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Preface

Theoretical, applicative and technological challenges, emanating from nowadays’
industrial, socioeconomic or environment needs, open every day new dilemmas to
solved and new challenges to defeat. Computational Intelligence (Neural Computation,
Fuzzy Computation and Evolutionary Computation) and related topics have shown their
astounding potential in overcoming the above-mentioned needs. It is a fact and at the
same time a great pleasure to notice that the ever-increasing interest of both confirmed
and young researchers on this relatively juvenile science, upholds a reach multidisci-
plinary synergy between a large variety of scientific communities making conceivable
a forthcoming emergence of viable solutions to these real-world complex challenges.

Since its first edition in 2009, the purpose of International Joint Conference on Com-
putational Intelligence (IJCCI) is to bring together researchers, engineers and practi-
tioners in computational technologies, especially those related to the areas of fuzzy
computation, evolutionary computation and neural computation. IJCCI is composed
of three co-located conferences, each one specialized in one of the aforementioned -
knowledge areas. Namely:

– International Conference on Evolutionary Computation Theory and Applications
(ECTA)

– International Conference on Fuzzy Computation Theory and Applications (FCTA)
– International Conference on Neural Computation Theory and Applications (NCTA)

Their aim is to provide major forums for scientists, engineers and practitioners inter-
ested in the study, analysis, design and application of these techniques to all fields of
human activity.

In ECTA modeling and implementation of bioinspired systems namely on the evo-
lutionary premises, both theoretically and in a broad range of application fields, is the
central scope. Considered a subfield of computational intelligence focused on combina-
torial optimization problems, evolutionary computation is associated with systems that
use computational models of evolutionary processes as the key elements in design and
implementation, i.e. computational techniques which are inspired by the evolution of
biological life in the natural world. A number of evolutionary computational models
have been proposed, including evolutionary algorithms, genetic algorithms, evolution
strategies, evolutionary programming, swarm optimization and artificial life.
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In FCTA, modeling and implementation of fuzzy systems, in a broad range of fields
is the main concern. Fuzzy computation is a field that encompasses the theory and ap-
plication of fuzzy sets and fuzzy logic to the solution of information processing, system
analysis and decision problems. Bolstered by information technology developments,
the extraordinary growth of fuzzy computation in recent years has led to major ap-
plications in fields ranging from medical diagnosis and automated learning to image
understanding and systems control.

NCTA is focused on modeling and implementation of artificial neural networks com-
puting architectures. Neural computation and artificial neural networks have seen an
explosion of interest over the last few years, and are being successfully applied across
an extraordinary range of problem domains, in areas as diverse as finance, medicine,
engineering, geology and physics, in problems of prediction, classification decision or
control. Several architectures, learning strategies and algorithms have been introduced
in this highly dynamic field in the last couple of decades.

The present book includes extended and revised versions of a set of selected papers
from the Third International Joint Conference on Computational Intelligence (IJCCI
2011), held in Paris, France, from 24 to 26 October, 2011.

IJCCI 2011 received 283 paper submissions from 59 countries in all continents. To
evaluate each submission, a double blind paper review was performed by the Program
Committee. After a stringent selection process, 35 papers were accepted to be published
and presented as full papers, i.e. completed work, 61 papers reflecting work-in-progress
or position papers were accepted for short presentation, and another 57 contributions
were accepted for poster presentation. These numbers, leading to a “full-paper” accep-
tance of about 12% and a total oral paper presentations acceptance ratio close to 34%,
show the high quality forum for the present and next editions of this conference. This
book includes revised and extended versions of a strict selection of the best papers pre-
sented at the conference.

Furthermore, IJCCI 2011 included six plenary keynote lectures given by Qiangfu
Zhao, Witold Pedrycz, Didier Dubois, Marco A. Montes de Oca, Plamen Angelov and
Michel Verleysen. We would like to express our appreciation to all of them and in
particular to those who took the time to contribute with a paper to this book.

On behalf of the Conference Organizing Committee, we would like to thank all par-
ticipants. First of all to the authors, whose quality work is the essence of the conference,
and to the members of the Program Committee, who helped us with their expertise and
diligence in reviewing the papers. As we all know, producing a post-conference book,
within the high technical level exigency, requires the effort of many individuals. We
wish to thank also all the members of our Organizing Committee, whose work and
commitment were invaluable.

September 2012 Kurosh Madani
António Dourado

Agostinho Rosa
Joaquim Filipe
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Computational Awareness:  
Another Way towards Intelligence 

Qiangfu Zhao 

The University of Aizu, Aizu-Wakamatsu, Japan 
qf-zhao@u-aizu.ac.jp 

Abstract. Artificial intelligence (AI) has been a dream of researchers for 
decades. In 1982, Japan launched the 5th generation computer project, expecting 
to create AI in computers, but failed. Noting that logic approach alone is not 
enough, soft computing (e.g. neuro-computing, fuzzy logic and evolutionary 
computation) has attracted great attention since 1990s. After another 2 decades, 
however, we have not got any system that is as intelligent as a human, in the 
sense of “over-all performance”. Instead of trying to create intelligence directly, 
we may try to create “awareness” first, and obtain intelligence “step-by-step”. 
Briefly speaking, awareness is a mechanism for detecting any event which may 
or may not lead to complete understanding. Depending on the complexity of the 
events to detect, aware systems can be divided into many levels. Although low 
level aware systems may not be clever enough to provide understandable 
knowledge about an observation; they may provide important information for 
high level aware systems to make understandable decisions. In this paper we do 
not intend to provide a survey of existing results related to awareness 
computing. Rather, we will study this field from a new perspective, try to 
clarify some related terminologies, and propose some problems to solve for 
creating intelligence through computational awareness. 

1 Introduction 

Artificial intelligence (AI) has been a dream of researchers for decades. In 1982, 
Japan launched the 5th generation computer project, expecting to create AI in 
computers [1], but failed. Noting that logic approach alone is not enough, soft 
computing (e.g. neuro-computing, fuzzy logic and evolutionary computation) has 
attracted great attention since 1990s. After another 2 decades, however, we have not 
got any system that is as intelligent as a human, in the sense of “over-all 
performance”. Instead of trying to create intelligence directly, we may try to create 
“awareness” first.  Briefly speaking, awareness is a mechanism for detecting an 
event. The detected event itself may not make sense, but it may provide important 
information for further understanding. Thus, creating different levels of awareness in 
a computer may lead to intelligence step-by-step. 

The term “awareness computing” has been used for more than two decades in the 
context of computer supported cooperative work (CSCW) , ubiquitous computing, 
social network, and so on [2]-[14]. So far, awareness computing has been considered 
by researchers as a process for acquiring and distributing context information related 
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to what is happening, what happened, and what is going to happen in an environment 
under concern. The main purpose of awareness computing is to provide context 
information in a timely manner so that human users or computing machines can take 
actions or make decisions proactively before something (risk, danger, chance, etc.) 
really happens. 

So far, many aware systems have been studied in the literature. The systems are 
often classified based on the event to be aware of. Examples include, context aware, 
situation aware, intention aware, preference aware, location aware, energy aware, risk 
aware, chance aware, and so on. This classification is not helpful for us to understand 
the fundamental properties of aware systems because it divides aware systems into so 
many categories and the boundaries between the categories are not clear.  

In this paper, we classify aware systems based on the following two factors: 
1. Is the system aware of some event(s)? 
2. Does the system make some decision(s) based on awareness?  

Based on these two factors, existing aware systems can be divided into 3 types, 
namely NanD, AnD, and AmD. Detailed discussion is given as follows. 

1.1 Type-I: Nand (No Aware, No Decision) Systems 

This is the simplest case in which the aware system just provides the context, and the 
human user must be aware of any useful information contained in the context, and 
make decisions based on the information. The “media space” developed in 1986 [15] 
is a NanD system. It can provide all kinds of background information for cooperative 
work. Users in different places can work together as if they are in the same room. In 
fact, most monitoring systems for traffic control, for nuclear power plant, for public 
facilities, and so on, are NanD systems. These systems are useful for routine 
cooperative work. In emergent cases, however, human users may fail to detect 
possible dangers (because of the limited computing power of the human brain) even if 
the background information is provided seamlessly. 

1.2 Type-II: And (Aware, but No Decision) Systems 

An AnD system is aware of the importance or urgency of different context patterns, 
so that critical information can be provided to the human user (or some other systems) 
in a more noticeable, comprehensible and/or visible way. Clearly, compared with 
NanD systems, AnD systems are more aware, and may enhance the awareness ability 
of human users significantly. The system may help human users to detect important 
clues for solving a problem, for detecting some danger, for seizing a chance, etc. 
Many decision supporting systems (DSS) developed (and used successfully in many 
areas) so far are AnD systems, although in many cases their developers did not intend 
to build an “aware system” at all. 

1.3 Type-III: Amd (Aware and Make Decision) Systems 

An AmD system is aware of the meaning of the context patterns, and can make 
corresponding decisions for the user. For example, in an intelligent environment (IE) 
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(e.g. smart home, smart office, smart nursing room, etc.)[16], the server may be aware 
of the contexts related to actions, locations, behaviors, and so on, of the human users; 
and can provide suitable services based on different context patterns. Examples of 
services may include: switching-on/off of light to keep the best lighting condition in a 
smart office; providing software/hardware resources to meet the requirement of a user 
in cloud-computing; sending a certain amount of electricity to a client in a smart grid 
power supply environment; and so on.  

Generally speaking, AmD systems are more aware compared with AnD systems 
because it can also make decisions. However, many AmD systems are not intelligent 
(even if they are sometimes called intelligent systems for commercial purposes). This 
is mainly because in most cases the events to be aware of can be pre-defined, and the 
decisions can be made based on some simple manually definable rules. In fact, many 
context aware systems developed for mobile computing can be achieved simply by 
using some wireless sensors (known as smart sensors) connected to a server through a 
base-station (BS). These systems are not really intelligent because they are just 
“programmed”. 

With in rapid progress of information and communication technology (ICT), many 
aware systems have been developed for providing different services. Most aware 
systems are connected and related to each other directly or indirectly through internet 
and/or intranet. We human being, as the most intelligent swarm ever appeared in the 
planet earth, is constructing a global-scale awareness server (GSAS) that may provide 
any service to anyone, anywhere and anytime. Aware systems developed so far are 
nothing but sub-systems of the GSAS. Although GSAS is also an AmD (type-III) 
system, it is and will be much more intelligent than any existing aware systems. 

GSAS is still expanding, and becoming more and more intelligent. The main 
driven force for making GSAS more and more intelligent is actually the needs of 
users. Note that individual users nowadays are equipped with different computing 
devices (desktop, laptop, handtop and palmtop devices), and many different group 
users have been and will be created through interaction of individual users. As the 
user number and user type increase, the interaction between different users becomes 
more and more complex. To meet the needs of all kinds of users, GSAS must be a 
“general problem solver” (GPS). 

To obtain a GPS has been a dream of many AI researchers for decades [17]. We 
may think that this dream can be easily realized now because computing technology 
of today is much more powerful than that of 1950s.  However, this is not true, 
because the main problem related to building a GPS is NP-complete, and increasing 
the computing power alone cannot solve the problem.  

One heuristic method for building a GPS is divide-and-conquer (D&C). Briefly 
speaking, D&C first breaks down big problems into small ones, solves the small 
problems, and then puts the results together. Based on this concept, we can design 
many sub-systems for different problems first. Each sub-system is just a specialist in 
some restricted field. To solve big problems, solutions provided by the sub-systems 
must be integrated. There are two approaches for integration. One is “centralized” 
approach, and another is “decentralized” approach. In the former, there is a 
“governor” (server) to coordinate all sub-systems (clients). The governor should be 
able to divide any given problems, distribute the small problems to the sub-systems, 
and integrate the solutions obtained from the sub-systems. However, to solve large 
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scale complex problems, designing a powerful governor itself is extremely difficult, 
and D&C must be used recursively. 

In the decentralized approach, all sub-systems are connected organically to form a 
network. This network as a whole can solve any given problems. One good example 
of such a network is our human brain, and this is one of reasons why neural network 
has attracted great attention (again) in the late 1980s. GSAS is another example. In 
GSAS, many sub-systems have been and will be added for different applications. The 
system as a whole will soon or late become a GPS. 

Note that no one can construct GSAS by him/herself. GSAS is being constructed 
by the human swarm little-by-little and step-by-step like the army ant in Africa eating 
a big animal. All persons are divided into two classes, namely the users and the 
producers. Each user, individual or group, is an AmD sub-system in GSAS, and raises 
“problems” in the form of “requests”. Each producer is an AmD sub-system, too, and 
provides “solutions” in the form of “services”.  

Constructing GSAS is a competitive and also cooperative task. The users and 
producers compete with each other. To win this competition, users cooperate with 
each other to form larger and larger social groups, and pose more and more difficult 
problems. On the other hand, producers may cooperate with each other to find new 
solutions. Both users and producers are driven by their desires to obtain more and 
more profits, and this is why they are contributing to the project enthusiastically. This 
“cold war” relation between users and producers can be considered as the true driven 
force for GSAS to be more and more intelligent, and finally become a GPS. 

Note that GSAS can become a GPS only if the sub-systems are connected 
“organically”. That is, GSAS may not become a GPS “automatically”. To ensure that 
GSAS expands in the correct direction, some regulations are necessary to control the 
growth of the system.  That is, we should have some future vision about the 
architecture of the system, so that GSAS will not go in a wrong direction.   

In this paper, we try to study some fundamental problems related to awareness. We 
do not intend to provide a survey of existing results. Rather, we will study this field 
from a new perspective, try to clarify some related terminologies, investigate the basic 
architectures, and propose some problems to solve for creating intelligence through 
computational awareness. 

2 Clarification of Terminologies 

According to Wikipedia [18], “Awareness is a relative concept. An animal may be 
partially aware, subconsciously aware, or acutely aware of an event. Awareness may 
be focused on an internal state, such as a visceral feeling, or on external events by 
way of sensory perception. Awareness provides the raw material from which animals 
develop qualia or subjective ideas about their experience.”  

In computational awareness, we may define awareness as a mechanism for 
obtaining information or materials which are useful for human users, for other 
systems, or for other parts of the same system, to make decisions. In general, 
awareness does not necessarily lead directly to understanding. Awareness may have 
many levels (see Fig. 1), and we believe that “understanding” and “intelligence” can 
be created by some high level awareness.  
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Several concepts have very close relationship with awareness. The first one is 
perception. According to Wikipedia [19], “perception is the process of attaining 
awareness or understanding of the environment by organizing and interpreting 
sensory information”. This concept has different meanings in psychology, 
neuroscience, and philosophy. In any case, perception is used mainly for brain related 
activities. In natural languages, perception may also mean “understanding”.  

In computational awareness, we may define perception as a mechanism for 
obtaining or receiving sensory data. Some fundamental processing of the sensory data 
can be included in perception, but understanding will not be produced at this stage. 
Among many levels of awareness, perception is defined as the sensory level 
awareness, which is the lowest level and serves as an interface between the aware 
system and the outside world. 

 

 

Fig. 1. Levels of awareness 

Another related concept is cognition. Again, according to Wikipedia [20], 
“cognition refers to mental processes. These processes include attention, 
remembering, producing and understanding language, solving problems, and making 
decisions”. Compared with perception, cognition is often used for understanding more 
abstract concepts and for solving problems based on logic thinking. In computational 
awareness, we can also follow this line, and consider cognition as the human level 
awareness, which is the highest level awareness we human being can achieve.  

People are often confused about the relation between awareness and consciousness. 
“Consciousness is a term that refers to the relationship between the mind and the 
world with which it interacts. It has been defined as: subjectivity, awareness, the 
ability to experience or to feel, wakefulness, having a sense of selfhood, and the 
executive control system of the mind” (from Wikipedia [21]).  

In computational awareness, we may define consciousness as the wakefulness of 
an aware system to its current situation. A system is wakeful if it, given a certain 
situation, knows what to do and why. Thus, consciousness is a relatively high  
level awareness. For example, we are aware of heart-beating but subconsciously.  

Above human level 

Human level 

Knowledge level 

Word level 

Symbol level 

Pattern level 

Sensory level 
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Bees build their nests subconsciously, but human build their homes consciously. 
Usually, when we become conscious, we have already collected enough information 
for reasoning.  

“Kansei” (or Ganshing in Chinese) is used by Japanese researchers to mean 
something that can be understood in mind, but cannot be described well in language. 
“Kansei engineering is a method for translating human feelings and impressions into 
product parameters” (Wikipedia [22]). Roughly speaking, Kansei is the human 
feeling that cannot be described logically. In this sense, Kansei should be a pattern 
level awareness (Fig. 1). The purpose of Kansei engineering is to transform Kansei to 
a high level awareness to make it more understandable. 

In general, awareness has many levels. Each level produces materials or 
information for the upper level awareness to produce more complicated materials or 
information. In computational awareness, awareness above the word (not necessarily 
written) level can be defined as intelligence. Many animals may use a limited number 
of spoken words, but they are not intelligent. 

In each level, there are different awareness systems with different scales for 
achieving awareness of different concepts. The concepts can be expressed by or 
translated to some kind of symbols. Human users can understand the meanings of the 
symbols directly or indirectly through some kind of analysis, and can reason and 
solve problems based on these symbols. 

 

Fig. 2. Structure of an AU 

3 Architecture of Awareness Systems 

In this paper, we define an aware unit (AU) as an AmD (type-III) aware system. A 
conceptual structure of an AU is shown in Fig. 2. It can be mathematically described 
as follows: 

)))((( 123 xRRRy =  

where R1 is a receptor, R2 is a reactor, and R3 is a relater (see Fig. 2). The input x and 
the output y are usually represented as real vectors. Each element of x can come from 
a physical sensor, a software sensor, or a lower level AU. Each element of y is a 
concept to be aware of or some information to be used by a higher level AU. 

Receptor 

Reactor 

Relater 
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The purpose of the receptor R1 is to receive data from outside, filter out irrelevant 
noises, enhance the signals, and normalize or standardize the inputs, so that inputs 
from different kinds of sensors can be treated in the same way. The purpose of the 
reactor R2 is to take reaction to a given input, and extract/select important features. 
The purpose of the relater R3 is to detect certain events, and make proper decisions 
based on features provided by R2, and relate the detected events to other AUs. In fact, 
the receptor is a NanD system; and a receptor plus a reactor forms an AnD system. 

Note that the data flow both forward and backward in an AU. An AU has two 
different modes, namely working mode and learning mode. In the working mode, the 
AU receives sensory inputs, and makes proper decisions. In the learning mode, the 
AU receives feedback from the higher level AUs, and sends feedback to lower level 
AUs. This happens also inside the AU itself. That is, the receptor receives feedback 
from the reactor; and the reactor receives feedback from the relater. System 
parameters can be adjusted based on the feedback. 

 

Fig. 3. A networked aware system 

An AU itself can be used as an aware system; or it can be used as a sub-system and 
form a larger system with other AUs. Fig. 3 shows an example of a networked aware 
system, which is similar to a multilayer feedforward neural network (MFNN). All 
AUs in the input (bottom) layer realize the receptor of the whole system, AUs in the 
hidden (internal) layer together realize the reactor, and AUs in the output (top) layer 
realize the relater. This system again can be used as an AU to form larger systems. 

An MFNN is also an aware system, in which a neuron is the smallest AU. 
Therefore, an MFNN is a natural model of aware systems. However, MFNN is NOT 
comprehensible, because the learned concepts (especially those in the hidden nodes) 
and the relation between concepts learned in different layers cannot be interpreted 
easily. Thus, in computational awareness, we should also study other models to obtain 
more comprehensible systems.  

Note that most existing aware systems take the structure of Fig. 2. For example, in 
a typical context-aware system [6], the receptor may contain many sensors for 
collecting different information; the reactor may contain a context repository for 
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storing important contexts selected from the input data; and the relater may contain a 
production system for sending proper contexts to proper users, or giving proper 
commands to proper actuators. 

One defect of most existing context-aware systems is that they are just “designed” 
or “programmed”. When the contexts to be aware of are complex and dynamically 
changing, the system must be able to learn and become more and more aware 
autonomously. This is an important topic for further study in computational 
awareness. 

Based on the proposed AU model, any aware system can be connected through 
internet or intranet with other aware systems to form a larger system for providing a 
large variety of contexts. The larger system, of course, may not be owned by a single 
company or organization. This is not important for the users, as long as they can get 
proper services with proper prices. This is actually the true concept of cloud 
computing (i.e., any user can get any service anywhere and anytime, without knowing 
where is the provider), and should be promoted further. 

We may consider an aware system formed through internet as a virtual AU. In this 
virtual AU, the nodes are correlated through the relaters of the nodes. The virtual AUs 
can form a still higher level AU through internet. That is, internet provides a flexible 
way to form higher and higher level AUs. This poses many related problems (e.g. 
security, privacy, ownership of resources, etc.), and these will be important topics for 
research in computational awareness. 

4 Basic Problems to Solve 

Note that our aim is to create intelligence using computational awareness, and at the 
same time, make aware systems more intelligent. For this purpose, ad hoc approaches 
which are often used in the awareness computing community are not enough. We 
should understand the physical meaning of different problems first, and then propose 
different approaches for solving them. At the first glance, there are so many problems 
to solve. However, if we classify them properly, we may see that the problems 
actually belong to a very limited number of categories. Although there can be many 
ways for classifying computational awareness related problems, we just propose one 
example here as a starting point for further discussion. 

4.1 The “For What” Problem: Awareness for What? 

The first problem we must consider is the purpose of awareness. Suppose that a 
system is aware of a piece of important information (context or concept). The system 
may use this information to help the user to avoid some danger, to avoid wasting time 
or money in doing something, to get more opportunity for success, etc.; or the system 
may help the producer to maximize its profit, to avoid attacks from malicious users, to 
get a good business chance, etc.  

To solve the “for what” problem, it is necessary to build a correlation map between 
the input (context or concept) and the output (possible goal). It is relatively easy to 
find the correlation map if the number of possible outputs is small and the outputs can 
be derived directly from the input. In practice, however, there can be many 
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unforeseen outputs (e.g. outputs not registered in the system, like the big Tsunami for 
destroying Fukushima nuclear power station), and the current input maybe the factor 
for many outputs to occur. In the former case, the aware system should be able to 
detect possible new outputs (novelty detection); and in the latter case, the system 
should be able to modify the correlation map dynamically, so that the scope of 
possible outputs can be narrowed when more information is acquired. 

From the machine learning point of view, the “what for” problem can be solved by 
adding two functional modules in an aware system. The first one is a novelty 
detection module for detecting possible new outputs given some inputs; and the 
second is a reasoning module for predicting possible results given a sequence of 
inputs. For instance, support vector machine (SVM) can be used for the former, and 
Bayesian network (BN) can be used for the latter. 

The “what for” problem can also be understood as follows. Suppose that the user 
has some goal (purpose or intention) when he/she uses an aware system. If the system 
is aware of the goal in an early stage, the system can provide services proactively, and 
the user can be more efficient in reaching the goal. In addition, if the user does not 
have a clear goal, the system can help him/her to formulate the goal. Goal or intention 
awareness can be achieved by asking user feedbacks, or the system may just record 
the history of the user, and guess the goal autonomously. Again, the system should 
have two function modules. One is to find possible new goals from the current 
situation; and the other is to modify the predicted goal based on a sequence of 
situations.  

To be aware of the user goal, current situation alone is not enough. This is because 
different users may have different goals even under the same situation. Thus, goal 
awareness is closely related to user modeling. Specifically, the system should be 
aware of the physical and/or mental status of the user. This problem will be discussed 
next. 

4.2 The “For Whom” Problem: Awareness for Whom? 

User awareness is important to provide personalized services. For different users, they 
need different services even under the same situation. To be aware of the users, user 
modeling is important and has been studied extensively in the literature [23][24] [25]. 
However, existing results are still not enough. In fact, user modeling is a very difficult 
task because it is related to several factors, namely the human factor, the social factor, 
the context factor, the spatial-temporal factor, and so on. The problem is difficult even 
if we focus on the human factor alone. For example, human emotion is difficult to be 
aware of because even for the same person, his/her emotion can be different if the 
situation or time is different. 

If the user is a group (e.g. all persons holding the stocks of Toyota Company, all 
iPhone users, and all people interested in computational awareness), it is more 
difficult to model the user. For example, it is difficult to predict Toyota stock price of 
next month; it is difficult to know what will happen next year for the market share of 
iPhone; and it is difficult to know what new results will be obtained next year in 
computational awareness. In ubiquitous computing, it is important to predict the 
collective behavior of different group users. Thus, user modeling or user awareness 
will continue to be a hot topic in the coming years. 
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4.3 The “Of What” Problem: Awareness of What? 

So far, in the field of awareness computing, the event to be aware of is often specified 
by the user, and the system just searches related information for the user from the 
database or captures the information from related sensors (including software sensors 
like a search agent). In practice, however, it may be difficult to specify the event in 
advance. As an example, let us consider brainstorming. In brainstorming, when we 
see or hear something, we human being may be aware of some interesting information 
for producing good ideas. This kind of information cannot be pre-defined and must be 
captured in real time. As another example, let us consider the case when the system is 
aware of the goal of a user for doing something. The system may try to propose a plan 
for the user to reach the goal. The goal may be reached in several steps, and in each 
step, the system needs to dynamically define the event to be aware of. In this sense, 
“of what” is a lower level problem compared with the “for what” problem. 

Solving the “of what” problem is also important for making an aware system more 
comprehensible. Let us consider a multi-level aware system. As in a multilayer neural 
network, even if we can define or be aware of the concepts in the last (output) level, it 
is usually difficult to define those in the hidden level(s). If we can, we will be able to 
describe the input-output relation of each hidden unit using a symbolized concept, and 
a reasoning process can be provided for any decision made by the system.  Thus, 
solving the “of what” problem can make the system more comprehensible or 
understandable for human.  

4.4 The “With What” Problem: Awareness with What? 

Now suppose that we have already defined the event to be aware of. The next 
question is that what kind of inputs shall we collect? Even if the inputs are given, 
which inputs are the most informative? Without knowing the correct inputs, we can 
only design a system that uses all kinds of inputs, or part of the inputs. The former 
will not be efficient, and the latter will not be effective. Thus, an aware system should 
be able to learn to extract and select the most important features for making decisions.  

The “with what” problem is partly related to the well-known feature selection 
problem that has been studied in the context of machine learning. However, existing 
results are not enough. In ubiquitous computing, since the working environment of an 
aware system changes constantly, we must consider the plasticity-stability problem 
seriously. That is, we cannot just select against features that are not important for the 
time being. We must consider the long-term performance of the system. 

Another related problem is how to produce (extract) useful features. Remember 
that in an AU, it is the reactor that produces useful features for the relater to make 
decisions. The reactor not just select inputs and passes them to the relater, it also 
produces more useful features by combining existing inputs, linearly or non-linearly. 
This topic has been studied in the context of dimensionality reduction and feature 
extraction. The main purpose is to represent the input-output relation in a more 
compact way, so that the relater can make decisions more efficiently. If some a priori 
information is available to the reactor, the produced features can also enable the 
relater to make decision more effectively. 
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When we consider a multi-level aware system, the hidden level units as a whole 
can be considered as the “reactor” of the system. Thus, the “of what” problem is 
closely related to the “with what” problem. For the former, we are interested in how 
to symbolize the hidden units; and for the latter, we are interested in how to produce 
proper concepts using the hidden units. In a dynamically changing computing 
environment, both problems are subject to change, and there should be a mechanism 
for updating the produced concepts and the corresponding symbols, and at the same 
time for preserving the stability of the whole system. 

5 Conclusions 

In this paper, we proposed a new classification method of existing aware systems. 
Compared with the event-based classification, the proposed method is more general 
and more scientific, and can provide a unified way for studying different aware 
systems regardless where the system is applied. We then clarified several 
terminologies related to computational awareness. We think that standardization of 
the terminologies is necessary for us to study different aware systems in a common 
framework. 

We also proposed a general model of aware unit (AU). This model can be used to 
describe any existing aware systems, and at the same time, can be used to construct 
different systems in the future. Starting from the lowest level AU (a physical sensor), 
we can construct any aware systems of any size with any functions. Here, we do not 
provide mathematic proof for this, because a multilayer neural network is a special 
case of the proposed model, and its computing power has already been proved [26].  

Based on the AU model, we then provided several problems related to 
computational awareness. Although these problems have been studied in related fields 
to some extent, we think existing results are still not enough. To create intelligent 
using computational awareness, or to make aware systems more intelligence, we 
should reconsider these problems, and propose more efficient and effective 
algorithms.  

Note that this paper is the first try for putting different awareness in one common 
framework. We think it is just a starting point for discussion and for further 
improvement. Through discussion we may someday create real intelligence, which is 
our final goal. 
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Abstract. In spite of their striking diversity, numerous tasks and architectures 
of intelligent systems such as those permeating multivariable data analysis (e.g., 
time series, spatio-temporal, and spatial dependencies), decision-making 
processes along with their underlying models, recommender systems and others 
exhibit two evident commonalities. They promote (a) human centricity and (b) 
vigorously engage perceptions (rather than plain numeric entities) in the 
realization of the systems and their further usage. Information granules play a 
pivotal role in such settings. Granular Computing delivers a cohesive 
framework supporting a formation of information granules and facilitating their 
processing. We exploit an essential concept of Granular Computing: an optimal 
allocation of information granularity, which helps endow constructs of 
intelligent systems with a much-needed conceptual and modeling flexibility. 

The study elaborates in detail on the three representative studies. In the first 
study being focused on the Analytic Hierarchy Process (AHP) used in decision-
making, we show how an optimal allocation of granularity helps improve the 
quality of the solution and facilitate collaborative activities (e.g., consensus 
building) in models of group decision-making. The second study concerns a 
formation of granular logic descriptors on a basis of a family of logic 
descriptors Finally, the third study focuses on the formation of granular fuzzy 
neural networks – architectures aimed at the formation of granular logic 
mappings.  

Keywords: Granular computing, Design of information granules, Human 
centricity, Principle of justifiable granularity, Decision-making, Optimal 
allocation of information granularity. 

1 Introduction 

Let us consider a system (process) for which constructed is a family of models. The 
system can be perceived from different points of view, observed over some time 
periods and analyzed at different levels of detail. Subsequently, the resulting models 
are built with various objectives in mind. They offer some particular, albeit useful 
views at the system. We are interested in forming a holistic model of the system by 
taking advantage of the individual sources of knowledge – models, which have been 
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constructed so far. When doing this, we are obviously aware that the sources of 
knowledge exhibit diversity and hence this diversity has to be taken into consideration 
and carefully quantified. No matter what the local models may look like, it is 
legitimate to anticipate that the global model (say, the one formed at the higher level 
of hierarchy) is more general, abstract. Another point of interest is to engage the 
sources of knowledge in intensive and carefully orchestrated procedures of 
knowledge reconciliation and consensus building. Granularity of information [1]; , 
[2]; [3]; [4]; [6]; [18]; [17]; [19]; [20] becomes of paramount importance, both from 
the conceptual as well as algorithmic perspective, in the realization of granular fuzzy 
models. Subsequently, processing realized at the level of information granules gives 
rise to the discipline of Granular Computing [1]. We envision here a vast suite of 
formal approaches of fuzzy sets [19] rough sets [9]; [10]; [11], shadowed sets [13]; 
[15]; [16], probabilistic sets [7]; [8] and alike. Along with the conceptual setups, we 
also encounter a great deal of interesting and relevant ideas supporting processing of 
information granules. For instance, in the realm of rough sets we can refer to [9] From 
the algorithmic perspective, fuzzy clustering [6], rough clustering, and clustering are 
regarded as fundamental development frameworks in which information granules are 
constructed. 

Computational Intelligence (CI) has been around for several decades and covered a 
broad spectrum of design and analysis of intelligent systems. What has not been fully 
posed on the agenda of CI deals with a spectrum of problems inherently involving 
information granules. Those entities are helpful in the development of distributed 
systems, making existing models more realistic and capable of quantifying time-
variant phenomena as well capture the data. The objective of this study is to introduce 
conceptual and algorithmic underpinnings of Granular Computing overarching the 
domain of CI in the form of an optimal allocation of information granularity and show 
a way in which granular mappings and their diversity augment the commonly present 
constructs of CI such as e.g., neural networks. The essentials of the optimal allocation 
of information granularity are outlined along with the optimization problems and its 
associated objective functions (Section 2). A family of protocols of allocation of 
information granularity is covered in Section 3. In Section 4, we focus on the role of 
distribution of information granularity in the AHP models of decision-making making 
them granular. In Section 5, we discuss an idea of granular logic and discuss how it 
emerges as a result of a global view at a collection of local logic descriptors while 
Sections 6 and 7 are concerned with granular fuzzy neural networks. Conclusions of 
the study are covered in Section 8. 

2 Optimal Allocation of Information Granularity 

Information granularity is an important design asset. Information granularity allocated 
to the original numeric construct elevates a level of abstraction (generalizes) of the 
original construct developed at the numeric level. It helps the original numeric 
constructs cope with the nature of the data. A way in which such an asset is going to 
be distributed throughout the construct or a collection of constructs to make the 
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abstraction more efficient, is a subject to optimization. We start with a general 
formulation of the problem and then show selected realizations of the granular 
mappings.  

Let us consider a certain multivariable mapping y = f(x, a) with a being an n-
dimensional vector of parameters of the mapping. The mapping can be sought 
(realized) as a general construct. One may think of a fuzzy model, neural network, 
polynomial, differential equation, linear regression, etc. The granulation mechanism 
G is applied to a. It gives rise to its granular counterpart, A= G(a). Subsequently, this 
mapping can be described formally as follows  

Y= G(f(x,a))= f(x, G(a))= f(x, A) (1) 

Given the diversity of the underlying constructs as well as a variety of ways 
information granules can be formalized, we arrive at a suite of interesting constructs 
including granular neural networks, say interval neural networks, fuzzy neural 
networks, probabilistic neural networks. Likewise we can talk about granular (fuzzy, 
rough, probabilistic…) regression, cognitive maps, fuzzy models, just to name several 
constructs. 

There are a number of well-justified and convincing arguments behind elevating 
the level of abstraction of the existing constructs. Those include: an ability to realize 
various mechanisms of collaboration, quantification of variability of sources of 
knowledge considered, better modelling rapport with systems when dealing with 
nonstationary environments. 

Information granularity supplied to form a granular construct is a design asset 
whose allocation throughout the mapping can be guided by certain optimization 
criteria. Let us discuss the underlying optimization problem in more detail. In addition 
to the mapping itself, we are provided with some experimental evidence in the form 
of input-output pairs D = (xk, tk), k=1, 2,…, N. Given is a level of information 
granularity ε, ε [0,1]. We allocate the available level ε to the parameters of the 
mapping so that the some optimization criteria are satisfied while the allocation of 

granularity satisfies the following balance nε = εi

i=1

n

 where εi is a level of information 

granularity associated with the i-th parameter of the mapping. For further processing 
all the individual allocations are organized in a vector format [ε1 ε2… εn]

T.  
The first criterion is concerned with the coverage of the output data tk by the 

outputs produced by the granular mapping. For xk we compute Yk = f(xk, G(a)) and 
determine a degree of inclusion of tk in information granule Yk, namely incl(tk, Yk) = 
tk  Yk. Then we compute an average sum of the degrees of inclusion taken over all 

data, that is Q = 1

N
incl(tk

k=1

N

 ,Yk )  Depending upon the formalism of information 

granulation, the inclusion returns a Boolean value in case of intervals (sets) or a 
certain degree of inclusion in case of fuzzy sets. Alluding just to sets and fuzzy sets as 
the formal models of information granules, the corresponding expressions of the 
performance index are expressed as follows, 
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- for sets (intervals) 

Q =
card{tk | t k ∈ Yk}

N  
(2) 

- for fuzzy sets 

Q =

Yk (t k )
k=1

N


N  

(3) 

Here Yk(tk) is a degree of membership of tk in the fuzzy set of the information  
granule Yk. 

The second criterion of interest is focused on the specificity of Yk - we want it to be 
as high as possible. The specificity could be viewed as a decreasing function of the 
length of the interval in case of set –based information granulation. For instance, one 
can consider the inverse of the length of Yk, for instance 1/length(Yk), exp(-
length(Yk)), etc. In case of fuzzy sets, one can consider the specificity involving the 
membership grades. The length of the fuzzy set Yk is computed by integrating the 

lengths of the β-cuts, length(Y k
β )βdβ

0

1

 . 

More formally, the two-objective optimization problem is formulated as follows. 
Distribute (allocate) a given level of information granularity ε so that the following 
two criteria are maximized 

Maximize 
1
N

incl(tk

k=1

N

 ,Yk )
 

(4) 
Maximize  g(length(Yk)) (where g is a decreasing function of its 

argument) 

subject to  nε = εi

i=1

n

  

A simpler, optimization scenario involves a single coverage criterion. It can be 
regarded as an essential criterion considered in the problem 

Maximize 
1
N

incl(tk

k=1

N

 ,Yk ) 

(5) 

subject to  ne = i
i 1

h

ε
=
  

 



 Concepts and Design of Granular Models 19 

There is an interesting monotonicity property: higher values of ε lead to higher values 
of the maximized objective function, refer to Figure 1. There could be different 
patterns of changes of Q versus ε as illustrated in the same figure. Typically some 
clearly visible “knee” points are encountered on the curve beyond which the changes 
(increases) of Q become quite limited. 

By taking into account the nature of the relationship shown in these figures, we can 
arrive at some global view at the relationship that is independent from a specific value 
of ε.  This is accomplished by taking an area under curve (AUC) computed as AUC = 

Q(ε)dε
0

1

 . The higher the value of the AUC, the better the performance of the granular 

version of the mapping. 
 

       
                     (a)                        (b)                        (c) 

Fig. 1. Values of the coverage criterion Q regarded as a function of the assumed level of 
granularity ε. Shown are different relationships Q(ε) with some ‘knee” points; a-c. 

3 Protocols of Allocation of Information Granularity 

An allocation of the available information granularity to the individual parameters of 
the mapping can be realized in several different ways depending how much diversity 
one would like to exploit in this allocation process. Here, we discuss several protocols 
of allocation of information granularity, specify their properties and show 
relationships between them. We assume that the parameter under discussion is 
denoted by “a”. To focus our considerations, we consider that the values of the 
parameters are in the [0,1] interval. Furthermore in the following protocols we assume 
that the intervals generated here are included in the unit interval. The balance of the 
overall granularity is equal to nε with “n” being the number of the parameters of the 
mapping. 

P1: Uniform allocation of information granularity. This process is the simplest one 
and, in essence, does not call for any optimization. All parameters of the mapping are 
treated in the same way and become replaced by the interval of the same length. In 
terms of this generalization, we obtain an interval [a-ε/2, a+ε/2] positioned around the 
original numeric parameter. In essence, this allocation does not require any 
optimization. 

P2: Uniform allocation of information granularity with asymmetric position of 
intervals around the original parameter of the granular mapping. The allocation of  
this nature offers more flexibility through the asymmetric allocation of the interval. 
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We obtain an interval [a-γε, a+(1-γ)ε] where γ is an auxiliary parameter assuming 
values in [0,1] and controlling the position of the interval. If γ =1/2 then P1 becomes a 
special case of P2. There is only a single parameter to optimize. 

P3: Uniform allocation of information granularity with asymmetric position of 
intervals around the original connections of the network. Here each parameter is made 
granular however an asymmetric allocation of the corresponding interval varies from 
parameter to parameter. We have an interval [ai-γiε, ai+(1-γi)ε] associated with the i-th 
parameter ai. The number of parameters to optimize is equal to ‘n’. The balance of 
overall information granularity is retained. 

P4: Non-uniform allocation of information granularity with symmetrically distributed 
intervals of information granules. In this protocol, the numeric parameters are made 
granular by forming intervals distributed symmetrically around ai that is [ai-εi/2, 
ai+εi/2]. The length of the intervals (εi) could vary from parameter to parameter. The 

balance of information granularity requires that nε = εi

i=1

n

  

P5: Non-uniform allocation of information granularity with asymmetrically distributed 
intervals of information granules. This protocol is a generalization of the previous 
one: we admit intervals that are asymmetrically distributed and of varying length. 
This leads to the interval of the i-th parameter described as [ai-εi

-, ai+εi
+]. Again we 

require a satisfaction of the balance of information granularity, which in this case 

reads as nε = εi
−

i=1

n

 + εi
+

i=1

n

 . 

P6: An interesting point of reference, which is helpful in assessing a relative 
performance of the above methods, is to consider a random allocation of granularity. 
By doing this, one can quantify how the optimized and carefully thought out process 
of granularity allocation is superior over a purely random allocation process.  

The assumption as to the [0,1] range of the parameters could be dropped. In this case, 
we consider a range of the parameter and include it in the above expressions. Here ε 
∈[0,1] can be regarded as a fraction of the range of the corresponding parameter. For 
instance, in P1 the original formula reads as [a-ε*range/2, a*range+ε/2].  

The more sophisticated the protocol, the higher the coverage (and the AUC 
criterion) produced by running it. One has to emphasize that no matter whether we are 
considering swarm optimization or evolutionary techniques (say, genetic algorithms), 
the respective protocols call for a certain content of the particle or a chromosome. The 
length of the corresponding string depends upon the protocol, which becomes longer 
with the increased sophistication of the allocation process of information granularity.  

Having considered all components that in essence constitute the environment of 
allocation of information granularity, we can bring them together to articulate a 
formal optimization process. 

Assume that a certain numeric construct (mapping) has been provided. Given a 
certain protocol of allocation of information granularity P, determine such an 
allocation I, call it Iopt, so that the value of the coverage index Q becomes maximized  
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MaxI Q (6) 

which is a function of ε or MaxI AUC, which offers a global assessment of the 
protocol. 

Alluding to the refinement of the protocols of allocation of information granularity, 
some inclusions (orderings) among Iopt resulting from the use of the respective 
protocols are envisioned: P1 p P2 p P3 P3 p P4 where the relation Pi p  Pj 
means that protocol Pi produces weaker results than Pj. 

The corresponding search spaces associated with the realization of the protocols 
(with the nested property outlined above) start exhibiting higher dimensionality.  

We can think of fuzzy sets built around numeric values of the parameters where 
depending upon a certain the membership functions may exhibit symmetric or 
asymmetric character as well as come with various supports. In case of probabilistic 
information granules, one may talk about symmetric and asymmetric probability 
density functions with the modal values allocated to the numeric values of the 
parameters and standard deviations whose values vary from parameter to parameter. 
In total, we require a sum of the standard deviations to satisfy the predefined level of 

granularity that is σ = σ i

i=1

h

 . 

4 Granular Analytic Hierarchy Process (AHP) 

This model serves as a simple yet a convincing example in which the idea of 
granularity allocation can be used effectively in improving the quality of a solution 
both in case of a individual decision-making as well as its group version. Let us recall 
that the Analytic Hierarchy Process (AHP) is aimed at forming a vector of preferences 
for a finite set of n alternatives. These preferences are formed on a basis of a 
reciprocal matrix R, R=[rij], i, j=1, 2, …, n whose entries are a result of pairwise 
comparisons of alternatives provided by a decision-maker. The quality of the result 
(reflecting the consistency of the judgment of the decision-maker) is expressed in 
terms of the following inconsistency index 

ν = λmax − n

n −1
 (7) 

where λmax is the largest eigenvalue associated with the reciprocal matrix. The larger 
the value of this index is, the more significant level of inconsistency is associated with 
the preferences collected in the reciprocal matrix. 

We distinguish here two main categories of design scenarios: a single decision-
maker is involved or we are concerned with a group decision-making where there is a 
collection of reciprocal matrices provided by each of the member of the group.  

A Single Decision-maker Scenario. The results of pairwise comparisons usually 
exhibit a certain level of inconsistency. The inconsistency index presented above 
quantifies this effect. We generalize the numeric reciprocal matrix R by forming its 
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granular counterpart and allocating the admissible level of granularity to the 
individual entries of the matrix. Formally, the process can be schematically described 
in the following form: 

R ε⎯ → ⎯  G(R) (8) 

where G(R) stands for the granular version of the reciprocal matrix. A certain 
predetermined level of information granularity e is distributed among elements of the 
reciprocal matrix R. More specifically, we look at the entries of the reciprocal matrix, 
which are below 1 and form information granules around those. Confining ourselves 
to intervals (for illustrative purposes), formed are intervals around the corresponding 

entries of the matrix whose total length satisfies the constraint 
ij
Σ  εij=pε where “p” 

stands for the number of elements of R assuming values below 1. Thus the original 
entry rij is replaced by the interval whose lower and upper bound are expressed as 
max(1/9, rij-εij(8/9)) and min(1, rij+εij(8/9)). Here the number 9 reflects the largest 
length of the scale used in the realization of pairwise comparisons. For the reciprocal 
entry of the matrix, we compute the inverse of the lower and upper bound of the 
interval, round off the results to the closest integers (here we use the integers from 1 
to 9) and map the results to the interval of the reciprocals. In this way an original 
numeric entry rij and 1/rij are made granular. The same process is completed for the 
remaining entries of the reciprocal matrix.  

As an illustration, let us show the calculations in case where rij =1/3 and εij = 0.10. 
The numeric value is replaced by the bounds 0.24 and 0.42. The inverse produces the 
integers (after rounding off) being equal to 4 and 2. Mapping them again by 
computing the inverse produces the entry of the reciprocal matrix equal to [1/4, ½]. 
Summarizing, through an allocation of granularity, the original entries 1/3 and 3 were 
replaced by their granular (interval) counterparts of [1/4, ½] and [2, 4]. The resulting 
information granule depends upon the assumed level of granularity as well as the 
protocol of granularity allocation. For instance, for asymmetric allocation of 
granularity with εij-=0.1 and εij+=0.2, we arrive at the intervals [1/4, 1] and [1, 4], 
respectively. 

The granular (interval-valued) reciprocal matrix P(R) manifest in a numeric 
fashion in a variety of ways. To realize such manifestation, we randomly pick up the 
numeric values from the corresponding intervals (maintaining the reciprocality 
condition, that is when a value of rij has been selected from the range [rij-, rij+] the 
value of rji is computed as the inverse of the one being already selected). For the 
matrix obtained in this way computed is its inconsistency index. The overall process 
is repeated a number of times and determined is the average of the corresponding 
values of the inconsistency index of the matrices. Denote the average by E(ν) This 
average quantifies the quality of the granular reciprocal matrix being a result of 
allocation (distribution) of the level of information granularity ε. The goal of 
optimization is to minimize E(ν) by determining εij so that Min εij E(ν) subject to 

constraints 
i, j

 εij=pε. 
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Group decision making. In this situation, we are concerned with a group of reciprocal 
matrices R[1], R[2],…, R[c] along with the preferences (preference vectors), e[1], 
e[2],…, e[c] obtained by running the AHP for the corresponding reciprocal matrices. 
Furthermore the quality of preference vectors is quantified by the associated 
inconsistency index ν[i]. First, in the optimization problem, we bring all preferences 
close to each other and this goal is realized by adjusting the reciprocal matrices within 
the bounds offered by the admissible level of granularity provided to each decision-
maker. 

Q1 = (1−ν i

i=1

c

 ) || e[i] − ˆ e ||2

 
(9) 

where ˆ e  stands for the vector of preferences which minimizes the weighted sum of 
differences ||.|| between e[i] and ˆ e . Second, we increase the consistency of the 
reciprocal matrices and this improvement is realized at the level of individual 
decision-maker. The following performance index quantifies this aspect of 
collaboration 

Q2 = ν i

i=1

c

  (10) 

These are the two objectives to be minimized. If we consider the scalar version of the 
optimization problem, it can arise in the following additive format Q = gQ1 + Q2 
where g ≥  0. The overall optimization problem with constraint reads now as follows 

Min R[1], R[2], …,R[c] ∈ G(R)Q (11) 

subject to predetermined level of granularity ε where G(R) stands for the granular 
version of the of the reciprocal matrix. We require that the overall balance of the 
predefined level of granularity given in advance ε is retained and allocated throughout 
all reciprocal matrices (Pedrycz and Song, 2011). 

5 The Development of Granular Logic: A Holistic View at a 
Collection of Logic Descriptors 

We consider a collection of logic descriptors describing some local relationships. We 
intend to view them at a global level to arrive at a generalized description in the form 
of a granular logic descriptor. Information granularity arises here as a result of 
inherent diversity within a family of individual descriptors. It also helps quantify the 
existing diversity as well as support some mechanisms of successive reconciliations 
of the sources of knowledge (logic descriptors). 

Let us define a logic descriptor as a certain quantified logic expression coming in a 
conjunctive or disjunctive form. Given is a collection of “c” logic descriptors 
involving “n” variables in either a conjunctive form 

Lii: y[ii] = (w1[ii]or x1) and (w2[ii]or x2) and .. and (wn[ii]or xn) (12) 
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or a disjunctive form 

Lii: y[ii] = (w1[ii]and x1) or (w2[ii]and x2) or .. or (wn[ii]and xn) (13) 

ii=1, 2,…, c. In the above logic descriptors, x1, x2,…, xn are the input variables 
assuming values in the unit interval and wj[ii] are the weights calibrating a level of 
contribution to the individual inputs, w[ii] = [w1[ii] w2[ii]… wn[ii]]

T. Each logic 
descriptor (12)-(13) denoted here briefly as L1, L2, …, Lc is a logic mapping from 
[0,1]n to [0,1]. We assume that all of them are disjunctive or conjunctive (if this does 
not hold, all are transformed to either of these formats). As the logic connectives are 
modeled by t-norms or t-conorms, the expressions shown above read as  

Lii: y[ii] = (w1[ii]s x1) t (w2[ii]s x2) t .. t (wn[ii]s xn) (14) 

or 

Lii: y[ii] = (w1[ii]t x1) s (w2[ii]t x2) s .. s (wn[ii]t xn) (15) 

We form a unified, holistic view at all of them by forming a certain granular 
abstraction of {L1, L2, …Lc}, denoted here as GL(x), refer also to Figure 2.  

 

Fig. 2. From local logic descriptors to its global granular description G(L) 

It reads as follows 

L: y= (W1s x1) t (W2 s x2) t .. t (Wn s xn) (16) 

or 

L: y= (W1t x1) s (W2t x2) s .. s (Wnt xn) (17) 

where Wj is a granular weight. 
The granular descriptor is developed in the following scenario. We select one of the 

logic descriptors, say Li. If the corresponding data D1, D2, … Dc used to develop the 

logic descriptors are available, we form their union D, D = 
i=1

c

U  Di. These data are 

used to form the granular descriptor, G(Li) following the procedure discussed so far. 
The quality of this granular construct is quantified by the AUC value. If the data sets are 
not available (meaning that only the logic descriptors are given), one can form a new 
data set, F, using which G(Li) is developed and evaluated in terms of the AUC measure. 
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As noted, the granular structure is formed by starting with Li. With this regard 
some optimization could be envisioned. All options are enumerated by choosing any 
of L1, L2, …, Lc as a candidate for a granular logic descriptor and choosing the one 
coming with the highest AUC value, that is  

iopt = arg max i=1,2,…,c AUC(G(Li)) (18) 

6 An Architectures of the Fuzzy Logic Networks 

The logic neurons (the constructs discussed above) can serve as building blocks of 
more comprehensive and functionally appealing architectures. The typical logic 
network that is at the center of logic processing originates from the two-valued logic 
and comes in the form of the fundamental Shannon theorem of decomposition of 
Boolean functions. Let us recall that any Boolean function {0,1}n  {0,1} can be 
represented as a logic sum of its corresponding miniterms or a logic product of 
maxterms. By a minterm of “n” logic variables x1, x2, …, xn we mean a logic product 
involving all these variables either in direct or complemented form. Having “n” 
variables we end up with 2n minterms starting from the one involving all 
complemented variables and ending up at the logic product with all direct variables. 
Likewise by a maxterm we mean a logic sum of all variables or their complements. 
Now in virtue of the decomposition theorem, we note that the first representation 
scheme involves a two-layer network where the first layer consists of AND gates 
whose outputs are combined in a single OR gate. The converse topology occurs for the 
second decomposition mode: there is a single layer of OR gates followed by a single 
AND gate aggregating or-wise all partial results.  

The proposed network (referred here as a logic processor) generalizes this concept 
as shown in Figure 3. The OR-AND mode of the logic processor comes with the two 
types of aggregative neurons being swapped between the layers. Here the first (hidden) 
layer is composed of the OR neuron and is followed by the output realized by means of 
the AND neuron. The inputs and outputs are the levels of activation of information 
granules expressed in the input and output spaces. 

 

Fig. 3. A topology of the logic processor (N) in its AND-OR mode of realization 
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The logic neurons generalize digital gates by bringing essential learning capabilities 
and expanding the construct from its Boolean version to the multivalued alternative. 
The design of the network (viz. any fuzzy function) is realized through learning. If we 
confine ourselves to Boolean {0,1} values, the network’s learning becomes an 
alternative to a standard digital design, especially a minimization of logic functions. 
The logic processor translates into a compound logic statement (for the time being we 
skip the connections of the neurons to emphasize the underlying logic content of the 
statement). 

- if (input1 and… and inputn) or (inputd and …and inputn) then truth value of Bj 

where the truth value of Bj can be also regarded as a level of “satisfaction” 
(activation) of the information granule Bj. Given the number of inputs and the number 
of outputs equal to “n” and “m”, the logic processor generates a mapping from [0,1]n 
to [0,1]m thus forming a collection of “m” n-input fuzzy functions. 

7 Granular Fuzzy Logic Networks 

Following the general scheme of the granular mapping, the numeric values of the 
connections are generalized (abstracted) to the granular connections in the form of 
some intervals being included in the unit interval. The emergence of the granular 
(interval) connections is legitimate. Again we would like to stress a role of 
information granularity being viewed as an important design asset, which needs to 
have prudently exploited. The essence of the granulation of the fuzzy logic network is 
visualized in Figure 4. 

 

Fig. 4. From fuzzy neural network to its granular abstraction (generalization); small rectangular 
shapes emphasize the interval-valued character of the granular connections 
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As the connections of the logic neurons are now granular (represented in the form 
of intervals), the output of network becomes granular (interval) as well. To emphasize 
that, let us look at the OR neuron described by (17) where the connections are made 
granular, that is G(wij) = [wij- , wij+ ]. We have the following expression 

Yi = [yi- , yi+ ] = 
j=1

n

S(G(w ij) tu j)  (19) 

which, in virtue of the monotonicity of t-norms and t-conorms, results in the bounds 
of Yi to be equal to  

Yi= [
j=1

n

S(G(wij-) tu j),
j=1

n

S(G(w ij+) tu j)] (20) 

The quality of the granular fuzzy neural network, assuming that a certain level of 
information granularity ε has resulted in the corresponding granular connections, can 
be evaluated in several ways. 

Intuitively, as the connections are granular (interval-valued), the output produced 
by the network is also of interval-valued nature. The data used in the formation of the 
granular mapping is in the form of input-output pairs D’ = (xk, targetk). Ideally, one 
would anticipate that the outputs of the granular network should include the original 
data D’. Consider xk ∈  D’ with the cardinality of D’ equal to N’. Each of the outputs 
of the granular neural network comes in the form of the interval Ykj =[yj-, yj+] = 
G(N(xk))j, j=1, 2,…, m. The quality of the granular network can be assessed by 
counting how many times the inclusion relationship targetkj ∈  G(N(xk))j holds. In 
other words, the performance index we discussed so far, is expressed in the following 
form 

Q = j=1

m

 {card((k, j) | target kj ∈ G(N(xk ) j}
k=1

N'


N'*m

 (21)
 

Ideally, we could expect that this ratio is equal to 1. Of course Θ becomes a 
nondecreasing function of ε , Q(ε), so less specific information granules (higher 
values of ε) produce better coverage of the data but at an expense of the obtained 
results being less specific. As before, one can compute the AUC as it is independent 
from any specific value of the level of information of granularity. 

Along with the coverage criterion, we can look at the quality of the information 
granule of the output formed by the granular logic network, that is a length L of the 
interval L(G(N(xk)) or its average value,  

L = 
1
M

L(G(N(xk

k=1

M

 ))  (22) 

Note that the criteria (21) and (22) are in conflict: while high values of (21) are 
preferred, lower values of (22) are advisable. If the two criteria are going to be 
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considered at a time then a formation of a Pareto front is a way to proceed in the 
optimization process. 

In what we follows, we discuss some more advanced ways of allocating 
information granularity to the individual connections of the network (not all 
connections need to be granulated to the same extent), so that the performance indices 
(21) and (22) can be optimized (maximized and minimized, respectively) or their 
aggregate could be optimized. 

8 Conclusions 

In Granular Computing, we strive to build a coherent and algorithmically sound 
processing platform. The mechanism of optimal allocation of information granularity 
provide a way of forming information granules and exploiting information granularity 
as an important design asset in a variety of models. In this context, we highlight an 
important role of information granules as a vehicle through which we can achieve 
higher consistency of the models (along with a quantification of this feature) and 
facilitate various mechanisms of collaboration (as exemplified in the group decision-
making realized via the AHP model). It is worth noting that they are independent 
from any specific formal way of representing information granules sets, fuzzy sets, 
rough sets, etc.) and in this manner, the discussed setup is of a general character. 

The idea of optimal allocation (distribution) of information granularity calls for 
more advanced techniques of optimization (that go far beyond gradient-based 
techniques). In particular, one can anticipate the usage of evolutionary of swarm 
optimization methods. In this sense, we start witnessing here yet another example of 
an important synergy of technologies of Computational Intelligence. The granular 
constructs open a new avenue of Granular Computational Intelligence in which 
information granularity starts playing a visible role in the design of collaborative 
intelligent systems. 
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Abstract. Swarm intelligence is the collective problem-solving behavior of
groups of animals and artificial agents. Often, swarm intelligence is the result
of self-organization, which emerges from the agents’ local interactions with one
another and with their environment. Such local interactions can be positive, neg-
ative, or neutral. Positive interactions help a swarm of agents solve a problem.
Negative interactions are those that block or hinder the agents’ task-performing
behavior. Neutral interactions do not affect the swarm’s performance. Reducing
the effects of negative interactions is one of the main tasks of a designer of ef-
fective swarm intelligence systems. Traditionally, this has been done through the
complexification of the behavior and/or the characteristics of the agents that com-
prise the system, which limits scalability and increases the difficulty of the design
task. In collaboration with colleagues, I have proposed a framework, called incre-
mental social learning (ISL), as a means to reduce the effects of negative interac-
tions without complexifying the agents’ behavior or characteristics. In this paper,
I describe the ISL framework and three instantiations of it, which demonstrate the
framework’s effectiveness. The swarm intelligence systems used as case studies
are the particle swarm optimization algorithm, ant colony optimization algorithm
for continuous domains, and the artificial bee colony optimization algorithm.

1 Introduction

Some animals form large groups that behave so coherently and purposefully that they
truly seem to be superorganisms with a mind of their own [5]. These groups are often
called swarms because the individuals that comprise them are usually of the same kind
and are so numerous that they resemble true insect swarms. If the behavior of a swarm
allows it to solve problems beyond the capabilities of any of its members, then we say
that the swarm exhibits swarm intelligence [3]. One of the best known examples of
swarm intelligence is the ability of ant colonies to discover the shortest path between
their nest and a food source [11]. The members of a swarm usually cannot perceive
or interact with all the other members of the swarm at the same time. Instead, swarm
members interact with one another and with their environment only locally. As a re-
sult, a swarm member cannot possibly supervise or dictate the actions of all the other
swarm members. This restriction implies that swarm intelligence is often the result of
self-organization, which is a process through which patterns at the collective level of a
system emerge as a result of local interactions among its lower level components [4].
Other mechanisms through which swarm intelligence may be obtained are leadership,
blueprints, recipes, templates, or threshold-based responses [4,9].

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 31–45.
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Through the study of natural swarm intelligence systems, scientists have identified a
number of principles and mechanisms that make swarm intelligence possible [9]. The
existence of these principles and mechanisms makes the design of artificial swarm intel-
ligence systems possible because we can make robots or software agents use the same
or similar rules to the ones animals use. The first efforts toward the development of arti-
ficial swarm intelligence systems began in the 1990s with pioneering works in robotics,
data mining, and optimization [6]. In this paper, I focus on swarm intelligence systems
for optimization, which have been very successful in practice [31,35].

A swarm intelligence algorithm for optimization consists of a set of agents, called
swarm, or colony, that either generates candidate solutions or represents the actual
set of candidate solutions. For example, in particle swarm optimization (PSO) algo-
rithms [18], the swarm is composed of “particles” whose positions in the search space
represent candidate solutions (see Section 4.1). In ant colony optimization (ACO) al-
gorithms [7], the colony is made of “ants” that generate solutions in an incremental
way guided by “pheromones” (see Section 4.2). In any case, the size of the swarm or
colony is a parameter that determines the number of candidate solutions generated at
each iteration of the algorithm: the larger the swarm, the more candidate solutions are
generated and tried per iteration. The effect of the swarm size on the algorithms’ per-
formance depends on the amount of time allocated to the optimization task [7,27]: If a
long time is available, large swarms usually return better results than small swarms. On
the contrary, if only a short amount time is allocated, small swarms return better results
than large swarms. In Section 2, I provide an explanation of this phenomenon in terms
of positive and negative interactions among agents. For the moment, it is enough to say
that the discovery of good solutions to an optimization problem typically occurs when
swarms are near a convergence state. Thus, since small swarms reach a convergence
state sooner than large swarms, it follows that small swarms discover good solutions
before large swarms. However, small swarms converge before the allocated time runs
out, which causes search stagnation.

In the context of optimization, the incremental social learning (ISL) framework
[26,29,24] exploits the faster convergence of small swarms while avoiding search stag-
nation. This is accomplished by varying the population size over time. An optimization
algorithm instantiating the ISL framework starts with a small population in order to find
good quality solutions early in the optimization process. As time moves forward, new
individuals are added to the population in order to avoid search stagnation. The newly
added individuals are not generated at random. They are initialized using information
already present in the population through a process that simulates social learning, that
is, the transmission of knowledge from one individual to another. These two elements,
an incremental deployment of individuals and the social learning-based initialization of
new individuals, are the core of the ISL framework. The actual implementation of these
elements may vary from system to system but the goals of each element remain the
same. ISL has not only been used in optimization but also in swarm robotics [28,24]. In
both cases, an important improvement of the system’s performance has been obtained.
With this paper, I hope to spark interest in the application and theoretical study of the
ISL framework.



ISL in Swarm Intelligence Algorithms for Continuous Optimization 33

The rest of the paper is structured as follows. In Section 2, I explain the three kinds
of interactions that occur in multiagent systems, including swarm intelligence systems.
This explanation motivates the introduction of the ISL framework, which is described
in detail in Section 3. In Section 4, I describe the three case studies that are used to
show the effectiveness of the ISL framework in the context of optimization. I close this
paper with some conclusions in Section 5.

2 Interactions in Multiagent and Swarm Intelligence Systems

In multiagent systems, including swarm intelligence systems, individual agents interact
with one another and with their environment in order to perform a task. It is possible to
classify all inter-agent and agent-environment interactions as “positive”, “negative”, or
“neutral” based on whether they help the system achieve its goals or not [10]. Interac-
tions that facilitate the accomplishment of the agents’ assigned task are called positive.
For example, a positive interaction would be one in which agents cooperate to per-
form a task that agents could not if they acted individually (see e.g., [19]). Negative
interactions, also called interference [23], friction [10], or repulsive and competitive
interactions [14], are those that block or hinder the ability of the system’s constituent
agents to perform the assigned task. Since negative interactions are an obstacle toward
the efficient completion of a task, they decrease the performance of the system. For
instance, in swarm intelligence algorithms for data clustering [13], agents can undo the
actions of other agents, which increases the time needed to find a satisfactory final clus-
tering. An interaction that does not benefit or harm progress toward the completion of a
task is called neutral. An example of a neutral interaction could be a message exchange
between two agents that just confirms information they already have and thus do not
have to change plans.

Three difficulties arise when trying to directly measure the effects of interactions in
a multiagent system. First, in many systems agent interactions are not predictable, that
is, it is impossible to know in advance whether any two agents will interact and whether
they will do so positively, negatively, or neutrally. Consequently, one can determine
whether the effects of an interaction are beneficial or not only after the interaction has
occurred. Second, an interaction may be positive, negative or neutral, depending on
the time scale used to measure its effect. For example, an interaction that involves two
robots performing collision avoidance can be labeled as a negative interaction in the
short term because time is spent unproductively. However, if the time horizon of the
task the robots are performing is significantly longer than the time frame of a collision
avoidance maneuver, then the overall effect of such an interaction may be negligible.
In this case, such interaction may be labeled as neutral. Third, the nature of the inter-
actions themselves poses a challenge. In some systems, agents interact directly on a
one-to-one or one-to-many basis. In other systems, agents interact stigmergically [12],
that is, indirectly through the environment. Stigmergy makes the classification of inter-
actions difficult because there may be extended periods of time between the moment an
agent acts and the moment another agent (or even the acting agent itself) is affected by
those actions. With these difficulties, the only practical way to measure the effects of
interactions is to do it indirectly through the observation of the system’s performance.
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This is the approach my colleagues and I have taken to measure the effects of ISL (see
Section 4).

Swarm intelligence systems are special kinds of multiagent systems. In contrast with
traditional multiagent systems in which agents usually play a very specific role, swarm
intelligence systems are usually composed of identical individuals. This feature has pro-
found effects on the difficulty of the design task. The main problem is that the designer
of a swarm intelligence system has to devise individual-level behaviors that foster pos-
itive interactions and, at the same time, minimize the number of negative interactions.
Unfortunately, it is not always possible to achieve both goals simultaneously. For ex-
ample, Kennedy and Eberhart [18], the designers of the first PSO algorithm, pondered
different candidate particle interaction rules before proposing the rules that we now
know (see Section 4.1). Their ultimate goal was to design rules that promoted posi-
tive interactions between particles. In the final design, particles cooperate, that is, they
engage in positive interactions, by exchanging information with one another about the
best solution to an optimization problem that each particle finds during its lifetime. It
is hoped that this information exchange helps the algorithm improve the quality of the
solutions by making particles move toward promising regions in the search space. At
the same time, however, such an exchange of information may make particles evaluate
regions of the search space that may in fact not contain the optimal solution or improve
their current best estimate. When this happens, objective function evaluations are spent
unproductively. The trade-off between solution quality and speed that many optimiza-
tion algorithms exhibit is the result if these opposite-effect processes. As I said earlier,
it is not possible to know in advance which particle interactions will be positive, or
negative and thus a balance between these two kinds of interactions is always sought,
usually through appropriate parameter settings [21].

Despite the aforementioned difficulties, swarm intelligence systems often exhibit the
following two properties that make the management of negative interactions possible:

1. The number of negative interactions increases with the number of agents in the sys-
tem. This effect is the result of the increased number of interactions within the sys-
tem. The larger the number of agents that comprise the system, the more frequently
negative interactions occur.

2. The number of negative interactions tends to decrease over time. At one extreme of
the spectrum, one can find a system in which interactions between agents are com-
pletely random or not purposeful. In such a case, it is expected that agents cannot
coordinate and thus, cannot perform useful work. As a result, the number of negative
interactions remains constant over time. At the other extreme of the spectrum, one
finds well-behaved systems consisting of a number of agents whose interaction rules
are designed in order to make agents coordinate with each other. Initially, it is ex-
pected that many negative interactions occur because agents would not have enough
knowledge about their current environment. However, over time, the behavioral rules
of these agents would exploit any gained knowledge in order to make progress to-
ward the completion of the assigned task. Thus, in cases like these, the number of
negative interactions decreases over time.
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The incremental social learning framework, which will be described next, exploits the
two aforementioned properties in order to control, up to a certain extent, the number of
negative interactions in a swarm intelligence system.

3 Incremental Social Learning

A framework called incremental social learning (ISL) was proposed by the author and
colleagues [26,29,24] to reduce the effects of negative interactions in swarm intelligence
systems. As a framework, ISL offers a conceptual algorithmic structure that does not
prescribe a specific implementation of the ideas on which it relies. Each instantiation of
ISL will benefit from knowledge about the specific application domain, and therefore,
specific properties of the framework should be analyzed in an application-dependent
context.

The ISL framework consists of two elements that exploit the two properties men-
tioned in Section 2. The first element of the framework directly reduces the number of
negative interactions within a system by manipulating the number of agents. The strat-
egy for controlling the size of the agent population exploits the second property, that is,
that the number of negative interactions tends to decrease over time. Under the control
of ISL, a system starts with a small population. Over time, the population grows at a rate
determined by a user-defined agent addition criterion. Two phenomena with opposite
effects occur while the system is under the control of the ISL framework. On the one
hand, the number of negative interactions increases as a result of adding new agents to
the swarm (first property described in Section 2). On the other hand, the number of neg-
ative interactions decreases because the system naturally tends toward a state in which
fewer negative interactions occur (second property described in Section 2). The second
element of the framework is social learning. This element is present before a new agent
freely interacts with its peers. Social learning is used so that the new agent does not
disrupt the system’s operation due to its lack of knowledge about the environment or
the task. Leadership, a swarm intelligence mechanism [4,9], is present in the framework
in the process of selecting a subset of agents from which the new agent learns. The best
strategy to select such a set depends on the specific application. However, even in the
case in which a random agent is chosen as a “model” to learn from, knowledge transfer
occurs because the selected agent will have more experience than the new agent that is
about to be added.

The two elements that compose ISL are executed iteratively as shown in Algorithm 1.
In a typical implementation of the ISL framework, an initial population of agents is cre-
ated and initialized (line 4). The size of the initial population depends on the specific
application. In any case, the size of this initial population should be small in order to re-
duce interference to the lowest possible level. A loop allows the interspersed execution
of the underlying system and the creation and initialization of new agents (line 7). This
loop is executed until some user-specified stopping criteria are met. Stopping criteria
can be specific to the application or related to the ISL framework. For example, the
framework may stop when the task assigned to the swarm intelligence system is com-
pleted or when a maximum number of agents are reached. While executing the main
loop, agent addition criteria, which are also supplied by the user, are repeatedly evalu-
ated (line 8). The criteria can range from a predefined schedule to conditions based on
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Algorithm 1. Incremental social learning framework

Input: Agent addition criteria, stopping criteria
1: /* Initialization */
2: t← 0
3: Initialize environment Et

4: Initialize population of agents Xt

5:
6: /* Main loop */
7: while Stopping criteria not met do
8: if Agent addition criteria is not met then
9: default(Xt,Et) /* Default system */

10: else
11: Create new agent anew
12: slearn(anew,Xt) /* Social learning */
13: Xt+1 ← Xt ∪ {anew}
14: end if
15: Et+1 ← update(Et) /* Update environment */
16: t← t+ 1
17: end while

statistics of the system’s progress. If the agent addition criteria are not met, the set of
agents work normally, that is, the underlying swarm intelligence system is executed. In
line 9, such an event is denoted by a call to the procedure default(Xt,Et). If the agent
addition criteria are satisfied, a new agent is created (line 11). In contrast to a default
initialization such as the one in line 4, this new agent is initialized with information ex-
tracted from a subset of the currently active population (line 12). Such an initialization
is denoted by a call to the procedure slearn(anew,Xt). This procedure is responsible
for the selection of the agents from which the new agent will learn, and for the actual
implementation of the social learning mechanism. Once the new agent is properly ini-
tialized, it becomes part of the system (line 13). In line 15, we explicitly update the
environment. However, in a real implementation, the environment may be continuously
updated as a result of the system’s operation.

In most swarm intelligence systems, the population of agents is large and homoge-
neous, that is, it is composed of agents that follow exactly the same behavioral rules.
Thus, any knowledge acquired by an agent is likely to be useful for another one. The so-
cial learning mechanism used in an instantiation of the ISL framework should allow the
transfer of knowledge from one agent to the other. In some cases, it is possible to have
access to the full state of the agent that serves as a “model” to be imitated, and thus, the
social learning mechanism is simple. In other cases, access to the model agent’s state
may be limited and a more sophisticated mechanism is required. In most cases, the re-
sult of the social learning mechanism will not be simply a copy of the model agent’s
state, but a biased initialization toward it. Copying is not always a good idea because
what may work very well for an agent in a system composed of n agents may not work
well in a system of n+ 1 agents.
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4 Case Studies

In this section, I will briefly describe the three case studies that colleagues and I used in
order to measure the effectiveness of ISL in the context of optimization. The swarm in-
telligence algorithms used were the particle swarm optimization (PSO) algorithm [18],
the ant colony optimization algorithm for continuous domains (ACOR) [33], and the
artificial bee colony (ABC) algorithm [17].

4.1 Case Study 1: Particle Swarm Optimization

The Basic Algorithm. In PSO algorithms [18], very simple agents, called particles,
form a swarm and move in an optimization problem’s search space. Each particle’s
position represents a candidate solution to the optimization problem. The position and
velocity of the i-th particle along the j-th coordinate of the problem’s search space at
iteration t are represented by x t

i,j and v t
i,j , respectively. The core of the PSO algorithm

is the set of rules that are used to update these two quantities. These rules are:

v t+1
i,j = wv t

i,j + U(0, ϕ1)(p
t
i,j − x t

i,j) + U(0, ϕ2)(l
t
i,j − x t

i,j) , (1)

x t+1
i,j = x t

i,j + v t+1
i,j , (2)

where w, ϕ1 and ϕ2 are parameters of the algorithm, U(a, b) represents a call to a
random number generator that returns a uniformly distributed random number in the
range [a, b), p t

i,j represents the j-th component of the best solution ever visited by the
i-th particle, and l ti,j represents the j-th component of the best solution ever visited by
a subset of the swarm referred to as the i-th particle’s neighborhood. The definition of
each particle’s neighborhood is usually parametric, fixed, and set before the algorithm
is run.

Integration with ISL. The ISL framework can be instantiated in different ways in
the context of PSO algorithms. Here, I present the most basic variant, which was first
described in [26] and benchmarked in [29]. A more sophisticated variant that exhibits a
much better performance is presented in [25].

The most basic instantiation of the ISL framework in the context of PSO algorithms
is a PSO algorithm with a growing population size called incremental particle swarm
optimizer (IPSO). In IPSO, every time a new particle is added, it is initialized using the
following rule:

x′
new,j = xnew,j + U(pmodel,j − xnew,j), (3)

where x′
new,j is the new particle’s updated position, xnew,j is the new particle’s original

random position, pmodel,j is the model particle’s previous best position, and U is a uni-
formly distributed random number in the range [0, 1). This rule moves a new particle
from an initial randomly generated position in the problem’s search space to one that is
closer to the position of a model particle. Once the rule is applied for each dimension,
the new particle’s previous best position is initialized to the point x′

new and its velocity
is set to zero. The random number U is the same for all dimensions in order to ensure
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Fig. 1. Percentage of test cases in which the performance of IPSO (a) and IPSOLS (b) is better or
no worse (according to a Wilcoxon test at a significance level of 0.05) than the performance of
other comparable algorithms

that the new particle’s updated previous best position will lie somewhere along the di-
rect attraction vector pmodel−xnew. Finally, the new particle’s neighborhood, that is, the
set of particles from which it will receive information in subsequent iterations, is gen-
erated at random using the same parameters used to generate the rest of the particles’
neighborhoods.

A better performing variant of IPSO, called IPSOLS, uses a local search procedure.
In the context of the ISL framework, a call to a local search procedure may be inter-
preted as a particle’s “individual learning” ability since it allows a particle to improve its
solution in the absence of any social influence. In experiments with IPSOLS and other
algorithms, we used Powell’s conjugate directions set method [32] as local search.
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Results. A condensed view of the results obtained with IPSO and IPSOLS in [29] is
shown in Fig. 1. The figure shows the percentage of test cases (a total of 24 cases:
12 benchmark functions and two neighborhood types) in which the performance of
IPSO and IPSOLS is better than or indistinguishable from the performance of reference
algorithms (in a statistical sense). The reference algorithms are a PSO algorithm with
three different population sizes and a PSO algorithm with a sophisticated mechanism
for changing the population size over time (EPUS) [16]. The algorithms used in the
comparison with IPSOLS are also a PSO algorithm with local search and three different
population sizes, EPUS with local search, and a randomly restarted local search. Details
about the experimental setup can be found in [29].

Using IPSO is advantageous when the optimal population size for a particular budget
in terms function evaluations is not known in advance. IPSO is advantageous in these
cases because a specific population size will produce acceptable results only for runs of
a particular length. For example, in our experiments, a PSO algorithm with 10 particles
returned good results only for runs of 1000 function evaluations. However, if more
time is available, 10 particles return poor results in comparison with larger swarms. In
contrast, IPSO has a competitive performance for runs of different length as can be seen
in Fig. 1. In any case, the absolute quality of the results obtained with the use of a local
search procedure is much better than without local search. Thus, the results in subfigure
(b) are more interesting. Here, IPSOLS’s performance is clearly better than that of the
other algorithms. The reason is that the combination of ISL, PSO and a local search
procedure makes particles in IPSOLS move from one local optimum to another [30],
producing high quality solutions in a few iterations of the algorithm.

4.2 Case Study 2: Ant Colony Optimization

The Basic Algorithm. ACOR [33] maintains a solution archive of size k that is used
to keep track of the most promising solutions and their distribution over the search
space. Initially, the solution archive is filled with randomly generated solutions. The
archive is then updated as follows. At each iteration, m new solutions are generated
and from the k +m solutions that become available, only the best k solutions are kept.
The mechanism responsible for the generation of new solutions samples values around
the solutions si with i ∈ {1, . . . , k} in the archive. This is done on a coordinate-per-
coordinate basis using Gaussian kernels defined as sums of weighted Gaussian func-
tions. The Gaussian kernel for coordinate j is

Gj(x) =
k∑

i=1

ωi
1

σij

√
2π

e
− (x−μij )2

2σij
2

, (4)

where j ∈ {1, . . . , D} and D is the problem’s dimensionality. The mean and variance
of these Gaussian functions are set as follows: μij = sij , and

σij = ξ

k∑
r=1

|srj − sij |
k − 1

, (5)

which is the average distance between the j-th component of the solution si and the
j-th component of the other solutions in the archive, multiplied by a parameter ξ.
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The weight ωi associated with solution si depends on its quality, represented by its
ranking in the archive, rank(i) (the best solution is ranked first and the worst solution is
ranked last). This weight is calculated using also a Gaussian function:

ωi =
1

qk
√
2π

e
−(rank(i)−1)2

2q2k2 , (6)

where q is a parameter of the algorithm. During the solution generation process, each
coordinate is treated independently. For generating the j-th component of a new so-
lution, the algorithm chooses first an archive solution with a probability proportional
to its weight. Then, the algorithm generates a normally-distributed random number
with mean and variance equal to μij and σij as defined above. This number is the
j-th component of the new solution. This process repeated m times for each dimension
j ∈ {1, ..., D} in order to generate m new candidate solutions.

Integration with ISL. The instantiation of the ISL framework with the ACOR algo-
rithm requires increasing the number of solutions handled per iteration and the biased
initialization of new solutions. The resulting algorithm is called IACOR if no local
search is used, and IACOR-LS if it is. These algorithms were first proposed in [20].

In IACOR the initial size of the solution archive is small. As the optimization process
proceeds, new solutions are added to the solution archive at a rate determined by a user-
specified criterion. New solutions are initialized using information from a subset of the
solutions in the archive (usually the best solution). The rule used to bias the initialization
of new solutions is the same as in IPSO (see Eq. 3).

IACOR differs from the original ACOR algorithm in the way the solution archive is
updated. In IACOR, once a guiding solution is selected, and a new one is generated (in
exactly the same way as in ACOR), they are compared. If the newly generated solution
is better than the guiding solution, it replaces it in the archive. In contrast, in ACOR

all solutions, new and old, compete at the same time for a slot in the solution archive.
Another difference is the mechanism for selecting the guiding solution in the archive. In
IACOR, the best solution in the archive is used as guiding solution with probability p.
With a probability 1− p, all the solutions in the archive are used to generate new solu-
tions. Finally, IACOR is restarted (keeping the best-so-far solution) if the best solution
is improved less than a certain threshold for a number of consecutive iterations.

As in the PSO case, the quality of the solutions found with IACOR typically improve
if a local search method is used. In our experiments, we measured the performance of
IACOR-LS with Powell’s conjugate directions set [32] and Lin-Yu Tseng’s mtsls1 [36]
methods as local search procedures.

Results. To benchmark IACOR-LS, colleagues and I followed the protocol proposed
by Lozano et al. for a special issue on large-scale optimization in the Soft Computing
Journal [22]. We compared the results obtained by IACOR-LS with those obtained with
IPSOLS (the version described in [25]) and other 15 algorithms. The results are shown
in Fig. 2.

IACOR-LS using mtsls1 as a local search is among the best performing algorithms.
In at least eight benchmark functions, IACOR-mtsls1 found an average solution quality
at least equal to 10−14. Some of these functions are the well-known Rosenbrock and
Rastrigin functions. These results are thus remarkable considering the fact that these
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Fig. 2. Comparison of IACOR-LS with other algorithms: Distribution of average values (over 25
runs) obtained across 19 functions in 100 dimensions after up to 500,000 function evaluations.
Values at or below the threshold 10−14 are considered “zero” for numerical reasons. DE [34],
G-CMA-ES [1], and CHC [8] were proposed by Lozano et al. [22] as reference algorithms. The
benchmark functions used are described in [15].

functions cannot usually be solved to such a precision level. An interesting result of
this comparison comes from the fact that G-CMA-ES [1], which many still consider a
state-of-the-art optimization algorithm, is among the worst performing algorithm. This
result does not mean that G-CMA-ES is not a good algorithm, but that it does not scale
well with the problem’s size. Therefore, for large-scale problems, IACOR-mtsls1 can
be considered a representative algorithm of the state of the art.

4.3 Case Study 3: Artificial Bee Colony Optimization

The Basic Algorithm. The design of the artificial bee colony (ABC) algorithm [17] is
inspired by the foraging behavior of honeybee swarms, in particular, the recruitment of
honeybees to good food sources. The first step of this algorithm is to randomly place a
number SN of candidate solutions, called food sources, in the problem’s search space.
The algorithm’s goal is to discover better food sources (improve the quality of candidate
solutions). This is done as follows: First, simple agents called employed bees select
uniformly at random a food source and explore another location using the following
rule:

vi,j = xi,j + U(−1, 1)(xi,j − xk,j), i �= k , (7)

where i, k ∈ {1, 2, . . . , SN}, j ∈ {1, 2, . . . , D}, xij and xkj are the position of the
reference food source i and a randomly selected food source k in dimension j, respec-
tively. The better food source between the new and the reference food sources is kept
by the algorithm. The next step is performed by another kind of agent called onlooker
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bee, which looks for better food sources around other food sources based on their qual-
ity. This is done by first selecting a reference food source with a probability based on
its quality so that better food sources are more attractive. This step is responsible for
the intensification behavior of the algorithm since information about good solutions is
exploited. The third step is performed by so-called scout bees. In this step, a number
of food sources that have not been improved for a predetermined number of iterations
(controlled by a parameter limit), are detected and abandoned. Then, scout bees search
for a new food source randomly in the whole search space.

Integration with ISL. IABC and IABC-LS were proposed in [2]. From these two al-
gorithms, IABC-LS is the better performing. In ABC-LS, the number of food sources
increases over time according to a predefined schedule. Initially, only a few sources are
used. New food sources are placed using Eq. 3. Scout bees in IABC-LS use a similar
rule when exploring the search space. This rule is

x′
new,j = xbest,j +Rfactor(xbest,j − xnew,j) , (8)

where Rfactor is a parameter that controls how close to the best-so-far food source the
new food source will be. IABC-LS also differs from the original ABC algorithm in the
way employed bees select the food source around which they explore. In IABC-LS,
employed bees search around the best food source instead of around a randomly chosen
one in order to enhance the search intensification. IABC-LS is a hybrid algorithm that
calls a local search procedure at each iteration. The best-so-far food source location
is usually used as the initial solution from which the local search is called. The result
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Fig. 3. Comparison of IABC-LS with other algorithms: Distribution of average values (over 25
runs) obtained across 19 functions in 100 dimensions after up to 500,000 function evaluations.
Values at or below the threshold 10−14 are considered “zero” for numerical reasons. DE [34],
G-CMA-ES [1], and CHC [8] were proposed by Lozano et al. [22] as reference algorithms. The
benchmark functions used are described in [15].
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of the local search replaces the best-so-far solution if there is an improvement on the
initial solution. To fight stagnation, the local search procedure may be applied from a
randomly chosen solution if the best-so-far solution cannot be improved any further.

Results. To measure the performance of IABC-LS, the same protocol used to bench-
mark IACOR-LS was used. The results are shown in Fig. 3. IABC-LS using Powell’s
conjugate directions set method as the local search component exhibits practically the
same performance as IPSO-LS with the same local search. IABC-LS with mtsls1 as the
local search method does not perform as well. These results together with the results
obtained with IACOR-LS, suggest that the observed performance does not depend only
on the local search method used, but on the interaction between the the incremental
algorithm and the local search used. In any case, the instantiation of the ISL framework
in the context of ABC algorithms also improves the performance of the original algo-
rithm. ISL transformed an algorithm not known for being state of the art (ABC) into a
highly competitive algorithm.

5 Conclusions

Engineered swarm intelligence systems are composed of agents that interact with one
another and with their environment in order to accomplish a certain task. Usually, these
systems are composed of agents that use the same behavioral rules; therefore, these
rules must allow agents to engage in positive interactions (those that help the system
accomplish the assigned task) and avoid negative interactions (those that block or hin-
der the agents’ task-performing behavior). Typically, it is impossible to predict when
any two agents will interact or whether they will do so positively. As a consequence,
designers often complexify the behavioral rules of the agents, or the agents’ charac-
teristics. Both of these strategies limit the systems’ scalability potential and make the
design task more challenging.

The incremental social learning (ISL) framework was proposed to reduce the effects
of negative interactions in swarm intelligence systems without requiring the complexifi-
cation of the agents’ behavioral rules or characteristics. Three case studies in the context
of optimization were carried out in order to assess the effectiveness of the ISL frame-
work. The three algorithms that served this purpose were particle swarm optimization,
ant colony optimization for continuous domains ACOR, and artificial bee colony opti-
mization. In each of these cases, the ISL framework improved the performance of the
underlying algorithms, a sign of the reduced effect of negative interactions. The instan-
tiation of the ISL framework with ACOR resulted in a new state-of-the-art optimization
algorithm for problems whose dimensionality makes them unsuitable to be dealt with
other high performance algorithms such as G-CMA-ES.
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2. Aydın, D., Liao, T., Montes de Oca, M.A., Stützle, T.: Improving performance via population
growth and local search: The case of the artificial bee colony algorithm. In: Proceedings of
the International Conference on Artificial Evolution, EA 2011 (2011) (to appear)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press,
New York (1999)

4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton University Press, Princeton (2001)

5. Couzin, I.D.: Collective minds. Nature 445(7129), 715 (2007)
6. Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007),

http://dx.doi.org/10.4249/scholarpedia.1462
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12. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositer-
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20. Liao, T., Montes de Oca, M.A., Aydın, D., Stützle, T., Dorigo, M.: An incremental ant colony
algorithm with local search for continuous optimization. In: Krasnogor, N., et al. (eds.) Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 125–
132. ACM Press, New York (2011)

21. Lobo, F.G., Lima, C.F.: Adaptive Population Sizing Schemes in Genetic Algorithms. In: Pa-
rameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 185–204. Springer, Heidelberg
(2007)

22. Lozano, M., Molina, D., Herrera, F.: Editorial scalability of evolutionary algorithms and other
metaheuristics for large-scale continuous optimization problems. Soft Computing 15(11),
2085–2087 (2011)
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Abstract. The Balanced Academic Curriculum Problem (BACP) is a constraint 
satisfaction problem classified as NP- Hard, this problem consists in the alloca-
tion of courses in the periods that are part of a curriculum such that the prere-
quisites are satisfied and the load of courses is balanced for the students. In this 
paper is presented the solution for a modified BACP where the loads may be 
the same or different for each one of the periods and is allowed to have some 
courses in a specific period. This problem is modeled as an integer program-
ming problem and is proposed the use of evolutionary strategies for its solution 
because was not possible to find solutions for all the instances of this modified 
problem with formal methods. 

Keywords: Optimization, Evolutionary strategies, Balanced academic 
curriculum problem. 

1 Introduction 

A curriculum is formed by a set of courses and these courses have assigned a number 
of credits that represent the effort in hours per week that the student requires to follow 
the courses successfully. For parents or tutors and for the institution represents the 
economic cost of this course. The academic load is the sum of the credits of all the 
courses in a given period. 

Therefore, the correct planning of the curriculum results in benefit of the all the in-
volved: For the institutions, favors the departmentalization and the resulting cost sav-
ings, for the students, one good load distribution represents the academic effort that 
they require invest, for the parents or tutors, a good distribution of the credits  allow 
planning financial efforts. 

Balanced Academic Curriculum Problem (BACP) consists in the allocation of 
courses in the periods that are part of a curriculum such that the prerequisites are sa-
tisfied and the credits load is balanced. The BACP belongs to the class of problems 



50 L.V. Rosas-Tellez, V. Zanella-Palacios, and J.L. Martínez-Flores 

CSP (Constraint Satisfaction Problems), and this is a decisional optimization problem 
classified as NP-Hard [1]. 

The BACP problem was introduced by Castro and Manzano [2] with three test cas-
es called BACP8, BACP10 and BACP12 included in CSPLib [3] and these have been 
used to test models proposed by other researchers. 

The model proposed in [2] uses the following integer programming model: 
 

Parameters 

m : Number of courses 
n  : Number of periods 
αi : Number of credits of course i; ∀i =1..m 
β  : Minimum academic load allowed per period 
γ  : Maximum academic load allowed per period 
δ : Minimum amount of courses per period  
ε : Maximum amount of courses per period 

 

Decision Variables 

 
xij =  
 
ci : academic load of period j, ∀j =1, ..., n 


=

=∀∗=
m

i
ijij njxc

1

..1      α  (1) 

Objective Function 

{ }nccMaxcMin ,,  1 =  (2) 

Constraints 
If the course b has the course a as prerequisite then: xa < xb  

njck ,.1=∀≤≤ γβ  (3) 

njx
m

k
ij ,,1 

1

=∀≤≤
=

εδ  (4) 

Recent works have tried to solve this problem using genetic algorithms and constraint 
propagation [4], local search techniques [5], formal methods (HyperLingo) for the 
integer programming problems [6] and multiple optimization, using genetic algorithm 
of local search [7]. All these approach have found the optimal for the three test cases 
included in CSPLib and in some cases also for the curriculums of their universities. 

In [6] was proposed a modified BACP problem where are considered constraints of 
academic load and total of courses within a specific range per period, i.e., not neces-
sarily all periods will have the same ranges for their academic loads and number of 
courses; also add the restriction of to locate a course in a given period. This problem 
was modeled as an integer programming problem and is reported to find optimum 

   1 if course i is assigned to period j 
   0 otherwise 
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solutions using a formal method for some of its instances but not for all, and the solu-
tions for the three instances included in CSPLib. 

In this paper is solved the modified BACP using evolutionary strategies to find so-
lutions to the instances that the formal method could not to solve. 

2 Formulation for Model BACP Modified 

In the model of interest proposed in [6] is considered to modify two constraints of the 
base formulation, the first one is to make flexible the course load per period and the 
second one is to make flexible the number of courses per period, i.e., that we can 
place different limits on course load and number of courses for each period. It  
also adds a restriction which allows the location of some of the courses in a specific 
period. 
 

Parameters 

Nta : Number of courses 
Ntp : Number of academic periods  
crdi : Number of course credits i=1..Nta 
mcaj : Minimum academic load  allowed per period 
Mcaj : Maximum academic load allowed per period 
mnaj : Minimum number of courses per period 
Mnaj : Maximum number of courses per period 
c : Course it is desirable to locate between certain periods. 
mpcc : Minimum period of location of the course  
Mpcc : Maximum period of location of the course 
Cj : Academic load 

NtpjxcrdC
Nta

i
ijij ..1      

1

=∀∗=
=

 (5) 

Decision Variables 
Cj : Academic load for the period j =1..Ntp 
Cmx : Maximum course load 

 
xij =   
 

Objective Function 

{ }CmxMinfobjective =  (6) 

where Cmx = Max { c1, c2, …, cNtp } 
 

Constraints 

The load of the period j must be within the allowable range. 

   1 if course i is assigned to period j 
   0 otherwise 
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NtpjMcaCmca jji ..1      =∀≤≤  (7) 

The number of courses of the period must be within the allowable range. 

NtpjMnaxmna j

Nta

i
ijj ..1      

1

=∀≤≤
=

 (8) 

If the course b has the course a as prerequisite then  

Ntpjxx
j

r
arbj ..2      

1

1

=∀≤
−

=

 (9) 

Convenient location for the course c 

1=
=

c

c

Mpc

mpvj
cjx  (10) 

3 Evolutionary Strategies 

Evolutionary Strategies are optimization algorithms based on Darwin's theory of evo-
lution, which states that only those individuals best adapted to their environment sur-
vive and reproduce. The procedure starts choosing a number of possible solutions in 
the search space to generate a random initial population, after that, each possible solu-
tion is evaluated based on a fitness function and through of selection operation are 
selected individuals for carry out the genetic operations crossover and mutation, with 
the idea that new promising individuals will be evolved from their ancestors to pro-
duce an improved population. Crossover is the combination of information from two 
or more individuals and mutation is the alteration of the information of a single indi-
vidual [8]. In the Evolutionary Strategies the mutation is the most important opera-
tion. There are several types of evolutionary strategies depending on the size of the 
population and how the individuals are replaced in the population prior to generating 
the new population. In our case we use an evolutionary strategy ES-(1+3), i.e., there is 
an initial population of a single individual and from this individual will generate 3 
new individuals by mutation. Of these 4 individuals the best is choosing for the next 
population. 

Evolutionary strategies were used, at least initially, to optimization problems of 
real functions, but are possible to use it successfully in other domains. In this paper 
we use evolutionary strategies in populations where individuals are vectors. 

One element of the population is represented by a vector, where the position indi-
cates the course and the content of each position indicates the period to which it was 
assigned, as shown in figure 1. 
 

0 1 2 3 4 5    59 60 61 Course 
1 1 3 1 2 2    9 9 0 Period 

Fig. 1. Element of the population 
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In our case we used a population with a single individual so that the only operation 
performed is mutation, which consists in changing the period of a course of the curri-
culum that meets the prerequisites and restrictions of preference period, as shown in 
figure 2, where the course 4 is changing to period 8. 

 
0 1 2 3 4 5    59 60 61 Course 
1 1 3 1 8 2    9 9 0 Period 

Fig. 2. Element of the population 

We can consider that a balanced curriculum should have a uniform distribution of 
all the credits that make up the curriculum, so the fitness function used is the sum of 
the absolute error, which is calculated using the following formula. 


=

−=
Npt

k
k PChFitness

1

)(  (11) 

Where Ck is the academic load of the period k calculated with the formula (4) and P is 
the average number of credits per period 


=

=
Ntp

i

i

Ntp

C
P

1

 (12) 

The initial population consists of the curriculum that we want to balance, this is a 
feasible solution. 

Once that we have the first element of the population three new elements are gen-
erated through mutation. As the mutation is the random change of the value of a sin-
gle element within the vector, randomly are chosen a course to be changed and the 
period where it will change. 

Given the course and the period, are validated the restrictions of prerequisites, 
load, course and period preference, if they are satisfied, the change is made, otherwise 
are selected randomly another course and period and redo the validation. This contin-
ues until to find the pair course - period that meets with the restrictions. With this 
process will generate 3 new individuals from the individual in the present population, 
the four individuals are evaluated by the fitness function (formula 10) and the best is 
selected for the next generation, this process continue until the criteria of finalization 
are reached. 

In the moment that is detected that a local optimum has been reached a change in 
the process of mutation is made. Now the mutation will change two elements of the 
vector, that is now going to get the periods with more load and less load and will try 
to exchange two courses randomly between these two periods. 

Having the two courses which will be exchanged, are evaluated the restrictions of 
prerequisite , load, course and period preference, if the exchange can be given a new 
individual is generated in otherwise the mutation is not done, the minimum period is 
marked as ineligible for the next selection and is cleared until that an improvement 
occurs. 
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3.1 Algorithm 

Evolutionary_Strategie(λ, μ, α)  
/* 
λ = size of the population (λ=1),  
μ = number of new individuals generated with mutation 

(μ=3),  
α = mutation factor 
*/ 
Begin 
 i0=Generation_of_initial_population(λ) 
 cont=0; 
 While (optimum ≠ i0) 
  Begin 
   If cont<=TOL /*TOL= maximum number of iterations in 

a local optimum*/ 
   Then α=1; /*select for mutation only 1 curse  
   Else α=2; /*select for mutation 2 courses 
   For i=1 to μ 
    Begin 
     Individual[i]=mutation(i0); 
     Evaluation[i]=fitness(individual[i]);     
    End   
   K=Select_the_best_individual(); 
   If evaluation[K]> evaluation[i0] 
   Then  
    i0 = individual[K]; 
    cont=0; 
   Else cont=cont+1; 
  End 
End 

4 Results 

The tests were carried out for the three base cases included in CSPLib and the cases 
proposed by [6] for which no solution could be found. 

4.1 Base Cases 

The base cases included in CSPLib are: BACP8, BACP10 and BACP12, whose fea-
tures are shown in tables 1 and 2. 

Table 3 shows the results obtained with the proposed algorithm; in all cases the 
optimum was reached. 
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Table 1. General features of curriculums 

Code BACP8 BACP10 BACP12 

# Total Courses 46 42 66 

# Total credits 133 134 204 

#Total Academic period 8 10 12 

#Relation Prerequisite 33 34 65 

Table 2. Additional features of the curriculums 

Code BACP8 BACP10 BACP12 
Min. Courses /period 2 2 2 
Max. Courses / period 10 10 10 

Min Load/ period 10 10 10 
Max Load/ period 24 24 24 

#Courses with location 0 0 0 

Table 3. Results summary 

Code Optimum 
Average 

Iterations 

Average 
time 
(seg.) 

BACP 8 17 57.6 4.5 
BACP 10 14 87.7 4.7 
BACP 12 17 162.0 4.5 

 
The academic load per period obtained by the algorithm is shown in table 4. 

Table 4. Solution found for BACP 8 

Period Load Courses 

1 17 7 

2 17 5 

3 17 5 

4 17 6 

5 17 6 

6 17 6 

7 15 5 

8 16 6 
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4.2 Proposed Cases 

The cases not included in library CSPLib used to test this algorithm are taken from 
[6], the first is one for which could not always find the optimal and the second is 
where the optimum never was found. The features of these two problems are shown in 
tables 5 and 6. 

Table 5. General features of curriculums 

Code Ici-06 Ind-06 
# Total Courses 61 61 
# Total credits 488 376 

#Total Academic period 9 9 
#Relation Prerequisite 48 47 

Table 6. Additional features of the curriculums 

Code Ici-06 Ind-06 
Min. Courses /period 5 4, 4, 4, 4, 4, 4, 4, 4, 2 
Max. Courses/ period 8 9, 9, 9, 9, 9, 9, 9, 9, 4 

Min Load/ period 20 20, 20, 20, 20, 20, 20, 20, 20, 15 
Max Load/ period 60 60, 60, 60, 60, 60, 60, 60, 60, 40 

#Courses with location 15 21 

 
In tables 7 and 8 is showing the courses that have preference of location in each of 

the curriculums, Ici-06 and Ind-06 respectively. 

Table 7. Preference of location Ici-06 

Course Code Minimum Period Maximum Period 
C07001 7 9 
C07002 7 9 
C07003 7 9 
CIV200 1 2 
CIV400 6 9 
CIV401 8 9 
CIV403 6 9 
MAT005 1 5 
MAT006 1 5 
MAT008 1 5 
MAT009 1 5 
OI103101 1 4 
OI103102 1 4 
OI103103 1 4 
OI103104 1 4 
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Table 8. Preference of location Ind-06 

Course Code Minimum Period Maximum Period 
C12001 7 9 
C12002 7 9 
C12003 7 9 
C12004 8 9 
FHU001 1 6 
FHU002 1 6 
FHU003 1 6 
IND100 1 2 
IND208 4 6 
IND212 4 6 
IND214 6 8 
IND400 7 9 

LPCI 1 6 
LPCII 1 6 

OH25001 1 6 
OI103101 1 6 
OI103102 1 6 
OI103103 1 6 
OI103104 1 6 
SSC001 5 9 
SSP002 5 9 

 
Table 9 shows the results obtained with the algorithm; in all cases the optimum 

was reached. 

Table 9. Results summary 

Code Optimum Average Iterations Average time (min.) 
Ici-06 55 57.6 3.6 
Ind-06 44 87.7 1.7 

 
The academic load per period obtained by the algorithm is shown in Table 10. 

Table 10. Solution found for Ici-06 

Period Load Courses 

1 54 7 

2 54 6 

3 54 6 

4 54 7 

5 55 6 

6 55 6 

7 54 8 

8 54 7 

9 54 8 
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5 Conclusions 

In this paper we present the solution, using evolutionary strategies, for a modified 
Balanced Academic Curriculum Problem, where the load for each period can be equal 
or different and is allowed to have some courses in a specific period. In some pre-
vious works is showed that is possible to find solutions with HyperLingo for some of 
the instances of the problem, but it is not possible for all of them. However by the 
results obtained we can see that the use of evolutionary strategies helps us to find the 
solutions to the problems that could not be resolved with the formal method. 
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Abstract. The goal of the capacitated vehicle routing problem (CVRP) is to 
minimize the total distance of vehicle routes under the constraints of vehicles’ 
capacity. CVRP is classified as NP-hard problems and a number of meta-
heuristic approaches have been proposed to solve the problem. This paper aims 
to develop a hybrid algorithm combining a discrete Particle Swarm Optimiza-
tion (PSO) with Simulated Annealing (SA) to solve CVRPs. The two-stage  
approach of CVRP (cluster first and route second) has been adopted in the algo-
rithm. To save computation time, a short solution representation has been 
adopted. The computational results demonstrate that our hybrid algorithm can 
effectively solve CVRPs within reasonable time. 

Keywords: Vehicle routing problem, Particle swarm optimization, Simulated 
annealing. 

1 Introduction 

The vehicle routing problem (VRP) is one of important research subjects in the field 
of logistics management. It is an interesting research topic and belongs to a category 
of combinatorial optimization problems. Since Dantzig [1] first proposed the truck 
dispatching problem, many variants of VRPs have been presented. Jozefowiez et al. 
[2] presented detailed classifications and comparisons for VRP problems. Classical 
VRP problems can be classified into two categories: capacitated vehicle routing prob-
lems (CVRP) and vehicle routing problem with time windows (VRPTW). The  
objective of CVRP is to find a set of routes with a minimum total distance traveled to 
deliver goods for all customers having different demands. The constraints of CVRPs 
include: every customer is to be served exactly once by a vehicle, each vehicle starts 
and ends at the same depot, every vehicle has a limited capacity, etc.  

To solve CVRPs, the two-stage approach (cluster-first-route-second) is often used. 
In the first stage we assign each customer into a vehicle, while in second stage we 
arrange the visiting order of each vehicle which has customers assigned. Accordingly, 
the customer clustering result may affect the routing result, and the routing result 
determines the objective function values. On the other hand, the solution approaches 
can be classified into two categories: exact and heuristic approaches [3].  
Branch-and-bound and branch-and-cut algorithms are exact algorithms, whereas route 
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construction heuristics and two-phase heuristics are classical heuristic algorithms. 
Because the CVRP is classified as NP-hard problems (or combinatorial optimization 
problems), meta-heuristic approaches attract many researchers’ attention and have 
been applied to the CVRP in recent decades. The performance of meta-heuristics is 
often better than classical heuristics. Popular meta-heuristics include Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), Tabu Search (TS), Simulated An-
nealing (SA), Ant colony systems (ACS), Scatter Search (SS), etc. One of important 
advantages of using meta-heuristic approaches is that we can obtain optimal or near 
optimal solutions in a reasonable computation time, compared to exact algorithms. 

Baker et al. [4] proposed a simple GA for solving CVRPs. The length of solution 
string is equal to the total number of customers. Each gene is an integer number 
which ranges from 1 to the total number of vehicles. The algorithm selects parent 
solutions by using a binary tournament method, produces offspring solutions by using 
two-point crossover operation, mutates solutions by swapping two randomly selected 
genes, and selects better solutions for next generation with a ranking replacement 
method. The GA-based approach was applied in the customer clustering stage. The 
algorithm also uses some local searches to improve the quality of solutions. The main 
contribution of this paper is to propose a method of generating structured initial solu-
tions. Using this initialization method, the algorithm has fast convergence but loses 
solution diversities. 

Bell et al. [5] proposed an ACO algorithm for solving the CVRP. The authors pro-
posed a multiple-ant-colony method for solving large size problems (more than 100 
customers). They also proposed two methods to improve the performance of their algo-
rithm, including local exchange and candidate list. Zhang et al. [6] proposed an algo-
rithm which integrates scatter search with ACO for solving CVRP. The paper uses 
scatter search as the main framework and applies ACO to route solution construction. 

Particle Swarm Optimization (PSO) was proposed by Kennedy and Eberhart in 
1995 [7]. PSO has been applied to solve many optimization problems, including the 
CVRP. Chen et al. [8] first proposed a discrete PSO approach to solve the CVRP. 
Their approach follows the two-stage approach. They used DPSO to perform the task 
of customer clustering and utilized SA to determine the visiting order of each vehicle. 
Due to a long solution string (the length equal to the product of total customer number 
and total vehicle number) their algorithm often needs a larger amount of CPU time to 
find optimal solutions. Ai et al. [9] also proposed an algorithm based on PSO for 
CVRPs. In their approach, the solution string of a particle contains coordinate points 
and coverage radiuses of vehicles. Vehicle routes are constructed according to these 
cluster-center points and radiuses. The order of visiting customers of each route is 
found by using an insertion heuristic. Thus their paper also followed the cluster-first-
route-second approach to solve CVRPs. Marinakis et al. [10] presented a hybrid PSO 
algorithm for solving CVRPs. Their algorithm consists of PSO, MPNS-GRASP (mul-
tiple phase neighborhood search-greedy randomized adaptive search procedure), Ex-
panding Neighborhood Strategy and path relinking strategy. 

This paper proposes a new hybrid PSO with SA to solve the CVRP. Similarly, it 
follows the cluster-first-route-second approach: use a new discrete PSO to find cus-
tomer clustering results and then use simulated annealing to arrange the orders of 
visiting customers. To save computation time a short solution string structure has 
been adopted. Experimental results show that the proposed algorithm can solve the 
CVRPs efficiently. 
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2 PSO and SA 

PSO is a population-based evolution algorithm and is one of swarm intelligence tech-
niques. It was inspired by the foraging behavior of birds. The movement of a particle 
in the solution space is guided by its current position, its personal best position and 
the global best position of the swarm. The main advantage of PSO is fast conver-
gence; however, PSO does not guarantee to find an optimal solution. The classical 
model of PSO proposed by Shi and Eberhart [11] is defined as follows: 

)()( 21 idbestidbestidid XGRandCXPRandCVWV −××+−××+×=  (1) 

ididid VXX +=  (2) 

This paper applies combinatorial particle swarm optimization (CPSO) to solve 
CVRPs. CPSO was proposed by Jarboui et al. [12] and aims to solve discrete combi-
natorial optimization problems. CPSO makes use of the evolution framework of PSO 
and alternatively transforms particle solutions into continuous solutions or discrete 
solutions in order to find new solutions. CPSO not only retains the characteristics of 
PSO but also expands the searching ability of PSO from a continuous space to a dis-
crete space. 

SA was first proposed by Kirkpatrick in 1983 [13]. It was applied to solving a va-
riety of combinatorial optimization problems through a series of local searches. To 
avoid being trapped in local optima, SA occasionally accepts worse solutions with an 
acceptance probability. Temperature is an important parameter of SA. For a certain 
temperature, SA performs local searches a couple of times. The acceptance probabili-
ty is changed according to the amount of solution improvement and the current tem-
perature. The temperature is decreased when the iteration number is increased. In fact, 
the cooling rate controls how fast the temperature drops.  

3 CPSO-SA Algorithm 

This paper proposes a new algorithm combining CPSO and SA, referred to CPSO-
SA. It follows the two-stage (cluster-first-route-second) approach for solving CVRP. 
CPSO is used to deal with customers clustering while SA is applied to arrange the 
sequence of visiting customers. At the end of each iteration, the algorithm conducts 
local searches on the top three best particles. Personal best solutions of each particle 
and the global best solutions of the swarm are used to generate new particles for the 
next iteration. In this paper we adopt a similar two-stage approach used in Chen et al. 
[8], but we try to improve their approach by using a short solution string and a more 
efficient discrete PSO algorithm. Using CPSO-SA, we do not need to check solution 
feasibility to prevent the case that a customer is assigned to more than one vehicle. As 
a result, the proposed algorithm does save computational time. 

3.1 Mathematical Model  

The CVRP considered in this paper has a symmetric network. The objective is to 
minimize the total distance traveled by all vehicles. The following constraints are 
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considered: each customer is served exactly once by only one vehicle; each vehicle 
starts and ends its route at the depot; the total demand delivered for every route must 
not exceed the capacity of the vehicle. The problem can be formulated as follows: 
 

Notations 
0: depot; 
n: number of customers; 
N: customer set，N = {1, 2, …, n}; 

v: number of vehicles; 
V: vehicle set, V = {1, 2, …, v}; 
dij: distance between customer i and j, dij = dji, ∀ i, j ∈ N ∪ {0}; 
qi: demand for customer i, q0 = 0;  
Q: maximum capacity for every vehicle; 
Xk

ij: edge i-j is served by vehicle k or not. 0: no, 1: yes;  
Rk: customer set served by vehicle k, Rk = {jk,1, jk,2, …, jk, |Rk|};  
|Rk|: cardinality of Rk; 
jk,m: customer that is served by vehicle k in mth visiting order. 
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Eqs. (4) and (5) ensure that each customer must be served by a vehicle exactly once. 
Eq. (6) considers that the continuity for every vehicle can be maintained. Eq. (7) 
means that the total customer demand of a vehicle is not allowed to exceed its maxi-
mum capacity. Eqs. (8) and (9) mean that every vehicle can be used once or not be 
used. 
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3.2 Solution Representation 

PSO-SA adopts the cluster-first-route-second approach to solve CVRPs. The solution 
representation for customer clustering is shown in Fig.1, and the one for finding cus-
tomer sequences is shown in Fig. 2. An example of solution string for the first stage is 
also presented in Fig. 1. It tells us that customer 1 is assigned to vehicle 2, customer 2 
is assigned to vehicle 1, and so on. An example of solution string for the second stage 
is also shown in Fig. 2. In the example, |R1| = 3 means that the first vehicle has to 
serve three customers, and  j1, 1 = 2 means that the second customer will be visited 
first by the first vehicle. The hypothetical solution string indicates that three vehicle 
routes are 0→2→4→8→0, 0→1→5→9→0, and 0→3→6→7→0, respectively.  

In the first stage, some PSO vectors have to be defined: XVp = (xvp1, xvp2, …, xvpn) 
represents the discrete solution of particle p, Vp = (vp1, vp2, …, vpn) indicates the veloc-
ity vector of particle p; Pp = (Pp1, Pp2, …, Ppn) indicates the personal best solution ever 
found of particle p; G = (G1, G2, …, Gn) indicates the global best-so-far solution of 
the swarm. 

 
Customer no. (cno) 1c 2c  3c  … … … … … nc  

Vehicle no ( XV ) 1xv 2xv 3xv … … … … … nxv
 

Customer no.(cno) 1 2 3 4 5 6 7 8 9 

Vehicle no ( XV ) 2 1 3 1 2 3 3 1 2 

Fig. 1. Cluster-solution representation used in the first stage 

0 1,1j  … 
1,1 Rj 0 1,2j  … 

2,2 Rj 0 … 0 1,vj … 
vRvj ,  0 

 

0 2 4 8 0 1 5 9 0 3 6 7 0 

Fig. 2. Tour-solution representation used in the second stage 

3.3 CPSO-SA Algorithm 

The proposed algorithm performs the evolution process iteratively until the iteration 
number reaches the maximum iteration number. The evolution process includes two 
stages, customer clustering and sequencing. Customer clustering is carried out by 
using CPSO [12] while the visiting order is determined by using SA. Then the algo-
rithm computes the objective function value for every particle solution according to 
Eq. (3). After that, CPSO-SA performs a local search on top three best particles for 
solution improvement. The procedure of local search, with considering capacity con-
straints, is to choose two routes randomly, to select a customer from each of selected 
routes, and then to exchange their vehicle numbers. After that, SA is used again to 
find new visiting orders for these two routes. If the new solution is better, replace the 
current solution with it. Before iteration ends, particles update their Pbest and Gbest 
solutions respectively. We briefly introduce these two stages as follows. 
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3.3.1 CPSO for Customers Clustering 
The first stage contains three phases: transition phase 1, flying phase and transition 
phase 2. In these phases, a new customer clustering solution can be found by using 
Eqs. (10) ~ (16). In the first phase, discrete solution vectors (XVs) become dummy 
solution vectors (YVs) after the first solution transition from the discrete space to the 
continuous space. After flying, dummy solution vectors (YVs) become continuous 
solution vectors (ΛVs). Using a threshold value α, the algorithm transits all particle 
solutions from the continuous space back to the discrete space with their new discrete 
solutions. 

 

Notations: 
Iter: current iteration number; 
p: particle number; 
d: dimension number; 

iter
pdy

: dummy variable in dimension d of particle p at iteration iter; 
iter
dG : best value in dimension d for all solutions up to iteration iter; 
iter
pdP

: best value in dimension d for particle solution p up to iteration iter; 
iter
pdxv : current value in dimension d of particle solution p at iteration iter; 

c1, c2: parameters representing the importance of the global best solution and  
particle’s best solution separately; 

iter
pdv

: velocity in dimension d of particle p at iteration iter; 
r1, r2: random numbers range from 0 to 1; 

iter
pdλ

: continuous value in dimension d for particle solution p at iteration iter;  
α: threshold value. 

Transition Phase 1 











==−
=−

=

=
−−

−

−−

otherwise                 0

)         ( if  randomly,1or1

)    ( if           1

)    ( if       1

    
111-iter

pd

11-iter
pd

11

iter
d

iter
pd

iter
pd

iter
d

iter
pd

iter
pd GPxv

Pxv

Gxv

y
 

(10) 

Flying Phase 

yd iter
pd−−=   1    1  , distance between 1−iter

pdxv  and 1−iter
pdP  (11) 

 

yd iter
pd    1    2 −=  , distance between 1−iter

pdxv  and 1−iter
dG  (12) 

222111             1 drcdrcvwv iter
pd

iter
pd ⋅⋅+⋅⋅+⋅= −  (13) 

iter
pd

iter
pd

iter
pd vy         +=λ  (14) 



 Solving the CVRP Problem Using a Hybrid PSO Approach 65 

Transition Phase 2 
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3.3.2 Customer Sequencing 
Because capacity constraints have been considered in the first stage, we just need to 
consider the total distance traveled by vehicles in the second stage. Thus the problem 
of customer sequencing for a vehicle is equivalent to a TSP problem. Initial solutions 
are first generated by using a greedy method, and then a SA algorithm is used to im-
prove the initial solutions. Some worse solutions may be accepted by SA depending 
on the acceptance probability. Eq. (17) computes the amount of solution improve-
ment. In Eq. (18), p(S’) is the acceptance probability that SA accepts new solution S’ 
that is worse than the current solution S.  

)()( SfSf −′=Δ  (17) 

)/exp()( tSp Δ−=′  (18) 

4 Experiments and Comparisons 

To verify the proposed approach, we compare CPSO-SA with the algorithm proposed 
by Chen et al. (referred to as DPSO-SA) in terms of solution quality and CPU time. 
CPSO-SA was coded in Java and executed on a PC with 3.5GB of RAM and Intel 
Core 2 CPU E8400 3GHz. The parameters of CPSO-SA used for all CVRP problems 
are taken from the results of preliminary experiments. For CPSO, parameters are:  
pop (total number of particles) = n (the number of customers), α = 0.45, w = 0.8, C1 = 
1.1, C2 = 1.4, max iteration number = 300. For SA, the parameters are set as follows: 
t0 = 3, tf = 0.01, L (temperature length) = n × 2, θ (cooling rate) = 0.8. All CVRP test 
problems are collected from the website: http://www.branchandcut.org/VRP/data/. 

Fig. 3 presents the convergence trend of running CPSO-SA for solving the first test 
problem. Table 1 lists the best results of 16 test problems obtained by using the pro-
posed algorithm. The CPU time required to find the best solution for each problem is 
also listed. The data of DPSO-SA are directly taken from Chen’s paper for the  
purpose of comparison. The better results are typed in bold in this table. To fairly 
compare computational time, the data of Chen’s work have been properly converted 
using the following equation: CPU time = Instruction count × CPI × Clock cycle time 
[14]. The comparison results demonstrate that the solutions of CPSO-SA are very 
close to those of Chen’s approach but CPSO-SA takes much less CPU time. 
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Fig. 3. Convergence trend when using CPSO-SA to solve problem A33-K5 

Table 1. Computational results 

No. problem n v 
Objective function value  CPU time (second) 

BKS DPSO-SA CPSO-SA  DPSO-SA CPSO-SA 

1 A-n33-k5 32 5 661 661 661  19.4 0.7 

2 A-n46-k7 45 7 914 914 917  77.3 2.4 

3 A-n60-k9 59 9 1354 1354 1354  185.3 6.5 

4 B-n35-k5 34 5 955 955 955  22.6 1.2 

5 B-n45-k5 44 5 751 751 751  80.5 4.8 

6 B-n68-k9 67 9 1272 1272 1274  206.6 27.2 

7 B-n78-k10 77 10 1221 1239 1237  257.6 24.0 

8 E-n30-k3 29 3 534 534 534  17.0 0.3 

9 E-n51-k5 50 5 521 528 521  180.3 4.6 

10 E-n76-k7 75 7 682 688 692  315.9 9.5 

11 F-n72-k4 71 4 237 244 237  239.0 5.3 

12 F-n135-k7 134 7 1162 1215 1200  915.8 202.8 

13 M-n101-k10 100 10 820 824 825  524.5 6.1 

14 M-n121-k7 120 7 1034 1038 1039  1040.1 51.5 

15 P-n76-K4 75 4 593 602 596  297.8 27.6 

16 P-n101-k4 100 4 681 694 691  586.5 29.4 

5 Conclusions 

In our proposed approach, CPSO is first used to cluster customers into vehicles and 
then SA is employed to arrange the visiting order of each vehicle. A short solution 
representation has been proposed. Compared with the solution string used in [8], 
CPSO-SA can save computation time because it can reduce the number of infeasible  
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solutions. Experimental results show that CSPO-SA can effectively solve any of 16 
CVRP problems within a reasonable time period. Applying CSPO-SA to VRPTW 
problems will be considered as the future work. 
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Abstract. This work presents a differential evolution (DE) algorithm equipped
with a new perturbation operator applied for dynamic optimization. The selected
version of DE, namely the jDE algorithm has been extended by a new type of
mutation mechanism which employs random variates controlled by the α-stable
distribution. Precisely, in the modified version of jDE the population of individu-
als consist of two types of members: a small number of those which undergo the
new mutation procedure and much larger number of the remaining ones which are
mutated according to the regular DE mutation. This hybrid structure of population
makes the algorithm more effective for some types of the dynamic environments.
The experiments were performed for two well known benchmarks: Generalized
Dynamic Benchmark Generator (GDBG) and Moving Peaks Benchmark (MPB)
reimplemented together as a new benchmark suite Syringa. Obtained results
show advantages and disadvantages of the new approach.

1 Introduction

Optimization in dynamic environments is a continuous subject of interest for many
research groups. In the case of dynamic optimization the algorithm has to cope with
changes in the fitness landscape, that is, in the evaluation function parameters or even
in the evaluation function formula which appear during the process of optimum search.
There exists a number of dynamic optimization benchmarks designed to estimate effi-
ciency of optimization algorithms. Among these benchmarks we selected two with the
search space defined in Rn to evaluate the differential evolution (DE) approach and es-
pecially the idea of hybrid population application. DE approach which originated with
the Genetic Annealing algorithm [1] has been studied from many points of view (for de-
tailed discussion see, for example, monographs [2,3]). Among the number of instances
of the DE approach we selected the jDE algorithm [4] which is distinct from the other
DE algorithms in that some of its parameters, precisely F and CR, adaptively adjust
their values during the run respectively to the varying conditions of the search process.

In the presented research we are interested in verification of the positive or nega-
tive role of a mutation operator originating from another heuristic approach when it is
applied in the DE algorithm. The proposed type of mutation employs random variates
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controlled by the α-stable distribution which already proved their usefulness in other
version of evolutionary approach and in the particle swarm optimization as well.

The paper is organized as follows. In Section 2 a brief description of the optimization
algorithm is presented. Section 3 discuss properties of new type of mutation introduced
to jDE. The description of a new benchmark suite Syringa is given in Section 4
whereas Section 5 includes some details of the applied measure and the range of the
performed tests. Section 6 shows the results of experiments. Section 7 concludes the
presented research.

2 The jDE Algorithm

The differential evolution algorithm is an evolutionary method with a very specific mu-
tation operator controlled by the scale factor F . Three different, randomly chosen so-
lutions are needed to mutate a target solution xi: a base solution x0 and two difference
solutions x1 and x2. After the selection of the three solutions, a mutant undergoes dis-
crete recombination with the target solution which is controlled by the crossover proba-
bility factor CR ∈ [0, 1]. The new solutions created during the mutation step are called
trial solutions. Finally, in the selection stage trial solutions compete with their target
solutions for the place in the population. This strategy of population management is
called DE/rand/1/bin which means that the base solution is randomly chosen, 1 differ-
ence vector is added to it and the crossover is based on a set of independent decisions
for each of coordinates, that is, a number of parameters donated by the mutant closely
follows a binomial distribution.

The jDE algorithm (depicted in Figure 1) extends functionality of the basic approach
in many ways. First, each object representing a solution in the population is extended
by a couple of its personal parameters CR and F . They are adaptively modified every
generation [4]. The next modifications have been introduced just for better coping in the
dynamic optimization environment. The population of solutions has been divided into
five subpopulations of size ten. Each of them has to perform its own search process, that
is, no information is shared between subpopulations. Every solution is a subject to the
aging procedure protecting against stagnation in local minima and just the global-best
solution is excluded from this. To avoid overlapping between subpopulations a distance
between subpopulation leaders is calculated and in the case of too close localization one
of subpopulations is reinitialized. However, as in previous case the subpopulation with
the global-best is never the one to reinitialize. The last extension is a memory struc-
ture called archive. The archive is increased after each change in the fitness landscape
by the current global-best solution. Recalling from the archive can be executed every
reinitialization of a subpopulation, however, decision about the execution depends on a
few conditions. Details of the above-mentioned extensions can be found in [5].

3 Proposed Extension of jDE

The novelty in the algorithm concerns introduction of a new type of solutions into the
population of size M . A small number of new solutions, that is, just one, two, or three
pieces replace the classic ones so the population size remains the same. The difference
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Algorithm 1 jDE algorithm

1: Create and initialize the reference set of (k ·m) solutions
2: repeat
3: for l = 1 to k do {for each subpopulation}
4: for i = 1 to m do {for each solution in a subpopulation}
5: Select randomly three solutions: xl,0, xl,1, and xl,2

such that: xl,i �= xl,0 and xl,1 �= xl,2

6: for j = 1 to n do {for each dimension in a solution}
7: if (rand(0, 1) > CRl,i) then
8: ul,i

j = xl,0
j + F l,i · (xl,1

j − xl,2
j )

9: else
10: ul,i

j = xl,i
j

11: end if
12: end for
13: end for
14: end for
15: for i = 1 to (k ·m) do {for each solution}
16: if (f(ui) < f(xi) then {Let’s assume this is a minimization problem}
17: xi = ui

18: end if
19: Recalculate F i and CRi

20: Apply aging for xi

21: end for
22: Do overlapping search
23: until the stop condition is satisfied

between the classic solutions and the new ones lies in the way they are mutated. The
new type of mutation operator is based on the rules of movement governing quantum
particles in mQSO [6].

In the first phase of the mutation, we generate a new point in the search space. The
new point is uniformly distributed within a hypersphere surrounding the mutated so-
lution. In the second phase, the point is shifted along the direction determined by the
hypersphere center and the point. The distance d′ from the hypersphere center to the
final location of the point is calculated as follows:

d′ = d · SαS(0, σ) · exp(−f ′(xi)), (1)

where d is a distance from the original location obtained in the first phase, SαS(·, ·)
denotes a symmetric α-stable distribution variate, σ is evaluated as in eq. (2) and f ′(xi)
as in eq. (3):

σ = rSαS · (Dw/2) (2)

f ′(xi) =
f(xi)− fmin

(fmax − fmin)
(3)

where:

fmax = max
j=1,...,M

f(xj), fmin = min
j=1,...,M

f(xj).
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The α-stable distribution (called also a Levý distribution) is controlled by four param-
eters: stability index α (α ∈ (0, 2]), skewness parameter β, scale parameter σ and
location parameter μ. In our case we assume μ = 0 and apply the symmetric version of
this distribution (denoted by SαS for ”Symmetric α-Stable distribution”), where β is
set to 0.

The resulting behavior of the proposed operator is characterized by two parameters:
the parameter rSαS which controls the mutation strength, and the parameter α which
determines the shape of the α-stable distribution. The solutions mutated in this way are
labeled as sLevý in the further text.

4 The Syringa Benchmark Suite

For the experimental research we developed a new testing environment Syringa
which is able to simulate behavior of a number of existing benchmarks and to cre-
ate completely new benchmark instances as well. The structure of the Syringa code
originates from a fitness landscape model where the landscape consists of a number
of simple components. A sample dynamic landscape consists of a number of compo-
nents of any types and individually controlled by a number of parameters. Each of the
components covers a subspace of the search space. The final landscape is the result of
a union of a collection of components such that each of the solutions from the search
space is covered by at least one component. In the case of a solution belonging to the
intersection of a number of components the solution value equals (1) the minimum (for
minimization problems) or (2) maximum (otherwise) value among the values obtained
for the intersected components or (3) this can be also a sum of the fitness vales obtained
from these components. Eventually, the Syringa structure is a logical consequence of
the following assumptions:

1. the fitness landscape consists of a number of any different component landscapes,
2. the dynamics of each of the components can be different and individually controlled,
3. a component can be defined for a part or the whole of the search space, thus, in the

case of a solution covered by more than one component the value of this solution
can be the minimum, the maximum or the sum of values returned by the covering
components.

4.1 The Components

Current version of Syringa consists of six types of component functions (Table 1)
defined for the real-valued search space. All formulas include the number of the search
apace dimensions n which makes them able to define search spaces of any given
complexity.

There can be defined a number of parameters which individually define the compo-
nent properties and allow to introduce dynamics as well. For each of the components we
can distinguish two groups of parameters which influence the formula of the component
fitness function: the parameters from the former one are embedded in the component
function formula whereas the parameters from the latter one control rather the output
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Table 1. Syringa components

name formula domain

Peak (F1) f(x) = 1
1+

∑n
j=1 x2

j
[-100,100]

Cone (F2) f(x) = 1−
√∑n

j=1 x
2
j [-100,100]

Sphere (F3) f(x) =
∑n

i=1 x
2
i [-100,100]

Rastrigin (F4) f(x) =
∑n

i=1 (x
2
i − 10 cos(2πxi) + 10) [-5,5]

Griewank (F5) f(x) = 1
4000

∑n
i=1(xi)

2 −∏n
i=1cos(

xi√
i
) + 1 [-100,100]

Ackley (F6) f(x) = −20 exp(−0.2
√

1
n

n∑
i=1

x2
i )−

exp( 1
n

n∑
i=1

cos(2πxi)) + 20 + e [-32,32]

of the formula application. For example, when we want to stretch the landscape over
the search space each of the solution coordinates is multiplied by a scaling factor. For a
non–uniform stretching we need to use a vector of factors containing individual values
for each of the coordinates. We call this type of modification a horizontal scaling and
this represents the first type of component changes. The example of the second type is
a vertical scaling where just the fitness value of a solution is multiplied by a scaling
factor. The first group of parameters controls changes like horizontal translation, hor-
izontal scaling, and rotation. For simplicity they are called horizontal changes in the
further text. The second group of changes (called respectively vertical changes) is rep-
resented by vertical scaling and vertical translation. All of the changes can be obtained
by dynamic modification of respective parameters during the process of search.

4.2 Horizontal Change Parameters

In this case the coordinates of the solution x (a vector, that is, a matrix of size n by 1)
are modified before the component function equation is applied. The new coordinates
are obtained with the following formula:

x′ = M · (W · (x + X)) (4)

where X is a translation vector, W is a diagonal matrix of scaling coefficients for the
coordinates, and M is an orthogonal rotation matrix.

4.3 Vertical Change Parameters

Changes of the fitness function value are executed according to the following formula:

f ′(x) = f(x) · v + h (5)

where v is a vertical scaling coefficient and h is a vertical translation coefficient.
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4.4 Parameters Control

In the case of dynamic optimization the fitness landscape components has to change
the values of their parameters during the process of search. There were defined four
different characteristics of variability which were applied to the component parameters:
small step change (T1—eq. (6)), large step change (T2—eq. (7)), and two versions of
random changes (T3—eq. (8) and T4—eq. (9)). The change Δ of a parameter value is
calculated as follows:

Δ = α · r · (max−min), (6)

where α = 0.04, r = U(0, 1),

Δ = (α · sign(r1) + (αmax − α) · r2) · (max−min), (7)

where α = 0.04, r1,2 = U(0, 1), αmax = 0.1

Δ = N(0, 1) (8)

Δ = U(rmin, rmax) (9)

In the above-mentioned equations max and min represent upper and lower boundary
of the search space, N(0, 1) is a random value obtained with standardized normal dis-
tribution, U(a, b) is a random value obtained with uniform distribution form the range
[a, b], and [rmin; rmax] define the feasible range of Δ values.

The model of Syringa assumes that the component parameter control is separated
from the component, that is, a dynamic component has to consist of two objects: the first
one represents an evaluator of solutions (that is, a component of any type mentioned in
Table 1) and the second one is an agent which controls the behavior of the evaluator. The
agent defines initial set of values for the evaluator parameters and during the process of
search the values are updated by the agent according to the assumed characteristic of
variability. Properties of all the types of components are unified so as to make possible
assignment of any agent to any component. This architecture allows to create multiple
classes of dynamic landscapes. In the presented research we started with simulation
of two existing benchmarks: Generalized Dynamic Benchmark Generator (GDBG) [7]
and the Moving Peaks Benchmark generator [8]. In both cases optimization is carried
out in a real-valued multidimensional search space, and the fitness landscape is built of
multiple component functions controlled individually by their parameters. For appro-
priate simulation of any of the two benchmarks there are just two things to do: select a
set of the components and build agents which will control the components in the same
manner like in the simulated benchmark.

4.5 Reimplementation of Moving Peaks Benchmark (MPB)

In the case of MPB, three scenarios of the benchmark parameters control are defined [8].
We performed experiments for the first and the second scenario.

The selected fitness landscape consists of a set of peaks (F1 — the first scenario)
or cones (F2 — the second scenario) which undergo two types of horizontal changes:
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the translation and the scaling and just one vertical change, that is, the translation. The
horizontal scaling operator has the same scale coefficient for each of the dimensions,
so in this specific case this coefficient is represented as a one-dimensional variable w
instead of the vector W.

The parameters X, w and v are embedded into the peak function formula f(x) in the
following way:

fpeak(x) =
v

1 + w ·∑n
j=1

(xj−Xj)2

n

(10)

The parameters X, w and h are embedded into the cone function formula f(x) in the
following way:

fcone(x) = h− w ·
√√√√ n∑

j=1

(xj − Xj)2 (11)

All the modifications of the component parameters belong to the fourth characteristic
of variability T4 where for every change rmin and rmax are redefined in the way to
keep the value of each modified parameter in the predefined interval of feasible values.
Simply, for every modified parameter of translation or scaling, which can be represented
as a symbol p: rmin = pmin − p and rmax = pmax − p. For the horizontal scaling the
interval is set to [1; 12] and for the vertical scaling — to [30; 70]. For the horizontal
translation there is a constraint for the euclidean length of the translation: |X| ≤ 3.
For both scenarios in the first version there are ten moving components whereas in the
second version 50 moving components is in use.

4.6 Reimplementation of Generalized Dynamic Benchmark Generator (GDBG)

GDBG consists of two different benchmarks: Dynamic Rotation Peak Benchmark Gen-
erator (DRPBG) and Dynamic Composition Benchmark Generator (DCBG). There are
five types of component functions: peak (F1), sphere (F3), Rastrigin (F4), Griewank
(F5), and Ackley (F6). F1 is the base component for DRPBG whereas all the remaining
types are employed in DCBG.

Dynamic Rotation Peak Benchmark Generator (DRPBG). There are four types
of the component parameter modification applied in DRPBG: horizontal translation,
scaling and rotation and vertical scaling. As in the case of MPB the horizontal scaling
operator has the same scale coefficient for each of the dimensions, so in this specific
case this coefficient is also represented as a one-dimensional variable w instead of the
vector W. The component function formula is the same as in the eq. (10).

Values of the translation vector X in subsequent changes are evaluated with use of
the rotation matrix M. Clearly, we apply the rotation matrix to the current coordinates
of the component function optimum o, that is: o(t + 1) = o(t) ·M(t) (where t is the
number of the current change in the component) and then the final value of X(t+ 1) is
calculated: X(t+ 1) = o(t+ 1)− o(0).
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Subsequent values of the horizontal scaling parameter w and the vertical scaling
parameter v are evaluated according to the first, the second or the third characteristic of
variability, that is, T1, T2 or T3.

For every change a new rotation matrix M is generated which is common for all
the components. The rotation matrix M is obtained as a result of multiplication of a
number of rotation matrices R where each of R represents rotation in just one plane of
the multidimensional search space. A matrix Rij(θ) represents rotation by the θ angle
along the plane i–j and such a matrix can be easily generated as described by [9]. In
DRPBG we start with a selection of the rotation planes, that is, we need to generate a
vector r of size l where l is an even number and l ≤ n/2. The vector contains search
space dimension indices selected randomly without repetition. Then for every plane
defined in r by subsequent pairs of indices: [1, 2], [3, 4], [5, 6], . . . [l − 1, l] a rotation
angle is randomly generated and finally respective matrices Rr[1],r[2], . . . Rr[l−1],r[l] are
calculated. Eventually, the rotation matrix M is calculated as follows:

M(t) = Rr[1],r[2](θ(t)) · Rr[3],r[4](θ(t)) · · ·Rr[l−1],r[l](θ(t)). (12)

In Syringa the method of the rotation matrix generation slightly differs from the
one described above. Instead of the vector r there is a vector Θ which represents a
sequence of rotation angles for all the possible planes in the search space. The position
in the vector Θ defines the rotation plane. Simply, Θ(1) represents the plane [1,2],
Θ(2) represents the plane [2,3] and so on until the plane [n-1,n]. The next values in
Θ represent planes created from every second dimensions, that is, [1,3], [2,4] and so
on until the plane [n-2,n]. Then values in Θ represent planes created from every third
dimensions, then those created from every fourth, and so on until there appears the
value for the last plane created from the first and the last dimension. If Θ(i) equals
zero, then there is no rotation for the i-th plane, otherwise the respective rotation matrix
R is generated. The final stage of generation of the matrix M is the same as in the
description above, that is, the rotation matrix M is the result of multiplication of all the
matrices R generated from the vector Θ.

The matrix M is used twice for the evaluation of the component modification pa-
rameters: the first time when the translation vector X is calculated and the second time
when the rotation is applied, that is, just before the application of the equation (10).

Dynamic Composition Benchmark Generator (DCBG). DCBG performs five types
of the component parameter modification: horizontal translation, scaling and rotation
and vertical translation and scaling. The respective parameters are embedded into the
function formula f”(x) in the following way [10,11]:

f”(x) = (v · (f ′(M · (W · (x + X))) + h)) (13)

where:

— v is the weight coefficient depending of the currently evaluated x,
— W is called a stretch factor which equals 1 when the search range of f(x) is the same
as the entire search space and grows when the search range of f(x) decreases,
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— f ′(x) represent the value of f(x) normalized in the following way: f ′(x) = C ·
f(x)/|fmax| where the constant C = 2000 and fmax is the estimated maximum value
of function f which is one of the four: sphere (F3), Rastrigin (F4), Griewank (F5), or
Ackley (F6).

In Syringa the properties of some of the parameters has had to be changed. The first
difference is in the evaluation of the weight coefficient v which due to the structure of
the assumed model cannot depend of the currently evaluated x. Therefore, we assumed
that v = 1. There is also no scaling, that is, W is an identity matrix because we assumed
that the component functions are always defined for the entire search space. The last
issue is about the rotation matrix M which is calculated in the same way as for the
Syringa version of DRPBG. Eventually, the Syringa version of f”(x) looks as
follows:

f”(x) = ((f ′(M · ((x + X))) + h)) (14)

Thus, the Syringa version of DCBG differs from the original one because it does not
contain the horizontal scaling, the rotation matrix M is evaluated in the different way
and the stretch factor always equals one. However, a kind of the vertical scaling is still
present and can be found in the step of the f(x) normalization.

5 Plan of Experiments

5.1 Performance Measure

For comparisons between the results obtained for different benchmark instances and
different versions of the algorithms the offline error [8] (briefly oe) was selected. The
measure represents the average deviation from the optimum of the best individual value
since the last change in the fitness landscape. Formally:

oe =
1

Nchanges

Nchanges∑
j=1

⎛⎝ 1

Ne(j)

Ne(j)∑
i=1

(f(x∗j)− f(xjibest))

⎞⎠ , (15)

where Ne(j) is a total number of solution evaluations performed for the j-th static state
of the landscape, f(x∗j) is the value of an optimal solution for the j-th landscape and
f(xjibest) is the current best value found for the j-th landscape. It should be clear that
the measure oe should be minimized, that is, the better result the smaller the value
of oe.

Our algorithm has no embedded strategy for detecting changes in the fitness land-
scapes. Simply, the last step in the main loop of the algorithm executes the reevaluation
of the entire current solution set. Therefore, our optimization system is informed of the
change as soon as it occurs, and no additional computational effort for its detection is
needed.
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Fig. 1. Fitness landscapes of the benchmark instances for 2D search space: DRPBG with ten
peak components and DCBG with ten sphere components (first row), DCBG with ten Rastrigin
components and DCBG with ten Griewank components (second row), DCBG with ten Ackley
components and MPB sc. 2 with ten cones (the last row)

5.2 The Tests

We performed experiments with a subset of GDBG benchmark functions as well as with
four versions of MPB. For each of the components a feasible domain is defined which,
unfortunately, is not the same in every case (see the last column in Table 1). For this
reason the boundaries for the search space dimensions in the test-cases are not the same
but adjusted respectively to the components. For GDBG the feasible search space is
within the hypercube with the same boundaries for each dimension, namely [−7.1, 7.1]
whereas for MPB — [−50, 50]. These box constraints mean that both solutions and
components should not leave this area during the entire optimization process.
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Table 2. The least offline error (oe) mean values obtained for all the benchmark instances; the
instances are sorted in ascending order of oe; for each of the instances three values are presented
for three change types of the GDBG control parameters: T1, T2 and T3 (except for MPB where
there are two cases: with ten and 50 peaks/cones)

the benchmark instance change type α indSαS oe

F5 T1 1.25 3.00 0.16813
(Griewank) T2 1.50 3.00 0.13977

T3 2.00 3.00 0.35606

MPB sc. 1 with ten peaks 1.00 1.00 0.35622
MPB sc. 1 with 50 peaks 1.50 1.00 0.66492

DCBG with F3 T1 1.50 2.00 1.22583
(sphere components) T2 0.75 1.00 1.81625

T3 1.75 3.00 5.32476

DRPBG with ten F1 T1 2.00 1.00 1.98783
T2 1.00 1.00 2.51758
T3 0.50 1.00 3.76098

DRPBG with 50 F1 T1 1.25 1.00 3.35855
T2 1.00 1.00 4.24594
T3 0.75 1.00 5.87459

MPB sc. 2 with ten cones — 0.00 4.11117
MPB sc. 2 with 50 cones 0.50 1.00 3.74856

DCBG with F6 T1 2.00 1.00 8.41941
(Ackley components) T2 1.50 1.00 9.77345

T3 1.50 1.00 14.24450

DCBG with F4 T1 — 0.00 570.72
(Rastrigin components) T2 — 0.00 610.565

T3 — 0.00 661.395

The number of fitness function evaluations between subsequent changes was calcu-
lated according to the rules as in the CEC’09 competition, that is, for 104 · n fitness
function calls between subsequent changes where n is a number of search space dimen-
sions and in this specific case n equals five for all of the benchmark instances.

To decrease the number of algorithm configurations which would be experimentally
verified we decided to fix the value of the parameter rSαS and the only varied parameter
was α. In the preliminary phase of experimental research we tested efficiency of the al-
gorithm for different values of rSαS and analyzed obtained values of error. Eventually,
for GDBG rSαS = 0.6 whereas for MPB it is ten times smaller, that is, rSαS = 0.06.
Thus, for each of the benchmark instances there were performed just 32 experiments:
for α between 0.25 and 2 varying with step 0.25 and for 0, 1, 2 and 3 solutions of
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Fig. 2. Characteristics of oe for jDE: the cases where hybrid solution deteriorates the results, i.e.,
DCBG with F4 (Rastrigin components) (the first row) and MPB sc.2 with 10 and 50 F2 (cones)
(the second row); the subsequent graphs in the first row represent three change types of the GDBG
control parameters: T1, T2 and T3

new type present in the population. For each of the configurations the experiments were
repeated 20 times and each of them consisted of 60 changes in the fitness landscape.
Graphs and tables present mean values of oe calculated for these series.

6 The Results

The best values of offline error obtained for each of the benchmark instances are pre-
sented in Table 2. The table contains names of the instances, the mutation parameter
configurations (i.e. values of α and indSαS) and the mean values of oe. The instances
are sorted in ascending order of obtained oe values (more or less). This way we can
easily show which of the instances were the most difficult and which were the easiest.

All the results are depicted in Figures 2 and 3. The graphs are divided into two
groups: the first one where due to the presence of sLevý solutions obtained results de-
teriorated (Figure 2), and the second one where application of sLevý solutions in the
population improved the results, that is, obtained error decreased (Figure 3).

For each of the benchmark instances there were obtained 32 values of oe which are
presented in a graphical form as a surface generated for different values of the number
of sLevý solutions (that is, indSαS) and α. The benchmark instances in the Figures are
ordered in the same way as in Table 2.
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Fig. 3. Characteristics of oe for jDE: the cases where hybrid solution improves the results: DCBG
with F5 (Griewank components) (the first row), MPB sc.1 with ten and with 50 F1 (peaks) (the
second row) DCBG with F2 (sphere components) (the third row), DRPBG with ten and with 50
F1 (peaks) (the fourth and the fifth row), DCBG with F6 (Ackley components) (the last row); the
columns represent three change types of the GDBG control parameters: T1, T2 and T3 (except
for MPB where there are just two cases: with ten and 50 peaks)
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7 Conclusions

In this paper we introduce hybrid structure of population in differential evolution algo-
rithm jDE and study its properties when applied to dynamic optimization tasks. This is
a case of a kind of technology transfer where promising mechanisms form one heuristic
approach appear to be useful in another. The results show that mutation operator us-
ing random variates based on α-stable distribution, that is, the operator where both fine
local modification and macro-jumps can appear, improves the values of oe. Lack of im-
provement appeared in two cases, that is, for the DCBG with F4 (Rastrigin components)
which is a very difficult landscape looking like a hedgehog (Figure 1, the graph in the
second row on the left) and for the MPB sc.2 with ten cones. In both cases macromuta-
tion most probably introduces an unnecessary noise rather than a chance for exploration
of a new promising area. Difficulty of the former benchmark instance is confirmed by
extremely high values of error obtained for all three types of change.

In the remaining cases the influence of sLevý solution presence is positive, however,
it must be stressed that the number of these solutions should be small. In most cases
the best results were obtained for just one piece. The exception is the DCBG with F5
(Grievank components) which was the easiest landscape for the algorithm, easier even
than the landscape build of the spheres. In the case of the DCBG with F5 the higher
number of sLevý, the smaller value of oe (for the discussion on other aspects of the
influence of sLevý solutions on the jDE effectiveness the reader is referred to [12]).

Finally, it is worth to stress that the different complexity of the tested instances shows
also that when we take them as a suite of tests and evaluate overall gain of the algorithm
we need to apply different weight for the successes obtained for each of the instances.
Simply, an improvement of efficiency obtained for DCBG with Grievank components
have different significance than the same improvement for, e.g., DCBG with Ackley
components.
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Abstract. Nonlinear optimization problems introduce the possibility of multiple
local optima. The task of global optimization is to find a point where the objective
function obtains its most extreme value while satisfying the constraints. Some
methods try to make the solution feasible by using penalty function methods,
but the performance is not always satisfactory since the selection of the penalty
parameters for the problem at hand is not a straightforward issue. Differential
evolution has shown to be very efficient when solving global optimization
problems with simple bounds. In this paper, we propose a modified constrained
differential evolution based on different constraints handling techniques, namely,
feasibility and dominance rules, stochastic ranking and global competitive
ranking and compare their performances on a benchmark set of problems. A
comparison with other solution methods available in literature is also provided.
The convergence behavior of the algorithm to handle discrete and integer
variables is analyzed using four well-known mixed-integer engineering design
problems. It is shown that our method is rather effective when solving nonlinear
optimization problems.

Keywords: Nonlinear programming, Global optimization, Constraints handling,
Differential evolution.

1 Introduction

Problems involving global optimization over continuous spaces are ubiquitous through-
out the scientific community. Many real world problems are formulated as mathematical
programming problems involving continuous variables with linear/nonlinear objective
function and constraints. The constraints can be of inequality and/or equality type. Gen-
erally, the constrained nonlinear optimization problems are formulated as follows:

minimize f(x)
subject to gk(x) ≤ 0 k = 1, 2, . . . ,m1

hl(x) = 0 l = 1, 2, . . . ,m2

lbj ≤ xj ≤ ubj j = 1, 2, . . . , n,

(1)

where f, gk, hl : Rn −→ R with feasible set F = {x ∈ Rn : g(x) ≤ 0,h(x) = 0 and
lb ≤ x ≤ ub}. f , gk, hl may be differentiable and the information about derivatives
may or may not be provided.

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 85–100.
DOI: 10.1007/978-3-642-35638-4_7 c© Springer-Verlag Berlin Heidelberg 2013
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Problem (1) involving global optimization (here a minimization problem) of a mul-
tivariate function with constraints is widespread in the mathematical modeling of real
world systems. Many problems can be described only by nonlinear relationships, which
introduce the possibility of multiple local minima. The task of global optimization is to
find a point where the objective function obtains its most extreme value, the global
minimum, while satisfying the constraints.

Several deterministic and stochastic solution methods with different constraints han-
dling techniques have been proposed to solve (1). Unlike the stochastic methods, the
outcome of a deterministic algorithm does not depend on pseudo random variables. In
general, its performance depends heavily on the structure of the problem since the de-
sign relies on the mathematical attributes of the optimization problem. Compared with
deterministic methods, the implementation of stochastic algorithms is often easier. To
handle the constraints of the problem, some methods try to make the solution feasible
by repairing the infeasible one or penalizing an infeasible solution with a penalty func-
tion. However, to find the appropriate penalty parameter is not an easy task. Deb [6]
proposed an efficient constraints handling technique for genetic algorithm based on the
feasibility and dominance rules. The author used a penalty function that does not require
any penalty parameter. Barbosa and Lemonge [2] proposed a parameter-less adaptive
penalty scheme for genetic algorithm. In the very recent paper the authors proposed
this adaptive penalty scheme for differential evolution [23]. Hedar and Fukushima [12]
proposed a simulated annealing method that uses the filter method [10] rather than
the penalty function method to handle the constraints. Runarsson and Yao proposed a
stochastic ranking [21] and a global competitive ranking [22] techniques for constrained
nonlinear optimization problems based on evolution strategy. The authors presented a
new view on the usual penalty function methods in terms of the dominance of penalty
and objective functions. Dong et al. [8] proposed a swarm optimization based on the
constraint fitness priority-based ranking technique. Zahara and Hu [28] proposed a hy-
brid of Nelder-Mead simplex method and a particle swarm optimization based on this
technique [8]. Rocha and Fernandes proposed a electromagnetism-like algorithm based
on the feasibility and dominance rules [18] and the self-adaptive penalties [19]. Rocha
et al. [20] used an augmented Lagrangian method coupled with an artificial fish swarm
algorithm for global optimization. Coello Coello [4] proposed constraints handling us-
ing an evolutionary multiobjective optimization technique. Coello Coello and Cortés [5]
proposed hybridizing of a genetic algorithm with an artificial immune system that uses
genotypic-based distances to move from infeasible solution to feasible one. Another
constraints handling technique is the multilevel Pareto ranking based on the constraints
matrix [16,17]. Ray and Tai [16] proposed an evolutionary algorithm with a multilevel
pairing strategy and Ray and Liew [17] proposed a society and civilization algorithm
based on the simulation of social behavior.

Differential evolution (DE) proposed by Storn and Price [24] is a population-based
heuristic approach that is very efficient to solve global optimization problems with sim-
ple bounds. DE performance depends on the amplification factor of differential vari-
ation and crossover control parameter. Hence adaptive control parameters have been
implemented in DE in order to obtain a competitive algorithm. Further, to improve so-
lution accuracy, techniques that are able to exploit locally certain regions, detected in
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the search space as promising, are also required. When the solutions ought to be re-
stricted to a set of inequality and equality constraints, an efficient constraints handling
technique is also required in the solution method. In this paper, we propose a modi-
fied constrained differential evolution algorithm (herein denoted as mCDE) that uses
the self-adaptive control parameters [3], a mixture of modified mutations, and also in-
cludes the inversion operation, a modified selection and the elitism to be able to progress
efficiently towards global solutions of problems (1).

The organization of this paper is as follows. Firstly, we describe the constraints han-
dling techniques in Section 2 and then the modified constrained differential evolution is
outlined in Section 3. Section 4 describes the experimental results and finally we draw
the conclusions of this study in Section 5.

2 Constraints Handling Techniques

Stochastic methods have been primary developed for the global optimization of uncon-
strained problems. Extensions to the constrained problems then appear with the modifi-
cation of some solution procedures. To deal with a constrained problem, a widely used
approach is based on penalty functions where a penalty term is added to the objective
function in order to penalize the constraint violation. This enable us to transform a con-
strained problem into a sequence of unconstrained subproblems. The penalty function
method can be applied to any type of constraints, but the performance of penalty-type
method is not always satisfactory because of choosing an appropriate penalty param-
eter. For this reason alternative constraints handling techniques have been proposed in
the last decades. Three different techniques, usually used in population-based methods
have been implemented and extensively tested in our proposed mCDE algorithm: a) the
feasibility and dominance rules, b) the stochastic ranking, and c) the global competi-
tive ranking. They are briefly described below. In a population-based solution method
with N candidate solutions xi, i = 1, 2, . . . , N at each generation, a common measure
of infeasibility of an individual point xi is the average measure of constraint violation
given by

ζ(xi) =
1

m

(
m1∑
k=1

max{0, gk(xi)}+
m2∑
l=1

|hl(xi)|
)
,

where m = m1 +m2 and ζ(xi) is a non-negative real-valued function, with ζ(xi) = 0
if the point xi is feasible.

2.1 Feasibility and Dominance Rules

Deb [6] proposed a constraints handling technique for population-based solution meth-
ods based on a set of rules that uses feasibility and dominance (FD) principles, as fol-
lows. First, the constraint violation ζ is calculated for all the individuals in a population.
Then the objective function f is evaluated only for feasible individuals. Two individual
points are compared at a time, and the following criteria are always enforced:
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a) any feasible point is preferred to any infeasible point;
b) between two feasible points, one having better objective function is preferred;
c) between two infeasible points, one having smaller constraint violation is preferred.

In this case, the fitness of each individual point xi is calculated as follows

ΦFD(xi) =

{
f(xi) if xi is feasible
fmax,f + ζ(xi) otherwise,

(2)

where fmax,f is the objective function of the worst feasible solution in the population.
When all individuals are infeasible then its value is set to zero. This fitness function is
used to choose the best individual point in a population.

2.2 Stochastic Ranking

Runarsson and Yao [21] first proposed the stochastic ranking (SR) for the constrained
nonlinear optimization problems. This is a bubble-sort-like algorithm to give ranks to
individuals in a population stochastically. In this ranking method, two adjacent individ-
ual points are compared and given ranks and swapped. The algorithm is halt if there
is no swap. Individuals are ranked primarily based on their constraint violations. The
objective function values are then considered if: i) individuals are feasible, or ii) a
uniform random number between 0 and 1 is less than or equal to Pf . The probability
Pf is used only for comparisons of the objective function in the infeasible region of the
search space. Such ranking ensures that good feasible solutions as well as promising
infeasible ones are ranked in the top of the population.

In our implementation of the stochastic ranking method in the modified constrained
differential evolution, each individual point xi is evaluated according to the fitness
function

ΦSR(xi) =
Ii − 1

N − 1
, (3)

where Ii represents the rank of point xi. From (3), the fitness of an individual point
having the highest rank will be 0 and that with the lowest rank will be 1. The best
individual point in a population has the lowest fitness value.

2.3 Global Competitive Ranking

Runarsson and Yao [22] proposed another constraints handling technique in order to
strike the right balance between the objective function and the constraint violation. This
method is called global competitive ranking (GR), where an individual point is ranked
by comparing it against all other members in the population.

In this ranking process, after calculating f and ζ for all the individuals, f and ζ
are sorted separately in ascending order (since we consider the minimization problem)
and given ranks. Special consideration is given to the tied individuals. In case of tied
individuals the same higher rank will be given. For example, in these eight individ-
uals, already in ascending order, 〈6, (5, 8), 1, (2, 4, 7), 3〉 (individuals in parentheses
have same value) the corresponding ranks are I(6) = 1, I(5) = I(8) = 2, I(1) = 4,
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I(2) = I(4) = I(7) = 5, I(3) = 8. After giving ranks to all the individuals based on
the objective function f and the constraint violation ζ, separately, the fitness function
of each individual point xi is calculated by

ΦGR(xi) = Pf
Ii,f − 1

N − 1
+ (1− Pf )

Ii,ζ − 1

N − 1
, (4)

where Ii,f and Ii,ζ are the ranks of point xi based on the objective function and the
constraint violation, respectively. Pf indicates the probability that the fitness is calcu-
lated based on the rank of objective function. It is clear from the above that Pf can be
used easily to bias the calculation of fitness according to the objective function or the
constraint violation. The probability should take a value 0.0 < Pf < 0.5 in order to
guarantee that a feasible solution may be found. From (4), the fitness of an individual
point is a value between 0 and 1, and the best individual point in a population has the
lowest fitness value.

3 Modified Constrained Differential Evolution

The population-based differential evolution algorithm [24] has become popular and has
been used in many practical cases, mainly because it has demonstrated good conver-
gence properties and is easy to understand. DE is a floating point encoding that creates
a new candidate point by adding the weighted difference between two individuals to a
third one in the population. This operation is called mutation. The mutant point’s com-
ponents are then mixed with the components of target point to yield the trial point. This
mixing of components is referred to as crossover. In selection, a trial point replaces a
target point for the next generation only if it is considered an equal or better point. In
unconstrained optimization, the selection operation relies on the objective function. DE
has three control parameters: amplification factor of differential variation F , crossover
control parameter Cr, and population size N .

It is not an easy task to set the appropriate control parameters since these depend
on the nature and size of the optimization problems. Hence, the adaptive control pa-
rameters ought to be implemented. Brest et al. [3] proposed the self-adaptive control
parameters for DE when solving global optimization problems with simple bounds. In
most original DE, three points are chosen randomly for mutation and the base point
is then chosen at random within the three. This has an exploratory effect but it slows
down the convergence of DE. Kaelo and Ali [14] proposed a modified mutation for
differential evolution.

The herein presented modified constrained differential evolution algorithm - mCDE
- for constrained nonlinear optimization problems (1) includes:

1) the self-adaptive control parameters F and Cr, as proposed by Brest et al.;
2) a modified mutation that mixes the modification proposed by Kaelo and Ali with the

cyclical use of the overall best point as the base point;
3) the inversion operation;
4) a modified selection that is based on the fitness of individuals;
5) the elitism.
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The modification in mutation allows mCDE to keep the exploration as well as enhance
the exploitation around the overall best point. In modified selection of mCDE, we im-
plement and test the three different techniques described so far for calculating the fitness
of individuals that are capable to handle the constraints of problems (1). The modified
constrained differential evolution is outlined below.

The target point of mCDE, at iteration/generation z, is defined by
xi,z = (xi1,z , xi2,z , . . . , xin,z), where n is the number of variables of the opti-
mization problem and i = 1, 2, . . . , N . The initial population is chosen randomly and
should cover the entire component spaces.

Self-adaptive Control Parameters. In mCDE, we use the self-adaptive control param-
eters forF and Cr, as proposed by Brest et al. [3] by generating a different set (Fi, Cri)
for each point xi in the population. The new control parameters for the next generation
Fi,z+1 and Cri,z+1 are calculated by

Fi,z+1 =

{
Fl + λ1 × Fu if λ2 < τ1
Fi,z otherwise

Cri,z+1 =

{
λ3 if λ4 < τ2
Cri,z otherwise,

where λk ∼ U[0, 1], k = 1, . . . , 4 and 0 < τ1, τ2 < 1 represent the probabilities to
adjust parameters Fi and Cri, respectively, and 0 < Fl < Fu < 1, so the new Fi,z+1

takes a value from (0, 1) in a random manner. The new Cri,z+1 takes a value from
[0, 1]. Fi,z+1 and Cri,z+1 are obtained before the mutation is performed. So, they
influence the mutation, crossover and selection operations of the new point xi,z+1.

Modified Mutation. In mCDE, this is a mixture of two different types of mutation
operations. We use the mutation proposed in [14]. After choosing three points randomly,
the best point among three based on the fitness function is selected for the base point
and the remaining two points are used as differential variation, i.e., for each target point
xi,z , a mutant point is created according to

vi,z+1 = xr3,z + Fi,z+1(xr1,z − xr2,z), (5)

where r1, r2, r3 are randomly chosen from the set {1, 2, . . . , N}, mutually different and
different from the running index i and r3 is the index with the best fitness (among the
three points). This modification has a local effect when the points in the population
form a cluster around the global minimizer.

Furthermore, at every B generations, the best point found so far is used as the base
point and two randomly chosen points are used as differential variation, i.e.,

vi,z+1 = xbest + Fi,z+1(xr1,z − xr2,z). (6)

This modified mutation allows mCDE to maintain its exploratory feature as well as at
the same time to exploit the region around the best individual point in the population
expediting the convergence.
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Crossover. In order to increase the diversity of the mutant points’ components,
crossover is introduced. To this end, the crossover point ui,z+1 is formed, where

uij,z+1 =

{
vij,z+1 if (rj ≤ Cri,z+1) or j = si
xij,z if (rj > Cri,z+1) and j �= si.

(7)

In (7), rj ∼ U[0, 1] performs the mixing of jth component of points, si is randomly
chosen from the set {1, 2, . . . , n} and ensures that ui,z+1 gets at least one component
from vi,z+1.

Inversion. Since in mCDE, a point has n-dimensional real components, inversion [13]
can easily be applicable. With the inversion probability (pinv ∈ [0, 1]), two positions
are chosen on the point ui, the point is cut at those positions, and the cut segment is
reversed and reinserted back into the point to create the trial pointu′

i. In practice, mCDE
with the inversion has been shown to give better results than those obtained without the
inversion. An illustrative example of inversion is shown in Figure 1.

| |
ui,z+1 = ui1,z+1 ui2,z+1 ui3,z+1 ui4,z+1 ui5,z+1 ui6,z+1 ui7,z+1 ui8,z+1

⇓
| |

u′
i,z+1 = ui1,z+1 ui2,z+1 ui6,z+1 ui5,z+1 ui4,z+1 ui3,z+1 ui7,z+1 ui8,z+1

Fig. 1. Inversion used in mCDE

Bounds Check. When creating the mutant point and when the inversion operation
is performed, some components can be created outside the bound constraints. So, in
mCDE after inversion the bounds of each component should be checked with the fol-
lowing projection of bounds:

u′
ij,z+1 =

⎧⎨⎩
lj if u′

ij,z+1 < lj
uj if u′

ij,z+1 > uj

u′
ij,z+1 otherwise.

Modified Selection. In original DE, the target and the trial points are compared based
on their corresponding objective function value to decide which point becomes a mem-
ber of next generation, that is if the trial point’s objective function is less than or equal
to the that of target point, then the trial point will be the target point for the next
generation.

In this paper, for constrained nonlinear optimization problems, we propose a modi-
fied selection based on one of the fitness functions of individuals discussed so far (Sec-
tion 2). When using the stochastic ranking technique, all the target points at generation
z and trial points at generation z + 1 are ranked together and their corresponding fit-
ness ΦSR are calculated. Then the modified selection is performed, i.e., the trial and the
target points are compared to decide which will be the new target points for the next
generation based on their calculated fitness by the following way

xi,z+1 =

{
u′
i,z+1 if ΦSR(u

′
i,z+1) ≤ ΦSR(xi,z)

xi,z otherwise.
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A similar procedure is performed when the global competitive ranking technique is im-
plemented. After performing selection in mCDE, the best point is chosen in the current
generation based on the lowest fitness of the target points.

On the other hand, when using the feasibility and dominance rules, the trial
and the target points are compared based on the three feasibility and dominance
principles to decide which will be the new target points for the next generation. After
performing selection, the fitness function ΦFD for all the target points are calculated,
and the best point based on the lowest fitness function in the current generation is
chosen. We remark that this point is the overall best point in the entire generations so far.

Elitism. The elitism is also performed to keep the best point found so far in the entire
generations. The elitism aims at preserving in the entire generations the individual
point that, with the constraint violation 0 or smaller than others, has the smallest
objective function. This is required when either the stochastic ranking or the global
competitive ranking is used to calculate fitness of individuals. We remark that in
these two techniques, fitness values of individuals are calculated at every genera-
tion based on their corresponding ranks. Thus, the fitness of best individual point
(based on the objective function and the constraint violation) may not be the lowest one.

Termination Criterion. Let Gmax be the maximum number of generations. If fbest is
the best objective function value found so far and fopt is the known optimal value, then
our proposed mCDE algorithm terminates if z > Gmax or |fbest− fopt| ≤ η, for a small
positive number η.

mCDE Algorithm. The algorithm of the herein proposed modified constrained dif-
ferential evolution for constrained nonlinear optimization problems is described in
Algorithm 1.

4 Experimental Results

We code mCDE in C with AMPL [11] interfacing and compile with Microsoft Visual
Studio 9.0 compiler in a PC having 2.5 GHz Intel Core 2 Duo processor and 4 GB
RAM. We set N = min(100, 10n), B = 10, Pf = 0.45, τ1 = τ2 = 0.1, Fl =
0.1, Fu = 0.9, pinv = 0.05 and η = 10−6. We consider 13 benchmark constrained
nonlinear optimization problems [21]. Their characteristics are outlined in Table 1. For
these problems, we consider an individual point as a feasible one if ζ(x) ≤ δ, where δ
is a very small positive number. Here we set δ = 10−8.

At first, we compare the three different variants of mCDE: a) mCDE FD (based on
feasibility and dominance rules), b) mCDE SR (based on stochastic ranking) and c)
mCDE GR (based on global competitive ranking) using the performance profiles as
described in [7]. A comparison with other solution methods available in literature is
also included. To be able to fairly compare the variants mCDE SR and mCDE GR with
the variant mCDE FD, after the modified selection step of the algorithm, the fitness
function was recalculated using (2) so that the best and the worst target points in the
population are identified according to the objective function and constraint violation.
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Algorithm 1. mCDE algorithm
Require: N , Gmax, B, Pf , Fl, Fu, τ1, τ2, pinv, and η.
1: Set z = 1. Randomly initialize Fi,1, Cri,1 and the population xi,1 ∀i = 1, . . . , N .
2: Calculate the fitness Φ(xi,1), for all i, and perform elitism to choose fbest and xbest.
3: while the termination criterion is not met do
4: for i = 1 to N do
5: Compute the control parameters Fi,z+1 and Cri,z+1.
6: if MOD(z + 1, B) = 0 then
7: Compute the mutant point vi,z+1 using (6).
8: else
9: Compute the mutant point vi,z+1 using (5).

10: end if
11: Perform the crossover to make point ui,z+1.
12: if γ ∼ U[0, 1] ≤ pinv then
13: Perform inversion to make the trial point u′

i,z+1.
14: end if
15: Check the bounds of the trial point.
16: end for
17: Calculate the fitness Φ(xi,z), Φ(u′

i,z+1), for all i.
18: Perform modified selection.
19: Perform elitism to choose fbest and xbest. Set z = z + 1.
20: end while

Table 1. Characteristics of the test problems

Prob. Type of f fopt n m1 m2 m

g01 quadratic -15.0000 13 9 0 9
g02 general -0.8036 20 2 0 2
g03 polynomial -1.0005 10 0 1 1
g04 quadratic -30665.5387 5 6 0 6
g05 cubic 5126.4967 4 2 3 5
g06 cubic -6961.8139 2 2 0 2
g07 quadratic 24.3062 10 8 0 8
g08 general -0.0958 2 2 0 2
g09 general 680.6301 7 4 0 4
g10 linear 7049.2480 8 6 0 6
g11 quadratic 0.7499 2 0 1 1
g12 quadratic -1.0000 3 1 0 1
g13 general 0.0539 5 0 3 3

4.1 Comparison by Performance Profiles

We ran the three variants of mCDE for 30 times and recorded the results. We used
different Gmax for the 13 problems, but used the same value for all the variants in com-
parison. The performance profiles proposed by Dolan and Moré [7] are the graphical
representation of the performance ratio of different solvers/variants when solving a set
of test problems. The profiles plot the cumulative distribution function of the perfor-
mance ratio obtained from an appropriate performance metric.
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Let P be the set of test problems and S be the set of all variants of mCDE in compar-
ison. In our comparative study, the metric, m(p,s), found by variant s ∈ S on problem
p ∈ P , measures the average improvement of the objective function values, based on a
relative scaled distance to the optimal objective function value fopt [1], defined by

m(p,s) =
favg(p,s) − fopt

fw − fopt
, (8)

where favg(p,s) is the average of the best solutions obtained by the variant s on problem
p after 30 runs and fw is the worst objective function value of problem p after 30 runs
among all variants. The performance ratio is thus defined by

r(p,s) =

⎧⎨⎩1 +m(p,s) − q if q ≤ 10−5

m(p,s)

q
otherwise,

where q = min{m(p,s) : s ∈ S}.
The fraction of problems for which variant s has a performance ratio r(p,s) within a

factor τ ∈ R, is given by ρs(τ) = (nPτ )/(nP ), where nPτ is the number of problems in
P with r(p,s) ≤ τ and nP is the total number of problems in P . ρs(τ) is the probability
(for s ∈ S) that the performance ratio r(p,s) is within a factor τ of the best possible
ratio.
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Fig. 2. Performance profile based on the average improvement of function values

Figure 2 shows the profiles of the performance metric in (8). If we are only interested
in knowing which variant is the most efficient, in the sense that it reaches the best
solutions mostly, we compare the values of ρs(1), for s ∈ S, and find the highest value
which is the probability that the variant will win over the remaining ones. However, to
assess the robustness of variants, we compare the values of ρs(τ) for large values of τ .
The variant with the largest probability is the most robust one. In this figure it is shown
that the variant mCDE GR wins over the other two variants. Hence, the comparison
with other solution methods available in literature uses the variant mCDE GR, hereafter
denoted by mCDE.
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4.2 Comparison with Other Methods

We also compare mCDE with the stochastic ranking, SRES, presented in [21] and the
global competitive ranking, GRES, presented in [22]. The authors proposed these tech-
niques based on a (30, 200) evolution strategy. An adaptive penalty scheme for con-
straints handling with dynamic use of variants of differential evolution (DUVDE) [23]
is also used in this comparison. According to [21,22], we set Gmax = 1750 for all prob-
lems except problem g12, where Gmax = 175. Here, we aim to get a solution within
0.001% of the known optimal solution fopt.

Tables 2 and 3 show the experimental results of the 13 problems, where ‘fbest’ is the
best of the objective function values obtained among 30 runs, ‘favg’ is the average of
the best objective function values and ‘stdf ’ means the standard deviation of objective
function values among 30 runs. The results from SRES, GRES and DUVDE are taken
from their corresponding literatures. In mCDE, we use the population size N dependent
on the dimension of the test problem and in DUVDE the authors used the population
size 50 and the maximum number of generations 3684 for all the test problems. Prob-
lems g12 and g13 were not considered with DUVDE. From Tables 2 and 3 we may
conclude that for most of the problems, and with respect to all measures of comparison,
mCDE performs rather well when compare with SRES, GRES and DUVDE.

4.3 Solving Mixed-Integer Design Problems

We now consider four engineering design problems to show the effectiveness of our
proposed method when solving problems with discrete, integer and continuous vari-
ables. Engineering problems with mixed-integer design variables are quite common.
Therefore, the convergence behavior of our proposed mCDE when handling discrete
and integer variables is to be provided.

For discrete variables, we randomly generate values from an appropriate discrete set
in the two procedures: initialization and mutation.

For integer variables, a simple heuristic that relies on the rounding off to the nearest
integer at evaluation stages is implemented.

We considered four well-known engineering design problems. Since the optimal
solutions of the considered problems are unknown, we used only Gmax for the
termination criterion and δ = 0. For each problem 30 independent runs were carried
out.

Spring Design
This is a real world optimization problem involving discrete, integer and continuous
design variables. The objective is to minimize the volume of a compression spring under
static loading. The design problem has three variables and eight inequality constraints
[15], where x1, the wire diameter, is taken from a set of discrete values and x3, the
number of coils, is integer. We set Gmax = 500. We compare the obtained results
from our mCDE with DE [15] and ranking selection-based particle swarm optimization,
RPSO [26]. The comparative results are shown in Table 4.



96 Md. A.K. Azad and M.G.P. Fernandes

Table 2. Experimental results from SRES and GRES

Prob.
SRES GRES

fbest favg stdf fbest favg stdf

g01 -15.0000 -15.0000 0.00E+00 -15.0000 – 0.00E+00
g02 -0.8035 -0.7820 2.00E-02 -0.8035 – 1.70E-02
g03 -1.0000 -1.0000 1.90E-04 -1.0000 – 2.60E-05
g04 -30665.5390 -30665.5390 2.00E-05 -30665.5390 – 5.40E-01
g05 5126.4970 5128.8810 3.50E+00 5126.4970 – 1.10E+00
g06 -6961.8140 -6875.9400 1.60E+02 -6943.5600 – 2.90E+02
g07 24.3070 24.3740 6.60E-02 24.3080 – 1.10E-01
g08 -0.0958 -0.0958 2.60E-17 -0.0958 – 2.60E-17
g09 680.6300 680.6560 3.40E-02 680.6310 – 5.80E-02
g10 7054.3160 7559.1920 5.30E+02 * – *
g11 0.7500 0.7500 8.00E-05 0.7500 – 7.20E-05
g12 -1.0000 -1.0000 0.00E+00 -1.0000 – 0.00E+00
g13 0.0539 0.0675 3.10E-02 0.0539 – 1.30E-04

(–) not available; (*) not solved

Table 3. Experimental results from DUVDE and mCDE

Prob.
DUVDE mCDE

fbest favg stdf fbest favg stdf

g01 -15.0000 -12.5000 2.37E+00 -15.0000 -15.0000 1.16E-06
g02 -0.8036 -0.7688 3.57E-02 -0.8036 -0.8007 4.95E-03
g03 -1.0000 -0.2015 3.45E-01 -1.0000 -1.0000 3.90E-05
g04 -30665.5000 -30665.5000 0.00E+00 -30665.5387 -30665.5387 2.38E-05
g05 5126.4965 5126.4965 0.00E+00 5126.4978 5126.4979 1.83E-04
g06 -6961.8000 -6961.8000 0.00E+00 -6961.8161 -6950.5609 6.16E+01
g07 24.3060 30.4040 2.16E+01 24.2316 24.2317 7.44E-05
g08 -0.0958 -0.0958 0.00E+00 -0.0958 -0.0958 2.71E-06
g09 680.6300 680.6300 3.00E-05 680.6301 680.6301 1.38E-06
g10 7049.2500 7351.1700 5.26E+02 7049.2533 7053.3441 6.99E+00
g11 0.7500 0.9875 5.59E-02 0.7500 0.7506 3.11E-03
g12 † † † -1.0000 -1.0000 2.33E-06
g13 † † † 0.0539 0.0539 3.53E-17

(†) not considered

Table 4. Comparative results of spring design problem

Method x1 x2 x3 fbest Gmax

DE 0.283 1.223 9 2.65856 650
RPSO 0.283 1.223 9 2.65856 750
mCDE 0.283 1.223 9 2.65856 500

Pressure Vessel Design
The design of a cylindrical pressure vessel with both ends capped with a hemispherical
head is to minimize the total cost of fabrication [5,25]. The problem has four design
variables and four inequality constraints. This is a mixed variables problem where
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x1, the shell thickness, and x2, the head thickness, are discrete of integer multiples of
0.0625 inch., and other two are continuous. We set Gmax = 1000. The comparative
results from mCDE with hybrid genetic algorithm, HGA [5] and cost-effective particle
swarm optimization, CPSO [25] are shown in Table 5.

Table 5. Comparative results of pressure vessel design problem

Method x1 x2 x3 x4 fbest Gmax

HGA 0.8125 0.4375 42.0870 176.7791 6061.123 5000
CPSO 0.8125 0.4375 42.0984 176.6366 6059.714 10000
mCDE 0.8125 0.4375 42.0984 176.6366 6059.714 1000

Speed Reducer Design
The weight of the speed reducer is to be minimized subject to the constraints on
bending stress of the gear teeth, surface stress, transverse deflections of the shafts and
stress in the shafts as described in [5,25]. There are seven variables and 11 inequality
constraints. This is a mixed variables problem, where x3 is integer (number of teeth)
and the others are continuous. We set Gmax = 500. The comparative results among
mCDE, HGA and CPSO are shown in Table 6.

Table 6. Comparative results of speed reducer design problem

Method x1 x2 x3 x4 x5 x6 x7 fbest Gmax

HGA 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.342 5000
CPSO 3.5 0.7 17 7.3 7.8000 3.3502 5.2867 2996.348 10000
mCDE 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.342 500

Stepped Cantilever Beam Design
The design variables of a stepped cantilever beam are the widths and depths of rectangu-
lar cross-sections. The objective of this problem is to minimize the volume of the beam
under static loading [27]. This is a mixed-integer design problem having 10 variables
and 11 constraints, where x1 and x2 are integer, x3 to x6 are discrete and the remain-
ing are continuous. We set Gmax = 1000. The comparative results from our mCDE
with genetic algorithm, GA [9], and linearization techniques method [27] are shown in
Table 7.

Table 7. Comparative results of stepped cantilever beam design problem

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 fbest Gmax

GA 3 60 3.1 55 2.6 50 2.2700 45.2500 1.7500 35.0000 64447.00 –
in [27] 3 60 3.1 55 2.6 50 2.2045 44.0907 1.7498 34.9960 63892.56 –
mCDE 3 60 3.1 55 2.6 50 2.2055 44.0855 1.7502 34.9924 63897.45 1000

(–) not available

From the Tables 4 - 7, it is found that mCDE is competitive with other solution
methods when solving engineering design problems.

From the above discussion it is clear that the herein presented modified constrained
differential evolution algorithm, based on global competitive ranking for constraints
handling, is rather effective when converging to global solutions.
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5 Conclusions

In this paper, to make the DE methodology more efficient to handle the constraints, a
modified constrained differential evolution algorithm (mCDE) is proposed. The modi-
fications focus on the self-adaptive control parameters, a modified mutation, a modified
selection and the elitism. Inversion has also been implemented in the proposed mCDE.

The modifications that mostly influence the efficiency of the algorithm are the fol-
lowing: a) the mixed modified mutation, aiming at exploring both the entire search
space (when using the mutation as in [14]) and the neighborhood of the best point found
so far (when using the best point as the base point cyclically); b) the modified selection,
to handle the constraints effectively, that uses a fitness function based on the global
competitive ranking technique. In this technique, fitness of all target and trial points
are calculated all together after giving them ranks based on the objective function and
the constraint violation separately, for competing in modified selection to decide which
points win for the next generation. This technique seems to have stricken the right bal-
ance between the objective function and the constraint violation for obtaining a global
solution while satisfying the constraints.

To test the effectiveness of our mCDE, 13 benchmark constrained nonlinear opti-
mization problems have been considered. These problems have also been solved with
the stochastic ranking and the feasibility and dominance rules techniques and a com-
parison has been carried out based on their performance profiles. We could observe that
the performance of the mCDE with the global competitive ranking is relatively better
than the other two in comparison. The numerical experiments also show that mCDE is
rather competitive when compared with the other solution methods available in litera-
ture. Further, it is also found that the mCDE is competitive with other known heuristics
when solving mixed-integer engineering design problems.
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Abstract. An application of Evolution Strategies (ESs) to the dynamic identifi-
cation of hybrid seismic isolation systems is presented. It is shown how ESs are
highly effective for the optimisation of the test problem defined in previous work
for methodology validation. The acceleration records of a number of dynamic
tests performed on a seismically isolated building are used as reference data for
the parameter identification. The application of CMA-ES to a previously existing
model considerably improves previous results but at the same time reveals lim-
itations of the model. To investigate the problem three new mechanical models
with higher number of parameters are developed. The application of CMA-ES
to the best designed model allows improvements of up to 79% compared to the
solutions previously available in literature.

Keywords: Earthquake engineering, Structural system identification, Evolution
strategies, CMA-ES, Real-world applications.

1 Introduction

Structural engineering is a special technological field dealing with the analysis and de-
sign of engineering structures that must resist internal and/or external loads. Such struc-
tures may be integral parts of buildings, bridges, dams, ship hulls, aircraft, engines and
so on. The design of such structures is an optimisation process by which the resistance
capacity of the system is made to meet the demands posed to it by the environment. This
process is based on the satisfaction of the basic design inequality by which the capacity
must be no lower than the demand. While the capacity can be established by the engi-
neer at each step of the design process, the demand depends both on the characteristics
of the system itself and on its interaction with the surrounding environment.

The evaluation of the demands requires the simulation of the behaviour of the struc-
tural system (i.e., the response) under service and/or extreme loading conditions (e.g.,
earthquakes, tornadoes, turbulence etc). Such simulations require the construction of
mechanical models which enable the prediction of the system’s behaviour. Usually a
mechanical model is described by a system of linear or non-linear differential equa-
tions and a set of physical parameters. While the system of differential equations is
derived from first principles in mechanics, the physical parameters are derived from
laboratory tests on materials and/or on structural parts of the system.
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Structural identification can serve the dual purpose of establishing whether a given
model is suitable to describe the behaviour of a structural system or to verify that the
physical parameters fed into a reliable model correspond to the characteristics of the
actual materials used in the construction of the system.

Structural identification finds applications in virtually every field of structural engi-
neering. In this paper interest is focused on an application in earthquake engineering.
As already mentioned, structural identification requires on one hand some kind of exci-
tation and on the other hand the recording of the response of the structure to the given
excitation.

Base isolation is a modern system for the protection of buildings and other construc-
tions against earthquake excitations and works on the principle of decoupling the mo-
tion of the ground from that of the building. Ideally the building should stay still while
the ground moves beneath it. This is achieved by interposing a set of special bearings
(i.e., seismic isolators) between the foundation and the superstructure.

Although the basic idea is simple and intuitive, has been known since ancient times
and has been tried often in past centuries, successful applications have become possible
only in the second half of the twentieth century when technological advancements have
allowed cost effective seismic isolators to be constructed. Initially the applications were
scanty and limited to important buildings in highly industrialized seismic countries like
Japan, the US and European Union ones, but after the excellent performance of base
isolated buildings during the 1994 Northridge (California, US) and 1995 Kobe (Japan)
earthquakes, the use of base isolation has received a strong impulse worldwide for the
seismic protection of new buildings and for the seismic retrofitting of existing ones.
An appreciation of the momentum of research and practical applications in this specific
scientific and technological field may be gathered from recent literature [12,23].

Given the low stiffness of the building structure due to the presence of the seismic
isolators it is rather easy to displace (i.e., move) the building by pushing it at the base
with suitable actuators (i.e., hydraulic jacks). This system has been used in a handful
of applications around the world [6,7,15,22] including one in the town of Solarino in
Eastern Sicily [17].

The Solarino building was tested by release of imposed displacements in July 2004
and accelerations were recorded at each floor. These recordings were used as response
functions for the identification of the base isolation system [17].

An iterative procedure based on the least squares method was used in [17] for the
identification. This required tedious calculations of gradients which were done approx-
imately by means of an ingenious numerical procedure. Before applying the identifi-
cation procedure to the experimental data, the same procedure was evaluated against a
test problem for which the solution was known. Hence, the ability of the optimisation
algorithm was assessed in the absence of measurement noise and with the guarantee
that the function to be identified fits the model. The procedure, was then applied to the
real data derived from the tests on the Solarino building.

Although, the authors of [17] are satisfied with their results, they conclude that a
“need for improvement both in the models and testing procedures also emerges from the
numerical applications and results obtained”. In particular, finding the “best” algorithm
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for the identification of such a kind of problem would provide an improvement on the
state-of-the-art in the identification of building and structures from dynamic tests.

In this chapter the described problem is addressed by applying Evolutionary Algo-
rithms (EAs) for the identification of structural engineering systems. Indeed, the first
applications of evolution computations were directed towards parameter optimisation
for civil engineering simulation models e.g., simulating stress and displacement pat-
terns of structures under load, [21].

Firstly, the performance of well known evolutionary algorithms for numerical opti-
mization (i.e., Evolution Strategies (ESs)) is evaluated on the same test problem con-
sidered in [17]. Several ESs are applied and their performance is compared amongst
themselves and against the previous results obtained in [17]. It is shown that even sim-
ple ESs outperform the previously used methods, while state-of-the-art ones such as the
CMA-ES, provide solutions improved by several orders of magnitude, practically the
exact solution.

By applying efficient ESs to the real data from the Solarino experiments, further and
convincing evidence is given of the limitations of the model for the identification of
the base isolation system. Such limitations could not be as visible from the results ob-
tained with the previously used optimisation methods. Finally, new improved models
designed to overcome the limitations exhibited by the previous ones are tested. It is
stressed that application simplicity and performance reliability of ESs allowed to eval-
uate improved models of higher dimensionality in a much smaller amount of time than
otherwise would have been required.

The chapter is structured as follows. The system identification problem is described
in Section 2 where previous results are presented. In Section 3 we introduce the ESs
considered throughout the chapter. A comparative study is performed on the test prob-
lem in Section 4. The best performing ESs are applied in Section 5 to data from ex-
perimental tests on the Solarino building. Three new models for the identification of
hybrid base-isolation systems are presented in Section 5.2 together with the results ob-
tained from the identification of the Solarino building. In the final section conclusions
are drawn.

2 Preliminaries

2.1 The Mechanical Model

The mechanical model simulating the experiments performed on the Solarino building
is provided by the one degree of freedom system shown in Fig. 1. The justification for
its use can be found in [17]. The mechanical model consists of a mass restrained by a bi-
linear spring (BS) in parallel with a linear damper (LD) and a friction device (FD). Fig.
1 (a) describes the mechanical system, while Fig. 1 (b) shows the constitutive behaviour
of the bi-linear spring (modelling rubber bearings). Fig. 1 (c) shows the relationship be-
tween the force in the friction device and the corresponding displacement (modelling
sliding bearings).

The mechanical model is governed by the following second order ordinary differen-
tial equation

m · ü+ c · u̇+ fs(u, u̇) + fd · sign(u̇) = 0 (1)
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Fig. 1. The mechanical model: (a) mechanical system: (b) constitutive behaviour of the bi-linear
spring; (c) constitutive behaviour of the friction device

where c is the constant of the linear damper (LD), fd is the dynamic friction force in the
friction device while u̇ and ü are respectively the first and the second derivatives of the
displacement u(t) with respect to time. Physically, the derivatives represent the velocity
(u̇) and the acceleration (ü) of the mass m of the building. Finally, the restoring force in
the bi-linear spring fs(u, u̇) depends on the various phases of motion of the mechanical
model, that is the various branches shown in Fig. 1 (b):

fs(u, u̇) = k0 · [u− ui − uy · sign(u̇)] + k1 · [ui + uy · sign(u̇)]
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for the branches of slope k0 and

fs(u, u̇) = k0 · uy · sign(u̇) + k1 · [u− uy · sign(u̇)]

for the branches of slope k1. In the above equations ui is the displacement at the be-
ginning of the considered phase of motion while uy is the yield displacement of the
bi-linear spring as shown in Fig. 1 (b). The equation of motion (1), is supplemented by
the following two initial conditions which are implicit to the considered experiment:

u(t0) = u0 u̇(t0) = 0

and u0 is the imposed displacement.
The stated problem is highly non-linear but due to the very simple excitation it nev-

ertheless admits an analytical solution (refer to [17] for the solution). The existence of
the analytical solution is convenient but by no means essential because the equation of
motion could be solved numerically at the expense of additional computational costs
and of some loss in precision.

The parameters that define the mechanical model are shown in Fig. 1, and for conve-
nience are listed in the following vector: (m, c, k0, k1, uy, fd). They represent the basic
physical properties that must be identified. However, in view of the form given to the
solution in [17], a new set of parameters is defined as follows: (ω0, ω1, ud, uy, ζ0). This
is related to the previous one by the following relationships:

ω0 =

√
k0
m

, ω1 =

√
k1
m

, ud =
fd0

k0
, ζ0 =

c

2mω0

From Eq. (1) it can be inferred that three related response functions could be used for
identification purposes: the displacement u(t), the velocity u̇(t), and the acceleration
ü(t). For the application at hand, the acceleration is the function that can be measured
most easily and therefore is the one that will be used.

As already mentioned an initial displacement u0 is imposed in the dynamical tests.
Since the measurement of u0 can be difficult it may be considered as an additional pa-
rameter that must be identified. Therefore, the system parameter vector to be optimised
is the following one:

S = (u0, ω0, ω1, ud, uy, ζ0)

Let A0 be a vector of accelerations and t0 be the vector of the corresponding times.
Furthermore, let A be a vector of the same length as A0 and t the vector of the cor-
responding times representing a candidate solution. Then, a measure of the distance
between the experimental data and the modelled ones is provided by the following ex-
pression:

e2 =
(A0 −A,A0 −A)

(A0, A0)
+

(t0 − t, t0 − t)

(t0, t0)

where (A,B) =
∑N

i=1 Ai ·Bi and N is the length of the considered vectors.
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Fig. 2. Acceleration functions corresponding to the sets of system parameters shown in Table 1

Table 1. First line: the two sets of system parameters considered in Fig. 2. S1 is also the solution
vector of the Test problem. Second line: range of admissible values for the system parameters.
Third line: performance of the identification procedure according to the number of branches
considered.

System - u0(m) ω0(Hz) ω1(Hz) ud(m) uy(m) ζ0
S0 - 0.12 0.50 0.40 0.005 0.02 0.05

S1(opt) - 0.12 0.55 0.35 0.004 0.03 0.03
Lower Bound - 0.10 0.52 0.24 0.003 0.02 0.01
Upper Bound - 0.14 0.58 0.48 0.005 0.04 0.05

Branches Error
1 9.0981 · 10−17 0.12 0.5500 0.3500 0.0040 0.0300 0.0300

1-2 9.4827 · 10−10 0.12 0.5500 0.3500 0.0040 0.0300 0.0300
1-2-3 5.4252 · 10−5 0.12 0.5503 0.3520 0.0038 0.0296 0.0338

1-2-3-4 2.4896 · 10−4 0.12 0.5509 0.3534 0.0037 0.0294 0.0372

2.2 Previous Results

Before applying the iterative least squares method to the experimental data, in [17]
the procedure was tested on a mathematically generated dataset. In such a way, the
optimal solution was known beforehand and the measurement noise excluded. Two
system parameter vectors were defined so that one could be used to generate a set of
experimental (analytical) data (i.e., S1), and the other to define the starting point of the
identification process (i.e., S0). The two vectors are given in Table 1 and the related
acceleration series are shown in Fig. 2.

The observation of Fig. 2 shows two kinds of discontinuities in the acceleration
graphs, a function discontinuity and a slope discontinuity. Between two function dis-
continuities a continuous branch can be identified. The two graphs show the same num-
ber of branches; however, depending on the values of the system parameter vector the
number of branches can be different.
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Table 1 shows the results obtained in [17] with the iterative least squares method for
the test problem. Better results are obtained by using only one or two branches of the
acceleration record as may be seen from the error amplitude and by the coincidence of
the identified parameters with the assumed ones. As the number of branches included
in the identification procedure increases so does the error and the identified parameters
are no longer coincident with the assumed ones.

The iterative least squares procedure described in [17] is based on the numerical
calculation of the gradients of the test functions with respect to the system parameters
(refer to [17], equations (29) – (35) for the actual procedure). A suitable arc length is
chosen in the trial system parameter vector space by appropriately modifying the system
of equations so that each component of the unknown vector is dimensionless. In order
to make the procedure efficient it is necessary to “manually” reduce the “arc length” as
the procedure converges and the error becomes smaller.

Although there certainly is no presence of noise and the function to be identified
does “fit” the model, the best found solution exhibits an error of the order of 10−4. The
identified parameters differ from the given ones already at the third decimal digit. This
is far from desired and excludes obtaining better results for the real data recorded at
Solarino for the presence of noise and modelling errors.

The results obtained for the Solarino data are presented directly in Section 5. In a
private communication the first author of reference [17] asserts that the use of Powell’s
method (a popular optimization method which does not require the calculation of gra-
dients) to the considered problem does not lead to better results than those obtained by
the least squares method (see [18], pages 97-108 for a description of Powell’s method).

A main problem in applying the least squares method or any optimization method
is the definition of the starting point which in the case shown above was the set of
parameters in Table 1 corresponding to the acceleration graph denoted by S0 in Fig. 2.
In practice this problem can be overcome by providing suitable lower and upper bounds
to the sought parameters. This can be done by using physical insight on the observation
of the given acceleration record. The bounds shown in Table 1 for the set of parameters
S1 were derived in [2].

3 Evolution Strategies

The first applications of ESs were directed towards the parameter optimisation for
civil engineering simulation models i.e., simulating stress and/or displacement states
of structures under load [21]. Obviously the performance of the ESs was compared
against their natural competitors i.e., the mathematical methods used for the purpose,
especially those not requiring the explicit use of derivatives, [21].

Similarly, in the next section the performance of ESs will be compared against the
methods applied in [17] on the same mathematically generated dataset (i.e., the test
problem). To this end both very simple ESs and more complicated ones such as the
CMA-ES will be considered.

A general (μ +, λ)-ES maintains a parent population of μ individuals, each consisting
of a solution vector x and of a strategy vector s. The solution vector represents the
candidate solution to the optimisation problem. The strategy vector is a set of one or
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more parameters that are used in combination with the solution vector to create new
candidate solutions.

In the considered problem an individual is represented as (x, s) where the solution
vector x = (x1, x2, . . . , x6) ∈ R6, is a real-valued vector for the candidate solution of
the system parameter vector S introduced in Section 2. The initial μ solution vectors
are generated uniformly at random within the parameter bounds given in Table 1.

In each optimisation step an offspring population of λ individuals is generated. Each
individual is created by first selecting one of the μ individuals out of the parent pop-
ulation uniformly at random, and then by moving it in the search space of a quantity
determined by applying its strategy vector s. The generation is completed by select-
ing the best μ individuals out of the parent and of the offspring populations if the
plus selection strategy is used (i.e., (μ+λ)-EA) or out of the offspring population if the
comma selection strategy is adopted (i.e., (μ,λ)-EA). The latter requires that λ be greater
than μ.

The way the strategy vector s is applied to generate new individuals is explained
when describing each ES considered in this paper. The main differences between var-
ious subclasses of ESs are in the size of the strategy vector, on how it is used and on
how its values change during the optimisation process (i.e., adaptation). The question
of how to adapt the strategy vector (i.e., the step-size) is central in the field of stochastic
optimization. Already in 1971 a survey of adaptation techniques was written by [24],
see [4] for a tour d’horizon.

3.1 1/5 Rule and Self-adaptation

The first considered algorithm is the simple (1+1)-ES using a strategy vector consisting
of only one strategy parameter σ (i.e., s ∈ R1). The solution vector x of the parent
individual (x ∈ R6, σ) is initialised uniformly at random in the bounded search space.
At each generation a new candidate solution is obtained by applying x̃ := x+ z where
z := σ(N1(0, 1), . . . ,NN (0, 1)) and Ni(0, 1) are independent random samples from
the standard normal distribution. The only parameter of the algorithm is the standard
deviation σ of the normal distribution used to generate the offspring solution vector.

One of the first methods proposed to control the mutation rate in an ES was the 1/5-
rule adaptation strategy [5]. The idea is to tune σ in a way that the success rate (i.e.,
the measured ratio between the number of steps when the offspring is retained and that
when it is discarded) is about 1/5. This idea was already proposed by [20] and can
also be found in [8]. Rechenberg introduced it to the field of ESs and gave it the “1/5-
success rule” name [19]. For the sphere function the 1/5-rule has been proved to lead
the (1+1)-ES to optimal mutation rates, hence optimal performance [11].

The “classical” strategy works as follows. After a given number of steps G, the muta-
tion strength (i.e., the standard deviation σ) is reduced by α if the rate of successful mu-
tations Ps := Gs/G is less than 1/5. On the other hand, if Ps > 1/5, the mutation rate
is increased by α. Otherwise it remains unchanged. Recommended values are G = N ,
if the dimensionality of the search space N is sufficiently large, and 0.85 ≤ α < 1, [5].

Kern et al. [14] recently proposed a 1/5-rule strategy that allows to update the step
size after each generation removing the need for a “window phase“ G. In this simpler
implementation, at each generation the step size is updated according to:
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σt+1 = σt ·
{
α if f(xt+1) ≤ f(xt)

α(−1/4) otherwise.

Here α = 1/3 and the (−1/4) in the exponent corresponds to the success rate of 1/5.
Self-adaptation has been introduced as a mechanism for the ES to automatically ad-

just the mutation strength, by evolving not only the solution vector but also the strategy
parameters. The strategy vector is also mutated such that standard deviations producing
fitter solutions have higher probabilities of survival, hence are evolved implicitly.

By still considering only one strategy parameter, a mutation with self-adaptation of
individual (x, σ) involves first generating a new σ-value and then applying it to the
object vector x. This is done by setting σ̃ := σ exp(τN (0, 1)), z := σ̃(N1(0, 1), . . . ,
NN (0, 1)) and x̃ := x + z. Here τ = 1/

√
2N is generally recommended as standard

deviation for σ̃, [5]. By using only one strategy parameter σ, the mutation distribution
is isotropic, i.e., surfaces of equal probability densities are hyper-spheres (circles for
N = 2 and spheres for N = 3).

If N strategy parameters are used, individual step sizes for each dimension are ob-
tained leading to ellipsoidal surfaces of constant probability density as the standard de-
viations evolve. With a strategy vector s := (σ1, . . . σN ) a new individual is generated
by setting:

s̃ := exp(τ0N0(0, 1)) ·
(
σ1 exp(τN1(0, 1), . . . , σN exp(τNN (0, 1))

)
and z := (σ1N1(0, 1), . . . , σNNN (0, 1)). Recommended values for the parameters are

τ0 = 1/
√
2N and τ = 1/

√
2
√
N , [5].

3.2 CMA-ES

Since the success of the described self-adaptation technique relies on one-step improve-
ments it is often referred to as a local adaptation approach. By introducing correlations
between the components of z the ellipsoid may be arbitrarily rotated in the search space
and evolved to point in the direction of optimal solutions. Another step towards more
advanced parameter adaptation techniques is to consider non-local information gath-
ered from more than one generation. Both features are used by the (μ, λ)-CMA-ES
considered in this section.

The CMA-ES creates a multivariate normal distribution N (m,C) determined by
its mean vector m ∈ RN and its covariance matrix C ∈ RNXN. Instead of keeping
a population of μ individuals (as in the previously considered ESs), the covariance
matrix C and the mean vector m are evolved. At each step λ individuals are sampled
fromN (m, σ2C) and the best μ are used to generate the new mean m̃ and covariance
matrix C̃. For further details on the CMA-ES refer to [10].

Unless stated otherwise, all the algorithmic parameters are set as recommended in
[10] including λ = 4 + 
3 lnN� and μ = λ/2.

4 Test Problem Study

In this section the performance of popular ESs with standard parameter settings are
applied to the test problem considered in [17].
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Table 2. (a) Summary of best results found for the Test function with 1000 fitness function evalua-
tions; (b) 10000 fitness function evaluations. The initial step sizes of the algorithms are σ0 = 0.01
for the (1+1)-ES, σ0 = 1 for the (1+λ)-ES and σ0 = 0.3 for the CMA-ES.

ES adaptation (a) Avg Med Min (b) Avg Med Min
(1+1)-ES No 0.0595 1.48E-04 4.51E-06 1.02E-05 8.35E-06 8.47E-07
(1+1)-ES 1/5 (α = 0.95, G = 5) 1.20E-04 7.97E-05 2.08E-07 1.32E-08 2.36E-09 1.39E-12
(1+λ)-ES self ((1+5)-ES) 0.0023 3.54E-04 2.30E-06 7.89E-05 5.69E-06 2.16E-08
CMA-ES non-loc. rot. ellips. self 2.51E-05 5.79E-06 2.35E-10 2.22E-15 5.66E-16 2.14E-16

Given the different value ranges for the bounds of each parameter, the solution is
normalised according to xn = (x− �)/(u− �) where xn is the normalised solution and
u, � are the upper and lower bound vectors on the solution space. For the plus-selection
algorithms a large penalty value is given to points outside the feasible area. Since the
algorithms are initialised inside the bounds, plus-selection will never accept infeasi-
ble points. Concerning CMA-ES, its standard but more sophisticated constraint han-
dling technique is applied. The fitness of an infeasible solution is evaluated by adding a
penalty function to the fitness of its projection on the feasible domain (i.e., to the feasi-
ble solution that is closest to the infeasible one). The penalty depends on the distance of
the infeasible solution to the feasible domain and is weighted and scaled in each coor-
dinate, see [9] for more details. All the algorithms are not allowed to start from feasible
points of fitness=1 corresponding to a different number of branches between candidate
and optimal solutions. Large step sizes would be required to escape from these artificial
plateaus.

The solutions of the best performing algorithms for each adaptation method are given
in Table 2. Average, median and best found solutions out of 100 runs are shown. From
the table it can be seen how simple evolution strategies outperform the least squares
method (Table 1) and that the mean and best results scored by the CMA-ES are of
order 10−15 and 10−16 respectively; practically the exact solution. Figures 3 and 4
respectively show how the fitness and the step-size of the algorithms evolve when
σ0 = 0.01. More detailed results for the test problem involving a wider variety of
algorithm configurations have been presented in [1].

5 Solarino Data

In July 2004, six free vibration tests under imposed displacement were performed on
a four story reinforced concrete building, seismically retrofitted by base isolation. The
nominal displacements varied from a minimum of 4.06 cm to a maximum of 13.29 cm
in the six dynamic tests. Unfortunately, these may not be true displacements since they
may include residual displacement from tests performed previously in the sequence.
The main objective, is the identification of the properties of the isolation system (i.e., the
parameters of the previously described model) and the initial displacement as discussed
above using the recorded accelerations.

The results obtained in [17] using an iterative least squares method are shown in Table
3. The procedure implied to start from a reasonable guess for the system parameters (for
the identification of the first of the six tests), and use the first branch of the recorded
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Fig. 3. Performance of the three 1/5 success rule strategies, the CMA-ES, the isotropic (sSA)
and the ellipsoidal (SA) self-adaptation strategies on the test problem when σ0 = 0.01. Median
values out of 100 runs are plotted.
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Fig. 4. Step size evolution of the median fitness run for the three 1/5 success rule strategies,
the CMA-ES, the isotropic (sSA) and the ellipsoidal (SA) self-adaptation strategies on the test
problem when σ0 = 0.01

acceleration for the identification of a new set of improved parameter values. This new
set of parameters was then used for the identification from the first two branches and so
on until five of the branches were considered at once. The last branch was derived from
the governing equations using the parameters identified from the previous segments of
the signal. For the identification of the following tests the result of the first test was used
as the initial guess (i.e., the correct solution should be the same for all tests excluding
damage of the building caused by the tests and/or effects due to environmental changes).

5.1 Previous Model

In this section advantage is taken of the simplicity of ES application and the ESs that
performed best on the test problem are used. The parameter bounds to the search space,
derived in [2] for the Solarino data, are shown in Table 3.

While the CMA-ES once again outperforms the other strategies, the difficulty of
the identification problem is highlighted by the need to increase the population size to
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a (18,36)-CMA-ES to obtain improved results. Ten runs each are performed of (4,9),
(9,18) and (18,36) CMA-ES and of the three 1/5 rule ESs allowing 100k fitness evalua-
tions in each run. Starting from parent population sizes of μ = 9 the CMA-ES converges
more than once to the same best found solution.

Table 3 shows the best found solutions and the number of times they were repeated.
The other solutions do not differ significantly from the best ones but for slightly larger
errors and final parameter digits. Compared to the results from previous work, closer
bounds for the likely real values of the parameters are now established.

The nominal values of the initial displacements, in all likelyhood affected by mea-
surement errors, are given for each test in [17] together with the identified ones. The es-
timated displacements were always smaller than the nominal ones; here they are found
even smaller, except for test 8.

In three tests out of five damping (ζ0) is practically zero in line with what found
in [17], while in the remaining two ζ0 is small but not negligible and a little larger
than in [17]. This presence of damping in tests 5 and 8 could point to an incapacity of
the optimization procedures to identify the absolute minimum, producing instead local
minima. Alternatively, data inconsistency due to measurement noise and/or inadequate
signal treatment could be responsible for the discrepancy.

The remaining physical parameters show less dispersion in the identified values than
before, with a coefficient of variation nearly halved in each case. Actual values change
from 0.13 to 0.07 for ud, from 0.16 to 0.08 for uy, from 0.02 to 0.01 for ω0 and from
0.03 to 0.01 for ω1. The situation could improve even further if the inconsistency high-
lighted by damping could be solved.

From the results shown in Table 3 and as commented above, a considerable improve-
ment in the identification procedure has been achieved by using ESs with the Solarino
test data. In particular the results are improved up to 53% compared to those previously
available in literature. The performance discrepancy of ESs between the test problem
and the real problem seems to suggest that further improvements might be required
in the formulation of the mechanical model. Some preliminary investigations in that
direction are pursued in the next section.

5.2 New Models

Two small changes to the described model are investigated herein. They affect only the
description of the low friction slider of Fig. 1 and will reflect in changes to the diagram
of Fig. 1 (c). The changes stem from the experimental observation that the friction force
is not constant during the motion. The diagram of Fig. 5 assumes that the friction force
is constant within a half-cycle of motion but it can change from one half-cycle to the
next. The considered change does not affect the equations of the mechanical model as
it only changes one parameter value, but not the structure of the problem. However the
dimension of the system parameter vector is affected because an additional parameter
is required for each half-cycle of motion as compared to the single one required earlier.

The considered model, for convenience denoted Model 2, provides results improved
only slightly by running the CMA-ES on it (i.e., quadratic error reduced from 0.0147
to 0.0145 on test 3). Contrary to the previous Model 1 the CMA-ES does not seem to
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Fig. 5. Model 2 friction force-displacement relationship

Fig. 6. Model 3 friction force-displacement relationship

succeed to repeat results in more than one run on Model 2. This may be due to the
greatly increased dimension of the problem (number of parameters nearly doubled) and
to having maintained the same number of function evaluations (100k).

The feeble success with this model may be due to two factors; the first is the com-
putational expensiveness due to the higher dimension of the problem, the second is the
insignificant mechanical advantage because the friction force changes more within a
half-cycle than it does from half-cycle to half-cycle. The latter aspect will be clearer
with the introduction of Model 3.

An analytical solution for the mechanical model shown in Fig.1 with the friction law
sketched in Fig. 6 has just been given in [3]. This third model helps to spread some light
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Fig. 7. Constitutive behaviour for the tri-linear spring model

on the little efficiency of Model 2. While in Model 3 the friction force varies linearly
over a half-cycle, in Model 2 the friction force is constant over the same half-cycle. It
can be expected therefore that Model 3 can fine tune the friction force much better than
Model 2 and for that matter much better than Model 1, where the friction force is of
constant amplitude. All this is achieved at the expense of only one additional parameter,
the slope kd in Fig.6. The application of the (18,36)-CMA-ES with Model 3 to Test 3
converges 4 times out of 10 to a solution with quadratic error e2 = 0.0139 which is an
extra improvement of more than 5% on the final fitness.

Finally, we introduce changes in the model describing the rubber bearings. A tri-
linear spring model is used instead of the bi-linear one used until now to model the
rubber bearings. This change only affects the diagram of Fig. 1 (b). Apart from con-
sidering the elastic stiffness k0 and one post-yielding stiffness k1 like in the bi-linear
spring, the new model also considers a second post-yielding stiffness k2. Together with
the second yielding displacement uB this new model requires two additional parame-
ters. The tri-linear spring model is explained in Fig. 7 and the results obtained by the
(18-36)-CMA-ES using Model 3 for the low friction slider and the tri-linear model for
the rubber bearings are shown in Table 3. With the new models combined the CMA-ES
delivers improvements between 31% and 79% on all tests and again best found solu-
tions are repeated several times. An idea of the improvement achieved by applying the
CMA-ES to the most advanced of the considered models can be obtained by compar-
ing the identified response of Test 3 on the Solarino building with the experimental
data; first by using the original model and the Least Squares (LS) identification proce-
dure, Fig. 8, and then by using the linear friction model (i.e., Model 3) coupled with the
tri-linear spring model and the CMA-ES identification algorithm, Fig. 9. Apart from the
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Fig. 8. Comparison between the experimental data and the identified response of Test 3 on the
Solarino building obtained by using the original model and the Least Squares (LS) identification
procedure
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Fig. 9. Comparison between the experimental data and the identified response of Test 3 on the
Solarino building obtained by using the combination of the linear Coulomb friction model and of
the tri-linear spring model and the CMA-ES for the identification procedure
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Table 3. Identification of the Solarino building base isolation system. The best identification
results obtained in the literature by the least squares (LS) method from five tests are shown first.
The corresponding results obtained by the CMA-ES are shown next. The number of times the best
found solution was obtained in the runs is shown in brackets next to the test number. Quadratic
errors and improvement achieved by CMA-ES are shown in the last two columns.

Test u0 (m) ud (m) uy (m) rd0 ζ0 ω0 (Hz) ω1 (Hz) ω2 (Hz) uB (m) e2 Impr.
LB 0.0813 0.0018 0.0092 1E-10 0 0.4832 0.2819 0.2163 0.032 - -
UB 0.1333 0.0069 0.0366 0.10 0.1 0.5651 0.4417 0.45 0.1 - -
LS
3 0.1108 0.0034 0.0181 - 4.5E-08 0.5235 0.3947 - - 0.0234 -
5 0.1169 0.0034 0.0167 - 0.0127 0.5117 0.4070 - - 0.0105 -
6 0.1228 0.0035 0.0179 - 3.6E-08 0.5269 0.3909 - - 0.0129 -
7 0.0927 0.0033 0.0173 - 3.87E-08 0.5222 0.3964 - - 0.0122 -
8 0.0965 0.0025 0.0118 - 0.0306 0.5402 0.4242 - - 0.0055 -

CMA-ES Model 1
3 (4) 0.1063 0.0026 0.0132 - 1E-10 0.5507 0.4014 - - 0.0147 37%
5 (2) 0.1153 0.0025 0.0127 - 0.0153 0.5384 0.4108 - - 0.0049 53%
6 (2) 0.1122 0.0027 0.0130 - 1E-10 0.5559 0.4036 - - 0.0096 25%
7 (3) 0.0856 0.0030 0.0132 - 1E-10 0.5455 0.4130 - - 0.0106 13%
8 (4) 0.0976 0.0026 0.0109 - 0.03074 0.5382 0.4235 - - 0.0052 5%

CMA-ES Model 3 + Tri-linear spring model
3 (8) 0.1076 0.0018 0.0091 1E-10 0.0292 0.5627 0.4310 0.2649 0.0695 0.0049 79%
5 (3) 0.1167 0.0023 0.0118 0.0028 0.0221 0.5393 0.4168 0.3762 0.0826 0.0043 59%
6 (3) 0.1148 0.002 0.011 1E-10 0.021 0.561 0.4212 0.3109 0.0767 0.0054 58%
7 (2) 0.085 0.0022 0.0088 1E-10 0.0298 0.5564 0.4419 0.3337 0.0545 0.0068 44%
8 (5) 0.0924 0.0024 0.0081 1E-10 0.0351 0.5528 0.4436 0.3111 0.0633 0.0038 31%

high frequency components at very beginning of the test, that are outside the scope of
the considered models, the better matching achieved with the advanced model and the
CMA-ES identification technique can be perceived at first sight.

The mathematical solution for the newly proposed model is considerably more com-
plex than the ones derived for the previous models and will appear in [16].

6 Conclusions

A study of ESs for the identification of base isolation systems in buildings designed
for earthquake action has been presented. The results clearly show that ESs are highly
effective for the optimisation of the test problem defined in previous work for method-
ology validation. All the considered ESs perform at least as well as previous methods
and the quality of solutions improves with more sophisticated adaptation strategies.
The CMA-ES, considerably outperforms previous algorithms of several orders of mag-
nitude.

Having established the good performance of ESs for the system identification, the
same ESs are applied to the real data recorded on the Solarino building in July 2004
with the model used previously in literature. Although the CMA-ES converges to more
precise solutions, these do not allow the sought system parameter vector to be estab-
lished with the highest confidence level. Two possible causes have been considered: the
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presence of noise in the recorded data (i.e., the function to be optimised) and the model
adequacy to properly simulate the system response.

To investigate the latter problem three new mechanical models with higher number
of parameters have been developed. All models, in conjunction with the application of
CMA-ES, enable to obtain improved results. Combining the best model for the low
friction sliders (linear Coulomb model) with the best model for the rubber bearings (tri-
linear spring model) allows the fine tuning of the behaviour of both devices providing
improvements of up to 79% in the overall solution quality.

Thus, in this chapter ESs are shown to be very powerful tools for the dynamic iden-
tification of structural systems. In particular, the CMA-ES combines application sim-
plicity with convergence reliability. In view of the effectiveness shown in the applica-
tions considered in the present work, the authors believe that CMA-ES could be used
advantageously with more complex models and various excitation sources including
environmental ones.

The data collected during the 2011 Tohoku Pacific Ocean Earthquake (Japan) on
several base isolated buildings and their availability to the international scientific com-
munity [13] make the present work even more significant.

Acknowledgements. A. Athanasiou and G. Oliveto carried out this work within the
PRIN 2007 Project “Seismic Retrofitting of Buildings Using Isolation and/or Energy
Dissipation Techniques”.
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Abstract. This paper1 studies sample applications of skeletal algorithm to pro-
cess mining and automata discovery. The basic idea behind the skeletal algorithm
is to express a problem in terms of congruences on a structure, build an initial
set of congruences, and improve it by taking limited unions/intersections, until
a suitable condition is reached. Skeletal algorithms naturally arise in the context
of process minig and automata discovery, where the skeleton is the “free” struc-
ture on initial data and a congruence corresponds to similarities in data. In such a
context, skeletal algorithms come equipped with fitness functions measuring the
complexity of a model. We examine two fitness functions for our sample problem
— one based on Minimum Description Length Principle, and the other based on
Bayesian Interpretation.

1 Introduction

The idea of evolutionary computing dates back to the late 1950, when it was first intro-
duced by Bremermann in [3], Friedberg, Dunham and North [6,7], and then developed
by Rechenberg in [15], and Holland in [11]. Skeletal algorithm derives its foundations
from these methods and creates a new branch of evolutionary metaheuristics concerned
on data and process mining. The crucial observation that leads to skeletal algorithms
bases on Minimum Description Length Principle [9], which among other things, says
that the task of finding “the best model” describing given data is all about discovering
similarities in the data. Thus, when we start from a model that fully describes the data
(i.e. the skeletal model of the data), but does not see any similarities, we may obtain a
“better model” by unifying some parts of that model. Unifying parts of a model means
just taking a quotient of that model, or equally — finding a congruence relation.

1.1 Process Mining

Process mining [18,25,5,22,21,24,27,19,20] is a new and prosperous technique that al-
lows for extracting a model of a business process [13] based on information gathered
during real executions of the process. The methods of process mining are used when
there is no enough information about processes (i.e. there is no a priori model), or there
is a need to check whether the current model reflects the real situation (i.e. there is a
priori model, but of a dubious quality). One of the crucial advantages of process mining

� This work has been partially supported by Polish National Science Center, project DEC-
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1 The article is an essentially revised version of conference paper [14].
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Fig. 1. Event Log Fig. 2. Discovered Model

over other methods is its objectiveness — models discovered from real executions of a
process are all about the real situation as it takes place, and not about how people think
of the process, and how they wish the process would be like. In this case, the extracted
knowledge about a business process may be used to reorganize the process to reduce its
time and cost for the enterprise.

Figure 1 shows a typical event-log gathered during executions of the process to de-
termine and identify a possible disease or disorder of a patient. In this paper, we assume
that with every such an event-log there are associated:

– an identifier referring to the execution (the case) of the process that generated the
event

– a unique timestamp indicating the particular moment when the event occurred
– an observable action of the event; we shall assume, that we are given only some

rough information about the real actions.

and we shall forget about any additional information and attributes associated with an
execution of a process. The first property says that we may divide a list of events on
collections of events corresponding to executions of the process, and the second prop-
erty let us linearly order each of the collections. If we use only information about the
relative occurrences of two events (that is: which of the events was first, and which was
second), then the log may be equally described as a finite list of finite sequences over
the set ObservableAction of all possible observable actions. Therefore we may think of
the log as a finite sample of a probabilistic language over alphabet ObservableAction
— or more accurately — as the image of a finite sample of a probabilistic language
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over Action under a morphism h : Action → ObservableAction . The morphism h de-
scribes our imperfect information about the real actions. In the example from Figure 1
(here we use the first letter of the name of an action as abbreviate for the action)

ObservableAction = {l , s , q,m}
and the sample contains sequences

S = {〈l , l , l , s , q, q,m〉, 〈l , s , q, s , q,m〉} (1)

Figure 2 shows a model recognized from this sample. HereAction=ObservableAction
and h is the identity morphism (there are no duplicated events).

1.2 A Survey of Most Successful Process Mining Methods

1. Algorithms α, α++, β [23][26][16]. They are able to mine models having single
tasks only. These algorithms base on finding causalities of tasks.

2. Genetic algorithms [19][12]. Models are transition matrices of Petri nets. A crossing
operation exchanges fragments of the involved matrices.

3. Algorithms based on prefix trees [4]. The prefix tree is built for a given set of execu-
tions of a process. Learning corresponds to finding a congruence on the tree.

4. Algorithms based on regular expressions [2]. Models are regular expressions. Learn-
ing corresponds to a compression of the regular expression.

5. Statistical methods based on recursive neural networks [4]. The model is represented
by a three-layer neural network. The hidden layer corresponds to the states of dis-
covered automaton.

6. Statistical methods based on Markov chains [4], or Stochastic Activation Graphs
[10]. The set of executions of a process is assumed to be a trajectory of a Markov
chain; such a Markov chain is then constructed and turned into finite state machine
by pruning transitions that have small probabilities or insufficient support.

Skeletal algorithms reassembles and generalizes the idea from algorithms based on pre-
fix trees and regular expressions, and makes the task of finding a congruence structured
and less ad hoc. We will elaborate more on skeletal algorithms in the next section.

1.3 Organization of the Paper

We assume that the reader is familiar with basic mathematical concepts. The paper is
structured as follows. In section 2 we shall briefly recall some crucial for this paper
mathematical concepts, and introduce skeletal algorithms. Section 3 describes our ap-
proach to process mining via skeletal algorithms. In section 4 we show some examples
of process mining. We conclude the paper in section 5.

2 Skeletal Algorithms

Skeletal algorithms are a new branch of evolutionary metaheuristics focused on data and
process mining. The basic idea behind the skeletal algorithm is to express a problem in
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terms of congruences on a structure, build an initial set of congruences, and improve
it by taking limited unions/intersections, until a suitable condition is reached. Skeletal
algorithms naturally arise in the context of data/process mining, where the skeleton
is the “free” structure on initial data and a congruence corresponds to similarities in
the data. In such a context, skeletal algorithms come equipped with fitness functions
measuring the complexity of a model.

Skeletal algorithms, search for a solution of a problem in the set of quotients of a
given structure called the skeleton of the problem. More formally, let S be a set, and
denote by Eq(S) the set of equivalence relations on S. If i ∈ S is any element, and
A ∈ Eq(S) then by [i]A we shall denote the abstraction class of i in A — i.e. the set
{j ∈ S : jAi}. We shall consider the following skeletal operations on Eq(S):

1. Splitting

The operation split : {0, 1}S × S × Eq(S) → Eq(S) takes a predicate P : S →
{0, 1}, an element i ∈ S, an equivalence relation A ∈ Eq(S) and gives the largest
equivalence relation R contained in A and satisfying: ∀j∈[i]A iRj ⇒ P (i) = P (j).
That is — it splits the equivalence class [i]A on two classes: one for the elements
that satisfy P and the other of the elements that do not (Figure 3).

2. Summing

The operation sum : S × S × Eq(S) → Eq(S) takes two elements i, j ∈ S, an
equivalence relation A ∈ Eq(S) and gives the smallest equivalence relation R sat-
isfying iRj and containing A. That is — it merges the equivalence class [i]A with
[j]A (see Figure 4).

3. Union

The operation union : S × Eq(S) × Eq(S) → Eq(S) × Eq(S) takes one element
i ∈ S, two equivalence relations A,B ∈ Eq(S) and gives a pair 〈R,Q〉, where
R is the smallest equivalence relation satisfying ∀j∈[i]B iRj and containing A, and
dually Q is the smallest equivalence relation satisfying ∀j∈[i]A iQj and containing
B. That is — it merges the equivalence class corresponding to an element in one
relation, with all elements taken from the equivalence class corresponding to the
same element in the other relation (see Figure 5).

4. Intersection

The operation intersection : S × Eq(S) × Eq(S) → Eq(S) × Eq(S) takes one
element i ∈ S, two equivalence relations A,B ∈ Eq(S) and gives a pair 〈R,Q〉,
where R is the largest equivalence relation satisfying ∀x,y∈[i]AxRy ⇒ x, y ∈ [i]B ∨
x, y /∈ [i]B and contained in A, and dually Q is the largest equivalence relation
satisfying ∀x,y∈[i]BxQy ⇒ x, y ∈ [i]A ∨ x, y /∈ [i]A and contained in B. That is —
it intersects the equivalence class corresponding to an element in one relation, with
the equivalence class corresponding to the same element in the other relation (see
Figure 6).

Furthermore, we shall assume that there is also a fitness function Δ : H(S) → R. The
general template of skeletal algorithm is shown on figure 7. There are many things that
can be implemented differently in various problems.
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Fig. 3. Splitting

Equivalence class [i] is split
according to the predicate:
blue elements satisfies the
predicate, whereas green — not.

Fig. 4. Summing

Equivalence classes [i] and [j]
are merged.

Fig. 5. Union

Merging equivalence classes
in one relation along elements
from the equivalence class [i]
in another relation.

Fig. 6. Intersection

Spliting the equivalence class of i in one
relation along equivalence class of i in
another relation.

2.1 Construction of the Skeleton

As pointed out earlier, the skeleton of a problem should correspond to the “free model”
build upon sample data. Observe, that it is really easy to plug in the skeleton some priori
knowledge about the solution — we have to construct a congruence relation induced by
the priori knowledge and divide by it the “free unrestricted model”. Also, this suggests
the following optimization strategy — if the skeleton of a problem is too big to effi-
ciently apply the skeletal algorithm, we may divide the skeleton on a family of smaller
skeletons, apply to each of them the skeletal algorithm to find quotients of the model,
glue back the quotients and apply again the skeletal algorithm to the glued skeleton.
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Fig. 7. Skeletal Algorithm

2.2 Construction of the Initial Population

Observe that any equivalence relation on a finite set S may be constructed by suc-
cessively applying sum operations to the identity relation, and given any equivalence
relation on S, we may reach the identity relation by successively applying split op-
erations. Therefore, every equivalence relation is constructible from any equivalence
relation with sum and split operations. If no priori knowledge is available, we may
build the initial population by successively applying to the identity relation both sum
and split operations.

2.3 Selection of Operations

For all operations we have to choose one or more elements from the skeleton S, and
additionally for a split operation — a splitting predicate P : S → {0, 1}. In most cases
these choices have to reflect the structure of the skeleton — i.e. if our models have an
algebraic or coalgebraic structure, then to obtain a quotient model, we have to divide
the skeleton by an equivalence relation preserving this structure, that is, by a con-
gruence. The easiest way to obtain a congruence is to choose operations that map
congruences to congruences. Another approach is to allow operations that move out
congruences from they class, but then “improve them” to congruences, or just punish
them in the intermediate step by the fitness function.
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2.4 Choosing Appropriate Fitness Function

Data nad process mining problems frequently come equipped with a natural fitness
function measuring the total complexity of data given a particular model. One of the
crucial conditions that such a function has to satisfy is the ability to easily adjust its
value on a model obtained by applying skeletal operations.

2.5 Creation of Next Population

There is a room for various approaches. We have experimented most successful with
the following strategy — append k-best congruences from the previous population to
the result of operations applied in the former step of the algorithm.

3 Skeletal Algorithms in Process Mining

If we forget about additional information and attributes associated with an execution of
a process, then the task of identifying a process reduces to the task of language recogni-
tion. The theory of language recognition that gives most negative results is “identifica-
tion of a language in the limit” developed by Mark Gold [8]. The fundamental theorem
published by Dan Angluin [1] says that a class of recursively indexed languages is (re-
cursively) identifiable in the limit iff for every language L from the class there exists
an effectively computable finite “tell-tale” — that is: a subset T of L such that: if T is
a subset of any other language K from the class, then K � L. An easy consequence
of this theorem is that the set of regular languages is not identifiable in the limit. An-
other source of results in this context is the theory of PAC-learning developed by Leslie
Valiant [17].

Although these results are fairly interesting, in the context of process mining, we are
mostly given a very small set of sample data, and our task is to find the most likely
hypothesis — the question: “if we were given sufficiently many data, would it have
been possible to find the best hypothesis?” is not really practical.

3.1 Probabilistic Languages

A probabilistic language L over an alphabet Σ is any subset of Σ∗× [0, 1] that satisfies
the following condition:

∑
〈w,p〉∈L p = 1. Note that probabilistic languages over Σ are

the same as probability distributions over Σ∗.
A probabilistic finite state automaton is a quadruple A = 〈Σ,S, l, δ〉, where:

– Σ is a finite set called the “alphabet of the automaton”
– S is a finite set of states
– l is a labeling function S → Σ ∪ {start , end} such that l−1[start ] = {sstart} �=
{send} = l−1[end ]; state sstart is called “the initial state of the automaton”, and
send “the final state of the automaton”

– δ is a transition function S × S → [0, 1] such that:
• ∀s∈S

∑
q∈S δ(s, q) = 1

• ∀s∈Sδ(s, sstart ) = 0
• δ(send , send ) = 1
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Fig. 8. Skeletal model of sample 1

A trace of an automaton A starting in a state s0 and ending in a state sk is a sequence
〈s1, . . . , sk〉 ∈ S∗. A full trace of an automaton is a trace starting in sstart and ending
in send .

In our setting models correspond to probabilistic finite automata, the distributions are
induced by the probabilities of full traces of the automata, and morphisms map states to
they actions (i.e. labels).

3.2 Skeleton

Given a list of sample data K : n = {0, · · · , n− 1} → Σ∗, by a skeleton of K we shall
understand the automaton: skeleton(K) = 〈Σ,S, l, δ〉, where:

– S = {〈i, k〉 : i ∈ n, k ∈ {1, . . . , |K(i)|}} ∪ {−∞,∞}
– l(−∞) = start , l(∞) = end , l(〈i, k〉) = K(i)k, where the subscript k indicates the
k-th element of the sequence

– δ(−∞, 〈i, 1〉) = 1, δ(∞,∞) = 1, δ(〈i, |K(i)|〉,∞) = 1, δ(〈i, k〉, 〈i, k + 1〉) = 1

So the skeleton of a list of data is just an automaton corresponding to this list enriched
with two states — initial and final. This automaton describes the situation, where all
actions are different. Our algorithm will try to glue some actions that give the same
output (shall search for the best fitting automaton in the set of quotients of the skeletal
automaton). Figure 8 shows the skeletal automaton of the sample 1 from section 1.
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Given a list of sample data K : n → Σ∗, our search space Eq(S) consists of all
equivalence relations on S.

3.3 Skeletal Operations

1. Splitting
For a given congruence A, choose randomly a state 〈i, k〉 ∈ skeleton(K) and make
use of two types of predicates

– split by output — P (〈j, l〉) = 1⇔ ∃〈i′,k′〉∈[〈i,k〉]Aδ(〈j, l〉, 〈i′, k′〉)
– split by input — P (〈j, l〉) = 1⇔ ∃〈i′,k′〉∈[〈i,k〉]Aδ(〈i′, k′〉, 〈j, l〉)

2. Summing
For a given congruence A, choose randomly two states 〈i, k〉, 〈j, l〉 such that
l(〈i, k〉) = l(〈j, l〉).

3. Union/Intersection
Given two skeletons A,B choose randomly a state 〈i, k〉 ∈ skeleton(K).

Let us note that by choosing states and predicates according to the above description,
all skeletal operations preserve congruences on skeleton(K).

3.4 Fitness

Let v0 : v = 〈v0, v1, · · · , vk〉 be a trace of a probabilistic automaton. Assuming that we
start in node v0, the probability of moving successively through nodes v1, · · · , vk is

P (v|v0) =
k∏

i=1

δ(vi−1, vi)

and it give us a probability distribution on Sk:

P (v) =
∑
v0∈S

μ(v0)P (v|v0)

where μ is any probability distribution on the states S of the automaton. If we choose
for μ a probability mass distribution concentrated in a single node v0, then P (v) would
depend multiplicatively on probabilistic transitions P (vi−1, vi). In this case any local
changes in the structure of the automaton (like splitting or joining nodes) give multi-
plicative perturbations on the probability P (v), so it is relatively easy (proportional to
the number of affected nodes) to update the complexity of v.

Consider any full trace v = 〈v0 = start , v1, · · · , vk = end〉 of an automaton.
According to our observation, we may associate with it the following probability:

P (v) =

k∏
i=1

δ(vi−1, vi) =
∏
x∈S

∏
a∈S

δ(x, a)|{i : x=vi∧a=vi+1}|
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where for every x the term
∏

a∈S δ(x, a)|{i : x=vi∧a=vi+1}| depends only on the number
of pass to the state a. Hence, we may restrict our analysis to single states.

Let s be such a state with l output probabilistic transitions a1, · · · , al, and let us
assume that the probability of passing the j-th arrow is pj . Then the probability of
consecutively moving through arrows x = 〈ai1 , · · · , aik〉 when visiting node s is:

ps(x) =

k∏
j=1

pij =

l∏
j=1

p
cj
j

where cj is the number of occurences of aj in x. Thus, given a sample x and a proba-
bilistic node s the optimal length of a code describing x is about

log(
1

ps(x)
)

and the shortest code is achieved for s having probabilities

p1 =
c1
k
, · · · , pk =

cl
k

Now, let us assume that we do not know probabilities at s. Then any code describing x
via s has to contain some information about these probabilities. A “uniform approach”
would look like follows: for a given sample x chose the optimal probability node sx,
then opt(x) = psx(x) is not a probability on lk as it does not sum up to 1 (i.e. it does
not contain information about choosing appropriate hypothesis sx); however

mdl(x) =
opt(x)∑

x∈lk opt(x)

= (
∑

r1+···+rl=k

(
k

r1, · · · , rl

) l∏
i=1

rrii )−1
l∏

i=1

ccii

= m

l∏
i=1

ccii (2)

is, where
(

k
r1,··· ,rl

)
is the multionomial k over r1, · · · , rl. One may take another ap-

proach based on Bayesian interpretation. Let us fix a meta-distribution q on all proba-
bilistic nodes s having the same output arrows. This distribution chooses probabilities
p1, · · · , pl, that is — non-negative real numbers such that p1 + · · · + pl = 1 — then
for a given sample x chose a node sp1,··· ,pl

with probability q(sp1,··· ,pl
) and describe x

according to that node:

bayes(x) =

∫
p1+···+pl=1,pi≥0

psp1,··· ,pl (x)q(sp1,··· ,pl
)
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If q is a uniform distribution, then

bayes(x) =

∫
p1+···+pl=1,pi≥0

∏l
i=1 p

ci
i

Vol(Δl)

=
Γ (l)

∏l
i=1 Γ (ci + 1)

Γ (
∑l

i=1(ci + 1))

=
Γ (l)

Γ (k + l)

l∏
i=1

c
ci
i

= b

l∏
i=1

c
ci
i (3)

So, mdl(x) = m
∏l

i=1 c
ci
i and bayes(x) = b

∏l
i=1 c

ci
i , where m, b are constants mak-

ing mdl and bayes probability distributions. In fact, these distributions are really close
— by using Striling’s formula

nn ≈
√
2πn(

n

e
)n

we have

bayes(x) ≈ b′
l∏

i=1

c
ci+

1
2

i

where b′ = be−n(2π)l/2 is just another constant. We shall prefer the Bayesian distri-
bution as it is much easier to compute and update after local changes, but we should be
aware that it slightly more favors random sequences than the optimal (in the sense of
minimum regret) distribution.

The total distribution on traces is then given by:

bayes trace(v) =
∏
s∈S

bayess(v ↓ s)

where bayess is the Bayesian distribution corresponding to the node s and v ↓ s is
the maximal subsequence of v consisting of elements directly following s. And the
corresponding complexity of v is:

comp(v) = −
∑
s∈S

log(bayess(v ↓ s))

Although this complexity assumes that we do not know the exact probabilities of the
automaton, it also assumes that we know all its other properities. Our research showed
that the other aspects of the automaton are best described with two-parts codes. Thus,
the fitness function for a congruence A on the skeleton of sample data K : n → Σ∗
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would be proportional to the sum of the description (neglecting probabilities) of the
quotient model skeleton(K)/A and complexities of each K(i) according to that model:

Δ(A) = −|skeleton(K)/A| −
n−1∑
i=0

compskeleton(K)/A(K(i))

where |skeleton(K)/A| may be tuned for particular samples. Our experience showed
that choosing

clog(|S|)|{〈x, y〉 ∈ S × S : δ(x, y) > 0}|
for a small constant c > 1 behaves best.

4 Examples

4.1 Non-deterministic Automata

Given a non-deterministic automata like on figure 9 we generate sample of n words by
moving through each arrow outgoing from a state with equal probabilities. Figure 10
shows discovered model after seeing 4 samples and Figure 11 after seeing 16. Note,
that the automaton is rediscovered with a great precision after seeing a relatively small
sample data.

Fig. 9. Nondeterministic
automaton

Fig. 10. Model after seeing 4
samples

Fig. 11. Model after seeing 16
samples
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Fig. 12. Model discovered from sample
L1

Fig. 13. Prime numbers

4.2 Testing Sample

In this example we use samples from [4]:

L1 = A,B,C,A,B,C,B,A,C,B,A,C,A,

B,C,B,A,C,B,A,C,A,B,C,B,A,

C,A,B,C,A,B,C,B,A,C,B,A (4)

L2 = A,B,C,D,C,E, F,G,H,G, I, J,

G, I,K, L,M,N,O, P,R, F,G, I,

K, L,M,N,O, P,Q, S (5)

Figures 12 and 14 show models discovered from sample L1 and L2 respectively. Model
12 corresponds to the model mined by KTAIL method, whereas model 14 outperforms
underfitted RNET, MARKOV and KTAIL.

4.3 Prime Numbers

In this example we show how skeletal algorithms can learn from a probabilistic source
p that does not correspond to any model. We define p to be non-zero only on prime
numbers, and such that the probability for a given prime number is proportional to its
numbers of bits in binary representation. Figure 13 shows discovered automaton from
500 samples. Observe that it quite accuratly predicts all 5-bits prime numbers.
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Fig. 14. Model discovered from sample L2
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5 Conclusions

In this paper we introduced a new kind of evolutionary method — “skeletal algorithm”,
especially suitable in the context of data and process mining. In such a context “skeletal
algorithms” come often equipped with a natural fitness function measuring the com-
plexity of a model. We showed a sample application of “skeletal algorithms” to process
mining and examined two naturally fitness functions — one based on Minimum De-
scription Length Principle, and another based on Bayesian Interpretation. Although,
obtained results are really promising, there are issues that should be addressed in future
works. The main concern is to extend the concept of models — our models base on
probabilistic automata, and so the algorithm is not able to mine nodes corresponding to
parallel executions of a process (i.e. AND-nodes). Also, we are interested in applying
various optimization techniques and investigate more industrial data.
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Abstract. This chapter extends the fuzzy models to the probabilistic domain
using the probabilistic fuzzy rules with multiple outputs. The focus has been to
effectively model the uncertainty in the real world situations using the extended
fuzzy models. The extended fuzzy models capture both the aspects of uncertainty,
vagueness and random occurence. We also look deeper into the concepts of fuzzy
logic, possibility and probability that sets the background for laying out the math-
ematical framework for the extended fuzzy models. The net conditional proba-
bilistic possibility is computed that forms the key ingredient in the extension of
the fuzzy models. The proposed concepts are well illustrated through two case-
studies of intelligent probabilistic fuzzy systems. The study paves the way for
development of computationally intelligent systems that are able to represent the
real world situations more realistically.

Keywords: Probabilistic fuzzy rules, Probability, possibility, Fuzzy models,
Decision making.

1 Introduction

Zadeh [1] first coined the term possibility to represent the imprecision in information.
This imprecision is quite different from the frequentist uncertainty represented by well
developed probabilistic approach. But if we could appreciate the real world around us,
there is a constant interplay between probability and possibilityeven though the two
represent different aspects of uncertainty. Hence, if not all, in many a situation, the two
are intricately interwoven in the linguistic representation of a situation or an event by
a human brain. Often, it is possible to infer probabilistic information from possibilistic
one and vice versa. Even though they are dissymmetrical and treated differently in lit-
erature, there is a need to make an effort towards exploring a unifying framework for
their integration. We feel that these two different, yet complimentary formalisms can
better represent practical situations, going hand in hand.

Besides the vast potential of this study in more closely representing the real world,
we are also motivated by its roots in philosophy. Non-determinism is almost a constant
feature in nature, and together probability and possibility can go farther in representing
the real world situations. Even though, probability and possibility represent two dif-
ferent forms of uncertainty and are not symmetrical, but still both are closely related,
and often needs to be transformed into one other, to achieve computational simplicity
and efficiency. This transformation would pave the way for simpler methods for the
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DOI: 10.1007/978-3-642-35638-4_10 c© Springer-Verlag Berlin Heidelberg 2013



138 M. Agarwal, K.K. Biswas, and M. Hanmandlu

computation of net possibility. The intelligent systems utilizing these transformations
would represent the requirements and situations of the real world more truly and ac-
curately. They would also be more computationally efficient in terms of speed, storage
and accuracy in processing of the uncertain information.

Such transformations bridge two different facets of uncertainty, the probabilistic un-
certainty and the imprecision on account of vagueness or lack of knowledge. Dubois et
al. [2], [3] analyzed the transformations between the two and judged the consistency in
the two representations.

This work is concerned with devising a novel approach for application of some of
the research results to the field of fuzzy theory under probabilistic setting, and using
the same to enhance the existing fuzzy models to better infer the value of possibility
in the light of probabilistic information available. It also relooks at the relevant results
along with their interpretations in the context of probabilistic fuzzy theory. This chapter
basically addresses the following issues:

1. To amalgamate the field of fuzzy theory with the probability theory and to discover
the possible linkages or connections between these two facets of uncertainty.

2. To apply the probabilistic framework on the existing fuzzy models for imparting
the practical utility to them.

3. To devise an approach to calculate the output of the probabilistic fuzzy models and
compare it with the outputs of conventional fuzzy rules.

This chapter is organized as follows. Section 2 explores the relationship between proba-
bility and possibility and sets the background. Section 3 presents mathematical relations
to calculate the output of probabilistic fuzzy rules (PFRs). The utility and advantages
of PFR are also discussed. An algorithm for computation of the net conditional possi-
bility from probabilistic fuzzy rules is also presented. Section 4, illustrates the concepts
by two case studies. Finally, Section 5 gives the conclusions and the scope of further
research in the area.

2 The Two Facets of Uncertainty: A Relook

The possible links between the two facets of uncertainty: probability and possibility are
explored on the basis of the key contributions in the area.

The celebrated example of Zadeh [1], “Hans ate X eggs for Breakfast”, illustrates
the differences and relationships between probability and possibility in one go. The
possibility of Hans eating 3 eggs for breakfast is 1 whereas the probability that he may
do so might be quite small, e.g. 0.1. Thus, a high degree of possibility does not imply
a high degree of probability; though if an event is impossible it is bound to be im-
probable. This heuristic connection between possibility and probability may be called
the possibility/probability consistency principle, stated as: If a variable x takes val-
ues u1, u2, . . . , un with respective possibilities Π = (π1, π2, . . . , πn) and probabilities
P = (p1, p2, .., pn) then the degree of consistency of the probability distribution P with
the possibility distribution II is expressed by the arithmetic sum as

γ = π1p1 + π2p2 + . . .+ πnpn (1)
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Note that the above principle is not a precise law or a relationship that is intrinsic to
the concepts of possibility and probability; rather it is an approximate formalization of
the heuristic observation that a lessening of the possibility of an event tends to lessen
its probability, not vice-versa. In this sense, the principle is applicable to situations in
which we know the possibility of a variable x rather than its probability distribution.
This principle forms the most conceptual foundation of all the works in the direction of
probability/possibility transformations having wide practical applications [4].

Having deliberated on the consistency principle, we will look into: (i) Basic dif-
ference between possibility and probability, (ii) Inter-relation between possibility and
probability and vice-versa, (iii) Infer probability from possibility and vice-versa, and
(iv) Transformation of probability to possibility and vice-versa, with a view to tackle
real life problems involving both probabilistic and possibilistic information.

2.1 Basic Difference between Possibility and Probability

In the perspective of the above example by Zadeh, possibility is the degree of ease
with which Hans may eat u eggs whereas probability is the chances of actual reality;
there may be significant difference between the two. This difference is now elucidated
by noting that the possibility represents likelihood of a physical reality with respect to
some reference whereas the probability represents the occurrences of the same [2]. To
put it mathematically,

Π(A) = supu∈Aπx(u) (2)

where A is a non fuzzy subset of U, Π is possibility distribution of x, Π(A) denotes the
possibility measure of A in [0,1], πx(u) is the possibility distribution function of Πx.

Let A and B be arbitrary fuzzy subsets of U. In view of (1) we can write that

π(A ∪B) = π(A) ∨ π(B) (3)

The corresponding relation for probability is written as

P (A ∪B) ≤ P (A) + P (B) (4)

2.2 Inter-relation between Possibility and Probability

Any pair of dual necessity/possibility functions (N,Π) can be interpreted as the upper
and lower probabilities induced from specific convex sets of probability functions.

Let π be a possibility distribution inducing a pair of functions (N,Π). Then we
define

P(π) = {P, ∀Ameasurable,N(A) ≤ P (A)} = {P, ∀Ameasurable,P (A) ≤ Π(A)}(5)

The family,P(π), is entirely determined by the probability intervals it generates. Any
probability measure is said to be consistent with the possibility distribution, π[2],[5].
That is

supP∈P(π)P (A) = Π(A) (6)

A relevant work in this direction was carried out in [6]. It is shown that the imprecise
probability setting is capable of capturing fuzzy sets representing linguistic information.
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2.3 Inference of Probability from Possibility and Vice-versa

In [1-3], [7] degrees of possibility can be interpreted as the numbers that generally stand
for the upper probability bounds. The probabilistic view is to prepare interpretive set-
tings for possibility measures. This enables us to deduce a strong interrelation between
the two. Zadeh’s consistency principle gives the degree of consistency or interrelation
between possibility and probabilty associated with an event. From [14], and from the
above properties of possibility and necessity measures, we know that maximizing the
degree of consistency brings about two strong restrictive conditions

Poss(A) < 1⇒ Necc(A) = 0; Necc(A) > 0⇒ Poss(A) = 1 (7)

There exists a relationship between probability and possibility. In the example in [1],
possibility refers to the ease of eating eggs, and probability refers to the actual reality.
Unless something is possible, it cant be probable and if something is more possible, it
should be more probable. We take two more real life examples.

1. People who do regular exercise are likely to live long.
2. It is very cloudy. It is likely to rain heavily.

In both of these examples, possibility of action (of exercising, or cloudiness) is con-
tributing towards inferring the probability of living long and rain. People who do regu-
lar exercise are certainly having better chances of a long life. Here, while long is a fuzzy
and qualitative in nature, chances of having a long life is quantitative and probabilistic
in nature. Similarly, if it is very cloudy, chances of rain are more than what it would
have been under less cloudy conditions. So more possibility of cloudiness is associated
with more probability of rain.

2.4 Transformation from Probability to Possibility

Any transformation from probability to possibility must comply with the following
three basic principles [3].

1. Possibility-probability consistency: γ = π1p1 + π2p2 + . . .+ πnpn
2. Ordinal faithfulness: π(u) > π(u′) iff p(u) > p(u′)
3. Informativity: Maximization of information content of π

If P is a probability measure on a finite set U, statistical in nature [7], then, for a subset,
E of U, its possibility distribution on U, ΠE(u) is given by

ΠE(u) =

{
1 if u ∈ E,

1− P (E) otherwise
(8)

Also ΠE(A) ≥ P (A), ∀A ⊆ U .
In other words, ΠE = x ∈ E with the confidence at least P(E). In order to have

a meaningful possibility distribution, ΠE , care must be taken to balance the nature of
complimentary ingredients in (8), i.e. E must be narrow and P (E) must be high.

There are quite a few ways, in which one can do it. The one used in [7] chooses a
confidence threshold α so as to minimize the cardinality of E such that P (E) ≥ α.
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Conversely, cardinality of E can be fixed and P (E) maximized. This way, a probability
distribution P can be transformed into a possibility distribution πP [7] as shown here.
Take Π as the probability distribution on U and X = {x1, x2, .., xn} such that Π =
P ({xi}). Similarly possibility distribution Πi = Π({xi}) and p1 ≥ p2 ≥ . . . ≥ pn,
then we have

πP
i (u) =

n∑
j=i

pj , ∀i = 1, n (9)

For a continuous case, if the probability density function so obtained is continuous
unimodal having bounded support [a, b], say p, then p is increasing on [a, x0] and de-
creasing on [x0, b], where x0 is the modal value of p. This set is denoted as D [8].

3 Probabilistic Fuzzy Modelling

A probabilistic fuzzy rule (PFR), first devised by Meghdadi [9], is an appropriate tool
to represent a real world situation possessing both the features of uncertainty. In such
cases, we often observe that for a set of inputs, there may be more than one possible
output. The probability of occurrence of the outputs may be context dependent. In a
fuzzy rule, there being only a single output, we are unable to accommodate this feature
of the real world multiple outputs with different probabilities. This ability is afforded
with PFR. The PFR with multiple outputs and their probabilities is defined as:
Rule Rq:

If x is Aq then y is O1 with probability P1

& . . .
& y is Oj with probability Pj

& . . .
& y is Oq with probability Pn

whereP1 + P2 + . . .+ Pn = 1 (10)

Given the occurrence of the antecedent (an event) in (10), one of the consequents (out-
put) would occur with the respective probability of occurrence, . Therefore, y is asso-
ciated with both qualitative (in terms of membership function, O) and quantitative (in
terms of probability of occurrence, P) information. Therefore y is both a stochastic and
fuzzy variable at the same time. The real outcome is a function of the probability, while
the quality of an outcome is a function of the respective membership function. The
probability of an event is having a larger role to play since it is the one that determines
the occurrence of the very event. More the probability of an output event, more are the
chances of its certainty which in turn gives rise to the respective possibility of the event
(in terms of membership function) determining the quality of the outcome.

The above example illustrates the fact that both these measures of uncertainty (prob-
ability and possibility) are indispensable in fuzzy modelling of real world multi-criteria
decision making, and may lead to incomplete and misleading result if one of them is
ignored. So the original fuzzy set theory, if backed by probability theory could go miles
in better representing the decision making problems and deriving realistic solutions.
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Here, one question that naturally arises is: how about treating probabilities in the
antecedents? This aspect is taken into account by having more than one fuzzy rule and
probabilistic outcome in the consequent which is sufficient to handle the frequentist
uncertainty in the probabilistic fuzzy event. For example in (10), the antecedent could
be :

If x1 is μ1 and x2 is μ2

Now, the range of probable values of occurrence of inputs is either Input1 or Inputn
etc. Thus for each occurrence of an antecedent condition, there is a corresponding prob-
abilistic fuzzy consequent event in (10).

In this study, we would be considering similar PFRs with the same structure for a
probabilistic fuzzy system under consideration. That is, any two PFRs would have the
same order of probabilistic outputs.

∀j, q, q′ : Oqj = Oq′j = Oj (11)

where, q and q′ represent two PFRs Aq and A′
q .

Oqj is jth output in qth rule; Oq′j is jth output in q′th rule Oj is jth output that remains
the same in any PFR.

The mathematical framework follows from [10]. Assuming two sample spaces, say
X and Y, in forming the fuzzy events Ai and Oj respectively, the following equations
hold good,

∀x :
∑
i

μi(x) = 1, ∀y :
∑
j

μj(y) = 1 (12)

If the above conditions are satisfied then X and Y are said to be well defined.

3.1 Conditional Output Probabilities with Given Fuzzy Antecedents

Given a set of S samples (xs, ys), s = 1, . . . , S from two well-defined sample spaces X,
Y, the probability of Ai can be calculated as

P (Ai) = fAi
=

fAi

S
=

1

S

∑
xs

μi(xs) = μi (13)

where, Ai is the antecedent fuzzy event, which leads to one of the consequent events
O1, . . . , On to occur.
fAi

: Relative Frequency of fuzzy sample values μi(xs) for the fuzzy event Ai

fAi : Absolute Frequency of fuzzy sample values μi(xs) for the fuzzy event Ai

The fuzzy conditional probability is given by,

P (Oj |Ai) =
P (Oj ∩ Ai)

P (Ai)
≈
∑

s μj(ys)μi(xs)∑
s μi(xs)

(14)

The density function, pj(y) can be approximated using the fuzzy histogram [11] as
follows:

pj(y) =
P (Oj)μj(y)∫∞
−∞ μj(y)dy

(15)

where denominator
∫∞
−∞ μj(y)dy is a scaling factor.
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3.2 Conditional Output Probability for Arbitrary Fuzzy Input

A input vector x, activates the firing of multiple fuzzy rules, q, with multiple firing rates
μq(x), such that

∑
q μq(x) = 1. In case this condition is true for a single rule, only one

of the consequents Oq will occur with the conditional probability P (Oj |x). In the light
of (14) and (15), we obtain

P (Oj |x) =
∑
q=1

μq(x)P (Oj |Aq)∫∞
−∞ μj(x)dx

(16)

Extending the conditional probabilityP (Oj |x) to estimate the overall conditional prob-
ability density function p(y—x), using (15), we get

p(y|x) = P (Oj |x)μj(y)∫∞
−∞ μj(y)dy

(17)

where, proababilities P (Oj |x) is calculated using (16).
In view of (6) and (9) we obtain,

π(y|x) =
∑
j

P (Oj |x)μj(y)∫∞
−∞ μj(y)dy

(18)

This value for conditional probabilistic possibility can be used in the existing fuzzy
models to obtain the defuzzified probabilistic output.

3.3 Obtaining Probabilistic Output

We now compute the probabilistic output using the conditional probabilistic possibility
in the existing fuzzy models.

Mamdani-Larsen Model
Consider a rule of this model as: Rule q: If x is Aq then y is Bq .

Here, fuzzy implication operator maps fuzzy subsets from the input space Aq to the
output space Bq (with membership function ϕ(y)) [1] and generates the fuzzy output
Bq with the fuzzy membership.
Rule q: φ(y) = μ(x)→ ϕ(y)
The output fuzzy membership is:

φ0(y) = φ1(y) ∨ φ2(y) ∨ . . . ∨ φk(y) (19)

In Mamdani-Larsen (ML) model, the output of rule q is represented by Bq(bq, vq), with
centroid bq and the index of fuzziness vq given by

vq =

∫
y

φ(y)dy (20)

bq =

∫
y
yφ(y)dy∫

y
φ(y)dy

(21)
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where φ(y) is output membership function for rule q. Now in the probabilistic fuzzy
setting, the above expressions (20) and (21) need to be modified. Replacing the value
of the output membership function from (9) into (20) and (21) we get

vq =

∫
y

∑
j

P (Oj |x)μj(y)∫∞
−∞ μj(y)dy

dy (22)

bq =

∫
y
y
∑

j
P (Oj |x)μj(y)∫ ∞

−∞ μj(y)dy
dy∫

y

∑
j

P (Oj |x)μj(y)∫ ∞
−∞ μj(y)dy

dy
(23)

where vq is index of fuzziness and bq is the centroid.
The defuzzified output can be calculated in the ML model by applying the weighted

average gravity method for the defuzzification. The defuzzified output value of y0 is
given by

y0 =

∫
y yφ(y)dy∫
y φ(y)dy

(24)

where, φ(y) is the output membership function calculated using (19).
Also, the defuzzified output y0 can be written as:

y0 =

Q∑
q=1

μq(x).vq∑Q
q′=1 μ

q′(x).vq′
.bq (25)

where vq and bq can be obtained using (22) and (23)

Generalized Fuzzy Model
The Generalized fuzzy model (GFM) by Azeem et al. in [12] generalizes both the ML
model and the TS (Takagi- Sugeno) model. The output in GFM model has the properties
of fuzziness (ML) around varying centroid (TS) of the consequent part of a rule. Let us
consider a rule of the form

Rk: if xk is Ak then y is Bk(fk(xk), vk).

where Bk is the output fuzzy set, vk is the index of fuzziness, fk is the output function.
Using (24), we can obtain the defuzzified output y0 as

y0 =

Q∑
q=1

μq(x).vq∑Q
q′=1 μ

q′ (x).vq′
.f q(x) (26)

where f q(x) is a varying singleton. It may be linear or non-linear. The linear form is:
f q(x) = bq0 + bq0x1 + . . .+ bqDxD

Replacing the value of bq from (23) into (26) we get

y0 =

Q∑
q=1

μq(x).
∫
y

∑
j
P (Oj |x)μj(y)∫∞

−∞ μj(y)dy
dy∑Q

q′=1 μ
q′(x).

∫
y

∑
j

P (Oj |x)μj(y)∫ ∞
−∞ μj(y)dy

dy
.f q(x) (27)
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Fig. 1. Pictorial flow-chart of Probabilistic Fuzzy System

3.4 Computation of Probabilistic Possibility from Probabilistic Fuzzy Rules

The algorithm to compute the probabilistic possibility is presented, now . We refer to
Fig. 1 to lay out the steps of the algorithm.

1. Pick appropriate linguistic terms to represent various inputs and output fuzzy sets.
2. Define the probabilistic fuzzy rules (PFRs).
3. Fuzzify crisp input by choosing appropriate support vector and grade (membership)

vector for the chosen fuzzy sets.
4. Identify the PFRs that are applicable for the given test input x.
5. Evaluate the membership values for the applicable output fuzzy sets.
6. Calculate the conditional probability of each probabilistic output using (16).
7. Find the net output conditional possibility of the output using (18).
8. Compute the defuzzified output using (25) and (27). However this is an optional

step and may be applied when all the values of parameters are available besides the
possibility term (as computed in the above step).

4 Case-Studies

In this section, we take up two case-studies to illustrate the proposed concepts.

4.1 Probabilistic Fuzzy Air Conditioner

Let us contemplate the functioning of a fuzzy air conditioner example [13]. Design a
fuzzy air conditioner control which takes in fuzzy input and has multiple probabilistic
outputs. Let X be the input temperature (to be fuzzified) in Fahrenheit, and Y be the
motor speed. Compute the net connditional output possibility when temperature is (1)
630F and (2) 680F .

We perform the following steps to solve this case-study.

1. We pick the following inputs and output fuzzy sets, as shown in Fig. 2.
– input fuzzy sets on X are: Cold, Cool, Just Right, Warm, and Hot
– output fuzzy sets on Y are: Stop, Slow, Medium, Fast, and Blast

2. We define the following probabilistic fuzzy rules.
If temperature is cold then motor speed is stop with probability 70%

& motor speed is slow with probability 20%
& motor speed is medium with probability 8%
& motor speed is fast with probability 2%

Similarly, other PFRs can also be constructed. The first column in Table 1 gives
the antecedent value for each rule. The remaining columns give the values of the
possible outputs for each rule.



146 M. Agarwal, K.K. Biswas, and M. Hanmandlu

Fig. 2. Input fuzzy sets

Table 1. The Probabilistic Fuzzy Rule-set

# Temp(X) PStop PSlow PMedium PFast PBlast

I Cold 0.7 0.2 0.08 0.02 0.0
II Cool 0.1 0.7 0.1 0.08 0.02
III Just right 0.05 0.1 0.7 0.1 0.05
IV Warm 0.02 0.08 0.1 0.7 0.1
V Hot 0.0 0.02 0.08 0.2 0.7

Case: Input 630F

3. We compute the membership grades for the applicable input fuzzy sets after fuzzifi-
cation of the input as shown in Fig. 3
μ0(Just right): 0.8; μ0(Cool): 0.15

4. The applicable PFRs are nos. II and III.
5. The membership grades for the applicable output fuzzy sets are computed as shown

in Fig. 3.
μ1(Slow): 0.15; μ1(Medium): 0.80

6. The conditional probability of each output is computed referring to Table 1 and
applying (16).
P (OStop|x) = (0.8 ∗ 0.05) + (0.15 ∗ 0.10) = 0.055
Similarly, P (OSlow|x) = 0.185 P (OMedium|x) = 0.575

P (OFast|x) = 0.092 P (OBlast|x) = 0.043
7. The net output conditional possibility is computed by applying (18)

π(y|x) = (0 + (0.185 ∗ 0.15) + (0.575 ∗ 0.8) + 0 + 0) = 0.48775
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Fig. 3. Computation of membership grades when temperature is 630 F

Comparison of the Output with Basic Fuzzy Rules

We now use the above algorithm to estimate the effect of the probabilistic output on the
net output conditional possibility. The fuzzy rules of interest are as follows:

– If temperature is cold, motor speed is stop
– If temperature is cool, motor speed is slow
– If temperature is just right, motor speed is medium
– If temperature is warm, motor speed is fast
– If temperature is hot, motor speed is blast

The input and output fuzzy sets and their corresponding membership values are the
same as above. The fuzzy rules that are fired are:

If temperature is just right, motor speed is medium
If temperature is cool, motor speed is slow

The output conditional probabilities are computed using (16) as

P(OStop|x) = 0 P(OSlow|x) = 0.15
P(OMedium|x) = 0.8 P(OFast|x) = 0
P(OBlast|x) = 0

The net conditional possibility is found using (18) as

π(y|x) = (0 + (1 ∗ 0.15) + (1 ∗ 0.8) + 0 + 0) = 0.95

Case: Input 680F

3. The fuzzy input and output membership values are:
μ0(Warm) = 0.2 μ0(Justright) = 0.55

4. The applicable PFRs are nos. III and IV.
5. The membership grades for the applicable output fuzzy sets are:

μ1(Medium) = 0.55 μ1(Fast) = 0.2
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6. The conditional probability of each output is computed referring to Table 1 and
applying (16)
P(OStop|x) = 0.0315 P(OSlow|x) = 0.071 P(OMedium|x) = 0.525
P(OFast|x) = 0075 P(OBlast|x) = 0.0475

7. The output conditional possibility is computed using (18)
π(y|x) = (0.55 ∗ 0.525) + (0.2 ∗ 0.075) = 0.303

Comparison of the Output with Basic Fuzzy Rules When Input is 680F

The conditional probabilities in the case of basic fuzzy rules can be computed as

P(OStop|x) = 0 P(OSlow|x) = 0 P(OMedium|x) = 0.55
P(OFast|x) = 0.2 P(OBlast|x) = 0

The net conditional possibility is found using (18) and is given here

π(y|x) = 0 + (1 ∗ 0.55) + (1 ∗ 0.2) + 0 + 0 = 0.75

It is pertinent to note that what we have here is the possibility in the probabilistic frame-
work. So, in this example, the overall conditional possibility would converge to the sum
of the individual possibilities, whereas in the case of probabilistic fuzzy rules, the con-
ditional possibility is a factor of probabilities as well as possibilities.

4.2 Intelligent Oil Level Controller

Consider designing a fuzzy controller for the control of liquid level in a tank by varying
its valve position [9]. The simple fuzzy controller, as shown in Fig. 4 employs Δh and
dh/dt as inputs and dα/dt (rate of change of valve position α ∈ [0, 1]) as the output,
where h is the actual liquid level, hd is the desired value of the level, and Δh = hd − h
is the error in the desired level.

Three Gaussian membership functions for three input fuzzy sets: negative, zero,
positive, are applicable on the input variables Δh and dh/dt. The output fuzzy sets:
close-fast, close-slow, no-change, open-slow, open-fast have triangular membership
functions. The following fuzzy rules are selected using a human experts knowledge.

I If Δh is zero then dα/dt is no-change
II If Δh is positive then dα/dt is open-fast

III If Δh is negative then dα/dt is close-fast
IV If Δh is zero and dh/dt is positive then dα/dt is close-slow
V If Δh is zero and dh/dt is negative then dα/dt is open-slow

In order to model the existing vagueness and uncertainty in our opinions, we may sub-
stitute each conventional rule with a probabilistic fuzzy rule with the output probability
vector P defined such that the only output sets of the conventional fuzzy rules are the
most probable from the probabilistic fuzzy rules. Also the neighbouring fuzzy sets in
the PFR have smaller probabilities and the other fuzzy sets have zero probabilities. For
example rule I in the above rule set may be modified as follows:
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Table 2. The Probabilistic Fuzzy Rule-set for the Liquid Level Fuzzy Controller

# Qty1 Val1 Qty2 Val2 Pclose−fast Pclose−slow Pno−change Popen−slow Popen−fast

1 Δh 0 0 0.1 0.8 0.1 0
2 Δh + 0 0 0 0.2 0.8
3 Δh - 0.8 0.2 0 0 0
4 Δh 0 dh/dt + 0.1 0.8 0.1 0 0
5 Δh 0 dh/dt - 0 0 0.1 0.8 0.1

I. If Δh is zero then dα/dt is no-change with probability 80%
& dα/dt is close-slow with probability 10%
& dα/dt is open-slow with probability 10%

The consequent part of the PFR can be thus expressed in a compact form using the
output probabilities vector P. The sample probabilistic fuzzy rule set is given in Table
2. Let Input: Δh = 0. The PFRs for the given input are as follows:

I If Δh is zero then dα/dt is no-change with probability 80%
& dα/dt is close-slow with probability 10%
& dα/dt is open-slow with probability 10%

IV If Δh is zero and dh/dt is positive then dα/dt is no-change with
probability 10%

& dα/dt is close-slow with probability 80%
& dα/dt is close-fast with probability 10%

V If Δh is zero and dh/dt is negative then dα/dt is no-change with
probability 10%

& dα/dt is open-slow with probability 80%
& dα/dt is open-fast with probability 10%

The membership values, μZero(x), μPositive(x) and μNegative(x) for the given input are
given as follows:

μZero(Δh) : 1 μPositive(
dh

dt
) : 1 μNegative(

dh

dt
) : 1

The membership grades for the output fuzzy sets are given as follows:

μNo−change(
dα

dt
) : 1 μSlow(

dα

dt
) : 0.15 μFast(

dα

dt
) : 0.15

The conditional probability is calculated using (16) for each probabilistic output in each
fuzzy rule that is applicable, given the input value.
P(ONo−change|x) = [(1 ∗ 0.8) + (1 ∗ 0.1) + (0 ∗ 0.1)]/2 = 0.45
Note:- The probability values are normalized by taking the number of the input fuzzy
sets as denominator.

Similarly, P(OClose−slow|x) = 0.45 P(OClose−fast|x) = 0.1
P(OOpen−slow|x) = 0.1 P(OOpen−fast|x) = 0

The net conditional possibility for the output is computed using (18) as

π(y|x) = (0.45 ∗ 1)+ (0.45 ∗ 0.15)+ (0.1 ∗ 0.15)+ (0.1 ∗ 0.15)+ (0 ∗ 0.15) = 0.5475
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Fig. 4. Block Diagram for Intelligent Oil Level Controller

Thus having obtained the value of net membership, the same can be substituted in the
ML and GFM models to obtain (vq, bq). It can also be noted that for the basic fuzzy
rules the net conditional possibility for a given input is the sum of the memberships of
the various output fuzzy sets that are applicable.

5 Conclusions

A probabilistic fuzzy framework, based upon probabilistic fuzzy rules, has been de-
signed for modelling real world uncertainty. The probabilistic possibility is computed
which is used to obtain probabilistic output by extending the existing fuzzy models. It
is also shown that a probabilistic fuzzy framework is more flexible and convenient than
the conventional methodology in representing the real world uncertainty. Its ability to
represent fuzzy nature of situations along with corresponding probabilistic information
brings it much closer to real-world. Two examples dealing with the practical applica-
tions of an air-conditioner and a liquid level controller are taken up to demonstrate the
probabilistic fuzzy system. It is noticed that in the case of probabilistic fuzzy systems,
the probabilities associated with various outputs affects the net output probabilistic pos-
sibility for an input. All the the applicable output fuzzy sets contribute towards the
computation of the output probabilistic possibility.

The results are compared with those obtained throuh conventional fuzzy systems. A
conventional fuzzy system is a special case of probabilistic fuzzy system in which there
is only one output for a fuzzy rule that translates into 100 % probability for that partic-
ular output. The methodology proposed for calculating output probabilistic possibility
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for PFRs fits well with basic fuzzy rules and leads to the intuitively acceptable result.
The proposed work provides functionality to process the probabilistic fuzzy rules that
are better equipped to represent the real-world situations.

Another feature of probabilistic fuzzy rules is the enhanced adaptability in view of
the outputs with varying probabilities. This is borne out of the fact that the outputs in
the fuzzy rules are context- dependent hence vary accordingly. The proposed approach
to calculate the possibility from probability can be tailored to a specific application de-
pending upon the output membership functions and their probabilities. This can also
be extended to represent probabilistic rough fuzzy sets and other types of fuzzy sets so
as to increase its utility in capturing the higher forms of uncertainty. The probabilis-
tic information adds enormous potential to the existing possibility based fuzzy models
in decision making in the real-world situations, as shown in this study. The proposed
framework addresses the uncertainty arising from fuzziness and vagueness in the wake
of their random occurrences.
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Abstract. Fault Diagnosis of power systems has attracted great attention in recent 
years. In the paper, the authors present a Cause-Effect fault diagnosis model, 
which takes into account the structure and technical features of a digital substation 
and performs root-cause-analysis so as to identify the exact reason of a power sys-
tem fault occurred in the monitored district. The Dempster/Shafer evidence theory 
has been employed to integrate different types of fault information in the diagno-
sis model aiming at a hierarchical, systematic and comprehensive diagnosis based 
on the logic relationship between the parent fault node and the child nodes like 
transformers, circuit-breakers, and transmission lines, and between the root  
and child causes. An actual fault scenario is investigated in the case study to dem-
onstrate the capability of the developed model in diagnosing malfunctions of pro-
tective relays and/or circuit breakers, miss or false alarms, and other faults often 
encountered at modern digital substations of a power system. 

Keywords: Digital substation, Fault diagnosis, Root cause analysis, 
Dempster/Shafer theory, Fishbone diagram. 

1 Introduction 

Fault diagnosis and accident management in substations have become a major chal-
lenge in reinforcing power systems’ safety and reliability. Many integrated substation 
diagnosis models and methods have been proposed to address this challenge by using 
information obtained from protective relays and circuit breakers and employing tech-
nologies such as expert systems [1-3], artificial neural networks [4-5], Petri networks 
[6-7], agent technology [8], and rough sets [9-10]. In addition, substation diagnosis 
models and methods may rely on a single transmission or transformation equipment 
such as done by the transformer diagnosis model based on three chromatographic 
level correlation analyses [11], and wavelet theory based transmission line fault  
diagnosis model using fault recorders [12]. It is observed that current substation fault 
diagnosis models only take into account information of protective relays and circuit 
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breakers, or fault features of a single device. In other words, the existing models and 
methods, due to employing only local information, are inadequate to diagnose com-
plex faults with uncertainties, including multiple consecutive failures, malfunctions of 
protective relays and/or circuit breakers, missing or false alarms, and sensor errors, to 
name a few [13]. 

With the advent of new technologies and tools such as intelligent prima-
ry/secondary equipment and IEC61850 communication standard, applications of digi-
tal technologies have become the trend in substation automation, calling for novel 
fault diagnosis methods and models with information sharing and interoperability of 
monitoring and controlling devices. 

In the paper, the authors propose a Root Cause Analysis (RCA) based Cause-Effect 
(fishbone diagram) fault diagnosis model for digital substations of power systems. 
The fusion rule of the well-developed Dempster/Shafer (D-S) evidence theory is used 
to integrate different types of fault information obtained through monitoring status of 
substations, protective relays and circuit breakers. Based on the logic relationship 
between the parent and the transformer/circuit breaker/transmission line child nodes, 
and between the root and the child causes, in the diagnosis model, an hierarchical, 
systematic, and comprehensive diagnosis can then be performed. A software package 
has been developed to implement the proposed fault diagnosis model, which has  
been deployed in Xingguo Substation, the first digital substation in the State Grid of  
Jiangxi Province, China. 

2 Basic Principles of RCA 

The RCA, originally applied in organization management [14], is a hierarchical and 
systematic approach to identify and analyze the root cause of an incident and develop 
the countermeasures accordingly. A large size substation comprises many compo-
nents with interactions among them. Through analyzing these interactions, a novel 
fault diagnosis model for substation transmission and transformation systems can be 
built up according to the structure and data/information flows of a digital substation. 
Based on the theory of RCA, the fault diagnosis model is formulated to explain the 
linkage chain of accident causes in order to identify what really happened and what 
the applicable countermeasures could be. 

The research tools of RCA include Cause&Effect/Fishbone Diagram, Brain Storm 
and WHY-WHY Diagram. There are three types of Fishbone Diagrams: arrangement-
based, cause-based and solution-based. As shown in Fig. 1, the cause-based fishbone 
diagram is adopted to explain the philosophy of applying the RCA in fault diagnosis 
of digital substations. The following explains each component of the diagram: 

• F : a problem node to be solved as a specified fault in a substation . 

• ic : a child cause of F  and a basic reason of a specified fault. ( )ip c  denotes the 

fault probability caused by ic . 1 2( ) { , , , }iS F c c c=   is the set of child causes which 

could trig F . 

• jr : a root cause of F  and a fundamental reason of a specified fault in the power 

system. ( | )j ip r c  denotes the conditional fault probability caused by jr
 
with given ic  

and G(ci)={r1,r2,…,rj|ci} is the root cause set. 
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• FN : the only parent node for the diagnosis system. ( , , )FN D M O= , composed 

of three elements D , M  and O , denotes the basic diagnosis functions. D  represents 
the composition of the access modes to obtain the required information from the 
source, 1 2{ , , , }e nD D d d d⊆ =  , and eD is the collection of all the n available modes. 

M= {met1, met2,…, metp}, denotes the p fault diagnosis methods applicable at the 
node. {[ , ( )] | ( 1,2, , )}i iO c p c i q= =  is the diagnosis output, where ic O∈ , q is the 

number of the reasons { ic }, and ( )ip c denotes the fault probability caused by ic . 

 

Fig. 1. Framework of RCA-based fault diagnosis system for digital substations 

• iCN and jRN : the child nodes and the root nodes. Like FN , they are constituted 

by the three elements D , M , O . Furthermore, they can give a more detailed diagno-
sis based on that of FN . Thereinto, S(CN)={CN1, CN2, …, CNi} ⊆ FN, with ( )S CN  

denoting the set of all the child nodes belonging to FN ; S(RN|CNk) ={RN1, RN2, …, 
RNi} ⊆ CNk is the set of root node RN  belonging to the child node kCN . 

• In light of above, it can be seen that all nodes, including FN , iCN  and jRN , are 

independent in obtaining the information needed by the diagnosis, selecting the ap-
propriate diagnosis methods, and analyzing fault reasons of each node.  

3 Fault Diagnosis of Digital Substation 

A root cause analysis based fault diagnosis system for digital substations is as shown 
in Fig. 1. 1 2 3 4 5( ) { , , , , }S CN CN CN CN CN CN=  and 1 2 3 4 5( ) { , , , , }S F c c c c c=  denote the child 

nodes and the child causes of transformer, circuit breaker, line, bus and secondary 
system (DC power supply, network communications and security devices).  

3.1 The Mode to Obtain Information 

The Substation Configuration Description Language (SCL) is used to describe 
IEC61850 standard based IED configuration and related parameters, communication 
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system configuration, substation system structure, and the relationship among them 
for information exchanging. Logical node LN is the basic function unit of a digital 
substation to obtain the needed information. Part of the logic nodes required in the 
designed fault diagnosis is listed in Table 1. 

Table 1. Main logic nodes in SCL 

Logical node 
Explain 

1. Pxyz (Protective relay) 
Protection operation  

2. XCBR (Circuit breaker) 
Switch position  

3. RREC (Reclosing) 
Reclosing operation  

4. XSWI (Knife switch) 
Knife position  

5. SMIL (Online monitoring information of transformer oil chromatography) 
Monitoring value  

6. SCBR (Online monitoring information of circuit breaker） 
Monitoring value 

 

For a comprehensive analysis and diagnosis of an accident, the required diagnosis 
information should also include various electrical and chemical test results of the 
equipment. The diagnosis information is divided into three types as following:  

• The location variant information, i.e., the remote information with time stamps. 

• The section information, including the information of remote communication and 
remote measurement at a certain time point. 

• The data files, including various electrical and chemical test results of equipment, 
chemical experiment results, overhaul history, waveform files of breaker and recorded 
faults via on-line monitoring. 

3.2 The Parent and Child Nodes 

The information access mode 1{ }D d=  of a parent node ( , , )FN D M O=  is a passive 

one in obtaining location variant information of Pxyz(Protective relay), 
XCBR(Circuit breaker), RREC(Reclosing) and secondary equipment. The diagnosis 
method M = {m1} based on the optimization algorithm developed in [14] is to diag-
nose substation faults with information obtained from protective relays, circuit break-
ers and secondary equipment. The output of the diagnosis is 

1 1 2 2 3 3 4 4 5 5{[ , ( )],[ , ( )],[ , ( )],[ , ( )],[ , ( )]}O c p c c p c c p c c p c c p c= where 1c , 2c , 3c , 4c , 5c re-

spectively denote transformer faults, malfunction of protective relays and/or circuit 
breakers, line faults, bus faults, and malfunctions of secondary equipment (Fig. 2). 
The child nodes such as 1CN , 2CN and 3CN are defined below: 

• The child node of transformer 1CN  

The information access mode 1 2{ }D d=  of child node 1 1 1 1( , , )CN D M O=  is  

an active mode in obtaining online monitoring information of the transformer oil 
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chromatography. M = {m1} is the method to analyze the gas in the oil to diagnose 
transformer faults using the improved three-ratio method. 

1 1{[ , ( | )] | 1, 2, ,9}j jO r p r c j= =   is the output of the diagnosis, where 1r  is partial 

discharge, 2r  is type-1 low-temperature overheating(below 150oC), 3r  is type-2 low-

temperature overheating (150oC-300oC), 4r  is medium-temperature overheating, 5r  is 

high-temperature overheating, 6r  is low-energy discharge, 7r  is low-energy discharge 

and overheating, 8r  is arc discharge, and 9r  is arc discharge and overheating. 

1( | )jp r c  is the fault probability caused by jr
 
with given 1c . 

• The child node of circuit breaker 2CN  

1) 2 1 2 3{ , , }D d d d= is the information access mode of child node 

2 2 2 2( , , )CN D M O= , and 1d  is a passive mode in obtaining location variant informa-

tion of XCBR, 2d  is an active mode in obtaining online monitoring information of 

SCBR, 3d  is an active FTP mode in obtaining online monitoring waveform files of 

circuit breakers. Based on the Dempster’s Fusion Rule and the expert knowledge-
base, M = {m2}is the method to establish the set of state sign with online monitoring 
information, including switching coil current, switch waveform file, storage time of 
energy-storage motor, and current curves. The method diagnoses faults of circuit 
breakers according to coil switching current RMS and elapsed time, energy-storage 
motor storage time, total distance of a circuit breaker’s operation, instantaneous and 
average switching speed of a circuit breaker. 
 

1d 2d 3d

( )ataD T

 

Fig. 2. The functional diagram of FN 
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Fig. 3. The functional diagram of CN 

2 2{[ , ( | )] | 1,2, ,10}j jO r p r c j= =   is the output of the diagnosis, 1r : mismatch of 

the switching coil core and over resistance of switch operation, 2r : short circuit of the 

switching coil, 3r : burn or break of the switching coil, 4r : deformation or displace-

ment of latch and valve connected to the core mandrel, 5r : poor contact and operation 

of auxiliary switch and closing contactor, 6r : fault of DC power or system auxiliary 

power, 7r : fault of operating mechanism, 8r : fault of energy-storage motor, 9r : me-

chanical failure, such as deformation and displacement of linkage unit, and latch fail-
ure, and 10r : short residual life. 2( | )jp r c  denotes the fault probability caused by jr  

with given 2c . 

• The child node of line CN3  

3 3{ }D d= is the information access mode of child node 3 3 3 3( , , )CN D M O= , 3d  is the 

active FTP mode to obtain recorded line fault files (Contrade). M = {m3} is the me-
thod that utilizes the sudden-change of the phase current difference to select the phase 
and then locate the fault by estimating the distance with the sampled data from the 
recorded fault curve. 3 2{[ , ( | )] | 1, 2,3,4}j jO r p r c j= =  is the output of the diagnosis, 

with 1r  as single phase grounding fault, 2r  as double phase grounding fault, 3r  as 

inter-phase short circuit fault, 4r  as three phase short circuit fault. 3( | )jp r c  denotes 

the fault probability caused by jr  with given 3c . In addition, the identified fault loca-

tion is included in the diagnosis output (Fig. 3). 
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4 The Fault Diagnosis Flowchart Based on RCA 

As illustrated by the flowchart in Fig. 4, the RCA based fault diagnosis includes two 
cases. 

4.1 Without Operation of Protective Relaying, Circuit Breaking and 
Reclosing 

This case is mainly for monitoring and evaluating the status of transmission and trans-
formation equipment. Each child node ( D , M and O ) is started periodically with a 
timer interval int ervalt . According to the output of child nodes 1CN , 2CN , 3CN  and 

5CN , the states of transmission and transformation equipment of the substation is 

evaluated, with the evaluation results 1O , 2O , 3O , 5O  and R as given in Eqn. (1). 

1 1

2 2

1 2 3 5
3 3

5 5

[( | ), ( | )]

[( | ), ( | )]

[( | ), ( | )]

[( | ), ( | )]

j j

j j

j j

j j

r c p r c

r c p r c
R O O O O

r c p r c

r c p r c

 
 
 = ∪ ∪ ∪ =  
 
 

 
(1) 

 

Is FN can be started?

Information of protective 
relays, circuit breaker 

and reclosing
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of FN: identify the fault 
components based on 

optimization technology

Delay
tdelay 

Obtained by 
manner d1

Start each child nodes
(D, M and O)

Y

N

Output result of 
FN: O

Give the comprehensive 
result R according to 

the root causes of each 
child node

Output result of 
CN

Is fault?

Timer

Y

Pxyz XCBR RREC

( )ataD T

N

Interval
tinterval

Comprehensively analyse 
and give the comprehensive 
result R according to child 

cause and root causes

Case 1Case 2

 

Fig. 4. The RCA based fault diagnosis 
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4.2 With Operation of Protective Relaying, Circuit Breaking and Reclosing 

The major analysis and diagnosis procedure of this case is as following: 

• Once the protective relays, circuit breakers and re-closers operate, the diagnosis M 
of FN  is started, to obtain the location variant information of Pxyz, XCBR, RREC 
and secondary equipment by mode 1d . In the diagnosis, the optimization technology 

is employed to identify the faulty components and provide the child cause set of fault 
as shown in Eqn. (2). 

1 1 2 2

3 3 4 4 5 5

( ) {[ , ( )],[ , ( )],

[ , ( )],[ , ( )],[ , ( )]}

S F O c p c c p c

c p c c p c c p c

= =
(2) 

• Due to the lag in acquiring various waveform files compared with obtaining the 
location variant information, a delay of delayt  is introduced to start each child node. 

• To avoid conflicts between the parent node and child node due to potential errors 
existing in information source, the set of all possible faults is used as the basis of the 
diagnosis, and each symptom of faults is used as the evidence in conducting the com-
prehensive analysis to the output of FN , O1, O2, O3, O4, and O5. The frame of dis-
cernment is the basic concept of D-S evidence theory. For a judgment problem, all 
possible results that can be recognized are expressed by Θ, a non-empty set known as 
the frame of discretion. The frame consists of a number of mutually exclusive and 
exhaustive elements. 1 2 3 4 5{ , , , , }q q q q qΘ = , where 1q  is a transformer fault, 2q  is 

malfunction of protective relays and/or circuit breakers, 3q is a line fault, 4q is a bus 

fault and 5q is malfunction of secondary equipment. If ( )im q , the assigned value to 

function m by proposition iq , meets the following conditions: 

0)( =Φm (3) 

1)(且,0)(，

iq

=≥Θ∈∀ 
Θ∈

iii qmqmq  
(4) 

( )im q is known as the basic probability assignment function (BPAF) of iq , which 

reflects the belief to the accuracy of iq , i.e., the direct support to iq  but no support to 

any subset of iq . Furthermore, ( )im q  is defined as the focus element of evidence if 

iq  is a subset of Θ and ( )im q >0. Φ represents an empty set in Eqn. (3). Here the 

diagnosis result of FN  is taken as Evidence-1 corresponding to the BPAF 1( )km q , 

and the diagnosis result of CN  is taken as Evidence-2 corresponding to the BPAF 

2 ( )lm q . 1( )km q  and 2 ( )lm q  are supposed to be the two BPAF of independent evi-

dence in the same frame of discernment Θ. While 1m  is the BPAF of Evidence-1 with 

1( ) ( )k im q p c= , 2m is the BPAF of Evidence-2 with 2 ( ) ( | )l j im q p r c= . 

The D-S Fusion Rule is to reflect the joint effect of the evidences in the same 
frame of discernment through calculating a single BPAF with the BPAFs of different 
evidences. By applying the rule, the joint effect of Evidence-1 and Evidence-2 is  
evaluated in Eqn. (5). 
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where ( )m q  is the orthogonal sum of 1( )km q  and 2 ( )lm q , denoted by 1 2m m m= ⊕ . 
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where 1 2( ) ( )
k l

k l
q q

k m q m q
∩ =Φ

=   expressing the conflict degree resulted in the fusion 

course of the evidences, and 0≤k≤1. In general, the larger the k, the more intense con-
flicts are among the evidences. 

 

 

Fig. 5. The main connection scheme of the 110 kV Xingguo digital substation 

Case Study 
The developed software package has been applied in the 110 kV Xingguo Substation, 
the first digital substation in Jiangxi Province, China. The power outage region due to 
a fault is circled by the dotted lines as shown in Fig. 5. The fault diagnosis is carried 
out as follows: 

• The location variant information is obtained by mode 1d  (Table 2). ( )ataD T  de-

notes the information obtained from 2009-12-20 15:20:12 50ms to 2009-12-20 
15:20:13 383ms. 
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• The diagnosis function M of FN  is started to identify the faulty  
components and then provide the child cause set of the fault 

1 2 3 4 5( ) {[ ,0.4],[ ,0],[ ,0.6],[ ,0],[ ,0]}S F O c c c c c= = which reveals that the probability 

is 0.4 for a transformer fault, and is 0.6 for a line fault. 
• The online monitoring information of transformer oil chromatography is obtained 
by mode 2d  (Table 3). The coil current and switch signal waveform of the circuit 

breaker numbered 111 is obtained by mode 3d  (Fig. 6). The recorded fault curve of 

Line Buxing-I is obtained by mode 3d  (Fig. 7). A 10s delay delayt  is set to start the 

child nodes 1CN , 2CN , 3CN  and 5CN . Finally the root cause has been identified as a 

single phase grounding fault in Line Buxing-I 3 1{[ ,1]}O r= . 

• According to the D-S Fusion Rule, the diagnosis result is obtained as given in Table 4: 

Table 2. Location variant information obtained by mode 1d
 

Time Alarm ID Alarm value Alarm description 

2009-12-20 
15:20:12 50ms 

PCOS_PZB1H/Q0PTOC3$ST$Op
$general 

1 
Operation of overcurrent, segment-
2, 1st time, limit of high reserve for 

transformer 1#  
2009-12-20 

15:20:13 150ms 
PCOS_P110LINE1/Q0XCBR1$S

T$Pos$stVal 
1 

Operation of circuit breaker num-
bered 111 

2009-12-20 
15:20:13 260ms 

PCOS_PZB1L/Q0XCBR1$ST$Po
s$stVal 

1 
Operation of circuit breaker num-

bered 901 
2009-12-20 

15:20:13 327ms 
PCOS_PZB1M/Q0XCBR1$ST$P

os$stVal 
1 

Operation of circuit breaker num-
bered 301 

2009-12-20 
15:20:13 383ms 

PCOS_ 
P110LINE3/Q0XCBR1$ST$Pos$s

tVal 
1 

Operation of circuit breaker num-
bered 131 

 

Breaker Coil Current and Switch Signal

−−  Current −− Switch signal 

Time, ms (ms) 

C
ur

re
nt

 (
A

) 

 

Fig. 6. Coil current and switch signal waveform of circuit breaker numbered 111 obtained by  
mode 3d
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Table 3. Online monitoring information of transformer oil chromatography obtained by  
mode 2d

 

Time Alarm ID Alarm value Alarm description  

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$H2$mag$f 35 
Hydrogen measurement 
of transformer 1#(uL/L) 

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$CH4$mag$f 12 
Methane measurement of 

transformer 1#(uL/L) 

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$C2H4$mag$f 15 
Ethylene measurement of 

transformer 1#(uL/L) 

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$C2H2$mag$f 0 
Acetylene measurement 
of transformer 1#(uL/L) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$C2H6$mag$f 8 
Ethane measurement of 
transformer 1#(uL/L) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$CO$mag$f 406 
Carbon monoxide mea-
surement of transformer 

1#(uL/L) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$CO2$mag$f 120 
Carbon dioxide mea-

surement of transformer 
1#(uL/L) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$THC$mag$f 35 
THC measurement of 
transformer 1#(uL/L) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$H2AbsRte$mag$f 1 
Absolute gas production 

rate of hydrogen of 
transformer 1#(uL/d) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$C2H2$mag$f 0 
Absolute gas production 
rate of methane of trans-

former 1#(uL/d) 

2009-12-20 
15:20:23 

PCOS_YSP1/Q0SIML0$MX$C2H2$mag$f 0.5 
Absolute gas production 
rate of ethene of trans-

former 1#(uL/d) 

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$C2H6$mag$f 0 
Absolute gas production 

rate of acetylene of 
transformer 1# 

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$C2H6$mag$f 0 
Absolute gas production 
rate of ethane of trans-

former 1#(uL/d) 

2009-12-20 
15:20:23  

PCOS_YSP1/Q0SIML0$MX$C2H6$mag$f 0.5 
Absolute gas production 
rate of THC of transfor-

mer 1#(uL/d) 

Table 4. The composite results 

BPAF of nodes 1q  2q  3q  4q  5q  

1m  0.4 0 0.6 0 0 

2m  0 0 1 0 0 

1 2m m m= ⊕  0 0 1 0 0 
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Fig. 7. The fault recording curves of Buxing I line obtained by mode 3d  
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Before the fusion, the parent node’s supporting is 0.4 to 1q  and 0.6 to 3q . The parent 

node does not support 2q ， 4q ，and 5q . The child nodes support only 3q . Once 

combined, both of the parent node and the child nodes support only 3q . The fusion 

result supports the common part of the diagnosis results, and discards the conflicting 
ones. The fusion result, i.e., the single phase grounding fault of Line Buxing-I, agrees 
with the actual fault of the substation. 

5 Conclusions 

By taking into account the structure and technical features of a digital substation, the 
authors develop a Root Cause Analysis based approach to diagnose faults of transmis-
sion and transformation equipment in the controlled area of the substation. The D-S 
evidence theory is applied to analyze thoroughly the comprehensive fault information 
obtained with different modes to find the exact root cause or causes. The developed 
fault diagnosis system can be used to diagnose various faults commonly encountered 
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in a substation, including malfunctions of protective relays and/or circuit breakers, 
and miss or false alarms. The diagnosis system can be implemented in a hierarchical 
structure for multi-level information integration. A real fault scenario was used in the 
case study to demonstrate the effectiveness of the proposed fault diagnosis system and 
the performance of the developed software package. 
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Abstract. In areas of Data Mining and Soft Computing is important the dis-
cretization of numerical attributes because there are techniques that can not work
with numerical domains or can get better results when working with discrete do-
mains. The precision obtained with these techniques depends largely on the qual-
ity of the discretization performed. Moreover, in many real-world applications,
data from which the discretization is carried out, are imprecise. In this paper we
address both problems by proposing an algorithm to obtain a fuzzy discretization
of numerical attributes from input data that show imprecise values in both nu-
merical and nominal attributes. To evaluate the proposed algorithm we analyze
the results on a set of datasets from different real-world problems.

Keywords: Fuzzy partition, Imperfect information, Fuzzy random forest ensem-
ble, Imprecise data.

1 Introduction

The construction of fuzzy intervals in which a numerical domain is discretized supposes
an important problem in the areas of data mining and soft-computing due to the deter-
minate of these intervals can deeply affect the performance of the different classification
techniques [1].

Although there are a lot of algorithms to discretization, most of them have not con-
sidered that sometimes the information available to construct the partitioning is not as
precise and accurate as desirable. However, imperfect information inevitably appears in
realistic domains and situations. Instrument errors or corruption from noise during ex-
periments may give rise to information with incomplete data when measuring a specific
attribute. In other cases, the extraction of exact information may be excessively costly
or unfeasible. Moreover, it might be useful to complement the available data with addi-
tional information from an expert, which is usually elicited by imperfect data (interval
data, fuzzy concepts, etc). In most real-world problems, data have a certain degree of
imprecision. Sometimes, this imprecision is small enough for it to be safely ignored.
On other occasions, the imprecision of the data can be modeled by a probability distri-
bution. However, there is a third kind of problems, where the imprecision is significant,
and a probability distribution is not the most natural way to model it. This is the case of
certain practical problems where the data are inherently fuzzy [2,6,8,10].

When we have imperfect data, we have two options: the first option is to transform
the original data for another kind of data which the algorithm can work; the second

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 167–182.
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one is to work directly with original data without carrying out any transformation in
data. When we choose the first option, we can lose information and therefore, we can
lose accuracy. For this reason, it is necessary to incorporate the handling of information
with attributes which may present missing and imprecise values in the discretization
algorithms.

In this paper we present an algorithm, which we call EOFP (Extended Optimized
Fuzzy Partitions) that obtains fuzzy partitions from imperfect information. This algo-
rithm extends the OFP CLASS algorithm [4] to incorporate the management of im-
precise values (intervals and fuzzy values) in numerical attributes, set-valued nominal
attributes (nominal attributes with imprecise values) and set-valued classes (imprecise
values for the attribute class).

EOFP Algorithm follows the steps of a top-down discretization process with four
iterative stages [9]: 1.- All kind of numerical values in the dataset to be discretized are
ordered. 2.- The best cut point for partitioning attribute domains is found. 3.- Once the
best cut point is found, the domain of each attribute is divided into two partitions. 4.-
Finally, we check whether the stopping criterion is fulfilled, and if so the process is
terminated.

To implement the above general discretization process, EOFP Algorithm is divided
in two stages. In the first stage, we carry out a search of the best cut points for each
attribute. In the second stage, based on these cut points, we use a genetic algorithm
which optimizes the fuzzy sets formed from the cut points.

The structure of this study is as follows. In Section 2, we are going to present the
EOFP Algorithm. In addition, in this section we are going to extend a fuzzy decision
tree, which is used as base in the first stage of EOFP algorithm. This tree is able to
work with imprecise information both in the values of the attributes and in the class
values. Later, in Section 3, we will show various experimental results which evaluate
our proposal in comparison with previously existing proposals. For these experiments
we will use datasets with imprecision. In Section 4, we will show the conclusions of
this study. Finally, we include Appendix A with a brief description of the combination
methods used at work.

2 Designing the Algorithm

In this section we are going to present the EOFP Algorithm which is able to work with
imprecise data. The EOFP Algorithm builds fuzzy partitions which guarantees for each
attribute:

– Completeness (no point in the domain is outside the fuzzy partition), and
– Strong fuzzy partition (it verifies that ∀x ∈ Ωi,

∑Fi

f=1 μBf
(x) = 1whereB1, .., BFi

are the Fi fuzzy sets for the partition of the i numerical attribute with Ωi domain
and μBf

(x) are its functions membership).

The domain of each i numerical attribute is partitioned in trapezoidal fuzzy sets, B1,
B2.., BFi , so that:
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μB1(x) =

⎧⎨⎩
1 b11 ≤ x ≤ b12

(b13−x)
(b13−b12)

b12 ≤ x ≤ b13
0 b13 ≤ x

; μB2(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x ≤ b12
(x−b12)
(b13−b12)

b12 ≤ x ≤ b13
1 b13 ≤ x ≤ b23

(b24−x)
(b24−b23)

b23 ≤ x ≤ b24
0 b24 ≤ x

;

· · · ; μBFi
(x) =

⎧⎪⎨⎪⎩
0 x ≤ b(Fi−1)3

(x−b(Fi−1)3)

(b(Fi−1)4−b(Fi−1)3)
b(Fi−1)3 ≤ x ≤ b(Fi−1)4

1 bFi3 ≤ x

The EOFP Algorithm is composed for two stages: in the stage 1 we use a fuzzy decision
tree. In this stage we get possible cut points to different attributes. In the stage 2 we
carry out the process by which we optimize the cut points and make fuzzy partitions.
The objective is to divide the numerical domains in fuzzy sets which will be competitive
and effective to obtain a good accuracy in the classification task.

Before to describe the EOFP Algorithm, we are going to present a fuzzy decision
tree witch is be able to work with imprecise data.

2.1 Fuzzy Decision Tree

In this section, we describe a fuzzy decision tree that we will use as base classifier in a
Fuzzy Random Forest ensemble to evaluate fuzzy partitions generated and whose basic
algorithm will be modified for the first stage of the EOFP Algorithm, as we will see
later. This tree is an extension of the fuzzy decision tree that we presented in [4], to
incorporate the management of imprecise values.

The tree is built from a set of examples E which are described by attributes which
may be nominal expressed with crisp values and with a set of domain values (set-valued
nominal attributes) and/or numerical expressed with crisp, interval and fuzzy values
where there will be at least one nominal attribute which will act as class attribute. In
addition, the class attribute can be expressed with a set of classes (set-valued class).
Thus, the class also may be expressed in an imprecise way.

The fuzzy decision tree is based on the ID3 algorithm, where all numerical attributes
have been discretized by means of a series of fuzzy sets. An initial value equal to 1
(χroot(ej) = 1, where χN (ej) is the membership degree of ej to node N and ej is
j-th example from dataset) is assigned to each example ej used in the tree learning,
indicating that initially ej is only in the root node of the tree. This value will continue
to be 1 as long as the example ej does not belong to more than one node during the
tree construction process. In a classical tree, an example can only belong to one node at
each moment, so its initial value (if it exists) is not modified throughout the construction
process. But in a fuzzy decision tree, this value is modified when the test in a node is
based on an attribute with missing, interval or fuzzy values, or with a set-valued nominal
attribute.

An Attribute with Missing Values. When the example ej has a missing value in an
attribute i which is used as a test in a node N , the example descends to each child node
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Nh, h = 1, ..., Hi with a modified value proportionately to the weight of each child
node. The modified value for each Nh is calculate as:

χNh
(ej) = χN (ej) · TχNh

TχN

where TχN is the sum of the weights of the examples with known value in the attribute
i at node N and TχNh

is the sum of the weights of the examples with known value in
the attribute i that descend to the child node Nh.

An Attribute with Interval and Fuzzy Values. When the test of a node N is based
on attribute i which is numerical, each example in N modifies its weight according
to the membership degree of that example to different fuzzy sets of the partition. In
this case, the example ej descends to those child nodes to which it belongs with a
degree greater than 0 (μBf

(ej) > 0; f = 1, ..., Fi). Due to the characteristics of the
partitions we use, the example may descend to two child nodes at most. In this case,
χNh

(ej) = χN (ej) · μBf
(ej); ∀f | μBf

(ej) > 0; h = f .
When the test of a nodeN is based on a numerical attribute i and the value to attribute

i in ej is a fuzzy value different from the set of partitions of the attribute, or an interval
value, we need to extend the function that measures the membership degree of these
type of data. This new function (denoted μsimil(·)) captures the change in the value
χN (ej), when ej descends in the fuzzy decision tree. For this reason, the membership
degree of ej is calculated using a similarity measure (μsimil(ej)) between the value of
attribute i in ej and the different fuzzy sets of the partition of attribute i. Therefore,
the example ej can descend to different child nodes. In this case, χNh

(ej) = χN (ej) ·
μsimil(ej).

Function μsimil(ej) is defined, for f = 1, . . . , Fi, as:

μsimil(ej) =

∫
(min{μej (x), μf (x)})dx∑Fi

f=1

∫
(min{μej (x), μf (x)})dx

(1)

where

– μej (x) represents the membership function of the fuzzy or interval value of the ex-
ample ej in the attribute i.

– μf (x) represents the membership function of the fuzzy set of the partition of the
attribute i.

– Fi is the cardinality of the partition of the attribute i.

A Set-Valued Nominal Attribute. When the test on a node of the tree is based on a
nominal attribute, and some examples of that node have a set of domain values for that
attribute as value, each of these examples will descend to each child node, according to
a set values, with a weight proportional to the weight of each value in the set. So, if in
the example ej of node N , the nominal attribute x, with domain {X1, X2, . . . , Xt}, has
the value (P1 X1, P2 X2, . . . , Pt Xt) and x is the test in the node, ej descends to each
child node Nh, h = 1, . . . , t with weight χNh

(ej) = χN (ej) · Ph.
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Fig. 1. Management of set-valued nominal attributes

For example, let x be a nominal attribute with domain {X1, X2, X3}. The value of
x in an example ej can be expressed by (0.2 X1, 0.8 X3) indicating that there are un-
certainty in the value and we assign a certainty degree of 0.8 to x = X3 and a certainty
degree of 0.2 to x = X1. Figure 1 shows, in an illustrative way, the management of this
example in the fuzzy decision tree.

In a general way, we can say that the χN (ej) value indicates the degree with which
the example fulfills the conditions that lead to node N on the tree.

Calculating the Information Gain in an Extended Fuzzy Decision Tree. Another
aspect of this extended fuzzy decision tree is the way to calculate the information gain
when node N (node which is being explored at any given moment) is divided using the
attribute i as test attribute. This information gain GN

i is defined as:

GN
i = IN − IS

N
Vi (2)

where:

– IN : Standard information associated with node N . This information is calculated as
follows:

1. For each class k = 1, ..., |C|, the value PN
k , which is the number of examples

in node N belonging to class k, is calculated:

PN
k =

|E|∑
j=1

χN (ej) · μk(ej) (3)

where χN (ej) is the membership degree of example ej to node N and μk(ej)
is the membership degree of example ej to class k.

2. PN , which is the total number of examples in node N , is calculated.

PN =

|C|∑
k=1

PN
k

3. Standard information is calculated as: IN = −∑|C|
k=1

PN
k

PN · log PN
k

PN
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– IS
N
Vi is the product of three factors and represents standard information obtained by

dividing node N using attribute i adjusted to the existence of missing values in this
attribute.

IS
N
Vi = I

SN
Vi

1 · IS
N
Vi

2 · IS
N
Vi

3

where:

• I
SN
Vi

1 = 1 - PNmi

PN , where PNmi is the weight of the examples in node N with
missing value in attribute i.

• I
SN
Vi

2 = 1∑Hi
h=1 PNh

, Hi being the number of descendants associated with node

N when we divide this node by attribute i and PNh the weight of the examples
associated with each one of the descendants.

• I
SN
Vi

3 =
∑Hi

h=1 P
Nh · INh , INh being the standard information of each descen-

dant h of node N .

On the other hand the stopping criterion is the same that we described in [4] which is
defined by the first condition reached out of the following: (a) pure node, (b) there aren’t
any more attributes to select, (c) reaching the minimum number of examples allowed
in a node. Besides, it must be pointed out, that once an attribute has been selected as a
node test, this attribute will not be selected again due to the fact that all the attributes
are nominal or are partitioned.

Having constructed the fuzzy decision tree, we use it to infer an unknown class of a
new example. The inference process is as follow:

Given the example e to be classified with the initial value, for instance, χroot(e) = 1,
go through the tree from the root node. After obtain the leaf set reached by e. For each
leaf reached by e, calculate the support for each class. The support for a class on a given
leaf N is obtained according to the expression (3). Finally, obtain the tree’s decision,
c, from the information provided by the leaf set reached and the value χ with which
example e activates each one of the leaves reached.

With the fuzzy decision tree presented at the moments, we have incorporated nu-
merical attributes with imprecise values which are described by an interval or fuzzy
values. Also, we have incorporated nominal attributes expressed by a set of values. In
the next subsection we consider the modifications which are necessary to carry out in
the phases of learning and classification to incorporate the treatment of examples whose
class attribute is set-valued.

Evaluating Data with Set-Valued Classes. In the previous section, we have said that
the initial weight of one example e may be equal to 1 (χroot(e) = 1) but this value
depends on if the example has a single class or it has a set-valued class. In the first case,
if the example e has a single class, the initial weight is 1 and in the second case the initial
weight will depend on the number of classes that example has. Therefore, if the example
e has a set-valued class with nclasses classes, the example will be replicated nclasses

times and each replicate of the example e will have associated the weight 1/nclasses.
In this case, when we perform a test of the tree to classify a dataset with set-valued

classes, we can follow the decision process:
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If class(e)==classtree(e)∧size(class(e))==1 then successes++
else

If class(e)∩ classtree(e) �= ∅ then success or error++ else errors++

where classtree is the class that fuzzy decision tree provides as output and class(e) is
the class value of the example e.

As result of this test, we obtain the interval [min error,max error] where
min error is calculated considering only errors indicated in the variable errors from
the previous process and max error is calculated considering as errors errors +
success or error.

With this way to classify, the tree receives an imprecise input and its output is im-
precise too, because it’s not possible to determine exactly a unique error.

One, we have described the fuzzy decision tree that we will use to classify, and that
with some modifications, we will use in the stage 1 of the discretization algorithm, we
are going to expose such algorithm. As we said earlier, the discretization algorithm
EOFP is composed by two stages which we are going to present.

2.2 First Stage: Searching for Cut Points

In this stage, a fuzzy decision tree is constructed whose basic process is that described
in Subsection 2.1, except that now a procedure based on priority tails is added and
there are attributes that have not been discretized. To discretize these attributes, the first
step is look for the cut points which will be the border between different partitions. In
previous section, we are expose that to discretize attributes, we must order the values.
If all data are not crisp, we need a function to order crisp, fuzzy and interval values. To
order data, we use the same function that to search for the possible cut points.

To deal with non-discretized attributes, the algorithm follows the basic process in
C4.5. The thresholds selected in each node of the tree for these attributes will be the
split points that delimit the intervals. Thus, the algorithm that constitutes this first stage
is based on a fuzzy decision tree that allows nominal attributes, numerical attributes
discretized by means of a fuzzy partition, non-discretized numerical attributes described
with crisp, interval and fuzzy values and furthermore it allows the existence of missing
values in all of them. Algorithm 1 describes the whole process.

In the step 1, all examples in the root node have an initial weight equal to 1, less
the examples with set-valued class whose weight will be initialize as we indicate in the
Section 2.1. The tail is a priority tail, ordered from higher to lower according to the total
weight of the examples of nodes that form the tail. Thus the domain is guaranteed to
partition according to the most relevant attributes.

In the step 3, when we expand a node according to an attribute:

1. If the attribute is already discretized, the node is expanded into many children as
possible values the selected attribute has. In this case, the tree’s behaviour is similar
to that described in the Subsection 2.1.

2. If the attribute is not previously discretized, its possible descendants are obtained. To
do this, as in C4.5, the examples are ordered according to the value of the attribute in
question. To carry out the order of data with crisp, fuzzy and interval values, we need
an ordering index, [13]. Therefore, we have a representative value for each interval
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Algorithm 1. Search of cut points
SearchCrispIntervals(in : E, Fuzzy Partition; out : Cut points)
begin
(a) Start at the root node, which is placed in the initially empty priority tail. Initially, in the root

node is found the set of examples E with an initial weight.
(b) Extract the first node from the priority tail.
(c) Select the best attribute to split this node using information gain expressed in (2) as the crite-

rion. We can find two cases: The first case is where the attribute with the highest information
gain is already discretized, either because it is nominal, or else because it had already been
discretized earlier by the Fuzzy Partition. The second case arises when the attribute is
numerical and non-discretized. In this case it is necessary to obtain the corresponding cut
points.

(d) Having selected the attribute to expand node, all the descendants generated are introduced in
the tail.

(e) Go back to step two to continue constructing the tree until there are not nodes in the priority
tail or until another stopping condition occurs, such as reaching nodes with a minimum
number of examples allowed by the algorithm.

end

and fuzzy value and we can order all values of the non-discretized attributes. The
index used is calculated as in (4). Let Ai be a fuzzy set (or interval) in the attribute i
of the example e:

Y (Ai) =

∫ 1

0

M(Aiα)dα (4)

where Y (Ai) is the representative value of the fuzzy or interval data of the attribute
i and M(Aiα) is the mean value of the elements of Aiα.

This index determines for each fuzzy or interval value a number with which we
order all values. Using the crisp and the representative values, we find the possible
cut points as a C4.5 tree. The intermediate value between value of the attribute for
example ej and for example ej+1 is obtained. The value obtained will be that which
provides two descendants for the node and to which the criterion of information gain
is applied. This is repeated for each pair of consecutive values of the attribute, search-
ing for the value that yields the greatest information gain. The value that yields the
greatest information gain will be the one used to split the node and will be considered
as a cut point for the discretization of this attribute. When example e descend to the
two descendants, the process carries out is the same that we explain in Section 2.1
and if the value of the attribute is fuzzy or interval, we apply the function (1) to de-
termine the membership of this example e to the descendant nodes, because we only
use the representative value of these kind of values to order and to get cut points, but
when we need use these values to do some estimates, we use the original value and
not the representative value.

2.3 Second Stage: Optimizing Fuzzy Partitions with Imprecise Data

In the second stage of the EOFP Algorithm, we are going to use a genetic algorithm to
get the fuzzy sets that make up the partitioning of nondiscretized attributes. We have
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decide to use a genetic algorithm, because these algorithms are very powerful and ro-
bust, as in most cases they can successfully deal with an infinity of problems from very
diverse areas and specifically in Data Mining [5]. These algorithms are normally used in
problems without specialized techniques or even in those problems where a technique
does exist, but is combined with a genetic algorithm to obtain hybrid algorithms that
improve results [7].

The genetic algorithm takes as input the cut points which we have obtained in the
first stage, but it is important to mention that the genetic algorithm will decide what cut
points are more important to construct the fuzzy partitions, so it is possible that many cut
points are not used to obtain the optimal fuzzy partitions. Maximum if the first stage gets
F cut points for the attribute i, the genetic algorithm can make up Fi+1 fuzzy partitions
for the attribute i. However, if the genetic algorithm considers that the attribute i doesn’t
have a lot of relevance in the dataset, this attribute won’t be partitioned. The different
elements which compose this genetic algorithm are as follows:

Encoding. An individual will consist of two arrays v1 and v2. The array v1 has a real
coding and its size will be the sum of the number of cut points that the fuzzy tree
will have provided for each attribute in the first stage. Each gene in array v1 repre-
sents the quantity to be added to and subtracted from each attribute’s split point to form
the partition fuzzy. On the other hand, the array v2 has a binary coding and its size is
the same that the array v1. Each gene in array v2 indicates whether the correspond-
ing gene or cut point of v1 is active or not. The array v2 will change the domain of
each gene in array v1. The domain of each gene in array v1 is an interval defined by
[0,min(pr−pr−1

2 , pr+1−pr

2 )] where pr is the r-th cut point of attribute i represented by
this gene except in the first (p1) and last (pu) cut point of each attribute whose domains
are, respectively: [0,min(p1,

p2−p1

2 ] and [0,min(pu−pu−1

2 , 1− pu].
When Fi = 2, the domain of the single cut point is defined by [0,min(p1, 1 − p1].

The population size will be 100 individuals.

Initialization. First the array v2 in each individual is randomly initialized, provided
that the genes of the array are not all zero value, since all the split points would be
deactivated and attributes would not be discretized. Once initialized the array v2 , the
domain of each gene in array v1 is calculated, considering what points are active and
which not. After calculating the domain of each gene of the array v1, each gene is
randomly initialized generating a value within its domain.

Fitness Function. The fitness function of each individual is defined according to the
information gain defined in [1]. Algorithm 2 implements the fitness function, where:

– μif is the membership function corresponding to fuzzy set f of attribute i. Again,
we must emphasize that this membership function depends on the kind of attribute.
Where if the attribute is numerical or belonging to a known fuzzy partition, the mem-
bership function is calculated as we have indicated in 2. On the contrary if the at-
tribute is fuzzy or interval, the membership function is calculated as we show in
function (1).

– Ek is the subset of examples of E belonging to class k.
This fitness function, based on the information gain, indicates how dependent the
attributes are with regard to class, i.e., how discriminatory each attribute’s partitions
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Algorithm 2. Fitness Function

Fitness(in : E, out : V alueF itness)
begin

1. For each attribute i = 1, ..., |A|:
1.1 For each set f = 1, ..., Fi of attribute i

For each class k = 1, ..., |C| calculate the probability Pifk =
∑

eεEk
μif (e)∑

eεE μif (e)

1.2 For each class k = 1, ..., |C| calculate the probability Pik =
∑Fi

f=1 Pifk

1.3 For each f = 1, ..., Fi calculate the probability Pif =
∑|C|

k=1 Pifk

1.4 For each f = 1, ..., Fi calculate the information gain of attribute i and set f Iif =∑|C|
k=1 Pifk · log2 Pifk

Pik·Pif

1.5 For each f = 1, ..., Fi calculate the entropy Hif = −∑|C|
k=1 Pifk · log2 Pifk

1.6 Calculate the I and H total of attribute i
Ii =

∑Fi
f=1 Iif and Hi =

∑Fi
f=1 Hif

2. Calculate the fitness as : V alueF itness =
∑|A|

i=1 Ii∑|A|
i=1 Hi

end

are. If the fitness we obtain for each individual is close to zero, it indicates that the
attributes are totally independent of the classes, which means that the fuzzy sets ob-
tained do not discriminate classes. On the other hand, as the fitness value moves
further away from zero, it indicates that the partitions obtained are more than accept-
able and may discriminate classes with good accuracy.

Selection. Individual selection is by means of tournament, taking subsets with size 2.

Crossing. The crossing operator is applied with a probability of 0.3, crossing two in-
dividuals through a single point, which may be any one of the positions on the vector.
Not all crossings are valid, since one of the restrictions imposed on an individual is that
the array v2 should not has all its genes to zero. When crossing two individuals and
this situation occurs, the crossing is invalid, and individuals remain in the population
without interbreeding. If instead the crossing is valid, the domain for each gene of array
v1 is updated in individuals generated.

Mutation. Mutation is carried out according to a certain probability at interval [0.01,
0.1], changing the value of one gene to any other in the possible domain. First, the gene
of the array v2 is mutated and then checked that there are still genes with value 1 in v2.
In this case, the gene in v2 is mutated and, in addition, the domains of this one and its
adjacent genes are updated in the vector v1. Finally, the mutation in this same gene is
carried out in the vector v1.

If when a gene is mutated in v2 all genes are zero, then the mutation process is not
produced.

Stopping. The stopping condition is determined by the number of generations situated
at interval [100, 150].

The genetic algorithm should find the best possible solution in order to achieve a
more efficient classification.
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In the next section we want to show with some computational experiments that it is
important construct fuzzy partitions from real data versus transform them because we
will lost information and accuracy.

3 Experiments

In this section we are going to show different experiments to evaluate if the fuzzy par-
titions which are constructed without making any transform of data (EOFP Algorithm)
are better than fuzzy partitions which are constructed making certain transformation on
imprecise data to convert them in crisp data (OFP CLASS algorithm). All partitions are
evaluated classifying with a Fuzzy Random Forest ensemble (FRF) [3] which is able to
handle imperfect data into the learning and the classification phases.

The experiments are designed to measure the behavior of fuzzy partitions used in the
FRF ensemble using datasets and results proposed in [11,12] where the authors use a
fuzzy rule-based classifier to classify datasets with imprecise data such as missing or
interval. Also they use uniform partitions to evaluate the datasets and we are going to
show how the results are better when the partitions are fuzzy although they are con-
structed using the modified dataset instead of the original dataset. Also we are going to
show how the results in classification are still better if we don’t modify data to construct
the fuzzy partitions. Due to we are going to compare with results of [11,12], we define
the experimental settings quite similar to those proposed by them.

3.1 Datasets and Parameters for FRF Ensemble

To evaluate fuzzy partitions, we have used real-world datasets about medical diagnosis
and high performance athletics [11,12], that we describe in Table 1.

Table 1. Datasets

Dataset |E| |M| I Dataset |E| |M| I

100ml-4-I 52 4 2 Dyslexic-12 65 12 4
100ml-4-P 52 4 2 Dyslexic-12-01 65 12 3
Long-4 25 4 2 Dyslexic-12-12 65 12 3

Table 1 shows the number of examples (|E|), the number of attributes (|M |) and the
number of classes (I) for each dataset. “Abbr” indicates the abbreviation of the dataset
used in the experiments.

All FRF ensembles use a forest size of 100 trees. The number of attributes chosen at
random at a given node is log2(| · |+1), where | · | is the number of available attributes
at that node, and each tree of the FRF ensemble is constructed to the maximum size
(node pure or set of available attributes is empty) and without pruning.

3.2 Results

These experiments were conducted to test the accuracy of FRF ensemble when it
uses fuzzy partitions constructed from real-world datasets with imperfect values
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using EOFP Algorithm. These results are compared with the ones obtained by the
GFS classifier proposed in [11], which uses uniform partitions and with the results ob-
tained by FRF ensemble when uses fuzzy partitions constructed with the OPF CLASS
Algorithm.

It is important to clarify that OPF CLASS Algorithm doesn’t work with imperfect
data. For this reason, to get the fuzzy partitions of these datasets we have modified the
original data. The interval or fuzzy values have been changed by their average values.
Therefore we have transformed the interval and fuzzy values in crisp values and of this
way the OPF CLASS Algorithm can work with these datasets.

In these experiments we have used the available datasets in “http://sci2s.ugr.es/ keel/”
and the available results in [11,12]. There are datasets from two different real-world
problems. The first one is related to the composition of teams in high performance ath-
letics and the second one is a medical diagnosis problem. A more detailed description
of these problems may be found in [11,12].

High Performance Athletics. The score of an athletics team is the sum of the in-
dividual scores of the athletes in the different events. It is the coach’s responsibility to
balance the capabilities of the different athletes in order to maximize the score of a team
according to the regulations. The variables that define each problem are as follows:

– There are four indicators for the long jump that are used to predict whether an athlete
will pass a given threshold: the ratio between the weight and the height, the maxi-
mum speed in the 40 meters race, and the tests of central (abdominal) muscles and
lower extremities;

– There are also four indicators for the 100 meters race: the ratio between weight and
height, the reaction time, the starting or 20 m speed, and the maximum or 40 m
speed.

The datasets used in this experiment are the following: “Long-4” (25 examples, 4 at-
tributes, 2 classes, no missing values and all attributes are interval-valued), “100ml-
4-I” and “100ml-4-P” (52 examples, 4 attributes, 2 classes, no missing values and all
attributes are interval-valued).

As in [11], we have used a 10 fold cross-validation design for all datasets. Table 2
shows the results obtained in [11] and the ones obtained by the FRF ensemble with the
six combination methods which are explained in detail in [3]. In Appendix 4 we present
a brief intuitive description of each of them. Except for the crisp algorithm proposed in
[11], in Table 2, the interval [mean min error, mean max error] obtained for each
dataset according to the decision process described in Section 2.1, is shown. For each
dataset, the best results obtained with each algorithm are underlined.

The results obtained in classification by the extended GPS proposed in [11] and FRF
ensemble, are very promising because we are representing the information in a more
natural and appropriate way, and in this problem, we are allowing the collection of
knowledge of the coach by ranges of values and linguistic terms.

The results of FRF ensemble are very competitive with all fuzzy partitions but the
fuzzy partitions obtained with EOFP Algorithm are the best.
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Table 2. Comparative results for datasets of high performance athletics

Dataset

100ml-4-I 100ml-4-P Long-4

Technique Train Test Train Test Train Test

E
O

F
P

F
uz

zy
pa

rt
it

io
n FFRSM1 [0.107,0.305] [0.130,0.323] [0.043,0.235] [0.093,0.290] [0.191,0.484] [0.083,0.349]

FRFSM2 [0.110,0.306] [0.150,0.343] [0.045,0.237] [0.110,0.307] [0.165,0.449] [0.083,0.349]

FRFMWL1 ���������
[0.070,0.265]

���������
[0.073,0.267] [0.032,0.224] [0.060,0.257] [0.085,0.364] [0.033,0.299]

FRFMWL2 [0.060,0.254] [0.113,0.306] [0.043,0.235] [0.060,0.257] [0.111,0.391] [0.083,0.349]

FRFMWLT1 [0.070,0.267] [0.073,0.267]
���������
[0.032,0.224]

���������
[0.060,0.257]

���������
[0.085,0.364]

���������
[0.033,0.299]

FRFMWLT2 [0.060,0.252] [0.093,0.286] [0.038,0.231] [0.060,0.257] [0.107,0.386] [0,083,0.349]

O
F

P
C

L
A

S
S

F
uz

zy
pa

rt
it

io
n FFRSM1 [0.139,0.331] [0.150,0.343] [0.098,0.291] [0.133,0.310] [0.120,0.404] [0.200,0.467]

FRFSM2 [0.141,0.333] [0.150,0.343] [0.096,0.288] [0.093,0.290] [0.115,0.391] [0.200,0.467]

FRFMWL1 [0.077,0.269] [0.093,0.287] [0.075,0.269] [0.073,0.270] [0.116,0.396] [0.100,0.417]

FRFMWL2 ���������
[0.060,0.252]

���������
[0.093,0.287] [0.077,0.269] [0.073,0.270] [0.102,0.382] [0.100,0.367]

FRFMWLT1 [0.077,0.269] [0.093,0.287]
���������
[0.075,0.267]

���������
[0.073,0.270] [0.107,0.387] [0.150,0.417]

FRFMWLT2 [0.062,0.254] [0.093,0.287] [0.077,0.269] [0.073,0.270]
���������
[0.094,0.373]

���������
[0.067,0.333]

Crisp [11] 0.259 0.384 0.288 0.419 0.327 0.544

GGFS [11] [0.089,0.346] [0.189,0.476] [0.076,0.320] [0.170,0.406] [0.000,0.279] [0.349,0.616]

Diagnosis of Dyslexic. Dyslexia is a learning disability in people with normal intel-
lectual coefficient, and without further physical or psychological problems explaining
such disability. A more detailed description of this problem can found in [11,12].

In these experiments, we have used three different datasets. Their names are
“Dyslexic-12’, “Dyslexic-12-01” and “Dyslexic-12-12”. Each dataset has 65 examples
and 12 attributes. The output variable for each dataset is a subset of the labels that fol-
low: - No dyslexic; - Control and revision; - Dyslexic; and - Inattention, hyperactivity
or other problems.

These three datasets differ only in their outputs:

– “Dyslexic-12” comprises the four mentioned classes.
– “Dyslexic-12-01” does not make use of the class “control and revision”, whose mem-

bers are included in class “no dyslexic”.
– “Dyslexic-12-12” does not make use of the class “control and revision”, whose mem-

bers are included in class “dyslexic”.

All experiments are repeated 100 times for bootstrap resamples with replacement of the
training set. The test set comprises the “out of the bag” elements.

In Table 3, we show the results obtained when we run FRF ensemble with fuzzy par-
titions obtained with OFP CLASS and fuzzy partitions obtained with EOFP for datasets
“Dyslexic-12”, “Dyslexic-12-01” and“Dyslexic-12-12’.

Also, in Table 3, we compare these results with the best ones obtained in [12] ((∗):
partition used - four labels; (∗∗) partition used - five labels). Again, in this table, the
interval [mean min error,mean max error] obtained for each dataset according to
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Table 3. Comparative results for datasets of dyslexia

Dataset

Dyslexic-12 Dyslexic-12-01 Dyslexic-12-12

Technique Train Test Train Test Train Test

E
O

F
P

F
uz

zy
pa

rt
it

io
n FRFSM1 [0.000,0.238] [0.000,0.398] [0.022,0.223] [0.039,0.377] [0.001,0.263] [0.035,0.422]

FRFSM2 ���������
[0.000,0.228]

���������
[0.000,0.399]

���������
[0.008,0.184]

���������
[0.022,0.332]

���������
[0.009,0.245]

���������
[0.032,0.411]

FRFMWL1 [0.000,0.270] [0.000,0.406] [0.017,0.231] [0.045,0.383] [0.001,0.273] [0.019,0.430]

FRFMWL2 [0.000,0.270] [0.000,0.407] [0.020,0.241] [0.056,0.385] [0.001,0.267] [0.026,0.406]

FRFMWLT1 [0.000,0.263] [0.000,0.402] [0.012,0.216] [0.038,0.365] [0.000,0.265] [0.019,0.427]

FRFMWLT2 [0.000,0.266] [0.000,0.404] [0.015,0.221] [0.049,0.373] [0.000,0.262] [0.024,0.422]

O
F

P
C

L
A

S
S

F
uz

zy
pa

rt
it

io
n FRFSM1 [0.000,0.320] [0.002,0.511] [0.000,0.282] [0.000,0.413] [0.000,0.405] [0.000,0.477]

FRFSM2 [0.000,0.327] [0.001,0.515] [0.000,0.253] [0.000,0.389] [0.000,0.402] [0.000,0.469]

FRFMWL1 [0.000,0.261] [0.003,0.419] [0.000,0.264] [0.000,0.400] [0.000,0.335] [0.000,0.422]

FRFMWL2 [0.000,0.270] [0.003,0.423] [0.000,0.276] [0.000,0.407]
���������
[0.000,0.343]

���������
[0.000,0.414]

FRFMWLT1 [0.000,0.264] [0.004,0.419]
���������
[0.000,0.243]

���������
[0.000,0.386] [0.000,0.331] [0.000,0.422]

FRFMWLT2 ���������
[0.000,0.267]

���������
[0.003,0.417] [0.000,0.259] [0.000,0.394] [0.000,0.343] [0.000,0.418]

(*) Crisp CF0 0.444 [0.572,0.694] 0.336 [0.452,0.533] 0.390 [0.511,0.664]

(*) GGFS – [0.421,0.558] – [0.219,0.759] – [0.199,0.757]

(*) GGFS CF0 [0.003,0.237] [0.405,0.548] [0.005,0.193] [0.330,0.440] [0.003,0.243] [0.325,0.509]

(**) Crisp CF0 0.556 [0.614,0.731] 0.460 [0.508,0.605] 0.485 [0.539,0.692]

(**) GGFS – [0.490,0.609] – [0.323,0.797] – [0.211,0.700]

(**) GGFS CF0 [0.038,0.233] [0.480,0.621] [0.000,0.187] [0.394,0.522] [0.000,0.239] [0.393,0.591]

the decision process described in Section 2.1, is shown. For each dataset, the best results
obtained with each algorithm are underlined.

As comment about all experiments, we see that FRF ensemble with EOFP fuzzy
partitions obtains better results in test than FRF with OFP CLASS fuzzy partitions.
FRF ensemble is a significant improvement over the crisp GFS. In these experiments
we can see that when the partitions are obtained with the original data using the EOFP
algorithm, the accuracy is higher (the intervals of error are closer to 0 and they are less
imprecise). As also discussed in [12] is preferable to use an algorithm which is able
of learning with low quality data than removing the imperfect information and using a
conventional algorithm.

4 Conclusions

In this paper we have presented the EOFP Algorithm for fuzzy discretization of nu-
merical attributes. This algorithm is able to work with imperfect information. We have
performed several experiments using imprecise datasets, obtaining better results when
working with the original data. Besides, we have presented a fuzzy decision tree which
can work with imprecise information.
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Our final conclusion, as many papers in the literature are indicating, is that it is nec-
essary to design classification techniques so they can manipulate original data that can
be imperfect in some cases. The transformation of these imperfect values to (imputed)
crisp values may cause undesirable effects with respect to accuracy of the technique.
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Appendix

Combination Methods

We present, with a brief intuitive description, the combination methods used in this
paper. These methods are described with more details in [3].

– Method SM1: In this method, each tree of the ensemble assigns a simple vote to
the most voted class among the reached leaves by the example. The FRF ensemble
classifies the example with the most voted class among the trees.

– Method SM2: The FRF ensemble classifies the example with the most voted class
among the reached leaves by the example.

– Method MWL1: This method is similar to SM1 method but the vote of each reached
leaf is weighted by the weight of the leaf.

– Method MWL2: In this case, each leaves reached assigns a weight vote to the major-
ity class. The ensemble decides the most voted class.

– Method MWLT1: This method is similar to MWL1 method but the vote of each tree
is weighted by a weight assigned to each tree.

– Method MWLT2: Each leaf reached vote to the majority class with a weighted vote
with the weight of the leaf and the tree to which it belongs.
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Abstract. Image denoising is a well-known preprocessing step that can help for
further processing tasks. With the increase of acquisition device performance,
multicomponent images tend now to be widely used. To deal with, this paper
proposes to describe usual noise reduction methods in the scope the fuzzy logic.
The denoising process can be describe by a fuzzification step, some aggregations
and a defuzzification step. To illustrate the concept, the bilateral filter is reformu-
lated in the field of fuzzy logic. It is then extended to take into account impulse
noise by using a density based function in the fuzzification step. This leads to a
robust filter against outliers.

1 Introduction

In the framework of image processing, one of the first tasks consists in removing or
reducing noise from the images [1]. The improvement of acquisition devices increases
the need for processing multicomponent images obtained from different channels [2,3].
The independent processing of image components turns out to be inappropriate and
leads to strong artifacts [4]. Thus the noise reduction of multicomponent images is an
active field of research in satellite remote sensing, robot guidance, electron microscopy,
medical imaging, color processing and real-time applications [5,6,7]. This paper fo-
cuses on this preprocessing step for reducing both additive Gaussian noise and impulse
noise. Additive Gaussian noise corrupts images because of the imprecision of acquisi-
tion devices. Impulse noise is generally produced by the transmission devices [3].

The noise reduction consists in filtering the image, classically by computing a
barycenter within a window. The selection of barycentric coordinates is the main key
of noise reduction methods. The fuzzy techniques also addresses this issue of noise
reduction [8,9,10]. In this paper, we consider that the filtering window is a fuzzy set.
First we determine these fuzzy sets associated to each pixel. This step corresponds to
a fuzzification of the pixels. Second the estimation of the filtered value corresponds
to a defuzzification [11]. Moreover the pixels of a multi-component image have both
2-dimensional spatial coordinates and n-dimenional photometric coordinates associ-
ated with the n components of the image. The bilateral filtering is a classical way
taking into account both the spatial aspect and the photometric aspect of images in
image processing. Bilateral filter of Tomasi and Manduchi [12] is the archetype of such

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 183–195.
DOI: 10.1007/978-3-642-35638-4_13 c© Springer-Verlag Berlin Heidelberg 2013
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bilateral approach. Thanks to the agregation operators [13], the fuzzy logic enables us
to generalize the bilateral approach of filtering. Unfortunately Bilateral filter is not ro-
bust against outliers. Thus this paper proposes a new bilateral filter based on density
estimation that provides robustness against outliers.

The paper is organized as follows: Section 2 presents the general framework select-
ing fuzzy neighborhood of each pixel for image filtering. Section 3 is devoted to the
defuzzification step for estimating the filtered value of a pixel. In Section 4 we study
the combination of fuzzy neighborhood improving the classical bilateral filtering [12].
This approach is applied to reduce Gaussian noise and impulse noise in color images.
The last Section proposes a discussion and concludes this paper.

2 Fuzzy Neighborhood of a Pixel

Let p be a pixel of a multicomponent image I with d components. Let I(p) be its
photometric vector. Reducing the noise, I(p) is replaced by the filtered value I∗(p)
which is estimated within a window Wp centered on p. Let p1, p2, ...pN be the N pixels
of Wp (N = n× n). I∗(p) is usually a barycenter of I(p1), I(p2),... I(pN ) defined by:

I∗(p) =
1∑

1≤i≤N

μ(i)

∑
1≤i≤N

μ(i)I(pi) (1)

where μ(i) are the barycentric coordinates of I∗(p).
In the fuzzy logic frame, μ(i) becomes the membership value of the pixel pi to a

fuzzy set p̃. This fuzzy set has its support in Wp. Then the first step of the filtering
procedure consists in selecting this fuzzy neighborhood of p. This fuzzification step is
detailed in the following subsections.

2.1 Fuzzy Spatial Neighborhood

When the membership values μ(i) depend only on the spatial locations of the pixels
pi, then a fuzzy spatial neighborhood p̃spat is defined for filtering. Gaussian filter is the
archetype of these spatial filters. The membership values μspat(i) are defined by:

μspat(i) = exp

(
−dist2spat(p, pi)

2σ2
spat

)
(2)

where distspat is the Euclidean distance and σspat is the standard deviation of the Gaus-
sian filter. Note that these fuzzy neighborhoods are normalized fuzzy sets [14] and their
largest membership values are equal to 1.
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2.2 Fuzzy Photometric Neighborhood

When the membership values depend only on the closeness between the photometric
values I(pi) and I(p), then the fuzzy neighborhood of p is designed in the photometric
space. Rank filter or vector median filters [15] give examples of such photometric filters.
They are obtained by ordering the vectors I(p1), I(p2),... I(pN ). The estimation of
I∗(p) is based on the ranks of I(pi) vectors. In such cases, the membership values
μphot(i) of the fuzzy photometric neighborhood p̃phot ignore the spatial location of the
pixels pi.

By analogy to the fuzzy spatial neighborhood, the Gaussian distribution also permits
to give another definition of p̃phot. The support of the fuzzy set remains Wp. But the
distance distphot is computed in the photometric space (e.g. Euclidean distance). Then
the membership function is defined by:

μphot(i) = exp

(
−dist2phot(I(p), I(pi))

2σ2
phot

)
(3)

where σphot is the standard deviation of the Gaussian distribution in the photometric
domain.

Because of the noise, I(p) could be inappropriate as the center of a photometric
neighborhood. Therefore we propose another approach for defining a fuzzy photometric
neighborhood of p.

2.3 Fuzzy Neighborhood Based on Density

For each pixel q in Wp p̃
q
phot is a fuzzy neighborhood of p centered on I(q). The mem-

bership functions of p̃qphot are defined by:

μq
phot(i) = exp

(
− dist2phot(I(q), I(pi))

2σ2
phot

)
(4)

where q ∈ Wp. These N fuzzy sets are aggregated using the arithmetic mean of their
membership functions. Then the function μdens we obtain corresponds to a local esti-
mation of a probability density function (PDF). Improving PDF estimation we preserve
against outliers and noise by ruling out p̃pphot (i.e. p̃phot) when estimating the density
[16]. The membership function of this new fuzzy set based on density is defined by:

μdens(i) =
1

C

∑
q∈Wp,q �=p

μq
phot(i) (5)

where C is a normalization coefficient. This paper proposes this approach through ro-
bust density estimation to define a new fuzzy photometric neighborhood.

2.4 Bilateral Approach of Fuzzy Neighborhood

To keep the advantage of both spatial and photometric approaches, the t-norms [14]
(i.e. a conjunction operator) permit to combine the fuzzy spatial neighborhood and the
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fuzzy photometric neighborhood. Tomasi and Manduchi [12] use the algebraic t-norm
for computing their bilateral filter. Then the membership values of p̃bilat is defined by:

μbilat(i) = μspat(i) × μphot(i) (6)

In this paper, we use the classical minimum operator as t-norm combining both spa-
tial and photometric density-based neighborhoods. The fuzzy bilateral neighborhood
p̃bidens we propose is the conjunction of these two fuzzy sets. Therefore the member-
ship function μbidens is defined by:

μbidens(i) = min

(
μspat(i), μdens(i)

)
(7)

3 Defuzzification

The goal of this section is to estimate the filtered value I∗(p) from the fuzzy neigh-
borhoods of p. This step corresponds to a defuzzification process (see a review of the
defuzzification methods in [11]). The defuzzification is obtained using two stages: the
first one operates in the spatial domain and the second one operates in the photometric
domain.

The most classical defuzzification method is based on the maximum of membership
values. In the context of multicomponent images, the maxima method in the spatial do-
main consists in selecting the pixel pi for which the membership value μ(i) is maximal.
Let p be this pixel defined by:

p = arg maxpi∈Wp

(
μ(i)

)
(8)

In this paper, the membership function μbidens is used to determine p. Therefore p
corresponds to the mode of our density estimation.

Another usual defuzzification method consists in computing the center of gravity of
a fuzzy set where the weights are the membership values. This method is used in the
photometric domain. I(p) is considered as the center of the fuzzy photometric neigh-
borhood of p. Then the filtered value I∗(p) is defined by:

I∗(p) =
1∑

1≤i≤N

μp
phot(i)

∑
1≤i≤N

μp
phot(i)I(pi) (9)

Indeed this barycenter inside the window Wp is the filtered value we propose to reduce
noise in multicomponent images.

4 Application to Color Images

To assess our method, we use color images with three components: Red, Green
and Blue. Images are corrupted with two kinds of independent and identically
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(a) Reference Image (Parrots)

(b) Noised Image (c) Vector Median Filter

(d) Bilateral Filter (e) Density-based Filter

Fig. 1. Comparison of noise reduction filters: (a) Reference image (Parrots), (b) Part of Noised
image (Noised), (c) Vector Median filtered image (VM), (d) Bilateral filtered image (BILAT), (e)
Fuzzy Density-based filtered image (DENS)

distributed noise. A low level noise is designed through additive Gaussian noise, and
high level noise is modeled by impulse noise. The goal is to reduce both low level noise
and high level noise by filtering corrupted images.

The classical mean squared error (MSE) evaluates the results by averaging the
squared differences of filtered and reference images. In this context MSE is defined
by:

MSE(I∗) =
1

#I

∑
p∈I

distphot(I
∗(p), I(p))2 (10)
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where #I is the number of pixels of the images. We separate MSE into two parts
MSE− and MSE+. MSE− is defined by:

MSE−(I∗) =
1

#I−
∑

δ(p)≤T

δ2(p) (11)

where I− = {p : δ(p) ≤ T }, and MSE+ is defined by:

MSE+(I∗) =
1

#I+

∑
δ(p)>T

δ2(p) (12)

where I+ = {p : δ(p) > T }. In this paper, the threshold T = 10 is used to separate
low level noise and high level noise.

Table 1. Assessments of noised image (Noised), vector median filtered image (VM), bilateral fil-
tered image (BILAT) and fuzzy density-based filtered image (DENS) using MSE with 388, 112
pixels, MSE− with N− pixels, and MSE+ with N+ pixels (N+ +N− = 388, 112)

Image MSE N− MSE−

Noised 2873.6 256,921 46.1
VM 98.2 338,773 32.9

BILAT 2803.0 336,865 28.6
DENS 69.0 370,588 21.3

Image MSE N+ MSE+

Noised 2873.6 131,191 8410.9
VM 98.2 49,339 545.6

BILAT 2803.0 51,247 21040.3
DENS 69.0 17,524 1077.5

In this paper, the filtering windows has 5 × 5 pixels. Estimating the density in the
photometric space, a large value of σphot is prefered for smoothing PDF estimation.
Then we use σphot = 30.0. In the spatial domain, σspat is empirically determined
(σspat = 0.5). In the defuzzification process, σphot value controls the smoothing when
filtering. The value which gives the best results is σphot = 10.

Evaluating the results, we compare a corrupted image (Noised), a classical bilateral
filtered image (BILAT), a vector median filtered image (VM) and our fuzzy density-
based filtered image (DENS). Table 1 gives the mean square errors obtained when as-
sessing the noise reduction. These results show that the bilateral filter is inappropriate
in the case of high level noise (i.e. outliers) and vector median filter cannot smooth
enough the image for reducing low level noise when preserving the edges. Figure 1
confirm these results.

The defuzzification process uses a weighted mean of the photometric vectors which
permits to smooth the image. The higher σphot value, the smoother the image. If σphot

is too small, then the filter does not smooth the filtered image. Therefore it does not
enough reduce low level noise. If σphot is too large, the fine details could disappear
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(a) Reference (b) σphot = 5

(c) σphot = 10 (d) σphot = 20

Fig. 2. Reducing noise and level of texture: (a) part of a reference image and fuzzy density-baser
filtered images with (b) σphot = 5, (c) σphot = 10, (d) σphot = 20

when filtering because of a too large smoothing. Figure 2 displays the results obtained
with σphot = 5, σphot = 10, and σphot = 20. The value σphot = 10 gives convenient
results between smoothing for reducing low level noise and preserving details.

We have compared our fuzzy density-based filter (DENS) with two recent fuzzy
filters. The first one is the fuzzy rank-ordered differences (FROD) statistic based filter
[10] which uses a fuzzy metric to decide if a pixel is an outlier or not. This filter is only
adapted to impulse noise. The second one is the fuzzy peer group (FPG) filter [9] which
extends the concept of peer group in the fuzzy setting. This filter is able to process
impulse noise as well as Gaussian noise. To evaluate the performance of these filters,
the test images Caps, Flower, Motorbikes and Parrots in Fig. 3 have been used. In one
hand, the images have been only corrupted with impulse noise. The noise appearance
probability is denoted by p and is successively 0.05, 0.1 and 0.2. The parameters of each
filter have been set to optimize the Peak Signal to Noise Ratio (PSNR). The PSNR and
the normalized colour difference (NCD) have been used to assess the performance of
the filters (Tables 2 - 4). Experimental results show that the proposed method exhibits
almost the same performance as the FPG filter. On the Fig. 4, we can see that the images
obtained using the FPG and DENS filters have a slightly more pronounced contrast than
those obtained by the FROD filter, which explains best PSNR and NCD results. This
experiment shows that our filter is as well robust as existing state-of-the-art filters when
dealing with impulse noise.

In a second experiment, the same set of images is now corrupted with both impulse
and Gaussian noise. We denote σ the standard deviation of the Gaussian noise. Tables 5
- 7 show the experimental results. As expected, the FROD filter obtains the same worst
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(a) (b)

(c) (d)

Fig. 3. Test images: (a) Caps (b) Flower (c) Motorbikes (d) Parrots

Table 2. Comparison of the performance measured in terms of PSNR and NCD (×102) using
images corrupted with p = 0.05 impulse noise

Image Noisy VM FROD FPG DENS
Caps PSNR 22.28 34.56 38.02 41.19 40.61

NCD 5.83 2.08 0.56 1.49 0.27

Flower PSNR 22.54 34.25 36.31 39.74 38.47
NCD 5.84 2.51 0.79 1.78 0.40

Motorbikes PSNR 21.56 26.88 29.46 32.85 31.96
NCD 6.90 6.24 2.03 4.26 1.08

Parrots PSNR 21.68 35.63 36.92 39.85 40.61
NCD 5.74 1.58 0.48 1.55 0.21

results as the VM filter since it is not adapted to Gaussian noise. Our proposed filter
slightly outperforms the FPG filter, in particular when the noise amount is high. This is
mainly due to the smoothing ability which derives from the adaptation of the bilateral
filter. On Fig. 5, the background of the DENS result image is smoother than the FPG
result one whereas the details are preserved.

These experiments illustrate the ability of the proposed filter to adapt itself to impulse
and Gaussian kind of noise.
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Table 3. Comparison of the performance measured in terms of PSNR and NCD (×102) using
images corrupted with p = 0.1 impulse noise

Image Noisy VM FROD FPG DENS
Caps PSNR 19.31 33.82 36.08 38.38 37.61

NCD 11.71 2.22 0.91 1.71 0.51

Flower PSNR 19.52 33.12 33.74 37.35 36.16
NCD 11.69 2.79 1.73 1.77 0.70

Motorbikes PSNR 18.53 26.25 27.84 30.71 29.52
NCD 13.77 6.67 3.17 4.45 1.95

Parrots PSNR 18.69 34.47 35.78 37.76 37.68
NCD 11.41 1.72 0.66 1.69 0.41

Table 4. Comparison of the performance measured in terms of PSNR and NCD (×102) using
images corrupted with p = 0.2 impulse noise

Image Noisy VM FROD FPG DENS
Caps PSNR 16.30 31.87 32.65 34.79 34.85

NCD 23.53 2.61 1.76 2.07 2.3

Flower PSNR 16.53 30.90 31.53 33.52 33.29
NCD 23.46 3.44 2.42 2.90 3.57

Motorbikes PSNR 15.54 24.83 25.47 27.70 27.10
NCD 27.60 32.14 32.61 34.45 35.06

Parrots PSNR 15.69 32.14 32.61 34.45 35.06
NCD 22.79 2.13 1.52 1.96 2.00

Table 5. Comparison of the performance measured in terms of PSNR and NCD (×102) using
images corrupted with p = 0.05 impulse and σ = 5 Gaussian noise

Image Noisy VM FROD FPG DENS
Caps PSNR 22.02 32.97 32.97 36.95 36.86

NCD 14.77 6.43 6.44 4.67 4.39

Flower PSNR 22.28 32.59 32.60 36.20 36.02
NCD 14.47 6.91 5.07 4.53

Motorbikes PSNR 21.35 26.45 28.17 31.41 30.85
NCD 20.50 12.3 15.17 8.34 8.36

Parrots PSNR 21.46 33.65 33.67 36.93 37.10
NCD 13.55 5.47 5.47 4.14 3.75
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(a) (b)

(c) (d)

Fig. 4. Filter outputs of the Flower image corrupted with p = 0.1 impulse noise: (a) VM filter (b)
FROD filter (c) FPG filter (d) DENS filter

Table 6. Comparison of the performance measured in terms of PSNR and NCD (×102) using
images corrupted with p = 0.1 impulse and σ = 10 Gaussian noise

Image Noisy VM FROD FPG DENS
Caps PSNR 18.80 29.96 32.41 33.02

NCD 28.55 11.62 8.99 7.97

Flower PSNR 19.04 29.46 29.47 31.97 32.47
NCD 28.56 12.13 9.01 8.14

Motorbikes PSNR 18.13 25.04 25.11 28.34 27.88
NCD 39.45 19.68 26.97 15.34 13.37

Parrots PSNR 18.28 30.21 30.24 32.49 33.36
NCD 26.43 10.18 10.19 7.78 7.06
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Filter outputs of the (a) Parrots image, (b) image corrupted with p = 0.2 impulse and
σ = 20 Gaussian noise and outputs from (c) VM filter (d) FROD filter (e) FPG filter (f) DENS
filter
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Table 7. Comparison of the performance measured in terms of PSNR and NCD (×102) using
images corrupted with p = 0.2 impulse and σ = 20 Gaussian noise

Image Noisy VM FROD FPG DENS
Caps PSNR 15.41 24.98 24.98 26.56 27.84

NCD 53.22 23.08 23.08 18.26 15.73

Flower PSNR 15.59 24.70 24.70 26.30 27.47
NCD 53.10 23.12 23.12 18.26 15.67

Motorbikes PSNR 14.79 22.11 22.11 23.81 24.52
NCD 72.19 35.11 35.12 27.71 24.38

Parrots PSNR 14.93 24.91 24.91 26.51 27.93
NCD 50.25 20.59 20.59 16.90 14.33

5 Conclusions

This paper adapts the classical fuzzy scheme for data analysis in the framework of noise
reduction for multicomponent images. This scheme consists in a data fuzzification fol-
lowing by a defuzzification allowing the decision. The approach we propose is based
on first the selection of adaptive fuzzy neighbourhoods of the pixels (i.e. the fuzzifi-
cation) and second a defuzzification taking into account both spatial and photometric
aspects of images. This fuzzy logic approach allows us to model the most classical fil-
ters used in the framework of image processing. Therefore this fuzzy scheme offers new
angles for noise reduction of multicomponent images. The new density-based filter we
propose reduces both high level noise (impulse noise) and low level noise (Gaussian
noise). Like Bilateral filter, our filter reduces low level noise preserving details because
its anisotropic nature. But it is also as robust against outliers (i.e. high level noise) as
the vector median based filters are. Therefore the fuzzy scheme permits us to design
a new filter taking into account the advantages of two classic filters for reducing both
high and low level noise.
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Abstract. Health is a crucial dimension of individual well being and it is in itself
multidimensional and complex. In this paper we tackle this complexity by using
fuzzy expert logic that allows us to keep its complexity and at the same time to
get crisp indicators that can be used to measure its status. The applied analysis
refers to a country, Italy, that shows a high regional variability in health achieve-
ments related to the different diffusion and quality of health services across Italy.
The source of data used for this purpose is the Italian National Statistical Insti-
tute (ISTAT) survey on health conditions. We proceed with a comparison of the
results of the application of fuzzy logic to health measurement to a more standard
methodology (SF-12) outlining the advantages of using fuzzy logic. The obtained
fuzzy measure of health is then analyzed by means of multivariate analysis that
confirms regional variability, lower health achievements for women, elderly and
lower educated individuals. People in nonstandard working positions (like tem-
porary contract) or unemployed show a lower health achievement too.

Keywords: Fuzzy logic, Health, Capabilities, Gender perspective.

1 Introduction

This paper presents the initial results of a wider research project supported by the Ital-
ian Ministry of Health on gender and health. It is made up of six projects, each dealing
with different aspects from a gender perspective. One of these projects, that developed
by the research unit of the University of Modena & Reggio Emilia, is concerned with
the socio-economic determinants of health from a gender perspective. We thank the ex-
pert group on health (Sivana Borsari, Maria Cristina Florini and Erica Villa) for their
comments on the construction of the model used to measure health; Anna Maccagnan
for her elaborations of the microdata and the other participants in the project for their
comments on a previous version of this paper. This idea is supported by the increasing
attention given in recent years to gender differences and inequalities, which no longer
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research unit within the broader project funded by the Italian Ministry of Health: “La medicina
di genere come obiettivo strategico per la sanità pubblica: l’appropriatezza della cura per la
salute della donna”.
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come down to mere biological factors also seen within a wider perspective that in-
cludes the concept of women’s capability of living a healthy life. Nonetheless, in Italy
we observe a systematic lack of appreciation of “gender-oriented health”, fundamental
to guaranteeing equity and planning efficient health and social services. In our group’s
project, the evaluation of the gender factor will refer to four dimensions: access to ser-
vices, objective and subjective health, life styles and states of well-being. The classical
definition of a country’s welł-being is usually connected with GDP measurements. The
need to take the health dimension into account in the evaluation of well-being in or-
der to go beyond GDP and towards an extended measurement of human development
has been widely recognized in the literature [1], [2] leading to the proposal of indi-
cators that measure human development and explicitly include measures of the health
dimension such as the Human Development Index [3]. Here we follow Sen’s capability
approach [4] by measuring well-being in its multidimensional setting devoting special
attention to one dimension: the capability of living a healthy life. In defining this ca-
pability we are aware of its complexity stemming from various dimensions (physical
vs mental health; subjective vs objective) and bound up in the social environment that
affects its development. In order not to lose its complexity while measuring it, we adopt
fuzzy logic. Fuzzy logic is ideal, in our opinion, since it allows us to get to the heart
of the development process of the capability without losing the various dimensions that
interact to define it. An attempt to exploit fuzzy logic to measure healthy living has
previously been undertaken by Pirotti (2006) using Italian microdata (yet with a lim-
ited number of variables to define health) and by Addabbo et al. (2010a) to measure
the capability of living a healthy life in the Modena district. However, this is the first
attempt to implement a fuzzy inference system on the definition of living a healthy
life with a large number of dimensions at national level in Italy. Due to the different
methodology adopted, this work differs in methodological terms, from other previously
published papers, dealing with the issue of health from a capability perspective [6]. The
fuzzy technique in fact allows us to preserve the complexity of the measuring issue and,
at the same time through a system of rules,to make explicit the relationships between
the variables that help to assess the degree of capability development. The presence
in the project of experts in health problems has helped us in fuzzy inference building,
in the fuzzification of inputs and in the rule construction. But our purpose is also to
compare our “non main stream” approach with a classical method to look at differences,
faults and values. So we have looked at the SF12 questionnaire, which is an instrument
adoptedto measure the “health level” widely used (in over 40 countries) and validated
by the international scientific community. It has been in use since 1992, when the Med-
ical Outcomes Study (MOS) developed a standardized survey form made up of 115
items synthesized in 12 steps. The MOS was a two year study of patients with chronic
conditions that set up to measure the quality of life, including physical, mental and
general health. The SF-12 requires only two minutes to be filled in, and it can be self-
reported. It can be added to larger surveys or printed on a single sheet and easily faxed
away. Due to its handiness, yet still being of great meaningfulness as stated before, dur-
ing the last decade the use of SF-12 has spread throughout the world. Even the Italian
National Institute of Statistics (ISTAT) decided to add an SF-12 section to its 2005 na-
tional health survey. So we carried out our analysis using the Italian Statistical National
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Institute survey on health conditions in 2004-2005, which provides a set of variables
well-suited to the information needs for the treatment of the topic in question. Partic-
ularly relevant for the purposes of this work is the information on the measurement of
health-related elements of quality of life, such as obesity, certain diseases, disabilities,
on specialist visits and visits to the ER. Moreover, the survey contains information on
factors that may affect the capability of living a healthy life and/or its conversion in
functionings. Amongst them, we may identify in the light of Sen’s capability approach:
Socio/Institutional factors. These refer to the presence of social services in the region
where the individual lives. In a further extension, we will also include data on the health
structure available. In this specification of the model, we do take into account these fac-
tors by including regional dummies (given the uneven presence of health services in the
Italian regions). The individual factors:age, gender, educational level and employment
conditions. We expect to find a negative correlation between age and health status due
to the worsening of health conditions experienced by the elderly. As regards the level
of education, it is now documented extensively in the international literature that higher
education is usually associated to a better health. This is due to a greater awareness of
the importance of lifestyles on health and also to improved access to health services
[7]. Furthermore a higher education level allows for a wider choice about of jobs that
individuals may take and access to posts characterized by healthier conditions as well
as a higher income, which may improve access to health services. Individuals employ-
ment status may be considered a crucial individual conversion factor: some contractual
arrangements, like temporary work contracts, given their high level of instability, may
have a negative effect on health, mainly due to the stress induced by the uncertainty
linked to the job security [8]. Individual health status, as experienced in literature, is
also influenced by familiar conversion factors such as parents’ education level, marital
status, parents’ level of health, family income and housing conditions. These factors
can affect lifestyles, for example, or access to health services.The fuzzy approach we
propose provides all the values of the knowledge-based systems. Everything is transpar-
ent; the rule blocks, which translate the weights proposed by the experts, are readable
and always justified and may be changed if necessary. SF12 applied to the ISTAT 2005
national survey on health is not able to produce this effect as its results are based on a
weighted average. Moreover, the weights used to compute the weighted average were
evaluated in 1994 using data based on the 1992 MOS survey for the USA [9]; thus, one
may question the validity of the same weights years later and in a different country.
On the other hand, though affected by the reliability of experts and the need to use a
more complex methodology, fuzzy logic with its tree structure of the inference system,
allows us to understand the inputs that produce the final result and to improve the final
outcome by devising policies in those areas that appear to be less developed.

2 The Use of a Fuzzy Inference System within a Capability
Approach Framework

Fuzzy logic has been previously used to measure poverty and well-being by Cheli
& Lemmi (1995) and, by following the capability approach, by Chiappero Martinetti
(2000). However the method they follow is different from the one adopted in our con-
tribution. In fact they use a mix of probability theory and fuzzy logic and data are used



200 T. Addabbo, G. Facchinetti, and T. Pirotti

to build variables distributions similar to aleatory distributions, while the aggregation
functions are similar to weighted averages, explained on the basis of weights that are
determined ex-ante. In this method the creation of the membership functions relies on
the distribution of every single variable in the population of reference. In our contri-
bution, we use fuzzy logic following more heuristic methods, which, in our opinion,
are more effective and able to reflect the multidimensionality of the issue of measuring
capabilities without depending on current data. The system is constructed by following
experts’ judgments and rules based on their experience and/or on the literature. The
experts start by choosing the ‘input’ variables, they then propose their aggregation with
‘intermediate’ variables and then to an output variable. The latter is interpreted as the
final evaluation of the development of the functionings of the capability under analysis.
Experts are also responsible for identifying the membership functions of the initial vari-
ables; therefore, unlike the method followed by Chiappero Martinetti (2000) the latter
do not depend on the current available data, but are set by the experts on the basis of
their experience. Experts suggest how to aggregate input variables by using only lin-
guistic rules and attributes without seing the data in advance. The experts’ linguistic
rules are translated formally by mathematicians. The proposed system of rules is then
explicitly described ‘rule by rule’, allowing us to understand to what extent the results
depend on the ratings determined by the experts. The method we apply here to mea-
sure of the capability of living a healthy life has already been used on an experimental
basis for the measurement of well-being within the capability approach, [12,13,14,15]
and specifically for the measurement of the capability of living a healthy life by Pirotti
(2006) and by Addabbo, Chiarolanza, Fuscaldo and Pirotti (2010).

3 The Short Form 12 (SF-12)

This questionnaire is a set of 12 questions relating to the condition perceived over the
four weeks prior to the interview, allowing us to compile two indexes: the Physical
Component Summary (PCS) (index of physical health) and Mental Component Sum-
mary (MCS) (index of mental health), with values from 0 to 100. Because of its brevity
and simplicity, it is widely used in more than 40 countries and has been validated by the
international scientific community[17]. SF-12 is based upon a 12 questions tool of anal-
ysis that has its roots in the instruments used since 1992, when the Medical Outcomes
Study (MOS) developed a standardized survey form consisting of 115 items synthe-
sized in 12 steps. MOS was a two-year study of patients with chronic illnesses which
aimed to measure the quality of life, including physical, mental and general health. As
part of the MOS, RAND, (acronym of Research and Development) developed the 36-
Item Short Form Health Survey (SF-36): a set of generic, coherent and easily adminis-
tered quality-of-life indicators. These measurements rely upon patient’s self-reporting;
thus the administration of the survey is very handy, yet a wide range of literature has
backed up the quality of the results assessed by this survey. Through the analysis of
case studies collected during the MOS project, RAND selected eight groups of ques-
tions, or health concepts, from the original 40 [18]. Those chosen represent the most
frequently measured concepts in widely-used health surveys and those most affected
by disease and treatment [19]. The questionnaire items selected also represent multiple
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operational indicators of health, including: behavioural function and dysfunction, dis-
tress and well-being, objective reports and subjective ratings, and both favourable and
unfavourable self-evaluations of general health status [19]. This psychometric survey
was first developed in the US and then developed internationally over the last 10 years.
The SF-36 idea is based on a three-level tree scheme, starting from the single 36 items,
aggregating them in eight scales and defining the summary measures of physical and
mental health on the third level (respectively PCS and MCS). The discovery that SF-36
physical and mental component summary scales (referred to as PCS-36 and MCS-36
respectively) capture about 85% of the reliable variance in the eight-scale SF-36 health
profile provided a new strategy for meeting this challenge. While two outcome mea-
sures are satisfactory for many purposes, a survey with fewer questionnaire items could
be constructed to estimate these outcomes. Predictive studies supported this strategy.
12 SF-36 items and improved scoring algorithms reproduced at least 90% of the vari-
ance in PCS-36 and MCS-36 in both general and patient populations, and reproduced
the profile of eight SF-36 health concepts sufficiently for large sample studies. The re-
productions of PCS-36 and MCS-36 proved to be accurate enough to warrant the use
of published norms for SF-36 summary measures in interpreting SF-12 summary mea-
sures. The SF-12 Survey represents an efficient synthesis of SF-36. Several empirical
studies also conducted in European populations showed that the synthetic indices of the
SF-12 correlated with the corresponding indices of the SF-36 with a range of values
between 0.93 and 0.97 [17]. SF-12 requires only two minutes to be filled in, and it may
be self-reported. It can be added to larger surveys or printed on a single sheet and eas-
ily faxed away. Due to its handiness, yet still being of great meaningfulness as stated
before, over the last decade the use of SF-12 has spread all over the world. Even the
Italian National Institute of Statistics (ISTAT) decided to add an SF-12 section to its
2005 national survey on health. We will use variables collected in the ISTAT Survey by
using SF-12s to construct our fuzzy inference system (FIS) on the capability of living a
healthy life and compare the results obtained through FIS to the original SF-12 outputs.

4 A Fuzzy Inference System to Measure the Health of the Italian
Population

A fuzzy inference system (FIS) (Figure 1) may be graphically represented as a tree.
Starting from the right hand side we see the output of the system: the health status.
Moving to the left, the tree grows and presents various nodes, representing the interme-
diate variables describing the macro-indicators, through to the smallest branches which
show the initial inputs. The basic input variables that appear on the left side of the tree
conceptually pertain to three different areas: the first, concerning perceived physical
and mental health; the second, whicj attains to more objective indicators of physical
health, and the third, which regards access to health services. Lifestyles were not taken
into account because they represent risk factors in the medium and long term but they
are not “manifestations” of the immediate state of health of individuals. What we aim
to do here is instead to understand the health status over a relatively short period, such
as the last four weeks. Instead of directly using SF-12 outcomes, available as a ready
to use variable, we decided to build a “fuzzy SF-12”, the results of which (Physical
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Fig. 1. The chosen fuzzy inference system tree

Well-being and Dimension of Psychological and Relational Health) could be used as
intermediate variables for the final “status of health index” and at the same time, be
compared to the original Physical Component Summary (PCS) SF-12 index of physical
health and the Mental Component Summary (MCS) SF-12 index of mental health. The
reason for this choice is that, as already stated, even though the SF-36 idea relies on a
tree scheme basis, SF-12 outcomes are obtained as a reduction of the variables based on
a statistical basis that makes impossible to reconnect the final SF-12 analysis scheme
to the original logic that guided the researchers in first place. According to the SF-12
operative manual, MCS and PCS are built through the use of weighted means, using
regressive coefficients coming from analysis based on the American population. How-
ever, the coefficients are given and derived from SF-36 coefficients that, in turn, come
from the original 115 questions of the MOS survey; therefore, it is hard to trace back
the path that led to the construction of the coefficients. Moreover, we believe that the
assumption that the coefficients estimated using a sample representative of the Ameri-
can population in the mid ‘90s remains valid even when applied to the analysis of other
countries and almost ten years later is rather strained. There is no guarantee of the va-
lidity of results. As a last consideration, we must notice that MCS and PCS are two
indicators that have been designed to be two well separated indexes, not to be bundled
toghether in a single synthetic health indicator. Instead in our opinion, supported by our
health experts’ opinions and by the literature, it is possible to proceed with the construc-
tion of a third synthetic index that takes into account elements of both dimensions. For
this reason, even if we assume that SF-12 results are proven to be reliable, we wanted
to produce indexes whose results could arise from immediately understandable choices
and that could also produce a unified health index. Our “fuzzy SF-12” is hence an ex-
pert system, driven by experts’ judgments, so that the survey outcomes are the direct
reflection of a precise will, connected to the analysis of the specific Italian framework.
Moreover in our evaluation system, following Wagstaff et alt. (1991) we have decided
to propose not just the PCS and MCS scheme, but three macro-indicators (physical and
mental health, physical condition and access to the health services). The “health” of the
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Table 1. The system variables: abbreviations and relative questions

ER Did you need assistance from the ER during the last 12 months?
Limitations Did you experience limitations during at least the last six months?
NeedAssist Do you think that you need house care assistance?

NHospitalizations Number of Hospitalizations in the last 3 months
NVisits Number of visits during the last 4 weeks
Obesity Are you obese?

SF1 In general, would you say your health is: excellent, very good, good, fair or
poor?

SF10 How much of the time during the past 4 weeks did you have a lot of energy?
SF11 How much of the time during the past 4 weeks have you felt downhearted

and blue?
SF12 During the past 4 weeks, how much of the time has your physical health or

emotional problems interfered with your social activities (like visiting with
friends, relatives, etc.)?

SF2 Does your health now limit you in moderate activities, such as moving a
table, pushing a vacuum cleaner, bowling, or playing golf

SF3 Does your health now limit you in climbing several flights of stairs?
SF4 During the past 4 weeks (relatively to your work or other regular daily ac-

tivities as a result of any physical problems) did you accomplished less than
you would like?

SF5 During the past 4 weeks, as a result of any physical problems, were you
limited in the kind of work or other regular daily activities?

SF6 During the past 4 weeks (relatively to your work or other regular daily ac-
tivities as a result of any emotional problems such as feeling depressed or
anxious) did you accomplished less than you would like?

SF7 During the past 4 weeks, as a result of any emotional problems such as feel-
ing depressed or anxious, didn’t you do work or other regular daily activities
as carefully as usual?

SF8 During the past 4 weeks, how much did pain interfere with your normal work
(including both paid work and housework)?

SF9 How much of the time during the past 4 weeks have you felt calm and peace-
ful?

AccHealthService Access to the Health Services
DimOfPhysHealth Dimension of Physical Health
DimPsicRelHealth Dimension of Psycho-Relational Health

HealthStatus Health Status
Physical Conditi Physical Condition

Physical WB Physical Well-being
Affective status Affective Status
Physical Activit Physical Activity
PhysicalSphere Physical Sphere
PsycholSphere Psychological Sphere

fuzzy system’s final output (Health Status) investigated from a physical point of view
(physical health dimension) and a mental or psychological point of view (mental health
dimension) use the items in the SF-12 survey; however, it is not just the result of the use
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of these items: firstly we have a third dimension, bound up in the actual use of services
and structures connected to the healthcare service. Thus in our vision there are not just
two dimensions but three. We have noticed that SF-12 items are far too connected to a
subjective evaluation of health. This third leg of the tree helps to connect subjective to
objective information. In addition to this the physical health dimension is not just the
result of the elaboration of the SF-12 items, but, for the same reason, we have added
physical objective data. Looking at the PCS items, it becomes clear that the items at-
tain to “Physical Well-being”. For a comprehensive evaluation of health, its perception
represents an important reference as it helps to capture the multidimensionality of the
concept itself, defined according to the World Health Organization as a state of “com-
plete physical, mental and social wellbeing” [21]. Adding information about people’s
physical conditions greatly helps to better evaluate the dimension of physical health. In
this way functional indicators define health in relation to the loss of skills in performing
‘normal’ daily activities. Medical indicators identify the presence of specific diseases
or disabling conditions diagnosed by physicians. Subjective ones,on the other hand, de-
fine health according to the perception of the individual. In a fuzzy system, the same
variable can be used several times. The complexity of relationships between different
determinants of individual health is indicated by the presence of some input variables,
in keeping with the literature in more than one dimension of the state of individual
health. The “access to health care services” dimension comprises information (or basic
variables) as the number of hospitalizations (excluding childbirth hospitalizations), over
the past three months, the number of accesses to the Emergency Room (ER) over the
past 12 months, not counting the so called white codes, meaning wrong or unnecessary
accesses to the ER, and the number of doctors’s visits, excluding dental visits. As may
be easily understood, the effect of these variables (and of the intermediate index) on the
final variable, “individual health status” is negative because a high number of accesses
to health services is likely to be connected to a poor health status. In order to fuzzify
the inputs, the experts have decided to identify three linguistic membership functions
per each variable, respectively named “none”, “some” and “many”. These are applied
to “number of visits”, for which 0 is connected to the spike of none, 2 to the spike of
some and 4 to the spike of many.

The same membership functions (MBFs) were applied to the number of hospitaliza-
tions, so that 0 is associated to none, some to 3 and many to 5. The access to the ER
instead is just a dummy and it tells us whether an individual had to ask for assistance
over the previous 12 months.

The aggregation method amongst fuzzified variables is not an explicit function, but
it is expressed in the form of the explicit rule block, where every possible interaction
between the fuzzy sets (for instance none, some and many( is represented by a block
line in the “IF” part, while the effect on the variable on which they insist is represented
by a synthetic lexical effect in the “THEN” part. Since more than one rule may be ac-
tivated at the same time, every rule is activated with the MIN aggregating rule, which
stands for the minimum level of activation between the sets (always between 0 and 1),
acting in the “IF” part. If a term is activated with a level of 0, it means that it is ab-
solutely not activated (the data do not belong to that fuzzy set). On the other hand if
the level is 1 it means that the term is fully activated, meaning that the data belongs
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Fig. 2. Fuzzyfication scheme and membership functions of N Visits

Fig. 3. Fuzzyfication scheme and membership functions of N Hospitaliz

entirely to that specific term and just to that one. Every number in between stands for
a partial belonging between different fuzzy sets. The way the membership degree to a
particular fuzzy set is decided depends on the specific membership function of every
fuzzy set. On the THEN side, there may be many lines that lead to the same lexical
effect. If there are more activated lines in the same rule block with the same effect, the
chosen aggregation rule is the bounded sum (BSUM): all the effect activation levels get
summed up tol the level of 1. Any effect added to that level produces no result. The
described aggregating process, through the use of rule blocks, is iterated from the left
to the right of the system tree. At the end of the process, to make the results intelligible
to human beings it is necessary to de-fuzzify them. This is done with a system called
“Center of Maximum” or, in short, CoM: if more effect are active at the same time in
the final rule block, only the highest will be considered and the result will be equivalent
to the peak of its membership function.

The variable named “Dimension of Physical Health” was designed to be an aggre-
gation between the “Physical condition” and the “Physical Well-being”. The “Physi-
cal condition” identifies health conditions caused by chronic or incapacitating diseases
through objective indicators such as the presence of limitations for at least six months,
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Table 2. A rule-block example:the access to health services

If Then
Hospitalizations Visits E.R. Health Service

none none No very low
none none Yes low
none some No low
none some Yes low
none many No low
some none No low
none many Yes medium
some none Yes medium
some some No medium
some some Yes medium
some many No medium
many none No medium
some many Yes high
many none Yes high
many some No high
many some Yes high
many many No high
many many Yes very high

need for home care, and finally the presence of obesity, discriminated by body mass
index values over 30 among over 18s, while in the population below 18 years of age,
the corrections suggested in the literature were adopted [22]. While the first of the
three basic indicators may be seen as a categorical variable on three levels, the other
two are dummy variables. “Physical well-being”, contributing to the definition of the
“Dimension of physical health”, uses some of the 12 items that make up the SF-12
questionnaire. The reason was to identify the most significant scales underlying the
conceptual model, which lead to the creation of the PCS of the SF-12 survey [23,17].
Therefore, in detail the input variables are conceptually related to the following scales:
general health, bodily pain, physical functioning play their role into the definition of the
“Physical well-being” intermediate factor. This intermediate variable therefore contains
the subjective evaluation of individual general health conditions, given by the intervie-
wee, his perception of physical limitation due to pain at work and during usual social
activities with family. The other intermediate variable taken into account is the “Dimen-
sion of Psychological and Relational Health”, whose purpose is to evaluate individual
health from a psychological-well being point of view. The dimension of Psychological
and Relational Health is deliberately made up of many variables relying on the scales
that are the main components of PCS in the SF-12 analysis: vitality, social functioning,
emotional role and mental health. The aggregating process described, through the use
of rule blocks, is iterated from the left to the right of the system tree. At the end of the
process, to make the results intelligible to human beings it is necessary to de-fuzzify
the results. This is done by using the Center of Maximum method described above.
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Table 3. A comparison between the two Psychological Health indicators: DPRH and MCS

Age Classes
DPRH MCS

Men Women Men Women
15-24 88.64 84.34 53.70 51.36
25-34 85.56 81.05 52.58 50.52
35-44 82.14 78.34 51.59 49.88
45-54 78.50 72.89 50.81 48.60
55-64 74.21 67.73 50.43 48.03
65-74 68.20 59.99 49.67 46.43
75+ 56.21 47.84 47.16 44.09

5 The Individual Health Status in Italy and the Role of Observable
Conversion Factors

In this paragraph we will analyze the results of the FIS applied to health, trying to place
some personal or social factors in relationship with the development of the capability
of living a healthy life. The degree of development will be approximated using the final
output of the FIS presented in the previous paragraph. The sample for this analysis, as
already stated, comes from the Italian National Institute of Statistics survey on health
for 2004-2005. In particular, the object of our investigation is the subset of people over
14 who did not present any missing values on the variables chosen to run the FIS. In
fact, one of the main prerequisites of an FIS is that the data matrix has to be dense.
Since our dataset contains a relatively high number of observations, this prerequisite
can be easily satisfied: the final sample is made up of 111,151 individuals, weighted to
be significant both at a national and at a regional level. In Table 3 we compare the results
on the measurement of the two Phsycological Health indicators: the fuzzy DPRH and
the SF-12 MCS, while in Table 4 we compare the results obtained for the two Physical
Health indicators the fuzzy PWB and the SF-12 PCS. Table 5 contains the results of the
Fuzzy final output value on Health by gender and age.

Standardizing both the outputs of the evaluation system on a 0-100 range, we dis-
covered that the fuzzy indexes are generally higher than MCS and PCS with respect
to all the age classes, for both genders, but it is also pretty clear that the variability of
the fuzzy indexes is much higher; hence the fuzzy outcomes are more sensitive to the
changes caused by age. Furthermore, even though the results are generally higher, the
trends are the same: women’s health is worse than men’s at every age, with a strong and
constant decrease over time.

This result is also confirmed by the trend in the main index (Health Status), which
is higher, on average, among the youngest individuals, a little better for men than for
women, decreasing with age. All the indexes obtained and analyzed present a similar
trend.

If we consider people’s health status and we compare it now with their employment
status, we see that the results are fairly consistent with what we might expect: students
and people seeking their first job are expected to be younger and they actually receive
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Table 4. A comparison between the two Physical Health indicators: PWB and PCS

Age Classes
PWB PCS

Men Women Men Women
15-24 92.35 90.60 55.28 55.31
25-34 90.45 87.71 54.52 53.95
35-44 88.19 85.98 53.59 53.12
45-54 85.49 80.93 52.43 51.13
55-64 80.99 74.22 50.38 48.27
65-74 72.97 63.55 46.96 44.10
75+ 55.46 44.23 40.39 36.87

Table 5. The average Health Status index by gender and age class

Age Classes Men Women
15-24 87.19 85.13
25-34 88.46 85.87
35-44 85.91 84.02
45-54 83.20 80.02
55-64 79.83 75.79
65-74 74.87 69.48
75+ 65.50 59.61

the highest marks. On the other hand, we find people who are retired from work whose
health status is worse given their average higher age.

But if we consider employed and unemployed people (Figure 4) we see that these
two groups, which apparently should not differ so much as regards their average age,
present quite different marks: 85.95 for the employed males against 81.62 for the un-
employed and 83.48 for the employed women, compared to 81.48 of the unemployed
women. This is in line with the health costs linked to unemployment status as outlined
in Sen (1997). Turning to education (Figure 5), the data confirm what the literature
claims as common ground: a higher educational level is positively related to individual
health. We then completed our analysis by estimating a multivariate OLS regression
model that allows us to take into account the weight of the different conversion fac-
tors on the index of living a healthy life resulting from the implementation of our FIS
model (Table 6) to the data.The results obtained confirm a negative effect of ageing on
the fuzzy measure of health and, having controlled for age, one can see that women
are still characterized by worse health than men especially with regards to the psychic
dimension. Health improves when the education level is higher. Turning to employ-
ment conditions, we can see that controlling for age and education levels, if one holds
a temporary work position, his/her health status deteriorates (the control variable be-
ing employed on a permanent basis). Joblessness is also, consistent with Sen’s analysis
(1997), leading to lower health. Joblessness or temporary work contract have a higher
negative effect on mental health. Whereas retired or disabled show a lower achieve-
ment in physical health. We control also for the type of disease with the higher negative
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Table 6. Health Status: a multivariate analyses (standard errors in parenthesis)

Variables Health Physical Mental

Female -0.0247*** -0.0277*** -0.0487***
(0.00140) (0.00222) (0.00264)

Age
-0.0429*** -0.0301*** -0.110***
(0.00186) (0.00294) (0.00350)

High School
0.0365*** 0.0625*** 0.0394***
(0.00146) (0.00231) (0.00276)

Degree and over 0.0478*** 0.0726*** 0.0631***
(0.00230) (0.00362) (0.00432)

Temporary -0.00683** -0.000697 -0.0239***
(0.00319) (0.00503) (0.00600)

Retired -0.0289*** -0.0487*** -0.0129***
(0.00209) (0.00332) (0.00394)

Disable
-0.521*** -0.934*** -0.655***
(0.00547) (0.0101) (0.0111)

Other condition -0.0265*** -0.0455*** -0.0335***
(0.00174) (0.00275) (0.00328)

Unemployed -0.0157*** -0.00992** -0.00539***
(0.00291) (0.00459) (0.00548)

South -0.0165*** -0.0317*** -0.0202***
(0.00135) (0.00214) (0.00255)

Respiratory diseases
-0.0550*** -0.0637*** -0.0829***
(0.00181) (0.00289) (0.00342)

Diabetes -0.0952*** -0.137*** -0.147***
(0.00296) (0.00480) (0.00565)

Cataract -0.121*** -0.206*** -0.159***
(0.00369) (0.00611) (0.00708)

Hypertension -0.0836*** -0.112*** -0.112***
(0.00182) (0.00290) (0.00344)

Bones diseases
-0.139*** -0.212*** -0.197***
(0.00187) (0.00297) (0.00354)

Cancer -0.116*** -0.102*** -0.182***
(0.00404) (0.00660) (0.00778)

Ulcer -0.0488*** -0.0258*** -0.0962***
(0.00394) (0.00637) (0.00752)

Gall/Kidney stones -0.0504*** -0.0607*** -0.0782***
(0.00406) (0.00655) (0.00773)

Cirrhosis
-0.134*** -0.131*** -0.206***
(0.0117) (0.0193) (0.0230)

Migraine
-0.0319*** -0.0164*** -0.0719***
(0.00207) (0.00331) (0.00393)

Depression -0.161*** -0.117*** -0.416***
(0.00240) (0.00387) (0.00457)

Alzheimer/ Parkinson’s disease -0.445*** -0.643*** -0.639***
(0.00711) (0.0139) (0.0147)

Neural system’s diseases
-0.149*** -0.131*** -0.305***
(0.00541) (0.00901) (0.0105)

Thyroid diseases
-0.00967*** 0.00378 -0.0235***
(0.00297) (0.00474) (0.00563)

Skin’s diseases -0.0346*** -0.0177* -0.0737***
(0.00570) (0.00910) (0.0108)

Other pathologies -0.0241*** -0.0302*** -0.0300**
(0.00620) (0.00986) (0.0117)

Constant
4.632*** 4.633*** 4.839***
(0.00684) (0.0108) (0.0129)

Observations 111,151 109,43 110,306
R-squared 0.31875 0.23611 0,258333333
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Fig. 4. The average Health Status by gender and employment status

Fig. 5. The average Health Status by gender and educational level

effect on health status being connected to Alzheimer or Parkinsons disease followed by
nervous disease and depression. Those living in the South of Italy show a lower level
of health achievement, and this is probably connected to worse health infrastructures
in the South of Italy. Deeper analyses on regional variability will be performed in fur-
ther research by matching our population data with health infrastructures administrative
data. A first attempt in this direction shows that the coverage of pap test by region on
women aged over 25 has a positive effect on women’s health and that people living in
regions with higher percentage of places for elderly in public services or in household
assisted public services show a higher health status.
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6 Conclusions

In the analysis of individual well-being, health status is a central dimension. In this pa-
per we have analyzed the individual health status by considering its multidimensional
nature. In order not to lose its complexity we have proposed a modular approach (the
fuzzy tree diagram) which allows us to obtain an index on health without losing single
macro-index information. The choice, interaction and the effects of the various avail-
able indicators were chosen by the authors on the basis of health experts’ opinions,
expressed through linguistic rules. This methodology reduces the debated problem of
the numerical attribution of weights. The health status (the final output of our fuzzy in-
ference system) is determined by the interaction in the FIS of access to health services,
the dimension of mental health and that of physical health. The first innovative product
is thus precisely the use of a fuzzy inference system on the health status since it shows
the individual settlement through the combination of the observable variables in the
survey on the health status of the Italian population. We then analyzed the crisp value
produced in relation to individual and family variables which may interact with the very
fundation of a healthy condition. During the construction of the intermediate variables
and of the whole system, the method that we applied maintains the complexity of the
definition of health status, while at the same time, is able to produce a synthetic and
numeric index. On average, the health status index of the Italian population is found to
be lower for women than for men and for people holding unstable working positions,
without work or living in the South. Further developments of the multivariate analy-
sis of the health status include the effect of health services. Preliminary results show
that the coverage of pap test by region on women aged over 25 has a positive effect on
women’s health and that people living in regions with higher percentage of places for
elderly in public services or in household assisted public services show a higher health
status.
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secondo lapproccio delle capacità: vivere una vita sana. In: Baldini, M., Bosi, P., Silvestri, P.
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Abstract. The calculation of the center of a set of points in an open space, sub-
ject to a given metric, has been a widely explored topic in operations research. In
this paper, we present the extension of two of these centers, the median and the
min-max centers, when there is uncertainty in the location of the points. These
points, modeled by two-dimensional trapezoidal fuzzy numbers (TrFN), induce
uncertainties in the distance between them and the center, causing that the result-
ing center may also be a two-dimensional TrFN. The solution gives flexibility to
planners, as the value of the membership function at any given coordinate can be
seen as a degree of “appropriateness” of the final location of the center. We further
consider how to model the existing space constraints and what is their effect on
the calculated centers. Finally, in the case of temporal analysis, we can determine
the durability of the location of the center at a given point of the study area.

1 Introduction

Finding an optimal center in space became a common process in planning, because
it allows to affect a set of demands to one or several locations that offer dedicated
facilities. For instance, a center collecting wastes, a vehicle depot for logistic purpose
or a hospital complex, all require a relevant metric to minimize cost or maximize access
to them. Mathematicians, economists and geographers developed methods which locate
these centers according to either equity (minimax) or efficiency (minisum) objectives,
following the work in k-facilities location problems on networks [12], that respectively
correspond to the k-median and the k-center. Indeed, there exist many mathematical
problems and formalisms for optimal location problems [13]. More recently, we can
see a larger scope of the domain and sets where these issues appear [3]. Other books
complete the state-of-the-art [9,11,17] or focus on applications in transportation [15,18]
or health care [1].

Methodologies for optimal location can be applied on continuous space, finite space
or networks (graphs or roads for instance). If k = 1, then the aim is to find a single cen-
ter. The choice of the metric p is also significant because it involves, on the one hand,
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K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 213–240.
DOI: 10.1007/978-3-642-35638-4_15 c© Springer-Verlag Berlin Heidelberg 2013



214 J. Rojas-Mora, D. Josselin, and M. Ciligot-Travain

the method to set the distance separating the demands to the center, and on the other,
how to combine these distances according to a given objective function. Thus, there
exist many ways to calculate a center for many points of demand, even when reducing
complexity by considering a continuous space, a unique center and the Minkowski dis-
tance of Lp norms. The first parameter, p, defines the norm of the distance separating
the demand points to the center: rectilinear (p = 1), Euclidean (p = 2) or Chebyshev’s
(p → ∞). The second parameter, p′, relates to the calculation of the center itself. The
sum of the distances is minimized when p′ = 1, the sum of the squared distances when
p′ = 2 and the maximum of the distances when (p′ →∞).

Among all the possibilities crossing p and p′ of the Lp norms, only three cases can be
computed in closed form: the median center, which minimizes the sum of the rectilinear
distances (p = p′ = 1), the centroid or barycenter, which minimizes the sum of the
squared Euclidean distances (p = p′ = 2) and the min-max center, which minimizes
the maximum of the maximum marginal distances (p→∞ and p′ →∞).

Scientists and planners use to consider the final location to be accurate and crisp,
or, at least, as a finite set of possible predefined locations. However, there might be un-
certainty on the estimated distances, due to uncertainty carried by the demand location
itself. This is particularly true when considering urban sprawl, as it can generate non
negligible variations on the location of the town’s center, which in place might affect
the location of the optimal center. There is also the case when subjective or vague in-
formation is used to define the demand location. The result, then, cannot possibly be a
crisp point, and solutions that assume crisp data when non is available, might be at risk
being far from optimal.

By modeling the demand points as bi-dimensional fuzzy sets we prove in this paper
that the results obtained for crisp environments can be easily extended to the fuzzy ones,
attaining homologous closed form expressions. As the solutions depend only on arith-
metic operations of fuzzy numbers, thus obtaining fuzzy numbers as its coordinates, the
approach followed in this work deviates from the path trailed by many fuzzy location
papers, in which constraints are fuzzy, but the solution is not [8,2,4,16].

Fuzzy solutions also give some leeway to planners which might be forced to se-
lect the final location of the center away from the place with the highest membership
value, but that can the measure the impact of their decision and, thus, asses its
“appropriateness”.

The space in which the points are contained may present some constraints that can be
modeled as fuzzy sets. We propose a method, based on the intersection of fuzzy sets, to
incorporate these constraints into the initial solution, obtaining a constrained fuzzy cen-
ter. The intersection of a fuzzy center with these constraints may alter the membership
function of the former, and thus, the center would cease to be a bidimensional TrFN to
become a fuzzy subset.

This same methodology can be used to study the durability of a proposed location,
by the intersection of the centers calculated at different instants. The membership func-
tion of the resulting fuzzy set can be seen as the degree of durability of the location.
We also study the situation when the intersection is an empty set, proposing the grad-
ual shedding of the farthest solutions until the intersection not only ceases to be empty,
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but also has an objective function value greater than a given threshold provided by the
decision maker.

This paper is structured in the following way. In Section 2, we introduce the closed
form expressions for centers usually used in the literature. Then, on Section 3, the basic
concepts of fuzzy sets and fuzzy numbers used through our paper are defined. Sec-
tion 4 covers the demonstrations used to prove that the closed form expressions found
for some centers in crisp environments can be extended to fuzzy points. In Section 5
we present our methodology based on the intersection of fuzzy sets to include space
constraints and evaluate the durability of a given location. A small numerical example,
joined by some figures in which the results can be easily seen, is developed in Section
6. Finally, Section 7 presents the conclusions as well as the future work based on our
results.

2 The Median Center and the Min-Max Center

A recurrent problem in geography and planning is the need to find the center of a set
of demand points that minimizes a given objective function. Without taking into con-
sideration the road network that links these points, i.e., in an open space, there are two
simple, but also widely used methods to solve this problem, the median center and the
min-max center.

Definition 1. For a set P = {p(i)} of n points in R2, i.e., p(i) = {p(i,x), p(i,y)}, the
median center m = {m(x),m(y)} is found by the median of their coordinates in x and
y:

m(x) = median
(
p(i,x)

)
(1)

m(y) = median
(
p(i,y)

)
. (2)

Definition 2. For a set P = {p(i)} of n points in R2, i.e., p(i) = {p(i,x), p(i,y)}, the
min-max center z = {z(x), z(y)} is found by the average of the extremes in x and y:

z(x) =

max
i=1,...,n

(
p(i,x)

)
+ min

i=1,...,n

(
p(i,x)

)
2

(3)

z(y) =

max
i=1,...,n

(
p(i,x)

)
+ min

i=1,...,n

(
p(i,x)

)
2

. (4)

The median center is the result of the minimization of the sum of the squared Manhattan
distances from each point to the center. On the other hand, the min-max center is ob-
tained by minimizing the maximum of the maximum marginal distances (the distance
from a point to the center on x or y). The first method is used in cases in which the
stability of the solution is of prime concern, while the second is used when the max-
imum cost needs to be minimized. The median center is only affected by changes in
the middle points, but changes in extreme points affect only the min-max center. The
selection of the appropriate method to find the center depends on which points are most
likely to change and on which objective is pursued [7].
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3 Fuzzy Sets and Fuzzy Numbers

When it is difficult to say that an object clearly belongs to a class, classical set theory
loses its usefulness. The fuzzy sets theory [19] overcomes this problem by assigning
degrees of membership of elements to a set. In this section we will recall the concepts
of the fuzzy set theory that will be used in this paper.

3.1 Basic Definitions

Definition 3. A fuzzy subset A˜ is a set whose elements do not follow the law of the ex-
cluded middle that rules over Boolean logic, i.e., their membership function is mapped
as:

μA˜ : X → [0, 1]. (5)

Definition 4. In general, a fuzzy subset A˜ can be represented by a set of pairs composed
of the elements x of the universal set X , and a grade of membership μA˜(x):

A˜ =
{(

x, μA˜(x)
)
| x ∈ X , μA˜(x) ∈ [0, 1]

}
. (6)

Definition 5. An α-cut of a fuzzy subset A˜ is defined by:

Aα = {x ∈ X : μA˜ (x) ≥ α} , (7)

i.e., the subset of all elements that belong to A˜ at least in a degree α.

Definition 6. A fuzzy subset A˜ is convex, if and only if:

λx1 + (1− λx2) ∈ Aα ∀x1, x2 ∈ Aα, α, λ ∈ [0, 1] , (8)

i.e., all the points in [x1, x2] must belong to Aα, for any α.

Definition 7. A fuzzy subset A˜ is normal, if and only if:

max
x∈X

(
μA˜(x)

)
= 1. (9)

Definition 8. The core of a fuzzy subset A˜ is defined as:

NA˜ =
{
x : μA˜(x) = 1

}
. (10)

Definition 9. A fuzzy number A˜ is a normal, convex fuzzy subset with domain in R for
which:

1. x̄ := NA˜, card (x̄) = 1, and
2. μA˜ is at least piecewise continuous.
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The mean value x̄ [20], also called maximum of presumption [14], identifies a fuzzy
number in such a way that the proposition “about 9” can be modeled with a fuzzy
number whose maximum of presumption is x = 9. As Zimmermann explains, for com-
putational simplicity there is a tendency to call “fuzzy number” any normal, convex
fuzzy subset whose membership function is, at least, piecewise continuous, without
taking into consideration the uniqueness of the maximum of presumption. Thus, this
definition will include “fuzzy intervals”, fuzzy numbers in which x̄ covers an interval1,
and particularly trapezoidal fuzzy numbers (TrFN).

Definition 10. A TrFN is defined by the membership function:

μA˜(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− x2−x

x2−x1
, if x1 ≤ x < x2

1, if x2 ≤ x ≤ x3

1− x−x3

x4−x3
, if x3 < x ≤ x4

0 otherwise.

(11)

This kind of fuzzy interval represents the case when the maximum of presumption, the
modal value, can not be identified in a single point, but only in an interval between
x2 and x3, decreasing linearly to zero at the worst case deviations x1 and x4. The
TrFN is represented by a 4-tuple whose first and fourth elements correspond to the
extremes from where the membership function begins to grow, and whose second and
third components are the limits of the interval where the maximum certainty lies, i.e.,
A˜ = (x1, x2, x3, x4).

Definition 11. The image of a TrFN is defined as:

Im
(
A˜) = (−a4,−a3,−a2,−a1) .

Definition 12. The addition and subtraction of two TrFN A˜ and B˜ are defined as:

A˜ ⊕B˜ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4) (12)

A˜ �B˜ = A˜ ⊕ Im(B)˜ . (13)

3.2 Miscelaneous Definitions

Comparing fuzzy numbers is a task that can only be achieved via defuzzification, i.e.,
by calculating its expected value. For its simplicity, we have selected the graded mean
integrated representation (GMIR) of a TrFN [5] as the method used in this paper to
defuzzify and compare TrFN.

Definition 13. The GMIR of non-normal TrFN is:

E
(
M˜)

=

´ max
(
μM˜)

0
μ
2

(
L−1
M˜ (μ) +R−1

M˜ (μ)
)

dμ

´ max
(
μM˜)

0 μ dμ

. (14)

1 As a matter of fact, they are also called “flat fuzzy numbers” [10].
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Remark 1. For a normal TrFN as defined in (11), the GMIR is:

E
(
A˜) = a1 + 2a2 + 2a3 + a4

6
. (15)

Remark 2. The GMIR is linear, i.e., E(A˜ ⊕ B˜ ) = E(A˜) + E(B)˜ and E(α · A˜) =

α ·E(A˜).
To calculate the distance between two TrFN, we must first define the absolute value of
a TrFN. We will rely on the work of [6] for this.

Definition 14. The absolute value of a TrFN is defined as:

∣∣A˜∣∣ =
⎧⎪⎨⎪⎩
A˜ , if E (A˜) > 0

0, if E (A˜) = 0

Im (A˜) , if E (A˜) < 0.

(16)

Proposition 1. For a TrFN A˜ , E(
∣∣A˜∣∣) = ∣∣E(A˜)∣∣.

Proof. For E(A˜) ≥ 0 the proof is trivial. For E(A˜) < 0 we have:

E
(∣∣∣A˜

∣∣∣) = E
(
Im

(
A˜
))

=
−a4 − 2a3 − 2a2 − a1

6

= −E
(
A˜
)

=
∣∣∣E (

A˜
)∣∣∣ .

Definition 15. The fuzzy Minkoswki family of distances between two fuzzy
n-dimensional vectors A˜ and B˜ composed of TrFN:

dp˜
(
A˜ , B˜) =

(
n∑

i=1

(∣∣∣Ai˜ �Bi˜
∣∣∣)p) 1

p

. (17)

Remark 3. As with the crisp Minkowski family of distances, the fuzzy Manhattan dis-
tance is defined for p = 1, the fuzzy Euclidean distance is defined for p = 2, and the
fuzzy Chebyshev distance is defined for p =∞.

Remark 4. In our proofs, we will use the form:

d˜p (A˜ , B˜) =
n∑

i=1

(∣∣∣Ai˜ �Bi˜
∣∣∣)p , (18)

except for p =∞ in which:

d˜∞ (
A˜ , B˜) = arg∣∣∣Ai˜�Bi˜ ∣∣∣

n
max
i=1

E
(∣∣∣Ai˜ �Bi˜

∣∣∣) . (19)
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4 Fuzzy Median Center and Fuzzy Min-Max Center

We will prove that for a set of fuzzy points, the fuzzy median center and the fuzzy min-
max center are extensions of their respective counterparts in crisp settings, i.e., that they
can be obtained by the median or the average of the maximum X and Y coordinates of
the fuzzy points, respectively.

Proposition 2. For two TrFN p(1)˜ and p(2)˜, such that E(p(1)˜) < E(p(2)˜),

argmin
c˜ E(

∑
i∈{1,2} d

1˜ (p(i)˜, c˜)) = {c˜ : E(c˜) ∈ [E(p(1)˜), E(p(2)˜)]}.

Proof. Let p(i)˜ = (p
(i)
1 , p

(i)
2 , p

(i)
3 , p

(i)
4 ) and c˜= (c1, c2, c3, c4), hence:

d1˜
(
p(i)˜, c˜

)
=
∣∣∣p(i)˜� c˜

∣∣∣ .
By properties of the GMIR:

E
(
p(i)˜� c˜

)
= E

(
p(i)˜

)
− E

(
c˜) .

If E(c˜) ≤ E(p(1)˜) and by (16), then:

d˜1
(
p(1)˜, c˜

)
= p(1)˜ � c˜, (20)

d˜1
(
p(2)˜, c˜

)
= p(2)˜ � c˜. (21)

By (20) and (21): as p(1)˜ � c˜ = (0, 0, 0, 0) and p(2)˜ � c˜ = p(2)˜ � p(1)˜. For any {c˜ :

E(c˜) < E(p(1)˜)}, E(p(2)˜ � c˜) > 0 and E(c˜� p(1)˜) > E(p(2)˜ � p(1)˜).

Equivalently, if E(p(2)˜) ≤ E(c˜) by (16), then:

d˜1
(
p(1)˜, c˜

)
= c˜� p(1)˜, (22)

d˜1
(
p(2)˜, c˜

)
= c˜� p(2)˜. (23)

By (22) and (23),

argmin
c˜ E

⎛⎝ ∑
i∈{1,2}

(
d˜1
(
p(i)˜, c˜

))⎞⎠ = p(2)˜,

as c˜� p(2)˜ = (0, 0, 0, 0) and c˜� p(1)˜ = p(2)˜ � p(1)˜. For any {c˜ : E(p(2)˜) < E(c˜)},
E(c˜� p(2)˜) > 0 and E(c˜� p(1)˜) > E(p(2)˜ � p(1)˜).
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Given that E(p(1)˜) < E(c˜) and by (16), then:

d˜1
(
p(1)˜, c˜

)
= c˜� p(1)˜
=
(
c1 − p

(1)
4 , c2 − p

(1)
3 , c3 − p

(1)
2 , c1 − p

(1)
4

)
. (24)

Given that E(c˜) < E(p(2)˜) and by (16), then:

d˜1
(
p(2)˜, c˜

)
= p(2)˜ � c˜
=
(
p
(2)
1 − c4, p

(2)
2 − c3, p

(2)
3 − c2, p

(2)
4 − c1

)
. (25)

From (24) and (25):∑
i∈{1,2}

(
d˜1
(
p(i)˜, c˜

))
=
(
c1 − p

(1)
4 , c2 − p

(1)
3 , c3 − p

(1)
2 , c4 − p

(1)
1

)
⊕

(
p
(2)
1 − c4, p

(2)
2 − c3, p

(2)
3 − c2, p

(2)
4 − c1

)
=
(
p
(2)
1 − p

(1)
1 + c1 − c4, p

(2)
2 − p

(1)
2 + c2 − c3,

p
(2)
3 − p

(1)
3 + c3 − c2, p

(2)
4 − p

(1)
4 + c4 − c1

)
. (26)

Applying GMIR to (26) :

E
(∑

i∈{1,2}

(
d˜1

(
p(i)˜ ,c˜)))

= E
(
p(2)˜ − p(1)˜

)
. (27)

Being that (27) is independent from c˜:

argmin
c˜ E

⎛⎝ ∑
i∈{1,2}

(
d˜1
(
p(i)˜, c˜

))⎞⎠ =
{
c˜ : E (

c˜) ∈
[
E
(
p(1)˜

)
, E

(
p(2)˜

)]}
.

The result obtained in Proposition 2 shows than any fuzzy point c˜ between two fuzzy
points p(1)˜ and p(2)˜ gives an equally good solution to the problem of the minimization
of distances. An arbitrary, but frequently found solution to the crisp version of this
problem, is using the average of both points:

c˜= p(1)˜ ⊕ p(2)˜
2

. (28)

In the following proposition we will see what happens for a set of n fuzzy points, but
first, let us define the notion of order statistic for fuzzy numbers.



Fuzzy Median and Min-Max Centers 221

Definition 16. For a set P = {p(i)˜}, ∀i = 1, . . . , n, of TrFN, the k−th order statistic

p([k])

˜
is defined as the k−th point for which E(p([k])

˜
) ≤ E(p([k+1])

˜
).

Proposition 3. For a set P = {p(i)˜}, i = 1, . . . , n, of TrFN, c∗˜ is the point for which

argmin
c˜ E

(∑n
i=1 d˜1

(
p([i])˜ , c˜

))
=

{
c˜ : E(c˜) ∈

[
E(p([

n
2 ])

˜
), E(p([

n
2 +1])

˜
)

]}
, if n is

even, but if it is odd argmin
c˜ E

(∑n
i=1 d˜1

(
p([i])˜ , c˜

))
= p([

n+1
2 ])

˜
.

Proof. Given that the k−th order statistic of the set P is p([k])

˜
, we can apply iteratively

the result in Proposition 2. In first place:

argmin
c˜

E

⎛⎝ ∑
i∈{1,n}

d1˜
(
p([i])

˜

, c˜
)⎞⎠ =

{
c˜ : E

(
c˜
)
∈
[
E

(
p([1])

˜

)
, E

(
p([n])

˜

)]}
.

From Definition 4:[
E
(
p([2])

˜

)
, E

(
p([n−1])

˜

)]
∈
[
E
(
p([1])

˜

)
, E
(
p([n])

˜

)]
,

so the solution is now:

argmin
c˜

E

⎛⎝ ∑
i∈{1,2,n−1,n}

d1˜
(
p([i])

˜

, c˜
)⎞⎠ =

{
c˜ : E

(
c˜
)
∈
[
E

(
p([2])

˜

)
, E

(
p([n−1])

˜

)]}
.

If we keep applying iteratively this logic, and n is even, we get that

argmin
c˜

E

(
n∑

i=1

d1˜
(
p([i])

˜

, c˜
))

=

{
c˜ : E

(
c˜
)
∈
[
E

(
p([

n
2
])

˜

)
, E

(
p([

n
2
+1])

˜

)]}
.

If n is odd, we will have three points in the next-to-last iteration,{
p([

n−1
2 ])

˜
, p([

n+1
2 ])

˜
, p([

n+3
2 ])

˜

}
. We can present the problem as:
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argmin
c˜

E

n∑
i=1

(
d1˜
(
p([i])

˜

, c˜
))

=

argmin
c˜

E

⎛⎜⎝ n−3
2∑

i=n−1
2

d1˜
(
p([i])

˜

, c˜
)⎞⎟⎠

= argmin
c˜

E

⎛⎜⎝ ∑
i={n−1

2
,n−3

2 }
d1˜
(
p([i])

˜

, c˜
)
+

d1˜
(
p([

n+1
2

])

˜

, c˜
))

.

We know that:

argmin
c˜

E

⎛⎜⎝ ∑
i={n−1

2 ,n−3
2 }

(
d1˜
(
p(i)˜, c˜

))⎞⎟⎠ =

{
c˜ : E

(
c˜
)
∈
[
E

(
p([

n−1
2 ])

˜

)
, E

(
p([

n−3
2 ])

˜

)]}
.

Therefore, it is clear that:

argmin
c˜ E

(
d1˜
(
p([

n+1
2 ])

˜
, c˜
))

= p([
n+1
2 ])

˜
.

So, given that c˜ = p([
n+1
2 ])

˜
and that E(p([

n+1
2 ])) ∈ [E(p([

n−1
2 ])

˜
), E(p([

n−3
2 ])

˜
)], for n

even:

argmin
c˜ E

(
n∑

i=1

(
d1˜
(
p(i)˜, c˜

)))
= p([

n+1
2 ])

˜
.

Applying (28) to the result of Proposition 3 we get the definition of the median for a set
of TrFN.

Proposition 4. The median of a set P = {p(i)˜}, ∀i = 1, . . . , n, of TrFN is defined as:

median (P ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p([

n
2

])

˜
⊕p([

n
2

+1])

˜2 , if n is odd,

p([
n+1
2 ])

˜
, if n is even.

In an R2 space, the solution is equivalent, as we will see in the following proposition.

Proposition 5. For a set P =
{
P (i)˜ : P (i)˜ =

{
p(i,j)

˜

}
, ∀i = 1, . . . , n, j ∈ {x, y}

}
,

where p(i,j)

˜
is a TrFN, argmin

C˜
E

(∑n
i=1 d˜1

(
P (i)˜ , C˜

))
=

{
median

(
p(i,x)

˜

)
,median

(
p(i,y)

˜

)}
.
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Proof. Due to the linearity of the GMIR:

E

(
n∑

i=1

(
d˜1
(
P (i)˜ , C˜

)))
=

n∑
i=1

∑
j∈{x,y}

∣∣∣∣E (
p(i,j)

˜

)
− E

(
cj˜
)∣∣∣∣ (29)

=

n∑
i=1

∣∣∣∣E(p(i,x)
˜

)
− E

(
c(x)˜

)∣∣∣∣+ (30)

n∑
i=1

∣∣∣∣E(p(i,y)
˜

)
− E

(
c(y)˜

)∣∣∣∣ . (31)

As both terms in (31) are independent from each other:

min
c(j)

⎛⎝ ∑
j∈{x,y}

n∑
i=1

∣∣∣∣E (
p(i,x)

˜

)
− E

(
c(x)˜

)∣∣∣∣
⎞⎠ =

∑
j∈{x,y}

min
c(j)

n∑
i=1

∣∣∣∣E (
p(i,x)

˜

)
− E

(
c(x)˜

)∣∣∣∣ .
The optimization problem is then reduced to applying independently for each j ∈
{x, y} the result of Proposition 3 with Definition 4. Thus:

argmin
C˜

E

(
n∑

i=1

d˜1
(
P (i)˜ , C˜

))
=

{
median

(
p(i,x)

˜

)
,median

(
p(i,y)

˜

)}
. (32)

Finally, we will address the subject of the fuzzy min-max center, found using (19).

Proposition 6. For a set P =
{
p(i)˜

}
, ∀i = 1, . . . , n, of TrFN,

maxni=1(E(
∣∣∣p(i)˜� c˜

∣∣∣) = 1
2 · E(p([n]) − p([1])).

Proof. Let E(c˜) = 1
2

(
E
(
p([1])

)
+ E

(
p([n])

˜

))
. Due to the linearity of the GMIR and

Proposition 1, maxni=1

(
E
(∣∣∣p(i)˜� c˜

∣∣∣)) = maxni=1

∣∣∣E(p(i)˜)− E(c˜)
∣∣∣ .So:

−
E

(
p([n])

˜

)
− E

(
p([1])

)
2

≤E
(
p([i])˜

)
−

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

≤
E

(
p([n])

˜

)
− E

(
p([1])

)
2
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then: ∣∣∣∣∣∣∣∣E
(
p([i])˜

)
−

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣ ≤
E

(
p([n])

˜

)
− E

(
p([1])

)
2

n
max
i=1

∣∣∣∣∣∣∣∣E
(
p([i])˜

)
−

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣ ≤
E

(
p([n])

˜

)
− E

(
p([1])

)
2

.

In fact:

∣∣∣∣∣∣∣∣E
(
p([n])

˜

)
−

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣−
E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣E
(
p([1])

˜

)
−

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣∣E
(
p([i])˜

)
−

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

∣∣∣∣∣∣∣∣ .
So:

n
max
i=1

∣∣∣∣∣∣E
(
p([i])˜

)
−

E
(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

∣∣∣∣∣∣ =
E
(
p([n])

˜

)
− E

(
p([1])

˜

)
2

,

i.e.:

n
max
i=1

∣∣∣E (
p([i])˜

)
− E

(
c˜)
∣∣∣ = E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

.

Proposition 7. For a TrFN c′˜ , such that for every TrFN p˜
maxni=1

(
E
(∣∣∣p(i)˜� p˜

∣∣∣)) ≥ maxni=1

(
E
(∣∣∣p(i)˜� c′˜

∣∣∣)), then E(c˜) = E(c′˜).
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Proof. Let E(c˜) = 1
2 (E(p([1])) + E(p([n])

˜
)). Taking p˜ = c˜:

n
max
i=1

(
E

(∣∣∣∣p(i)˜� c′˜
∣∣∣∣)) ≤ n

max
i=1

(
E

(∣∣∣∣p(i)˜� c˜
∣∣∣∣))

=

E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

,

so:

E

(∣∣∣∣p([1])
˜

� c′˜
∣∣∣∣) ≤ E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

E

(∣∣∣∣p([n])
˜

� c′˜
∣∣∣∣) ≤ E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

and:

E
(
c′˜
)
≤

E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

+ E

(
p([1])

˜

)

=

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

E
(
c′˜
)
≥ E

(
p([n])

˜

)
−

E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

=

E

(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

.

So:

E
(
c′˜) =

E
(
p([n])

˜

)
+ E

(
p([1])

˜

)
2

Proposition 8. For a set P =
{
p(i)˜

}
, ∀i = 1, . . . , n, of TrFN and a TrFN p˜,

maxni=1(E(
∣∣∣p(i)˜� p˜

∣∣∣) = maxni=1(E(
∣∣∣p(i)˜� c˜

∣∣∣).
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Proof. Let E(c˜) = 1
2 (E(p([1])) + E(p([n])

˜
)). If E(p˜) ≤ E

(
c˜), E(p([n]))

˜
− E(p˜) ≥

E(p([n]))

˜
− E(c˜). So:

n
max
i=1

∣∣∣∣∣E(p([i]))

˜

− E(p˜)
∣∣∣∣∣ ≥

∣∣∣∣∣E(p([n]))

˜

− E(p˜)
∣∣∣∣∣

≥
E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

=
n

max
i=1

∣∣∣∣E (
p([i])˜

)
− E

(
c˜
)∣∣∣∣ .

If E(p˜) ≥ E
(
c˜), E(p˜)− E(p([1]))

˜
≥ E(c˜)− E(p([1]))

˜
. So:

n
max
i=1

∣∣∣∣∣E(p([i]))

˜

− E(p˜)
∣∣∣∣∣ ≥

∣∣∣∣∣E(p˜)− E(p([1]))

˜

∣∣∣∣∣
≥
E

(
p([n])

˜

)
− E

(
p([1])

˜

)
2

=
n

max
i=1

∣∣∣∣E (
p([i])˜

)
− E

(
c˜
)∣∣∣∣ .

Again, due to the linearity of the GMIR, maxni=1

∣
∣
∣E(p([i])

˜

) −E(c
˜

)
∣
∣
∣ = maxni=1 E

∣
∣
∣p([i])

˜

� c
˜

∣
∣
∣

Proposition 9. For a set P = {P (i)˜ : P (i)˜ = {p(i,j)
˜

}}, ∀i ∈ 1, . . . , n, j ∈ {x, y},
where p(i,j)

˜
is a TrFN, and the fuzzy center C˜ = {c(j)˜}, maxni=1(d

∞˜ (P (i)˜ , P˜)) ≥
maxni=1(d

∞˜ (P (i)˜ , C˜ )).
Proof. Let E(c(j)˜) = 1

2E(p([1],j)

˜
⊕ p([n],j)

˜
) and a the fuzzy point P˜ = {p(j)˜}. Then:

n
max
i=1

d∞˜
(
d∞

(
P (i)˜ , P˜

))
=

n
max
i=1

max
j∈{x,y}

E

(∣∣∣∣p(i,j)
˜

� p(j)˜
∣∣∣∣)

= max
j∈{x,y}

n
max
i=1

∣∣∣∣E (
p(i,j)

˜

)
− E

(
p(j)˜

)∣∣∣∣ .
From Proposition 8, we will recall that:

n
max
i=1

∣∣∣E (
p(i,j)

˜

)
− E

(
p(j)˜

)∣∣∣ ≥ n
max
i=1

∣∣∣E (
p(i,j)

˜

)
− E

(
c(j)˜

)∣∣∣ ,
so:

max
j∈{x,y}

n
max
i=1

∣∣∣∣E (
p(i,j)

˜

)
− E

(
p(j)˜

)∣∣∣∣ ≥ max
j∈{x,y}

n
max
i=1

∣∣∣∣E(p(i,j)
˜

)
− E

(
c(j)˜

)∣∣∣∣
=

n
max
i=1

d∞˜
(
P (i)˜ , C˜

)
.
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Proposition 10. For a set P = {P (i)˜ : P (i)˜ = {p(i,j)
˜

}, ∀i ∈ 1, . . . , n, j ∈ {x, y}},
where p(i,j)

˜
is a TrFN, the fuzzy min-max center C∗˜ =

{
c(j)˜}

is

argmin
C˜ maxni=1 d

∞˜ (
P (i)˜ , C˜) = {c˜ : E(c(j)) = 1

2E(p([1],j)

˜
⊕ p([n],j)

˜
)}.

Proof. Let the fuzzy point P˜ = {p(j)˜}, then:

n
max
i=1

E
(
d∞˜

(
P (i)˜ , P˜

))
=

n
max
i=1

max
j∈{x,y}

E

(∣∣∣∣p(i,j)
˜

� p(j)˜
∣∣∣∣)

=
n

max
i=1

max
j∈{x,y}

∣∣∣∣E (
p(i,j)

˜

)
− E

(
p(j)˜

)∣∣∣∣ .
By the result of Proposition 9:

E
(
c(j)˜

)
=

E
(
p(i,j)

˜

)
+ E

(
p(j)˜

)
2

.

Then:
n

max
i=1

d∞˜
(
P (i)˜ , P˜

)
≥ n

max
i=1

d∞˜
(
P (i)˜ , C˜

)
.

Given that the solution of the fuzzy min-max center is a set of fuzzy points, we will
extend the result for crisp values with the following definition.

Definition 17. For a set P =
{
P (i)˜ : P (i)˜ =

{
p(i,j)

˜

}
, ∀i ∈ 1, . . . , n, j ∈ {x, y}

}
,

where p(i,j)

˜
is a TrFN, the coordinates of the fuzzy min-max center C˜ =

{
c(j)˜}

are

defined as:

c(j)˜ :=
p([1],j)

˜
⊕ p([n],j)

˜
2

. (33)

5 Spatiotemporal Analysis

Throughout this work, the solutions to the optimal location problem were obtained with-
out including any constraints into the model. However, from a practical perspective, it is
necessary to consider the scenario in which the problem is defined and the restrictions
it imposes to the solution. One way of doing it relies on expert knowledge for the cre-
ation of a bi-dimensional matrix which reflects the feasibility of the solution including
a given coordinate.

Let’s start by defining this matrix M = (mι,κ)My×Mx
, where Mx (converselyMy) is

the number of columns (conversely rows) in which the area of study (which must fully
include all the fuzzy points) is divided, with each elementmι,κ ∈ [0, 1]. By constraining
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the range of mι,κ to the [0, 1] interval and making Mx,My → ∞, M becomes a fuzzy
subset M˜ that models the proposition “the solution to the problem of optimal location
can occupy the coordinate x, y.”

One notable property of fuzzy sets is that as sets they can be intersected, allowing
complex interactions between them. We can use the fuzzy set that models the area of
study, to obtain a constrained solution from its intersection with the unconstrained one.
Thus, this new solution is defined by:

Φ˜ = M˜ ∩ C˜ , (34)

for which:
μΦ˜(x, y) = min

(
μM˜ (x, y) , μC˜ (x, y)

)
. (35)

It is clear that if Φ˜ = ∅ then the solution is unfeasible, as μΦ˜(x, y) = 0, ∀x, y.
Another layer of analysis can be applied when we consider the temporal evolution

of the data. If data is gathered from different instants, fuzzy points can vary both in
shape and location. Let’s suppose that at any given instant t = t0, t1, . . . , tmax we have
the set P t of fuzzy points, which gives the constrained solution Φt˜, i.e., an optimal
constrained solution for the particular instant t. Thus, the solution for t = t0 can be
radically different from that for t = tmax, and if we are going to build the center of
attention of demand using the former solution, it might not be appropriate for latter
instant.

In terms of the period [t0, tmax], an idea of how “durable” a solution is can be attained
from the intersection of the solutions obtained at each time frame, thus:

Φ˜ =

tmax⋂
t=t0

Φt˜, (36)

for which:
μΦ˜(x, y) = min

(
μΦt˜ (x, y)

)
. (37)

The value of the membership function of the intersected solution at a given point in
space can be seen as a degree of appropriateness of the final location for the whole pe-
riod. But it can also be interpreted as the degree of durability of the solution, specially
if the data points follow a progressive evolutionary pattern which resembles many phe-
nomena like urban sprawl or forest shrinkage. When Φ˜ = ∅, no solution will be durable
for the evaluated period, i.e., no point can be useful for the whole period; by removing
solutions from tmax to t until the intersected solution shows values of its member-
ship function that satisfy the decision maker, it is possible to determine the durability
of a selected location. Let’s define Θti˜, the intersected solution for t′ = t0, . . . , ti,
i = 0, . . . , n:

Θti˜ =

ti⋂
t′=t0

Φt′˜ , (38)

for which:

μΘti˜ (x, y) = min
x,y

(
μ
Φt′˜ (x, y)

)
. (39)
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One idea is to find, for a given x0, y0, the farthest ti for which
μΘti˜ (x0, y0) > μmin, i.e.:

t′max = arg
ti

min
(
μΘti˜ (x0, y0)

)
, ∀ti : μΘti˜ (x0, y0) > μmin. (40)

In case no coordinate x, y is given, it is only needed to find the farthest ti that for any
x, y makes μΘti˜ (x, y) > μmin, i.e.:

t′max = arg
ti

min

(
max
x,y

(
μΘti˜ (x, y)

))
, ∀ti : max

x,y

(
μΘti˜ (x, y)

)
> μmin. (41)

Thus, the solution is durable, at a threshold μmin, for the period [t0, t
′
max].

6 Numerical Example

In the following numerical example we will see how the two centers are found and how
they differ from each other. Let’s suppose there are three fuzzy demand points:

P (1)˜ =
{
p(1,x)

˜
, p(1,y)

˜

}
p(1,x)

˜
= (18, 35, 37, 40)

p(1,y)

˜
= (31, 49, 49, 68)

P (2)˜ =
{
p(2,x)

˜
, p(2,y)

˜

}
p(2,x)

˜
= (58, 75, 75, 94)

p(2,y)

˜
= (87, 103, 105, 121)

P (3)˜ =
{
p(3,x)

˜
, p(3,y)

˜

}
p(3,x)

˜
= (73, 83, 86, 107)

p(3,y)

˜
= (10, 20, 21, 29)

The expected values for these three points would be:

E
(
p(1,x)

˜

)
= 33.667

E
(
p(1,y)

˜

)
= 49.167

E
(
p(2,x)

˜

)
= 75.333

E
(
p(2,y)

˜

)
= 104

E
(
p(3,x)

˜

)
= 86.333

E
(
p(3,y)

˜

)
= 20.167
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For these points, the fuzzy median center (see Figure 1.a) would be:

M˜ =
{
m(x)

˜
,m(y)˜}

m(x)

˜
= median

˜
i=1,...,3

(
p(i,x)

˜

)
= (58, 75, 75, 94)

m(y)˜ = median
˜

i=1,...,3

(
p(i,y)

˜

)
= (31, 49, 49, 68) .

And the min-max center (see Figure 1.b) would be:

Z˜ =
{
z(x)˜ , z(y)˜}

z(x)˜ = 1
2

∑
i∈{1,3} p

([i],x)

˜= (49.667, 64.333, 66, 80.333)

z(y)˜ = 1
2

∑
i∈{1,3} p

([i],y)

˜= (42.667, 57.333, 58.333, 72.667) .

As we can see from Figure 1, using fuzzy numbers to model the demand points is much
more closer to the scenarios that geographers and planners face. For example, monocen-
tric urban areas can be represented with bidimensional fuzzy numbers, and the results
obtained give planners some flexibility in the final location of the center. Different cen-
ters, obeying to different objectives, not only are placed in different locations, but also
have different membership function values for the same coordinates, covering different
areas.

Now, let’s add a constraint space (see Figure 2), that as we have seen is theoretically a
fuzzy set. In our case, let’s assume a price constraint, that can be modeled as a bidimen-
sional gaussian function, which needs to be intersected with the solutions previously
found.

In practice, we will build a matrix that represents the constraint space at a given gran-
ularity. The value for each element of this matrix can be given by experts or calculated
from the membership function of a given fuzzy set. For each center, it will be needed
to build a matrix of the same size as that of the constraint space, using its membership
function. This way, the process of finding the intersection is straightforward, using the
minimum value of the two matrices (the one for the constraint space and the one for the
chosen center) as the value for the constrained solution.

We can see in Figures 3.a and 3.b how the median and min-max centers are clipped
by our constraint space, and as a result the centers are no longer bidimensional fuzzy
numbers, only fuzzy sets.

Next, let’s assume that the first set of points and the respective fuzzy median and
min-max centers belong to the instant t0. We will add two more sets of points for two
instants, t1 and t2. For t1 the points are:
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(a) Fuzzy median center.
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(b) Fuzzy min-max center.

Fig. 1. Fuzzy centers
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Fig. 2. Constraint space

P (t1,1)

˜
=
{
p(t1,1,x)

˜
, p(t1,1,y)

˜

}
p(t1,1,x)

˜
= (20, 30, 33, 45)

p(t1,1,y)

˜
= (45, 50, 53, 71)

P (t1,2)

˜
=
{
p(t1,2,x)

˜
, p(t1,2,y)

˜

}
p(t1,2,x)

˜
= (50, 65, 70, 85)

p(t1,2,y)

˜
= (75, 95, 97, 110)

P (t1,3)

˜
=
{
p(t1,3,x)

˜
, p(t1,3,y)

˜

}
p(t1,3,x)

˜
= (80, 85, 95, 110)

p(t1,3,y)

˜
= (20, 25, 31, 39) .

For t2 the points are:

P (t2,1)

˜
=
{
p(t2,1,x)

˜
, p(t2,1,y)

˜

}
p(t2,1,x)

˜
= (24, 28, 32, 47)

p(t2,1,y)

˜
= (38, 56, 59, 84)

P (t2,2)

˜
=
{
p(t2,2,x)

˜
, p(t2,2,y)

˜

}
p(t2,2,x)

˜
= (50, 71, 78, 86)

p(t2,2,y)

˜
= (90, 112, 115, 119)
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(a) Fuzzy constrained median center.

20 40 60 80 100 120

20
40

60
80

10
0

12
0

14
0

x

y

(b) Fuzzy constrained min-max center.

Fig. 3. Fuzzy constrained centers
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P (t2,3)

˜
=
{
p(t2,3,x)

˜
, p(t2,3,y)

˜

}
p(t2,3,x)

˜
= (69, 91, 96, 112)

p(t2,3,y)

˜
= (9, 17, 21, 40) .

Their respective median centers (see Figure 4) are:

M t1˜ =
{
m(t1,x)

˜
,m(t1,y)

˜

}
m(t1,x)

˜
= median

˜
i=1,...,3

(
p(t1,i,x)

˜

)
= (50, 65, 70, 85)

m(t1,y)

˜
= median

˜
i=1,...,3

(
p(t1,i,y)

˜

)
= (45, 50, 53, 71)

M t2˜ =
{
m(t2,x)

˜
,m(t2,y)

˜

}
m(t2,x)

˜
= median

˜
i=1,...,3

(
p(t2,i,x)

˜

)
= (50, 71, 78, 86)

m(t2,y)

˜
= median

˜
i=1,...,3

(
p(t2,i,y)

˜

)
= (38, 56, 59, 84) .

and their respective min-max centers (see Figure 5) are:

Zt1˜ =
{
z(t1,x)

˜
, z(t1,y)

˜

}
z(t1,x)

˜
= 1

2

∑
i∈{1,3} p

(t1,[i],x)

˜= (50, 57.5, 64, 77.5)

z(t1,y)

˜
= 1

2

∑
i∈{1,3} p

(t1,[i],y)

˜= (47.5, 60, 64, 74.5)

Zt2˜ =
{
z(t2,x)

˜
, z(t2,y)

˜

}
z(t2,x)

˜
= 1

2

∑
i∈{1,3} p

(t2,[i],x)

˜= (46.5, 59.5, 64, 79.5)

z(t2,y)

˜
= 1

2

∑
i∈{1,3} p

(t2,[i],y)

˜= (49.5, 64.5, 68, 79.5) .

The intersection Θt2˜ of the solutions for the three instants (t0, t1, t2) is calculated by
the intersection of the matrices that we have found for each constrained solution. As we
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(a) Fuzzy constrained median center for t1.
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(b) Fuzzy constrained median center for t2.

Fig. 4. Fuzzy constrained median centers

see in Figure 6, the evolution of the data points affects in different ways each solution;
while the min-max center has a maximum value for its membership function that lies
between 0.9 and 1, the median center has only a point above 0.8 and a clear area above
0.7. In this case, we can say that the most possible location using the median center is
less durable than using the min-max center.



236 J. Rojas-Mora, D. Josselin, and M. Ciligot-Travain

20 40 60 80 100 120

20
40

60
80

10
0

12
0

14
0

x

y

(a) Fuzzy constrained min-max center for t1.
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(b) Fuzzy constrained min-max center for t2.

Fig. 5. Fuzzy constrained min-max centers

In case the decision maker wanted a minimum value of the membership function,
μmin = 0.9, then the solution for the min-max center would be stable for the pe-
riod [t0, t2], but not the one for the median center. It would be needed to start shed-
ding layers, from the farthest (t2) to the nearest (t0) until a suitable solution is found.
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(b) Durable fuzzy constrained min-max center.

Fig. 6. Durable fuzzy constrained solutions
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Fig. 7. Durable fuzzy constrained min-max center



Fuzzy Median and Min-Max Centers 239

In Figure 7, we can see that Θt1˜ does not reach a level that complies with the require-
ments imposed by the decision maker, and only Θt0˜ does. This means that for our case,
a solution based on the median center is not durable at all at a threshold μmin = 0.9,
requiring that either the decision maker fixes a lower value or a new solution is found
after t0.

7 Conclusions

In this paper we have shown that the results found for the solution of the median center
and the min-max center can be extended to fuzzy environments, where both the demand
points and the center are modeled with fuzzy numbers. The use of fuzzy numbers is due
to the need to incorporate the uncertainty about available information on demand. Not
only the data might be vague or subjective, but it could also involve disagreements or
lack of confidence in the methodology used in its collection. Therefore, it is necessary
to have a solution that, while simply obtained, incorporates this uncertainty.

Fuzzy solutions can also give flexibility to planners on the final location of the center,
according to constraints that are not easily modeled. The selected center will have a
membership value that reflects its “appropriateness” according to the data.

It has been also shown that it is simple to consider the spatiotemporal analysis of a
problem, having a solution that answers to both, spatial constraints and the progressive
change of the data points. This added a new level of analysis to the decision maker, who
by giving a threshold value to the membership function of the solution can obtain the
durability or temporal stability of the exact location selected for the final placement of
the demand attention center.
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Francesco Campobasso and Annarita Fanizzi* 

Department of Economics and Mathematics, University of Bari, Bari, Italy 
{fracampo,a.fanizzi}@dss.uniba.it 

Abstract. Market researches and opinion polls usually include customers’  
responses as verbal labels of sets with vague and uncertain borders. Recently 
we generalized the estimation procedure of a simple regression model with tri-
angular fuzzy numbers, into the space of which Diamond introduced a metrics, 
to the case of a multivariate model with an asymmetric intercept also fuzzy. 

In this paper we show under what conditions the sum of squares of the de-
pendent variable can be decomposed in exactly the same way as the classical 
OLS estimation and we propose a fuzzy version of the coefficient of determina-
tion, which takes into account the corresponding freedom degrees. Furthermore 
we introduce a stepwise procedure designed not only to include only one inde-
pendent variable at a time, but also to eliminate in each iteration that variable 
whose explanatory contribution is subrogated by the combination of the other 
ones included after it was. 

Keywords: Fuzzy least square regression, multivariate generalization, asymme-
tric fuzzy intercept, total sum of squares, goodness of fit, stepwise selection of 
independent variables. 

1 Introduction 

Modalities of quantitative variables are commonly given as exact single values, al-
though sometimes they cannot be precise. The imprecision of measuring instruments 
and the continuous nature of some observations, for example, prevent researcher from 
obtaining the corresponding true values. 

On the other hand qualitative variables are commonly expressed using common 
linguistic terms, which also represent verbal labels of sets with uncertain borders. 

An appropriate way to manage such an uncertainty of observations in dependent 
model is provided by using fuzzy numbers [1-2]. 

In 1988 P. M. Diamond [3] introduced a metric into the space of triangular fuzzy 
numbers and derived the expression of the estimated coefficients in a simple fuzzy 
regression model. Its adequacy in multiple contexts has been repeatedly demonstrated 
(for example see [4]). 

Starting from a multivariate generalization of such a model, we provided in pre-
vious works some results on the decomposition of the total sum of squares of the de-
pendent variable according to Diamond’s metric. 
                                                           
* The contribution is the result of joint reflections by the authors, with the following contributions 

attributed to F. Campobasso (chapters  3, 5 and 6),  and to A. Fanizzi (chapters 1, 2 and 4). 
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2 The Fuzzy Least Square Regression 

A triangular fuzzy number TRL )x,x,x(X
~ =  for the variable X is characterized by a 

function [ ]0,1X:μ
X
~ → , like the one represented in Fig. 1, that expresses the mem-

bership degree of any possible value of X to X
~

[5]. 
The accumulation value x is considered the core of the fuzzy number, while 

xxR −=ξ  and Lxx −=ξ  are considered the left spread and the right spread  

respectively. 

 

Fig. 1. Representation of a triangular fuzzy number 

Note that x belongs to X
~

 with the highest degree (equal to 1), while the other val-

ues included between the left extreme Lx  and the right extreme Rx  belong to X
~

 

with a gradually lower degree. 
The set of triangular fuzzy numbers is closed under addition: given two triangular 

fuzzy numbers TRL )x,x,x(X
~ =  and TRL )y,y(y,Y

~ = , their sum Z
~

 is still a triangular 

fuzzy number TRRLL )yx,yx,yx(Y
~

X
~

Z
~ +++=+= . Moreover the opposite of a 

triangular fuzzy number TRL )x,x,x(X
~ =  is TLR )x,x,x(X

~ −−−=− . 

It follows that, given n fuzzy numbers TRiLiii )x,x,x(X
~ = , i = 1, 2, .., n, their aver-

age is 
T

RiLiii

n

x
,

n

x
,

n

x

n

X
~

X 





 == . 

Diamond introduced a metrics into the space of triangular fuzzy numbers; accord-

ing to this metrics, the squared distance between X
~

 and Y
~

 is 
 

( ) == 2
TRLTRL

2 )y,y(y,,)x,x,x(d)Y
~

,X
~

(d 2
RR

2
LL

2 )yx()yx()yx( −+−+− . 
 

The same Author treated the fuzzy regression model of a dependent variable Y
~

 on a 

single independent variable X
~

, which can be written as  
 

Y
~

= a + b X
~

,     a, b ∈ IR, 
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when the intercept a is non-fuzzy, as well as 

Y
~

 = A
~

 +b X
~

  a, b ∈ IR, 

when the intercept  TRL )a,a(a,A
~ =  is fuzzy, where it is γ−= aaL , γ−= aaR  and 

γ , γ  > 0. 

The expression of the corresponding parameters a, γ , γ  and b is derived from  

minimizing, with respect to them, the sum  2*
ii )Y

~
,Y

~
(d  of the squared distances 

between theoretical and empirical values of the fuzzy dependent variable Y
~

 in n  
observed units. 

Such a sum takes different forms according to the signs of the regression coeffi-

cient b, as the product of a fuzzy number TRL )x,x,x(X
~ =  and a real number de-

pends on whether the latter is positive or negative.   
Diamond demonstrated that the optimization problem has a unique solution under 

certain conditions. 
In previous works we provided some theoretical results about the estimates of the 

regression coefficients and about the decomposition of the sum of squares of the de-
pendent variable [6] in a multiple regression model. In particular we treated the case 
of a non-fuzzy intercept, as well as the case of a fuzzy intercept, which seems more 
appropriate [7] for some reasons which will be clearer later. 

3 A Multivariate Generalization of the Regression Model 

3.1 A Generalization of the Model Including a Non-fuzzy Intercept 

Let’s assume to observe a fuzzy dependent variable TRiLiii )y,y,(yY
~ =  and two fuzzy 

independent variables, TRiLiii )x,x,x(X
~ =  and TRiLiii )z,z,(zZ

~ = , on a set of n units. 

The linear regression model is given by  

*
iY

~
= a +b iX

~
+c iZ

~
,      I = 1,2, ...,n;  a, b, c ∈ IR. 

The corresponding parameters a, b, c are determined by minimizing, with respect to 
them, the sum of Diamond’s distances between theoretical and empirical values of the 
dependent variable 

 ++ 2
iii )Z

~
cX

~
ba,Y

~
d(  (1) 

Similarly to what we stated above, such a sum assumes different expressions accord-
ing to the signs of the regression coefficients b and c. This generates the following 
four cases: 
 

Case 1:  b>0, c>0 

= ++ 2
iii )Z

~
cX

~
ba,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
RiRiRi

2
LiLiLi

2
iii −−− +−−−+−−−=  
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Case 2: b<0, c>0 

= ++ 2
iii )Z

~
cX

~
ba,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
RiLiRi

2
LiRiLi

2
iii −−− +−−−+−−−=  

 

Case 3: b>0, c<0 

= ++ 2
iii )Z

~
cX

~
ba,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
LiRiRi

2
RiLiLi

2
iii −−− +−−−+−−−=  

 

Case 4: b<0, c<0 

= ++ 2
iii )Z

~
cX

~
ba,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
LiLiRi

2
RiRiLi

2
iii −−− +−−−+−−−=  

 

Let’s consider, as an example, case 3 and let’s express it in metrical terms. The ex-
pression to be minimized is given by 
 

)()'()()'()()'()( βββββββ RRRRLLLL XyXyXyXyXyXyG −−+−−+−−=
 

(2) 
 

where  
y = [yi], is the n-dimensional vector of the cores of the dependent variable; 

yL
 = [ Liy ] and yR = [ Riy ] are the n-dimensional vectors of the lower extremes and the 

upper extremes of the dependent variable respectively; 
X is the n×3 matrix of the cores of the independent variables, formed by the vectors 1, 

x = [ ix ], z = [ iz ]; 

XL is the n×3 matrix of the lower bounds of the independent variables, formed by the 

vectors 1, Lx  = [ Lix ], Rz  = [ Riz ]; 

XR is the n×3 matrix of the upper bounds of the independent variables (analogous to 
XL), formed by the vectors 1, xR, zL; 

β is the vector (a, b, c) '. 

The estimates of the regression coefficients are derived from minimizing G(β) with 
respect to β , i.e. from seeking the solutions of the system 

 

0=++−++ ]X'yX'yX'y[]X'XX'XX'X[ RRLLRRLL β . 
 

In particular we obtain 
 

]'''[]'''[ 1
RRLLRRLL yXyXyXXXXXXX ++++= −β . 

 

Similarly to OLS estimation procedure, the optimization problem admits a single  
and finite solution if ]'''[ RRLL XXXXXX ++  is invertible and the hessian matrix is 
definite positive. 

The found solution β*=(a*, b*, c* )' is admissible if the signs of the regression coef-
ficients are coherent with the basic assumptions (b >0, c <0). 
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In the remaining three cases the expression (2) to be minimized is obtained after 
replacing zR by zL in XL

  and zL by zR in XR (case 1), xL by xR and zR by zL in XL and 
also xR by xL and zL by zR in XR (case 2), xL

 by xR in XL
  and xR by xL in XR (case 4) 

respectively. 
The optimum solution corresponds to that (admissible) one which makes minimum 

(1) among all. 
The generalization of such a procedure to the case of several independent variables 

is immediate; note that the number of solutions to analyze, in order to identify the 
optimum one, growths exponentially with the considered number of variables.  
For example, if the model includes k independent variables, 2k possible cases must  
be taken into account, which derive from combining the signs of the regression  
coefficients. 

3.2 A Generalization of the Model Including a Fuzzy Intercept 

Now we analyze an extension of the model with a fuzzy intercept, which seems more 
appropriate than the non-fuzzy one as it expresses the average value of the dependent 
variable (which is also fuzzy) when the independent variables equal zero. 

For this purpose we start from the results obtained by Diamond in the case of the 
univariate regression model with a fuzzy intercept. 

The Univariate Model. Let’s regress, for example, the dependent variable 

TRiLiii )y,y,(yY
~ =  on a single independent variable TRiLiii )x,x,x(X

~ =  in a set of 

n units. If we consider a symmetric fuzzy intercept TRL )a,a(a,A
~ = , where 

γ−= aa L , γ+= aa R  and γ > 0 (if γ = 0,  A
~

 would be no more fuzzy), the model 
assumes the following expression:  

 

*
iY

~
 = iX

~
bA

~ +            i = 1, 2, ..., n; a, b ∈ IR    . 
 

The fuzzy regression parameters a, γ and b are determined by minimizing, with re-
spect to them, the sum of the squared Diamond’s distances between theoretical and 
empirical fuzzy values of the dependent variable 
 

 + 2
ii )Y

~
,X

~
bA

~
d( . 

 

The function to minimize assumes different expressions according to the sign of the 
regression coefficients b. Supposing that b > 0, the estimates of a, b and γ are obtained 
as the solutions a*, b* and γ* of the system of equations 

 

[ ]











 ++−++=

 −−−=γ
 ++ = +++ −γ+++

.)xxb(xyyy
3

1
na

)]xx(b)yy[(2n

)xyxyxy()xxx(b)xx()xx(xa

RiLiiRiLii

LiRiLiRi

RiRiLiLiii
2
Ri

2
Li

2
iLiRiRiLii

 
 

Otherwise, supposing b<0, the estimates of a, b and γ are obtained as the solutions a*, 
b* and γ* of the system of equations 
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

 ++−++=
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 ++= ++
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.)xxb(xyyy
3

1
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)]xx(b)yy[(2n

)xyxyyx()xxx(b

)xx()xx(xa
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LiRiRiLiii
2
Ri

2
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2
i

LiRiRiLii

 

 

As Diamond shows, the solution of this minimization problem exists and is unique if 
the following conditions occur simultaneously: 
1. either b* < 0 or b* > 0; 

2. 0)yy(
n

1
)yy()xx(

n

1
)xx( LiRiLiRiLiRiLiRi ≥ 



 −−−



 −−− ; 

3. b* > b*. 

The Multivariate Model. Now we generalize the regression model with a fuzzy in-
tercept to the case of more than a single independent variable. 

Let us assume to regress a dependent variable TRiLiii )y,y,(yY
~ =  on two indepen-

dent variables TRiLiii )x,x,x(X
~ =  and TRiLiii )z,z,(zZ

~ =  in a set of n units. If we 

consider a fuzzy asymmetric intercept TRL )a,a(a,A
~ = , where γ−= aaL , 

γ−= aa R  and γ , γ  > 0 (if γ = γ  = 0, A
~

 would be no more fuzzy), the model 

assumes the following expression: 
 

*
iY

~  = A
~

+b iX
~

+c iZ
~

,      i = 1, 2, ..., n;  a, b, c ∈ IR  . 
 

Note that the asymmetric intercept is more appropriate than the symmetric one, in 
terms of a better adaptation to the data. 

The corresponding estimates of the parameters a, γ , γ , b and c are again deter-

mined by minimizing, with respect to them, the sum of the squared Diamond’s dis-
tances between empirical and theoretical values of the dependent variable      

 ++ 2
iii )Z

~
cX

~
bA

~
,Y

~
d(  (3) 

Such a sum assumes different expressions according to the signs of the regression 
coefficients b and c. 
 

Case 1:  b>0, c>0 

= ++ 2
iii )Z

~
cX

~
bA

~
,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
RiRiRRi

2
LiLiLLi

2
iii −−− +−−−+−−−=  

 

Case 2: b<0, c>0 

= ++ 2
iii )Z

~
cX

~
bA

~
,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
RiLiRRi

2
LiRiLLi

2
iii −−− +−−−+−−−=  

 
 



 Goodness of Fit Measures and Model Selection 247 

Case 3: b>0, c<0 

= ++ 2
iii )Z

~
cX

~
bA

~
,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
LiRiRRi

2
RiLiLLi

2
iii −−− +−−−+−−−=  

 

Case 4: b<0, c<0 

= ++ 2
iii )Z

~
cX

~
bA

~
,Y

~
d(  

])czbxay()czbxay()czbxay[( 2
LiLiRRi

2
RiRiLLi

2
iii −−− +−−−+−−−=  

 

Let’s consider, as an example, case 3 and let’s express it in matricial terms. The  
expression to be minimized is given by  
 

)()'()()'()()'()( βββββββ RRRRLLLL XyXyXyXyXyXyG −−+−−+−−=  (4) 
 

where  
y = [yi], is the n-dimensional the vector of cores of the dependent variable; 

yL
 = [ Liy ] and yR = [ Riy ] are the n-dimensional vectors of the lower extremes and 

the upper extremes of the dependent variable respectively; 
X is the n×5 matrix of the cores of the independent variables, formed by the vectors 1, 

x = [ ix ], z = [ iz ] and two vectors 0; 

XL is the n×5 matrix of lower bounds of the independent variables, formed by the 

vectors 1, xL
 = [ Lix ], zR

  = [ Riz ] and -1, 0; 

XR is the n×5 matrix of the upper bounds of the independent variables (analogous to 
XL), formed by the vectors 1, xR, zL and 0, 1; 

β is the vector (a, b, c, γ , γ ) '. 

The estimates of the regression coefficients are derived from minimizing G(β) with 
respect to β,  i.e. from seeking the solutions of the system 

 

0]'''[]'''[ =++−β++ RRLLRRLL XyXyXyXXXXXX .
 

 

In particular we obtain 
 

]'''[]'''[ 1
RRLLRRLL yXyXyXXXXXXX ++++= −β . 

 

Similarly to OLS estimation procedure, the optimization problem admits a single and 
finite solution if ]'''[ RRLL XXXXXX ++  is invertible and the hessian matrix is definite 

positive. 
The found solution β*=(a*, b*, c*, γ *, γ * )' is admissible if the signs of the regres-

sion coefficients are coherent with the basic assumptions (b >0, c <0 and γ , γ  > 0). 
In the remaining three cases the expression (4) to be minimized is obtained after 

appropriately replacing the vectors of the left and right extremes in the matrices as 
described above, according to the case considered. The optimum solution corresponds 
to that (admissible) one which makes minimum (3) among all. 
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When the intercept is symmetric, we estimate one parameter less than the previous 
model, because the spreads left and right coincide [8]. Note that the matrices X, XL 
and XR, relative to independent variables, and the vector of parameters β change their 
expression than before. In particular we have that 
X is the n×4 matrix of the cores of the independent variables, formed by the vectors 1, 

x = [ ix ], z = [ iz ] and 0; 

XL is the n×4 matrix of the lower bounds of the independent variables, formed by the 

vectors 1, xL
 = [ Lix ], zR

  = [ Riz ] and -1; 

XR is the n×4 matrix of the upper bounds of the independent variables (analogous to 
XL), formed by the vectors 1, xR, zL and 1; 

β is the vector (a, b, c, γ ) '. 

4 Decomposition of the Total Sum of Squares of the Dependent 
Variable 

In this section two important theoretical results will be demonstrated: the first one 
regards the inequality between theoretical and empirical averages of the fuzzy depen-
dent variable (unlike in the classical OLS estimation procedure); the second one re-
gards the decomposition of the total sum of squares of the dependent variable, which 
involves other two additive components besides the regression and the residual sum 
of squares. 

4.1 The Model Including a Non-fuzzy Intercept 

Let’s consider, as an example, the sum of Diamond’s distances between theoretical 
and empirical values of the dependent variable in the case 3: 
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Setting equal to 0 the derivate of  ++ 2
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d(  respect to a, b and c, we can 

obtain the following system of equations: 
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Such a system can be written as 
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Recalling that the theoretical values of the fuzzy dependent variable are 

ii
*
i czbxay ++=  RiLi

*
Li czbxay ++=  and LiRi

*
Ri czbxay ++= , we obtain 
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The first equation of the system (5) shows that the total sum of the lower extremes, 
the cores and the upper extremes of the theoretical values of the dependent variable 
coincides with the same amount referred to the empirical values. This equation does 
not allow us to state that theoretical and empirical averages of the fuzzy dependent 
variable coincide. 

Let’s examine how the total sum of squares of dependent variable 
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can be decomposed according to Diamond’s metric. 
Adding and subtracting the corresponding theoretical value within all the squares 

and developing them, the total sum of squares can be expressed as: 
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Adding and subtracting the theoretical average values of the lower extremes, of the 
cores and of the upper extremes of the dependent variable within all the squares and 
developing them, the previous expression becomes 
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where: 
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theoretical and empirical average values of the dependent variable. 
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Synthetically the expression of Tot SS can be written as: 
 

Tot SS = Reg SS + Res SS + 2* )Y,Y(nd + η  

where: 
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As the sums of the differences between each component and its average equal zero, 
then it is 
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and the amount η is reduced to 
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Moreover, as it is ii
*
i czbxay ++= , RiLi

*
Li czbxay ++=  and LiRi

*
Ri czbxay ++= , 

it is also 
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By replacing expressions of the theoretical values in the latter equation, we obtain  
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According to the condition (5), the last expression can be reduced to 
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Note that, if the residual sum of squares equals zero, also η and 2* )Y,Y(d  equal 
zero, because theoretical and empirical average values of the dependent variable coin-
cide for each observation. 
Therefore: 

- if the regression sum of squares equals zero, then the model has no forecasting 
capability, because the sum of the components of the i-th theoretical value equals the 
sum of the components of the empirical average value (i = 1 ,..., n). Actually it is for 
each i  
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- if the residual sum of squares equals zero, the relationship between the dependent 
variable and the independent ones is well represented by the  estimated model. In this 
case, the total sum of squares is entirely explained by the regression sum of squares. 
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4.2 The Model Including a Fuzzy Intercept 

Let’s consider, as an example of the model with a fuzzy intercept, the sum of Dia-
mond’s distances between theoretical and empirical values of the dependent variable 
in the case 3: 
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By minimizing such a sum with respect to a, γ , γ , b, and c (remember that 

γaaL −=  and γaa R += ), we can obtain the following system of equations 
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Such a system can be written as  
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Recalling that the theoretical values of the fuzzy dependent variable are 
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 (6) 

 

The first equation shows that the total sum of the cores and the extremes of the theo-
retical values of the dependent variable coincides with the same amount referred to 
the empirical values. The combination of the first equation with the last two allows us 
to state that theoretical and empirical values of the average fuzzy dependent variable 
coincide, like it happens in the classic OLS estimation procedure. 
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Let’s examine how the total sum of squares of dependent variable can be decom-
posed according to Diamond’s metric: 
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Adding and subtracting the corresponding theoretical value within all the each squares 
and developing them, the total sum of squares can be expressed as: 
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Adding and subtracting the theoretical average values of the lower extremes, of the 
cores and of the upper extremes of the dependent variable within all the squares and 
developing them, the previous expression becomes 
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Therefore the expression of the total sum of squares of the dependent variable can be 
reduced to 

 

SSsReSSgReSSTot += . 
 

Ultimately the total sum of squares consists only of two addends (the regression and 
the residual sum of squares) like in the classic OLS estimation procedure, when the 
intercept has the same form as the dependent variable. 

Note that, when the intercept has not the same form as the dependent variable, 
theoretical and empirical average values of the latter do not coincide in correspon-
dence of each observation; rather the total sum of the lower extremes, the cores and 
the upper extremes of the theoretical values coincides with the same amount referred 
to the empirical values: 
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In this case the total sum of squares of the dependent variable consists of two other 
components in addition to the regression and the residual sum of squares: the first one 
is residual in nature and is characterized by an uncertain sign, the second one is  
equal to n times the distance between theoretical and empirical average values of the 
dependent variable. 

4.3 A Fuzzy Model Fit Index 

We have just demonstrated that the total sum of squares of the dependent variable 
consists only of two addends (the regression and the residual sum of squares), when 
the intercept is fuzzy asymmetric. This is because theoretical and empirical average 
values of the dependent variable coincide and, therefore, both the total sum of squares 
and the regression sum of squares can be expressed in terms of distance between  
empirical values and their averages. 

Under these circumstances, the greater the regression sum of squares the better the 
model fits the data. 

In order to assess the goodness of fit of the regression model, we propose the  
following index, for simplicity called Fuzzy Fit Index (FFI): 
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*
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L

** )y,y,y(Y =  and TRL )y,y,y(Y =  denote the fuzzy theoretical average and 
the fuzzy empirical average of the dependent variable respectively. 

The more this index is next to 1, the smaller the residual sum of squares is and the 
better the model fits the observed data. 

In order to compare models that explain the same dependent variable by means of a 
different number of independent variables, it is appropriate to refer to an index that 
takes into account the corresponding degrees of freedom (closely linked at this num-
ber). As in the classic model, an increase in FFI does not necessarily mean that the 
new independent variable contributes significantly to explain Y

~
; any excess in  

measuring the fit of the model can be corrected by deflating FFI for a term which 
increases with the number of independent variables included in the equation.  

The proposed version of the adjusted FFI is 
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which increases only if the increase in FFI (i.e. in the regression sum of squares) ex-
ceeds the penalty induced by having one more independent variable in the model, and 
decreases otherwise. 
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5 A Stepwise Procedure to Select Independent Variables 

The selection of the most significant independent variables presents greater difficul-
ties from a computational point of view in a fuzzy regression model than in the classic 
one. 

The fuzzy approach makes the search for optimal combinations of the starting va-
riables more complex, as the total number of the potential hyperplanes to be tested 
increases exponentially with the considered number p of independent variables. In 
fact, for each subset of q≤p variables, 2q different hyperplanes result from all combi-
nations of the signs assumed by the corresponding regression coefficients.  

In order to avoid complications related to the above checks, recently we proposed 
[9] a stepwise forward identification procedure. At each iteration such a procedure 
inserted a variable in the regression equation, according to two fundamental criteria: 
the significance of its contribution, measured by the relative increase of the total sum 
of squares in the dependent variable, and its originality, i.e. the ability to introduce 
information into the equation which other variables have not already introduced  
(assessed in terms of correlation with the latter). 

In this work, we introduce a stepwise procedure which enables us to find the op-
timal combination of the independent variables not only by including only one of 
them at a time, but also by eliminating in each iteration that variable, whose explana-
tory contribution is subrogated by the combination of the other ones included after it 
was (Fig. 2). 

This procedure drastically reduces the number of models to be estimated in order 
to identify the best one among them. Let’s examine how it works in detail, starting 
from the forward selection. 

After identifying an initial simple regression model (in which X
~

(1) presents the 
highest correlation with Y

~
), in each successive iteration we select the variable less 

correlated with those already present, provided that it significantly explains the total 
sum of squares of the model. In other words, focusing on the q.th step (q=2,3,...p), X

~

(q) is candidate to be also included in the equation if its contribution is original with 
respect to the previous q-1 variables. 

Such a contribution is evaluated by measuring the so called tolerance Tq=1-FFI
q;1,2,...,q-1, in which FFI q;1,2,...,q-1 represents the share of variability of X

~
(q) explained by  

X
~

(1), X
~

(2), ..., X
~

(q-1). The tolerance ranges between 0 and 1, depending on the degree of 
linear correlation between X

~
(q) and the other variables; therefore, only if Tq exceeds a 

threshold identified between 0 and 1, X
~

(q) is candidate to become part of the model. 
Note that a high value of the threshold allows us to select very original variables, 

but it can also stop the process since from the initial steps; on the contrary, a low val-
ue allows us to select a greater number of variables, although more correlated to each 
other. In any case, if none of the variables not yet included in the equation proves 
significantly its originality, the selection process would stop. 

The opportunity of actually introducing the selected variable X
~

(q) into the equation 
is now evaluated in terms of its explanatory contribution. In particular such a contri-
bution is measured as the increase in the adjusted Fuzzy Fit Index of the model due to 
the entry submitted for consideration, i.e. as FFIy;1,2,...,q - FFIy;1,2,...,q-1 (where the two 
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terms of the subtraction represent the proportion of the sum of squares of Y
~

ex-

plained by the model including and not including X
~

(q) respectively). 
The selected variable ends up being introduced into the equation if the correspon-

dent increase in the adjusted Fuzzy Fit Index is higher than an arbitrary threshold 
value. The higher such an arbitrary value is, the easier the procedure inhibits the entry 
of new independent variables, whose explanatory contribution is not that relevant. 

 

Fig. 2. Iterative steps of the procedure 
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If the explanatory contribution of X
~

(q) is not significant, we pass to consider the 
inclusion of the remaining candidate variables on the basis of the same criterion. In 
any case, the selection procedure stops when none of them contributes significantly to 

explain the sum of squares of Y
~

. 
The proposed procedure provides also the possibility of eliminating in each itera-

tion one of the variables already included in the equation. For example, once X
~

(q) is 

inserted, the explanatory contribution of every X
~

(i) (i = 1, 2, ..q-1) is still valued as 

the reduction of the adjusted Fuzzy Fit Index caused by the elimination of X
~

(i) from 
the model, i.e. as FFIy;1,2,...,q  - FFIy;1,2,...,q (-i) (where the two terms of the subtraction 

represent the proportion of the sum of squares of Y
~

explained by the model exclud-

ing and not excluding X
~

(i) respectively). 
The variable which shows the smallest reduction is excluded from the equation if 

such a reduction does not exceed an arbitrary threshold value. This would happen if 
the explanatory contribution of the variable to be discarded was subrogated by the 
combination of the independent variables introduced after it was. 

In conclusion it is worth noting that the threshold value of the variation in the ad-
justed Fuzzy Fit Index could be lower in the case of the forward selection, where  
priority is given to the role of tolerance, than in the case of the backward selection. 
This allows us to include into the equation a greater number of variables which oth-
erwise would play no role, maintaining the opportunity to evaluate their exclusion at a 
later time. 

A possible limitation of the proposed procedure is the fact that variables, once 
eliminated, cannot be nominated to enter the equation in next steps; in other words the 
selection of variables is limited to those never become part of the model. Instead it is 
plausible that a discarded variable can go to make a significant contribution in ex-
plaining the model later in the procedure (in correspondence with a different combi-
nation of variables from the one generating its output). 

Future works will aim to verify if it is possible to remove this problem without in-
curring a less optimal procedure from other points of view. 

6 Conclusions 

In this work we first explicit the expressions of the estimated parameters of a multiva-
riate fuzzy regression model with a fuzzy asymmetric intercept. Such an intercept is 
more appropriate than a non-fuzzy on, as it is to be estimated by the average value of 
the dependent variable (which is also fuzzy) when the independent variables equal 
zero. 

Moreover we verify that the sum of squares of the dependent variable consists 
simply in the regression and the residual sum of squares, like it happens in the classic 
OLS estimation procedure, only when the intercept is fuzzy asymmetric triangular. 
Conversely, when the intercept is symmetric (both fuzzy and not), the analysis of the 
forecasting capability of the model is more difficult. This happens because of the 
presence of two additional components of the sum of squares: the first one which is 
related to the difference between the theoretical and the empirical average values of 
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the dependent variable, the second one which is residual in nature and is characterized 
by an uncertain sign. 

The selection of the most significant independent variables in a fuzzy regression 
model presents computational difficulties due to the large number of potential hyper-
planes to be tested. We propose to overcome such difficulties through a stepwise pro-
cedure, based on a fuzzy version of the R2 index, which enables us to find the optimal 
combination of the starting variables. 

In each step a single variable is included between the starting ones, according to 
two basic criteria: its explanatory contribution to the model and its originality with 
respect to the other variables already included in the model. 

The procedure provides the possibility of eliminating at each iteration variables al-
ready included in the model, whose explanatory contribution is subrogated by the 
combination of the independent variables introduced later. 

Some improvements to the model mainly concern the shape of the membership 
function of fuzzy membership different from the triangular one.  
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Abstract. In the search space of MLP(J), multilayer perceptron having J hidden
units, there exist flat areas called singular regions created by applying reducibil-
ity mapping to the optimal solution of MLP(J−1). Since such singular regions
cause serious slowdown for learning, a learning method for avoiding singular re-
gions has been aspired. However, such avoiding does not guarantee the quality
of the final solutions. This paper proposes a new learning method which does
not avoid but makes good use of singular regions to stably and successively find
solutions excellent enough for MLP(J). The potential of the method is shown by
our experiments using artificial and real data sets.

Keywords: Multilayer perceptron, Learning method, Reducibility mapping, Sin-
gular region, Polynomial network.

1 Introduction

It is known in MLP learning that an MLP(J) parameter subspace having the same input-
output map as an optimal solution of MLP(J−1) forms a flat area called a singular
region, and the singular region causes the stagnation of learning [4]. Natural gradient
[1,2] was once proposed to avoid such stagnation of MLP learning, but even the method
may get stuck in singular regions and is not guaranteed to find an excellent solution.
Recently an alternative constructive method has been proposed [6].

It is also known that many useful statistical models, such as MLP, Gaussian mixtures,
and HMM, are singular models having singular regions where parameters are noniden-
tifiable. While theoretical research has been vigorously done to clarify mathematical
structure and characteristics of singular models [10], experimental research is rather
insufficient to fully support the theories.

In MLP parameter space there are a number of local minima forming equivalence
class [12]. Even if we exclude equivalence class, it is widely believed that there still
remain local minima [3]. When we adopt an exponential function as an activation func-
tion [8], there surely exist local minima due to the expressive power of polynomials. In
XOR problem, however, it was proved there is no strict local minima [5]. Thus, since we
have no clear knowledge of MLP parameter space, we run a learning method repeatedly
changing initial weights to find an excellent solution.

This paper proposes a new learning method which does not avoid but makes good
use of singular regions to stably and successively find excellent solutions. The method
starts with an MLP having one hidden unit and then gradually increases the number of
hidden units until the intended number. When it increases the number of hidden units

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 261–275.
DOI: 10.1007/978-3-642-35638-4_17 c© Springer-Verlag Berlin Heidelberg 2013
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from J−1 to J , it utilizes an optimum of MLP(J−1) to form two kinds of singular
regions in MLP(J) parameter space. Each singular region forms a line, and the learning
method can descend in the MLP(J) parameter space since most points along the line
are saddles. Thus, we can always find a solution of MLP(J) better than the optimum of
MLP(J−1). Our method is evaluated by the experiments for sigmoidal and polynomial-
type MLPs using artificial and real data sets.

2 Singular Regions of Multilayer Perceptron

This section explains that an optimum of MLP(J−1) is used to form singular regions in
MLP(J) parameter space [4]. This result is universal in the sense that it does not depend
on the choice of an error function or an activation function.

Consider the following MLP(J), MLP having J hidden units and one output unit.
MLP(J) having θJ outputs fJ(x; θJ) for input x. Here g(h) denotes an activation
function, and θJ = {w0, wj ,wj , j = 1, · · · , J}, where wj = (wjk).

fJ(x; θJ) = w0 +

J∑
j=1

wjzj , zj ≡ g(wT
j x) (1)

Let input vector x = (xk) be K-dimensional. Given training data {(xμ, yμ), μ =
1, · · · , N}, we want to find the parameter vector θJ which minimizes the following
error function.

EJ =
1

2

N∑
μ=1

(fμ
J − yμ)2, where fμ

J ≡ fJ(x
μ; θJ ) (2)

At the same time we consider the following MLP(J−1) having J−1 hidden units,
where θJ−1 = {u0, uj,uj , j = 2, · · · , J}.

fJ−1(x; θJ−1) = u0 +

J∑
j=2

ujvj , vj ≡ g(uT
j x) (3)

The error function of MLP(J−1) is defined as follows.

EJ−1(θ) =
1

2

N∑
μ=1

(fμ
J−1 − yμ)2, where fμ

J−1 ≡ fJ−1(x
μ; θJ−1) (4)

Let θ̂J−1 denote a critical point of MLP(J−1), which satisfies the following

∂EJ−1(θ)

∂θ
= 0.

The necessary conditions for the critical point of MLP (J−1) are shown below. Here
j = 2, · · · , J and vμj ≡ g(uT

j x
μ).

∂EJ−1

∂u0
=
∑
μ

(fμ
J−1 − yμ) = 0
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∂EJ−1

∂uj
=
∑
μ

(fμ
J−1 − yμ) vμj = 0

∂EJ−1

∂uj
= uj

∑
μ

(fμ
J−1 − yμ) g′(uT

j x
μ) xμ=0

Now we consider the following three reducibility mappings α, β, γ, and let Θ̂
α

J , Θ̂
β

J ,
and Θ̂

γ

J denote the regions obtained by applying these three mappings to an optimum
θ̂J−1 = {û0, ûj , ûj , j = 2, · · · , J} of MLP(J−1).

θ̂J−1
α−→ Θ̂

α

J , θ̂J−1
β−→ Θ̂

β

J , θ̂J−1
γ−→ Θ̂

γ

J

Θ̂
α

J ≡ {θJ | w0 = û0, w1 = 0,

wj = ûj,wj = ûj , j=2, · · · , J} (5)

Θ̂
β

J ≡ {θJ | w0 + w1g(w10) = û0, w1=[w10, 0, · · · , 0]T ,
wj = ûj,wj = ûj , j=2, · · · , J} (6)

Θ̂
γ

J ≡ {θJ | w0 = û0, w1 + w2 = û2, w1=w2= û2,

wj = ûj,wj = ûj , j=3, · · · , J} (7)

(a) region Θ̂
α

J is (K + 1)-dimensional since free vector w1 is (K + 1)-dimensional.

(b) region Θ̂
β

J is two-dimensional since all we have to do is to satisfy the following

w0 + w1 g(w10) = û0.

(c) region Θ̂γ is a line since we have only to satisfy the following

w1 + w2 = û2.

Here we review a critical point where the gradient ∂E/∂θ of an error function E(θ)
gets zero. In the context of minimization, a critical point is classified into a local mini-
mum and a saddle. A critical point θ0 is classified as a local minimum when any point
θ in its neighborhood satisfies E(θ0) ≤ E(θ), otherwise is classified as a saddle.

In this paper we classify a local minimum into a wok-bottom and a gutter. A wok-
bottom θ0 is a strict local minimum where any point θ in its neighborhood satisfies
E(θ0) < E(θ), and a gutter is a continuous subspace where any points θ1 and θ2

in the subspace satisfy E(θ1) = E(θ2) or E(θ1) ≈ E(θ2), and any point θ in its
neighborhood satisfies E(θ1) < E(θ).

The necessary conditions for the critical point of MLP (J) are shown below. Here
j =, · · · , J and zμj ≡ g(wT

j x
μ).

∂EJ

∂w0
=
∑
μ

(fμ
J − yμ) = 0

∂EJ

∂w1
=
∑
μ

(fμ
J − yμ) zμ1 = 0
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∂EJ

∂wj
=
∑
μ

(fμ
J − yμ) zμj = 0,

∂EJ

∂w1
= w1

∑
μ

(fμ
J − yμ) g′(wT

1 x
μ) xμ = 0

∂EJ

∂wj
= wj

∑
μ

(fμ
J − yμ) g′(wT

j x
μ) xμ = 0

Then we check if regions Θ̂
α

J , Θ̂
β

J , and Θ̂
γ

J satisfy these necessary conditions. Note
that in these regions we have fμ

J = fμ
J−1 and vμj = zμj , j = 2, · · · , J . Thus, we see that

the first, third, and fifth equations hold, and the second and fourth equations are needed
to check.

(a) In region Θ̂
α

J , since weight vector w1 is free, the output of the first hidden unit zμ1 is
free, which means it is not guaranteed that the second and fourth equations hold. Thus,
Θ̂

α

J is not a singular region in general.

(b) In region Θ̂
β

J , since zμ1 (= g(w10)) is independent on μ, the second equation can
be reduced to the first one, and holds. However, the fourth equation does not hold in

general unless w1 = 0. Thus, the following area included in both Θ̂
α

J and Θ̂
β

J forms a

singular region where w10 is free. This region is called Θ̂
αβ

J and reducibility mapping

from θ̂J−1 to Θ̂
αβ

J is called αβ.

w0 = û0, w1 = 0, w1 = [w10, 0, · · · , 0]T
wj = ûj, wj = ûj, j = 2, · · · , J (8)

(c) In region Θ̂
γ

J , since zμ1 = vμ2 , the second and fourth equations hold. Namely, Θ̂
γ

J is a
singular region. Here we have one degree of freedom since we only have the following
restriction

w1 + w2 = û2 (9)

3 SSF1.1 (Singularity Stairs Following, ver. 1.1) Method

This section proposes an extended version of SSF [9], which makes good use of singular

regions Θ̂
γ

J and Θ̂
αβ

J of MLP. Although the original SSF [9], called here SSF1.0, used

only Θ̂
γ

J , SSF1.1 uses not only Θ̂
γ

J but also Θ̂
αβ

J . By searching Θ̂
αβ

J as well, we can
examine the whole singular regions, may find better solutions and will get more insight
into MLP search space.

Here we explain how to search these two singular regions. It is rather easy to search
these regions since either region has at most one degree of freedom and most points in
the region are saddles [4], which means we surely find a solution of MLP(J) better than
an optimum of MLP(J−1).
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We search Θ̂
γ

J changing initial points repeatedly in the form of interpolation or

extrapolation of eq.(9). On the other hand we search Θ̂
αβ

J using the Hessian H(=
∂2E/∂w∂wT ). Otherwise we cannot move the search point since the region is com-
pletely flat. We pick up a negative eigen value of H and select its eigen vector v and
its negative vector −v as two search directions. The appropriate step length is decided
using line search called golden section [7].

The procedure of SSF1.1 is described below. It searches the space by ascending sin-
gularity stairs one by one, beginning with MLP(J=1) and gradually increasing J until
the intended largest number Jmax. Here w

(J)
0 , w(J)

j , and w
(J)
j are weights of MLP(J).

Compared with the original SSF1.0 [9], step 2-1-2 is added to incorporate reducibility
mapping αβ.

SSF1.1 (Singularity Stairs Following, ver. 1.1)

(step 1) Find the excellent solution of MLP(J=1) by repeating the learning changing
initial weights. let the best result be ŵ

(1)
0 , ŵ(1)

1 , and ŵ
(1)
1 . Then J ← 1.

(step 2) While J < Jmax, repeat the following to get MLP(J+1) from MLP(J).
(step 2-1) If there are more than one hidden units in MLP(J), repeat the following for
each hidden unit m(= 1, · · · , J) to split.
(step 2-1-1) Initialize weights of MLP(J+1) using reducibility mapping γ:
w

(J+1)
j ← ŵ

(J)
j , j ∈ {0, 1, · · · , J} \ {m}, w

(J+1)
j ← ŵ

(J)
j , j = 1, · · · , J

w
(J+1)
J+1 ← ŵ(J)

m .

Initialize w
(J+1)
m and w

(J+1)
J+1 many times while satisfying the restriction w

(J+1)
m +

w
(J+1)
J+1 = ŵ

(J)
m in the form of interpolation or extrapolation. Then perform MLP(J+1)

learning for each initialization and keep the best as the best of γ for the hidden unit m
to split.
(step 2-1-2) Initialize weights of MLP(J+1) using reducibility mapping αβ:
w

(J+1)
j ← ŵ

(J)
j , j = 0, 1, · · · , J, w

(J+1)
j ← ŵ

(J)
j , j = 1, · · · , J

w
(J+1)
J+1 = 0, w

(J+1)
J+1 ← [0, 0, · · · , 0]T .

Pick up a negative eigen value of H and select its eigen vector v and −v as two
search directions. Find the appropriate step length using golden section. Then perform
MLP(J+1) learning and keep the best as the best of αβ for m.
(step 2-1-3) As the best MLP(J + 1) for m, select the better from the best of γ for m
and the best of αβ for m.
(step 2-2) Among the best MLPs(J+1) for different m, select the true best and let the
weights be ŵ(J+1)

0 , ŵ
(J+1)
j , ŵ

(J+1)
j , j=1, · · · , J+1. Then J ← J+1.

Now we claim the following, which will be evaluated in the next experiments.

(1) Compared with the existing methods such as BP, Newton’s method, quasi-
Newton methods, SSF1.1 finds excellent solutions of MLP(J) with much higher
probabilities.

(2) The excellent solution of MLP(J) is obtained one after another for J = 1, · · · , Jmax.
These excellent solutions can be used for model selection. SSF1.1 guarantees that
the solution of MLP(J+1) is better than that of MLP(J) since SSF1.1 descends in
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MLP(J+1) search space from the singular region corresponding to the excellent
solution of MLP(J). Such monotonic decrease of training error is not guaranteed
for the existing methods.

4 Experiments

We evaluate the proposed SSF1.1 for sigmoidal and polynomial-type MLPs using artifi-
cial and real data sets. Activation functions g(h) in eq. (1) for sigmoidal and polynomial-
type MLPs are g(h) = 1/(1 + e−h) and g(h) = exp(h) respectively. Then the output
of polynomial-type MLP is written as follows.

fJ =

J∑
j=0

wjzj, zj = exp

(
K∑

k=1

wjk lnxk

)
(10)

The above can be rewritten as below, representing a multivariate polynomial [8].

fJ =
J∑

j=0

wjzj, zj =
K∏

k=1

(xk)
wjk (11)

In performing SSF1.1, since we have to move in singular flat regions, we employ weak
weight decay where penalty coefficient ρ = 0.001. As a learning engine of SSF1.1 we
use a kind of quasi-Newton method called BPQ [11] since any first-order method is too
slow to converge. As for step 2-1-1 of SSF1.1, the weight initialization of reducibility
mapping γ is repeated 50 times each for interpolation and extrapolation.

As the existing learning methods we employed BP and BPQ for comparison. Here
the learning rate of BP is adaptively determined using the second-order Taylor expan-
sion, since a constant learning rate does not work at all. BP or BPQ is performed 100
times for each MLP(J) of each data set.

Any learning stops when a step length is less than 10−30 or the iteration exceeds
20,000 sweeps. As for the initialization of MLP weights, wjk and wj are randomly
selected from the range [0, 1], without w0 = y.

4.1 Experiment of Sigmoidal MLP Using Artificial Data

Our artificial data set for sigmoidal MLP was generated using the following MLP. Val-
ues of each explanatory variable x1, x2, · · · , or x7 were randomly selected from the
range [0, 1], while values of output y were generated by adding a small Gaussian noise
N (0, 0.052) to MLP outputs. Note that four explanatory variables x4, · · · , x7 are irrel-
evant. The sample size was set to be 500. The number of hidden units was changed
within 3: Jmax = 3.⎛⎜⎜⎝

w0

w1

w2

w3

⎞⎟⎟⎠=

⎛⎜⎜⎝
0
3
2

−5

⎞⎟⎟⎠ , (w1 w2 w3) =

⎛⎜⎜⎜⎜⎝
5 6 7

−15 −17 −13
−17 −10 −16
16 15 12

−14 −15 −19

⎞⎟⎟⎟⎟⎠
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Fig. 1. Learning process of SSF1.1 for artificial sigmoidal data

Figure 1 shows the result of SSF1.1. We repeated MLP(J=1) learning 100 times and
obtained two solutions. The better solution was used for the next step. The result for
MLP(J=2) is shown in Fig. 1 (a). We have two search points for reducibility map-
ping αβ search, 50 points for reducibility mapping γ interpolation, and 50 points for
γ extrapolation. The leftmost two points indicate the result of reducibility mapping αβ
search. Almost all search points converged to the same good solution, which was used
for the next step. The result for MLP(J=3) is shown in Fig. 1 (b). We have two points
for αβ search, 100 points for γ search for splitting w

(2)
1 , and other 100 points for γ

search for splitting w
(2)
2 . Eighty eight search points converged to the same excellent

solution.

Table 1. Best training error comparison for artificial sigmoidal data

J BP BPQ SSF1.1
1 89.3263 86.0121 86.0121
2 4.0882 4.0322 4.0322
3 4.0950 1.8576 1.8576

As existing methods we ran adaptive BP and BPQ 100 times each. Table 1 compares
the best training error E for each J . BPQ and SSF1.1 achieved the same best training
error for each J , and both showed monotonic decrease of E as J increased. On the
other hand, adaptive BP could not achieve the best for each J and did not show mono-
tonic decrease of E as J increased. Figure 2 compares histograms of BPQ and SSF1.1
solutions. SSF1.1 reached the best solution 88 times out of 202, while BPQ reached the
best solution 5 times out of 100. We see SSF1.1 found the excellent solution 8.7 times
more stably.

Table 2 compares CPU time for artificial sigmoidal data. CPU time spent by SSF1.1
was much the same as that of BPQ. Adaptive BP was slow and all runs stopped by
reaching the iteration upper bound.
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Fig. 2. Histograms of solutions for artificial sigmoidal data

Table 2. CPU time comparison for artificial sigmoidal data (sec)

J BP BPQ SSF1.1
1 412.96 3.31 3.36
2 498.12 6.39 5.42
3 610.45 15.69 19.70

total 1521.54 25.40 28.49

4.2 Experiment of Sigmoidal MLP Using Real Data

As a real data set for sigmoidal MLP we used Housing data set from UCI Machine
Learning Repository. The number of explanatory variables is 12, and the sample size is
506. The number of hidden units was changed within 6: Jmax = 6.

Figure 3 shows the result of SSF1.1. We repeated MLP(J=1) learning 100 times and
obtained a single solution, which was used for the next step. The result for MLP(J=2)
is shown in Fig. 3 (a). We have two search points for reducibility mapping αβ search,
and 100 points for reducibility mapping γ interpolation and extrapolation. Here we
have two kinds of solutions and the better one was used for the next step. The results
for MLP(J=3), MLP(J=4), and MLP(J=6) are shown in Fig. 3 (b), (c), and (d). The
numbers of search points were 202, 302, and 502 respectively. From the figure we see
the best solution was frequently obtained from different splitting. Finally, 104 points
converged to the same excellent solution.

For comparison we ran adaptive BP and BPQ 100 times each. Table 3 compares
the best training error E for each J . BPQ and SSF1.1 achieved the same best training
error for J=1 and 2, but SSF1.1 found better solutions than BPQ for larger J . Adaptive
BP found rather poor solutions for J > 2 and did not show monotonic decrease as J
increased. Figure 4 compares histograms of BPQ and SSF1.1 solutions. SSF1.1 reached
the best solution 104 times out of 502, while BPQ could not find the best solution for
any 100 runs. Moreover, many solutions of SSF1.1 are located close to the best solution,
while BPQ solutions are widely distributed. We see SSF1.1 found the excellent solution
very stably.
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Fig. 3. Learning process of SSF1.1 for Housing data

Table 3. Best training error comparison for Housing data

J BP BPQ SSF1.1
1 47.7244 47.5565 47.5565
2 26.7537 26.0902 26.0902
3 23.7415 20.3702 20.1187
4 21.1871 16.0666 16.0608
5 19.4489 14.2997 13.6640
6 19.4513 12.2430 11.7303

Table 4. CPU time comparison for Housing data (sec)

J BP BPQ SSF1.1
1 418.83 4.47 4.41
2 508.05 12.24 12.69
3 624.40 15.32 32.50
4 829.45 25.35 61.62
5 985.75 37.57 158.54
6 1071.63 49.51 173.66

total 4438.12 144.46 443.43
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Fig. 4. Histograms of solutions for Housing data

Table 4 compares CPU time for Housing data. SSF1.1 was three times slower than
BPQ mainly because the search points got larger as J increased. Adaptive BP was very
slow and all runs stopped by reaching the iteration upper bound.

4.3 Experiment of Polynomial-Type MLP Using Artificial Data

Here we consider the following multivariate polynomial.

y = 2 + 60 x3
1 x

6
2x3 + 40 x8

4 x5 + 20 x6 x
7
7 + 10 x2 x

8
5 (12)

Values of each explanatory variable x1, x2, · · ·, or x14 were randomly selected from
the range (0, 1), while values of output y were generated following eq. (12). Seven
explanatory variables x8, · · · , x14 are irrelevant. The sample size was set to be 200.
Considering eq. (12), we set as Jmax = 4.

Figure 5 shows the result of SSF1.1. We repeated MLP(J=1) learning 100 times and
obtained several solutions, as shown in Fig. 3(a). The best solution was used for the next
step. The result for MLP(J=2) is shown in Fig. 5 (b). We have two search points for
reducibility mapping αβ search, and 100 points for γ interpolation and extrapolation.
The best solution obtained by αβ search was used for the next step. The results for
MLP(J=3) and MLP(J=4) are shown in Fig. 5 (c) and (d); the numbers of search points
were 202 and 302 respectively. We see the best solution was frequently obtained from
different splitting. Finally, 161 search points converged to the same excellent solution.

Table 5. Best training error comparison for artificial polynomial data

J BP BPQ SSF1.1
1 1798.4900 1760.8019 1760.8019
2 720.2273 636.1869 636.1869
3 122.6208 60.7541 60.7541
4 65.4654 27.5101 2.7737
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Fig. 5. Learning process of SSF1.1 for artificial polynomial data
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Fig. 6. Histograms of solutions for artificial polynomial data

For comparison we ran adaptive BP and BPQ 100 times each. Table 5 compares
the best training error E for each J . Both BPQ and SSF1.1 achieved the same best
training error for J=1, 2, and 3, but SSF1.1 found much better solution than BPQ for
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Table 6. CPU time comparison for artificial polynomial data (sec)

J BP BPQ SSF1.1
1 284.42 18.48 17.89
2 272.95 38.65 10.58
3 298.44 89.43 73.36
4 309.17 127.38 41.85

total 1164.98 273.93 143.68

J=4. Adaptive BP found very poor solutions for each J . Figure 6 compares histograms
of BPQ and SSF1.1 solutions. SSF1.1 reached the best solution 161 times out of 302,
while BPQ could not find the best solution for any 100 runs. Moreover, many solutions
of SSF1.1 are located quite close to the best solution, while BPQ solutions are very
widely distributed. We see SSF1.1 could find the excellent solution much more stably.

Table 6 compares CPU time for artificial polynomial data. SSF1.1 was about twice
slower than BPQ mainly because the search points got larger as J increased. Adaptive
BP was again slow and all runs were terminated by reaching the iteration upper bound.

4.4 Experiment of Polynomial-Type MLP Using Real Data

As a real data set for polynomial-type MLP we used ball bearings data (Journal of
Statistics Education). The objective is to estimate fatigue (L10) using load (P), the
number of balls (Z), and diameter (D). Before learning, variables were normalized as
xk/max(xk) and (y − ȳ)/std(y). The sample size is 210, and we set as Jmax = 6.

Figure 7 shows the result of SSF1.1. We repeated MLP(J=1) learning 100 times and
obtained two solutions; The better solution was used for the next step. The result for
MLP(J=2) is shown in Fig. 7 (a). We have two search points for reducibility mapping
αβ search, and 100 points for γ interpolation and extrapolation. The best solution ob-
tained by αβ search was used for the next step. The results for MLP(J=4), MLP(J=5)
and MLP(J=6) are shown in Fig. 7 (b), (c) and (d); the numbers of search points were
302, 402 and 502 respectively. We see the best solution was frequently obtained from
different splitting. Finally, 158 search points converged to the same excellent solution.
We ran adaptive BP and BPQ 100 times each. Table 7 compares the best training er-
ror E. BPQ and SSF1.1 achieved the same best E for J=1, 3, 4, and 5, but SSF1.1
outperformed BPQ for J=2 and 6. Adaptive BP found poor solutions for each J and
showed rugged change of E as J increased. Figure 8 compares histograms of BPQ and
SSF1.1 solutions. SSF1.1 reached the best solution 158 times out of 502, while BPQ

Table 7. Best training error comparison for ball bearings data

J BP BPQ SSF1.1
1 32.2456 29.6157 29.6157
2 27.9588 23.8523 23.8549
3 27.6056 19.5758 19.5758
4 28.4923 16.9736 16.9736
5 31.0674 16.5754 16.5754
6 29.2479 16.2055 16.2030
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Fig. 7. Learning process of SSF1.1 for ball bearings data
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Fig. 8. Histograms of solutions for ball bearings data

did only twice out of 100. Moreover, most solutions of SSF1.1 are located close to the
best, while BPQ solutions scatter widely. We see SSF1.1 found the excellent solution
15.7 times more stably.
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Table 8 compares CPU time for ball bearings data. SSF1.1 was about 7 times slower
than BPQ mainly because the search points got larger as J increased. Adaptive BP was
slow and all runs stopped reaching the iteration upper bound.

Table 8. CPU time comparison for ball bearings data (sec)

J BP BPQ SSF1.1
1 274.35 5.60 5.71
2 262.64 12.14 14.11
3 279.27 33.89 29.83
4 290.10 77.84 351.41
5 309.05 111.51 1405.61
6 325.50 128.66 806.67

total 1740.90 369.63 2613.33

5 Conclusions

This paper proposed a new MLP learning method called SSF1.1, which makes good
use of the whole singular regions. It begins with MLP(J=1) and gradually increases
the number of hidden units one by one. Our various experiments using sigmoidal and
polynomial-type MLP showed that, compared with existing methods such as BP or
quasi-Newton method, SSF1.1 quite stably and successively found solutions excellent
enough for MLP(J). In the future we plan to improve our method by reducing time
complexity and apply it to a wide variety of data.
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Abstract. In this paper, we propose a new type of learning method in which neu-
rons are treated individually and collectively. In addition, the collectivity is de-
fined in terms of distance and similarity between neurons. We applied the method
to the self-organizing maps, because our method makes it possible to control flex-
ibly a process of cooperation between neurons. Then, we applied the method with
the self-organizing maps to the visualization of the pound-yen exchange rates. We
succeeded in producing clearer class structure. The entire period of the exchange
rates was divided into three distinct periods.

1 Introduction

In this chapter, we propose a new type of neural learning method, based upon the separa-
tion and interaction of individually and collectively treated neurons. Neurons have been
treated individually or collectively, depending upon learning methods. However, little
attention has been paid to the importance of the separation of individually and collec-
tively treated neurons. We try to show the importance of distinction between two types
of neurons by using self-organizing maps. In the self-organizing maps, much attention
has been paid to cooperation or collectivity of neurons. The introduction of individual-
ity of neurons has much influence on learning and final visualization performance. In
addition, the distinction also makes it possible to construct collectively treated neurons,
taking into account the characteristics of individually treated neurons. We here show
the influence of distinction in terms of visualization and a new concept of collectivity.

First, distinction between individually and collectively treated neurons makes it pos-
sible to visualize SOM knowledge more explicitly. The self-organizing maps [1], [2]
have been used for many applications, because of the visualization performance.
Paradoxically, we have had much difficulty in visualizing SOM’s knowledge. Due to
this difficulty, there have been many attempts to develop methods to visualizse SOM’s
knowledge, for example, non-linear projection methods [3], U-matrix and its variants
[4], [5], coloring, component planes [6], [7], [8], visualization-oriented learning algo-
rithms [9], [10], [11]. One of the main reasons for this difficulty in visualization lies
in focus upon cooperation among neurons in SOM. In the SOM, neurons are forced
to cooperate with each other. Neighboring neurons are forced to behave in the same
way as much as possible. To separate classes in the data or to make class boundaries
clearer, it is necessary to find discontinuity between neurons. At this point, the introduc-
tion of individuality of neurons plays an important role in visualizing class boundaries.

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 277–290.
DOI: 10.1007/978-3-642-35638-4_18 c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Individually (a) and collectively (b) treated neurons. Some connection weights were omit-
ted for simple representation.

The individuality can be used to make it possible to disconnect neurons and make
class boundaries clearer. The individuality can be used to weaken cooperation between
neurons and to produce boundaries between neurons.

Second, the distinction also makes it possible to define more exactly the collectivity
of neurons. We can create collectively treated neurons not by collecting all neighbor-
ing neurons’ activities but by weighting the neighboring neurons. By this weighting,
collectively treated neurons can take into account the characteristics of individually
treated neurons. For this purpose, we introduce similarity between neurons in addition
to closeness between neurons. In the conventional SOM, much attention has been paid
to closeness between neurons. If two neurons are nearby located, they should cooperate
with each other more strongly. However, we can say that even if two neurons are nearby
located, but if they are not similar to each other, for example, in terms of neuron’s out-
puts, they should less strongly cooperate with each other. When we take into account
similarity between neurons, two neurons cooperate more strongly with each other, only
if two neurons are nearby located and similar to each other. The separation of individ-
uality and collectivity and the introduction of similarity can be used to visualize SOM’
knowledge more clearly.

We first explain how to compute individually treated neurons. Then, we compute
collectively treated neurons by taking into account closeness and similarity between
neurons. We define the re-estimation formula to obtain connection weights by mini-
mizing KL divergence and free energy. We applied the method to the visualization of
pound-yen exchange rates for the entire period of 2011. The new method showed very
clear class structure. The method could divide the entire period into three distinct ones.
The exceptional cases with high exchange rates turned out to be treated separately.

2 Theory and Computational Methods

Individually Treated Neurons. We have shown that there are two types of neurons,
namely, individually and collectively treated neurons. Figure 1 (a) shows an example of
individually treated neurons in which all neurons are disconnected. On the other hand,
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Figure 1(b) shows a collectively treated neuron in which all neurons cooperate with
other. One of the most fundamental ways to cooperate with each other is that when two
neurons fire in the same way, two neurons fire more strongly.

Let us explain how to compute outputs from competitive units and input patterns in
Figure 1 (a). The sth input pattern of total S patterns can be represented by

xs = [xs
1, x

s
2, · · · , xs

L]
T , s = 1, 2, · · · , S. (1)

Connection weights into the jth competitive unit of total M units are computed by

cj = [cj1, cj2, · · · , cjL]T , j = 1, 2, . . . ,M. (2)

The jth competitive unit output can be computed by

vsj = exp

{
−1

2
(xs − cj)

TΛ(xs − cj)

}
, (3)

where xs and wj are supposed to represent L-dimensional input and weight column
vectors, where L denotes the number of input units. The L × L matrix Λ is called a
”scaling matrix,” and the klth element of the matrix denoted by (Λ)kl is defined by

(Λ)kl =
δkl
σ2
β

, k, l = 1, 2, · · · , L. (4)

where σβ is a spread parameter. The output is increased when connection weights be-
come closer to input patterns.

Collectively Treated Neurons. Using those individually treated neurons, we can com-
pute collectively treated neurons by taking into account distance and similarity between
neurons. First, distance between neurons is computed by distance between neurons on
the map. Relations between the jth neuron and mth neuron hjm are defined by

hjm = exp

(‖rj − rm‖2
2σ2

γ

)
, (5)

where rj and rm denote the position of the jth and the mth unit on the output space
and σγ is a spread parameter. By using this neighborhood (distance) function, we can
define a collectively treated neuron

ysj =

M∑
m=1

hjmvsm. (6)

This equation shows that when neurons are closer and similar to each other, they fire
more strongly as shown in Figure 2(a). This definition of collectively treated neurons is
close to that by the conventional SOM.

In addition to this distance between neurons, we can take into account similarity
between neurons. Figure 2 (a) shows a concept of similarity between neurons. In the
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Fig. 2. Concept of distance (a) and similarity (b). Some connection weights were omitted for
simple representation.

figure, the cth neuron is closer to the jth neuron and they are strongly connected by the
standard self-organizing maps. In our model, the mth neuron fire strongly as the jth
neuron do in Figure 2 (b). Thus, two neurons are similar to each other in terms of firing
rates or outputs. They are strongly connected in spite of distance between two neurons.
We can take into account similarity between neurons by

ysj =

M∑
m=1

vsjhjmvsm. (7)

This equation shows that when jth neuron and the mth neuron are close and similar to
each other, collectively treated neurons fire more strongly. Thus, the collectively treated
neurons can take into account distance as well as similarity between neurons. The firing
probability of the collectively treated neurons can be obtained by

q(j | s) = ysj∑M
m=1 y

s
m

. (8)

Re-estimation Formula. We must decrease distance between individually and collec-
tively treated neurons as much as possible. For this purpose, we introduce the Kullback-
Leibler divergence between individually and collectively treated neurons

KL =

S∑
s=1

p(s)

M∑
j=1

p(j | s) log p(j | s)
q(j | s) . (9)

This KL divergence should be as small as possible. We can minimize this divergence
with a constraint

E =
S∑

s=1

p(s)
M∑
j=1

p∗(j | s)‖xs −wj‖2. (10)
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By minimizing the KL divergence, we have

p(j | s) = q(j | s)vsj∑M
m=1 q(m | s)vsm

. (11)

This equation shows that individually treated neurons’ outputs should be weighted by
the outputs from the corresponding collectively treated neurons.

For obtaining connection weights, we introduce the free energy. The free energy is
obtained by putting q(j | s) into the KL divergence. It can be defined by

F = −2σ2
S∑

s=1

p(s) log

M∑
j=1

exp

{
−1

2
(xs − cj)

TΛ(xs − cj)

}
. (12)

This equation can be expanded as

F =

S∑
s=1

p(s)

M∑
j=1

p(j | s)‖xs −wj‖2

+2σ2
β

S∑
s=1

p(s)
M∑
j=1

p∗(j | s) log p(j | s)
q(j | s) . (13)

Thus, the free energy can be used to decrease KL divergence as well as quantization
errors. By differentiating the free energy, we have the re-estimation formula

wj =

∑S
s=1 p(j | s)xs∑S
s=1 p(j | s)

. (14)

This re-estimation formula is repeated until a criterion for convergence is met.

3 Results and Discussion

3.1 Experimental Results

Experimental Setting and Data Description. We here present experimental results on
the pound-yen exchange rates. Our objective is not to estimate the future exchange rates
but to visualize the past one-year exchange rate fluctuation. We can easily check how
well our method can visualize the exchange rates, because the exchange rates are linear
and easily interpreted. We aim to show how well our method captures the characteristics
of exchange rates whose linear characteristics make it possible to estimate the utility of
our method. The well-known SOM toolbox of Vesanto et al. [12] was used, because the
final results of the SOM have been very stable. For easy reproduction of our results, we
used the well-known and simple error measures for quantification evaluation, namely,
quantization and topographic errors. The quantization error is the average distance from
each data vector to its BMU (best-matching unit). The topographic error is the per-
centage of data vectors for which the BMU and the second-BMU are not neighboring
units [13].
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Fig. 3. Data description when the time lag is three

Parameter Setting. In the experiment, we used the pound-yen exchange rates. The
data was composed of the previous k values of the exchange rates as shown in Figure
3. Thus, we must determine the time lag value of k. To determine the time lag, we used
mutual information between competitive units and input patterns of collectively treated
neurons

I =

S∑
s=1

p(s)

M∑
j=1

q(j | s) log q(j | s)
q(j)

. (15)

Mutual information is an important criterion to determine the time lag, because it shows
how organized collectively treated neurons are. We must try to increase mutual infor-
mation on input patterns as much as possible by changing the time lag. Figure 4 shows
mutual information as a function of the time lag. As can be seen in the figure, mutual in-
formation gradually increased and reached its peak when the time lag was three. Then,
mutual information remained almost unchanged. Figure 5 shows the U-matrices when
the time lag was changed from one (a) to four (d). When the time lag was one in Figure
5(a), a class boundary was located vertically, which was not shared by the other values
of the time lag. When the time lag was increased to two in Figure 5(b), a wide class
boundary in the middle of the map appeared. When the time lag was increased to three
in Figure 5(c), two major class boundaries were produced with the other minor one on
the lower side. When the time lag was four in Figure 5(d), the most stable pattern of the
U-matrix could be obtained. When the time lag was four, mutual information became
stable as shown in Figure 4. Thus, we chose the time lag as four for the experiment.

Quantitative Evaluation. Quantization errors decreased and mutual information in-
creased when the parameter β was increased. However, topographic errors did not con-
stantly decrease or increase. Figure 6(a) shows quantization errors when the parameter
β was changed from one to 20. The quantization errors decreased gradually and reached
the final value of 0.702, which was less than 0.917 by the conventional SOM. When the
parameter β was further increased beyond 20, qunatization errors tended to decrease.
Figure 6(b) shows topographic errors as a function of the parameter β. The topographic
errors gradually increased and reached the peak for β = 9, and then decreased gradu-
ally. The minimum value of 0.129 (β = 18) was lower than 0.212 by the conventional
SOM. Figure 6(c) shows mutual information as a function of the parameter β. When the
parameter β was increased, information gradually increased. However, the maximum
value of 0.216 was lower than 0.228 by the conventional SOM. Correlation coefficient
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Fig. 4. Mutual information of collectively treated neurons as a function of the time lag
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Fig. 5. U-matrices when the time lag was changed from one to four. The parameter β was four.

between quantization errors and information was -0.997, while correlation coefficient
between information and topographic errors was 0.536. This means that quantization
errors decreased when mutual information increased.

Experimental results showed that quantization errors could be decreased and mutual
information could also be increased only by increasing the parameter β. However, we
had difficulty in decreasing the topographic errors. Thus, fidelity to input patterns in
terms of topographic errors could not be easily controlled. We must carefully change
the parameter β to compromise between quantization and topographic errors.

Visual Evaluation. Our method showed very clear U-matrices in which clearer class
boundaries could be seen. Figure 7 (a) shows the U-matrix by the conventional SOM.
Though two class boundaries in warmer color seems to be present, those class bound-
aries were wide and ambiguous. It was difficult to see clear class boundaries on the
matrix. Figure 7(b) shows the U-matrix when the parameter β was one. A huge class
boundary in the middle of the matrix was detected. When the parameter β was increased
to two, the huge class boundary became sharper in Figure 7 (c). When the parameter
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Fig. 6. Quantization (a), topographic (b) errors and information (c). The symbol CC represents
the correlation coefficient between information and quantization and topographic errors.

β was four in Figure 7 (d), three class boundaries appeared. When the parameter β
was increased to six in Figure 7(e), three class boundaries deteriorated. In particular, a
class boundary in the middle of the matrix became weak. When the parameter β was
increased from 8 in Figure 7 (f) to 20 in Figure 7 (i), many minor class boundaries were
produced.

These results showed that clearer class boundaries on the U-matrices could be ob-
tained. However, the U-matrices were dependent upon the parameter β. When the pa-
rameter β was increased and mutual information was increased, the U-matrices became
more detailed. Thus, we must carefully choose the parameter β and control mutual
information to obtain the clearest U-matrix.

Interpretation. Though we had difficulty in interpreting the U-matrix of the con-
ventional SOM, the interpretation of the U-matrices obtained by our method corre-
sponded to our intuition on the pound-yen exchange rate fluctuation. Figure 8 shows the



Interacting Individually and Collectively Treated Neurons for Improved Visualization 285

��� ��� ��� 	
���
 ��� 	
����

��� 	
���� �
� 	
���� ��� 	
����

��� 	
���
� ��� 	
���
� ��� 	
�����

Fig. 7. U-matrices by the conventional SOM (a) and our method with 15 by 10 map whose pa-
rameter β was increased from one (b) to 20 (i) for the pound-yen exchange rate

U-matrix (a) and labels (b) by the conventional SOM. As can be seen in the figure, huge
and sparse class boundaries prevented us from identifying explicit class structure. Fig-
ure 9 (a) shows U-matrix (a1) and labels (a2) when the parameter β was four. We could
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Fig. 8. U-matrices (a) and labels (b) by the conventional SOM for the pound-yen exchange rate

see clear three class boundaries. The lowest small class boundary represents the pe-
riod with the highest peak in Figure 10. The lower part corresponds to the first period
(Janurary-June). The middle part is the second part (July-August). The upper part corre-
sponds to the third part (September to December). When the parameter β was increased
to six in Figure 9(b), the class boundary in the middle became unclear. Data points
were distributed more evenly. This means that the boundary between the first and the
second period is weak. In Figure 10, we can see gradual change between the first and
the second period.

Experimental results showed that our method could divide the period into three ones
and the exceptional cases were treated separately. This interpretation corresponds to our
intuition on the rate fluctuation.

3.2 Discussion

Validity of Methods and Experimental Results. We have proposed a new type of
learning method in which individually and collectively treated neurons interact with
each other. The separation of two types of neurons can be used to clarify class structure
in the self-organizing maps. The SOM has been exclusively concerned with the collec-
tive behavior of neurons or cooperation between neurons. This focus on the cooperation
has made it difficult for the SOM to be applied to the detection of class boundaries,
because the effect of cooperation is to reduce discontinuity between neurons. By sep-
arating the individually treated neurons, we can control cooperation between neurons
and produce discontinuity between neurons leading to class boundaries. In addition to
distance between neurons, we have introduced similarity between neurons. Two neu-
rons cooperate strongly with each other only if they are nearby located and at the same
time they fire to input patterns in the same way.

We applied the method to the visualization of pound-yen exchange rates during 2011.
Quantization errors decreased when the parameter β was increased. Topographic errors
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Fig. 9. U-matrices (a) and labels (b) for β=4 and 6 for the pound-yen exchange rate

did not decrease when the parameter β was increased. However, smaller topographic
errors were obtained for larger and smaller values of the parameter. Our method could
divide the entire period into three periods. In addition, the highest peak was treated
differently. This result confirmed our intuition of the pound-yen exchange rates.

Experimental results showed that explicit class structure could be obtained by the
interaction of individually and collectively treated neurons. The interpretation of the
structure revealed the main characteristics of pound-yen exchange rate fluctuation. Fi-
delity to input patterns in terms of quantization errors could be increased just by
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Fig. 10. Pound-yen exchange rates during 2012

increasing mutual information and by increasing the parameter β. However, the other
fidelity to input patterns in terms of topographic errors could not be easily improved.
The results showed a possibility of explicit class structure at the expense of fidelity to
input patterns.

Problems of the Method. Though our method has shown better performance in clar-
ifying class structure, two problems should be solved for our method to be practically
applicable, namely, the choice of the parameter and criterion for the clarity of class
structure. First, we had much difficulty in determining the appropriate information or
parameter β. Quantization errors decreased when the parameter β was increased. How-
ever, we observed large topographic errors for some values of the parameter β. When
the parameter β was small, topographic errors were small. In addition, when the param-
eter β was large, topographic errors were also small. However, when the parameter β
was in an intermediate level, topographic errors were large. In this intermediate level,
clearer U-matrices were obtained as shown in Figure 7. This suggests that clearer class
structure could be obtained only at the expense of fidelity to input patterns.

Second, no criteria to describe the clarity of class structure have existed. Related to
the first problem, we have had much difficulty in describing the clarity of class structure.
We have had used mutual information as one of the possible criteria. However, as shown
in 7, when the parameter β was increased and mutual information was increased, the U-
matrices became more complicated and detailed. Detailed and complex representations
do not necessarily correspond to the clarity of class structure. Thus, we need to develop
methods to describe the clarity of class structure.

Possibility of the Method. The possibility of the method can be described in terms of
SOM’s visualization, time-lag analysis, improved performance in estimation and spatial
representation.
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First, the method can be used to improve the SOM’s visualization performance. The
SOM has received good reputation for its ability for visualization. Paradoxically, we
have had much difficulty in visualization SOM’s knowledge. Because of this difficulty,
a number of visualization techniques for SOM have been developed as discussed in the
introduction section. Our method can be used to provide these techniques with more
easily interpretable knowledge. The easily interpretable representations can be obtained
by the interaction of individually and collectively treated neurons. When individually
and collectively treated neurons are close to each other, they are enhanced to fire more
strongly. In addition, if individually and collectively treated neurons respond to input
patterns in the same way, they fire more strongly even if they are not so close to each
other in terms of distance between neurons. The enhancement by distance and similarity
between neurons makes it possible to produce explicit class boundaries.

Second, we can give a new insight to the problem of the time lag in the time-series
analysis. The time lag is a useful way to describe the time series. However, it is im-
possible to show how many lags must be necessary. Our method showed the peak value
around the lag=4. Because this paper is not concerned with the real estimation of pound-
yen exchange rates, it is impossible at the moment to say that this value of lag is re-
lated to the estimation. However, the results shows a possibility of the determination of
optimal time lag for good estimation.

Related to the optimal time lag, our method can be used to improve the estimation
performance of neural network applied to the time-series. Our method can be used to
explain how neural networks represent knowledge in input patterns. The representation
obtained by our method for the pound-yen exchange rates corresponds to our intu-
ition. Thus, we can expect that this method can be used to improve the future trend of
exchange rates.

Finally, we have a possibility that linear and time-series representations can be trans-
formed into spatial representations, which are more easily interpreted. Time series anal-
ysis has been applied to many actual data. However, the main focus is on improved
performance in estimating targets and little attention has been paid to obtained internal
representations. We have been concerned with the interpretation of obtained internal
representations. In particular, we try to interpret how and why neural networks tries
to capture the time-dependent data. As discussed in the experimental results, we suc-
ceeded in clarifying the meaning of representations. In other words, we succeeded in
transforming linear representations into spatial ones for easy interpretation. We think
that it is possible to extract characteristics independent of the time.

4 Conclusions

In this paper, we have proposed a new type of neural learning method. In the method,
the distinction of two types of neurons, namely, individually and collectively treated
neurons, has been made. In addition, the distinction of two types of neurons has made
it possible to introduce similarity between neurons in addition to distance between neu-
rons to compute collectively treated neurons. By the introduction of similarity, neurons
cooperate more strongly with each other when neurons are close to each other and they
are similar to each other in terms of responses to input patterns.
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We have applied the method to the self-organizing maps, because much attention
has been paid to the collectivity of neurons. The introduction of individually and col-
lectively treated neurons has made it possible to control the process of cooperation. In
the self-organizing maps, if two neurons are close to each other, the neurons fire more
strongly. In our method, in addition to distance between neurons, similarity between
neurons was taken into account. If two neurons are close and similar to each other, they
fire more strongly. The introduction of individually treated neurons can be used to make
class boundaries clearer.

We applied the method to the visualization of pound-yen exchange rates during 2011.
We observed that quantization errors decreased gradually when the parameter β was
increased. Mutual information increase turned out to be correlated with quantization
errors. Though topographic errors did not constantly decreased when the parameter β
was increased. We observed lower errors when the parameter β were larger. We suc-
ceeded in making class boundaries clearer and the method could divide the period into
three ones. In addition, we could observe that an exceptional period with high exchange
rates was treated differently. The next step of our method is to examine how and to what
extent the target estimation is improved. In other words, we should examine how well
our method can be used to estimate the future exchange rates.
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Abstract. The travelling-wave ultrasonic motor (TWUSM) has been used in 
industrial, medical, robotic and automotive applications. However, the 
TWUSM has the nonlinear characteristic and dead-zone problem which varies 
with many driving conditions. A novel control scheme, recurrent fuzzy neural 
network controller (RFNNC) and general regression neural network controller 
(GRNNC), for a TWUSM control is presented in this paper. The RFNNC 
provides real-time control such that the TWUSM output can tightly track the 
reference command. The adaptive updated RFNNC law is derived using 
Lyapunov theorem such that the system stability can be absolute. The GRNNC 
is appended to the RFNNC to compensate for the TWUSM dead-zone using a 
predefined set. The experimental results are shown to demonstrate the 
effectiveness of the proposed control scheme. 

Keywords: Travelling-wave ultrasonic motor, TWUSM, Recurrent fuzzy 
neural network controller, RFNNC, Lyapunov theorem, General regression 
neural network controller, GRNNC, Dead-zone. 

1 Introduction 

The TWUSM is a new type of motor that is driven using the ultrasonic vibration force 
of piezoelectric elements. It has excellent performance and many useful features [1], 
such as high torque at low speed, quiet operation, light weight and compact size, 
quick response, wide velocity range, high efficiency, simple structure, easy 
production process and no electro-magnetic interference [2-3]. The TWUSM can be 
used in many industries such as industrial, medical, automotive, aerospace science 
and accurate positioning actuators [4]. 

The TWUSM is a new type of actuator with different control technique and 
operating principles than conventional electro-magnetic motors. Because the 
TWUSM is composed of piezoelectric ceramics instead of electro-magnetic windings 
in the motor structure [5], the TWUSM driving principles are based on the ultrasonic 
vibration of piezoelectric elements and mechanical frictional force [6].  

The TWUSM motor dynamic model is very complicated with nonlinear 
characteristics, which vary with many driving conditions. The TWUSM parameters 
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are nonlinear and time varying due to the increasing temperature and different motor 
drive operating conditions. These parameters include driving frequency, source 
voltage and load torque [1]. The TWUSM control characteristics are very complex to 
analyze and accurately model [7]. 

In general, the TWUSM drive and digital control system apply three independent 
control methods which are the drive frequency control, supplied voltage control and 
applied voltage phase difference control. In the phase difference control method the 
motor shows a variable dead-zone in the control input (phase difference of applied 
voltages) against the operating frequency. The dead-zone is due to a large static 
friction torque appearing at low speed. It is therefore difficult to design a perfect angle 
controller that can provide accurate control at all times. According to practical control 
issues, many speed controllers based on PI (proportional plus integral) controller 
using mathematical models of the motor have been reported. 

Because the PI controller control algorithms are simple and the controllers have 
advantages such as high-stability margin and high-reliability when the controllers are 
tuned properly, the PI controller can be used to drive common motors. However, the PI 
controller cannot maintain these virtues at all times. The ultrasonic motor has nonlinear 
speed characteristics which vary with drive operating conditions. In order to overcome 
these difficulties, a dynamic controller with adjustable parameters and online learning 
algorithms is suggested for unknown or uncertain dynamic systems [8-9]. 

In the past few years there has been much research on neural network (NN) 
applications in order to deal with the nonlinearities and uncertainties in control 
systems [10-12]. According to NN structures, the NN can be classified mainly as 
feed-forward neural network (FNN) and recurrent neural network (RNN) [13]. It is 
well known that the FNN is capable of closely approximating continuous functions. 
The FNN conducts static mapping without the aid of delays. The FNN is unable to 
represent dynamic mapping. Although the FNN presented in much research is used to 
deal with delay and dynamic problems, The FNN requires a large number of neurons 
to express dynamic responses [14]. The weight calculations are not updated quickly 
and the function approximation is sensitive to the training data.  

The RNN [15], on the other hand has superior capabilities compared to the FNN. 
The RNN exhibits dynamic response and information storing ability for later use. 
Since the recurrent neuron has an internal feedback loop, it captures the dynamic 
response of a system without external feedback through long delays. Thus, the RNN 
is a dynamic mapping and displays good control performance in the presence of 
unknowable and time-varying model dynamics [16]. As a result the RNN is better 
suited for dynamic systems than the FNN. 

If the number of hidden neurons too many, the computation load becomes heavy so 
that the RNN is not suitable for online practical applications. If the number of hidden 
neurons is too few the learning performance may not be good enough to achieve the 
desired control performance. To solve this problem we propose a novel controller, the 
RFNNC, to maintain high accuracy. 

The RFNNC has a number of attractive advantages compared to recurrent neural 
network control. For example, it has superior modelling performance due to local 
modelling and the fuzzy partition of the input space, linguistic dynamic fuzzy rule 
description, a learning based training example structure and parsimonious models 
with smaller parametric complexity [17]. The RFNNC combines fuzzy reasoning 
capability to handle uncertain information and the artificial recurrent neural network 
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capability to learn processes to deal with the nonlinearities and uncertainties that 
frustrate the TWUSM. 

The RFNNC still presents a challenge considering the TWUSM as a plant. In the 
proposed RFNNC, the controller is effective in handling the small characteristic 
variations in the motor due to RFNNC connecting weight updating. However,  
the RFNNC is not able to fully compensate for the dead-zone effect and therefore the 
dynamic response deteriorates [18]. For these reasons an angle control scheme for the 
TWUSM with dead-zone compensation based on the RFNNC is presented in this 
research. The GRNNC is adopted to determine the dead-zone compensating input and 
decouple the RFNNC output. Because of the saturation reverse effect, phase 
difference control is not adequate for precise angle control. Therefore, the drive 
frequency must also be implemented, leading to a more accurate control strategy. The 
GRNNC based on RFNNC applies both the driving frequency and phase difference 
constructions as a dual-mode control method. The proposed controller can take the 
nonlinearity into account and compensate for the TWUSM dead zone. This approach 
also provides robust performance against parameter variations. The usefulness and 
validity of the proposed control scheme is examined through experimental results. 
The experimental results reveal that the GRNNC based on the RFNNC maintains 
stable performance under different motion conditions. 

2 The Control Scheme 

The TWUSM nonlinear dynamic system is expressed as: 

( ) ( ) ( ) ( )f g u t d tθ θ θ= + +  (1) 

where ( )f ⋅  and ( )g ⋅  are unknown functions that are bounded. u(t) is the control 

input, d(t) is the external disturbance, and θ  is rotor angle displacement of the 
TWUSM. 
 

, , , ,w m rσ δ
       

Gu

1 2 3

4 5

, , ,
,

η η η
η η

E θREFFu
rθ

,  ,

,

T
m

T T
rσ

Γ Γ

Γ Γ

 

Fig. 1. The proposed control structure 

The proposed control scheme, illustrated in Fig. 1, is composed of two main 
blocks, RFNNC and GRNNC. The RFNNC provides real-time control such that the 
TWUSM output can track the reference command 

rθ . The back-propagation 

algorithm is applied in the RFNNC to automatically adjust the parameters on-line. 
The RFNNC adaptive laws are derived using the Lyapunov Theorem such that the 
system stability can be absolute. Γ , T

mΓ , T
σΓ , T

rΓ  are the adaptive update law training 
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parameters and 
1η , 

2η , 
3η , 

4η , 
5η  are the learning rates. The GRNNC is appended to 

the RFNNC to compensate for the TWUSM dead-zone using a predefined set. The 
GRNNC is designed to avoid the TWUSM dead-zone response. 

2.1 Recurrent Fuzzy Neural Networks Controller 

A controller is designed such that the TWUSM output can track the reference 
command. The tracking error vector is first defined as 

[ ],  
T

E e e=   (2) 
 

where 
re θ θ= −  is the angle tracking error. From (1) and (2), an ideal controller can 

be chosen as 

* 1
( ) [ ( ) ( ) ]

( )
T

r n n
n

u t f d t K E
g

θ θ
θ

= − − +  (3) 
 

where [ ]2 1,
T

K k k= , 
1k  and 

2k  are positive constants. Applying (2) to (3), the error 

dynamics can be expressed as 

1 2 0e k e k e+ + =   (4) 
 

If K is chosen to correspond to Hurwitz polynomial coefficients, it is a polynomial 
whose roots lie strictly in the open left half of the complex plane. A result is then 
achieved where ( )lim 0

t
e t

→∞
=  for any initial conditions. Nevertheless, the functions 

( )f θ  and ( )g θ  are not accurately known and the external load disturbances are 

perturbed. The ideal controller ( )*u t  cannot thus be practically implemented. 

Therefore, the RFNNC will be designed to approximate this ideal controller. 
Figure 2 shows the four-layer RFNNC structure, which is comprised of an input 

layer, membership layer, rule layer and output layer. The superscript of symbol y 
means the ordinal number of the layer, and the subscript of symbol y means its 
number. The symbol w  expresses the weight of the signals. The RFNNC model is 
summarized as follows: 
 

(1) Input Layer. The RFNNC inputs are 1
ex e=  and 1

ex e=  . The input layer outputs 

are 1
,e iy  and 1

,e iy , which are equal to the inputs: 

1 1
, ;    1 ~ 3e i ey x i= =  (5) 

1 1
, ;    1 ~ 3e i ey x i= =   (6) 

(2) Membership Layer. There are three membership functions for e and e , 
respectively. The three signals are sent to calculate the degree belonging to the 
specified fuzzy set. The outputs 2

,e iy  and 2
,e iy   are as follows: 

21
, ,2

,
,

exp ;    1 ~ 3e i e i
e i

e i

y m
y i

σ

  − = − =     

 
(7) 
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21
, ,2

,
,

exp ;    1 ~ 3e j e j
e j

e j

y m
y i

σ

  − = − =     

 




 
(8) 

where m and σ  are the mean and standard deviation of the Gaussian function. They 
express different RFNNC membership functions so the layer output can represent the 
degree the input belongs to the fuzzy rule. 
 

kw

D
kr

1
ex

1
ex

1
,1ey

3
ky

4
oy

∏

∏

∏

∏

∏

∏


RFNNu

∏

∏

∏

e

e

1
,2ey

1
,3ey

1
,1ey 

1
,2ey 

1
,3ey 

2
,1ey

2
,2ey

2
,3ey

2
,1ey 

2
,2ey 

2
,3ey 

3
kI

δ̂

PBTE  

Fig. 2. The four-layer RFNNC structure 

(3) Rule Layer. The outputs 3
ky  of the rule layer can be expressed as 

3

3 2 2
, ,10 ( 1)

1
( ) (1 ) ( ) ( )

1 100 exp
D

k k
k e i e jr y t

y t y t y t
− −

= +
+ ⋅


 

(9) 

where 3 ( 1)k i j= × − + , 1~ 3,i = 1~ 3j =  and 1 ~ 9k = . D
kr  are the weights. The value 

of 3
ky  is always positive and between zero and two.  

 

(4) Output Layer. The output 4
oy  of the RFNNC can be expressed as 

9
4 3 T

1

T

ˆ+ sgn(E PB)

ˆ        ( , , , )+ sgn(E PB)

RFNN o k k
k

T

u y w y

w x m r

δ

σ δ
=

= =

= Γ

  
(10) 

where 
3 3 3
1 2 9( , , , )

T
x m r y y yσ  Γ =    fuzzy rule function vector, and 

[ ]1 2 9

T
w w w w=   adjustable output weight vector, δ  a small positive constant, 

and [ ],
T

E e e=  . 
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Assume that an optimal RFNNC exists to approximate the ideal control law such 
that 

* * * * * * * *( , , , , )
T

RFNNu u e w m r wσ ε ε= + = Γ +  (11) 
 

where ε  is a minimum reconstructed error, *w , *m , *σ , *r  and *Γ  are optimal 
parameters of w, m, σ , r and Γ , respectively. Thus, the RFNNC control law is 
assumed to take the following form: 

Tˆˆˆ + sgn(E PB)T
RFNNu u w δ= = Γ  (12) 

 

where ŵ , m̂ , σ̂ , r̂  and Γ̂  are estimations of the optimal parameters, provided by 
algorithm tuning to be introduced later. Subtracting (12) from (11), an approximation 
error u  is obtained as 

* * * T

* T

ˆˆˆ sgn(E PB)

ˆˆ  sgn(E PB)

T T

T T

u u u w w

w w

ε δ
ε δ

= − = Γ + − Γ −

= Γ + Γ + −




 (13) 

 

where * ˆw w w= −  and * ˆΓ = Γ − Γ . The linearization technique transforms the 
multidimensional receptive-field basis functions into a partially linear form such that 
the expansion of Γ  in Taylor series becomes 

3 3
1 9

T

m r vy y m r Oσσ Γ = = Γ + Γ + Γ + 
       (14) 

 

where 3 3* 3ˆk k ky y y= − , 3*
ky  the optimal parameter of 3ˆky , 3ˆky  the estimated parameter of 

3*
ky , * ˆm m m= − , * ˆσ σ σ= − , * ˆr r r= − , 

vO  higher-order terms, 

3 3
ˆ1 9/ ... / |

T

m m my m y m = Γ = ∂ ∂ ∂ ∂ 
, 3 3

ˆ1 9/ ... / |
T

y yσ σ σσ σ = Γ = ∂ ∂ ∂ ∂   and 

3 3
ˆ1 9/ ... / |

T

r r ry r y r = Γ = ∂ ∂ ∂ ∂  . 

Equation (14) can be rewritten as 
* ˆ

m r vm r OσσΓ = Γ + Γ + Γ + Γ +    (15) 
 

Substituting (15) into (13), it can be rewritten as: 
T

T

ˆˆ ˆ( ) ( ) sgn(E PB)

ˆˆ ˆ   = ( ) sgn(E PB)

T T
m r v m r v

T T
m r

u w m r O w m r O

w w m r D

σ σ

σ

σ σ ε δ

σ δ

= Γ + Γ + Γ + Γ + + Γ + Γ + Γ + + −

Γ + Γ + Γ + Γ − +

       

   
 (16) 

 

where *( )
TT

m r vD w m r w Oσσ ε= Γ + Γ + Γ + +     is the uncertainty term, and this term is 

assumed to be bounded with a small positive constant δ  ( let D δ≤ ). From (1), (4) 

and (16), an error equation is obtained 
*

T

( )

ˆˆ ˆ  ( ) sgn(E PB)T T
m r

E AE B u u AE Bu

AE B w w m r Dσσ δ

= + − = +

 = + Γ + Γ + Γ + Γ − + 

 

   
 

(17) 

Consider the dynamic system represented by (1), if the RFNNC is designed as (12) 
with the adaptation laws for networks parameters shown in (18)–(22), the stability of 
the proposed RFNNC can be guaranteed. where 

1η , 
2η , 

3η , 
4η  and 

5η  are strictly 

positive constants. 
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1
ˆˆ Tw E PBη= Γ  (18) 

2ˆ ˆT T
mm wE PBη= Γ  (19) 

3ˆ ˆT TwE PBσσ η= Γ  (20) 

4ˆ ˆT T
rr wE PBη= Γ  (21) 

5
ˆ TE PBδ η=  (22) 

 

Proof 
Define a Lyapunov function candidate as 

2

1 2 3 4 5

1 1 1 1 1 1
( ) ( )

2 2 2 2 2 2
T T T T TV t E PE tr w w m m r rσ σ δ

η η η η η
= + + + + +          (23) 

 

where P is a symmetric positive definite matrix which satisfies the following 
Lyapunov equation 

TA P PA Q+ = − (24) 
 

where Q is a positive definite matrix. Here, the uncertainty bound estimation error is 
defined as ˆδ δ δ= − . Taking the Lyapunov function differential (23) and using (16) 
and (24), it is concluded that 

( )

1 2 3 4 5

1 ˆ ˆ ( )
2

1 1 1 1 1 ˆˆ ˆ ˆ ˆ         

T T T T
C

T T T T

V t E QE E PB w w m r u D
m r

w w m m r r

σσ

σ σ δδ
η η η η η

 = − + Γ + Γ + Γ + Γ − +  

− − − − −

    

       

 
(25) 

 

Take (18)-(22) into (25), the derivative of V can be rewritten as 

( )
5

1 1 ˆ(  )
2

1
       ( ) 0

2

T T T
C

T T

V t E QE E PBD E PBu

E QE E PB D

δ δ δ
η

δ

= − + − − −

≤ − − − ≤

 
 

(26) 

 

Therefore regardless what the situation is, the derivative of V respect to time is 
smaller than zero. ( ) 0V t ≤  is negative semi-definite (i.e., ( ) ( )0V t V≤  ), which 

implies E, w , m , σ , δ  and r  are bounded. Let function ( ) ( )/ 2TF t E QE V t= ≤ −  , 

and integrate function with respect to time. 
Because V(0) is bounded, and V(t) is bounded, the following result is obtained:  

( )
0

lim
t

t
F dτ τ

→∞
< ∞  (27) 

 

Since ( )F t  is bounded, by Barbalat’s Lemma it can be shown that ( )lim 0
t

F t
→∞

= . This 

implies that ( )E t  will converge to zero as t → ∞ . As a result, the stability of the 

proposed control system can be guaranteed. 



298 T.-C. Chen, T.-J. Ren, and Y.-W. Lou 

2.2 Convergence Analysis of RFNNC 

Although the stability of the adaptive RFNNC can be guaranteed, the parameters ŵ , m̂ , 
σ̂  and r̂  in (18)–(21) cannot be guaranteed within a bound value. The RFNNC output is 
bounded, whether the means, the standard deviation of the Gaussian function and weights 
are bounded. The constraint sets w , m , σ  and r  are defined respectively 

{ }ˆwU w w= ≤  (28) 

{ }ˆmU m m= ≤  (29) 

{ }ˆUσ σ σ= ≤  (30) 

{ }ˆrU r r= ≤  (31) 
 

where   ⋅  is a two-norm of vector, w , m , σ  and r  are positive constants, and the 

adaptive laws (18)-(21) can be modified as follows 

( )1

1 1 2

ˆ ˆˆ ˆ ˆ,                              if     0

ˆ ˆ ˆˆ ˆ ˆˆ ˆ,   if   0                       
ˆ

T T T

T
T T T T

E PB w w or w w and E PBw

w ww
E PB E PB w w and E PBw

w

η

η η

 Γ < = Γ ≤
= 

Γ − Γ = Γ >



 

(32) 

( )2

2 2 2

ˆ ˆ ˆ ˆ ˆ,                                  if    0  

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ,  if   0                        

ˆ

T T T T
m m

T
T T T T T T
m m m

wE PB m m or m m and E PBw m

m mm
wE PB wE PB m m and E PBw m

m

η

η η

 Γ < = Γ ≤
= 

Γ − Γ = Γ >



 

(33) 

( )3

3 3 2

ˆ ˆ ˆ ˆ ˆ,                                  if    0  

ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ,  if   0                        

ˆ

T T T T

T
T T T T T T

wE PB or and E PBw

wE PB wE PB and E PBw

σ σ

σ σ σ

η σ σ σ σ σ
σ σση η σ σ σ

σ

 Γ < = Γ ≤
= 

Γ − Γ = Γ >



 

(34) 

( )4

4 4 2

ˆ ˆ ˆ ˆ ˆ,                                  if     0  

ˆ ˆˆ
ˆ ˆ ˆ ˆ ˆ,   if   0                      

ˆ

T T T T
r r

T
T T T T T T
r r r

wE PB r r or r r and E PBw r

r rr
wE PB wE PB r r and E PBw r

r

η

η η

 Γ < = Γ ≤
= 

Γ − Γ = Γ >




 

(35) 

 

If the initial values ˆ (0) ww U∈ , ˆ (0) mm U∈ , ˆ (0) Uσσ ∈  and ˆ(0) rr U∈  then the adaptive 

laws (32)-(35)guarantee that ˆ ( ) ww t U∈ , ˆ ( ) mm t U∈ , ˆ ( )t Uσσ ∈  and ˆ( ) rr t U∈  for all 0t ≥ . 

Define a Lyapunov function as 

1
ˆ ˆ

2
T

wv w w=  (36) 

The derivative of the Lyapunov function is presented as 

ˆ ˆT
wv w w=   (37) 

 

Assume the first line of (32) is true, either ŵ w<  or ( )ˆˆ ˆ 0T Tw w and E PBw= Γ ≤ . 

Substituting the first line of (32) into (37), which becomes 
1

ˆˆ 0T T
wv E PBwη= Γ ≤ . As a 



 Ultrasonic Motor Control Based on Recurrent Fuzzy Neural Network Controller 299 

result, ŵ w≤  is guaranteed. In addition, when ˆˆ ˆ 0T Tw w and E PBw= Γ > , 

1 1 2

ˆ ˆˆ ˆˆ ˆ 0
ˆ

T
T T T T

w

w w
v E PBw E PB w

w
η η= Γ − Γ = . That ŵ w≤  can be also assured. Thereby, 

the initial value of ŵ  is bounded, ŵ  is bounded by the constraint set w  for 0t ≥ . 

Similarly, it can be proved that m̂  is bounded by the constraint set m , σ̂  is 

bounded by the constraint set σ  and r̂  is bounded by the constraint set r  for 0t ≥ . 

When the condition ŵ w<  or ( )ˆˆ ˆ 0T Tw w and E PBw= Γ ≤ , ˆ  m m<  or 

( )ˆ ˆ ˆ  0T T
mm m and E PBw m= Γ ≤ , σ̂ σ<  or ( )ˆ ˆ ˆ 0T Tand E PBw σσ σ σ= Γ ≤ , r̂ r<  or 

( )ˆ ˆ ˆ  0T T
rr r and E PBw r= Γ ≤ , the stability analysis the same as (33), (34) and (35). 

In the other situation, the condition ŵ w=  and ˆˆ 0T TE PBw Γ > , m̂ m=  and 

ˆ ˆ 0T T
mE PBw mΓ > , σ̂ σ=  and ˆ ˆ 0T TE PBw σσΓ > , r̂ r=  and ˆ ˆ 0T T

rE PBw rΓ >  is 

occurred, the Lyapunov function can be rewritten as follows 

( )

( )

1

2 3 4 5

2 2

2

1 1ˆ ˆ ˆ ˆ ˆ)
2

1 1 1 1 ˆˆ ˆ ˆ     

ˆ ˆ1 ˆˆ ˆ ˆ ( )
2 ˆ ˆ

ˆ
ˆ ˆ ˆ      ( ) (

ˆ

T T T T T T T
w C

T T T

T T
T T T T T T T

C m

T
T T T T

r

v E QE E PB w w m w w r D u w w
m r

m m r r

w w m m
E QE E PB D u E PB w w E PBm

w m

w E PB wσ

σσ η

σ σ δδ
η η η η

σ σσ
σ

= − + Γ + Γ + Γ + Γ + − −

− − − −

= − + − + Γ + Γ

+ Γ + Γ

     

     

 


2

5

ˆ 1 ˆˆ)
ˆ

T
T T r r

E PBr
r

δδ
η

−
 

 

(38) 

Equation ( )2 2 2* ˆ / 2 0Tw w w w w= − − <  , which is according to *ˆ ˆw w w= > . 

Similarly, *ˆ ˆm m m= > , *ˆ ˆσ σ σ= >  and *ˆ ˆr r r= >  can be proven. It is finally 

obtained as 

( )

( )

2 2

2 2
5

2 2 2*

2

2 2 2*

2

ˆ ˆ1 ˆˆ ˆ ˆ 
2 ˆ ˆ

ˆ ˆ 1 ˆˆ ˆ ˆ ˆ      
ˆ ˆ

ˆ1 ˆˆ  
2 ˆ

ˆ1
ˆ ˆ      ( )

2 ˆ

1
      (

2

T T
T T T T T T T

w C m

T T
T T T T

r

T T T

T T T
m

w w m m
v E Q E E P B D E P B u E P B w w E P B m

w m

r r
w E P B w E P B r

r

w w w
E Q E E P B w

w

m m m
w E P B m

m

σ
σ σσ δδ

ησ

= − + − + Γ + Γ

+ Γ + Γ −

− −
≤ − + Γ

− −
+ Γ

+ Γ

 

  





( )

( )

2 2 2*

2

2 2 2*

2

ˆ
ˆ ˆ)

ˆ

ˆ1
ˆ ˆ      ( )

2 ˆ

1
  0

2

T T T

T T T
r

T

w E P B

r r r
w E P B r

r

E Q E

σ

σ σ σ
σ

σ

− −

− −
+ Γ

≤ − ≤





 

(39) 
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Using the same discussion shown in the previous section, the stability property can 
also be guaranteed since 0E →  as 0t → . 

2.3 General Regression Neural Networks Controller 

As a common nonlinear problem, a dead-zone often appears in the control system, 
which not only makes a steady-sate error, it also deteriorates the dynamic quality of 
the control systems. The GRNNC is proposed to solve this problem. The GRNNC is a 
powerful regression tool with a dynamic network structure and the training speed is 
extremely fast. Due to the simplicity of the network structure and ease of 
implementation, it can be widely applied to a variety of fields.  

The GRNNC structure, shown in Fig. 3, is suggested for the system input nonlinear 
compensation. The input u is the RFNNC output, 1

GW  is the weight of the hidden 

layer, 2
GW  is the weight of the output layer, a is the output of the hidden layer, 

Gu  is 

the output of the output layer. 
 

n a

Hidden Layer Output Layer

1×1

R×1

2×R

R×1

2×1

R×1
2

G
G

W a
u

a

⋅=
 Gudist

u

2
GW1

GW

 

Fig. 3. The GRNNC structure 

The GRNNC is composed of two layers, the hidden layer and the output layer. 
The input u  of the GRNNC means a torque calculated by the RFNNC. The 
outcome n of dist  represents the Euclidean distance between the input u and each 

element of 1
GW . n is passed using a Gaussian function. When the Euclidean distance 

between u and 1
GW  is far, the output element a approaches zero. On the other hand, 

if the Euclidean distance is short the output element a approaches one. The 
Gaussian function is 

2

exp
n m

a
σ

 − = −     

 (40) 

where m  and σ  are the center and standard deviation of the Gaussian function, 
respectively. In order to increase the discrimination and have better performance, the 
standard deviation σ  value of the Gaussian function is chosen as low. 

The relation function of the output layer can be expressed as  
2

G
G

W a
u

a

⋅=


 
(41) 
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The output vector of the hidden layer a is multiplied with appropriate weights 2
GW  to 

sum up the output 
Gu  of the GRNNC. The output 

Gu  is composed of frequency 

control 
fu  and phase control 

Pu  and expressed as 

T

G f pu u u =    (42) 

Applying the GRNNC, the dead-zone of the TWUSM will be compensated as desired. 

3 Experiments 

Experiments are required to prove the feasibility of the proposed scheme. Figure 4 
shows the experimental structure, which includes TMS320F2812 digital signal 
processor (DSP), TWUSM driver and TWUSM. The TMS320F2812 DSP experiment 
board is applied as the computing core. The DSP program was coded in C language. 
After compilation, assembly and link, the execution file is generated by C2000 code 
composer (CCS). The execution file is executed in the same windows interface. 

In these experiments three different controllers were chosen for comparison. 
(i) The proposed control scheme, RFNNC and GRNNC. 

(ii) The RFNNC only, without GRNNC. The control algorithm of RFNNC only is 
the same as RFNNC of the proposed control scheme. 

(iii) The PI controller. The PI controller is the one of the most used controller in linear 
system. The control PI controller has important advantages such as a simple 
structure and easy to design. Therefore, PI controllers are used widely in 
industrial applications. Owing to the absence of the TWUSM mathematical 
model, the PI controller parameters are chosen by trial and error in such a way 
that the optimal performance occurs at rated conditions. A block diagram of the 
angle control system for an ultrasonic motor using a PI controller is shown in Fig. 
5. Where 

rθ  and θ  are the command and rotor angle, e(k) is the tracking error, 

fu  is the frequency command, 
pu  is the phase different command, respectively. 

The PI controller parameters were selected as 1000PK =  and 100IK = . 
 

sinmV tω

sin( )mV tω φ+

Frequency-Controlled 
      Voltage ( )fu

Phase-Controlled 
      Voltage ( )Pu

 

Fig. 4. The experiment structure 
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Fig. 5. The block diagram of the dual-mode PI control 

Figures 6 to 8 show the experimental results for the proposed control scheme, the 
RFNNC only, and the PI control respectively, for a periodic square angle command 
from -90 to 90 degrees. Figures 9 to 11 show the experimental results for the 
proposed control scheme, the RFNNC only, and the PI control respectively, for a 
sinusoidal angle command from -90 to 90 degrees. Figure (a) shows the TWUSM 
angle response and speed response. Figure (b) shows the angle error between angle 
command and angle response. 

 

  
                                       (a)                                                                               (b)         

Fig. 6. The experimental result for the proposed control scheme for a periodic angle square 
command from -90 to 90 degrees 

  
                               (a)                                                               (b) 

Fig. 7. The RFNNC only experimental result for a periodic square angle command from -90 to 
90 degrees 
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1s

  
                                       (a)                                                                              (b) 

Fig. 8. The experimental result for the PI control for a periodic square angle command from -90 
to 90 degrees 

  
                                      (a)                                                                             (b)         

Fig. 9. The experimental result for the proposed control scheme for a sinusoidal angle 
command from -90 to 90 degrees 

  
                                       (a)                                                                              (b)          

Fig. 10. The RFNNC only experimental result for a sinusoidal angle command from -90 to 90 
degrees 
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                                       (a)                                                                              (b) 

Fig. 11. The experimental result for the PI control for a sinusoidal angle command from -90 to 
90 degrees 

Observing the experimental results for the proposed control scheme in Figs. 6 and 
9 the tracking errors for both can converge to an acceptable region and the control 
performance is excellent. The proposed controller retains control performance and has 
no dead-zone. 

The RFNNC only experimental results in Figs. 7 and 10 show that the tracking 
error is similar to the proposed control scheme. However, the RFNNC drawbacks 
interfere with the dead-zone and the motor speed has a serious chattering 
phenomenon at slow speed near zero. 

Figures 8 and 11 illustrate that the PI controller has a chattering phenomenon like 
the RFNNC only and a larger tracking error. 

4 Conclusions 

This paper presented a proposed control scheme, RFNNC and GRNNC, applied to the 
TWUSM. Many concepts such as controller design and the stability analysis of the 
controller are introduced. The experiment results show that the proposed control 
scheme is feasible and the performance is better than conventional control  
methods. 

The proposed control scheme includes the RFNNC and GRNNC. The RFNNC is 
designed to track the reference angle. The membership function and weight variables 
can be updated using adaptive algorithms. Moreover, all parameters proposed 
RFNNC parameters are tuned in the Lyapunov sense; thus, the system stability can be 
guaranteed. In the RFNNC a compensated controller is designed to recover the 
residual part of the approximation error. The GRNNC is appended to the RFNNC to 
compensate for the TWUSM system dead zone using a predefined set. The GRNNC 
can successfully avoid the TWUSM dead-zone problem. The experimental results 
verify that the proposed controller can control the system well. 
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Abstract. In order to improve navigation satellite clock error prediction accura-
cy, a hybrid model is proposed in this paper. According to the physics property 
of atomic clock, the model firstly fits the clock error series by polynomial mod-
el. Then it models for polynomial fitting residuals, using functional network. 
The functional network structure is defined by wavelet de-noising and phase 
space reconstruction. Finally the GPS satellites are taken for example and four 
separate predict tests are done, the simulation results show that the proposed 
method can fit and predict the clock error series effectively, whose predict accu-
racy is better than those of IGU-P and conventional methods. 

Keywords: Clock error predict, Functional network, Phase space construction, 
Chaotic, Hybrid model. 

1 Introduction 

The performance of a navigation satellite is related to the behavior of the atomic 
clocks hosted on the satellite. The real-time and reliable prediction of the behavior of 
such clocks is absolutely necessary for providing precise navigation performance and 
optimizing the interval between uploading of the corrections to the satellite clocks. 
Take Global Navigation Satellite System (GNSS) for example, the International 
GNSS Service (IGS), along with a multinational membership of organizations and 
agencies, provides Global Positioning System (GPS) orbits and clocks, tracking data, 
and data products online to meet the objectives of a wide range of scientific and engi-
neering applications and studies. The accuracy of the satellite and station clocks is 
announced to be better than 0.1 ns. The accuracy of orbit is less than 5 cm [1]. In fact, 
these high-accuracy data are not available in real time but a posteriori, with a delay up 
to 13 days. The broadcast ephemeris is realized in real time, but the accuracy  
reaches 5 ns. 

Many papers have dealt with the prediction problem. Zhang et al. [2] constructed a 
model which includes a quadratic polynomial and the periodic terms. Cui and Jiao [3] 
introduced the grey system into the prediction of the clock error and obtained better 
results. Xu and Zeng [4] proposed ARIMA (0, 2, q) model to predict the clock error 
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and gained a series of important achievements. However, further studies show that 
there exist some limitations in the classical methods of navigation satellite clock error 
prediction. On the basis of exploring the limitations of the traditional models, we 
present a novel research on the navigation satellite clock error prediction based on the 
hybrid model, which is the combination of polynomials and functional network. 

Castillo et al. [5] introduced functional network as a generalization of the standard 
neural network. The neural networks are basically driven by data, but the functional 
network may be considered more as problem-driven model than as data-driven model. 
Functional network has been successfully demonstrated in some sample applications, 
e.g. to extract information masked by chaos [6], and has been used for nonlinear  
system identification [7]. It has also been used for predicting fresh and hardened 
properties of self-compacting concretes [8]. 

The paper is organized as follows: Section 2 is a brief description of the atomic 
clock’s physical property. Section 3 describes the clock error prediction model, which 
includes the predict mechanism, mathematical representation of the functional net-
work, and the determination procedure of the functional network structure. In Section 
4, four separate tests were carried out on the materials of the GPS satellite clock error. 
And the results are compared with the conventional grey method (GM), the quadratic 
polynomial method (QPM); the quadratic polynomial with periodic term method 
(QPPTM), the autoregressive integrated moving average method (ARIMA) and  
the Kalman filter method (KFM). The results and some diagrams and discussions 
from the simulation are also presented in this section. Finally, some conclusions are  
presented in Section 5. 

2 The Physical Property of Atomic Clock on Board 

The output of the atomic clock can be expressed as, 

( ) ( ) ( )0 0sin 2V t V t f t tε π ϕ=  +   +      (1) 

where 0V  is the nominal amplitude, 0f  is the nominal frequency, ( )tε  is the fluctu-

ation of amplitude and ( )tϕ  is the fluctuation of phase. The instantaneous phase of 

the clock signal is ( ) ( )02t f t tφ π ϕ= + . Take derivatives of the instantaneous 

phase ( )tφ , and it is the instantaneous angular frequency. Thus the instantaneous  

frequency can be written as, 

( ) ( )0

1

2
f t f tϕ

π
= +   (2) 

where ( )tϕ  represents instantaneous frequency bias. The relative phase bias ( )x t  

and the relative frequency bias ( )y t  can be expressed as, 

( ) ( ) ( ) ( )
0 0

,
2 2

t t
x t y t

f f

ϕ ϕ
π π

= =


 (3) 

Usually the relative phase bias ( )x t  can be modeled as, 
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( ) ( )2
0 0

1

2
x t x y t at tψ= + + +  (4) 

where, ( )0 0x x= , ( )0 0y y=  represent the phase bias and frequency bias at initial time 

0t , a  represents the linear rate of the frequency bias ( )y t . Actually the value of a  

can be set to 0 for cesium atomic clocks [9]. 

3 The Clock Error Prediction Model Based on Hybrid Model 

3.1 The Prediction Mechanism 

The navigation satellite clock error is a discrete-time series from nonlinear system, the 
change of which is a comprehensive reflection of the interaction of many factors. Ke 
et al. [10], starting from the establishment of nonlinear dynamics model for atomic 
clocks, for the first time introduced chaos theory to the analysis of atomic clock error 
series and used the fractal theory to describe the complexity of the clock error series. 

In this paper, we use polynomial model to extract the clock series trend, and then 
use the functional network to model the residuals. As the functional network has po-
werful capacity of parallel processing and nonlinear mapping, we can use it to study 
the chaotic time series, and then to predict or control. On the other side, the chaotic 
time series has definite internal regularity, which makes the system seem to have 
some correlation. This kind of information processing method is just what the func-
tional network excels, while it is difficult for conventional analytical methods. There-
fore, we choose the functional network to predict the chaotic time series. 

3.2 Functional Network 

Functional network corresponds to the functional transformation; its topology de-
scribes a function transformation system. Generally, a functional network consists of 
several elements, which includes one layer of input storing neurons, one layer of out-
put storing neurons, one (or more) layers of processing neurons, optional layers of 
intermediate storing neurons and a set of direct links between them [11]. Figure 1 
shows a typical architecture of a functional network. 

( )1 1 2,f x x

( )2 2 3,f x x

( )3 4 5,f x x

1x

2x

3x

4x

5x

6x

 

Fig. 1. Functional network architecture 

To work with functional networks, in addition to the data information, it is impor-
tant to understand the problem to be solved. Since the selection of the topology is 
normally based on the properties, which usually lead to a clear and single network 
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structure. From the different possible functional networks, the separable functional 
network is a simple family with many applications. It uses a functional expression 
that combines the separated efforts of input variables. 

dx

2x

1x 1f

2f

df

y

 

Fig. 2. The general separable functional network architecture 

Figure 2 depicts the topology of a separable functional network. The relationship 
between the inputs and outputs can be defined mathematically as follows, 

( ) ( )
1 1 1

ˆ
kmd d

k k kj kj k
k k j

y f x a xφ
= = =

= =   (5) 

where kja  are parameters of the network, and the functional neurons 1 2, ,..., df f f  are 

composed of the linear combination of the basis function family kΦ . The basis func-

tion family can be a polynomial family, a Fourier series or any other set of linearly 
independent functions. 

Assume that we have training data set as ( ){ },1 ,2 ,, ,..., ; , 1,2,...,i i i d ix x x y i N= , where N  

is the number of training data set and it satisfies N d> . The training error for the func-
tional network can be defined as, 

( ),
1 1

kmd

i i kj kj i k
k j

e y a xϕ
= =

= −  (6) 

For a unique representation of the functional network, we must add an initial func-
tional condition, 

( ) ( )0 0 0
1

, 1,2,...,
km

k kj kj k k
j

f x a x v k dϕ
=

= = =  (7) 

Using a Lagrange multiplier, the objective function can be written as, 

( ) ( )
2

, 0 0
1 1 1 1 1

k km mN d d

i kj kj i k k kj kj k k
i k j k j

Q y a x a x vλ ϕ λ ϕ
= = = = =

   
= − + −   

   
     (8) 

where kλ  is a constant. Minimization of the above function Qλ  is equivalent to solv-

ing the set of derivative equations of Qλ  with respect to parameters kja  and multip-

lier kλ . Then, we have 

( ) ( ) ( )

( )

, , , 0
1 1 1

0 0
1

2 0

, 1,2,..., , 1,2,...,

k

p

mN d

i d kj kj i k pr i p p pr p
i k jpr

m

pi pi p p p
jp

Q
x a x x x

a

Q
a x v p d r m

λ

λ

ϕ ϕ λ ϕ

ϕ
λ

= = =

=

  ∂ = − − + =  ∂  


∂ = − = =∂

 


 (9) 
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This leads to a system which composed of linear equations, and the unknown coeffi-
cients are parameters kja  and kλ . Finally we can get the optimal parameters of the 

network by solving the equations. 

3.3 The Determination of Functional Network Structure 

To reduce the impact of noise on the chaotic characteristic research of the atomic 
clock, we carry out noise smooth process with wavelet analysis. 

Wavelet De-noise. As we all known, wavelet decomposition can separate compo-
nents of different frequency within the signal. Recently the Daubechies wavelet is 
widely used because of its good nature of continuous and compactly supported. It has 
the continuous derivative, and the smoothness quite meets the requirements. Thus we 
choose Daubechies wavelet for signal decomposing and noise reducing for the clock 
error residuals.  

Phase Space Reconstruction. Suppose that there exists a chaotic time se-
ries { }| 1,2,...,ix x i N= = , Takens theorem [12] shows that we can use the delay  

coordinate method to reconstruct phase space of the series. And if the embedding 
dimension m  satisfies 2 1m d≥ +  ( d is the dynamics dimension of the system), then 
the reconstructed system is equivalent to the original one in the topological sense. 

In recent years, studies have shown that the main factors affect the reconstruction 
quality of the phase space is not only individually selection of the time delay τ  and 
embedding dimension m , but together determining the time delay τ  and embedding 
dimension m . It can be written as ( )1w mτ τ= − , where wτ  is the embedding window. 

In this paper, we choose C-C method to estimate the time delay τ  and the embedding 
window wτ  together. This method can avoid subjectivity in calculating the embedding 

window. 

Chaotic Identification. If we apply chaotic analysis in the clock error prediction, we 
must identify whether the clock error series is chaotic or not. Lyapunov exponent is a 
very important characteristic of chaotic systems, which can measure the divergence 
degree of the neighboring points in phase space. A positive Lyapunov exponent is a 
sufficient condition which can prove that the system has entered the chaotic state. 
Therefore, we calculate the largest Lyapunov exponent of time series with the small 
data sets algorithm. The small data sets algorithm has high data-using efficiency and 
it is reliable for small data set. 

3.4 Model the Clock Error Residuals Based on the Functional Network 

In this paper, we firstly extract the trend items with the polynomial method based on 
the physical property of the atomic clock, and then model the residuals with the func-
tional network. The structure of the network is determined by wavelet de-noising and 
phase space reconstruction techniques. 

Assuming that the result of the phase space reconstruction 

is ( ){ }T

1| , ,..., , 1,2,...,i i i i i m
x x x i Mτ τ+ + −
 = = = X X X , where iX is the point in the phase 
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space, m is the embedding dimension and τ is the time delay. Then the number of 
input nodes for the functional network equals to the embedding dimensions m , and 
the number of output nodes equals to one. The network’s input vector is just the point 

in phase space, which is ( ){ }T

1, ,...,i i i i mx x xτ τ+ + −
 =  X , and the output vector is the state 

point of next one step after the corresponding input vector, which is the one-

dimensional sequence ( ){ }1 1i i mx τ+ − +=Y . The polynomial function family is selected to 

be the network’s middle layer neuron basis function.  
 

ˆt t ty y x= +
ˆty

ˆty

tx

T

( 1), ,...,i i i i mx x xτ τ+ + − =  X

( )1 1i i mx τ+ − += Y

( )1 1i mx τ+ − +

+−

( )1 1
ˆ

i mx τ+ − +

tx

ˆ
iX

 

Fig. 3. Hybrid model based on combination of polynomial and functional network 

During the prediction stage, let ( ) ( )1 1 1 1
ˆ

i m i mx xτ τ+ − + + − += , so we can get a new time series 

of ( ){ }1 1 1 1, ,...,i i i mx x xτ τ+ + + + − +  as the network’s input vector for next moment. In this way, 

we can achieve the multi-step prediction for atomic clock error. Based on this model-
ing thoughts, we build the simulate model shown in Figure 3.  

4 Application to Navigation Satellite Clock Error Prediction 

4.1 Selection of Experimental Data 

In order to verify the feasibility and effectiveness of the proposed model, we carried 
out four separate tests on the clock error prediction. In general, the IGS provides three 
types of GPS clock products; the ultra-rapid products (IGU) with an initial latency of 
3 hours, the rapid products (IGR) with a delay of approximately 17 hours latency and 
the final products with a delay up to 13 days. The first 24 hours of IGU is the meas-
ured clock error and their precision is about 0.1~0.2 ns, the last 24 hours is the real-
time prediction clock error (IGU-P) and the precision is 3 ns.  

The IGU are very suitable to be the training data for 1-day-ahead prediction, whose 
precision is very high and can be available on a daily basis. Hence, we separately 
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carried out simulation tests upon the IGU and compared the results of the proposed 
model with those of the IGU-P and conventional methods. 

4.2 Experimental Procedures 

For the data pre-process, IGS ephemeris from January 7 to February 9, 2009 are cho-
sen to be the training data, and six GPS satellites in orbit are randomly selected for 
four separate tests, which are 6-hour, 12-hour, 1-day, 7-day and 14-day prediction 
test. According to the anomalies and missing values of the atomic clock error, firstly 
we performed integrity check on the data, and then adopted Baarda data detection 
method in anomaly detection; finally we used the Lagrange interpolation to interpo-
late these data after the anomalies were removed. 

After the data pre-process, we extracted trend item from the clock error series ac-
cording to its physical property. Here the satellites of Block IIA were fitted by qua-
dratic polynomial and satellites of Block IIR were fitted by one order polynomial. 
After that, we use wavelet analysis to remove the noise in series. The six GPS satel-
lites trend items extraction are summarized in Table 1, which PRN 11 satellite’s trend 
term extraction and wavelet de-noising is shown in Figure 4. 

Table 1. The trend item extraction of the IGU clock error 

Type of satellite Number of satellite Trend item extraction 

Block IIA PRN03、PRN05、PRN27 Quadratic polynomial 

Block IIR PRN02、PRN07、PRN11 One order polynomial 
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Fig. 4. Trend item extraction and wavelet de-noising of PRN11 

After extracting the trend item, we calculated the optimal embedding dimensions 
m  and the time delayτ , and then we reconstructed the phase space of the residuals. 

The ( )S τ τΔ  and ( )corS τ τ curves which are corresponding to PRN11 are shown in 

Figure 5. 
The value of optimal time delay τ  corresponds to the first local minimum point 

of ( )S τΔ . And we can also find out the optimal embedding window 

width ( )1w mτ τ= − , which corresponds to the minimum point of ( )corS τ  in the figures. 

The optimal embedding dimensions m , time delay τ  and largest Lyapunov exponent 
of all six satellites are summarized in Table 2. 



314 B. Xu, Y. Wang, and X. Yang 

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

time delay t

de
lt-

S(
t)

    
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

time delay t

S-
co

r(
t)

 

Fig. 5. The IGU residual’s phase space reconstruction diagram of PRN11 

Table 2. The IGU residual term’s chaos characteristics 

Number of satellite PRN02 PRN03 PRN05 PRN07 PRN11 PRN27 

Embedding dimensions 6 26 4 5 3 4 

Time delay 6 3 20 13 10 8 

Largest Lyapunov exponent 0.27 0.31 0.29 0.31 0.23 0.13 

From Table 2, we could find that the largest Lyapunov exponents of GPS satellites 
are all greater than zero, which means that the clock error residuals are of chaotic 
characteristic. Therefore, we could determine the structure of the functional network 
based on the results of phase space reconstruction and model for each navigation sa-
tellite separately. Finally, the 24-hour predict curves of the six satellites are shown in 
Figure 6(a), and the corresponding IGU-P error curves are shown in Figure 6(b). 
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Fig. 6. 24 hours prediction error based on hybrid model and IGU-P 

Meanwhile, we also carried out four separate tests with conventional models, 
which are the GM, QPM, QPPTM, ARIMA and KFM. The results of these tests are 
all summarized in Table 3. 

4.3 Analysis and Discussions 

It can be inferred from Figure 6 and Table 3 that the predict error curves of PRN 02, 
PRN 05 and PRN 07, PRN 11 convergence within 2 ns with the proposed method, but 
the predict error of PRN 03 and PRN 27 is relatively large. This is due to that the type  
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Table 3. Comparison among the prediction accuracy of six GPS satellites 

RMS(ns) Hybrid model IGU-P QPM QPPTM GM ARIMA KFM 

PRN02 

3h 0.29 0.19 1.67 1.57 1.12 0.23 0.16 

6h 0.38 0.28 1.67 1.73 0.79 0.23 0.26 

12h 0.52 0.77 1.91 1.96 1.07 0.45 0.92 

24h 0.81 1.33 3.30 3.28 2.35 0.52 1.65 

PRN03 

3h 5.50 4.11 3.83 1.63 3.57 13.14 3.35 

6h 5.67 5.20 2.87 1.48 7.63 17.17 4.01 

12h 6.59 6.79 2.33 1.34 12.75 24.12 3.97 

24h 6.46 9.55 2.94 1.82 25.04 41.36 4.69 

PRN05 

3h 0.23 0.17 1.27 1.26 0.59 1.79 0.17 

6h 0.33 0.49 1.29 1.29 0.52 2.17 0.50 

12h 1.00 1.13 1.58 1.63 1.02 3.34 1.08 

24h 1.64 2.17 2.86 2.85 2.13 7.09 2.14 

PRN07 

3h 0.20 0.29 0.91 0.83 1.99 0.30 0.50 

6h 0.22 0.49 1.17 1.08 2.82 0.49 0.94 

12h 0.33 0.70 2.03 2.02 4.60 1.23 1.58 

24h 0.50 0.92 3.76 3.77 7.84 3.54 2.38 

PRN11 

3h 0.41 1.12 1.44 1.22 0.50 2.90 1.16 

6h 0.31 1.27 1.33 1.25 1.36 5.11 1.53 

12h 0.39 1.69 1.28 1.36 3.24 10.08 2.41 

24h 1.41 2.79 2.08 2.05 6.20 22.39 4.46 

PRN27 

3h 1.10 1.21 3.85 1.39 11.84 4.44 1.94 

6h 1.60 1.61 4.75 4.28 16.72 7.26 3.35 

12h 2.37 2.74 6.76 6.37 27.47 17.66 6.33 

24h 2.16 3.53 7.43 5.88 51.66 54.09 5.91 

 
of the atomic clocks onboard for PRN 03 and PRN 27 is cesium atomic clock, and 
these two satellites are both Block IIA satellites, which are early launched. The old 
age and other various reasons, such as the physical property of the cesium clock itself, 
make the predict accuracy of the Block IIA Cesium clock generally lower than others. 

In this paper, we use the IGU ephemeris as the training data; the sum of training 
and predict time for our proposed method is less than five minutes so as to ensure the 
real-time of the algorithm. If we compare Figure 6(a) and (b), it is not difficult to find 
out that the proposed method controls the divergent trend of the predict error in a 
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certain extent. It can be seen from Table 3 that the 3-hour and 6-hour predict accuracy 
of the clock error with the proposed method is quite equal to those of the IGU-P 
ephemeris which are released by IGS in real time, the 12-hour and 24-hour predict 
accuracy of the clock error are higher than those of the IGU-P, and the most signifi-
cant improvement is 76.9% for the predict error variance. 

5 Conclusions 

This paper presents an alternative method for navigation satellite clock error predic-
tion. The method generally considers the physical property of the atomic clock and 
the objective laws which are calculated from the residuals; it can avoid the human 
subjectivity and improve the predict accuracy and credibility. Finally, the GPS satel-
lites are taken for example and four short-term prediction tests are done. The results 
are compared with those of the IGU-P and conventional methods, and it shows that 
the convergence and the predict accuracy are both better than others. Therefore, it can 
be used as a novel method in navigation satellite clock error prediction. 
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Abstract. In this paper, we propose a new K-way semi-supervised spectral clus-
tering method able to estimate the number of clusters automatically and then to
integrate some limited supervisory information. Indeed, spectral clustering can
be guided thanks to the provision of prior knowledge. For the automatic determi-
nation of the number of clusters, we propose to use a criterion based on an outlier
number minimization. Then, the prior knowledge consists of pairwise constraints
which indicate whether a pair of objects belongs to a same cluster (Must-Link
constraints) or not (Cannot-Link constraints). The spectral clustering then aims
at optimizing a cost function built as a classical Multiple Normalized Cut mea-
sure, modified in order to penalize the non-respect of these constraints. We show
the relevance of the proposed method with some UCI datasets. For experiments, a
comparison with other semi-supervised clustering algorithms using pairwise con-
straints is proposed.

Keywords: Spectral embedding, Within-cluster cohesion, Semi-supervised clus-
tering, Pairwise constraints.

1 Introduction

The proposed semi-supervised clustering methodology aims at clustering unknown data,
considering a real case, when some expert can add some knowledge. More precisely, it
is composed of two main steps: first, the build of an initial convenient clustering, with-
out any knowledge, which is then theoritically used by an expert to assess or correct
some clustering results, using pairwise constraints. In a second step, a semi-supervised
clustering is then used to adjust the initial clustering, by integrating the newly available
knowledge.

Among the whole set of clustering methods, we focus on algorithms able to generate
discriminant representations, which can then be clustered by simple algorithms, like
K-means. We look for a subspace conjointly maximizing within-cluster cohesion and
between-clusters separation. Both measures can be gathered in one criterion like the
Multiple Normalized Graph Cut (MNCut) [7]. This criterion is the basis of spectral
clustering algorithms, ”in vogue” in the literature, thanks to their effective global opti-
mization and their simplicity of implementation. Both these advantages are due to the

K. Madani et al. (Eds.): Computational Intelligence, SCI 465, pp. 317–332.
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main step: the eigenvectors extraction from a similarity matrix computed on the dataset
[13][4]. Similarity matrix gathers the complete information used by the method, telling
for each pair of objects how close they are. Moreover, spectral clustering algorithms
are able to deal with complex cases including ”non-globular” or non-linearly separable
clusters.

As the first step, we propose a methodology to build an optimal partition, using Ng’s
algorithm [5] which tends to produce particularly well discriminative representation
space, to estimate the number of clusters without any kind of knowledges. This deter-
mination of numberK is based on a cluster representativeness, defined as the proportion
of outliers. Indeed, the only MNCut value cannot always guarantee a good partition
because of its minimization process. This is the reason why we introduce two additional
criteria: the limitation of outliers and the minimization of the number of clusters.

As the second step, the method comes within a real context, where the obtained
partition is presented to experts which can validate it and can give some additional
informations. Indeed, in recent years, methods incorporating prior knowledge in their
clustering process have emerged as both relevant and effective in several applications,
such as image segmentation [4], information retrieval or document analysis [2]. The
prior knowledge is generally provided in two forms: class labels, and pairwise con-
straints. Labelling data is a hard and long task. Pairwise constraints simply indicate if
two instances must be in the same cluster (Must-Link) or not (Cannot-Link). They are
easier to collect from experts than labels [11]. In this work, pairwise constraints are ran-
domly built from ground-truth labels. Then, we assume that the generated knowledges
are true and relevant.

In this paper, we propose a new algorithm able to integrate constraints in the mul-
ticlass spectral clustering process, using a penalty term. The proposed method aims at
minimizing the Multiple Normalized Cut criterion, while penalizing the non-respect of
the given set of constraints. Moreover, a convenient weight, easily interpretable, is in-
troduced in order to balance the MNCut and the penalty term, i.e. the impact of the
original data structure and the contribution of the constraints.

The paper is organized into four sections. The first one is theoretical and introduces
some basic notations and spectral clustering methods of the literature. In a second sec-
tion, we present the first step of the proposed method, i.e. a method based on a measure
of the representativeness cluster allowing to estimate the number of clusters automat-
ically. The third section presents the second step, i.e. the proposed semi-supervised
K-way spectral clustering method able to integrate some prior knowledges. The last
section assesses the performances of our method versus some semi-supervised algo-
rithms of the literature on public databases extracted from UCI repository1. The results
are finally presented, for different proportions of known constrained pairs.

2 Graph Embedding and Spectral Clustering

Spectral clustering is generally considered as a clustering method aiming at minimizing
a Normalized Cut criterion between K = 2 clusters (NCut), or a Multiple Normalized
Cut between K ≥ 2 clusters (MNCut) [4][5][7]. The first measure, NCut, assesses

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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how strongly a cluster of points (or vertices in a graph) is linked to the other points, in
relation to its own cohesion. The second one deals with multiple clusters (K ≥ 2) and
is set to the average of the NCut measures over the whole clusters.

2.1 Notations

In order to prepare the NCut minimization problem formulations, some notations are
first introduced, using an usual graph formalism.

– Let X = {x1, . . . , xi, . . . , xN} be a set of N objects, to be clustered;
– this set X is described by a weighted graph G(V,E,W ): V is the set of nodes cor-

responding to the objects; E is the set of edges between the nodes weighted by a
matrix W whose elements wij = wji ≥ 0 tell how strongly related objects xi and
xj are;

– let D be the degree matrix of graph G, i.e. a diagonal matrix whose components are
equal to the degrees of the nodes: Dii =

∑N
j=1 Wij ;

– let L be the unormalized Laplacian matrix of graph G defined as: L = D −W ;
– let C = {C1, . . . , CK} be a partitioning of X into K non-empty disjoint subsets;
– each group Ck is described by its volume V ol(Ck) =

∑
xi∈Ck

Dii and its ”cohe-
sion” degree Cut(Ck, Ck) =

∑
xi∈Ck

∑
xj∈Ck

Wij ;
– the Cut between two groups is defined by Cut(Ck, Ck′) =

∑
xi∈Ck

∑
xj∈Ck′ Wij .

2.2 MNCut Minimisation as Eigenproblem

In a two-class problem, the Normalized Cut between subsets C1 and C2 is defined as:

NCut(C1, C2) = Cut(C1, C2)

(
1

V ol(C1)
+

1

V ol(C2)

)
. (1)

In a K-way clustering problem, NCut criterion is generalized by the Multiple Normal-
ized Cut (MNCut):

MNCut(C) =
K∑

k=1

Cut(Ck, C\Ck)

V ol(Ck)
=

K∑
k=1

(
1− Cut(Ck, Ck)

V ol(Ck)

)
. (2)

Many authors of spectral clustering algorithms have shown that the minimization of
MNCut criterion can be achieved by solving an eigenvalue system (or generalized
eigenvalue system). Their optimal clustering processing can be resumed in three steps:

1. Preprocessing: Computation and normalization of the similarity matrix W . The
result is generally a normalized Laplacian matrix L.

2. Spectral Mapping: Some K vector solutions of an eigenvalue system such as
Lzk = λkzk based on the matrix issued from Step 1, are computed to form the
matrix Z = [z1, z2, . . . , zK ]. If the eigenvalues are not distinct, the eigenvectors
are chosen such that zTi Dzj = 0 for i �= j. Z is then normalized into a matrix U ,
whose rows are used to map objects.

3. Partioning: A grouping algorithm like K-means clusters the points in the spectral
space, and assigns the obtained clusters to the corresponding objects.
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Von Luxburg’s Algorithm. In [9], the author generalizes the NCut criterion to the
Multiple-NCut (MNCut) criterion, and proposes to solve this problem, by consider-
ing K vectors uk (denoting indicator vectors partitioning X in K clusters), defined as:
uk ∈ {0, 1√

V ol(Ck)
}N , and uik = 1√

V ol(Ck)
⇔ xi ∈ Ck. These indicator vectors are

column-wise gathered in matrix U .

MNCut(C) =
K∑

k=1

(
1− Cut(Ck, Ck)

V ol(Ck)

)
=

K∑
k=1

(
1− ut

kWuk

ut
kDuk

)
(3)

= tr
(
I − (U tDU)−1(U tWU)

)
(4)

= tr
(
(U tDU)−1(U t(D −W )U)

)
(5)

= tr
(
(U tDU)−1 (U tD

1
2 (I −D−1

2WD− 1
2 )D

1
2U)

)
, s.t. U tDU=I (6)

= tr

((
(D

1
2U)t(D

1
2U)

)−1

(D
1
2U)t(I −D− 1

2WD− 1
2 )(D

1
2U)

)
(7)

= tr
(
(ZtZ)−1(ZtLZ)

)
, s.t. ZtZ = I. (8)

It is then possible to express the problem as:

min
Z

MNCut(C) = min
Z

K∑
k=1

zk
TLzk, s.t. zkT zk = 1, (9)

which can be optimized by solving the following eigensystem:

LZ = λZ, (10)

with L = I −D− 1
2WD− 1

2 the normalized Laplacian matrix and an additional formal
condition U = D− 1

2Z: UTDU = I .
Consequently, the first K eigenvectors of L (i.e. with the K smallest eigenvalues)

minimize the criterion and allow to estimate the K cluster indicator vectors. In order
to retrieve discrete cluster indicator values, the eigenvector extraction is followed by a
K-means step on the row of U = D− 1

2Z .

Ng et al.’s Algorithm. The authors [5] proposed an other algorithm based on Weiss
[13] and Meila and Shi [4] that also solved the spectral problem (Eq. 9), but without
formulating any optimization problem in terms of indicator vectors. They proposed to
modify the initial similarity matrix: wii = 0, and to use the K highest eigenvectors zk
of LNg = D− 1

2WD− 1
2 , orthogonal to each others, to map data. Let’s remark that these

eigenvectors are the K lowest eigenvectors of I − LNg = L.
Then, instead of computing a matrix U = D− 1

2Z from matrix Z stacking the
extracted eigenvectors, they rather project data points in the spectral space on the

unit-sphere, by normalizing Z into U : Uij = Zij/
√∑

j Z
2
ij . Step 3 is K-means too,

initialized by points at most orthogonal.
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As shown in [10], despite the diversity of the formalisms used to define the indicator
vectors, all authors finally solve the same objective function (eq. 9), which involves the
same normalized Laplacian matrix L. However, the final solutions are different because
of the chosen normalization step.

3 Automatic Estimation of K Based on Outlier Number
Minimization

Few authors focused on the automatic estimation of the number of clusters. Moreover,
most algorithms have weaknesses. Indeed, some methods require cleaned and structured
data in order to obtain a significant and relevant number of clusters K [5] [8]. But the
main weakness of most algorithms lies in the fact that they are time-consuming and very
complex because of their optimization process [15] [6] [14]. In this section, we propose
a new automatic estimation algorithm based on the outlier number minimization.

3.1 Representativeness Measure of Cluster

For the proposed methodology, we use the Ng et al.’s spectral clustering algorithm as
clustering method [5]. Indeed, as shown in [10], the final projection on the unit-sphere
generally gives better clustering performances. The proposed estimation method con-
sists in a posteriori constraining the total proportion of outliers (i.e. objects not enough
linked to their own cluster). The main idea is then to maximize the representativeness
of clusters while minimizing the number of clusters. Indeed, in a real case, it is better to
obtain a low value of K in order to make easier an interactive learning (where an expert
must analyze each cluster for labelling).

The representativeness measure of cluster Ck of partition CK is based on the within-
cluster averaged similarity measure, per object. More precisely, it is the average propor-
tion of objects whose within-cluster similarity is not far lower than the within-cluster
similarity mean. For a given cluster Ck, the criterion can so be defined as:

PO(Ck) =
#i ∈ Ck, such as w̃i ≤ μk − α.σk

|Ck| . (11)

where α is a weighting parameter, w̃i (i = 1, . . . , |Ck|) is the mean similarity between
objects xi and all objects belonging to the same cluster. The first term μk represents the
mean similarity of the cluster Ck and the second term σk is the standard deviation of
the mean similarities. Then, all objects having a mean similarity w̃i lower than μk −
α.σk are considered as outliers. α corresponds to the weight usually used in the outlier
selection rule in some boxplot representations (greater than 1).

3.2 The Proposed Estimation Algorithm

To build a global representativeness measure of the partition, PO(CK), the previous
measure is averaged over the whole set of clusters Ck ∈ CK :

PO(CK) =
1

K

K∑
j=1

PO(Ck). (12)



322 G. Wacquet, É. Poisson-Caillault, and P.-A. Hébert

We propose to restrict the optimal number of clusters in the range: [2;Km] with Km

the maximal value of K . The goal is to select K ∈ N such as:

K = argmin
k
{PO(Ck) < β} else K = argmin

k
{PO(Ck)}

s.t. 2 ≤ K ≤ Km. (13)

As shown in Equation 13, the outlier number minimization criterion depends on a user
threshold β defined according to the kind of application (the smaller β is, the more
compact clusters will be). Then, we set the optimal K as the smallest value which gives
a proportion of outliers lower than an user threshold. The final automatic method is
presented in Algorithm 1.

Algorithm 1. Automatic estimation algorithm
Inputs: similarity matrix W , maximal value Km, weight α, threshold β

1. Set wii = 0.
2. Compute the degree matrix D ∈ �N×N : dii =

∑
j wij .

3. Compute the normalized Laplacian matrix L: L = D− 1
2WD− 1

2 .
4. Extract the largest eigenvector of L.
5. FOR k = 2 : Km

– Extract the kth largest eigenvector of L.
– Compute the matrix Z by stocking the k largest eigenvectors in columns.
– Normalize rows of Z to have unit-length.
– Compute partition Ck by applying K-means algorithm with k on the k largest eigenvec-

tors.
– Compute the proportion of outliers PO in partition Ck.
– IF PO < β:

• Set Kf = k and Cf = Ck.
• Stop loop FOR.

– IF k = Km:

• Kf = argmink PO(Ck) and Cf is the corresponding partition.

Output: final value Kf , final partition Cf

4 Automatic Semi-supervised K-Way Spectral Clustering
Algorithm

We now focus on additional knowledge, formalized as pairwise constraints. The set X
is now completed with the following two sets of pairs of objects [11]:

– pairs of objects that must belong to different clusters: {xi, xj} ∈ CL, the Cannot-
Link set of pairs (with {xi, xj} ⊆ X );

– pairs of objects that must belong to the same cluster: {xi, xj} ∈ ML, the Must-Link
set of pairs (with {xi, xj} ⊆ X ).
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In this section, we propose an automatic semi-supervised spectral clustering algorithm
using pairwise constraints (denoted SSSC). Here, the objective function consists in the
combination of the criterion of classical spectral clustering (MNCut) and a criterion
based on the constraints.

4.1 Weighting of the Contribution of Constraints

In the literature, the Multiple Normalized Cut criterion can be expressed:

– from the clusters indicator vector fk such as fk ∈ {a, b} (where {a, b} can take the
values {0, 1} or {−1,+1});

– from the eigenvectors z of the normalized Laplacian matrix L = I −D− 1
2WD− 1

2 .

Our work focus on the second alternative. Moreover, most of the spectral clustering
methods, post-transform these vectors, either by a D− 1

2 pre-multiplication, or by a pro-
jection on the unit-sphere. We consider here this last choice, as in different previously
presented methods [5][3].

Thanks to this final projection, we decide to make the penalty cost depend on the
angles between spectral projections given by the K eigenvectors. Penalty term PC is
defined by dot products between constrained points, considering that this measure suits
well to the alteration of angles:

JPC = − 1

|CL|
∑

{xi,xj}∈CL

K∑
k=1

zik.zjk +
1

|ML|
∑

{xi,xj}∈ML

K∑
k=1

zik.zjk. (14)

This criterion depends on the sets of constraints ML and CL. Then, we express JPC

as a matrix product, by using a weighting matrix Q, defined as:

Qij = Qji =

⎧⎪⎨⎪⎩
− 1

|CL| if {xi, xj} ∈ CL,
+ 1

|ML| if {xi, xj} ∈ ML,
0 else.

(15)

The optimization criterion of the contribution of constraints JPC can be written as:

JPC =
1

2

∑
i,j

K∑
k=1

zikzjkQij =

K∑
k=1

zTk Qzk. (16)

4.2 Constrained Multiple Normalized Cut

The criterion JPC is combined with the multiple normalized cut criterion MNCut in
order to define a spectral optimization problem using pairwise constraints. The global
objective function is then defined as:

J = MNCut− JPC . (17)
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The minimization of this objective function allows to obtain a spectral projection re-
flecting both the original data structure and the proposed constraints. The constrained
optimization problem can be written as:

min
Z

J(G,Z) = min
Z

K∑
k=1

zTk Lzk − zTk Qzk = min
Z

K∑
k=1

zTk (L−Q)zk, s.t. zkT zk = 1.

(18)
The optimization of the global objective function J consists in the extraction of eigen-
vectors of the matrix (L − Q). This problem is clearly related to the classical spectral
clustering’s one, but with a normalized Laplacian matrix L penalized by a matrix Q,
built from theML and CL sets.

4.3 Setting the Balance between Contributions of Normalized Cut and
Constraints

We propose to introduce a parameter γ in order to weight the impact of constraints on
the original data structure. In addition, we propose a normalization making J easier to
interpret. The MNCut expression zTk Lzk belonging to [0, 1] (because L is supposed
positive semidefinite) and the penalty one zTk Qzk belonging to [λQmin, λQmax], we
propose to normalize matrix Q using its minimal and maximal eigenvalues λQmin and
λQmax:

Q =
Q− λQmin

λQmax − λQmin
. (19)

Thanks to balancing term γ, criterion J now belongs to [0, 1], and the final problem is
set as:

min
Z

J(G,Z) = min
Z

K∑
k=1

((1 − γ).zk
TLzk − γ.zk

TQzk), (20)

s.t. zkT zk = 1.

The optimization of the global objective function J can come down to the resolution of
a standard eigenproblem:

((1− γ).L− γ.Q)z = λz, (21)

i.e. the extraction of eigenvectors of the matrix (1 − γ).L − γ.Q. The final method is
presented in Algorithm 2.

4.4 Retained Solution

The vectors z obtained from the resolution of the standard eigensystem (21), are pro-
jected on the unit-sphere (Uij =

Zij

(
∑

j Zij
2)

1
2

). Then the retained solution is the second
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smallest eigenvector in the case K = 2. Indeed, the first vector (u1) is constant and
represents a trivial solution. The final partition is then obtained by partitioning the data
thanks to the sign of values in u2.

In case K > 2, the usage of K eigenvectors is maintained as generally, considering
that the constant vector u1 has no impact on the spectral subspace building. These K
first eigenvectors are then used in order to cluster the data thanks to K-means algorithm.
The algorithm in its K-way variant is resumed below (cf. Algorithm 2).

Algorithm 2. Automatic Semi-Supervised K-way Spectral Clustering

Inputs: similarity matrix W , maximal value Km, weight α, threshold β, weight γ
Spectral Projection Step

1. Apply Algorithm 1 with Km, α and β, and set K = Kf .
2. Compute the constraints weighting matrix Q:

Qij =

⎧⎪⎨⎪⎩
− 1

|CL| if {xi, xj} ∈ CL,
+ 1

|ML| if {xi, xj} ∈ ML,
0 else.

(22)

3. Compute the minimum and maximum eigenvalues (denoted λQmin and λQmax) of Q.
4. Compute the constraints weighting matrix Q: Q =

Q−λQmin

λQmax−λQmin

5. Compute the degree diagonal matrix D ∈ �N×N : Dii =
∑

j wij .

6. Compute the normalized Laplacian matrix: L = I −D− 1
2WD− 1

2 .
7. Find, the K lowest eigenvectors {z1, . . . , zK} of matrix:

(1− γ)L+ γQ, (23)

and form the matrix Z = [z1, . . . , zK ] ∈ �N×K .
8. Normalize the rows of Z to be unit-lengthed (projection on the unit-sphere).

Uij =
Zij

(
∑

j Zij
2)

1
2

(24)

Spectral clustering step
1. 9. Apply a K-means clustering on the data matrix U .
2. 10. Cluster each point of X as its corresponding point in U was clustered. Output: final

partition CK

4.5 Weighting of the “Must-Link” and “Cannot-Link” Contributions

The proposed algorithm is able to integrate weights on the constraints sets. These pa-
rameters allow to refine the weights of “Cannot-Link” constraints in relation to “Must-
Link” constraints, and vice-versa. The criterion based on the pairwise constraints can
be written as:

JPC = −ΨCL

|CL|
∑

{xi,xj}∈CL

K∑
k=1

zik.zjk +
ΨML

|ML|
∑

{xi,xj}∈ML

K∑
k=1

zik.zjk. (25)
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The weights ΨCL and ΨML can be used in order to balance the contributions between
“Must-Link” and “Cannot-Link” pairwise constraints. In [16], the authors integrate sim-
ilar weighting coefficients in their constrained principal components analysis method.
The expression of the JPC criterion as a matrix product, is then realized by defining a
weighting matrix Q:

Qij = Qji =

⎧⎪⎨⎪⎩
−ΨCL

|CL| if {xi, xj} ∈ CL,
+ ΨML

|ML| if {xi, xj} ∈ ML.
0 else.

(26)

The optimization of the global objective function J is then similar to the previous case
with ΨCL = ΨML = 1, i.e. it is necessary to extract the K first eigenvectors of the
matrix (1 − γ).L− γ.Q.

4.6 Comparison with the Semi-supervised Methods of Literature

In this section, we compare the proposed semi-supervised algorithm with similar meth-
ods from the literature, in order to highlight the contributions of our method. We focus
on semi-supervised clustering methods dealing with pairwise constraints. We consider
too some linear pairwise constrained methods, whose discriminant projections can be
conveniently followed by a K-means step.

Linear Constrained Methods. Two main projection constrained methods are used in
the literature: the first one based on a constrained principal component analysis repre-
sentation (“Semi-Supervised Dimensionality Reduction”, denoted SSDR [16]) and the
second one based on a constrained projection which preserves the local neighborhood
(“Constrained Locality Preserving Projection”, denoted CLPP [1]).

SSDR sets similar weights for unconstrained objects. CLPP method gives an inter-
esting data visualization tool for globular clusters of objects but this method does not
allow to weight differently the contribution of unconstrained object, objects in “Must-
Link” and objects in “Cannot-Link” (+1 and -1 respectively).

In addition to obtain a non linear data representation, the proposed algorithm offers
the advantage to integrate weights for each objects, thanks to the similarity matrix, and
to weight differently the contribution of ”Must-Link” and ”Cannot-Link” constraints.

Non Linear Constrained Methods. Two kinds of methods deal with non linear con-
strained data: one based on a direct modification of similarity values and one based on
a global optimization of a criterion including the satisfaction of pairwise constraints.

Kamvar et al. proposed a method in the first category (“Spectral Learning” denoted
SL [3]) which sets similarity values to 1 for objects in “Must-Link” and to 0 for objects
in “Cannot-Link”. Consequently, this approach does not allow to take into account the
original local data structure.

For the second category, Wang and Davidson aim at minimizing MNCut criterion
subject to the satisfaction of constraints, thanks to a Lagrangian formulation.
Then, the authors proposed a ”Flexible Constrained Spectral Clustering” algorithm
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(denoted FCSC [12]), which integrates a weighting parameter for constraints. This op-
timization can lead to no solutions for some values of weighting parameter, in a multi-
class problem. The relevance of our method consists in always obtaining a solution for
all values of the weighting parameter.

These different comparisons allows to show the contributions of the proposed semi-
supervised method, and the relevance of the optimization technique used.

5 Experimental Results

In this section, our 2-steps methodology is applied on public benchmarks belonging
to UCI repository. For each dataset, some pairwise constraints are generated from the
known labels, and results obtained from Algorithm 2 are analyzed using objective eval-
uation measures like MNCut, satisfied constraints rates, or Rand Index. These results
are then compared with outputs of a set of similar methods.

5.1 Algorithms for Comparison

For all experiments, the proposed embedding algorithm is compared with the following
seven clustering methods:

– SC: the Spectral Clustering Ng’s algorithm [5] (cf. 2.2), as a reference unsupervised
method, in order to assess the impact of the added pairwise constraints;

– SSDR: the semi-supervised dimensionality reduction method [16];
– CLPP: the constrained locality preserving projection algorithm [1];
– SL: the semi-supervised Spectral Learning algorithm [3];
– FCSC: the original Flexible Constrained Spectral Clustering method [12], weighted

by the value θ obtained from the rule given by the authors: θ = λmax × V ol(G) ×(
0.5 + 0.4× # Constraints

N2

)
;

– FCSC-θ: a variant of FCSC, where the weight θ is chosen a posteriori in the range
(λminV ol(G), λmaxV ol(G)) introduced by the authors, using an exhaustive search;

– FCSC-θSP: a variant of FCSC-θ, which consists in incorporating the projection on
the unit-sphere step.

In order to facilitate the comparison of the methods, we decide to apply the K-means
algorithm as partitioning step in the obtained subspaces from all methods. Moreover,
some homogenisations were done in order to not promote our SSSC method. Then,
except for methods FCSC and FCSC-θ, the projection step on the unit-sphere is applied.
We showed in [10] that this step allows to improve the obtained results. Moreover, in
all FCSC variants except the original one, the weighting matrix used for experiments is
the one defined in Algorithm 2. The weights of each kind of constraints are then similar
and depend on the number of contraints defined.

For SSSC and FCSC variants (except the original), the weight of the penalty term θ
or γ is a posteriori optimized, by discretizing its definition interval into 100 equidistant
values, and choosing the one which maximizes the criterion:

E = (1−MNCut) +MLsatisfied + CLsatisfied, (27)

where MLsatisfied and CLsatisfied are the respective rates of satisfied ML and CL
constraints.
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5.2 Application to UCI Datasets

In this section, our automatic semi-supervised K-way spectral clustering method is ap-
plied to some datasets well-known in the classification world (UCI datasets). For the
proposed automatic estimation method, and for all experiments, we decide to set the
weighting parameter α = 2.5 (as some boxplot representations) and the threshold
β = 1%. Moreover, we propose to search the value of the number of clusters in the
range [2; 20], with Km = 20.

For each example, some given proportions of objets are first randomly selected, so
as to build sets of labelled objects. Then, they are used to deduce both CL and ML
constraints sets. For each percentage tested, the previous sets of constraints are enlarged
with new informations. The quality of the obtained clusterings is measured by Rand
index, which reflects the similarity between the complete known partition (ground truth)
and the one obtained, depending on the number of pairs of points similarly classified in
the two partitions [11]. The performance scores are averaged over 10 repetitions of the
constraints generation process.

Table 1(a) presents the six datasets used. We chose these databases because the distri-
butions of classes are not uniform. For example, the ”Ecoli” dataset contains 8 classes:
the first one (”Cytoplasm”) is composed of 143 objects, and the last one (”Inner mem-
brane, cleavable signal sequence”) is only composed of 2 objects. For each dataset, the

similarity matrix is built using a Gaussian kernel: wij = exp(− ||xi−xj ||2
2σ2 ) where σ is

the scale parameter equal to the mean of the variances of features.

Table 1. (a) Datasets used for experiments; (b) Performance scores on datasets, with β = 1%

Dataset Nb. Objects Nb. Features True K
Hepatitis 80 19 2

Ionosphere 351 34 2
Dermatology 366 34 6

Glass 214 9 6
Ecoli 336 7 8

Multiple Features 2000 649 10

MNCut PO Estimated K RI
0.09 0 2 0.61
0.10 0.28 2 0.51
0.14 0.55 4 0.65
0.24 0.47 7 0.74
0.28 0.89 7 0.81
0.22 0.98 12 0.92

The results presented in Table 1(b) show that the proposed estimation method seems
consistent with the ground-truth partition and is able to estimate a satisfying value of K
with a low MNCut values. This experiment shows that the proposed method succeeds
in conjointly optimizing both proportion of outliers (lower than 1%) and number of
clusters, in a efficient way. The obtained partition is then consistent and can be presented
to experts in order to collect pairwise constraints.

Figure 1 shows the performance measures of all the methods applied on these UCI
datasets, in terms of Rand index, i.e. the rate of pairwise relations equal to the real ones,
with our estimated K (K = 7). As it can be observed:

– Globally, methods like SSSC and some FCSC variants achieve to significantly im-
proves the basic spectral clustering (corresponding to abscissa 0). Increasing the
number of constraints globally improves the performances, and this increase is faster
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Fig. 1. Rand Index according to the percentage of known labels, on UCI datasets

between abscissa 0% and 5%. This means that best methods are able to improve the
clustering with small amongs of pairwise constraints.

– With K = 2, the best results are obtained from methods SSSC and all FCSC variants:
their Rand indexes are the highest. Indeed, they do not decrease with the number of
constraints added. SL shows quite lower performances. SL becomes interesting, only
with high numbers of constraints: weigths 0 and 1 seem too low (in absolute value)
to impact the clustering.

– With K > 2, SSSC gets better performances than all others methods. SL gives
second best results. Then the methods FCSC-θ gives very low Rand indexes: both
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Table 2. Evaluation measures on ”Ecoli” dataset (with an estimated K = 7) with different num-
bers of constraints

% known labels Methods % ML % CL % Total MNCut Rand Index

0 SSDR / / / 0.52 0.73
CLPP / / / 0.54 0.74

SL / / / 0.28 0.81
FCSC / / / 0.36 0.73

FCSC-θ / / / 0.36 0.73
FCSC-θSP / / / 0.28 0.81

SSSC / / / 0.28 0.81

5 SSDR 52.7 85.8 69.3 0.57 0.77
CLPP 60.3 86.6 73.5 0.54 0.80

SL 66.3 95.0 80.7 0.36 0.83
FCSC / / / / /

FCSC-θ 71.9 82.9 77.4 0.55 0.80
FCSC-θSP 64.3 81.3 72.8 0.58 0.80

SSSC 99.0 97.5 98.3 0.38 0.85

weigths and projection steps are required to assure good performances. FCSC origi-
nal method does not appear, because the constrained problem is not solved with the
proposed θ value.

The proposed methodology with automatic estimation ofK , proposition of a partition in
order to generate pairwise constraints and integration of these constraints in the spectral
clustering algorithm, seems efficient and relevant for this dataset.

5.3 Detailed Results on “Ecoli” Dataset

Table 2 shows some performance indicators of the different methods applied on a
specific example, Ecoli, whose number of clusters K is estimated to 7. In each cate-
gory, percentage of known labels by performance indicator, the best result is printed in
bold type. The proposed method thus appears to be very competitive versus the other
methods tested. Indeed, for this dataset and for 5% of known labels, SSSC method
reaches the highest rates of satisfied constraints (over 98%), while keeping a satisfac-
tory MNCut value (0.38) and a higher Rand index than other methods: final result for
SSSC is then closer to the optimal clustering than other methods.

More precisely, for a small percentage of known labels, the total proportion of sat-
isfied constraints (ML and CL) for SSSC is better than for the others methods while
remaining a small MNCut. Moreover, this value is coherent with the one obtained
for the basic spectral clustering (corresponding to 0% of known labels and equal to
0.28) and is smaller than for the linear methods (SSDR and CLPP) and the three FCSC
algorithms.

With 2% of known labels, SSSC is also better than the other methods and allows to
satisfy all pairwise constraints. The same observation can be made with a fixed number
of clusters given by the ground-truth on this dataset (K = 8). For this last case, the
results obtained are presented in Table 3.
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Table 3. Evaluation measures on “Ecoli” dataset (with the true K = 8) with different numbers
of constraints

% known labels Methods % ML % CL % Total MNCut Rand Index

0 SSDR / / / 0.61 0.74
CLPP / / / 0.61 0.76

SL / / / 0.30 0.81
FCSC / / / 0.52 0.79

FCSC-θ / / / 0.52 0.79
FCSC-θSP / / / 0.30 0.81

SSSC / / / 0.30 0.81

5 SSDR 34.3 89.6 62.0 0.65 0.76
CLPP 41.5 89.4 65.5 0.67 0.79

SL 50.8 93.2 72.0 0.41 0.82
FCSC / / / / /

FCSC-θ 57.5 86.1 71.8 0.60 0.79
FCSC-θSP 87.2 85.7 86.5 0.65 0.82

SSSC 99.0 100.0 99.5 0.49 0.84

The comparison between the results presented in Tables 2 and 3 shows that the pro-
posed algorithm seems consistent with the ground-truth partitions. Indeed, for each
proportion of known labels and for all methods tested, Rand indexes are roughly the
same. However, we can note that, for 5% of known labels and with an estimated K ,
the SSDR, CLPP, SL, FCSC-θ and SSSC algorithms obtain lower MNCut values and
higher Rand indexes than with the true number of clusters. Then, the automatic esti-
mation method does not negatively impact the final results obtained from the proposed
semi-supervised algorithm, as shown in [10].

6 Conclusions

In this paper, we proposed an efficient K-way spectral algorithm able to determinate the
number of clusters and using ”Cannot-Link” and ”Must-Link” pairwise constraints as
semi-supervised information. The proposed criterion allowing to determinate the opti-
mal valueK consists in a measure of representativeness clusters. This last one is defined
as the averaged proportion of objects considered as outliers by a simple detection rule
based upon their own within-cluster mean similarity. This rule requires the setting of an
acceptable rate of outliers, depending of the kind of application.

The method is used in a real-like semi-supervised context, where the pairwise con-
straints could be provided by experts from an initial partition built in an unsupervised
case. The estimated number of clusters and the additional knowledges are then intro-
duced as inputs in a semi-supervised spectral clustering method. Like in its unsuper-
vised version, the clustering problem is set as an optimization problem, consisting in
minimizing an objective function proportional to the Multiple Normalized Cut measure.
This measure is here balanced by a weighted penalty term assessing the non-satisfaction
of the given pairwise constraints.

Some experiments and comparisons with similar methods have been carried on some
UCI benchmarks. First, our automatic estimation method seems to be consistent with
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the true number of clusters (given by the ground-truth partition) because of its good un-
supervised and supervised performance scores. Second, in a semi-supervised case, the
results illustrated that the proposed method is able to rapidly adjust the initial clustering
to a more convenient one, satisfying the given constraints, even with quite low numbers
of constraints. Moreover, its clustering often achieves the highest satisfied constraints
rates in the two-class and multi-class cases, while keeping low MNCut values.
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Abstract. This paper presents a discrete-time decentralized control strategy for
trajectory tracking of a seven degrees of freedom (DOF) redundant robot. A high
order neural network (HONN) is used to approximate a decentralized control
law designed by the backstepping technique as applied to a block strict feedback
form (BSFF). The neural network learning is performed online using Kalman
filtering. The motion of each joint is controlled independently using only local
angular position and velocity measurements. The proposed controller is validated
via simulations.

Keywords: Decentralized control, High-order neural networks, Extended
Kalman filter, Backstepping, Industrial robot.

1 Introduction

Nowadays, Robotic arms are employed in a wide range of applications such as in man-
ufacturing to move materials, parts, and tools of various types. Future applications will
include nonmanufacturing tasks, as in construction, exploration of space, and medical
care. In this context, a variety of control schemes have been proposed in order to guar-
antee efficient trajectory tracking and stability [1], [2]. Fast advance in computational
technology offers new ways for implementing control algorithms within the approach
of a centralized control design. However, there is a great challenge to obtain an effi-
cient control for this class of systems, due to its highly nonlinear complex dynamics,
the presence of strong interconnections, parameters difficult to determine, and unmod-
eled dynamics. Considering only the most important terms, the mathematical model
obtained requires control algorithms with great number of mathematical operations,
which affect the feasibility of real-time implementations.

On the other hand, within the area of control systems theory, for more than three
decades, an alternative approach has been developed considering a global system as a
set of interconnected subsystems, for which it is possible to design independent con-
trollers, considering only local variables to each subsystem: the so called decentralized
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control [3]. Decentralized control has been applied in robotics, mainly in cooperative
multiple mobile robots and robot manipulators, where it is natural to consider each
mobile robot or each part of the manipulator as a subsystem of the whole system. For
robot manipulators each joint and the respective link is considered as a subsystem in
order to develop local controllers, which just consider local angular position and an-
gular velocity measurements, and compensate the interconnection effects, usually as-
sumed as disturbances. The resulting controllers are easy to implement for real-time
applications [4].

In [5], a decentralized control of robot manipulators is developed, decoupling the
dynamic model of the manipulator in a set of linear subsystems with uncertainties;
simulation results for a robot of two joints are shown. In [6], an approach of decen-
tralized neural identification and control for robots manipulators is presented using
models in discrete-time. In [7], a decentralized control for robot manipulators is re-
ported; it is based on the estimation of each joint dynamics, using feedforward neural
networks.

In recent literature about adaptive and robust control, numerous approaches have
been proposed for the design of nonlinear control systems. Among these, adaptive back-
stepping constitutes a major design methodology [8]. The idea behind the backstepping
approach is that some appropriate functions of state variables are selected recursively
as virtual control inputs for lower dimension subsystems of the overall system. Each
backstepping stage results in a new virtual control design from the preceding stages;
when the procedure ends, a feedback design for the true control input results, which
achieves the original design objective.

In this paper, the authors propose a decentralized approach in order to design a suit-
able controller for each subsystem. Afterwards, each local controller is approximated
by a high order neural network (HONN) [9]. The neural network (NN) training is per-
formed on-line by means of an extended Kalman filter (EKF) [10], and the controllers
are designed for each joint, using only local angular position and velocity measure-
ments. Simulations for the proposed control scheme using a Mitsubishi PA10-7CE robot
arm are presented.

2 Discrete-Time Decentralized Systems

Let consider a class of discrete-time nonlinear perturbed and interconnected system
which can be presented in the block strict feedback form (BSFF) [8] consisting of r
blocks
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i = 1, . . . , N ; j = 1, . . . , r; l = 1, . . . , nij ; N is the number of subsystems, ui ∈ �mi
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The integers ni1 ≤ ni2 ≤ · · · ≤ nij ≤ mi define the different subsystem structures.
The interconnection terms are given by
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where χ� represents the state vector of the �-th subsystem with 1 ≤ � ≤ N and � �= i.

Interconnection terms (2) reflect the interaction between the i-th subsystem and the
other ones.

3 High-Order Neural Networks

3.1 Discrete-Time HONN

Let consider the HONN described by

φ(w, z) = w�S(z)

S(z) = [s�1 (z), s
�
2 (z), · · · , s�m(z)]

si(z) =

[ ∏
j∈I1

[s(zj)]
dj(i1) · · ·

∏
j∈Im

[s(zj)]
dj(im)

]�
i = 1, 2, · · · , L

(3)

where z = [z1, z2, · · · , zp]� ∈ Ωz ⊂ �p, p is a positive integer which denotes
the number of external inputs, L denotes the neural network node number, φ ∈ �m,
{I1, I2, · · · , IL} is a collection of not ordered subsets of {1, 2, · · · , p}, S(z) ∈ �L×m,
dj(ij) is a nonnegative integer, w ∈ �L is an adjustable synaptic weight vector, and
s(zj) is chosen as the hyperbolic tangent function:

s(zj) =
ezj − e−zj

ezj + e−zj
(4)
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For a desired function u∗ ∈ �m, assume that there exists an ideal weight vector w∗ ∈
�L such that the smooth function vector u∗(z) can be approximated by an ideal neural
network on a compact subset Ωz ⊂ �q

u∗(z) = w∗�S(z) + εz (5)

where εz ⊂ �m is the bounded neural network approximation error vector; note that
‖εz‖ can be reduced by increasing the number of the adjustable weights. The ideal
weight vector w∗ is an artificial quantity required only for analytical purposes [9], [11].
In general, it is assumed that there exists an unknown but constant weight vector w∗,
whose estimate is w ∈ �L. Hence, it is possible to define:

w̃(k) = w(k)− w∗ (6)

as the weight estimation error.

3.2 EKF Training Algorithm

It is known that Kalman filtering (KF) estimates the state of a linear system with additive
state and output white noises [12]. For KF-based neural network training, the network
weights become the states to be estimated. In this case, the error between the neural
network output and the measured plant output can be considered as additive white noise.
Due to the fact that neural network mapping is nonlinear, an EKF-type is required.

The training goal is to find the optimal weight values which minimize the prediction
error. We use a EKF-based training algorithm described by:
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where P ∈ �L×L is the prediction error covariance matrix, w ∈ �L is the weight
(state) vector, η is the rate learning parameter such that 0 ≤ η ≤ 1, L is the respective
number of neural network weights, x ∈ �m is the measured plant state, x̂ ∈ �m is
the neural network output, K ∈ �L×m is the Kalman gain matrix, Q ∈ �L×L is
the state noise associated covariance matrix, R ∈ �m×m is the measurement noise
associated covariance matrix, and H ∈ �L×m is a matrix, for which each entry (Hij)
is the derivative of one of the neural network output (x̂i), with respect to one neural
network weight (wj), as follows

Hij(k) =

[
∂x̂i(k)

∂wj(k)

]
(9)

where i = 1, . . . ,m and j = 1, . . . , L. Usually P and Q are initialized as diagonal
matrices, with entries P (0) and Q(0), respectively. It is important to remark that H(k),
K(k), and P (k) for the EKF are bounded [12].
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4 Controller Design

Once the system in the BSFF is defined, we apply the well-known backstepping tech-
nique [8]. We can define the desired virtual controls (αj∗

i (k), i = 1, . . . , N ; j = 1, . . . ,
r − 1) and the ideal practical control (u∗(k)) as follows:
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α2∗
i (k) � x3

i (k) = ϕ2
i (x

2
i (k), α

1∗
i (k))

...

αr−1∗
i (k) � xr

i (k) = ϕr−1
i (xr−1

i (k), αr−2∗
i (k))

u∗
i (k) = ϕr

i (xi(k), α
r−1∗
i (k))

χi(k) = x1
i (k)

(10)

where ϕj
i (·) with 1 ≤ j ≤ r are nonlinear smooth functions. It is obvious that the

desired virtual controls α∗
i (k) and the ideal control u∗

i (k) will drive the output χi(k)
to track the desired signal xid(k). Let us approximate the virtual controls and practical
control by the following HONN:

αj
i (k) = wj�

i Sj
i (z

j
i (k))

ui(k) = wr�
i Sr

i (z
r
i (k)), j = 1, · · · , r − 1

(11)

with

z1i (k) = [x1
i (k), x

1
id(k + r)]�

zji (k) = [xj
i (k), α

j−1
i (k)]�, j = 1, · · · , r − 1

zri (k) = [xi(k), α
r−1
i (k)]�

where wj
i ∈ �Lj are the estimates of ideal constant weights wj∗

i and Sj
i ∈ �Lj×nj

with j = 1, . . . , r. Define the weight estimation error as

w̃j
i (k) = wj

i (k)− wj∗
i . (12)

Then, the corresponding weights updating laws are defined as

wj
i (k + 1) = wj

i (k) + ηjiK
j
i (k)e

j
i (k) (13)

with

Kj
i (k) = P j

i (k)H
j
i (k)M

j
i (k)

M j
i (k) = [Rj

i (k) +Hj�
i (k)P j

i (k)H
j
i (k)]

−1

P j
i (k + 1) = P j

i (k)−Kj
i (k)H

j�
i (k)P j

i (k) +Qj
i (k)

(14)

Hj
i (k) =

[
∂υ̂j

i (k)

∂wj
i (k)

]
(15)
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and

eji (k) = υj
i (k)− υ̂j

i (k) (16)

where υj
i (k) ∈ �nj is the desired signal and υ̂j

i (k) ∈ �nj is the HONN function
approximation defined, respectively as follows

υ1
i (k) = x1

id(k)

υ2
i (k) = x2

i (k)

...

υr
i (k) = xr

i (k)

(17)

and

υ̂1
i (k) = χ1

i (k)

υ̂2
i (k) = α1

i (k)

...

υ̂r
i (k) = αr−1

i (k)

(18)

eji (k) denotes the error at each step as

e1i (k) = x1
id(k)− χ1

i (k)

e2i (k) = x2
i (k)− α1

i (k)

...

eri (k) = xr
i (k)− αr−1

i (k).

(19)

The whole proposed neural backstepping control scheme is shown in Fig. 1.

5 Seven DOF Mitsubishi PA10-7CE Robot Arm

5.1 Robot Description

The Mitsubishi PA10-7CE arm is an industrial robot manipulator which completely
changes the vision of conventional industrial robots. Its name is an acronym of Portable
General-Purpose Intelligent Arm. There exist two versions [13]: the PA10-6C and the
PA10-7C, where the suffix digit indicates the number of degrees of freedom of the arm.
This work focuses on the study of the PA10-7CE model, which is the enhanced version
of the PA10-7C. The PA10 arm is an open architecture robot; it means that it possesses:

– A hierarchical structure with several control levels.
– Communication between levels, via standard interfaces.
– An open general purpose interface in the higher level.
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Fig. 1. Decentralized neural backstepping control scheme

This scheme allows the user to focus on the programming of the tasks at the PA10
system higher level, without regarding on the operation of the lower levels. The pro-
gramming can be performed using a high level language, such as Visual BASIC or
Visual C++, from a PC with Windows operating system. The PA10 robot is currently
the open architecture robot more employed for research [14], [15].The PA10 system is
composed of four sections or levels, which conform a hierarchical structure:

Level 4: Operation control section (OCS); formed by the PC and the teaching pen-
dant.

Level 3: Motion control section (MCS); formed by the motion control and optical
boards.

Level 2: Servo drives.
Level 1: Robot manipulator.

The PA10 robot is a 7-DOF redundant manipulator with revolute joints. Figure 2 shows
a diagram of the PA10 arm, indicating the positive rotation direction and the respective
names of each of the joints.

5.2 Control Objective

The decentralized discrete-time model for a seven DOF robot arm can be represented
as follows

χ1
i (k + 1) = f1

i (χ
1
i ) +B1

i (χ
1
i )χ

2
i + Γ 1

i

χ2
i (k + 1) = f2

i (χ
1
i , χ

2
i ) +B2

i (χ
1
i , χ

2
i )ui(k) + Γ 2

i

(20)

where i = 1, . . . , 7; χ1
i (k) are the angular positions, χ2

i (k) are the angular velocities,
ui(k) represents the applied torque to i-th joint respectively. f j

i (·) and Bj
i (·) depend

only on the local variables and Γ j
i are the interconnection effects.
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Fig. 2. Mitsubishi PA10-7CE robot arm

Let define the following states:

x1(k) =
[
χ1
1 χ1

2 χ1
3 χ1

4 χ1
5 χ1

6 χ1
7

]�

x2(k) =
[
χ2
1 χ2

2 χ2
3 χ2

4 χ2
5 χ2

6 χ2
7

]�

u(k) =
[
u1 u2 u3 u4 u5 u6 u7

]�

x1
d(k) =

[
x1
1d x1

2d x1
3d x1

4d x1
5d x1

6d x1
7d

]�

χ1
i (k) = x1

i (k) (21)

where x1
1d(k) to x1

7d(k) are the desired trajectory signals. The control objective is to
drive the output χ1

i (k) to track the reference x1
id(k). Using (21), the system (20) can be

represented in the block strict feedback form as

x1
i (k + 1) = f1

i (x
1
i (k)) + g1i (x

1
i (k))x

2
i (k)

x2
i (k + 1) = f2

i (x
2
i (k)) + g2i (x

2
i (k))ui(k)

(22)
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where x2
i (k) =

[
x1
i (k) x2

i (k)
]�

, i = 1, . . . , 7, f1
i (x

1
i (k)), g

1
i (x

1
i (k)), f

2
i (x

2
i (k)) and

g2i (x
2
i (k)) are assumed to be unknown. To this end, we use a HONN to approximate

the desired virtual controls and the ideal practical control described as

α1∗
i (k) � x2

i (k) = ϕ1
i (x

1
i (k), x

1
id(k + 2))

u∗
i (k) = ϕ1

i (x
1
i (k), x

2
i (k), α

1∗
i (k))

χ1
i (k) = x1

i (k).

(23)

The HONN proposed for this application is as follows:

α1∗
i (k) = w1�

i S1
i (z

1
i (k))

ui(k) = w2�
i S2

i (z
2
i (k))

(24)

with

z1i (k) = [x1
i (k), x

1
id(k + 2)]

z2i (k) = [x1
i (k), x

2
i (k), α

1
i (k)].

(25)

The weights are updated using the EKF (13) - (19) with i = 1, 2 and

e1i (k) = x1
id(k)− χ1

i (k)

e2i (k) = x2
i (k)− α1

i (k).
(26)

The training is performed on-line using a series-parallel configuration. All the neural
network states are initialized in a random way.

6 Simulation Results

For simulation, we select the following discrete-time trajectories [16]

x1
1d(k) = c1(1 − ed1kT

3

)sin(ω1kT )[rad]

x1
2d(k) = c2(1 − ed2kT

3

)sin(ω2kT )[rad]

x1
3d(k) = c3(1 − ed3kT

3

)sin(ω3kT )[rad]

x1
4d(k) = c4(1 − ed4kT

3

)sin(ω4kT )[rad]

x1
5d(k) = c5(1 − ed5kT

3

)sin(ω5kT )[rad]

x1
6d(k) = c6(1 − ed6kT

3

)sin(ω6kT )[rad]

x1
7d(k) = c7(1 − ed7kT

3

)sin(ω7kT )[rad]

(27)

the selected parameters ci, di and ωi for desired trajectories of each joint are shown in
Table 1. The sampling time is selected as T = 1 millisecond.

These selected trajectories (27) incorporate a sinusoidal term to evaluate the perfor-
mance in presence of relatively fast periodic signals, for which the non-linearities of the
robot dynamics are really important.
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Table 1. Parameters for desired trajectories

i-th Joint ci di ωi

1 π/2 0.001 0.285 rad/s
2 π/3 0.001 0.435 rad/s
3 π/2 0.01 0.555 rad/s
4 π/3 0.01 0.645 rad/s
5 π/2 0.01 0.345 rad/s
6 π/3 0.01 0.615 rad/s
7 π/2 0.01 0.465 rad/s
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Fig. 3. Trajectory tracking for joint 1 x1
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Fig. 4. Trajectory tracking for joint 2 x1
2d(k) (solid line) and χ1

2(k) (dashed line)
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Fig. 5. Trajectory tracking for joint 3 x1
3d(k) (solid line) and χ1

3(k) (dashed line)
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Fig. 6. Trajectory tracking for joint 4 x1
4d(k) (solid line) and χ1

4(k) (dashed line)

Simulation results for trajectory tracking using the decentralized neural backstepping
control (DNBS) scheme are shown in Figs. 3 to Fig. 9. The initial conditions for the
plant are different that those of the desired trajectory. According to these figures, the
tracking errors for all joints present a good behavior and remain bounded as shown in
Fig. 10.

The applied torques to each joint are always inside of the prescribed limits given by
the actuators manufacturer (see Table 2); that is, their absolute values are smaller than
the bounds τmax

1 to τmax
7 , respectively.
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Table 2. Maximum torques

Joint Max Torque

1 232 N-m
2 232 N-m
3 100 N-m
4 100 N-m
5 14.5 N-m
6 14.5 N-m
7 14.5 N-m
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Fig. 7. Trajectory tracking for joint 5 x1
5d(k) (solid line) and χ1

5(k) (dashed line)
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Fig. 8. Trajectory tracking for joint 5 x1
5d(k) (solid line) and χ1

5(k) (dashed line)
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Fig. 9. Trajectory tracking for joint 5 x1
5d(k) (solid line) and χ1

5(k) (dashed line)
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Fig. 10. Tracking errors for joints 1 to 7

7 Conclusions

In this paper a decentralized neural control scheme based on the backstepping technique
is presented. The control law for each joint is approximated by a high order neural
network. The training of each neural network is performed on-line using an extended
Kalman filter. Simulations results for trajectory tracking using a seven DOF PA10-7CE
Mitsubishi robot arm show the effectiveness of the proposed control scheme.
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Abstract. Comparing with other neural network based models, CMAC has been 
applied successfully in many nonlinear control systems because of its 
computational speed and learning ability. However, for high-dimensional input 
CMAC in real world applications such as robot, the useable memory is finite or 
pre-allocated, thus we often have to make our choice between learning accuracy 
and memory size. This paper discusses how both the number of layer and step 
quantization influence the approximation quality of CMAC. By experimental 
enquiry, it is shown that it is possible to decrease the memory size without losing 
the approximation quality by selecting the adaptive structural parameters. Based on 
modified Q-learning approach, the CMAC structural parameters can be optimized 
automatically without increasing the complexity of its structure. The choice of this 
optimized CMAC structure can achieve a tradeoff between the learning accuracy 
and finite memory size. At last, this Q-learning based CMAC structure 
optimization approach is applied on the walk pattern generating for biped robot and 
workpiece orientation estimation for robot arm assembly respectively. 

Keywords: CMAC neural network, Structural parameters, Q-learning; 
Structure optimization. 

1 Introduction 

The Cerebellar Model Articulation Controller (CMAC) is a neural network based model 
proposed by Albus inspiring from the studies on the human cerebellum [1]. Because of 
the advantages of simple and effective training properties and fast learning convergence, 
CMAC has been used in many real-time control systems, pattern recognition and signal 
processing problems successfully. However, besides its attractive features, the main 
drawback of CMAC network in realistic applications is related to the required memory 
size. For the high dimension input space greater than two, on one hand, in order to 
increase the accuracy of the control, the quantification step usually be chosen as small 
as possible which will cause the CMAC’s memory size become quickly very large. On 
the other hand, generally in real world applications such as robot and aircraft, the 
useable memory is finite or pre-allocated. Therefore, we often have to make our choice 
between accuracy and memory size. 
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To solve the problem relating to the size of the memory, the efforts can be classified 
into three main approaches in general. The first theoretical aspect is developed on how 
to modify the input space quantization [2,3]. This is based on the idea of the 
quantization method of input space is a decisive factor of the memory utilization and the 
more intervals we quantized, the more precise learning we will obtain. However, not 
only the quantization step but also number of layers determines the learning preciseness 
and the required memory size. The second approach involves the use of multilayered 
CMACs of increasing resolutions, demonstrating the properties of generating and 
pruning the input layers automatically [4,5]. Nevertheless they lack the theoretical proof 
of the system’s learning convergence, which is a desirable attribute for control and 
function approximation tasks. The third orientation which is most popular focused on 
incorporating fuzzy logic into CMAC to obtain a new fuzzy neural system model called 
fuzzy CMAC (FCMAC) to alleviate the required memory size [6,7]. Yet, it rises new 
problem on how to design an optimal fuzzy sets. 

In the above CMAC literatures, there is no one related to the tradeoff problem of 
limited memory size and learning quality. It is traditionally thought that the more 
exquisitely the input space is divided, the more accurately the output results of 
CMAC can be obtained. However, this will certainly cause quickly increasing of 
memory size, if we do not develop more complex CMAC structure, since the 
simplicity of structure play an important role in on-line application of neural network, 
such as robot. In fact, by experimental study of approximation examples, in which 
several high-dimension functions were selected and several combinations of structural 
parameters were tested, we found that the learning preciseness and the required 
memory size are determined by both of the quantization step and number of layers. 
Thus, adaptive choice of these structural parameters may overcome the above primary 
limitation. In this way, take aim at CMAC structure be optimized automatically for a 
given problem, it is possible to decrease the memory size according to the desired 
performance of CMAC NN. 

The paper is organized as follows: In section 2, CMAC model and its structure 
parameters are concisely overviewed. Section 3 presents the experimental study of the 
influence of structural parameters on the memory size and approximation quality. In 
section 4, a Q-learning based structure optimized approach is developed. The 
proposed approach is applied on the desired joint angle tracking for biped robot and 
workpiece location for robot arm assembly in section 5 and section 6 respectively. 
Conclusion and further works are finally set out. 

2 CMAC ANN Architecture and Structural Parameters 

The output Y of the CMAC is computed using two mappings. The first mapping 
( )X A→   projects the input space point 1 2[ , ]X x x=  into a binary associative 

vector 1 2[ , , , ]
CNA a a a=  . Each element of A is associated with one detector. When 

one detector is activated, the corresponding element in A  of this detector is equal to 
1, otherwise it equals to 0. The second mapping ( )A Y→   computes the output Y  

of the network as a scalar product of the association vector A  and the weight vector 
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1 2[ , , , ]
CNW w w w=   according to the relation (3), where ( )TX represents the 

transpose of the input vector. 

( )TY A X W=  (1) 

The weights of CMAC neural network are updated by using equation (4). ( )iw t   and 

1( )iw t −  are respectively the weights before and after training at each sample time it . 

lN  is the  generalization number of each CMAC and β  is a parameter included in 

[0 1] . eΔ  is the error between the desired output dY  of the CMAC and the 

computed output Y  of the corresponding CMAC. 

1( ) ( )i i
l

e
W t W t

N

β
−

Δ= +  (2) 

Due to its structure, CMAC is preferable be used to approximate both linear and non-
linear functions. If the complexity of its structure is not increased additionally, there are 
essentially two structural factors ruling the approximation quality. The first one, called 
“quantization step” qΔ , allows to map a continuous signal into a discrete signal. The 

second parameter called “generalization parameter” 
lN  corresponds to the number of 

layers. These two parameters allow to define the total number of cells 
CN . 

3 Impact of Structural Parameters on CMAC ANN 

We aim to show the relation between the structural parameters of CMAC NN, the 
quality of the approximation and the required memory size for a given function. Our 
study is based on an experimental enquiry, in which several high dimension functions 
are used in order to test the neural network’s approximation abilities. In this section, 
take FSIN and GUASS functions as examples, simulations for three different step 
quantization qΔ  are carried out, when the number of layers increases from 5 to 50 

for FSIN function, and from 5 to 450 for two dimension GAUSS function. For each of 
the aforementioned functions, a training set including 100×100 random values 
selected in the corresponding two-dimensional space, has been constructed. Weights 
of CMAC are updated using equation (2). When CMAC is totally trained, three 
modeling errors: mean absolute error meanE , mean squared error squareE  and 

maximum absolute error maxE are carried out. The overview of the obtained results is 

shown in Figure 1 and 2 respectively. 
It must be noticed that the modeling error depends on the quantization step qΔ  on 

the one hand, and the number of layers lN  on the other hand. When qΔ is relatively 

small (for example 0.0025qΔ = ), errors converges toward a constant value close to 

the minimum error. But, when the quantization is greater, results show there is an 
optimal structure when the modeling errors are minimal. However, it must be noticed 
that for each quantization step, the minimal errors are quasi-identical but for different 
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number of layers. As the curve trends of the mean absolute error meanE , mean squared 

error squareE  and maximum absolute error maxE  are same, only take squareE  as an 

example. 

   
        0.0025qΔ =                   0.0050qΔ =                   0.0075qΔ =  

Fig. 1. Approximation error according to the number of layers for FSIN function with different 
step quantization 

   
        0.0025qΔ =                  0.0050qΔ =                   0.0100qΔ =  

Fig. 2. Approximation error according to the number of layers for GUASS function with 
different step quantization 

Table 1. CMAC structure with minimum mean squared error for FSIN function 

qΔ     lN  squareE  CS  CN  

0.0025 41 5.81% 0.1225 4940 

0.0050 26 6.93% 0.13 2089 
0.0075 18 6.21% 0.135 1441 

Table 2. CMAC structure with minimum mean squared error for GAUSS function 

qΔ     lN  squareE  CS  CN  

0.0025 115 7.80% 0.2875 7345 

0.0050 58 8.35% 0.29 3697 
0.0100 29 8.11% 0.29 1841 

 

The mean squared error squareE  for FSIN function is equal to 5.81% and 6.21% in 

the case where 0.0025qΔ =  and 0.0075qΔ = respectively. These chosen results 

show that the approximation abilities of the CMAC are similar in these two cases. 
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However, in the points of view of memory size, for 0.0025qΔ = the required 

memory size is 4940, 3.5 times greater than when 0.0075qΔ =  ( 1441=CN ).The 

experimental enquire simulation results show that an optimal or nearly optimal 
structure carrying out a minimal modeling error could be achieved. Based on this 
observation, we try to design the algorithm which based on reinforcement learning, 
allowing to optimize the structure of the CMAC NN automatically. 

4 CMAC Structural Parameters’ Optimization 

4.1 Structural Parameters Optimized with Modified Q-Learning Approach  

In this section, our goal is to design a structure optimizing strategy allowing adjusting 
automatically the structural parameters of CMAC NN in order to make a tradeoff 
between the desirable approximation quality and the limited memory size. 

Q-Learning, proposed by Watkins[8], is a very interesting way to use reinforcement 
learning strategy and is most advanced for which proofs of convergence exist. It does 
not require the knowledge of probability transitions from a state to another and is 
model-free. Here, the proposed optimize strategy is based on Q-Learning of temporal 
differences of order 0, while in our structure optimized approach only considering the 
following step. Take the number of layers and quantization step [ ]lN qΔ  as two 

dimension states of the world, while regarding the discrete actions as the increment of 
these two scalars. There are four possible actions when the agent explores the 
surrounding world as shown in relation (3), where qδ is the incremental quantity of 

quantization step and the variation of layer is 1 for each step. 

1

2

3

4

1

1

l q

l q

l

l

N qa

N qa

N qa

N qa

δ
δ

Δ +  
   Δ −   =
   + Δ
   − Δ      

 (3) 

Change of the layer number and quantization step is supposed to be alternated. Each 
discrete time step, the agent observes state [ , ]t t

lN qΔ , take action t t
ia A∈ ( 1, , 4)i =  , 

observes new state 1 1[ , ]t t
lN q+ +Δ , and receives immediate reward tr . Transitions are 

probabilistic, that is, 1 1[ , ]t t
lN q+ +Δ  and tr  are drawn from stationary probability 

distributions. In our approach, we choose Peseudo-stochastic method to describe the 
probability distributions. 

The reinforcement signal tr  provides information in terms of reward or 
punishment. In our case, on one hand, the reinforcement information has to take into 
account the approximation quality of network. On the other hand, the required 
memory size needs to be minimized within the limitation. Taking these 
considerations, the reinforcement signal is designed as three cases: 
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• 1t t
square squareE E+ < , the choice of structural parameters is in accordance with the 

correct direction. 

o If t
squareE  and t

CN  achieve the desirable value then 1tr =  

o Else, rt is determined according to (4). In equation (4) factor 1000 and 10 are 
designed only to balance the order of magnitude for memory size and 
approximation quality. α  indicates the weight of these two structural parameters. 

1

/1000 10(1 )
t

t t
C square

r
N Eα α

=
+ −

 (4) 

• 1t t
square squareE E+ > , the trends of the chosen action is not appropriate: 1tr = −  

• t
square

t
square EE =+1 , appropriateness of the trends of the chosen action is not clear: 

0=tr . 

The Q matrix updates its evaluation of the value of the action while taking in account, 
the immediate reinforcement tr  and the estimated value of the new state 

1 1( , )t t t
lV N q+ +Δ , that is defined by (5), where b is the action chosen within tA . 

!

1 1 1 1( , ) max ( , , )
t

t t t t t
l l

b A
V N q Q N q b

+

+ + + +

∈
Δ = Δ  (5) 

If there is enough learning, the update equation could be written as (6), where γ  is 

discount factor and β  is the learning rate.  

1 1( , , ) (1 ) ( , , ) [ ( , )]t t t t t t t t t t
l l lQ N q a Q N q a r V N qβ β γ + +′ Δ = − Δ + + Δ  (6) 

The update corresponds to the barycenter of the old and the new rewards, weighted 
by β . If there comes up at the end of a period, then there is not appropriate state and 

the agent restarts a new sequence of training. The updating process is performed 
according to the equation (7). 

( , , ) (1 ) ( , , )t t t t t t t
l lQ N q a Q N q a rβ β′ Δ = − Δ +  (7) 

When the mean squared error satisfies the desirable approximation (refer to equation 
(8)), and the memory size is within the allocated rang as well (presented in equation 
(9)), the goal state is achieved. 

t d
square squareE E<  (8) 

t d
C CN N<  (9) 

4.2 Simulation Results and Convergence Analysis 

Let us consider again the FSIN function approximation as an example. Suppose that the 
finite number of usable memory size is 1500, and the approximation error less  
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than 6.00% is favorable in order to maintain the approximation quality. In this case, we 

choose 6.00%t
squareE < and 1500t

CN < as the goal state in the training phase. The 

initial state of number of layer 0
lN is set to be 20 and the quantization step can be chosen 

randomly within[0.0000 0.0100] , every 0.0002 as the incremental quantity qδ . 
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Fig. 3. Sum of ( )Q tΔ for each episode 

Table 3. Comparison between optimized and not optimized CMAC structure for FSIN function 

Structure Optimization qΔ  lN squareE
CS  CN

NO 0.0025 41 5.81% 0.1225 4940

YES 0.0084 12 5.94% 0.1008 1431

 

Figure 3 shows the sum of the computing value ( )Q tΔ  for each episode according 

to the number of episode. This updating value, which depends directly on the 
reinforcement signal, converges toward 3 within 250 episodes. The stability of our 
CMAC structure learning approach is theoretically guaranteed by the proof of the Q-
learning convergence. When the learning stage is finished, then it is possible to obtain 
the maximum q-values in the matrix Q, which will lead to the optimized structural 
parameters of CMAC. A comparison of the optimized CMAC structure with the not 
optimized CMAC structure is given in Table 3. After the training phase, the CMAC 
with optimized structure ( 12lN = , 0.0084qΔ = ) can guarantee both of the desirable 

approximation quality and limitation required memory size. 

5 Application of CMAC Optimization 

5.1 Biped Robot’s Gait Generation 

In order to increase the robustness of control strategy for robot, CMAC neural 
network has been applied to learn a set of articular trajectories with popularity. 
However, the CPU of the robot has to do many intricacies tasks at the same time, 
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therefore the useable memory size is often allocated with restriction or fixed number 
and the precise control output is favorable. In this case, the structural parameters 
optimization problem is needed to be considered if we do not increase the complexity 
of the CMAC NN, since the simplicity of structure for network is always desirable. 
On the basis of our previous work which is on the gait pattern planning strategy of 
biped robot [9], The CMAC structural parameters optimization with modified Q-
learning approach is applied to learn the joint angle trajectories of biped robot. 

Usually, after footstep planning strategy, the position of the two stance feet can be 
calculated. Therefore, it is not difficult to derive the trajectory of the joint angle by 
inverse kinematics or bio-inspired approach. As this is not the emphasis of our 
statement, we use the inverse kinematics to generate the desirable joint angle 
trajectories to simplify the problem. Supposing in the stepping phase of robot, the 
stance leg does not bend. The geometrical relationship between stance leg and swing 
leg of biped robot is described in Figure 4. 
 

 

Fig. 4. Geometrical relationship between stance leg and swing leg 

The angle between stance foot and vertical line 1θ  and its position 0 0( , )x yP P are 

recorded as the initial condition. With inverse dynamics, the hip angle 2θ  and knee 

angle 3θ of swing leg can be expressed as (10). 

2 2 2

2 ( ) ( )
A A B C

atg atg
B C

θ + −= +  

 

With:  1 1 2 1 32 [( ) sin ]xA l l l Pθ= ⋅ + −  

 1 3 1 2 12 [ ( ) cos ]yB l P l l θ= ⋅ − +
 

 2 2 2 2
1 2 3 1 3 1 1 2 2 1 3 3( ) [2 sin 2 cos ( )] ( )x y x yC l l P P l l l l P Pθ θ= + ⋅ ⋅ + ⋅ − + + − − −  

 2 2cosF l θ=  

 2 2sinG l θ=  

 3 1 2 1 1 2( ) sin sinxH P l l lθ θ= − + −  

(10) 

Based on our control strategy, each reference gait is characterized by both of the step 
length and step height which are associated with the position of stance and swinging 
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foot. Joint trajectory associated to one gait is memorized into one CMAC neural 
network. The biped robot is walking with a weighted average of several reference 
trajectories. Regarding the coordinate of swinging foot 

3 3( , )x yP P as the two inputs, 

two CMAC neural networks are utilized for training hip joint angle 2θ  and knee joint 

angle 3θ  separately for each gait pattern. The weights of CMAC are updated based 

on the difference between the output of CMAC and reference hip joint angle (or knee 
joint angle) of swinging leg. 

Figure 5 shows the results of swinging leg joint angle approximation with CMAC, 
in which blue curve stands for the reference joint angle profile, red one is the hip joint 
angle approximation, and green curve represents the output of CMAC approximating 
knee joint angle. In the first two simulation we do not know if the chosen structural 
parameters are appropriate. In the third experiment, the CMAC structural parameters 
are learning based on the developed Q-learning approach. we hope that the 
approximation error of reference gait less than1.10% is better and the pre-assigned 
memory size for each CMAC NN is 1000. According to equation (8) and (9), 

1.10%d
squareE = and 1000d

CN = are set to be the goal state. After the learning phase, 

the optimized parameters are 20lN = , 1 2 0.0051q qΔ = Δ = (refers to Fig.5(b)). The 
required memory size and approximation error are listed in Table 4 for these three 
experiments. In the first experiment, the calculated mean squared error 

( 2 1.16%squareEθ = , 3 1.19%squareEθ = ) is very near to the desirable value, but the utilized 

memory size 3589CN = is 3.5 times bigger than the structure optimized example, 
since in this biped robot application case, several reference pattern gaits have to be 
stored, the total number of memory size become quickly very large. In second 
example, the memory size is desirable, however, the approximation quality 

( 2 1.52%squareEθ = , 3 1.56%squareEθ = ) is much worse than the structure optimization case 

( 2 1.07%squareEθ = , 3 1.03%squareEθ = ). The precise gait tracking is very important in the 

case of biped robot stepping over the obstacle. 
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        (a 30Nl = , 0.00211 2q qΔ = Δ =                 (b): 20Nl = , 0.00511 2q qΔ = Δ =  

Fig. 5. Joint trajectory tracking with CMAC Neural Network: (a) CMAC structure without 
optimization process and (b) CMAC structure after Q-Learning based optimization 
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Table 4. Memory size and mean square error with randomly chosen and after learning CMAC 
structural parameters 

Structural parameters lN  1 2q qΔ = Δ  2
squareEθ  3

squareEθ  CN  

Randomly chosen 30 0.0021 1.16% 1.19% 3598 

Randomly chosen 10 0.0080 1.56% 1.52% 795 
After learning 20 0.0051 1.07% 1.03% 993 

5.2 Robot’s Arm Control for Work Piece Location 

As the increasing of fixtureless assembly using robot arm, to precisely determine the 
location of the workpiece in order to design the intelligent grasping of robot is always 
desirable. The vision system is a good choice to estimate the target orientation and 
position automatically. For example, with the same side face up, a human worker 
place the workpiece randomly on the worktable, the X-Y position and orientation 
around Z axis are the key parameters which decide the trajectory and posture of robot 
grasping movement. 

However, the camera position, workpiece models, and its relative position to the 
base or worktable are required to be modeled each time the target placing on the 
worktable. This will cause the redundant computing load to the system, which will 
affect the real time working or precisely assembly of the robot arm. According to 
previous study, CMAC neural network is desirable approach which is introduced to 
the machine vision system to generate the orientation of the workpiece [10, 11]. The 
proposed architecture constitutes two parts: feature detection and CMAC NN 
learning. (Refers to figure 6) 
 

 

Fig. 6. Scheme of work piece location estimation based on feature detection and CMAC neural 
network 

Harris algorithm is selected to detect the features of the image. After the filter of 
the background feature points, the selected features are taken as the inputs of CMAC 
NN. The purpose of we take the H-transformation before calculation of the work 
piece orientation is that we try to define the orientation based on the worktable whose 
axis is fixed to the robot coordinate. The work piece is placed on the worktable 
according to Fig.7(a). The detected features with Harris are shown in Figure 7(b). 
After H transformation and pose calculation, the image registration and affine 
transformation of work piece are shown in Figure 7(c) and (d) respectively. Regarding 
the X and Y pixels of detected features as two inputs of CMAC, the neural network is 
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trained with the pre-determined orientation of work piece which is calculated with 
feature detection approach. 

In our tested example, the area of workplace is 38 34cm cm× , which the neural 
network training is done for the work piece placing spanning all orientations over. 
The image taken by the vision system is 640 480× pixels. Take the X pixel and Y 
pixel of the image as two inputs of CMAC separately, therefore, instead of the same 
quantification step for the two inputs of CMAC NN, the quantification step of the first 
input is set to be 4/3 bigger than the second. Also using the uniform CMAC 
quantization, in the first experiment, the number of layers is chosen to be 16 
randomly, and the quantification step is 41 =Δq for first input and 32 =Δq  for the 
second input, which means each receptive field of the first input contains 4 pixels 
while the second includes 3 pixels. In the second experiment, the structure parameters 
of CMAC are optimized with the approach based on Q-learning according to section 
4. In the case of accurate robot assembly, the precise estimation of work piece 
orientation with CMAC NN is thought to be more important. Thus %00.2=d

squareE  

and 800=d
CN are set to be the goal state. The training sets include 500 images with the 

work piece randomly placed within the workplace. After the training phase, we tested 
20 images within which the pose of the work piece is not included in the tanning 
samples before. The estimation orientation of work piece for the two experiments are 
compared and listed in Table 5. 
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Fig. 7. Feature detection for the work piece. (a) original image, (b) features detection with 
Harris filter, (c) detected object and (d) affine transformation 
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Table 5. CMAC structure comparison with or without structure optimization for work piece 
orientation estimation 

Structure Optimization 1qΔ  
2qΔ  lN  squareE  CN  

NO 4 3 16 2.81% 584 
YES 8 6 20 1.54% 491 

 
Because of the good generalization ability of CMAC neural network, the attractive 

attribute of the presented approach is being able to generalize the efficient estimates 
of the object orientation after the supervised learning process. And it makes possible 
to learn the poses of the object without explicit modeling and the human intervention. 
Also, with the same scheme the location of the object could be generated after CMAC 
NN learning of the coordinates of the object from a series images. Furthermore, if the 
specific features of object, such as corners, arch etc., could be sufficiently learned, the 
pose of any work piece composed of the specific features can be generated. 

6 Conclusions 

Besides the appealing advantages of CMAC neural network, such as simple and 
effective training properties and fast learning convergence, a crucial problem to 
design CMAC is related to the choice of the neural network’s structural parameters. 
In this paper, how both the number of layers and step quantization parameters 
influence the approximation qualities of CMAC neural networks is presented. The 
simulation results show that the minimal modeling error could be achieved by 
optimizing the structure parameters. Consequently, a CMAC structure optimization 
approach which is based on Q-learning is proposed. The stability of our proposed 
approach is theoretically guaranteed by the proof of the learning convergence of Q-
learning. This Q-learning based structure optimization method is applied on the walk 
pattern generating for biped robot and work piece orientation estimation for robot arm 
assembly respectively. Simulation results show that the choice of CMAC’s structure 
parameters after optimization allows decreasing the memory size and achieving the 
requirement of approximation quality at the same time. 
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