
Generating Fuzzy Partitions from Nominal
and Numerical Attributes with Imprecise Values

J.M. Cadenas, M.C. Garrido, and R. Martı́nez

University of Murcia, Faculty of Informatic, Campus of Espinardo, 30100 Murcia, Spain
{jcadenas,carmengarrido,raquel.m.e}@um.es

Abstract. In areas of Data Mining and Soft Computing is important the dis-
cretization of numerical attributes because there are techniques that can not work
with numerical domains or can get better results when working with discrete do-
mains. The precision obtained with these techniques depends largely on the qual-
ity of the discretization performed. Moreover, in many real-world applications,
data from which the discretization is carried out, are imprecise. In this paper we
address both problems by proposing an algorithm to obtain a fuzzy discretization
of numerical attributes from input data that show imprecise values in both nu-
merical and nominal attributes. To evaluate the proposed algorithm we analyze
the results on a set of datasets from different real-world problems.

Keywords: Fuzzy partition, Imperfect information, Fuzzy random forest ensem-
ble, Imprecise data.

1 Introduction

The construction of fuzzy intervals in which a numerical domain is discretized supposes
an important problem in the areas of data mining and soft-computing due to the deter-
minate of these intervals can deeply affect the performance of the different classification
techniques [1].

Although there are a lot of algorithms to discretization, most of them have not con-
sidered that sometimes the information available to construct the partitioning is not as
precise and accurate as desirable. However, imperfect information inevitably appears in
realistic domains and situations. Instrument errors or corruption from noise during ex-
periments may give rise to information with incomplete data when measuring a specific
attribute. In other cases, the extraction of exact information may be excessively costly
or unfeasible. Moreover, it might be useful to complement the available data with addi-
tional information from an expert, which is usually elicited by imperfect data (interval
data, fuzzy concepts, etc). In most real-world problems, data have a certain degree of
imprecision. Sometimes, this imprecision is small enough for it to be safely ignored.
On other occasions, the imprecision of the data can be modeled by a probability distri-
bution. However, there is a third kind of problems, where the imprecision is significant,
and a probability distribution is not the most natural way to model it. This is the case of
certain practical problems where the data are inherently fuzzy [2,6,8,10].

When we have imperfect data, we have two options: the first option is to transform
the original data for another kind of data which the algorithm can work; the second

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 167–182.
DOI: 10.1007/978-3-642-35638-4_12 c© Springer-Verlag Berlin Heidelberg 2013

168 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

one is to work directly with original data without carrying out any transformation in
data. When we choose the first option, we can lose information and therefore, we can
lose accuracy. For this reason, it is necessary to incorporate the handling of information
with attributes which may present missing and imprecise values in the discretization
algorithms.

In this paper we present an algorithm, which we call EOFP (Extended Optimized
Fuzzy Partitions) that obtains fuzzy partitions from imperfect information. This algo-
rithm extends the OFP CLASS algorithm [4] to incorporate the management of im-
precise values (intervals and fuzzy values) in numerical attributes, set-valued nominal
attributes (nominal attributes with imprecise values) and set-valued classes (imprecise
values for the attribute class).

EOFP Algorithm follows the steps of a top-down discretization process with four
iterative stages [9]: 1.- All kind of numerical values in the dataset to be discretized are
ordered. 2.- The best cut point for partitioning attribute domains is found. 3.- Once the
best cut point is found, the domain of each attribute is divided into two partitions. 4.-
Finally, we check whether the stopping criterion is fulfilled, and if so the process is
terminated.

To implement the above general discretization process, EOFP Algorithm is divided
in two stages. In the first stage, we carry out a search of the best cut points for each
attribute. In the second stage, based on these cut points, we use a genetic algorithm
which optimizes the fuzzy sets formed from the cut points.

The structure of this study is as follows. In Section 2, we are going to present the
EOFP Algorithm. In addition, in this section we are going to extend a fuzzy decision
tree, which is used as base in the first stage of EOFP algorithm. This tree is able to
work with imprecise information both in the values of the attributes and in the class
values. Later, in Section 3, we will show various experimental results which evaluate
our proposal in comparison with previously existing proposals. For these experiments
we will use datasets with imprecision. In Section 4, we will show the conclusions of
this study. Finally, we include Appendix A with a brief description of the combination
methods used at work.

2 Designing the Algorithm

In this section we are going to present the EOFP Algorithm which is able to work with
imprecise data. The EOFP Algorithm builds fuzzy partitions which guarantees for each
attribute:

– Completeness (no point in the domain is outside the fuzzy partition), and
– Strong fuzzy partition (it verifies that ∀x ∈ Ωi,

∑Fi

f=1 μBf
(x) = 1whereB1, .., BFi

are the Fi fuzzy sets for the partition of the i numerical attribute with Ωi domain
and μBf

(x) are its functions membership).

The domain of each i numerical attribute is partitioned in trapezoidal fuzzy sets, B1,
B2.., BFi , so that:

Generating Fuzzy Partitions from Nominal and Numerical Attributes 169

μB1(x) =

⎧
⎨

⎩

1 b11 ≤ x ≤ b12
(b13−x)
(b13−b12)

b12 ≤ x ≤ b13
0 b13 ≤ x

; μB2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x ≤ b12
(x−b12)
(b13−b12)

b12 ≤ x ≤ b13
1 b13 ≤ x ≤ b23

(b24−x)
(b24−b23)

b23 ≤ x ≤ b24
0 b24 ≤ x

;

· · · ; μBFi
(x) =

⎧
⎪⎨

⎪⎩

0 x ≤ b(Fi−1)3
(x−b(Fi−1)3)

(b(Fi−1)4−b(Fi−1)3)
b(Fi−1)3 ≤ x ≤ b(Fi−1)4

1 bFi3 ≤ x

The EOFP Algorithm is composed for two stages: in the stage 1 we use a fuzzy decision
tree. In this stage we get possible cut points to different attributes. In the stage 2 we
carry out the process by which we optimize the cut points and make fuzzy partitions.
The objective is to divide the numerical domains in fuzzy sets which will be competitive
and effective to obtain a good accuracy in the classification task.

Before to describe the EOFP Algorithm, we are going to present a fuzzy decision
tree witch is be able to work with imprecise data.

2.1 Fuzzy Decision Tree

In this section, we describe a fuzzy decision tree that we will use as base classifier in a
Fuzzy Random Forest ensemble to evaluate fuzzy partitions generated and whose basic
algorithm will be modified for the first stage of the EOFP Algorithm, as we will see
later. This tree is an extension of the fuzzy decision tree that we presented in [4], to
incorporate the management of imprecise values.

The tree is built from a set of examples E which are described by attributes which
may be nominal expressed with crisp values and with a set of domain values (set-valued
nominal attributes) and/or numerical expressed with crisp, interval and fuzzy values
where there will be at least one nominal attribute which will act as class attribute. In
addition, the class attribute can be expressed with a set of classes (set-valued class).
Thus, the class also may be expressed in an imprecise way.

The fuzzy decision tree is based on the ID3 algorithm, where all numerical attributes
have been discretized by means of a series of fuzzy sets. An initial value equal to 1
(χroot(ej) = 1, where χN (ej) is the membership degree of ej to node N and ej is
j-th example from dataset) is assigned to each example ej used in the tree learning,
indicating that initially ej is only in the root node of the tree. This value will continue
to be 1 as long as the example ej does not belong to more than one node during the
tree construction process. In a classical tree, an example can only belong to one node at
each moment, so its initial value (if it exists) is not modified throughout the construction
process. But in a fuzzy decision tree, this value is modified when the test in a node is
based on an attribute with missing, interval or fuzzy values, or with a set-valued nominal
attribute.

An Attribute with Missing Values. When the example ej has a missing value in an
attribute i which is used as a test in a node N , the example descends to each child node

170 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

Nh, h = 1, ..., Hi with a modified value proportionately to the weight of each child
node. The modified value for each Nh is calculate as:

χNh
(ej) = χN (ej) · TχNh

TχN

where TχN is the sum of the weights of the examples with known value in the attribute
i at node N and TχNh

is the sum of the weights of the examples with known value in
the attribute i that descend to the child node Nh.

An Attribute with Interval and Fuzzy Values. When the test of a node N is based
on attribute i which is numerical, each example in N modifies its weight according
to the membership degree of that example to different fuzzy sets of the partition. In
this case, the example ej descends to those child nodes to which it belongs with a
degree greater than 0 (μBf

(ej) > 0; f = 1, ..., Fi). Due to the characteristics of the
partitions we use, the example may descend to two child nodes at most. In this case,
χNh

(ej) = χN (ej) · μBf
(ej); ∀f | μBf

(ej) > 0; h = f .
When the test of a nodeN is based on a numerical attribute i and the value to attribute

i in ej is a fuzzy value different from the set of partitions of the attribute, or an interval
value, we need to extend the function that measures the membership degree of these
type of data. This new function (denoted μsimil(·)) captures the change in the value
χN (ej), when ej descends in the fuzzy decision tree. For this reason, the membership
degree of ej is calculated using a similarity measure (μsimil(ej)) between the value of
attribute i in ej and the different fuzzy sets of the partition of attribute i. Therefore,
the example ej can descend to different child nodes. In this case, χNh

(ej) = χN (ej) ·
μsimil(ej).

Function μsimil(ej) is defined, for f = 1, . . . , Fi, as:

μsimil(ej) =

∫
(min{μej (x), μf (x)})dx

∑Fi

f=1

∫
(min{μej (x), μf (x)})dx

(1)

where

– μej (x) represents the membership function of the fuzzy or interval value of the ex-
ample ej in the attribute i.

– μf (x) represents the membership function of the fuzzy set of the partition of the
attribute i.

– Fi is the cardinality of the partition of the attribute i.

A Set-Valued Nominal Attribute. When the test on a node of the tree is based on a
nominal attribute, and some examples of that node have a set of domain values for that
attribute as value, each of these examples will descend to each child node, according to
a set values, with a weight proportional to the weight of each value in the set. So, if in
the example ej of node N , the nominal attribute x, with domain {X1, X2, . . . , Xt}, has
the value (P1 X1, P2 X2, . . . , Pt Xt) and x is the test in the node, ej descends to each
child node Nh, h = 1, . . . , t with weight χNh

(ej) = χN (ej) · Ph.

Generating Fuzzy Partitions from Nominal and Numerical Attributes 171

Fig. 1. Management of set-valued nominal attributes

For example, let x be a nominal attribute with domain {X1, X2, X3}. The value of
x in an example ej can be expressed by (0.2 X1, 0.8 X3) indicating that there are un-
certainty in the value and we assign a certainty degree of 0.8 to x = X3 and a certainty
degree of 0.2 to x = X1. Figure 1 shows, in an illustrative way, the management of this
example in the fuzzy decision tree.

In a general way, we can say that the χN (ej) value indicates the degree with which
the example fulfills the conditions that lead to node N on the tree.

Calculating the Information Gain in an Extended Fuzzy Decision Tree. Another
aspect of this extended fuzzy decision tree is the way to calculate the information gain
when node N (node which is being explored at any given moment) is divided using the
attribute i as test attribute. This information gain GN

i is defined as:

GN
i = IN − IS

N
Vi (2)

where:

– IN : Standard information associated with node N . This information is calculated as
follows:

1. For each class k = 1, ..., |C|, the value PN
k , which is the number of examples

in node N belonging to class k, is calculated:

PN
k =

|E|∑

j=1

χN (ej) · μk(ej) (3)

where χN (ej) is the membership degree of example ej to node N and μk(ej)
is the membership degree of example ej to class k.

2. PN , which is the total number of examples in node N , is calculated.

PN =

|C|∑

k=1

PN
k

3. Standard information is calculated as: IN = −∑|C|
k=1

PN
k

PN · log PN
k

PN

172 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

– IS
N
Vi is the product of three factors and represents standard information obtained by

dividing node N using attribute i adjusted to the existence of missing values in this
attribute.

IS
N
Vi = I

SN
Vi

1 · IS
N
Vi

2 · IS
N
Vi

3

where:

• I
SN
Vi

1 = 1 - PNmi

PN , where PNmi is the weight of the examples in node N with
missing value in attribute i.

• I
SN
Vi

2 = 1
∑Hi

h=1 PNh
, Hi being the number of descendants associated with node

N when we divide this node by attribute i and PNh the weight of the examples
associated with each one of the descendants.

• I
SN
Vi

3 =
∑Hi

h=1 P
Nh · INh , INh being the standard information of each descen-

dant h of node N .

On the other hand the stopping criterion is the same that we described in [4] which is
defined by the first condition reached out of the following: (a) pure node, (b) there aren’t
any more attributes to select, (c) reaching the minimum number of examples allowed
in a node. Besides, it must be pointed out, that once an attribute has been selected as a
node test, this attribute will not be selected again due to the fact that all the attributes
are nominal or are partitioned.

Having constructed the fuzzy decision tree, we use it to infer an unknown class of a
new example. The inference process is as follow:

Given the example e to be classified with the initial value, for instance, χroot(e) = 1,
go through the tree from the root node. After obtain the leaf set reached by e. For each
leaf reached by e, calculate the support for each class. The support for a class on a given
leaf N is obtained according to the expression (3). Finally, obtain the tree’s decision,
c, from the information provided by the leaf set reached and the value χ with which
example e activates each one of the leaves reached.

With the fuzzy decision tree presented at the moments, we have incorporated nu-
merical attributes with imprecise values which are described by an interval or fuzzy
values. Also, we have incorporated nominal attributes expressed by a set of values. In
the next subsection we consider the modifications which are necessary to carry out in
the phases of learning and classification to incorporate the treatment of examples whose
class attribute is set-valued.

Evaluating Data with Set-Valued Classes. In the previous section, we have said that
the initial weight of one example e may be equal to 1 (χroot(e) = 1) but this value
depends on if the example has a single class or it has a set-valued class. In the first case,
if the example e has a single class, the initial weight is 1 and in the second case the initial
weight will depend on the number of classes that example has. Therefore, if the example
e has a set-valued class with nclasses classes, the example will be replicated nclasses

times and each replicate of the example e will have associated the weight 1/nclasses.
In this case, when we perform a test of the tree to classify a dataset with set-valued

classes, we can follow the decision process:

Generating Fuzzy Partitions from Nominal and Numerical Attributes 173

If class(e)==classtree(e)∧size(class(e))==1 then successes++
else

If class(e)∩ classtree(e) �= ∅ then success or error++ else errors++

where classtree is the class that fuzzy decision tree provides as output and class(e) is
the class value of the example e.

As result of this test, we obtain the interval [min error,max error] where
min error is calculated considering only errors indicated in the variable errors from
the previous process and max error is calculated considering as errors errors +
success or error.

With this way to classify, the tree receives an imprecise input and its output is im-
precise too, because it’s not possible to determine exactly a unique error.

One, we have described the fuzzy decision tree that we will use to classify, and that
with some modifications, we will use in the stage 1 of the discretization algorithm, we
are going to expose such algorithm. As we said earlier, the discretization algorithm
EOFP is composed by two stages which we are going to present.

2.2 First Stage: Searching for Cut Points

In this stage, a fuzzy decision tree is constructed whose basic process is that described
in Subsection 2.1, except that now a procedure based on priority tails is added and
there are attributes that have not been discretized. To discretize these attributes, the first
step is look for the cut points which will be the border between different partitions. In
previous section, we are expose that to discretize attributes, we must order the values.
If all data are not crisp, we need a function to order crisp, fuzzy and interval values. To
order data, we use the same function that to search for the possible cut points.

To deal with non-discretized attributes, the algorithm follows the basic process in
C4.5. The thresholds selected in each node of the tree for these attributes will be the
split points that delimit the intervals. Thus, the algorithm that constitutes this first stage
is based on a fuzzy decision tree that allows nominal attributes, numerical attributes
discretized by means of a fuzzy partition, non-discretized numerical attributes described
with crisp, interval and fuzzy values and furthermore it allows the existence of missing
values in all of them. Algorithm 1 describes the whole process.

In the step 1, all examples in the root node have an initial weight equal to 1, less
the examples with set-valued class whose weight will be initialize as we indicate in the
Section 2.1. The tail is a priority tail, ordered from higher to lower according to the total
weight of the examples of nodes that form the tail. Thus the domain is guaranteed to
partition according to the most relevant attributes.

In the step 3, when we expand a node according to an attribute:

1. If the attribute is already discretized, the node is expanded into many children as
possible values the selected attribute has. In this case, the tree’s behaviour is similar
to that described in the Subsection 2.1.

2. If the attribute is not previously discretized, its possible descendants are obtained. To
do this, as in C4.5, the examples are ordered according to the value of the attribute in
question. To carry out the order of data with crisp, fuzzy and interval values, we need
an ordering index, [13]. Therefore, we have a representative value for each interval

174 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

Algorithm 1. Search of cut points
SearchCrispIntervals(in : E, Fuzzy Partition; out : Cut points)
begin
(a) Start at the root node, which is placed in the initially empty priority tail. Initially, in the root

node is found the set of examples E with an initial weight.
(b) Extract the first node from the priority tail.
(c) Select the best attribute to split this node using information gain expressed in (2) as the crite-

rion. We can find two cases: The first case is where the attribute with the highest information
gain is already discretized, either because it is nominal, or else because it had already been
discretized earlier by the Fuzzy Partition. The second case arises when the attribute is
numerical and non-discretized. In this case it is necessary to obtain the corresponding cut
points.

(d) Having selected the attribute to expand node, all the descendants generated are introduced in
the tail.

(e) Go back to step two to continue constructing the tree until there are not nodes in the priority
tail or until another stopping condition occurs, such as reaching nodes with a minimum
number of examples allowed by the algorithm.

end

and fuzzy value and we can order all values of the non-discretized attributes. The
index used is calculated as in (4). Let Ai be a fuzzy set (or interval) in the attribute i
of the example e:

Y (Ai) =

∫ 1

0

M(Aiα)dα (4)

where Y (Ai) is the representative value of the fuzzy or interval data of the attribute
i and M(Aiα) is the mean value of the elements of Aiα.

This index determines for each fuzzy or interval value a number with which we
order all values. Using the crisp and the representative values, we find the possible
cut points as a C4.5 tree. The intermediate value between value of the attribute for
example ej and for example ej+1 is obtained. The value obtained will be that which
provides two descendants for the node and to which the criterion of information gain
is applied. This is repeated for each pair of consecutive values of the attribute, search-
ing for the value that yields the greatest information gain. The value that yields the
greatest information gain will be the one used to split the node and will be considered
as a cut point for the discretization of this attribute. When example e descend to the
two descendants, the process carries out is the same that we explain in Section 2.1
and if the value of the attribute is fuzzy or interval, we apply the function (1) to de-
termine the membership of this example e to the descendant nodes, because we only
use the representative value of these kind of values to order and to get cut points, but
when we need use these values to do some estimates, we use the original value and
not the representative value.

2.3 Second Stage: Optimizing Fuzzy Partitions with Imprecise Data

In the second stage of the EOFP Algorithm, we are going to use a genetic algorithm to
get the fuzzy sets that make up the partitioning of nondiscretized attributes. We have

Generating Fuzzy Partitions from Nominal and Numerical Attributes 175

decide to use a genetic algorithm, because these algorithms are very powerful and ro-
bust, as in most cases they can successfully deal with an infinity of problems from very
diverse areas and specifically in Data Mining [5]. These algorithms are normally used in
problems without specialized techniques or even in those problems where a technique
does exist, but is combined with a genetic algorithm to obtain hybrid algorithms that
improve results [7].

The genetic algorithm takes as input the cut points which we have obtained in the
first stage, but it is important to mention that the genetic algorithm will decide what cut
points are more important to construct the fuzzy partitions, so it is possible that many cut
points are not used to obtain the optimal fuzzy partitions. Maximum if the first stage gets
F cut points for the attribute i, the genetic algorithm can make up Fi+1 fuzzy partitions
for the attribute i. However, if the genetic algorithm considers that the attribute i doesn’t
have a lot of relevance in the dataset, this attribute won’t be partitioned. The different
elements which compose this genetic algorithm are as follows:

Encoding. An individual will consist of two arrays v1 and v2. The array v1 has a real
coding and its size will be the sum of the number of cut points that the fuzzy tree
will have provided for each attribute in the first stage. Each gene in array v1 repre-
sents the quantity to be added to and subtracted from each attribute’s split point to form
the partition fuzzy. On the other hand, the array v2 has a binary coding and its size is
the same that the array v1. Each gene in array v2 indicates whether the correspond-
ing gene or cut point of v1 is active or not. The array v2 will change the domain of
each gene in array v1. The domain of each gene in array v1 is an interval defined by
[0,min(pr−pr−1

2 , pr+1−pr

2)] where pr is the r-th cut point of attribute i represented by
this gene except in the first (p1) and last (pu) cut point of each attribute whose domains
are, respectively: [0,min(p1,

p2−p1

2] and [0,min(pu−pu−1

2 , 1− pu].
When Fi = 2, the domain of the single cut point is defined by [0,min(p1, 1 − p1].

The population size will be 100 individuals.

Initialization. First the array v2 in each individual is randomly initialized, provided
that the genes of the array are not all zero value, since all the split points would be
deactivated and attributes would not be discretized. Once initialized the array v2 , the
domain of each gene in array v1 is calculated, considering what points are active and
which not. After calculating the domain of each gene of the array v1, each gene is
randomly initialized generating a value within its domain.

Fitness Function. The fitness function of each individual is defined according to the
information gain defined in [1]. Algorithm 2 implements the fitness function, where:

– μif is the membership function corresponding to fuzzy set f of attribute i. Again,
we must emphasize that this membership function depends on the kind of attribute.
Where if the attribute is numerical or belonging to a known fuzzy partition, the mem-
bership function is calculated as we have indicated in 2. On the contrary if the at-
tribute is fuzzy or interval, the membership function is calculated as we show in
function (1).

– Ek is the subset of examples of E belonging to class k.
This fitness function, based on the information gain, indicates how dependent the
attributes are with regard to class, i.e., how discriminatory each attribute’s partitions

176 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

Algorithm 2. Fitness Function

Fitness(in : E, out : V alueF itness)
begin

1. For each attribute i = 1, ..., |A|:
1.1 For each set f = 1, ..., Fi of attribute i

For each class k = 1, ..., |C| calculate the probability Pifk =
∑

eεEk
µif (e)

∑
eεE µif (e)

1.2 For each class k = 1, ..., |C| calculate the probability Pik =
∑Fi

f=1 Pifk

1.3 For each f = 1, ..., Fi calculate the probability Pif =
∑|C|

k=1 Pifk

1.4 For each f = 1, ..., Fi calculate the information gain of attribute i and set f Iif =
∑|C|

k=1 Pifk · log2 Pifk

Pik·Pif

1.5 For each f = 1, ..., Fi calculate the entropy Hif = −∑|C|
k=1 Pifk · log2 Pifk

1.6 Calculate the I and H total of attribute i
Ii =

∑Fi
f=1 Iif and Hi =

∑Fi
f=1 Hif

2. Calculate the fitness as : V alueF itness =
∑|A|

i=1 Ii
∑|A|

i=1 Hi

end

are. If the fitness we obtain for each individual is close to zero, it indicates that the
attributes are totally independent of the classes, which means that the fuzzy sets ob-
tained do not discriminate classes. On the other hand, as the fitness value moves
further away from zero, it indicates that the partitions obtained are more than accept-
able and may discriminate classes with good accuracy.

Selection. Individual selection is by means of tournament, taking subsets with size 2.

Crossing. The crossing operator is applied with a probability of 0.3, crossing two in-
dividuals through a single point, which may be any one of the positions on the vector.
Not all crossings are valid, since one of the restrictions imposed on an individual is that
the array v2 should not has all its genes to zero. When crossing two individuals and
this situation occurs, the crossing is invalid, and individuals remain in the population
without interbreeding. If instead the crossing is valid, the domain for each gene of array
v1 is updated in individuals generated.

Mutation. Mutation is carried out according to a certain probability at interval [0.01,
0.1], changing the value of one gene to any other in the possible domain. First, the gene
of the array v2 is mutated and then checked that there are still genes with value 1 in v2.
In this case, the gene in v2 is mutated and, in addition, the domains of this one and its
adjacent genes are updated in the vector v1. Finally, the mutation in this same gene is
carried out in the vector v1.

If when a gene is mutated in v2 all genes are zero, then the mutation process is not
produced.

Stopping. The stopping condition is determined by the number of generations situated
at interval [100, 150].

The genetic algorithm should find the best possible solution in order to achieve a
more efficient classification.

Generating Fuzzy Partitions from Nominal and Numerical Attributes 177

In the next section we want to show with some computational experiments that it is
important construct fuzzy partitions from real data versus transform them because we
will lost information and accuracy.

3 Experiments

In this section we are going to show different experiments to evaluate if the fuzzy par-
titions which are constructed without making any transform of data (EOFP Algorithm)
are better than fuzzy partitions which are constructed making certain transformation on
imprecise data to convert them in crisp data (OFP CLASS algorithm). All partitions are
evaluated classifying with a Fuzzy Random Forest ensemble (FRF) [3] which is able to
handle imperfect data into the learning and the classification phases.

The experiments are designed to measure the behavior of fuzzy partitions used in the
FRF ensemble using datasets and results proposed in [11,12] where the authors use a
fuzzy rule-based classifier to classify datasets with imprecise data such as missing or
interval. Also they use uniform partitions to evaluate the datasets and we are going to
show how the results are better when the partitions are fuzzy although they are con-
structed using the modified dataset instead of the original dataset. Also we are going to
show how the results in classification are still better if we don’t modify data to construct
the fuzzy partitions. Due to we are going to compare with results of [11,12], we define
the experimental settings quite similar to those proposed by them.

3.1 Datasets and Parameters for FRF Ensemble

To evaluate fuzzy partitions, we have used real-world datasets about medical diagnosis
and high performance athletics [11,12], that we describe in Table 1.

Table 1. Datasets

Dataset |E| |M| I Dataset |E| |M| I

100ml-4-I 52 4 2 Dyslexic-12 65 12 4
100ml-4-P 52 4 2 Dyslexic-12-01 65 12 3
Long-4 25 4 2 Dyslexic-12-12 65 12 3

Table 1 shows the number of examples (|E|), the number of attributes (|M |) and the
number of classes (I) for each dataset. “Abbr” indicates the abbreviation of the dataset
used in the experiments.

All FRF ensembles use a forest size of 100 trees. The number of attributes chosen at
random at a given node is log2(| · |+1), where | · | is the number of available attributes
at that node, and each tree of the FRF ensemble is constructed to the maximum size
(node pure or set of available attributes is empty) and without pruning.

3.2 Results

These experiments were conducted to test the accuracy of FRF ensemble when it
uses fuzzy partitions constructed from real-world datasets with imperfect values

178 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

using EOFP Algorithm. These results are compared with the ones obtained by the
GFS classifier proposed in [11], which uses uniform partitions and with the results ob-
tained by FRF ensemble when uses fuzzy partitions constructed with the OPF CLASS
Algorithm.

It is important to clarify that OPF CLASS Algorithm doesn’t work with imperfect
data. For this reason, to get the fuzzy partitions of these datasets we have modified the
original data. The interval or fuzzy values have been changed by their average values.
Therefore we have transformed the interval and fuzzy values in crisp values and of this
way the OPF CLASS Algorithm can work with these datasets.

In these experiments we have used the available datasets in “http://sci2s.ugr.es/ keel/”
and the available results in [11,12]. There are datasets from two different real-world
problems. The first one is related to the composition of teams in high performance ath-
letics and the second one is a medical diagnosis problem. A more detailed description
of these problems may be found in [11,12].

High Performance Athletics. The score of an athletics team is the sum of the in-
dividual scores of the athletes in the different events. It is the coach’s responsibility to
balance the capabilities of the different athletes in order to maximize the score of a team
according to the regulations. The variables that define each problem are as follows:

– There are four indicators for the long jump that are used to predict whether an athlete
will pass a given threshold: the ratio between the weight and the height, the maxi-
mum speed in the 40 meters race, and the tests of central (abdominal) muscles and
lower extremities;

– There are also four indicators for the 100 meters race: the ratio between weight and
height, the reaction time, the starting or 20 m speed, and the maximum or 40 m
speed.

The datasets used in this experiment are the following: “Long-4” (25 examples, 4 at-
tributes, 2 classes, no missing values and all attributes are interval-valued), “100ml-
4-I” and “100ml-4-P” (52 examples, 4 attributes, 2 classes, no missing values and all
attributes are interval-valued).

As in [11], we have used a 10 fold cross-validation design for all datasets. Table 2
shows the results obtained in [11] and the ones obtained by the FRF ensemble with the
six combination methods which are explained in detail in [3]. In Appendix 4 we present
a brief intuitive description of each of them. Except for the crisp algorithm proposed in
[11], in Table 2, the interval [mean min error, mean max error] obtained for each
dataset according to the decision process described in Section 2.1, is shown. For each
dataset, the best results obtained with each algorithm are underlined.

The results obtained in classification by the extended GPS proposed in [11] and FRF
ensemble, are very promising because we are representing the information in a more
natural and appropriate way, and in this problem, we are allowing the collection of
knowledge of the coach by ranges of values and linguistic terms.

The results of FRF ensemble are very competitive with all fuzzy partitions but the
fuzzy partitions obtained with EOFP Algorithm are the best.

Generating Fuzzy Partitions from Nominal and Numerical Attributes 179

Table 2. Comparative results for datasets of high performance athletics

Dataset

100ml-4-I 100ml-4-P Long-4

Technique Train Test Train Test Train Test

E
O

F
P

F
uz

zy
pa

rt
it

io
n FFRSM1 [0.107,0.305] [0.130,0.323] [0.043,0.235] [0.093,0.290] [0.191,0.484] [0.083,0.349]

FRFSM2 [0.110,0.306] [0.150,0.343] [0.045,0.237] [0.110,0.307] [0.165,0.449] [0.083,0.349]

FRFMWL1 ���������
[0.070,0.265]

���������
[0.073,0.267] [0.032,0.224] [0.060,0.257] [0.085,0.364] [0.033,0.299]

FRFMWL2 [0.060,0.254] [0.113,0.306] [0.043,0.235] [0.060,0.257] [0.111,0.391] [0.083,0.349]

FRFMWLT1 [0.070,0.267] [0.073,0.267]
���������
[0.032,0.224]

���������
[0.060,0.257]

���������
[0.085,0.364]

���������
[0.033,0.299]

FRFMWLT2 [0.060,0.252] [0.093,0.286] [0.038,0.231] [0.060,0.257] [0.107,0.386] [0,083,0.349]

O
F

P
C

L
A

S
S

F
uz

zy
pa

rt
it

io
n FFRSM1 [0.139,0.331] [0.150,0.343] [0.098,0.291] [0.133,0.310] [0.120,0.404] [0.200,0.467]

FRFSM2 [0.141,0.333] [0.150,0.343] [0.096,0.288] [0.093,0.290] [0.115,0.391] [0.200,0.467]

FRFMWL1 [0.077,0.269] [0.093,0.287] [0.075,0.269] [0.073,0.270] [0.116,0.396] [0.100,0.417]

FRFMWL2 ���������
[0.060,0.252]

���������
[0.093,0.287] [0.077,0.269] [0.073,0.270] [0.102,0.382] [0.100,0.367]

FRFMWLT1 [0.077,0.269] [0.093,0.287]
���������
[0.075,0.267]

���������
[0.073,0.270] [0.107,0.387] [0.150,0.417]

FRFMWLT2 [0.062,0.254] [0.093,0.287] [0.077,0.269] [0.073,0.270]
���������
[0.094,0.373]

���������
[0.067,0.333]

Crisp [11] 0.259 0.384 0.288 0.419 0.327 0.544

GGFS [11] [0.089,0.346] [0.189,0.476] [0.076,0.320] [0.170,0.406] [0.000,0.279] [0.349,0.616]

Diagnosis of Dyslexic. Dyslexia is a learning disability in people with normal intel-
lectual coefficient, and without further physical or psychological problems explaining
such disability. A more detailed description of this problem can found in [11,12].

In these experiments, we have used three different datasets. Their names are
“Dyslexic-12’, “Dyslexic-12-01” and “Dyslexic-12-12”. Each dataset has 65 examples
and 12 attributes. The output variable for each dataset is a subset of the labels that fol-
low: - No dyslexic; - Control and revision; - Dyslexic; and - Inattention, hyperactivity
or other problems.

These three datasets differ only in their outputs:

– “Dyslexic-12” comprises the four mentioned classes.
– “Dyslexic-12-01” does not make use of the class “control and revision”, whose mem-

bers are included in class “no dyslexic”.
– “Dyslexic-12-12” does not make use of the class “control and revision”, whose mem-

bers are included in class “dyslexic”.

All experiments are repeated 100 times for bootstrap resamples with replacement of the
training set. The test set comprises the “out of the bag” elements.

In Table 3, we show the results obtained when we run FRF ensemble with fuzzy par-
titions obtained with OFP CLASS and fuzzy partitions obtained with EOFP for datasets
“Dyslexic-12”, “Dyslexic-12-01” and“Dyslexic-12-12’.

Also, in Table 3, we compare these results with the best ones obtained in [12] ((∗):
partition used - four labels; (∗∗) partition used - five labels). Again, in this table, the
interval [mean min error,mean max error] obtained for each dataset according to

180 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

Table 3. Comparative results for datasets of dyslexia

Dataset

Dyslexic-12 Dyslexic-12-01 Dyslexic-12-12

Technique Train Test Train Test Train Test

E
O

F
P

F
uz

zy
pa

rt
it

io
n FRFSM1 [0.000,0.238] [0.000,0.398] [0.022,0.223] [0.039,0.377] [0.001,0.263] [0.035,0.422]

FRFSM2 ���������
[0.000,0.228]

���������
[0.000,0.399]

���������
[0.008,0.184]

���������
[0.022,0.332]

���������
[0.009,0.245]

���������
[0.032,0.411]

FRFMWL1 [0.000,0.270] [0.000,0.406] [0.017,0.231] [0.045,0.383] [0.001,0.273] [0.019,0.430]

FRFMWL2 [0.000,0.270] [0.000,0.407] [0.020,0.241] [0.056,0.385] [0.001,0.267] [0.026,0.406]

FRFMWLT1 [0.000,0.263] [0.000,0.402] [0.012,0.216] [0.038,0.365] [0.000,0.265] [0.019,0.427]

FRFMWLT2 [0.000,0.266] [0.000,0.404] [0.015,0.221] [0.049,0.373] [0.000,0.262] [0.024,0.422]

O
F

P
C

L
A

S
S

F
uz

zy
pa

rt
it

io
n FRFSM1 [0.000,0.320] [0.002,0.511] [0.000,0.282] [0.000,0.413] [0.000,0.405] [0.000,0.477]

FRFSM2 [0.000,0.327] [0.001,0.515] [0.000,0.253] [0.000,0.389] [0.000,0.402] [0.000,0.469]

FRFMWL1 [0.000,0.261] [0.003,0.419] [0.000,0.264] [0.000,0.400] [0.000,0.335] [0.000,0.422]

FRFMWL2 [0.000,0.270] [0.003,0.423] [0.000,0.276] [0.000,0.407]
���������
[0.000,0.343]

���������
[0.000,0.414]

FRFMWLT1 [0.000,0.264] [0.004,0.419]
���������
[0.000,0.243]

���������
[0.000,0.386] [0.000,0.331] [0.000,0.422]

FRFMWLT2 ���������
[0.000,0.267]

���������
[0.003,0.417] [0.000,0.259] [0.000,0.394] [0.000,0.343] [0.000,0.418]

(*) Crisp CF0 0.444 [0.572,0.694] 0.336 [0.452,0.533] 0.390 [0.511,0.664]

(*) GGFS – [0.421,0.558] – [0.219,0.759] – [0.199,0.757]

(*) GGFS CF0 [0.003,0.237] [0.405,0.548] [0.005,0.193] [0.330,0.440] [0.003,0.243] [0.325,0.509]

(**) Crisp CF0 0.556 [0.614,0.731] 0.460 [0.508,0.605] 0.485 [0.539,0.692]

(**) GGFS – [0.490,0.609] – [0.323,0.797] – [0.211,0.700]

(**) GGFS CF0 [0.038,0.233] [0.480,0.621] [0.000,0.187] [0.394,0.522] [0.000,0.239] [0.393,0.591]

the decision process described in Section 2.1, is shown. For each dataset, the best results
obtained with each algorithm are underlined.

As comment about all experiments, we see that FRF ensemble with EOFP fuzzy
partitions obtains better results in test than FRF with OFP CLASS fuzzy partitions.
FRF ensemble is a significant improvement over the crisp GFS. In these experiments
we can see that when the partitions are obtained with the original data using the EOFP
algorithm, the accuracy is higher (the intervals of error are closer to 0 and they are less
imprecise). As also discussed in [12] is preferable to use an algorithm which is able
of learning with low quality data than removing the imperfect information and using a
conventional algorithm.

4 Conclusions

In this paper we have presented the EOFP Algorithm for fuzzy discretization of nu-
merical attributes. This algorithm is able to work with imperfect information. We have
performed several experiments using imprecise datasets, obtaining better results when
working with the original data. Besides, we have presented a fuzzy decision tree which
can work with imprecise information.

Generating Fuzzy Partitions from Nominal and Numerical Attributes 181

Our final conclusion, as many papers in the literature are indicating, is that it is nec-
essary to design classification techniques so they can manipulate original data that can
be imperfect in some cases. The transformation of these imperfect values to (imputed)
crisp values may cause undesirable effects with respect to accuracy of the technique.

Acknowledgements. Partially supported by the project TIN2011-27696-C02-02 of the
MINECO of Spain. Thanks to the Funding Program for Research Groups of Excel-
lence (04552/ GERM/06) and the scholarship FPI of Raquel Martı́nez granted by the
“Agencia Regional de Ciencia y Tecnologı́a - Fundación Séneca”, Murcia, Spain.

References

1. Au, W.-H., Chan, K.C., Wong, A.: A fuzzy approach to partitioning continuous attributes for
classification. IEEE Tran., Knowledge and Data Engineering 18(5), 715–719 (2006)

2. Bonissone, P.P.: Approximate reasoning systems: handling uncertainty and imprecision in
information systems. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information
Systems: From Needs to Solutions, pp. 369–395. Kluwer Academic Publishers (1997)

3. Bonissone, P.P., Cadenas, J.M., Garrido, M.C., Dı́az-Valladares, R.A.: A fuzzy random forest.
Int. J. Approx. Reasoning 51(7), 729–747 (2010)

4. Cadenas, J.M., Garrido, M.C., Martı́nez, R., Muñoz, E.: OFP CLASS: An Algorithm to Gen-
erate Optimized Fuzzy Partitions to Classification. In: 2nd International Conference on Fuzzy
Computation, pp. 5–13 (2010)

5. Cantu-Paz, E., Kamath, C.: On the use of evolutionary algorithms in data mining. In: Abbass,
H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, pp. 48–71. Ideal
Group Publishing (2001)

6. Casillas, J., Sánchez, L.: Knowledge extraction from data fuzzy for estimating consumer
behavior models. In: IEEE Confer. on Fuzzy Systems, pp. 164–170 (2006)

7. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan
Kaufmann Publishers (2005)

8. Garrido, M.C., Cadenas, J.M., Bonissone, P.P.: A classification and regression technique to
handle heterogeneous and imperfect information. Soft Computing 14(11), 1165–1185 (2010)

9. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: an enabling technique. Journal of
Data Mining and Knowledge Discovery 6(4), 393–423 (2002)

10. Otero, A.J., Sánchez, L., Villar, J.R.: Longest path estimation from inherently fuzzy data
acquired with GPS using genetic algorithms. In: International Symposium on Evolving Fuzzy
Systems, pp. 300–305 (2006)

11. Palacios, A.M., Sánchez, L., Couso, I.: Extending a simple genetic coopertative-competitive
learning fuzzy classifier to low quality datasets. Evolutionary Intelligence 2, 73–84 (2009)

12. Palacios, A.M., Sánchez, L., Couso, I.: Diagnosis of dyslexia with low quality data with
genetic fuzzy systems. Int. J. Approx. Reasoning 51, 993–1009 (2010)

13. Wang, X., Kerre, E.E.: Reasonable propierties for the ordering of fuzzy quantities (I-II).
Journal of Fuzzy Sets and Systems 118, 375–405 (2001)

182 J.M. Cadenas, M.C. Garrido, and R. Martı́nez

Appendix

Combination Methods

We present, with a brief intuitive description, the combination methods used in this
paper. These methods are described with more details in [3].

– Method SM1: In this method, each tree of the ensemble assigns a simple vote to
the most voted class among the reached leaves by the example. The FRF ensemble
classifies the example with the most voted class among the trees.

– Method SM2: The FRF ensemble classifies the example with the most voted class
among the reached leaves by the example.

– Method MWL1: This method is similar to SM1 method but the vote of each reached
leaf is weighted by the weight of the leaf.

– Method MWL2: In this case, each leaves reached assigns a weight vote to the major-
ity class. The ensemble decides the most voted class.

– Method MWLT1: This method is similar to MWL1 method but the vote of each tree
is weighted by a weight assigned to each tree.

– Method MWLT2: Each leaf reached vote to the majority class with a weighted vote
with the weight of the leaf and the tree to which it belongs.

	Generating Fuzzy Partitions from Nominal and Numerical Attributes with Imprecise Values
	Introduction
	Designing the Algorithm
	Fuzzy Decision Tree
	First Stage: Searching for Cut Points
	Second Stage: Optimizing Fuzzy Partitions with Imprecise Data

	Experiments
	Datasets and Parameters for FRF Ensemble
	Results

	Conclusions
	References

