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What Is Fuzzy Logic – And Why It Matters to Us

The ALOPHIS Group: Roberto Giuntini, Francesco Paoli, Hector Freytes,
Antonio Ledda, and Giuseppe Sergioli

32.1 The Aim

The aim of this short note is twofold: recounting how our research group became
interested in fuzzy logic, and briefly discussing a definition of fuzzy logic suggested
by Bĕhounek and Cintula (see [1]). Lest the anecdotal incipit should be dismissed
(perhaps deservedly) with a blunt So what?, we remind that prospective contributors
to this volume are required to mention how they arrived to the field of fuzzy logic and
to present their views and expectations ‘on fuzziness’. Both aims, therefore, seem to
sit comfortably within the scopes of this book, especially in view of the fact that Lofti
Zadeh has always been concerned with the problem of delimiting the boundaries of
the subject he pioneered (see e.g. his [16]).

32.2 Why Do We Care?

In the 1980s, the logic scene in the Philosophy Department at the University of Flo-
rence, where the two oldest members of our group were trained in the trade, was
dominated by two charismatic figures, Ettore Casari and Maria Luisa Dalla Chiara.
Neither the former nor the latter is a fuzzy logician stricto sensu — nor, so far as
we can remember, did they ever devote to fuzzy logic more than a passing reference
in the undergraduate courses we attended. Both of them, however, had research in-
terests that bordered on fuzzy logic, and by sharing their own views with us they
contributed in a decisive way to turn us to this kind of investigation.

Ettore Casari was fascinated by the project of building a formal model for com-
parison in natural language, a project he fleshed out in several papers published from
the early 1980s onwards (see e.g. his [5]). He wanted to account for such compar-
ative sentences as ‘c is at most as P as d is Q’, where c,d are names and P,Q are
predicates. If we accept that sentences may admit of different ‘degrees of truth’, the
aforementioned sentence can be considered true when ‘c is P’ is at most as true as ‘d
is Q’. To formalise his idea, Casari used an implication connective which comes out
true exactly when its antecedent is at most as true as its consequent. Although fuzzy
logics share the same basic assumptions, for a number of reasons Casari was dissat-
isfied with such an approach: for example, the use of bounded algebras as systems of
truth degrees in mainstream fuzzy logics prevents a proper treatment of comparative
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sentences of the form ‘c is less P than d’ when both c and d are clear-cut instances of
P, yet it makes sense to say that d is more P than c is. The vicinity between compara-
tive logic and fuzzy logic is further highlighted by the fact that the equivalent variety
semantics of Casari’s propositional comparative logic is the variety of �-pregroups,
a common abstraction of Abelian �-groups and MV algebras. Not surprisingly, a
crucial influence on the definitive form that comparative logic assumed by the end
of the 1980s was played (according to Casari himself) by Daniele Mundici, then
at the Mathematics Department of the University of Florence (to which he recently
returned), a leading figure in the research on fuzzy logic in general, and on MV
algebras in particular.

Marisa Dalla Chiara has advocated and actively participated in the development of
the so-called unsharp approach to quantum theory since the seminal contribution by
Ludwig (see [13]). In a nutshell: in standard (sharp) quantum logic à la Birkhoff-von
Neumann, propositions ascribing properties are represented by projection operators
(or, equivalently, by closed subspaces of a Hilbert space). In this approach, vague-
ness and truth degrees play no rôle: the possible values of a given physical magnitude
are expressed by the eigenvalues of the corresponding self-adjoint operator, and pro-
jection operators have eigenvalues in {0,1} — meaning that either the property at
issue definitely holds or it definitely does not hold. In unsharp quantum theory and
in unsharp quantum logic, however, a more general notion of property has been sug-
gested. Projections are replaced by effects, whose eigenvalues may range throughout
the whole real interval [0,1]. Unsharp quantum theory, therefore, accommodates
‘vague’ properties as well, which are not an all-or-nothing matter but may hold to a
given degree. True to form, the mathematical structures that arise within this research
stream are, more often than not, either closely related to fuzzy logical structures or
even plain generalisations of such. GLP (See e.g. [9].) More recently, Marisa also
championed another brand of quantum logic, called quantum computational logic
(see for instance [7], Chapter 17.), which departs even more drastically from the
standard Birkhoff-von Neumann approach. Meanings of sentences are no longer
formalised through closed subspaces of a Hilbert space, but by means of quantum
information units acting as quantum analogues of classical bits and registers: qubits,
quregisters, and qumixes. Somewhat unexpectedly, however, fuzzy-like structures
appear in this setting, too. And it is precisely this interplay that triggered most of the
joint research work subsequently done by our group.

Over the last ten years or so, in fact, the Cagliari branch of the équipe led by
Marisa has mainly focused on the algebraic models of quantum computational log-
ics, as well as on the logics themselves but from the viewpoint of abstract algebraic
logic. Most of the effort has gone into the investigation of quasi-MV algebras (see
for instance [12]), generalisations of MV algebras connected with an irreversible
disjunction connective arising in quantum computational logic, and their expansions
by a genuinely quantum operator of square root of negation (

√′ quasi-MV alge-
bras: (see [10])). Since the 1-assertional logics of these varieties, or of some closely
related quasivarieties (see [4] and [14].), are indeed weakenings or expansions, or
expansions of weakenings, of infinite-valued Łukasiewicz logic, the belief that this
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domain and fuzzy logic are (to use a word cherished by quantum theorists) inextri-
cably entangled is even more corroborated.

32.3 What Do We Think It Is(n’t)?

The papers we devoted to quasi-MV algebras and their associated logics employ
methods, concepts and tools that by any standard appear as closely related to the ones
commonly adopted in present-day fuzzy logic. In spite of these evident similarities,
these logics do not count as fuzzy according to the definition proposed by Bĕhounek
and Cintula (see [1]). These authors confine themselves to what they call weakly im-
plicative logics, i.e. (roughly speaking) propositional logics containing a connective
→ with properties that are reasonable for an implication (including modus ponens).
In their opinion, a weakly implicative logic L is fuzzy iff it is strongly complete w.r.t.
to the class of all totally ordered L-matrices, where the order is so defined as to have
x≤ y just in case x→ y is a designated value of the matrix 1.

To its advantage, this suggestion has a fair amount of liberality. Their propounders
resist the temptation to relegate fuzzy logic into the safe territory of the [0,1] closed
real unit interval, because any possible way to formally specify this idea would lead
to unreasonable verdicts: if we require from a fuzzy logic that it be complete w.r.t. a
[0,1]-based semantics, then many fuzzy predicate logics would not come out fuzzy
(because they fail to be standard complete), while if we require that algebras on
[0,1] generate the corresponding variety, a prototypically fuzzy logic like product
Łukasiewicz logic (see [11]) would not count as such. On the other hand, when
it comes to classifying individual logics as fuzzy or not fuzzy, this criterion seems
to tally in most cases with the usual practice in the community, as Bĕhounek and
Cintula observe.

Nonetheless, it remains to be seen whether the choice of restricting the domain
of application of this definition to weakly implicative logics is reasonable. Should
anyone suggest, perhaps in accord with a more conservative viewpoint, that a logic
with weakening L is fuzzy iff it is strongly complete w.r.t. to the class of all totally
ordered L-matrices, Bĕhounek and Cintula would probably retort (and we would go
with them) that such a delimitation is unjustified and even harmful, because it is
precisely outside the class of logics with weakening that their own criterion makes
the most interesting distinctions 2. By parity of reasoning, one could rightly wonder
if being able to decide whether some logic is fuzzy or not should really hinge on the
presence of an implication satisfying modus ponens. Weakly implicative logics are

1 This definition is mentioned in a slightly modified form in the more recent [2], written
with Petr Hájek, but not as the proposed definition of fuzzy logic. Here, in fact, another
definition is given, where Condition i) is replaced by a much more restrictive requirement:
being an intuitionistic substructural logic, namely, having as algebraic counterpart a class
of FL-algebras. Here we will discuss neither this stance, nor another position recently
embraced by one of these authors in [6], where the plausibility of a sharp, formal definition
of fuzzy logic is called into question.

2 Some considerations along these lines are offered in [1], p. 608.
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at least protoalgebraic, while some logics that are unanimously classified as fuzzy
by the fuzzy logical community are not such, and therefore do not even fall within
the scope of the criterion.

Consider the so-called ‘infinite-valued Łukasiewicz logic that preserves degrees
of truth’, first introduced by Wójcicki [15] and deeply investigated by Josep Font and
his collaborators.3 This non-protoalgebraic logic uses the same valuations into the
[0,1] interval as the standard infinite-valued Łukasiewicz logic, but adopts a different
consequence relation: whereas in Łukasiewicz logic a formula α follows from the
set Γ just in case for all such valuations v, v(α) = 1 whenever v(γ) = 1 for all γ
in Γ , here a formula α follows from the set Γ just in case for all such valuations v,
v(α) is greater or equal than the minimum of the set {v(γ) : γ ∈ Γ }. In other words,
while valid inferences in standard Łukasiewicz logic preserve just absolute truth but
allow degrees of truth to decrease from premisses to conclusion, here valid inferences
always have a conclusion which is ‘at least as true’ as the ‘falsest’ premiss. If fuzzy
logics are to be logics of truth degrees, it can be convincingly argued that not only
this logic belongs to the class, but it also takes degrees of truth much more seriously
than its absolute truth-preserving counterpart (see [8], p. 392). Furthermore, since
in the times of Łukasiewicz it was commonplace to view logics as determined by
a set of valid formulas, or theorems, rather than as consequence relations, it is not
out of the question that Łukasiewicz himself, when thinking of his infinite-valued
logic, had this logic in mind rather than the truth-preserving one that is nowadays
associated with his name ([15, p. 279]).

The logics from [4] and [14] are in a similar situation. In general, they fail to be
protoalgebraic and therefore their membership in the class of fuzzy logic cannot be
determined by Bĕhounek’s and Cintula’s evaluation standard. Moreover, quantum
computational logics are typically complete w.r.t. a class of totally preordered matri-
ces, but this preordering may fail to be antisymmetric4. However, one could modify
Bĕhounek’s and Cintula’s suggestion by relaxing in some way the precondition that
the scope of the criterion is limited to weakly implicative logics, and, perhaps, by
also loosening Condition ii) so as to let in logics that are complete w.r.t. totally
preordered matrices. As regards both aspects, the framework suggested by Berman
and Blok (see [3]) in their paper on algebras defined from ordered sets looks promis-
ing: one could simply require, for instance, that the ordering relation referred to in
Condition ii) be equationally definable in the class of the algebra reducts of the ma-
trix models of the logic at issue (but not necessarily through a condition of the type
x→ y∈D, for some implication connective→ and some equationally definable truth
predicate D). In [4], a first attempt has been made to extend Berman’s and Blok’s
framework to the case of equationally definable preorders. This is not the place,
of course, to evaluate the merits of this proposal, nor to develop it further into an

3 See [8] for a brief description and a philosophical assessment.
4 There are important exceptions to this state of affairs. The quasivariety C of Cartesian√′ quasi-MV algebras is relatively 1-regular, and therefore its 1-assertional logic is reg-

ularly algebraisable with C as equivalent quasivariety semantics; C, in turn, is generated
by a single lattice-ordered algebra whose order is defined by the implication (generalised)
connective of the logic.
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alternative definition of fuzzy logic. What we wanted to point out is that Bĕhounek’s
and Cintula’s criterion, though on the right track, is in need of some adjustment if it
aims at a discrimination of many individual cases present in the logical landscape,
of which quantum computational logics and logics preserving degrees of truth are
interesting examples.

Acknowledgement. We thank Libor Bĕhounek and Petr Cintula for pointing out an
inaccuracy in a first draft of this paper, and for their stimulating observations.
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