
Rewrite-Based Statistical Model Checking
of WMTL�

Peter Bulychev1, Alexandre David1, Kim G. Larsen1, Axel Legay2,
Guangyuan Li3, and Danny Bøgsted Poulsen1

1 Aalborg University, Denmark
2 INRIA Rennes – Bretagne Atlantique, France

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, P.R. of China

Abstract. We present a new technique for verifying Weighted Metric
Temporal Logic (WMTL) properties of Weighted Timed Automata. Our
approach relies on Statistical Model Checking combined with a new mon-
itoring algorithm based on rewriting rules. Contrary to existing mon-
itoring approaches for WMTL ours is exact. The technique has been
implemented in the statistical model checking engine of Uppaal and
experiments indicate that the technique performs faster than existing
approaches and leads to more accurate results.

1 Introduction

Runtime verification (RV) [11,1] is an emerging paradigm used to design a series
of techniques whose main objective is to instrument the specification of a sys-
tem (code, ...) in order to prove/disprove potentially complex properties at the
execution level. Over the last years, RV has received a lot of interest and has
been implemented in several toolsets. Such tools have been successfully applied
on several real-life case studies.

The main problem with RV is that, contrary to classical verification tech-
niques, it does not permit to assess the overall correctness of the entire system.
Statistical model checking (SMC) [4,19,17] extends runtime verification capabili-
ties by exploiting statistical algorithms to get evidence that a given system satis-
fies some property. The core idea of the approach is to monitor several executions
of the system. The results are then used together with algorithms from statistics
to decide whether the system satisfies the property with a probability greater
than some threshold. Statistical model checking techniques can also be used to
estimate the probability that a system satisfies a given property [12]. In contrast
to classical exhaustive formal verification approaches, a simulation-based solu-
tion does of course not guarantee a result with 100% confidence. However, it is
possible to bound the probability of making an error. Simulation-based meth-
ods are known to be far less memory and time intensive than exhaustive ones,
� Work partially supported by the VKR Centre of Excellence MT-LAB and the Sino-

Danish Basic Research Center IDEA4CPS.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 260–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Rewrite-Based Statistical Model Checking of WMTL 261

and are sometimes the only option [20]. Statistical model checking, which clearly
complements RV, is widely accepted in various research areas such as software
engineering, in particular for industrial applications, or even for solving problems
originating from systems biology [13,10].

To get a more accurate intuition, Fig. 1 provides a schematic view of a sta-
tistical model checker and its interaction with RV procedures.

Generator

Validator

Core algorithm

M , τ

φ

θ,ε

Pr[≤ τ](φ) = a± ε with confidence θ

Run

Yes/No

Inconclusive

Fig. 1. A statistical model checker. The run generator first generates a run of M ,
which is propagated into the run validator. The run validator then validates if the
run satisfies the property ϕ and returns Y es or No to the core algorithm. Afterwards
the core algorithm decides if another run is needed or if it, based on the accumulated
knowledge, can draw a conclusion.

The run generator is responsible for generating runs of the model under ver-
ification and the run validator, which corresponds to the runtime verification
part of the effort, validates if a run satisfy the property or not. The core algo-
rithm collects the simulation results until sufficient samples has been obtained
to provide an overall result. The core algorithm is computationally lightweight
compared to the remaining two. An optimisation of SMC is therefore most easily
obtained by optimising either the run generation or the run validation. In this
paper, we focus on the run validation part.

In our work, we consider combining RV and SMC techniques in order to ver-
ify complex quantitative properties (performance evaluation, scheduling, ..) over
rich systems. More precisely, we are interested in computing the probability that
a random run of a Weighted Timed Automata(WTA)[3] satisfies a formula writ-
ten in Weighted Metric Temporal Logic (WMTL)[5]. WTA is a rich formalism
capable of capturing (quantitative) non-linear hybrid systems, while WMTL cor-
responds to the real-time extension of the linear temporal logic equipped with
cost operators. In this paper, due to the use of SMC, we assume that the scope of
the temporal operators is bounded, i.e., that one can decide whether a run satis-
fies a formula only by looking at a finite prefix. Unfortunately, it is known that,
due to the expressivity of the automata-based model, the problem of verifying

262 P. Bulychev et al.

WMTL with respect to WTA is undecidable [6] – hence it cannot be tackled with
existing formal techniques such as model checking. Another drawback is that it is
known that, even for the case where temporal operators are bounded, WMTL is
more expressive than the class of deterministic timed automata [15]. This latter
result implies that there is no automata-based runtime monitoring procedure for
WMTL, even for the case where the scope of the temporal operators is finitely
bounded. A first solution to the above problems could be to use a three-valued
logic [2]. However, the absence of decision results is often unsatisfactory from an
engineering point of view, especially when dealing with performance analysis.

In [8], we proposed the first SMC-based verification procedures for the even-
tually and always fragments of WMTL. Our work relies on a natural stochastic
semantic for WTA. The work was implemented in Uppaal-smc and applied
to a wide range of case studies. However, our original work does not consider
nested temporal operators for which a solution was first proposed by Clarke et
al. in [21]. While the approach in [21] is of clear interest, it only works for a
subset of MTL where the temporal operators can only be upwards bounded,
i.e., the lower bound is 0. In [7], we proposed another approach that relies on
monitoring automata representing over and under approximations of solutions
to the WMTL formula. This approach, which has been implemented in Casaal
and Uppaal-smc, exploits confidence levels obtained on both approximations
in order to estimate the probability to satisfy the formula. The first drawback
with the approach in [7] is that both the under and over approximation depend
on some precision that has an influence on the confidence level returned by the
SMC algorithms. The second drawback is that automata-based monitors may
be of large size, hence intractable.

In this paper, we propose a new monitoring approach for WMTL formulas.
Contrary to existing approaches that work by first constructing a monitor for
the property, ours exploit a graph-grammar procedure that rewrite the formula
on-the-fly until a decision can be taken. The approach extends that of [16] to a
timed logic. Contrary to existing off-line monitoring approaches [9], ours stops
as soon as the formula is proved/disproved, which allows to save computation
time and hence drastically improve both memory and time performances. Our
approach has been implemented in Uppaal-smc and evaluated on several case
studies, from random large-size formulas to concrete applications. As expected,
there are many situations where we clearly outperform [7] while being more
precise!

Outline. In section 2 we introduce our modelling formalism Networks of Weighted
Timed Automata. Later in section 3 we define the WMTL logic, and section 4
describes our rewrite-based algorithm for monitoring of WMTL properties. The
experiments are described in section 5.

2 Networks of Priced Timed Automata

In this paper, we briefly recap the formalism of networks of Weighted Timed
Automata[3].

Rewrite-Based Statistical Model Checking of WMTL 263

Let X be a set of variables called clocks. A clock valuation over X is a function
v : X → R that assigns a real-valued number to each clock. We let V (X) denote
all possible valuations over X and let 0 be the valuation that assign zero to
all clocks. An upper bound (resp. lower bound) over X is of the form x �� m
where x ∈ X , m ∈ N, and ��∈ {<,≤} (resp. ��∈ {>,≥}). We denote by B≤(X)
(resp. B≥(X)) the set of upper bounds (resp. lower bounds) over X . We let
B(X) = B≤(X) ∪ B≥(X). Let v be a valuation over X and let g ⊆ B(X) then
we write v � g if for all (x �� m) ∈ g, v(x) �� m. For a valuation v ∈ V (X), a
function r : X → Q and a τ ∈ R we let v + r · τ be the valuation over X such
that (v + r · τ)(x) = v(x) + r(x) · τ for every clock x ∈ X . Let X2 ⊆ X then
v[X2 = 0] is the valuation that assigns zero to every clock in X2 and agress with
v on all other clocks. For two valuations v1 and v2 we let v2−v1 be the valuation
v′ where v′(x) = v2(x)− v1(x) for every clock x ∈ X .

Definition 1. A Weighted Timed Automaton over the finite set of actions Σ
and the set of propositions P is a tuple (L, �0,X ,X i

O, E, I ,R,XR , P), where

– L is a finite set of locations,
– �0 ∈ L is the initial location,
– X is a finite set of clocks,
– XO ⊆ X is a finite set of observable clocks
– E ⊆ L× 2B

≥(X) ×Σ ×X × L is a set of edges,
– I : L → 2B

≤(X) assigns invariants to the locations,
– R : L → Q assigns transition rates to locations,
– XR : L → X → Q assign rates to the clocks of the WTA and
– P : L → 2P assign propositions to the locations of the WTA.

The semantics of a WTA A = (L, �0,X ,X i
O, E, I ,R,XR , P) is given as a timed

transition system with state space L×V (X) (denoted (SP (A)) and initial state
(�0, 0) (denoted init(A)). For consistency, we require 0 � I(�0). Furthermore we
require that the rates of the observable clocks in any location is greater than 0.
The transition rules are given below

– delay: (�, v) d−→ (�, v′) where d ∈ R≥0, if v′ = v + XR(�) · d and v′ � I(�)
– discrete transition: (�, v) a−→ (�′, v′) if there exists (�, g, a,Y, �′) ∈ E such that

v � g, v′ = v[Y = 0] and v′ � I(�′).

To prepare for composition of WTAs we assume that the set of actions Σ is
partitioned into a set of input actions Σi and output actions Σo. Also we assume
the WTA is input-enabled for the input actions Σi, i.e. that for any a ∈ Σi and
any state (�, v) there exists a transition (�, v)

a−→ (�′, v′). A WTA is deterministic
for Σ′ ⊆ Σ if there exists at most one transition for each a ∈ Σ. In the paper,
we let Ai = (Li, �i0,X i,X i

O, E
i, Ii,Ri,XRi

, P i).

Network of WTAs. A network of WTAs (NWTA) is a set of WTAs executing in
parallel. The automata communicate via broadcast synchronisation.

264 P. Bulychev et al.

Let A1, A2, . . . , An be WTAs over the common set of actions Σ. Furthermore,
let Σ1, Σ2 . . . Σn be mutually disjoint subsets of Σ and for all i let Ai be deter-
ministic and input-enabled with respect to Σ \Σi and deterministic with respect
to Σi. Then we call N = A1|A2| . . . |An a network of WTAs over Σ where Σi is
the output actions of Ai and Σ \Σi is its input actions.

The semantics of the network of WTAs is a timed transition system with
the state space SP (N) = SP (A1) × SP (A2) × · · · × SP (An) and the initial
state (init(A1), init(A2), . . . , init(An)). We refer to an element s = (s1, s2, . . . ,
sn) ∈ SP (N) as a state vector of the network and let si = si. The transition
rules of a network is given as

– (s)
d−→ (s′) if for all i, 1 ≤ i ≤ n, si

d−→ s′i, and d ∈ R≥0

– (s)
a−→ (s′) if for all i, 1 ≤ i ≤ n si

a−→ s′i, and a ∈ Σ.

Consider WTAs given in Fig. 2. WTAs (a) and (b) are competing to force (c)
to go either to location Left or to location Right. Initially both competitors are
waiting for between 3 and 5 time units whereafter one of them moves the (c)
to either Left or Right. Afterwards both competitors have a period where time
progresses and nothing occurs. Indeed, when one of the competitors returns it
must wait for between 3 and 5 time units again and choose to either move (c) or
let it be and enter a waiting period again. The primary difference between (a)
and (b) is that (b) rushes to return to a position from which it can change (c)
and (a) returns within 5 time units.

x:=0 x:=0

x:=0 x>=3
flip[0]!

back[0]!
flip[1]?

x<=5

x<=5

(a)

x:=0 x>=1

x:=0

x:=0 x>=3

1

flip[1]! back[1]!
flip[0]?

x<=5

(b)

Left Right
flip[0]?

flip[1]?

flip[1]?

flip[0]?

(c)

Fig. 2. Network of Timed Automata

Let s = ((�1, v1), (�2, v2), . . . , (�n, vn)) be a state vector for A1|A2| . . . |An.
Then we let P (s) =

⋃n
i=1 P

i(�i). Let x ∈ Xi for som i then V (s, x) = vi(x).

Definition 2 (Run). Let A1|A2| . . . |An be a network of WTAs. A run of the
network is an infinite weighted word (P0, v0)(P1, v1) . . . where for all i, vi is a
valuation over Y =

⋃
i∈{1,2,...,n} X i

O and

Rewrite-Based Statistical Model Checking of WMTL 265

– v0 = 0 ,
– there exists an alternating sequence of delays and discrete transitions s0

d0−→
s′0

a0−→ s1
d1−→ . . . , where for all i, 0 < i, and for all x ∈ Y vi(x) = vi−1(x) +

(V (s′i−1, x)− V (si−1, x)).
– s0 = (init(A1), init(A2), . . . , init(An)) and
– for all j, j ≥ 0,Pj = P (sj).

For a run ω = (P0, v0)(P1, v1) . . . , we let ωi = (Pi, vi)(Pi+1, vi+1) A run ω is
called diverging for clock x if for any i there exists a j such that vj(x) > vi(x)+1.
A run is diverging if it is diverging for all clocks. In what follows, we assume
that there always exists a clock τ in a WTA, and this clock always have a rate
of 1 and is never reset, i.e. τ measures the time length of a run.

Stochastic Semantics. In [8] we introduced the stochastic semantics for NWTAs,
i.e. proposed a probability measure on the set of all runs of a network and
described an algorithm for generating a random run. Roughly speaking, the
stochastic semantics of WTA components associates probability distributions on
both the delays one can spend in a given state as well as on the transition between
states. In Uppaal-smc uniform distributions are applied for bounded delays
and exponential distributions for the case where a component has unbounded
delay. In a network of WTAs the components repeatedly race against each other,
i.e. they independently and stochastically decide on their own how much to
delay before outputting, with the “winner” being the component that chooses
the minimum delay.

Statistical Model Checking. As said in the introduction, we use SMC [4,19,17]
to compute the probability for a network of WTAs to satisfy a given property.
Given a program B and a trace-based property1 φ , SMC refers to a series
of simulation-based techniques that can be used to answer two questions: (1)
qualitative: is the probability for B to satisfy φ greater or equal to a certain
threshold θ (or greater or equal to the probability to satisfy another property
φ′) [19]? and (2) quantitative: what is the probability for B to satisfy φ [12]? In
both cases, the answer is correct up to some confidence level, i.e., probability
that the algorithm does not make mistake, whose value can be configured by the
user. For the quantitative approach, which we will intensively use in this paper,
the method computes a confidence interval that is an interval of probabilities
that contains the true probability to satisfy the property. The confidence level is
interpreted as the probability for the algorithm to compute a confidence interval
that indeeds contains the probability to satisfy the property.

Our Uppaal-smc toolset implements a wide range of SMC algorithms for
WTAs. In addition, the tool offers several features to visualize and reason on
the results. Until now, the monitoring procedure for WMTL relies on a tech-
nique that computes over and under approximation monitors for the formulas.
In this paper, we go one big step further and propose a more efficient and precise
monitoring procedure.
1 i.e. a property with semantics defined on traces.

266 P. Bulychev et al.

3 Weighted Metric Temporal Logic

In this section we review the syntax and semantics of Weighted Metric Temporal
Logic (WMTL) [5]. The syntax is defined as follows.

Definition 3. A WMTL formula over the propositions P and the clocks X is
generated by the grammar:

ϕ, ϕ1, ϕ2 ::= � | ⊥ | p | ¬p | Oϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1U
x
[a,b]ϕ2 | ϕ1R

x
[a,b]ϕ2

where a, b ∈ Q, a ≤ b, p ∈ P and x ∈ X .

As one can see in the syntax, we restrict to a fragment of WMTL where temporal
operators are bounded. As stated in the introduction, this fragment is sufficient
to break any decidability results. Observe that WMTL is an extension of Metric
Temporal Logic (MTL) [14] in which U and R can also be bounded for arbitrary
clocks. As an example, bounding U and R over arbitrary clock allows one to ex-
press that a communication device should recover from a state without spending
more than x units of energy. This can be accomplished by adding an observable
clock, that measures the energy consumption, to the model and bound the U
and R modalities over this clock.

We interpret WMTL formulas over runs of WTAs. Informally, the WMTL
formula ϕ1U

x
[a,b]ϕ2 is satisfied by a run if ϕ1 is satisfied on the run until ϕ2 is

satisfied, and this should happen before the value of the clock x increases with
more than b units starting from the beginning of the run, and after it increases
for more than a units. Formula Oϕ means that ϕ should be satisfied starting
from the next observation of the run. The logical operators are defined as usual,
and the release opearator R is dual to U , and ϕ1R

x
[a,b]ϕ2 ≡ ¬(¬ϕ1U

x
[a,b]¬ϕ2).

Formally, let ω = (P0, v0)(P1, v1) . . . be a timed run. The satisfaction relation
is inductively defined as

– ω � �
– ω � p if p ∈ P0

– ω � ¬p if p /∈ P0

– ω � Oϕ if ω1 � ϕ

– ω � ϕ1 ∨ ϕ2 if ω � ϕ1 or ω � ϕ2

– ω � ϕ1 ∧ ϕ2 if ω � ϕ1 and ω � ϕ2

– ω � ϕ1U
x
[a,b]ϕ2 if there exists i such that a ≤ vi(x) − v0(x) ≤ b, ωi � ϕ2 and

for all j < i we have ωj � ϕ1

– ω � ϕ1R
x
[a,b]ϕ2 if there exists i such that a ≤ vi(x)− v0(x) ≤ b, ωi � ϕ1 and

for all j ≤ i, ωj � ϕ2, or for all i such that vi(x)− v0(x) ≤ b we have ωi � ϕ2

In the rest of the paper, we use the following equivalences: ♦x
[a,b]ϕ = �Ux

[a,b]ϕ
and �x

[a,b]ϕ = ⊥Rx
[a,b]ϕ. We also use �[a,b]ϕ instead of �τ

[a,b]ϕ for the case τ
grows with rate 1.

Rewrite-Based Statistical Model Checking of WMTL 267

Example 1. Consider again the WTAs in Fig. 2 and assume that the winner of
the competition is the one who managed to have (c) located in its designated
location for 8 consecutive time units. To express that (a) wins within 100 time
units we need to state that (c) stays in Left for 8 consecutive time units at some
point and that it has not stayed in Right for 8 consecutive time units before that
point. Using WMTL this can be expressed like

(¬Left ∨ ♦[0,8]Right)U[0,92](�[0,8]Right).

We now focus on deciding a WMTL formula ϕ on a finite prefix of an infinite di-
verging run ω = (P0, v0)(P1, v1) We first define the bound function N(w,ϕ)
inductively as follows:

N(ω,�) = N(ω,⊥) = N(ω, p) = 0

N(ω,¬p) = 0

N(ω, ϕ1 ∧ ϕ2) = max{N(ω, ϕ1), N(ω, ϕ2)}
N(ω, ϕ1 ∨ ϕ2) = max{N(ω, ϕ1), N(ω, ϕ2)}

N(ω,O(ϕ)) = 1 +N(ω, ϕ)

N(ω, ϕ1U
x
[a;b]ϕ2) = maxi.a≤vi(x)−v0(x)≤b

(
max{i+N(ωi, ϕ2),

maxj<i{j +N(ωj, ϕ1}}
)

N(ω, ϕ1R
x
[a;b]ϕ2) = maxi.a≤vi(x)−v0(x)≤b

(
max{i+ 1, i+N(ωi, ϕ2),

maxj≤i{j +N(ωj, ϕ1}}
)

The bound function characterises the maximal prefix of ω that one needs to
observe to decide ϕ. Observe that, contrary to [21], the bound depends not only
on the formula but also on the run itself. The latter is due to the introduction
of the next operator that is absent in [21].

We say that two infinite runs ω1 = (P1
0 , v

1
0)(P1

1 , v
1
1) . . . and ω2 = (P2

0 , v
2
0)

(P2
1 , v

2
1) . . . are n-equivalent, denoted ω1 ≡n ω2, if for all i ≤ n P1

i = P2
i and

v1i = v2i . We say that ω n-boundly satisfies ϕ, denoted ω �n ϕ, iff for all ω′ where
ω ≡n ω′, ω′ � ϕ. We say that run n-boundly violate ϕ if for all ω′ where ω ≡n ω′,
ω′

� ϕ. It is easy to see that ω �n ϕ =⇒ ω � ϕ and ω �
n ϕ =⇒ ω � ϕ. We can

now conclude with the following theorem that shows that any WMTL property
can be decided on a finite prefix of the run.

Theorem 1. Let ω be an infinite run and ϕ be a WMTL formula. Then ω � ϕ
if and only if ω �N(ω,ϕ) ϕ and ω � ϕ if and only if ω �

N(ω,ϕ) ϕ.

4 Monitoring WMTL Properties

We present an efficient online monitoring algorithm for checking if a given infinite
run ω of a WTA satisfies a given WMTL property ϕ.

268 P. Bulychev et al.

Algorithm 1. WMTL formula satisfiability checking
// Input: MTL formula ϕ and weighted word ω
// Output: true iff ω |= ϕ, false otherwise
i:=0
while ϕ �= � ∧ ϕ �= ⊥ do

ϕ:=β(γ(ϕ,Pi, vi+1 − vi))
i:=i+1

end
if ϕ == � then

return true
end
if ϕ == ⊥ then

return false
end

The pseudo code of our algorithm is presented in Algorithm 1. Intuitively,
the algorithm reads the elements of the input run one-by-one and rewrites the
formula after reading each new element. The algorithm stops when the formula
becomes � or ⊥ meaning that any continuation of the finite prefix read so far
will be accepted (or rejected) by the original formula ϕ. The rewriting step is
performed by first applying the function γ, that updates the formula according
to a new observation, and then applying β function, that simplifies the formula
and tries to reduce it to � or ⊥.

The rewrite function γ is defined by the following recursive rules where v is
a function that gives the change of the clock variables since the last element of
the run:

– γ(p,P , v) =

{
�, if p ∈ P
⊥, if p �∈ P

– γ(¬p,P , v) =

{
⊥, if p ∈ P
�, if p �∈ P

– γ(ϕ1 ∧ ϕ2,P , v) = γ(ϕ1,P , v) ∧ γ(ϕ2,P , v)
– γ(ϕ1 ∨ ϕ2,P , v) = γ(ϕ1,P , v) ∨ γ(ϕ2,P , v)
– γ(Oϕ,P , v) = ϕ
– γ(ϕ1U

x
[a, b]ϕ2,P , v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ(ϕ1,P , v) ∧ ϕ1U
x
[min(a−v(x), 0), b−v(x)]ϕ2 , if a > 0 ∧ v(x) ≤ b

γ(ϕ2,P , v) ∨ (γ(ϕ1,P , v) ∧ ϕ1U
x
[0, b−v(x)]ϕ2) , if a = 0 ∧ v(x) ≤ b

γ(ϕ2,P , v), if a = 0 ∧ v(x) > b

⊥, if a > 0 ∧ v(x) > b

– γ(ϕ1R
x
[a, b]ϕ2,P , v) =

⎧
⎪⎨

⎪⎩

γ(ϕ2,P , v) ∧ ϕ1R
x
[min(a−v(x), 0), b−v(x)]ϕ2 , if a > 0 ∧ v(x) ≤ b

γ(ϕ2) ∧ (γ(ϕ1,P , v) ∨ ϕ1R
x
[0, b−v(x)]ϕ2) , if a = 0 ∧ v(x) ≤ b

γ(ϕ2,P , v), if v(x) > b

Rewrite-Based Statistical Model Checking of WMTL 269

The omitted cases are all rewritten into themselves. The simplify function β is
defined by the following recursive rules:

– β(ϕ1 ∧ ϕ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥, if β(ϕ1) = ⊥ or β(ϕ2) = ⊥
β(ϕ1), if β(ϕ2) = �
β(ϕ2), if β(ϕ1) = �
β(ϕ1) ∧ β(ϕ2), otherwise.

– β(ϕ1 ∨ ϕ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�, if β(ϕ1) = � or β(ϕ2) = �
β(ϕ1), if β(ϕ2) = ⊥
β(ϕ2), if β(ϕ1) = ⊥
β(ϕ1) ∨ β(ϕ2), otherwise.

– β(ϕ) = ϕ in rest of the cases.

The simplify function β takes into account only the logical equivalences, namely
ϕ ∧� ≡ ϕ, ϕ ∧ ⊥ ≡ ⊥, ϕ ∨� ≡ �, ϕ ∨ ⊥ ≡ ϕ.

The correctness and termination of our algorithm is proved by the following
two theorems:

Theorem 2. Let ω = (P0, v0), (P1, v1), . . . be an infinite weighted word, and ϕ
be a WMTL formula. Then ωi � ϕ if and only if ωi+1 � γ(ϕ,Pi, vi+1 − vi) .

Theorem 3. Let ω = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL formula ϕ. Let ϕ0 = ϕ, ϕ1, . . . be a
sequence of WMTL formulas such that for all i > 0 ϕi+1 = β(γ(ϕi,Pi, vi+1−vi)).
Then there exists k ≥ 0 such that ϕk = � if and only if ω � ϕ0. Similarly, there
exists k ≥ 0 such that ϕk = ⊥ if and only of ω � ϕ0.

Example 2. Consider the run ({a}, {τ �→ 0})({a}, {τ �→ 2.5})({b}, {τ �→ 3})
({a}, {τ �→ 3.2})({b, c}, {τ �→ 5})({a}, {τ �→ 6}) . . . and the WMTL formula
(aU[0,4]b)U[0,10]c. Our algorithms will produce the following sequence of rewriting
rules. The sequence results in � thus the formula is satisfied by the run.

(aU[0,4]b)U[0,10]c
{a}, {τ �→2.5}−−−−−−−−→(aU[0,1.5]b) ∧ (aU[0,4]b)U[0,7.5]c

{a}, {τ �→0.5}−−−−−−−−→(aU[0,1.0]b) ∧ ((aU[0;3.5]b) ∧ (aU[0,4]b)U[0,7.0]c)

{b}, {τ �→0.2}−−−−−−−−→(aU[0,4]b)U[0,6.8]c

{a}, {τ �→1.8}−−−−−−−−→(aU[0,3.2]b) ∧ ((aU[0,4]b)U[0,5.0]c)

{b,c},{τ �→1}−−−−−−−−→�.

5 Experiments

Our approach has been implemented in Uppaal-smc. We now illustrate the
technique and compare it with the one in [7] that relies on automata-based

270 P. Bulychev et al.

monitors. If there is no deterministic automaton for the corresponding formula,
[7] builds a deterministic under/over approximation that may strongly impact
the confidence interval computed by SMC.

5.1 Size of Intermediate Formulas and Precision

Our rewriting rules are recursive in the structure of the formula, which means
that the performance of the technique is highly dependent on the size of the
intermediate formulas. In the following example, we show how the size of the
intermediate formulas vary. We also show that our technique is often much more
accurate than the one of [7].

We first study the evolution of the size of the intermediate formula generated
by our technique during the monitoring of several randomly generated formulas.
We also study the precision of the confidence interval returned by the SMC
algorithm in case [7] uses an over or under approximation of the monitor. We
also exploit an encoding in Uppaal to show how the size of the formula varies
over time for a validation of a single run. In both cases runs are randomly
generated by automata. This is done by choosing a delay with respect to an
exponential distribution with rate parameter r and after the delay with a discrete
probabilistic choice set one of the propositions to true or false.

Random Formulas. We compute the average size of the largest intermediary
formula generated in the rewriting process of different formulas. We verified
each formula with a confidence level of 0.05. The results of the test are shown in
Table 2(a) and Table 2(b). We also give the verifiation time and the time used in
total for the monitor based approach, i.e. both the time to construct the monitor
and to verify. The results show that the intermediate formula size depends on
the transition rate of the model and as a result so does the validation. The
monitor based approach, on the other hand, does not depend on this and the
time used remain constant for all the models - due to the most significant part
of the monitor based approach is constructing the monitor. However, the rewrite
technique is significantly faster than the monitoring technique in all cases. For
the results in Table 2(a) the monitors are tight approximations thus we gain time
and not precision. However, results in Table 2(b) show that we can obtain much
more accurate confidence intervals with our new technique. This is due to the
monitors might be a large over approximations/a small under approximation.
The variance in Table 2(a) is rather high due to the runs being random.

Modeling Uppaal inside Uppaal. In order to obtain a more in-depth
view on how the size of formulas change over time, we have encoded the rules as
Uppaal timed automata. The objective being to use the visualisation features of
the tool to see how the number of automata evolve over time. Our construction is
recursive in the structure of the formula in the sense that a network of observing
automata for φ is obtained as one automata for φ and at least one automaton
for each of the sub-formulas of φ.

Rewrite-Based Statistical Model Checking of WMTL 271

Table 1. Result of the random formula test. The r column is the rate at which the run
was generated. The #U/R column contains the number of until or release modalities
that was in the formula. The EMax column is the average largest size of formula and
σ2
Max is the variance thereof. τM and τR is the verification time for the monitoring

technique and the rewrite technique, respectively. The verification time for the monitors
are the time to construct the monitors and use them - in all the cases the monitors
were not exact and both the under and over approximation was used. The RR and RM

columns contain the number of runs each method required to establish the verification
result. The %M and %R columns refer to the confidence interval obtained by the
monitoring and the rewrite process respectively.

Formula r #U/R Largest EMax σ2
Max τR τM RR RM

Random1 1 11 14 6.81 3.16 0.19s 5.70s 738 1748
Random1 4 11 18 7.03 4.92 0.22s 5.83s 738 1748
Random1 8 11 21 7.06 4.74 0.23s 5.78s 738 1748
Random2 1 8 17 8.52 5.33 0.19s 6.13s 738 1748
Random2 4 8 21 11.05 4.71 0.34s 6.17s 738 1748
Random2 8 8 27 12.79 7.16 0.58s 6.26s 738 1748
Random3 1 11 21 11.51 4.74 0.50 10.99s 738 1748
Random3 4 11 40 13.58 16.53 1.08 11.06s 738 1748
Random3 8 11 36 14.00 18.16 1.52 11.38s 738 1748

(a)

Formula #U/R r %R %M RR RM τR τM
random4 15 4 [0.57; 0.67] [0.57; 0.83] 738 1748 0.34s 7.77s
random5 15 4 [0.00; 0.05] [0.00; 0.97] 738 1748 0.94s 2.83s
random6 15 4 [0.00; 0.05] [0.00; 0.72] 738 1748 0.81s 3.18s
random7 15 4 [0.00, 0.07] [0.00; 0.43] 738 1748 2.36s 26.61s

(b)

The automaton for φ starts its sub-automata through a designated init -
channel and the sub-automata informs the φ-automaton that their sub-formula
has been rewritten to � or ⊥ through designated channels. The automata for un-
til and release rely on having multiple automata for their sub-formulas that they
can start one of after each observation. If there are insufficient sub-automata an
error state is reached - because of this the encoding is an under-approximation
of the WMTL formula in question.

Example 3. Consider the run (p, {τ �→ t0})(p, {τ �→ t1})(p, {τ �→ t2})(¬p, {τ �→
t3})(p, {τ �→ t4})(p, {τ �→ t5})(p, {τ �→ t6})(p, {τ �→ t7})(?, {τ �→ t8}) where we
do not know if the proposition p is true at time t8 and let t8 − t0 > 10. In Fig. 3
we provide a snapshot of the set of active automata at time t7. At the top we
have an automaton that monitors the expression ♦[0;10]�[4;15]p which has been
active since t0 thus it has 10− (t7 − t0) time units left before its expression has
been violated.

Below this automaton are automata observing the subexpression �[4;15]p.
These automata have been started at times t4, t5 and t6 respectively and will

272 P. Bulychev et al.

♦[0;10]�[4;15]p
[10 − t7 + t0]

�[4;15]p
[0; 15+t4−t7]

�[4;15]p
[4 + t5 −

t7; 15+t5−t7]

�[4;15]p
[4 + t6 −

t7; 15+t5−t6]

�[4;15]p
[4; 15]

�/⊥ �/⊥
�/⊥ init

Fig. 3. Snapshot at time t7 with 3 active automata and one being started.

time

va
lu

e

0

2

4

6

8

10

12

14

0 0,6 1,2 1,8 2,4 3,0

(a) Simulation of model generating
runs with rate 2

time

va
lu

e

0

6

12

18

24

30

0 1,02 2,04 3,06

(b) Simulation of model generat-
ing runs with rate 20

Fig. 4. Plots of how the size of the formula varies over time. On the y-axis is plotted
the number of active automata and the x-axis contain the time.

report � to the parent automaton at the moment they have oberved p for 15
time units or ⊥ if they observe ¬p. Notice that all the automata started before
t4 are no longer active since ¬p was true at time t3. Also, there is one automa-
ton (the gray one with dashed borders) that is being started by ♦[0;10]�[4;15]p
through its init-channel. Since t8− t0 > 0 the top level automaton will not start
any sub-automata at time t8. Instead it will merely wait for the already started
automata to return either � or ⊥. If one of them return � then the top-level
automaton will return �. In case all of the sub-automata return ⊥ then the
top-level automata will return ⊥.

We encoded the formula ♦[0;1](p ∧ �[0;1](¬r) ∧ ♦[0;1](q)), and put the resulting
automata in parallel with an automata generating random runs and an automa-
ton incrementing a counter whenever an automaton was started or decremented
the counter, whenever an automaton stopped. We did this for transition rates 2
and 20 of the random run generating automaton and used the simulate query,
simulate 1 [<=3] size.

In Fig. 4 we show the plots we obtain for runs generated with varying tran-
sition rates. One can easily see that the number of automata does not increase
exponentially. We have observed the phenomena on various case studies.

Rewrite-Based Statistical Model Checking of WMTL 273

5.2 IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard [18] specifies the physical and media access control lay-
ers for low-cost and low-rate wireless personal area networks. Devices operating
in such networks share the same wireless medium and can possibly corrupt the
transmission of each other by sending data at the same time. We applied our
technique to the analysis of Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) network contention protocol that is used in IEEE 802.15.4 to min-
imise the number of collisions.

Our objective is to estimate the probability that if a collision occurs, then
all nodes participating in it will recover from the collision within a given time
bound. This can be specified with ∧i=1..Nϕi, where N is a number of network
nodes and ϕi specifies the behavior of a single node:

ϕi ≡ �≤10000(collisioni → ♦≤4000sendi)

The monitor built by [7] is precise. We are thus not interested to reason on
precision of the confidence interval, but rather on the evolution of computation
time. In Fig. 5 we observe that both the size of intermediary formulas used to
rewrite ϕ and the computation time grow linearly as the number of components
N increases. On the other hands, both the size of monitor and the computation
time with the approach in [7] grow exponentially and cannot be applied to real-
life deployments of CSMA.

Number of nodes 2 3 4 5 6
Monitor-based approach (time) <1s 3s 57s 20m2s -
Size of the monitor 230 2049 16306 123800 -
Rewrite-based approach (time) 55s 2m85s 4m11s 6m32s 9m21.47s
Average formula size 8.98 13.76 19.24 24 30.34

Fig. 5. Results for the CSMA/CA protocol

Although the monitor-based approach is faster for smaller N , for larger N it
quickly becomes intractable, while the rewrite-based approach scales well.

6 Conclusion

We presented a new monitoring procedure for WMTL formulas. The technique
relies on a series of rewriting step for the formula and is guaranteed to terminate.
Contrary to automata-based approaches, ours is precise in the sense that it
does not depend on over and under approximation of the formula. We have
implemented our approach in Uppaal-smc. Our results outperform those of the
monitor-based approaches.

274 P. Bulychev et al.

References

1. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM TESMy 20(4), 14 (2011)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

4. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

5. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed au-
tomata. Logical Methods in Computer Science 4(2) (2008)

6. Bouyer, P., Markey, N.: Costs Are Expensive! In: Raskin, J.-F., Thiagarajan, P.S.
(eds.) FORMATS 2007. LNCS, vol. 4763, pp. 53–68. Springer, Heidelberg (2007)

7. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B., Stainer,
A.: Monitor-Based Statistical Model Checking for Weighted Metric Temporal
Logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 168–182. Springer, Heidelberg (2012)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical Model Checking for Networks of Priced Timed Automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

9. Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000)

10. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Computational
Modeling and Verification of Signaling Pathways in Cancer. In: Horimoto, K.,
Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 117–135. Springer,
Heidelberg (2012)

11. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

12. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 73–84. Springer, Heidelberg (2004)

13. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

15. Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present,
Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 2–16. Springer, Heidelberg (2005)

16. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Au-
tom. Softw. Eng. 12(2), 151–197 (2005)

Rewrite-Based Statistical Model Checking of WMTL 275

17. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box
Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

18. I. C. Society. Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs) (2003)

19. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

20. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

21. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: HSCC 2010, pp. 243–252. ACM,
New York (2010)

	Rewrite-Based Statistical Model Checkingof WMTL
	Introduction
	Networks of Priced Timed Automata
	Weighted Metric Temporal Logic
	Monitoring WMTL Properties
	Experiments
	Size of Intermediate Formulas and Precision
	IEEE 802.15.4 CSMA/CA Protocol

	Conclusion
	References

