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Abstract. In this paper, we show how monads and substitutions allows
for a separation between social choice and social ‘choosing’. Choice as
value and choosing as operation is modeled using underlying signatures
and related term monads. These monads are arranged over Goguen’s
category Set(L), which provides the internalization of uncertainty both
in choice as well as choosing.

Keywords: Choice function, monad, Kleisli category, substitution.

1 Introduction

The discipline of social choice originates from objective probability used in jus-
tice and as pioneered by French mathematicians Borda [4] and de Condorcet [5].
The balance between individual liberty and societal authority was related to the
risk of innocent citizens being wrongly convicted and punished for crime. So-
cial justice as well as social order required that particular risk to be minimized.
Condorcet argued that judicial tribunals could manage probabilities and errors,
taking into account also some minimum required plurality to guarantee the prob-
ability. Uncertainty based voting schemas then are just behind the corner, and
is the historical prerequisite also for choice theory.

Objective probability eventually turns subjective, and probabilists believe
they have keys to inference mechanisms as well. Some modern time improve-
ments can be seen in these directions, but generally speaking, probability is not
logical.

The subject of social choice was revived in the 20th century by Arrow [1] who,
facing the inconsistencies of group decisions, put the discipline of social choice
in a structured axiomatic framework leading to the birth of social choice theory
in its modern form. As Sen [14] pointed out “Arrow’s impossibility theorem is
a result of breathtaking elegance and power, which showed that even some very
mild conditions of reasonableness could not be simultaneously satisfied by any
social choice procedure, within a very wide family”. Accordingly, impossibility
results in social choice theory have been seldom considered as being destructive of
the possibility of social choice and welfare economics. Sen [14] argued against that
view, claiming that formal reasoning about postulated axioms, as well as informal
understanding of values and norms, both point in the productive direction of
overcoming social choice pessimism and of avoiding impossibilities.
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Arrow’s focused on individual values and ranking, together with impossibility
theorems, and dealt with individual preferences and choice processes. Probabili-
ties are not in the ingredients, but rather operators and functions, and properties
about them. There are no counterparts in probability theory for these concepts.
From a logical point of view, Arrow uses implicitly underlying signatures, even if
they are never formalized, and since they are not formalized, it is never seen that
these choice functions indeed could have been integrated into a logical frame-
work. Arrow follows von Neumann and Morgenstern’s “mathematical tradition”
[13] in his success stories of economic and social sciences, but also without ending
up in any logical framework.

In [6] we assumed that making a distinction between choice and mechanism
for choice could advantageously enrich the theoretical framework of social choice
theory opening the way to categorical approaches. The idea of generalizing the
Arrow’s paradigm through a new architecture of social choice procedure was
introduced, e.g., by Bandyopadhyay [2] and then extended in [3] where a social
choice procedure is proposed which depends both on the way a set of alternatives
is broken up into the subsets and the sequence in which each of these subsets is
taken up for consideration.

Our standpoint in this paper is that social choice functions must identify the
difference between ‘we choose’ and ‘our choice’, the former being the operation
of choosing, the latter being the result of that operation. We view this from a
signature point of view, i.e., using formalism involving signatures and their alge-
bras. Classically, and without consideration of underlying categories, a signature
Σ = (S,Ω) consists of sorts, or types, in a set S, and operators in a set Ω. More
precisely, Ω is a family of sets (Ωn)n≤k, where n is the arity of the operators in
Ωn. An operator ω ∈ Ωn is syntactically written as ω : s1× · · · ×sn �� s, where
s1, . . . , sn, s ∈ S. Operators in Ω0 are constants. Given a set of variables we may
construct the set of all terms over the signature. This set is usually denoted TΩX ,
and its elements are denoted (n, ω, (ti)i≤n), ω ∈ Ωn, ti ∈ TΩX, i = 1, . . . , n, or
ω(t1, . . . , tn).

In this algebraic formalism, ω corresponds to the operation of choosing, and
ω(t1, . . . , tn) is a result of choosing, i.e., a choice. Note that both the operator
ω as well as the term ω(t1, . . . , tn) are syntactic representations of mechanisms
for choosing and choices. The semantics of ω is a mapping A(ω) : A(s1)× · · · ×
A(sn) �� A(s).

Social choice is basically seen as a mapping

f : X1 × · · · ×Xn
��X

where agents i ∈ {1, . . . , n} are choosing or arranging elements in sets Xi. The
aggregated social choice related to xi ∈ Xi, i = 1, . . . , n is then represented by
f(x1, . . . , xn). In most cases X1 = · · · = Xn = X , and the social choice function
is then

f : X × · · · ×X ��X. (1)
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This can be seen either as a semantic representation which has an underlying
choice operator in its signature, or it is syntactic and elements in X are basically
constant operators, i.e., X = Ω0 in some operator domain.

In the view of ‘choosing’ we would replace X with the set of substitutions.
More precisely, let C be the Kleisli category SetTΩ , where TΩ is the term monad
over Set. Elements σ in HomC(X,X) are then substitutions σ : X �� TΩX ,
and X = HomC(X,X) is the corresponding set of substitutions capturing the
notion of individual choice and choosing. The choice function

ϕ : X × · · · × X �� X (2)

therefore may consider and compute with not just the output, the choice, but
also with all the operators, i.e., the whole mechanism of choosing, leading to
that particular term.

We will expand these ideas to cover uncertainty modeling, and we will show
how representation of uncertainty can be seen as related to an appropriate choice
of an underlying category. Furthermore, we will see how all this can be embedded
into a many-sorted framework.

In the literature there are some previous categorical approaches Keifing’s [11]
objective is similar to ours, namely a unification of framework, and indeed uni-
fication of concept, results, and theorem framework based on more or less for-
mal methods. Keiding involves categories and Hom functors, but the categor-
ical framework remains rather poor, as there is no use of operators. The set
Hom(A,PX) indeed comes with no structure. It is simply a set of mappings. In
the end, we will have a HomC functor, where C also can carry uncertainty once
(many-sorted) term monads are constructed over Goguen’s category Set(L). It
then integrates both operators and uncertainties, and even more so, operators
working internally over uncertainties. Eliaz [10], making no reference to [11],
does not add any new formalism or formal methodology.

2 Monads and Underlying Categories

A monad (or triple, or algebraic theory) over a category C is denoted F =
(F, η, μ), where F : C ��C is a covariant functor, and η : id ��F and μ : F◦F ��F
are natural transformations satisfying μ◦Fμ = μ◦μF and μ◦Fη = μ◦ηF = idF. Any
monad F over a category C, gives rise to a Kleisli category CF whose objects are
Ob(CF) = Ob(C), and morphisms are HomCF(X,Y ) = HomC(X,FY ). Morphisms
f : X � Y in CF are morphisms f : X �� FY in C, with ηX : X �� FX
being the identity morphism. Composition of morphisms in CF is defined as

(X
f � Y ) � (Y

g � Z) = X
μZ◦Fg◦f �� FZ.

Let L is a completely distributive lattice, and let Set(L) be the (Goguen) cate-

gory where objects are pairs (A,α) with α : A ��L, and morphisms (A,α)
f

��

(B, β) are mappings f : A �� B such that β(f(a)) ≥ α(a) for all a ∈ A. The
category Set is not isomorphic to Set(2), where 2 = {0, 1}.
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For a set of sorts S, the many-sorted category of sets SetS has objects
{Xs}s∈S, where Xs, s ∈ S, are objects in Set. Morphisms fs : Xs

��Ys, s ∈ S,
in Set, produce morphisms {fs}s∈S : {Xs}s∈S

�� {Ys}s∈S in SetS . For a mor-
phisms {gs}s∈S : {Ys}s∈S

�� {Zs}s∈S, composition with {fs}s∈S is sort-wise,
i.e., {gs}s∈S ◦{fs}s∈S = {gs ◦fs}s∈S. For objects in SetS , set operations are also
defined sort-wise.

Functors Fs,Gs : Set �� Set can be lifted to functors FS = {Fs}s∈S and
GS = {Gs}s∈S from SetS to SetS , and composition is again sort-wise, i.e.,
FS ◦ GS = {Fs ◦ Gs}s∈S .

The product
∏

i∈I Fi and coproduct
∐

i∈I Fi of covariant functors Fi over SetS
is defined as

(
∏

i∈I

Fi){Xs}s∈S =
∏

i∈I

Fi{Xs}s∈S

and

(
∐

i∈I

Fi){Xs}s∈S =
∐

i∈I

Fi{Xs}s∈S

with morphisms being handled accordingly.
The many-sorted underlying category SetS({L}s∈S) is defined sort-wise with

respect to L. That is, objects are indexed sets of pairs {(As, αs)}s∈S with αs :
As

�� Ls and morphisms {fs}s∈S : {(As, αs)}s∈S
�� {(Bs, βs)}s∈S are such

that βs(fs(a)) ≥s αs(a) for all s ∈ S and a ∈ As.

3 The Term Monad over SetS({L}s∈S)

A many-sorted signature Σ = (S,Ω) over SetS consists of a set S of sorts
considered as a set in ZF, and a set Ω of operators as an object in Set. Operators
in Ω are indexed by sorts and syntactically denoted ω : s1 × · · · × sn �� s,
where n is the arity of the operation. We may write Ωn for the set (as an object
of Set) of n-ary operations. Clearly Ω =

∐
n≤k Ωn, where k is a cardinal number

representing the ‘upper bound of arities’.
Let now {(Ωn, ϑn) | n ≤ k} be a family of objects in Set(L). Further, let

(Ω, ϑ) =
∐

n≤k(Ωn, ϑn) be a fuzzy operator domain, i.e., ϑn : Ωn
�� L. Note,

we write Ωs1×···×sn
�� s for the set of operations ω : s1 × · · · × sn �� s.

A many-sorted signature Σ = (S, (Ω, ϑ)) over Set(L) consists again of a set
S of sorts considered as a set in ZF, and a pair (Ω, ϑ) (of operators) as an object
in Set(L).

Let

T0
Σ = idSetS({L}s∈S)

and

T0
Σ,s{(Xs, ξs)}s∈S = (Xs, ξs).

For convenience, given an object A in a category C, we will make use of the
constant functor AD : D ��C which assigns any object in D to A, and morphisms
in D to the identity morphism idA in C. Further, for s1, . . . , sn ∈ S we define
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a functor args1×···×sn : SetS({L}s∈S) �� Set(L) by arg∅({(As, αs)}s∈S) =
({∅},�) and

args1×···×sn({(As, αs)}s∈S) = ( args1×···×sn({As}s∈S),

args1×···×sn({αs}s∈S))

where

args1×···×sn({As}s∈S) =
∏

i=1,...,n

Asi and

args1×···×sn({αs}s∈S)(a1, . . . , an) =
∧

i=1,...,n

αsi(ai).

The functor

(Ωs1×···×sm
�� s, ϑm)SetS({L}s∈S) × args1×···×sm : SetS({L}s∈S) �� Set(L)

now allows to define

T1
Σ,s{(Xs, ξs)}s∈S =

∐

s1,...,sm
0≤m≤k

((Ωs1×···×sm
�� s, ϑm)SetS({L}s∈S)

× args1×···×sm{(Xs, ξs)}s∈S)

=
∐

s1,...,sm
0≤m≤k

((Ωs1×···×sm
�� s, ϑm)

× (
∏

i=1,...,m

Xsi ,
∧

i=1,...,m

ξsi ))

= (T 1
Σ,s{Xs}s∈S, βs)

where

βs(ω : s1 × · · · × sm �� s, (xi)i≤m) = ϑm(ω) ∧ args1×···×sm({ξs}s∈S)((xi)i≤m),

and (xi)i≤m ∈ ∏
i=1,...,mXsi . We then have

T1
Σ{(Xs, ξs)}s∈S = {T1

Σ,s{(Xs, ξs)}s∈S}s∈S.

Further,

Tι
Σ,s{(Xs, ξs)}s∈S =

∐

s1,...,sm

((Ωs1×···×sm
�� s, ϑm)SetS({Ls}s∈S)

× args1×···×sm ◦
⋃

κ<ι

Tκ
Σ{(Xs, ξs)}s∈S)

and
Tι
Σ{(Xs, ξs)}s∈S = {Tι

Σ,s{(Xs, ξs)}s∈S}s∈S,
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for each positive ordinal ι. Finally, let TΣ =
∨

ι<k̄ T
ι
Σ where k̄ is the least cardinal

greater than k and ℵ0. Terms of sort s are denoted TΣ,s = args ◦ TΣ.
Clearly, each TΣ,s : SetS({Ls}s∈S) ��Set(L) is a functor and, by extension,

so is
TΣ{(Xs, ξs)}s∈S = {TΣ,s{(Xs, ξs)}s∈S}s∈S.

Note, it is easy to verify that

TΣ,sTΣ{Xs}s∈S = args TΣ{Xs}s∈S

and TΣ is therefore idempotent.
The extension of TΣ to a monad is enabled by the natural transformations

(ηTΣ
s )(Xs,ξs) : (Xs, ξs) �� TΣ,s{(Xs, ξs)}s∈S , and

(μTΣ
s )(Xs,ξs) : TΣ,sTΣ{(Xs, ξs)}s∈S

�� TΣ,s{(Xs, ξs)}s∈S

that are simply defined, with the help of idempotency of TΣ, by

(ηTΣ
s )(Xs,ξs)(xs, αs) = (xs, αs), and

(μTΣ
s )(Xs,ξs)(xs, αs) = (xs, αs).

We write ηTΣ = {ηTΣ
s }s∈S and μTΣ = {μTΣ

s }s∈S.

Proposition 1. TΣ = (TΣ, η
TΣ , μTΣ ) is a monad over SetS({Ls}s∈S).

Remark 1. The many-sorted, many-valued, term monad specialized to a one-
pointed set of sorts S = {s} collapses to the classical many-valued term monad.

Remark 2. Morphisms

{fs}s∈S : {(Xs, αs)}s∈S
� {(Ys, βs)}s∈S

in SetS({Ls}s∈S)TΣ
, the Kleisli category of TΣ , capture the notion of many-

sorted and many-valued variables being substituted by many-sorted terms over
many-sorted and many-valued variables.

4 Preference Relations

Arrow [1] studied social welfare functions, the arguments of which are named
components of social states. These functions map n-tuples of individual prefer-
ences (orderings [1]) into a collective preference:

f : (Xm)
n → Xm

Here the assumption is that X is an ordering (X,	) with suitable properties.
The preference value in this case is an ordinal value and not a scale value. Clearly,
choice functions can also involve scale values, so that

f : (Rm)
n → R

m
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i.e. using the real line, or some suitable closed interval within the real line,
for the preference (scale) values. Note how the underlying signature handles
this situation internally for X = HomC(X,X), where C is the Kleisli category
Set(L)TΣ .

Computing with preferences is less transparent with orderings built into the
set X of alternatives [6]. Also in this case there is a corresponding underlying
signature capturing this situation.

5 Conclusion and Future Work

In the presentation above we still use only terms. Sentences, satisfaction |=
(based on the algebraic models of the signature), and entailment 
 are not yet
included. Axioms of the logic and inference rules for entailment are then also
missing, so we no ‘logic of choice’ at this point, and this has fallen outside the
scope of this paper. See [7] for a treatment of generalized general logic.

Going beyond the distinction between choosing and choice, and entering ra-
tionality of choice, Mill [12] said that behavior is based on custom more than
rationality. Custom is clearly based on particular algebras acting as models and
used in |=, whereas rationality is based on representable sentences interrelated
by 
. These aspects are investigated in future work.

In consensus reaching [8,9] we have a dynamic situation of aggregated choice,
where individual preferences change within a consensus reaching mechanism.
This opens up interesting perspectives as consensus reaching in our substitution
model for social choice now also reaches the level of ‘choosing’, i.e., consensus
is reached either on ‘choice’ level including dynamics for the ‘choosing’ level, or
can even be a stronger consensus on ‘choosing’ levels as well. Similar situations
appear in negotiation.
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rendues à la pluralité des voix. Imprimerie royale, Paris, France (1785)

6. Eklund, P., Fedrizzi, M., Nurmi, H.: A categorical approach to the extension of
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