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Fuzziness in Automata Theory: Why? How?

Miroslav Ćirić and Jelena Ignjatović

17.1 Introduction

The aim of this article is to explain why we study fuzzy automata and how we do it,
i.e., to highlight the most efficient tools of the theory of fuzzy sets that we use in our
research. In addition, we want to show how research in the theory of fuzzy automata
affected our research in other areas of the theory of fuzzy sets.

We entered in the world of fuzziness when we crossed from the classical algebra
and automata theory to the theory of fuzzy automata. Besides being considered as
a natural generalization of ordinary automata and languages, fuzzy automata and
related languages have also been studied as a means for bridging the gap between
the precision of computer languages and vagueness and imprecision, which are fre-
quently encountered in the study of natural languages (cf. [18]). During the decades,
they have got a wide field of applications. However, many authors thought mainly
about the properties of ordinary automata which can be transferred to fuzzy au-
tomata. We found that the theory of fuzzy automata is not only simple translation
of the results from the classical automata theory to the language of fuzzy sets, but
it is possible to use powerful tools of the theory of fuzzy sets in the study of fuzzy
automata.

The key point is that a fuzzy automaton can be regarded as a fuzzy relational sys-
tem. It can be specified by a family {δx}x∈X of fuzzy transition relations on the set of
states A, indexed by the input alphabet X , and fuzzy subsets σ and τ of A, the fuzzy
subsets of initial and terminal states. Inductively we define the composite fuzzy tran-
sition relations {δu}u∈X∗ by putting that δε is the crisp equality, and δux = δu ◦δx, for
u ∈ X∗, x ∈ X . Now, the fuzzy language recognized by the fuzzy automaton A is
defined as a fuzzy subset LA of X∗ given by LA (u) = σ ◦ δu ◦ τ , for u ∈ X∗.1 This
way of representing fuzzy automata, and fuzzy languages that they recognize, en-
ables to study fuzzy automata using fuzzy relational calculus, and to express many
problems through fuzzy relation equations and inequalities. Fuzzy relational cal-
culus and fuzzy relation equations and inequalities have been widely used in our
research.

Previously, fuzzy relational calculus and fuzzy relation equations and inequal-
ities were used in the theory of fuzzy automata only by few authors – Peeva,

1 Here X∗ denotes the monoid of all words over X , ε ∈ X∗ is the empty word, and ◦ denotes
the compositions of two fuzzy relations, of a fuzzy set and a fuzzy relation and two fuzzy
sets, defined in the usual way over a residuated lattice or lattice-ordered monoid.
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Bělohlávek, and Li and Pedrycz (cf. [1, 19–22]). Surprisingly, such approach has not
been used for ordinary nondeterministic automata, although their behavior can be
expressed in terms of the calculus of two-valued relations. Probably, the reason for
this is the fact that nondeterministic automata are predominantly considered from
the perspective of the graph theory, and not from the perspective of the algebra of
relations. A little bit similar approach has been used for weighted automata over a
semiring, whose behavior is defined through the calculus of matrices with entries
in the underlying semiring (cf. [8]). However, matrices over a semiring do not pos-
sess some very important properties of ordinary and fuzzy relations, and their use in
the study of weighted automata is not as fruitful as the use of fuzzy relations in the
study of fuzzy automata.

We will briefly explain how we used fuzzy relational calculus and fuzzy relation
equations and inequalities in solving the fundamental problems of the theory of fuzzy
automata: determinization, equivalence and state reduction.

17.2 Determinization of Fuzzy Automata

A deterministic fuzzy automaton is a fuzzy automaton having exactly one crisp ini-
tial state and a deterministic transition function, and the fuzziness is entirely concen-
trated in the fuzzy set of terminal states. The determinization of a fuzzy automaton
is a procedure of constructing an equivalent deterministic fuzzy automaton2. Such
procedure is usually required in most practical applications and implementation
of automata. The first determinization algorithms for fuzzy automata, provided by
Bělohlávek and Li and Pedrycz, generalize the well-known subset construction, and
have the same shortcoming as its crisp counterpart: some states of the resulting au-
tomaton can be redundant (cf. [1, 19]). We have constructed the Nerode automaton
associated with a fuzzy automaton, a deterministic fuzzy automaton which is equiv-
alent to the original fuzzy automaton and has no redundant states. Its states are fuzzy
sets of the form σu = σ ◦ δu, for u ∈ X∗, the single initial state is σ = σε , the transi-
tion function δN is defined by δN(σu,x) = σux, for u∈ X∗, x∈ X , and the fuzzy set τN

of terminal states is defined by τN(σu) = σu ◦ τ , for u ∈ X∗. The Nerode automaton
always has smaller number of states than automata constructed by the previous deter-
minization methods, but nevertheless, in some cases it may be infinite. Its finiteness
depends on certain local properties of the underlying structure of truth values, and
necessary and sufficient conditions under which the Nerode automaton is finite have
been determined. We have also provided an improved algorithm, which constructs
the reduced Nerode automaton with even smaller number of states than the Nerode
automaton (cf. [10, 13, 17]).

The Nerode automaton was originally constructed for fuzzy automata over a com-
plete residuated lattice, but it was noted that the same construction can be applied to
fuzzy automata over a lattice-ordered monoid, and even more, to weighted automata

2 Two fuzzy automata are equivalent if they recognize the same fuzzy language.
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over a semiring. All these structures have the multiplication which is distributive
over the supremum (or addition), which ensures associativity of the composition of
fuzzy relations. However, it was shown that the Nerode automaton and the reduced
Nerode automaton can be constructed even if the composition is not associative, i.e.,
for automata with weights that are taken in a strong bimonoid, a structure which is
not necessarily distributive. In particular, this includes fuzzy automata over arbitrary
lattices (cf. [2, 17]).

17.3 Equivalence of Fuzzy Automata and Bisimulations

Another important problem of automata theory is to determine whether two given au-
tomata are equivalent. For deterministic automata this problem is solvable in polyno-
mial time, but for nondeterministic and fuzzy automata it is computationally hard. It
is also desirable to express the equivalence of automata as a relation between their
states, if possible, or find some relation between states which implies the equiva-
lence. The equivalence of two deterministic automata can be expressed in terms of
relationships between their states, but in the case of nondeterministic and fuzzy au-
tomata the problem is more complicated, and we can only examine various relations
which imply the equivalence.

It is generally agreed that the best way to model the equivalence of automata is
the concept of bisimulation. They give a close enough approximation of the equiva-
lence and are efficiently computable. Bisimulations were introduced in concurrency
theory, and independently, in set theory and modal logic, and nowadays, they are
successfully employed in many areas of computer science and mathematics. We have
introduced two types of simulations for fuzzy automata, forward and backward simu-
lations, and combining them, we have defined four types of bisimulations (cf. [5, 6]).
Forward simulations between two fuzzy automata A and A ′ are defined as solu-
tions to the system of fuzzy relation inequalities σ ≤ σ ′ ◦ϕ−1, ϕ−1 ◦ δx ≤ δ ′x ◦ϕ−1

(x ∈ X), ϕ−1 ◦ τ ≤ τ ′, backward simulations as solutions to the system τ ≤ ϕ ◦ τ ′,
δx ◦ϕ ≤ ϕ ◦ δ ′x (x ∈ X), σ ◦ϕ ≤ σ ′, and bisimulations are defined by a combina-
tion of these two systems.3 The greatest solutions to these systems, i.e., the greatest
simulations and bisimulations between fuzzy automata, are computed by iterative
procedures. Termination of these iterative procedures after a finite number of steps
also depends on local properties of the underlying structure of truth values. Key role
in the computation of the greatest simulations and bisimulations play the residuals of
fuzzy relations, which we have introduced. To ensure the existence of these residuals,
it is necessary that the underlying structure of truth values is also residuated, so our
theory has been developed for fuzzy automata over a complete residuated lattice.4

3 Here ϕ denotes an unknown fuzzy relation between the sets of states of A and A ′, and
ϕ−1 denotes its inverse (converse, transpose) fuzzy relation.

4 In fact, commutativity of the multiplication is not necessary, and analogous results can be
obtained when the underlying structure of truth values is a quantale.
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17.4 State Reduction

In contrast to deterministic automata, for which there are many fast minimization
algorithms, the state minimization problem for nondeterministic and fuzzy automata
is computationally hard. For these automata, a more practical problem is the state
reduction, where we have to construct an automaton with as small as possible number
of states, which is equivalent to a given automaton. This automaton need not be
minimal, but must be efficiently computable.

We have reduced the state reduction problem for fuzzy automata to the problem
of solving a particular system of fuzzy relation equations (cf. [7, 23]). For a given
fuzzy automaton and a fuzzy equivalence on its set of states, we have defined the
related factor fuzzy automaton. In general, these two fuzzy automata are not equiva-
lent. Based on the fact that the fuzzy language recognized by a fuzzy automaton A
can be expressed as LA (u) = σ ◦ δu ◦ τ , for u ∈ X∗, we have expressed the equiv-
alence of a fuzzy automaton and its factor fuzzy automaton as a system of fuzzy
relation equations, called the general system. Namely, we have shown that these two
fuzzy automata are equivalent if and only if the fuzzy equivalence by which we per-
form factorization is a solution to the general system. However, the general system
may consist of infinitely many equations, and finding its non-trivial solutions may be
a very difficult task, so we have aimed our attention to some instances of this system
which consist of finitely many equations and are easier to solve. The most interesting
instances are those systems that define forward and backward bisimulations between
the states of a single fuzzy automaton. We have provided effective procedures for
computing the greatest forward and backward bisimulation fuzzy equivalences on
a fuzzy automaton, which ensure the best reductions by fuzzy equivalences of these
types. Moreover, we have shown that even better reductions can be achieved alternat-
ing reductions by forward and backward bisimulation fuzzy equivalences, and also,
if we use fuzzy quasi-orders instead of fuzzy equivalences.

17.5 The Reverse Impact

As we have seen, fuzzy relational calculus and the theory of fuzzy relation ine-
qualities and equations have had a tremendous impact on our research in the theory of
fuzzy automata. However, this research has had a very strong reverse impact. Prob-
lems arising from the study of fuzzy automata have led to the launch of some new
questions regarding various types of fuzzy relations. We have given many new results
on fuzzy equivalences and fuzzy quasi-orders, and moreover, we have introduced a
completely new concept of a uniform fuzzy relation (cf. [3, 4]). Our original inten-
tion was to introduce uniform fuzzy relations as a basis for defining such concept of a
fuzzy function which would provide a correspondence between fuzzy functions and
fuzzy equivalence relations, analogous to the correspondence between crisp func-
tions and crisp equivalence relations. This was done, but also, it turned out that uni-
form fuzzy relations establish natural relationships between fuzzy partitions of two
sets, some kind of “uniformity” between these fuzzy partitions. Roughly speaking,
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uniform fuzzy relations can be conceived as fuzzy equivalence relations which relate
elements of two possibly different sets. They were employed to solve some systems
of fuzzy relation equations that have important applications in approximate reason-
ing, and to define and study fuzzy homomorphisms and fuzzy relational morphisms
of algebras (cf. [4, 11]). However, uniform fuzzy relations have shown their full
strength in the study of equivalence between fuzzy automata, which has previously
been discussed (cf. [5]).

Systems of fuzzy relation equations and inequalities that emerged from our re-
search in the theory of fuzzy automata initiated the study of the systems of the same
form from the general aspect. These systems are referred to as weakly linear systems
(cf. [9, 12, 14]). There has been proved that every weakly linear system, with a com-
plete residuated lattice as the underlying structure of truth values, has the greatest so-
lution, and an algorithm has been provided for computing this greatest solution. This
algorithm is based on the computing of the greatest post-fixed point, contained in
a given fuzzy relation, of an isotone function on the lattice of fuzzy relations. The
algorithm represents an iterative procedure whose each single step can be viewed
as solving a particular linear system, and for this reason these systems were called
weakly linear. This iterative procedure terminates in a finite number of steps when-
ever the underlying complete residuated lattice is locally finite, for example, when
dealing with Boolean or Gödel structure. Otherwise, some sufficient conditions un-
der which the procedure ends in a finite number of steps have been determined. If
the underlying complete residuated lattice satisfies infinite distributive laws for the
supremumand multiplication over infimum, for example, when dealing with a struc-
ture defined by a continuous t-norm on the real unit interval [0, 1] (an BL-algebra
on [0, 1]), the greatest solution can be obtained as the infimum of fuzzy relations
outputted after each single step of the iterative procedure.

It is worth noting that the methodology developed for solving weakly linear sys-
tems has been recently extended to an even broader context, and used for solving
systems of inequalities and equations over partially ordered sets defined by residu-
ated and residual functions (cf. [15]).
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16. Ignjatović, J., Ćirić, M., Simović, V.: Fuzzy Relation Equations and Sub-
systems of Fuzzy Transition Systems. Knowledge-based Systems (2012),
doi:10.1016/j.knosys.2012.02.008
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