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Abstract. The travelling-wave ultrasonic motor (TWUSM) has been used in 
industrial, medical, robotic and automotive applications. However, the 
TWUSM has the nonlinear characteristic and dead-zone problem which varies 
with many driving conditions. A novel control scheme, recurrent fuzzy neural 
network controller (RFNNC) and general regression neural network controller 
(GRNNC), for a TWUSM control is presented in this paper. The RFNNC 
provides real-time control such that the TWUSM output can tightly track the 
reference command. The adaptive updated RFNNC law is derived using 
Lyapunov theorem such that the system stability can be absolute. The GRNNC 
is appended to the RFNNC to compensate for the TWUSM dead-zone using a 
predefined set. The experimental results are shown to demonstrate the 
effectiveness of the proposed control scheme. 
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1 Introduction 

The TWUSM is a new type of motor that is driven using the ultrasonic vibration force 
of piezoelectric elements. It has excellent performance and many useful features [1], 
such as high torque at low speed, quiet operation, light weight and compact size, 
quick response, wide velocity range, high efficiency, simple structure, easy 
production process and no electro-magnetic interference [2-3]. The TWUSM can be 
used in many industries such as industrial, medical, automotive, aerospace science 
and accurate positioning actuators [4]. 

The TWUSM is a new type of actuator with different control technique and 
operating principles than conventional electro-magnetic motors. Because the 
TWUSM is composed of piezoelectric ceramics instead of electro-magnetic windings 
in the motor structure [5], the TWUSM driving principles are based on the ultrasonic 
vibration of piezoelectric elements and mechanical frictional force [6].  

The TWUSM motor dynamic model is very complicated with nonlinear 
characteristics, which vary with many driving conditions. The TWUSM parameters 
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are nonlinear and time varying due to the increasing temperature and different motor 
drive operating conditions. These parameters include driving frequency, source 
voltage and load torque [1]. The TWUSM control characteristics are very complex to 
analyze and accurately model [7]. 

In general, the TWUSM drive and digital control system apply three independent 
control methods which are the drive frequency control, supplied voltage control and 
applied voltage phase difference control. In the phase difference control method the 
motor shows a variable dead-zone in the control input (phase difference of applied 
voltages) against the operating frequency. The dead-zone is due to a large static 
friction torque appearing at low speed. It is therefore difficult to design a perfect angle 
controller that can provide accurate control at all times. According to practical control 
issues, many speed controllers based on PI (proportional plus integral) controller 
using mathematical models of the motor have been reported. 

Because the PI controller control algorithms are simple and the controllers have 
advantages such as high-stability margin and high-reliability when the controllers are 
tuned properly, the PI controller can be used to drive common motors. However, the PI 
controller cannot maintain these virtues at all times. The ultrasonic motor has nonlinear 
speed characteristics which vary with drive operating conditions. In order to overcome 
these difficulties, a dynamic controller with adjustable parameters and online learning 
algorithms is suggested for unknown or uncertain dynamic systems [8-9]. 

In the past few years there has been much research on neural network (NN) 
applications in order to deal with the nonlinearities and uncertainties in control 
systems [10-12]. According to NN structures, the NN can be classified mainly as 
feed-forward neural network (FNN) and recurrent neural network (RNN) [13]. It is 
well known that the FNN is capable of closely approximating continuous functions. 
The FNN conducts static mapping without the aid of delays. The FNN is unable to 
represent dynamic mapping. Although the FNN presented in much research is used to 
deal with delay and dynamic problems, The FNN requires a large number of neurons 
to express dynamic responses [14]. The weight calculations are not updated quickly 
and the function approximation is sensitive to the training data.  

The RNN [15], on the other hand has superior capabilities compared to the FNN. 
The RNN exhibits dynamic response and information storing ability for later use. 
Since the recurrent neuron has an internal feedback loop, it captures the dynamic 
response of a system without external feedback through long delays. Thus, the RNN 
is a dynamic mapping and displays good control performance in the presence of 
unknowable and time-varying model dynamics [16]. As a result the RNN is better 
suited for dynamic systems than the FNN. 

If the number of hidden neurons too many, the computation load becomes heavy so 
that the RNN is not suitable for online practical applications. If the number of hidden 
neurons is too few the learning performance may not be good enough to achieve the 
desired control performance. To solve this problem we propose a novel controller, the 
RFNNC, to maintain high accuracy. 

The RFNNC has a number of attractive advantages compared to recurrent neural 
network control. For example, it has superior modelling performance due to local 
modelling and the fuzzy partition of the input space, linguistic dynamic fuzzy rule 
description, a learning based training example structure and parsimonious models 
with smaller parametric complexity [17]. The RFNNC combines fuzzy reasoning 
capability to handle uncertain information and the artificial recurrent neural network 
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capability to learn processes to deal with the nonlinearities and uncertainties that 
frustrate the TWUSM. 

The RFNNC still presents a challenge considering the TWUSM as a plant. In the 
proposed RFNNC, the controller is effective in handling the small characteristic 
variations in the motor due to RFNNC connecting weight updating. However,  
the RFNNC is not able to fully compensate for the dead-zone effect and therefore the 
dynamic response deteriorates [18]. For these reasons an angle control scheme for the 
TWUSM with dead-zone compensation based on the RFNNC is presented in this 
research. The GRNNC is adopted to determine the dead-zone compensating input and 
decouple the RFNNC output. Because of the saturation reverse effect, phase 
difference control is not adequate for precise angle control. Therefore, the drive 
frequency must also be implemented, leading to a more accurate control strategy. The 
GRNNC based on RFNNC applies both the driving frequency and phase difference 
constructions as a dual-mode control method. The proposed controller can take the 
nonlinearity into account and compensate for the TWUSM dead zone. This approach 
also provides robust performance against parameter variations. The usefulness and 
validity of the proposed control scheme is examined through experimental results. 
The experimental results reveal that the GRNNC based on the RFNNC maintains 
stable performance under different motion conditions. 

2 The Control Scheme 

The TWUSM nonlinear dynamic system is expressed as: 

( ) ( ) ( ) ( )f g u t d tθ θ θ= + +  (1) 

where ( )f ⋅  and ( )g ⋅  are unknown functions that are bounded. u(t) is the control 

input, d(t) is the external disturbance, and θ  is rotor angle displacement of the 
TWUSM. 
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Fig. 1. The proposed control structure 

The proposed control scheme, illustrated in Fig. 1, is composed of two main 
blocks, RFNNC and GRNNC. The RFNNC provides real-time control such that the 
TWUSM output can track the reference command 

rθ . The back-propagation 

algorithm is applied in the RFNNC to automatically adjust the parameters on-line. 
The RFNNC adaptive laws are derived using the Lyapunov Theorem such that the 
system stability can be absolute. Γ , T

mΓ , T
σΓ , T

rΓ  are the adaptive update law training 
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parameters and 
1η , 

2η , 
3η , 

4η , 
5η  are the learning rates. The GRNNC is appended to 

the RFNNC to compensate for the TWUSM dead-zone using a predefined set. The 
GRNNC is designed to avoid the TWUSM dead-zone response. 

2.1 Recurrent Fuzzy Neural Networks Controller 

A controller is designed such that the TWUSM output can track the reference 
command. The tracking error vector is first defined as 

[ ],  
T

E e e=   (2) 
 

where 
re θ θ= −  is the angle tracking error. From (1) and (2), an ideal controller can 

be chosen as 

* 1
( ) [ ( ) ( ) ]

( )
T

r n n
n

u t f d t K E
g

θ θ
θ

= − − +  (3) 
 

where [ ]2 1,
T

K k k= , 
1k  and 

2k  are positive constants. Applying (2) to (3), the error 

dynamics can be expressed as 

1 2 0e k e k e+ + =   (4) 
 

If K is chosen to correspond to Hurwitz polynomial coefficients, it is a polynomial 
whose roots lie strictly in the open left half of the complex plane. A result is then 
achieved where ( )lim 0

t
e t

→∞
=  for any initial conditions. Nevertheless, the functions 

( )f θ  and ( )g θ  are not accurately known and the external load disturbances are 

perturbed. The ideal controller ( )*u t  cannot thus be practically implemented. 

Therefore, the RFNNC will be designed to approximate this ideal controller. 
Figure 2 shows the four-layer RFNNC structure, which is comprised of an input 

layer, membership layer, rule layer and output layer. The superscript of symbol y 
means the ordinal number of the layer, and the subscript of symbol y means its 
number. The symbol w  expresses the weight of the signals. The RFNNC model is 
summarized as follows: 
 

(1) Input Layer. The RFNNC inputs are 1
ex e=  and 1

ex e=  . The input layer outputs 

are 1
,e iy  and 1

,e iy , which are equal to the inputs: 

1 1
, ;    1 ~ 3e i ey x i= =  (5) 

1 1
, ;    1 ~ 3e i ey x i= =   (6) 

(2) Membership Layer. There are three membership functions for e and e , 
respectively. The three signals are sent to calculate the degree belonging to the 
specified fuzzy set. The outputs 2

,e iy  and 2
,e iy   are as follows: 

21
, ,2

,
,

exp ;    1 ~ 3e i e i
e i

e i

y m
y i

σ

  − = − =     

 
(7) 
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(8) 

where m and σ  are the mean and standard deviation of the Gaussian function. They 
express different RFNNC membership functions so the layer output can represent the 
degree the input belongs to the fuzzy rule. 
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Fig. 2. The four-layer RFNNC structure 

(3) Rule Layer. The outputs 3
ky  of the rule layer can be expressed as 

3

3 2 2
, ,10 ( 1)

1
( ) (1 ) ( ) ( )

1 100 exp
D

k k
k e i e jr y t

y t y t y t
− −

= +
+ ⋅


 

(9) 

where 3 ( 1)k i j= × − + , 1~ 3,i = 1~ 3j =  and 1 ~ 9k = . D
kr  are the weights. The value 

of 3
ky  is always positive and between zero and two.  

 

(4) Output Layer. The output 4
oy  of the RFNNC can be expressed as 

9
4 3 T

1

T

ˆ+ sgn(E PB)

ˆ        ( , , , )+ sgn(E PB)

RFNN o k k
k

T

u y w y

w x m r

δ

σ δ
=

= =

= Γ

  
(10) 

where 
3 3 3
1 2 9( , , , )

T
x m r y y yσ  Γ =    fuzzy rule function vector, and 

[ ]1 2 9

T
w w w w=   adjustable output weight vector, δ  a small positive constant, 

and [ ],
T

E e e=  . 
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Assume that an optimal RFNNC exists to approximate the ideal control law such 
that 

* * * * * * * *( , , , , )
T

RFNNu u e w m r wσ ε ε= + = Γ +  (11) 
 

where ε  is a minimum reconstructed error, *w , *m , *σ , *r  and *Γ  are optimal 
parameters of w, m, σ , r and Γ , respectively. Thus, the RFNNC control law is 
assumed to take the following form: 

Tˆˆˆ + sgn(E PB)T
RFNNu u w δ= = Γ  (12) 

 

where ŵ , m̂ , σ̂ , r̂  and Γ̂  are estimations of the optimal parameters, provided by 
algorithm tuning to be introduced later. Subtracting (12) from (11), an approximation 
error u  is obtained as 

* * * T

* T

ˆˆˆ sgn(E PB)

ˆˆ  sgn(E PB)

T T

T T

u u u w w

w w

ε δ
ε δ

= − = Γ + − Γ −

= Γ + Γ + −




 (13) 

 

where * ˆw w w= −  and * ˆΓ = Γ − Γ . The linearization technique transforms the 
multidimensional receptive-field basis functions into a partially linear form such that 
the expansion of Γ  in Taylor series becomes 

3 3
1 9

T

m r vy y m r Oσσ Γ = = Γ + Γ + Γ + 
       (14) 

 

where 3 3* 3ˆk k ky y y= − , 3*
ky  the optimal parameter of 3ˆky , 3ˆky  the estimated parameter of 

3*
ky , * ˆm m m= − , * ˆσ σ σ= − , * ˆr r r= − , 

vO  higher-order terms, 

3 3
ˆ1 9/ ... / |

T

m m my m y m = Γ = ∂ ∂ ∂ ∂ 
, 3 3

ˆ1 9/ ... / |
T

y yσ σ σσ σ = Γ = ∂ ∂ ∂ ∂   and 

3 3
ˆ1 9/ ... / |

T

r r ry r y r = Γ = ∂ ∂ ∂ ∂  . 

Equation (14) can be rewritten as 
* ˆ

m r vm r OσσΓ = Γ + Γ + Γ + Γ +    (15) 
 

Substituting (15) into (13), it can be rewritten as: 
T

T

ˆˆ ˆ( ) ( ) sgn(E PB)

ˆˆ ˆ   = ( ) sgn(E PB)

T T
m r v m r v

T T
m r

u w m r O w m r O

w w m r D

σ σ

σ

σ σ ε δ

σ δ

= Γ + Γ + Γ + Γ + + Γ + Γ + Γ + + −

Γ + Γ + Γ + Γ − +

       

   
 (16) 

 

where *( )
TT

m r vD w m r w Oσσ ε= Γ + Γ + Γ + +     is the uncertainty term, and this term is 

assumed to be bounded with a small positive constant δ  ( let D δ≤ ). From (1), (4) 

and (16), an error equation is obtained 
*

T

( )

ˆˆ ˆ  ( ) sgn(E PB)T T
m r

E AE B u u AE Bu

AE B w w m r Dσσ δ

= + − = +

 = + Γ + Γ + Γ + Γ − + 

 

   
 

(17) 

Consider the dynamic system represented by (1), if the RFNNC is designed as (12) 
with the adaptation laws for networks parameters shown in (18)–(22), the stability of 
the proposed RFNNC can be guaranteed. where 

1η , 
2η , 

3η , 
4η  and 

5η  are strictly 

positive constants. 



 Ultrasonic Motor Control Based on Recurrent Fuzzy Neural Network Controller 297 

1
ˆˆ Tw E PBη= Γ  (18) 

2ˆ ˆT T
mm wE PBη= Γ  (19) 

3ˆ ˆT TwE PBσσ η= Γ  (20) 

4ˆ ˆT T
rr wE PBη= Γ  (21) 

5
ˆ TE PBδ η=  (22) 

 

Proof 
Define a Lyapunov function candidate as 

2

1 2 3 4 5

1 1 1 1 1 1
( ) ( )

2 2 2 2 2 2
T T T T TV t E PE tr w w m m r rσ σ δ

η η η η η
= + + + + +          (23) 

 

where P is a symmetric positive definite matrix which satisfies the following 
Lyapunov equation 

TA P PA Q+ = − (24) 
 

where Q is a positive definite matrix. Here, the uncertainty bound estimation error is 
defined as ˆδ δ δ= − . Taking the Lyapunov function differential (23) and using (16) 
and (24), it is concluded that 

( )

1 2 3 4 5

1 ˆ ˆ ( )
2

1 1 1 1 1 ˆˆ ˆ ˆ ˆ         

T T T T
C

T T T T

V t E QE E PB w w m r u D
m r

w w m m r r

σσ

σ σ δδ
η η η η η

 = − + Γ + Γ + Γ + Γ − +  

− − − − −

    

       

 
(25) 

 

Take (18)-(22) into (25), the derivative of V can be rewritten as 

( )
5

1 1 ˆ(  )
2

1
       ( ) 0

2

T T T
C

T T

V t E QE E PBD E PBu

E QE E PB D

δ δ δ
η

δ

= − + − − −

≤ − − − ≤

 
 

(26) 

 

Therefore regardless what the situation is, the derivative of V respect to time is 
smaller than zero. ( ) 0V t ≤  is negative semi-definite (i.e., ( ) ( )0V t V≤  ), which 

implies E, w , m , σ , δ  and r  are bounded. Let function ( ) ( )/ 2TF t E QE V t= ≤ −  , 

and integrate function with respect to time. 
Because V(0) is bounded, and V(t) is bounded, the following result is obtained:  

( )
0

lim
t

t
F dτ τ

→∞
< ∞  (27) 

 

Since ( )F t  is bounded, by Barbalat’s Lemma it can be shown that ( )lim 0
t

F t
→∞

= . This 

implies that ( )E t  will converge to zero as t → ∞ . As a result, the stability of the 

proposed control system can be guaranteed. 
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2.2 Convergence Analysis of RFNNC 

Although the stability of the adaptive RFNNC can be guaranteed, the parameters ŵ , m̂ , 
σ̂  and r̂  in (18)–(21) cannot be guaranteed within a bound value. The RFNNC output is 
bounded, whether the means, the standard deviation of the Gaussian function and weights 
are bounded. The constraint sets w , m , σ  and r  are defined respectively 

{ }ˆwU w w= ≤  (28) 

{ }ˆmU m m= ≤  (29) 

{ }ˆUσ σ σ= ≤  (30) 

{ }ˆrU r r= ≤  (31) 
 

where   ⋅  is a two-norm of vector, w , m , σ  and r  are positive constants, and the 

adaptive laws (18)-(21) can be modified as follows 

( )1

1 1 2

ˆ ˆˆ ˆ ˆ,                              if     0

ˆ ˆ ˆˆ ˆ ˆˆ ˆ,   if   0                       
ˆ

T T T

T
T T T T

E PB w w or w w and E PBw

w ww
E PB E PB w w and E PBw

w

η

η η

 Γ < = Γ ≤
= 

Γ − Γ = Γ >



 

(32) 

( )2

2 2 2

ˆ ˆ ˆ ˆ ˆ,                                  if    0  

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ,  if   0                        

ˆ

T T T T
m m

T
T T T T T T
m m m

wE PB m m or m m and E PBw m

m mm
wE PB wE PB m m and E PBw m

m

η

η η

 Γ < = Γ ≤
= 

Γ − Γ = Γ >



 

(33) 

( )3

3 3 2

ˆ ˆ ˆ ˆ ˆ,                                  if    0  

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ,  if   0                        

ˆ

T T T T

T
T T T T T T

wE PB or and E PBw

wE PB wE PB and E PBw

σ σ

σ σ σ

η σ σ σ σ σ
σ σση η σ σ σ

σ

 Γ < = Γ ≤
= 

Γ − Γ = Γ >



 

(34) 

( )4

4 4 2

ˆ ˆ ˆ ˆ ˆ,                                  if     0  

ˆ ˆˆ
ˆ ˆ ˆ ˆ ˆ,   if   0                      

ˆ

T T T T
r r

T
T T T T T T
r r r

wE PB r r or r r and E PBw r

r rr
wE PB wE PB r r and E PBw r

r

η

η η

 Γ < = Γ ≤
= 

Γ − Γ = Γ >




 

(35) 

 

If the initial values ˆ (0) ww U∈ , ˆ (0) mm U∈ , ˆ (0) Uσσ ∈  and ˆ(0) rr U∈  then the adaptive 

laws (32)-(35)guarantee that ˆ ( ) ww t U∈ , ˆ ( ) mm t U∈ , ˆ ( )t Uσσ ∈  and ˆ( ) rr t U∈  for all 0t ≥ . 

Define a Lyapunov function as 

1
ˆ ˆ

2
T

wv w w=  (36) 

The derivative of the Lyapunov function is presented as 

ˆ ˆT
wv w w=   (37) 

 

Assume the first line of (32) is true, either ŵ w<  or ( )ˆˆ ˆ 0T Tw w and E PBw= Γ ≤ . 

Substituting the first line of (32) into (37), which becomes 
1

ˆˆ 0T T
wv E PBwη= Γ ≤ . As a 
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result, ŵ w≤  is guaranteed. In addition, when ˆˆ ˆ 0T Tw w and E PBw= Γ > , 

1 1 2

ˆ ˆˆ ˆˆ ˆ 0
ˆ

T
T T T T

w

w w
v E PBw E PB w

w
η η= Γ − Γ = . That ŵ w≤  can be also assured. Thereby, 

the initial value of ŵ  is bounded, ŵ  is bounded by the constraint set w  for 0t ≥ . 

Similarly, it can be proved that m̂  is bounded by the constraint set m , σ̂  is 

bounded by the constraint set σ  and r̂  is bounded by the constraint set r  for 0t ≥ . 

When the condition ŵ w<  or ( )ˆˆ ˆ 0T Tw w and E PBw= Γ ≤ , ˆ  m m<  or 

( )ˆ ˆ ˆ  0T T
mm m and E PBw m= Γ ≤ , σ̂ σ<  or ( )ˆ ˆ ˆ 0T Tand E PBw σσ σ σ= Γ ≤ , r̂ r<  or 

( )ˆ ˆ ˆ  0T T
rr r and E PBw r= Γ ≤ , the stability analysis the same as (33), (34) and (35). 

In the other situation, the condition ŵ w=  and ˆˆ 0T TE PBw Γ > , m̂ m=  and 

ˆ ˆ 0T T
mE PBw mΓ > , σ̂ σ=  and ˆ ˆ 0T TE PBw σσΓ > , r̂ r=  and ˆ ˆ 0T T

rE PBw rΓ >  is 

occurred, the Lyapunov function can be rewritten as follows 

( )

( )

1

2 3 4 5

2 2

2

1 1ˆ ˆ ˆ ˆ ˆ)
2

1 1 1 1 ˆˆ ˆ ˆ     

ˆ ˆ1 ˆˆ ˆ ˆ ( )
2 ˆ ˆ

ˆ
ˆ ˆ ˆ      ( ) (

ˆ

T T T T T T T
w C

T T T

T T
T T T T T T T

C m

T
T T T T

r

v E QE E PB w w m w w r D u w w
m r

m m r r

w w m m
E QE E PB D u E PB w w E PBm

w m

w E PB wσ

σσ η

σ σ δδ
η η η η

σ σσ
σ
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Equation ( )2 2 2* ˆ / 2 0Tw w w w w= − − <  , which is according to *ˆ ˆw w w= > . 

Similarly, *ˆ ˆm m m= > , *ˆ ˆσ σ σ= >  and *ˆ ˆr r r= >  can be proven. It is finally 
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Using the same discussion shown in the previous section, the stability property can 
also be guaranteed since 0E →  as 0t → . 

2.3 General Regression Neural Networks Controller 

As a common nonlinear problem, a dead-zone often appears in the control system, 
which not only makes a steady-sate error, it also deteriorates the dynamic quality of 
the control systems. The GRNNC is proposed to solve this problem. The GRNNC is a 
powerful regression tool with a dynamic network structure and the training speed is 
extremely fast. Due to the simplicity of the network structure and ease of 
implementation, it can be widely applied to a variety of fields.  

The GRNNC structure, shown in Fig. 3, is suggested for the system input nonlinear 
compensation. The input u is the RFNNC output, 1

GW  is the weight of the hidden 

layer, 2
GW  is the weight of the output layer, a is the output of the hidden layer, 

Gu  is 

the output of the output layer. 
 

n a

Hidden Layer Output Layer

1×1

R×1

2×R

R×1

2×1

R×1
2

G
G

W a
u

a

⋅=
 Gudist

u

2
GW1

GW

 

Fig. 3. The GRNNC structure 

The GRNNC is composed of two layers, the hidden layer and the output layer. 
The input u  of the GRNNC means a torque calculated by the RFNNC. The 
outcome n of dist  represents the Euclidean distance between the input u and each 

element of 1
GW . n is passed using a Gaussian function. When the Euclidean distance 

between u and 1
GW  is far, the output element a approaches zero. On the other hand, 

if the Euclidean distance is short the output element a approaches one. The 
Gaussian function is 

2

exp
n m

a
σ

 − = −     

 (40) 

where m  and σ  are the center and standard deviation of the Gaussian function, 
respectively. In order to increase the discrimination and have better performance, the 
standard deviation σ  value of the Gaussian function is chosen as low. 

The relation function of the output layer can be expressed as  
2

G
G

W a
u

a

⋅=


 
(41) 
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The output vector of the hidden layer a is multiplied with appropriate weights 2
GW  to 

sum up the output 
Gu  of the GRNNC. The output 

Gu  is composed of frequency 

control 
fu  and phase control 

Pu  and expressed as 

T

G f pu u u =    (42) 

Applying the GRNNC, the dead-zone of the TWUSM will be compensated as desired. 

3 Experiments 

Experiments are required to prove the feasibility of the proposed scheme. Figure 4 
shows the experimental structure, which includes TMS320F2812 digital signal 
processor (DSP), TWUSM driver and TWUSM. The TMS320F2812 DSP experiment 
board is applied as the computing core. The DSP program was coded in C language. 
After compilation, assembly and link, the execution file is generated by C2000 code 
composer (CCS). The execution file is executed in the same windows interface. 

In these experiments three different controllers were chosen for comparison. 
(i) The proposed control scheme, RFNNC and GRNNC. 

(ii) The RFNNC only, without GRNNC. The control algorithm of RFNNC only is 
the same as RFNNC of the proposed control scheme. 

(iii) The PI controller. The PI controller is the one of the most used controller in linear 
system. The control PI controller has important advantages such as a simple 
structure and easy to design. Therefore, PI controllers are used widely in 
industrial applications. Owing to the absence of the TWUSM mathematical 
model, the PI controller parameters are chosen by trial and error in such a way 
that the optimal performance occurs at rated conditions. A block diagram of the 
angle control system for an ultrasonic motor using a PI controller is shown in Fig. 
5. Where 

rθ  and θ  are the command and rotor angle, e(k) is the tracking error, 

fu  is the frequency command, 
pu  is the phase different command, respectively. 

The PI controller parameters were selected as 1000PK =  and 100IK = . 
 

sinmV tω

sin( )mV tω φ+

Frequency-Controlled 
      Voltage ( )fu

Phase-Controlled 
      Voltage ( )Pu

 

Fig. 4. The experiment structure 
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Fig. 5. The block diagram of the dual-mode PI control 

Figures 6 to 8 show the experimental results for the proposed control scheme, the 
RFNNC only, and the PI control respectively, for a periodic square angle command 
from -90 to 90 degrees. Figures 9 to 11 show the experimental results for the 
proposed control scheme, the RFNNC only, and the PI control respectively, for a 
sinusoidal angle command from -90 to 90 degrees. Figure (a) shows the TWUSM 
angle response and speed response. Figure (b) shows the angle error between angle 
command and angle response. 

 

  
                                       (a)                                                                               (b)         

Fig. 6. The experimental result for the proposed control scheme for a periodic angle square 
command from -90 to 90 degrees 

  
                               (a)                                                               (b) 

Fig. 7. The RFNNC only experimental result for a periodic square angle command from -90 to 
90 degrees 
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                                       (a)                                                                              (b) 

Fig. 8. The experimental result for the PI control for a periodic square angle command from -90 
to 90 degrees 

  
                                      (a)                                                                             (b)         

Fig. 9. The experimental result for the proposed control scheme for a sinusoidal angle 
command from -90 to 90 degrees 

  
                                       (a)                                                                              (b)          

Fig. 10. The RFNNC only experimental result for a sinusoidal angle command from -90 to 90 
degrees 



304 T.-C. Chen, T.-J. Ren, and Y.-W. Lou 

  
                                       (a)                                                                              (b) 

Fig. 11. The experimental result for the PI control for a sinusoidal angle command from -90 to 
90 degrees 

Observing the experimental results for the proposed control scheme in Figs. 6 and 
9 the tracking errors for both can converge to an acceptable region and the control 
performance is excellent. The proposed controller retains control performance and has 
no dead-zone. 

The RFNNC only experimental results in Figs. 7 and 10 show that the tracking 
error is similar to the proposed control scheme. However, the RFNNC drawbacks 
interfere with the dead-zone and the motor speed has a serious chattering 
phenomenon at slow speed near zero. 

Figures 8 and 11 illustrate that the PI controller has a chattering phenomenon like 
the RFNNC only and a larger tracking error. 

4 Conclusions 

This paper presented a proposed control scheme, RFNNC and GRNNC, applied to the 
TWUSM. Many concepts such as controller design and the stability analysis of the 
controller are introduced. The experiment results show that the proposed control 
scheme is feasible and the performance is better than conventional control  
methods. 

The proposed control scheme includes the RFNNC and GRNNC. The RFNNC is 
designed to track the reference angle. The membership function and weight variables 
can be updated using adaptive algorithms. Moreover, all parameters proposed 
RFNNC parameters are tuned in the Lyapunov sense; thus, the system stability can be 
guaranteed. In the RFNNC a compensated controller is designed to recover the 
residual part of the approximation error. The GRNNC is appended to the RFNNC to 
compensate for the TWUSM system dead zone using a predefined set. The GRNNC 
can successfully avoid the TWUSM dead-zone problem. The experimental results 
verify that the proposed controller can control the system well. 
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