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Abstract. The pairwise comparison matrices play a basic role in multi-
criteria decision making methods such as the Analytic Hierarchy Process
(AHP).

We provide a survey of results related to pairwise comparison matrices
over a real divisible and continuous abelian linearly ordered group G =
(G,�,≤), focusing on a �-consistency measure and a weighting vector
for the alternatives.
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1 Introduction

Let X = {x1, x2, ..., xn} be a set of alternatives or criteria. A Pairwise Compar-
ison Matrix (PCM)

A =

⎛
⎜⎜⎝
a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann

⎞
⎟⎟⎠ , (1)

with aij encoding the preference intensity of xi over xj , is a useful tool for
determining a weighted ranking for the alternatives.

In the literature, several kinds of PCMs are proposed, as the entry aij may
assume different meanings: in multiplicative PCMs it represents a preference
ratio; in additive PCMs it is a preference difference; in fuzzy PCMs it is a
preference degree in [0,1].

In an ideal situation, the PCM satisfies the consistency property, which, in
the multiplicative case, is expressed as follows:

aik = aij · ajk ∀ i, j, k = 1, . . . , n. (2)

Under condition of consistency, the preference value aij can be expressed by
means of the components of a suitable vector, called consistent vector for A =
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(aij); for a multiplicative PCM, it is a positive vector w = (w1, w2, ..., wn) veri-
fying the condition

wi

wj
= aij ∀ i, j = 1, . . . , n.

Thus, if A = (aij) is a consistent PCM, then it is reasonable to choose a weighting
vector in the set of consistent vectors, while, if A = (aij) is an inconsistent PCM,
to look for a vector that is close to be a consistent vector. As an example, for
the multiplicative case, we look for a vector such that:

wi

wj
≈ aij ∀ i, j = 1, . . . , n.

The multiplicative PCMs play a basic role in the well-known Analytic Hierarchy
Process (AHP), the procedure developed by T.L. Saaty at the end of the 1970s
[14], [15], [16]. In [2], [3], [4], [5] and [12], properties of multiplicative PCMs are
analyzed in order to determine a qualitative ranking on the set of alternatives and
find vectors representing this ranking. Additive and fuzzy PCMs are investigated
for instance by [1] and [13].

The AHP provides a comprehensive and rational framework for structuring
a decision problem, for representing and quantifying its elements, for relating
those elements to overall goals, and for evaluating alternative solutions.
“To make a decision in an organised way to generate priorities we need to de-
compose the decision into the following steps.

1. Define the problem and determine the kind of knowledge sought.
2. Structure the decision hierarchy from the top with the goal of the decision,

then the objectives from a broad perspective, through the intermediate levels
(criteria on which subsequent elements depend) to the lowest level (which
usually is a set of the alternatives).

3. Construct a set of pairwise comparison matrices. Each element in an upper
level is used to compare the elements in the level immediately below with
respect to it.

4. Use the priorities obtained from the comparisons to weigh the priorities
in the level immediately below. Do this for every element. Then for each
element in the level below add its weighed values and obtain its overall or
global priority. Continue this process of weighing and adding until the final
priorities of the alternatives in the bottom most level are obtained.”[17]

In order to unify the different approaches to the way of building the PCMs,
in [7] the authors introduce PCMs whose entries belong to an abelian linearly
ordered group (alo-group) G = (G,�,≤). In this way, the consistency condition is
expressed in terms of the group operation�. Under the assumption of divisibility
of G, for each A = (aij), a �-consistency measure IG(A), expressed in terms of �-
mean of G-distances, is provided; furthermore a �-mean vector wm(A), satisfying
the independence of scale-inversion condition, is chosen as a weighting vector for
the alternatives.

In this paper, we provide a survey of results related to PCMs on alo-groups,
by focusing on properties of IG(A) and wm(A).
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The paper is organized as follows: Section 2 focuses on alo-groups; Section
3 introduces PCMs on real divisible alo-groups; Section 4 provides concluding
remarks and directions for future work.

2 Alo-groups

From now on, R will denote the set of real numbers, Q the subset of rational
numbers, Z the subset of relative integers, N the subset of positive integers and
N0 the set N ∪ {0}. G = (G,�,≤) denotes an abelian linearly ordered group
(alo-group), e its identity, a(−1) the inverse of a ∈ G with respect to �, ÷ the
inverse operation of �, defined by:

a÷ b = a� b(−1) ∀a, b ∈ G, (3)

and Gn = {w = (w1, . . . , wn)|wi ∈ G, ∀i ∈ {1, . . . , n}}.
Definition 1. [11] A vector w ∈ Gn is called a �-normal vector if and only if

w1 � w2 . . .� wn = e.

Definition 2. [8] The vectors w = (w1, . . . , wn) and v = (v1, . . . , vn) are �-
proportional if and only if there exists c ∈ G such that w = c � v = (c �
v1, . . . , c� vn).

Proposition 1. [7] If G = (G,�,≤) is a non-trivial alo-group then it has nei-
ther a greatest element nor a least element.

Proposition 2. [7] The operation

dG : G×G→ G

(a, b) 	→ dG(a, b) = (a÷ b) ∨ (b ÷ a)
(4)

is a G-distance that satisfies the following properties:

1. d(a, b) ≥ e;
2. d(a, b) = e⇔ a = b;
3. d(a, b) = d(b, a);
4. d(a, b) ≤ d(a, c)� d(b, c).

Definition 3. [7] Let n ∈ N0. The (n)-power a(n) of a ∈ G is defined as follows:

a(n) =

{
e, if n = 0

a(n−1) � a, if n ≥ 1.

Definition 4. [10] Let z ∈ Z. The (z)-power a(z) of a ∈ G is defined as follows:

a(z) =

{
a(n), if z = n ∈ N0

(a(n))(−1) if z = −n, n ∈ N.
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2.1 Divisible Alo-groups

Definition 5. G = (G,�,≤) is divisible if and only if (G,�) is divisible, that
is, for each n ∈ N and each a ∈ G, the equation x(n) = a has at least a solution.

If G = (G,�,≤) is divisible, then the equation x(n) = a has a unique solution.
Thus, we give the following definition:

Definition 6. [7] Let G = (G,�,≤) be divisible, n ∈ N and a ∈ G. Then, the

(n)-root of a, denoted by a(
1
n ), is the unique solution of the equation x(n) = a,

that is:

(a(
1
n ))(n) = a. (5)

Definition 7. [7] Let G = (G,�,≤) be divisible. �-mean m�(a1, a2, ..., an) of
the n elements a1, a2, ..., an of G is the element a ∈ G verifying the equality
a� a� ...� a = a1 � a2 � ...� an; that is,

m�(a1, a2, ..., an) =

{
a1 if n = 1,

(
⊙n

i=1 ai)
( 1
n ) if n ≥ 2.

Definition 8. [10] Let (G,�,≤) be divisible. For each q = m
n , with m ∈ Z and

n ∈ N, and for each a ∈ G, the (q)-power a(q) is defined as follows:

a(q) = (a(m))(
1
n ).

2.2 Real Divisible Alo-groups

An alo-group G = (G,�,≤) is a real alo-group if and only if G is a subset of
the real line R and ≤ is the total order on G inherited from the usual order on
R. If G is an interval of R then, by Proposition 1, it has to be an open interval.
Examples of real divisible continuous alo-groups are the following:

Multiplicative Alo-group. ]0,+∞[= (]0,+∞[, ·,≤), where · is the usual mul-
tiplication on R. Then, e = 1 and for a, b ∈]0,+∞[ and q ∈ Q:

a(−1) = 1/a, a÷ b =
a

b
, a(q) = aq,

d]0,+∞[(a, b) =
a

b
∨ b

a
;

moreover, for ai ∈]0,+∞[, i ∈ {1, . . . n}, m·(a1, ..., an) is the geometric
mean:

m·(a1, ..., an) =
( n∏
i=1

ai
) 1

n .
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Additive Alo-group. R = (R,+,≤), where + is the usual addition on R.
Then, e = 0 and for a, b ∈ R and q ∈ Q:

a(−1) = −a, a÷ b = a− b, a(q) = qa,

dR(a, b) = |a− b| = (a− b) ∨ (b− a);

moreover, for ai ∈ R, i ∈ {1, . . . n}, m+(a1, ..., an) is the arithmetic mean:

m+(a1, ..., an) =

∑
i ai
n

.

Fuzzy group. ]0,1[=(]0, 1[,⊗,≤), where ⊗ :]0, 1[2→]0, 1[ is the operation de-
fined by

x⊗ y =
xy

xy + (1− x)(1 − y)
.

Then, e = 0.5 and for a, b ∈]0, 1[ and q ∈ Q:

a(−1) = 1− a, a÷ b =
a(1− b)

a(1− b) + (1− a)b
, a(q) =

aq

aq + (1− a)q
,

d]0,1[(a, b) =
a(1− b)

a(1− b) + (1− a)b
∨ b(1− a)

b(1− a) + (1 − b)a
;

moreover, for ai ∈]0, 1[, i ∈ {1, . . . n},

m⊗(a1, ..., an) =
n
√∏n

i=1 ai
n
√∏n

i=1 ai +
n
√∏n

i=1(1− ai)
. (6)

Two divisible continuous real alo-groups are isomorphic with respect to the group
operations and the order relation; in particular for each real divisible continuous
alo-group G = (G,�,≤), there exists an isomorphism h between ]0,+∞[ and G.
For instance:

l : x ∈]0,+∞[	→ log x ∈ R (7)

is an isomorphism between ]0,+∞[ and R and

ψ : x ∈]0,+∞[	→ x

x+ 1
∈]0, 1[ (8)

is an isomorphism between ]0,+∞[ and ]0,1[.
Let G = (G,�,≤) be a real divisible continuous alo-group. For each a ∈ G

and r ∈ R, we set:

Ia,r = {a(q) : q ∈ Q and q < r}, Sa,r = {a(q) : q ∈ Q and q > r}. (9)

In [9], the authors extend the notion of (q)-power, with q ∈ Q, in Definition 8,
to the notion of (r)-power, with r ∈ R, as follows:
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Definition 9. [9] Let G = (G,�,≤) be a real divisible continuous alo-group.
For each a ∈ G and r ∈ R, a(r) is the separation point of sets in (9), thus the
following holds:

a(r) = h((h−1(a))r),

with h an isomorphism between ]0,+∞[ and G.
Proposition 3. [9] Let G = (G,�,≤) be a real divisible continuous alo-group
a. For each a, b ∈ G and r, r1, r2 ∈ R, we have:

1. a(−r) = (a(r))(−1) = (a(−1))(r);
2. a(r1) � a(r2) = a(r1+r2);
3. (a(r1))(r2) = a(r1r2) = (a(r2))(r1);
4. (a� b)(r) = a(r) � b(r);
5. e(r) = e.

Proposition 4. [9] Let G = (G,�,≤) be a real divisible continuous alo-group
and r ∈ R. Then, (r)-power function:

f(r) : a ∈ G→ a(r) ∈ G

is strictly increasing if r > 0, strictly decreasing if r < 0 and is the constant
function f(0) = e if r = 0.

Proposition 5. [9] Let G = (G,�,≤) be a real divisible continuous alo-group
and a ∈ G, with a �= e. Then, (r)-exponential function

g : r ∈ R → a(r) ∈ G

is strictly increasing if a > e and strictly decreasing if a < e.

3 PCMs on Real Divisible Alo-groups

Let X = {x1, x2, ...xn} be a set of alternatives and A = (aij) in (1) the related
PCM. We assume that A = (aij) is a PCM over a real continuous divisible
alo-group G = (G,�,≤), that is, aij ∈ G, ∀i, j ∈ {1, . . . , n} [7]. We assume that:

1. a1, a2, . . . , an are the rows of A;
2. a1, a2, . . . , an are the columns of A;

3. A(ijk) is the sub-matrix

⎛
⎝
aii aij aik
aji ajj ajk
aki akj akk

⎞
⎠;

4. Aijk denotes A(ijk) if i < j < k (see [7]);

5. A(r) = (a
(r)
ij ).

Definition 10. For each A = (aij) over G = (G,�,≤), the �-mean vector
associated to A is:

wm�(A) = (m�(a1),m�(a2), · · · ,m�(an)), (10)

where m�(ai) = m�(ai1, ai2, . . . , ain).



Pairwise Comparison Matrices over Abelian Linearly Ordered Groups 55

Definition 11. A = (aij) is a �-reciprocal PCM if and only if verifies the
condition:

aji = a
(−1)
ij ∀ i, j ∈ {1, . . . , n}, (�− reciprocity)

so aii = e ∀i ∈ {1, . . . , n}.

RM(n) will denote the set of �-reciprocal PCMs of order n. Let us assume
A ∈ RM(n), then we set:

xi � xj ⇔ aij > e, xi ∼ xj ⇔ aij = e, (11)

where xi � xj and xi ∼ xj stand for “xi is strictly preferred to xj”and “xi and
xj are indifferent,”respectively; the strict preference of xi over xj is expressed
also by the equivalence:

xi � xj ⇔ aji < e. (12)

Example 1. The matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 1
10

1
2 1 3

10 1
3 1

⎞
⎟⎟⎟⎟⎠

is a ·-reciprocal PCM on the multiplicative alo-group (]0,+∞[, ·,≤).

Example 2. The matrix

B =

⎛
⎝

0 2 −5
−2 0 3
5 −3 0

⎞
⎠

is a +-reciprocal PCM on the additive alo-group (R,+,≤).

Example 3. The matrix

C =

⎛
⎝

0.5 0.6 0.2
0.4 0.5 0.7
0.8 0.3 0.5

⎞
⎠

is a ⊗-reciprocal PCM on the fuzzy alo-group (]0, 1[,⊗,≤).

3.1 �-consistency

Definition 12. A is a �-consistent PCM if and only if

aik = aij � ajk ∀i, j, k ∈ {1, . . . n} .

CM(n) will denote the set of �-consistent PCMs of order n.
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Example 4. The matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 6

1
2 1 3

1
6

1
3 1

⎞
⎟⎟⎟⎟⎠

is a ·-consistent PCM on the multiplicative alo-group (]0,+∞[, ·,≤).

Example 5. The matrix

B =

⎛
⎝

0 2 5
−2 0 3
−5 −3 0

⎞
⎠

is a +-consistent PCM on the additive alo-group (R,+,≤).

Example 6. The matrix

C =

⎛
⎝

0.5 0.6 0.7
0.4 0.5 0.7

1− 0.7 0.3 0.5

⎞
⎠

is a ⊗-consistent PCM on the fuzzy alo-group (]0, 1[,⊗,≤).

Definition 13. Let A = (aij) ∈ CM(n). A vector w = (w1, . . . , wn) ∈ Gn, is a
�-consistent vector for A = (aij) if and only if:

wi ÷ wj = aij ∀ i, j ∈ {1, . . . , n}.

Proposition 6. [7] The following assertions related to A = (aij) are equivalent:

1. A = (aij) ∈ CM(n);

2. there exists a �-consistent vector w for A;

3. each column ak is a �-consistent vector;

4. the �-mean vector wm�(A) is a �-consistent vector.

Proposition 7. [8] Let A ∈ RM(n). The following assertions are equivalent:

1. A ∈ CM(n);

2. aik = aij � ajk ∀ i, j, k ∈ {1, . . . , n} : i < j < k;

3. ai and ai+1 are �-proportional vectors (ai+1 = a
(−1)
i i+1 � ai ∀i < n);

4. ai and ai+1 are �-proportional vectors (ai+1 = a
(−1)
i+1 i � ai ∀i < n);

5. aik = ai i+1 � ai+1 k ∀i, k : i < k;

6. aik = ai i+1 � ai+1 i+2 � . . .� ak−1 k ∀i, k : i < k.
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3.2 A �-consistency Measure

In order to measure how much a PCM is far from a consistent one, in [7], the
following �-consistency index is provided:

Definition 14. [7] Let A ∈ RM(n) with n ≥ 3, then the �-consistency index
IG(A) is defined as follows:

IG(A) =
( ⊙
i<j<k

dG(aik, aij � ajk)
)( 1

nT
)

with T = {(i, j, k) : i < j < k} and nT = |T | = n(n−2)(n−1)
6 .

Thus:

IG(A) =

{
dG(a13, a12 � a23) if n = 3,(⊙

i<j<k IG(Aijk)
)( 1

nT
)

if n > 3.
(13)

IG(A) has an intuitive meaning, because is a �-mean of G-distances, and is
suitable for several kinds of PCMs (e.g. multiplicative, additive and fuzzy).

Proposition 8. [7] Let A ∈ RM(n), then:

IG(A) ≥ e, IG(A) = e⇔ A ∈ CM(n).

Proposition 8 proves that there is a unique value of IG(A) representing the �-
consistency, that is, the identity element e (property that a consistency index
must satisfy as required in [6]).

Example 7. Let

A =

⎛
⎜⎜⎝

1 1
7

1
7

1
5

7 1 1
2

1
3

7 2 1 1
9

5 3 9 1

⎞
⎟⎟⎠

be a PCM on the multiplicative alo-group (]0,+∞[, ·,≤), then:

I]0,+∞[(A) =
4

√
I]0,+∞[(A123) · I]0,+∞[(A124) · I]0,+∞[(A134) · I]0,+∞[(A234)

=
4

√
2 · 21

5
· 63
5

· 6 = 5.02.

Example 8. Let

B =

⎛
⎜⎜⎝

0 − log 7 − log 7 − log 5
log 7 0 − log 2 − log 3
log 7 log 2 0 − log 9
log 5 log 3 log 9 0

⎞
⎟⎟⎠

be a PCM on the additive alo-group (R,+,≤), then:

IR(B) =
IR(B123) + IR(B124) + IR(B134) + IR(B234)

4

=
0.6931 + 1.4350 + 2.5336 + 1.7917

4
= 1.6134.
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Example 9. Let

C =

⎛
⎜⎜⎝

0.5 0.3 0.4 0.4
0.7 0.5 0.1 0.2
0.6 0.9 0.5 0.8
0.6 0.8 0.2 0.5

⎞
⎟⎟⎠

be a PCM on the fuzzy alo-group (]0, 1[,⊗,≤), then:

I]0,1[(C) =

4

√∏
i<j<k I]0,1[(Cijk)

4

√∏
i<j<k I]0,1[(Cijk) + 4

√∏
i<j<k(1− I]0,1[(Cijk))

= 0.833.

Invariance under Permutation of Alternatives
Let π : {1, . . . , n} → {1, . . . , n} be a bijection, then (π(1), . . . , π(n)) denotes the
corresponding permutation of the n-tuple (1, . . . , n) and Π : RM(n) → RM(n)
the function:

Π : A =

⎛
⎜⎜⎝
a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann

⎞
⎟⎟⎠ 	→ Π(A) =

⎛
⎜⎜⎝
aπ(1)π(1) aπ(1)π(2) ... aπ(1)π(n)
aπ(2)π(1) aπ(2)π(2) ... aπ(2)π(n)

... ... ... ...
aπ(n)π(1) aπ(n)π(2) ... aπ(n)π(n)

⎞
⎟⎟⎠ .

(14)

Proposition 9. [9] Let A ∈ RM(n) and Π the function in (14), then the fol-
lowing equality holds:

IG(Π(A)) = IG(A).

By Proposition 9, the �-consistency index IG(A) is independent from the order
in which the alternatives are presented.

Monotonicity under Reciprocity Preserving Mapping
Let A ∈ RM(n) and r ∈ R, by Proposition 5, we have:

r > 1 ⇒
{
aij > e⇒ e < aij < a

(r)
ij ,

aij < e⇒ a
(r)
ij < aij < e;

0 < r < 1 ⇒
{
aij > e⇒ e < a

(r)
ij < aij ,

aij < e⇒ aij < a
(r)
ij < e;

(15)

r < 0 ⇒
{
aij > e⇒ a

(r)
ij < e < aij ,

aij < e⇒ aij < e < a
(r)
ij .

Thus, if r > 1 then a
(r)
ij represents an intensification of the preference aij , if

0 < r < 1 a weakening of the preference and if r < 0 a preference reversal.
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Proposition 10. [9] Let r ∈ R, then the function:

F(r) : A ∈ RM(n) 	→ A(r) ∈ RM(n) (16)

is �-consistency preserving and, if r ∈ R\{0}, it is a bijection.

We study how IG(A) changes its value, when the function F(r) is applied to A.

Proposition 11. [9] Let A ∈ RM(n) and r ∈ R, then:

IG(A(r)) = (IG(A))(|r|) =

{
(IG(A))(r) if r ≥ 0,

(IG(A))(−r) if r < 0.

Corollary 1. [9] Let A ∈ RM(n)\CM(n). Then:

IG(A(r))

{
> (IG(A)) if |r| > 1,

< (IG(A)) if |r| < 1.

By Corollary 1, Proposition 10 and Proposition 8, if A ∈ RM(n), then the
following inequality holds:

IG(A(r)) ≥ IG(A) ∀r > 1. (17)

Inequality (17) corresponds to the third characterizing property in [6].

Proposition 12. [9] Let A ∈ RM(n). Then the function:

m : r ∈ R → IG(A(r)) ∈ G

satisfies the following properties:

– if A ∈ CM(n) then m is the constant function m : r ∈ R → e ∈ G;
– if A /∈ CM(n) then m is strictly increasing in [0,+∞[ and strictly decreasing

in ]−∞, 0].

For multiplicative, additive and fuzzy cases, for some value of IG(A), the graphics
of IG(A(r)) are shown in Figs 1, 2 and 3.

Strict Monotonicity on Single Entries
Let us consider A = (aij), a �-consistent PCM, and choose one of its non-
diagonal entries apq. If we change apq in bpq, by increasing or decreasing its
value, and modify its reciprocal aqp accordingly, while all the other entries remain
unchanged, then the resulting PCM, B = (bij), is not anymore �-consistent and,
by Proposition 8, IG(B) > e.

Proposition 13 proves that the more bpq is far from apq, the more B = (bij)
is �-inconsistent. This expresses a sort of monotonicity of the �-inconsistency
with respect to a single entry of the PCM.

Proposition 13. Let A ∈ CM(n), p, q ∈ {1, . . . , n}, with p �= q, and B = (bij),
C = (cij) ∈ RM(n) such that aij = bij = cij for i �= p, j �= q and for i �= q, j �=
p. Then:

(
e < dG(bpq, apq) < dG(cpq, apq)

) ⇒ (IG(A) < IG(B) < IG(C)).

By Proposition 13, �-consistency index IG(A) satisfies the fourth property pro-
vided in [6].
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Fig. 1. Multiplicative case: m : r ∈ R → IG(A(r)) = IG((ar
ij)) = (IG(A))|r| ∈ [1,+∞[

Fig. 2. Additive case: m : r ∈ R → IG(A(r)) = IG((r · aij)) = |r| · IG(A) ∈ [0,+∞[

3.3 A Weighting Vector for the Alternatives

Proposition 14. [11] The relation � in (11) is asymmetric, the relation ∼ in
(11) is reflexive and symmetric and, for each pair (xi, xj), one and only one of
the following conditions hold:

xi � xj , xi ∼ xj , xj � xi. (18)

Let � denote the relation on X defined by

xi � xj ⇔ xi � xj or xi ∼ xj . (19)

Then, by Proposition 14:

xi ∼ xj ⇔ (xi � xj and xj � xi), xi � xj ⇔ (xi � xj and xj � xi). (20)
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Fig. 3. Fuzzy case: m : r ∈ R → IG(A(r)) = IG((
(ar

ij)

(ar
ij

)+(1−ar
ij

)
)) =

(IG(A))r

(IG(A))r+(1−IG(A))r
∈

[0.5, 1[

Proposition 15. Let A = (aij) ∈ CM(n). Then, the relations � and ∼ are
transitive, that is:

1. xi � xj and xj � xk ⇒ xi � xk,
2. xi ∼ xj and xj ∼ xk ⇔ xi ∼ xk.

Moreover, � and ∼ verify the following joint transitivity conditions:
3. xi � xj and xj ∼ xk ⇒ xi � xk,
4. xi ∼ xj and xj � xk ⇒ xi � xk.

Corollary 2. [11] Let A = (aij) ∈ CM(n). Then � is a strict order, ∼ is an
equivalence relation and � is a total weak order on X.

By Corollary 2, if A ∈ CM(n) then X is totally ordered by the relation �.
Hence, there is a permutation (i1, i2, · · · , in) of (1, 2, · · · , n) such that:

xi1 � xi2 � ..... � xin . (21)

We say that the ranking in (21) is the actual ranking on X derived from A
by means of the equivalences (19) and (11). Then, an ordinal evaluation vec-
tor for the actual ranking is a vector w = (w1, w2, ..., wn) ∈ Gn verifying the
equivalences:

xi � xj ⇔ wi > wj , xi ∼ xj ⇔ wi = wj . (22)

Proposition 16. [11] Let A = (aij) ∈ CM(n). Each �-consistent vector w =
(w1, w2, ..., wn) is an ordinal evaluation vector.

In [11], the authors focus on the problem of deriving weights for the alternatives
from a PCM over a divisible alo-group (G,�,≤), and deal with the following
research questions:
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RQ1 Let A = (aij) be a �-consistent PCM. Which vector can be chosen
as a weighting vector?

RQ2 Let A = (aij) be a �-inconsistent PCM. Which vector can be
chosen as a weighting vector?

By Proposition 16, �-consistent vectors are ordinal evaluation vectors for the
actual ranking (21) and, by Definition 13 of �-consistent vector, they are the
only ones such that the composition of its components wi and wj , by means
of ÷, returns the preference value aij . Hence it is reasonable to claim that the
weighting vector has to be a �-consistent vector. Thus, the research question
RQ1 changes into:

RQ1’. Let A = (aij) be a �-consistent PCM. Which �-consistent vector can
be chosen as a weighting vector?

In [11], the �-mean vector wm�(A) = (m�(a1),m�(a2), · · · ,m�(an)) is chosen
as weighting vector for the alternatives for the following reasons:

1. m�(ai) represents the �-mean of the preference intensities of xi over all the
elements xj ;

2. wm�(A) is the unique �-normal vector in the set of �-consistent vectors (see
Definition 1);

3. each �-consistent vector w is �-proportional to wm�(A) (see Definition 2).

Example 10. Let

A =

⎛
⎜⎜⎜⎜⎝

1 2 6

1
2 1 3

1
6

1
3 1

⎞
⎟⎟⎟⎟⎠

be a multiplicative PCM on (]0,+∞[, ·,≤), then wm·(A) = ( 3
√
12, 3

√
3
2 ,

3

√
1
18 ).

Example 11. Let

B =

⎛
⎝

0 2 5
−2 0 3
−5 −3 0

⎞
⎠

be an additive PCM on (R,+,≤), then wm+
(B) = (73 ,

1
3 ,− 8

3 ).

Example 12. Let

C =

⎛
⎝

0.5 0.6 0.7
0.4 0.5 0.7

1− 0.7 0.3 0.5

⎞
⎠

be a fuzzy PCM on (]0, 1[,⊗,≤), then wm⊗(C) = (0.63, 0.54, 0.33).

If A is �-inconsistent, then the relation � defined in (19) may not provide a
ranking on the set X of alternatives and, even if (19) provides a ranking, there is
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no �-consistent vector w such that wi÷wj = aij . Thus, in order to answerRQ2,
in [10], [11], the authors look for a condition ensuring the existence of a vector
w = (w1, w2, ..., wn) such that dG(wi ÷ wj , aij) ≈ e, for each i, j = 1, 2, . . . , n,
that is, wi ÷ wj is very close to aij ; they provide the following:

dG((m�(ai)÷m�(aj)), aij)

{
= IG(A)(

1
3 ), n = 3

≤ IG(A)(
(n−2)(n−1)

6 ), n > 3 .
(23)

Formula (23) gives more validity to IG(A) as �-consistency measure and more
meaning to wm(A); in fact, it ensures that if IG(A) is close to the identity element
then, from one side A is close to be a �-consistent PCM and from the other side
wm(A) is close to be a �-consistent vector.
Finally, wm(A) satisfies the independence of scale inversion condition [11], that
is, wm�(A

T ) and wm�(A) provide the same ranking for the alternatives.
For these reasons, wm�(A) is the answer both to RQ1 and RQ2; that is, we

choose it as a weighting vector for the alternatives.

4 Final Remark

We consider PCMs on real divisible alo-groups; this approach allows us to unify
several approaches proposed in the literature. We focus on properties of the
�-consistency index IG(A) and the weighting vector wm(A).

In the future, we will investigate, among other things, conditions weaker than
�-consistency that allow us to identify the actual qualitative ranking on X from
A. Hence, the problem will be to find vectors agreeing with this ranking.
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