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Fuzzy Set-Based Approximate Reasoning and
Mathematical Fuzzy Logic

Francesc Esteva and Lluís Godo

24.1 Introduction

Zadeh proposed and developed the theory of approximate reasoning in a long series
of papers in the 1970’s (see e.g. [28–32, 34, 35]), at the same time when he intro-
duced possibility theory [33] as a new approach to uncertainty modeling. His original
approach is based on a fuzzy set-based representation of the contents of factual state-
ments (expressing elastic restrictions on the possible values of some parameters) and
of if-then rules relating such fuzzy statements. Zadeh himself wrote in [37] that fuzzy
logic in narrow sense

“(. . . ) is a logical system which aims a formalization of approximate rea-
soning. In this sense it is an extension of many-valued logic. However the
agenda of fuzzy logic (FL) is quite different from that of traditional many-
valued logic. Such key concepts in FL as the concept of linguistic variable,
fuzzy if-then rule, fuzzy quantification and defuzzification, truth qualifica-
tion, the extension principle, the compositional rule of inference and inter-
polative reasoning, among others, are not addressed in traditional systems.”

Thus, according to Zadeh, fuzzy logic is something more than a system of
many-valued logic, in particular it clearly departs at first glance from the standard
view of (many-valued) logic where inference does not depend on the contents of
propositions.

On the other hand, the study of the so-called t-norm based fuzzy logics corre-
sponding to formal many-valued calculi with truth-values in the real unit interval
[0,1] defined by a conjunction and an implication interpreted respectively by a (left-)
continuous t-norm and its residuum1, has had since the mid nineties a great devel-
opment from many points of view (logical, algebraic, proof-theoretical, functional
representation, and computational complexity). This has been witnessed by a num-
ber of important monographs that have appeared in the literature since then, see e.g.
[17, 18, 25], and has very recently culminated with the handbook [3]. It is worth
noticing that, although formal, all these systems originated as an attempt to provide

1 Thus, including e.g. the well-known Łukasiewicz and Gödel infinitely-valued logics, de-
fined much before fuzzy logic was born, and corresponding to the calculi defined by
Łukasiewicz and min t-norms respectively.
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sound logical foundations for fuzzy set theory as well as to address computational
problems related to vagueness and imprecision. Indeed, Hájek, in the introduction of
his celebrated monograph [18] makes the following comment to Zadeh’s quotation:

“Even if I agree with Zadeh’s distinction (. . . ) I consider formal calculi of
many-valued logic to be the kernel of fuzzy logic in the narrow sense and
the task of explaining things Zadeh mentions by means of this calculi to be
a very promising task.”

Following this line of thought, a main part of our research efforts in the last years
have been devoted to the study and definition of different t-norm based fuzzy logic
systems (see e.g. [1, 2, 7–13]), but having in mind that a main task was to address
as much as possible the different aspects of the agenda of the fuzzy logic in narrow
sense not in principle directly covered by them, e.g. the approximate reasoning ma-
chinery (flexible constraints propagation, generalized modus ponens, compositional
rule of inference, etc.).

In this short note, as our modest homage to Prof. Lotfi Zadeh and his great con-
tributions, we revisit an approach (c.f. [4, 16, 18]) to understand some of Zadeh’s
approximate reasoning principles as sound deductions within a formal system of
mathematical fuzzy logic, so trying to bridge the gap between both areas.

24.2 Propositional and Predicate T-Norm Based Fuzzy Logics

T-norm based (propositional) logics correspond to logical calculi with the real inter-
val [0,1] as set of truth-values and defined by a conjunction & and an implication
→ interpreted respectively by a left-continuous t-norm ∗ and its residuum ⇒, and
where negation is defined as ¬ϕ = ϕ → 0, with 0 being the truth-constant for falsity.
In this framework, each left continuous t-norm ∗ uniquely determines a semantical
(propositional) calculus PC(∗) over formulas defined in the usual way from a count-
able set of propositional variables, connectives∧, & and→ and truth-constant 0 [18].
Further connectives are defined as follows:

ϕ ∨ψ is ((ϕ → ψ)→ ψ)∧ ((ψ → ϕ)→ ϕ),
¬ϕ is ϕ → 0̄,
ϕ ≡ ψ is (ϕ → ψ)&(ψ → ϕ).

Evaluations of propositional variables are mappings e assigning to each proposi-
tional variable p a truth-value e(p) ∈ [0,1], which extend univocally to compound
formulas as follows:

e(0) = 0

e(ϕ ∧ψ) = min(e(ϕ),e(ψ))

e(ϕ&ψ) = e(ϕ)∗ e(ψ)

e(ϕ → ψ) = e(ϕ)⇒ e(ψ)



24.2 Propositional and Predicate T-Norm Based Fuzzy Logics 155

Note that, from the above defintions, e(ϕ ∨ψ) = max(e(ϕ),e(ψ)), ¬ϕ = e(ϕ)⇒ 0
and e(ϕ ≡ ψ) = e(ϕ →ψ)∗ e(ψ → ϕ). A formula ϕ is a said to be a 1-tautology of
PC(∗) if e(ϕ) = 1 for each evaluation e. The set of all 1-tautologies of PC(∗) will
be denoted as TAUT(∗).

Well-known axiomatic systems, like Łukasiewicz logic (Ł), Gödel logic (G),
Product logic (Π ), Basic Fuzzy logic (BL) and Monoidal t-norm logic (MTL) syn-
tactically capture different sets of TAUT(∗) for different choices of the t-norm ∗, see
e.g. [3, 17, 18]. In other words, the following condiitons hold true, where ∗Ł, ∗G

and ∗Π respectively denote the Łukasiewicz t-norm, the min t-norm and the product
t-norm:

ϕ is provable in Ł iff ϕ ∈ TAUT(∗Ł)
ϕ is provable in G iff ϕ ∈ TAUT(∗G)
ϕ is provable in Π iff ϕ ∈ TAUT(∗Π )
ϕ is provable in BL iff ϕ ∈ TAUT(∗) for all cont. t-norm ∗
ϕ is provable in MTL iff ϕ ∈ TAUT(∗) for all left-cont. t-norm ∗

These completeness results also extend to deductions from a finite set of premises
but, in general, they do not extend to deductions from an infinite set of premises.
Prominent exceptions are the case of Gödel logic and MTL.

Predicate logic versions of propositional t-norm based logics have also been de-
fined and studied in the literature. Following [20] we provide below a general defini-
tion of the predicate logic L∗∀ for any propositional logic L∗ of a t-norm ∗. As usual,
the propositional language of L∗ is enlarged with a set of predicates Pred, a set of
object variables Var and a set of object constants Const, together with the two clas-
sical quantifiers ∀ and ∃. An [0,1]-valued L-interpretation for a predicate language
PL = (Pred,Const) of L∗∀ is a structure

M = (M,(rP)P∈Pred ,(mc)c∈Const)

where M 
= /0, rP : Mar(P)→ [0,1] and mc ∈M for each P ∈ Pred and c ∈Const. For
each evaluation of variables v : Var→M, the truth-value ‖ϕ‖M,v of a formula (where
v(x) ∈M for each variable x) is defined inductively from

‖P(x, · · · ,c, · · · )‖M,v = rP(v(x), · · · ,mc · · · ),

taking into account that the value commutes with connectives (according to the above
rules for the propositional case), and defining

‖(∀x)ϕ‖M,v = inf{‖ϕ‖M,v′ | v(y) = v′(y) for all variables, except x}
‖(∃x)ϕ‖M,v = sup{‖ϕ‖M,v′ | v(y) = v′(y) for all variables, except x}

From a syntactical point of view, the additional axioms on quantifiers for L∗∀ are the
following ones:
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(∀1) (∀x)ϕ(x)→ ϕ(t) (t substitutable for x in ϕ(x))
(∃1) ϕ(t)→ (∃x)ϕ(x) (t substitutable for x in ϕ(x))
(∀2) (∀x)(ν → ϕ)→ (ν → (∀x)ϕ) (x not free in ν)
(∃2) (∀x)(ϕ → ν)→ ((∃x)ϕ → ν) (x not free in ν)
(∀3) (∀x)(ϕ ∨ν)→ ((∀x)ϕ ∨ν) (x not free in ν)

Rules of inference of L∗∀ are modus ponens and generalization: from ϕ infer (∀x)ϕ .
The above mentioned propositional completeness results do not easily generalize

to the first order case, MTL∀ and G∀ being remarkable exceptions. For more details
on predicate fuzzy logics, including completeness and complexity results and model
theory, the interested reader is referred to [3, 20].

24.3 T-Norm Based Fuzzy Logic Modelling of Approximate
Reasoning

In the literature one can find several approaches to cast main Zadeh’s approximate
reasoning constructs in a formal logical framework. In particular, Novák and col-
leagues have done much in this direction, using the model of fuzzy logic with eval-
uated syntax, fully elaborated in the monograph [25] (see the references therein and
also [6]), and more recently he has developed a very powerful and sophisticated
model of fuzzy type theory [21, 24]. In his monograph, Hájek [18] also has a part
devoted to this task.

In what follows, we show a simple way of how to capture at a syntactical level,
namely in a many-sorted version of predicate fuzzy logic calculus, say MTL∀, some
of the basic Zadeh’s approximate reasoning patterns, basically from ideas in [16, 18].
It turns out that the logical structure becomes rather simple and the fact that fuzzy
inference is in fact a (crisp) deduction becomes rather apparent.

Consider the simplest and most usual expressions in Zadeh’s fuzzy logic of the
form

“x is A",

with the intended meaning the variable x takes the value in A, represented by a fuzzy
set μA on a certain domain U . The representation of this statement in the frame of
possibility theory is the constraint

(∀u)(πx(u)≤ μA(u)),

where πx stands for the possibility distribution for the variable x. But such a con-
straint is very easy to represent in MTL∀ as the formula2

2 Caution: do not confuse the logical variable x in this logical expression from the linguistic
(extra-logical) variable x in “x is A".
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(∀x)(X(x)→ A(x))

where A and X are many-valued predicates of the same sort in each particular model
M. Their interpretations (as fuzzy relations on their common domain) can be under-
stood as the membership function μA : U −→ [0,1] and the possibility distribution πx
respectively. Indeed, one can easily observe that ‖(∀x)(X(x)→ A(x))‖M= 1 if and
only if ‖X(x)‖M,e≤‖A(x)‖M,e, for all x and any evaluation e. From now on, variables
ranging over universes will be x,y,z; “x is A" becomes (∀x)(X(x)→ A(x)) or just
X ⊆ A; if z is 2-dimensional variable (x,y), then an expression “z is R” becomes
(∀x,y)(Z(x,y)→ R(x,y)) or just Z ⊆ R.

In what follows, only two (linguistic) variables will be involved x,y and z=(x,y).
Therefore we assume that X ,Y (corresponding to the possibility distributions πx and
πy) are projections of a binary fuzzy predicate Z (corresponding to the joint pos-
sibility distribution πx,y). The axioms we need to state in order to formalize this
assumption are:

Π1 : (∀x,y)(Z(x,y)→ X(x)) & (∀x,y)(Z(x,y)→ Y (y))
Π2 : (∀x)(X(x)→ (∃y)Z(x,y)) & (∀y)(Y (y)→ (∃x)Z(x,y))

Condition Π1 expresses the monotonicity conditions πx,y(u,v)≤ πx(u) and πx,y(u,v)
≤ πy(v), whereas both conditions Π1 and Π2 used together express the marginal-
ization conditions πx(u) = supv πx,y(u,v) and πy(v) = supv πx,y(u,v). These can be
equivalently presented as the only one condition Pro j, as follows:

Proj: (∀x)(X(x) ≡ (∃y)Z(x,y)) & (∀y)(Y (y)≡ (∃x)Z(x,y))

Next we shall consider several approximate reasoning patterns, and for each pat-
tern we shall present a provable tautology (in MTL∀) and its corresponding derived
deduction rule, which will automatically be sound.

1. Entailment Principle: From “x is A" infer “x is A∗”, whenever μA(u)≤ μA∗(u)
for all u.

Provable tautology:

(A⊆ A∗)→ (X ⊆ A→ X ⊆ A∗)

Sound rule:
A⊆ A∗,X ⊆ A

X ⊆ A∗

2. Truth-qualification: From “x is A" infer that “(x is A∗) is α-true”, where α =
infu μA(u)⇒ μA∗(u).

Provable tautology:

(X ⊆ A)→ (A⊆ A∗ → X ⊆ A∗)

Sound rule:
X ⊆ A

A⊆ A∗ → X ⊆ A∗
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3. Truth-modification: From “(x is A) is α-true” infer that “x is A∗”, where
μA∗(u) = α ⇒ μA(u).

Provable tautology (where α denotes a truth-constant):

(α → (X ⊆ A))→ (X ⊆ (α → A)

Sound rule:
(α → (X ⊆ A)
X ⊆ (α → A)

4. Cylindrical extension: From “x is A" infer “(x,y) is A+", where μA+(u,v) =
μA(u) for each v.

Provable tautology:

Π1→ [(X ⊆ A)→ ((∀xy)(A+(x,y)≡ A(x))→ (Z ⊆ A+))]

Sound rule:
Π1,X ⊆ A,(∀xy)(A+(x,y)≡ A(x))

Z ⊆ A+

5. Projection: From “(x,y) is R" infer “y is RY ", where μRY (y) = supu μR(u,v) for
each v.

Provable tautology:

Π2→ ((Z ⊆ R)→ (∀y)(Y (y)→ (∃x)R(x,y)))

Sound rule:
Π2,Z ⊆ R

(∀y)(Y (y)→ (∃x)R(x,y))

6. min–Combination: From “x is A1" and “x is A2" infer “x is A1 ∩A2", where
μA1∩A2(u) = min(μA1(u),μA2(u)).

Provable tautology:

(X ⊆ A1)→ ((X ⊆ A2)→ (X ⊆ (A1∧A2)))

Sound rule:
X ⊆ A1,X ⊆ A2

X ⊆ (A1∧A2)

where (A1∧A2)(x) is an abbreviation for A1(x)∧A2(x).

7. Compositional rule of inference: From “(x,y) is R1" and “(y,z) is R2" infer
“(x,z) is R1 ◦R2", where μR1◦R2(u,w) = supv min(μR1(u,v),μR2(v,w)).

Provable tautology:

(Z1 ⊆ R1)→ ((Z2 ⊆ R2)→ (Z3 ⊆ (R1 ◦R2)))

Sound rule:
Z1 ⊆ R1,Z2 ⊆ R2

Z3 ⊆ (R1 ◦R2)

where (R1 ◦R2)(x,z) is an abbreviation for (∃y)(R1(x,y)∧R2(y,z)).
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Note that the following rule

Cond,Pro j, X ⊆ A, Z ⊆ R
Y ⊆ B

,

where Cond is the formula (∀y)(B(y) ≡ (∃x)(A(x)∧R(x,y))), formalizing the par-
ticular instance of max–min composition rule, from “x is A" and “(x,y) is R" infer
“y is B", where μB(y) = supu min(μA(u),μR(u,v)), is indeed a derived rule from the
above ones.

More complex patterns like those related to inference with fuzzy if-then rules “if
x is A then y is B” can also be formalized. As it has been discussed elsewhere (see
e.g. [4, 5]), there are several semantics for the fuzzy if-then rules in terms of the
different types constraints on the joint possibility distribution πx,y it may induce.
Each particular semantics will obviously have a different representation. We will
describe just a couple of them.

Within the implicative interpretations of fuzzy rules, gradual rules are interpreted
by the constraint πx,y(u,v) ≤ μA(u)⇒ μB(v), for some residuated implication ⇒.
According to this interpretation, the folllowing is a derivable (sound) rule

Cond, Pro j, X ⊆ A∗, Z ⊆ A→ B
Y ⊆ B∗

,

where (A→ B)(x,y) stands for A(x)→ B(y) and Cond is (∀y)[B∗(y) ≡ (∃x)(A∗(x)
∧(A(x)→ B(y)))].

Finally, within the conjunctive model of fuzzy rules (i.e. Mamdani fuzzy rules),
where a rule “if x is A then y is B” is interpreted by the constraint πx,y(u,v)≥ μA(u)∧
μB(v), and an observation “x is A∗” by a positive constraint πx(u)≥ A∗(u), one can
easily derive the Mamdani model (here with just one rule)

Cond, Pro j, X ⊇ A∗, Z ⊇ A∧B
Y ⊇ B∗

,

where Cond is (∀y)[B∗(y)≡ (∃x)(A∗(x)∧A(x))∧B(y)].

24.4 Conclusions

In this short note we have put forward our thesis that Mathematical Fuzzy logic is
not only the basic kernel of fuzzy logic in narrow sense (with which Zadeh and many
fuzzy logicians agree) but also a logical framework where many of the well known
concepts and approximate reasoning inference rules of fuzzy logic in narrow sense
can be properly formalized. Obviously there are some others fuzzy concepts that are
more difficult to be fully interpretable in Mathematical Fuzzy logic. Among them,
we can cite:

• Linguistic modifiers. They have been partially interpreted as unary connectives
in the logical framework, in particular the so-called fuzzy truth hedges (very true,
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slightly true, etc.). These are usually classified in two classes: truth-stressers, that
modify the truth-value of an expression by decreasing it, and truth-depressers,
that modify the truth-value of an expression by increasing it. The formalization
in this kind of connectives has been within the framework of t-norm based fuzzy
logics has been addressed in several papers, e.g. by Hájek [19], Vichodyl [26] and
Esteva et al. [15].

• Fuzzy quantifiers. There is a nice chapter in Hájek’s book [18] devoted to this
topic where he axiomatizes the quantifier “many”, but it is only a first step in the
work needed to do (there are many non-answered questions). Also Nóvak has
done very interesting work (see e.g. [22]) on formalizing linguistic quantifiers. In
fact in first-order fuzzy logics like the ones mentioned in Section 24.2, the only
formalized quantifiers are the classical ones ∀ and ∃, interpreted as inf and sup
respectively.

Nevertheless we believet that, in the near future, new developments in mathemati-
cal fuzzy logic3 will make possible the non-trivial task of defining formal systems
of fuzzy logic closer and closer to the “logic” of human approximate reasoning as
envisaged and proposed by Lotfi A. Zadeh since long ago.

Fig. 24.1. Llorenç Valverde, Enric Trillas, Francesc Esteva and Joan Jacas when L. A. Zadeh
was awarded the PhD Honoris Causa by the University of Oviedo (Spain) in 1995

3 See e.g. [23] for a list of possible future tasks in the study of mathematical fuzzy logic and
its applications.
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Fig. 24.2. Participants of the Workshop “The logic of Soft Computing” held in Gargnano
(Italy), Nov 19-24, 2001. Standing row (from left to right): Beata Konikowska, Tanja
Kisielova, Lotfi Zadeh, Daniele Mundici, Norbert Preining, Peter Vojtas, Lluís Godo, NN,
Petr Cintula, Paolo Farina, Petr Hájek, NN, Ryszard Wójcicki, Matthias Baaz. Front row
(from left to right): Arnon Avron, Brunella Gerla, Agata Ciabbattoni, Francesc Esteva, Anto-
nio Di Nola, Nicola Olivetti, Paolo Amato.
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