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Abstract. In this paper we present a connection between intuitionistic
fuzzy relations and hypergroups. In particular, we construct a hyper-
group associated with a binary relation naturally induced by an intu-
itionistic fuzzy relation. We present some of its properties, investigating
when it is a join space or a reduced hypergroup, in the framework of the
intuitionistic fuzzy preference relations.

Keywords: Hypergroup, Join space, Intuitionistic fuzzy set, Intuition-
istic fuzzy preference relation.

MSC2010: 20N20, 03E72, 90B50.

1 Introduction

In the real life, a lot of problems takes place in an environment in which the
goals, the costraints, and the consequences of possible actions are not precisely
known (Bellman and Zadeh [3]). The concept of intuitionistic fuzzy set (IFS)
introduced by Atanassov [1,2] is one of the mathematical tools higly used to
deal with imprecision, vagueness, uncertainty in diverse areas as Computer Sci-
ence, Social Science, Decision Making, Management Science, Neural Networks,
Medicine, Engineering, etc. The application of IFS theory in Decision Making,
for example, is very useful to overcome and model the ambiguity generated by
diverse factors: a decision maker may not posses a precise or sufficient level of
knowledge of the problem, or is unable to discriminate the degree to which one
alternative is better than others; it could also happen that the decision maker
provides the degree of preference for alternatives, without being sure about it
[21,32]. An updated review of the role of IFS theory in decision-making problems,
supplemented with a rich bibliography, is presented in [21].

Correspondences between objects are suitable described by relations, that can
be crisp or fuzzy. Remaining in the decision-making area, the most frequently
used and thus investigated type of relation is that of preference relation, for
the first time generalized from the fuzzy case to the intuitionistic fuzzy one by
Szimdt and Kacprzyk [32]. A preference relation P on a discrete finite set X of
alternatives is characterized by a function μP : X × X −→ D, where D is the
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domain of representation of preference degrees, and therefore can be expressed
by meaning of a square matrix. The preference relations can be mainly clas-
sified into the following categories: the multiplicative preference relations [20],
fuzzy preference relations [25], intuitionistic fuzzy preference relations [32,33],
and interval-valued intuitionistic fuzzy preference relations [34].

On the other hand, fuzzy set theory has interesting applications also in al-
gebra, in particular in algebraic hyperstructure theory, where the connections
between the classical structures and fuzzy sets (or their generalizations) deter-
mined new crisp hyperstructures, fuzzy subhyperstructures, or fuzzy hyperstruc-
tures. A well-known method to obtain new algebraic hyperstructures is to define
hyperproducts generated by relations. The most studied such constructions are
those of Rosenberg [28] and Corsini [8], investigated later by Corsini and Leore-
anu [10], Spartalis et al. [29,30,31], Cristea et al. [11,12,13,14], De Salvo and Lo
Faro [17,18], etc. This connection has been extended to n-ary hyperstructures by
Davvaz and Leoreanu-Fotea [15,27]. Another way to obtain hyperstructures is
given by Chvalina [6] and called ”Ends Lemma”, used in [22]. Feng [19] obtained
fuzzy hypergroups from fuzzy relations, while Jančić-Rašović in [23] constructed
hyperrings from fuzzy relations defined on a semigroup. In this article, we con-
tinue in the same direction, proposing a method for defining hyperoperations
from intuitionistic fuzzy relations.

The rest of the paper is organized as follows. After a short description of the
main properties of the intuitionistic fuzzy relations (IFRs), emphasizing those
of the intuitionistic fuzzy preference relations (IFPRs), covered in Preliminaries,
a brief introduction to the theory of hypergroups associated with binary rela-
tions follows in Section 3. We recall the Rosenberg’s method and the notion of
reduced hypergroup introduced by Jantosciak [24]. Section 4 is dedicated to the
construction of hypergroups associated with IFRs, giving examples of IFPRs
and discussing their properties connected with join spaces and reduced hyper-
groups. We end this article with some concluding remarks and possible new lines
of research.

2 Preliminaries Concerning Intuitionistic Fuzzy Relations

We recall some definitions concerning intuitionistic fuzzy relation theory and we
fix the notations used in this paper.

Diferent generalizations of fuzzy sets have been developed for a better mod-
elling of ambigous problems. The concept of intuitionistic fuzzy set (called also
Atanassov’s intuitionistic fuzzy set) can be viewed as an alternative approach to
define a fuzzy set whenever available information is not sufficient to describe an
imprecise, vague concept by means of ordinary fuzzy sets [21].

Definition 2.1. [1,2] An intuitionistic fuzzy set (shortly IFS) on a universe X is
an object having the form A = {(x, μA(x), νA(x)) | x ∈ X}, where μA(x) ∈ [0, 1],
called the degree of membership of x in A, νA(x) ∈ [0, 1], called the degree of non-
membership of x in A, verify, for any x ∈ X , the relation 0 ≤ μA(x)+νA(x) ≤ 1.
The class of IFSs on a universe X will be denoted by IFS(X).
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It is clear that an IFS can be considered as a fuzzy set whenever νA(x) =
1− μA(x), for any x ∈ X , but conversely not.

Definition 2.2. [1,2] An intuitionistic fuzzy relation R (shortly IFR) from a
universe X to a universe Y is an IFS in X × Y , i.e. a set by the form R =
{((x, y);μR(x, y), νR(x, y)) | (x, y) ∈ X × Y }, where μR(x, y) + νR(x, y) ≤ 1, for
any (x, y) ∈ X × Y .

Furthermore, the number πR(x, y) = 1−μR(x, y)− νR(x, y), for (x, y) ∈ X × Y ,
is called the index of the element (x, y) in IFR R and it is described as a degree
of hesitation whether x and y are in the relation R on not.

The class of IFRs from X to Y will be denoted by IFR(X×Y ) and the class
of IFRs on X will be denoted by IFR(X).

The domain of an IFR R ∈ IFR(X×Y ) is the IFS in X defined by dom(R) =
{(x,∨y∈Y μR(x, y),

∧
y∈Y νR(x, y)) | x ∈ X} and the range of R is the IFS in Y

defined by rng(R) = {(x,∨x∈X μR(x, y),
∧

x∈X νR(x, y)) | y ∈ Y }.
In the following, we mention some basic operations between IFRs. For more

details see [5,16].

Definition 2.3. i) Let R and S be in IFR(X × Y ). For every (x, y) ∈ X × Y ,
we define

1. R ⊆ S ⇐⇒ μR(x, y) ≤ μS(x, y) and νR(x, y) ≥ νS(x, y)
2. R 	 S ⇐⇒ μR(x, y) ≤ μS(x, y) and νR(x, y) ≤ νS(x, y)
3. R ∪ S = {((x, y), μR(x, y) ∨ μS(x, y), νR(x, y) ∧ νS(x, y))}
4. R ∩ S = {((x, y), μR(x, y) ∧ μS(x, y), νR(x, y) ∨ νS(x, y))}
5. Rc = {((x, y), νR(x, y), μR(x, y))}.
The family (IFR(X × Y ),∪,∩) is a complete, distributive lattice, with respect
to the partially ordering 	.

ii) Let R in IFR(X × Y ) and S in IFR(Y × Z). Then the composition
between R and S is an IFR on X × Z defined as

R ◦ S = {((x, z),
∨

y∈Y

(μR(x, y) ∧ μS(y, z)),
∧

y∈Y

(νR(x, y) ∨ νS(y, z)))}

whenever 0 ≤ ∨
y∈Y (μR(x, y) ∧ μS(y, z)) +

∧
y∈Y (νR(x, y) ∨ νS(y, z)) ≤ 1.

Now we consider the IFRs defined on a set X .

Definition 2.4. An IFR R on a set X is

1. reflexive if μR(x, x) = 1 (and consequently νR(x, x) = 0), for any x ∈ X ;
2. symmetric if μR(x, y) = μR(y, x) and νR(x, y) = νR(y, x), for any x, y ∈ X ;

in the opposite way we will say that it is asymmetric;
3. transitive if R2 = R ◦R ⊆ R;
4. antisymmetrical intuitionistic if, for any (x, y) ∈ X × X , x �= y, then

μR(x, y) �= μR(y, x), and νR(x, y) �= νR(y, x), but πR(x, y) = πR(y, x).
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5. perfect antisymmetrical intuitionistic if, for any (x, y) ∈ X ×X , x �= y and
μR(x, y) > 0 or (μR(x, y) = 0 and νR(x, y) < 1), then μR(y, x) = 0 and
νR(y, x) = 1;

6. an equivalence if it is reflexive, symmetric and transitive.

Throughout this paper we focus on the intuitionistic fuzzy preference relations
(shortly IFPRs), which are widely applied in decision-making theory, where we
deal with the finite set of alternatives X = {x1, x2, . . . , xn} and a decision maker
who needs to express his/her preferences over the alternatives, constructing thus
a preference relation P on the set X . It is characterized by a function μP : X ×
X −→ D, where D is the domain of representation of preference degrees. If we
pass to the fuzzy case, the definition changes; a fuzzy preference relation P on the
set X is represented by a membership function μP : X ×X −→ [0, 1] satisfying
several properties: taking μP (xi, xj) = μij , then μij + μji = 1, μii = 0.5, for all
i, j = 1, 2, . . . , n, where μij denotes the preference degree of the alternative xi

over xj . Generalizing now to the intuitionistic fuzzy case, the definition is given
as follows.

Definition 2.5. [32,33] An intuitionistic fuzzy preference relation R on the
finite set X of cardinality n is represented by a matrix R = (rij)n×n, with
rij = (μij , νij , πij), for i, j = 1, 2, . . . , n, where μij = μR(xi, xj) is the certainty
degree to which xi is preferred to xj , νij = νR(xi, xj) is the certainty degree to
which xi is non-preferred to xj , and πij = πR(xi, xj) = 1−μij−νij describes the
uncertainty degree (or the hesitation) to which xi is preferred to xj . Furthermore,
μij and νij satisfy the following relations: 0 ≤ μij + νij ≤ 1, μij = νji, μji = νij ,
μii = νii = 0.5, for all i, j = 1, 2, . . . , n. It is clear that πij = πji, for all
i, j = 1, 2, . . . , n.

3 A Brief Introduction to Hypergroups Associated with
Binary Relations

Several hyperproducts have been obtained by meaning of binary relations. We
recall here that introduced by Rosenberg [28], which is the first one of this type
and the most explored one. For a comprehensive overview of hypergroup theory,
the reader is refereed to the fundamental books [7,9].

3.1 Rosenberg’s Method

Let ρ be a binary relation defined on a nonempty set H . For any pair of elements
(a, b) ∈ ρ, we call a a predecessor of b and b a successor of a.

We addopt the following notations: La = {b ∈ H | (a, b) ∈ ρ} and Ra = {b ∈
H | (b, a) ∈ ρ} for the afterset and, respectively, foreset, of the element a.

For any two elements x, y ∈ H , we define the following hyperproduct

x ◦ρ y = {z ∈ H | (x, z) ∈ ρ or (y, z) ∈ ρ}.
We denote by Hρ the hypergroupoid (H, ◦ρ).
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An element x ∈ ρ is called outer element of ρ if there exists h ∈ H such that
(h, x) /∈ ρ2. The following theorem states necessary and sufficient conditions for
a binary relation ρ to generate a hypergroup Hρ in the sense of Rosenberg.

Theorem 3.1. [28] Hρ is a hypergroup if and only if

1. ρ has full domain and full range.
2. ρ ⊂ ρ2.
3. If (a, x) ∈ ρ2 then (a, x) ∈ ρ, whenever x is an outer element of ρ.

It follows immediately the following remark: If ρ is a preordering (reflexive and
transitive), then Hρ is a hypergroup.

Besides, Rosenberg gave a characterization of the hypergroup Hρ in order to
be a join space. Let us recall here this result.

Theorem 3.2. [28] Let ρ be a binary relation with full domain. Then Hρ is a
join space if and only if

1. ρ has full range.
2. ρ ⊂ ρ2.
3. If (a, x) ∈ ρ2 then (a, x) ∈ ρ, whenever x is an outer element of ρ.
4. Every pair of elements of H with a common predecessor has a common suc-

cessor.
5. For all b, c, d ∈ H, a ∈ Lb, {b, c} × La ⊆ ρ2 \ ρ, Lb ∩ La = ∅ implies that

Lc ∩ Ld �= ∅.
We conclude this subsection with the following consequence.

Corollary 3.3. [28] Let ρ be a binary relation on H with full domain and full
range and such that either

1. ρ = ρ2 or
2. ρ is reflexive and (a, b) ∈ ρ2 =⇒ (a, b) ∈ ρ, whenever b is an outer element

of ρ.

Then Hρ is a join space if and only if every pair of elements of H with a common
predecessor has a common successor.

3.2 Reduced Hypergroups

It may happen that a hyperproduct on a given set H does not discriminate
between a pair of elements of H , when the elements play interchangeable roles
with respect to the hyperoperation. Thus, a certain equivalence relation can be
defined in order to identify the elements with the same properties. In order to
explain better this situation, Jantosciak [24] defined on a hypergroup (H, ◦) three
equivalences, called fundamental relations: two elements x, y in H are called:

1. operationally equivalent, and write x ∼o y, if x ◦ a = y ◦ a, and a ◦ x = a ◦ y,
for any a ∈ H .
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2. inseparable, and write x ∼i y, if, for all a, b ∈ H , x ∈ a ◦ b ⇐⇒ y ∈ a ◦ b.
3. essentially indistinguishable if they are operationally equivalent and insepa-

rable.

A reduced hypergroup has the equivalence class of each element with respect to
the essentially indistinguishable relation a singleton. Therefore, the study of the
hypergroups may be divided in the study of the reduced hypergroups and in
that of the hypergroups with the same reduced form, as Jantosciak proved in
[24]. Necessary and sufficient conditions such that a hypergroup associated with
a binary relation is a reduced hypergroup have been presented in the papers
[11,12].

A characterization of the fundamental relations for the Rosenberg hypergroup
Hρ is given in the following result.

Proposition 3.4. [12] Let Hρ be the Rosenberg hypergroup associated with the
binary relation ρ defined on H. For any x, y ∈ H, the following implications
hold:

1. x ∼o y ⇐⇒ Lx = Ly.
2. x ∼i y ⇐⇒ Rx = Ry.
3. Hρ is reduced if and only if, for any x, y ∈ H, x �= y, either Lx �= Ly or

Rx �= Ry.

4 Hypergroups Associated with IFRs

4.1 Main Construction

In this section, we present a method to construct a new hypergroupoid starting
from an IFR. We will find connections with Rosenberg hypergroup, and thus
we will investigate when the obtained hypergroupoid is a hypergroup, or a join
space, or a reduced hypergroup. We will focuss more on the case of intuitionistic
fuzzy preference relations.

IFRs can induce different binary relations in a universe X . We deal here with
that introduced by Burillo and Bustince [4], in order to justify the definition
given for an intuitionistic antisymmetrical relation on X .

Let H be an arbitrary finite nonempty set, endowed with an IFR R =
(μR, νR). It induces on H the crisp binary relation ρ, defined by

xρy ⇐⇒ μR(y, x) ≤ μR(x, y) ∧ νR(y, x) ≥ νR(x, y).

It is known that, if R is an intuitionistic order on H , then ρ is an ordinary order-
ing on H [4]. The definition of intuitionistic antisymmetry is fundamental for the
proof of this implication. Moreover, if we replace the definition of intuitionistic
antisymmetry given by Burillo and Bustince [4] by the one given by Kaufmann
[26] for the fuzzy relations, we don’t obtain this implication any more in the case
of fuzzy relations.
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Now we associate with ρ the hyperproduct defined onH in the sense of Rosen-
berg [28]

x ◦ρ y = Lx ∪ Ly,

where Lx = {z ∈ H | (x, z) ∈ ρ} is the afterset of x, denoted also with ρ(x), or
with xρ. As in the previous sections, Hρ denotes the associated hypergroupoid
(H, ◦ρ), called Rosenberg hypergroupoid.

Our primary aim is to determine conditions on the IFR R such that the
induced crisp relation ρ satisfies the conditions from Rosenberg’s theorem (The-
orem 3.2). It is not difficult to notice that, for any IFR R, the induced crisp
relation ρ has full domain and full range, it is always reflexive, so ρ ⊂ ρ2, and
has no outer element. Indeed, x is an outer element of ρ if there exists h ∈ H such
that (h, x) /∈ ρ2; this means that there exists h ∈ H such that, for any z ∈ H ,
it holds (μR(z, h) > μR(h, z) and νR(z, h) < νR(h, z)) or (μR(x, z) > μR(z, x)
and νR(x, z) < νR(z, x)), which is impossible for z = h, in the first case, and
for z = x in the second one. Concluding, it is clear that ρ always satisfies the
conditions of Theorem 3.2, so Hρ is always a hypergroup.

Two natural questions arrise:

1. When Hρ is a join space?
2. When Hρ is a reduced hypergroup?

Proposition 4.1. For every IFR R = (μR, νR) defined on a nonempty finite
set H, the associated Rosenberg hypergroup Hρ is a join space.

Proof. This is an immediate consequence of Corollary 3.3, since the crisp relation
ρ associated with R is reflexive, has no outer element and every pair of elements
of H with a common predecessor has a common successor, because, for any
a, b ∈ H , we have (a, b) ∈ ρ or (b, a) ∈ ρ. Thus, if (x, a), (x, b) ∈ ρ, then there
exists y ∈ {a, b} such that (a, y), (b, y) ∈ ρ.

Proposition 4.2. If the IFR R on H is symmetric, then the associated crisp
relation ρ is the total relation on H, thus Hρis the total hypergroup, so it isn’t
reduced.

In the following we consider only asymmetric IFRs on H .

Proposition 4.3. If the IFR R is perfect antisymmetrical intuitionistic (and
asymmetric), then Hρ is a reduced hypergroup.

Proof. We will prove that, for any x �= y, we have that Lx �= Ly, and then, by
Proposition 3.4, it follows that Hρ is reduced. In order to prove this, it is enough
to note that, for x �= y, x ∈ Ly is equivalent with y /∈ Lx, and then it is clear
that Lx �= Ly.

Let x ∈ Ly and suppose that y ∈ Lx. Then we obtain that μR(x, y) ≤
μR(y, x) ≤ μR(x, y) and νR(x, y) ≤ νR(y, x) ≤ νR(x, y), that is R is symmetric,
which is a contradiction of the hypothesis. Thus, it follows that y /∈ Lx.

Conversely, let y /∈ Lx, that is μR(y, x) > μR(x, y) or νR(y, x) < νR(x, y).
Consider the first case. Since μR(y, x) > μR(x, y), it follows that μR(y, x)>0,
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and since R is perfect antisymmetrical intuitionistic, we get μR(x, y) = 0 and
νR(x, y) = 1 ≥ νR(y, x). Thereby, x ∈ Ly.

Similarly, suppose that νR(y, x) < νR(x, y). If μR(x, y) > μR(y, x), then
μR(x, y)>0 and, by the perfect antisymmetry property, it follows that μR(y, x) =
0 and νR(y, x) = 1, which is a contradiction with the inequality νR(y, x) <
νR(x, y). Therefore, μR(x, y) ≤ μR(y, x), which means that x ∈ Ly.

Now the equivalence y /∈ Lx ⇐⇒ x ∈ Ly is completely proved and we can
conclude that Lx �= Ly, for any x �= y. So Hρ is a reduced hypergroup.

Remark 4.4. It is worth to notice that there exist IFRs on a set H such that
they are symmetric and perfect antisymmetrical intuitionistic. The identity Δ
defined by

μΔ(x, y) =

{
1 if x = y,

0 if x �= y
νΔ(x, y) =

{
0 if x = y,

1 if x �= y

is a such relation. Moreover, all the relations of this type satisfy μR(x, y) = 0
and νR(x, y) = 0, for any x �= y.

Proposition 4.5. If the IFR R is antisymmetrical intuitionistic, then Hρ is the
total hypergroup or it is a reduced hypergroup.

Proof. Let R be an antisymmetrical intuitionistic relation such that, for any
x �= y, μR(y, x) < μR(x, y). Since πR(x, y) = πR(y, x), it follows that νR(y, x) >
νR(x, y) and then xρy, for any x �= y. Moreover, the associated crisp relation ρ
is always reflexive. Thus, we conclude that Lx = H , for any x ∈ H , which means
that Hρ is the total hypergroup.

Let us suppose now that R is an antisymmetrical intuitionistic relation such
that there exist x �= y with μR(x, y) < μR(y, x). Since πR(x, y) = πR(y, x), it
follows that νR(x, y) > νR(y, x). We obtain that x ∈ Ly, but y /∈ Lx, so Lx �= Ly

and thus Hρ is a reduced hypergroup, accordingly with Proposition 3.4.

4.2 The Case of IFPRs

This section is dedicated to the study of the hypergroup Hρ associated with the
IFPR R, insisting on the meaning of the related hyperoperation.

Let R be an IFPR on the set H = {x1, x2, . . . , xn}, represented by the matrix
R = (rij)n×n, with rij = (μij , νij , πij), for i, j = 1, 2, . . . , n. Then the induced
crisp binary relation ρ (in the sense of [4]) is defined by the rule

xiρxj ⇐⇒ μR(xj , xi) ≤ μR(xi, xj) ⇐⇒ μji ≤ μij .

Since μji = νij , we can also write that

xiρxj ⇐⇒ νij ≤ μij ,

that is the degree of non-preference of the alternative xi to the alternatives xj

is less than or equal to the degree of preference of the alternative xi to xj , and
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thus we can simply say that the alternative xj is preferred less or equal with
respect to xi.

Let us see now which is the afterset Lxi of the alternative xi. By definition,
Lxi = {z ∈ H | (xi, z) ∈ ρ}, i.e. it is the set of all alternatives z ∈ H that the
decision maker prefers less than or equal to the alternative xi. And therefore
the hyperproduct xi ◦ρ xj between two alternatives xi and xj is the set of all
alternatives z that the decision maker prefers less than or equal to xi or xj .

Now we introduce three properties of the alternatives concerning the funda-
mental relations defined on a hypergroup.

Definition 4.6. We say that two alternatives xi and xj are

1. operationally equivalent if the elements xi, xj are operationally equivalent
in the hypergroup Hρ, that is, for any alternative a ∈ H , the set of all
alternatives that the decision maker prefers less than or equal to xi or a
coincide with the set of all alternatives that the decision maker prefers less
than or equal to xj or a.

2. inseparable if the elements xi, xj are inseparable in the hypergroup Hρ, that
is, for any two alternatives a, b ∈ H , the decision maker prefers xi less than
or equal to a or b if and only if he/she prefers xj less than or equal to
alternatives a or b.

3. essentially indistinguishable if they are operationally equivalent and
inseparable.

Proposition 4.7. In a decision-making process, if two alternatives xi and xj are
operationally equivalent or inseparable, then they are indifferent (one to respect
to another) for the decision maker, that is μij = νij (the degree of preference
coincides with the degree of non-preference).

Proof. Let us suppose that the alternatives xi and xj are operationally equiv-
alent. A similar discussion can be done in the case they are inseparable. Since
xi ∼o xj in the associated hypergroup Hρ, by Proposition 3.4, it follows that
Lxi = Lxj . Thererfore xiρxj and xjρxi, which is equivalent with μji ≤ μij and
μij ≤ μji, that is μij = μji = νij .

The converse implication is not true, as we can notice from the following example.

Example 4.8. Consider H = {x1, x2, x3, x4} the set of four alternatives. Con-
struct on H the IFPRs represented by the following matrices:

R(1) =

⎛

⎜
⎜
⎝

(0.5, 0.5, 0) (0.3, 0.4, 0.3) (0.4, 0.5, 0.1) (0.6, 0.3, 0.1)
(0.4, 0.3, 0.3) (0.5, 0.5, 0) (0.4, 0.4, 0.2) (0.5, 0.3, 0.2)
(0.5, 0.4, 0.1) (0.4, 0.4, 0.2) (0.5, 0.5, 0) (0.7, 0.2, 0.1)
(0.3, 0.6, 0.1) (0.3, 0.5, 0.2) (0.2, 0.7, 0.1) (0.5, 0.5, 0)

⎞

⎟
⎟
⎠

and

R(2) =

⎛

⎜
⎜
⎝

(0.5, 0.5, 0) (0.3, 0.4, 0.3) (0.4, 0.5, 0.1) (0.6, 0.3, 0.1)
(0.4, 0.3, 0.3) (0.5, 0.5, 0) (0.4, 0.4, 0.2) (0.3, 0.4, 0.3)
(0.5, 0.4, 0.1) (0.4, 0.4, 0.2) (0.5, 0.5, 0) (0.7, 0.2, 0.1)
(0.3, 0.6, 0.1) (0.4, 0.3, 0.3) (0.2, 0.7, 0.1) (0.5, 0.5, 0)

⎞

⎟
⎟
⎠ .
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We notice that for both relations we have μ23 = ν23, so the alternatives x2 and
x3 are indifferent (one with respect to another) for the decision maker.

On the other hand, the induced crisp binary relations are

ρ(1) = Δ ∪ {(x1, x4), (x2, x1), (x2, x3), (x2, x4), (x3, x1), (x3, x2), (x3, x4)},
ρ(2) = Δ ∪ {(x1, x4), (x2, x1), (x2, x3), (x3, x1), (x3, x2), (x3, x4), (x4, x2)},

where Δ = {(x1, x1), (x2, x2), (x3, x3), (x4, x4)} is the diagonal relation.
For the first IFPR we obtain that the aftersets and foresets of the elements xi,

i = {1, 2, 3, 4}, are: L(1)
x1 = {x1, x4}, R(1)

x1 = {x1, x2, x3}; L(1)
x2 = {x1, x2, x3, x4},

R
(1)
x2 = {x2, x3}; L(1)

x3 = {x1, x2, x3, x4}, R(1)
x3 = {x2, x3}; L(1)

x4 = {x4}, R(1)
x4 =

{x1, x2, x3, x4}.
Because L

(1)
x2 = L

(1)
x3 and R

(1)
x2 = R

(1)
x3 , it follows, accordingly by Proposition 3.4,

that x2 ∼e x3, so the associated hypergroup Hρ is not reduced.
Regarding the second IFPR, the aftersets and foresets of the elements xi,

i = {1, 2, 3, 4}, are: L
(2)
x1 = {x1, x4}, R(2)

x1 = {x1, x2, x3}; L(2)
x2 = {x1, x2, x3},

R
(2)
x2 = {x2, x3, x4}; L(2)

x3 = {x1, x2, x3, x4}, R(2)
x3 = {x2, x3}; L(2)

x4 = {x2, x4},
R

(2)
x4 = {x1, x3, x4}.

In this case, x2 �e x3, and moreover xi �e xj , for any i �= j, i, j ∈ {1, 2, 3, 4}.
Thus the associated hypergroup Hρ is reduced.

As an immediate consequence of Proposition 4.7, we obtain the following alge-
braic property.

Corollary 4.9. If a decision maker doesn’t have any sort of indifference between
any two distinct alternatives, then the associated hypergroup Hρ is reduced.

5 Conclusions and Future Work

In this paper we have started the study of the hypergroups associated with IFRs,
considering the particular case of IFPRs. Any IFR induces several crisp binary
relations. Here we have considered that one introduced by Burillo and Bustince
[4]. Then, a hypergroupoid, in the sense of Rosenberg [28], is associated with the
binary relation, and it is proved that it is always a join space. We have extended
the fundamental equivalences of Jantosciak [24] to a decision-making process,
investigating when the associated Rosenberg hypergroup is reduced.

In a future work, we will analyze this association in the general case of IFRs,
considering other types of induced crisp binary relations, or associated hyper-
groupoids, making a comparison between these cases.
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