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Abstract. The concept and the mathematical properties of entropy play an im-
portant role in statistics, cybernetics, and information sciences. Indeed, many al-
gorithms and statistical data processing tools, with a wide range of targets and
scopes, have been designed based on entropy. The paper describes two estima-
tors inspired by the concept of entropy that allow to robustly cope with multi-
collinearity, in one case, and outliers, in the other. The Generalized Maximum
Entropy (GME) estimator optimizes the Shannon’s entropy function subject to
consistency and normality constraints. In regression applications GME allows,
for example, to estimate model coefficients in the presence of multicollinearity.
The Least Entropy-Like (LEL) estimator is a novel prediction error model co-
efficient identification algorithm that minimizes a nonlinear cost function of the
fitting residuals. As the cost function that is minimized shares the same mathe-
matical properties of entropy, it allows to compute an estimate of the model co-
efficients corresponding to a positively skewed distribution of the residuals. The
resulting estimator exhibits higher robustness to outliers with respect to standard,
as ordinary least squares (OLS) model coefficient approaches. Both the GME
and LEL estimation methods are applied to a common case study to illustrate
their respective properties.

1 Introduction

When talking to Claude Shannon about what name to use for the measure of uncertainty
(or information) that he had introduced [18], John von Neumann is quoted for having
suggested [22]: You should call it entropy, for two reasons. In the first place your uncer-
tainty function has been used in statistical mechanics under that name, so it already has
a name. In the second place, and more important, nobody knows what entropy really is,
so in a debate you will always have the advantage.

Indeed, entropy is a rather general concept: since it was first acknowledged that it
could be used well beyond thermodynamics and statistical mechanics [12], the number
of different areas where it has been successfully exploited has grown dramatically.

This paper describes two specific data processing algorithms inspired by the math-
ematical definition of Shannon’s (and Gibb’s) entropy. Interestingly, neither of the two
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algorithms are strictly related to probability or classical statistical signal processing the-
ory, but rather they are built exploiting the mathematical properties of entropy. The first
of the two algorithms (LEL - Least Entropy-Like estimator) is a model coefficient es-
timation filter designed to yield robustness to outliers with respect to Ordinary Least
Squares (OLS) or similar approaches. The need for robust parameter identification so-
lutions is very strong in the area of control systems and signal processing [2][3][8][16].
The second algorithm is known as GME — Generalized Maximum Entropy [9] and is
particularly useful when dealing with multicollinearity. This may occur, by example, in
parameter estimation problems with fewer data than parameters or in the presence of
rank deficient regression matrices when dealing with linear in the parameters models.

The rationale of the paper is to illustrate two examples of estimation methods de-
signed by exploiting the properties of entropy. In particular, the estimators illustrated
in this paper exhibit a noticeable robustness to multicollinearity and outliers. Giving a
general overview of entropy-related methods for signal processing or even only param-
eter estimation goes well beyond the scope of this paper. The discussion will be limited
to the LEL and GME approaches. Standard estimators, as OLS, become numerically ill
conditioned as the condition number of the regression matrix grows. The OLS solution,
in particular, is not defined in the presence of a regression matrix with infinite condition
number. On the contrary, the GME approach is not ill conditioned for rank deficient
regression matrices and it can robustly tackle the case of multicollinearity (large, but fi-
nite, regression matrix condition number). As for the LEL method, this was introduced
in [11] and it consists in a model coefficient estimator based on the minimization of an
entropy-like cost function. The cost function to be minimized in the LEL method is a
nonlinear prediction error function exploiting the mathematical properties of entropy.
In particular, this method exhibits an enhanced robustness to outliers as compared with
OLS due to the very structure of the cost function to be minimized. Moreover, the
proposed solution is computationally much less demanding with respect to alternative
outlier robust approaches as the Least Median of Squares [17]. Indeed, thanks to these
properties it has also been successfully employed in computer vision applications with
stringent computational time requirements [7].

The paper is organized as follows: Sections 2 and 3 focus on briefly summarizing the
LEL and GME algorithms, respectively. In Sect.4, we report validation results of the
two methods as applied to a classical data set while concluding remarks are reported in
Sect. 5.

2 Entropy-Like Estimator

Consider the model

yi = f (xi1,xi2, . . . ,xim,θθθ r) + εi : i = 1,2, . . . ,n. (1)

where θθθ r ∈ R
m×1 is the unknown parameter vector, yi ∈ R is the response variable,

xi1,xi2, . . . ,xim are the explanatory variables and εi the error term. Index i runs on the
number of observations n that is assumed to be strictly larger than m (notice that this
might not be the case for the GME method described in the next sections). The error
term εi is assumed to be a random variable with zero mean. Denoting with
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Zn = {(yi,xi1,xi2, . . . ,xim) : i = 1,2, . . . ,n} the set of the available observations, a re-
gression estimator T is an algorithm associating to Zn an estimate θ̂θθ of θθθ r, namely
T (Zn) = θ̂θθ . Prediction error estimators T are designed based on the properties of the
regression residuals

ri := yi − ŷi (2)

being ŷi the predicted responses ŷi = f (xi1,xi2, . . . ,xim, θ̂θθ ). The most popular prediction
error estimators are the Least Squares (LS) and weighted LS (WLS) estimators defined
respectively as

θ̂θθ LS = argmin
θθθ

n

∑
i=1

r2
i (3)

θ̂θθW LS = argmin
θθθ

(
rT ΓΓΓ r

)
(4)

being r ∈R
n×1 the residual vector r = (r1,r2, . . . ,rn)

T and ΓΓΓ ∈R
n×n a symmetric posi-

tive definite (or eventually semidefinite) matrix of weights. Many other estimators have
been proposed in the literature as, by example, M-estimators [10] or Least Median of
Squares (LMS) estimators [17] that are defined through the minimization of a properly
defined cost function. M-estimators, as LS or WLS estimators, share a common struc-
ture related to the additive nature of the corresponding cost function to be minimized:
in particular such estimators can be all modeled as

θ̂θθ = argmin
θθθ

n

∑
i=1

ρ(ri) (5)

for some scalar function ρ : R−→ [0,+∞) of the residuals that depend from θθθ . For the
LS estimator ρ is ρ(ri) = r2

i while for M-estimators there are many possible different
choices [10]. The design of the ρ function for M estimators is usually performed aiming
at achieving robustness to outliers resulting in cost functions that, in general, do not
admit a closed form solution to the minimization problem as for the LS case.

The LMS estimator [17], instead, is defined through a cost function that differs in
nature from the structure reported in Eq. (5); namely the LMS estimator results in

θ̂θθ LMS = argmin
θθθ

medi
{

r2
i

}
(6)

where medi
{

r2
i

}
is the median of the squared residuals. This estimator has been shown

to exhibit very strong robustness to outliers [17] having, by example, the maximum
possible breakdown point (50%). Nevertheless, the LMS estimator cannot be computed
in closed form [19] [20] and is thus of limited applicability especially in real-time sce-
narios. For a qualitative understanding of the robustness of the LMS estimator notice
that in case of linear regression problems of the form

yi = θ1 xi +θ2, (7)

the LMS line corresponds to the center of the stripe in the x,y plane containing half
plus one of the data points. Intuitively, it appears that minimizing a cost function as
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the one in Eq. (6) achieves higher robustness to outliers then cost functions as in (5),
because the median of the squared residuals gives a “global” measure of the scatter of
the residuals. M or LS cost functions, to the contrary, are not directly related to the
distribution of the resulting residuals. Indeed, the by now classical example of F. J.
Anscombe [1] explicitly shows how the same LS parameter estimates and residuals can
be obtained for very different data sets. Other outlier robust model coefficient estimation
techniques as Random Sample and Consensus (RANSAC, [8]) can be casted among the
so-called “voting” techniques where a sufficiently large consensus set of data points in
agreement with a specific value of the model coefficients is sought for. These methods
may be indeed effective, but tend to be computationally demanding.

The proposed Least Entropy-Like (LEL) estimator is designed with the twofold ob-
jective of obtaining an estimator that directly relates to the distribution of residuals (in
order to achieve high robustness to outliers) while also being quickly computable from a
numerical view point. The LEL estimator was first presented in [11]: given the residual
ri in Eq. (2), define:

D =
n

∑
j=1

r2
j , (8)

namely the LS estimation cost. Then define the relative squared residuals qi as

if D �= 0 =⇒ qi :=
r2

i

∑n
j=1 r2

j

: qi ∈ [0,1] and
n

∑
i=1

qi = 1, (9)

and finally

H =

{
0 if D = 0
− 1

logn ∑n
i=1 qi logqi otherwise. (10)

The function H in equation (10) enjoys all the mathematical properties of a normalized
entropy [6] associated to the sequence of “probability” - like qi : i = 1,2, . . . ,n. In
particular:

H ∈ [0,1] (11)

H = 0 if and only if

⎧
⎨

⎩

ri = 0 ∀ i ∈ [1,n]
or
∃ ! i∗ : ri∗ �= 0 and ri = 0 ∀ i �= i∗

(12)

H = 1 if and only if r2
i = r2

j �= 0 ∀ i, j ∈ [1,n]. (13)

Indeed, the above is formally equivalent to the Entropy of Information as introduced
by Shannon in the 1948 [18] in analogy with the concept that was already known in
thermodynamic and mechanical statistics, where Clausius and Boltzamann gave the
first functional expression of the entropy, as a measure of the degree of disorder in a
thermodynamic system.

Shannon, in particular, defined the entropy of information as a propriety associated
to any probability distribution, while, the so-called experimental entropy used in ther-
modynamic is a property of real physic measurements.
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Letting X be a random variable with possible outcome xi (i=1,...,n), its mass proba-
bility pi such that ∑n

i=1 pi = 1 identifies a global uncertainty measure [18] through the
function:

H(P) =−
n

∑
i=1

pi ln pi (14)

exhibiting the following properties:

– H(P) is concave.
– It is equal to zero (perfect certainty) when one of the probabilities is exactly 1.
– It reaches a maximum for uniform probabilities (complete ignorance): p1 = p2 =
...= pn = 1/n.

– The entropy H(P) is a function of the probability distribution and not a function of
the actual values taken by the random variable.

With respect to the above properties of entropy, the only possible difference of the
entropy-like cost function defined in Eq. (10) is related to the possible singularity D= 0.
Notice that this would correspond to a perfect LS fit that is quite unlikely. Indeed, there
is no practical limitation as prior to computing H in (10) one can always check if the
LS fit is perfect. In such case, there is of course no need to compute any other estimate
of the parameters. Also notice that for null values of qi the terms 0log0 = log00 in
equation (10) are zero.

In words, it can be stated that when the relative squared residuals qi are properly
defined (i.e. D �= 0), the H function is a measure of their spread. When they are not
properly defined, it is simply because the residuals are all identically null which corre-
sponds to a null value of H exactly as in the case when all the residuals are zero except
one. In Physics, the (Gibbs) entropy of a system admitting n discrete states with prob-
abilities p1, p2, . . . , pn is computed as −∑n

i=1 pi log pi. It is a very well-known fact that
such function is a very sensitive measure of the distribution of the probabilities. Con-
figurations with only a fraction of highly probable states have a much lower entropy of
configurations where most states are approximately equally probable. Motivated by this
fact, the function H is defined with the aim of computing a robust estimate of the model
parameter vector θ . In particular, given that the entropy-like function H as defined by
Eq. (8) depends on θθθ through the residuals ri (equation (2)), the following estimator is
proposed:

θ̂θθLEL := argmin
θθθ

H (15)

where LEL stands for Least Entropy-Like. Such name was chosen with the twofold ob-
jective (i) of underlining that the H function is not properly an entropy and (ii) of avoid-
ing confusion with the Minimum Entropy estimation approach described, by example,
in [21][23]. The idea behind the θ̂θθ LEL estimator defined in (15) is that such estimate
will correspond either to making all the residuals null, or to making the relative squared
residuals as little equally distributed as possible according to the entropy-like function
H, the available data and the model structure. Notice that due to the normalization of
the relative squared residuals qi in (9), forcing them to be “as little equally distributed
as possible” means that “most” residual ri will need to be “small” (with respect to the
normalization constant, namely the Least Squares cost D) and “a few” of the residuals
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ri will need to be “large”. Data points corresponding to these “large” residuals are can-
didate outliers. Stated differently, the key to robustness with respect to outliers is related
to the fact that the devised penalty function does not directly measure the (weighted)
mean square error (that as known tends to level out or “low pass” residuals), but rather
the distribution of the relative squared errors. In particular, the devised LEL method
tends to enforce a positive skewness to the distribution of the squared relative errors
according to a metric give by the entropy-like function H in Eq. (10).

Notice that, in general, there is no guarantee for the H function to have a unique
minima with respect to θθθ . Indeed, the entropy-like penalty function H is highly nonlin-
ear and may have many local minima. The minimization of H needs to be carried out
numerically paying attention to the initialization of θθθ : indeed the proposed estimator
should be regarded as a local in nature. The gradient and Hessian matrix of the LEL
cost functions can be analytically computed in closed form to aid numerical minimiza-
tion routines. In case of models that are linear in the parameters as:

y = Xθθθ + εεε (16)

being y ∈ R
n×1 the n−dimensional measurement vector, X ∈ R

n×m the regression ma-
trix, θθθ ∈R

m×1 the parameter vector and εεε ∈R
n×1 the measurement noise vector, it can

be shown that the gradient of the H cost is always well defined and the elements of the
Hessian matrix result eventually ill posed (i.e. infinite) if and only if a residual ri∗ = 0
for some i∗. This is a highly unlikely situation in practice and even if it should occur an
approximation of the Hessian can be computed through a regularization technique based
on replacing ri∗ = 0 with ri∗ = δ for a sufficiently small δ . The gradient and Hessian
values of H for the linear in the parameter model (16) have been explicitly computed,
but are not here reported for the sake of brevity. Their closed form expressions are used
to numerically compute the (local) minimum of H in the case studies described in the
paper. For a deeper discussion about the properties of the LEL estimator refer to [11].

For a qualitative and intuitive understanding of the proposed method, the LEL esti-
mates of the of Anscombe data sets are reported in Fig. (1). Anscombe’s data sets (or
Anscombe’s quartet) are four artificial data sets proposed in 1973 by Francis Anscombe
[1] to illustrate the importance of graphs and plots in the interpretation of statistical anal-
ysis. Each data set is made of 11 (x,y) points in a plane: the plot of the four data sets
immediately and intuitively reveals the different structure of the four sets. Yet, if a line
y = θ1 x+θ0 is fitted to the data through OLS, the same model coefficients θ̂LS1 = 0.5
and θ̂LS0 = 3 are found for all four data sets. Moreover, the y residual sum of squares of
the four data sets is the same revealing the difficulty in analyzing the fitting results in
the presence of outliers or of a mismatching model. The LEL estimate θ̂LEL1 and θ̂LEL0

of the line y = θ1 x+ θ0 coefficients of Anscombe’s data sets are expected to generate
residuals that are smaller than the OLS residuals for the majority of the points. As illus-
trated in Fig. (1) and Fig. (2) this is indeed the case for the first three data sets. In the
third case where 10 out of the 11 data points fit the model, the LEL method perfectly
succeeds in fitting the 10 inliers, whereas the OLS estimated is biased. The fourth is
a singular case, as the “real” θ1 for these points should be infinite and both OLS and
LEL, of course, fail. The results plotted in in Fig. (1) and Fig. (2) were obtained by
numerically minimizing the LEL cost function starting from the OLS solution.
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Fig. 1. OLS (red dotted lines) and LEL estimates (blue solid line) for Anscombe’s Quarted [1]
data sets (blue ∗ points, starting from the top left plot in clockwise direction: sets I, II, III and
IV). Notice that in the lower left case the LEL estimator yields the perfect solution, namely the
line of the 10 inliers. Also notice that in the bottom right case the regression model is singular
hence both the LEL and OLS methods fail.

3 Generalized Maximum Entropy

Building on the concept of information entropy introduced by Claude Shannon [18], the
Maximum Entropy Principle (MEP) was firstly proposed by Edwin T. Jaynes [12] [13]
defining an objective method for estimating probability distributions in case of limited
data. A generalization of the MEP is given to the contribution of Amos Golan et al.
[9], that proposed an alternative method for parameters estimation called Generalized
Maximum Entropy (GME), as an extension of the MEP.

3.1 Shannon’s Entropy Measure and the Maximum Entropy Principle

Edwin Jaynes, building on the Shannon’s Entropy function in Eq. (14), proposed the
Maximum Entropy Principle (MEP) [12], [13] to estimate the probability distributions
in presence of constraints generated from the data, and given in the form of expectations.
Under MEP, the probability distribution is chosen among those distributions consistent
with known information (the constraints), that maximizes the entropy. The MEP can be
used to solve pure inverse problems defined as follows:

y = Xp (17)

where y ∈ R
n×1, X ∈ R

n×m, and p ∈ R
m×1 even for n < m. To recover the unknown

probability p vector, the MEP suggests to maximize the H(P) function (14) subjected
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Fig. 2. Sorted absolute value of the residuals for the LEL estimate (bar plot in blue) and the OLS
estimate (solid red line) for Anscombe’s quartet in figure (1). Cases II and III, in particular, reveal
the enhanced outlier robustness of the LEL approach as compared to OLS.

to data consistency and normalization constraints. The data consistency constraint is
defined by the Eq. (17). The normalization constraints imply that: pT 1 = 1 being 1 an
m-dimensional column vector having all components equal to one.

Using Lagranges method we can carry out the analytical solution to the entropy
maximization problem as follows:

L =−pT lnp+λλλ T (y−Xp)+ μ (1−pT 1) (18)

and the corresponding first-order conditions are:

∂L/∂p =− lnp− 1−XT λλλ − μ = 0

∂L/∂λλλ = y−Xp = 0

∂L/∂ μ = 1−pT 1 = 0

The solution of the above conditions will lead to the following estimated value of p:

p̂ = exp(−XT λ̂λλ )/∑
j

exp(−XT λ̂λλ ) (19)

where Ω(λ̂λλ) = ∑ j exp(−XT λ̂λλ ) is the normalization factor, known also as the partition
function, that transforms the relative probabilities into absolute probabilities. The so-
lution (19) can be applied to solve ill-posed problems, as the classical example of the
Jaynes’s dice experiment: in this case the unknowns are represented by the six unknown
probabilities of the dice faces, the term X in Eq. (17) is determined by the dice model
(i.e. X = (1,2,3,4,5,6)) and the a priori knowledge is represented by the average of
the outcome, namely 3.5 in case of fair dice. This is an ill-posed problem with one ob-
servation and six unknowns, which can be solved by maximizing the constrained H(P)
function (14).

In case the observed moments are noisy, for instance coming from a sampling exper-
iment, the consistency constraint became stochastic and model (17) can be modified by
adding an error term:

y = Xp+ εεε (20)
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The idea behind Eq. (20) is that the term εεε (in general not equal to zero as in equation
(17)) allows to model stochastic moments in y. Consequently, the samples moments
are allowed (but not forced) to be different from the underlying population moments,
a flexibility that seems natural for finite data sets. Further details are illustrated in the
following section adressing the regression model.

3.2 GME Regression Model

The GME estimator is consistent and asymptotically normal under some regularity con-
ditions. The idea underlying the GME estimator consists in viewing the parameters and
the error vectors as convex linear combinations of some known discrete support values
and unknown proportions to be interpreted as probabilities. Considering a regression
model with n observations and m variables:

y = Xθθθ + εεε (21)

in order to use the MEP method to estimate the regression parameters, the coefficients
and the error terms are re-parameterized as a convex combination of expected values of
discrete random variables.

Given a parameter θθθ j, it is always possible to write it [15] as a convex combination
of a support variable as: θθθ j = zT

j p j, where zT
j = [z j1, ...,0, ...,z jM ] defines the lower and

upper bounds of the jth parameter, with M usually [9] in the interval 2 ≤ M ≤ 7. The
vector pT

j = [p j1, ..., p jM] contains positive probabilities that sum to one.
Similarly, each error term is treated as a discrete random variable: εεε i = vT

i wi, where
vT

i = [vi1, ...,0, ...,viN ] defines the error bound, with M usually [9] in the interval 2 ≤
N ≤ 7. The vector wT

i = [wi1, ...,wiN ] contains positive probabilities that sum to one.
The GME method, therefore, estimates the regression coefficients and the error terms,

by recovering the probability distribution of a discrete random variables set. The model
(21) can be rewritten as follows:

y = X
(

Im×m

⊗
zT
)

p+
(

In×n

⊗
vT

)
w (22)

where Im×m and In×n are the identity matrices for the parameters and the error terms
and the symbol

⊗
is the Kronecker product.

The supervectors p and w contain respectively m and n probabilities vectors, related
at each support variable z j and vi. The aim is to estimate the probabilities vectors p j{ j =
1, . . . ,m} and wi{i = 1, . . . ,n}, associated respectively to the θθθ and εεε parameters. The
estimation is made by the maximization of the Shannon’s entropy function:

H(p,w) =−pT ln(p)−wT ln(w) (23)

subjected to the consistency constraints, that represent a part of the regression model
(22), and normalization constraints, that means, the element of the probabilities vectors
p and w, have to satisfy respectively the conditions of containing positive probabilities
that sum to one.

The optimization problem is obtained via definition of the Lagrangian function,
which can be easily solved in the same fashion we reported for the MEP case. The
GME has advantages to address some circumstances, as for instance ill-behaved data or
no distributional error assumptions ([4], [5], [9]).
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Fig. 3. Sorted Absolute Residuals of the Longley dataset (left) and of the Modified (outlier case)
Longley dataset (right). Refer to the text for details.

4 Validation Study: The Longley Data Set Case

In order to compare the proposed entropy, based methods, we have considered the Lon-
gley Data Set [14] available through the Internet on the NIST - National Institute of
Standards and Technology’s website. According to NIST the Linear Least Squares Re-
gression problem on this data set has a “Higher Level of Difficulty”. Moreover it is
reported that this classic dataset of labor statistics was one of the first used to test
the accuracy of least squares computations. The response variable (y) is the Total De-
rived Employment and the predictor variables are GNP Implicit Price Deflator with
Year 1954 = 100 (x1), Gross National Product (x2), Unemployment (x3), Size of Armed
Forces (x4), Non-Institutional Population Age 14 & Over (x5), and Year (x6).

The difficulty in processing with OLS this data set is basically related to the large
condition number (κ = 4.8593E+ 09) of the associated regression matrix. This is a
typical situation (close to perfect multicollinearity) where the GME approach is partic-
ularly useful. The sorted absolute values of the residuals obtained by the GME, LEL,
and OLS estimation approaches are depicted in the left plot of Fig. 3. Notice that the
GME and OLS solutions are in perfect agreement (in spite of the fact that the OLS
estimate is computed by inverting a matrix that is very close to being singular). To the
contrary, the LEL estimate yields a different solution. In particular, the LEL Score (i.e.
the percentage of LEL residuals in absolute value being smaller than the OLS residuals
in absolute value) is of 56.25%. In order to illustrate the effectiveness of the LEL ap-
proach to compute robust estimates in the presence of outliers, the Longley data set has
been modified by replacing the last y (explanatory variable) value with another y value,
in particular imposing y(16) = y(12). All the other data values are left identical. This
new data set will be referred to as the “Modified Longley Dataset”. The sorted absolute
values of the residuals obtained by the GME, LEL and OLS estimation approaches on
the Modified Longley Data set are depicted in the right plot of Fig. 3: remarkably, the
LEL Score in this case results in 93.75% confirming the robustness of the LEL solu-
tion to outliers. Moreover, notice that the largest residual (in absolute value) in this case
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Fig. 4. Multicollinear Effect. Sorted Absolute Residuals of the GME and OLS approaches on a
multicollinear modified data set and on the original data set respectively.

corresponds precisely to y(16). Also notice that, once again, the GME and OLS solu-
tions for the Modified Longley Data set are in perfect agreement.

At last, in order to confirm the ability of the GME approach to cope with multi-
collinearity, the regression matrix of the (original) Longley data set is modified by re-
peating one of its columns. This yields a singular regression matrix on which both the
OLS and LEL algorithms cannot be applied. To the contrary, the GME solution can
be computed without numerical issues and the obtained residuals are perfectly equiv-
alent to the OLS residuals obtained with the original (non modified) data set. This is
confirmed in the plot of Fig. 4.

5 Conclusion and Discussion

The objective of this paper was to describe two instances of entropy-based estimators
illustrating their properties and their performances as compared with more standard
methods as the OLS. The described methods consist in the Least Entropy-like LEL
and the Generalized Maximum Entropy estimators. The first is particularly useful for
model coefficient estimation in the presence of outliers, whereas the second is robust
to multicollinearity. Moreover, the LEL solution, although local in nature and hence
potentially sensitive to its initialization, is computationally much less demanding than
alternative outlier robust approaches as LMS [17] or RANSAC [8]. In order to illustrate
the specific characteristics of the two approaches, both methods have been applied to the
Longley Data Set [14]. The results confirm the expected outlier robustness properties of
LEL and the multicollinearity robustness of GME. The integration of the potentialities
of both estimators is one future objective of our research plan.
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