC) methodology or Computa-
tional Intelligence (CI). As a matter of fact, these methods are all at least partially
inspired by some biological concepts or processes and hold some of the features of

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 725–735.
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nature and living beings, like robustness, adaptivity, flexibility, tolerance, approx-
imate inference, generalization, and learning ability. Many challenging problems
have been solved and many never imagined, important results have been derived by
a variety and mixture of CI methods and tools which opened new perspectives in
engineering and science.

Fuzzy set theory [25], fuzzy algorithms [26], and fuzzy decision making [28] un-
derly the soft computing principles where the performance of a system is optimized
by criteria functions taking into account the time and accuracy as cost factors, as
well [29]. Fuzzy systems [27] can be well applied in cases when no analytical knowl-
edge (only expert knowledge and/or sample data) is available about the system, the
information is uncertain or inaccurate, when the available mathematical form is too
complex to be used, or the interpretation depends on the context. In system control,
Takagi-Sugeno (TS) [15] and Takagi-Sugeno-Kang (TSK) fuzzy models [13] proved
to be especially advantageous.

Anytime systems [31], [19] are to provide continuous operation in changing cir-
cumstances and to avoid critical breakdowns in cases of missing input data, tempo-
rary shortage of time, or computational power. The idea is that if there is a temporal
shortage of computational power and/or there is a loss of some data, the actual op-
erations should be continued to maintain the overall performance at lower price,
i.e., information processing based on algorithms and models of simpler complexity
should provide outputs of acceptable quality to continue the operation of the com-
plete system. The accuracy of the processing will be temporarily lower but possibly
still enough to produce data for qualitative evaluations and supporting decisions.
Consequently, anytime processing provides short response time and is very flexible
with respect to the available input information and computational power.

Situational models [11], a related approach to anytime concepts, have been de-
signed for the control of complex systems where the traditional cybernetics models
haven’t proved to be sufficient because the characterization of the system is incom-
plete or ambiguous, containing unique, dynamically changing, and unforeseen situa-
tions. Typical cases are the alarm situations, structural failures, starting and stopping
of plants, etc.

Embedding fuzzy models in anytime systems extends the advantages of the Soft
Computing approach with the flexibility with respect to the available input informa-
tion and computational power. There are mathematical tools, like Singular Value
Decomposition (SVD), which offer a universal scope for handling the complexity
problem by anytime operations [1].

The rest of the chapter is organized, as follows: In Section 105.2 the history, basic
principles, and drawbacks of anytime systems are summarized. Section 105.3 gives
a brief overview about the alternatives of anytime fuzzy systems together with the
main advantages of these approaches. In Section 105.4 the conclusions are drawn.
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105.2 Anytime Processing

Anytime algorithms, models, and systems [31], [19] are a special type of real-time
systems used when the processing has to cope with the changing, possibly insuffi-
cient resource, time, and/or data availability. The processing can continuously be
kept on by temporary using a reduced amount of processing time and data however
with a burden of degrading the output quality. They are able to provide guaranteed
response time and known error. The flexibility with respect to the available input
data, time, and computational power makes these systems able to work in changing
circumstances without critical breakdowns in the performance.

The starting of anytime processing can be traced back to the starting of Artifi-
cial Intelligence (AI) where the port of departure has been the question: how can
we limit the amount of thinking of artificial agents when solving complex real-time
problems (because thinking has a cost associated with it). A rational agent should
find a trade-off between resource consumption and output quality. This idea led to the
generalization of the standard call-return mechanism meaning the mapping from a
set of input and time allocation into a set of output. The ’reasoning about reasoning’
has been referred to as meta-reasoning (see e.g. [4], [2]). It can be used in various
ways in order to improve the performance of systems by selecting the most appro-
priate base level reasoning procedure in any given situation or by dynamic allocation
of computational resources to competing computation sequences.

A great leap forward has been the definition of (interruptible) anytime algorithms
by Dean and Buddy [5]. Unfortunately, however, using only interruptible algorithms
significantly limits the range of applicable (anytime) methods which has resulted in
the introduction of contract algorithms [10].

The anytime concept (basically dealing only with time allocation) was further
generalized to data insufficiency in 1998 [19] and a universal modular frame for
contract type anytime systems has been defined in [21]. Today, contract algorithms
may have a possibly even more significant role in anytime systems, however inter-
ruptible algorithms have remained very popular because of their easy handling and
less information need. (A serious limitation on applying contract algorithms is that
not only the resource/time need of the solution but also the error of the approxima-
tion has to be known in advance which limits the range of appropriate methods and
tools (of course, the latter requirement is true in case of interruptible algorithms as
well)).

Today, we can find a wide range of fields where the anytime concept can be uti-
lized successfully (see e.g. [6]- [24]). Although, it is clear that there are still difficul-
ties to be solved in real-life anytime applications.

105.2.1 Operational Modes of Anytime Systems

Basically, two types of algorithms/models can be used in anytime systems. Iterative
algorithms/models are popular tools, because their complexity can easily and flexibly
be changed. These algorithms always give some, possibly not accurate result and
more and more accurate results can be obtained, if the calculations are continued.
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A further advantageous aspect of iterative algorithms is that we don’t have to know
the time/resource-need of a certain configuration in advance. The calculations can
be continued until the results are needed. Then, by simply stopping the calculations,
feasible results are obtained.

Unfortunately, the usability of iterative algorithms is limited. Because of this lim-
itation, a general technique for the application of a wide range of other types of mod-
els/ computing methods has been suggested in [21], however at the expense of lower
flexibility and a need for extra planning and considerations. In this case, an any-
time modular architecture is used which is composed of modules realizing the sub-
tasks of a given problem. Each module of the system offers several implementations
(characterized by different attribute-values) for a certain task. These units within a
given module have uniform interface (same set of input, output, and solve the same
problem) but differ in their computational need and accuracy. An expert system is
monitoring the actual circumstances (tasks to complete, achievable time/resources,
needed accuracy, etc.) in order to choose the adequate configuration, i.e. the units to
be used.

105.2.2 Difficulties in Practical Anytime Systems

Despite their advantages, anytime systems have handicaps as well. One of the main
problems in real-life systems is that the operation of the “supervisor” (responsible
for monitoring, detecting the problems, and making decisions about the resource and
time settings of the used algorithms) also needs time. This decreases the operational
time (and thus also the output quality) of the processing itself.

Serious problems can be caused by the compilation of the actual realizations of
the solution. It belongs to the NP complete problems and thus, the size of the needed
storage grows exponentially with the number of modules.

A further non-negligible drawback of anytime schemes based on feedback sys-
tems is that they unavoidably suffer from transients. These well-known phenomena
are due to the dynamic nature of the processing structures applied. With the spread-
ing of time-critical, reconfigurable, and embedded systems, transient handling, cov-
ering both active and passive methods, has become an important research area (see
e.g. [12]- [30]).

105.3 Fuzzy Approaches in Anytime Systems

Fuzzy approaches proved to be advantageous in nearly all areas of science and ap-
plication. The first linkage between anytime systems and fuzzy (and neural network)
models has been established in [20] with an indication to application areas related
to signal processing, measurement, and control. This paper initiated a new research
direction in signal processing and by this at all fields where signal processing tasks
have to be solved (i.e., practically at the whole engineering area). The first confer-
ence dedicated to anytime and other soft computing methods in signal processing
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related fields was the first IEEE International Workshop on Intelligent Signal Pro-
cessing (WISP’99) (Figs. 105.1 and 105.2) organized in Budapest, Hungary, recog-
nized and supported by the IEEE Instrumentation and Measurement Society (with
special issue in TIM). Professor Lotfi A. Zadeh had a significant role in the fruition
and since the very beginning, he has participated and followed the event-series with
attention (and has given plenary talks till 2007) (see also Figs. 105.3 and 105.4). The
author of this chapter is much obliged to Professor Zadeh also for his continuous
help and ideas in her research [18].

Fig. 105.1. WISP’99: Discussion in a technical session: right: Prof. Lotfi A. Zadeh

105.3.1 Alternatives of Anytime Fuzzy Algorithms and Models

In many of the cases, the used fuzzy models can be turned to anytime models and
thus, can be built in anytime systems. These schemes usually apply contract type
anytime fuzzy models using SVD based exact and non-exact complexity reduc-
tion. As examples, product-sum-gravity fuzzy systems with singleton consequents
(PSGS), product-sum-gravity fuzzy systems with non-singleton consequents
(PSGN), Takagi-Sugeno (TS) fuzzy models, and systems having extremely large
rule-bases (where the size of the rule-base is greater then the available operational
memory) can be mentioned (for details, see [23]). In all of these cases, SVD (in high
dimensional cases Higher Order (HO) SVD) offers a formal measure to filter out the
redundancy of the systems and also the weekly contributing parts.

This technique is very advantages is anytime systems: (HO)SVD ensures the best
results in the given circumstances. If SVD based complexity reduction is applied to a
two dimensional matrix then it can be proved that the resulting matrix of lower rank
will be the best approximation of the original matrix in least-squares sense (minimum
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Fig. 105.2. WISP’99: River cruise on the Danube; from left: Prof. Gábor Péceli (general
co-chair), Prof. Annamária R. Várkonyi-Kóczy (general co-chair), Dr. Stephen F. Adam
(honorary chair) and wife, Prof. Lotfi A. Zadeh (honorary chair), and Dr. Feng-Hui Yao

||L2|| norm of the error, i.e. the reduction is “optimal”). In case of higher dimension
matrices (tensors) where HOSVD is applied, the minimum property doesn’t hold
anymore. We can only state that the significant singular values will have the lower
indices. However, in the most of the cases if there is a considerable difference among
the singular values, HOSVD results in an approximation which is “close” to the
optimal one.

Up till recently, iterative fuzzy models have been unknown in anytime systems,
despite that the needed time/resource need could be decreased by evaluating only a
subset of the rules. It is because the significance of the rules highly depends on the
actual inputs and, thus, it is hard to tell which rules could be omitted if we wanted
to ensure a given accuracy. Similarly, we could hardly ensure that the result of the
processing is the available most accurate one. Although, in [14] a new SVD based
transformation method has been described, by which PSGS fuzzy systems can be
transformed into a form which matches the requirements of iterative evaluation. The
transformed model can be processed rule by rule with known error bound in every
step and holding the optimum (minimum error) criteria.

105.3.2 Advantages of Anytime Fuzzy Systems

Anytime fuzzy systems may offer a solution to many of the disadvantages of anytime
systems. Concerning the problem of transients, it can be proved that the nature of



105.3 Fuzzy Approaches in Anytime Systems 731

Fig. 105.3. WISP’2001: Prof. Lotfi A. Zadeh giving a plenary talk

the transients depends not only on the transfer function of the structures to be imple-
mented, but also on the actual implementation of the processing structure. Accord-
ing to our experience, fuzzy models are advantageous from this respect and produce
lower transients then other structures [22].

The complexity problem can, at least be held, by using such techniques as are used
in fuzzy control, e.g. for modeling TS fuzzy modeling and for the controller design
Parallel Distributed Compensation (PDC) [17]. Anytime processing can be applied
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on two levels in the TS fuzzy controller. First, we can reduce the complexity of the
local models (local level reduction). Secondly, it is possible to reduce the complexity
of the overall controller by neglecting those local controllers, which have negligible
or less significant role in the control (model level reduction). Both can be applied
adaptively, where we take into account the “distance” between the current position
and the operating point, as well. The model granularity or the level of the iterative
evaluation can cope with this distance: the more far we are the more rough control
actions can be tolerated. Although, the approximated models may not guarantee the
stability of the original nonlinear system, this can also be ensured by introducing
robust control (see e.g. [16]).

Finally, the author longs to enumerate some interesting problems which could be
solved only by applying anytime fuzzy approaches, thus proving their advances in
time-critical, reconfigurable, and embedded systems:

Fig. 105.4. WISP’2001: At the Banquet Dinner; Prof. Lotfi A. Zadeh (honorary chair) in the
middle

• Anytime Fuzzy Fast Fourier Transformation and Adaptive Anytime Fuzzy Fast
Fourier Transformation: How can we determine the most important signal param-
eters before the signal period arrives? How can we implement fast algorithms
with only negligible delay?
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• Anytime Recursive Overcomplete Signal Representations: How can we minimize
the channel capacity necessary for transmitting certain amount of information?
How can we provide optimal and flexible on-going signal representations, on-
going signal segmentations into stationary intervals, and on-going feature extrac-
tions for immediate utilization in data transmission, communication, diagnostics,
or other applications if the transmission channel is overloaded and in the case
of processing non-stationary signals when complete signal representations can be
used only with serious limitations?

• High Dynamic Range (HDR) imaging and situational image quality improvement:
How can we make the invisible details of images visible? How can we enhance
the useful information of images which is significant from the point of view of
further processing?

• Anytime control and fault diagnosis of plants: How can we produce useful results
and react in crisis situations very quickly in order to avoid catastrophes? How can
we increase the safely available reaction time of the (slow) human supervisor by
significantly decreasing the time needed for the automatic detection and diagnosis
of faults?

• CASY, an Intelligent Car Crash Analysis System: How can we build an intelligent
expert system, capable to reconstruct the 3D model of crashed cars autonomously
(without any human interaction) using only 2D photos; and based on it, how can
it determine characteristic features of crashes like the energy absorbed by the car-
body deformation, the direction of impact and the pre-crash speed of the car?

105.4 Conclusions

In modern time-critical engineering systems, the available time and resources are
often not only limited, but can also change during the operation. In these cases,
the so called anytime models and algorithms can be used advantageously, however
with the burden of significant drawbacks, like the occurrence of transients and the
system-supervision’s overhead further reducing the insufficient operational time. On
the other hand, while fuzzy methods are widely used in engineering systems, their
usability is limited, because the lack of any universal method for the determination of
the needed complexity often results in huge and redundant rule-bases. This chapter
aims to demonstrate that if fuzzy approaches and anytime processing are combined
then the most of the above problems can be solved. The presented issues clearly
show that the fuzzy concept introduced by Professor Lotfi A. Zadeh resulted in many
prospective and fruitful achievements in the field of reconfigurable, time-critical, and
adaptive systems.

Acknowledgement. This work was sponsored by the Hungarian Fund for Scientific
Research (OTKA K 78576)
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Fuzziness in Software Engineering

Peter Vojtáš

Abstract. This paper contains my memories on how did I arrive to field of fuzziness
and personal views on present stage and expectation on fuzziness. Main message is:
go back to roots and start with real world problems, large scale data and solutions
like L. A. Zadeh did 50 years ago in his applications which emerged into fuzzy the-
ory. I will illustrate these on some examples from software engineering applications,
especially mining user preferences (in the form of fuzzy functions) for web search.
The perspective is to develop reliable measurement of fuzzy sets and operators for
commercial use (control and web applications are different).

106.1 Introduction, History, How Did I Come to “Fuzziness”

In mid of seventies I have promoted at Charles University in Prague in the field of
theoretical cybernetics (program founded by late prof. Petr Vopěnka, founder of
Prague seminar of set theory, which in this year celebrates 50’s anniversary too).
Theoretical cybernetics was that time by Vopěnka’s vision a combination of three
areas: 1. probability and statistics 2. constructive mathematics, automata and lan-
guages, programming and 3. logic and set theory. I have worked in set-theoretic
topology, Boolean algebras and set theory and my work is quoted also in respective
Handbooks, [1, 2, 3]. Nevertheless, my teaching was mainly theoretical computer
science subjects at P. J. Safarik University Kosice.

To be honest, my first contact with fuzziness has a negative connotation. In early
90’s I was sitting in a panel of a grant agency deciding about financing of research
projects. There were some mathematical proposals concerning fuzziness. These
were often just straightforward generalizations from crisp models to fuzzy (taking
same notions, tasks, methods, problems . . . ). Even today I am suspicious to auto-
mated mathematical fuzzification of anything (especially with max-min operators).

My views changed when I met Petr Hajek in mid of 90’s. I have visited his lectures
in Vienna. His development of fuzzy logic was a nontrivial, exiting adventure and
mathematically challenging.

After velvet revolution we entered the free competitive market. The idea of
Alexander von Humboldt like university education emerged - lecturing based on /
unified with scientific research. I felt responsibility for teaching students skills for
their future survival on the job market this way. I have started with fuzzy Prolog. . . .
In my first “fuzzy years” I have to express thanks especially to B. Riecan and FSTA
conferences [5] and all colleagues from European projects [6, 7]. When I express
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here my opinion it does not mean I claim those for my contribution, I could have
been motivated by all colleagues mentioned. A more close description of these re-
sults is in my paper [4] tribute to Hajek’s 70’s birthday and my list of publications.
Main experience from this time is that fuzzy Prolog/Datalog worked well with im-
plicative rules, one can have a sound deduction and an approximate completeness,
our model is equivalent (modulo some assumptions) with Generalized Annotation
Programs (which do have continuous semantics in this case). A model of fuzzy
similarity based on max-min connectives is able to describe only hierarchical refin-
ing equivalences, our models gives a much more general result (more on this in our
publications with many colleagues, see http://www.ksi.mff.cuni.cz/ vojtas/). From
1998 things seemed to be for me easier in Czech Republic. First I have used hospi-
tality of Hajek’s Institute of Computer Science part time position and from 2005 I
have moved permanently to Prague Department of Software Engineering at Charles
University.

106.2 Present State – A Computer Science Conference Reviewer
Impulse

My computer science period is connected to projects [8,9,10,11], to all colleagues I
express my thanks (views are personal; tributes are detailed in our papers).

Main impulse to my work came from an anonymous referee of one of our contri-
butions to a computer science conferences (the paper was rejected).

When I have described a solution of a problem using fuzzy logic programming,
his/her question was “where do you have these rules from”. And I had to admit that
that time I had no answer – I just assumed I have some rule base. Nevertheless in a
real world scenario, one has to describe where from rules are coming.

I have to mention what was new for me that time: Computer Science conferences
are highly selective (top conferences accept only less that 20% of submissions, some
even less than 10%). Claims have to be supported by an experimental tool and (often
large scale benchmark) data and compared to similar solutions of others. Results
published at Computer Science conferences are very often in a final form and seldom
published later in a journal (the development is so fast that in a journal production
time landscape of computer science changes radically).

Looking for an inductive procedure we learned that learning fuzzy rules in control
is not suitable for our purpose. In a control problem (like in Figure 106.1 for an
inverted pendulum, the control space are all point in a Cartesian product – all possible
states of the pendulum). The rule system able to control the inverted pendulum in/to
a (almost) stable position has to be able to react in any point of state space.

The situation is totally different in a web shop, where we would like to personal-
ize the system and to offer the user most preferred products. In Figure 1 we describe
a situation when products quality is correlated with price (data do not fill the whole
data space) and the ideal point of user 1 is not produced (note that in the control
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space the ideal point is in the control space equilibrium). To our surprise, this repre-
sentation came from outside the fuzzy community, a group at IBM at Almaden led
by R. Fagin used fuzziness to express preference and they gave an optimal algorithm
for finding top-k products without necessity of looking to all products [13].

Fig. 106.1. Control space and Data space

Situation is even more difficult when we assume there is a second user with dif-
ferent preferences. We have developed several methods for learning user preferences
from his/her explicit rating of a sample of products. There are several challenges to
this – one has to work with a small number of ratings (because an average user will
not rate large number of products, possibly he will not rate any and then we have
to learn his/her preferences from implicit behavior, like mouse actions). Next the
response has to be fast, user is assumed to wait less than a second. Further, our rec-
ommendation cannot be a black box, user usually prefers to know, why the system
made decision this way.

Practically we are in a situation of a multicriterial decision making system, with
large number of alternatives and large number of decision makers (users, customers).
The task is to learn preferences of each user and attribute and to learn user’s utility
function.

Having fuzzy functions expressing attribute preferences (u1 prefers cheap, u2

prefers medium price etc.) the data space is translated to preference space, a power
of unit interval [0,1] with ideal point at [1,1, . . . ,1]. The problem now is to learn
the user’s utility function. Our acquaintance agrees with that of Zimmermann and
Zysno [12], even much more general: close to ideal point user utility is OR-like and
close to worst point it is AND-like (see Figure 106.2. Preference space). So by our
experience, it need not be weighted average. In time pressure when answer has to
be retrieved in a fraction of second, one cannot look for an analytic expression using
standard mathematical functions. Our utility function is very often a Pareto closure
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Fig. 106.2. Preference space and Zimmemann-Zysno-like connective of user rating

of rating points (see Figure 106.2. Position of rating sample products by five stars,
four stars, . . . ).

This way we have learned several rules of fuzzy Prolog/Datalog. First comment
is that there are lots of fuzzy data created by user rating. Second is, that fuzzy valued
acts here as a preference degree. Third comment is that learning a fuzzy set which
has to generate user preference is not an approximation task. We are not interested
in good approximation like in a case of a control function (which has to act in all
points of the control space). Our function decides which are top-k objects (a typical
user does not look to more than 4 pages of recommendation, so k is at most 40).

Fig. 106.3. Realistic soundness and completeness. Fuzzy resolution

Figure 106.3 depicts the situation when (having a sound and complete system
of rule system deduction) one has to measure success on real data by violation of
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order on top-k objects (we used Kendall τ correlation coefficient). These all with
a semantics of implicative rules with deduction based on a reverse usage of fuzzy
modus ponens. Classical model of logic programming uses clauses and deduction
is refutation. Here we did not come so far. We have developed a model of fuzzy
resolution where deduction can recommend minimum of aggregation (disjunction)
of minimal necessary contribution of variables B and C (see Figure 106.3).

106.3 Expectations

Our expectation is based on our experience with computer science applications (es-
pecially with software engineering, dealing with modeling of application domain
and design of a solution). It can be formulated, motivated by our understanding L.
A. Zadeh work 50 years ago in his applications which emerged into fuzzy theory:
start with real world problems, large scale data and a clear measure of expectation
on solutions.

Fig. 106.4. Peter Vojtáš, approximately 1994, the time when the author started with fuzziness

A nice example in control field is the system from [14]. It is LFLC (Linguistic
Fuzzy Logic Controller) dealing with linguistic descriptions and enabling fuzzy ap-
proximation. A large-scale application of LFLC can be found in Kovohute Bridlicna,
in the Czech Republic, where LFLC controls five massive aluminum furnaces. In a
real life the situation of an e-shop is much more complicated than our fuzzy model
(even with realistic induction of fuzzy rules). The system can be influences by mar-
keting perspective; we do not say whether our model is/has to serve user or seller.



742 References

Performance of the system can depend on the fact whether you look for goods in a
weekly period (typically free time activity) or in a yearly period (e.g. summer va-
cation) or once/twice a life (e.g. buying a house). We have developed a model for
longer decision in phases. Ultimate evaluation should depend on the fact whether the
user bought the recommended product and maybe also on the fact if he/she was sat-
isfied also later. So far I did not find myself enough responsible to suggest an e-shop
owner to use our system. Our main perspective is to develop reliable measurement
of fuzzy sets and operators for commercial use.

Fig. 106.5. Peter Vojtáš, approximately 2002, after his first FSS publication
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Some Algebraic Aspects of Fuzzy Set Theory

Carol Walker and Elbert Walker

107.1 Introduction

A fuzzy subset of a set X is a function A : X → [0,1]. This generalizes the notion
of a subset of X which may be considered as a function A : X → {0,1}, with the
subset corresponding to the elements that go to 1. This notion of fuzzy subset was
introduced by Zadeh in [4]. The gist of it is that if one has in mind that the elements
of X have some property, more or less, one may express via a function A : X → [0,1]
a degree to which an element x ∈ X has that property, namely by the image A(x)
of the element x. Suffice it to say that this basic notion has led to the emergence
of fuzzy set theory as an important tool in practical applications. Our main interest
in this topic is the underlying mathematics, and in particular in various algebraic
objects that arise in its application and in its study in general. Our own work in the
various mathematical areas of fuzzy theory has been motivated by the development
and applications of fuzzy sets. In the following, we will comment briefly on only one
aspect of the underlying mathematics of fuzzy theory, that of truth-value algebras of
fuzzy sets.

107.2 The Unit Interval

Various operations are placed on the fuzzy subsets of a set X , and since X has no a
priori structure, these operations come from operations on the unit interval [0,1]. The
most common operations used are the binary operations max and min, denoted∨ and
∧, respectively, the unary operation ′, where x′ = 1− x, and the nullary operations 0
and 1. This yields an algebra ([0,1],∨,∧,′ ,0,1), which we recognize as a complete,
bounded, distributive lattice, and in fact a chain. This algebra typically serves as
the truth value algebra for fuzzy sets. But there are other operations on the unit
interval that are used in fuzzy theory, for example, t-norms and t-conorms, and other
negations besides ′. In fact, endless combinations of lattice and arithmetic operations
make possible a host of operations on [0,1], and hence on the set of fuzzy subsets of
a set. Since operations on fuzzy subsets come from operations on its truth values,
it is necessary to be familiar with the properties of the various algebras that arise.
In particular, it would be nice to know what equations a particular algebra satisfies.
This area has been studied rather extensively, and there is now quite an extensive
theory of fuzzy sets, the basics involving operations on [0,1] and hence on the set of
fuzzy subsets of a set. Some papers dealing with these algebras are listed in our web
page http://www.math.nmsu.edu/~elbert/#publications.
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107.3 Interval-Valued Fuzzy Sets

There was an increasingly prevalent view that models based on [0,1] were inade-
quate. Many believed that assigning an exact number to an element was too re-
strictive, and that the assignment of an interval of values was more realistic. This
gave rise to algebras whose elements are intervals of the unit interval, that is, the set
{(a,b) : a,b ∈ [0,1], a ≤ b}, which is denoted [0,1][2]. Thus an interval-valued fuzzy
subset of a set X is a mapping A : X → [0,1][2]. Operations put on [0,1][2] come mainly
from componentwise operations on the elements of a pair (a,b). One resulting alge-
bra is a De Morgan algebra, whose basic equational properties are well understood.
Some of these details are spelled out in [1], where a framework is presented for fuzzy
theory in which fuzzy values are intervals rather than points in [0,1].

Many applications use interval-valued fuzzy sets rather than models based on the
unit interval.

107.4 Type-2 Fuzzy Sets

The set of elements of the truth value algebra of type-2 fuzzy sets is [0,1][0,1], the
set of all functions from the unit interval into itself. Thus a type-2 fuzzy subset of a
set X is a mapping A : X → [0,1][0,1]. The set [0,1][0,1] is furnished with operations
that are convolutions of operations on the unit interval, yielding a rather complicated
algebra. This algebra has been investigated thoroughly, and there are still unresolved
problems. For example, an equational base is not known for it, and indeed whether or
not a finite one exists. Several papers concerning this algebra appear in the website
given above. Professor Zadeh introduced this algebra in 1975 in [5], and it general-
izes ordinary fuzzy sets and interval-valued fuzzy sets. It is another example of an
interesting mathematical entity arising from fuzzy concepts, and one on which much
mathematical research has been done.

Acknowledgement. Of course we would like to acknowledge Professor Zadeh for
his work over many years, and in particular for his initial mathematical modeling
of fuzzy concepts. This cannot be overemphasized. While our own interest is in
the more algebraic areas, Zadeh’s introduction of fuzzy concepts has led to mathe-
matical investigations in many areas, investigations that may or may not impinge on
applications: fuzzy logic, fuzzy topology, and fuzzy measure theory, just to mention
a few. A concrete example of this is the series of Linz seminars. As they say "Since
their inception in 1979 the Linz Seminars on Fuzzy Sets have emphasized the de-
velopment of mathematical aspects of fuzzy sets by bringing together researchers in
fuzzy sets and established mathematicians whose work outside the fuzzy setting can
provide direction for further research." Their thirty-third yearly meeting was held
in February 2012. The whole point is that the introduction of fuzzy concepts has
spurred mathematical activity in many areas.



References 747

But we owe much to others, our various coauthors, especially Mai Gehrke with
whom we wrote some of our early papers on fuzzy topics. Our initial interest in this
subject came from Hung Nguyen, who had spent a year at Berkeley with Professor
Zadeh and who was a colleague at New Mexico State for many years until his re-
tirement in 2011. One result of this association was a book by Professor Nguyen
and Professor Elbert Walker [2] on the theory of fuzzy sets and logic, which first
appeared in 1997 and now is in its third edition.
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The Path of Linguistic Random Regression to
Knowledge Acquisition

Junzo Watada

108.1 Introduction

Fuzzy sets play a pivotal role in computing with words being casted in the setting
of granular computing (cf. [17],zedeh2006b). “The essence of granular computing
is to carry out computing that exploits information granules” [16],zedeh2006b. In-
formation granules are regarded as collections of elements that can be perceived and
treated together because of their similarity, functional properties, or spatial or tem-
poral adjacency [2], [6], [7], [11]. In this sense, fuzzy logic becomes instrumental as
an effective vehicle to manipulate information granules.

It becomes apparent that experts with much professional experiences are capable
of making assessment using their intuition and experience. In such cases, judgements
may be expressed by experts using linguistic terms. The difficulty in the direct mea-
surement of certain characteristics makes their estimation highly imprecise and this
situation implies the use of fuzzy sets (cf. [8], [13],zadeh1975b). There have been
a number of well-documented cases in which fuzzy regression analysis has been
effectively used.

To cope with linguistic variables, we define processes of vocabulary translation
and vocabulary matching which convert linguistic expressions into membership func-
tions defined in the unit interval. That is, human words can be translated (formalized)
into fuzzy sets (fuzzy numbers, to be more specific) which are afterward employed
in a fuzzy reasoning scheme. Fuzzy regression analysis [8], [11]- [12] is employed
to deal with the mapping and assessment process [9]- [10] of experts which are real-
ized from linguistic variables of features and characteristics of an objective into the
linguistic expression articulating the total assessment.

To cope with linguistic variables, we define processes of vocabulary translation
and vocabulary matching which convert linguistic expressions into membership func-
tions defined in the unit interval, and vice versa. Fuzzy random regression analy-
sis [1]- [2], is employed to deal with mapping and assessment process of experts
which are realized from linguistic variables of features and characteristics of an ob-
jective into the linguistic expression articulating the total assessment.

108.2 Linguistic Fuzzy Random Regression Model

In making assessments regarding some objects, we use multi-attribute evaluation.
The difficulty in the direct measurement of certain characteristics makes their

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 749–753.
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estimation highly impressive and this situation results in the use of fuzzy values
and linguistic values. Often, experts use a linguistic word to judge an object from
various features and characteristics. And the whole process is pursued in linguistic
way. For instance, although it is possible to measure numerical value, it is difficult
to analytically interpret the obtained numerical value in terms of possible influence.
This result might have impacted on further decision making.

Table 108.1. Linguistic values of each sample ω given by experts

sample Input Attribute k-th Value Output Value
1 · · · K Y

1 (L11, p11) · · · (L1K , p1K) (Y1, p1)
2 (L21, p21) · · · (L2K , p2K) (Y2, p2)
3 (good,0.2) · · · (very good,0.1) (good,0.1)
...

...
...

...
ω (Lω1,pω1) · · · (LωK , pωK) (Yω , pω)
...

...
...

...
N LN1, pN1) · · · (LNK,PNK) (YN ,PN)

where Lωk and Yω denote linguistic values of input k-th
attribute and output value of ω-th sample, respectively.

In this study we built a model based on the relationship between the assessments
given for different attributes and the overall assessment of the object totally. Watada
et al. [1] propose fuzzy random regression model with confidence interval to deal
with situations under hybrid uncertainty. The data given by experts are shown in
Table 108.1 such as “good,” “bad,” “extremely bad,” as fuzzy random numbers.

An event has its population including the finite or infinite number of samples
with probability. Generally such probability is not known clearly. We employ it by
the linguistic assessment result percentage. Such as, 50 experts evaluate the object
good, and 50 percentage evaluate the object very good, then the probability is 0.5,
0.5 respectively.

Then, we translate attributes from linguistic values Li into fuzzy grades XLmaking
use of triangular membership functions:

XL ≡ (a,b,c) (108.1)

where XL denotes the central value of the fuzzy event, a is the central value and b,c
are the left-side bound and right-side bound, respectively.

The estimation of the total assessment is written by the following fuzzy assess-
ment function:

Yi = f (XLi1 ,XLi2 , · · · ,XLiK ) (108.2)

where i=1, 2. . . N, is the number of experts, K is the number of the attributes of the
object. Then the XL is obtained from the vocabulary of experts. From this dictionary
we can convert the linguistic words to fuzzy variable random numbers.
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108.2.1 Credibility Measure

Note that credibility measure (cf. Y-K Liu and B. Liu [4]) is an average of the
possibility and the necessity measure, i.e., Cr{·} = (Pos{·}+Nec{·})/2, and it is a
self-dual set function, i.e., Cr{A} = 1- Cr{Ac} for any A in P(Γ ). The motivation
behind the introduction of the credibility measure is to develop a certain measure,
which is a sound aggregate of the two extreme cases, such as the possibility (which
expresses a level of overlap and is highly optimistic in this sense) and necessity
(which articulates a degree of inclusion and is pessimistic in its nature). Based on
credibility measure, the expected value of a fuzzy variable is presented as follows:

Let Y be a fuzzy variable. The expected value of Y is defined as

E [Y ] =
∫ ∞

0
Cr{Y ≥ r}dr

∫ 0

−∞
Cr{Y ≤ r}dr (108.3)

provided that at least two integrals are finite.
Let ε be a fuzzy random variable with expected value e. Then, the variance of ε

is defined by V [ε] = E[(ε − e)2] .

108.2.2 Regression Model

All the linguistic data have been converted to fuzzy random variable data. We need
to build a fuzzy regression model for fuzzy random data, which is based on the
possibilities linear model.

Fuzzy Random Regression Model with Confidence Interval: Table 2 is the format
of data that come from linguistic words, where input data Xik and output data Yi,
for all i=1,2,. . . , n and k=1,2,. . . ,K. They are all fuzzy random variables, which
defined as:

Yi =
MYi⋃

t=1

{(

Yt
i ,Y

t
i ,Y

t
i

)

, pt
i

}

, Xik =
MXik⋃

t=1

{(

Xt
ik,X

t,l
ik ,X

t,r
ik

)

,qt
ik

}

, (108.4)

respectively. This means that all values are given as fuzzy numbers with proba-

bilities, where fuzzy variables (Yt
i ,Y

t
i ,Y

t
i ) and

(

Xt
ik,X

t,l
ik ,X

t,r
ik

)

are associated with

probability pt
i and qt

ik, for i = 1,2, · · · ,N, k = 1,2, · · · ,K and t = 1,2, · · · , MYi and
MXik respectively.

Let us denote fuzzy linear regression model with fuzzy coefficients Ā1, · · · , Āk as
follows:

Ȳi = Ā1Xi1 + ...+ ĀKXiK , (108.5)

And then we need to determine the optimal fuzzy parameters Ãi. Two optimization
criteria are considered. One concerns the fitness of the fuzzy regression model, h.
The other one deals with fuzziness captured by the fuzzy regression model (108.5).
Let us elaborate on the detailed formulation of these criteria.
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In this study, we employ the confidence-interval based inclusion, which combines
the expectation and variance of fuzzy random variables and the fuzzy inclusion re-
lation satisfied at level h, to deal with the model (108.5) as discussed in [2], [12].
There are also some other ways to define the fuzzy random inclusion relation ⊃h,
which will yield more complicated fuzzy random regression models. For instance,
in order to retain more complete information of the fuzzy random data, we can use
the fuzzy inclusion relation directly for the product between a fuzzy parameter and a
fuzzy value at some probability level.

First we consider the one-sigma confidence interval of each fuzzy random vari-
able, and it is expressed as follows:

I(eXik ,σXik ) = [eXik −σXik ,eXik +σXik ]

I(eYi ,σYi) = [eYi −σYi ,eYi +σYi ]
(108.6)

Then, the new confidence-interval-based fuzzy random regression mode is built as
follows:

minĀ J(Ā) =
K

∑
k=1

(Ār
k − Āl

k)

subject to Ār
k ≥ Āl

k,

Āi =
K

∑
k=1

ĀkI[eXik ,σXik ]⊂h I[eYi ,σYi ]

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(108.7)

where i = 1,2, . . . ,N,k = 1,2, . . . ,K, and the ⊃h denotes the fuzzy inclusion relation
realized at level h.

After then, in order to obtain linguistic expression, we need to match the obtained
fuzzy numbers to the most appropriate linguistic words (Vocabulary Matching).

108.3 Concluding Remarks

We stressed the role of experts in accumulation of domain knowledge and expe-
rience, Experts frequently express their judgements in terms of linguistic expres-
sions rather than pure numeric entities. In this sense, the linguistic treatment of
assessments becomes essential when fully reflecting the subjectivity of the judge-
ment process.

As we all know, human experts are always involved in decision-making process.
However, the judgment experience and knowledge of experts are unique to each
other. Better understanding of this judgment knowledge, sometimes, we need to
convert it to numerical values which can give people more ocular way to experi-
ence the whole assessment process. And at the same time, there is always linguistic
assessment of an object from various attributes. Then it is difficult to get a total as-
sessment when we have linguistic data. In this paper, our model is built to solve this
kind of problem.
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Syzygy

Mark J. Wierman

“ ... the race is not to the swift, nor the battle to the strong, neither yet bread
to the wise, nor yet riches to men of understanding, nor yet favour to men of
skill; but time and chance happeneth to them all.”

Ecclesiastes 9:11

109.1 Entropy

We were having a rare meeting of the Entropy Club at Purchase College. The Entropy
Club met irregularly since, by strict rule, a meeting could only occur when all four
of its members just happened to be in the same place at the same time.

John, who was the physics major, was doing his senior thesis on entropy, and
was currently bedeviled with Maxwell’s demon. This imp controls a shutter on a
stream and sends the high temperature particles to the left, and the low temperature
particles to the right, creating a temperature differential that could be tapped to create
electricity. This meant that the demon was basically making energy from nothing,
a paradoxical result. Since I was doing my senior thesis on paradox I found this a
fascinating situation to ponder.

John explained that what was really happening was that information was being
transmuted into energy, and since information also has entropy, the paradox is dis-
solved. In physics, there are laws of conservation of information as well as conser-
vation of energy.1

109.2 Information

In the old days (before the Internet!) people went to libraries to get information.
When I decided to get my PhD I went to the library at Binghamton University, which
is close to my home town, to investigate graduate programs. While I was there I
decided to kill two birds with one stone and file an application for the Computer
Science program. The Computer Science Department was housed in the Watson
School of Engineering. This application was a bit premature as I had not yet received
my GRE scores.

A short time later, just after my GRE scores came in, I got a call from some-
one from the Watson School. He told me on the phone that he was not from the

1 One of the greatest problems in modern physics asks whether or not quantum information
is destroyed by black holes.
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Computer Science Department but that he was interested in finding someone with a
good mathematical background to do research in entropy–like measures of informa-
tion, and that he had a grant.

Later that week and I went to the Watson School, located the Systems Science
Department and met George Klir for the first time. I accepted an assistantship and
began researching the mathematics of the Shannon entropy [10, 4, 1, 2].

I also signed up to take a class called Fuzzy Set Theory [7] and my life turned a
corner.

I had taken courses in Logic and in Set Theory while getting my Bachelor’s and
Master’s Degrees in Mathematics.2 I had read Cantor, Frege, Russell, Łukasiewicz,
Godel, . . ., but I had never read anything like Zadeh! I had no idea something like
this existed. And why hadn’t I seen any of this in my math classes?

By the time I finished my PhD my bookshelf contained every important book on
fuzzy set theory in existence. It totaled roughly ten books. I also learned three very
important lessons:

1. fuzzy mathematics is hard,
2. fuzzy was probably not a good name for this theory, and
3. serendipitous meetings would have great impact on my life and research.

109.3 Uncertainty

When I went searching for a faculty position after graduation, Creighton University
had the only opening that specifically requested a researcher in fuzzy set theory. I
applied, interviewed, got an offer, and took the job.

John Mordeson was then Chairman of the Mathematics and Computer Science
Department. He thought it would be nice if we could bring my thesis advisor, George
Klir, to Omaha for a visit.

During the visit, John suggested that Klir and I should collaborate on a collection
of lecture notes concerning Uncertainty. Creighton would then publish a small print
run for the use of our graduate student.

At JCIS 1996 Klir and I ended up talking with Janusz Kacprzyk. Kacprzyk
thought an improved version of the lecture notes would make a good entry in the
Springer series Studies in Fuzziness and Soft Computing. The subsequent book [8]
is still the number one result of googling my name. It has been referenced thousands
of times.3

109.3.1 Granularity

Writing a book gives you a very good foundation for subsequent research. Around
the year 2000 I decided to try my hand at an axiomatic measure of uncertainty for

2 I mentioned that I did my Senior Thesis on Paradox.
3 Mordeson subsequently published many books with Springer with various collaborators,

including myself.



109.5 Psychohistory 757

Evidence Theory. While most of the axioms of a measure of uncertainty are similar
from one mathematical theory to the next, the crucial axiom always turns out to be
the one that defines how the measure operates on product spaces.

This axiom is critical because if we pick a unique x ∈ X and a unique y ∈ Y we
have determined a unique 〈x,y〉 ∈ X ×Y . However, there are many more choices
in X ×Y than there are in X and Y together. The product space axiom is always
the one that introduces a logarithmic function that characterizes most measures of
information.

The product axiom for evidence theory was difficult because, in general, evidence
theory acts on covers of X and Y .

I decided to start with an axiomatic measure for rough set theory, since it was
structurally similar to evidence theory. Strangely enough, this paper, [12, 13] is one
of my most influential.

109.4 Dissonance

Bill Tastle came to Omaha for the Student Programming Challenge of the 2004 AITP
National Conference. Bill was a fellow Graduate Student in the System Science De-
partment, as was my wife. By coincidence, my wife was Co-Chair of the conference
and noticed his name among the conference organizers.

So I sent him an email and invited him out for a beer.
While we were having beer and pizza at the Upstream (a most excellent restaurant)

Bill mentioned that he was looking for a superior measure of agreement in the venue
of consensus building. He said:

“How does a chairman know when his committee is getting close to agree-
ment? How does he know when to call the vote? I am sure you will figure
out something and send me an email tomorrow.”

Well I went all glassy eyed as mathematical equations sprung into my mind; but then
my wife reminded me we were entertaining and I came back to earth. Still, the next
day, I wrote down a formula that just seemed right and sent it off to Bill.

So far we have written seventeen papers on the subject of measuring consensus
and dissention [11, 15].

109.5 Psychohistory

John Mordeson had long been trying to involve other members of the Creighton
University faculty in collaborative research. Terry D. Clark had long been frustrated
by the lack of predictive results using traditional mathematical in Political Science
models. For example, McKelvey [9] predicts chaos in a political system with three
or more strong and independent parties. Arrow [3] predicts dictatorships when ac-
tors are rational. Clever voting agendas can defeat the majorities choice in a set of
alternatives.
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While Zadeh has long been interested in “Computing with words,” most ap-
plications of fuzzy set theory have taken place in the scientific and engineering
community.

When Mordeson saw the need for someone with the ability to apply theory to data
I was invited to join the “The Fuzzy Spatial Modeling Project.” This ever evolving
group of students and faculty has produced a substantial body of work over the last
six years, including a book and the first “fuzzy” paper published by the prominent
journal Public Choice, [6, 5].

109.6 Fuzzy

Eastern philosophy had long accepted that the world is not made up of absolutes.
There is yin in yang and yang in yin.

The fact that Aristotle (who essentially invented logic) had found fault with logical
absolutism (The Sea-Battle) was dismissed by a culture that wanted a world of black
and whites. Even the overwhelming impact of probability, and the acceptance of
randomness as a fact of life, did little to change the common perception of a world
divided into black and white.

Fig. 109.1. Graphs of E (equal zero) and G (greater than zero) are monotonic but GE = G∨E
(greater than or equal zero, or max [E,G]) is not



109.6 Fuzzy 759

109.6.1 Fuzzification

For me, fuzzy set theory has forced me to question the common assumptions of
every formal system. This inquisitiveness also made me question the way we are
doing things in the world of fuzzy set theory.

Example 1. Let us consider two alternatives a and b and let us suppose that on some
scale that a is less than or equal to b. The phrase “less than or equal” is pretty
intuitive, and there is a precise mathematical definition of order.

Suppose we want to make a fuzzy analog of “equal” called E . One common
approach is to use a distance between a and b. Then a function such as E(x,y) =
2−|x−y| will attain a value of one when the distance is zero, and hence x and y are
equal, and decrease rapidly as the distance increases.

Fig. 109.2. Graphs of E (equal zero) and G (greater than zero) are monotonic. Using the
Łukasiewicz t-conorm for E ∨ G (greater than or equal zero) produces a GE that is also
monotonic.

Now suppose we want to make a fuzzy analogue of “greater than” called G. In-
tuitively, the farther to the right of a that b is the more b is “greater than” a. As b
is moved closer to a the distance δ decreases and the degree of greater than should
also decrease. When G(b,a) = 1 we interpret this as b being significantly more
valuable than a, i.e, “much greater than”. As we move b to the left the amount of
“greater than” decreases monotonically until. So what do the values of zero and
one–half mean about the distance between a and b for the concept “greater than?”
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Does G(b,a) = 0 indicate b is far to the left of a or that they are coincident? Is
G(b,a) = 0.5 a better value for coincidence or does it indicate that b is halfway
between a and some (infinite?) maximum value.

Let us suppose we decide that G(b,a) = 0 when a and b are coincident. Then a
formula for G might look like:

G(x,y) =

{

1− 2−(x−y) x > y

0 otherwise
(109.1)

Everything seems fine until we define “greater than or equal” as the union (logi-
cal or) of G and E . Figure 109.1 shows the result when we fix y at zero. While
E (equal) and G (greater than) are monotonic the E ∨G (greater than or equal, or
max [E(x,y),G(x,y)]) is not. When x = 1 we have that E(x,0) = G(x,0) = 0.5. And
as x decreases or increases E ∪G increases.

Note that we will not be better off if we build a monotonic GE , or “greater than
or equal” and then define G as G = GE ∧¬E . This will produce a multimodal G.

The use of other operators for combining G and E will not help the situation. We
could use the Łukasiewicz t-conorm, s(x,y) = min(x+ y,1), to combine G and E ,
which produces a monotone result for GE as depicted in Figure 109.2.

Fig. 109.3. Graphs of E (equal zero) and G (greater than zero) with G using a logistic curve.
Now GE using the Łukasiewicz t-conorm is not monotonic.

However the Łukasiewicz t-conorm has a drawback. Suppose we had decided that
G(b,a) = 0.5 is more reasonable when a and b are coincident. Then we might use a
logistic function for G



References 761

G(x,y) =
1

1+ ey−x

and then G∨E using the Łukasiewicz t-conorm gives a GE which is not monotone.
This result is illustrated in Figure 109.3.

The point is that fuzzy mathematics is hard and we have to think about what we are
doing. We cannot naively convert crisp concepts into fuzzy analogues, and if we do
we will often produce counterintuitive results.

In the fuzzy world “greater than or equal” may be a concept that can not be built up
from simpler components. I suspect that a→ b may be another concept that indicates
many different relationships between a and b which all just happen to coincide in a
crisp world, but which bifurcate under Zadeh’s gaze. 4

When we finally “compute with words,” our grammar is going to have a revolu-
tionary structure. The fuzzy set community has a lot of work to do. Zadeh [16, 14],
like Maxwell’s demon, has only opened the gates for us.

�
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110

Philosophy of Science, Operations Research,
and Fuzzy Set Theory – Personal Observations

Hans-Jürgen Zimmermann

110.1 Introduction

Since the following are personal observations, it might be appropriate to tell the
reader some relevant facts of my background. They have shaped my views, which
otherwise might seem strange to some colleagues in other disciplines:

Due to several flights of approaching fronts during last world war and from eastern
Germany I arrived in the West in 1949 with 16 and started a business apprenticeship
in 1950. I was supervisor of an order department (ex-and import) from 1952 till
1953 during which time I attended night classes to qualify for university studies. Af-
ter obtaining my master degree in engineering, one year of post graduate studies in
Oxford and my PhD degree in Berlin (in Business Administration and Mathemat-
ical Economics) with a thesis on Operations Research, I went into industry again,
working as Head of Department of Production Control for the European IT&T in
Stuttgart. A good career in industry seemed to be ahead of me! Unexpectedly I was
invited as visiting professor for Operations Research and Production Management
by the University of Illinois in Urbana (USA). I stayed there - with short lecturing
breaks in Berkeley and Ann Arbor- for three years. That is where I tasted and liked
the academic life and research! Areas of activity were mainly Operations Research,
Mathematics, Computing and Production Control. When in 1967 I accepted a new
chair for Operations Research at the Aachen Institute of Technology in Aachen (Ger-
many) I had spent 10 years in industry, focusing on solving problems and just a short
time in doing academic research. Now I was eager to do research, but due to my
past, mostly problem oriented and seldom for the sake of the theory I was working
on. And I also took some principles of the original Operations Research seriously:
1. The justification of all methods and models to be developed or used was the prob-
lem considered and 2. Work should be done in interdisciplinary teams because most
problems contain aspects not only of one but of several disciplines. For the years to
come the co-workers in my chair came from between 5 and 10 disciplines (business
administration, mathematics, informatics, psychology, statistics, and operations re-
search). The beginning of such a group is rather difficult but the rewards later on are
surprising! We had a good relationship with industry and the only thing that always
bothered me was, that our activities were confined to operational problems (here data
existed) and operations research was not accepted for the more interesting strategic
decisions, that were too ill structured to be modeled by OR methods and models.

Then in 1971, when I studied the literature after my class in (cognitive) deci-
sion theory I came across the paper “Decision-making in a fuzzy environment” by

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 763–774.
DOI: 10.1007/978-3-642-35644-5_110 © Springer-Verlag Berlin Heidelberg 2013
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Bellman and Zadeh [6] in Management Science 1970, and this changed my life re-
markably for 2 reasons: 1. I saw chances for OR to work in less structured areas of
decision making and 2. On the basis of my research and practical work in decision
making I could not believe, that the word “and”, when used by humans would always
have the same meaning and could be modeled by “min” or by “prod” in all contexts.
I called Lotfi Zadeh in Berkeley and after a very short time I was in Berkeley, enjoy-
ing Fay’s and Lotfi’s exceptional hospitality and extremely productive discussions
with Lotfi. This started all the work I have done afterwards, gave my life another
turn and lead to results that nobody expected at that time.

Research – and applications – in my chair in Aachen went along two lines: 1.
developing fuzzy versions of the OR tools that we were using, such as Mathematical
Programming, Expert Systems, Multi Criteria Decision models, Data Mining etc.
2. Mathematical and empirical research in shapes of membership functions and in
operators that really modeled human speech, inference, and decision making.

In addition I tried to increase communication and discussion between colleagues
on a worldwide scale, for instance, by starting the international journal “Fuzzy Sets
and Systems” in 1978 and by founding IFSA (International Fuzzy Systems Associa-
tion) in Brussels and Hawaii in 1984.

110.2 Different Perspectives on Fuzzy Set Theory

To judge the “value” of a theory it is useful to first state , what one expects of a
theory or what is intended by the theory. This is discussed extensively in the the-
ory of science, a branch of philosophy. I am a friend of Popper’s views [25], who
distinguishes between “formal scientific theories” and “factual scientific theories”.
Former develop a formal (mathematical or logical) theory, which can be proven to
be correct by formal arguments . If that has been done correctly (generally on the
basis of dual logic) it is considered nomologically correct. Latter wants to make
true statements about reality. According to Popper such a theory cannot be proven
(because reality might change), but it is considered “corroborated” until it has been
falsified. If one considers fuzzy set theory as a formal theory most of it has been
proven sufficiently [11], [19], [24], [29], [30], [38], [39], [40], [42].

If, however, it is considered as a factual scientific theory, to my mind, a lot of more
empirical work would have to be done to verify (try to falsify) the assumptions of this
theory. Let us just consider some of the central elements of this theory: membership
functions and operators: [45]

Very often membership functions are considered to be either triangular or trape-
zoidal. Consider the membership functions which have been determined empirically
for groups of students [34], [47], [51].

About 50% of the members of the group had one shape of membership func-
tion (similar to triangles) the other half had membership functions that looked more
s-shaped. Obviously the first group considered “age-groups” and the second consid-
ered aging as a process. Also in general (except in higher order fuzzy sets) member-
ship values or functions are generally treated as being on an absolute scale level (all
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Fig. 110.1. Membership functions of 52% of the group members for the fuzzy sets “old men”
and “very old men”

Fig. 110.2. Membership functions of 48% of the group members for the fuzzy sets “old men”
and “very old men”

mathematical operations allowed) even though psychologists know, that humans can
only make judgments on an ordinal scale level.

Similar holds for operators of fuzzy set theory. T-norms and T-conorms are cer-
tainly mathematically attractive. Empirically it has , however, never been shown,
that humans use them when they use words like “and” and “or”. Of course, I argue
from the point of view, that fuzzy expressions should model human communication
or inference. There are other areas, in which fuzzy set theory can be “verified” to a
higher extend.
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A third “view” could be, that fuzzy set theory should be used as a tool to better
solve problems, i.e. for applications. The term “application” is generally used in a
number of ways: The application of one theory to another ( fuzzy set theory applied
to linear programming, which results in fuzzy linear programming), the application
of a theory to models (of problems), i.e., fuzzy set theory to inventory control mod-
els, and finally the application of theories or models to “real” problems. When I
talk about applications in this paper, I will always mean the last type. A problem
generally has an objective part (inventory) and a subjective part (the decision maker
who considers the inventory as too high). In this function (as a modeling tool) fuzzy
set theory has often been shown to be very helpful. The difficulty is just to extract
the subjective part of the problem from the head of the decision maker into a fuzzy
formulation.

110.3 Fuzzy Sets, Operations Research, and Decision Theories

There are essentially two views on Operations Research (OR):
The original view (from the military foundation in British military) in which OR

is a problem focused way of using scientific methods in interdisciplinary teams to
solve real problems better than is possible without OR [36]. Since the fifties of last
century very many formal methods and application areas have been developed in OR
and that led to another view of OR, which essentially comprises the mathematical
methods of OR. I am a representative of the first view.

From the many areas of OR I will consider exemplarily two in optimization [10].
The two probably largest areas in optimization are mathematical programming and
knowledge based systems (expert systems). In the former [18] problems are modeled
as optimizing an objective function over a solution space, which is defined by con-
straints. Normally there is only one objective function and the constraints are crisp.
Hence one can determine an optimal solution in the solution space. It becomes diffi-
cult, however, if there are several objective functions or if the solution space,as defined
by the constraints, is empty. The first complication leads to multi objective decision
making [2], [48] or vector optimization [26], [37], [44] and the second complication
often occurs because the model constraints differ from the problem restrictions (given,
that a real problem has a real solution). In both cases fuzzy sets have been applied and
have helped considerably by either aggregating objective functions meaningfully or by
fuzzyfying (relaxing) model constraints such that they better model the real views of
decision makers, which very often are not crisp. This “fuzzy mathematical program-
ming” has a number of additional advantages, compared to traditional crisp mathe-
matical programming, which shall not be discussed here.

The situation is somewhat different for knowledge based systems (KBS): In tra-
ditional “expert systems” one tries to store human expertise (mostly as rules) and
then deduce from these rules and the observed facts desired results. The problem is,
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that facts, features etc. are defined crisply and that the inference method is generally
based on dual logic. Hence, these systems are actually not knowledge processing
systems but rather symbol processing systems, in which truth values (0 or 1) are pro-
cessed. The introduction of fuzzy sets for the description of facts and features and
fuzzy logic or approximate reasoning for the inference has certainly improved these
systems considerably and actually transformed the symbol processing into knowl-
edge processing. One major problem, however, remains: If such a system is to use
human views and inference procedures one has to extract them from the heads of the
experts, which is rather difficult, or stick to approximations, which we believe are
close to what the experts think and do.

Decision theory has always been considered as a good area for the application
of fuzzy set theory. Besides statistical decision theory there exist “Decision Logic”
(DL) as a formal theory, in which a decision is normally a timeless act of choice [16],
and “Empirical, Cognitive” or Descriptive Decision Theory (DT), in which a deci-
sion is a time consuming, multi person, interactive information processing process,
as a factual theory. As can be expected fuzzy set theory can be and has been ap-
plied repeatedly to DL. For DT we have the same problems, which were already
mentioned in the last section. Since statements about real decision making are being
made, to apply fuzzy set theory we would have to extract views from the heads of
humans and that has not yet been done too often.

110.4 Knowledge Based Systems

Formally there exist two types of knowledge based systems (KBS) in the area of
fuzzy set applications: Fuzzy Expert Systems (FES) [4], [12], [13], [43], [46] and
Fuzzy Control (FC) [3], [13], [22], [32]. Both contain a knowledge base and an infer-
ence machine. FC has as inputs numbers (measurements), which are then fuzziyfied
and at the end we obtain again numbers by defuzzyfication. FES normally allow crisp
or fuzzy inputs and provide as outputs linguistic expressions obtained by “linguistic
approximation” [35]. There is, however, to my mind, a much more basic difference
between these two types of fuzzy systems: Fuzzy control, which actually started the
“Fuzzy Boom” in many countries in the 80s of last century, is intended to control
man made technical systems [3], [32]. The components (fuzzyfier, knowledge base,
inference engine, defuzzyfier) can be calibrated until the controller functions as de-
sired [22]. For FES this is not the case, particularly if they are intended for long
term decisions ,e.g., strategic planning decisions etc. Here again the expertise of the
expert has to be extracted and there is no way to verify the results when designing
the system.

110.5 Data Mining and Analytics

Data Mining is an area that has existed for a long time. Since we have moved from
a time of scarce data into one of an abundance of data it has become more and more
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important. Essentially it aims to extract meaningful information from masses of data.
In classical methods (e.g clustering) methods are generally dichotomus , which very
often does not model reality well enough. Hence, a fuzzyfication of these methods
and the use of additional approaches (such as neural nets) [20], [21] makes a lot of
sense and has been done very successfully [5], [7], [27], [28].

Different methods of fuzzy clustering have been developed and applied very suc-
cessfully in a large number of areas (bus. administration, regional policy, medicine,
fraud prevention, etc.) [1], [8], [9], [14], [23], [31], [49]. It can be expected, that the
importance of these methods will still increase in the future. As in fuzzy control,
parameters can be varied until the results of the methods are satisfactory. Recently
there have even been motions to rename Operations Research and call it Business
Analytics. Whether that makes sense remains to be seen.

110.6 Media and Public Interest

When I started working on fuzzy sets after my first discussions with Lotfi, colleagues
smiled at me. Hardly anybody took our research seriously and I was warned (partic-
ularly in military) that hardly anybody wanted to be a “fuzzy decision maker”. There
were two universities in Germany that offered any lectures on fuzzy set theory and
control engineers were convinced, that they had much better methods. That changed
dramatically in Germany in the 80s of last century, when a German journalist vis-
ited Japan and was impressed by the products that contained fuzzy control (video
cameras, rice cookers, washing machines, etc.) and that were very fashionable in
Japan. He wrote an article in a leading German journal, warning the German indus-
tries that they were losing another market to Japan (after consumer electronics from
Japan had become a serious competitor to German products). That started a wave in
German media on fuzzy control. Hardly any trade journal or journal in information
processing dared to not publish articles on applications of “Fuzzy Logic”.

To our booth at the Hannover Trade Fair (one of the world’s largest) where we
had a stand together with OMRON, hundreds of people came to ask :“What is fuzzy
logic?” We had built and exhibited a fuzzy car (with about 250 rules in the FC
knowledge base), that could go autonomously from A to B without hitting any obsta-
cle between the points. Even the minister of the German research ministry came to
look at it and watch it go.

Within one or two years the number of universities that offered lectures on fuzzy
set theory went from 2 to 30!

The annual EUFIT (European Congresss on Fuzzy and Intelligent Systems) con-
ferences started in Aachen with between 250 and 300 papers each time and at each of
the conferences there was an exhibition in which 20 to 30 companies exhibited their
“fuzzy products”. Software tools (FuzzyTech [15] for fuzzy control and DataEngine
for intelligent data mining ) were build and the courses on “fuzzy topics” increased
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remarkably in number. ERUDIT, the European Network in Uncertainty Techniques,
for which I had the honor to be the president, was founded in 1994 and financed by
the European Commission.

Fig. 110.3. Typical Cover Picture of a Trade Journal in Germany at the beginning of the 90s

The number of papers and books on fuzzy set theory exploded! One article in
a trade journal had been more convincing to the public than many man years of
academic work! After a few years the media lost interest in this topic and so was
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the public. Today hardly anybody, except the experts, knows about “fuzzy logic” in
Germany. On reason might also be, that at that time fuzzy set theory was presented
as a theory that was very simple and easy to understand and apply. That may have
changed in the meantime.

Fig. 110.4. “Fuzzy Car” with 250 rules that could go autonomously from A to B without hitting
an obstacle

110.7 Modeling Different Types of Uncertainty

Until 1971 to model uncertainty was easy for me: I knew probability theories and
statistics , worked on stochastic programming and these were the only tools I could
use. This became much more difficult after the inception of Fuzzy Set Theory by
Professor Zadeh, because now I had to distinguish between different kinds of uncer-
tainty and try to choose the correct theory to model the type of uncertainty under
consideration. In the meantime there exist, to my knowledge, about 25 different un-
certainty theories and the choice of the “correct” or applicable theory in a certain
situation is often not easy. It is my experience, that most people act in such a situa-
tion according to the “hammer principle” (If I have a hammer in my hand, everything
starts looking like a nail!). Since most still know only probabilities or statistics they
will use these as a modeling tool. What, however, if one is aware of other uncertainty
theories? Which one should one apply?
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Fig. 110.5. Lotfi Zadeh with our fuzzy car at our booth

I assume that most of the uncertainty theories are “formal theories”, developed
on the basis of some stated or not stated axioms or assumptions a consistent theory.
Of course, one can combine theories (such as probabilistic sets or fuzzy event). But
generally they remain formal theories. For a few (primarily probabilistic) theories
there exists already empirical evidence that can facilitate the choice.

But how about the others, when one wants to apply them to real situations or
problems? To my mind [50] each of the formal theories would have to state clearly
the assumptions and axioms on which it is built. This is important not only for the
mathematics used, but also for the types of inputs assumed (i.e. linguistic or numer-
ical, if numerical on which scale level etc.) and for the types of outputs required.
Each theory could then be characterized by a vector of characteristics, which can be
compared with the characteristics of the phenomenon to be modeled. In applications
in decision making the time horizon also plays an important part. While for strate-
gic planning probability theory may be appropriate, for control problems fuzzy set
theory may be the correct choice.
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Fig. 110.6. ERUDIT, the “European Network in Uncertainty Techniques”

110.8 Conclusions

The inception of fuzzy set theory by Lotfi Zadeh has been a centennial breakthrough
for the entire area of uncertainty modeling. It is not only the theory itself and all the
additional concepts that Lotfi has invented and worked out, that have changed all our
views, but he has also triggered very many useful other theoretical developments and
he is still doing that! I cannot congratulate and thank him enough for what he has
done for scientific advancements. The challenges he has formulated will still take a
long time in the future to satisfy. For me personally Lotfi has been much more: Not
only a brilliant scientist but also a very good friend, who has often in my life helped
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with professional and personal advices (which always turned out to be correct). For
all that I want to thank him from all my heart and hope that we can enjoy his company
still for a long time.
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How We Got Fuzzy (1976 - 1980)

Didier Dubois and Henri Prade

Abstract. This short note reports on our beginnings in fuzzy set theory and possi-
bility theory, indicating our interests and concerns at that time, also acknowledging
the support of many persons who in some way or other have helped us develop our
research work.

111.1 Introduction

This paper is unusual in our writings. It does not not contain any scientific results
or proposals, nor does it offer a survey of some topic. It is not even just a piece of
testimony on the development of research in fuzzy set theory in the late seventies.
It rather intends to illustrate how research is a matter of personal taste and interest,
but also of good or bad luck, of perseverance through the hazards of life, of persons
encountered who were sympathetic, critical or just indifferent to your enterprise. It
also makes it clear that research is not an activity whose development can be fully
planned and evaluated in advance, although more and more people in charge of its
organization would like to make us believe to the contrary, in these days of unrea-
sonable love of money and short-term profit.

We first explain in which circumstances we heard of fuzzy sets for the first time,
why we decided to work on this topic, and at which point in time we finally started to
better understand what they may be useful for. We highlight the opportunity offered
to us of enjoying a one-year post-doctoral position in American universities with a
lot of freedom for writing our first book. Finally we show how, back to France, we
continued to develop our ideas, while experiencing how badly considered and poorly
understood were fuzzy sets in that time, but also encountering various supports and
encouragements from key people.

111.2 Encountering Fuzzy Sets

After getting our engineering degrees in aeronautics that we both obtained in 1975
from the Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, a French
“Grande Ecole" (usually abbreviated as “Sup’Aéro"), we prepared a Doctor-
Engineer thesis for two years (the usual duration at that time for a French PhD the-
sis) at the Department of Automatic Control in the “Centre d’Etude de Recherche de
Toulouse" (CERT-DERA) in France. Our respective thesis topics were the

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 777–796.
DOI: 10.1007/978-3-642-35644-5_111 © Springer-Verlag Berlin Heidelberg 2013
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optimization of bus transportation networks (DD1) and the real time management
of scheduling problems (HP). Nine months after starting our thesis research works,
in June 1976, at lunch time, a friend2 mentioned the arrival, at the Sup’Aéro library,
of several volumes dealing with a strange thing called “sous-ensemble flou"3. He
explained us that it had something to do with a generalized set theory with graded
membership. Actually, these were the three first volumes of an introductory treatise
in French (“for the benefit of engineers", as said in the complete title) by Arnold
Kaufmann (1911-1994) [39, 40, 41], a series also including [42, 44], only the first
volume of which was translated in English [43].

In fact, we had heard of fuzzy sets for the very first time some weeks before, in a
prospective working paper about future lines of research in production engineering
by a French professor, Lucas Pun, from Bordeaux. Indeed, in this report, he advo-
cated the relevance of the general idea of using fuzzy sets in this area (see, e.g. [62]
– another paper we saw later on). However, the working paper we had in hands
gave absolutely no detail about fuzzy sets. So, when our friend reported us about the
arrival of Kaufmann’s books and a bit about their contents, our curiosity was immedi-
ately aroused, because we soon realized that it might be connected to multiple-valued
logic, a topic for which one of us (HP) had an older personal interest4. This inter-
est was connected to a general concern for logic in general, that both of us shared,
since, during the last year of our engineering school, we had attended an optional
course on propositional and first-order logics, given for the first time by Hervé Gal-
laire [36], a professor of computer sciences at Sup’Aéro, and a renowned database
specialist. So, in the afternoon of the same day, we borrowed the three volumes from
the library, and started to look at their contents. Very rapidly, we got convinced of
the close relation between fuzzy sets and min/max-based multiple-valued logic, and
were impressed by the large range of potential applications advocated by the author,
including tools for linguistics [40] and decision modeling [41]. We got excited by
this new idea, and we asked our respective PhD advisors5 the permission to devote
one month of our PhD time to a bibliographical study in order to see if, as suggested
by L. Pun, fuzzy sets had any potential for the respective topics of our theses. We
got their green light immediately without any problem (as we expected) since they

1 In the following we indicate by ‘DD’ (for ‘Didier’) and ‘HP’ (for ‘Henri’) to whom a
particular piece of information refers, when necessary.

2 Georges Aicardi, also from “Sup’Aéro" and preparing a thesis in another field.
3 The French translation of fuzzy sets.
4 This interest for logic as a tool for describing the world had prompted him four years

before to read an introductory book in logic [11]. This excellent treatise also presented the
Piaget group of transformations of propositional sentences, and non-classical logics were
mentioned within half a page. This triggered a desire to understand how a multiple-valued
logic works in terms of truth tables, and led to reinvent the min-based conjunction and the
max-based disjunction, before discovering two years later that such things were already
known for a long time, in another more advanced introductory book [8] including a whole
chapter on non-classical calculi.

5 Jean-François Le Maître, a specialist of urban systems (DD), and Jacques Delmas, a spe-
cialist of automatic control and production systems (HP).
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were open-minded, and Kaufmann was at the time a highly regarded name [31] as
the author of many books introducing new topics in engineering such as matrix cal-
culus and operations research in the two previous decades. He was famous at least
in the engineering circles to which our advisors belonged6.

111.3 First Writings

The result of this first (fuzzy) month of bibliographical search was a (handwritten !)
CERT-DERA technical report [19] with an unorthodox title7. Following the advice
of our supervisors, we were bold enough to send this report to professor Kaufmann
himself. To our surprise, he quickly replied in a very encouraging letter (See Fig.
111.1). This report was a synthesis of the main basic notions of fuzzy set theory. It
also emphasized the potential interest of fuzzy constraints and fuzzy algorithms in ar-
eas such as the ones we were dealing with in our theses. At this stage, we had mainly
identified the capability of fuzzy logic for expressing trade-offs between constraints
and goals, and more generally its possible use for modeling linguistically described
procedures (in that respect the paper by Zadeh [73] where he outlined his “linguis-
tic" rule-based approach made a great impression on us, when we discovered it a bit
later). Still, we felt that the impact of fuzzy sets as a tool for solving the problems to
be addressed in our theses remained limited. However, we still found the idea attrac-
tive and tried to keep up with the publication of new results in the fuzzy set area until
the beginning of 1977, when we finally discovered an article by Ramesh Jain [46]
advocating the interest of computations with fuzzy numbers based on Zadeh’s exten-
sion principle [74]. We were immediately convinced that fuzzy numbers were the
kind of notion that would be very useful for modeling ill-known task duration times
or transportation times in our problems. Yet at that time, no practical computation
method with fuzzy intervals had been published, even for particular cases. The pi-
oneering investigations of Mizumoto and Tanaka [47] mainly dealt with algebraic
properties of fuzzy arithmetic operations. After some joint research, we were lucky
enough to discover a parametric representation of fuzzy numbers (the so-called L-
R representation, now quite popular). We could then perform arithmetic operations
on fuzzy numbers, as well as extended max and min operations between intervals, by

6 It might have been quite a different situation, had we prepared our theses directly in the
university world: For instance, we later heard that at about the same time some young
colleague working at the university lab that we joined later on (and whom we still know),
was strongly advised by older colleagues not to pursue the research line on fuzzy sets that
she had just started. In fact, we later on received several testimonies of such states of fact
in different places: Toulouse, Lyon, Paris, etc... Fuzzy sets were really a controversial topic
at that time.

7 “Le flou, kouackseksa ?, meaning “Fuzzy, what is this?", where “kouackseksa" is an ono-
matopoeia for the French “quoi que c’est que çà", a young child phonetic approximation of
the standard French query “qu’est-ce que c’est que çà".
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Fig. 111.1. 1st letter by A. Kaufmann, after he received “Le flou, kouackseksa ?" in 1976.
Note his generosity, the broadness of his view, and his care to put people in relation: the letter
encouraged us to contact M. Sugeno, R. Sambuc, and C. Ponsard.
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simple computations on the parameters. These results first appeared in [20]8; they
were later published in [24, 23] and soon applied to shortest path problems [25]. In
the meantime, we had become aware of the work of Nahmias [48] and realized that
his findings on the addition of fuzzy intervals were particular cases of ours, restricted
to triangular membership functions. We had also realized that fuzzy arithmetics
generalized interval arithmetics through the use of cuts. But it was only later on (in
1978, before writing our first book) that we read Nguyen’s fundamental paper on the
extension principle [51], where its cut-worthiness was studied in depth.

We were also lucky enough to meet several key people that in some way or other
influenced our future works in Toulouse before the 1977 summer vacations. First,
in december 1976, we heard that a fuzzy set researcher, Michio Sugeno, was a vis-
iting scholar in another neighboring laboratory on the same campus, the L.A.A.S.,9

for several months (it was pointed out in Kaufmann’s letter on Fig. 111.1). He was
there thanks to the support of Georges Giralt, the future father of robotics research
in France. After a recent sabbatical in Berkeley, Giralt had become a sympathizer of
fuzzy sets. Thus, we had the privilege to discuss very early with Michio Sugeno, who
gave us a copy of his landmark PhD dissertation [69]. It was also the opportunity to
meet a young CNRS researcher from the same laboratory, Gérald Banon, interested in
fuzzy measures and Shafer’s belief functions [68], whose work [5] would be the de-
parture point of our chapter on this topic in our 1980 book [28]. A bit later we also had
the chance to meet Elie Sanchez, back from Berkeley, who also gave us a copy of his
remarkable PhD thesis on fuzzy relation equations and their applications to medicine.
He was the first scholar to reveal the existence of possibility theory [75] to us10. This
was a brand new topic at that time, to which he had just contributed [64]. These lucky
encounters clearly contributed to enrich our view of the field and led to new devel-
opments [21], while we were completing our PhD dissertations [13, 14, 55, 57] that
we finally defended in October 1977. We had successfully applied for post-doctoral
fellowships so as to pursue our works in the US. Just before our departure, Kaufmann
strongly suggested us to take this opportunity and write a book on fuzzy sets. It was
an unexpected advice given by a very unusual, generous and experienced man to 25
year old researchers! In fact, we decided to take this advice seriously.

8 The title of this report “Le flou, mécédonksa !, meaning “Fuzzy ? this is it!", where “mécé-
donksa" is an onomatopoeia for the French “mais c’est donc çà". It was echoing, in the
same style as in the title of our first opus, our feeling to have finally identified a reason for
advocating the usefulness of fuzzy sets.

9 L.A.A.S. stands for “Laboratoire d’Automatique et d’Analyse des Systèmes". It was already
at that time a very important French CNRS laboratory.

10 Thanks to Shafer’s book [68], we became aware almost at the same time that an English
economist, George Lennox Sharman Shackle (1903-1992) [66] had already felt the need for
a similar calculus [18], but on the basis of quite different motivations. This is a good example
of the fact that the emergence of new theories may be the result of multiple attempts. A bit
later HP had the chance, at a PhD committee, to meet Shackle, a delightful old-fashioned
English professor, who was glad to discover that his ideas were starting to have a revival
[67], to which we later contributed when providing a decision-theoretic axiomatization of
possibility theory.
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111.4 Discovering North-American Research

In November 1977, we left for Purdue University (DD) and Stanford University (HP)
respectively, supported by one-year IRIA11 scholarships, with one idea in mind: to
write that book. The choice of these universities was differently motivated. On the
one hand, Prof. King-Sun Fu (1930-1985), a leading figure in pattern recognition in
that time, had already done some remarkable work on fuzzy automata, but also on the
axiomatics of fuzzy set connectives in relation to decision analysis [35]. DD sent a
letter to him expressing his high interest for Fu’s paper on connectives, and the latter
was kind enough to welcome the visit in his group of a young researcher interested
in fuzzy sets. On the other hand, the Stanford AI Lab. was one of the very few
leading research places in artificial intelligence in those days. Thanks to the support
of Georges Giralt, HP was accepted in the group of Tom Binford in order to learn AI
and robotics, and more particularly, planning. At that time, nobody was interested in
fuzzy sets12 at the Stanford AI Lab. On the other hand, Stanford was only one hour
by car from Berkeley University and the Electronics Research Laboratory at Evans
Hall, where Prof. Zadeh’s seminar was taking place.

American university libraries were a paradise for two young French researchers
willing to write a research monograph: they were generally open all day long (even
late in the evening), the whole week, and they allowed you to have a direct access
to books and journals. Moreover they contained almost everything you may need. It
was for us an enormous difference with the French system, even if we were very priv-
ileged at the time of our thesis since our laboratory had access to the French Army
library “CEDOCAR" (Centre de Documentation de l’Armement) where it was at
least possible to order copies of articles. In order to work together on our project,
we decided to spend one month in Albuquerque, New Mexico around Christmas
vacations, since it was sort of mid-way between LaFayette, Indiana (where Purdue
University is) and San Franciso: it took each of us about 36 hours by bus to reach the
place! Apart from visiting Santa Fé, we spent days of intensive work, trying to build
an organized view of our readings, and to develop our own ideas: we wrote there the
first versions of 5 papers which later were published in journals, and a long analysis
of Zadeh’s paper on the PRUF representation language. It resulted in a thick Purdue
University technical report [22] (see Fig. 111.2.a). Later, in April we met again
for several weeks in Menlo Park (near Stanford) for preparing the tentative table of
contents of the future book, that we then presented to Prof. Zadeh. As he wrote
it later in the foreword to the book, he “was rather skeptical" on the possibility of

11 IRIA, now INRIA (Institut National de Recherche en Informatique et Automatique), is a
French organization for research in applied mathematics, computer sciences and automatic
control, which in that time was offering some scholarships every year for post-doctoral
staying in foreign research laboratories.

12 It was not just indifference, since HP was then encouraged to write a note [56] in order to
make it clear that robotics and fuzzy set had nothing to do with each other. This rare piece
should have appeared in an annual report, but, fortunately was finally never published.
However, due to his broadmindedness, Tom Binford left the freedom of their research lines
to members of his group.
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(a) (b)

Fig. 111.2. (a): Purdue Univ. TR-EE 78-13 [22] (b): 1st issue of BUSEFAL, Jan. 1980

“writing an up-to-date research monograph on fuzzy sets and systems". Neverthe-
less, we decided to go on, and we spent almost three months (from the end of June
to mid-September) writing the book, during a hot summer in Purdue. It was hand-
written, since at that time, text processing tools were in their infancy, and not in
current use. Prof. King-Sun Fu encouraged us continuously during this period, even
reading the manuscript and making some suggestions. Once the writing was over, we
had the text type-written by a professional typist (at our own expense). Prof. Fu was
then instrumental for recommending our work and having it accepted in the presti-
gious “Mathematics in Science and Engineering" series edited by Richard Bellman
(1920-1984) at Academic Press. After receiving the galley proofs and making a sub-
stantial update during the fall of 1979 (we were then back in France), the book was
finally published the next year [28] and proposed at an affordable price for interested
researchers, while paying significant royalties (this situation fully contrasts with the
one that became usual about 20 years later, when books became much more expen-
sive, while publishers were just printing ready-to-process files in low cost countries,
while significantly reducing royalties).

Our year in the US was clearly a very rich experience for each of us, not only
because of the success of the project and the publication of the book, but also because
of the new style of life and research we experienced, and all the people, colleagues,
friends we encountered. It is clearly not possible to mention them here. Let us
just report that one of us (DD), just before leaving back to France, attended his first
conference in Philadelphia, where he presented results from his thesis work [14], and
had thus the opportunity to meet Ronald Yager [71] for the first time. Ron presented
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a family of new connectives for fuzzy sets (his now widely acknowledged subclass
of t-norms and co-t-norms), a work quite unorthodox at that time where operators
other than min and max were not really considered.

111.5 Back to France

When we came back to France in the last term of 1978, our professional situation
was not the same. HP had just got a CNRS “attaché de recherche" position in an
artificial intelligence research group [10] in a Toulouse university laboratory, later to
become part of our present IRIT laboratory at the very beginning of the nineties. DD
still had to find a position; during one year he worked first in Paris then at Grenoble
IMAG laboratory as an engineer (where he could often visit Arnold Kaufmann, now
retired, but still active), and finally got a permanent research engineer position at
CERT-DERA laboratory in Toulouse in March 1980, in the very lab where he had
worked on his Ph. D. thesis. Finally, we became both CNRS “chargés de recherche"
in the same group at Toulouse university in 1984.

At that time, there were not so many people in France interested in fuzzy sets,
apart from Kaufmann. The main others were Elie Sanchez in Marseille working
in computer-assisted medical diagnosis (as well as Roland Sambuc [63], the first
to propose the use of interval-valued fuzzy sets), Claude Ponsard (1928-1990), a
professor of economics in Dijon [54], Robert Féron [32, 33, 4] in econometrics,
Daniel Ponasse [53] (with Nicole Blanchard [6] who died early, Achille Achache,
and Josette and Jean-Louis Coulon [12]) in pure mathematics in Lyon, Noël Mal-
vache (1943-2007) and Didier Willaeys [70] in automatic control in Valenciennes,
and Bernadette Bouchon [9] a young CNRS researcher in Paris, working in Claude-
François Picard group. Picard was the father of questionnaire theory [52], one of the
very rare influent persons in the academic world to be interested in fuzzy sets; unfor-
tunately he died very early from a heart attack by the end of 1979. We should also
mention the early work of Jean-Pierre Aubin [3] introducing the idea of fuzzy coali-
tion in game theory. As can be seen, the interest for fuzzy sets had quite different
motivations. Besides, fuzzy sets at that time remained controversial in most aca-
demic circles, even if it was becoming possible to publicize them in large audience
journals or newspapers, e.g. [59].

In order to foster international communication between researchers in fuzzy sets,
who, at that time, were topically and geographically scattered (remember Europe was
cut in two blocks, and Internet was still in infancy, operating in a few American univer-
sities only), we had the idea by the end of 1979 to launch a quarterly bulletin BUSEFAL
(a double acronym in English and French as can be read on the cover (Fig. 111.2.b).
Each issue of this international bulletin reached about 100 pages from the beginning,
and later went beyond 300 pages, publishing short contributions on new research
trends, as well as many news on recently published papers. It published announce-
ments and programs of scientific manifestations. It has been edited and published in
our laboratory in Toulouse for 19 years since 1980 (issues 1 to 76), until the research
assistant of our group, Yves Luvisutto, who took care of the assembling, printing and
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mailing, retired (and was not replaced)13. BUSEFAL played an important role for
scientific communication between the West and the East, and China as well; many
now renowned scholars in Fuzzy Sets from Eastern European countries (Krassimir
Atanassov, Slavka Bodjanova, Arkady N. Borisov, Ernest Czogała (1941-1998),Józef
Drewniak, Janos Fodor, Robert Fuller, Siegfried Gottwald, Janusz Kacprzyk, Leonid
Kitainik, Lazlo Koczy, V. B. Kuz’min, Jiri Mockor, Wolfgang Näther, Constantin Ne-
goita, Vilém Novák, Maria Nowakowska (1928-1989), Walenty Ostasiewicz, Witold
Pedrycz, Radko Mesiar, Jaroslav Ramik, Beloslav Riecan, H.-N. Teodorescu, Ma-
ciej Wygralak to name a few), and from China (Cao Zhi-Qiang, Li Hongxing, Liu
Yingming, Wang Peizhuang, Wang Zhenyuan, Zhang Jinwen (1930-1993)), published
short notes in BUSEFAL in the eighties and nineties.

Fig. 111.3. Abraham Kandel, Henri Prade, Masao Mukaidono, in Evanston, IL, 3-5 June,
1980, at the 10th IEEE International Symposium on Multiple-Valued Logic

In other respects, the years 1979-1980 for us were rich in events of different kinds
which durably influenced our future work. First, 1979 is the year of the “arrival" of
triangular norms and co-norms in the fuzzy set world. It happened almost simulta-
neously in two different places. On June 28, 1979, in Duke University at Durham,
one of us (HP) was presenting our joint work [26] on different fuzzy set theoretic

13 The bulletin continued until issue 92, at LISTIC laboratory in Annecy, where the contents
of issues 15 to 92 are available on line http://www.listic.univ-savoie.org/
modules.php?name=Busefal, thanks to the efforts of Laurent Foulloy and the help
of Patrick Bosc.
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operators, when Ulrich Höhle came to him after the talk and told him “Do you know
that the operators you just presented are triangular norms and have been studied for
a long time"? It was the first encounter with Ulrich who was also using the binary
operation max(0,a+b−1) in his presentation, but in the setting of much more elab-
orated mathematics [37]. The conference in Durham was also the opportunity to
meet Peter Klement [45] for the first time. Thanks to Ulrich, we rapidly learnt about
the solutions to the functional equation of associativity and the work of Berthold
Schweizer (1929-2010) and Abe Sklar on triangular norms [65] after Karl Menger
(1902-1985), and even one of us (HP) had the chance to receive a full collection of
reprints on the topic from the hands of Abe Sklar, taking advantage of a conference
at Northwestern University in June 1980 (see Fig. 111.3). We rapidly realized the
interest of triangular for fuzzy set theory both as fuzzy set connectives (see the fi-
nal version of [26] and [28, 15, 17, 60]), but also for defining decomposable fuzzy
measures [61, 29]. But, triangular norms and co-norms were independently known
in another “fuzzy circle". Indeed, Claudi Alsina and Enric Trillas had been for sev-
eral years studying probabilistic metric spaces [1] and functional equations, before
starting to work on fuzzy sets in the late seventies [2].

1979 was also the year of the first International Seminar on Theory of Fuzzy Sets
in Linz (Austria) organized by Peter Klement at J. Kepler Universität, in Linz (Aus-
tria). We attended the seminar from the beginning: in 1979, one of us (HP) presented
the nomenclature of fuzzy measures [58] that was going to appear in our book [28],
while the second year (see Fig. 111.4) the other (DD) emphasized the interest of tri-
angular norms for fuzzy sets [17]. This yearly seminar, that is still going on to-day,
was bound to play a major role in the development of fuzzy set mathematics, and
we were again lucky enough to be among the few (less than 10) early participants,
that included Ron Yager and the pioneer of fuzzy topology Robert Lowen. After at-
tending the 1st Linz Seminar, HP continued from Linz towards Bucharest and visited
Constantin Negoita14 [49], whose book written with Dan Ralescu [50] we regarded
highly. In 1979, DD presented the first works in interactive and constrained fuzzy
arithmetics (t-norm-based additions, and fuzzy expectations [30]) at the IEEE conf.
on Decision and Control (Fig. 111.5).

In 1980, in Lyon, Robert Féron 15 (the inventor of fuzzy random variables, also a
follower of Maurice Fréchet (1878-1973)) took the initiative to organize a CNRS
Round Table: “Quelques applications concrètes utilisant les derniers perfection-
nements de la théorie du flou" (“Some concrete applications using the most recent

14 Quite naively, especially if we consider that Rumania was under the law of a communist
regime, the travel to Bucharest was rather unprepared, and the visit was done without pre-
liminary announcement. It had funny aspects: when arriving at Negoita’s address as given
in Fuzzy Sets and Systems, i.e. Str. Traian 204, HP discovered an orthodox church. It
turns out that Negoita’s father was a pope! Fortunately, his mother was outside hanging
out washed clothes, and she called his son who arrived half an hour later fully amazed to
meet an absolutely unexpected visitor. In spite of it, an impromptu scientific visit of his
laboratory was organized.

15 He also came to the Acapulco Inter. Cong. on Applied Systems Research & Cybernetics;
see Fig. 111.6
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Fig. 111.4. H. W. Martin, Didier Dubois, Robert Lowen, Ronald R. Yager, Ulrich Höhle, Erich
Peter Klement. Photo by W. Schwyla. 2nd International Seminar on Fuzzy Set Theory, Linz,
Sept. 1980.

advances in fuzzy theory") on June 23-25. Interestingly enough, the organizing com-
mittee (in Lyon, on January 25, 1980, to which one of us (HP) took part thanks to
Negoita’s support), included highly reputed mathematicians, such as Joseph Kampé
de Feriet (1893-1982), Robert Fortet (1912-1998) [34], and Gustave Choquet (1915-
2006) (at a time where Choquet integral was not yet considered by fuzzy set re-
searchers!). However, only Kampé de Feriet, who was the first to point out the
interpretation of a fuzzy set membership function as the contour function in a Shafer
belief structure [38], came and participated to the meeting in June.

We were fortunate enough to take part in this meeting with two presentations
each, including preliminary versions of our works on links between probability and
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Fig. 111.5. Masaharu Mizumoto, Elie Sanchez, Didier Dubois, Ronald R. Yager, J. Baldwin,
Lotfi A. Zadeh. 18th IEEE Conference on Decision & Control, Fort Lauderdale, Dec. 12-14,
1979.

Fig. 111.6. G. Jumarie, Henri Prade, Masao Mukaidono, Ronald R. Yager, Robert Féron, Lotfi
A. Zadeh, Erich P. Klement, Dan Ralescu, W. H. Benson, in Acapulco, Dec. 12-15, 1980
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Fig. 111.7. Preliminary program of the first 2 days of the meeting organized by R. Féron in
Lyon on June 23-25, 1980. Excerpt of an announcement BUSEFAL n◦ 2, April 1980.
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possibility [16] and triangular-based decomposable measures16 [61] (we discovered
only later that Kampé de Feriet’s theory of information measures used the same struc-
ture). Participants to the Lyon meeting included many other scholars who were going
to be involved in fuzzy set research in a way or another in the following years. Here
is an incomplete list: G. Banon, E. Backer, J. Baldwin, B. Bouchon, N. Blanchard,
C. Carlsson, A. Di Nola, B. Dubuisson, C. Dujet, H. Emptoz, M. Gupta, S. Gottwald,
E. Hisdal, K. Hirota, U. Höhle, L. Itturioz, A. Kaufmann, A. Kandel, E. P. Klement,
R. Lopez de Mantaras, R. Lowen, N. Malvache, C. Negoita, H. Nguyen, S. Oppen-
chaim, C. Ponsard, D. Ponasse, M. Prévot, D. Ralescu, E. Ruspini, E. Sanchez, P.
Smets, R. Vallée, A. Ventre, D. Willaeys, R. Yager, L. Zadeh, H. Zimmermann. See
Fig. 111.7 for the program of the two first days. It is also at this event that we had the
chance to meet Philippe Smets (1938-2005) [7] for the first time, who became our
friend and with whom we were going to share many happy days in joint European
projects and works.

Fig. 111.8. Ronald Yager in Acapulco, Dec. 12-15, 1980, at the International Congress on
Applied Systems Research & Cybernetics; photo H. Prade

16 A funny experience, a bit later the same year, was to present this idea in a seminar in
Berkeley in front of Dennis Lindley, a very gentle man, and a leading advocate of Bayesian
statistics who was visiting Zadeh at that time and to see how puzzled he was by the claim
that probabilities were (also) characterized by the postulate ∀A,B s.t. A∪B= X ,g(A∩B)=
max(0,g(A)+g(B)−1). This small story is just to illustrate how any of us may be confined
in mental habits and have difficulties to grasp a new view, even for an already known object.
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Many more scattered facts or events that contributed to our formation in these
years are omitted here (for instance, the Inter. Cong. on Applied Systems Research
& Cybernetics, where Ron Yager organised an important session track on fuzzy sets
and possibility theory, see Fig. 111.8). This was the beginning of several years of
efforts for having fuzzy set theory and possibility theory more largely accepted. In
that respect, the first important misunderstandings we had to face were about their
relations with probability theory (and a decade later with formal logic). Thanks
to supports and circumstances, we were lucky enough to approach two renowned
researchers in probability theory, Michel Métivier (1931-1988) and then Alain Ben-
soussan, to show them the potentials of fuzzy sets and possibility theory. They were
part of our Doctorat d’Etat or Habilitation committees a few years later.

Fig. 111.9. Didier Dubois and Henri Prade, in Marseille, July. 19-21, 1983, IFAC Sympo-
sium on Fuzzy Information, Knowledge Representation and Decision Analysis; photo by L. A.
Zadeh

111.6 To Conclude

In these concluding remarks, we would like first to recall mottos that we often heard
from by L. A. Zadeh (but also A. Kaufmann) as pieces of advice in those years: “Be
thick-skinned", “Whatever is said to you, take it as a compliment". The latter guiding
rule is to be understood as an injunction not to give up in face of criticisms, especially
partisan ones, when your own ideas and intuitions are the result of serious thinking.
However, this should go together with a form of humility, since we should always
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remember that often comments or remarks made by others may bring us references
or ideas that we have ignored until now. In that sense, research is a collective ven-
ture. Practicing it regularly in a joint manner, as we have done for more than three
decades, is certainly a good way of coping with criticisms, and more importantly to
cross-fertilize ideas. It is also important to keep in mind that what may appear later
simple, straightforward, or even obvious has not always been so, that apparently
easy steps may take time as soon as they are devoted to new directions, and that the
path towards new conceptual and methodological advances is a long chaotic route
with difficulties, but also rich in joys and encounters. This specificity of research
makes it distinct from teaching and engineering tasks, which are respectively aiming
at organizing and transmitting what is already known and at looking for practical
solutions immediately applicable in particular areas. This is poorly understood by
state agencies that highly privilege application-oriented research those days, forget-
ting that ideas and tools that are really new are only discovered thanks to a mixture
of dedicated work and chance, which takes time.
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Living in an Uncertain Universe

Brian R. Gaines

112.1 Introduction

It has been interesting to revisit the era when my path crossed with those of John
Andreae, Joe Goguen, George Klir, Ladislav Kohout, Abe Mamdani, Gordon Pask,
Ted Poppelbaum and Lotfi Zadeh, all precious friends and colleagues, some of whom
are, unfortunately, no longer with us; their ideas live on and flourish as a continuing
inspiration. I was tempted to entitle this article after Gurdieff, Meetings with Re-
markable People, and that will be its focus, particularly the background to the initial
development of fuzzy controllers. There have been studies analyzing their history
and the basis of their success—this article provides some details from my personal
experience.

112.2 My Background

My path began in my schooldays when I was an electronics, mathematics and phi-
losophy hobbiest, having been entranced by Wiener’s I am a Mathematician, Hardy
and Littlewood’s Pure Mathematics, Bertrand Russell’s Principles of Mathematics,
Kant’s Critique of Pure Reason and Hegel’s Science of Logic. Logic and mathemat-
ics were ways of modelling and understanding the world, and electronics a way of
influencing and controlling it. I saw everything from cosmology and society to the
world of ideas as a cybernetic system with hierarchies of feedback loops evolving
through temporary equilibria punctuated by periods of chaos; I still do.

The mathematics I valued was algebra and logic. I saw arithmetic as an over-
specified algebraic structure, notions of continua and infinity as useful fictions for
modelling indefinitely extensible algebraic structures, and the major mathematical
modelling task as being the search for underlying generative systems that were logi-
cal, concise and complete; I still do.

I spent a year at ITT’s semiconductor research laboratories at Footscray before
going up to study mathematics at Trinity, Cambridge in 1959. I saw myself as an
electronics engineer, quantum physics as the foundation of electronics and math-
ematics as the foundation of physics. I took with me some of the semiconductor
devices I had fabricated at ITT and investigated who might find them useful; this
earned me a place in Richard Gregory’s cognitive psychology laboratory as his elec-
tronics technician.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 797–811.
DOI: 10.1007/978-3-642-35644-5_112 © Springer-Verlag Berlin Heidelberg 2013
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112.3 Learning Machines at ITT

I saw an advertisement in Nature for positions in a new Learning Machines project
at Standard Telecommunication Laboratory (STL), ITT’s Research Laboratories at
Harlow, specifying qualifications in topology, cybernetics, neural networks, and
other topics that interested me, and contacted the Project Leader, John Andreae. Dur-
ing my years at Cambridge I spent my vacations working with John and his team,
David Hill, Owen Morgan and Peter Joyce, eventually taking over his position part-
time when he left to take up a Chair at the University of Canterbury in Christchurch,
New Zealand.

Fig. 112.1. Three pioneers of computational intelligence: from left to right, John Andreae
(learning machines), David Hill (speech recognition), Ted Poppelbaum (stochastic computing
in pattern recognition), IFIP 1968, Edinburgh

I first came across the work of Lotfi Zadeh whilst at ITT. Andreae’s STelLA, the
STL learning automaton, digitally encoded the state space of the system to be con-
trolled and and learned to generate inputs to keep the system state in a specified
region of that space; Zadeh and Desoer’s book, Linear System Theory: The State
Space Approach [53] was the bible for that approach to system design. In a 1963
symposium on general system theory Lotfi had presented a general formulation of
The notion of state in system theory [49] that encompassed linear systems and au-
tomata. Although he had specifically excluded stochastic and anticipative systems it
was clear how to extend his abstract framework to such systems and apply them to
learning controllers.

I envisioned general learning components as black boxes in system design where
the designer no direct control or knowledge of their internal states, customizing them
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for particular tasks through external techniques: coding input stimuli to make learn-
ing easier; training them through task sequences designed to facilitate learning; and
priming them through linguistic stimuli designed to provide an initial problem so-
lution to be refined by experiential learning. My state spaces were those of the
learning components’ capabilities, my design techniques were behavioural, and I
developed a theoretical framework based on Ross Ashby’s [3] algebraic formulation
of Gerard Sommerhoff’s model of adaptivity in living systems in Analytical Biology
[46] and Lotfi’s formulation of adaptivity in control systems in On the definition of
adaptivity [48].

I kept track of Lotfi’s research and saw his 1965 paper on Fuzzy sets [50] as an
interesting engineering application of set theory based on Łukasiewiz infinite-valued
logic [30]. I was interested in that logic as Moh Shaw-Kwei [45] had speculated
the axiom of comprehension might not be subject to Russell’s paradox in the corre-
sponding set theory (still open in 1965 [6], proved in 1979 by Richard White [47]),
a paradox that had fascinated me since I read Principles of Mathematics; it seemed
to present a pitfall for any axiomatic system theory.

I knew that Łukasiewiz’s axioms could be subsumed under axiomatic probability
logics where I saw Carnap’s [5] logical interpretation, Savage’s [42] subjective one,
and Shackle’s [43] partial order over possibilities, as better models of uncertainty
than frequentist ones, but found nothing I could use immediately in the fuzzy sets
paper. Lotfi’s footnote that “the membership function can be taken to be a suitable
partially ordered set” was more appealing to my algebraic frame of mind than a
mapping to the numeric range [0,1]; it still is.

112.4 Experimental Psychology at Cambridge

When I graduated from the Mathematics Tripos, Richard suggested I study for a PhD
with him. Oliver Zangwill, the Chair of Experimental Psychology, accepted me but
said I must get a psychology degree also. I took Part II of the Psychology Tripos after
a year, preparing by writing past exam papers for my tutor, Alan Watson, acquiring
the necessary background from journal papers, writing an essay on a methodology
for animal experiments based on my model of adaptivity, and attending lectures on
topology, probability, logic and algebra to extend my mathematical proficiency.

My doctoral research was funded through a contract with the Ministry of Defence
to study adaptive training of perceptual-motor skills, and I built an analog computer
in order to emulate a flight simulator and collect data on the learning of pilots from
RAF Oakington under different training regimes.

My studies of human operators at Cambridge were synergistic with my studies
of learning machines at STL. My paper with John for the 1966 IFAC Congress, A
learning machine in the context of the general control problem [23], emphasized the
same techniques, of coding, training and priming, that I was using in my human
operator studies. We coded the inputs and outputs of the learning systems to ensure
they provided a natural topology for the problem space; trained the systems through
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a task progression dynamically generated through feedback from their performances;
and primed them by linguistically specifying behaviours that seemed, prima facie,
to be initially useful.

Fig. 112.2. A young Brian Gaines and analog computer in his laboratory in the Department of
Experimental Psychology, Cambridge, 1964

The paper ends with a remark that seems prophetic for later developments in fuzzy
control:

“It is customary to think of controllers in terms of optimality but, when the
plant is indeterminate or time-varying and the controller itself is required to
be widely applicable, such a concept loses much of its force. When fabrica-
tion and storage costs have also to be taken into account, one can only ask
whether satisfactory control is possible and, if so, how much it will cost.”

That captures the ethos in which John Andreae, Igor Aleksander, Abe Mamdani and
I worked on learning controllers.

112.5 Stochastic and Possibilistic Computing

In Richard’s laboratory I investigated stereoscopic vision with an oscilloscope I had
built with two small cathode ray tubes sending separate stimuli to each eye; enabling
subjects to rotate and move simulated images of 3- and 4-D skeleton cubes and hy-
percubes. I speculated on the neural mechanism through which disparity was used to
perceive depth; it seemed to necessitate cross-correlation between the stimuli from
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the two eyes. I thought it might be modelled as a neural process whereby stim-
ulus intensities encoded as the probability of a neuron firing would be multiplied
and cross-correlated by a neuron firing when it received pulses from corresponding
neurons in both eyes.

I implemented this notion in one of my projects for the ITT learning machine, a
front-end neural net to learn more useful encodings of the input stimuli regardless
of their source and nature; John named it Gadafter, the ‘Gaines adaptive filter.’ I
developed an adaptive filter based on discrete logic gates with stimuli encoded as
the generating probabilities of random pulse streams, and a stochastic version of
the adaptive digital elements (ADDIEs) for making the weight changes in STelLA’s
learning protocol, leaky stochastic integrators computing running averages.

Fig. 112.3. On right, stochastic analog computer built by Brian Gaines & Peter Joyce; on
left, visual display of STelLA learning controller’s trajectory to the specified region of state
space—Standard Telecommunication Laboratories, 1965

By the time I returned to the ITT Laboratories for the Summer of 1965 I had a
fully developed scheme for a stochastic analog computer that resulted in a massive
patent application [8] with 54 claims and papers in Electronics [9] and at the 1967
Spring Joint Computer Conference [10]. Ted Poppelbaum at the University of Illinois
contacted me as he was an independent co-inventor of similar techniques for pattern
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recognition systems [40]. I visited him at Champaign, Urbana in 1967 and we became
close friends, exchanging papers and research reports until he died in 1994.

I proved that a Rosenblatt Perceptron with digital weights did not converge be-
cause it could not implement steepest descent and went into limit cycles, but that a
variant of the Novikoff convergence proof did apply to stochastic perceptrons built
with stochastic integrators [11]. I saw the asynchrony between random sequences as
generating a requisite variety of behaviours that led to the possibility of convergence,
and the existence of optimal trapping states as leading to its necessity, a result con-
sistent with Ross Ashby’s notion of inherent adaptivity in a system with many states
of equilibrium [2].

In 1968 when Ladislav Kohout came to be my graduate student at the University
of Essex he referred me to Rescher’s [41] proof of equivalence between probabilistic
logic and the modal logic S5, which eventually led to reports and papers on a calculus
of possibility, probability and eventuality [14] that encompassed fuzzy logic, and
possibilistic automata theory [24] based on the calculus.

112.6 Linguistic Priming of Controllers

The community of those researching machine learning, neural networks and artificial
intelligence in the UK in the 1960s was fairly small and the members well-known to
one another. I met with Igor Aleksander, Mike Brady, Jim Doran, Pat Hayes, Abe
Mamdani, Donald Michie, Ted Newman, Gordon Pask, Pete Uttley, Yorick Wilks,
and others, at various meetings within a cybernetics, artificial intelligence, machine
learning, and pattern recognition ethos. I knew Abe as Igor’s student working on the
SLAM deterministic digital adaptive modules applied to pattern recognition [1], and
Abe knew me as working on stochastic digital adaptive modules applied to learning
machines and to modelling human adaptive control of unstable systems. We used the
new IEE journal, Electronics Letters, as a vehicle for rapid publication as it guaran-
teed publication (or rejection) within 6 weeks, and I refereed some of Igor and Abe’s
paper and suspect they refereed some of mine.

Alexander Luria from the USSR was a friend of Oliver Zangwill’s and a fre-
quent visitor to the Experimental Psychology Department at Cambridge. I was fas-
cinated by his research on the positive impact of verbal behaviour on performance
of perceptual-motor skills [33] and built this into the experimental design for my
studies of training human operators, investigating the trade-off between priming my
subjects with helpful control strategies and non-verbal training techniques, and col-
lecting their verbalizations in the very difficult control task I had set them.

My results demonstrated a strong effect of such priming and, when I attempted
to show that the success of my training techniques had little or no dependence on
human psychology but were systemic and would apply to any learning automaton
capable of carrying out the task, I wanted to be able to prime my stochastic neural
networks with the same verbal input as I had provided my subjects.

I did so by having the stochastic Perceptron imagine itself with the input speci-
fied, taking the action specified, and rewarding itself for so doing [13]. This enabled
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me to replicate the positive effect of verbal instructions on my human subjects with
identical phenomena in artificial adaptive controllers, demonstrating that the effects
of coding, priming and training were all cybernetic phenomena in Wiener and Ashby’s
terms, a major thrust of my doctoral thesis which was very positivistic and behaviourist
in keeping with the ethos of experimental psychology at that time.

112.7 The Genesis of Fuzzy Control

Abe was at presentations I made on this research at IEE Control System Colloquia,
had a copy of my thesis, and in 1971, when he completed his doctoral research and
was appointed a lecturer at Queen Mary College, set his graduate student, Sedrak
Assillian, the task of replicating the results using a realistic engineering situation, the
control of a small steam engine, a task known to involve non-linearities and time-
varying behaviour that was not amenable to linear modelling and optimal control
approaches.

By that time I was Reader in the Department of Electrical Engineering Science,
Essex University, Technical Director of two companies I had founded in 1968, one
offering timeshared computer services, the other a minicomputer I had designed, and
executive editor of the International Journal of Man-Machine Studies (IJMMS) that
John Gedye and I founded in 1968. I was very busy and cannot recollect whether
I even knew of the research or met Sedrak before Abe asked me to be his doctoral
examiner in 1974.

Sedrak’s thesis [4] is a model of scholarship. He considers the relative merits
of Perceptron-like adaptive threshold logic elements (ATLE) and Bayesian learning
elements as adaptive controllers, analyses the impact of different input and output
encodings on their potential learning performance, and studies empirically both types
of learning controller, finding little difference between them. For his first study he
used human operators as targets for the learning controllers to emulate, and got poor
results which he attributes to erratic control strategies that were difficult to emulate,
possibly resulting from operator fatigue as the training took hours at a time over
several days.

For the second study he used a digital controller as the role model and again got
poor results which he attributes to the controller again being difficult to emulate
but this time because it was using analog inputs and making finer distinctions than
were available to the learning controller using quantized inputs. His third study was
retrospective in that he used the “fuzzy logic controller” described in the second
half of his thesis as a trainer to be emulated by his learning controllers and found
that the ATLE could emulate it perfectly indicating that the results of his first two
experiments were not defects of his learning algorithms.

The second half of the thesis investigated priming the learning system with a
linguistic description of a suitable control policy. He notes that I translated linguistic
hedges into precise inputs whereas Waterman translated them to a range of values,
and proposes to use fuzzy logic to do so automatically using Lotfi’s techniques for
representing conditional statements in linguistic variables described his 1973 paper,
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Fig. 112.4. Abe Mamdani and Sedrak Assilian’s steam engine, QMC, 1974

Outline of a new approach to the analysis of complex systems and decision processes
[51]. He defined 8 linguistic variables (positive big, etc) for his two sets of inputs
and outputs and represented them as fuzzy distributions over his quantized input and
output variables. He developed heuristic linguistic rules based on his own experience
for controlling the steam engine, tested them, identified where control was ineffective
and adjusted the rules (but not the fuzzy distributions) for better control.

One can summarize Sedrak’s achievement to be that of providing the human
trainer with a means to communicate linguistically with a control system and to
monitor the impact of specific instructions on the performance in order to improve it.
He remarks that I had also found in my experiments that it was not possible to choose
a good set of instructions in advance and that feedback as to the effect of different
instructions was necessary to develop the best set.

We both had emulated the way in which human trainers of perceptual-motor skills in
athletes provide verbal instruction and modify it in the light of its effect on the trainee.
Where Sedrak’s made a major advance was in using Lotfi’s algorithms to provide a
principled translation from linguistic rules to a control policy. It was also interesting
that his tuning of the linguistic statements resulted in a control policy that was very
effective and primed the controller so well that no further learning improved it.

112.8 Evolution of Fuzzy Control

My reaction to Sedrak’s thesis was three-fold: first, to request a paper for IJMMS as
I saw it as a major advance in linguistic interaction between people and computers;
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second, to see if fuzzy logic was necessary or whether I could replicate the results
with stochastic elements; third; to investigate fuzzy logic further. Abe and Sedrak
published An experiment in linguistic synthesis with a fuzzy logic controller [36] in
IJMMS in 1975 and it generated widespread interest.

I published Stochastic and fuzzy logics [15] in Electronics Letters in 1975 showing
that one could substitute probability logic for fuzzy logic in interpreting Sedrak’s
linguistic specification and obtain the same control policy. Ladislav and I subsumed
all forms of uncertainty in dynamical systems within the framework of possibilistic
automata, unifying fuzzy and probabilistic sequential systems within an algebraic
framework, and published The logic of automa [24] in Gerge Klir’s International
Journal of General Systems in 1975.

Abe took these results in his stride citing them in his papers [36] [35] and noting
that there were other ways of implementing linguistic heuristics that gave the same
results as fuzzy logic. Neither of us saw the details of the implementation as impor-
tant; it was the use of linguistic statements to communicate with a learning controller
and lead it to develop an effective policy that was the breakthrough. In 2009 he still
emphasized in his correspondence with Enric Trillas that “Fuzzy control should not
be seen as an experimental proof of the correctness of fuzzy logic.” [34]

Abe had interested many in industrial control world-wide in the potential applica-
tions of linguistically specified heuristics in designing controllers for difficult plants
that required human operators because conventional automatic control techniques
were inapplicable. The instructions for the human operators in Peray and Waddell’s
1972 book on The Rotary Cement Kiln [39] were so similar in form to those Sedrak
had used as to represent an independent confirmation of the industrial value of the
approach.

Abe and I organized a series of workshops on Discrete Systems and Fuzzy Rea-
soning [37], the first of which took place at Queen Mary College in January 1976
with a 300 page proceedings published by University of Essex. By 1982 the popular
science press also found the potential applications of fuzzy reasoning intriguing [31].

I had already published eight papers citing fuzzy sets in IJMMS prior to 1974. In
the first volume in 1969 I had solicited one from Bill Kilmer and Warren McCulloch
where Bill cites his paper on Biological applications of the theory of fuzzy sets and
fuzzy algorithms [32]. I asked Joe Goguen to submit his report on Concept represen-
tation in natural and artificial languages: Axioms, extensions and applications for
fuzzy sets [29] and published it in 1974. Gordon Pask [38] in 1973 cites three papers
by Lotfi on fuzzy algorithms in the context of Manna’s non-deterministic algorithms
and suggests that my work on Axioms for adaptive behavior [12] provides a bridge
between the two; my paper cites Lotfi heavily for his work on adaptivity but not his
later work on fuzzy sets—Gordon somehow made a link.

112.9 Visiting Lotfi at Berkeley

In 1975 I was appointed Professor of Computer Systems at Essex University and
Head of the Department of Electrical Engineering Science. I went to visit Ted
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Fig. 112.5. From Computing with a human Face, New Scientist, May 1982

Poppelbaum at Champaign, Illinois, and drove to Bloomington, Indiana, to present a
paper by Ladislav and myself on Possible automata [25] at the International Sympo-
sium on Multivalued Logic, where Ryszard Michalski suggested recasting the results
within his variable-valued logic framework.
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I went to Los Angles to visit Joe and Lotfi, gave a seminar at UCLA on my re-
search on the identification of stochastic systems, and stayed at Joe’s apartment. We
went into UCLA’s Moog Synthesizer Laboratory at 2am, and listened to the resulting
‘music’ while discussing whether my modelling process could be cast as a category-
theoretic adjunction in a a similar way to his unification of the identification problems
for linear systems and automata in his 1972 paper Realization is universal [28].

I visited Lotfi at Berkely and gave a presentation on the QMC controller studies. I
think this was the first time we had met but I knew his work on system theory and he
knew mine on stochastic computing, and we quickly engaged in discussions of fuzzy
sets, their relation to multi-valued logics, and their applications to heuristic control.
His office shelves were stacked with large plastic laundry baskets containing reprints
of papers from all over the world sent to him by those working on fuzzy sets and
their applications, and he gave me permission to look through them, make notes and
copy some.

I asked Lotfi for a paper for IJJMS and published A fuzzy-algorithmic approach to
the definition of complex or imprecise concepts [52] in 1976. I published notes on my
meeting with Lotfi, Research notes on fuzzy reasoning [17], in the 1976 workshop
proceedings.

112.10 Fuzzy Logic Bibliography, Survey and Synthesis

When I returned to the UK I wrote to over 200 authors requesting copies of papers
relating to fuzzy sets. Ladislav and I read them, classified them, developed an an-
notated bibliography, sent it to the authors for comment and published in 1976 as
The fuzzy decade: a bibliography of fuzzy systems and closely related topics [26]
comprising some 1,100 items.

In the same year I published a paper, Foundations of fuzzy reasoning [16], set-
ting fuzzy reasoning within the framework of the relevant literature on multi-valued
logics, noting that fuzzification of logic left the definition of implication open, and
suggesting a range of possible fuzzy implication functions. It was interesting as I
reviewed the current literature in writing this paper to find a number of these now
associated with my name and used in a wide range of applications.

I published my synthesis of probability and fuzzy logics as a Fuzzy and prob-
ability uncertainty logics [18] in Information and Control in 1978, suggesting that
there was a standard uncertainty logic (SUL) subsuming probability and fuzziness,
each of which could be derived from it by additional axioms: excluded middle and
truth functionality, respectively. However, Sedrak’s linguistic controller algorithm
could be derived directly within a SUL [19] and did not need commitment to either
additional axiom.

112.11 Monotype and SGSR

In 1978 I left Essex University, having been head-hunted by the UK National Enter-
prise Board to be Technical Director and Deputy Chief Executive of the Monotype
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Corporation, a nineteenth century British printing equipment company that was in fi-
nancial trouble but had the possibility of recovery through new computer technology.
Monotype had some 4,000 employees, 26 subsidiaries around the world and was on
the verge of bankruptcy; the job required a major time commitment and continuous
travel. In 1978 also George Klir invited me to become President of the Society for
General Systems Research which provided some balance between my industry and
academic lives.

While at Monotype I continued to edit IJMMS, and managed to fit in the ban-
quet speech at the First North American Fuzzy Information Processing Group Work-
shop at Utah State University, in May 1982, between my industry trips in North
America—later published as Precise past—fuzzy future [19]. After that trip I col-
lapsed on return to England and was harangued by a doctor who told me to buy some
medical textbooks and treat my body with the same care as I did my computers.

112.12 Moving to North America

My wife, Mildred Shaw, and I decided that it might be time to slow down and emi-
grated to Canada in 1982 with funding from the Canadian government for me to form
a research company developing handwriting recognition tablets, and a Professorship
in Computer Science at York University for Mildred.

In 1985 David Hill, by then at the University of Calgary, nominated me for the
Killam Research Chair there, and we remained at UofC for 15 years until retiring
out to the West coast of Vancouver Island at the end of 1999. At Calgary we became
heavily involved in knowledge acquisition for knowledge-based systems research,
collaborated with John Boose to launch a series of three annual knowledge acquisi-
tion workshops in Banff, Europe and South East Asia, and an associated journal and
book series. By that time fuzzy reasoning had become well-established and figured
in many of the KAW papers.

112.13 Reflections in Retirement

In the summer of 2004, after 36 years, I retired as editor of IJHCS (an updated title
for IJMMS, also incorporating the KA journal) and stopped travelling. My research
interests include: the role of knowledge in civilization, from the origins of homo
erectus to the present day and beyond [22]; knowledge acquisition, representation
and inference methods and tools [20] [27]; the nature of human rationality in ev-
eryday reasoning and the sciences [21]; and in minimalist, defeasible substructural
logics that are adequate to model much human reasoning, solve many AI problems,
and could have been developed by Aristotle within the framework of syllogistics.

For me the most significant issue in understanding human knowledge processes
over the millennia is how we coordinate our activities by communicating using con-
cepts that are open and ill-defined, often with no common agreement on their mean-
ing and usage. Even in close-knit scientific communities there can be commonly
used concepts that are interpreted in very different ways [44].
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Human civilization ‘muddles through’ [7] very effectively in a way that seems
foreign to logic and rationality. However, one can also view the phenomena as result-
ing from our intrinsic uncertainties about the world being accurately communicated
through our use of appropriately vague terms in our languages. We convey not only
the properties of the world but also our uncertainties about them; this is a rational
process of the social brain that we need to model in our theories and associated soft
computing tools.

112.14 Concluding Remarks

I will finish as I started by remarking on how privileged I have been to have friend-
ships and intellectual dialogue with so many remarkable people. Abe and I had a
lot of fun together and it was fascinating to see his ideas propagate into a control
industry that had achieved so much based on linear systems theory but had a sub-
stantial residue of processes that were not tractable within that framework. I have
often remarked that there is no such thing as ‘nonlinear systems theory’—it is the
heterogenous mess that is left when the linearization paradigm fails—Abe made a
significant dent in that mess.

I see papers attempting to reconstruct the basis of those achievements and will
echo what Abe has said—you need to go back to Sedrak’s thesis for such reconstruc-
tion; it is readily available on the web from QMC [4].

Lotfi and I continue to communicate although our paths no longer cross. It is
a pleasure to have this opportunity to say how much I respect and admire all he
has achieved from his seminal analyses of the notions of state and adaptivity to
his development of computational algorithms for computing with words that have
inspired so many theoretical innovations and industrial applications.

I have enjoyed re-reading much of the early literature and catching up with the
recent literature in writing this article, and look forward to seeing the other contri-
butions in this book. One privilege of having been involved in this community is the
insights it provides into how new constellations of knowledge form in our society.
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Dialogue on Scientific Theories and Fuzziness
–Fuzzy-Philosophical Investigations

Rudolf Seising

113.1 Preliminary Remark

The historiography of modern science comprises some famous dialogues, starting
with thirtysix Socratic dialogues ascribed to Plato. Then there is Galileo’s famous
Dialogo sopra i due massimi sistemi del mondo that is the model for the fictitious
debate on scientific theories and their relationships, that is presented in this chapter,
and this subject of Philosophical Investigations reminds the reader of the posthu-
mous edited book by Ludwig Wittgenstein.

Galileo Galilei (1564-1642) published his Dialogo – Dialogue Concerning the
Two Chief World Systems in 1632 [8]. It was the first book on science written in
Italian (instead of Latin) and therein the author compared the new world system
of Nicolaus Copernicus (1473-1643) with the traditional one of Claudius Ptolemy
(90-168).

Three protagonists debate on this subject, named Sagredo, Salviati, and Simplicio.
While Simplicio argues for the Ptolomaic world system that was also the view of
Aristotle, Salviati argues for the Copernican position, and Sagredo is an intelligent
disputant who starts with a neutral opinion. The debate takes place at the palace of
Sagredo at the Canale Grande in Venice (see Figure 113.1, left).

About three and a half centuries later the three savants appeared again in the book
Are Quanta Real? [11] published by the Swiss physicist Josef Maria Jauch (1914-
1974) and translated into English in 1989.1 In this book the three fight on scientific
knowledge and nature perception against the background of the controversy on the
foundations of quantum mechanics.

Today, almost half a century later, in the times of coexistent real and virtual
worlds, avatars for three scholars enter into a dialogue. These scholars are well-
known for their work in the 20th century philosophy of science, and their avatars
meet to debate the historical development of scientific theories and their fuzziness!
Their Latin names are: Carolus, Thomas and Ludovicus.2

1 The German-written original Die Wirklichkeit der Quanten appeared already in 1973, [10].
2 The word avatar means in Hinduism, a “manifestation” of a deity to earth. However, today

“avatar” denotes a computer-graphical representation in games or virtual worlds.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 813–829.
DOI: 10.1007/978-3-642-35644-5_113 © Springer-Verlag Berlin Heidelberg 2013
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(a) (b)

Fig. 113.1. (a): Frontpage of Galilei’s Dialogo with copper engraving by Stefano della Bella
(1610-1664); from left to right: Aristotle, Ptolemy and Copernicus; (b) The Campanile on the
campus of the University of California at Berkeley, CA

113.2 Introduction

Last year, Lotfi A. Zadeh gave me the permission to search, scan and photocopy the
materials in his office at the University of California at Berkeley and in his home
to continue my historical research on the genesis and development of the theory of
Fuzzy Sets and Systems. One late evening, when I came home to the appartment
that I have rented for my stay in Berkeley, I was terribly tired from work and I laid
down on the sofa. On TV there was an episode of the series Star Trek – The Next
Generation. I remember watching the English actor Patrick Stewart as the starship
Enterprise’s Captain Jean-Luc Picard. I know exactly that I gave some thought to the
similarity of Steward and Lotfi Zadeh – may be because they both have bold heads. It
was one of the Star Trek sequels where the actors used the so-called “holodeck”. Star
Trek’s holodeck is a closed room that can replicate a wide variety of environments
in which various people, objects, and places of past, present and future time can be
simulated as a virtual reality. Usually the protagonists of the series use the holodeck
technology for their research and training, but also for recreation and entertaining.
The crew members like to interact with the program and its characters. When I was
young, I was very interested in the episodes where the Star Trek actors met avatars
of historical notabilities. However, as all too often, this evening I fell asleep and the
following dialogue happened in my dream.
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113.3 Dialogue

Carolus: Why are we here?

Ludovicus: Damned! – We agreed on not discussing such metaphysical questions:
Why are we here? – What is there? – What is it like? – What is the meaning of life?
– Why is there something? – Why isn’t there nothing? – Does God exist? – It was
my deep hope that we conform with never debating senseless questions! – Whereof
one cannot speak, thereof one must be silent.3

Carolus: Calm down! You are too sensitive to the sound of my words. I thought that
after the many years you passed away you would not behave that Viennese! I just
wanted to know: What place is this?

Thomas: This is the campus of Berkeley and we are sitting in front of the campanile,
also called Sather Tower, UC Berkeley’s most recognizable symbol. It’s a bell and
clock tower, completed in 1914. We are also close to the buildings of the philosophy
department and the history department. Here, I became professor of the history of
science in 1961. However, before that I studied in Harvard and later I got a profes-
sorship of philosophy and history of science in Princeton. Did I ever told you that I
was teaching in both of the departments ...

Ludovicus: Yes Thomas, you told us this a good many times! – Carolus, for a mo-
ment I was thinking that we have arrived in Venice.

Carolus: In Venice is the Campanile di San Marco that is much older and this one
here has resemblance. Also when I was in England I saw the Joseph Chamberlain
Memorial Clock Tower at the University of Birmingham, and there is also the Torre
del Mangia in Siena, Italy. ... You’d think that all unversity campus have a tower but
if you find one without tower, this hypothesis would be falsified ....

Ludovicus: Stop it, Carolus! You madden me. I was already looking for a poker! It
is not only the problem to know whether there is a tower or not. It is also a problem
to decide what is a tower! – There exist so many buildings that could be considered
as towers in and we can imagine so many more towers ... I mean the Tower of Babel,
the Tower of London, church spires, watch towers, siege towers, television towers,
the Eiffel Tower, the Tower(s) of Hanoi and so on. What is common to them all?
Don’t say: “There must be something common, or they would not be called ‘towers’
” but look and see whether there is anything common to all. For if you look at them
you will not see something that is common to all, but similarities, relationships, and
a whole series of them at that. To repeat: don’t think, but look! Look for example
at look-outs, with their multifarious relationships. Now pass to church spires; here
you find many correspondences with the first group, but many common features drop

3 This is a quotation by Wittgenstein; it is the last sentence in his Tractatus [16].
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out, and others appear. When we pass next to castle-towers, much that is common
is retained, but much is lost. Are they all “stonelike”? Compare television towers
with siege towers. Or is there always a viewing balcony, or a restaurant deck? Think
of the Tower of Pisa. In watch towers there is a ladder; but for television towers
this feature has disappeared. Look at the wooden siege towers and a water tower
made from concrete or stone. Think now of mine head towers; here is the element
of height, but how many other characteristic features have disappeared! sometimes
similarities of detail. And we can go through the many, many other groups of towers
in the same way; can see how similarities crop up and disappear. And the result of
this examination is: we see a complicated network of similarities overlapping and
crisscrossing: sometimes overall similarities.4

Carolus: How times flies, Ludovicus! I remember the days of neo-positivistic ideas
in Vienna, in Berlin and later in Cambridge and Chicago. For me it is still one of
the most remarkable developments in history of philosophy that you turned diamet-
rically opposed your views on language. Nowadays it is obvious for us that not all
phenomena could be expressed in terms of language. By the way, this was the reason
for the break down of the Empiricism à la Carnap. Instead of analyis of the language
of science philosophers turned to the analysis of its theories and methodologies.

Ludovicus: Carolus, even your Logic of Scientific Discovery was published already
in 1934 in German it became not influential before the English edition appeared in
1959.5 Because I passed away in 1951, I may be missed some information. What
was the big success of your book?

Carolus: My work is one of the milestones in History of Philosophy of Science and
I became old enough to enjoy public famousness. The Logic of Scientific Discovery
heralded a shift in differentiating between science and non-science, metaphysics or
pseudo-science. In the “pre-Popper-times” philosophers tried to fix this demarcation
in scientific language ...

Thomas: Carolus, I hate it when you maintain this with such an arrogant manner.
But in the merits you are right. However, Ludovicus’ Tractatus played the role of a
Bible for this view on philosophy of science, that was called “Logical Empiricism”
or “Logical Positivism” or “Neopositivism” that was significantly involved by the
members of the Vienna Circle ...

Ludovicus: ... but that is a presentation of my previous philosophical view on lan-
guage, logic and the world! As you mentioned already, I thought extremely dif-
ferent when I came back to philosophy in the 1930s. Today philosophers distin-
guish sharply between Wittgenstein I, the author of the Tractatus and Wittgenstein II,

4 As the reader will notice, this is a slightly variation of parts of §66 in Wittgenstein’s [17].
5 See: [15]. Popper published the German book in 1934. He rewrote it in English, repub-

lished in 1959.
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the author of the Philosophical Investigations, by the way, the latter was published
in 1953, after my death, and I would have never published it this way! But that ’s life
and that’s death!

Carolus: In my metatheory named “Critical Rationalism” the decision of what is
science and what is not science is related to theories and methods in these fields and
not in the precision of the terms of language. I created this alternative concept to
that of the Vienna Circle and the other Logical Empiricists who tried to analyze the
constitution or the structure of scientific theories by using modern logic, particularly
Rudolf Carnap wrote in 1928 The Logical Structure of the World.6 For Carnap and
many others theories are sets of propositions and these propositions are built from
data via induction.

I say: On the contrary! For Critical Rationalists scientific theories are not built
from data by induction! There is no logical way from data to theory! Theories are
hypotheses or conjectures and scientists test these hypotheses in experiments with
intend to refute them. Even a great number of positive test results can not confirm a
scientific theory, but if there is only one outcome that is negative, this one counterex-
ample shows that the theory is falsified. Look at this squirrel!

Carolus points to one of the many squirrels on the campus (see Figure 113.2,left
side).

There are so many squirrels on this campus and they all look different, they all live
on nuts and similar things but I know that some of them also consume meat and per-
haps there are even “flying squirrels”. Well, that is a nice example for a little theory
or hypothesis. I say: There is no flying squirrel. It is not possibel to verify this theory
because to this end we would have to investigate all existing squirrels and we have
to check wether they can fly or not, and may be they can but they don’t do during
the time that we observe them. However, we can try to falsify this hypothesis and
if we find one solely flying squirrel, then the hypothesis is refuted. To cut a long
story short: In Critical Rationalism the falsifiability is the criterion of demarcation
between what is scientific and what is not.

Thomas: There is another reason why Logical Empirism has nowadays very few
supporters. It seems very clear that we can not reduce all our knowledge to sensual
data. Therefore, we need so-called theoretical elements in addition to the empirical
ones. These additional elements are being understood only in the context of a theory.
They are more abstract, they are more distant from our perceptions than observa-
tional terms. To factor these elements in Logical Empiricism Carnap and Carl G.
Hempel introduced in the 1950s the so-called “double language model”.7 Whereas
observational and therefore non-theoretical terms are elements of the observation
language, theoretical terms are elements of the theoretical language.

6 Carnap published [4] in German in 1928, the English translation appeared in 1967.
7 See [6, 9].
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Ludovicus: In former times we would have named this metaphysics!

Thomas: Later, also Willard van Orman Quine – we both were Fellows at Harvard
– criticized the empiricist differentiation between “analytical” and “synthetical”. In
short, the Logical Empiricism collapsed. If you want to name this metaphysics, then
I say: Without metaphysics no knowledge is possible!

Ludovicus: Let’s take Carolus’ example of “flying squirrels”: They exist! “Flying
squirrels, scientifically known as Pteromyini or Petauristini, are a tribe of 44 species
of squirrels (family Sciuridae).” Of course, the name is a theoretical term because
Wikipedia says: “Flying squirrels are not capable of powered flight like birds or bats;
instead, they glide between trees. They are capable of obtaining lift within the course
of these flights, with flights recorded to 90 meters (295 ft).”8 Roughly spoken, we
can consider the term “flying” as an element of the theoretical language of the theory
of squirrels and its meaning is not our usual meaning of “flying”.

However, in Biology these flying squirrels belong to the family of squirrels, and
there are “tree squirrels, ground squirrels, chipmunks, marmots (including wood-
chucks), flying squirrels, and prairie dogs.” 9 and I can think of no better expression
to characterize these similarities than “family resemblances”; for the various resem-
blances between members of a family: build, features, colour of eyes, gait, tempera-
ment, etc. etc. overlap and crisscross in the same way. And I shall say: “squirrels”
form a family.10

(a) (b)

Fig. 113.2. (a): Squirrel on the Berkeley campus; (b) Structures of a theory T in the metas-
tructuralist view of scientific theories

8 See: http://en.wikipedia.org/wiki/Flying_squirrel
9 See for more details http://en.wikipedia.org/wiki/Squirrel

10 As the reader will notice, this is a slightly variation of parts of §67 in Wittgenstein’s [17].

http://en.wikipedia.org/wiki/Flying_squirrel
http://en.wikipedia.org/wiki/Squirrel
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Thomas: I am so sorry that we never met in lifetime, Ludovicus. Your philosophy
of language games and familiy resemblance is exciting and I wonder why we don’t
try to combine it with my ideas on The Structure of Scientific Revolutions, that I
published here at Berkeley, 50 years ago.11

In this book I critisized Carolus’ view on theory dynamics in science. As I could
show in many cases of my historical research work, no replacement of a theory by
another happened because of falsification.12 In my view theory change in science is
not a rational process and therefore we need assistance from sociology and psychol-
ogy to explain the paths of science through history.

My historical research convinced me that there were periods of “prescience” that
lack any theory or paradigm, then there were periods of “normal science” with
paradigm monopole and finally there were times of crisis that triggered “scientific
revolutions”. Most scientists in most periods have been “normal scientists”. They
are involved with puzzle-solving. Only if there were many anomalies in opposition
to the current paradigm a crisis appeared and a scientific revolution could happen.
However, we have discussed this very often in life, Carolus. Do you remember the
conference organized by Imre Lakatos at Bedford College in London, 1965?13

Carolus: I conceded already in my lifetime: I did not concentrate my attention on
the periods of normal sciences. You can say that this was a failure! However, my
interests was the change of theories in the field of science. Yes, normal science exists
and there are normal scientists but this is the bad thing! To my mind scientists have
to critically analyze their theories at any time and therefore I did not differentiate
various periods. To make this clear: I still think that it is a scandalon that there is
normal science! In the early times, the adventure of science startet with the method
of trial and error and, as I said in my Logic of Scientific Discovery, from then until
today, the methodology of scientific progress is falsifiability.

To say a word to your “paradigm shifts”: I still think that the idea on rival
paradigms in times of a scientific crisis has an irrational element.

Thomas: In this point I agree with you, Carolus, it was straightforward my intention
to emphasize that these processes can not be explained in terms of pure rationality!
In the way I see it, a paradigm shift can be activated by sociological, economical,
political or other reasons and there is no logical determinism in theory dynamics.
I have to emphasize that the theory in a new paradigm may use concepts that are
totaly different from the concept of the former theory in the old paradigm. Even if
they have got the same or a similar name, the new concepts may have a very different
meaning. It is also not necessary that a concept in the new paradigm has an analogon
in the old paradigm!

11 See: [13]. Kuhn exemplified later that the idea to this book went back to 1947. In that
year as a graduate student at Harvard University he was asked to teach a science class for
humanities undergraduates on historical case studies.

12 See for these examples Kuhn’s book [13, 12].
13 For details see: [7].
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Carolus: This means that if two paradigms are incommensurable then we have no
chance to compare them directly. Do you really want to join your irrational system
with that “Wittgenstein II language philosophy” that is not strong rational as well?

Thomas: Yes, I think that it could be a very fruitful combination in philosophy and
history of science!

Ludovicus: I appreciate very much this suggestion to step forward in our discussion
instead of backwards movements! May be you can explain what do you have in mind
by this “combination”?

Thomas: Shortly after your death a second trend in obtaining systematic rational re-
constructions of empirical theories was established, the so-called Suppes approach ...

Carolus: Patrick Suppes is a philosopher and statistician living in Stanford, very
close to Berkeley.

Thomas: That’s him. – Well, to get a rational reconstruction of the theory in question
the first step consists of an axiomatization that seeks to determine the mathematical
structure of the theory. Now, the difference between the old view – we call it Car-
nap approach – and the new Suppes approach can be found in the manner in which
this task is performed. As you can imagine, Carnap was firmly convinced that only
formal languages can provide suitable tools to achieve the desired precision. Con-
sequently, the Carnap approach claims that a theory has to be axiomatized within a
formal language.

Ludovicus: That’s right! – Could you please explain any more about this other view,
the Suppes approach?

Thomas: In this approach one is able to axiomatize physical theories in a precise
way without recourse to formal languages.

Ludovicus: Eh? – I see, this turns toward my late philosophy ...

Thomas: No rush, Ludovicus! The Suppes approach – later the fully developed
approach was called “Metatheoretical Structuralims” – uses informal logic and set
theory. Already in the 1950s Suppes proposed to include the axiomatization of em-
pirical theories of science in the metamathematical program of the French group
“Bourbaki” 14 and in the 1970s the physicist Joseph D. Sneed developed informal
semantics meant to consider not only mathematical aspects, but also application

14 “Nicolas Bourbaki” is the pseudonym of a group of mathematicians in France in the 20th-
century. Since 1935 the group presented their mathematical research work in a series of
volumes. It was the aim of the group to establish a founding of all mathematics on set
theory. [3]
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subjects of scientific theories in this framework, based on this method15 Sneed pre-
sented this view as stating that all empirical claims of physical theories have the form
“x is an S” where “is an S” is a set-theoretical predicate. Every physical system that
fulfills this predicate is called a model of the theory. Let’s take again our example
of towers: “x is a tower ” means that every thing that fulfills the predicate “tower”
is a model of our little tower theory. Thus, there is the set M(Towers) of all tower
models!

Carolus: What’s the use of it?

Ludovicus: I think I got the picture! The Carnap approach and also the other ap-
proaches of Logical Empiricism regarded a theory as being a system of logical propo-
sitions i.e. linguistic formations. In contrast, this metastructuralist view of Sneed
considers a theory as an object that comprises mathematical structures.

Thomas: That’s it, Ludovicus. To make it clear, let’s get back to our little tower
example! Wikipedia explains: “A tower is a tall [architectural] structure, usually
taller than it is wide, often by a significant margin.”16

Now, we follow the framework of the metastructuralist approach to reconstruct a
theory of towers – however, this will be a very simple theory and we name it “Wiki-
Theory of Towers”, WTT for short. First we have a set of all architectural structures
x that have a significant margin. We call this set Mp(WT T ) the potential models of
our “Wiki-Theory of Towers” WT T .

We recall the condition in Wikipedia’s sentence: the architectural structure has to
be taller that it is wide to be a tower. We can phrase this condition as an axiom of
our WT T : For this we have to indicate two magnitudes: the height H(x) and width
W (x). To formulate the W TT ’s axiom we say H(x)>>W (x).

Now, all potential models of WT T (all x ∈ Mp(W TT )) which in addition fulfill
this axiom are models of WT T . Therefore, they build the set M(W T T )

Carolus: That’s a nice set-theoretical finger exercise but can this approach picture
all wherewithal to present modern science studies? Can it model the relationships
between scientific theories, eg. specialization, generalization, reduction, and of ut-
most importance, the change and replacement of theories, the dynamics that was our
subject in the last half hour?

Thomas: This can be done by set theory. Metastructuralists use thereto the concepts
of set theoretical relations. – A specialization of a theory is represented by a more
special axiom. That’s food for thought: From our Wikipedia theory of towers, WT T ,
we could obtain a more special theory of towers by a special axiom, e.g. the theory

15 [14].
16 Not to be confused with the structures of the metatheoretical structuralism we completed

Wikipedia’s definition by the adjective “architectural”; see
http://en.wikipedia.org/wiki/Tower

http://en.wikipedia.org/wiki/Tower
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of wooden towers, the theory of university towers or the theory of towers that are
two times hight as wide. Hence, we obtain a specialization of a theory by fulfillment
of this additional axiom. In my last example that would be H(x) = 2×W(x).

Therefore, the set of models of the more special theory, let’s name it WT TH=2×W ,
are a subset of the models of the general theory WTT , i.e. we have the set rela-
tion M(WT TH=2×W )⊆M(W T T ) for this specialization relationship between the two
theories.

Carolus: I wonder – and who’d have thunk that I would take the part of an Empirist
– where is the connection to empirical phenomena in this view? Where are the sci-
entists observation terms?

Thomas: You are right, Carolus, besides the layer of theoretical structures there
has to be another one that comprises the empirical data and phenomena. Though
scientists establish laws and they introduce empirical theories that say that the laws
hold for the data, they also observe real systems or phenomena and they measure
data. That is to say: To study systems or phenomena in reality, scientists connect
them with a theoretical structure. To this end they give the real systems a structure
themselves. Woflgang Balzer, one of the today’s metastructuralists wrote in this
regard: “How to do that is not clear! — This is one of the central problems in the
philosophy of science. [...] The problem is that we create a connection between real
systems and theoretical structures. We assume that this can be done. Without this
assumption it is senseless to talk about empirical science.”17

In Metastructuralism the connection between non-theoretical and theoretical struc-
tures of a theory T , i.e. the potential models in Mp(T ) and the models in M(T ) are
represented by another set theoretical relation, the so-called Theoretization. What is
important is that in this view theoretical terms are theoretical relative to a theory T ,
i.e. a concept is not theoretical at all but it is T -theoretical to the respective theory T .

Let me try to explain this in terms of our example, the theory of towers. Let’s
say hight H(x) and width W (x) are theoretical concepts relative to our theory WT T .
That means that hight H(x) and width have got their meaning by the theory WT T ,
they are WTT -theoretical concepts.

If we remove all theoretical terms of a theory T in its potential models Mp(T ), then
we get structures in a T-non-theoretical layer; we call these structures the “partial po-
tential models” of theory T and we name their set Mpp(T ). In our example, without
the WTT -theoretical concepts of hight H(x) and width W (x) we obtain Mpp(WT T ).
These are obviously all architectural buildings.

Finally, every empirical theory T has a class I of intended application systems
that is a subset of all partial potential models in Mpp(T ). E.g., for the tower example
Wikipedia says that all “architectural structures that have a significant margin”. I
try to draw the whole metastructuralist conceptualization on the ground. The sets
Mp(T ) and M(T ) and the sets Mpp(T ) and I are located in different “layers”:

17 The sentence that is quoted here is in the German book [1], the translation into English is
by the author.
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Thomas draws Figure 113.3 on the ground.

Fig. 113.3. Structures of the intended application systems of theory T , its theoretical structures
and of their Theoretization T ′

Mpp(T ) and I are structures in the layer of empirical concepts, whereas Mp(T ) and
M(T ) are structures in a theoretical layer of this schema. And with a spotted lines
I indicate the connection between the two layers, the “Theoretization” between the
theories T and T ′. Indeed, this is a set-theoretical relation for it holds: T ′ is a theo-
retization of T if and only if Mpp(T ′)⊆ M(T ).

Carolus: Now, I am very interested in your answer to my next question: Have these
metastructuralists also set-theoretical tools to model the change of theories, say, from
T old to T new, as the change from Ptolemy’s geocentric universe to Copernicus’ helio-
centric model or from Newtonian Mechanics to Einstein’s Special Relativity Theory?
Can they express these scientific revolutions by set theory?

Thomas: Well, Carolus, they try to do this. They defined an intertheoretical relation
that is called “reduction” to reconstruct these kind of theory change. Let me see
whether I can sketch this as well!

Thomas draws Figure 113.4 on the ground.

Thomas: If you have two theories, say Told and Tnew, they say that Told reduces Tnew

if the following conditions are fulfilled:
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1. ρ ⊆ Mp(Told)×Mp(Tnew)
2. For all x and x′: if < x,x′ >∈ ρ and x′ ∈ M(Tnew), then x′ ∈ M(Told).

Ludovicus: Stop! Please stop! This discussion became to mathematical to my mind!
– Thomas, it was your intention to find a combination of your ideas in history of sci-
ence and my philosophical system of family resemblances. But what you discussed
in the last minutes and what you showed in your drawings has nothing to do with
my philosophy. I doubt that this kind of set theoretical relation can represent the-
ory changes like scientific revolutions. As you both agreed some time ago, these
scientific revolutions that you, Carolus, called “theory replacement” and that you,
Thomas, explained as a paradigm shift, are not pure rational changes. Between the
old and the new theory there is no one-to-one-relation, therefore we have to respect
some unsharpness in these transformations that can not be represented by hard math!

Fig. 113.4. The relation of reduction between theories T old and T new

Thomas: You are right, Ludovicus, and I wanted to add that to represent changings
of theories or paradigms instead of this reduction relation very often a so-called ap-
proximative reduction is used.

Carolus: Oh, I see. With this “approximative reduction” they can try to reconstruct
paradigm shifts as the one from Newtonian Mechanics to Quantum Mechanics, or to
the Special Relativity Theory, isn’t it? How does this look like?

Thomas: Oh, there are different proposals. Some metastructuralists use the concept
of converging series of models of a theory, others favored to establish topological
spaces of models ...

Ludovicus: Stop it, please! – Again I have to say that this sounds to high-
mathematically in my mind! I doubt that all these approaches that base on our pre-
cise system of mathematics will result in a success of our philosophical problems. I
am looking for a tool that is appropriate to model language games!
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At this point in my dream I got in the middle of the dialogue. Hitherto I was just a
kind of a neutral bystander but now I could not keep still. – As is usually the case
the holodeck would not run a program without interaction of the user. Interestingly,
in that dream I borrowed some phrases from Lotfi Zadeh.

I: Please accept my apologies. Excuse my interrupting. I overheared you interesting
debate. 50 years ago, in the year of the publication of your Structure of Scientific Rev-
olutions, Thomas, a professor of Electrical Engineerig at this university in Berkeley
wrote already on “the gap that reflects the fundamental inadequacy of the conven-
tional mathematics — the mathematics of precisely-defined points, functions, sets,
probability measures, etc. -– for coping with the analysis of biological systems.” In
that paper he said that “we need a radically different kind of mathematics, the mathe-
matics of fuzzy or cloudy quantities which are not describable in terms of probability
distributions.”18 Three years later he established a new mathematical theory19. He
introduced “Fuzzy Sets” — as classes or sets that ‘“are not classes or sets in the usual
sense of these terms, since they do not dichotomize all objects into those that belong
to the class and those that do not”. In fuzzy sets ‘“there may be a continuous infinity
of grades of membership, with the grade of membership of an object x in a fuzzy
set A represented by a number fA(x) in the interval [0,1].”20. Please do not hesitate
to disagree with me: I think that Fuzzy Sets are a suitable formalism to solve your
problems.

Thomas: Who is this scientist at this university? It is a pity that I never met him!

I: The name is Zadeh, Lotfi Asker Zadeh, better known as Lotfi A. Zadeh! His of-
fice on this campus is very close in Soda Hall. Having graduated with a Bachelor
of Science in electrical engineering from the University of Tehran in 1942 and af-
ter working for a year as a technical contractor with the United States army forces
in Iran, Zadeh came to the US in 1944. He applied to the Massachusetts Institute
of Technology (MIT) in Cambridge, Massachusetts, and was accepted to continue
his studies. For the thesis he completed with Robert M. Fano, he was awarded the
degree of Master of Science in 1946. Then, he did move to New York, where he
obtained a position at Columbia University as an instructor. In 1959 he had become
a professor at Berkeley and 1963/64 he was chairman of the department of electri-
cal engineering. Prior to the publication of his first paper on fuzzy sets in 1965,
he was concerned with systems analysis, decision analysis and information systems.
For his scientific work he received among many others the IEEE Richard W. Ham-
ming Medal, the IEEE Medal of Honor, the ASME Rufus Oldenburger Medal, the
B. Bolzano Medal, the Kampe de Feriet Medal, the Grigore Moisil Prize, the Honda
Prize, the Okawa Prize, the IEEE Millennium Medal, the ACM 2001 Allen Newell

18 The reader will notice that this is a quotation of the paragraph in that Lotfi A. Zadeh used
the word “fuzzy”in a journal article for the first time, see: [18, p. 857].

19 In 1965 Zadeh’s “Fuzzy Sets” appeared: [19].
20 The reader will notice that these are quotations from [19]
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Award, the Nicolaus Copernicus Medal, the Franklin Institute Medal, the High State
Award ‘Friendship Order’, and 25 honorary doctorates.

Carolus: Well, that is very, very impressive! I do not know many names of that
highly honored scientists, but concerning his new mathematics, this “Fuzzy Set The-
ory”: the fuzzy set’s “membership values between 0 and 1 sound very much to be
probabilities, that is nothing news!

I: Oh, scientists in the Fuzzy community had to listen to that very often in the last
50 years, but Fuzzy Sets and probabilities are totally different! The theory represents
linguistic uncertainties, you can use my fuzzy sets to label linguistic terms that are
values of linguistic variables. If you would say, e.g., that this squirrel is brown or
that this tower is high, there is some impreciseness in these words ....

Ludovicus: That’s what I want to stress! Language is not precise!

I: Therefore you can use fuzzy sets to compute with these imprecise magnitudes and
in Fuzzy Logic we established a tool for approximate reasoning. In the 1970s Abe
Mamdani and Sedrak Asilian used Zadeh’s concept of Fuzzy Algorithms to write a
small program that was able to control a steam engine and today there are so many
fuzzy application systems...

Carolus: Well, that sounds to be an example for the pragmatic way of American
engineering and I can accept that engineers are comfortable with “good enough so-
lutions”, but we are philosophers and our reasoning has to be exact.

Ludovicus: Come on, Carolus, your question reminds me the Gottlob Frege’s opin-
ion! In my view it’s obvious that we need Fuzzy Logic and Approximate Reasoning
in epistemology and philosophy of science! In our example of towers: One might say
that the concept “tower” is a concept with blurred edges. “But is a blurred concept
a concept at all?” Is an indistinct photograph [of a tower] a picture of a tower at
all? Is it even always an advantage to replace an indistinct picture by a sharp one?
Isn’t the indistinct one often exactly what we need? Frege compares a concept to an
area and says that an area with vague boundaries cannot be called an area at all.
This presumably means that we cannot do anything with it. But is it senseless to say:
“Stand roughly there?”21

Carolus: So, Thomas, what do you have in mind? How would you use this theory
of fuzzy sets in philosophy and history of science?

Thomas: Why did nobody use fuzzy sets and fuzzy relations instead of usual sets
and set relations to reconstruct all the structures in the elaborated Suppes approach?
If I understand this man correctly then this “extension priciple” was very successful

21 As the reader will notice, this is a slightly variation of parts of §71 in Wittgenstein’s [17].
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in engineering in the last decades in which there was a literally “Fuzzy Boom” in
the 1980s: after the steam engines they used fuzzy control in cameras, washing ma-
chines, rice cookers, ...

Ludovicus: There! – Why did nobody try to establish a “Fuzzification” of this
Metastructuralism in philosophy and history of science?

I: Oh, I published some papers in conference proceedings and books to start this kind
of research program a few years ago and I called it “Fuzzy Structuralism”. With this
view on philosophy of science I tried to find an approach to bridge the gap between
science and technology on the one hand and humanities and social sciences on the
other hand!

Fig. 113.5. The holodeck-avatars debating at the Berkely campus

Ludovicus: We will get this out! – Carolus, because you said that our reasoning has
to be exact, I want to direct your attention once more to Wikipedia’s explanation:
“A tower is a tall [architectural] structure, usually taller than it is wide, often by a
significant margin.” There are two words that are anything but exact, these words are
“usually” and “often”. I would say that all so-called “definitions”, even in science
include such imprecise concepts to a greater or lesser extent because they use lin-
guistic terms. I think that Fuzzy Logic is suitable to represent the kind of reasoning
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we need in philosophy. As I wrote already 50 years ago: The results of philosophy
are the uncovering of one or another piece of plain nonsense and bumps that the
understanding has got by running its head up against the limits of language.22.

Carolus: The sands are running out. We have to go.

Normally, Star Trek’s holodeck-stories close when the user of the holodeck program
says ‘Computer, end program!” but instead of that, I suddenly woke up very con-
fused.
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Fuzziness, Probability, Uncertainty
and the Foundations of Knowledge

Paul J. Werbos

114.1 Introduction

This paper will describe how fuzzy logic, neural networks and other fundamental
approaches to the nature of knowledge and epistemology fit together, both at a philo-
sophical level and at the level of practical technology. The views herein are my own,
but the bulk of the credit really belongs to Lotfi Zadeh and to the unusual, rich dia-
logue he has created through the Berkeley Initiative for Soft Computing (BISC). Only
this very special kind of dialogue can really bring out the many cross-connections
which exist in these complex fields of research. Lotfi has done an amazing job of
pushing the community just hard enough, through clear but tricky questions, to get
ever deeper into a wide range of issues related to fuzzy logic and to soft computing
in general. As a role model, he can be somewhat intimidating at times; how many
of us could really keep up such an incredible pace past the age of 90, having such a
huge impact on a world culture which is often so resistant to new ways of thinking?
Like his ideas, his personal example is well worth remembering, no matter how high
we build on these foundations.

In the discussions of the BISC list, we can see two major aspects to the study of
fuzzy logic. The first major aspect is the use of fuzzy logic as a practical tool in
engineering and information technology. Section 114.2 will discuss how fuzzy logic
has become more and more popular in engineering in recent years. Section 114.3
will discuss the connection between fuzzy logic and neural networks, and how they
can be upgraded to overcome the limitations of today’s use of those technologies, for
applications which demand the highest possible levels of performance. In discussing
methods for applications like prediction and data mining, it will show how there is
a kind of ladder of intelligent systems, of ever higher capability. The second main
aspect is more a matter of logic and philosophy. The practical success of fuzzy logic
has raised more and more questions about its greater significance. How does fuzzi-
ness relate to larger questions about probability, uncertainty, artificial intelligence,
and the ways that we humans choose to do our own reasoning? Actually, our practi-
cal experience in making things work (sections 114.2 and 114.3) has a lot to say of
importance to these basic questions. Section 114.4 will briefly state my views about
fuzzy logic and logic in the normal situation, the classical universe which most us
think we are living in. Section 114.5 will briefly discuss how that picture is changed
by modern physics, from quantum theory to the future.

R. Seising et al. (Eds.): On Fuzziness: Volume 2, STUDFUZZ 299, pp. 831–856.
DOI: 10.1007/978-3-642-35644-5_114 © Springer-Verlag Berlin Heidelberg 2013
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114.2 Fuzzy Logic in Engineering: Meat and Potatoes Today

Fuzzy logic started a huge spurt of growth doe to Japan’s Fifth Generation Computer
System (FGCS) program of the 1980’s.

Leaders of Japan have always understood that machine intelligence is a crucial
goal for computer technology, and that hardware without the best software does not
provide the most useful computing capability. Thus FGCS contained a major com-
ponent of artificial intelligence (AI). In those days, the people who led (and still lead)
the field of mainstream AI had given up on brain-like learning systems, and adopted a
philosophy of “all words, all following instructions.” More precisely, expert systems
based on binary logic were seen as the route to higher order machine intelligence.
This normally meant going to experts, to ask them for the “if then” rules needed to
perform some task. The “intelligent system” would simply apply these hard-coded
rules to decide what to do, in any application calling for an action or an answer in
words.

As a matter of wise policy, Japan decided not to put 100% of their AI resources
into just one paradigm. Thus they set aside about 10% for work which would still
use if-then rules, but would use fuzzy logic to implement the rules.

For example, consider the rule:

“If the boiler is too hot and pressure is rising, turn it off.”

In traditional AI, “boiler is too hot” would be translated into a logical proposition
which is always either “true” or false;” in other words, a rule is provided which turns
the phrase “boiler is too hot” into a function of available information, a function
which is always zero or one. If they are decent engineers, they also pick a critical
level for the rate of increase of pressure, and get a function which is one or zero.
In the resulting control system, there is a critical threshold for the temperature and
for the rate of increase of pressure; as soon as that threshold is reached, the boiler is
turned off quite abruptly.

In the fuzzy logic version of the same rule, we would simply develop more contin-
uous functions to represent the two input conditions, and we would perhaps consider
dialing down the boiler gradually (if it is the kind of boiler which allows that). We
can apply the same general approach, but without the very abrupt transitions, which
really have no basis in the physics of the task anyway.

The Japanese reported that the traditional expert systems led to very little real
benefit, but the fuzzy logic projects succeeded and supported many practical appli-
cations. Much of the industry in Japan then started to produce products using fuzzy
logic for appliances and many other areas. The same simple comparison between
binary logic and fuzzy logic applies to many engineering applications today, where
rules from experts can be useful but binary functions do not fit as well to the physical
reality, which involves many continuous variables. Of course, it also helps that fuzzy
logic is very easy to use in this way.

From the viewpoint of AI people, already committed to using rules, the benefit of
fuzzy logic is that it lets us develop rules which fit physical plants better than binary
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rules do. From the viewpoint of control engineering, which already uses continuous
variables, the main benefit is that fuzzy logic provides an understandable interface to
the human. It makes it easier for the human to discuss and create controllers, and to
explain the controllers in words to other humans.

An interesting example may help shed light on this second benefit, and on some
common mistakes in science. Legally, I cannot name names, but I can tell the story
in general terms.

One year, two proposals came to NSF (National Science Foundation), from dif-
ferent people. One proposed to develop a fuzzy logic controller for a certain kind of
system. There would be work to improve performance and work to prove stability
and so on. Another proposal wanted to develop a “soft switching gain scheduling
controller” for the same task, with the same methods used to analyze stability and
performance. In fact, almost all of the equations in the two proposals were exactly
the same. Both went to similar types of reviewers.

In the end, both proposals received a mix of something like “very good” and
“poor,” about 50-50. But the kinds of reviewers who rated one as “poor” would rate
the other as “very good,” and vice-versa. The same work, the same mathematics –
but human beings are distracted by words, and do not always penetrate to what is
really going on, even when they are very proud of their mathematical skills.

In my case, I would have given a slight edge to the fuzzy proposal, because IN
ADDITION to the mathematics, it also would provide a human interface.

Because the key advantage of fuzzy logic here is the natural “white box” interface
to human beings, research on that interface with human beings could be important in
telling us how to make the best use of that advantage, and how to make the best use
of fuzzy logic and related approaches in general.

114.3 More Advanced Possibilities for Fuzzy Logic in
Engineering

In principle, fuzzy rules could be applied to any task in the domains of decision,
control and management or in prediction, classification, data mining and state esti-
mation. However, in most of those applications, feedforward soft-switching simply
does not give the greatest possible performance. Many companies and researchers do
not need or cannot afford the highest possible level of performance; in those cases,
simple fuzzy rules can often be a superior alternative to other low-cost off-the-shelf
tools such as the simple forms of reinforcement learning or machine learning taught
in first-year courses in computer science. But in some applications domains (and
research), the key challenge is how to get to maximum achievable performance.

This leads into a key challenge for fuzzy logic: how can we design systems across
this range of domains, which can still use fuzzy logic and provide a “white box”
interface, but also provide the greatest possible level of performance by some kind
of quantitative metric?

To narrow down this question, and avoid trying to write a whole textbook here, I
will focus on two more specific but still very general domains:



834 114 Fuzziness, Probability, Uncertainty and the Foundations of Knowledge

1. How could we use fuzzy logic in “cognitive optimization” – developing learning
or data based systems for computing optimal decisions or controls u(t)u(t)u(t) to manage
or assist complex systems, in the general case where there is assumed to be some
kind of nonlinearity, random disturbance and complexity?

2. How could we use fuzzy logic in “cognitive prediction” – developing learning or
data-based systems for modeling, simulating, classifying or inferring the state of
systems which send us a stream of time-series data XXX(t) which is assumed to be
just one “window” into a larger system xxx(t) governed by

xxx(t + 1) = fff (xxx(t),uuu(t),eee(t)) (114.1)

where fff is an unknown function, uuu is a vector of exogenous variables – often
just the decisions of a companion control system, and eee is a vector of random
numbers? (Of course, this also includes inferring causality in data mining.)

Note that equation 114.1 may look simpler than the general “state space” model used
in control theory, but it is trivial to convert any stochastic state space model to this
form.

Fuzzy Logic and Cognitive Optimization

Twenty years ago, many researchers were interested in developing a new kind of
intelligent control system, combining the highest “intelligence” available from AI
with control systems based on the more popular forms of classical control theory.
NSF and the Electric Power Research Institute (EPRI) jointly sponsored a workshop
on intelligent control to evaluate the possibilities. That in turn led to a Foreword to [1]
authored by five NSF Program Directors, including the Deputy Associate Director
of Engineering, containing Figures 114.1 and 114.2 below:

Figure 114.1 basically reminds us that there is a natural, smooth interface between
fuzzy logic and neural networks, unlike the awkward cut-and-paste interface many
were proposing for binary AI and linear control designs. Since both approaches deal
with nonlinear functions, focused mainly on variables ranging from 0 to 1, a better
interface should be possible by combining those two approaches.

Figure 114.2 suggests a more specific way to combine the two. We can use fuzzy
logic to implement a control design which reflects the domain knowledge of the user,
and use the same kind of learning methods developed in the neural network field to
adapt that controller further, for maximum performance. And then we can still go
back and tell the user what the new adapted fuzzy controller actually looks like.

Translating that vision into practice is not as simple as it may sound. Where do we
find the learning or training methods able to tune the fuzzy logic system (or anything
else) for maximum expected performance, in an uncertain environment? And how
do we get stability results after we do?

Before we can maximize a measure of performance, we need to decide what that
measure of performance U(t) = U(XXX(t)) actually is. The problem of maximizing
the expected value of U(t) summed over future time, is a dynamic programming
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Fig. 114.1. Approaches to Intelligent Control

Fig. 114.2. Combining Fuzzy Logic and Neural Networks
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problem. Some would say that this is “simply” a Partially Observed Markov De-
cision Process (POMDP). There is no computationally feasible general method for
exactly solving a POMDP, because of the “curse of dimensionality.” However, new
general methods have been developed for approximating and adapting towards the
optimal solution. There is a substantial body of research and applications in the
new field of adaptive or approximate dynamic programming (ADP) summarized in
a stream of books based largely on projects funded by NSF and by large-scale in-
dustry efforts [35, 20, 12]. Unlike the later simple forms of reinforcement learning,
which generally assume binary logic or lookup tables, these methods were initially
developed for the case of continuous variables, as in fuzzy logic systems or neural
networks or econometric models.

One effective way to address stability issues is formulate a utility function U
which penalizes any excursion into undesired states. Many stability theorems have
been proven showing that “solving the Hamilton Jacobi Bellman equation” (i.e.,
maximizing U) gives the most robust possible controller in the general nonlinear
case. There is a large literature on many approaches to stability in ADP [35, 20, 12].

Regarding stability – some theoreticians have argued that we will never be able
to use anything but classical linear control in systems like aerospace or cars, be-
cause those industries depend on theorems for the whole of their business. This is
simply not accurate. Most higher-level complex systems are inherently nonlinear,
and they require verification and validation methods more like “six nines.” As an
example – Chuck Jorgenson of NASA Ames Research Center demonstrated years
ago how a simple neural network controller could restore stability and land a full
MD-11 commercial airplane after all the hydraulic controls were locked up, as part
of their Reconfigurable Flight Control program. He reported that many people were
initially skeptical about whether stability could be restored at all when an aircraft is
so crippled. He said that demonstrating that with a live physical MD-11 was their
second greatest achievement of the year. Their greatest achievement was the suite
of verification and validation procedures [19] needed to get permission to do this on
a live airplane. His work was essentially a spinoff from the seminal initial work by
White and Sofge at McDonnell-Douglas, reported in [35].

But how can we apply these methods to get optimal performance out of fuzzy con-
trollers? All the basic methods of ADP – Heuristic Dynamic Programming (HDP),
Dual Heuristic Programming (DHP), and their action-dependent versions – are pre-
sented in spinoff from the seminal initial work by White and Sofge at McDonnell-
Douglas, reported in [35] with pseudocode for the general case in which the controller
may be a neural network, a set of fuzzy rules, or any other differentiable system.
George Lendaris of Portland State (pdx.edu) has published many demonstrations of
how to apply ADP to training fuzzy logic systems to solve difficult, serious challenges
in nonlinear decision and control (e.g. in [20]).

Lendaris also made many of the tools available on his NWIL website, but there
is a crucial need for further research to make these kinds of tools easier to use
and more widely available. Because the quality of ADP depends on the quality
of one’s understanding of the system one is trying to optimize, and because function
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approximation issues are crucial in ADP, section 114.3 is important to achieving the
best performance in cognitive optimization as well.

Fuzzy Logic, Cognitive Prediction and the Quality of Function Approximation

People often say that extreme polarization of political parties in Washington, based
on crisp ideological positions, now makes it very difficult to implement a unified
synthesis or to make progress on many important issues. The same may be said of the
many different disciplines and schools of thought which address different aspects of
cognitive prediction. Among those disciplines are statistics, neural networks, signal
processing, system identification in control theory, and machine learning in AI.

This section will only present the basics of this challenge, and its connection to
fuzzy logic, but even so the story is not simple. I will take a kind of step-by-step
historical approach, for the sake of clarity.

Early Foundations: Maximum Likelihood and Bayesian Approaches

How can we identify or estimate the function fff in equation 114.1 based on data on
the observed data XXX(t) for a time-series or string of observations, from t = 1 to t = T ,
or from a set of such strings?

In 1972, when I began work on cognitive prediction for my PhD thesis at Harvard,
the mainstream of statistics was moving towards a powerful consensus about the best
way to perform such tasks – “maximum likelihood theory.” In classical maximum
likelihood or Bayesian statistics, one tries to find the function fff out of some set F of
possible functions which has the highest probability of being true; one “calculates”
the probability of truth by using Bayes’ Theorem as follows:

Pr( fff | Data) =
Pr(Data | fff )Pr( fff )

Pr(Data)
(114.2)

where “Data” refers to the entire dataset of XXX(1) and uuu(1) through XXX(T ) and uuu(T ).
These vectors may be made up of any combination of continuous or binary variables,
though we usually emphasize the continuous case. In classical Bayesian statistics,
the user would supply the function Pr( fff ), the prior probability function, which rep-
resents what he or she already knows prior to considering the data. In maximum
likelihood statistics, people would usually assume that all models are equally likely
apriori, so that we pick the function fff in F which maximizes Pr(Data | fff ), which
is called the “likelihood term.” The likelihood term can be calculated directly by
use of equation 114.1 and basic probability theory. Theoreticians like Carnap and
Jeffreys (leaders of the maximum likelihood school in philosophy) and Rao (who
originated “information geometry”) modified this recipe by recommending functions
Pr( fff ) which slightly penalize functions with excessive degrees of freedom; however,
these adjustments were normally very small, like using

√
T − n instead of

√
T in

ordinary statistics [36].
Software packages were developed which would allow the user to insert some

kind of prior probability function Pr( fff ) into the computer, along with data, and
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learn what function fff has the highest probability. But those software packages never
became very popular, for many reasons. Users felt very uncomfortable about encod-
ing their knowledge into the forms of Pr( fff ) allowed by these programs. They also
found it difficult to disentangle their beliefs at that stage from what they learned from
data. And most of these users wanted to write reports or journal articles in which the
statistical results as such were “objective.” Many believers in the Bayesian view-
point (like myself at that time) felt that they could more easily convolve knowledge
from data with knowledge from other sources after the fact, in the later stage when
they interpret the meaning and significance of what the statistics said. In cognitive
prediction, we seek to build universal learning systems, capable of converging to the
right model, in an open-minded way, without the need to have “the right” prior prob-
abilities. And so, we gravitated towards the maximum likelihood approach, which
appeared to offer a kind of universal direct brute force recipe for tuning and evaluat-
ing any well-defined stochastic model.

Notice that maximum likelihood theory still lets us pick any family F of functions
that we choose. Usually, when we have prior knowledge about a system we are
studying, we will simply choose a family of functions F which incorporates that
knowledge. Usually, we do that by specifying F as a family of functions defined by
fff (xxx,uuu,eee,W ), where this function fff is specified by the user as a function of weights
or parameters W . Maximum likelihood methods are used to find the set of weights
W which yields the maximum probability of truth (still calculated by use of equation
114.1). If the user picks a few possible choices for the functional form f , maximum
likelihood statistics also let us compare the degree of fit and degree of probability of
the alternatives.

Notice that maximum likelihood theory allows us to pick functional forms fff which
represent a set of fuzzy rules, or any type of neural network. There is absolutely no
conflict here between the probabilistic principles of maximum likelihood theory and
the use of fuzzy logic or neural networks (or both).

Many strange misconceptions have emerged amongst very proud people who do
not seem to understand the simple basic principles here. For example, some have
asserted that it is “scientific” to require that fff must be linear, and “unscientific” to
allow nonlinear functional forms fff – even when modeling systems which are well-
known to be nonlinear, and even when modeling neurons themselves. In fact, when
one uses a set of fuzzy rules or a neural network, and one uses maximum likelihood
methods to estimate the weights W and assess the quality of fit, this is mathematically
a special case of nonlinear regression. It is no less rigorous and no more rigorous
than nonlinear regression in general. Years before Sutton’s paper on “TD” methods
appeared, I presented both ADP methods and neural network methods for cognitive
prediction in precisely this way [24]. All the statistics which are familiar from non-
linear regression are available in these cases as well. The appropriate error functions
for Gaussian continuous variables and for binary variables are well-known [36], and
may be used as easily and rigorously here as in conventional statistics.

Nevertheless, there are some important practical issues which need to be ad-
dressed, in getting maximum performance in cognitive prediction, even when we
stick to the maximum likelihood approach.
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I will discuss these first in the “static” case of supervised learning, and then in the
more general case.

Towards Maximum Performance for Models XXX(t + 1) = fff (uuu(t),eee(t),W )
Many times in fuzzy logic and in neural networks, we are asked to learn some kind
of simple static mapping, from a vector of inputs at one time to a vector (or classifi-
cation) of outputs. In neural networks, we call this a “supervised learning” problem.
Usually, the inputs are called “X” and the outputs are called “Y”, but here I am using
different notation, simply to make it clear that this is just a special case of equation
114.1. This is the special case where we “see everything” (where XXX is the same as
xxx) and where there is no memory of the past embedded in the model. Supervised
learning or classification is used very often on datasets without any time dimension.

Maximum likelihood offers us a complete recipe for how to find W and evaluate
the degree of fit, in this case. There is a lot of art for the user in finding plausible
sets of fuzzy rules fff and in thinking about how random disturbances eee might affect
the system being studied. The art of how to translate one’s prior knowledge and
values into stochastic fuzzy systems is important [32, 25], but beyond the scope of
this chapter. But once you have done that translation, it is straightforward in principle
to apply equation 114.1.

In practice, two difficulties arise.
First, finding the weights W which maximize Pr(Data | fff ) is not a trivial com-

putation, in general. People have been known to complain about iterations, local
minima and such with simple neural networks; however, the problem is far worse
in traditional nonlinear regression packages, where numerical instability actually oc-
curs more often, depending of course on the choice of fff by the user. Both with neural
network models and with smooth fuzzy logic systems, we can use the original, gen-
eral form of backpropagation to compute the derivatives more easily [28, 29]. The
simple restriction to variables between 0 and 1, or −1 and +1 (except in some scal-
ing preprocessors or postprocessors as needed) avoids the most common forms of
instability one tends to see in nonlinear regression. There is really no way to provide
useful absolute guarantees that one has found a truly global minimum of error, in
the general nonlinear case, in less than astronomical time, in any form of nonlinear
regression; however, as Widrow has pointed out, it is useful enough if our estima-
tion package always improves on the user’s initial guess for W , and if it allows us to
compare the degree of fit of outcomes which emerge from different starting points.

In the 1980’s and 1990’s, many methods were found to get much faster conver-
gence and learning with backpropagation than naïve steepest descent or naïve use
of the simplest methods from operations research. For example, I had some success
myself with my adaptive learning rate algorithm [35] and with varieties of extended
Kalman filter learning [10]. Others have found it useful to use the signs of deriva-
tives, at times, rather than respond to their magnitudes; for example, many people
swear by RPROP. Similar kinds of methods could also be used with systems of fuzzy
rules. I am not aware of any really comprehensive review or analysis of the many
ways available to speed up learning or convergence.
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Second, in order to really get to maximum performance in the general case, we
need to choose a functional form fff (W ) which can do a good job of approximating the
true best function fff no matter what the true function is. Researchers showed long ago
that there are many “universal approximators” which can approximate “any” function
fff to any desired degree of accuracy, if you add enough terms to the approximator.
Among the many universal approximators are fuzzy rules, multilayer perceptrons
(MLP, the most popular form of artificial neural network), radial basis functions,
Taylor series, spline functions and simple or interpolated lookup tables.

Unfortunately, most of these universal approximators are not very useful in prac-
tice when the state vector xxx consists of more than just three or four continuous vari-
ables. They can approximate more complex functions in theory, but only when more
and more parameters are added, which raises both the cost of computation and the
amount of data required to learn the approximation. For the standard linear basis
function approximators, like Taylor series or Gaussian approximators, the cost grows
exponentially with the number of variables [20], just as it does with simple look-up
tables. But when the true function fff is a smooth function, Barron has proven [20, 3]
that the cost of using an MLP rises only as a gentle power function of the number of
variables, and that normal learning procedures do well enough.

Many have interpreted Barron’s results as follows. For applications which do not
demand high performance, or which only involve three or four variables, you have a
wide variety of choices, and you can afford to use things which are easy and fast. But
if there are more input variables, and you want high performance, the best choice is
to use an MLP, even though the learning and convergence sometimes take work.

On the other hand, what if we want to make sure that our predictors or controllers
are easy for humans to interpret and initialize?

In order to get maximum flexibility and performance from fuzzy logic systems, I
have proposed that we use elastic fuzzy logic [28]. I would conjecture that elastic
fuzzy logic (ELF) has the same kind of high quality universal approximation capa-
bility that MLPs do – but with an important caveat. For maximum flexibility, it is
necessary that the learning system be able to change the definition of words or even
learn new words altogether. ELF with a fixed vocabulary is the next best choice.

At the end of the day, humans who do not have a large enough vocabulary may
simply not be able to achieve the highest level of performance in some tasks. We can-
not escape the problem of choosing between mediocre performance, versus learning
new words and new ideas (and new “features” of reality). Learning systems which
are not able to learn new words or features simply cannot do as well as those which
do, in the general case.

It is tempting to write a great deal more about “white box” versus “black box”
modeling, and the issue of learning new words or features, but for reasons of length,
I will move directly to another set of fundamental issues.
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Toward Maximum Performance in the General Time-Series Case
Using fuzzy logic in the general time-series case (equation 114.1) involves all the
same issues discussed in the previous section, but adds important new complications.
(See [35, 28].) Actually, the progression from supervised learning to the time-series
case is an excellent example of what happens in general when we progress from one
level of intelligence, to the next higher level of intelligence. Everything in the lower
level still applies to the higher level, but new dimensions are added. Neoplatonists
have sometimes used the saying “As below, so above” (or vice-versa) to refer to this
kind of connection.

The prediction and estimation of time-series is crucial to engineering, and also
to our understanding of intelligence in the brain [31]. However, it has also become
a very lucrative cottage industry for many people, making it possible for many to
make money simply by grabbing well-known things off the shelf or following fads
without regards to performance or serious underlying principles (or what happens
to their clients). For this reason, through NSF, I have been funding a number of
challenge competitions intended to get people thinking again about what actually
works. Isabelle Guyon and Sven Crone have been particularly active in developing
competitions which are brought to multiple conferences, not just neural networks
but statistics and finance and others, in order to get competition across a very wide
range of disciplines and methods. Empirical results alone are not enough to unify
our understanding of the best way to do things, but they do play an essential role.

Shortly before the workshop on the time-series competition held at the Interna-
tional Joint Conference on Neural Networks in 2007 (IJCNN2007), Sven Crone told
me he had sad news to report to me. There were many dozens of teams from all
disciplines working very hard on his competitions. But the teams from machine
learning, computer science and neural networks – clever and hard-working as they
were – were all doing much worse in performance than those relying on simple basic
time-series statistics. To do anything useful with time-series data, we need to have
a thorough understanding of what the simple off-the-shelf methods were that let the
statisticians perform so well at the beginning of the contest. Any university which
graduates students who will work in cognitive prediction should make sure that they
have a thorough understanding of the basic, seminal text by Box and Jenkins [4]
which expounds those methods, widely used today in exactly the way that Box and
Jenkins recommended.

Box and Jenkins developed tools and analysis which help us use simple stochastic
models of the form:

X(t +1) = a0X(t)+ . . .+anX(t −n)+e(t)+b1e(t −1)+ . . .+bme(t −m) (114.3)

which is called an “ARMA(n,m) process.” (They used different letters, but this is
the main model. They also introduced a variation based for nonstationary processes
based on integration of this, beyond the scope of this chapter.) Notice that this is just
a univariate model, describing a single time-series, not a vector X .
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Also notice that there is only one random number, e(t), generated at any moment
of time. Of course, it did not take long for theorists to generalize this to the idea of a
vector nonlinear ARMA model, NARMA (n,m):

XXX(t + 1) = fff (XXX(t), . . . ,XXX(t − n),eee(t), . . . ,eee(t −m)) (114.4)

However, there are practical problems in building computer tools to address this
general case, as I will discuss. Of course, this more general case would include the
possibility that f may represent an elastic fuzzy system [28] or a neural network.
There has also been discussion of vector NARMAX models, which also contain a
vector of eXogenous variables u:

XXX(t + 1) = fff (XXX(t), . . . ,XXX(t − n),eee(t), . . . ,eee(t −m),uuu(t), . . . ,uuu(t − q)) (114.5)

Box and Jenkins developed simple tools to estimate ARMA(n,m) models, based
on maximum likelihood theory, and to guide the choice of n and m from empirical
data. These tools may be viewed as the first truly universal learning machine, for
learning from a database (as opposed to learning from one observation at a time).
So long as the world is linear, and so long as one variable X is not affected by any
other variables, this provides the greatest performance which it is possible to achieve.
When this tool does not yield strong predictions, maximum likelihood theory would
say that there is still no way to do better, because there is no way to make reliable
strong predictions when there is not enough data to justify doing so. These tools
have in fact continued to do quite well, compared to most other things. They are
used in many practical applications where there is a lot of data but great difficulty
in understanding what lies behind the data. Box and Jenkins showed that systems
which start out being autoregressive (i.e. following equation 114.3 with m = 0) turn
into full-fledged ARMA processes whenever there is random error in observing the
system variables.

The readers should be warned that many control engineers were confused by read-
ing papers in statistics in which “uuu” was used to refer to random variables (what may
of us call eee), rather than controls or exogenous variables; thus they would call equa-
tion 114.4 a “NARX system.” I remember once trying to correct a student who said:
“In our field, we do it right. We know that “MA” stands for exogenous, and that “X”
stands for moving average.”

In applications like large-scale econometric modeling, it is more common to use
models of the more general form in equation 114.5, with m = 0, and with fff a func-
tion which is linear in the weights or parameters, using functional forms chosen by
the user based on great laborious study of the specific variables and domain being
predicted. For example, the most accurate predictions of US industrial energy ever
achieved (about 1% mean average percentage error for forecasts running ten years
into the future) were obtained form a model of that type [26]. Models of this kind
directly address, estimate and exploit causal relations, relations in which the change
in one variable at time t lead to changes in other variables at time t + 1. Strictly
speaking, f is often defined implicitly in econometrics, by a system of the form:
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0 = ggg(XXX(t + 1),XXX(t), . . . ,uuu(t − q)) (114.6)

which is called a simultaneous equation model. This is all still done by use of
maximum likelihood.

For my own PhD thesis, I ended up working for a well-known political scientist,
Karl Deutsch, who had written a book which described how neural network kinds of
concepts could be used to understand political systems [6]. He had worked through
many graduate students using traditional methods, all of which failed to yield good
political forecasts based on his model of nationalism and social communications
[5]. Looking at this system, I could easily imagine why conventional econometric
methods might have failed: there was a lot of measurement noise here, which would
convert the system into an ARMA kind of process, for which new tools were needed.
But to combine the power of ordinary econometrics, in accounting for causality,
together with the power of ARMA modeling, I would need to develop new tools.

The idea here was that linear vector ARMA models offer us the next level of uni-
versal learning system, still based on maximum likelihood theory, strictly better and
more universal than the univariate version. I discussed this with George Box himself,
when he visited Harvard. He was excited about this new approach in general, but the
best algorithms he had been able to find anywhere [4] were absurdly expensive; they
would rise in cost as the sixth power of the number of variables in the system. I
remember vividly going to bed in the dorm one day, with very acute pain in my
stomach, based on fear that I would be able to solve Deutsch’s problem and not be
able to graduate at all. I told myself: “I now know how to adapt a whole BRAIN – a
neural network system – in o(N). Why should a little system like this present such a
problem?”

At that point, I realized that I could generalize the system I had developed for
neural networks, now called backpropagation, so that it would work on any differ-
entiable system, including vector ARMAX estimation (or elastic fuzzy logic). Since
Harvard did not want to hear about neural networks at that time, this became the
basis for my thesis [23]. More precisely, I proved the general chain rule for ordered
derivatives (generalized backpropagation), and developed a tool in the Time Series
Processor (TSP) software package at MIT to implement vector ARMAX estimation
using backpropagation to estimate such systems. I used it to estimate Deutsch’s
model successfully. The TSP manager from the Federal Reserve heard about this
tool, and ported it there, from whence it proliferated elsewhere. In 2011, the citation
for the Nobel Prize in Economics stressed the pioneering work of the recipient in
actually using vector ARMAX estimation in large-scale econometric modeling.

But even so, all of this is still just the linear case, and it relies on prior knowledge
which is relatively rare even in real-world macroeconomics.

In the 1990’s, I did some consulting for a small company called BehavHeuristics,
based in College Park Maryland, which had contracts with several major airline com-
panies to try to predict demand for seats and other things. At one point, they, like
other people I knew, were locked in a perpetual competition with the Box Jenkins
people. One day, their well designed MLPs would be predicting things better than
the Box Jenkins models used in the airlines themselves; the next day, it would be the
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other way around; and it kept changing. The MLPs were much better in capturing
causal effects across variables, and in learning the shape of nonlinearities, because of
their universal approximation abilities [2,3]. But the simple univariate ARMA mod-
els were better in capturing time-series kinds of effects. So one day I said: why not
get the best of both worlds? Why not use a time-lagged recurrent network (TLRN),
defined by:

XXX(t + 1) = fff (XXX(t),RRR(t),uuu(t),W )(+eee(t)) (114.7)

RRR(t + 1) = ggg(XXX(t),RRR(t),uuu(t),W ) ? (114.8)

By the way, I had published papers on this general case long before people began
“reinventing” many special cases of it. I put the random noise term here in paren-
theses, because they really were interested in prediction, not in stochastic modeling
for its own sake. Nevertheless, in this project, as in many other situations, it made
perfect sense simply to train the weight so as to minimize least square error, using
standard maximum likelihood methods. Note how this is a generalization of equation
114.5, where square error is also being minimized.

My argument was that this is a kind of third step up, past univariate ARMAX and
vector ARMAX. So long as we implement fff and ggg as universal nonlinear function
approximators, this becomes a universal NARMAX learning system – and the best
we can do for a more general class of dynamic systems. In cases which truly are
linear, the vector ARMAX and this system should both end up converging to the
same answer, with the same quality of fit, when there is enough data – but when the
system to be estimated is nonlinear, this system should converge to the right answer,
more than the linear ARMAX could. BehavHeuristics thereafter found themselves
beating the Box-Jenkins tools quite consistently after they made the transition. They
used MLPs for fff and ggg, but if my conjecture of the previous section holds, elastic
fuzzy logic should be able to do the same.

In 1992, I also had a chance to meet Lee Feldkamp of Ford, at a conference
on fuzzy logic led by Prof. Yamakawa in Iizuka. Feldkamp’s group was doing a
very systematic in-depth evaluation of all the tools which might help them solve
some companies critical to Ford. They were especially concerned about how to
meet vey tough accuracy standards for predicting misfires, and other events, required
by the tough new Clean Air Act. After experimenting with TLRNs, Ford became
the world’s practical leader in implementing these methods in an industrial strength
way. The President of Ford made a commitment in Business Week in 1998 that all
Ford cars in the world would be carrying TLRNs, to meet air quality regulations.
Feldkamp’s group did numerous important studies published at IJCNN and other
conferences.

Given this history, in 2007, when Sven Crone told me how it was going, I quickly
informed the Ford group. They did not have a lot of time to put into this, the way the
student groups did, but it was easy enough to crank the competition data into their
package, and see what came out. At the conference, Sven informed me that Ford had
done the best of anyone at the competition.

The Ford package is not widely available, although the publications are. Lee
Feldkamp retired relatively recently, and many of the capabilities of his group have
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since been replicated at Toyota [17], Siemens and elsewhere, with TLRNs systems
just as powerful. At the energy/industry meeting at IJCNN07, industry representa-
tives agreed unanimously that capability in using TLRNs was what they wanted most
from students they might hire.

Though the Ford package was not widely available, the Neurodimensions package
developed by Curt Lefebvre and Jose Principe [16] with NSF support had important
TLRN capabilities, and some people also recommended the SNNS package from
Stuttgard. Lefebvre set up a company to apply TLRNs to coal-fired power generators,
and recently reported in discussion that his systems are now used in about 20% of
the coal-fired generation in the US.

Two especially important papers on TLRNs appeared in the workshops in adaptive
and learning systems, held by Prof. Narendra of Yale. In one paper [7], Feldkamp
and Prokhorov of Ford reported on a comparison of three alternative methods for
state estimation involving engines. Of course, they were paid to get the best results
by whatever method they could find. They compared particle filters, TLRN and
extended Kalman filters (EKF) on the same problem. They found that the well-
executed particle filters and the TLRNs both outperformed EKF substantially on the
same problem, which one might expense, since EKF is inherently a kind of local
approximation, while the others converge to the right answer. However, because of
the universal approximation property, the TLRN could achieve these results at much
less computational cost and complexity. The fascinating result implicit here is that
the recurrent vector, RRR, acts as a condensed representation of the “belief state” of the
system, the whole probability distribution for what the unknown variables might be;
this makes sense, since minimizing square error in equation 114.7 does imply that.
Another important result was by Eduardo Sontag, who showed that his formulation
of the TLRN (more or less equivalent) acts as a universal approximator for dynamical
systems, not just static mappings as in the work of Barron.

I would like to conclude this section with a few quick further observations.
First, equations 114.7 and 114.8 do not explicitly represent where noise might

come from inside a stochastic process. Thus in 1990, I developed a still more gen-
eral architecture, the Stochastic Envcoder/Decoder/Predictor (SEDP), which does
exactly that, in the general nonlinear case for continuous variables [35]. Given the
results of Feldkamp and Prokhorov, I wondered for many years just how useful or
necessary that would be in a system like the brain, which could afford to use equa-
tions 114.7 and 114.8 for its real-time operation. However, it now seems clear that
the brain must learn to make decisions and develop partial models to operate over
larger time intervals, and cope with spatial complexity, as I will describe later; thus
I now believe that some variation of SEDP must indeed be present in an intelligent
system as powerful as the brain, and even that it can be mapped into known neural
circuitry [31].

Second, the IJCNN competitions are an ongoing process, now large enough that
a brief summary is difficult. In a later section, I will discuss spatial complexity
and challenges which involve it. In IJCNN11, Ford itself sponsored a forecasting
competition involving vehicle safety, for which more than 200 entries were received.
They did not enter that contest themselves. . . but at the conference, when asked, they
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smiled and said that yes their in-house package continues to outperform everyone
else, but it was useful for them to have continuing validation of that, and to identify
good university groups to work with.

Third, just as Barron has proved some important theorems about universal prop-
erties of MLPs [3, 3], there seems to be room to prove that something like TLRN is
a universal learning system, in the sense that if the true fff is sampled from the set of
smooth functions (with higher probability for smoother functions), that a TLRN will
always converge to the right answer as fast as anything else or faster, with no more
than some bounded need for additional data for the comparison with any specific al-
ternative. There is considerable room both for fundamental mathematical results, and
new general purpose software and software guides, to bring this level of performance
to more people, and make it the off-the-shelf easy alternative.

Many people believe that universal learning systems like the brain are impossible
because of the No Free Lunch Theorem. No universal learning system can do as well
as a hard-wired system designed for the specific problem domain. And yet, as Box
and Jenkins showed us, we can develop systems which are universal for a certain
class of environments; when they have enough time to learn, they can converge to a
perfect job. Furthermore, the vector ARMAX systems are a perfect superset of the
univariate Box-Jenkins systems; if a system happens to be a set of disconnected uni-
variate time series, the simpler methods may be a bit better in the beginning, when
data is limited, but it only takes a finite, bounded amount of learning for the more
general system to do just as well, even in the special cases which fit the univariate
model. In the same way, the TLRN methods for prediction of a NARMAX sys-
tem are a superset of the vector ARMA methods, because of the universal function
approximation capabilities in the TLRN.

Nevertheless, I doubt that TLRNs trained or tuned by maximum likelihood meth-
ods could satisfy this kind of theorem. I doubt that they could give us the best
possible performance, even when we make allowances for learning time and assume
smooth functions fff . The reason for this is that the maximum likelihood approach
needs to be augmented in order to reflect the two key principles of dynamic ro-
bustness (which is very different from robustness as commonly practiced in control
theory) and simplicity, to be discussed in the next section.

Well-designed TLRN packages offer us the greatest universal performance now
available, but more powerful universal systems for cognitive prediction are possible.

From Maximum Likelihood to Simplicity, Robustness and Vector Intelligence

How could we build a universal learning system for cognitive prediction, which could
actually satisfy the kind of universal learning theorem envisioned at the end of the
previous section? I would use the term “vector intelligence” to describe such a uni-
versal learning system. Of course, the challenge of vector intelligence in systems
which learn from one observation at a time is more difficult than the challenge of
vector intelligence from a fixed database, where one is allowed to iterate over and
over again, as in traditional statistics. This section will discuss the challenge of how
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to achieve vector intelligence in the usual offline case of statistics, in cognitive pre-
diction. Although this gives more capability and universality than a simple maximum
likelihood system, it is still only one step up on the ladder of intelligence. The next
section after this will describe how to get higher than that, based on concepts more
powerful than vector intelligence itself.

Two key principles need to be injected into a universal learning system in order
to get to vector intelligence: (1) simplicity; and (2) statistical robustness. Simplicity
comes first; I was already well aware of its importance in 1973, when I started my
work using ARMA methods for my Harvard PhD thesis.

Simplicity, or Occam’s Razor, may be viewed either as a neat way to cheat in order
to prove the theorem, or as a fundamental principle of epistemology, philosophy and
the nature of human knowledge. Both views are correct. Simplicity itself is not a
simple thing to understand.

For centuries and centuries, philosophers have argued that everything we know
about the world we live in is based on what we learn from our stream of experience.
When we try to build universal learning systems, we are trying to build systems
which do the same. But philosophers learned long ago that there are certain difficul-
ties in this kind of learning. For example, consider the following two theories about
the world we live in:

(A) The sun rises every day;
(B) The sun rises every day until ten days after the publication of this book, when a

choir of angels will suddenly appear instead of the sun, and everyone who has
only five fingers on each hand will be removed from the earth.

Both theories fit our past experience equally well. Thus from a maximum likelihood
viewpoint, they are equally likely to be true. But do you believe it? Are you really
expecting a choir of six-fingered angels to appear a few days after this book comes
out? The obvious solution to this paradox is to penalize theory B somehow for
the way it adds additional complexities which do not add to the empirical fit. We
really have no choice about this, since learning systems for the nonlinear case cannot
work without it. The mammal brain itself could not work without such a simplicity
mechanism, as it struggles to survive in a world far more complex than the worlds
of univariate linear time series. More concretely, if we want to build a computer
simulator, to sample possible functions fff to test how well different learning systems
perform, we can’t really do it unless we bias the sampling to favor functions simple
enough that we can actually implement them.

The standard way to address this problem is to assume a prior probability distri-
bution, Pr( fff ) in equation 114.2, of the form:

Pr( fff ) = c exp (−kC( fff )) (114.9)

where C is a measure of the complexity of fff . This kind of prior probability is com-
monly called an “uninformative prior.” The goal here is to assume the weakest pos-
sible prior probabilities, so that the learning system is as open-minded as possible,
without preventing it from being able to learn what it tries to learn when it has enough
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experience to learn from. Even for static linear systems, when the number of vari-
ables is large, it is now well known [14, 11] that we get better performance from
using “ridge regression,” which assumes:

C( fff ) =
n

∑
i=1

W 2
i (114.10)

where n is the number of weights in the linear model.
In vector intelligence, we think of the time-series XXX(t) as a vector, as a set of

numbers with no special structure, as in traditional control theory and as in Barron’s
theorems. We aim to develop learning systems which converge in the situation where
functions fff come from a probability distribution like that of equation 114.9, and
where complexity is measured by something like Barron’s measure of smoothness.
If we “cheat” by using the same complexity measure (or something closely related
to it) in the learning system itself, universal learning theorems should be possible.
In practice, we could do this simply by using penalty functions when we train our
neural networks or elastic fuzzy logic system; that generally boils down to picking
weighs W which minimize something like:

P(W )+
T

∑
t=1

E(XXX(t),X̂XX(t)) (114.11)

where X̂XX is the prediction of our network, where E is a standard measure of error
(such as square error for continuous variables or the logistic function [36] for binary
variables), and where “P” is some kind of penalty function. We can use the same
kind of process to sample possible “true” functions to test the vector intelligence of
competing methods. The subject of penalty functions is a large area, important to
vector intelligence, but for reasons of space I will not say more here. This subject
is also an area where more fundamental well-grounded mathematical research is
needed, connecting the concept of uninformative priors and universality with the
design of mathematical learning systems.

In the end, we can build a “next generation” universal learning system simply by
starting from TLRNs, but modifying them by the use of penalty functions. These
penalty functions, like 114.10, must be much stronger than the simple allowances
for degrees of freedom already familiar in maximum likelihood statistics [36] and
information geometry. In practical econometrics, people can often achieve good
results by using good judgment in their choice of simple, elegant functional forms
fff , without having to use ridge regression, but for universal learning systems that is
not good enough. This general approach to vector intelligence was where I started,
in 1973, when I began the practical statistical work for my PhD thesis [23].

The empirical work with real data forced me very violently to give up the pure
probability-oriented approach I have described up until now. At some level, the
results were quite good, and followed the traditional script quite well. The vector
ARMAX tool basically cut predictions errors in half, compared to traditional AR
(regression) versions of the same models. That was basically true across a wide va-
riety of actual and simulated data. The work on simulated data beautifully followed
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the goals for a more universal learning system. If, like many researchers today, I
simply wanted to graduate quickly and avoid making waves, I would have stopped
right there. But my conscience as a scientist told me that I should do some additional
tests, to see how well these methods would do against some kind of simple “devil’s
advocate” alternative. I compared all of these forecasts (except for the more detailed
modeling of language change in Norway) against the forecasts of a simple exponen-
tial growth extrapolation. The extrapolation generally got errors only half as large as
those with the ARMA tool.

In later years, I found out that many people who work with data know that simple
extrapolation can often work much better than elaborate models, multivariate or uni-
variate. But I wanted to know why. After all, simple exponential growth is a special
case of equation 114.3. Why do maximum likelihood methods fail so badly to find
the best model in this case?

Since I was testing predictions over multiple time periods, there seems to be an
obvious explanation. The extrapolation was tuned to get minimum error multiperiod
prediction, where the maximum likelihood methods basically end up minimizing er-
ror in predicting just one period of time ahead. Thus I immediately proposed the
“pure robust method,” in which we tune models to minimize multiperiod error. In
recent years, researchers such as followers of Vapnik have sometimes said: “Forget
the probability of truth. Just tune the model so that it would have made you the
most money in the past, if you had used it. Don’t maximize truth, maximize dol-
lars.” Earlier researchers sometimes told me: “Don’t think of these simple models
as something true or false. Think of them as approximations to a more complex
systems. Instead of probability of truth, think about the quality of approximation.”

More careful logic convinced me that both of these extreme viewpoints – the
probability of truth viewpoint and the past-dollars viewpoint – are highly deceptive.
I showed that an intermediate kind of approach can do better than both. It is unlikely
that brains could do as well as they do if they did not find a way to blend both. In
the second half of chapter 10 of [1], I summarized these results, and provided some
suggestions for how we could develop a more principled version of the working
compromise I had already found.

Notice that these two extremes – the followers of probability of truth and the
followers of approximation-only – are similar to the kind of people who debate fuzzy
logic (approximate reasoning) versus probability, without asking how best to blend
the two essential types of tool.

Unfortunately, today’s culture for research in prediction still tends to be polarized
between people loyal to one extreme or the other. The crucial work needed to de-
velop an effective, universal synthesis has yet to be done. Just this past year, some
important related new work has been reported by Mark Tobenkin under Professor
Tedrake of MIT, under funding from the NSF Cognitive Optimization and Prediction
(COPN) topic [25].

Once simplicity and robustness are fully incorporated, and cognitive prediction is
paired with cognitive optimization, we should be able to develop universal learning
machines for full-fledged vector intelligence. In 1990, I felt that we could explain
the higher order intelligence of mammal brains as the emergent outcome of vector
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intelligence operating in the brain. To develop such a universal vector intelligence
system is still an important, unfulfilled research challenge, because of the gaps I
mentioned above. In my view, the Handbook of Intelligent Control [35] still is the
closest thing we have to describing how to build such a system.

However, work in the 1990’s convinced me that vector intelligence is still only
one step on the ladder of general intelligent systems, and that mammal brains have a
much more powerful underlying learning capability, to be described very briefly in
the next section.

From Vector Intelligence to the Mouse

During the 1990’s, I developed a new theory about the mathematics needed to carry
us up from vector intelligence to the level of intelligence we see even in the simplest
mammal brains, like the brain of the mouse. For reasons of length, I will not get into
all the details here, which are summarized in Figure 114.3.

Fig. 114.3. A Roadmap for Cognitive Prediction from Vector Intelligence to the Mouse

For practical purposes, the theory is that we need to take three big steps up the lad-
der of intelligence, to climb as high as the smallest mouse. For today’s research com-
munity, the most important challenge (aside from consolidating vector intelligence)
is to really nail down that first step, rising up from vector intelligence to learning sys-
tems which can properly account for spatial complexity. The key to this is to learn
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and exploit symmetry properties in our environment, and eventually to connect them
to what AI people call “world modeling” [1]. This entails developing and using new
types of neural network and fuzzy logic systems such as the Cellular Simultaneous
Recurrent Network and the ObjectNet [10], which allow us to handle thousands of
inputs effectively in a general-purpose learning system, without needed to depend on
hand-crafted feature detectors. This past year or two, researchers such as LeCun and
Ng under COPN funding, and Schmidhuber under European funding, have broken
all previous records on many complex well-known benchmark challenges in object
recognition, phoneme recognition and others, by properly using of these. (See [32]
and IJCNN07 for examples.) Liang, Venayagamoorthy and Harley [13] have shown
how ObjectNets can be used to handle large-scale challenges in managing electric
power grids which are crucial to the economics of renewable energy. A few years
earlier, Fogel used a simple feedforward variety of Object Net to develop the world’s
first system able to play chess at a master class level by using only what it learned on
its own, without humans inserting detailed rules specific to that particular game [8].

In formal mathematics, intelligence with spatial complexity addresses the problem
of addressing functions fff which come from more challenging distributions than from
the set of smooth functions, but in which smooth functions are well represented as
one possibility.

In my view, the challenge of reverse engineering the higher intelligence (cognitive
optimization and prediction) seen in the mouse brain is the most important challenge
to all of basic mathematical science in the new century we live in.

114.4 From the Mouse to Logic in the Classical Universe

Many philosophers have been debating: “What is the proper foundation for us hu-
mans to use in reasoning? Is it classical logic, or is it fuzzy logic, or something
else? What is the proper position on the meaning of probability? Should probabili-
ties always be thought of in frequentist terms, or is there some basis for the Bayesian
notion of subjective probabilities? If so, how do probabilities and fuzziness relate to
each other?”

In my view, we should never forget that 99% of the intelligent levels of the human
brain are exactly equivalent to similar structures in the brain of the mouse. This refers
to the basic learning structures, like the six-layer neocortex, and not to the specific
things which individual humans actually learn in a lifetime, which define the usual
Broca areas you often see in color pictures of the surface of the brain. The other 1%
is important, but we need to understand the 99% to have a basic understanding of
what is going on.

Because life demands that we make decisions [21,18], we and mice have no choice
but to assign subjective probabilities (subjectively, at a nonverbal level) to questions
like: “If I try to cross that field, what is the probability that a fox will catch me and
eat me? If I devote my life to superstring research what is the probability that it will
all turn out to be a great big ball of nonsense ten years after I graduate?”
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What could the basis be of estimating such probabilities, when we cannot use
rigorous frequentist methods? As a response – the answer is that we get them by
articulating what we know and see at the nonverbal level of our intelligence. More
precisely, we humans are engaged in an ongoing process of articulating thoughts
form the nonverbal level into words, logic and mathematics; reasoning at the ver-
bal level (with nonverbal inputs); and translating back from symbols to subsymbolic
understanding. That process itself is the true foundation for all kinds of logic as
practiced by humans [32]. In some sense, traditional logic, fuzzy logic and contin-
uous mathematics, as well as music, are all on an equal footing as languages we
learn to use to try to articulate and explain what we learn at the nonverbal level. As
in section 114.3, the most accurate articulation often requires some combination of
approximation or fuzziness and probability.

More formally, as we rely more and more on reasoning with symbols, it becomes
more and more important that we learn systems of axioms and procedure which
do not get us into trouble [32]. For that, I have proposed that we should take as
axiomatic: (1) the concept of objective reality, affirming that we live in a universe of
continuous variables; (2) our foundation in what we learn from personal subjective
reality and nonverbal experience; and (3) the quest to reconcile the two and get full
value from both, as we “look at ourselves in the mirror.” In a sense, (2) is really the
one invariant, since objective reality is something we learn about from experience,
but the concept of objective reality is a very pervasive and powerful concept, which
shapes our ability to understand our own minds.

There is a certain paradox here. For objective reality, I propose that we con-
sider the possibility that the state of the universe over all space time corresponds to
the state of ϕ(xμ), where ϕ is a set of fields (scalars, vectors, tensors, and maybe
spinors) defined over points (xμ) in 3+ 1-dimensional Minkowski space, governed
by classical Lagrangian field equations [30, 33, 34]. Everything we do, think and are
may be simply patterns over those fields. This in turn is meaningful in an axiomatic
sense only if such field equations are meaningful. Many have questioned whether
that is true, because Gödel has proven the incompleteness of early formulations of
logic and arithmetic, and others have questioned the continuum hypothesis. Never-
theless, Gödel himself [9] has acknowledged that more recent formulations of logic
based on Russell’s theory of types and extensions of that are enough to show us that
we are on firm ground here. There is room for research to find the “best” theory of
types, but the concept of objective reality in Minkowski space remains quite tenable.

Of course, if we arrive at new understandings of physics, we will have to modify
(114.1) somewhat.

Within the classical framework, causality always moves from part to future. The
mouse brain itself was clearly designed on the basis of that kind of principle. Causal-
ity is basically a property of the usual time-forwards models like equation 114.3 and
114.5. Box and Jenkins [4] clearly display a causality axiom which is asymmetric
in time, and is essentially the same as what is assumes in much of advanced physics
today [22]. The axiom basically says that the random or unpredictable disturbances
may correlate with variables in future time (because they may cause changes in them)
but not with previous values of the same variables (because then they would not ran-
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dom relative to the past). Establishing causality is basically a matter of developing
models of the world we live in (cognitive prediction), and analyzing properties like
sensitivities [29] of those models.

In this view, our uncertainty about the world can always be represented com-
pletely, in principle, by the subjective probability distribution Pr(ϕ(xμ)) of the state
of the universe. However, we need a great chain of approximations and simplified
representations, which sometimes includes fuzzy logic, in order to reason approx-
imately about that probability distribution, as accurately as we can within the con-
straints of finite brains and finite files. Many of the debates about types of uncertainty
are essentially discussions of alternative ways of trying to give good approximations
which capture some of the man types of complicated situations which can exist in
our world.

114.5 From the Classical Universe to Quantum Reality

Virtually no serious physicists today would say that we really live in a classical uni-
verse. However, there are many different views of what it means to live in a quantum
universe, and we certainly do not yet know the true “laws of everything,” the ultimate
laws of physics. Here I will briefly discuss a few alternatives.

Quantum mechanics actually began with efforts by Heisenberg to promote an al-
ternative form of multivalued logic, much further away from traditional binary logic
than fuzzy logic is. Instead of interpreting “propositions” as binary functions, true
or false, or as continuous functions, he proposed interpreting them as matrices over
an infinite valued space, whose values would essentially be more matrices. Many
people thought of this as a very fringe kind of idea – until it turned out to explain
the only known way to correctly predict the spectrum of helium. But people mainly
segued from this original idea to a simplified view which is even now called “the
Copenhagen version of quantum theory” (much to the distress of Heisenberg’s old
collaborators). A few of us have at times worked with the idea of representing quan-
tum theory as an outcome of logic over the complex plane or the unit circle, but it
really doesn’t work out so well and I do not see much empirical basis for it.

Many people believe that the Copenhagen version of quantum theory and the
modern many-worlds theories and a dozen other varieties are all equivalent for all
practical purposes. That is very convenient for many people, politically. However, it
is not true [30].

It turns out that classical Lagrangian field theory over Minkowski space is still
logically tenable and consistent with experiment, so long as we get rid of the grafted-
on assumption of universal time-forwards causality [30, 33, 34]. Thus the notion of
objective reality as discussed above is still tenable, since I carefully did not include
time-forwards causality in the list of proposed axioms.

Some physicists have argued that we simply cannot entertain the concept of causal-
ity running both forwards and backwards at times, because of how our brains are con-
structed. However, the universal function approximation abilities in the mouse brain
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clearly include an ability to learn recurrent relations and a family of nonsmooth func-
tions, which would encompass this kind of physics. Mathematicians have learned to
work with mixed forwards-backwards stochastic differential equations. Hans Georg
Zimmermann of Siemens has even shown how we can get better industrially useful
predictions of economic variables by training TLRNs in a way which involves mixed
forwards-time and backwards-time relations.

In my view, the highest level of reasoning which we are capable of builds on the
concepts of section 114.4, by accounting for such backwards-time quantum effects,
and also accounting for some kind of collective intelligence effects across different
people, which provide additional nonverbal as well as verbal inputs.

Acknowledgement. The views expressed here are those of the author, and do not
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