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Abstract. Social science research is now primarily divided into two types: 
qualitative, or case-oriented research, focused on individual cases, which 
reviews all aspects of a few case studies and quantitative, or variable-oriented 
research, which considers only some quantitative aspects (variables) of a large 
number of cases and is looking for correlations between these variables. 

The first type of research is based primarily on evidence, the second on 
theoretical models. The fundamental criticism to case-oriented research is that it 
does not lead to general theoretical models, while the most important criticisms 
to the variable-oriented research are the assumption of a population a priori and 
the hypothesis that the elements of the population are homogeneous. 

A compromise between the two points of view is the diversity-oriented 
research, which takes into account the variables and the diversity of individual 
cases.  

The fundamental purpose of our paper is to study the possibilities provided 
by fuzzy sets and algebra of fuzzy numbers for the study of social phenomena. 
We deepen some aspects of the fuzzy regression, and we present some 
operations between fuzzy numbers that are efficient alternatives to those based 
on Zadeh extension principle. Finally, we present some critical remarks about 
the causal complexity and logical limits of the assumption of linear relationship 
between variables. A solution of these problems can be obtained by the fuzzy 
sets that play a key role in diversity-oriented research. 

Keywords: social science research, fuzzy regression, alternative fuzzy 
operations, case-oriented research, causal complexity. 

1 Introduction and Motivation 

Social science research is now primarily divided into two types: qualitative or case - 
oriented research and quantitative or variable-oriented research [BR1], [BR2], [RA].  

The first research strategy, also called intensive, focuses on complexity of social 
phenomena. It is based on an in-depth study of individual cases and analyzes all 
aspects of a very small number of case studies. The second line of research, also 
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called extensive, considers some quantitative aspects (variables) of a large number of 
cases and is looking for correlations between these variables. 

Recently, some authors have highlighted that usually there is a very sharp 
distinction between the two categories of studies (see e.g., [RA]). The majority of 
studies of social phenomena is based or on an intensive study of a few cases, 
approximately not more than a dozen, or on an extensive study for many cases, 
approximately not less than one hundred. There are few papers on a number of case 
studies ranging a dozen to a hundred. 

The intensive research is based primarily on evidence, the extensive on theoretical 
models. In the transition from an intensive study of the case studies in an extensive 
research, as the number of cases increases, we lose the characteristics of individual 
phenomena and we come to assumptions of homogeneity of individual cases, which 
often are not suitable for the study of social phenomena.  

The fundamental criticism to case-oriented research is that it does not lead to 
theoretical and general models, while the most important criticisms to the variable-
oriented research are the assumption of a population a priori and the hypothesis that 
the elements of the population are homogeneous. 

A compromise between the two points of view is the diversity-oriented research, 
which takes into account the variables and the diversity of individual cases [BR1], 
[BR2], [RA]. It is also based on an idea of population not fixed from the beginning, 
but changing during the research according to a critical examination of the 
intermediate results. This characteristic of the diversity-oriented research allows us 
also to consider an intermediate number of cases that do not necessarily reduce to the 
extremes of a handful of cases or many cases. 

A powerful tool in diversity-oriented research is provided by the theory of fuzzy 
sets and the opportunities they offer to replace relations belonging to linear 
relationships between variables and probabilistic assumptions. 

In this sense, fuzzy logic and algebra of fuzzy numbers (see e.g. [DP1], [GO], 
[ZA1], [ZA2], [ZA3], [ZA4]) are proposed as an alternative to the study of the linear 
relationship between the dependent variable, to be explained, and the explanatory 
variables [RA].  

In other contexts, however, keeping to extensive research, the algebra of fuzzy 
numbers works in accordance with the hypothesis that there is, at least in a first 
approximation, a linear relationship between dependent and independent variables. 
This leads to the fuzzy regression, in which, unlike the classical regression where the 
conclusions are expressed in probabilistic terms, the conclusions must be formulated 
in terms of degree of membership of the values of the dependent variable to fuzzy 
numbers calculated by the model. 

The paper is structured as follows. In Section 2, we introduce a brief review of 
basic concepts on fuzzy regression for further development of some themes. In 
Section 3, we introduce operations that are efficient and mathematical consistent 
alternatives to those based on the Zadeh extension principle [ZA1], [ZA2], [ZA3], 
[ZA4], [YA], [KY], [RO] and we analyze how they can make new fuzzy regression 
tools. Finally, in Section 4, we analyze some concepts on the study of social 
phenomena based on diversity-oriented research and present some critical remarks 
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upon some implicit assumptions of the variable-oriented research as the homogeneity 
of the case studies and the linear relationship among the variables. 

2 Fuzzy Numbers and Fuzzy Linear Regression: A Review and 
Critical Analysis of Some Fundamental Aspects 

Fuzzy linear regression can be classified in “partially fuzzy” or “totally fuzzy” 
regression. In the first case, we have two possibilities: fuzzy parameters with crisp 
data or fuzzy data with crisp parameters. In the second case data and parameters are 
both fuzzy ([KY], [RO]).  

The start point of a partially fuzzy linear regression is the individuation of an 
algebraic structure of fuzzy numbers (F, +, *) where F is a nonempty family of fuzzy 
numbers containing the set R of real numbers (e.g. the degenerate fuzzy numbers), + 
is an operation on F, called “addition”, extension of the addition on R, and * is the 
multiplication of an element of F by a scalar, e.g., a function *: R×F →F, extension of 
the multiplication on R. 

Usually, F is the set of triangular fuzzy numbers and the operations + and * are 
obtained by the “Zadeh extension principle”. In this paper, we show that logical 
reasons and mathematical properties can lead to prefer other sets of fuzzy numbers or 
alternative fuzzy operations. 

A total fuzzy linear regression needs a more complex algebraic structure of fuzzy 
numbers. Namely, we have to assign an algebraic structure (F, +, *, ⋅), where + is the 
addition, * is the multiplication of an element of F by a scalar, and ⋅ is a multiplication 
on F, extension to F×F of *.  

Unfortunately, the multiplication defined by means of the Zadeh’s extension 
principle presents some important drawbacks including the following: 

(1) in general the Zadeh extension product of two triangular (resp. trapezoidal) fuzzy 
numbers is not a triangular (resp. trapezoidal) fuzzy number; 

(2) if the supports of two triangular fuzzy numbers contain 0 the spread of the 
product of triangular fuzzy numbers does not have a simple expression; 

(3) the distributive property applies only to particular triplets of fuzzy numbers. 

For these reasons, in this section we consider especially the partial fuzzy linear 
regression. In the first subsection we recall and introduce some concepts and notations 
on fuzzy numbers necessary for the rest of the paper, in the second and third 
subsection we focus our interest on some fundamental aspects of partial fuzzy 
regression. Finally, in the fourth subsection we make a brief introduction and some 
critical comments on the totally fuzzy linear regression. 

2.1 Fundamental Concepts and Notations on Fuzzy Numbers 

Let us recall some fundamental concepts on fuzzy numbers and some related 
properties ([DP2], [KY], [YA], [RO], [ZA1], [ZA2], [ZA3], [ZA4], [YA], [MA1], 
[MA2], [CH]). 
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Definition 2.1. A fuzzy number is a function having as domain the set of real numbers 
and with values in [0, 1], u: R → [0, 1], such that: 

(FN1) (bounded support) there are two real numbers a, b, with a ≤ b, called the 
endpoints of u, such that u(x) = 0 for x ∉[a, b] and  u(x) > 0 for x belonging to the 
open interval (a, b); 

(FN2) (normality) there are two real numbers c, d, with a ≤ c ≤ d ≤ b such that 
u(x) = 1 if and only if x∈[c, d]. 

(FN3) (convexity) u(x) is a function increasing in the interval [a, c] and 
decreasing in the interval [d, b]. 

(FN4) (compactness) for every r∈(0, 1), the set {x∈R: u(x) ≥ r} is a closed 
interval. 

The set of the real numbers x such that u(x) > 0 is said to be the support of u, denoted 
supp(u) or S(u), and the interval [c, d] is said to be the core or central part of u, noted 
core(u) or C(u). The intervals [a, c) and (d, b] are, respectively, the left part and the 
right part of u. 

The fuzzy number u is said to be simple if c = d, i.e., C(u) is a singleton. Moreover, 
u is said to be degenerate if a = b, i.e., S(u) ={c}, c∈R. 

The real numbers L(u) = c – a, M(u) = d – c, and R(u) = b – d are the left, middle, 
and right spreads of u, respectively. Their sum T(u) = b – a is the total spread of u. 

For every r such that 0 ≤ r ≤ 1, the set of the x∈[a, b] such that u(x) ≥ r is denoted 
by [u]r and is said to be the r-cut of u. The left and right endpoints of [u]r are denoted, 
respectively, uλ

r and uρ
r. In particular, [u]0 is the closure of the support of u and [u]1  

is the core of u.  
Let us assume the following notations: 

• (endpoints notation) u ∼ (a, c, d, b) stands u is a fuzzy number with endpoints a, 
b, and core [c, d]; u ∼ (a, c, b) for a simple u with endpoints a, b, and core {c}; 

• (spreads notation) u ∼ [c, d, L, R] denotes that u is a fuzzy number with core [c, 
d] and left and right spreads L and R, respectively; u ∼ [c, L, R] denotes a simple 
u with core {c}; 

• (r-cut spreads notation) the numbers Lr(u) = (c - uλ
r) and Rr(u)= (uρ

r - d) are 
called the r-cut left spread and the r-cut right spread of u, then we can write [u]r 
= [c- Lr(u), d + Rr(u)]; 

• (sign) the fuzzy number u ∼ (a, c, d, b) is said to be positive, strictly positive, 
negative, or strictly negative, if a ≥ 0, a > 0, b ≤ 0, or b < 0, respectively; 

• (c-sign) the fuzzy number u ∼ (a, c, d, b) is said to be c-positive, strictly c-
positive, c-negative, or strictly c-negative, if c ≥ 0, c > 0, d ≤ 0, or d < 0, 
respectively. 

Definition 2.2. Let C be the set of the compact intervals of R. For every pair of 
intervals [a, b] and [c, d] in C, we assume: 

[a, b] + [c, d] = [a + c, b + d];                                   (2.1) 

[a, b] · [c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}];                 (2.2) 

[a, b] ≤ [c, d]  if and only if  a ≤ c and b ≤ d.                        (2.3) 
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The subtraction and division are also defined on C by the formulae: 

[a, b] - [c, d] = [a, b] + [-d, -c];                                     (2.4) 

if 0∉[c, d], [a, b] / [c, d] = [a, b] · [1/d, 1/c].                            (2.5) 

Remark 2.3. [KY, 103] The addition + defined by (2.1) is commutative, associative, 
having 0 = [0, 0] as neutral element. The multiplication defined by (2.2) is 
commutative, associative, having 1 = [1, 1] as neutral element. Moreover, for every 
compact intervals [a, b], [c, d], [e, f], the following subdistributive property holds: 

([a, b] + [c, d]) [e, f] ⊆ [a, b] [e, f] + [c, d] [e, f],       (subdistributivity)              (2.6) 

The distributivity holds iff [a, b] · [c, d] ≥ 0 or [e, f] is a degenerate interval.  

Definition 2.4. We say that the fuzzy number u ∼ (a, c, d, b) is a trapezoidal fuzzy 
number, denoted u = (a, c, d, b), if: 

∀x∈[a, c),   a < c  u(x) = (x-a)/(c-a),                                 (2.7) 

∀x∈(d, b],   d < b  u(x) = (b-x)/(b-d).                                (2.8) 

In spread notation, if u ∼ [c, d, L, R] is a trapezoidal fuzzy number, we write u = [c, d, 
L, R]. A simple trapezoidal fuzzy number u = (a, c, c, b) is said to be a triangular 
fuzzy number denoted u = (a, c, b). In spread notation, if u ∼ [c, L, R] is a triangular 
fuzzy number we write u = [c, L, R]. A trapezoidal fuzzy number u = (c, c, d, d), with 
support equal to the core is said to be a rectangular fuzzy number and is identified 
with the compact interval [c, d] of R.  

The necessary and sufficient conditions for u ∼ [c, d, L, R] in order to be a 
trapezoidal fuzzy number, in terms of r-cut left and right spreads, are: 

Lr(u) = (1-r) (c-a) = (1-r) L,         Rr(u) = (1-r) (b-d) = (1-r) R.             (2.9) 

Remark 2.5. For every real number x, let us denote with α(x) the sign of x. For every 
fuzzy number u ∼ [c, d, L, R], we define +L = -R = L and +R =-L = R. Let + e * be 
the Zadeh extension addition and multiplication of a real number by a fuzzy number. 
If x is a real number and u and v are fuzzy numbers, then the following properties of 
the left and right spreads hold [MA1]: 

L(u + v) = L(u) + L(v), L(x*u) = |x| (α(x) L(u));                       (2.10) 

R(u + v) = R(u) + R(v), R(x*u) = |x| (α(x) R(u)).                       (2.11) 

2.2 Partial Fuzzy Linear Regression with Fuzzy Parameters 

Let {Ki ∼ [ci, di, Li, Ri], i = 1, 2, …, n} be a set of fuzzy numbers, {xi, i=1, 2, …, n} 
the set of the independent variables, and y the dependent variable. Equation (2.12) 
shows a general fuzzy linear regression model with Ki fuzzy parameters:  

Y = K1 x1 + K2 x2 + … + Kn xn,                                       (2.12) 

where the addition and the multiplication of a real number by a fuzzy number are the 
Zadeh’s extension operations. 
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Suppose we have the following sample: 

Table 1.  

Sample number, j Output values, yj Input values, xij 

1 y1 x11, x21, …, xn1 

2 y2 x12, x22, …, xn2 

   

m ym x1m, x2m, …, xnm 

 
The first step of the fuzzy linear regression is to replace in (2.12) the numerical 

vector (x1j, x2j, …, xnj) to the vector of independent variables (x1, x2, …, xn) and then 
to obtain a fuzzy number Yj, for every j∈{1, 2, …, m}.  

The second step is to calculate the degree to which yj belongs to Yj. A possible 
conclusion is to consider the fuzzy coefficients Ki adequate if for each j the degree of 
belonging of yj to Yj is “sufficiently high”. 

A key aspect is the calculation of the spreads of Y. The larger are the spreads, the 
greater the degree to which yj belongs to Yj.  

From formulae (2.10), (2.11) we have: 

L(Y) = (α(x1) L(K1)) |x1| + (α(x2) L(K2)) |x2| + … + (α(xn) L(Kn)) |xn|       (2.13) 

R(Y) = (α(x1) R(K1)) |x1| + (α(x2) R(K2)) |x2| + … + (α(xn) R(Kn)) |xn|       (2.14) 

Moreover, the core of Y is obtained by the following formula:  

C(Y) = (α(x1) C(K1)) |x1| + (α(x2) C(K2)) |x2| + … + (α(xn) C(Kn)) |xn|,      (2.15) 

where, for every interval [a, b] of the real line +[a, b] = [a, b], -[a, b] = [-b, -a]. 
If the Ki are simple fuzzy numbers with symmetric spreads, let si =L(Ki) = R(Ki) be 

the bilateral spread of Ki and let s(Y) = L(Y) = R(Y) be the bilateral spread of Y. 
Then we have the simpler formulae: 

s(Y) = s1 |x1| + s2 |x2| + … + sn |xn|,                                (2.16) 

C(Y) = c1x1 + c2x2 + … + cnxn.                                   (2.17) 

Usually in the scientific literature (see, e.g. [KY], [RO]), the Ki are symmetric and 
triangular fuzzy numbers. It is well-known that the sum of two triangular fuzzy numbers 
and the product of a real number for a triangular fuzzy number are triangular fuzzy 
numbers, too ([KY], [RO], [MA1], [MA2]). Then also Y is a triangular fuzzy number.  

If the spread s(Y) is not null, then the membership function of Y is given by the 
formula: 

μ(y) = 1 - |y-C(Y)|/s(Y),      y∈(C(Y) – s(Y), C(Y) + s(Y)),             (2.18) 
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and μ(y) is null otherwise. If the spread s(Y) is null, then Y reduces to the real 
number C(Y), i.e., a degenerate fuzzy number.  

Let us suppose s(Y) is not null. Then, by considering the values of Table 1, we 
have: 

μ(yj) = 1-|yj-C(Yj)|/s(Yj) = 1-|yj - c1x1j+c2x2j+…+cnxnj|/(s1|x1j|+s2|x2j|+…+sn|xnj|). 
(2.19) 

If h∈(0, 1) is a number expressing (in the opinion of the decision maker) a sufficient 
degree of membership of yj to Yj, then the conditions μ(yj) ≥ h, j=1, 2, …, m must be 
satisfied. Then from (2.19), we have the 2m constraints: 

yj ≤ c1x1j+c2x2j+…+cnxnj + (1-h) (s1|x1j|+s2|x2j|+…+sn|xnj|),      j=1, 2, …, m,     (2.20) 

yj ≥ c1x1j+c2x2j+…+cnxnj - (1-h) (s1|x1j|+s2|x2j|+…+sn|xnj|),      j=1, 2, …, m.     (2.21) 

It is evident that whatever the sample (with the unique condition that ∀j, ∃i: xij ≠ 0), 
and whatever the numbers ci, conditions (2.20) and (2.21) are satisfied when the 
spreads si are sufficiently high. But high spreads mean an excessive vagueness, then it 
is necessary to introduce an objective function u = f(s1, s2, …, sn), positive and 
increasing with respect to every variable, and seek a solution of the system (2.20), 
(2.21), with the unknowns ci and si and minimizing u.  

Two alternative objective functions are: 

(1) the sum of spreads of coefficients [KY], e.g., 

f(s1, s2, …, sn) = s1 + s2 +…+ sn;                              (2.22) 

(2) the sum of spreads of the sample [RO], e.g., 

f(s1, s2, …, sn) = Σi, j |xij| sij.                                  (2.23) 

2.3 Partial Fuzzy Linear Regression with Fuzzy Data 

Equation (2.24) shows a general fuzzy linear regression model with fuzzy data:  

Y = k1 X1 + k2 X2 + … + kn Xn,                                       (2.24) 

where coefficients ki are crisp numbers and the values of variables are fuzzy numbers.  
Let us have the following sample: 

Table 2.  

Sample number, j Output values, Yj Input values, Xij 

1 Y1 X11, X21, …, Xn1 

2 Y2 X12, X22, …, Xn2 

   

m Ym X1m, X2m, …, Xnm 
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For every j = 1, 2, …, m, we have to calculate the fuzzy number: 

Yj* = k1 X1j + k2 X2j + … + kn Xnj,                                   (2.25) 

and to compare Yj* with the sample value Yj.  
The logics of the algorithms used are fuzzy extensions of the previous case. The 

condition μ(yj) ≥ h is replaced by the condition of compatibility between Yj* and Yj: 

∀j∈{1, 2, …, m}, com(Yj*, Yj) = supy∈R (min(Yj*(y), Yj(y)) ≥ h.          (2.26) 

2.4 Total Fuzzy Linear Regression 

Equation (2.27) shows a total fuzzy linear regression model:  

Y = K1 X1 + K2 X2 + … + Kn Xn,                                  (  2.27) 

where the coefficients Ki and the values of variables are fuzzy numbers.  
Also for the algorithms of the total fuzzy linear regression formula (2.26) holds. 

But some problems arise because, in general: 

(1) the Zadeh extension product of triangular fuzzy numbers is not a triangular fuzzy 
number; 

(2) the left and right spreads of the product of symmetric fuzzy numbers are not 
equal; 

(3) there is not a general simple formula for the spreads of Y. 

In the next section we propose a way to overcome those difficulties by proposing 
alternative fuzzy operations to those based on the extension principle. 

3 Alternative Fuzzy Operations and Fuzzy Regression 

Let us consider the total fuzzy regression model with fuzzy coefficients and fuzzy 
parameters: 

Y = K1 X1 + K2 X2 + … + Kn Xn,                                     (3.1) 

where Ki ∼ [ci, si, s’i] and Xi ∼ [xi, ti, t’i] are fuzzy numbers. 

3.1 Some Problems and Drawbacks of the Zadeh Extension Fuzzy Regression 

If, as usually happens, the addition and the multiplication are the Zadeh’s extension 
operations, then ([BB], [BF], [BG], [DP2], [GM], [MA1], [MA2]) the left and right 
spreads of the Zadeh’s extension product u ⋅z v of two fuzzy numbers u and v have 
simple formulae if the factors are positive fuzzy numbers (at most one of the factors can 
be c-positive). In this case the formulae of core and r-cut spreads of u ⋅z v are [MA1]:  

c(u ⋅z v) = c(u) c(v)                                               (3.2)  

∀r∈[0, 1), Lr(u ⋅z v) = uλ
1 Lr(v) + vλ

1 Lr(u) - Lr(u)Lr(v);                (3.3) 

∀r∈[0, 1), Rr(u ⋅z v) = uρ
1 Rr(v) + vρ

1 Rr(u) + Rr(u)Rr(v).               (3.4) 
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In particular, if u = [c(u), L(u), R(u)], v = [c(v), L(v), R(v)] are triangular fuzzy 
numbers, previous formulae (3.3) and (3.4) reduce to: 

∀r∈[0, 1), Lr(u ⋅z v) = c(u) Lr(v) + c(v) Lr(u) - Lr(u)Lr(v);                 (3.5) 

∀r∈[0, 1), Rr(u ⋅z v) = c(u) Rr(v) + c(v) Rr(u) + Rr(u)Rr(v).                (3.6) 

Some consequences are; 

(a) the product of two non-degenerate triangular fuzzy numbers is not a triangular 
fuzzy number; 

(b) the product of two non-degenerate symmetric fuzzy numbers is not a symmetric 
fuzzy number; 

(c) the left and right spreads of the product depends not only by the spreads of the 
factors, but they are strongly increasing with the increase of the cores of the factors; 

(d) the Zadeh’s extension multiplication is subdistributive with respect to the Zadeh 
extension addition, i.e., for every fuzzy numbers u, v, w, we have: 

(u + v) w ⊆ u w + v w,             (subdistributivity)              (3.7) 

 where ⊆ denotes inclusion between fuzzy sets. Equality in (3.7) holds if and only 
if u and v are both positive or both negative fuzzy numbers or w is a degenerate 
fuzzy number.  

From previous formulae it follows that if Ki ∼ [ci, si, si] and Xi ∼ [xi, ti, ti] are positive, 
simple, and symmetric fuzzy numbers, then the spreads of Y are: 

L(Y) = Σi (ci ti + xi si – si ti); R(Y) = Σi (ci ti + xi si + si ti),             (3.8) 

It is worth noting that formula (3.8) reduces to (2.16) if every ti is null and every xi is 
positive. 

The drawback (a) can be overcome by replacing the Zadeh’s extension 
multiplication u ⋅z v with the approximate multiplication u ⋅a v, defined by formulae:  

c(u ⋅a v) = c(u) c(v)                                                (3.9) 

∀r∈[0, 1), Lr(u ⋅a v) = uλ
1 Lr(v) + vλ

1 Lr(u) - Lr(u)Lr(v)/(1-r);               (3.10) 

∀r∈[0, 1), Rr(u ⋅a v) = uρ
1 Rr(v) + vρ

1 Rr(u) + Rr(u)Rr(v)/(1-r).              (3.11) 

If u and v are triangular fuzzy numbers, then u ⋅a v is a triangular fuzzy number 
having the same core and the same spreads of u ⋅z v. The limits of the approximation 
can be highlighted by a comparison of formulae (3.5), (3.6) with (3.10), (3.11). 

The drawback (c) deserves careful consideration. Suppose the values of the 
independent variables are positive real numbers. If we change the origin of axes, i.e., 
increasing the value assumed by each variable of a positive number h, it would seem 
logical to expect an increase in the core of Y but not of left and right spreads of Y. It 
might not be appropriate, at least in some cases, define an addition and a 
multiplication in which spreads only depend on spreads of factors and the 
multiplication is distributive with respect to the addition? 
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A solution is given by the “bounded operations”. In terms of spreads notation, the 
b-addition is defined by the formulae: 

C(u +b v) = C(u) + C(v);                                         (3.12) 

∀r∈[0, 1), Lr(u +b v) = max{Lr(u), Lr(v)};  Rr(u +b v) = max{Rr(u), Rr(v)}.    (3.13) 

Moreover, the b-multiplication is defined by the formulae: 

C(u ⋅b v) = C(u) ⋅ C(v);                                         (3.14) 

∀r∈[0, 1), Lr(u ⋅b v) = max{Lr(u), Lr(v)};  Rr(u ⋅b v) = max{Rr(u), Rr(v)}.     (3.15) 

Some important properties of b-addition and b-multiplication are [MA1]: 

(B1) b-sum and b-product of two trapezoidal fuzzy numbers are trapezoidal fuzzy 
numbers. Moreover, b-sum and b-product of simple fuzzy numbers are simple fuzzy 
numbers. 

(B2) b-addition and b-multiplication are associative, commutative, and have 
neutral elements 0 and 1, respectively.  

(B3) b-multiplication is subdistributive with respect to the b-addition. That is, for 
every fuzzy numbers u, v, w, we have  

(u +b v) ⋅b w ⊆ u ⋅b w +b v ⋅b w.                                  (3.16) 

The equality holds iff C(u) C(v) ≥ 0 or C(w) is a real number. 
(B4) The set Δ of triangular fuzzy number is closed with respect to b-addition and 

b-multiplication. Moreover, in Δ b-multiplication is distributive with respect to b-
addition. 

(B5) (invariance for translation) for every real numbers (i.e., degenerate fuzzy 
numbers) h, k, if u’ = u + h, v’ = v + k, then: 

∀r∈[0, 1), Lr(u’ +b v’) = Lr(u +b v);  Rr(u’ +b v’) = Rr(u +b v)             (3.17) 

∀r∈[0, 1), Lr(u’ ⋅b v’) = Lr(u ⋅b v);  Rr(u’ ⋅b v’) = Rr(u ⋅b v)               (3.18) 

Thus, unlike the Zadeh’s extension operations, the b-product of triangular numbers is 
a triangular number, the distributive property of the b-multiplication w. r. to the b-
addition holds in Δ and finally (3.17) and (3.18) imply that a change of the origin of 
axes do not change the spreads.  

An extension of the bounded operations are the ⊕-operations, introduced in 
[MA1], where ⊕ is a t-conorm, i.e., an operation on the interval [0, 1], ⊕: (a, b)∈[0, 
1]×[0, 1] → a⊕b∈[0, 1] associative, commutative, having 0 as neutral element and 
increasing with respect to every variable (see, e.g., [SU], [SV], [WE], [KY]).  

We assume there exist two strictly positive real numbers, Lmax and Rmax, the 
maximum left and right spreads, respectively. Let S be the set of fuzzy numbers such 
that, for every u∈S, L(u) ≤ Lmax, and R(u) ≤ Rmax.  
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We define the ⊕-addition on S by formulae: 

C(u +⊕ v) = C(u) + C(v);                                        (3.19) 

∀r∈[0, 1), Lr(u +⊕ v) = [(Lr(u)/Lmax)⊕(Lr(v)/Lmax)] Lmax;                 (3.20) 

∀r∈[0, 1), Rr(u +⊕ v) = [(Rr(u)/Rmax)⊕(Rr(v)/Rmax)] Rmax.                (3.21) 

The ⊕-multiplication on S is defined by: 

C(u ⋅⊕ v) = C(u) ⋅ C(v);                                          (3.22) 

∀r∈[0, 1), Lr(u ⋅⊕ v) = [(Lr(u)/Lmax)⊕(Lr(v)/Lmax)] Lmax;                (3.23) 

∀r∈[0, 1), Rr(u ⋅⊕ v) = [(Rr(u)/Rmax)⊕(Rr(v)/Rmax)] Rmax.               (3.24) 

By previous definitions it follows: 

(C1) The ⊕-addition and ⊕-multiplication are associative, commutative, having 
neutral elements 0 and 1, respectively.  

(C2) If ⊕ is the fuzzy union, then the ⊕-addition and the ⊕-multiplication reduces 
to the bounded operations.  

(C3) The left and right r-cut spreads of the sum u +⊕ v and the product u ⋅⊕ v are 
not greater than Lmax and Rmax, respectively. 

(C4) the invariance for translations holds. 

4 Remarks on Some Critical Points of the Variable-Oriented 
Research and Conclusions 

The variable-oriented research presents some critical points (see e.g., [BR1], [BR2], 
[RA]). Among these are the following assumptions: 

(1) homogeneity of the cases; 
(2) a linear relationship among the variables; 
(3) the additivity of the outcomes with respect to the variables input; 
(4) the necessity and sufficiency of the causes for the outcomes.  

The study of social phenomena based on diversity-oriented research put in evidence 
that these assumptions are often not justified by the evidence.  

In fact, if the cases belong to different types (to define with suitable procedures) 
then the following circumstances may occur:  

(a) the same causes give different outcomes;  
(b) different causes may yield the same outcome; 
(c)  for some types a cause (or the intersection of a set of causes) is sufficient to 

produce an outcome, for other types it is not sufficient; 
(d) for some types a cause (or the intersection of a set of causes) is necessary to 

produce an outcome, for other types it is not necessary; 
(e) the aggregation of causes to obtain a sufficient condition is superadditive; 
(f) the aggregation of necessary but not sufficient causes is subadditive. 
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Moreover, often a set of causes produces an outcome only if they exceed a certain 
level (or a real, positive, increasing w. r. to every variable, function of the levels of 
the causes is greater than a positive real number h). These situations can be 
formalized in terms of fuzzy sets. If K = {k1, k2, …, kp} is a set of causes and S is a 
population, the level of the cause ki on S can be defined as a fuzzy set μi : x∈S → [0, 
1]. If hi ∈ (0, 1] is the level at which the cause produces effect, then we have 
outcomes only in the hi-cut of μi. 

It follows a fundamental role of fuzzy sets and their aggregation to obtain 
necessary and/or sufficient conditions for outcomes. This is an alternative approach to 
the linear regression. This approach takes into account the complexity of the 
phenomena, i.e., the various features of each case study. In this frame of reference the 
relations between causes and effects are not linear, dependent on the diversity of 
cases, the level at which the cause produces effect on the elements of the population 
and so on. Insights into these aspects are in [BR1], [BR2], [RA]. 

References 

[BB]  Ban, A.I., Bede, B.: Cross product of L-R fuzzy numbers and properties. Annals of 
Oradea University, Fasc. Matem. 9, 95–108 (2003) 

[BF]  Bede, B., Fodor, J.: Product type operations between fuzzy numbers and their 
applications in Geology. Acta Polytechnica Hungarica 3(1), 123–139 (2006) 

[BG]  Bellman, R., Giertz, M.: On the analytic formalism of the theory of fuzzy sets. 
Information Sciences 5, 149–157 (1973) 

[BR1] Boudon, R.: L’analyse mathématique des faits socials, Paris, Plon (1967) 
[BR2] Boudon R.: Les méthods in Sociologie, Paris, P.U.F, (1969)  
[CH]  Cristea, I., Hošková, Š.: Fuzzy topological hypergroupoids. Iranian Journal of Fuzzy 

Systems 6(4), 13–21 (2009) 
[DP1] Dubois, D., Prade, H.: Fuzzy Set and Systems. Academic Press, New York (1980) 
[DP2] Dubois, D., Prade, H.: Fuzzy numbers: An overview. In: Bedzek, J.C. (ed.) Analysis of 

Fuzzy Information, vol. 2, pp. 3–39. CRC-Press, Boca Raton (1988) 
[GO] Goguen J.: On fuzzy robot planning, Memo no. 1 on Artificial Intelligence. University 

of California, Los Angeles, (1974)  
[GM] Grzegorzewski, P., Mrowska, E.: Trapezoidal approximations of fuzzy numbers. Fuzzy 

Sets and Systems 153, 115–135 (2005) 
[KY] Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: Theory and Applications. Prentice Hall, 

New Jersey (1995) 
[MM1] Mares, M.: Fuzzy Cooperative Games. Springer, New York (2001) 
[MM2] Mares, M.: Weak arithmetic on fuzzy numbers. Fuzzy sets and Systems 91(2), 143–

154 (1997) 
[MA1] Maturo, A.: Alternative Fuzzy Operations and Applications to Social Sciences. 

International Journal of Intelligent Systems 24, 1243–1264 (2009) 
[MA2] Maturo, A.: On Some Structures of Fuzzy Numbers. Iranian Journal of Fuzzy 

Systems 6(4), 49–59 (2009) 
[MV] Maturo, A., Tofan, I., Ventre, A.: Fuzzy Games and Coherent Fuzzy Previsions. Fuzzy 

Systems & A. I. 10(3), 109–116 (2004) 
[RA] Ragin, C.C.: Fuzzy-Set Social Science. University Chicago Press, Chicago (2000) 
[RO] Ross, T.J.: Fuzzy logic with engineering applications. McGraw-Hill, New York (1995) 



 Research in Social Sciences: Fuzzy Regression and Causal Complexity 249 

[SV]  Squillante, M., Ventre, A.G.S.: Consistency for uncertainty measure. International 
Journal of Intelligent Systems 13, 419–430 (1998) 

[SU] Sugeno, M.: Theory of fuzzy integral and its Applications, Ph. D. Thesis, Tokyo 
(1974) 

[WE] Weber, S.: Decomposable measures and integrals for archimedean t-conorms. J. Math. 
Anal. Appl. 101(1), 114–138 (1984) 

[YA] Yager, R.: A characterization of the extension principle. Fuzzy Sets Systems 18(3), 
205–217 (1986) 

[ZA1] Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965) 
[ZA2] Zadeh, L.: The concept of a Linguistic Variable and its Application to Approximate 

Reasoning I. Information Sciences 8, 199–249 (1975) 
[ZA3] Zadeh, L.: The concept of a Linguistic Variable and its Applications to Approximate 

reasoning II. Information Sciences 8, 301–357 (1975) 
[ZA4] Zadeh, L.: The concept of a Linguistic Variable and its Applications to Approximate 

reasoning III. Information Sciences 9, 43–80 (1975) 


	Research in Social Sciences: Fuzzy Regression and Causal Complexity
	1 Introduction and Motivation
	2 Fuzzy Numbers and Fuzzy Linear Regression: A Review and Critical Analysis of Some Fundamental Aspects
	2.1 Fundamental Concepts and Notations on Fuzzy Numbers
	2.2 Partial Fuzzy Linear Regression with Fuzzy Parameters
	2.3 Partial Fuzzy Linear Regression with Fuzzy Data
	2.4 Total Fuzzy Linear Regression

	3 Alternative Fuzzy Operations and Fuzzy Regression
	3.1 Some Problems and Drawbacks of the Zadeh Extension Fuzzy Regression

	4 Remarks on Some Critical Points of the Variable-Oriented Research and Conclusions
	References




