

Lecture Notes in Computer Science 7687
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shaz Qadeer Serdar Tasiran (Eds.)

RuntimeVerification
Third International Conference, RV 2012
Istanbul, Turkey, September 25-28, 2012
Revised Selected Papers

13

Volume Editors

Shaz Qadeer
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
E-mail: qadeer@microsoft.com

Serdar Tasiran
Koc University
College of Engineering
Rumeli Feneri Yolu
Sariyer, 34450 Istanbul, Turkey
E-mail: stasiran@ku.edu.tr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35631-5 e-ISBN 978-3-642-35632-2
DOI 10.1007/978-3-642-35632-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012956063

CR Subject Classification (1998): D.2, F.2, D.2.4, D.1, F.3, D.3, C.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 2012 International Conference on
Runtime Verification (RV), third in a series dedicated to the advancement of
monitoring and analysis techniques for software and hardware system executions.
RV 2012 was held during September 25–28, 2012, in Istanbul, Turkey.

Runtime verification is concerned with monitoring and analysis of software
and hardware system executions. Runtime verification techniques are crucial
for system correctness and reliability; they are significantly more powerful and
versatile than conventional testing, and more practical than exhaustive formal
verification. Runtime verification can be used prior to deployment, for verifi-
cation and debugging purposes, and after deployment for ensuring reliability,
safety and security, and for providing fault containment and recovery.

The history of the RV conference series goes back to 2001 when it started as
a workshop. It continued as an annual workshop series until 2009 and became a
conference starting in 2010. RV proceedings were published in Electronic Notes in
Theoretical Computer Science (ENTCS) from 2001 to 2005. Since 2006, the RV
proceedings have been published in Lecture Notes in Computer Science (LNCS).

The RV 2012 program consisted of a mix of tutorials, invited talks, accepted
papers (regular, tool, and short), a poster session, and a tool demonstration
session. We received 50 submissions, out of which the Program Committee ac-
cepted 25. Each paper received four reviews. We also invited leading researchers
to present two tutorials and three invited talks.

The organizers would like to thank the Steering Committee for their ad-
vice, the Program Committee for their hard work in selecting the papers, and
the tutorial and invited speakers for their valuable contribution to the confer-
ence program. Financial support for the conference was provided by Google,
Microsoft, Koc University, and STM. Finally, we thank EasyChair for their help
with the conference management and creation of the conference proceedings.

September 2012 Shaz Qadeer
Serdar Tasiran

Organization

Program Committee

Howard Barringer University of Manchester, UK
Saddek Bensalem VERIMAG, France
Eric Bodden European Center for Security and Privacy by

Design, Germany
Cristian Cadar Imperial College London, UK
Ylies Falcone Université Joseph Fourier, France
Bernd Finkbeiner Saarland University, Germany
Stephen Freund Williams College, USA
Ganesh Gopalakrishnan University of Utah, USA
Wolfgang Grieskamp Google Inc., USA
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Suresh Jagannathan Purdue University, USA
Sarfraz Khurshid University of Texas at Austin, USA
Martin Leucker University of Lübeck, Germany
Benjamin Livshits Microsoft Research, Redmond, USA
Shan Lu University of Wisconsin, Madison, USA
Rupak Majumdar University of California, Los Angeles, USA
Oded Maler VERIMAG, France
Sharad Malik Princeton University, USA
Atif Memon University of Maryland, USA
Peter Müller ETH Zürich, Switzerland
Shaz Qadeer Microsoft Research, Redmond, USA
Venkatesh Prasad

Ranganath Microsoft Research, Bangalore, India
Vivek Sarkar Rice University, USA
Koushik Sen University of California, Berkeley, USA
Oleg Sokolsky University of Pennsylvania, USA
Serdar Tasiran Koc University, Turkey
Stavros Tripakis University of California, Berkeley, USA
Martin Vechev ETH Zurich, Switzerland
Willem Visser Stellenbosch University, South Africa
Zheng Zhang Microsoft Research, Beijing, China

VIII Organization

Additional Reviewers

Ayoub, Anaheed
Ayoub, Nouri
Bartel, Alexandre
Bensalem, Saddek
Chaudhuri, Swarat
Chiang, Wei-Fan
Decker, Normann
El-Dib, Hasan
Elmas, Tayfun
Follner, Andreas
Ganov, Svetoslav
Gligoric, Milos
Gopinath, Divya
Habermehl, Peter
Kasikci, Baris
Kim, Chang Hwan Peter
Kumar, Ashwin
Lebeltel, Olivier
Legay, Axel
Li, Guodong
Lu, Zhang
McDirmid, Sean

Monmege, Benjamin
Nickovic, Dejan
Niebert, Peter
Nokhbeh Zaeem, Razieh
Pekergin, Nihal
Poplavko, Petro
Purandare, Rahul
Reger, Giles
Rydeheard, David
Sankaranarayanan, Sriram
Sawaya, Geof
Schönfelder, René
Sharma, Subodh
Sinha, Arnab
Smolka, Scott
Thoma, Daniel
Wang, Shaohui
Weiss, Alexander
Wies, Thomas
Yang, Guowei
Yang, Zijiang
Zhang, Lingming

Table of Contents

Dynamic Analyses for Data-Race Detection . 1
John Erickson, Stephen Freund, and Madanlal Musuvathi

Symbolic Execution . 2
Cristian Cadar and Koushik Sen

Dynamic Livelock Analysis of Multi-threaded Programs 3
Malay K. Ganai

Scalable Dynamic Partial Order Reduction . 19
Jiri Simsa, Randy Bryant, Garth Gibson, and Jason Hickey

ANaConDA: A Framework for Analysing Multi-threaded C/C++
Programs on the Binary Level . 35

Jan Fiedor and Tomáš Vojnar

PaRV: Parallelizing Runtime Detection and Prevention of Concurrency
Errors . 42

Ismail Kuru, Hassan Salehe Matar, Adrián Cristal,
Gokcen Kestor, and Osman Unsal

It’s the End of the World as We Know It (And I Feel Fine) 48
Jim R. Larus

Detecting Unread Memory Using Dynamic Binary Translation 49
Jon Eyolfson and Patrick Lam

Sparse Coding for Specification Mining and Error Localization 64
Wenchao Li and Sanjit A. Seshia

Sliding between Model Checking and Runtime Verification 82
Martin Leucker

Runtime Verification and Enforcement for Android Applications
with RV-Droid . 88

Yliès Falcone, Sebastian Currea, and Mohamad Jaber

Temporal Monitors for TinyOS . 96
Doina Bucur

Real-Time Runtime Verification on Chip . 110
Thomas Reinbacher, Matthias Függer, and Jörg Brauer

X Table of Contents

BabelTrace: A Collection of Transducers for Trace Validation 126
Aouatef Mrad, Samatar Ahmed, Sylvain Hallé, and Éric Beaudet

Quantitative Trace Analysis Using Extended Timing Diagrams 131
Andreas Richter and Klaus Kabitzsch

Maximal Causal Models for Sequentially Consistent Systems 136
Traian Florin S, erbănut, ă, Feng Chen, and Grigore Ros,u

Monitoring Compliance Policies over Incomplete and Disagreeing
Logs . 151

David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu

Adaptive Runtime Verification . 168
Ezio Bartocci, Radu Grosu, Atul Karmarkar, Scott A. Smolka,
Scott D. Stoller, Erez Zadok, and Justin Seyster

Malware Riding Badware: Challenges in Analyzing (Malicious/Benign)
Web Applications . 183

Giovanni Vigna

MapReduce for Parallel Trace Validation of LTL Properties 184
Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin,
Pierre-Antoine Ollivier, and Sylvain Hallé

Path-Aware Time-Triggered Runtime Verification . 199
Samaneh Navabpour, Borzoo Bonakdarpour, and
Sebastian Fischmeister

Fast-Forward Runtime Monitoring — An Industrial Case Study 214
Christian Colombo and Gordon J. Pace

Runtime Enforcement of Timed Properties . 229
Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand,
Antoine Rollet, and Omer Landry Nguena Timo

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal
Logic . 245

Kevin Baldor and Jianwei Niu

Rewrite-Based Statistical Model Checking of WMTL 260
Peter Bulychev, Alexandre David, Kim G. Larsen, Axel Legay,
Guangyuan Li, and Danny Bøgsted Poulsen

From Runtime Verification to Runtime Intervention and Adaptation 276
Martin Rinard

Certifying Solutions for Numerical Constraints . 277
Eva Darulova and Viktor Kuncak

Table of Contents XI

Profiling Field Initialisation in Java . 292
Stephen Nelson, David J. Pearce, and James Noble

Defense against Stack-Based Attacks Using Speculative Stack Layout
Transformation . 308

Benjamin D. Rodes, Anh Nguyen-Tuong, Jason D. Hiser,
John C. Knight, Michele Co, and Jack W. Davidson

Incremental Runtime Verification of Probabilistic Systems 314
Vojtěch Forejt, Marta Kwiatkowska, David Parker,
Hongyang Qu, and Mateusz Ujma

Author Index . 321

Dynamic Analyses for Data-Race Detection

John Erickson1, Stephen Freund2, and Madanlal Musuvathi3

1 Microsoft
2 Williams College

3 Microsoft Research

Abstract. Data races caused by unsynchronized accesses to shared data
have long been the source of insidious errors in concurrent software.
They are hard to identify during testing, reproduce, and debug. Recent
advances in race detection tools show great promise for improving the
situation, however, and can enable programmers to find and eliminate
race conditions more effectively. This tutorial explores dynamic analysis
techniques to efficiently find data races in large-scale software. It covers
the theoretical underpinnings, implementation techniques, and reusable
infrastructure used to build state-of-the-art data-race detectors (as well
as analyses targeting other types of concurrency errors). The tutorial
provides industrial case studies on finding data races and closes with a
discussion of open research questions in this area.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Symbolic Execution

Cristian Cadar1 and Koushik Sen2

1 Imperial College London
2 University of California at Berkeley

Abstract. Recent years have witnessed a surge of interest in symbolic
execution for software testing, due to its ability to generate high-coverage
test suites and find deep errors in complex software applications. In this
tutorial, we give an overview of modern symbolic execution techniques,
discuss their key challenges in terms of path exploration, constraint solv-
ing, and memory modeling, and present several tools implementing these
techniques.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, p. 2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Dynamic Livelock Analysis
of Multi-threaded Programs

Malay K. Ganai

NEC Labs America, Princeton, NJ, USA

Abstract. Compared to deadlocks, where one or more threads are blocked for-
ever, livelocks are harder to detect as it is not easy to distinguish between a long
and an infinite busy wait (i.e., no progress) cycle. We propose a dynamic livelock
analysis for a multi-threaded program by examining its execution trace. From
the observed trace events, our approach uncovers livelock potentials due to infi-
nite executions where one or more threads in a group are acquiring and releasing
resources in busy-wait cycles to avoid deadlocks. Furthermore, to confirm a live-
lock potential, we orchestrate a partial-order schedule to induce a livelock during
a program re-execution. We implemented our proposed approach in a prototype
tool CBuster, comprising a light-weight binary instrumentation framework for
C/C++ programs to record events, and to replay partial-order schedules. We ap-
plied our approach to identify and confirm livelocks in a case study based on
SQLite, a widely used embedded multi-threaded database engine.

1 Introduction

Multi-threaded programming is error prone. The complex interaction between threads
through synchronization primitives such as mutex acquires and releases can lead to a
situation when one or more threads in a group do not make any forward progress (such
as towards program termination). Based on whether CPU cycles are consumed or not,
a lack of forward progress can be categorized [1] as a deadlock or a livelock.

In a deadlock, one or more threads in a group are blocked forever without consuming
CPU cycles. A resource deadlock occurs when each thread is waiting to acquire a mutex
resource held exclusively by another in the group. A communication deadlock occurs
when receiver threads are waiting for messages which are either lost and/or the sender
threads are also waiting for some unavailable resources.

In a livelock, one or more threads continuously change their states (and hence con-
sume CPU cycles) in response to changes in states of the other threads without doing
any useful work [2]. It is a busy-waiting analog of deadlock. Livelocks can be classi-
fied [1] into one of the following: starvation (where a thread is denied resources perpet-
ually due to new external events) [3], infinite execution (where a thread is executing in
an infinite loop without making progress) [4], and breach of safety properties [5]. In a
livelock, the threads may not be blocked forever, and it is harder to distinguish between
a long running process, and a do-nothing busy-wait cycle. Not surprisingly, program-
mers/testers find livelocks very hard to detect and debug and often they mislabel them
in bug reports (such as [6–8]). Although livelocks do not bring a system to a standstill,
but they can lead to performance degradation due to useless busy-wait cycles.

Related Work. There are relatively a few articles on detecting livelocks, in compar-
ison with the vast literature available for detecting deadlocks using both static and

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 3–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

4 M.K. Ganai

dynamic analysis. Previous work on livelocks are based mostly on static analysis such
as [9, 10] targeting concurrent programming languages such as Ada and CSP. Using
patterns/rules, they identify conservatively a set of “safe” paths that will not contribute
to livelocks, for e.g., those that do not communicate externally using I/O. There are
model checking approaches such as SPIN [11] and JPF [12] which can be used to target
both deadlocks and livelock properties but have inherent scalability issues. There also
has been some hardware-based solution for runtime livelock detection such as [13].

Techniques for detecting deadlocks can be broadly classified as follows: static anal-
ysis [14–17], model checking [18], runtime-monitoring [19, 20], and dynamic analy-
sis [21–28]. Static analysis tools work directly on source code, with potential of full
coverage, but often result in large false positives. Runtime-monitoring systems detect
deadlocks in the currently executing program path. Runtime deadlock prevention sys-
tems such as [19,20,29] provide mechanism (albeit at some runtime overhead) to prevent
recurring deadlock situations detected previously.

Dynamic analysis tools for deadlock detection work in two phases: first, they ob-
serve the trace events such as synchronization events, and then use static analysis tech-
niques such as model checking or cycle detection schemes to identify potential deadlocks.
The state-of-the-art technique to detect deadlock cycle condition (DCC) was first intro-
duced [18,30] as Goodlock algorithm, and then later was extended and improved [21–24]
to handle gated locks, happens-before, semaphore, and condition variables to reduce false
positives, and to replay the detected deadlock potentials. Many tools based on DCC such
as DeadlockFuzzer [25], MulticoreSDK [27], and MagicFuzzer [28] are engineered to
improve cycle detection, reduce graph size and replay deadlock potentials with higher
probability. These techniques, as such, may not be directly applied to detect and induce
livelocks, which involve much more subtle interaction between threads. Nevertheless, we
were inspired by such techniques. We propose a generalization of DCC to detect both
livelocks and deadlocks potentials.

Motivation and Overview. We mainly focus on finding livelock potentials due to in-
finite executions where one or more threads in a group are acquiring and releasing
resources in busy-wait cycles to avoid deadlocks. Such a livelock would necessarily
involve intra-thread cycles (such as while/for loops) and inter-thread resource request
cycles (such as potential deadlock cycles). We identify these cycles in two steps. In the
first step (static), we focus on finding inter-thread resource request cycles (similar to
deadlock cycle detection) that will potentially induce intra-thread cycles. In the second
step (dynamic), we induce a livelock by orchestrating a partial-order schedule (based on
detected inter-thread cycle) such that the involved threads acquire and release resources
without actually making any forward progress.

We motivate our readers with a small example, as shown in Figure 1, based on SQLite
user posts [6, 8]. SQLite [31] is a popular embedded multi-threaded database engine
used in many applications such as Adobe, iPhone, Dropbox, and Firefox. SQLite has
the ability to detect and report potential deadlocks. It does not commit SQL queries in
such circumstances and throws exception to the application for re-trials.

In the example shown, all the acquires and releases of mutexes (in the body of the
while loop) are carried out inside the SQLite database engine in response to the user
SQL queries. The while construct represents re-trials for failed SQL queries requested
by the user application. The two threads t1 and t2 acquire mutexes m1 and m2 using
G lock(.) procedure. The atomicity of their acquisition is ensured using a guarded

Dynamic Livelock Analysis of Multi-threaded Programs 5

mutex mg. After a thread acquires a mutex, it tries to acquire the other mutex using
G trylock(.) procedure. A trylock is a non-blocking primitive that does not wait for-
ever for the requested mutex to be available. If the mutex is available, it acquires the
mutex; otherwise, it returns a failure status (instead of blocking forever). When the try-
lock operation fails, the corresponding thread releases the first mutex, and yields to the
other thread. Clearly, this avoids a deadlock in the example. However, a rare situation
can occur when the trylock fails for both the threads as each thread holds the mutex
needed by the other. In that case, both thread release the acquired mutexes i.e., m1, m2,
and then retry. If the above ordering of mutex acquires and releases occur repeatedly,
we get a livelock situation. Although deadlock and starvation avoidance mechanism are
built-in SQLite, the applications are prone to livelocks as the internals of the database
logic often play an intricate role with application code, creating vicious cycles. Cur-
rently, SQLite does not provide capability to detect potential livelocks triggered by SQL
queries. This could be very frustrating to debug, especially when the user is unfamiliar
with the internals of the database engine [6–8].

(a) Example code (based on [6,8])

G lock (m): G trylock (m):
a1: lock(mg) b1: lock(mg)
a2: lock(m) b2: r := trylock(m)

unlock(mg) unlock(mg)
return r

Thread1: Thread2:
while (true) { while(true) {

c1: G lock(m1) d1: G lock(m2)
c2: r0 := G trylock(m2) d2: r1 :=G trylock(m1)

if (r0=fail) { if (r1=fail) {
unlock(m1) //yield unlock(m2) //yield
continue continue

} }
· · · · · ·
unlock(m2) unlock(m1)
unlock(m1) unlock(m2)
break break

} }

(b) A Trace

t1, cxt1: lock(mg);
t1, cxt2: lock(m1);
t1: unlock(mg);
t1, cxt3: lock(mg);
t1, cxt4: trylock(m2);
t1: unlock(mg);

· · · ;
t1: unlock(m2);
t1: unlock(m1);

· · · ;
t2, cxt5: lock(mg);
t2, cxt6: lock(m2);
t2: unlock(mg);
t2, cxt7: lock(mg);
t2, cxt8: trylock(m1);
t2: unlock(mg);

· · · ;
t2: unlock(m1);
t2: unlock(m2);

Fig. 1. (a) An sample code with a potential livelock, (b) a total ordered observed trace events of
acquisition/release of mutexes, with thread contexts cxti

We propose to identify livelock potentials using dynamic analysis in three phases.

Phase I. We observe and record various synchronization events such as mutex ac-
quires/releases. A mutex acquire event lock(m) by thread t with current thread context
cxt is denoted as 〈t, cxt : lock(m)〉, where cxt is a stack of call-site labels. For e.g.,
cxt2 is [Thread1 : c1, G lock : a2].

Phase II. Given recorded trace events, we search for a cyclic dependency of a set of
mutexes among a group of threads such that the following conditions are satisfied:

6 M.K. Ganai

(i) each mutex in the set is acquired by only one thread (referred as first acquire),
(ii) each thread intend to acquire another mutex from the set (referred as second ac-

quire),
(iii) at second acquires, no two threads hold a common mutex that was last acquired

before the first acquire.

If only trylock primitives (i.e., non-blocking) are used in all second acquires, we refer
to such a cyclic dependency as a trylock cycle. For e.g., (m1, m2) is a trylock cycle,
where t1 (t2) currently holds m1 (m2) and will acquire m2 (m1), resp., using trylock.
Such a cycle is a livelock potential, as each thread will fail in the second acquire, but
instead of blocking, it releases the mutex of first acquire, and may retry in a loop.

Approaches for detecting of deadlock potentials such as [21, 22, 24–28] use condi-
tions (i)-(ii), and a stronger version of (iii) where no threads hold any common mutex
at second acquires. The stronger condition prohibits a common mutex that was last ac-
quired after the first acquires. For e.g., the lockset (i.e., the set of mutexes held by a
thread) at the time t1 acquires m2, and that at the time t2 acquires m1 have a com-
mon mutex i.e., mg that was acquired after first acquires. Thus, these approaches fail
to detect the cycle (m1, m2). However, these approaches detect cycle (m1, mg) where
t1 holds m1 and wants to acquire mg, and t2 holds mg (and m2), and wants to acquire
m1. Although such a cycle is a deadlock potential, a deadlock replayer (or confirmer)
such as [23, 25, 28], will fail to induce a real deadlock due to non-blocking nature of
trylocks. Moreover, such a cycle may not even induce a livelock. Consider the situation
where t1 holds m1, and t2 holds mg and m2. Since t1 is blocked on mg, t2 will proceed
trylock-ing m1, but it will fail, and consequently release mg. If thread t2 now proceeds
and releases m2, then t1 succeeds to acquire mg, followed by m2. In that case, t1 does
not have to retry in a loop. Thus, a livelock situation does not arise.

We offer a precise deadlock detection condition. We refer a cycle, satisfying (i)-
(iii), as a deadlock iff only lock primitives (i.e., blocking) are used in second acquires.
Clearly, such a cycle truly represents a deadlock as each thread would block forever for
a resource held by another thread. A cycle, which is neither a trylock nor a deadlock, is
referred as a mixed. Our approach detects the cycle (m1, mg), but classify it as a mixed.

Phase III. Based on a detected trylock cycle, we induce a livelock by orchestrating
a partial-ordered schedule of global states Head→Body→Tail which we repeat in a
program re-execution. (Note, events in {.} are not ordered).

Head: {〈t1, cxt2 : lock(m1)〉, 〈t2, cxt4 : lock(m2)〉}
Body: {〈t1, cxt6 : trylock(m1)〉, 〈t2, cxt8 : trylock(m2)〉}
Tail: {〈t1 : unlock(m1)〉, 〈t2 : unlock(m2)〉}

A deadlock can be induced similarly, but is not the current focus.

Contributions. Our main contributions can be summarized as follows:
– We formalize the conditions to effectively identify various lock cycles: trylock,

deadlock, and mixed, for a given trace. We show that these conditions capture
all livelock and deadlock potentials, and subsumes those detected by previous ap-
proaches [21, 22, 24–28]. We consider general cases of mutex acquisition: nesting/
non-nesting, blocking/non-blocking, shared/exclusive ownership, and where a
mutex can change state between shared and exclusive ownership directly.

– We confirm a livelock potential by generating a partial-order schedule from a try-
lock cycle, and orchestrate a controller to induce a livelock during a program
re-execution. Such orchestration can be applied to confirm deadlock as well.

Dynamic Livelock Analysis of Multi-threaded Programs 7

– We implemented our proposed cycle detection scheme in a prototype tool CBuster.
We built a light-weight binary instrumentation framework using interposition library
for C/C++ programs to observe and control the execution of a running program. We
demonstrate the feasibility of our approach in identifying livelock situations in a case
study using SQLite-based application.

Outline. The rest of the paper is outlined as follows. In Section 2, we provide nec-
essary background and notations used. In Section 3, we generalize the conditions for
detecting livelocks and deadlocks potentials. In Section 4, we focus on an orchestra-
tion to confirm livelock potentials. We discuss implementation of the tool CBuster and
experimentation case study in Section 5, and conclusion/future work in Section 6.

2 Preliminaries
A multi-threaded program consists of a set of concurrently executing threads T , each
thread with a unique identifier t. The threads communicate with shared objects, some
of which are used for synchronization such as mutexes1 and signals. A trace of a pro-
gram π is a total ordered sequence of observed events corresponding to various thread
operations on shared objects. Each event e of the sequence, i.e., e ∈ π is carried out
by some thread, denoted as e.t, at a thread context, denoted as e.cxt. A thread context
of an event is an abstraction of an execution state of the thread. It may comprise just a
simple statement label to a more refined state that may comprise a thread callstack and
a thread state. Each event e is one of the following event types, denoted as e.etype:

– lock(m)/trylock(m): acquires mutex m in an exclusive state using a block-
ing/non-blocking call, i.e., if m is currently unavailable, lock will wait forever until
it is available, while trylock2 will return fail if mutex is currently unavailable.

– lockS(m)/trylockS(m): acquires mutex m in a shared state using blocking/non-
blocking call, resp. A trylockS may return fail if m is currently unavailable.

– unlock(m): releases held mutex m.
– wait(s)/notify(s): waits on/notifies a signal s.
– fork(t’)/join(t’): forks/joins a thread child t′.
– thread start()/thread end(): thread starts/ends.

There could be multiple owners holding a mutex if it is in shared state, but there could be
only one owner holding a mutex if it is in exclusive state. The availability/unavailability
of a mutex depends on its current state. A reader/writer lock (or reader/writer try-
lock) can be expressed equivalently using lockS/lock (or trylockS/trylock) prim-
itives, resp. A owner holding a mutex m in a shared state can upgrade it to an exclusive
state without unlocking it first, provided it is the only owner (for e.g., a file lock in Linux
supports such upgrades). In nested locking, all mutexes follow a simple rule: a mutex
that is first acquired is released the last; otherwise, the locking is termed as non-nesting.
A lockset is a set of mutexes held by the thread at some instant.

Given a trace π of a program, and events e, e′ ∈ π, we say e happens-before e′,
i.e., e � e′, if e is observed before e′ in the trace. We use e ≺ e′, to denote that

1 Our approach supports various types of lock objects such as POSIX locks and file locks. To
differentiate a lock object and a locking primitive, we use mutex to refer a lock object.

2 We use trylock to subsume a timed-lock primitive, which is also a non-blocking primitive
but it waits for a preset amount of time for the requested mutex.

8 M.K. Ganai

e must-happen-before e, as causally ordered by thread program order and inter-thread
events such as fork/thread start, notify/wait, and thread end/join, and ap-
plied transitively, i.e., ∃e1 ∈ π. (e ≺ e1 � e′) or ∃e2 ∈ π. (e � e2 ≺ e′). A must
happens-before relation can be maintained easily using vector clocks [32, 33].

Lock dependency [21,22]: Given a trace π, a lock dependency is a tuple τ = 〈t, m, L〉
of a thread t ∈ T , a mutex m, and a lockset L such that the thread t will acquire a mutex
m while holding all the mutexes in the lockset L. A lock dependency relation D for π
is a set of lock dependencies on π.

Lock graph [21, 22]: A lock graph corresponds to a lock dependency relation D
where a node corresponds to a mutex, and for each lock dependency τ = 〈t, m, L〉 ∈ D,
there is an edge from node n ∈ L to node m with an attribute (F, τ, N), where F, N
denote the events corresponding to acquisition of mutexes n and m, respectively.

Deadlock Cycle Condition (DCC) [21,22]: A finite sequence of edges of a lock graph
〈(F1, 〈t1, m1, L1〉, N1) · · · (Fk, 〈tk, mk, Lk〉, Nk)〉 (k > 1) corresponds to a deadlock
cycle iff following conditions are satisfied:

(a) ∀i�=ji, j ∈ [1, k], ti
= tj , i.e., all threads are distinct.
(b) ∀i ∈ [1, k], mi ∈ Li′ where i′ = (i + 1) mod k, i.e., the mutex to be acquired is

currently held by next thread in the cycle.
(c) ∀i�=ji, j ∈ [1, k], ¬(Ni ≺ Fj), i.e., each event Ni that will acquire a mutex mi

should not happen-before before an event Fj that acquired a mutex mj .
(d) ∀i�=ji, j ∈ [1, k], Li ∩ Lj = ∅, i.e., pairwise locksets at Ni, Nj events are empty

(and hence, all mutexes are distinct).

We refer the set of mutexes {m1, · · · , mk} as cycle mutexes. In such a deadlock cycle,
for a given thread ti′ where i′ = (i + 1) mod k, we refer the acquire of mi (i.e., Fi′

event) as the first acquire, and that of mi′ (i.e., Ni′ event) as the second acquire. Also
we refer mi as the first mutex, and mi′ as the second mutex, resp., w.r.t. ti′ .

��

����������������	

��

��

����������������	

Fig. 2. A lock graph

For the trace in Fig. 1(b), we show the correspond-
ing lock graph obtained in Fig. 2, where each edge is
shown with attribute τ (for better readability). As per
DCC, the cycle (m1, m2) is not allowed as the lockset
has a common mutex mg which violates condition (d).
The detected cycles (mg, m1) and (mg, m2), how-
ever, do not cause deadlocks as the second acquires
use trylock primitive.

3 Lock Cycles

We first focus on formalizing the conditions for inter-thread cycles, which we refer as
lock cycles, that include deadlock and livelock potentials. We consider following cases
(and their combination) of mutex acquisition: (i) nesting/non-nesting, (ii) blocking/non-
blocking (such as using lock/trylock), (iii) exclusive/shared ownership (such as
using lock/lockS or trylock/trlockS), and (iv) where a mutex can change state
between shared and exclusive ownership directly without unlocking. These generaliza-
tion are needed to handle real applications. First, we introduce a few definitions.

Each mutex object m held by a thread has following attributes: m.id (id of the mu-
tex), and m.E (Boolean flag denoting if the mutex is held in exclusive state). A mutex

Dynamic Livelock Analysis of Multi-threaded Programs 9

m′ conflicts with m, denoted as m⊗m′, iff they have same id, and at least one of them
in exclusive state, i.e., m′.id = m.id, and m′.E ∨ m.E.

A lock-ordset, denoted as
−→
L , is an ordered set of mutexes currently held at a thread

context, where (i) mutexes acquired earlier by the thread are ordered before the rest,
(ii) no two mutexes have same id. A mutex m conflicts with

−→
L , denoted as m ⊗ −→

L ,
if there exists a mutex m′ ∈ −→

L s.t. m conflicts with m′. A lock-ordset
−→
L 1 intersects

with another
−→
L 2, denoted as

−→
L 1 ∩

−→
L 2, iff there exists a conflicting pair of mutexes,

i.e., ∃m ∈ −→
L 1, m⊗ −→

L 2. We use m · −→L to denote a subset of lock-ordset that includes
only those mutexes that were acquired before and including mutex m′ ∈ −→

L where
m′.id = m.id. If such a mutex m′ does not exist, them m·−→L is an emptyset. Essentially,
it excludes those mutexes that were acquired and held after m′.

Example: Consider threads t0, t1, t2 acquiring/releasing mutexes m0, m1, m2 in loops
as shown in Fig. 3. The lock-ordset at context c2 of t0 is

−→
L = {m1, m0} as m1 is

acquired before m0. Also, m0 ·
−→
L = {m1, m0}, and m1 ·

−→
L = {m1}.

In general locking (such as non-nested), m·−→L may not be the same as the lock-ordset
at the time m ∈ −→

L was acquired. Suppose
−→
L = {m1, m2} just after m2 is acquired

by a thread. If m0 is acquired by the thread before m1, but is released after acquiring
m1 but before m2, then the lock-ordset at the time m1 was acquired is {m0, m1}, but

m1 ·
−→
L = {m1}.

Lock order dependency: Given a trace π, a lock order dependency is a tuple τ =

〈t, m,
−→
L 〉 of a thread t ∈ T , a mutex m, a lock-ordset

−→
L such that t will acquire m

while holding all the mutexes in the lock-ordset
−→
L . A lock order dependency relation−→

D for π is a set of lock order dependencies on π. In Fig. 3, 〈t0, m2, {m1, m0}〉 denote
a lock order dependency.

A lock order graph corresponds to a lock order dependency relation
−→
D where a node

corresponds to a mutex, and for each lock order dependency τ = 〈t, m,
−→
L 〉 ∈ −→

D , there

is an edge from a node n ∈ −→
L to node m with an attribute (F, τ, N), where F, N denote

the event corresponding to acquires of mutex n and m respectively. Two mutexes with
same mutex id are mapped to the same node. In Fig. 3 each edge is annotated with an
attribute τ and a thread-specific color for better readability.

Lock Cycle Condition (LCC): A finite sequence of edges of lock order graph
〈(F1, 〈t1, m1,

−→
L1〉, N1) · · · (Fk, 〈tk, mk,

−→
Lk〉, Nk)〉 (k > 1) is a lock cycle iff following

conditions are satisfied:

(a) ∀i�=ji, j ∈ [1, k], ti
= tj , i.e., all threads are distinct.

(b) ∀i ∈ [1, k], mi⊗
−→
L i′ where i′ = (i+1) mod k, i.e., mutex to be acquired conflicts

with a mutex held by the next thread in the cycle.

(c) ∀i�=ji, j ∈ [1, k], ¬(Ni ≺ Fj), i.e., each event Ni that will acquire a mutex mi

should not happen-before before an event Fj acquiring mj .

(d) ∀i�=ji, j ∈ [1, k], mi ·
−→
L i′ ∩ mj ·

−→
L j′ = ∅, where i′ = (i + 1) mod k, j′ = (j +

1) mod k, i.e., no two threads hold—at Ni′ , Nj′ events—any common conflicting
mutex that was last acquired before Fi′ , Fj′ events.

10 M.K. Ganai

Like in DCC, we refer the set of mutexes {m1, · · · , mk} as cycle mutexes. In a lock
cycle, for a given thread ti′ where i′ = (i + 1) mod k, we refer the acquire of mi (i.e.,
Fi′) as the first acquire, and that of mi′ (i.e., Ni′) as the second acquire. Also, we refer
mi as the first mutex, and mi′ as the second mutex, resp., w.r.t. ti′ .

Example: Using LCC, we obtain the following lock cycles of length k, as shown in
Fig. 3(a). Each cycle (of mutex nodes) is formed with edges of thread-specific colors.

k=2. (m0, m2), (m0, m3), (m0, m1)
k=3. (m0, m1, m2), (m0, m3, m1), (m0, m2, m3), (m1, m2, m3)

Consider the cycle (m1, m2, m3) that corresponds to the sequence of lock order de-
pendency: 〈〈t0, m2, {m1, m0}〉, 〈t1, m3, {m2, m0}〉, 〈t2, m1, {m3, m0}〉〉. We obtain,
m1 · {m1, m0} = {m1}, m2 · {m2, m0} = {m2}, and m3 · {m3, m0} = {m3}. For
the threads t0, t1, t2, the first mutexes are m1, m2, m3, respectively, and the second mu-
texes are m2, m3, m1, respectively. The mutex m0 held at the second acquire of each
thread was last acquired after the first acquire. Clearly, condition LCC:(d) is satisfied
(and so are LCC:(a)-(c)). However, DCC:(d) is not satisfied. Similarly, other cycles with
length 3 are missed by DCC, although, it detects all cycles of k = 2.

Consider another example, shown in Fig. 3(b), where the acquisition of m0 in threads
t1 and t2 precede that of m2 and m3, respectively. The corresponding lock order graph
is shown on the right. LCC detects only one lock cycle (m0, m1) (same as DCC). The
cycle of mutexes (m1, m2, m3) is not a lock cycle as m2 ·{m0, m2}∩m3 ·{m0, m3} =
{m0}. Similarly, (m1, m0, m3) is not a lock cycle.

Valid Cycle. We say a cycle is valid if all the threads in the cycle can acquire (respect-
ing mutual exclusion and must happens-before orders) the corresponding first mutex
before any thread can acquire the corresponding second mutex, and the second mutex
of a thread conflicts with the corresponding first mutex acquired by another thread.
We now classify lock cycles into three distinct categories:

deadlock: A lock cycle where all second acquires use lock/lockS (blocking)
trylock: A lock cycle where all second acquires use trylock/trylockS

(non-blocking)
mixed: A lock cycle which is neither a trylock nor a deadlock

The only trylock cycle detected by LCC (in Fig. 3(a)) is (m1, m2, m3). Other lock
cycles detected (in Fig. 3(a)(b)) are mixed cycles, but no deadlock cycles.

Observation. A trylock cycle is an inter-thread cycle and a livelock potential as it can
make all the threads (involved in the cycle) to fail in second acquires, release first mu-
texes, and repeat the acquires and releases in loops. In Section 4, we discuss a schedule
orchestration technique to induce a livelock using a trylock cycle.

Note, a deadlock cycle has the potential to put the threads in a deadlock situation.
A trylock/mixed cycle can not induce a deadlock situation, and a deadlock/mixed cycle
can not induce a livelock situation.

3.1 Comparing LCC vs. DCC

To study the differences between LCC and DCC, we consider two cases based on
whether trylockS/lockS primitives are used, or not used at all, resp.

Case A (trylockS/lockS not used): LCC:(a)-(c) are essentially the same as DCC:(a)-
(c), and DCC:(d) implies LCC:(d) conditions. Notably, (i) like DCC:(d), LCC:(d)

Dynamic Livelock Analysis of Multi-threaded Programs 11

t0 t1 t2
while (1) { while (1) { while (1) {
c0: lock(m1); c3: lock(m2) c6: lock(m3)
c1: lock(m0); c4: lock(m0) c7: lock(m0)
c2: trylock(m2); c5: trylock(m3) c7: trylock(m1)

· · · · · · · · ·
unlock(m1); unlock(m2); unlock(m3);
· · · · · · · · ·

} } }
(a)

�
�

�
�

��
�
���

�
����

�
��

�
�	

�
�

�
�

t0 t1 t2
while (1) { while (1) { while (1) {
c0: lock(m1); c3: lock(m0) c6: lock(m0)
c1: lock(m0); c4: lock(m2) c7: lock(m3)
c2: trylock(m2); c5: trylock(m3) c7: trylock(m1)

· · · · · · · · ·
unlock(m1); unlock(m2); unlock(m3);
· · · · · · · · ·

} } }
(b)

�
�

�
�

��
�
���

�
����

�
��

�
�	

�
�

�
�

Fig. 3. Threads t0 (black), t1 (blue), t2 (red) intra-thread loops (left), and lock-order graph (right).
(a) A potential livelock involving lock cycle (m1,m2,m3) is detected by LCC, but not by DCC.
(b) The cycle involving (m1,m2,m3) is not a lock cycle as LCC:(d) is not satisfied.

prohibits threads to have any common conflicting mutex that was acquired before first
acquires and still held at second acquires (e.g., Fig. 3(b)), (ii) unlike DCC:(d), LCC(d)
allows threads to have common conflicting mutexes that were acquired after first ac-
quires but held at second acquires (e.g., Fig. 3(a). In other words, it allows intersecting
lock-ordsets at the time of second acquires, i.e., for some i′, j′,

−→
Li′ ∩

−→
Lj′
= ∅. With

this relaxation, LCC can find more cycles than DCC. These cycles are also valid as per
Lemma 2 (shown later). Given a trace π, let cycleLCC and cycleDCC denote a set of
all cycles identified using LCC and DCC, respectively.

Lemma 1. In the absence of trylockS/lockS, cycleDCC ⊆ cycleLCC.

Proof. DCC:(d) implies LCC:(d). As the remaining conditions are identical in the ab-
sence of trylockS/lockS, proof follows. �

Case B (trylockS/lockS used): When mutexes are acquired in shared/exclusive states,
DCC either detects a cycle that is spurious, or may miss valid cycles. Following two
examples exemplify the limitation of DCC.

(DCC finds spurious cycles): Consider thread t0 acquiring mutexes m0, fol-
lowed by m1, and thread t1 acquiring mutex m1 followed by m0. Assume all
mutexes are acquired using lockS primitive. We underline a mutex to denote
that it is acquired in a shared state. The corresponding lock dependency chain is
〈〈t0, m1, {m0}〉, 〈t1, m0, {m1}〉〉. As per DCC, such a lock dependency chain is
flagged as a deadlock cycle. However, as first and second mutexes are acquired in a
shared state, they can not be conflicting, and hence, should not be flagged as a deadlock
cycle. Since LCC:(b) is not satisfied, the cycle is not flagged as a lock cycle.

12 M.K. Ganai

(DCC misses valid cycles): Consider two threads t0, t1 that acquired mutex m in
shared state using lockS, and then both try to upgrade it to exclusive state using lock.
The corresponding lock order dependency chain is 〈〈t0, m0, {m0}〉, 〈t1, m0, {m0}〉〉.
DCC will not flag it as a deadlock potential, as mutexes are not distinct, and locksets
intersect (violating DCC:(d)). However, it is a valid deadlock cycle and is correctly
flagged by LCC as lock-ordsets do not intersect, and acquire of second mutex in an
exclusive state conflicts with the first mutex acquired in a shared state.

Lemma 2. The set cycleLCC comprises only valid lock cycles in the presence of
lock/trylock/lockS/trylockS primitives.

Proof. As per LCC:(c)-(d), a thread ti′ where i′ = (i + 1) mod k (i ∈ [1, k]) should

be able to acquire each mutex m ∈ mi ·
−→
L i′ without waiting, However, it may block

on a common conflicting mutex after the first acquire but before (or at the time of) the
second acquire. Thus, all the cycles reported by LCC are valid lock cycles. �

4 CBuster: Livelock Analysis Tool

We discuss various phases of our tool CBuster (Cycle Buster), and focus primarily
on inducing a livelock in an orchestrated execution. The tool CBuster comprises three
phases: (I) collection of traces, (II) lock cycle detection, and (III) livelock confirmation.

In phase I, we instrument the program to collect various synchronization events. For
occurrence of each synchronization event, we associate it with a calling thread, event
type, a thread context, and a clock vector.

In phase II, from the collected trace events, we construct a set
−→
D of lock-order depen-

dencies and a lock-order graph. We skip the exact implementation details, but we use
many DCC-based optimization techniques [27, 28]. These techniques reduce the graph
size by removing nodes and edges that can not participate in any cycle as per DCC:(a)-
(b). Since LCC:(a)-(b) are identical to DCC:(a)-(b) in the absence of lockS/trylockS,
those optimization techniques are selectively applicable. On a reduced graph, we adapt
techniques such as [28] to avoid identical cycles with the same set of lock order de-
pendencies. Once we obtain cycles, we classify them into trylock, deadlock, and mixed
cycles.

In phase III, we focus on inducing livelocks in a program re-
execution (i.e., replay) using trylock cycles. From a trylock cycle
〈(F1, 〈t1, m1,

−→
L 1〉, N1) · · · (Fk, 〈tk, mk,

−→
Lk〉, Nk)〉 (k > 1), we orchestrate a

partial-order schedule of replay events which we repeat at least twice to expose and
confirm a livelock situation. A replay event r has following attributes: r.etype (event
type), r.cxt (thread context), and r.m (mutex). For a given event e, we define a
matching replay event r as follows: r.etype := e.type, and r.cxt := e.cxt. Due to
dynamic allocation of mutex objects, we set r.m during a mutex acquire, and use it to
identify the corresponding mutex release event.

In our instrumentation framework, we insert a procedure, referred as mutex prehook
(not shown) which is invoked just before a mutex acquire/release operation. The proce-
dure takes three arguments: the thread context of the current event (cxt), current event
type etype, and current mutex object m. Instead of showing the pseudo-code (and nitty
gritty details), we explain the schedule orchestration using local and global state transi-
tion diagram (shown in Figure 4) for better understanding.

Dynamic Livelock Analysis of Multi-threaded Programs 13

Let each thread be in one of the following (abstract) states: head, body, tail, (as
shown in Figure 4(a)). Let rht and rbt denote matching replay events corresponding to
events Ft and Nt of the thread t, and rtt denote a replay event s.t. rtt.etype = unlock.
The guarded predicate gi,j and actions ai,j (shown in boxes) correspond to a local state
transition from i to j, where i, j ∈{head, body, tail}.

The global (abstract) states of the system, shown in Figure 4(b), are Head, Body,
Tail. Let State denote a global variable that takes one of the state values: Head, Body,
Tail, corresponding to a current global state. The global state transition occurs when
the value of a global variable Count is 0, at which point the value of State is updated,
and Count is set to the length of the trylock, denoted as CycleLen (=k). The variable
Count is used to synchronize the local transitions of threads. For e.g., a transition of
a system from Head to Body occurs when all the threads (equal to CycleLen) have
transitioned from head to body. Initially, all threads are in head state, and the global
state (State) is Head. Also, Count = CycleLen.

Consider some thread t in head state, and State = Head when mutex hook is called.
If the current event does not match rht (first acquire), i.e., ghead,head = true, t stays in
head (self-loop, Box 1). However, if it matches rht i.e., ghead,body = true, the value
of Count is decreased by 1, rtt.m is set to m (needed to identify an unlock operation

����

����

	�
�

Guard: (State = Tail ∨ rht.cxt ≠ cxt ∨
rht.etype ≠ etype)

Actions:
if (rht.ctx = cxt∧ rht.etype = etype)

waitFor(State=Head);

Guard: (State = Body ∧
rbt.cxt = cxt ∧
rbt.etype = etype)

Actions:
Count := Count-1

Guard:(State = Tail ∧
rtt.m = m ∧
rtt.etype = etype)

Actions:
Count := Count-1

Guard: (State = Body ∨
rtt.m ≠ m ∨
rtt.etype ≠ etype)

Actions:
if (rtt.m = m ∧

rtt.etype = etype)
waitFor(State=Tail);

Guard: (State = Head ∨
rbt.cxt ≠ cxt ∨
rbt.etype ≠etype)

Actions:
if (rbt.ctx = cxt ∧

rbt.etype = etype)
waitFor(State=Body);

Guard:(State = Head ∧
rht.cxt = cxt ∧
rht.etype = etype)

Actions:
Count := Count-1,rtt.m := m

����������������

�

�

�

��

�

����

����

	�
�

Guard: (Count≠0)

Guard: (Count=0)
Actions:

State := Body
Count := CycleLen

Guard: (Count=0)
Actions:

State := Tail
Count := CycleLen

Guard: (Count=0)
Actions:

State := Head
Count := CycleLen

Guard:(Count≠0)Guard:(Count≠0)

��������

Fig. 4. Orchestrating schedules for inducing livelocks with intra-thread and inter-thread cycles.
Illustrated with thread local (a) and global (b) state diagrams.

14 M.K. Ganai

on m), and the thread transitions to body state (Box 2). In both scenarios, the current
event is not blocked, i.e., mutex prehook returns the control back to the event.

Consider a global state with a thread in body state, and State = Head when
mutex hook is called. If the current event does not match rbt (second acquire), then
it is not blocked, and thread stays in body state (self-loop, Box 3). However, if it
matches rbt, then the thread waits in a loop inside mutex prehook until State=Body
(self-loop, Box 3). In other words, the current event is blocked. The value of State is
updated to Body (Figure 4(b)) only when all threads have transitioned to body state,
i.e., threads were successful in executing events matching rht. Once the waiting is over
i.e., State=Body, t transitions to tail state (Box 4) and mutex prehook returns the
control back.

Other state transitions can be similarly described. When we successfully induce the
global state transition sequence Head→Body→Tail→Head at least twice, we report
the confirmation of a livelock scenario. However, if the program takes a different path
and the second occurrence of Head does not happen, then we don’t report a livelock.

Other details: For maintaining same thread id during orchestration, we enforce the thread
creation order as observed in the collected trace. We do so by ensuring atomicity—of
fork invocation and the assignment of child thread id—to guarantee persistence of thread
id across runs. During orchestration, each state transition—comprising gi,j and ai,j—is
made atomic using a global mutex. The context matching of the events are carried out,
for e.g., by matching the respective call-site labels. The waitFor(c) primitive releases
and re-acquires the global mutex in a loop until c = true.

5 Implementation and Experimentation

We implemented our approach in a light-weight instrumentation framework CBuster.
We built an interposition library (in C/C++) and used LD PRELOAD facility (available
in Linux) to instrument and control the execution of the program during runtime. We
also added necessary hooks such as mutex prehook to confirm the livelock potentials.
In our prototype implementation, we used a thread callstack (similar to [20, 28]) to
represent a thread context.

We applied our approach to identify livelocks situations in a case study using SQLite-
based application [8]. SQlite is a popular embedded light weight database engine (writ-
ten in C) that supports ACID transactions. Unlike most other SQL databases, SQLite
does not have a separate server process, and is built directly with client application
as a single binary. SQLite reads and writes directly to ordinary disk files. A complete
SQL database with multiple tables, indices, triggers, and views, is contained in a single
disk file. Two application processes (on same machine) can access same database file
through a separate connection.

SQLite uses reader/writer locks to control access to the databases, allowing multi-
ple process (or threads with separate connection to database) to do read query but only
one to make changes to the database at any moment in time. On Unix system, the en-
gine uses advisory file locks fcntl to implement the reader/writer locks. Moreover,
the reader/writer locking are used in non-blocking style. When SQLite tries to access
the database file that is (write) locked by another process, the default behavior is to
return SQLITE BUSY, thereby, preventing potential deadlocks. It also has a built-in
mechanism to prevent write starvation, by disallowing new readers to acquire reader

Dynamic Livelock Analysis of Multi-threaded Programs 15

locks from the moment the writer thread is waiting for the writer lock. However, the
database does not prevent potential livelocks, which can happen when two compet-
ing and conflicting transactions repeatedly compete to access the database after getting
SQLITE BUSY errors.

SQLite supports two modes of atomic commit and rollback: rollback journal and
Write-ahead-logging (WAL). In this case study, we consider the rollback journal mode.
In this mode, the database is in one of the five lock states unlock, shared, reserved, pend-
ing, and exclusive. The database accesses are coordinated using three distinct flocks:
flock P, flock R, and flock D corresponding to pending, reserved, and database
locks. Each flock is identified with the file-segment to lock. In unlock state, a thread
cannot access a database. To get a read access, it has to first acquire the mutex flock P
in a shared state, followed by mutex flock D in a shared state. It releases the mutex
flock P so that the mutex can be acquired in exclusive state when needed. Multiple
reader threads can acquire flock D in shared state similarly. If a thread wants to write,
it has to acquire the mutex flock R in exclusive state. If it succeeds, the database
goes into reserved lock state. Only one thread can acquire mutex flock R. While the
database is in reserved lock state, new reader threads can still acquire mutex flock D
in shared state. The writer thread, while holding flock R in exclusive state, acquires
the mutex flock P in exclusive state, and prevents new readers. This mechanism pre-
vents writer starvation as no new shared lock will be granted. Once the database is in
the pending state, the writer thread attempts to acquire mutex flock D in exclusive
state. Once the writer obtains the exclusive lock, it updates and commits the changes
to database, releases all the mutexes i.e., flock D, flock P, flock R. If the database
is in shared state (i.e., flock D is still held by some thread) while an exclusive lock
flock D is requested, SQLITE BUSY error is returned to the application; in which the
application has to rollback and retry the SQL request.

The flocks are acquired/released through F SETLK command in the function call
fcntl. The call with this command is non-blocking, and simply returns success/fail,
like trylock. In our implementation, we extend our mutex handling ot flocks by uniquely
identifying them. Further, we instrument the calls to fnctl to record the acquisition and
release of flocks, and then classify them as trylock/trylockS/unlock events.

The application [8] that uses SQLite behaves as follows: There are two threads,
thread1 (t1) and thread2 (t2), both access a common database file through separate
connections. First thread “creates” a table object scoreTbl, and “inserts” two rows,
before creating the second thread. After thread creation, both threads try to “update”
the database concurrently. Each thread calls sqlite3 exec (a SQLite API) in a while
loop with in a wrapper function to ensure that the updates succeeds eventually. In mul-
tiple runs of the code, we noticed that both threads succeed in 0-2 retrials most of the
time.

In Figure 5(a), we show the sequence of relevant lock/trylock primitives in a good seri-
alized trace of each thread (shown side-by-side) as collected by our tool CBuster. There
are about 2K mutex acquire/release events. We searched for all lock cycles that satisfy
LCC. The detection time is < 10 sec. Note, due to happens-before condition require-
ment LCC:(c), we do not generate any spurious cycles between “insert” and “update”
queries. We detected a total of 10 lock cycles between the two “update” queries (which
are not causally ordered). We group them if they have identical lock-order dependency
chain with matching thread contexts of Fi and Ni events.

16 M.K. Ganai

thread1 thread2
/* Shared lock state */
lock(mg) lock(mg)
trylockS(flock P) trylockS(flock P)
trylockS(flock D) trylockS(flock D)
unlock(flock P) unlock(flock P)
unlock(mg) unlock(mg)
· · · · · ·
/* Reserved lock state */
lock(mg) lock(mg)
trylock(flock R) trylock(flock R)
unlock(mg) unlock(mg)
· · · · · ·
/* Exclusive lock state */
lock(mg) lock(mg)
trylock(flock P) trylock(flock P)
trylock(flock D) trylock(flock D)
unlock(mg) unlock(mg)
· · · · · ·

(a) (b)

������� ������	

��������������

��������������������

�������

���������������	����

�������������������

������� ��

�����������

��������������������

�� ������	

��������������

��������������

�������

�����

�������

�����

�����

�����

�����

�����

��

��

��

��

Fig. 5. (a) A trace of an SQLite application (based on [6,8]). Two threads eager to update database
concurrently, but the database engine can potentially throw them in a livelock. In the serialized
trace shown, however, both threads successfully updates database without retrying. (b) Lock cycle
groups C1-C4 obtained using CBuster. C1-C2 are trylock cycles (confirmed livelocks), and C3-
C4 are mixed cycles. Note, mP is a shorthand for flock P , and similarly others.

Out of 10 lock cycles, 4 of them are trylock cycles and are grouped into C1; another
4 of them are also trylock cycles and are grouped into C2; and the remaining are mixed
cycles, C3 and C4. We show them in Figure 5(c). We use mP as a shorthand notation
for the mutex flock P . Similarly, mD, and mR.

In C1 cycle, t1 acquires flock D in shared state, and then tries to get flock R in ex-
clusive state; while t2 first acquires flock R in exclusive state, and tries to get flock D
in exclusive state. The corresponding lock order dependency chain is
〈〈t1, mR, {mD, mg}〉, 〈t2, mD, {mD, mg, mR, mP }〉〉. A mutex is underlined if it is
acquired in shared state. The lock-ordsets mD · {mD, mg} = {mD} and
mR · {mD, mg, m R, mP } = {mD, mg, mR} do not intersect. LCC:(a)-(d) are sat-
isfied, and hence, it is a valid lock cycle. Furthermore, we were also able to induce
livelocks for all the four trylock cycles in C1 group using our orchestrated scheduler, as
discussed in Section 4.

In C2 cycle, t1 and t2 both acquire flock D in shared states, then try to get flock D
in exclusive state. The corresponding lock order dependency chain is
〈〈t1, mD, {mD, mg, mR, mP }〉, 〈t2, mD, {mD, mg, mR, mP }〉〉. All LCC conditions
are satisfied, and therefore, it is a valid lock cycle. We were also able to induce livelocks
for the four trylock cycles in this group.

For lack of space, we leave the discussion on mixed cycles C3, and C4. However,
when we try our scheduler on them, we were able to force one thread to retry.

Dynamic Livelock Analysis of Multi-threaded Programs 17

Our in-depth case study show the usefulness of the approach in detecting and con-
firming livelocks potentials in real application which can occur in intricate interactions
between third-party library and user application.

6 Conclusion and Future Work

We presented dynamic livelock analysis framework for multi-thread programs, where
we identify livelock potentials by examining a single execution trace of the program,
and then induce a livelock by orchestrating a scheduler on a re-execution of the pro-
gram. We also generalize cycle detection scheme to identify both deadlock and livelock
potentials precisely in the presence various of mutex acquire schemes. We built a proto-
type tool and demonstrated its usefulness in a case study of SQLite-based application.
We believe that similar livelock issues occur in the intricate interaction between appli-
cation and third-party modules. In future, we would like to expand our case studies.

References

1. Ho, A., Smith, S., Hand, S.: On deadlock, livelock, and forward progress. Technical Report
UCAM-CL-Tr-633, University of Cambridge, Computer Laboratory (2005)

2. Stallings, W.: Operating Systems: Internals and Design Principles. Prentice Hall (2001)
3. Mogul, J.C., Ramakrishnan, K.K.: Eliminating receive livelock in an interrupt-driven kemel.

ACM Trans. Comput. Syst. 15(3), 217–252 (1997)
4. Tai, K.-C.: Definitions and detection of deadlock, livelock, and starvation in concurrent pro-

grams. In: ICPP, pp. 69–72 (1994)
5. Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst. 4(3), 455–495 (1982)
6. Sqlite-Users, http://www.mail-archive.com/sqlite-users@sqlite.org/

msg41725.html
7. Sqlite-Users, http://www.mail-archive.com/sqlite-users@sqlite.org/

msg32658.html
8. Sqlite-Users, http://www.mail-archive.com/sqlite-users@sqlite.org/

msg54618.html
9. Blieberger, J., Burgstaller, B., Mittermayr, R.: Static Detection of Livelocks in Ada Mul-

titasking Programs. In: Abdennadher, N., Kordon, F. (eds.) Ada-Europe 2007. LNCS,
vol. 4498, pp. 69–83. Springer, Heidelberg (2007)

10. Ouaknine, J., Palikareva, H., Roscoe, A.W., Worrell, J.: Static Livelock Analysis in CSP. In:
Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 389–403. Springer,
Heidelberg (2011)

11. Holzmann, G.: The model checker spin. IEEE Transactions on Software Engineering (1997)
12. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: Proc. of ASE

(2000)
13. Li, T., Lebeck, A.R., Sorin, D.J.: Spin detection hardware for improved management of mul-

tithreaded systems. IEEE Transactions on Parallel and Distrubuted Systems 17, 508–521
(2006)

14. Engler, D.R., Ashcraft, K.: RacerX: effective, static detection of race conditions and dead-
locks. In: SOSP, pp. 237–252 (2003)

15. Williams, A., Thies, W., Ernst, M.D.: Static Deadlock Detection for Java Libraries. In: Gao,
X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer, Heidelberg (2005)

16. Shanbhag, V.K.: Deadlock-detection in Java-library using static-analysis. In: APSEC,
pp. 361–368 (2008)

 http://www.mail-archive.com/sqlite-users@sqlite.org/msg41725.html
 http://www.mail-archive.com/sqlite-users@sqlite.org/msg41725.html
http://www.mail-archive.com/sqlite-users@sqlite.org/msg32658.html
http://www.mail-archive.com/sqlite-users@sqlite.org/msg32658.html
http://www.mail-archive.com/sqlite-users@sqlite.org/msg54618.html
http://www.mail-archive.com/sqlite-users@sqlite.org/msg54618.html

18 M.K. Ganai

17. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock detection. In: Proc. of ICSE,
pp. 386–396 (2009)

18. Havelund, K.: Using Runtime Analysis to Guide Model Checking of Java Programs. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 245–264.
Springer, Heidelberg (2000)

19. Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., Mahlke, S.A.: Gadara: Dynamic deadlock
avoidance for multithreaded programs. In: OSDI, pp. 281–294 (2008)

20. Jula, H., Tralamazza, D.M., Zamfir, C., Candea, G.: Deadlock immunity: Enabling systems
to defend against deadlocks. In: OSDI (2008)

21. Bensalem, S., Havelund, K.: Dynamic Deadlock Analysis of Multi-threaded Programs. In:
Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 208–223. Springer,
Heidelberg (2006)

22. Agarwal, R., Wang, L., Stoller, S.D.: Detecting Potential Deadlocks with Static Analysis and
Run-Time Monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875,
pp. 191–207. Springer, Heidelberg (2006)

23. Bensalem, S., Fernandez, J.-C., Havelund, K., Mounier, L.: Confirmation of deadlock poten-
tials detected by runtime analysis. In: PADTAD, pp. 41–50 (2006)

24. Agarwal, R., Stoller, S.D.: Run-time detection of potential deadlocks for programs with
locks, semaphores, and condition variables. In: PADTAD, pp. 51–60 (2006)

25. Joshi, P., Park, C.-S., Sen, K., Naik, M.: A randomized dynamic program analysis technique
for detecting real deadlocks. In: Proc. of PLDI, pp. 110–120 (2009)

26. Joshi, P., Naik, M., Sen, K., Gay, D.: An effective dynamic analysis for detecting generalized
deadlocks. In: FSE (2010)

27. Luo, Z.D., Das, R., Qi, Y.: Multicore SDK: A practical and efficient deadlock detector for
real-world applications. In: ICST, pp. 309–318 (2011)

28. Cai, Y., Chan, W.K.: Magicfuzzer: Scalable deadlock detection for large-scale applications.
In: Proc. of ICSE (2012)

29. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: treating bugs as allergies - a safe method to
survive software failures. In: SOSP, pp. 235–248 (2005)

30. Harrow, J.J.: Runtime Checking of Multithreaded Applications with Visual Threads. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 331–342.
Springer, Heidelberg (2000)

31. SQLite home page, http://www.sqlite.org/
32. Mattern, F.: Virtual time and global states of distributed systems. In: Workshop on Parallel

and Distributed Algorithms, France (1988)
33. Fidge, J.: Timestamps in message-passing systems that preserve the partial ordering. In: Aus-

tralian Computer Science Conference (1988)

http://www.sqlite.org/

Scalable Dynamic Partial Order Reduction�

Jiri Simsa1, Randy Bryant1, Garth Gibson1, and Jason Hickey2

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
2 Google, Inc., Mountain View CA 94043, USA

Abstract. Systematic testing, first demonstrated in small, specialized
cases 15 years ago, has matured sufficiently for large-scale systems de-
velopers to begin to put it into practice. With actual deployment come
new, pragmatic challenges to the usefulness of the techniques. In this
paper we are concerned with scaling dynamic partial order reduction, a
key technique for mitigating the state space explosion problem, to very
large clusters. In particular, we present a new approach for distributed
dynamic partial order reduction. Unlike previous work, our approach is
based on a novel exploration algorithm that 1) enables trading space
complexity for parallelism, 2) achieves efficient load-balancing through
time-slicing, 3) provides for fault tolerance, which we consider a manda-
tory aspect of scalability, 4) scales to more than a thousand parallel
workers, and 5) is guaranteed to avoid redundant exploration of overlap-
ping portions of the state space.

1 Introduction

Testing of concurrent programs is challenging because concurrency manifests as
test non-determinism. A traditional approach to address this problem is stress
testing, which repeatedly exercises concurrent operations of the program under
test, hoping that eventually all concurrency scenarios of interest will be covered.

Unfortunately, as the scale of concurrent programs and the heterogeneity of
environments in which these programs are deployed increases, the state space of
possible scenarios explodes and stress testing stops being an effective mechanism
for exercising all scenarios of interest.

To address the increasing complexity of software testing, researchers have
turned their attention to systematic testing [8,12,14,18,19]. Similar to stress
testing, systematic testing also repeatedly exercises concurrent operations of the
program under test. However, unlike stress testing, systematic testing avoids test
non-determinism by controlling the order in which concurrent operations hap-
pen, exercising different concurrency scenarios across different test executions.

� This research was sponsored by the U.S. Army Research Office under grant number
W911NF0910273. The authors are also thankful to Google for providing its hardware
and software infrastructure for the evaluation presented in this paper. Further, we
also thank the members and companies of the PDL Consortium. The views and
conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 19–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 J. Simsa et al.

To push the limits of systematic testing, existing tools combine of stateless
exploration [8] with state space reduction [5,7,9] and parallel processing [21].

In this paper, we present a new method for distributed systematic testing
of concurrent programs, which pushes the limits of systematic testing to an
unprecedented scale. Unlike previous work [21], our approach is based on a novel
exploration algorithm that 1) enables trading space complexity for parallelism,
2) achieves load-balancing through time-slicing, 3) provides for fault tolerance,
which we consider a mandatory aspect of scalability, 4) scales to more than a
thousand parallel workers, and 5) is guaranteed to avoid redundant exploration
of overlapping portions of the state space.

The rest of the paper is organized as follows. Section 2 reviews stateless ex-
ploration, state space reduction, and parallel processing. Section 3 presents a
novel exploration algorithm and details its use for distributed systematic test-
ing at scale. Section 4 presents experimental evaluation of the implementation.
Section 5 discusses related work and Section 6 presents the conclusions drawn
from the results presented in this paper.

2 Background

In this section we give an overview of stateless exploration [8], dynamic partial
order reduction (DPOR) [5], and distributed DPOR [21], which represent the
state of the art in scalable systematic testing of concurrent programs.

2.1 Stateless Exploration

Stateless exploration is a technique that targets systematic testing of concurrent
programs. The goal of stateless exploration is to explore the state space of dif-
ferent program states of a concurrent program by systematically enumerating
different total orders in which concurrent events of the program can occur.

To keep track of the exploration progress, stateless exploration abstractly
represents the state space of different program states using an execution tree.
Nodes of the execution tree represent non-deterministic choice points and edges
represent program state transitions. A path from the root of the tree to a leaf then
uniquely encodes a program execution as a sequence of program state transitions.

Abstractly, enumeration of branches of the execution tree corresponds to enu-
meration of different sequences of program state transitions. Notably, the set
of explored branches of a partially explored execution tree identifies which se-
quences of program state transitions have been explored. Further, assuming that
concurrency is the only source of non-determinism in the program, the informa-
tion collected by past executions can be used to generate schedules that describe
in what order to sequence program state transitions of future executions in order
to explore new parts of the execution tree.

Typically, stateless exploration uses depth-first search to explore the execution
tree because of the space-efficient nature of its exploration, which is linear in the
depth of the tree. Further, tools for stateless exploration such as VeriSoft [8] use

Scalable Dynamic Partial Order Reduction 21

partial order reduction (POR) [7] to avoid exploration of equivalent sequences
of program state transitions.

The pseudocode depicted in Algorithm 1 and 2 gives a high-level overview
of stateless exploration. The ExplorePor algorithm maintains an exploration
frontier, represented as a stack of sets of nodes, and uses depth-first search
to explore the execution tree. The PersistentSet(node) function uses static
analysis to identify what subtrees of the execution tree need to be explored.
In particular, it inputs a node of the execution tree and outputs a subset of
the children of this node that need to be explored in order to explore all non-
equivalent sequences of program state transitions of the execution tree. The
details behind the computation of PersistentSet(node) are beyond the scope
of this paper and can be found in Godefroid’s seminal treatment [7]. Note that
our presentation of [8] omits the use of sleep sets [7]. This simplification is made
to achieve consistency with other techniques [5,21] presented later in this section.

Algorithm 1. ExplorePor(root)

Require: A root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.
1: frontier ← NewStack

2: Push({root}, frontier)
3: DFS-Por(root, frontier)

Algorithm 2. DFS-Por(node, frontier)

Require: A node node of an execution tree and a reference to a non-empty stack
frontier of sets of nodes such that node ∈ Top(frontier).

Ensure: The node node of the execution tree is explored and the exploration frontier
frontier is updated according to the POR algorithm.

1: remove node from Top(frontier)
2: if PersistentSet(node) �= ∅ then
3: Push(PersistentSet(node), frontier)
4: for all child ∈ Top(frontier) do
5: navigate execution to child
6: DFS-Por(child, frontier)
7: end for
8: Pop(frontier)
9: end if

2.2 Dynamic Partial Order Reduction

Dynamic partial order reduction (DPOR) is a technique that targets efficient
state space exploration [5,22]. The goal of DPOR is to further mitigate the
combinatorial explosion of stateless exploration.

The stateless exploration discussed in the previous subsection uses static anal-
ysis to identify which subtrees of the execution tree need to be explored. However,

22 J. Simsa et al.

precise static analysis of complex programs is often costly or infeasible and re-
sults in larger than necessary persistent sets. To address this problem, DPOR
computes persistent sets using dynamic analysis.

When stateless exploration explores an edge of the execution tree, DPOR
computes the happens-before [13] and the independence [7] relations over the
set of program state transitions. These two relations are then used to decide
how to augment the existing exploration frontier.

The pseudocode depicted in Algorithm 3 and 4 gives a high-level overview of
DPOR. The ExploreDpor algorithm maintains an exploration frontier, repre-
sented as a stack of sets of nodes, and uses depth-first search to explore the
execution tree. The UpdateFrontier(frontier, node) function uses dynamic
analysis to identify which subtrees of the execution tree need to be explored.
In particular, the function inputs the current exploration frontier and the cur-
rent node and computes the happens-before and independence relation between
the transitions leading to the current node. This information is then used to in-
fer which nodes need to be further added to the exploration frontier in order to
explore all non-equivalent sequences of program state transitions. Importantly,
the function modifies the exploration frontier in a non-local fashion as it can add
nodes to an arbitrary set of the exploration frontier stack. The details behind
the computation of UpdateFrontier(frontier, node) are beyond the scope of
this paper and can be found in the original paper [5].

Algorithm 3. ExploreDpor(root)

Require: A root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.
1: frontier ← NewStack

2: Push({root}, frontier)
3: Dfs-Dpor(root, frontier)

Algorithm 4. Dfs-Dpor(node, frontier)

Require: A node node of an execution tree and a reference to a non-empty stack
frontier of sets of nodes such that node ∈ Top(frontier).

Ensure: The node node of the execution tree is explored and the exploration frontier
frontier is updated according to the DPOR algorithm.

1: remove node from Top(frontier)
2: UpdateFrontier(frontier,node)
3: if Children(node) �= ∅ then
4: child ← arbitrary element of Children(node)
5: Push({child}, frontier)
6: for all child ∈ Top(frontier) do
7: navigate execution to child
8: Dfs-Dpor(child, frontier)
9: end for
10: Pop(frontier)
11: end if

Scalable Dynamic Partial Order Reduction 23

2.3 Distributed Dynamic Partial Order Reduction

Distributed DPOR is a technique that targets concurrent stateless exploration.
The goal of distributed DPOR is to offset the combinatorial explosion of possible
permutations of concurrent events through parallel processing.

At a first glance, parallelization of DPOR seems straightforward: assign dif-
ferent parts of the execution tree to different workers and explore the execution
tree concurrently. However, as pointed out by Yang et al. [21], such a paral-
lelization suffers from two problems. First, due to the non-local nature in which
DPOR updates the exploration frontier, different workers may end up exploring
identical parts of the state space. Second, since the sizes of the different parts
of the execution tree are not known in advance, the load-balancing needed to
enable linear speedup is non-trivial.

To address these two problems, Yang et al. [21] proposed two heuristics. Their
first heuristic modifies Flanagan and Godefroid’s lazy addition of nodes to the
exploration frontier [5] so that they add nodes to the exploration frontier eagerly.
As evidenced by their experiments, replacing lazy addition with eager addition
mitigates the problem of redundant exploration of identical parts of the execu-
tion tree by different workers. Their second heuristic assumes the existence of
a centralized load-balancer that workers can contact in case they believe they
have too much work on their hands and would like to offload some of the work.
The centralized load-balancer keeps track of which workers are idle and which
workers are active and facilitates offloading of work from active to idle workers.

3 Scalable Dynamic Partial Order Reduction

While scaling distributed DPOR to a large cluster at Google [15], we have iden-
tified several problems with previous work of Yang et al. [21].

First, at large scale, the algorithm must explicitly cope with the failure of
worker processes or machines. Although Yang et al. suggest how fault tolerance
could be implemented, they do not quantify how their design affects scalability.
Second, although the out-of-band centralized load-balancer of Yang et al. renders
the communication overhead negligible, it precludes features that are enabled by
centralized collection of information such as support for fault tolerance or state
space size estimation. Third, the load-balancing of Yang et al. uses a heuristic
based on a threshold to offload work from active to idle workers. It is likely
that for different programs and different number of workers, different threshold
values should be used. However, Yang et al. provide no insight into the problem
of selecting a good threshold. Fourth, their DPOR modification for avoiding
redundant exploration is a heuristic does not guarantee zero redundancy.

In this section we present an alternative design for distributed DPOR. Our
design is centralized and uses a single master and n workers to explore the exe-
cution tree. Despite its centralized nature, our experiments show that our design
scales to more than a thousand workers. Unlike previous work, our design can
tolerate worker faults, is guaranteed to avoid redundant exploration, and is based

24 J. Simsa et al.

on a novel exploration algorithm that allows 1) trading off space complexity for
parallelism and 2) efficient load-balancing through time-slicing.

3.1 Novel Exploration Algorithm

The key advantage of using depth-first search for the purpose of DPOR is its
favorable space complexity [8]. In fact, experience with systematic testing of
concurrent programs based on stateless exploration [5,14,16,19] suggests that
the bottleneck for stateless exploration is CPU power, and not memory size.

To enable parallel processing, Yang et al. [21] depart from the strict depth-first
search nature of stateless exploration. Instead, the execution tree is explored us-
ing a collection of (possibly overlapping) depth-first searches and the exploration
order is determined by a load-balancing heuristic.

Algorithm 5. ExploreDpor(n, root)

Require: A positive integer n and a root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.
1: frontier ← NewSet

2: Insert(Push({root},NewStack), frontier)
3: while Size(frontier) > 0 do
4: Partition(frontier, n)
5: fragment ← an arbitrary element of frontier
6: node ← an arbitrary element of Top(fragment)
7: Pdfs-Dpor(node, fragment, frontier)
8: if Size(fragment) = 0 then
9: Remove(fragment, frontier)
10: end if
11: end while

Algorithm 6. Partition(frontier, n)

Require: A non-empty set frontier of non-empty stacks of sets of nodes and a positive
integer n such that n ≥ Size(frontier).

Ensure: Size(frontier) = n or ∀fragment ∈ frontier : the number of nodes contained
in fragment is 1.

1: for all fragment ∈ frontier do
2: if Size(frontier) = n then
3: return
4: end if
5: while the number of nodes contained in fragment is greater than 1 and

Size(frontier) < n do
6: node ← an arbitrary element of a set contained in fragment
7: remove node from fragment
8: new-fragment ← a new frontier fragment for node
9: Insert(new-fragment, frontier)
10: end while
11: end for

Scalable Dynamic Partial Order Reduction 25

To overcome the limitations mentioned above, we have designed a novel explo-
ration algorithm, called n-partitioned depth-first search, which relaxes the strict
depth-first search nature of DPOR in a controlled manner and, unlike traditional
depth-first search, is amenable to parallelization.

For the sake of the presentation, we first present a sequential version of
DPOR based on the n-partitioned depth-first search. The main difference be-
tween depth-first search and n-partitioned depth-first search is that the explo-
ration frontier of the new algorithm is partitioned into up to n frontier fragments
and the new algorithm explores each fragment using a depth-first search inter-
leaving exploration of different fragments.

The pseudocode depicted in Algorithm 5, 6, and 7 gives a high-level overview
of DPOR algorithm based on the n-partitioned depth-first search. The algorithm
maintains an exploration frontier, represented as a set of up to n stacks of sets
of nodes. The elements of the exploration frontier are referred to as fragments
and together they form a partitioning of the exploration frontier. The execution
tree is explored by interleaving depth-first search exploration of frontier frag-
ments. Algorithm 5 implements this idea by repeating two steps – Partition

and Pdfs-Dpor – until the execution tree is fully explored.

Algorithm 7. Pdfs-Dpor(node, fragment, frontier)

Require: A node node of an execution tree, a reference to a non-empty stack fragment
of sets of nodes such that node ∈ Top(fragment), and a reference to a set frontier
of non-empty stacks of sets of nodes.

Ensure: The node node of the execution tree is explored and the fragment fragment
of the exploration frontier is updated according to DPOR.

1: remove node from Top(fragment)
2: UpdateFrontier(frontier, fragment,node)
3: if Children(node) �= ∅ then
4: child ← arbitrary element of Children(node)
5: Push({child}, fragment)
6: navigate execution to child
7: end if
8: pop empty sets from the fragment stack

The Partition step is detailed in Algorithm 6. During the Partition step,
the current frontier is inspected to see whether existing frontier fragments should
be and can be further partitioned. A new frontier fragment should be created
in case there is less than n frontier fragments. A new frontier fragment can be
created if there exists a frontier fragment with at least two nodes.

The Pdfs-Dpor step is detailed in Algorithm 7. The Pdfs-Dpor step is given
one of the frontier fragments and uses depth-first search to explore the next edge
of the subtree induced by the selected frontier fragment (the subtree that con-
tains all ancestors and descendants of the nodes contained in the selected frontier
fragment). The UpdateFrontier(frontier, fragment, node) function operates in
a similar fashion to the UpdateFrontier(frontier, node) function described in
the previous section. The main distinction is that after the function identifies

26 J. Simsa et al.

which nodes are to be added to the exploration frontier using Flanagan and
Godefroid’s algorithm [5], these nodes are added to the current frontier fragment
only if they are not already present in some other fragment. This way, the set of
sets of nodes contained in each fragment remains a partitioning of the exploration
frontier – an invariant maintained throughout our exploration that which helps
our design to avoid redundant exploration.

3.2 Parallelization

In this subsection we describe how to efficiently parallelize the above sequential
DPOR design based on n-partitioned depth-first search.

First, observe that the presence or absence of the Partition step in the body
of the main loop of the ExploreDpor function of Algorithm 5 has no effect on
the correctness of the algorithm. This allows us to sequence several Pdfs-Dpor

steps together, which hints at possible distribution of the exploration.
Namely, one could spawn concurrent workers and use them to carry out

sequences of Pdfs-Dpor steps over different frontier fragments. However, a
straightforward implementation of this idea would require synchronization when
concurrent workers access and update the exploration frontier, which is shared

Algorithm 8. ExploreDistributedDpor(n, budget, root)

Require: A positive integer n, a time budget budget for worker exploration, and a
root node root of an execution tree.

Ensure: The execution tree rooted at the node root is explored.
1: frontier ← NewSet

2: Insert(Push(root,NewStack), frontier)
3: while Size(frontier) > 0 do
4: Partition(frontier, n)
5: while exists an idle worker and an unassigned frontier fragment do
6: fragment ← an arbitrary unassigned element of frontier
7: Spawn(ExploreLoop, fragment, budget,ExploreCallback)
8: end while
9: wait until signaled by ExploreCallback

10: end while

Algorithm 9. ExploreLoop(fragment, budget)

Require: A non-empty stack fragment of sets of nodes.
Ensure: Explores previously unexplored branches of the subtree induced by the nodes

of fragment until all branches are explored or the timeout expires.
1: start-time ← GetTime

2: repeat
3: node ← an arbitrary element of Top(fragment)
4: Pdfs-Dpor(node, fragment)
5: current-time ← GetTime

6: until current-time − start-time > budget or Size(fragment) = 0

Scalable Dynamic Partial Order Reduction 27

by all workers. The trick to overcome this obstacle to efficient parallelization
is to give each worker a private copy of the execution tree. As pointed out by
Yang et al. [21], such a copy can be concisely represented using the state of the
depth-first search stack of the frontier fragment to be explored.

A worker can then repeatedly invoke the Pdfs-Dpor function over (a copy of)
the assigned frontier fragment. Once the worker either completes the exploration
of the assigned frontier fragment or it exceeds a time budget allocated for its
exploration, it reports back with the results of the exploration. The exploration
progress can be concisely represented using the original and the final state of the
depth-first search stack of the assigned frontier fragment.

The pseudocode depicted in Algorithm 8 and 9 presents a high-level approx-
imation of the actual implementation of our distributed DPOR. The imple-
mentation operates with the concept of “fragment assignment”. When a frontier
fragment is created, it is unassigned. Later, a fragment becomes assigned to a par-
ticular worker through the invocation of the Spawn function. When the worker
finishes its exploration, or exhausts the time budget assigned for exploration,
it reports back the results, the fragment assigned to this worker becomes unas-
signed again. The results of worker exploration are mapped back to the “master”
copy of the execution tree using the ExploreCallback callback function. The
time budget for worker exploration is used to achieve load-balancing through
time-slicing. The Partition function behaves identically to the original one,
except for the fact that it partitions unassigned fragments only.

Algorithm 9 presents the pseudocode of the ExploreLoop function, which
is executed by a worker. The Pdfs-Dpor function is identical to the sequential
version of the algorithm. The workers are started through the Spawn function
which creates a private copy of a part of the execution tree. Notably, the copy
contains only the nodes that the worker needs to further the exploration of the
assigned frontier fragment. Structuring the concurrent exploration in this fashion
enables both multi-threaded and multi-process implementations.

Since our goal has been to scale the stateless exploration to thousands of work-
ers, the scale of clusters available today, our implementation implements each
worker as an RPC server running as a separate process. In such a setting, the
Spawn function issues an asynchronous RPC request that triggers invocation of
the ExploreLoop function with the appropriate arguments at the RPC server
of the worker. The response to the RPC request is then handled asynchronously
by the ExploreCallback function, which maps the results of the worker ex-
ploration into the master copy of the execution tree and resumes execution of
the main loop of Algorithm 8.

3.3 Fault Tolerance

As is commonly done in large distributed applications [4,6], failure of one out
of thousands of nodes must be anticipated and handled gracefully, but failure of
just one particular node is infrequent enough to be dealt with using re-execution.

28 J. Simsa et al.

In accordance with this practice, our design assumes that the master, which is
running the ExploreDistributedDpor function, will not fail. The workers on
the other hand are allowed to fail and the exploration can tolerate such events.

In particular, an RPC request issued by the master to a worker RPC server
uses a deadline to decide whether the worker has failed. The value of the deadline
is set commensurately to the value of the worker time budget.

When the deadline expires without an RPC response arriving, the master
simply assumes that the worker has failed and makes no changes to the fron-
tier fragment originally assigned to the failed worker. The fragment becomes
unassigned again and other workers get a chance to further its exploration.

3.4 Load-Balancing

The key to high utilization of the worker fleet is effective load-balancing. To
achieve load-balancing, our design time-slices frontier fragments among available
workers. The availability of frontier fragments is impacted by two factors.

The first factor is the upper bound n on the number of frontier fragments that
the ExploreDistributedDpor creates. This parameter determines the size of
the pool of available work units. The higher this number, the higher the memory
requirements of the master but the higher the opportunity for parallelism. In our
experience, setting n to twice the number of workers worked fairly well. Future
work on dynamic selection of the number of workers might be beneficial if the
impact on the parallelism and memory use can be managed.

The second factor is the size of the time slice used for worker exploration.
Smaller time slices lead to more frequent generation of new fragments but this
elasticity comes at the cost of higher communication overhead. In our initial
design we used a fixed time budget, choosing the value of 10 seconds as a good
compromise for the elasticity vs. communication overhead trade-off. However,
the initial evaluation of our prototype made us realized that a variable time
budget improves worker fleet utilization at large scales.

In particular, we observed that as the number of workers increases, a gap
between the realized and the ideal speed up opens up. Our investigation iden-
tified time periods during the exploration with insufficient number of frontier
fragments to keep all workers busy.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

A
ct

iv
e

W
or

ke
rs

Runtime (secs)

Scheduling(10) Utilization

Fig. 1. Without Optimizations

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

A
ct

iv
e

W
or

ke
rs

Runtime (secs)

Scheduling(10) Utilization

Fig. 2. With Optimizations

Scalable Dynamic Partial Order Reduction 29

To study this problem, we recorded the number of active workers during the
lifetime of a test. Figure 1 plots this information for one of our test programs
on a configuration with 1, 024 workers and an upper bound of 2, 048 frontier
fragments. The figure is representative of other measurements at such a scale.

One can identify three phases of the exploration. In the first phase, the number
of active workers gradually increases over 100 seconds until there is enough
frontier fragments to keep everyone busy. In the second phase, all workers are
kept busy. In the third phase, the number of active workers gradually decreases
to zero over 100 seconds. Ideally, the first and the third phase should be as short
as possible in order to minimize the inefficiency resulting from not fully utilizing
the available worker fleet.

To this aim, we have developed a technique based on a variable time budget.
In particular, if the exploration is configured to use a time budget b, the master
actually uses fractions of b proportional to the number of active workers. For
example, the first worker will receive a budget of b

n , where n is the number of
workers. When half of the workers are active, the next worker to be assigned
work will receive a budget of b

2 . The scaling of the time budget is intended
to reduce the time before the master gets the opportunity to re-partition and
load-balance and thus to reduce the duration of the first and the third phase.

We implemented this technique and re-ran the our scalability measurements.
For comparison with Figure 1, Figure 2 plots the number of active workers
over time for the optimized implementation. For this test program, the two
techniques reduced the runtime from 655 seconds to 527 seconds. Similar runtime
improvements have been achieved for other test programs.

3.5 Avoiding Redundant Exploration

For clarity of presentation, Algorithm 8 omits a provision that prevents con-
current workers from exploring overlapping portions of the execution tree. This
could happen when two workers make concurrent UpdateFrontier calls and
add identical nodes to their frontier fragment copies.

To avoid this problem, our implementation introduces the concept of “node
ownership”. A worker exclusively owns a node if it is contained in the original
frontier fragment currently assigned to the worker, or is a descendant of a node
that the worker owns. All other nodes are assumed to be shared with other
workers and the node ownership restricts which nodes a worker may explore.

In particular, the depth-first search exploration of a worker is allowed to op-
erate only over nodes that the worker owns. When it encounters a shared node
during its exploration, the worker terminates its exploration and sends an RPC
response to the master indicating which nodes of the final frontier fragment are
shared. The ExploreCallback function checks which newly discovered shared
nodes are already part of some other frontier fragment. If a newly discovered
node is not part of some other fragment, the node is added to the master copy
of the currently processed frontier fragment (ownership is claimed). Otherwise,

30 J. Simsa et al.

the ownership of the node has been already claimed and the node is not added
to the master copy of the currently processed frontier fragment.

Although this provision could in theory lead to increased communication over-
head and decreased worker fleet utilization, our experiments indicate that in
practice the provision does not affect performance.

4 Evaluation

To evaluate our design, we implemented its prototype on top of ETA [15], a tool
developed at Google used for systematic testing of multi-threaded components
of a cluster management system. These components are written using a library
based on the actors paradigm [1] and the ETA tool is used to systematically enu-
merate different total orders in which messages between actors can be delivered
in order to exercise different concurrency scenarios.

4.1 Experimental Setup

For the purpose of evaluation of our implementation we have used instances
of the three following tests. The Resource(x,y) test is representative of a
class of actor program tests that evaluate interactions of x different users that
acquire and release resources from a pool of y resources. The Store(x,y,z)

test is representative of a class of actor program tests that evaluate interactions
of x users of a distributed key-value store with y front-end nodes and z back-
end nodes. The Scheduling(x) test is representative of a class of actor program
tests that evaluate interactions of x users issuing concurrent scheduling requests.
These tests exercise fundamental functionality of core components of the cluster
management system and are part of the unit test suite of the system.

Unless stated otherwise, each measurement presented in the remainder of this
section presents a run of a complete exploration of the given test and the results
report the mean and the standard deviation of three repetitions of a run. Lastly,
all experiments were carried out on a Google data center using stock hardware
and running each process on a separate virtual machine.

4.2 Faults

First, we evaluated the ability of the implementation to handle worker failures.
Notably, we extended the ETA tool with an option to inject an RPC fault with
a certain probability. When an RPC fault is injected, the master fails to receive
the RPC response from a worker and waits for the RPC to timeout instead.

Our experiments with injected RPC faults have demonstrated that the run-
time increases proportionally to the underlying geometric progression (of re-
peated RPC failures). For example, if each RPC had a 50% chance of failing,
the runtime doubled. Since in actual deployments of ETA, RPC requests fail
with probability well under 1%, our support for fault tolerance is practical.

Scalable Dynamic Partial Order Reduction 31

4.3 Scalability

Next, to measure the scalability of the implementation, we compared the time
needed to complete an exploration by a sequential implementation of DPOR
against the time needed to complete the same exploration by our distributed im-
plementation. We considered configurations with 32, 64, 128, 256, 512, and 1, 024
workers and applied the algorithm to the Resource(6,6), Store(12,3,3), and
Scheduling(10) actor program tests, parameters of which were chosen to stim-
ulate interesting state space sizes.

These experiments were run inside of a dynamically shared cluster; that is,
machines running worker processes are shared with other workloads. The time
budget of each worker exploration was set to 10 seconds and the target number
of frontier fragments was set to twice the number of workers.

The results of Resource(6,6), Store(12,3,3), and Scheduling(10) exper-
iments are presented in Figure 3, Figure 4, and Figure 5 respectively. Due to the
magnitude of the state spaces being explored, the runtime of the sequential al-
gorithm was extrapolated using a partial run. The figures visualize the speedup
over the extrapolated runtime of the sequential algorithm and compare it to the
ideal speedup. Note that both axes of the graphs are in logarithmic scale.

These results evidence the scalability of our implementation of DPOR at a
large scale. The largest configuration uses 1, 024 workers and our implementation
achieves speedup that ranges between 760× and 920×.

4.4 Theoretical Limits

Finally, we carried out measurements that helped us to evaluate the theoretical
scalability limits of our implementation. The purpose of the section is to project
future bottlenecks. To this aim we focused on measuring memory and CPU
requirements of the master.

Memory Requirements:The memory overhead of our implementation is dom-
inated by the cost to store the master copy of the exploration frontier. To
estimate the overhead, we measured the amount of memory allocated for the
explicitly stored nodes of the execution tree and the exploration frontier data
structures over time. For the Scheduling(10) test on a configuration with 1, 024
workers and an upper bound of 2, 048 frontier fragments, the peak number of the
allocated memory was less than 4MB. This number is representative of results for
other tests at such a scale. Consequently, for the current computer architectures,
the memory requirements scale to millions of workers.

CPU Requirements: With 1024 workers and a 10-second time budget, the
master is expected to issue around 100 RPC requests and to process around
100 RPC responses every second. For such a load, the stock hardware running
exclusively the master process experiences peak CPU utilization under 20%.
Consequently, for the current computer architectures, the CPU requirements
scale to around 5, 000 workers. To scale our implementation beyond that, one
can scale the time budget, hardware performance, or optimize the software stack.

32 J. Simsa et al.

 32

 64

 128

 256

 512

 1024

32 64 128 256 512 1024

Sp
ee

du
p

Workers

Resource(6,6) with concurrent DPOR

Realized
Ideal

Conf Runtime Speedup

32 Workers 31,105s 24×
64 Workers 14,681s 51×
128 Workers 7,557s 100×
256 Workers 3,874s 194×
512 Workers 2,051s 366×
1024 Workers 820s 916×

Fig. 3. For this example, DPOR explores on the order of 18.5 million branches and the
sequential implementation is expected to require 209 hours to finish

 32

 64

 128

 256

 512

 1024

32 64 128 256 512 1024

Sp
ee

du
p

Workers

Store(12,3,3) with concurrent DPOR

Realized
Ideal

Conf Runtime Speedup

32 Workers 26,646s 29×
64 Workers 13,396s 58×
128 Workers 6,252s 126×
256 Workers 3,332s 233×
512 Workers 1,784s 434×
1024 Workers 1,022s 758×

Fig. 4. For this example, DPOR explores on the order of 21 million branches and the
sequential implementation is expected to require 215 hours to finish

 32

 64

 128

 256

 512

 1024

32 64 128 256 512 1024

Sp
ee

du
p

Workers

Scheduling(10) with concurrent DPOR

Realized
Ideal

Conf Runtime Speedup

32 Workers 17,707s 26×
64 Workers 8,870s 51×
128 Workers 4,468s 102×
256 Workers 2,278s 200×
512 Workers 1,046s 436×
1024 Workers 527s 865×

Fig. 5. For this example, DPOR explores on the order of 3.6 million branches and the
sequential implementation is expected to require 126 hours to finish

For instance, one could replace the single master with a hierarchy of masters.
The performance of our algorithm shows that hierarchical organization is not
needed to scale to the size of state of the art cluster.

5 Related Work

Concurrent state space exploration have been previously studied in the context
of several projects: Inspect [20] is a tool for systematic testing of pthreads C

Scalable Dynamic Partial Order Reduction 33

programs that implements the distributed DPOR [21] discussed in Section 2. Un-
like our work, the Inspect tool does not support fault tolerance, is not guaranteed
to avoid redundant exploration, and has not been demonstrated to scale beyond
64 workers. DeMeter [10] provides a framework for extending existing sequen-
tial model checkers [12,19] with a parallel and distributed exploration engine.
Similar to our work, the framework focuses on efficient state space exploration
of concurrent programs. Unlike our work, the design has not been thoroughly
described or analyzed and has been demonstrated to scale only up to 32 workers.
Cloud9 [3] is a parallel engine for symbolic execution of sequential programs. In
comparison to our work, the state space being explored is the space of all possible
programs inputs. Systematic enumeration of different program inputs is an or-
thogonal problem to the one addressed by this paper. Parallelization of software
verification was also investigated in the context of explicit state space model
checkers in tools such as MurPhi [17], DiVinE [2], or SWARM [11]. State-
ful exploration is less common for implementation-level model checkers [8,15,19]
where storing a program state explicitly becomes prohibitively expensive.

6 Conclusions

This paper presented a technique that improves the state of the art of scalable
techniques for systematic testing of concurrent programs. Our design for dis-
tributed DPOR enables the exploitation of a large-scale cluster for the purpose
of systematic testing. At the core of the design lies a novel exploration algorithm,
n-partitioned depth-first search, which has proven to be essential for scaling our
design to thousands of workers.

Unlike previous work [21], our design provides support for fault tolerance, a
mandatory aspect of scalability, and is guaranteed to avoid redundant explo-
ration of identical parts of the state space by different workers. Further, our
implementation and deployment of a real-world system at scale has demon-
strated that the design achieves almost linear speed up for up to 1, 024 workers.
Lastly, we carried out a theoretical analysis of the design to identify scalability
bottlenecks of the design.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Barnat, J., Brim, L., Češka, M., Ročkai, P.: DiVinE: Parallel Distributed Model
Checker (Tool paper). In: HiBi/PDMC 2010, pp. 4–7. IEEE (2010)

3. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: EuroSys 2011, pp. 183–198 (2011)

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: BigTable: A distributed storage system for
structured data. In: OSDI 2006, pp. 205–218 (2006)

5. Flanagan, C., Godefroid, P.: Dynamic Partial Order Reduction for Model Checking
Software. SIGPLAN Not. 40(1), 110–121 (2005)

34 J. Simsa et al.

6. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. SIGOPS Oper. Syst.
Rev. 37(5), 29–43 (2003)

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem. Springer (1996)

8. Godefroid, P.: Model Checking for Programming Languages using VeriSoft. In:
POPL 1997, pp. 174–186. ACM (1997)

9. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian Partial-Order Reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

10. Guo, H., Wu, M., Zhou, L., Hu, G., Yang, J., Zhang, L.: Practical software model
checking via dynamic interface reduction. In: SOSP 2011, pp. 265–278. ACM, New
York (2011)

11. Holzmann, G.J., Joshi, R., Groce, A.: Swarm Verification Techniques. IEEE Trans-
actions on Software Engineering 37, 845–857 (2011)

12. Killian, C.E., Anderson, J.W., Jhala, R., Vahdat, A.: Life, Death, and the Critical
Transition: Finding Liveness Bugs in Systems Code. In: NSDI 2007 (2007)

13. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7), 558–565 (1978)

14. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and Reproducing Heisenbugs in Concurrent Programs. In: OSDI 2008, pp. 267–280
(2008)

15. Simsa, J., Bryant, R., Gibson, G., Hickey, J.: Efficient Exploratory Testing of Con-
current Systems. CMU-PDL Technical Report, 113 (November 2011)

16. Simsa, J., Gibson, G., Bryant, R.: dBug: Systematic Evaluation of Distributed
Systems. In: SSV 2010 (2010)

17. Stern, U., Dill, D.L.: Parallelizing the MurPhi Verifier. Formal Methods in System
Design 18(2), 117–129 (2001)

18. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: A tool for
model checking MPI programs. In: PPoPP 2008, pp. 285–286 (2008)

19. Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long, F., Zhang,
L., Zhou, L.: MoDist: Transparent Model Checking of Unmodified Distributed
Systems. In: NSDI 2009, pp. 213–228 (April 2009)

20. Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A Runtime Model Checker for
Multithreaded C Programs. University of Utah Tech. Report, UUCS-08-004 (2008)

21. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed Dynamic Par-
tial Order Reduction Based Verification of Threaded Software. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 58–75. Springer, Heidelberg
(2007)

22. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient Stateful Dynamic
Partial Order Reduction. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 288–305. Springer, Heidelberg (2008)

ANaConDA: A Framework for Analysing
Multi-threaded C/C++ Programs on the Binary Level�

Jan Fiedor and Tomáš Vojnar

IT4Innovations Centre of Excellence, FIT, Brno University of Technology, Czech Republic

Abstract. This paper presents the ANaConDA framework that allows one to eas-
ily create dynamic analysers for analysing multi-threaded C/C++ programs on
the binary level. ANaConDA also supports noise injection techniques to increase
chances to find concurrency-related errors in testing runs. ANaConDA is built
on top of the Intel’s framework PIN for instrumenting binary code. ANaConDA
can be instantiated for dealing with programs using various thread models. Cur-
rently, it has been instantiated for programs using the pthread library as well as
the Win32 API for dealing with threads.

1 Introduction

Due to the arrival of multi-core processors to common computers, multi-threaded pro-
gramming has become a standard in all widely used programming languages. Such
programming, however, is more demanding and brings much more space for errors.
Hence, adequate tools for discovering concurrency-related errors are highly needed.

One way to find errors in multi-threaded programs is dynamic analysis that moni-
tors the execution of a program and tries to extrapolate the witnessed behaviour and
issue warnings about possible errors even when no error is really witnessed in the given
execution. However, monitoring the execution of a program can be quite challenging
and programmers might spend more time writing the monitoring code than by writing
the analysis code itself. In this paper, we present the ANaConDA framework which is
a framework for adaptable native-code concurrency-focused dynamic analysis built on
top of PIN [7]. The goal of the framework is to simplify the creation of dynamic analy-
sers for analysing multi-threaded C/C++ programs on the binary level. The framework
provides a monitoring layer offering notification about important events, such as thread
synchronisation or memory accesses, so that developers of dynamic analysers can fo-
cus solely on writing the analysis code. In addition, the framework also supports noise
injection techniques to increase the number of interleavings witnessed in testing runs
and hence to increase chances to find concurrency-related errors.

The general ideas behind the framework and preliminary experiments with it have
been presented in [2]. In the present paper, apart from mentioning some recent additions
to the framework, we focus more on how to write an analyser using the framework, how

� This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021630528), the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, and the internal Brno
University of Technology projects FIT-S-11-1 and FIT-S-12-1.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 35–41, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

36 J. Fiedor and T. Vojnar

to get some useful information which may help the user in locating an error, and how
to use the tool. As the framework can be instantiated to support various multithreading
libraries, we also describe some concrete instantiations, in particular, the instantiation
for pthreads, already used for the experiments in [2], and a new instantiation for
Win32 API. Finally, we discuss several real-life experiments done with the framework.

As for related tools, there exist many frameworks which may be used to simplify the
creation of dynamic analysers for Java programs. The closest to ANaConDA is IBM
ConTest [1] which inspired some parts of the design of ANaConDA. RoadRunner [3] is
another framework very similar to ANaConDA. Both of these frameworks can monitor
the execution of multi-threaded Java programs and provide notification about important
events in their execution to dynamic analysers built on top of the frameworks. Cal-
Fuzzer [5] is an extensible framework for testing concurrent programs which can also
be used to create new static and dynamic analysers and to combine them. Chord [8] is
another extensible framework which might be used to productively design and imple-
ment a broad variety of static and dynamic analyses for Java programs. When dealing
with C/C++ programs, the options are much poorer. One tool somewhat related to ANa-
ConDA is Fjalar [4] which is a framework for creating dynamic analysers for C/C++
programs. However, Fjalar is primarily designed to simplify access to various compile-
time and memory information. It does not provide any concurrency-related information.
Moreover, it is build on top of Valgrind [9], which brings several disadvantages as dis-
cussed in Section 3.

2 Monitoring Multithreaded C/C++ Programs on the Binary Level

As was mentioned in the introduction, monitoring C/C++ programs can be quite diffi-
cult, especially when the monitoring is done on the binary level. One of the problems
to be dealt with is monitoring of function execution. This is because the monitoring
code has to cope with that the control can be passed among several functions by jumps.
Hence, the control can return from a different function than the one that was called. An-
other problem is that the monitoring code must properly trigger notifications for various
special types of instructions such as atomic instructions, which access several mem-
ory locations at once but in an atomic way, or conditional and repeatable instructions,
which might be executed more than once or not at all. Further, some pieces of infor-
mation about the execution of instructions or fuctions (such as the memory locations
accessed by them), which are crucial for various analyses, may be lost once the in-
struction or function finishes its execution, and it is necessary to explicitly preserve this
information for later use. Finally, in order to support various multithreading libraries,
the analysers must be abstracted from the concrete library used. Possible solutions to
the these problems were discussed in [2].

A problem that has not been considered in [2] is that the information needed for
analysis is not the only information useful for the users. When the analyser detects an
error, it should provide the users as much information as possible to help them localise
the error. Retrieving information about the executed code, such as names of variables
or locations in the source code, can give the users some information about the error.
However, this information is often not sufficient since it may be difficult to know how

A Framework for Analysing Multi-threaded C/C++ Programs on the Binary Level 37

the program got to the variable or location where the error was detected. A much better
help to the user is a backtrace to the erroneous part of the program.

ANaConDA currently supports backtraces equivalent to the ones given by the Linux
backtrace() function, which contain the return addresses of the currently active
function calls. The return addresses are stored on the call stack in the corresponding
stack frames. The top stack frame’s address can be obtained from the base pointer reg-
ister, and each stack frame also contains the previous value of the base pointer, referring
to the previous stack frame. By following the chain of base pointers, we can extract the
return addresses and create a backtrace although we have to be careful when processing
the stack frames as sometimes (e.g., during the initialisation of the program) the base
pointer register may be used for other purposes and might point somewhere else than to
a stack frame. The advantage of this approach is that we do not need to monitor every
function call in the program and update the backtrace constantly. We are constructing
the backtrace on demand, i.e., only when the analyser explicitly requests it, and we only
need to know the value of the base pointer register, which can be retrieved with a neg-
ligible overhead. The only drawback is that the program must properly create the stack
frames, which may sometimes not be true if some optimisations are used.

3 Implementation, Current Instantiations, and Usage

The ANaConDA1 framework is an open-source framework written in C++ on top of
PIN [7]. There are several reasons motivating the use of PIN as a binary instrumentation
backend. First, PIN performs dynamic instrumentation, i.e., it instruments a program in
the memory before it is executed. This means that the binary files of the program are left
untouched. This is especially important when dealing with libraries as it allows one to
transparently use an instrumented version of a library and simultaneously use the library
as usual in other programs. PIN can also be used on both Linux and Windows, compared
to Valgrind which is Linux-only, which allows a much wider range of programs to be
analysed. Of course, PIN is primarily developed for use with Intel binaries. However,
if the binary code does not contain any special AMD-only instructions, PIN works
fine even for AMD binaries. Another advantage of PIN is that it preserves the parallel
execution of threads of the analysed multi-threaded program. Valgrind, on the contrary,
serialises thread execution [9], which may unnecessarily slow down the program and
also the analysis as the analysis code usually runs in these threads too.

Instantiation. The ANaConDA framework abstracts analysers built on top of it from
the specific multithreading library used, but it of course cannot do that without any in-
formation about the library. As explained in more detail in [2], the user must specify:
(1) the names of the functions performing various thread-related operations, (2) the in-
dices of parameters holding the synchronisation primitives the functions operate with,
and (3) the Mapper objects used to abstract the synchronisation primitives to num-
bers uniquely identifying them. Abstraction of synchronisation primitives is necessary
because their representation varies across various libraries, but analysers need to work
with them in a uniform way.

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/anaconda

38 J. Fiedor and T. Vojnar

p t h r e a d m u t e x l o c k 1 addr ()
p t h r e a d m u t e x t r y l o c k 1 addr ()

(a) Lock acquisitions (lock file)

p t h r e a d m u t e x u n l o c k u s e r c n t 1 addr ()

(b) Lock releases (unlock file)

Fig. 1. An example of the configuration of monitoring lock operations in the pthread library

For example, if we use the pthread library and want to get notifications about
lock acquisitions and releases, we have to specify that the pthread mutex lock
and pthread mutex trylock functions are performing the lock acquisitions and
the pthread mutex unlock usercnt function the lock releases. This is done
by adding the names of these functions to the lock and unlock configuration files,
respectively. All of these functions are taking the lock as the first parameter, and be-
cause locks are objects of the pthread mutex t structure, we can use the ANa-
ConDA framework’s built-in mapper object addr to convert the addresses of these
objects into numbers uniquely representing them. To give this information to ANa-
ConDA, we have to specify the index and the name of the Mapper object right after
the name of the corresponding monitored function as can be seen in Fig. 1. The instanti-
ation for signaling conditions and waiting on them is similar, we just have to instruct the
framework to monitor the pthread cond signal, pthread cond broadcast,
and pthread cond wait functions by inserting the appropriate information to the
signal and wait configuration files.

As for the Win32 API, there is no function that performs purely lock acquisitions.
Instead, the WaitForSingleObject function is used taking a generic HANDLE as
the first parameter and performing a lock acquisition only if the HANDLE represents
a lock (it may also represent, e.g., a thread or an event). In this case, we have an al-
ternate way to tell ANaConDA when a function performs a lock acquisition. We can
specify that the WaitForSingleObject function is a generic wait function whose
behaviour depends on the type of the synchronisation primitive passed to it and then
name a function which creates or initialises new locks. The framework then remem-
bers which synchronisation primitives are locks because they were created by the user-
identified lock creation/initialisation function. Subsequently, when a generic wait func-
tion (like WaitForSingleObject) is called, it will first determine what kind of
synchronisation primitive its parameter represents. If it is a lock, it will properly trigger
the lock acquisition notifications. In particular, in Win32 API, locks are created by the
CreateMutex function which returns a HANDLE representing the lock. Configuring
lock releases is much simpler as they are performed by a dedicated ReleaseMutex
function which takes the lock (HANDLE) as the first parameter. As the HANDLE is in
fact a generic pointer, we can also use the addr mapper object here to transform it into
a unique number.

The Win32 API has no functions for signaling conditions and waiting on them. If
such operations are needed, the users usually implement the operations themselves or
use some libraries like pthread-win32 implementing them. However, as ensuring
that the functions performing these operations will trigger the corresponding ANa-
ConDA notifications is as easy as adding a few lines to the appropriate configuration
files, the framework does not have any problems with the users using their own custom
functions for these operations, which illustrates the generality of the framework.

A Framework for Analysing Multi-threaded C/C++ Programs on the Binary Level 39

Another problem with the Win32 API is that some of the functions that need to be
monitored are jumping at the beginning of other monitored functions. In this case, PIN
executes the monitoring code inserted before such functions, and if no special care was
taken, the analyser would get a notification about a single event multiple times. The
solution could seem to be easy as one could, e.g., think of simply specifying that one of
the functions should not be monitored. However, the functions often have exactly the
same names, so one cannot so easily differentiate between them. The framework solves
this problem by checking if the stack pointer changed when a monitored function is
about to be executed, and it does not issue a notification if its value remained the same
as that means that nobody called the function, and the control must have jumped to it.

Usage of ANaConDA. To analyse a multi-threaded C/C++ program using ANaConDA,
one first has to write (or get) an analyser to be used. The analyser must have the form
of a shared object (in Linux) or a dynamic library (in Windows) which contains a set of
functions that ANaConDA should call when a specific event, such as a lock acquisition,
occurs in the program being analysed. The analyser has to register the callback functions
for the events it needs to be notified about. This is done by calling the appropriate reg-
istration functions (provided by ANaConDA) in the init() function of the analyser,
which ANaConDA executes once the analyser is loaded. For example, to be notified
about lock acquisitions and releases, the analyser has to register its callback functions
using the SYNC AfterLockAcquire andSYNC BeforeLockRelease functions,
respectively.

Performing the actual analysis is then quite simple. One just needs to execute the
PIN framework with ANaConDA as the pintool2 to be used and specify the analyser
which should perform the desired analysis together with the program which should
be analysed. Noise injection can be enabled and configured in the noise section of
the anaconda.conf configuration file. Currently, only the sleep and yield noise is
supported, but the user may use different noise injection settings for the read and write
accesses and also for each of the monitored functions. The slowdown of the execution
of the analysed program is similar to Fjalar, i.e., around 100 times. Note, however, that
the slowdown is mainly due to PIN and depends on many factors such as the amount
of instrumentation inserted, the amount of information requested by the analyser, the
amount of noise injected into the program, etc.

4 Experiments

A set of preliminary experiments with the framework was done in [2] where we anal-
ysed more than 100 student projects implementing a simple ticket algorithm (100–500
lines of code) under the pthread library. The projects passed all the tests originally
used to mark them, but we still found errors in around 20 % of them using a simple data
race detector called AtomRace [6], which we use in the tests discussed below too.

To test whether ANaConDA can handle really large and complex programs, we have
used it to analyse the Firefox browser (more than 3 million lines of code) which uses

2 A pintool can be thought of as a PIN plugin that can modify the code generation process inside
PIN, i.e., it determines which code should be executed and where in the monitored program.

40 J. Fiedor and T. Vojnar

the pthread library. We did not find any severe or unknown errors. We did, however,
find several data races which are left in the code since they are considered harmless.
Considering the size of the program, the fact that it is thoroughly checked for data races
regularly, and also that we used a very simple data race detector and performed only
a very limited set of tests since we did not have any automatic test suite to use, we
consider these results to still be quite promising.

We further analysed the unicap libraries for video processing, which also use the
pthread library and are considerably smaller (about 40k lines of code) which allowed
us to perform a larger number of tests. We have found several (previously unknown)
data races in the libunicap and libunicapgtk libraries. Two of the data races
can be considered severe as they may cause a crash of the program which uses these
libraries. In both cases, one thread may reset a pointer to a callback function (i.e., set
it to NULL) in between of the times when another thread checks the validity of this
pointer and calls the function referenced by it, which can cause an immediate segmen-
tation fault. We are currently preparing to report these errors to the developers using
the ANaConDA’s recently added backtrace support that can provide a rather detailed
information where and why the error occurred.

Finally, we also successfully tested the framework on several Windows toy programs
(100–500 lines of code). An application to larger programs is planned for the near fu-
ture.

5 Conclusion

We have presented ANaConDA—a framework simplifying the creation of dynamic
analysers for analysing multi-threaded C/C++ programs on the binary level. We have
shown how to instantiate it for several widely used multithreading libraries and demon-
strated on several case studies that it can handle even large real-life programs. With the
help of the framework, we were able to write a simple analyser in a day and successively
find several errors with it, which shows the usefulness of the framework.

References

1. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for Testing Multi-
threaded Java Programs. Concurrency and Computation: Practice and Experience 15(3-5),
485–499 (2003)

2. Fiedor, J., Vojnar, T.: Noise-Based Testing and Analysis of Multi-threaded C/C++ Programs
on the Binary Level. In: Proc. of PADTAD 2012. ACM Press (2012)

3. Flanagan, C., Freund, S.N.: The RoadRunner Dynamic Analysis Framework for Concurrent
Programs. In: Proc. of PASTE 2010. ACM Press (2010)

4. Guo, P.J.: A Scalable Mixed-Level Approach to Dynamic Analysis of C and C++ Programs.
Master’s thesis, Department of EECS, Cambridge, MA (May 5, 2006)

5. Joshi, P., Naik, M., Park, C.-S., Sen, K.: CALFUZZER: An Extensible Active Testing Frame-
work for Concurrent Programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 675–681. Springer, Heidelberg (2009)

6. Letko, Z., Vojnar, T., Křena, B.: AtomRace: Data Race and Atomicity Violation Detector and
Healer. In: Proc. of PADTAD 2008. ACM Press (2008)

A Framework for Analysing Multi-threaded C/C++ Programs on the Binary Level 41

7. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. In: Proc. of PLDI 2005. ACM Press (2005)

8. Naik, M.: Chord: A Static and Dynamic Program Analysis Platform for Java Bytecode,
http://code.google.com/p/jchord

9. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Binary Instru-
mentation. In: Proc. of PLDI 2007. ACM Press (2007)

http://code.google.com/p/jchord

PaRV: Parallelizing Runtime Detection
and Prevention of Concurrency Errors

Ismail Kuru1, Hassan Salehe Matar1, Adrián Cristal2, Gokcen Kestor2,
and Osman Unsal2

1 Koç University, İstanbul, Turkey
{ikuru,hmatar}@ku.edu.tr

2 Barcelona Supercomputing Center, Barcelona, Spain
{adrian.cristal,gokcen.kestor,osman.unsal}@bsc.es

Abstract. We present the PaRV tool for runtime detection of and re-
covery from data races in multi-threaded C and C++ programs. PaRV
uses transactional memory technology for parallelizing runtime verifica-
tion and for buffering write accesses during race checking. Application
threads are slowed down only due to instrumentation, but not due to
the computation performed by runtime verification algorithms since the
latter are run concurrently on different threads. Buffering writes allows
us to recover from races and to safeguard against later ones.

1 Introduction

We present PaRV, a tool for runtime detection of and recovery from data races
in multi-threaded C and C++ programs. We use components from transactional
memory (TM) implementations in order to parallelize runtime verification and
to buffer write accesses until they are determined to be free of races.

Concurrently with each application thread, a sibling thread in the style of
[5] performs race detection using the Fasttrack algorithm[4]. This approach to
parallelized runtime verification minimizes application slowdown. The applica-
tion thread only experiences slowdown due to instrumentation. Once the sibling
thread determines that the accesses within a block are free of races, the accesses
in the buffer are committed to memory. If a race is detected, the block is rolled
back, and extra synchronization is performed on variables experiencing races,
which allows the execution to continue without race conditions. In its current
form, our approach allows race-free execution of application binaries at a mod-
est overhead even for legacy applications. With the availability of TM hardware
in upcoming microprocessors and with a large number of cores expected to be
available on processor chips, we expect our approach to have further reduced
performance overhead and wide applicability for legacy applications.

2 Transactional Memory and Runtime Verification

Runtime verification slows down applications. For instance, race detection slows
down C/C++ programs by 100 times or more. High overheads make post-
deployment use of such runtime monitoring techniques infeasible. Even during

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 42–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallelizing Runtime Detection and Prevention of Concurrency Errors 43

pre-deployment testing and runtime verification, such high overheads make it
unlikely that runtime verification techniques will be used continuously during
all runs.

Transactional memory implementations contain highly optimized mechanisms
for logging and buffering events, and, in the case of parallelized implementations
of transactions, for efficient inter-thread communication between threads work-
ing on the same transaction. Hardware vendors have started providing hardware
support for transactional memory, which will make approaches using TM more
efficient in the near future.

A related approach is that of log-based architectures (e.g., [3], [6]) which pro-
vide on-chip hardware resources for reducing the runtime overhead that comes
from monitoring executions. Differently from log-based approaches, our tool does
not need any additional hardware support but can benefit from it. Differently
from how [6] makes use of hardware TM, we do not make use of conflict detec-
tion and version number management – parts of a TM implementation that incur
significant computational overhead. We use the high-performance FastTrack al-
gorithm instead.

One important way our approach will benefit from hardware support for
TM announced or provided by processor vendors is by obviating the need for
software-based synchronization to protect race checking metadata, such as vec-
tor clocks. With compiler support available for TM hardware, our approach will
immediately enjoy the benefit of improved performance due to TM hardware.

STM2 [5] is a novel, multi-threaded STM design, where each application thread
has a dedicated auxiliary (“sibling”) thread performing STM operations such as
validation of read-sets, bookkeeping and conflict detection. The communication
between application and auxiliary thread is provided by a communication chan-
nel and atomic status variables. The communication channel is implemented with
a single-producer/single-consumer, circular, lock-free queue where the application
thread (producer) posts read and write messages that the auxiliary thread (con-
sumer) retrieves and processes them. We use STM2’s queue to communicate read,
write and synchronization operations from the application thread to the sibling
thread carrying out race detection. We also use STM2’s write buffering and trans-
action commit mechanisms to delay writing to memory of writes until they are
shown to be bug-free. Specifics of these are explained in the next section.

3 Tool Architecture and Implementation

Figure 1 shows position of PaRV relative to DynamoRIO-Dynamic instrumen-
tation tool. The high level organization of the tool is as follows. Instructions per-
formed by each application thread are instrumented using the dynamic
DynamoRIO binary instrumentation framework [2]. Between every application
thread and its corresponding sibling thread, there is a FIFO queue (figure 2)
in the style of the STM2 circular buffer that the application thread writes to
and the sibling thread reads from. On the application thread, read and write
accesses and synchronization operations are instrumented such that for each of

44 I. Kuru et al.

Fig. 1. Architecture of PaRV

these instructions executed, an event is placed on the FIFO queue. The sibling
thread removes events from the queue and is able to carry out race detection for
the sequence of instructions carried out by the application thread in this way.

The sequence of instructions performed by each thread are divided into non-
overlapping portions called consistency blocks using DynamoRIO binary instru-
mentation. Every synchronization event is in a consistency block by itself. The
sequence of instructions performed by an application thread between two syn-
chronization events constitute a block otherwise. The application thread and
the sibling thread synchronize at consistency block boundaries. The application
thread buffers all write accesses it performs. For consistency blocks that do not
contain synchronization operations, when the sibling thread signals to the ap-
plication thread that the processing of the block is complete, and detects no
concurrency errors, the application thread commits the writes in the buffer to
memory. For consistency blocks consisting of synchronization operations, the
application waits for the sibling thread to complete processing the consistency
block before it actually performs the synchronization operation. This is necessary
for the runtime verification carried out by the sibling threads to have the same
happens before relation as the execution produced by the application threads.
Before using DynamoRIO to realize the implementation we tried our approach
with PIN. However,with PIN we could not do some of the approaches discussed.

3.1 Runtime Instrumentation with DynamoRIO

Using DynamoRIO, the write and read accesses and synchronization operations
performed by application threads are modified.

A write access (store instruction ins) is instrumented to implement the fol-
lowing steps. First, the address and the value to be written are extracted from
ins. Then, an entry is written into the write buffer of the application thread,
and an event corresponding to the write access is placed on the FIFO queue.
The write instruction is then skipped. This is necessary, since we only want to
commit to main memory writes determined to be free of concurrency errors. The
write buffer implementation is borrowed from STM2

addr = get_destination (ins); val = get_value (ins);
write_to_buffer(addr, val); enqueue_write_event(addr);
skip_instruction (ins);

Parallelizing Runtime Detection and Prevention of Concurrency Errors 45

Fig. 2. Application-auxiliary thread interaction

A read access (load instruction ins) is instrumented so that a variable that was
written to earlier by the current consistency block gets its value from the write
buffer. Other reads get their value from the main memory.

read_from_local_write_buffer_or_mem (ins);
addr = get_memory_operand (ins);
enqueue_read_event (addr);

When a consistency block ends, the application thread waits for the sibling
thread to set an atomic signal to indicate completion of runtime verification for
the curent consistency block. At that time, the write buffer is committed to main
memory. Unlike the commit phase of an STM implementation, we do not need to
acquire locks for the variables in the write buffer, since we are not carrying out
conflict detection between consistency blocks in the sense of TMs. If no race has
been detected by the sibling thread, then write buffers can safely be written to
memory, since there are no concurrent racy writes. This is a significant factor in
reducing the instrumentation overhead below what an STM would experience.

Before every synchronization operation, we end the ongoing consistency block
if there is one, and then start a new one. We put on the FIFO queue an event
representing the synchronization operation. When the sibling thread is done
processing this event and notifies the application thread by setting an atomic
variable, the application thread continues, performs the synchronization opera-
tion, and starts the new consistency block.

3.2 Detecting and Recovering from Races

Each sibling thread applies to the stream of events it receives from the event
FIFO queue the FastTrack race detection algorithm [4]. FastTrack is an effi-
cient, precise race detection algorithm. The algorithm is described by providing
the updates and checks performed by each thread for each memory access or
synchronization operation. In our tool, differently from the original FastTrack,

46 I. Kuru et al.

the application thread only records the events in the FIFO queue. The race de-
tection computation is performed on the sibling thread for each event as it is
removed from the FIFO queue. We implemented FastTrack in C based on the
original implementation. The shared variables (e.g. vector clocks and epochs)
used by FastTrack are protected by mutual exclusion locks. The sibling thread
notifies the application thread of races or race-free completion of consistency
blocks by setting atomic variables.

By buffering write accesses until the end of a consistency block, we are able
to prevent racy writes from being written to memory, and racy reads from af-
fecting later code. At the end of a consistency block, if the sibling thread signals
a detected race condition, the consistency block is aborted (the write buffer dis-
carded) and retried. The sibling thread notifies the application thread of the set
of variables that experienced a race condition during the last execution of the
consistency block. The application thread, when retrying the block, wraps each
access to a racy variable x by an acquire and release of the lock that protects
VCx, the vector clock of x. Since the last access by another consistency block
to x was followed by the sibling thread’s access to VCx, this ensures a happens-
before relationship between the accesses and prevents a race condition. After a
race is detected on x, all later accesses to x by application threads are protected
by VCx. By doing this for only variables that experience a race, we keep the
performance overhead of our approach low.

4 Related Work

PaRV builds on research in the areas of transactional memory and dynamic race
detection. It also bears similarities to approaches in the architecture literature
for instrumenting and logging program executions, parallelizing dynamic moni-
toring, containing and recovering from errors encountered. In the following, we
contrast PaRV with these approaches.

ParaLog [8] extends work on log-based architectures [3] provide hardware
support for instrumenting, logging and monitoring executions of multithreaded
programs. Techniques in ParaLog not only reduce the application slowdown due
to instrumentation and logging, but also allow, similarly to PaRV, parallelized
monitoring algorithms to be run on separate resources from the application, thus
further reducing slowdown. ParaLog involves significant changes to processor and
memory architecture. It accomplishes efficient tracking of ordering of events from
different threads by monitoring cache coherence traffic. PaRV works on currently
available, stock microprocessors, but If a platform provides LBA support, PaRV
would incur much less slowdown as well.

Race-detection depends critically on, and almost entirely consists of tracking
inter-thread dependencies precisely, and the multiple threads in the monitor
accessing the per-address and per-thread metadata atomically. The hardware
support in ParaLog directly targets efficient implementations of these operations.
Taking an alternative approach, PaRV aims to reduce race-detection slowdown as
much as possible in the absence of hardware support for monitoring. Differently

Parallelizing Runtime Detection and Prevention of Concurrency Errors 47

from ParaLog, PaRV uses TM technology to prevent races, and explicitly inserts
extra synchronization into the program for avoiding later races.

The authors in [1] present the KUDA tool, which, similarly to PaRV, sep-
arates race detection from application execution threads using kernel threads
in the GPU as helper threads. Differently from KUDA, PaRV synchronizes the
application and helper threads so that race detection does not lag behind. This
is essential for prevention of and recovery from races, two more features that
distinguish PaRV from KUDA. KUDA also parallelizes race detection further
than one helper thread per application thread in order to make use of the high
degree of parallelism provided by the hundreds of cores on a GPU.

Veeraraghavan, et al in [7] present the Frost tool that addresses detection and
prevention of data races by running multiple replicas of an application using
complementary schedules. Races are detected by comparing states reached by
different replicas, instead of processing event sequences. While providing sig-
nificant reduction in slowdown, this approach suffers from two key weaknesses.
First, for an application with faulty synchronization, it is quite possible that no
schedule leads to race free execution. PaRV addresses this problem by adding
synchronization to the program as needed. Second, race detection in Frost is
imprecise. PaRV uses the FastTrack algorithm for precise detection of races.

References

1. Bekar, U.C., Elmas, T., Okur, S., Tasiran, S.: Kuda: Gpu accelerated split race
checker. In: Workshop on Determinism and Correctness in Parallel Programming
(WoDet), London, England, UK (March 2012)

2. Bruening, D.L.: Efficient, transparent and comprehensive runtime code manipula-
tion. Technical report (2004)

3. Chen, S., Falsafi, B., Gibbons, P.B., Kozuch, M., Mowry, T.C., Teodorescu, R., Ail-
amaki, A., Fix, L., Ganger, G.R., Lin, B., Schlosser, S.W.: Log-based architectures
for general-purpose monitoring of deployed code. In: Proc. 1st Workshop on Ar-
chitectural and System Support for Improving Software Dependability, ASID 2006,
pp. 63–65. ACM, New York (2006)

4. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
SIGPLAN Not. 44, 121–133 (2009)

5. Kestor, G., Gioiosa, R., Harris, T., Unsal, O.S., Cristal, A., Hur, I., Valero, M.:
Stm2: A parallel stm for high performance simultaneous multithreading systems.
In: 2011 International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pp. 221–231 (October 2011)

6. Sánchez, D., Aragón, J.L., García, J.M.: A log-based redundant architecture for
reliable parallel computation. In: HiPC, pp. 1–10. IEEE (2010)

7. Veeraraghavan, K., Chen, P.M., Flinn, J., Narayanasamy, S.: Detecting and surviv-
ing data races using complementary schedules. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP 2011, pp. 369–384. ACM,
New York (2011)

8. Vlachos, E., Goodstein, M.L., Kozuch, M.A., Chen, S., Falsafi, B., Gibbons, P.B.,
Mowry, T.C.: Paralog: enabling and accelerating online parallel monitoring of mul-
tithreaded applications. In: Proceedings of the Fifteenth Edition of ASPLOS, ASP-
LOS 2010, pp. 271–284. ACM, New York (2010)

It’s the End of the World as We Know It

(And I Feel Fine)

James R. Larus

Microsoft Research

Abstract. The end of Dennard scaling and the imminent end of semi-
conductor feature scaling means that software systems and applications
will no longer benefit from 40% per annum performance increases, a con-
tinually rising tide that lifted all boats. Future software developers will
work harder to find the capability to support productive, high-level pro-
gramming languages; richer, more natural models of human-computer
interactions; and new, compute-intensive applications. This talk focuses
on what software can do to find the performance headroom that we need.
The solutions to this problem are more diverse and challenging than our
previous path, and do not offer 40 years of uninterrupted progress. Some
of these improvements are the performance engineering discipline that
has only been necessary in cutting-edge systems, while others are op-
portunities to change the way in which software is developed. The new
emphasis on performance, monitoring, adaptation and new ways of de-
veloping software should also lead the hardware and architecture com-
munities to revisit the long-standing debate on the hardware-software
interface.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, p. 48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Unread Memory Using Dynamic

Binary Translation

Jon Eyolfson and Patrick Lam

University of Waterloo

Abstract. Reading from uninitialized memory—that is, reading from
memory before it has been written to—is a well-known memory usage
error, and many static and dynamic tools verify that programs always
write to memory before reading it. This work investigates the converse
behaviour—writes that never get read, which we call “unread writes”.
Such writes are redundant—at best, they do not perform any useful
work; furthermore, work done to compute the values to be written could
corrupt the program state or cause a crash. We present a novel dy-
namic analysis, implemented on top of the Pin dynamic binary transla-
tion framework, which detects instances of unread writes at runtime. We
have implemented our analysis and present experimental data about the
prevalence of unread writes in a set of benchmark applications.

1 Introduction

Modern languages and compilers detect memory usage errors caused by reads
from uninitialized memory: in Java, it is an error to read variable x before writing
a value to it, and gcc warns about uses of uninitialized variables. Programs also
contain the converse phenomenon: writes to memory which are never read. Such
writes are redundant; at best, they don’t perform any useful work. Computations
that produce values used only in unread writes do not contribute to the goal of
the program, gratuitously consume computational and memory resources, and
may, in the worst case, crash the program—for example, the Ariane 5 crash was
caused by an exception while computing an unused value1.

Because compilers detect memory problems ahead of time, most compilers
only report errors and warnings at an intraprocedural level, and only for local
variables and private fields of classes. (gcc 4.6, for instance, reports warnings
for unused but set variables.) Static approaches to memory error detection re-
quire detailed pointer information to detect memory errors on heap accesses:
the compiler needs to know which heap references may and must alias, so that
it can determine the access history of individual abstract memory locations.
Must-alias analysis is critical for reducing the rate of false positives. However,
implementations of whole-program must-alias analyses are rare.

Recently, Valgrind’s Memcheck tool [1] has used dynamic binary translation
to detect memory errors, including reads from uninitialized memory, at runtime.

1 Section 2.1, http://www.di.unito.it/~damiani/ariane5rep.html

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 49–63, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.di.unito.it/~damiani/ariane5rep.html

50 J. Eyolfson and P. Lam

Purify [2] detects a similar class of errors by inserting instrumentation code
at compile time. In either case, runtime verification can ensure the absence of
memory errors on an observed execution. Dynamic analyses need not reason
about the heap, as a pointer comparison suffices to disambiguate heap addresses.

Our Tracerory tool implements a dynamic analysis to detect unread memory
in realistic C and C++ applications. It supports multithreaded programs. We
detect 1) unread memory allocations and 2) unread writes to the heap—writes
with no corresponding read. When a developer runs their code under Tracerory,
it reports instances of unread memory. Developers can use the report to manually
inspect flagged program points and fix their code.

Figure 1 shows a high-level overview of our tool’s operation. Tracerory takes
two inputs: an executable to be monitored, and specifications about which parts
of the program to monitor. While Tracerory executes the program, its runtime
monitor processes the stream of memory allocations, reads, and writes, reporting
unread writes and memory allocations.

Dynamic binary
translator

(pin+Tracerory)

Specifications

Executable

Instrument

Execute codeAnalyze

Program
Output

Unread
Memory Report

Fig. 1. Tracerory operation

The contributions of this paper are:

– the identification of unread memory as a source-level phenomenon of interest;

– a novel dynamic analysis to detect unread memory in programs at runtime;

– an implementation of our dynamic analysis in the Pin dynamic binary trans-
lation framework; and

– qualitative and quantitative results outlining the prevalence of unread mem-
ory in a collection of open-source benchmarks.

2 Overview

This section presents, using an example, the two suspicious memory usage pat-
terns that our Tracerory dynamic monitoring tool detects. Section 5 presents
additional instances of unread writes drawn from real-world programs.

Detecting Unread Memory Using Dynamic Binary Translation 51

1 int main (int argc , char ∗argv [])

2 {
3 X∗ x = new X() ;

4 Y∗ y = new Y() ;

5 for (int i = 0 ; i < 4 ; ++i) {
6 x−>data = i ;

7 y−>data = i ;

8 }
9 cout << x−>data << endl ;

10 delete x ;

11 return 0 ;

12 }

Fig. 2. Example program with unread allocations and writes

Al l o c a t i on s unread and/or with unread wr i t e s : 2
Unique a l l o c a t i o n s i t e s unread and/ or with unread wr i t e s : 2

Created : example . cpp : 3 (1)
Destroyed : example . cpp : 10 (1)
Unread : f a l s e (1)
Unread Writes (3) :

example . cpp : 6 (3)

Created : example . cpp : 4 (1)
Destroyed : [not dest royed] (1)
Unread : t rue (1)
Unread Writes (4) :

example . cpp : 7 (4)

Fig. 3. Tracerory output for motivating example

The example program in Figure 2 allocates two objects, x and y. It then
performs 4 writes to each object, reads from x, and finally deletes x.

Lines 3 and 4 allocate the memory objects, which we initially mark unread.
Next, line 6 writes to x and line 7 writes to y. Our tool records the first two writes
to x and y in the first iteration of the loop and marks the memory locations as
having an active unread write. In the second iteration, the new writes overwrite
the previously active unread writes. The tool marks the writes from the previous
iteration as unread. At the end of the loop, there are 3 unread writes and 1 active
unread write to each object.

Finally, the program reads from x on line 9 and deletes it on line 10. If an
object is not deleted, we implicitly delete it when the program terminates (e.g.
y). After an object is deleted, no further reads can be made to it. Therefore, we
report the active unread write to y (in the last iteration of the loop). We also
report the object itself as completely unread. Upon exit, our tool reports the
unread object y, plus all unread writes to heap objects.

Tracerory outputs, for each “bad” object (with unread writes or itself unread):
the location that created and destroyed the object; whether or not it is an unread
object; and the number of unread writes to the object, along with the locations
which performed the writes. If the tool observed a constructor call for the object,

52 J. Eyolfson and P. Lam

it outputs the object’s type. To minimize false positives, the tool only reports
statement s as an unread write if all previous dynamic writes at s are unread. For
instance, if s occurs in a loop, then our tool only reports s if all of its executions
perform unread writes.

Figure 3 shows Tracerory’s output for our example program. First, Tracerory
reports x as an object of type X with 3 unread writes. Next, it reports y as an
object of type Y, with 4 unread writes, which is completely unread. The unread
writes on x indicate potentially-important information being ignored; writes to
y may correspond to wasted memory and redundant, potentially harmful, work.

As is standard for dynamic analyses, we only report unread writes from a
single program execution at a time. It is the responsibility of the developer
to execute the program with enough test coverage to adequately explore its
behaviour. A particular write may be unread for some, but not all, inputs. While
such a write is most likely not problematic, we believe that the developer is best-
placed to decide whether code changes are appropriate in such cases; perhaps
the write could have been avoided on that input.

To help developers prioritize the generated reports, our tool coalesces and
sorts its output. That is, it combines all objects allocated at the same static site,
and displays a count of “bad” objects, unread objects, and unread writes for
all objects allocated at that site. It lists the allocation sites which account for
the most unread objects first. In the future, we hope to combine unread write
reports from multiple executions, thus increasing the relevance of the reports.

3 Dynamic Analysis

To validate our design, we implemented the Tracerory tool atop the Pin dynamic
recompilation toolkit [3]. Our tool works on x86-64 Linux binaries. Pin supports
multithreaded programs and we have used appropriate data structures to ensure
that Tracerory also supports multithreading. Because Pin’s API provides an
abstraction layer, Tracerory should also work on x86 binaries.

Generally, Pin tools run in two phases: a (slightly) ahead-of-time instrumenta-
tion phase, and an monitoring phase. Section 3.1 describes the instrumentation
phase while Section 3.2 describes the analysis phase, which implements a runtime
monitor to detect unread memory.

Our unread memory detection only monitors images (binaries and libraries)
explicitly specified by the user. We call such images “watched images;” watching
only specific images enables developers to focus their attention on memory usage
which they are responsible for and can fix.

3.1 Instrumentation Phase

The instrumentation phase transforms the input executable to invoke our run-
time monitor, which will be described in Section 3.2. Here, we describe our
instrumentation points and the information they pass to the monitor.

Detecting Unread Memory Using Dynamic Binary Translation 53

Allocations and Deallocations. Our tool records all memory management
calls by instrumenting standard C/C++ allocation and deallocation functions.
For allocation functions (malloc, calloc, realloc), we insert a call to our mon-
itor at the function entry and exit points. At the entry point, we pass the size

argument to the monitor. At the exit point, we pass the returned pointer to the
monitor. For deallocation functions (free), we instrument the function entry
point and pass the pointer argument to the monitor.

Memory Accesses. Our tool instruments every memory read, plus memory
writes from watched images. For both reads and writes, we pass all accessed mem-
ory addresses to the monitor. For writes, we also pass the instruction pointer.

Debugging Information. To help developers localize memory problems, our
tool uses debug information to identify all program events (allocations, deallo-
cations, reads, writes) by source code line number.

At each call instruction, our tool records, in thread-local storage, the de-
bugging location and image name immediately before the call; this information
is then available upon entry to the callee. A debugging location consists of a
source line number, when available, or the procedure name and memory offset
otherwise. It enables the tool to attribute memory allocations and deallocations
to the code that requested or released the memory. Our tool uses the image
name to ignore memory allocations from unwatched images.

Dynamic loaders introduce indirect calls, which may overwrite the debugging
information as they call helper functions to load the function and resolve the
function address. To prevent this, we ignore calls to the dynamic loader library.
For 64-bit Linux, this library is /lib64/ld-linux-x86-64.so.2. We found that
ignoring the dynamic loader does not negatively affect our tool, as most appli-
cations do not interact directly with it.

Virtual Functions. Our initial results included many unread writes to objects
with virtual functions. These were writes to the virtual table, which developers
do not control. Such writes should be ignored. We found that source locations for
virtual table writes corresponded to definition points for member functions. We
collect these source locations by inspecting every member function and recording
its definition point; the monitor then ignores these locations.

3.2 Monitoring Phase

To enable the classification of memory accesses, our tool records immutable facts
about each block of allocated memory (memory block), along with facts which
change during the execution. Figure 4 illustrates the structure of a memory block.
Our monitor stores memory blocks in an append-only list of unread memory
blocks and a map of currently-allocated blocks keyed by base address.

54 J. Eyolfson and P. Lam

Memory block size

Creation debug location

Destruction debug location

Whether block is unread

Active locations

Active write locations

Unread writes

Source locations for retired writes

Memory Block

Fig. 4. Structure of a Memory Block

Allocations. At a call to an allocation function (e.g. malloc) originating from a
watched image, the monitor records the requested memory size and calling source
location in thread-local storage. Upon exit from the allocation, the monitor
receives the returned pointer and creates a new currently-allocatedmemory block
using that pointer as the base address. It also initializes the block’s size and
created location with the values recorded on entry and marks the block unread.

We take care to collect reliable source locations for custom allocator wrappers.
Consider C++ object allocation; the new call is essentially a wrapper for malloc.
Ordinarily, our tool would report a debugging location for malloc from within
the new implementation. However, we would prefer to know new’s caller rather
than malloc’s. To do this, we instrument the entry point to new, ensuring that
the caller belongs to a watched image. If it does, we record the calling source
location for the new and ignore the watched image check for the malloc. We
support arbitrary user-specified custom wrappers in the same style.

Reads and Writes. To analyze a memory access, the tool looks up the
requested memory address in the allocated-memory structure. It uses the
lower bound operation of the C++ STL map. If the address falls in the range
[address, address + size) for any blocks, the tool then carries out the appro-
priate update on those blocks. The tool assumes that memory accesses occur at
machine word granularity. The mutable part of the per-block structure includes
a flag indicating whether the block has ever been read, as well as the following
sets: active writes to the block; active locations (which have been accessed at
least once after initialization); unread writes (a list); and source locations for
retired writes (those which have been read). We ensure that concurrent threads
do not simultaneously update the block structures.

The per-instruction updates are as follows:

– At a read : the monitor marks the containing memory block as read and
removes any writes to the requested location from the active writes. It adds
any removed writes to the set of retired writes.

Detecting Unread Memory Using Dynamic Binary Translation 55

To reduce the false positive rate, we only report unread writes from static
program points from which no writes are ever read—equivalent to applying
intersection to unread writes. Hence, if we ever observe a retired write from
a given static program point, we filter out writes from that program point.

– At a write: if the write’s destination already has an active write, then that
value will be overwritten, hence unread. We thus add the previous write to
the list of unread writes, if its source location belongs to a watched image.
The tool also adds the current write to the list of active writes, if the source
location is not retired.

At every memory access beyond the initial write, we mark the destination lo-
cation as active. Our monitor uses this to omit initial values which are never
subsequently accessed, when processing the block’s deallocation.

Deallocations. Deallocations remove memory blocks from the set of currently-
allocated blocks, moving them to the unread writes structure if appropriate. We
only add active writes to unread writes if the memory location was active, i.e.
accessed at least once after initialization. We move a block to the unread writes
structure if the block has at least one unread write or is itself unread. We also
set the block’s deallocation location.

We do not need to instrument the delete function: an instrumented destruc-
tor call will always happen first. At a destructor, if this is an allocated memory
block, our monitor follows the same process as for free.

Program Termination. Upon program exit, the tool simulates frees for all
currently-allocated blocks, with a deallocation location of “[not destroyed]”. It
then traverses the heap structure abstraction and outputs summaries for all of
the unread memory blocks and unread writes. To help the developer prioritize the
most important program points, the tool sorts its output, putting blocks which
account for more writes first. Within each block, the tool also sorts unread writes
by descending order of unread write count. For each entry, the tool outputs
the location where the memory block was created, the location where it was
destroyed, whether or not it was unread, and its unread write locations.

False Positives. We summarize some false positives that Tracerory will report.
Some false positives are due to analysis imprecision, and could be filtered out.

– Our analysis identifies many field initializers in C++ as unread writes; classes
will often explicitly initialize all of their fields in the constructor and then
re-initialize the fields later. The first initialization is unread.

– Data structure implementations in watched images often lead to unread
writes. For instance, we found a implementation of linked list insertion:

*new_edge = edge; new_edge->next = stl->tail;

next is copied from an input and immediately overwritten, hence unread.

56 J. Eyolfson and P. Lam

– Other false positives include idioms like resetting pointers to NULL after
freeing them. Although this is good programming practice, it causes unread
writes—freed pointers are never read.

– Our tool does not capture block memory accesses. Although we did not
observe any instances of spurious unread writes caused by block accesses in
our benchmarks, system calls like read() may potentially use DMA, which
would cause our analysis to miss some reads.

Remark on Concurrency. In multithreaded programs, the execution depends
on both the input and the scheduler. Our monitor only reports what happens
on one execution; a write may be unread on an execution and read on another
execution, even if the accesses are properly protected by locks. This is because
mutual exclusion locks (without condition variables) do not impose an ordering.
We believe that a write that is unread on any execution ought to be investigated
as suspicious code; it is even more suspicious if it is only unread on some (but
not all) executions. Such a program’s results depend on the scheduler.

4 Formal Definitions

We continue by giving a precise definition of an unread write and formally stating
the property that our runtime monitor enforces. The runtime monitor watches
an execution trace on-line.

Definition 1. An execution trace t is a sequence t = t1, . . . , tn of executed
instructions ti = 〈pci, opi〉, where pci is a program counter value and opi is
an operation. Operations include allocations, reads (READ addr i) and writes
(WRITE addr i), where addr i is of the form basei + off i. basei is a block’s base
address, returned from a previous allocation call. off i is an offset into a block.

Our definition of execution traces uses the scheduler’s interleaving of instructions
from different threads. A single input may give rise to multiple execution traces.

We can now define the notion of an unread write.

Definition 2. An unread write is an executed instruction tu = 〈pc,WRITE b+
o〉 with no subsequent READ from b+o in that execution trace, such that 1) there
is no preceding pair in the trace (tp = 〈pc,WRITE b+o′〉, tp′ = 〈pc′,READ b+o′〉),
where p < p′ < u, and 2) there exists some other access to the same location,
ti = 〈pc ′′, op b + o〉, where i
= u.

The definition primarily states that the memory location of the write must not
subsequently be read. However, an otherwise-unread write should not be con-
sidered unread if any previous instruction at the same program counter value
wrote to the same block and that value subsequently got read. Also, we do not
report an unread write if it is the only access to a memory location; such writes
are often one-time memory initializations.

Using Definition 2, we can state what our runtime monitor is looking for.

Detecting Unread Memory Using Dynamic Binary Translation 57

Proposition 1. The runtime monitor described in Section 3 detects all unread
writes in an execution trace.

The proposition follows immediately from the design of our runtime monitor.

5 Experimental Results

In this section, we present the results of our unread memory analysis on a se-
ries of benchmark programs. We found that our tool successfully identified a
number of instances of suspicious code as well as writes that were useless for
a given execution. On our benchmarks, Tracerory caused a slowdown of 87×
(geometric mean) over the original execution time, demonstrating its feasibility
for occasional use on real codebases.

5.1 Qualitative Results

The main experimental results in this paper demonstrate the efficacy of our tool
on five benchmarks: abiword, sqlite, crafty, ImageMagick, and Python. In all
cases, our unread memory tool identified interesting code within the benchmarks;
two of the benchmarks could be improved using the tool results, while the results
illustrate some perplexing behaviour by ImageMagick.

abiword. AbiWord is a word processor written in C++. We used version 2.6.8
of AbiWord, which contains over 559,000 lines of code. Although we explored a
number of workloads, we will present results from a run of AbiWord’s command-
line file-conversion mode which converts a 1.28M AbiWord file into plain text.
Since AbiWord has not been tuned for performance, we expected to find a num-
ber of unread writes in its codebase. In addition to the base executable, we added
libabiword-2.8.so and plugin libraries to our watched images.

The top sources of unread memory were utility routines, particularly string
and vector implementations. For instance, AbiWord allocates 116,436 strings
which it never reads. AbiWord also allocates 6,081 completely unread vectors.
Note the role of watched images here: had AbiWord used the standard STL
implementation, our tool would assume that the developers weren’t interested
in modifying the STL, and would therefore not report these writes. On the
other hand, because the offending allocations and writes lie in AbiWord code,
Tracerory reports these routines.

The remainder of the discussion presents domain-specific unread writes. We
will ignore library-like unread writes.

– We found 11,336 unread writes to the private m leader field in the fp TabRun

class. This field is never read on the file-conversion executions; it is only
accessed by the draw() method of fp TabRun, which is never called on
a file-conversion workload. There are no calls to the getLeader() method
anywhere in the code.

There are also 11,336 writes to the private m tabType field, which is never
read on this workload, or outside its defining class on any workload.

58 J. Eyolfson and P. Lam

– Wealso found about 28,000unreadwrites at each of the fp Run::setTmpLine,
::setTmpX,::setTmpY, and::setTmpWidthmethods.Thesemethods are only
called by the format()method, and there are no other writes of the fields. The
only reads of these fields are in the clearIfNeeded()method, which is only
called by format(). It appears that clearIfNeeded()only executes when the
document is reflowed, which never occurs on the file-conversion workload.We
investigated the underlying fields and found that they were used to store the
previous metrics of the run, allowing AbiWord to decide whether it actually
needs to reflow the text. The text-conversion workflows only reflow the text
once.

– Finally, we found 7,085 unread writes of a private field m iDrawWidth. The
write follows a discussion, in the comments, about the proper value for this
field. It appears that the value does not matter on this workload, at least.
It is, however, read in the clearScreen() and draw() methods, which are
invoked in other workloads.

These examples illustrate how our tool correctly identifies writes which are re-
dundant on a given execution.

sqlite. SQLite is a ubiquitous SQL database engine. We examined version 3.7.13
of SQLite (138,797 lines of C code) under its provided “zerodamage” workload
and found a number of unread writes. We will describe the first three unread
writes that our tool found.

– The first two unread writes are both to the CellInfo structure and enable
SQLite to handle cases where an SQLite cell overflows a page. Tracerory re-
ported 1,999 unreadwrites to the nPayloadand iOverflowfields of CellInfo.
The nPayload field is seldom read; two of the reads occur in assertions and a
third is compiled in conditionally. The only regular read of this field is in the
clearCell() function, which must not have been called on this execution.
Our tool could help in ensuring good test coverage—it seems that it would be
worthwhile to specifically craft a test to verify that the field value is correct.
The iOverflow field is read more often than nPayload, with 6 static in-
stances of reads in the code. (One of these reads is never compiled and
belongs to a function annotated with the comment “This function does not
contribute anything to the operation of SQLite.”) The other reads occur in
functions like clearCell() and fillInCell().

– The third unread write is to the validNKey field of the BtCursor structure,
a cursor over sqlite’s central b-tree data structure. This field only has one
read, which occurs in the static function sqlite3BtreeMovetoUnpacked().
It is written to 11 times across different parts of the SQLite code. Our tool
suggests that it might be worthwhile to closely inspect these writes to ensure
that they are correct, as they are not often used on this workload.

crafty. Crafty is a chess program and one of the SPECCPU benchmarks; ver-
sion 23.4, which we examined, contains 34,792 lines of C code. We ran crafty’s

Detecting Unread Memory Using Dynamic Binary Translation 59

included “bench” command after editing the code to evaluate only the first posi-
tion (for performance reasons). Because Crafty is tuned for chess competitions,
we did not expect to find inefficiencies in its main loop; however, all three unread
memory reports from Tracerory were instances of suspicious or buggy code.

We manually investigated each of the unread memory blocks and found a
number of code idioms which could be improved:

– We learned that crafty contains code to parse its command-line options—it
does not use a library. The main() function allocates space for 512 potential
arguments, each of maximum length 128, and calls ReadParse() to copy the
arguments into its buffer. Since our test run does not use any command-
line arguments, the allocation for the arguments is unread memory, and
Tracerory lists it in its output, as we would expect.

Furthermore, inspecting the code, we found a buffer overflow: it does not
check that the command-line arguments are shorter than the buffer.

– We found 973,169 unread writes in one of the memory blocks allocated in the
InitializeHashTables() function. The accompanying comment indicates
that this function is supposed to completely clear the pawn hash table be-
tween test positions. The code itself iterates through an array and sets all
but one field to 0; the remaining field gets -1.

Calling memset() would be a more efficient way to clear the memory,
and would be less likely to leave forgotten state around (especially in the
context of program maintenance, where a developer might add a new field
to the struct stored in the hash table.)
We were surprised that our tool reported this code, since it appears to be
initialization code. However, on our test run, InitializeHashTables() ex-
ecutes twice; our tool reports the second set of writes as unread writes.

– The final unread memory block points out code marked as a kludge in the
comments. When crafty is asked to log its commands, it searches for the first
nonexistent or small file named log.NNN. It uses fstat to identify small files
if they already exist, but unconditionally allocates (and does not deallocate)
the memory block for the stat * return information from fstat.

Although the problems in this benchmark were not directly caused by unread
writes, we believe that it was useful to run Tracerory on crafty—inspecting
unread memory in crafty pointed us to bugs and inefficiencies in the code.

ImageMagick. ImageMagick is a collection of tools for manipulating images,
which consists of over 400,000 lines of code as of version 6.7.4-9. This benchmark
uses many external libraries to open and process images, such as libjpeg; in
this section, we report only the behaviour of the convert binary while watching
ImageMagick-6.7.4-9 with its libraries libMagickCore and libMagickWand. Im-
ageMagick is highly tuned for performance, and we did not expect to find many
inefficiencies in its code. In addition, the README reports that the maintainers

60 J. Eyolfson and P. Lam

perform a “comprehensive security assessment that includes memory and thread
error detection to prevent security vulnerabilities” before each release.

We watched ImageMagick resize a picture from its original size of 1404× 625
to a new size of 1280 × 720. We manually investigated some of the reported
results from the unread memory tool, and present our findings below.

– Our tool reported 729,600 calls (somewhat, but not exactly, related to the
number of pixels in the output) to SetPixelOpacity originating from the
source file resize.c. The offending line is

SetPixelOpacity(q, ClampToQuantum(pixel.opacity));

We found that JPEG does not encode opacity—ImageMagick manufactures
OpaqueOpacity for each pixel from JPEG input and discards it upon write.
The writes to opacity are therefore redundant work on this workload.

– The largest offender, accounting for 2,632,500 writes, was jpeg.c. Unfor-
tunately, this appears to be a false positive; ImageMagick converters write
data to a temporary buffer, QueueAuthenticPixels, with the values of the
pixels’ red, blue, green and opacity channels. ImageMagick seems to write
the data 1 byte at a time, and read 4 bytes at a time (which accounts for
the number of unread writes 1404× 625× 3). There are no reported unread
writes for the blue channel—the blue channel is the offset that gets read.

– The third-largest source of unread writes, accounting for 2,944 writes, is
apparently also a spurious report. These writes copy the ICC colour profile.
The code is rather opaque and worth examining in detail for possible bugs,
since the effect of the code is not obvious at all (Figure 5).

p=GetStringInfoDatum (p r o f i l e) ;
for (i =(s s i z e t) GetStr ingIn foLength (p r o f i l e)−1;

i >= 0; i−−)
∗p++=(unsigned char) GetCharacter (j p e g i n f o) ;

Fig. 5. ImageMagick code showing an unread write

We verifi0ed that commenting out the writes does change the program
output (although not visibly, as colour profiles are only used in internal
calculations).

Tracerory pointed out a number of interesting idioms in the ImageMagick
code. Our false positives tell us that ImageMagick produces output by batching
up reads to its buffer, inconsistent with the original per-byte buffer write mode.

CPython. CPython is the default bytecode interpreter for the Python program-
ming language. This application is multithreaded. It consists of over 350,000 lines
of C code as of version 3.3.0a3. We ran the 366 individual tests shipped with
CPython and watched the CPython executable, the libpython library, and all
other Python libraries built in the standard configuration.

Detecting Unread Memory Using Dynamic Binary Translation 61

– Our tool reported 55,343 unread writes to the overflowed field of the
PyThreadState object. Deeper inspection revealed that the implementation
for protecting the stack from overflowing is in a haphazard state. The code
also referenced a mailing list discussion which pointed out potential prob-
lems with the implementation. Our tool adds to the discussion by pointing
out that the write which clears the overflowed flag is often unread.

– Our tool also reported unread writes to other parts of the interpreter state,
including the line number f lineno; and the previous instruction f lasti,
on LOAD FAST and STORE FAST instructions. The code revealed that the inter-
preter reads f lineno only in tracing mode, which we were not using; those
writes are therefore unnecessary in the interpreter’s normal operation. The
writes to f lasti are generated by a macro. That field is used to report the
current line number (e.g. when generating a stack trace) and during tracing.

Summary. Our tool illustrates the additional complexity added by unused
modes of operation, as with Python and its tracing function. The extra state
for unused modes are unused in normal operation. Such rarely-accessed state is
likely to be less reliable than state which is regularly used. Programs with fewer
modes will certainly be simpler than programs with more modes.

Internal library (vectors and strings) usage accounted for many of the un-
read memory reports. Some string implementations, e.g. AbiWord and python,
track the string length and zero-terminate the string; we observed 152952 unread
writes of the final 0 on one of our test cases. AbiWord’s string implementation
also includes the buffer length, which is unread for any string which is never
grown. We observed thousands of unread writes of AbiWord vector elements.

5.2 Performance

To establish that our tool’s performance is adequate, we timed it on a number of
benchmarks, including the qualitative benchmarks above. Our test system is an
Intel Core i7-3930K at 3.20GHz running ArchLinux GNU/Linux, and our tool
runs on top of Pin 2.11 (release 49306). We compared the base runtime (without
Pin) to the runtime with Pin alone and with our tool. Reported times are an
average over three runs. Figure 6 presents our analysis times. The geometric
mean of our slowdown compared to the raw execution time is 87×, while we add
a geometric mean of 14× slowdown over pin with no instrumentation.

6 Related Work

We discuss two areas of related work. First, we summarize past work on investi-
gating writes to memory; the related work in that area attempts to reduce mem-
ory bandwidth, while we are advocating the use of unread writes to improve code
quality. Next, we discuss alternatives in the dynamic binary translation space,
including other memory checkers which also use dynamic translation, and other
applications of dynamic binary translation tools.

62 J. Eyolfson and P. Lam

raw pin pin tracerory tracerory tracerory
(s) (s) slowdown (s) slowdown/raw slowdown/pin

imagemagick 0.22 2.78 12.6 37.76 172 13.6
python 170.63 208.24 1.22 224.63 1.32 1.08
abiword 28.92 63.45 2.19 7116.43 239 112
ffmpeg 2.31 6.76 2.93 446.46 193 66.0
crafty 15.57 22.36 1.44 906.49 58.2 40.5
sqlite 0.01 3.47 347 7.21 721 2.08

Fig. 6. Unread Memory analysis times

6.1 Optimizing Memory Writes

The program transformation most closely related to the present research is the
store elimination transformation proposed by Ding and Kennedy [4]. Their work
generally attempts to reduce applications’ memory bandwidth usage. They pro-
pose a loop-based transformation, store elimination, which eliminates redundant
writes inside loop bodies. In store elimination, some loops write values back to
an array while performing a computation of some summary information (e.g. a
sum) over the array. If the code never reads the final values written to the array,
then store elimination will eliminate the unread writes. Because our goal is to
examine all of the program code for potential bugs, our dynamic analysis does
not focus on loops and arrays, but rather considers all writes to the heap.

Trace optimizers like Dynamo [5] and rePLay [6] eliminate unread writes at
runtime. A pass through a trace that is about to execute suffices for removing
some unread writes, and such an optimization is therefore standard in the trace
optimizer context. A more-powerful dynamic analysis could eliminate most un-
read writes. Our work, however, aims to help developers improve program quality
by enabling them to remove unread writes, rather than to improve performance.

Arnold et al [7] have implemented Virtual-Machine level runtime monitors
which detect a subset of our memory properties—their QVM can detect idle
objects, i.e. objects on which only the constructor is called. We would report
such objects as unread as long as the constructor only initializes the object.

6.2 Dynamic Binary Translators

We chose to build our monitor on top of the Pin engine [3]. Other dynamic binary
translation engines would have been as effective for monitoring. DynamoRIO [8]
and Valgrind [1] would also support unread memory detection.

Valgrind’s Memcheck tool performs runtime verification for the following mem-
ory errors: accesses to unallocated memory, uninitialized memory, memory leaks,
double frees and overlapping memory. Our tool analyzes unread writes, which
are not detected by Valgrind. While not as serious as memory errors (they don’t
cause crashes), unread writes may lead to bugs or at least wasted resources—they
should qualify as a novel “code smell” [9].

Another approach is to statically rewrite the program source by inserting
monitoring calls. Purify [2] follows this approach; it transforms the program at

Detecting Unread Memory Using Dynamic Binary Translation 63

link time and inserts instrumentation code to detect memory errors. A program
rewriting approach could potentially be equally effective for detecting unread
memory; however, this approach requires recompilation of the program and li-
braries, which our current scheme does not need.

7 Conclusion

We have presented a novel dynamic analysis, unread memory, that investigates
the converse of the standard memory safety property “all reads to memory must
have previously been written”. Our analysis instead identifies writes to memory
that never get read. We explained the design and implementation of our analysis,
using dynamic binary translation, and presented experimental results from a set
of benchmarks. We found that unread writes often indicate something interesting
in the code; a number of the writes that we found could be eliminated or improved
without affecting the program semantics.

Acknowledgments. This research was supported in part by Canada’s Natural
Science and Engineering Research Council and an Ontario Graduate Scholarship.
We’d like to thank Emina Torlak for helpful comments on a draft of this paper.

References

1. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the ACM SIGPLAN 2007 Conference on Pro-
gramming Language Design and Implementation (PLDI 2007), pp. 89–100. ACM
Press, San Diego (2007)

2. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors.
In: Proc. of the Winter 1992 USENIX Conference, pp. 125–138 (1991)

3. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: PLDI 2005, Chicago, IL, USA, pp. 190–200 (June
2005)

4. Ding, C., Kennedy, K.: The memory bandwidth bottleneck and its amelioration by
a compiler. In: IPDPS, pp. 181–190. IEEE Computer Society (2000)

5. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. In: PLDI 2000, pp. 1–12. ACM, New York (2000)

6. Fahs, B., Bose, S., Crum, M., Slechta, B., Spadini, F., Tung, T., Patel, S.J., Lumetta,
S.S.: Performance characterization of a hardware mechanism for dynamic optimiza-
tion. In: MICRO 34, pp. 16–27. IEEE Computer Society, Washington, DC (2001)

7. Arnold, M., Vechev, M.T., Yahav, E.: QVM: An efficient runtime for detecting
defects in deployed systems. ACM Trans. Softw. Eng. Methodol. 21(1), 2 (2011)

8. Bruening, D., Garnett, T., Amarasinghe, S.P.: An infrastructure for adaptive dy-
namic optimization. In: CGO 2003, San Francisco, CA, pp. 265–275 (March 2003)

9. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (1999)

Sparse Coding for Specification Mining
and Error Localization

Wenchao Li and Sanjit A. Seshia

University of California at Berkeley

Abstract. Formal specifications play a central role in the design, verification,
and debugging of systems. This paper presents a new viewpoint to the problem
of mining specifications from simulation or execution traces of reactive systems.
The main application of interest is to localize faults to sections of an error trace
we term subtraces, with a particular focus on digital circuits. We propose a novel
sparse coding method that extracts specifications in the form of basis subtraces.
For a set of finite subtraces each of length p, each subtrace is decomposed into
a sparse Boolean combination of only a small number of basis subtraces of the
same dimension. We formally define this decomposition as the sparse Boolean
matrix factorization problem and give a graph-theoretic algorithm to solve it. We
formalize a sufficient condition under which our approach is sound for error local-
ization. Additionally, we give experimental results demonstrating that (1) we can
mine useful specifications using our sparse coding method, and (2) the computed
bases can be used to do simultaneous error localization and error explanation.

1 Introduction

Formal specifications play a central role in system design. They can serve as high-level
requirements from which a system is to be synthesized. They can encode key properties
that the system must exhibit, finding use in formal verification, testing and simulation.
Formal specifications are also valuable as contracts for use in code maintenance and
compositional design. Finally, they are also useful in debugging and error localization,
in the following way: if several local properties are written for a system, covering each
of its components, then a failing property can provide information about the location of
the bug. It is this last application of formal specifications — for error localization and
debugging in reactive systems — that is the main focus of this paper.

Unfortunately, in practice, comprehensive formal specifications are rarely written by
human designers. It is more common to have instead a comprehensive test suite used
during simulation or testing. There has therefore been much interest in automatically
deriving specifications from simulation or execution traces (e.g. [8,2]). It is important
to note that, until they are formally verified, the properties generated from traces are
only likely specifications or behavioral signatures of a design.

Different kinds of formal specifications provide different tradeoffs in terms of ease
of generation from traces, generality, and usefulness for error localization. Büchi au-
tomata [4] provide a very general formalism, and are typically inferred by learning a
finite automaton from finite-length traces and interpreting it over infinite traces. How-
ever, such automata tend to overfit the traces they are mined from, and do not generalize
well to unseen traces — i.e., they are very sensitive to the choice of traces T they are

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 64–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sparse Coding for Specification Mining and Error Localization 65

mined from and can easily exclude valid executions outside of the set T . Linear tem-
poral logic (LTL) formulas [18] are an alternative. One typically starts with templates
for common temporal logic formulas and learns LTL formulas that are consistent with
a set of traces. If the templates are chosen carefully, such formulas can generalize well
to unseen traces. However, the biggest challenge is in coming up with a suitable set of
templates that capture all relevant behaviors.

In this paper, we introduce a third kind of formal specification, which we term as
basis subtraces. To understand the idea of a subtrace, consider the view of a trace as a
two-dimensional table, where one dimension is the space of system variables and the
other dimension is time. A subtrace is a finite window, or a snapshot, of a trace. Thus,
just as a movie is a sequence of overlapping images, a trace is a sequence of overlapping
subtraces. Restricting ourselves to Boolean variables, each subtrace can be viewed as
a binary matrix. Given a set of finite-length traces, and an integer p, the traces can be
divided into subtraces of time-length p. The set of all such subtraces constitutes a set
of binary matrices. The basis subtraces are simply a set of subtraces that form a basis
of the set of subtraces, in that every subtrace can be expressed as a superposition of the
basis subtraces.

The form of superposition depends on the type of system being analyzed. In this pa-
per, we focus on digital systems, and more concretely on digital circuits. In this context,
one can define superposition as a “linear” combination over the semi-ring with Boolean
OR as the additive operator and Boolean AND as the multiplicative operator. The coef-
ficients in the resulting linear combination are either 0 or 1. The problem of computing
a basis of a set of subtraces is equivalent to a Boolean matrix factorization problem,
in which a Boolean matrix must be decomposed into the product of two other Boolean
matrices. If we seek the basis of the smallest size, the problem is equivalent to finding
the ambiguous rank [9] of the Boolean matrix, which is known to be NP-complete [24].

Given a set of subtraces, several bases are possible. Following Occam’s Razor prin-
ciple, we seek to compute a “simple” basis that generalizes well to unseen traces. More
concretely, we seek to find a basis that is minimal in that each subtrace is a linear combi-
nation of only a small number of basis subtraces. This yields the sparse basis problem.
In this paper, we formally define this problem in the context of Boolean matrix fac-
torization and propose a graph-theoretic algorithm to solve the sparse-version of the
problem. Such a problem is often referred to as a sparse coding problem in the machine
learning literature, since it involves encoding a data set with a “code” in a sparse manner
using few non-zero coefficients.

We apply the generated basis subtraces to the problem of error localization. In digital
circuits, an especially vexing problem today is that of post-silicon debugging, where,
given an error trace with potentially only a subset of signals observable and no way to
reproduce the trace, one must localize the problem in space (to a small collection of
error modules) and time (to a small window within the trace). Similar problems arise in
debugging distributed systems. In addition, error localization is very relevant to “pre-
silicon” verification as well. Our approach is to attempt to reconstruct windows of an
error trace using a basis computed from slicing a set of good traces into subtraces of
length p. The hypothesis is that the earliest windows that cannot be reconstructed are
likely to indicate the time of the error, and the portions that cannot be reconstructed

66 W. Li and S.A. Seshia

are likely to indicate the signals (variables) that are the source of the problem. The
technique can thus be applied for simultaneous error localization and explanation. We
apply this technique to representative digital circuits.

To summarize, the main contributions of the paper are:

• We introduce the idea of basis subtraces as a formal way of capturing behavior of a
design as exhibited by a set of traces;

• We formally define the sparsity-constrained Boolean matrix factorization problem
and propose a graph-theoretic algorithm to solve it;

• We demonstrate with experimental results that we can mine useful specifications
using our sparse coding method, and

• We show that the computed bases can be effective for simultaneous error localization
and error explanation, even for transient errors, such as bit flips, that arise not just
due to logical errors but also from electrical effects.

Organization. We begin in Sec. 2 with basic terminology and preliminaries. Sec. 3
introduces our approach to finding a sparse basis. In Sec. 4, we show how we can use
our approach for performing error localization. Experimental results are presented in
Sec. 5. Related work is surveyed in Sec. 6 and we conclude in Sec. 7.

2 Preliminaries

In this section, we introduce the basic notation used in the rest of the paper. Sec. 2.1
introduces notation representing traces of a reactive system as matrices, and Sec. 2.2
connects the matrix representation with a graph representation.

2.1 Traces and Subtraces

We model a reactive system as a transition system (V, Σ0, δ) where V is a finite set
of Boolean variables, Σ0 is a set of initial states of the system, and δ is the transition
relation. In general, V contains input, output and (internal) state variables. A state of the
system σ is a Boolean vector comprising valuations to each variable in V . For clarity,
we restrict ourselves in this paper to synchronous systems in which transitions occur at
the tick of a clock, such as digital circuits, although the ideas can be applied in other
settings as well.

Let the state of the system at the ith cycle (step) be denoted by σi. A complete trace
of the system of length l is a sequence of states σ0, σ1, σ2, . . . , σl−1 where σ0 ∈ Σ0,
and (σi−1, σi) ∈ δ for 1 ≤ i < l. Note however that the full system state and/or
inputs might not be observed or recorded during execution. We therefore define a trace
τ as a sequence of valuations to an observable subset of the variables in V ; i.e., τ =
σ′
0, σ′

1, σ′
2, . . . , σ′

l−1 where σ′
i ⊆ σi. A subtrace τi,j of length j in τ is defined as the

segment of τ starting at cycle i and ending at cycle i + j − 1, such that i ≥ 0, j > 1
and i + j ≤ l, i.e. τi,j = σ′

i, σ′
i+1, . . . , σ′

i+j−1. We consider subtraces of length at least
2; i.e., containing at least one transition.

For example, Equation 1 shows a trace τ of length 4 where each state comprises a
valuation to two Boolean variables. We depict the trace in matrix form, where the rows
correspond to variables and the columns to cycles.

Sparse Coding for Specification Mining and Error Localization 67

1 0 1 1
1 0 1 1

(1)

The subtrace τ0,2 of τ is
1 0
1 0

Let Tp be the set of all subtraces of length p in τ , i.e. Tp = {τi,p|0 ≤ i ≤ l − p}. For
any τi,p ∈ Tp, we can view it as a Boolean matrix of dimension |V | × p. We can also
represent it using a vector vp

i ∈ B|V |×p by stacking the columns in τi,p (i.e., using a
column-major representation). For example, v2

0 as shown below represents the subtrace
τ0,2.

v2
0 =

[
1 1 0 0

]T
For brevity, we use vi for vp

i when the length of each subtrace p is obvious from the
context. Hence, we can represent Tp as a Boolean matrix with |V |×p rows and l−p+1
columns. For example, we can represent all the subtraces of length 2 for the trace in
Equation 1 as the matrix in Equation 2 in Fig. 1(a).

2.2 Boolean Matrices and Bipartite Graphs

A Boolean matrix can be viewed as an adjacency matrix for a bipartite graph (bigraph,
for short). Recall that a bipartite graph G = 〈U, V, E〉 is a graph with two disjoint
non-empty sets of vertices U and V and such that every edge in E ⊆ U × V connects
one vertex in U and one in V . For a Boolean matrix M ∈ Bk1×k2 , denote Mi,j as the
entry in the ith row and j th column of M . Then, M can be represented by a bigraph
GM with U = {u1, u2, . . . , uk1} and V = {v1, v2, . . . , vk2}, such that there is an edge
connecting ui ∈ U and vj ∈ V if and only if Mi,j = 1. For example, the matrix X in
Equation 2 (Fig. 1(a)) can be represented by the bigraph GX in shown in Fig. 1(b).

A biclique is a complete bipartite graph; i.e., a bipartite graph G′ = 〈U ′, V ′, E′〉
where E′ = U ′ × V ′. Given a bigraph G, a maximal edge biclique of G is a biclique
B1 = 〈U1 ⊆ U, V1 ⊆ V, E1 = U1 × V1〉 if it is not contained in another biclique of G,
that is, there does not exist another biclique B2 = 〈U2 ⊆ U, V2 ⊆ V, E2 = U2×V2〉 and

⎡
⎢⎢⎣
1 0 1
1 0 1
0 1 1
0 1 1

⎤
⎥⎥⎦ (2)

(a) Matrix form (b) Bipartite graph (c) Biclique edge cover

Fig. 1. Subtraces in matrix and bigraph form, and corresponding biclique edge cover

68 W. Li and S.A. Seshia

either U1 ⊂ U2 or V1 ⊂ V2. In the rest of the paper, we use the pair of vertices (U1, V1)
to denote the maximal edge biclique B1. For a set of bicliques Cov and a bigraph G,
denote ECov as the set of edges in G covered by Cov, i.e. ∀ e ∈ ECov, ∃ G′ = 〈U ′ ⊆
U, V ′ ⊆ V, E′〉 ∈ Cov, s.t. e ∈ E′. Cov is a biclique edge cover of G if and only if
all the edges E in G are covered by the set, i.e. ECov = E. Abusing notation a little,
we use Ev to denote the set of edges connected to vertex v. The smallest number of
bicliques needed is called the bipartite dimension of G. For example, a biclique cover
for the bigrah in Figure 1(b) is shown in Figure 1(c).

The view of Boolean matrices as bigraphs is relevant for decomposing a set of traces
into a set of basis subtraces. The following problem is important in this context.

Definition 1. Consider a Boolean matrix X ∈ Bm×n, the Boolean matrix factorization
problem is to find k and Boolean matrices B ∈ Bm×k and S ∈ Bk×n such that

X = B ◦ S (3)

That is, X is decomposed into a Boolean combination (denoted by the operator ◦) of
two other Boolean matrices, in which scalar multiplication is the Boolean AND operator
∧, and scalar addition (“+”) is the Boolean OR operator ∨. In other words, we perform
matrix/vector operations over the Boolean semi-ring with ∧ as the multiplicative oper-
ator and ∨ as the additive operator. For example, the matrix in Equation 2 (Fig. 1(a))
can be factorized in the following way.⎡

⎢⎢⎣
1 0 1
1 0 1
0 1 1
0 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ ◦

[
1 0 1
0 1 1

]

We use M·,i to denote the ith column vector of a matrix M , and Mi,· to denote the ith

row vector of M . Thus, the columns of matrix X are X·,1, X·,2, . . . , X·,n. We will refer
to X as the data matrix since it represents the traces which are the input data. We call
the matrix B the basis matrix because each B·,i can be viewed as some basis vector in
Bm. We call the matrix S the coefficient matrix. Each S·,i is a Boolean vector in which
a 1 in the j th entry indicates that the j th basis vector is used in the decomposition and 0
otherwise.

We can also rewrite the factorization in the following way as a Boolean sum of the
matrices formed by taking the tensor (outer) product of the ith column in B and the ith

row in S. ⎡
⎢⎢⎣
1 0 1
1 0 1
0 1 1
0 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 1
1 0 1
0 0 0
0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0
0 0 0
0 1 1
0 1 1

⎤
⎥⎥⎦

Notice that the two matrices on the right hand side represent the bicliques in Fig. 1(c).

Remark 1. Clearly, a solution always exists for the problem in Definition 1. This is
because one can always pick k = n such that B = I(B = X) and S = X(S = I)
(where I is the identity matrix). However, this is not particularly revealing in terms of

Sparse Coding for Specification Mining and Error Localization 69

the behaviors which each X·,i is composed of. One alternative is to minimize k. The
smallest k for which such a decomposition exists is called the ambiguous rank [9] of
the Boolean matrix X . It is also equal to the bipartite dimension of the bigraph GX

corresponding to matrix X . The problem of finding a Boolean factorization of X with
the smallest k is equivalent to finding a biclique edge cover of GX with the minimum
number of bicliques. Both problems are NP-hard [24]. On the other hand, one can
choose to find an overcomplete basis (k > n) such that each X·,i can be expressed
as a Boolean sum of only a few basis vectors. We discuss this formulation in detail in
Section 3.

3 Specification Mining via Sparse Coding

In this section, we describe how specifications are mined via sparse Boolean matrix
factorization. The specifications we mine, basis subtraces, can be viewed as temporal
patterns over a finite time window.

3.1 Formulation as Sparse Coding Problem

The notion of sparsity is borrowed from the wealth of literature in machine learning
such as sparse coding [15] and sparse principal component analysis (PCA) [30]. The
key insight is that a sparsity constraint often generates a better interpretation of the
data in terms of the underlying concepts. In the setting of mining specifications from a
trace, we argue that each subtrace of a trace can be viewed as a superposition of patterns,
and a potential specification is a pattern that is commonly shared by multiple subtraces.
These patterns are the so-called basis subtraces.

We present the sparse Boolean matrix factorization problem for computing basis
subtraces below. A few different options are presented for formulating the problem and
we pick one with a notion of sparsity that seems well-suited to our context.

Definition 2. Given X ∈ Bm×n and a positive integer C, the sparsity-constrained
Boolean matrix factorization problem is to find k, B ∈ Bm×k, and S ∈ Bk×n such that

X = B ◦ S

and ‖S·,i‖1 ≤ C, ∀i
(4)

Let us reflect on the above problem formulation. The constraint X = B ◦S imposes the
requirement that the input data (subtraces) represented by X must be reconstructed as a
superposition of the subtraces represented by B, with S encoding the coefficients in the
superposition. The second constraint ‖S·,i‖1 ≤ C, ∀i encodes the sparsity constraint,
which ensures that each subtrace in X is a sparse superposition of the subtraces in B.

More precisely, the definition above imposes a constraint on the number of 1s per
column of S. Similar to the Boolean matrix factorization problem in Definition 1, a
trivial solution is to set B = X and S = I (and k = n). However, this solution
does not produce any sharing of patterns amongst the different subtraces and hence is

70 W. Li and S.A. Seshia

useless for specification mining. The optimization objective is thus the following, which
maximizes the number of 1s in S.

maximize
∑
i

∑
j

Si,j (5)

We describe how we solve this problem in Section 3.2.
One might also consider defining sparsity in a somewhat different manner. Instead

of imposing a L1-norm constraint on the columns of the coefficient matrix S, we can
seek B and S such that the total sparsity is minimized.

Definition 3. Given X ∈ Bm×n and a positive integer k, the sparsity-optimized
Boolean matrix factorization problem is the following optimization problem.

minimize
B,S

n∑
i

‖S·,i‖1

subject to X = B ◦ S

(6)

The main issue with this problem definition is that k is fixed; in other words, one has to
“guess” a suitable k for which B and S can be computed. While modifications of this
problem that restrict or minimize k could potentially be useful, we leave the investiga-
tion of these variants of 6 to future work.

3.2 Solving the Sparse Coding Problem

In this section, we describe an algorithm that solves the sparsity-constrained Boolean
matrix factorization problem, as formalized in Equations 4 and 5. Our solution is guar-
anteed to satisfy the sparsity constraint and tries to maximize the objective in Equa-
tion 5. The algorithm exploits the connection between the matrix factorization problem
and the biclique edge cover problem described in Sec. 2. Specifically, it is based on
growing a biclique edge cover Cov for the bigraph GX = 〈U, V, E〉 corresponding to
matrix X . At each step, a maximal edge biclique that covers some number of previously
uncovered edges is added to Cov until Cov covers all the edges. The sparsity constraint
is then a constraint on the number of maximal bicliques that can be used to cover the
edges that connect each vertex in V . (Recall that each vertex in V corresponds to a
column S·,i of S.)

Notice that this algorithm relies on a way to generate maximal edge bliciques of a
bigraph. Computing these bicliques is not easy: for instance, the closely-related problem
of finding a maximum (not maximal) edge biclique in a bigraph is NP-complete [23].
Additionally, the number of maximal bicliques in a bigraph can be exponential in the
number of vertices [11].

However, there exist enumeration algorithms that are polynomial in the combined
input and output size, such as the Consensus algorithm in [1]. In addition, this algorithm
runs in incremental polynomial time.

Algorithm 1 solves the sparsity-constrained Boolean matrix factorization problem
by building upon some key concepts in the Consensus algorithm and adapting them for
our problem context. These concepts are described below.

Sparse Coding for Specification Mining and Error Localization 71

• Consensus: For two bicliques B1 = (U1, V1) and B2 = (U2, V2), the consensus of
B1 and B2 is B3 = (U3, V3) where U3 = U1 ∩ U2 and V3 = V1 ∪ V2.

• Extend to a maximal biclique: For a consensus biclique B1 = (U1, V1), we can
extend it to a maximal biclique B2 = (U2, V2) where U2 = U1 and V2 = {v | ∀ u ∈
U1, (u, v) ∈ E}
(V2 is the set of vertices in V that are connected to every vertex in U1).

• v-rooted star biclique: A v-rooted star biclique is the biclique formed by the node
v ∈ V and all the nodes connected to v (and the edges), i.e. ({u | (u, v) ∈ E}, {v})

The main idea of Algorithm 1 is the following. We try to cover the edges in the bigraph
with as many maximal bicliques as possible, until we are about to violate the sparsity
constraint at some vertex v ∈ V . In that case, we cover the remaining edges of v with
the v-rooted star biclique. If there is still some v ∈ V with uncovered edges at the end
of the iteration, then we just cover it with the v-rooted star biclique as well. The final
cover will be the union of the set of maximal bicliques added in the consensus steps
Cov1 \ Cov0 with the set of star bicliques Cov2.

4 Application to Error Localization

The key idea in our approach is to localize errors by attempting to reconstruct the error
trace from basis subtraces generated from correct traces. Our hypothesis is that the
earliest section (subtrace) of the error trace that cannot be reconstructed contains the
likely cause of the error. Our localization algorithm is presented in this section, along
with some theoretical guarantees. We begin with the problem definition.

Algorithm 1. Sparsity-constrained cover
1: Input: the set of v-rooted star bicliques Cov0 and sparsity constraint C.
2: Initialize: Cov1 := Cov0, Cov2 := ∅, αv := C, ∀ v ∈ V , and Vcov := ∅.
3: repeat
4: Pick a new pair of bicliques B1 = (U1, V1) from Cov1 and B2 = (U2, V2) from Cov0,

form the consensus B3.
5: Extend B3 to a maximal biclique B4 = (U4, V4).
6: if (B4 /∈ Cov1) ∧ (V4 ∩ Vcov = ∅) then
7: Add B4 to Cov1.
8: for v ∈ V4 \ Vcov do
9: αv := αv − 1

10: if αv = 1 then Add the v-rooted star biclique to Cov2 and add v to Vcov end if
11: end for
12: end if
13: until E(Cov1\Cov0)∪Cov2 = E or cannot find a new pair of bicliques B1 and B2

14: for v ∈ V \ Vcov do
15: Add the v-rooted star biclique to Cov2.
16: end for
17: Output: the sparsity-constrained cover (Cov1 \ Cov0) ∪ Cov2

72 W. Li and S.A. Seshia

4.1 Problem Definition

Consider the problem of localizing an error given a set of correct traces and a single
error trace. Our goal is to identify a small interval of the timeline at which the error
occurred. What makes the problem especially challenging is that the input sequence that
generated the error trace is either unknown (or only partially known) or it is extremely
slow to re-simulate the input sequence (if known) on the correct design (also sometimes
referred to as a “golden model”). This means that a simple anomaly detection technique
which checks the first divergence of the error trace and the correct trace obtained by
simulating the golden model on the same input sequence does not work. One has to
use the set of correct traces to help localize the bug in the error trace. This setting
is especially applicable to post-silicon debugging where the bugs are often difficult
to diagnose due to limited observability, limited reproducibility and susceptibility to
environmental variations.

More formally, the error localization problem we address in this section can be de-
fined as follows.

Definition 4. Given an error trace of length l and an integer p, partition the trace into
non-overlapping subtraces each of length p (w.l.o.g. assume l is an integer multiple of
p; otherwise, the last subtrace can be treated specially).

Then, the error localization problem is to identify the subtrace containing the first
point of deviation of the error trace from the correct trace on the same input sequence.

One might note that the problem we define is not the only form of error localization
that is desirable. For instance, one might also want to narrow down the fault to the
signals/variables that were incorrectly updated.

Also, there might be more than one source of an error, in which case one might want
to identify all of the sources.

While these goals are important, we contend that our algorithm to address the prob-
lem defined above can also be used to achieve these additional objectives. For example,
the error explanation technique we present below can be used to identify which vari-
ables were incorrectly updated and how. Similarly, one can apply our reconstruction-
based localization algorithm iteratively to identify multiple subtraces that cannot be re-
constructed from the basis subtraces, and could potentially be used to identify multiple
causes of an error.

4.2 Localization by Reconstruction

As described above, the key hypothesis underlying our approach is that the earliest
section (subtrace) of the error trace that cannot be reconstructed contains the likely
cause of the error.

Our error localization algorithm operates in the following steps:

1. Given a set of correct traces T , first obtain the set of all unique subtraces of length p
in T . Denote this set by Tp. Using the approach described in Section 2, convert the
set Tp to a data matrix X .

2. Solve the sparsity-constrained Boolean matrix factorization problem for X for a
given constant C.

Sparse Coding for Specification Mining and Error Localization 73

3. Given an error trace τ ′, partition it into an ordered set of q subtraces of length p.
Denote this set by T ′

p . The elements in T ′
p are ordered by their positions in τ ′. Convert

T ′
p to a data matrix X ′.

4. Starting from X ′
·,0, try to reconstruct X ′

·,i using the basis computed above with the
same sparsity constraint C. Return i as the location of the bug if the reconstruction
fails. In case all reconstructions succeed, return ⊥ indicating inability to localize the
error.

Algorithm 2 describes the above approach in more detail using pseudo-code. It uses the
following subroutines:

• dataMatrix is the procedure that converts a set of subtraces to the corresponding
data matrix described in Section 2.

• sparseBasis solves the sparsity-constrained Boolean matrix factorization problem
using the graph-theoretic algorithm presented in Section 3 for X with a given C, and
returns the computed basis B.

• reconstructTrace solves the following minimization problem.

minimize
Si

‖X ′
·,i ⊕ (B ◦ S·,i)‖1

subject to ‖S·,i‖1 ≤ C
(7)

where⊕ is the bit-wise Boolean XOR operator, and is interpreted to apply entry-wise
on matrices.
Notice that for fixed C, this problem is fixed-parameter tractable because we can use

a brute-force algorithm that enumerates all the
∑

1≤i≤C

(
k

i

)
possible S·,i. It can

also be solved using a pseudo-Boolean optimization formulation, where the Boolean
variables in the optimization problem are the entries in S·,i.

Error Explanation. Denote S∗
·,i as the optimal solution to the minimization problem

in Equation 7. If the minimum value is non-zero, then E = X ′
·,i ⊕ (B ◦ S∗

·,i) is the
minimum difference between the error subtrace X ′

·,i and the reconstructed subtrace
B ◦ S∗

·,i. Notice that E is also a subtrace, and can be interpreted as a finite sequence
of assignments to system variables. In our experience, E is a pattern that explains the
error; we expand further on this point using our experiments in Sec. 5.

Algorithm 2. Error localization in time
Input: Set of subtraces Tp from set of correct traces T , T ′

p from error trace τ ′

Input: Constant C > 0
X = dataMatrix(Tp); X ′ = dataMatrix(T ′

p); B = sparseBasis(X,C)
for i := 0 → q − 1 do
E = reconstructTrace(X ′

·,i, B, C)
if E �= 0 then return i end if

end for
return ⊥

74 W. Li and S.A. Seshia

4.3 Theoretical Guarantees

We now give conditions under which our error localization approach is sound. By
sound, we mean that when our algorithm reports a subtrace as the cause of an error,
it is really an erroneous subtrace that deviates from correct behavior.

Since our approach mines specifications from traces, its effectiveness fundamentally
depends on the quality of those traces. Specifically, our soundness guarantee relies on
the set of traces T satisfying the following coverage metrics defined over the transition
system (V, Σ0, δ) of the golden model:

1. Initial State Coverage: For every initial state σ0 ∈ Σ0, there exists some trace in T
in which σ0 is the initial state.

2. Transition Coverage: For every transition (σ, σ′) ∈ δ, there exists some trace in T
in which the transition (σ, σ′) occurs.

While full transition coverage can be difficult to achieve for large designs, there is
significant work in the simulation-driven hardware verification community on achieving
a high degree of transition coverage [25]. If achieving transition coverage is challenging
for a design, one could consider slicing the traces based on smaller module boundaries
and computing tests that ensure full transition coverage within modules, at the potential
cost of missing cross-module patterns.

Our soundness theorem relates test coverage with effectiveness of error localization.
Theorem 1. Given a transition system Z for the golden model and a set of finite-length
traces T of Z satisfying initial state and transition coverage, if Algorithm 2 is invoked
on T and an arbitrary error trace τ ′, then Algorithm 2 is sound; viz., if it reports a
subtrace of τ ′ as an error location, that subtrace cannot be exhibited by Z .

Proof. (sketch) The proof proceeds by contradiction. Suppose Algorithm 2 reports a
subtrace of τ ′ as the location of the error. Recall that a subtrace must be of length at
least 2. Thus, if we compute basis subtraces of length 2, any transition of the golden
model Z can be expressed as a superposition of these basis subtraces and hence recon-
structed from the basis subtraces B, since T contains all transitions of Z . A subtrace
reported as an error location, in contrast, is one that cannot be expressed as a superpo-
sition of the basis subtraces and hence reconstructTrace will report that it cannot be
reconstructed. Thus, any subtrace reported as an error location by Algorithm 2 cannot
be a valid transition of the golden model Z . ��

We also note that, in theory, it is possible for Algorithm 2 to miss reporting a sub-
trace that is an error location, if that subtrace is expressible as a superposition of basis
subtraces. However, experiments indicate that it is usually accurate in pinpointing the
location of the error. Details of our experiments are provided in Sec. 5.

5 Experimental Results

In this section, we evaluate our sparse coding approach to generate specifications and
localize errors based on the following criteria.

(1) Are the computed “basis subtraces” meaningful? That is, do they correspond to
some interesting specifications of the test circuit?

Sparse Coding for Specification Mining and Error Localization 75

(2) Do the “basis subtraces” capture sufficient underlying structure of a trace? That
is, can they be used to reconstruct traces that are generated from unseen input se-
quences?

(3) How accurately can we localize an error in an unseen trace (generated by unseen
input sequences)?

(4) How good are the error explanations?

5.1 Arbiter

We first use a 2-port arbiter as an illustrative example to evaluate our approach. The
2-port arbiter is a circuit that takes two Boolean inputs corresponding to two potentially
competing requests, and produces two Boolean outputs corresponding to the two grants.
It implements a round-robin scheme such that it will give priority to the port at which
a request has not been most recently granted. Let r0, r1 denote the input requests and
g0, g1 denote the corresponding output grants. If a request ri is granted, gi goes high in
the same cycle. Figure 2 shows part of a trace of the arbiter over the request and grant
signals. The input requests were randomly generated and the trace was 100 cycles long.

Fig. 2. A normal trace of a 2-port round-robin arbiter

We used a sliding window of length 3 to collect a set of subtraces. We then applied
our sparse coding algorithm described in Section 3.2 to extract a set of “basis subtraces”.
We set the sparsity constraint to 4 for this experiment, which is only one third of the
total number of entries in a subtrace. We now evaluate our approach with respect to the
four criteria stated at the start of this section:

(1) Figure 3 shows some of the basis subtraces computed. We can observe that basis
(a) and (b) correspond to the correct behavior of the arbiter granting a request at the
same cycle when there is no competing request. Basis (c) shows that when there are
two competing requests at the same cycle, the arbiter first grants one of the requests
and the ungranted request will stay asserted the next cycle and then gets granted.

(2) We further simulated the arbiter with random inputs another 100 times each for
100 cycles. For each of these traces, we also use a sliding window to partition them
into subtraces of length 3. Using the basis computed from the trace depicted in
Figure 2, we tried to reconstruct these subtraces and succeeded in every attempt.
This was because all the sub-behaviors were fully covered in the trace from which
the bases were computed, even though unseen subtraces exist in the new traces.

76 W. Li and S.A. Seshia

Fig. 3. Three basis subtraces computed via sparse coding

(3) For each of the 100 traces in (2), we randomly injected a single bit error (flipping
its value) at a random cycle to one of the four signals in the trace. Our task was to
test if we could localize the error to a subtrace of length 3 that contained it.
The following example illustrates one of the experiments. Figure 4(a) shows a snap-
shot of the trace.

(a) Bit flip at r1 at cycle
97

(b) Error sub-
trace as identi-
fied

(c) Error expla-
nation subtrace

(d) Alternative
error explanation
subtrace

Fig. 4. Error trace and explanation subtrace

Using the approach described in Algorithm 2, the subtrace containing the error was
correctly identified. Among the 100 traces, we successfully identified the window
at which the error was injected for 84 of them. Figure 4(b) shows the error subtrace.
Following Equation 7, Figure 4(c) shows the (differential) subtrace X ′

i ⊕ (B ◦ Si)
that minimizes |X ′

i ⊕ (B ◦ Si)|1 and serves as an error explanation.
Clearly, this subtrace reveals the injected error. While no fault model is assumed,

this approach still pinpoints the bug behaviorally – a grant was not produced at g1
at cycle 97 even when the corresponding request was made at r1. Note that multiple
error explanations (solutions to the minimization problem in Equation 7) can exist.
Figure 4(d) shows an alternative error explanation subtrace for this example where
g1 was asserted but r1 was not asserted at cycle 97.

(4) In Section 4.2, we argue that the minimum difference between an error subtrace
and any possible reconstructed subtrace using the computed basis can serve as an
explanation for the error. In the 84 traces for which the error was correctly localized,
the injected bit error was also uncovered by solving the optimization problem in
Equation 7.

Sparse Coding for Specification Mining and Error Localization 77

5.2 Chip Multiprocessor (CMP) Router

Our second, larger case study is a router for on-chip networks. The main goal of this
case study was to explore how the technique scales to a larger design, and how effective
it is for error localization.

Fig. 5 illustrates the high-level design of the router, as a composition of four high-
level modules. The input controller comprises a set of FIFOs buffering incoming flits
and interacting with the arbiter. When the arbiter grants access to a particular output
port, a signal is sent to the input controller to release the flits from the buffers, and at
the same time, an allocation signal is sent to the encoder which in turn configures the
crossbar to route the flits to the appropriate output port.

Fig. 5. CMP Router comprising four high-level modules

The router was simulated with two flit generating modules that each issued random
data packets (each consists of a head, some body and a tail flit) to the respective input
ports of the router. We observed 14 Boolean control signals in the router and a trace
was generated for these 14 signals with a simulation length of 1000 cycles. We used a
subtrace width of 2 cycles and obtained 93 distinct subtraces each with 14 signals over
2 cycles. A basis was computed from these 93 distinct subtraces subject to a sparsity
constraint of 52 (see explanation for the choice of this number at the end of this section).
It took 0.243 seconds to obtain this basis which contained 189 basis subtraces.

The router was simulated 100 times with different inputs. We used the first simultion
trace to obtain the basis as described in the previous paragraph and the rest 99 traces for
error localization. For each of these 99 traces, a single bit flip was injected to a random
signal at a random cycle. The goal of experiment is to localize this bit error to a subtrace
of 2 cycles (among the 999 subtraces for each trace) in which the error was introduced.

Following the localization approach described in Section 4.2 of the paper, 55 out of
99 of the errors were correctly localized. The remaining 44 errors were not localized
(all the subtraces including error subtrace were reconstructed using the computed basis).
The overall accuracy of the error localization procedure in this experiment was 55.6%.

Why is this error localization approach useful? Imagine you are given a good trace
(or a collection of good traces) and then an error trace (that cannot be reproduced),

78 W. Li and S.A. Seshia

and you are asked to localize the error without knowing very much about the underly-
ing system that generates these traces. (This situation arises when dealing with legacy
systems, for example.) Here are two plausible alternative options to our sparse coding
approach and the corresponding results:

(a) Hash all the distinct subtraces of 2 cycles in length in the good trace. For each of
the subtraces of the same dimension in the bad trace, check if it is contained in the
hash, and report an error if it is not contained. For the same traces used above, an
error was reported for each of the 99 traces even before any bit flip was injected.

(b) Use a basis that spans the entire space of subtraces of 2 cycles, e.g. 14×2 subtraces
where each contains only a single 1 in its entries and is orthogonal to the others.
However, it is obvious that we cannot localize any error using this basis since it
spans all possible subtraces.

Our method can be viewed as something in between (a) and (b). It finds a subspace that
not only contains all the good subtraces but also generalizes well to unseen good sub-
traces from the basis. The generalization is a sparse composition of some key patterns
in the good subtraces. An error is reported if a subtrace lies outside this subspace. The
number 52 for the sparsity constraint was determined as a result of the minimization of
sparsity such that the computed basis was just sufficient to reconstruct all the other 99
traces before error injection. This limits the size of the subspace spanned by the basis
and hence increases the ability to detect an error.

6 Related Work

We survey related work along three dimensions: Boolean matrix factorization, mining
specifications from traces, and error localization techniques.

6.1 Boolean Matrix Factorization

Matrix factorization or factor analysis methods are prevalent in the data mining com-
munity, with a common goal to discover the latent structures in the input data. While
most of these methods are focusing on real-valued matrices, there have been several
works recently that target Boolean matrices, for applications such as role mining [26].
Miettinen et al. [20] introduced the discrete basis problem (DBP). DBP is similar to
our definition of the Boolean matrix factorization problem in which k is fixed and the
objective is to minimize the reconstruction error. They showed that DBP is NP-hard
and gave a simple greedy algorithm for solving it. In terms of sparse decomposition,
Miettinen [19] showed the existence of sparse factor matrices for a sparse data matrix.
Our paper describes a different notion of sparsity – we seek to express each data vector
as a combination of only a few basis vectors, which can be dense themselves.

6.2 Specification Mining

Approaches to mine specifications can be largely categorized into static and dynamic
methods. We restrict ourselves here to the dynamic methods that mine specifications
from traces. Daikon [8] is one of the earliest tools that mine single-state invariants or

Sparse Coding for Specification Mining and Error Localization 79

pre-/post-conditions in programs. In contrast, we focus on mining (temporal) properties
over a finite window for reactive (hardware) designs. Some existing tools produce tem-
poral properties in the form of automata. Automata-based techniques generally fall into
two categories. The first class of methods learn a single complex specification (usually
as a finite automaton) over a specific alphabet, and then extract simpler properties from
it. For instance, Ammons et al. [2] first produce a probabilistic automaton that accepts
the trace and then extract from it likely properties. However, learning a single finite
state machine from traces is NP-hard [12]. To achieve better scalability, an alternative
is to first learn multiple small specifications and then post-process them to form more
complex state machines. Engler et al. [7] first introduce the idea of mining simple alter-
nating patterns. Several subsequent efforts [27,28,10] built upon this work. In previous
work, we proposed a specification mining approach similar to Javert that focuses on
patterns relevant for digital circuits [16] and showed how this can be applied to error
localization. However, such approaches are limited by the set of patterns. The present
work seeks to remove this limitation by inferring design-specific patterns in the form of
basis subtraces.

6.3 Error Localization

The problem of error localization and explanation has been much studied in literature in
several communities: software testing, model checking, and electronic design automa-
tion. In model checking, Groce et al. [13] present an approach based on distance metrics
which, given a counterexample (error trace), finds a correct trace as “close” as possible
to the error trace according to the distance metrics. Ball et al. [3] present an approach
to localizing errors in sequential programs. They use a model checker as a subroutine,
with the core idea to identify transitions of an error trace that are not in any correct trace
of the program, and use this for error localization. Both of these approaches operate on
error traces generated by model checking, and thus have full observability of the inputs
and state variables. In contrast, in our context, the trace includes only-partially observed
state and is not reproducible.

In the software testing community, researchers have attempted to use predicates and
mined specifications to localize errors [17,6]; however, these rely on human insight in
choosing a good set of predicates/templates. In contrast, our approach automatically
derives specifications in the form of basis subtraces, which can be seen as temporal
properties over a finite window. Program spectra [14], which include computing pro-
files of program behavior such as summaries of the branches or paths traversed, have
also been proposed as ways to separate good traces from error traces; however, these
techniques are of limited use for digital circuits since they rely on the path structure of
sequential programs and give no guarantees on soundness.

In the area of post-silicon debugging (see [21] for a recent survey), the problem
of error localization has received wide attention. The IFRA approach [22], which is
largely specialized for processor cores, is based on adding on-chip recorders to a de-
sign to collect “instruction footprints” which are analyzed offline with some input from
human experts. Li et al. [16] have proposed the use of mined specifications to perform
error localization; however, this approach relies on human insight in supplying the right
templates to mine temporal logic specifications. Zhu et al. [29] propose a SAT-based

80 W. Li and S.A. Seshia

technique for post-silicon fault localization, where backbones are used to propagate in-
formation across sliding windows of an error trace. This additional information helps
make the approach more scalable and addresses the problem of limited observability.
Backspace [5] addresses the problem of reproducibility by attempting to reconstruct one
or more “likely” error traces by performing backwards reachability guided by recorded
signatures of system state; such a system is complementary to the techniques proposed
herein for error localization.

7 Conclusion and Future Work

In this paper, we have presented basis subtraces, a new formalism to capture system
behavior from simulation or execution traces. We showed how to compute a sparse basis
from a set of traces using a graph-based algorithm. We further demonstrated that the
generated basis subtraces can be effectively used for error localization and explanation.

In terms of future work, we envisage two broad directions: improving scalability and
applying the ideas to other domains. Since the Boolean matrix factorization problem
and its sparse variants can be computationally expensive to solve, the scalability of
the approach must be improved. In this context, it would be interesting to use slightly
different definitions of a basis (for example, using the field of rationals rather than the
semi-ring we consider) so that the problem of computing a sparse basis is polynomial-
time solvable. Moreover, the ideas introduced in this paper can be extended beyond
digital circuits to software, distributed systems, analog/mixed-signal circuits, and other
domains, providing many interesting directions for future work.

Acknowledgement. The authors acknowledge the support of the Gigascale Systems
Research Center, one of six research centers funded under the Focus Center Research
Program (FCRP), a Semiconductor Research Corporation entity. This work was also
supported in part by an Alfred P. Sloan Research Fellowship and a Hellman Family
Faculty Fund Award.

References

1. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algo-
rithms for the generation of all maximal bicliques. Discrete Appl. Math. 145, 11–21 (2004)

2. Ammons, G., Bodı́k, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16 (2002)
3. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in counterex-

ample traces. In: POPL, pp. 97–105 (2003)
4. Buechi, J.R.: On a Decision Method in Restricted Second-Order Arithmetic. In: International

Congress on Logic, Methodology, and Philosophy of Science, pp. 1–11. Stanford University
Press (1962)

5. de Paula, F.M., Gort, M., Hu, A.J., Wilton, S.J.E., Yang, J.: Backspace: Formal analysis for
post-silicon debug. In: FMCAD, pp. 1–10 (2008)

6. Dodoo, N., Lin, L., Ernst, M.D.: Selecting, refining, and evaluating predicates for program
analysis. Technical Report MIT-LCS-TR-914, MIT Laboratory for Computer Science (2003)

7. Engler, D., et al.: Bugs as deviant behavior: a general approach to inferring errors in systems
code. In: SOSP, pp. 57–72 (2001)

Sparse Coding for Specification Mining and Error Localization 81

8. Ernst, M., et al.: The daikon system for dynamic detection of likely invariants. Sci. Comput.
Program. 69(1-3), 35–45 (2007)

9. Froidure, V.: Rangs des relations binaires, semigrollpes de relations non ambigues. PhD the-
sis (June 1995)

10. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties from dy-
namic traces. In: FSE, pp. 339–349 (2008)

11. Gaspers, S., Kratsch, D., Liedloff, M.: On Independent Sets and Bicliques in Graphs. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344,
pp. 171–182. Springer, Heidelberg (2008)

12. Gold, E.M.: Complexity of automatic identification from given data 37, 302–320 (1978)
13. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance metrics.

Software Tools for Technology Transfer (STTT) 8(3), 229–247 (2006)
14. Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L.: An empirical investigation of the rela-

tionship between spectra differences and regression faults. Softw. Test., Verif. Reliab. 10(3),
171–194 (2000)

15. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS,
pp. 801–808 (2007)

16. Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for verification and diagnosis.
In: Design Automation Conference (DAC), pp. 755–760 (June 2010)

17. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program sampling.
In: PLDI, pp. 141–154 (2003)

18. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer-
Verlag New York, Inc., New York (1992)

19. Miettinen, P.: Sparse boolean matrix factorizations. In: Proceedings of the 2010 IEEE Inter-
national Conference on Data Mining, ICDM 2010, pp. 935–940. IEEE Computer Society,
Washington, DC (2010)

20. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The Discrete Basis Problem.
In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213,
pp. 335–346. Springer, Heidelberg (2006)

21. Mitra, S., Seshia, S.A., Nicolici, N.: Post-silicon validation: Opportunities, challenges and
recent advances. In: Proceedings of the Design Automation Conference (DAC), pp. 12–17
(June 2010)

22. Park, S.B., Bracy, A., Wang, H., Mitra, S.: Blog: Post-silicon bug localization in processors
using bug localization graphs. In: DAC (2010)

23. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied Mathe-
matics 131(3), 651–654 (2003)

24. Siewert, D.J.: Biclique covers and partitions of bipartite graphs and digraphs and related
matrix ranks of 0,1 matrices. PhD thesis (2000)

25. Tasiran, S., Keutzer, K.: Coverage metrics for functional validation of hardware designs.
IEEE Design & Test of Computers 18(4), 36–45 (2001)

26. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: Finding a minimal descriptive set of
roles. In: Symposium on Access Control Models and Technologies (SACMAT), pp. 175–184
(2007)

27. Weimer, W., Necula, G.C.: Mining Temporal Specifications for Error Detection. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476. Springer, Hei-
delberg (2005)

28. Yang, J., et al.: Perracotta: mining temporal api rules from imperfect traces. In: ICSE,
pp. 282–291 (2006)

29. Zhu, C.S., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum
satisfiability and backbones. In: FMCAD (2011)

30. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. Journal of Compu-
tational and Graphical Statistics 15, 2006 (2004)

Sliding between Model Checking

and Runtime Verification

Martin Leucker

Universtity of Lübeck
Institute for Software Engineering and Programming Languages

Abstract. We present a unified semantics for linear temporal logic cap-
turing model checking and runtime verification. Moreover, we present
the main ingredients of a corresponding monitor synthesis procedure.

1 Introduction

One of the main research problems in runtime verification (RV) is the automatic
synthesis of monitors from high-level specifications. A typical high-level specifi-
cation language used in RV is linear temporal logic (LTL), for which different
RV-specific semantical adaptions have been proposed in recent years. In this
paper we propose a further semantics for LTL, a predictive semantics, which
unifies ideas from model checking and runtime verification. Using abstraction,
it allows to either concentrate on a more model checking like analysis of the
underlying system, or a rather runtime verification oriented view on the system
under scrutiny.

The main object to study in RV is the current run of the underlying system.
Such a run may be finite or, at least from a theoretical point of view, infinite, for
example when the execution of a reactive system like a web server is considered.
However, when the underlying system runs, we can only observe a finite part of a
potentially infinite run. We call the finite, observed part of the run an execution.
Thus, in RV, we observe executions of an underlying system and want to assess
the correctness of a high-level specification with respect to the run of the system.
Now, one can come up with different semantics for LTL depending on how we
understand executions and runs in detail.

In the basic case an execution and run coincide. Here, we think of a system
that executed for a finite amount of time and the execution has terminated.
This is the case for example when analyzing log files or when dealing with clas-
sical input/output oriented computations. If we want to analyze a correctness
property for such an execution, an LTL semantics on finite words is most ap-
propriate. A bunch of different variations of LTL semantics on finite words have
been proposed in the literature, implicitly in Kamp’s work [1] and more directly
in Manna and Pnueli’s work [2] or more recently by Eisner et al. in the context
of LTL+ and LTL− [3] (see [4] for a comparison).

For reactive systems, however, the typical view on a computation is no longer
the input/output behavior but the interaction of the system with its environ-
ment. In an ideal case such a run is infinite. For example, in the setting of a

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 82–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Sliding between Model Checking and Runtime Verification 83

web server we are not interested in a kind of final result of the server but deal
with questions such as whether the web server follows the underlying protocol.
Here, we consider an execution to be a prefix of a potentially infinite run. An
appropriate semantics for such a setting with respect to RV was given in [5].

The idea is that a correctness property is evaluated on the current execution
u with respect to all possible further extensions of the current execution. The
rational is that it is fair to evaluate u with respect to all possible extensions
as we know that u will extend somehow, but we do not really know how. If
u together with all possible extensions satisfies the correctness property the
runtime verification semantics of u with respect to the property is true. When
all extensions of u violate the given correctness property the RV semantics of
u with respect to the correctness property yields false while in all other cases
the RV semantics yields ? meaning that no conclusive answer could be given.
In other words, we give a three-valued semantics to LTL properties based on all
possible extensions of the current execution.

In this paper we build on the previous idea, however, we extend the approach
towards a predictive semantics by the following observations. Why do we check
all possible extensions of the current execution u? Given a program P it seems
to be more interesting to consider only the possible executions of the program
P . If we follow this idea we get true and false for the underlying property in
more cases. In a sense, such a semantics would be more precise.

However, consider RV with such an idea right at the start for the empty word.
We then have to check whether all the extensions of the empty word following
the program P would satisfy our correctness property. Thus, we check whether
all runs of our program P satisfy our correctness property and hence answer
the model checking question. In consequence, we have to deal with the so-called
state-space explosion also in RV.

The situation changes when we look at an abstraction P̂ of the underlying
program P that has more runs than the original program P . Then we can look
at all extensions of an execution u with respect to the abstract system P̂ . This
may yield a more precise assessment than the original three-valued semantics
but may be easier to check than model checking. Moreover depending on the
level of abstraction one can focus more on the runtime verification aspects or
more on the model checking ideas. In one of the extreme cases P̂ and P coincide
and we solve the model checking problem while in the other extreme case P̂
just contains all possible executions over a given alphabet and we are in the
traditional setting of three-valued LTL.

In this paper we further show that P̂ can actually be combined with a previous
monitor synthesis procedure for three-valued LTL so that a monitor for the
resulting predictive semantics is obtained. More precisely, the resulting monitor
checks the semantics for a given execution u and a correctness property with
respect to an abstraction P̂ of the underlying program P .

In the remainder of this paper we make the previous ideas precise.

84 M. Leucker

2 Preliminaries

For the remainder of this paper, let AP be a finite set of atomic propositions
and Σ = 2AP a finite alphabet. We write ai for any single element of Σ. Finite
traces over Σ are elements of Σ∗, and are usually denoted by u, u′, u1, u2, . . . ,
whereas infinite traces are elements of Σω, usually denoted by w, w′, w1, w2,

The set of LTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP)

Let i ∈ N be a position. The semantics of LTL formulae is defined inductively
over infinite sequences w = a0a1 . . . ∈ Σω as follows: w, i |= true, w, i |= ¬ϕ
iff w, i
|= ϕ, w, i |= p iff p ∈ ai, w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2,
w, i |= ϕ1Uϕ2 iff there exists k ≥ i with w, k |= ϕ2 and for all l with i ≤ l < k,
w, l |= ϕ1, and w, i |= Xϕ iff w, i + 1 |= ϕ. Further, let w |= ϕ, iff w, 0 |= ϕ.
For every LTL formula ϕ, its set of models, denoted by L(ϕ), is a regular set of
infinite traces and can be described by a corresponding Büchi automaton.

A (nondeterministic) Büchi automaton (NBA) is a tuple A = (Σ, Q, Q0, δ, F),
where Σ is a finite alphabet, Q is a finite non-empty set of states, Q0 ⊆ Q is
a set of initial states, δ : Q × Σ → 2Q is the transition function, and F ⊆ Q is
a set of accepting states. We extend the transition function δ : Q × Σ → 2Q to
sets of states and (input) words as usual. A run of an automaton A on a word
w = a1 . . . ∈ Σω is a sequence of states and actions ρ = q0a1q1 . . . , where q0 is an
initial state of A and for all i ∈ N we have qi+1 ∈ δ(qi, ai). For a run ρ, let Inf(ρ)
denote the states visited infinitely often. ρ is called accepting iff Inf(ρ) ∩ F
= ∅.

A nondeterministic finite automaton (NFA) A = (Σ, Q, Q0, δ, F), where Σ,
Q, Q0, δ, and F are defined as for a Büchi automaton, operates on finite words.
A run of A on a word u = a1 . . . an ∈ Σ∗ is a sequence of states and actions
ρ = q0a1q1 . . . qn, where q0 is an initial state of A and for all i ∈ N we have qi+1 ∈
δ(qi, ai). The run is called accepting if qn ∈ F . A NFA is called deterministic
and denoted DFA, iff for all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1.

As usual, the language accepted by an automaton (NBA/NFA/DFA), denoted
by L(A), is given by its set of accepted words.

A Moore machine (also finite-state machine, FSM) is a finite state automaton
enriched with output, formally denoted by a tuple (Σ, Q, Q0, δ, Δ, λ), where Σ,
Q, Q0 ⊆ Q, δ is as before and Δ is the output alphabet, λ : Q → Δ the output
function. As before, δ extends to the domain of words as expected. Moreover,
we denote by λ also the function that applied to a word u yields the output in
the state reached by u rather than the sequence of outputs.

In this paper, a (finite-state) program is given as a non-deterministic Büchi
automaton for which all states are final. Runs of a program coincide with the
runs of the Büchi automaton. The product of a program P = (Σ, Q, Q0, δ, Q) and
an NBA A = (Σ, Q′, Q′

0, δ′, F ′) is the NBA B = (Σ, Q×Q′, Q0×Q′
0, δ′′, Q×F ′)

where δ′′((q, q′), a) = δ(q, a) × δ′(q′, a), for all q ∈ Q, q′ ∈ Q′ and a ∈ Σ.
Model checking answers the question whether for a given program P and an
LTL property ϕ, L(P) ⊆ L(ϕ).

Sliding between Model Checking and Runtime Verification 85

3 A Predictive Semantics for LTL

Let us recall our 3-valued semantics, denoted by LTL3, over the set of truth
values B3 = {⊥, ?,�} from [5]: Let u ∈ Σ∗ denote a finite trace. The truth value
of a LTL3 formula ϕ wrt. u, denoted by [u |= ϕ], is an element of B3 defined by

[u |= ϕ] =

⎧⎪⎨
⎪⎩
� if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ
|= ϕ

? otherwise.

In the previous definition, one might ask why not only consider extensions of
u that altogether yield runs of an underlying program P . Thus, one might be
tempted to define a predictive semantics for a finite word u and a property ϕ
with respect to a program P , for example for the case �, by [u |= ϕ]P = �
iff ∀σ ∈ Σω with uσ ∈ P : uσ |= ϕ. However, for the empty word this means
[ε |= ϕ]P = � iff ∀σ ∈ Σω with εσ ∈ P : εσ |= ϕ iff L(P) |= ϕ. Thus, any
runtime verification approach following this idea implicitly answers the model
checking question even before monitoring. Then runtime verification is at least
as expensive as model checking.

We can follow a similar idea yet having control over the overall complexity
using abstractions of the underlying program. An over-abstraction or and over-
approximation of a program P is a program P̂ such that L(P) ⊆ L(P̂) ⊆ Σω.

Definition 1 (Predictive semantics of LTL). Let P be a program and let
P̂ be an over-approximation of P. Let u ∈ Σ∗ denote a finite trace. The truth
value of u and an LTL3 formula ϕ wrt. P̂, denoted by [u |=P̂ ϕ], is an element
of B3 and defined as follows:

[u |=P̂ ϕ] =

⎧⎪⎨
⎪⎩
� if ∀σ ∈ Σω with uσ ∈ P̂ : uσ |= ϕ

⊥ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ
|= ϕ

? else

We write LTLP whenever we consider LTL formulas with a predictive semantics.

Remark 1. Let P̂ be an over-approximation of a program P over Σ, u ∈ Σ∗,
and ϕ ∈ LTL.

– Model checking is more precise than RV with the predictive semantics:

P |= ϕ implies [u |=P̂ ϕ] ∈ {�, ?}
– RV has no false negatives: [u |=P̂ ϕ] = ⊥ implies P
|= ϕ
– The predictive semantics of an LTL formula is more precise than LTL3:

[u |= ϕ] = � implies [u |=P̂ ϕ] = �
[u |= ϕ] = ⊥ implies [u |=P̂ ϕ] = ⊥

The reverse directions are in general not true. Thus, it is possible that a property
is violated in the model checking sense but not spotted by RV with predictive
semantics.

86 M. Leucker

4 A Monitor Procedure for LTLP

Now, we develop an automata-based monitor procedure for LTLP . More specif-
ically, for a given over-approximation P̂ of a program P and formula ϕ ∈ LTL,
we construct a finite Moore machine, Bϕ

P̂ that reads finite traces u ∈ Σ∗ and

outputs [u |=P̂ ϕ] ∈ B3.
For an NBA A, we denote by A(q) the NBA that coincides with A except for

Q0, which is defined as Q0 = {q}. Fix ϕ ∈ LTL for the rest of this section and
let Aϕ denote the NBA, which accepts all models of ϕ, and let A¬ϕ denote the
NBA, which accepts all counter examples of ϕ. The corresponding construction
is standard [6].

Fix an over-approximation of a program P̂ for the remainder of this section
and let Bϕ and B¬ϕ be the product of the over-approximation with Aϕ and A¬ϕ,
respectively, i.e., Bϕ = P̂ × Aϕ and B¬ϕ = P̂ × A¬ϕ. For these automata, we
easily observe that for u ∈ Σ∗ and δ(Qϕ

0 , u) = {q1, . . . , ql}, we have [u |=P̂ ϕ]
=
⊥ iff ∃q ∈ {q1, . . . , ql} such that L(Bϕ(q))
= ∅. Likewise, we have for the NBA
B¬ϕ = (Σ, Q¬ϕ, Q¬ϕ

0 , δ¬ϕ, F¬ϕ) as defined above, for u ∈ Σ∗, and δ(Q¬ϕ
0 , u) =

{q1, . . . , ql} that [u |=P̂ ϕ]
= � iff ∃q ∈ {q1, . . . , ql} such that L(B¬ϕ(q))
= ∅.
Following [5], for Bϕ and B¬ϕ, we now define a function Fϕ : Qϕ → B

respectively F¬ϕ : Q¬ϕ → B (where B = {�,⊥}), assigning to each state q
whether the language of the respective automaton starting in state q is not
empty. Thus, if Fϕ(q) = � holds, then the automaton Bϕ starting at state q
accepts a non-empty language and each finite prefix u leading to state q can be
extended to a run of the over-approximation to satisfy ϕ.

Using Fϕ and F¬ϕ, we define two NFAs B̂ϕ = (Σ, Qϕ, Qϕ
0 , δϕ, F̂ϕ) and B̂¬ϕ =

(Σ, Q¬ϕ, Q¬ϕ
0 , δ¬ϕ, F̂¬ϕ) where F̂ϕ = {q ∈ Qϕ | Fϕ(q) = �} and F̂¬ϕ = {q ∈

Q¬ϕ | F¬ϕ(q) = �}. Then, we have for all u ∈ Σ∗:

u ∈ L(B̂ϕ) iff [u |=P̂ ϕ]
= ⊥ and u ∈ L(B̂¬ϕ) iff [u |=P̂ ϕ]
= �

Hence, we can evaluate [u |=P̂ ϕ] as follows: We have [u |=P̂ ϕ] = � if u
∈
L(B̂¬ϕ), [u |=P̂ ϕ] = ⊥ if u
∈ L(B̂ϕ), and [u |=P̂ ϕ] =? if u ∈ L(B̂ϕ) and u ∈
L(B̂¬ϕ).

As a final step, we now define a (deterministic) FSM Bϕ that outputs for
each finite string u and formula ϕ its associated predictive semantics wrt. the
over-approximation P̂ . Let B̃ϕ and B̃¬ϕ be the deterministic versions of B̂ϕ and
B̂¬ϕ, which can be computed in the standard manner by power-set construction.
Now, we define the FSM in question as a product of B̃ϕ and B̃¬ϕ:

Definition 2 (Predictive Monitor Bϕ for LTL-formula ϕ). Let P̂ be an
over-approximation of a program P. Let B̃ϕ = (Σ, Qϕ, {qϕ0 }, δϕ, F̃ϕ) and B̃¬ϕ =

(Σ, Q¬ϕ, {q¬ϕ
0 }, δ¬ϕ, F̃¬ϕ) be the DFAs which correspond to the two NFAs B̂ϕ

and B̂¬ϕ as defined before. Then we define the predictive monitor Bϕ = B̃ϕ×B̃¬ϕ

for ϕ with respect to P̂ as the minimized version of the FSM (Σ, Q̄, q̄0, δ̄, λ̄),
where Q̄ = Qϕ × Q¬ϕ, q̄0 = (qϕ0 , q¬ϕ

0), δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)), and
λ̄ : Q̄ → B3 is defined by

Sliding between Model Checking and Runtime Verification 87

ϕ, P̂

ϕ Aϕ Bϕ Fϕ B̂ϕ B̃ϕ

¬ϕ A¬ϕ B¬ϕ F¬ϕ B̂¬ϕ B̃¬ϕ

Mϕ

Input Formula NBA P̂×NBA
Emptiness
per state

NFA DFA FSM

Fig. 1. The procedure for getting [u |=P̂ ϕ] for a given ϕ and over-approximation P̂

λ̄((q, q′)) =

⎧⎨
⎩
� if q′
∈ F̃¬ϕ

⊥ if q
∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

We sum up our entire construction in Fig. 1 and conclude with the following
correctness theorem.

Theorem 1. Let P̂ be an over-approximation of a program P, ϕ ∈ LTL, and
let Bϕ = (Σ, Q̄, q̄0, δ̄, λ̄) be the corresponding monitor. Then, for all u ∈ Σ∗:
[u |=P̂ ϕ] = λ̄(δ̄(q̄0, u)).

Complexity. Consider Fig. 1: Given ϕ, step 1 requires us to replicate ϕ and to
negate it, i.e., it is linear in the original size. Step 2, the construction of the NBAs,
causes an exponential blow-up in the worst-case. Step 3 multiplies the size of the
automaton with the size of the over-approximation P̂ . Steps 4 and 5, leading to
B̂ϕ and B̂¬ϕ, do not change the size of the original automata. Then, computing
the deterministic automata of step 6, might again require an exponential blow-
up in size. In total the FSM of step 7 will have double exponential size with
respect to |ϕ| and single exponential size with respect to P̂ . Note that steps 6
and 7 can easily be done on-the-fly.

References

1. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, Los Angeles (1968)

2. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995)

3. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with Temporal Logic on Truncated Paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

4. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime veri-
fication. Journal of Logic and Computation 20(3), 651–674 (2010)

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM TOSEM 20(4) (July 2011)

6. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, pp. 332–345. IEEE Computer Society Press (1986)

Runtime Verification and Enforcement
for Android Applications with RV-Droid�

Yliès Falcone, Sebastian Currea, and Mohamad Jaber

Laboratoire d’Informatique de Grenoble, UJF Université Grenoble 1, France
FirstName.LastName@ujf-grenoble.fr

Abstract. RV-Droid is an implemented framework dedicated to runtime verifi-
cation (RV) and runtime enforcement (RE) of Android applications. RV-Droid
consists of an Android application that interacts closely with a cloud. Running
RV-Droid on their devices, users can select targeted Android applications from
Google Play (or a dedicated repository) and a property. The cloud hosts third-
party RV tools that are used to synthesize AspectJ aspects from the property.
According to the chosen RV tool and the specification, some appropriate mon-
itoring code, the original application and the instrumentation aspect are woven
together. Weaving can occur either on the user’s device or in the dedicated cloud.
The woven application is then retrieved and executed on the user’s device and the
property is runtime verified. RV-Droid is generic and currently works with two
existing runtime verification frameworks for (pure) Java programs: with Java-
MOP and (partially) with RuleR. RV-Droid does not require any modification to
the Android kernel and targeted applications can be retrieved off-the-shelf. We
carried out several experiments that demonstrated the effectiveness of RV-Droid
on monitoring (security) properties.

1 Introduction

Android [1] has risen as one of the most popular mobile operating systems. As the
popularity of Android increases so is the need for validation techniques. A huge number
of applications is available and an exhaustive/satisfactory validation process is missing.
With this success has emerged bugged applications (because of complex life-cycle) and
malwares that could seriously hinder devices’ integrity and users’ privacy [2].

Monitoring the behavior of Android applications appear as a candidate solution to
circumvent these problems [3,4]. Runtime verification (RV) and enforcement (RE) are
increasingly popular and effective dynamic validation techniques aiming at checking
and ensuring the correct behavior of systems, respectively. These techniques consist in
synthesizing a monitor from a high-level specification language, instrument the system
and then integrate the monitor at relevant locations. At runtime, the monitor observes
and possibly corrects the system’s execution. In most of the runtime verification frame-
works, instrumentation is automatic and relies on efficient and effective frameworks,
e.g., aspect-oriented programming [5] and AspectJ (www.eclipse.org/aspectj/) its im-
plementation for Java.

� This work was funded in part by the French-government Single Inter-Ministry Fund (FUI)
through the IO32 project.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 88–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Runtime Verification and Enforcement for Android Applications with RV-Droid 89

However, for the Android platform such an effective instrumentation technique did
not exist until quite recently [6]. Consequently, previously proposed approaches [3,4]
had to modify, to different extents, the Android system to be able to log security-
sensitive events. The downsides are limited portability between platforms and incom-
patibility with future releases of the operating system.

Contributions. We propose a framework that gets closer to the principles of runtime
verification. Based on an in-house version of the AspectJ compiler [6] for the Android
platform, we propose RV-Droid, a framework for “traditional” and user-friendly RV
and RE that is compatible with state-of-the-art tools. RV-Droid is a stand alone An-
droid application that does not require any modification to any part of Android devices.
RV-Droid takes credit from Java-MOP [7] and RuleR [8] hence allowing efficient mon-
itoring of various expressive specification formalisms. Because Android applications
use a unified API where most of the sensitive operations go through a clearly identified
set of methods, it becomes easy to write properties and monitors that work with any
application. We propose several examples of such requirements. Finally, the architec-
ture behind RV-Droid can be seen as a basis that can be further extended into more
specialized implementations.

Paper Organization. Due to space reason, we do not provide an overview of Android,
as literature abound on the subject and we believe that the architecture of RV-Droid
and monitored properties are self-intelligible. Section 2 presents RV-Droid and its ar-
chitecture. Experimentation and evaluation of monitoring properties with RV-Droid is
done in Section 3. Related work is discussed in Section 4, while Section 5 draws some
conclusions and present future developments.

2 An Overview of RV-Droid

RV-Droid is an Android application that interacts closely with a dedicated cloud (see
Fig. 1). We provide a description of its features and some insights about its internal
architecture. It represents approximately 4,200 LLOC (libraries and third-party tools
excluded): 3,000 for the Android application and 1,200 for the cloud. RV-Droid allows
user-friendly runtime verification of Android applications. RV-Droid takes as input an
existing Android application with a property and then:

1. it synthesizes a monitor for the property, and
2. it integrates the monitor inside the application in a transparent way for the user.

RV-Droid works with Android Froyo 2.2 or higher, and does not require any modifi-
cation to neither the Android kernel nor any part of the targeted device. Applications
can be retrieved off-the-shelf from a personal (local or remote) repository or Google
Play. Properties are available in a repository and are selected by the user according to
an abstract description (informal requirement), the events involved in the property, and
the formalization of the requirement. Monitor synthesis and runtime monitoring rely on
third-party RV tools such as (for now) Java-MOP [7] and RuleR1 [8]. Mainly, two oper-
ations are performed by RV-Droid: monitor synthesis and monitor integration. Monitor

1 Courtesy of Howard Barringer and Klaus Havelund who offered a pre-release version.

90 Y. Falcone, S. Currea, and M. Jaber

User

RV-Droid

property
repository

application
repository

Java-MOP RuleR RV cloud
Java-MOP RuleR

select
application & property

result
monitored application

monitor request
property & application

app. repositoryproperty repository

upload & download
application & property

upload & download
(monitored) application & Property

embedded
monitor synthesis & integration

cloud
monitor synthesis & integration

Fig. 1. RV-Droid context

synthesis consists in taking as input a property and generate some monitoring code, i.e.,
a decision procedure for this property. Monitor integration consists in instrumenting the
target application to observe the relevant events that will trigger the monitoring code.
For this purpose, RV-Droid relies on the aspect technology and an in-house version of
the AspectJ compiler.

Monitor integration and aspect-oriented programming. RV-Droid supports two mon-
itor integration (and aspect weaving) modes: embedded or in the cloud. Support of
Aspect-Oriented Programming (AOP) on Android is ensured by Weave Droid, an in-
house version of the AspectJ compiler [6]. One of the challenges faced by RV-Droid
is to circumvent the current limitations to use AOP on Android applications that se-
riously hinder the mobility of the device and forbids “standard” runtime verification.
For a description of the previously existing issues in using AOP on Android, the reader
is referred to [6]. In a nutshell, the issues stem from the incompatibility of existing
aspect-compilers with the Android .apk files (Android target binary file format). From
an abstract point of view, our weaving process is achieved in several stages that mainly
are: de-compile the application, weave the classes, convert the classes again in a for-
mat that Android can execute, and sign the application. These steps rely partly on
third-party tools such as dex2jar (http://code.google.com/p/dex2jar/), Android dx tool
(http://developer.android.com), and Zipsigner (http://code.google.com/p/zip-signer/).

Some code is shared between Weave Droid and RV-Droid, but Weave Droid has been
re-implemented since then to make it more generic, and, to use indifferently aspects or
specifications used by runtime verification tools.

Using third-party runtime verification tools. Based on the previously described process,
monitor synthesis and monitor integration become possible using third-party runtime
verification tools. Java-MOP provides facilities for monitor synthesis by generating as-
pects that query monitoring code in a library. RuleR does not provide aspect synthesis

Runtime Verification and Enforcement for Android Applications with RV-Droid 91

facilities and one has to provide a specification together with the suitable aspect that will
query the RuleR engine in a third-party library. We had to modify the third-party mon-
itoring libraries because of some initial incompatibility with the Android system. From
an abstract point of view, these libraries call some Java classes that are not provided by
the Android runtime. Thus, we had to redirect these calls to a customized version of the
Java runtime library. Note that the aforementioned modifications are transparent to the
user who, in all cases, has only to download and install an Android application.

The remote processes are implemented as a web service queried by RV-Droid using
the Simple Object Access Protocol (SOAP) and the web service client library kSoap
(http://ksoap2.sourceforge.net/). The web service is deployed in the Glassfish applica-
tion server. The two repositories execute on an SSH file transfer protocol server (SFTP).

3 Experimentation and Evaluation

Verifying correct usage of Java data structures To evaluate RV-Droid, and assess the
performance of state-of-the-art RV tools on recent Android devices, we carried out per-
formance evaluation of Java-MOP monitors on three benchmarks with usual properties
(available at Java-Mop’s website). The first device is a Samsung Galaxy Tab 10.1, a
tablet, with processor NVIDIA Tegra 2 dual core 1GHz and 1GB of RAM running on
Honeycomb 3.1. The second device is a Samsung Galaxy Gio S5660, a mobile phone,
with a 800 MHz processor and 278MB of RAM, running on Froyo 2.2.1. The consid-
ered benchmarks were Linpack (http://www.greenecomputing.com, B1), BenchmarkPi
(http://androidbenchmark.com, B2), and DaCapo-xalan (http://dacapobench.org, B3).
Linpack provides a general evaluation of the performance of the Dalvik virtual machine.
BenchmarkPi provides an evaluation of the processor power of the device. DaCapo is
the traditional benchmark used in RV that makes intensive use of Java data structures.
Linpack and BenchmarkPi were taken off-the-shelf. However, using DaCapo required
tweaking the original code, and, based on code analysis, we discovered that it is possible
for only 6 of the 14 applications inside the benchmark.

Table 1. Benchmarks for properties over Java data structures – Galaxy Tab 10.1

Property B1 (3.134) (s) B2 (524.4) (ms) B3 (489.3) (ms)

mon (s) ovhd (%) mon (ms) ovhd (%) mon (ms) ovhd (%)

HasNext 3.439 9.732 552.1 5.282 547.8 11.956

UnsafeIterator 3.182 1.532 568.3 8.371 498.7 1.921

SafeEnum 3.189 1.755 591.3 12.757 512.3 4.701

SafeFileWriter 4.171 33.089 632.0 20.519 540.1 10.382

SafeSyncColl. 3.141 0.223 544.9 3.909 525.7 7.439

HashSet 3.142 0.255 574.8 9.611 549.8 12.365

UnsafeMapIterator 3.251 3.733 563.1 7.380 548 11.997

SafeSyncMap 3.152 0.574 540.4 3.051 553.7 13.162

92 Y. Falcone, S. Currea, and M. Jaber

Table 2. Benchmarks for properties over Java data structures – Galaxy Gio S5660

Property B1 (19.65) (s) B2 (1346) (ms) B3 (2092) (ms)

mon (s) ovhd (%) mon (ms) ovhd (%) mon (ms) ovhd (%)

HasNext 20.898 6.315 1567 16.359 3013 43.99

UnsafeIterator 21.115 7.419 2462 82.87 3121 49.15

SafeEnum 19.966 1.570 2476 83.894 2989 42.84

SafeFileWriter 20.532 4.454 2399 78.169 3569 70.56

SafeSyncColl. 20.623 4.939 2305 71.189 3035 45.04

HashSet 21.512 9.440 2292 70.2 2842 35.82

UnsafeMapIterator 20.775 5.689 2431 80.575 2895 38.35

SafeSyncMap 20.25 3.015 2416 79.46 3254 55.50

Error

check internet

gps old := gps

transmit

[gps old == gps]
transmit

check internet

gps old := gps

[gps old
= gps]
transmit

(a) Checking internet connection

create start resume

pause

resume

stop destroy

create

restart,
create

(b) Activity life-cycle

Fig. 2. Some properties inspired from the developer’s guide

Performance results are shown in Tables 1 and 2 for the tablet and mobile phone,
respectively. On the first line, for each benchmark, the execution time without monitor
is indicated. For each property, the entries mon and ovhd indicate the average time for
10 executions of the monitored application and the induced overhead, respectively.

Verifying Android programming good practices. We monitored properties indicating
whether Android’s programming guidelines [1] are respected on some of the most pop-
ular games. Due to space reasons, an abstract monitor is given only for P1 and P2.

P1 Before transmitting any data, it must be ensured that the device is connected to
internet. And, it should be checked again each time the device is moved. An abstract
representation of the monitor used for this property is represented in Fig. 2a.

P2 All methods involved in the activity life-cycle should be overridden. To check
whether the developer has followed this requirement, we can write an aspect that
instruments those methods and tracks the (simplified) application life-cycle repre-
sented in Fig. 2b. If the method has been overridden by the developer, an event
(corresponding to the method name) will be emitted by the monitored program. If,
in a state, an unexpected event is emitted, it means that there is at least one method
not overridden by the developer.

Runtime Verification and Enforcement for Android Applications with RV-Droid 93

P3 The device rotation facility should not be disabled.
P4 Only one dialogue window should be poped-up.
P5 In the restricted-memory mode, an application should start at most one service and

end it, and not let the Dalvik virtual machine kill it.

Preventing security issues through runtime enforcement. Among the 27 security find-
ings discovered in [9], we wrote a monitor for 19 of them to either detect the vulnera-
bility or even prevent it by disabling malicious method calls. The 8 remaining findings
were related to too general concepts (e.g., “some developers toolkits probe for permis-
sions through customized methods”). Being able to write a monitor to prevent security
issues mostly depends on whether the referred sensitive data is retrieved through method
calls. Method calls are caught by monitors and the data (passed as parameter) is then
analyzed (e.g., an URI or string containing a premium-rate phone number).

4 Related Work

Both static and dynamic methods already exist to validate Android applications.

Static validation techniques. Verification of Android applications has been mostly in-
vestigated in relation with Android permissions [10]. At installation time, the user is
asked whether the downloaded application is allowed to access security-relevant parts
of the API. Stonaway [10] is a static analysis tool that determine whether applications
disobey the principle of least privilege. Stonaway compares the permissions required by
the calls made to Android’s API to the permissions requested by the application. Com-
Droid [11] similarly analyses inter-application communication by examining emissions
and receptions of intents (i.e., more or less messages) between applications to prevent
information disclosure.

Dynamic analysis of Android applications. TaintDroid [3] is a framework for
information-flow analysis of Android applications. It is based on information tainting and
log collecting to determine whether sensitive information flows between applications.

Even closer to our work is a framework where a monitor runs on an Android device
as a stand-alone application [4]. The “light” version of this approach modifies two files
of the Android system to get notifications about security-sensitive events. This mild
modification comes at the price of not being able to observe some low-level, potentially
security-sensitive, operations. To circumvent this problem and get information about
more events, the authors propose an in-house kernel module that has to load during
boot. It is thus an out-line monitoring approach based on permission requests seen as
events. Moreover, monitored properties are specified in an LTL variant and monitored
using progression (i.e., formula rewriting).

Comparison with our approach. RV-Droid falls in the category of dynamic-analysis
approaches. In contrast with existing approaches, RV-Droid is based on aspect-oriented
programming for instrumentation. RV-Droid performs in-line/on-line monitoring, and,
it features the following novelties and advantages. RV-Droid does not modify Android
architecture, which, in our opinion, greatly favors usability, portability, and compatibil-
ity with next releases of Android. Monitors can be expressed using any event observable

94 Y. Falcone, S. Currea, and M. Jaber

through AspectJ. RV-Droid is not restricted to security properties, and, more general
properties (e.g., correct implementation, debugging, statistics, etc) can be considered.
Moreover, RV-Droid takes credit from Java-MOP and RuleR which are complementary
in terms of expressiveness and efficiency and offer several input formalisms. While [4]
is based on progression that can cause the size of the monitored formula to augment
with the length of the trace, our monitors have been tested by running monitored ap-
plications for more than an hour without noticeable overhead. Also, RV-Droid permits
runtime enforcement by e.g., disabling dangerous method calls. Finally, with a reason-
able effort, RV-Droid can be extended to also support off-line monitoring.

5 Conclusion and Future Work and Developments

RV-Droid widens the interest of runtime verification to a large set of potential applica-
tions on mobile devices. Our framework is in the line of traditional of RV frameworks:
(i) applications are seen as black boxes, (ii) applications are taken off-the-shelf, and (iii)
the execution platform does not need to be instrumented. Our tool is still a prototype
but will be released soon on Google code and Google Play.

We plan several conceptual extensions. Enforcement on method calls as presented in
this paper can be extended to ensure the good usage of interfaces [12]. We also plan to
design more elaborated aspects to be able to prevent intent-based attack surfaces [11]
that requires to analyze the manifest data.

In the roadmap of RV-Droid, we plan to propose i) repositories of debugging and
security monitors (aspects synthesized from properties), ii) integration with comple-
mentary RV tools (e.g., LARVA [13]), iii) customized application installer and don-
wloader where applications are automatically augmented with monitors after download,
iv) repositories with sanitized (monitored) applications.

References

1. Google Inc.: Android developer site (2012), http://developer.android.com
2. Nouveau, T.: The Rise of Android Malware, TG Daily (November 2011)
3. Enck, W., Gilbert, P., Gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.: TaintDroid:

An information-flow tracking system for realtime privacy monitoring on smartphones. In:
Arpaci-Dusseau, R.H., Chen, B. (eds.) OSDI, pp. 393–407. USENIX Association (2010)

4. Bauer, A., Küster, J.-C., Vegliach, G.: Runtime Verification Meets Android Security. In:
Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 174–180. Springer, Hei-
delberg (2012)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,
J.: Aspect-oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Falcone, Y., Currea, S.: Weave Droid: Aspect-Oriented Programming on Android Devices
– Fully Embedded or in the Cloud. In: The 27th IEEE/ACM International Conference on
Automated Software Engineering (to appear, 2012), ASE 2012: preprint available online

7. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. STTT 14, 249–289 (2012)

8. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitoring: from
Eagle to RuleR. J. Log. Comput. 20, 675–706 (2010)

 http://developer.android.com

Runtime Verification and Enforcement for Android Applications with RV-Droid 95

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security.
In: Proceedings of the 20th USENIX conference on Security, SEC 2011, p. 21. USENIX
Association, Berkeley (2011)

10. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In:
Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS, pp. 627–638. ACM (2011)

11. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application communication
in Android. In: MobiSys 2011, pp. 239–252. ACM (2011)

12. Hallé, S., Villemaire, R.: Browser-Based Enforcement of Interface Contracts in Web Appli-
cations with BeepBeep. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 648–653. Springer, Heidelberg (2009)

13. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time Java pro-
grams (tool paper). In: Hung, D.V., Krishnan, P. (eds.) SEFM, pp. 33–37. IEEE Computer
Society (2009)

Temporal Monitors for TinyOS

Doina Bucur

Innovation Centre for Advanced Sensors and Sensor Systems (INCAS3),
The Netherlands

doinabucur@incas3.eu

Abstract. Networked embedded systems generally have extremely low
visibility of system faults. In this paper, we report on experimenting
with online, node-local temporal monitors for networked embedded nodes
running the TinyOS operating system and programmed in the nesC lan-
guage. We instrument the original node software to signal asynchronous
atomic events to a local nesC component running a runtime verifica-
tion algorithm; this checks LTL properties automatically translated into
deterministic state-machine monitors and encoded in nesC. We focus
on quantifying the added (i) memory and (ii) computational overhead of
this embedded checker and identify practical upper bounds with runtime
checking on mainstream embedded platforms.

Keywords: Runtime verification, embedded software, LTL, automata,
TinyOS, nesC.

1 Introduction

Embedded systems have become ubiquitous outside static, controlled industrial
settings. They include both mobile embedded communication systems such as
smartphones, and either static or mobile sensors and actuators operating in
highly dynamic environments, such as networks of wireless sensors monitoring
a natural or urban setting. Three features are common to such systems: (i) ex-
treme reactiveness, in that system operation is driven by asynchronous external
events—the inherent difficulty of writing correct software for asynchronous oper-
ation effectively increasing the probability of system failure; (ii) a tight bound on
computational and memory resources of the hardware platform, necessary to en-
sure energy efficiency in operation; (iii) a need for autonomous operation. In this,
we look at wireless sensor systems (WSNs), “the volatility of [which] is always
in tension with ambitious application goals, including long-term deployments of
several years, large scale networks of thousands of nodes, and highly reliable data
delivery” [15]. We take the application case of the mainstream cross-platform op-
erating system for wireless sensor nodes, TinyOS [14], its programming language,
the event-based network embedded systems C (nesC) [12,11], and Telos [19]—
an ultra-low power, highly ROM- and RAM-constrained wireless sensor module
developed at the University of California, Berkeley.

Many failures of a WSN reportedly are rooted in faults at a single node. These
faults are then rarely recovered from, due to the impracticability of reaching a

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 96–109, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Temporal Monitors for TinyOS 97

faulty node at its deployment location, and to the scarcity of mechanisms for
self-diagnosis and repair of WSN nodes, e.g., generic built-in error checkers. In
general, node-local failure modes include buffer and stack overflows, deadlocked,
livelocked software and data races [16], no next-hop destination for data routing
in a multihop network, unexpected outliers or gradient in sensed data, degrada-
tion of the battery [15], incorrect temporal use of the OS kernel’s API [1], and
any number of programmer-written invariants and qualitative or quantitative
temporal properties.

We contribute an automata-theoretic runtime checker for node-local proper-
ties, running natively on embedded nodes running TinyOS. We support future-
time LTL properties over system events. Relatively few efforts were made with
regard to formal verification against failures in embedded software for WSNs.
Static checking methods targeted at nesC or C for TinyOS, both for a single
networked node [2] and a network [22,17,21,18,25] have met with mixed success
in what regards the degree of coverage feasibly achieved, particularly with regard
to the external context the node reacts to: the main difficulty of statically veri-
fying a WSN is in modelling and checking a given node’s software exhaustively
against all possible networking and environmental settings.

On the other hand, runtime checking has become moderately accepted;
naturally, checking at runtime precludes the need to exhaustively model the soft-
ware’s context. This is the case of SafeTinyOS [3], a node-local program-analysis-
based checker for memory safety, now part of TinyOS; this has demonstrated that
TinyOSkernelmemory safety at runtime incurs a 13%ROM(code) and 5.2%CPU
overhead.While other runtime-monitoring tools were also contributed, few fulfill,
like our method, the crucial autonomy requirement that the runtime checking re-
side on the embedded nodes themselves. None of these checkers allow properties
other than invariants (in the case of SafeTinyOS) and small handcrafted state ma-
chines as interface contracts for nesC software components in [1].

Standard temporal property languages such as LTL are suitable to express
specifications for nesC software. For this, we construct the set of boolean atomic
propositions to include (i) boolean conditions over program variables, e.g., (data
> 0x10), and (ii) program checkpoints, e.g., the entry point of the nesC func-
tion Timer.fired(). Using these additions to encode system events, memory
safety properties may be written as LTL invariants, and interface contracts as
LTL Precedence patterns. We allow all LTL properties which can be violated in
finite time.

To generate runtime monitors for such temporal properties, we use a for-
mal automata-theoretic algorithm to translate LTL into deterministic Büchi
automata over finite words. The question whether a property currently holds
thus translates into the question whether the current finite trace of execution
events leads the monitor on an accepting transition; each verification step is
done on-the-fly. We give a native nesC template implementation of a runtime
monitor, together with an automatic translation from a deterministic automaton
over finite words into this template. We then evaluate the overhead introduced
by the monitoring and verification in terms of code (stored on-board in ROM

98 D. Bucur

memory), volatile memory (RAM) and CPU load. We find that absolute over-
head per monitor is negligible in what regards RAM and CPU load, but is up to
2.67KB of ROM for a basic LTL pattern, which amounts to 5.55% of the ROM
integrated on a Telos revision B platform.

In what follows, Section 2 briefly overviews background matters in what re-
gards both the theory of runtime checking and the TinyOS system; Sections 3
and 4 describe and evaluate, respectively, our monitoring framework, and Sec-
tion 5 covers the related work and concludes.

2 Background

2.1 Theoretical Background

In the future fragment of propositional linear-time temporal logic (LTL), formu-
las are composed out of atomic propositions from a finite set AP , boolean logic
operators, and the temporal operators X (“next time”) and U (“until”); other
temporal operators are defined in terms of these, e.g., G (the invariant “glob-
ally”) and F (“eventually”). Whether a word over AP satisfies a LTL formula φ
is defined inductively over the formula structure.

Given the set AP over which a temporal property is written, Σ := 2AP is a fi-
nite language over AP . A (nondeterministic) transition-based generalized Büchi
automaton (TGBA) is a tuple A := (Σ, Q, T, q0, F), where Σ is a finite language
as above, Q is a finite set of states, q0 ∈ Q is an initial state, F is a finite set
of acceptance conditions, and T is the transition relation T ⊆ Q×Σ × F × 2Q,
i.e., each transition is labelled and has attached acceptance conditions. Gen-
eral verification of LTL properties against a given system model is traditionally
automata-theoretic: the LTL property is translated into a Büchi automaton A,
such that a word σ over AP correctly described by φ allows a sequence of tran-
sitions such that each letter in σ matches a transition label, and the sequences
satisfy each acceptance condition in A (infinitely many times, in the case of an
infinite σ); i.e., a TGBA can be constructed for a given LTL property φ such
that it accepts exactly the temporal words described in φ. Building a monitor for
LTL only requires the particular case of finite words σ. The model-checking li-
brary SPOT [7,6]1 implements a number of LTL-to-TGBA translations, of which
we used Couvreur/FM based on [4] and further formula and automaton simpli-
fications; the resulting automaton compares well in terms of size with other
translation algorithms, including that of LTL2BA [10].

Any nondeterministic automaton over finite words may be translated into
an equivalent deterministic one; this deterministic monitor then has constant
computational complexity, instead of linear in the size of the automaton. To
generate a deterministic monitor from a nondeterministic Büchi automaton, [5]
prunes all states which cannot start an accepting run, restricts the transition
relation to the new set of states, and modifies all states to be accepting. SPOT

1 An online engine is at http://spot.lip6.fr/ltl2tgba.html (last access: Au-
gust 2012).

http://spot.lip6.fr/ltl2tgba.html

Temporal Monitors for TinyOS 99

implements a similar pruning method, with resulting acceptance conditions on
transitions.

2.2 Practical Background

A long line of low-power, integrated hardware platforms have been developed
as WSN nodes in the past 15 years. The Telos [19] general design integrates
computation, communication, storage, and sensing: an 8MHz, 16-bit MSP430-
model microcontroller runs with 10KB of RAM, 48KB of ROM code storage,
and, when active and with the radio on, draws 19mA of current from the battery
pack. The equally mainstream alternative platform from the Mica family, MicaZ,
runs on an 8-bit RISC-based ATmega128L microcontroller with 4KB of RAM.
In our evaluation, we focus our experimentation on the popular Telos revision
B platform (i.e., TelosB), with occasional comparisons to MicaZ.

Software for these platforms is constructed on the low-duty-cycle principle: the
processor and radio transceiver are asleep for most of a duty interval, and period-
ically awaken for sensing, computation and communication duties. TinyOS [14]
is a relatively young open-source operating system for WSN nodes, intended
to allow such low-power duty cycling. TinyOS itself is written in a novel lan-
guage, network embedded systems C (nesC), which extends C with code compo-
nents (which may be either configurations or modules) wired through interfaces.
Hardware Presentation Layer (HPL) components form the lowest level and inter-
act directly with the hardware; higher-level system logic (e.g., device drivers or
networking protocols) consists simply of one or more newly programmed com-
ponents wired together with the relevant lower-level system components. A pro-
grammer’s TinyOS application (i.e., the highest level of software abstraction) is
programmed in the same way.

This component-based system design comes with advantages when implement-
ing a monitor: (i) variables global to the entire OS are few, and (ii) a given, e.g.,
system peripheral or data structure pertaining to a network protocol is (each)
de facto controlled from a single nesC system component. These facts simplify
the task of code instrumentation for logging system events.

As usual for low-level networked systems, the associated programming lan-
guages and compilers support asynchrony natively: nesC interfaces are a bundle
of asynchronous events and/or synchronous commands. For example, a hardware
interrupt itself is an event to a low-level nesC component; this component’s event
handler may signal further events to higher-level components, triggering in effect
an asynchronous event chain. All event handlers are non-interruptible and must
be kept brief by the programmer, while any deferred computation in the form of
synchronous TinyOS tasks should instead be posted to the system’s task queue.

We also capitalize on these OS features related to timeliness and asynchrony
when designing our runtime logging and trace checking to be real-time: all sys-
tem events of interest are notified through asynchronous nesC events, and every
checking step is an atomic deferred task.

Fig. 1 depicts a schematic architecture of TinyOS, with our added runtime
checker.

100 D. Bucur

TinyOS

path verifier

Hardware

RuntimeTinyOS

application

system components

Fig. 1. An abstract schematic of TinyOS showing the system being implemented as
nesC components wired through interfaces. A TinyOS application is effectively a set
of nesC components, wired together in a graph-like structure. Our components and in-
terfaces implementing runtime verification are emphasized (on the right). The runtime
checker wires to any existing nesC system components of interest, and is thus notified
of relevant system events.

3 TinyOS System Events, State, and Monitor Synthesis

System Events and Representing Atomic Propositions

As introduced in Section 1, system events may include, syntactically, boolean
conditions over nesC variables and program checkpoints. Logging these system
events is a relatively simple task, due to TinyOS’s component-based design and
the ensuing separation of concerns (described in Section 2.2). Furthermore, each
nesC component of interest (such as a device driver or a protocol implemen-
tation) generally has a well-defined set of “important” variables and program
checkpoints, such as the routing table (in the case of a network protocol) or the
entry point of the event signalling the acquisition of new sensor data (in the
case of a sensor’s device driver). Thus, we found that exhaustively instrument-
ing a component once is sufficient for checking a large set of realistic temporal
properties over the entire OS.

As testbed, we consider a representative sample TinyOS application from the
existing codebase2, Oscilloscope. This application is effectively a wiring together
of a set of most-used TinyOS system components, including the drivers for the
on-board sensors and the basic wireless networking stack. The top-level applica-
tion logic then simply adds a duty cycle of 250ms, for which interval a timer is
programmed to signal a periodic alarm event. In each of these cycles, a sensor is
sampled with a call/signal command/event pair; when the number of successful

2 The source repository for TinyOS is at http://code.google.com/p/
tinyos-main/ (last access: August 2012).

http://code.google.com/p/tinyos-main/
http://code.google.com/p/tinyos-main/

Temporal Monitors for TinyOS 101

readings has filled a small buffer, the buffer is transmitted wirelessly to a fixed
address.

We instrument for logging some of these crucial TinyOS system components,
i.e., part of the implementation of the Hardware Presentation Layer (which ef-
fectively means that the state of any of the microcontroller’s I/O peripherals
is logged), and the high-level application logic itself. In what regards HPL, we
consider as relevant system events the change in state of each bit in the micro-
controller’s peripheral registers; given the memory model of this platform, the
peripherals on a TelosB platform form a set of 56 event types. For the high-level
logic, we mark 10 conditions over variables and checkpoints. AP then equals this
union set of system events.

Representing System State, and Matching Transitions

Only a subset of these atomic propositions in AP need monitoring for a given (set
of) LTL properties φ. It is thus somewhat memory-inefficient to statically index
each of the 66 event types in AP by a non-negative integer, and then statically
encode the system state as a bit vector of 66, where each bit i is assigned the truth
value of the corresponding pi ∈ AP . We improve on this by instead dynamically
generating the encoding for the system state per (set of) LTL properties, together
with the monitor generation: for each atomic proposition p in φ, the lowest
available index greater than zero is assigned. The trivial propositions true and
false are treated in the same way. The resulting system state is thus a minimal
bit vector of the size of φ (instead of the size of AP). Matching a transition in
the automaton is then simply checking the required bits in the state bit vector.

Notifying System Events

Fig. 1 shows the components and interfaces added to the original TinyOS code-
base for runtime checking. The checker itself is implemented as a new nesC
component, automatically generated from a given LTL formula φ. This compo-
nent provides a nesC event for any other logged component to signal; we
list the header of this nesC checker in Fig. 2.

The logging of system events is then implemented as follows: each nesC com-
ponent instrumented with logging simply wires to the checker (introduced above)

configuration PaxLTLC {
provides async event void notify(uint16_t ap, bool val);

}
module PaxLTLP {

// implements runtime checking for a given LTL property
}

Fig. 2. The header of our nesC runtime checker

102 D. Bucur

through a nesC notify event, which is then signalled by the instrumented
component at particular program checkpoints or variable writes.

We list the wiring for an HPL component in Fig. 3. We note that we did
this additional nesC wiring and instrumentation manually. While a suitable
tool implementing program analysis would automatize this process, we found
that the instrumentation overhead is acceptably low: we only needed three new
signal calls to log any change in the state of 56 microcontroller pins in the
HplMsp430GeneralIOP modules in Fig. 3, due to the fact that all I/O ports
are generated from a single “generic” module.

configuration HplMsp430GeneralIOC { [..]
}
implementation {

[..]
components PaxLTLC;
[..]

PaxLTLC.notify <- P10.pax_notify;
PaxLTLC.notify <- P11.pax_notify;
PaxLTLC.notify <- P12.pax_notify;
// where P10, P11, etc are instantiations of HplMsp430GeneralIOP
[..]

}

generic module HplMsp430GeneralIOP([..]) {
[..]
uses async event void notify(uint16_t ap, bool val);

}
implementation
{

[..]
async command void IO.set() {

[..]
signal pax_notify((PORTx*10+pin), TRUE);}

async command void IO.clr() {
[..]
signal pax_notify((PORTx*10+pin), FALSE);}

[..]
}

Fig. 3. Wiring and instrumentation added to the HPL components which control the
microcontroller pins on the TelosB; the logging is done by signalling the notify event.

Monitor Synthesis

Take the LTL formula F r → (!pU (s | r)) (the Precedence pattern with a Before
scope from the KSU LTL pattern repository [8], meaning that atomic proposition
s being true precedes p being true, and all before r is true). SPOT generates the
equivalent deterministic monitor, as in Fig. 4.

Asmonitor encoding, we adopt a nesC version of the C++front det ifelse
encoding in [23], proven fairly efficient over experimentation for System C. The

Temporal Monitors for TinyOS 103

encoding (of the Precedence property above, in Fig. 5) keeps track of the execu-
tion of the automaton with the integer variables current and next. At most one
if branch on each of the two levels of conditionals is taken, for each notification
event. The verification ends, and the property is proven violated, when at the ar-
rival of an event notification, no transition is enabled. We generate these monitor
implementations automatically from LTL properties, based on a nesC template.

1 !p & !r & !s

2

r | s

3

p & !r & !s

1 !r

Fig. 4. Deterministic moni-
tor generated for the speci-
fication F r → (!pU (s | r)).
State 1 is the initial state, and
each transition is accepting.

implementation {
async event void notify(uint16_t ap,

bool val) {
// store (ap, val)
if (!finished_checking)

post step();
}

task void step() {
atomic {
// calculate new state with (ap, val)
current_checking_steps++;
current = next; next = -1;

if (current == 1) {
if ((call stateBV.get(r)) ||

(call stateBV.get(s)))
next = 2;

else if ((call stateBV.get(p)) &&
!(call stateBV.get(r)) &&
!(call stateBV.get(s)))

next = 3;
else if (!(call stateBV.get(p)) &&

!(call stateBV.get(r)) &&
!(call stateBV.get(s)))

next = 1;
}
else if (current == 2) {

next = 2;
}
else if (current == 3) {

if (!(call stateBV.get(r)))
next = 3;

}
finished_checking = (next == -1);

}}}

Fig. 5. NesC monitor encoding for the monitor in
Fig. 4. This forms most of the implementation for
the PaxLTLC component introduced in Fig. 2.

104 D. Bucur

4 Evaluation

Properties

Our test suite includes the basic KSU collection of future-time LTL property
patterns and scopes [8]. The six property patterns are those of Universality (p is
true), Absence (p is false), Existence (p eventually becomes true) and the related
Bounded Existence (p becomes true at most twice), Precedence (s precedes p)
and Response (after p, s eventually follows). To form more complex properties,
any pattern is composed with any of five scopes: Globally, Before r, After q,
Between q and r and After q before r. Thus, for the Oscilloscope application,
any invariant over the values of sensed data is written as a Universality pattern
in a Global scope (which we abbreviate by U-G); a specification requiring at
least one successful sensing operation before a packet is sent may be written as
an Existence-Before, abbreviated E-B.

Five of the ensuing thirty combined property types have trivial monitors, as
they cannot be violated in finite time; these are the Existence-Globally (E-G),
Existence-After (E-A), etc, and we omit them from the evaluation results. To
these, we add two composite properties which are practically useful:

k∨
i=1

Gpi and a generic event-sequence chain p1U(p2U(. . .Upk))

and also multiple basic monitors checking the same application.
Into these property types, we randomly input combinations of atomic propo-

sitions from our list of relevant system events. The resulting specifications are
either violated or satisfied by the system software; our monitors will report
whether the checking has finished (thus a violation was encountered) in real
time, at the end of each monitoring step—variable finished checking in
the monitor implementation from Fig. 5 records the verification status, and is
reported to the system users.

Metrics, Experimental Setup, and Results

As our runtime checker shares all on-board resources with the original applica-
tion, we evaluate the monitor’s performance in terms of computational (CPU
overhead) and memory (RAM and ROM overhead) when running one or more
checkers in the PaxLTLC component.

We measure the difference in the size of the binary application code between
the monitored and the original, uninstrumented and unchecked, version used as
a baseline (i.e., the ROM overhead). In Fig. 6, we evaluate the ROM overhead
for example formulas of the basic LTL patterns composed with scopes, minus
the cases with trivial monitors; patterns and scopes are shown as pairs X-Y of
their abbreviations. In general, the difference we observed between the code size
of a monitor for a property pattern, and that of the same monitor over different
atomic propositions, is due only to the difference in the code instrumentation

Temporal Monitors for TinyOS 105

 0

 1

 2

 3
U

-G
U

-B
U

-A
U

-W
U

-A
B

A
-G A
-B

A
-A

A
-W

A
-A

B
E

-G E
-B

E
-A

E
-W

E
-A

B
P

-G P
-B

P
-A

P
-W

P
-A

B
R

-G
R

-B
R

-A
R

-W
R

-A
B

B
E

-G
B

E
-B

B
E

-A
B

E
-W

B
E

-A
B

K
ilo

by
te

s

LTL property pattern and scope

ROM overhead (TelosB)
ROM overhead (MicaZ)

 0

 10

 20

 30

U
-G

U
-B

U
-A

U
-W

U
-A

B
A

-G A
-B

A
-A

A
-W

A
-A

B
E

-G E
-B

E
-A

E
-W

E
-A

B
P

-G P
-B

P
-A

P
-W

P
-A

B
R

-G
R

-B
R

-A
R

-W
R

-A
B

B
E

-G
B

E
-B

B
E

-A
B

E
-W

B
E

-A
B

B
yt

es

LTL property pattern and scope

RAM overhead (TelosB)
RAM overhead (MicaZ)

Fig. 6. Maximum code (ROM) and RAM overhead (in the latter case, we include data,
uninitialized data, and maximum stack use) encountered by varying the subset of AP
in each formula. Results as compiled by the platform compilers of the TelosB and
MicaZ platforms out of the C software generated from nesC by the TinyOS compiler.
The original application takes 19KB (ROM, TelosB), 13.7KB (ROM, MicaZ), 483B
(RAM, TelosB), and 927B (RAM, MicaZ).

needed to notify of the occurrence of corresponding system events; the checker
component is otherwise identical. In Fig. 6, we plot only the maximum values
we encountered per property type.

A similar method is used to evaluate the RAM overhead, with the exception
of the fact that only the data and bss (i.e., uninitialized data) binary seg-
ments are immediately readable from the compiled binary. TinyOS implements
no dynamic memory allocation, which means that we only need to calculate the
maximum stack use (an intrinsic part of the RAM metric). For this, we used
actual execution runs of the monitored application in an experimental setup for
TelosB; for MicaZ, we used tos-ramsize, a platform-specific static analysis
tool for soundly assessing this metric, integrated in TinyOS. Fig. 6 also gives the
final evaluation of the RAM overhead.

It is to note that for both ROM and RAM overheads, the microcontroller
features (e.g., 16- versus 8-bit RISC) are crucial to the outcome; also, the RAM
overhead is low in general, while ROM overhead averages around 2KB per LTL

106 D. Bucur

property. To add some perspective, the maximum automaton size among these
properties is 133 (where we take the size of an automaton to be the number of
states times the number of transitions).

As for monitoring composite properties on a TelosB, the upper limit on a
feasible k in

∨k
i=1 Gpi was k = 5; for k = 6, the code size (now including the

original 19KB of code in ROM) exceeded the 48KB available on-board the plat-
form; this automaton has 63 states and 665 transitions. For the event-sequence
chain p1U(p2U(. . .Upk)), we reached up to and including k = 10. For multiple
basic monitors, the overhead is expectedly upper-bounded by the sum of the
overheads in the single-monitor case.

To assess computational overhead, we run our monitored TinyOS application
in a cycle-accurate emulator, MSPSim [9], tailored to the MSP430 microcon-
troller on the TelosB platform. Such an emulator executes all CPU operations
with correct timing up to individual clock ticks, as these operations would also
be executed on the given microcontroller architecture; an emulator is generally
used for testing hardware or hardware-and-software designs. Cycle-accurate em-
ulator executions of the same sensor software in the same context will always be
consistent.

When running the application over the MSP430 emulator, we sample the
CPU load and stack use every 20ms. We show the results of CPU overhead (i.e.
the difference between the load of monitored runs and that of the original un-
monitored application run) for a single monitor in Fig. 7. In order to capture
the worst-case overhead, for this calculation we considered only those combi-
nations of system events in the LTL formula, and only those intervals of the
corresponding emulated executions with a still active monitor, i.e., before the
monitor detected that the property at hand had been violated, and thus finished
its checking procedure.

To note is that the CPU overhead follows the system’s duty cycle, as ex-
pected, and that it only rises up to about 1% load increase for the 40ms after
a new system event. This metric can be easily translated into actual mW of
power consumed by the computation overhead, through integration. Also, since
at each checking step() the monitor will also report whether a violation was

 0

 0.25

 0.5

 0.75

 1

 1.25

 0 25 50 75 100

A
dd

ed
 lo

ad
 %

Timeline in duty cycle x 20ms

CPU overhead (TelosB)

Fig. 7. CPU overhead (the average of 30 emulation runs) with a single running monitor

Temporal Monitors for TinyOS 107

just encountered, this gives that a user notification can be triggered after these
40ms of processing the new event.

Finally, we gather all emulation runs and assess overhead by automaton size;
we show results in Fig. 8.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 1 10 100 1000

 10

 20

 30

 40

K
ilo

by
te

s

B
yt

es

Automaton size (no. states x no. transitions)

ROM overhead (TelosB)
RAM overhead (TelosB)

Fig. 8. Collected overhead results by automaton size, for a single monitor. ROM scale
on left, RAM scale on right.

5 Related Work and Conclusions

Other than SafeTinyOS [3] and the Interface Contracts for TinyOS [1], NodeMD
[16] also contributes a checker for deadlock, livelock (using checkpoints and ex-
piration times), stack overflow, and assertions, based purely on program anal-
ysis and code instrumentation. None of these tools applies formal methods for
runtime verification, and only support temporal properties expressed as small
automata by the programmer, or quantitative temporal properties with heavy
code instrumentation to check timing conditions. However, we share with these
tools the online, embedded manner of running a checker. The same application
area is covered in [20], for probabilistic properties and with the added feature
of networking (and thus the added positive of supporting global network prop-
erties) and the negative in that this checker, while based on formal methods,
runs externally to the WSN on a desktop, with 300k lines of code code added
to the simulator. Temporal checking for C using aspect-based code instrumen-
tation and state-machine monitors is covered in [13]. We found valuable insights
in [23], an experimental study into the optimization of state-machine monitors
for SystemC.

A few closing remarks are in order. Given the resulted feasibility of monitoring
TinyOS execution traces on an embedded platform, as shown in this prototype,
we may sustain the argument that, for such practical applications with (1) pos-
sibility for offline construction of the monitor, and (2) tightly bound online com-
putational resources, alternative solutions could replace our regeneration of the
TGBA per each new property with maintained databases of minimal automaton

108 D. Bucur

translations for standard temporal properties, such as the Büchi store [24]. Also,
further study is needed in what regards alternative solutions such as nondeter-
ministic automata as checkers, and into quantitative temporal properties.

References

1. Archer, W., Levis, P., Regehr, J.: Interface contracts for TinyOS. In: Proceedings
of the International Conference on Information Processing in Sensor Networks
(IPSN), pp. 158–165. ACM (2007)

2. Bucur, D., Kwiatkowska, M.: On software verification for sensor nodes. Journal of
Systems and Software 84(10), 1693–1707 (2011)

3. Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J.: Efficient memory safety
for TinyOS. In: Proceedings of the Conference on Embedded Networked Sensor
Systems (SenSys), pp. 205–218. ACM (2007)

4. Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–711. Springer,
Heidelberg (1999)

5. d’Amorim, M., Rosu, G.: Efficient Monitoring of ω-Languages. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer,
Heidelberg (2005)

6. Duret-Lutz, A.: LTL translation improvements in SPOT. In: Proceedings of the
Fifth International Conference on Verification and Evaluation of Computer and
Communication Systems, VECoS, pp. 72–83. British Computer Society (2011)

7. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using
transition-based generalized Büchi automata. In: Proceedings of the IEEE Com-
puter Society’s 12th Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, MASCOTS, pp. 76–83.
IEEE Computer Society, Washington, DC (2004)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE, pp. 411–420. ACM, New York (1999)

9. Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.: MSPsim – an Exten-
sible Simulator for MSP430-equipped Sensor Boards. In: European Conference on
Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The Netherlands
(2007)

10. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

11. Gay, D., Levis, P., Culler, D.: Software design patterns for TinyOS. In: Proceedings
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), pp. 40–49. ACM (2005)

12. Gay, D., Levis, P., von Behren, R.: The nesC language: A holistic approach to
networked embedded systems. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pp. 1–11. ACM (2003)

13. Havelund, K.: Runtime Verification of C Programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008)

14. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. SIGPLAN Not. 35(11), 93–104 (2000)

Temporal Monitors for TinyOS 109

15. Jurdak, R., Wang, X.R., Obst, O., Valencia, P.: Wireless Sensor Network Anoma-
lies: Diagnosis and Detection Strategies. In: Tolk, A., Jain, L.C. (eds.) Intelligence-
Based Systems Engineering. ISRL, vol. 10, pp. 309–325. Springer, Heidelberg
(2011)

16. Krunic, V., Trumpler, E., Han, R.: NodeMD: Diagnosing node-level faults in remote
wireless sensor systems. In: Proceedings of the International Conference on Mobile
Systems, Applications and Services (MobiSys), pp. 43–56. ACM (2007)

17. Li, P., Regehr, J.: T-Check: Bug finding for sensor networks. In: Proceedings of
the 9th International Conference on Information Processing in Sensor Networks
(IPSN), pp. 174–185. ACM (2010)

18. Mottola, L., Voigt, T., Österlind, F., Eriksson, J., Baresi, L., Ghezzi, C.: Anquiro:
Enabling efficient static verification of sensor network software. In: Proceedings of
Workshop on Software Engineering for Sensor Network Applications (SESENA)
ICSE (2) (2010)

19. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling Ultra-Low Power Wireless
Research. In: Fourth International Symposium on Information Processing in Sensor
Networks (IPSN), pp. 364–369 (April 2005)

20. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical Runtime Checking
of Probabilistic Properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 164–175. Springer, Heidelberg (2007)

21. Sasnauskas, R., Landsiedel, O., Alizai, M.H., Weise, C., Kowalewski, S., Wehrle, K.:
KleeNet: Discovering insidious interaction bugs in wireless sensor networks before
deployment. In: Proceedings of the 9th International Conference on Information
Processing in Sensor Networks (IPSN), pp. 186–196 (2010)

22. Sharma, O., Lewis, J., Miller, A., Dearle, A., Balasubramaniam, D., Morrison,
R., Sventek, J.: Towards Verifying Correctness of Wireless Sensor Network Ap-
plications Using Insense and Spin. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS,
vol. 5578, pp. 223–240. Springer, Heidelberg (2009)

23. Tabakov, D., Vardi, M.Y.: Optimized Temporal Monitors for SystemC. In: Bar-
ringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 436–451. Springer,
Heidelberg (2010)

24. Tsay, Y.-K., Tsai, M.-H., Chang, J.-S., Chang, Y.-W.: Büchi Store: An Open
Repository of Büchi Automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 262–266. Springer, Heidelberg (2011)

25. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Y.: Towards a Model Checker for NesC
and Wireless Sensor Networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 372–387. Springer, Heidelberg (2011)

Real-Time Runtime Verification on Chip

Thomas Reinbacher1, Matthias Függer1, and Jörg Brauer2,3

1 Embedded Computing Systems Group, Vienna University of Technology, Austria
2 Verified Systems International GmbH, Bremen, Germany

3 Embedded Software Laboratory, RWTH Aachen University, Germany

Abstract. We present an algorithmic framework that allows on-line
monitoring of past-time MTL specifications in a discrete time setting.
The algorithms allow to be synthesized into efficient observer hardware
blocks, which take advantage of the highly-parallel nature of hardware de-
signs. For the time-bounded Since operator of past-time MTL we obtain
a time complexity that is double logarithmic in the time it is executed at
and the given time bounds of the Since operator. This result is promis-
ing with respect to a non-interfering monitoring approach that evaluates
real-time specifications during the execution of the system-under-test.
The resulting hardware blocks are reconfigurable and have applications
in prototyping and runtime verification of embedded real-time systems.

1 Introduction

In runtime verification monitors are synthesized to automatically evaluate exe-
cutions of a system-under-test (SUT), typically from a formal specification in a
logic that is suitable to cover real-world specifications. In this paper, we present
an algorithmic framework to apply runtime verification for safety-critical embed-
ded real-time systems.

An approach classically taken in runtime verification is to instrument the code
base, a technique that has proven feasible for a number of high-level languages [3]
such as C, C++, and Java as well as for hardware description languages such
as VHDL and Verilog. However, instrumentation is not directly applicable to
embedded real-time systems, as these systems often include non-instrumentable
hardware and mechanical parts; events from those might go unnoticed for an
instrumenting runtime verification system. Even if instrumentation is applica-
ble, the additional runtime overhead may alter timing behavior [7,11] as well as
memory consumption and may make re-certification of the system onerous (e.g.,
systems certified after DO-178B). Pike et al. [23] recently studied the require-
ments of runtime verification for ultra-critical systems, identifying four major
requirements: functionality (cannot change the target’s behavior), certifiability
(must avoid re-certification), timing (must not interfere with the target’s timing),
and swap (must not exhaust size, weight and power tolerances).

Requirements. We aim at runtime verification algorithms that can be directly
realized in hardware, e.g., as the Runtime Verification Unit (RVU) in Fig. 1,

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 110–125, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Real-Time Runtime Verification on Chip 111

[Multicore interconnect]

Node 1

Node 2

Node 3

RVU

interconnect

[μC data bus]

CPU RAM ROM

data interface

RVU

[Multichip digital I/O]

Chip A

Chip B

RVU

ASIC

[d
ig
ita
l I
O
s]

[Debug interface]

Digital Signal Processor

JTAG interface

RVU

F
P
G
A

System
under Test

Event
Capture
& RTC

Runtime
Monitors

RVU

[event updates]

[verdict]

[attachment]

E
m
b
ed

d
ed

in
S
U
T

E
x
te
rn
a
l
to

S
U
T

Single Core/SystemMulti Core/System

Fig. 1. Sample applications. Top left: RVU embedded into a network-on-chip, moni-
toring data exchanged among network nodes; Top right: RVU connected to the data
interface of a microcontroller IP-core, monitoring microcontroller behavior (software);
Bottom left: RVU connected to digital interconnects among chips on a printed circuit
board (PCB), monitoring data exchanged through digital I/Os; Bottom right: RVU
running on an FPGA attached to a debug interface (e.g. JTAG) of a digital signal
processor, monitoring changes of accessible registers and diagnosis indicators.

that can be attached or embedded into various SUTs such as mixed hardware
software designs in an FPGA or ASIC environment. For this application domain
of runtime verification we arrive at the following requirements:

Stand-Alone. Runtime verification should not only be deployed during the
testing phase of the product but also after the product is shipped. Thus, it
should not depend on a powerful host computer that executes the monitor.

Non-Intrusive. The resulting monitor should be efficient enough to not alter
the timing requirements of the system under test. From the algorithmic
viewpoint synthesized monitors with a predictable and low execution time
are required to statically determine upper bounds of the execution time of
the monitor.

Timed. The behavior of a real-time system is defined by the sequence of data it
produces complemented with its temporal behavior. To support correctness
claims that involve timed properties, the system should support expressive
logics to formalize not only functional but also real-time requirements.

Reconfigurable. For the testing phase, the system should be reconfigurable
without requiring to re-synthesize the whole hardware system, which may
take dozens of minutes to complete, for example when targeting an FPGA.

112 T. Reinbacher, M. Függer, and J. Brauer

Contributions. Our work can be seen as a response to the above requirements: (i)
We present on-line observer algorithms that allow to verify whether a past-time
MTL (ptMTL) formula holds at (discrete) times n ∈ N0. The algorithms make
use of basic operations only and are stated in a way that allows for a direct
implementation in hardware. (ii) We formally prove the observers’ correctness
and derive bounds on their time complexity in terms of gate delays and their
space complexity in terms of memory bits. For the observer algorithm of the
ptMTL Since operator φ1SJφ2, where J is a nonempty interval, executed at
time n, we obtain a time complexity of O(log2 log2max(J ∪ {n})), only. The
observer’s space complexity is dominated by the size of a list it needs to maintain.
We show that the list’s space complexity is at most 2⌈log2(n)⌉ ⋅ (2max(J) −
min(J) + 2)/(2+max(J) −min(J)). (iii) We finally discuss efficient realizations
of the proposed observer algorithms in hardware.

2 Logics for Runtime Verification

We briefly summarize the temporal logics ptLTL and ptMTL which are used
to specify properties in our framework. Both allow to specify safety, past-time
properties over executions. For details, we refer the reader to [1, 10, 12, 17, 19].

2.1 Past Time LTL

A popular logic in runtime verification is the past-time fragment of LTL (ptLTL),
mainly due to: (i) observer generation for ptLTL is straightforward [12, Sect. 5],
and (ii) ptLTL can easily express typical specifications [18]. Although less expres-
sive than LTL [10, Sect. 2.6], it can be exponentially more succinct [16]. With ● in
{∧,∨,→} and Σ in the set AP of atomic propositions, a formula ξ is defined as:

ξ ∶∶= true ∣ false ∣ Σ ∣ ¬ξ ∣ ξ ● ξ ∣ ⊙ ξ ∣ ⟐ ξ ∣ � ξ ∣ ξ Ss ξ ∣ ξ Sw ξ

Hereby, ⊙ξ is the past-time analogue of next and referred to as previously ξ.
Likewise, ⟐ξ is referred to as eventually in the past ξ and �ξ as always in the
past. The duals of the until and the weak-until operators are Ss and Sw, i.e.,
strong since and weak since, respectively. Similar as in LTL [13, Thm. 1], ptLTL
can be reduced to the propositional operators plus two past-time operators [20],
e.g., to ⊙ and Ss. The satisfaction relation of a ptLTL specification can be defined
as follows: Let e = (st)t≥0 be an execution where st is a state of the system. An
atomic proposition Σ holds on st iff st ∈ Σ. Denote by en, for n ∈ N0, the
execution prefix (st)0≤t≤n. For a ptLTL formula ξ, time n ∈ N0 and execution e,
we define ξ holds at time n of execution e, denoted en ⊧ ξ, inductively as follows:

en ⊧ true is true,
en ⊧ false is false,
en ⊧ Σ, where Σ ∈ AP iff Σ holds on sn,
en ⊧ ¬ξ iff en ⊭ ξ,
en ⊧ ξ1 ● ξ2 iff en ⊧ ξ1 ● en ⊧ ξ2 with ● ∈ {∧,∨,→},
en ⊧ ⊙ξ iff en−1 ⊧ ξ if n > 0 , and e0 ⊧ ξ otherwise,

en ⊧ ξ1Ssξ2 iff ∃j(0 ≤ j ≤ n) ∶ (ej ⊧ ξ2 ∧ ∀k(j < k ≤ n) ∶ ek ⊧ ξ1) .

Real-Time Runtime Verification on Chip 113

The above syntax is augmented with monitoring operators [12, 17] to add syn-
tactic sugar to ptLTL. Examples are the trigger conditions ↑ ξ and ↓ ξ, where ↑ ξ
stands for start ξ (i.e., ξ was false in the predecessor state sn−1 and is true in the
current state sn, equivalent to ξ∧¬⊙ξ) and ↓ ξ for end ξ (ξ was true in sn−1 and
is false in sn, equivalent to ¬ξ∧⊙ξ). Checking whether a ptLTL formula holds at
time n ∈ N0 in some execution e = (st)t≥0 can be determined by evaluating only
sn and the results from sn−1 [12].

2.2 Past-Time MTL

Metric Temporal Logic (MTL) [1] extends LTL by replacing the qualitative tem-
poral operators of LTL by quantitative operators that respect time bounds.
Since we are interested in on-chip monitoring algorithms, progress of time is
provided by the (possibly divided) chip’s clock signal, resulting in a discrete
time base N0. Time bounds of quantitative operators are given in form of inter-
vals: For t, t′ in N0, we write [t, t′] for the set {i ∈ N0 ∣ t ≤ i ≤ t′}, and [t,∞]

for the set {i ∈ N0 ∣ t ≤ i}. For example, MTL allows to express the property
�(alarm → ◇[0,10]shutdown), which states that every alarm leads to a shutdown
within [0,10] time units. Similar to ptLTL, a restriction of MTL to its past time
fragment (ptMTL) is of interest. Formally, a ptMTL formula η is defined by:

η ∶∶= true ∣ false ∣ Σ ∣ ¬η ∣ η ● η ∣ η SJ η

where Σ ∈ AP , ● ∈ {∧,∨,→}, and J = [t, t′] for some t, t′ ∈ N0. The semantics
of true, false, Σ, ¬η, and η ● η are as before. Recall that in ptLTL ξ1 S ξ2
expresses ξ2 was true in the past and since then ξ1 was true. By way of contrast,
satisfaction of en ⊧ η1 SJ η2 in ptMTL, does not only depend on the observation
that η1 S η2 holds in the current state, but also on (i) the time n of the current
state and (ii) the times i ∈ N0 since when η1S η2 was observed to be true: for at
least one such i, ei ⊧ η2, and n − i ∈ J have to hold. Formally, we define:

en ⊧ η1 SJ η2 iff ∃i(0 ≤ i ≤ n) ∶ (n − i ∈ J ∧ ei ⊧ η2 ∧ ∀j(i < j ≤ n) ∶ ej ⊧ η1)

3 Observer Design for Real-Time Properties

Next, we discuss the formal design of on-line observer algorithms for ptMTL
formulas in a discrete time model. The observer design extends work on observers
for ptLTL [12] which have been built in hardware [22, 24].

3.1 Decomposing a Specification

In the following let e = (st)t≥0 be an execution and φ a ptMTL formula. Further,
let J = [t, t′], with t, t′ ∈ N0, be a non-empty interval. An observer is an algorithm
that, given input φ and execution e, at each time n ∈ N0, returns true if en ⊧ φ,
and false otherwise. We define the return value of our observer algorithm with
input φ at time n by structural induction on ptMTL formula φ:

114 T. Reinbacher, M. Függer, and J. Brauer

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

en ⊧ φ1

en ⊧ φ2

Fig. 2. Validity of en ⊧ φ1 and en ⊧ φ2 for prefix of execution e

(i) φ = true returns true and φ = false returns false.
(ii) φ = Σ, where Σ ∈ AP returns true if Σ holds on sn, and false otherwise.
(iii) φ = φ1●φ2 is true if en ⊧ φ1●en ⊧ φ2, where ● ∈ {∧,∨,→}, and false otherwise.
(iv) If φ is a ptLTL formula, we apply the algorithm in [12].
(v) For φ = φ1SJφ2, we collect all times where φ2 was true in the past and since

then φ1 remained true and store them in a list. At time n we check if there
exists a time τ in the list such that n − τ ∈ J . If such a τ exists we return
true, and false otherwise.

Algorithms for cases (i) – (iii) are straightforward. For case (iv), we use the
algorithm of Havelund and Roşu [12], for which a translation into hardware
building blocks (specified in terms of VHDL) is known [24]. Finding an efficient
algorithm to detect satisfaction of en ⊧ φ1 SJ φ2 requires more sophisticated
reasoning, and is the topic of the next sections.

Modularity. Once observer hardware implementations for all cases of subformulas
ofφ are known, one immediately obtains an observer algorithm forφ by connecting
the (sub)modules’ inputs and outputs according to the parse tree of φ.

Running Example. In the following, we frequently refer to the execution given in
Fig. 2, which describes satisfaction of the two sub-formulas φ1 and φ2 over times
n ∈ [0,24]. We say transition (resp.) of φ occurs at time n iff en ⊧↑ φ
in case n > 0 and e0 ⊧ φ otherwise (resp. en ⊧↓ φ in case n > 0 and e0 ⊧ ¬φ
otherwise). In the running example, transition of φ1 occurs at time 6.

3.2 Observer for Since Operator Based on Rewriting

In a discrete time setting, there is an equivalent ptLTL formula for every ptMTL
formula [19], directly leading to an observer algorithm for φ1S[a,b]φ2. With ⊙

iφ
being ⊙ applied i times to φ, a straightforward generic translation is given by:

en ⊧ φ1 S[a,b] φ2 ⇔ ∃i(a ≤ i ≤ b) ∶ (⊙iφ2 ∧⊙
i−1φ1 ∧ ⊙

i−2φ1 ∧ ⋅ ⋅ ⋅ ∧ φ1)

⇔ ⋁
b
i=a (⊙

iφ2 ∧⋀
i−1
j=0⊙

jφ1)

Note that the translation can be optimized in a way that we group all pairs
⟨⊙

iφ2,⊙jφ1⟩ where the indices i and j coincide, and evaluate ⊙
i
(φ1 ∧ φ2) in a

single computation step. In a hardware implementation, one can make use of
shift-registers to store the relevant part of the execution path wrt. the truth

Real-Time Runtime Verification on Chip 115

values of φ1 and φ2. This results in an observer algorithm with time complexity
Θ(b) and space complexity 2b − 1, rendering this solution infeasible for large b.

In the following we will present alternative observer algorithms with poten-
tially less time and space complexity. We first consider the two variants �Jφ
and ⟐Jφ of �φ and ⟐φ, which are special cases of φ1 SJ φ2.

3.3 The Invariant and Exists Previously Operators

We first discuss specializations of the common operators ⟐J (exists within in-
terval J) and �J (invariant within interval J). Observe that with two equiva-
lences [2]

⟐J φ ≡ true SJ φ �J φ ≡ ¬⟐J ¬φ (1)

both operators can be expressed in terms of the SJ operator. From a practical
point of view, two instances of the exists within interval and the invariant within
interval operators, namely invariant previously (�τ) and exists previously (!τ),
where τ ∈ N0, are valuable. They have the intended meaning at least once in the
past τ time units (!τ) respectively invariant for the past τ time units (�τ), and
are defined by !τ ≡ ⟐[0,τ] respectively �τ ≡ �[0,τ].

For example, ↑ (ra ≥ 10) → �10 (rb = 22) expresses that whenever (ra ≥ 10)
becomes true, (rb = 22) holds at all 10 previous time units. For both !τ and �τ

we present simplifications that yield space- and time-efficient observers.

Invariant Previously (�τ φ) is transformed into ¬(true S[0,τ] ¬φ) by (1). An
observer for �τ φ requires a single register m�τφ with domain N0∪{∞}. Initially
m�τφ = ∞. For the observer in Algorithm 1, define predicate valid�

(m, τ, n) as:

valid�
(m, τ, n) ≡ (max(n − τ,0) ≥ m) .

Intuitively, the predicate holds iff the latest transition of φ occurred before
time n − τ and no transition of φ occurred since then until time n.

Theorem 1. For all n ∈ N0, the observer in Algorithm 1 implements en ⊧ �τ φ.

Proof. We first observe the equivalences

en ⊧ �τ φ ⇔ en ⊧ ¬(true S[0,τ] ¬φ) ⇔ ∀i(0 ≤ i ≤ n) ∶ (n − i ∈ [0, τ] → ei ⊧ φ)

⇔ ∀i(0 ≤ i ≤ n) ∶ (i ∈ n − [0, τ] → ei ⊧ φ) ⇔ ∀i ∶ i ∈ [0, n] ∩ [n − τ, n] → ei ⊧ φ

⇔∀i ∶ i ∈ [max(0, n − τ), n] → ei ⊧ φ . (2)

Algorithm 1. Observer for �τφ

1: At each time n ∈ N0:
2: if transition of φ occurs at time n then
3: m�τφ ← n
4: end if
5: if transition of φ occurs at time n then
6: m�τφ ←∞

7: end if
8: return valid�

(m�τφ, τ, n)

116 T. Reinbacher, M. Függer, and J. Brauer

Note that interval [max(0, n − τ), n] is never empty. Thus Equation (2) holds
iff a transition of φ occurred at a time at most max(0, n − τ) and no
transition of φ occurred since then until time n. The theorem follows. ⊓⊔

Running Example. Consider ψ ≡ (↑ φ1) → (�2φ2) on the execution in Fig. 2.
Initially, m�2φ2 = ∞. At time 0, φ2 holds and thus m�2φ2 = 0. At time 2, we
have m�2φ2 = ∞ again. Since a transition of φ2 occurs at time 4, m�2φ2 = 4.
At time 6, (↑ φ1) becomes true and since valid�

(m�2φ2 ,2,6) is true, e6 ⊧ ψ holds.

Exists Previously (!τ φ). From the equivalence !τ φ ≡ ¬ �τ ¬φ, we can im-
mediately derive an observer for !τ φ from the observer for �τ φ. The resulting
algorithm can straightforwardly be implemented by checking for a (resp.)
transition of φ instead of a (resp.) transition of ¬φ in line 2 (resp. line 5).

3.4 The Invariant and Exists within Interval Operators

We will next present observers for the more general operators invariant within in-
terval (�J) and exists within interval (⟐J). Instead of a register, both observers
require a list of time-stamp pairs. Clearly, an efficient implementation of this list
is vital for an efficient observer. In the following, we present several techniques
so as to keep this list succinct, whilst preserving validity of the observer. For a
list l, we denote by ∣l∣ its length, and by l[k], where k ∈ N, its kth element. We
assume that elements are always appended to the tail of a list.

Invariant within Interval (�J φ) is transformed into ¬(true SJ ¬φ) by (1). An
observer for �J φ requires a list l�Jφ of elements from (N0 ∪ {∞})

2. For a pair
of time-stamps T ∈ (N0 ∪ {∞})

2, we shortly write T.τs for its first component
and T.τe for its second component. Initially, l�Jφ is empty. For the observer
in Algorithm 2, we define predicates valid�

(T, n, J) and feasible(T, n, J), with
T ∈ (N0 ∪ {∞})

2, by:

valid�
(T,n,J) ≡ (T.τs ≤max(0, n −max(J))) ∧ (T.τe ≥ n −min(J)) ,

feasible(T,n,J) ≡ (T.τe − T.τs ≥max(J) −min(J)) ∨ (T.τs = 0 ∧ T.τe ≥ n −min(J)).

Intuitively, tuples that satisfy feasible are those that characterize an interval
where φ holds long enough to possibly satisfy �J φ.

Theorem 2. For all n ∈ N0, the observer in Algorithm 2 implements en ⊧ �J φ.

Proof. First consider Algorithm 2 without the feasibility check, i.e., line 7 is
replaced by “if true then”. By analogous arguments as in the proof of Theorem 1,
we obtain

en ⊧ �J φ ⇔∀i ∶ i ∈ [0, n] ∩ [n −max(J), n −min(J)] → ei ⊧ φ

⇔∀i ∶ i ∈ [max(0, n −max(J)), n −min(J)] → ei ⊧ φ . (3)

We next distinguish two cases for n: (i) n <min(J), and (ii) n ≥min(J):

Real-Time Runtime Verification on Chip 117

Algorithm 2. Observer for �Jφ

1: At each time n ∈ N0:
2: if transition of φ occurs at time n then
3: add (n,∞) to l�Jφ

4: end if
5: if transition of φ occurs at time n and l�Jφ is non-empty then
6: remove tail element (τs,∞) from l�Jφ

7: if feasible((τs, n − 1), n, J) then
8: add (τs, n − 1) to l�Jφ

9: end if
10: end if
11: return ⋁

∣l�Jφ ∣

k=1 valid�
(l�Jφ[k], n, J) in case n ≥min(J) and true otherwise

(i) In case n < min(J), interval [max(0, n −max(J)), n −min(J)] is empty,
and thus (3) is true. Since Algorithm 2 returns true in this case, the theorem
follows for Algorithm 2 without the feasibility check for case (i).

(ii) In case n ≥min(J), interval [max(0, n−max(J)), n−min(J)] is non-empty.
Thus (3) holds iff a transition of φ occurred at a time at most max(0, n −

max(J)) and no transition of φ occurred since then until time n −min(J).
Since this is the case iff there exists an element (τs, τe) in list l�Jφ with τS ≤

max(0, n −max(J)) and τe ≥ n −min(J), i.e., [τs, τe] ⊇ [max(0, n −max(J)), n −

min(J)], the theorem follows for Algorithm 2 without the feasibility check for
case (ii).

It remains to show that the theorem holds for Algorithm 2 with original line 7.
If we can show that from ¬feasible((τs, τe), n, J) follows ¬valid�

((τs, τe), n′, J),
for all times n′ ≥ n, we may safely remove tuple (τs, τe) from the algorithm’s list
without changing the algorithm’s return value.

Assume that valid�
((τs, τe), n′, J) holds, with n′ ≥ n. We distinguish two cases

for n′: (a) n′ <max(J), and (b) n′ ≥max(J):

(a) In case n′ < max(J), it follows from valid�
((τs, τe), n′, J) that T.τs = 0

and T.τe ≥ n′ −min(J) ≥ n −min(J). Thus feasible((τs, τe), n, J) holds.

(b) Otherwise n′ ≥ max(J), and it follows from valid�
((τs, τe), n′, J) that

T.τs ≤ n′ −max(J) and T.τe ≥ n′ −min(J). Thus T.τe − T.τs ≤max(J) −min(J)
and thereby feasible((τs, τe), n, J).

The theorem follows. ⊓⊔

Running Example. Consider ψ ≡ (↑ φ1) → (�[3,4]φ2) and execution e of Fig. 2.
At time 0, the element (0,∞) is inserted into l�[3,4]φ2 . The transition of φ2 at
time 2 leads to l�[3,4]φ2 = ((0,1)), since feasible((0,1),2, [3,4]) holds. At time 4,
another pair is added, resulting in l�[3,4]φ2 = ((0,1), (4,∞)). Since at time 6 both

valid�
(l�[3,4]φ2[1],6, [3,4]) and valid�

(l�[3,4]φ2[2],6, [3,4]) are false, e6 /⊧ ψ.

Exists within Interval (⟐J φ). From the equivalence ⟐J φ ≡ ¬ �J ¬φ, we can
easily derive an observer for ⟐J φ from the observer for �J φ. As before, we
obtain the observer by swapping and transitions and negating the output.

118 T. Reinbacher, M. Függer, and J. Brauer

Algorithm 3. Observer for φ1 SJ φ2

1: At each time n ∈ N0:
2: if φ1 holds at time n then
3: if transition of φ2 occurs at time n then
4: add (n,∞) to lS
5: end if
6: if transition of φ2 occurs at time n and lS is non-empty then
7: remove tail element (τs,∞) from lS
8: if feasible((τs, n − 1), n, J) then
9: add (τs, n − 1) to lS
10: end if
11: end if
12: else
13: if φ2 holds at time n then
14: set lS = ((0, n − 1)) in case n ≠ 0 and lS = () otherwise
15: else
16: set lS = ((0,∞))
17: end if
18: end if
19: return ¬(⋁

∣lS ∣
k=1 valid

�
(lS[k], n, J)) in case n ≥min(J) and false otherwise

3.5 The Since within Interval Operator

An observer for φ1SJ φ2 is obtained from a ⟐J observer and additional logic to
reset the observer’s list. Let lS be an initially empty list. The φ1SJ φ2 observer
is stated in Algorithm 3. In case φ1 holds at time n, the observer executes the
same code as a ⟐Jφ2 observer. In case φ1 does not hold at time n, the list lS is
reset to contain only a single entry whose content depends on the validity of φ2.
We obtain:

Theorem 3. For all n ∈ N0, Algorithm 3 implements en ⊧ φ1 SJ φ2.

3.6 Garbage Collection

Thus far, we did not consider housekeeping of either list so as to prevent un-
limited growth. It is important to appreciate that each timed operator has a
bounded time-horizon on which it depends. This horizon can be exploited to
eliminate pairs T from Algorithm 2 and Algorithm 3’s lists that can neither val-
idate nor invalidate the specification. Our garbage collector works as specified:
at any time n ∈ N0, we remove a tuple T from the list if the proposition

garbage(T, n, J) ≡ T.τe < n −min(J)

holds. The main purpose of the garbage collector is to reduce the algorithms’
space and time complexity: We will show that by removing tuples, garbage col-
lection considerably reduces the algorithms’ space complexity. Further, observe
that direct implementations of line 11 of Algorithm 2 and line 19 of Algorithm 3

Real-Time Runtime Verification on Chip 119

require searches through a list. We will show that with our garbage collector
running in parallel, these lines reduce to checking the list’s first element only.

In the following, we show the correctness of our garbage collection strategy
for any of the proposed algorithms: We first show that if a tuple T is allowed
to be removed by the garbage collector at time n, it cannot fulfill valid� at that
time or at any later time. It is thus safe to remove it from the list.

Lemma 1. If garbage(T, n, J), then ¬valid�
(T, n′, J) for all n ≥ n′.

Proof. Assume that garbage(T, n, J) holds. Then T.τe < n−min(J) ≤ n′−min(J).
Since T.τe ≥ n′ −min(J) is necessary for valid�

(T, n′, J), the lemma follows. ⊓⊔

We next show that always a prefix of a list is removed. This allows the garbage
collector to evaluate garbage iteratively, starting from the head of the list.

Lemma 2. Let l = (. . . , T, T ′, . . .) be the list of any of the proposed observer
algorithms at time n ∈ N0. If garbage(T

′, n, J), then garbage(T, n, J).

Proof. Assume that garbage(T ′, n, J) holds. Then T ′.τe < n−min(J). By observ-
ing that all of the proposed algorithms ensure that T.τe ≤ T ′.τe for successive
list elements T and T ′, we obtain T.τe < n −min(J), i.e., garbage(T, n, J) holds.
The lemma follows. ⊓⊔

We next prove an upper bound on the length of Algorithm 2 and Algorithm 3’s
lists. We start by showing that there is a minimum distance between successive
events in the algorithms’ lists.

Lemma 3. Let l = (. . . , T, T ′, . . .) be the list of any of the proposed observer
algorithms at time n ∈ N0. Then T.τe + 2 ≤ T ′.τs.

Proof. Consider Algorithm 2. By the algorithm, tuple T must have been added
by line 8. For line 8 to add T = (T.τs, n − 1), transition of φ must have
occurred at time n. Thus the next tuple added to the list at a time n′ > n must
have been of the form (n′,∞). Since, by the algorithm, then T ′.τs ≥ n′ must
hold, we further obtain T ′.τs ≥ (n − 1) + 2 = T.τe + 2. The lemma follows for
Algorithm 2.

For Algorithm 3 the lemma follows by analogous arguments. ⊓⊔

Further the first element in the list that was not removed by the garbage collector
cannot be of arbitrary age:

Lemma 4. Consider a time-bounded formula �Jφ, ⟐Jφ, or φ1 SJ φ2. Let l =
(T, . . .) be the list of the proposed respective observer algorithm at time n ∈ N0,
after garbage collection has run at time n. Then T.τe ≥ n −min(J).

Proof. It must hold that garbage(T, n, J) is false, since otherwise T would have
been removed by the garbage collector. Thus T.τe ≥ n −min(J). ⊓⊔

Lemma 5. Let l = (T 1, T 2, . . . , T k, . . .) be the list of any of the proposed ob-
server algorithms at time n ∈ N0, after garbage collection has run at time n.
Then T k.τe ≥ n −min(J) + (k − 1)(2 +max(J) −min(J)).

120 T. Reinbacher, M. Függer, and J. Brauer

We may now derive an upper bound on the list elements of any of our observer
algorithms. Its proof is by Lemmas 4 and 5.

Lemma 6. Consider a time-bounded formula �Jφ, ⟐Jφ, or φ1 SJ φ2. Let l be
the list of the proposed respective observer algorithm at time n ∈ N0, after garbage
collection has run at time n. Then l is of length at most (2max(J) −min(J) +
2)/(2 +max(J) −min(J)).

3.7 Space and Time Complexity

We first give a bound on space complexity in terms of single-bit registers that
are required by a hardware implementation of our observer algorithms. Clearly,
the space complexity for an observer of ptMTL formula φ is the sum of the space
complexity of its observers for all subformulas of φ, and its time complexity
scales with the depth of the parse tree of φ. It is thus sufficient to state bounds
for �Jφ, ⟐Jφ and φ1 SJ φ2. In all these cases the respective observer algorithm’s
space complexity is dominated by the space complexity of the algorithm’s list.
Clearly the bit complexity of the τs or τe component of a tuple added by one of
the proposed algorithms to its list before time n ∈ N0 is bounded by ⌈log2(n)⌉.
We thus obtain from Lemma 6 that for any of the time-bounded formulas �Jφ,
⟐Jφ, or φ1 SJ φ2, our proposed observer algorithms, if executed at time n ∈ N0,
have to maintain a list of space complexity at most:

2⌈log2(n)⌉ ⋅
2max(J) −min(J) + 2

2 +max(J) −min(J)
. (4)

Note that log2(n) is small for realistic experimental setups. For example, allowing
to store 52 bit per tuple component is sufficient to monitor executions that are
sampled with a 1 GHz clock during a period of over 140 years.

An alternative to storing absolute times in the observer’s list, is to adapt the
observer algorithms in a way such that only relative times are stored. While
this potentially reduces the bound of Equation (4) by substituting log2(n) with
log2(max(J)), it requires updating of the list elements (as these then contain
relative times) at every time n ∈ N0. Since this would require more complex
hardware mechanism and result in a slower on-line algorithm, we decided not to
follow this path in our hardware implementation.

We next show that garbage collection allows to reduce time complexity of
the proposed observers. The time-determining part of Algorithms 2 and 3 is
the evaluation of the predicate valid� for all list elements in line 11 and line 19
respectively. However, garbage collection allows to only evaluate the predicate
for the first element in the list, thus greatly improving time complexity of the
proposed algorithms:

Lemma 7. Let l = (T, . . . , T ′, . . .) be the list of any of the observer algorithms at
time n ∈ N0, after garbage collection has run at time n. Then ¬valid�

(T ′, n, J).

Proof. Assume by means of contradiction that valid�
(T ′, n, J) holds. Then

T ′.τs ≤ max(0, n −max(J)) ≤ max(0, n −min(J)). For both Algorithm 2 and 3

Real-Time Runtime Verification on Chip 121

we observe that T.τe < T ′.τs has to hold. Thus T.τe <max(0, n −min(J)). Since
neither Algorithm 2 nor 3 adds tuples with a negative τs or τe component, we
obtain that T.τe < n −min(J) has to hold; and by that garbage(T, n, J) holds.
A contradiction to the fact that garbage collection has been run at time n: it
would have removed tuple T in that case. The lemma follows. ⊓⊔

Since further there exist circuits that perform an addition of two integers of bit
complexityw ∈ Nwithin timeO(log2(w)) [15], since evaluating the valid

�
(T, n, J)

and garbage�
(T, n, J) predicates at time n ∈ N0 requires addition of integers of bit

complexity at most max(log2(n), log2(J)), and since garbage collection removes
at most one tuple at each time, we arrive at an asymptotic time complexity of

O(log2 log2max(J ∪ {n})) ,

for any of the observers �Jφ, ⟐Jφ, and φ1 SJ φ2 executed at time n.

3.8 Hardware Realization

Fig. 3 shows a hardware realization of an observer for ptMTL formula η. The con-
trol logic manages a pool of �τφ, �Jφ and φ1SJφ2 hardware observers connected
according to η’s parse tree. This allows to change η (within resource limitations)
without re-synthesizing the hardware observer, which could take tens of minutes
for FPGA designs, allowing applications in prototyping and testing.

Time-stamps are internally stored in registers of width w = ⌈log2(nmax)⌉ +

2, to allow overflow when performing arithmetical operations and to indicate
∞. For a list l�Jφ we turn to block RAMs (abundant on FPGAs) which are
organized as ring buffers. Each ring buffer has a garbage collector (GC). To
insert a time-stamp pair that satisfies feasible((τs, n−1), n, J)), the write pointer
is incremented to point to the next free element in the ring buffer. The GC then
adjusts the read pointer to indicate the latest element wrt. n and J that is recent
enough. In a fresh cycle (indicated by a changed time-stamp n), the GC loads
(τs, τe) using the read pointer, which is incremented iff garbage((τs, τe), n, J)
holds.

Subtraction and relational operators as required by the predicates feasible,
garbage and valid can be built around adders. For example (left part of Fig. 3),
valid�

((τe, τs), n, J) is implemented using five w-bit adders: one for q ∶= n −

min(J), one for r ∶= T.τe ≥ q, one to calculate p ∶= n − max(J) and two to
calculate t ∶= T.τs ≤ max(p,0). Finally, the unit outputs the verdict t ∧ r, where
t and r are calculated in parallel.

We successfully implemented a first prototype in an FPGA design, demon-
strating the feasibility of our approach.

4 Related Work

Thati and Roşu [25] presented an on-line observer forMTL formulas ψ. Their idea
is to reduce the problem of deciding whether en ⊧ ψ to deciding several instances

122 T. Reinbacher, M. Függer, and J. Brauer

φ1SJφ2

�Jφ

�τφ

φ1SJφ2

�Jφ

�τφ

φ1SJφ2

�Jφ

�τφ

Control Logic

n

en
?
⊧ φ

{en ⊧ Σ0 . . . e
n
⊧ Σ∣AP ∣}

fe
as
ib
le

C
h
ec
k
in
g

M
em

o
ry

B
lo
ck
s

BR BR BR BR

GC GC GC GC

. . .
T1

. . . RB

rp
wp

q ∶= n −
min(J)

T.τe ≥ q

p ∶= n −
max(J)

T.τs ≤
max(p, 0)

∧

valid� /ParallelAdders

Fig. 3. Hardware overview (GC = Garbage Collector, BR = Block Ram)

of en
′

⊧ ψ′, where ψ′ is a subformula of ψ and n′ ≤ n. Thereby for each subformula
φ1S[a,b]φ2 of ψ, the formulas φ1S[a−1,b−1]φ2, φ1S[a−2,b−2]φ2, . . . , φ1S[0,b−a]φ2, . . . ,
φ1S[0,0]φ2 are defined to be subformulas of ψ. For example, in case ψ ≡ φ1S[1,3]φ2,
where φ1 and φ2 are atomic propositions, the reduced formulas of ψ are φ1, φ2

as well as φ1S[0,2]φ2, φ1S[0,1]φ2, and φ1S[0,0]φ2. Denoting by m the number
of subformulas an MTL formula ψ is reduced to, the space complexity of their
observer is within O(m2m) and its time complexity is within O(m323m) for each
time n in N0, the observer is executed at. For the special cases of ψ ≡ φ1SJφ2,
the observer still requires a memory of at least 2m ≥ 2max(J) bit. While this
bound is incomparable in general to our bound, for large values of max(J) we
immediately obtain that our solution has less memory complexity. For example
for φ1S[5,1500]φ2 the solution in [25] requires at least 3000 bit of memory, whereas
our observer requires 208 bit, assuming time-stamps of 52 bit.

Maler et al. [19] presented an on-line observer algorithm for φ1 SJ φ2 that
is based on having active counters for each event of φ2. Divakaran et al. [9] im-
proved the number of counters of bit width logmax(J) to 2⌈min(J)/(max(J) −
min(J))⌉ + 1 and showed its optimality for an observer realized as a timed
transition system. While their space complexity is incomparable to ours in gen-
eral, their solution is very resource intensive for a hardware realization: While
we may store list values in cheap RAM blocks, their solution requires to store the
current counter values in registers, since their values are incremented at every
time step.

The (discrete time) point-based observer algorithm of Basin et al. [4] for for-
mula φ1 SJ φ2 runs in time O(logmax(J∪{n})) if executed at time n ∈ N0. Their
algorithm, however, requires memory in the order of max(J). They further pre-
sented an interval-based observer algorithm for φ1 SJ φ2 with space complexity
comparable to our solution. However, the algorithm is clearly motivated with a
software implementation in mind, whereas we aim at efficient (highly parallel)
circuit implementations. For example, for an arbitrary ptMTL formula φ, our
time-complexity bounds scale with the depth of the parse tree of φ, whereas the
bounds in [4] scale with the fourth power of the number of nodes in the parse
tree of φ. Further, a direct implementation of their algorithm would require
considerable hardware overhead, as it makes use of doubly-linked lists to store
and manipulate timestamps. In comparison, our ring buffer design can easily be
mapped to block RAM elements that are abundant on modern day FPGAs.

Real-Time Runtime Verification on Chip 123

The Property Specification Language (PSL) gained momentum in industrial-
strength hardware verification. PSL is based on LTL, augmented with regular ex-
pressions, thus, we will not compare our work to PSL monitoring algorithms but
rather to the hardware architecture of the resulting checkers. Translations from
PSL into hardware either follow the modular or the automata based synthesis.

In the modular approach (for example as in [5, 8, 21]), sub-circuits for each
operator are built and inter-connected according to the parse tree of the PSL
expression being monitored.

Borrione et al. [5] describe a method of translating properties of the PSL foun-
dation layer into predefined primitive components. A component is a hardware
unit, consisting of a checking window and an evaluation block. Shift register
chains are used to trigger the execution of the evaluation block. Blocks repre-
senting a timed operator need to individually count the elapsed time-stamps,
while we tailored our algorithms to work with cheap RAM blocks.

In the automata based approach (for example as in [6]), (in general non-
deterministic) state machines are synthesized that act as monitor for a PSL
property. To avoid a blowup of the automaton size, additional counters are
used. However, this is only feasible if the output language natively supports
non-deterministic finite automata (NFA); unfortunately, major hardware descrip-
tions languages (e.g., Verilog and VHDL) do not. Consequently, monitors need
to be converted to a deterministic finite automaton (DFA) first, which, in the
worst case, yields an exponential blowup of the resulting DFA in the size of the
NFA [14].

5 Conclusion

We presented an on-line algorithm to check a ptMTL formula φ on executions
with discrete time domain. At the algorithm’s heart is an observer algorithm
for the time-bounded Since operator and the special cases exists/invariant pre-
viously and within interval. The presented algorithms have been proven correct
and bounds on their time and space complexity have been proven. The promis-
ing complexity results are mainly due to the concept of garbage collection and
feasibility testing that automatically drop events that can neither validate nor
invalidate formula φ: The proposed garbage collector does not only keep the
algorithm’s list size bounded, but also allows to evaluate the list’s first element
only to determine validity of φ. We further discussed a reconfigurable hardware
realization of our observer algorithm that provides sufficient flexibility to allow
for changes of φ without necessarily re-synthesizing the hardware observer.

The predictable and low resource requirements of the presented hardware so-
lution together with its reconfigurability allow for diagnosis of real-time systems
during mission time. We plan to work on an extensive experimental evaluation
of our approach and to extend our work to (bounded) future time MTL.

124 T. Reinbacher, M. Függer, and J. Brauer

Acknowledgement. The work has been supported by the Austrian Research
Agency FFG under grant 825891 (CevTes) and (partially) supported by the
Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science
Fund (FWF). The authors want to thank Dejan Nickovic for fruitful discussions.

References

1. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In:
LICS, pp. 390–401. IEEE (1990)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,

Sokolsky, O., Tillmann, N. (eds.): RV 2010. LNCS, vol. 6418. Springer, Heidelberg
(2010)

4. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for Monitoring Real-Time Prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012)

5. Borrione, D., Liu, M., Morin-Allory, K., Ostier, P., Fesquet, L.: On-line assertion-
based verification with proven correct monitors. In: ICICT, pp. 125–143 (2005)

6. Boulé, M., Zilic, Z.: Automata-based assertion-checker synthesis of PSL properties.
ACM Transactions on Design Automation of Electronic Systems 13(1) (2008)

7. Colombo, C., Pace, G.J., Schneider, G.: Safe Runtime Verification of Real-Time
Properties. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 103–117. Springer, Heidelberg (2009)

8. Das, S., Mohanty, R., Dasgupta, P., Chakrabarti, P.: Synthesis of system verilog
assertions. In: DATE, vol. 2, pp. 1–6 (2006)

9. Divakaran, S., D’Souza, D., Mohan, M.R.: Conflict-tolerant real-time specifications
in metric temporal logic. In: TIME, pp. 35–42 (2010)

10. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, vol. B, pp. 995–1072. MIT Press (1990)

11. Fischmeister, S., Lam, P.: Time-aware instrumentation of embedded software.
IEEE Transactions on Industrial Informatics 6(4), 652–663 (2010)

12. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods in System Design 24(2), 189–215 (2004)

13. Havelund, K., Roşu, G.: Efficient monitoring of safety properties. International
Journal on Software Tools for Technology Transfer 6, 158–173 (2004)

14. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Longman Publishing Co., Inc. (2006)

15. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE Trans. Comput. 22(8), 786–793 (1973)

16. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple Is Better: Efficient
Bounded Model Checking for Past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 380–395. Springer, Heidelberg (2005)

17. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: PDPTA, pp. 279–287 (1999)

18. Lichtenstein, O., Pnueli, A., Zuck, L.: The Glory of the Past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

19. Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present,
Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 2–16. Springer, Heidelberg (2005)

Real-Time Runtime Verification on Chip 125

20. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems.
Springer (1992)

21. Morin-Allory, K., Borrione, D.: Proven correct monitors from PSL specifications.
In: DATE, pp. 1–6 (2006)

22. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitoring
for dependable COTS-based real-time embedded systems. In: RTSS, pp. 481–491
(2008)

23. Pike, L., Niller, S., Wegmann, N.: Runtime Verification for Ultra-Critical Systems.
In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 310–324. Springer,
Heidelberg (2012)

24. Reinbacher, T., Brauer, J., Horauer, M., Steininger, A., Kowalewski, S.: Past Time
LTL Runtime Verification for Microcontroller Binary Code. In: Salaün, G., Schätz,
B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 37–51. Springer, Heidelberg (2011)

25. Thati, P., Roşu, G.: Monitoring Algorithms for Metric Temporal Logic specifica-
tions. ENTCS 113, 145–162 (2005)

BabelTrace: A Collection of Transducers
for Trace Validation

Aouatef Mrad1, Samatar Ahmed1, Sylvain Hallé1,�, and Éric Beaudet2

1 Université du Québec à Chicoutimi, Canada
shalle@acm.org, aouatef.mrad@uqac.ca

2 Novum Solutions, Canada
eric.beaudet@novumsolutions.ca

Abstract. Trace validation is the process of evaluating a formal specification
over a log of recorded events produced by a system. In addition to the numer-
ous techniques developed specifically for that purpose over the years, a range of
peripheral tools such as model checkers and database engines can also be used
as bona fide trace validators. We present an evolvable software environment that
provides a large set of transducers which, when piped into an appropriate chain,
can transform a trace and a formal specification into a suitable input problem for
a variety of available tools.

1 Introduction

The analysis of event traces with respect to formal specifications has found an increas-
ing number of uses in the recent past. Various kinds of data collected at runtime during
the execution of a software system can be stored into a form of log for a posteriori
processing. Example scenarios range from business process contract compliance [11]
to test trace analysis [4] and intrusion detection [9].

Unfortunately, the tools developed for a particular use case can seldom be re-used
in a different context. The traces are generally represented using a slightly different
structure across tools, and the specification languages they use are not equivalently
expressive, creating a barrier to the use of trace analysis software across application
domains. Moreover, there exist tools and techniques designed to solve other problems,
such as model checkers and database engines, that could also be used as trace validators,
provided that traces and specifications be converted into corresponding objects of their
application domain.

The present paper builds upon that observation and presents an evolvable software
environment called BabelTrace1 that provides a large set of converters between trace
validation problems expressed in various languages. BabelTrace does not merely oper-
ate at the syntactical level: it provides transducers that can reduce the problem of trace
validation to particular cases of model checking, XML and SQL query evaluation.

� This work was funded by the Natural Sciences and Engineering Research Council of Canada
(NSERC) under an Engage Grant.

1 http://www.github.com/sylvainhalle/TraceAdapter

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 126–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.github.com/sylvainhalle/TraceAdapter

BabelTrace: A Collection of Transducers for Trace Validation 127

2 A Taxonomy of Trace Validation Problems

BabelTrace is organized into a library of available software and scripts, each of which
is formally classified according to two characteristics: the trace format read by the tool
and the specification language it uses.

Input Trace Type. The first aspect of the classification is the format used to represent
event traces, and in particular the restrictions on the way data parameters can be used.
BabelTrace currently supports four categories of events.

The first category is called multi-valued, and corresponds to the most generic form of
trace, where each event is taken as a function ν : P → 2V that associates to parameters
p ∈ P a set of values taken from some domain V . Events of such kind are generally
represented using XML or an equivalent notation, and can be found, e.g. in web services,
for example, in the Amazon E-Commerce Service studied in [7].

A first restriction is to consider single-valued events, where each parameter can occur
at most once in each event; formally, this imposes that |ν(p)| ≤ 1 for every p ∈ P.
The Extensible Event Stream (XES) format [5] is one possible notation for events of
such kind. Examples of single-valued messages in the literature include system events
produced by spacecraft hardware [4]. A further restriction produces events with a fixed
schema, where all parameters occur exactly once and differ only in the values they carry.
Examples of such events include web server logs [9] and data extracted from a (single)
relational database table.

Finally, the last category of traces considered is made of atomic symbols taken from
a known alphabet. Examples include sequences of method calls on program objects (dis-
carding their arguments) [2] and some business process logs where events correspond
to enabled activities [11].

Specification Language. The second aspect of the classification is the specification lan-
guage used to formalize the properties to verify on traces. To this end, a number of
formal languages have been suggested over the years, and used as the input specifi-
cation for various tools. BabelTrace currently supports MFOTL, a monadic first-order
temporal logic where each temporal operator is given a “time window” over which it
operates [1]. It also includes LTL-FO+, a first-order extension of Linear Temporal Logic
with quantification over event parameters [7] where ground terms are equalities
between bound variables. It obviously supports classical LTL without quantifiers, where
ground terms are event predicates over the current message. Finally, to accomodate
atomic traces, a simpler variant of LTL with alphabet symbols as ground terms is also
handled.

Each tool is thus associated to a trace/language pair 〈T ,L 〉 according to the cat-
egories described above. Equiped with this classification, a trace validation problem
instance is a pair (τ,ϕ), where τ is a trace expressed in format T and ϕ is a specifica-
tion expressed in language L . The process of validating a trace consists in computing
whether ϕ is satisfied on τ , which we write τ |=〈T ,L 〉 ϕ .

128 A. Mrad et al.

3 The Many Ways to Compute τ |= ϕ

BabelTrace does not perform trace validation by itself; it rather calls external tools that
can execute that computation.

Basic Workflow. To this end, BabelTrace offers a collection of classes that can process
an input file and retrieve a tool’s result.

1. Readers take a concrete input trace file and convert it into an internal data struc-
ture in either of the four trace types T described above. Input formats currently
supported are XML, XES and database tables exported as comma-separated values
(CSV) files.

2. Translators take a problem instance (ϕ ,τ) and automatically generate the input
file(s) in the syntax required to perform trace validation on some target tool.

3. Launchers then build the command line syntax to start the execution of some tool
on a given input, parse the tool’s command-line output and convert it to decide
whether τ |=〈L ,T 〉 ϕ .

This architecture allows the processing of event traces to be done in a uniform manner,
independent of the particular syntax of a given tool or the file format used to represent
the traces one wishes to validate.

Figure 1 shows the trace-language pairs (rectangles) and tools (ovals) currently sup-
ported by BabelTrace. A curved dashed line denotes an implemented translator from a
pair 〈L ,T 〉 to the syntax of a specific tool. One can see that among software specif-
ically designed for trace validation, BabelTrace supports BeepBeep [7], MonPoly [1],
and a rewriting-based algorithm for atomic LTL developed for Maude [10].

Fig. 1. A map of tools, input formats and transducers. An arrow labelled with A
⊆→ B indicates

that the transduction from A to B is trivially implemented since problem A is a particular case
of problem B. A starred arrow indicates that the transduction is equivalent for a fragment of the
input language. Variable- and fixed-schema are assimilated in this graph.

BabelTrace: A Collection of Transducers for Trace Validation 129

Transducers. This basic workflow, however, works only if the input trace and speci-
fication are expressed directly using the trace type and specification language of the
tool one wishes to use. Yet, we have argued that the problem of validating a speci-
fication on a trace may also be converted into an equivalent problem of some other
domain; this problem need not even be expressed in terms of traces and specifications,
as long as its solution can be used to infer the answer to the original trace validation
question. Therefore, in addition to translators, BabelTrace adds a set of transducers
whose task is to transform a problem instance pair (ϕ ,τ) ∈ 〈L ,T 〉 into a new problem
(ϕ ′,τ ′) ∈ 〈L ′,T ′〉, in such a way that τ |=〈L ,T 〉 ϕ if and only if τ ′ |=〈L ′,T ′〉 ϕ ′.

In Figure 1, straight arrows between boxes indicate transducers currently imple-
mented in BabelTrace. The detailed presentation of each transducer is beyond the scope
of this paper. However, one shall keep in mind that the translation generally involves a
transformation of both the trace and the specification in order to preserve equivalence,
and that such translation is not always polynomial. Nevertheless, a few transducers are
worthy of mention:

– The transduction from LTL to SQL transforms a trace into a database table, and an
LTL formula into an equivalent SQL expression. Trace validation is hence rephrased
as a special case of SQL query evaluation.

– The translation to NuSMV [3] and Spin [8] is done by building a completely deter-
ministic transition system producing only the event trace to validate. Trace valida-
tion is hence rephrased as a special case of LTL model checking.

– The transduction from LTL-FO+ to XQuery is an implementation of a result shown
in [6]. Trace validation is rephrased as a special case of XML query processing.

– The transduction from propositional LTL to atoms fetches all values queried by the
LTL formula and creates one atomic symbol per combination of those values.

4 Applications and Future Work

One can see how, by following arrows in the graph, it is possible to pipe transducers
and reformulate a given trace validation in many different but ultimately equivalent
problems. Hence BabelTrace offers great flexibility in the choice of the tool used to
solve a problem instance. A first obvious consequence is the possibility to easily devise
a thorough benchmark of the various methods available. Figure 2 shows a foretaste
of the results that can be obtained, through the validation of a set of 500 randomly
generated traces over the LTL-FO+ formula F (∃x ∈ p : x = 0) for a subset of 6 different
tools. It shows —to our surprise— that the best performance is achieved by converting
the problem as an equivalent SQL query.

BabelTrace’s Java interface is currently being adapted for online use through a web
portal, aiming at easy access of a large set of known trace validation tools and conve-
nient conversion of a problem into various input languages. We shall finally mention
that this list of formats, specification languages and tools is growing. For example, we
omitted the language Eagle due to the unavailability of the tools using them (notably
Logscope [4] and Monid [9]). ProM and SEQ.OPEN are planned to be added to the
graph in the near future, as well as support for regular expressions and MapReduce.

130 A. Mrad et al.

Fig. 2. Validation time for six different tools, on a Lenovo ThinkStation E20 with Ubuntu 11.04

References

1. Basin, D., Klaedtke, F., Müller, S.: Policy Monitoring in First-Order Temporal Logic. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18. Springer,
Heidelberg (2010)

2. Chen, F., d’Amorim, M., Rosu, G.: Checking and correcting behaviors of Java programs at
runtime with Java-MOP. Electr. Notes Theor. Comput. Sci. 144(4), 3–20 (2006)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

4. Groce, A., Havelund, K., Smith, M.H.: From scripts to specifications: the evolution of a flight
software testing effort. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) ICSE (2),
pp. 129–138. ACM (2010)

5. Günther, C.W.: Extensible event stream standard definition 1.0. Technical report (2009)
6. Hallé, S., Villemaire, R.: XML Methods for Validation of Temporal Properties on Message

Traces with Data. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331,
pp. 337–353. Springer, Heidelberg (2008)

7. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.
IEEE Trans. on Services Computing (2011)

8. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional (2003)

9. Naldurg, P., Sen, K., Thati, P.: A Temporal Logic Based Framework for Intrusion Detection.
In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 359–376.
Springer, Heidelberg (2004)

10. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw.
Eng. 12(2), 151–197 (2005)

11. van der Aalst, W.M.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

Quantitative Trace Analysis Using Extended

Timing Diagrams

Andreas Richter and Klaus Kabitzsch

Dresden University of Technology, Institute of Applied Computer Science,
Chair of Technical Information Systems, D-01062 Dresden, Germany

{andreas.richter1,klaus.kabitzsch}@tu-dresden.de

Abstract. Putting runtime verification into everyday industrial prac-
tice, shows the demand for formalisms that are easily understandable
and usable, also for non-experts. To gain deeper insight into a system’s
behaviour, methods must be sufficiently expressive and support the eval-
uation of quantitative properties. We present a graphical specification
language for quantitative trace analysis based on timing diagrams to
meet these requirements. The proposed formalism allows the verification
of functional requirements against traces in combination with the de-
termination of quantitative parameters that characterize the system and
render original requirements more precisely. We successfully included the
timing diagram specification formalism and the corresponding evaluation
methods into commercial trace analysis and test tools which are used to
examine measurement data from the industrial automation and automo-
tive domains.

Keywords: quantitative analysis, timing diagrams, trace analysis, em-
bedded systems, automotive.

1 Introduction

The application of interconnected embedded controllers in vehicles and manu-
facturing facilities has permanently increased over the last decades. Verification
and quality assurance for these systems have become main topics in the re-
spective domains. Due to the complexity and reactivity of the systems, not all
problems are detectable or avoidable by means of traditional test and diagnosis.
Runtime monitoring in combination with subsequent trace analysis often can
help to increase the degree of validation. The application of runtime verification
into everyday industrial practice shows great need for formalisms that are easily
understandable and also usable for practitioners without detailed knowledge in
theoretical computer science. To gain deeper insight into concrete system be-
haviour, methods must be sufficiently expressive and support the evaluation of
quantitative properties. In this paper we show extensions of timing diagrams
(TD) and their application for intuitive quantitative trace analysis.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 131–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

132 A. Richter and K. Kabitzsch

2 Related Work

Traditionally, many verification techniques operate on qualitative properties and
provide qualitative (i. e. boolean) verdicts. For industrial application it is often
also desirable to calculate numerical or statistical analysis results, e. g.: How
often did a pattern occur? When and to which extent was a timing constraint
violated? Is the time of occurrence of an event more and more drifting towards
one endpoint of a given timing interval? Quantitative trace analysis can answer
those questions and extend a trace by the computation of new values as it op-
erates on concrete system executions and is able to access concrete system state
values and timings. Quantitative extensions to linear temporal logic (LTL) were
for example shown in [1].

There are several visual specification formalisms (e. g. state charts, message
sequence charts, live sequence charts) with varying suitability for different do-
mains and system types. Timing diagrams are a common and established graph-
ical specification language in the engineering domains. The diagrams focus on
the states of signals, the changes of these states over time and the correspond-
ing timing relations. By that they are well suited for the specification of the
input/output behaviour of networked devices. Because timing diagrams resem-
ble the signal display of oscilloscopes, they are intuitively comprehensible to
many engineers. Timing diagrams are also part of the UML 2 specification and
thereby can contribute in closing the gap between computer science and other
engineering disciplines.

Timing diagrams have been used for interaction modelling during software
design (UML), as specification language for model checking [2], for the verifica-
tion of hardware designs [3] or for VHDL code synthesis [4]. Many publications
describe specific enhancements of timing diagrams and give different definitions
for their syntax and semantics, like Symbolic timing diagrams [5], real-time en-
hancements [6] or composition of multiple timing diagrams [7].

3 Quantitative Timing Diagrams

A timing diagram consists of one or more signals along the vertical axis with
the timeline running in positive horizontal direction. Each signal is associated
a waveform, formed by a sequence of edges. Edges hold state expressions that
constrain the expected signal values. Thus a waveform determines the allowed
sequence of a signal’s state values over time. During analysis, measured sig-
nal values are matched against the state expressions of the current diagram
states so that the diagram is traversed from left to right. Relationships (arrows)
with interval annotations [min,max] describe timing constraints between edges
of (different) waveforms. The interval [0,0] defines synchronisation. The pattern
depicted by the diagram is successfully identified if all waveforms are traversed
until their final states are reached and no timing constraints were violated.

To enable quantitative trace analysis, we made the following extensions to the
original syntax and semantics of timing diagrams and implemented a graphical
diagram editor (Fig. 1) along with evaluation functionality:

Extended Timing Diagrams 133

Diagram activation. We implemented two different activation modes for dia-
grams. One can either use one signal with an activating edge that triggers
the diagram evaluation or a set of multiple precondition signals to model
more complex activation conditions.

Event and conditional edges. We distinguish between event and conditional
edges. Event edges expect exactly one sample value that satisfies the expres-
sion of the edge and immediately proceed to the next edge of the waveform. In
contrast, conditional edges accept multiple consecutive samples that match
the edge expression without advancing to the next edge.

State expressions. As state expressions, we allow all evaluable relational ex-
pressions for the considered diagram and trace. We defined the state expres-
sion grammar in EBNF. The grammar utilizes several keywords for enhanced
convenience and expressiveness (e. g. VALUE / TIME accesses the current
signal value / trace timestamp, SIG(signalname) accesses current values of
other signals, AS(variablename) accesses preceding internal variable assign-
ments, PARA(parametername) accesses parameters that are passed to the
diagram from outside the evaluation engine).

Assignments. Following the approach of Finkbeiner et al. [1], we allow the def-
inition of value assignment for all diagram elements (edges, relationships and
the whole diagram itself) denoted as element : assignment. An assignment is
evaluated when the defining element is evaluated to TRUE. Similar to state
expression, assignment expressions have an underlying grammar that allows
complex value calculations. An evaluated assignment is characterized by its
unique name, the assigned value and the trace time stamp of its evaluation.

Evaluation modes. Evaluation can be run either in validation mode, where
every activated TD instance must complete as specified or in pattern match-
ing mode that succeeds if the TD is identified at least once in a given trace.

All assignments, together with other concrete values and timings gathered dur-
ing evaluation (e. g. diagram activation and completion times, time stamps for
individual edge activations, relationship durations), are recorded into a detailed
XML-based result file. Result files can be passed to subsequent components
of the quantitative analysis tool chain like visualization interfaces (see Fig. 2),
statistical tools or result databases.

Figure 1 shows a simple TD example with two signals, each having a wave-
form consisting of two edges, and one relationship. The diagram checks that
every change in Signal 0 resulting in Signal 0 being Signal 0 HIGH is answered
by a similar change in Signal 1 such that Signal 1 equals Signal 1 HIGH within
0.8 seconds. Signal 0 is a precondition signal which creates a new diagram evalu-
ation instance every time the signal changes from 0 to the value of the parameter
Signal 0 HIGH. The ability to parameterize expressions allows specification of
generic diagrams that are reusable in different analysis runs under variable con-
ditions. The diagram also shows the use of assignments within different diagram
elements. The assignment dur calculates the concrete duration of the relationship
via the keyword DURATION, ts is assigned the trace timestamp when Signal 1
changes from 0 to the value of Signal 1 HIGH using the keyword TIME.

134 A. Richter and K. Kabitzsch

Fig. 1. Editor for quantitative timing diagrams

4 Application

We integrated our verification approach into the commercial trace analysis soft-
ware TRACE-CHECK [8] which is widely used in the automotive industry and
factory automation. Besides timing diagrams, the tool also supports verification
of properties formulated in a real-time logic similar to Metric Temporal Logic
(MTL) and via Python-implemented scripts. TRACE-CHECK and the TD eval-
uation module can operate on traces with non-equidistant time stamps.

We successfully applied timing diagram specification on several use cases
within the automotive domain. We found that test engineers appreciate timing
diagram specifications. They often struggle with translating functional require-
ments into temporal logic formulas. There the specification of complex timing
relationships between signal curves unavoidably leads to complicated, strongly
nested expressions. Experience has also shown that timing diagram specification
nicely complements temporal logic as it focuses on the ”good-cases” or ”positive
patterns” of functional requirements specification. Whereas in logic it is easier

Fig. 2. Visualization of timing diagram analysis results

Extended Timing Diagrams 135

to formulate that something must not happen, quantitative timing diagrams
testify whether a finite trace segment behaves like expected and give detailed
information about the execution conditions.

To aggregate and overview analysis results we developed a visualisation com-
ponent (Fig. 2) that processes the detailed report files. For an analyzed trace,
consecutive diagram activations are plotted along a horizontal timeline. The
colours green and red are used to distinguish between successfully identified and
failed diagram entities. Users can zoom, filter and access concrete timings and
values of all diagram elements. It is also possible to stack and overlay multiple
analyses for comparison.

5 Conclusion and Future Work

In this paper, we showed the adaption of timing diagrams as a specification lan-
guage for quantitative trace analysis. We gave an overview about the diagram
editor and the analysis functionality provided by its integration into verifica-
tion tools from the automotive and factory automation domains. We presented
first application results and suggested a prototype for result visualisation. In
future we will concentrate our research on the use of continuous signal descrip-
tions inside state expressions and methods for hierarchically combining multiple
diagrams. We will also give formal syntax and semantics for timing diagram
evaluation over finite traces.

Acknowledgements. This work was funded by the German Federal Ministry
of Education and Research (BMBF) within the research project emTrace : En-
hanced model-based trace analysis under the reference number 01IS11004B. The
authors are responsible for the content of this publication.

References

1. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over runtime
executions. In: Proc. of Runtime Verification (RV 2002), pp. 36–55. Elsevier (2002)

2. Fisler, K.: Timing diagrams: Formalization and algorithmic verification. Journal of
Logic, Language and Information 8, 323–361 (1999), doi:10.1023/A:1008345113376

3. Damm, W., Josko, B., Schlör, R.: Specification and validation methods, pp. 331–409.
Oxford University Press, Inc., New York (1995)

4. Grass, W., Grobe, C., Lenk, S., Tiedemann, W.D., Kloos, C., Marin, A., Robles,
T.: Transformation of timing diagram specifications into VHDL code. In: Design
Automation Conference, Proc. ASP-DAC 1995/CHDL 1995/VLSI 1995 (1995)

5. Schlör, R.: Symbolic timing diagrams: a visual formalism for model verification.
PhD thesis, Universität Oldenburg (2002)

6. Feyerabend, K.: Real time symbolic timing diagram. Technical report, Carl von
Ossietzky Universität Oldenburg (1996)

7. Lenk, S.: Extended timing diagrams as a specification language. In: EURO-DAC
1994: Proceedings of the Conference on European Design Automation, pp. 28–33.
IEEE Computer Society Press, Los Alamitos (1994)

8. Deutschmann, R., Fruth, M., Zabelt, M.: Neue Absicherungsstrategien für
Steuergerätesoftware. In: Moderne Elektronik im Kfz V, Haus der Technik (2010)

Maximal Causal Models

for Sequentially Consistent Systems�

Traian Florin S, erbănut, ă1,2, Feng Chen1, and Grigore Ros,u1,2

1 University of Illinois at Urbana-Champaign
2 University “Alexandru Ioan Cuza” Ias,i

Abstract. This paper shows that it is possible to build a maximal and
sound causal model for concurrent computations from a given execution
trace. It is sound, in the sense that any program which can generate
a trace can also generate all traces in its causal model. It is maximal
(among sound models), in the sense that by extending the causal model
of an observed trace with a new trace, the model becomes unsound: there
exists a program generating the original trace which cannot generate the
newly introduced trace. Thus, the maximal sound model has the property
that it comprises all traces which all programs that can generate the
original trace can also generate. The existence of such a model is of great
theoretical value as it can be used to prove the soundness of non-maximal,
and thus smaller, causal models.

1 Introduction

Traces of events describing concurrent computations have been employed in a
plethora of methods for testing and analyzing concurrent systems. The common
pattern for all these methods (e.g., [2,3,5,7,12–16,18–21]) is: (1) the program is
instrumented to trace the execution of programs; then (2) one execution trace
is recorded; then (3) an abstraction of that trace, i.e., a model, is derived; and
finally, (4) the obtained model is used to “predict” (problematic) event patterns
occurring in other possible executions abstracted by it.

Consider, for example, the conventional happens-before causality: if two
conflicting accesses to an object are not causally ordered, then a data-race is
reported [15]. But is this the best one can do? Of course, not. A series of pa-
pers propose more relaxed happens-before causal models where one can also
permute blocks protected by the same lock, provided that they access disjoint
variables [12], thus discovering new concurrency bugs not observable with plain
happens-before. But is this the best one can do? Of course, not. Other papers
propose models where one can also permute semantic blocks provided that each
read access continues to correspond to the same write [16,18,21]. Others go even
further. Section 5 discusses a series of existing causal models; we only study
sound models here, i.e., ones which only report real problems in the analyzed

� This work was supported in part by Contract 161/15.06.2010, SMISCSNR 602-12516
(DAK), by NSA contract H98230-10-C-0294 and by NSF grant CCF-0916893.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 136–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Maximal Causal Models for Sequentially Consistent Systems 137

systems, allowing developers to focus on fixing those real problems and not on
additionally sorting them out from false positives. We would naturally like to
know whether there is an end to the question “Is this the best we can do?”, that
is, whether there is any causal model that can be associated to a given execution
trace which comprises the maximum number of causally equivalent traces.

Although most runtime analysis techniques are built upon some underlying
sound causal model, possibly relaxed for efficiency reasons, each effort seems
to focus more on how to capture it efficiently rather than proving its sound-
ness (often implicitly assumed) or studying its relationship to existing models
(other than empirically comparing the number of found bugs). Moreover, since
such approaches attempt to extract information from one observed trace and to
find property violations, they actually deal with causal properties (e.g., causal
datarace, causal atomicity), which are instances of desired system-wise proper-
ties that can be detected using only the causal information gathered from the
observed trace. Since what can be inferred from a trace intrinsically depends on
the chosen causal model, definitions of causal properties differ from technique to
technique, with the undesirable effect that a causal property (e.g., a datarace)
in one model might not be recognized as such by another model.

1.1 Motivating Examples

Each example in Figure 1 shows a two-threaded program, together with one of
its possible executions, in which Thread 1 is executed completely before Thread
2 starts. In this representation of executions, synchronized blocks are boxed,
while write and read operations on shared locations are denoted by← (receiving
a value), and → (yielding a value), respectively. Both programs exhibit a race
condition between the two write operations on y. However, are the observed
executions also exhibiting a causal datarace?

When analyzing the observed execution in Figure 1(a), a simple happens-
before approach ordering all accesses to concurrent objects [15] cannot observe

Thread 1 Thread 2
sync(l) {
y = 1;
x = 1;
if (x == 2)
z = 1;

}
sync(l){
x = 2;

}
y = 2;

Execution
1:

y ← 1
x ← 1
x → 1

2:

x ← 2

y ← 2

Thread 1 Thread 2
sync(l) {
x = 1;

}
y = 1;
sync(l) {
x = 1;

}
sync(l) {
if (x > 0)
y = 2;

}

Execution
1:

x ← 1

y ← 1

x ← 1

2:

x → 1
y ← 2

(a) (b)

Fig. 1. Motivating examples

138 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

a causal datarace: the release operation of the lock in Thread 1 is required to
happen-before the acquire of the lock in Thread 2. Happens-before with lock
atomicity [12] is not able to infer a causal datarace either: although the lock
atomicity would allow for the two lock-blocks to be permuted, the read of x in
Thread 1 is still required to happen-before the write of x in Thread 2. Yet, the
race condition can be captured as a causal datarace of the observed execution
by weaker happens-before models [16, 18, 21], since in those models, one can
additionally permute a write before a read of same location, as long as it is
permuted before the write corresponding to that read. Thus, the trace generated
by the program in Figure 1(a) has or does not have a causal datarace, depending
upon the particular causal model employed.

However, none of the approaches mentioned above can detect the race condi-
tion in Figure 1(b) as a causal datarace for the observed execution. The reason
for this is that all models enforce at least the read-after-write dependency (i.e.,
a read should always follow the latest write event of the same variable), and
therefore would not allow the permutation of the last two lock-blocks of the
execution, since the read of x in Thread 2 must follow the last write of x in
Thread 1. Nevertheless, there is enough information in the observed execution
to be able to detect the race: since both writes of x in Thread 1 write the same
value, it is actually possible to permute the last two lock blocks, and thus detect
the race. Moreover, since one could conceive a technique specialized for finding
such cases, it can be rightfully claimed that the observed execution has in fact
a causal datarace, although not captured by any existing definition.

Given this ever increasing (regarding coverage) sequence of causal models and
definitions for causal properties, it is only natural to ask the following question:

Is there any causal model that generalizes all existing models, and which
cannot be surpassed?

We answer this question positively in the context of sequential consistency [9].
While we believe the presented approach can be applied to other memory models,
we chose sequential consistency here for two reasons: (1) it is broadly accepted,
popular and intuitive; (2) it is subsumed by other memory models: errors de-
tected under sequential consistency are also errors for other memory models.

Contributions. The main result of this paper is a semantic framework that allows
to prove maximality of causal models, and a proof that our proposed model is
indeed the maximal causal model for the observed execution. This means that it
comprises precisely all traces which can be generated by all programs which can
generate the observed trace. Concretely, we show that: (1) all programs which
can produce the observed execution can generate all traces in the model; and (2)
for any trace not in the model there exists a program generating the observed
trace which cannot generate it. To our knowledge, this is the first such result for
causal models. We then prove (the implicitly assumed) soundness for a series of
existing causal models by showing they are submodels of the proposed model.

Maximal Causal Models for Sequentially Consistent Systems 139

Paper structure. Section 2 introduces some notation and discusses sequential
consistency. Section 3 axiomatizes consistent concurrent systems and defines our
proposed causal models. Section 4 formally defines the maximality claim and
proves our model maximal among sound models. Section 5 shows how existing
models are included in ours, thus proving their soundness. Section 6 reviews
related research and discusses several research ideas connected with the presented
work. Section 7 concludes.

2 Execution Model

Assume a machine that can execute arbitrarily many threads in parallel. The
execution environment contains a set of concurrent objects (shared memory loca-
tions, locks, . . .), which are accessed by threads to share data and synchronize.
Threads, which can only interact through the execution environment, are ab-
stracted as sequences of operations on concurrent objects. The only source of
thread non-determinism is the execution environment, that is, if the interaction
between a thread and the environment is the same across executions, the thread
will execute the same operations, in the same order. To simplify the presentation,
we assume no dynamic creation of threads (this presents no technical difficulty).

2.1 Concurrent Objects, Serial Specification

We adopt the definition of concurrent objects and serial specifications proposed
by Herlihy and Wing [8]. A concurrent object is behaviorally defined through
a set of atomic operations, which any thread can perform on it, and a serial
specification of its legal behavior in isolation. The serial specification describes
the valid sequences of operations which can be performed on the object. We next
describe two common types of concurrent objects.

Shared memory locations. Each shared memory location can be regarded as a
shared object with read and write operations, whose serial specification states
that each read yields the same value as the one of the previous write. Moreover,
to avoid non-determinism due to the initial state of the memory, we will further
require that all memory locations are initialized, that is, the first operation for
each location is a write.

Mutexes. Each mutex can be regarded as a concurrent object providing acquire
and release operations. Their mutual exclusion property is achieved through the
serial specification which accepts only those sequences in which the difference
between the number of acquire and release operations is either 0 or 1 for each
prefix, and all consecutive pairs of acquire-release share the same thread.

To keep the proofs simple and the concepts clear, we refrain here from adding
more concurrency constructs (such as spawn/join, wait/notify, or semaphores).
Note, however, that this would not introduce additional complexity, but just
further constrain the notion of consistency.

140 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

2.2 Events and Traces

Operations performed by threads on concurrent objects are recorded as events.
We consider events to be abstract entities from an infinite“collection”Events, and
describe them as tuples of attribute-value pairs. The only attributes considered
here are: thread—the unique id of the thread generating the event, op—the
operation performed (e.g., write, read, acquire, or release), target—the concurrent
object accessed by the event, and data—the value sent/received by the current
event, if such exists (e.g., for the write/read operations). For example, (thread=
t1, op=write, target=x, data=1) describes an event recording a write operation
by thread t1 to memory location x with value 1. When there is no confusion,
we only list the attribute values in an event, e.g., (t1,write, x, 1). Our choice for
deciding what attributes to record in an event considers a monitor which can
observe memory and synchronization operations and the identity of the thread
performing them, but has no access to the actual code. Section 6 includes a
discussion on possible variations on the set of attributes recorded for an event.

For any event e and attribute attr, attr(e) denotes the value corresponding
to the attribute attr in e, and e[v/attr] to denote the event obtained from e by
replacing the value of attribute attr by v. An execution trace is abstracted as a
sequence of events. Given a trace τ , a concurrent object o and a thread t, let
τ�o and τ�t denote the restriction of τ to events involving only o, and only t,
respectively. Let latesto(τ) be the latest event of τ having the op attribute o. If
o is omitted, it simply means the latest event in τ .

Sequential consistency can be now elegantly defined:

Definition 1 ([1]). Let τ be any trace.
(1) τ is legal if and only if τ�o satisfies o’s serial specification for any object o;
(2) An interleaving of τ is a trace τ ′ such that τ ′�t = τ�t for each thread t.
(3) A trace τ is (sequentially) consistent if it admits a legal interleaving.

Since we restrict ourselves to sequential consistency, from here on when we say
that a trace is sequentially consistent we automatically mean that it is also legal.

3 Feasibility Model

This section introduces an axiomatization for a machine producing consistent
traces, and uses it to associate a sound-by-definition causal model to any observed
execution, comprising all executions which can potentially be inferred from that
execution alone, without additional knowledge of the system generating it.

The two properties/axioms (presented below) we base our approach on are
trace consistency and feasible executions. A consistent trace (Definition 1) dis-
allows “wrong” behaviors, such as reading a value different from the one which
was written, or proceeding when a lock cannot be acquired. Feasible executions,
defined below, refer to sets of execution traces and aim at capturing all the be-
haviors that a given system or program can manifest. No matter what task a
concurrent system or program accomplishes, its set of traces must obey some

Maximal Causal Models for Sequentially Consistent Systems 141

basic properties. First, feasible traces are generate-able, meaning that any prefix
of any feasible trace is also feasible; this is captured by our first axiom of feasible
traces, prefix closedness. Second, we assume that thread interleaving is the only
source of non-determinism in producing traces; this is captured by our second
axiom of feasible traces, local determinism.

Each particular multithreaded system or programming environment, say S,
has its own notion of feasible execution, given by its specific intended semantics.
Let us call all (possibly incomplete) traces that S can yield S-feasible, and let
feasible(S) be their set. Instead of defining feasible(S), which requires a formal
definition of S and is therefore S-specific (and tedious), we here axiomatize it:

Prefix Closedness. Events are indivisible and generated in execution order;
hence, feasible(S) must be prefix closed : if τ1τ2 is S-feasible, then τ1 is S-feasible.
Prefix closedness ensures that each event is generated individually, with the pos-
sibility of interleaving happening in-between any of them. For example, although
the ++ x instruction generates two events, a read, follow by a write on x these
are not necessarily consecutive: if the instruction is not properly synchronized,
another thread could write x after the first event, yielding an atomicity violation.

Local Determinism. The execution of a concurrent operation is determined
by the previous events in the same thread, and can happen at any consistent mo-
ment after them. Formally, if τe, τ ′ ∈ feasible(S) and τ�thread(e) = τ ′�thread(e)
then: if τ ′e is consistent then τ ′e ∈ feasible(S); moreover, if op(e) = read and
there exists an event e′ such that e = e′[data(e)/data] and τ ′e′ is consistent, then
τ ′e ∈ feasible(S). The second part says that if a read operation is enabled, i.e., all
previous events have been generated, then it can be executed at any consistent
time (despite the fact that the value it receives might be different from that ob-
served in the original trace). Allowing traces where read events observe a different
value than in the original trace might seem like a source of unsoundness. Note,
however, that the same local determinism property prohibits the thread on which
such a read event occurred to continue after producing this event, by stating that
an additional event for a thread is generated only if the current trace for that
thread is exactly the same (including the value) as in the original trace. Suppose,
for example, that two threads, identified by t1 and t2, assign 1, then execute an in-
crement operation on the same location l. One potential observed trace could be:
(t1,write, l, 1)(t2,write, l, 1)(t1, read, l, 1)(t1,write, l, 2)(t2, read, l, 2)(t2,write, l, 3).
Local determinism ensures that we can also obtain the (partial) trace

(t1,write, l, 1)(t2,write, l, 1)(t1, read, l, 1)(t2, read, l, 2)(t1,write, l, 2).

This shows that we can use local determinism to interleave threads differently
than their original scheduling, as long as consistency is respected and threads
produce the same events. Note that, (1) event e = (t2, read, l, 2) can be generated
although it reads a different value than it originally did; and (2) thread t1 can
continue after e was generated (since it concerns a different thread), but thread
t2 cannot (because, e.g., e could be guarding a control statement).

142 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

Definition 2. S is consistent iff feasible(S) satisfies the axioms above.

Amajor goal of trace-based analysis is to infer/analyze as many traces as possible
using a recorded trace. When one does not know (or does not want to use) the
source code of the multithreaded program being executed, one can only infer
potential traces of the system resembling the observed trace. Let us now define
the proposed causal model, termed feasibility closure, as the set of executions
which can be inferred from an observed execution—they correspond to the traces
obtainable from τ using the feasibility axioms.

Definition 3. The feasibility closure of a consistent trace τ , written
feasible(τ), is the smallest set of traces containing τ which is prefix-closed and sat-
isfies the local determinism property. A trace in feasible(τ) is called τ-feasible.

Without dwelling into details here, as this is proved elsewhere [17], intuitively
the feasibility closure of a trace contains all interleavings of the observed trace,
where each thread is stopped once it read a value from the memory different
from the one observed originally, as well as all prefixes of these traces.

The following result formalizes the soundness of the proposed model. Assum-
ing the base axioms are sound, the closure properties guarantee that all traces
in our causal model are feasible. In addition, Proposition 1 shows that any sys-
tem/programwhich can generate one trace, can also generate all traces comprised
by its causal model.

Proposition 1. If S consistent and τ ∈ feasible(S) then feasible(τ) ⊆
feasible(S). Moreover, if τ ′ is consistent and τ ∈ feasible(τ ′), then feasible(τ) ⊆
feasible(τ ′).

The intuition for τ ∈ feasible(τ ′) is that if a run of any program executed on S
can produce τ ′, then there is also some run of the same program executed also
on S that can produce τ .

4 Maximality

In this section we show that the proposed causal model is maximal among sound
models, in the sense that any extension to it is done at the expense of soundness.
We will prove therefore that given a trace τ ′ which is not in the feasibility closure
of a trace τ , there exists a program p which can generate τ but not τ ′; therefore,
if the model were extended to include τ ′ and used τ ′ as a witness that a property
is satisfied/invalidated by a program generating τ , this would be a false witness
if the program which generated τ was p.

To prove our claim, we propose CONC, a very simple (not even Turing com-
plete) concurrent language. The benefit of such a simple language is that it can
conceivably be simulated in any real language; therefore, proving the maximal-
ity result for CONC proves the model is maximal for all languages. Figure 2
presents the grammar and SOS semantics of CONC. The grammar specifies a
parallel composition of named threads. Each thread is a succession of statements

Maximal Causal Models for Sequentially Consistent Systems 143

CONC syntax: Proc ::= Proc || Proc | Int : Stmt
Stmt ::= Stmt ; Stmt | nop | if Int then Stmt

| load Loc | Loc := Int | acquire Loc | release Loc

CONC semantics:
〈p1, σ, δ, ρ〉 τ−→ 〈p′1, σ′, δ′, ρ′〉

〈p1 || p2, σ, δ, ρ〉 τ−→ 〈p′1 || p2, σ′, δ′, ρ′〉
(Par1)

〈p2, σ, δ, ρ〉 τ−→ 〈p′2, σ′, δ′, ρ′〉
〈p1 || p2, σ, δ, ρ〉 τ−→ 〈p1 || p′2, σ′, δ′, ρ′〉

(Par2)

〈s, σ, δ, ρ, t〉 τ−→ 〈s′, σ′, δ′, ρ′, t〉
〈t : s, σ, δ, ρ〉 τ−→ 〈t : s′, σ′, δ′, ρ′〉

(Thread)

〈s1, σ′, δ′, ρ′, t〉 τ−→ 〈s′1, σ′, δ′, ρ′, t〉
〈s1 ; s2, σ, δ, ρ, t〉 τ−→ 〈s′1 ; s2, σ

′, δ′, ρ′, t〉
(Seq)

·
〈nop ; s, σ, δ, ρ, t〉 ε−→ 〈s, σ, δ, ρ, t〉

(Nop)

·
〈if i then s, σ, δ, ρ, t〉 ε−→ 〈s, σ, δ, ρ, t〉

if ρ(t) = i (If true)

·
〈if i then s, σ, δ, ρ, t〉 ε−→ 〈nop, σ, δ, ρ, t〉

if ρ(t) �= i (If false)

·
〈load x, σ, δ, ρ, t〉 (t,read,x,i)−−−−−−−→ 〈nop, σ, δ, ρ[t ← i], t〉

where i = σ(x)
(Read)

·
〈x := i, σ, δ, ρ, t〉 (t,write,x,i)−−−−−−−→ 〈nop, σ[x ← i], δ, ρ, t〉

(Write)

·
〈acquire x, σ, δ, ρ, t〉 (t,acquire,x)−−−−−−−→ 〈nop, σ, δ[x ← t], ρ, t〉

if δ(x) =⊥
(Acq)

·
〈release x, σ, δ, ρ, t〉 (t,release,x)−−−−−−−→ 〈nop, σ, δ[x ←⊥], ρ, t〉

if δ(x) = t
(Rel)

Fig. 2. Syntax and SOS semantics for the CONC language

and uses one internal register to load data from the shared memory. load x loads
the value at location x into the internal register of the thread, x := i stores
integer i at location x, acquire and release have the straight-forward semantics,
and if i then s executes s only if the internal register has value i. A running
configuration of CONC is a tuple 〈p, σ, δ, ρ〉 where p is the remainder of the
program being executed, σ maps variables to values, δ maps each lock to the
id of the thread holding it, and ρ gives for each thread the value of its internal
register. In the SOS derivation rules we additionally use configurations of the

144 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

form 〈p, σ, δ, ρ, t〉, where t is the thread id obtained in the (Thread) rule, which is
propagated by all following rules. Assuming p has n threads, the initial configu-
ration of the system is START(p) = 〈p, σε, δε, ρn

ε 〉 where σε, δε, and ρn
ε , initialize

all locations, locks, and registers for the n threads with ⊥, respectively.
We have chosen this minimal language both because it is sufficiently expressive

to generate all (finite) legal traces, and because it is quite easy to mimic in any
other language. In Java, for example, each thread would be modeled by a thread
object, and all threads could be started in a loop by the main thread. Since
beginnings of threads do not generate events, this is as-if all threads start to-
gether in parallel. The running method of each Java thread object would declare
a local variable r to stand for the register, and then the two CONC instructions
dealing with the register translate as follows: load l becomes r = l, and if i then s
becomes if (r == i) s.

It is straightforward to associate to each event an instruction producing it.
Let code be the mapping defined on events as follows:

code(e) =

⎧⎪⎪⎨
⎪⎪⎩

load x if e = (t, read, x, i)
x := i if e = (t,write, x, i)

acquire x if e = (t, acquire, x)
release x if e = (t, release, x)

Given a program p, let p�t be its projection on thread t, that is, the statement
labeled by t in the parallel composition.

The following result shows that, except for the code, the running configuration
is completely determined by the trace generated up to that point:

Proposition 2. If CONC � START(p)
τ−→

∗
〈p′, στ , δτ , ρn

τ 〉, where n is the num-
ber of threads of p, then:

(1) στ (x) = data(latestwrite(τ�x));
(2) δτ (x) =

{
thread(latest(τ�x)), ifop(latest(τ�x)) = acquire

⊥, otherwise
;

(3) ρn
τ (t) = data(latestread(τ�t)).

Therefore, in the sequel we will use CONC � p
τ−→∗

p′ instead of CONC �
START(p)

τ−→
∗
〈p′, στ , δτ , ρn

τ 〉
Now, let us prove that the semantics of CONC does indeed satisfy the sequen-

tial consistency axioms. Let p be a CONC program and let feasible(p) be the
set of all p-feasible traces; that is τ is p-feasible if there exists a program p′ such
that CONC � p

τ−→
∗

p′. We sill show that feasible(p) satisfies the strong local
determinism property, namely, not only that an enabled event can be generated
at any point by its thread, but that it also must be the (unique) next event
generated by that thread (ignoring the data attribute for read events). Formally,

Definition 4. feasible(p) satisfies the strong local determinism property if
it satisfies local determinism and if τ1e1 and τ2e2 are p-feasible, thread(e1) =
thread(e2) = t, and τ1�t= τ2�t, then op(e1) = op(e2), and target(e1) = target(e2);
if additionally op(ei) = write, then also data(e1) = data(e2).

Maximal Causal Models for Sequentially Consistent Systems 145

The following result shows that every CONC program p is a consistent system
in the sense of Definition 2.

Proposition 3 (CONC consistency). feasible(p) satisfies prefix closedness
and strong local determinism.

Proof (Sketch). Prefix closedness is obvious, since the semantics can emit at most
one event for each execution step. The second property follows by case analysis
on the rule SOS rule applied to produce the relevant event for local determinism.

Now, given a trace τ , let us build the canonical CONC program generating
it. code can be naturally extended on traces by code(eτ) = code(e) ; code(τ).
Let {t1, t2, . . . , tn} be the set of thread ids appearing in τ . Then the program
associated to a trace τ is defined by program(τ) = t1 : code(τ �t1) || · · · || tn :
code(τ�tn).

Let us also define the empty program with n threads as programn(ε) = t1 :
nop || · · · || tn : nop. The following result shows that the program corresponding
to a consistent trace can indeed generate that trace.

Proposition 4. If τ is a consistent trace with n threads, then

CONC � program(τ)
τ−→∗

programn(ε).

The following theorem justifies the maximality claims for the proposed model.

Theorem 1 (Maximality). For any consistent trace τ ′ which is not τ-feasible
there exists a program generating τ but not τ ′.

Proof (Sketch). Because of prefix closeness and thread determinism, the only
interesting case to analyze is when τ ′ continues the execution on a thread after
reading a value distinct from the one recorded in an event e of τ . in that case,
we create a new program p from program(τ) by inserting a conditional write
instruction right after that generating event e. We then show that program p
can still generate τ , but cannot generate τ ′.

5 Proving Soundness for Existing Causal Models

Focusing on identifying concurrency anomalies and measuring success based on
the number of bugs found, almost no causal model in the literature is actually
proved sound. The authors of a causal model usually give some common-sense
arguments for their choice and informally rely on the soundness of Happens-
Before [9]. However, intuition can sometimes be misleading: in Section 5.4 we
reveal a soundness problem with the model of Sen et al. [16]. Moreover, even
when proved sound, the proofs are quite laborious, each having to repeat the
formalization of an execution model. Proving soundness of other causal models
by embedding them in our already proven sound model eliminates the need for
an execution model and reduces proofs to checking closure properties.

We start with the following result, which can be regarded as a sufficient crite-
rion for feasibility:

146 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

Theorem 2. Any consistent prefix of an interleaving of τ is τ-feasible.

The remainder of this section shows that existing sound causal models are cap-
tured by the feasibility closure as simple instances of Theorem 2. Another im-
portant consequence of Theorem 2 is that is basically shows there is a unique
feasibility closure associated to a concurrent computation, regardless of the rep-
resentative trace [17].

5.1 Happens Before Relation on Mazurkiewicz Traces

One elegant way to capture the happens-before trace equivalence is the
Mazurkiewicz trace [10] associated to the dependence given by the happens-
before relation.

The happens-before dependence is a set T ∪ D, where T =
⋃

t{(e1, e2) : τ�t=
τ1e1e2τ2} is the intra-thread sequential dependence relation and D=

⋃
x{(e1, e2) :

τ�x = τ1e1e2τ2 such that e1 or e2 is a write of x} is the sequential memory
dependence relation. Given this happens-before dependence, the Mazurkiewicz
trace associated with τ is defined as the least set [τ] of traces containing τ
and being closed under permutation of consecutive independent events [10]: if
τ1e1e2τ2 ∈ [τ] and (e1, e2)
∈T ∪D, then τ1e2e1τ2 ∈ [τ].

The following result shows that the feasibility closure is closed under the equiv-
alence relation generated by happens-before, that is, happens-before is captured
by our model, and thus re-shown sound for consistent executions:

Proposition 5. If τ1e1e2τ2 is τ-feasible and (e1, e2)
∈T∪D, then τ1e2e1τ2 is τ-
feasible. Given any τ-feasible trace τ ′, [τ ′] ⊆ feasible(τ). Hence, [τ] ⊆ feasible(τ).

5.2 Weak Happens Before

Several more recent trace analysis techniques [16,18,21] argue that the happens-
before model can be further relaxed, noticing that the only purpose of the write-
after-read happens-before order is to guarantee that a read event always reads
the same write event as before in any feasible interleaving of the original trace.
Therefore, one only needs to preserve the read-after-write dependence:

Definition 5. Suppose τ =τ1e1τ2e2τ3. Then e2 write-read depends on e1 in
τ , written e1 <wr

τ e2, if target(e1)= target(e2), op(e1)=write, op(e2)=read, and
for all e ∈ Eτ2 , either target(e)
= target(e1), or op(e)
= write.

That is, e1 <wr
τ e2 iff the value read by e2 is the value written by e1.

Sen et al. [16] introduce the notion of atomic sets associated to each write
event, containing itself and all read events which write-read depend on it, ac-
cepting as feasible executions all linearizations of the transitive closure of the
combined <wr

τ and thread ordering, satisfying the additional requirement that
the atomic sets are preserved. However this can be simply restated as follows [21]:

Definition 6. τ ∼ τ ′ if τ is an interleaving of τ ′ and <wr
τ =<wr

τ ′ .

Maximal Causal Models for Sequentially Consistent Systems 147

That is, the ∼-equivalence class of τ contains all interleavings of τ which have
exactly the same write-read dependence relation. Next result shows that this
model is also captured by our model.

Proposition 6. If τ1 is τ-feasible, and τ1 ∼ τ2, then τ2 is also τ-feasible.

5.3 Happens-Before with Synchronization

A conservative and sound approach, requiring no implementation changes, to
handle locks in happens-before-based trace analysis techniques is to assume that
acquire and release operations on the same lock yield the same happens-before
dependence as if they were particular write and read operations (on the lock vari-
able) [15]. However, this prevents synchronized blocks from being permuted, and
thus imposes coverage limitations. The lock-set approaches, also called hybrid
happens-before [12], propose to handle locks separately, associating with each
event the set of locks [14] protecting them, hereby not enforcing any particular
order between synchronized blocks.

We here group the events protected by locks in atomic blocks. Events e1 and e2
from a consistent trace τ , both generated by thread t, are l-atomic in τ , written
e1 τ

l e2, if and only if there is some acquire event e on lock l generated by t before
both e1 and e2, and there is no release event e′ on l generated by t between e and
either of e1, e2. For each lock l, let [e]l denote the l-atomic equivalence class of
e. Assuming a trace in which all acquired locks are eventually released, l-atomic
equivalence classes consist of all events belonging the the same acquire-release
block of l. A trace τ ′ is consistent with the lock atomicity of τ if there exists no
lock l and decomposition τ1e1τ2e2τ3e3τ4e4τ5 such that e1 τ

l e3 and e2 τ
l e4

and [e1]l
= [e2]l. Let ≺τ
hb be the transitive closure of the union between happens-

before and thread orderings of τ . The following holds:

Proposition 7. Let τ ′ be a τ-feasible trace. Any linearization of ≺τ ′
hb consistent

with the lock atomicity of τ ′ is τ-feasible.

5.4 Weak-Happens-Before with Synchronization

We next present two approaches to handling synchronization in weak-happens-
before models and show they are both embeddable in our model.

Lock Atomicity via Write-Read Atomicity [16]. Since the notion of write-
read atomicity already allows atomic sets to be permuted, it seems reasonable
to use the conservative idea from standard happens-before methods, and treat
acquire as a write event and release as a read event. Formally, given the consistent
trace τ , one could additionally introduce an atomic dependence relation <a

τ

given by e1 <a
τ e2 if τ = τ1e2τ2e2τ3, target(e1) = target(e2), op(e1) = acquire,

op(e2) = release, and there is no event e in τ2 such that target(e) = target(e1),
and op(e) = acquire. With this definition, equivalent traces to an observed trace τ
are those interleavings of τ having the same write-read and atomic dependencies.

148 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

However, this definition needs a careful approach. Consider the example in
Figure 1(b), and suppose that we observe a similar execution, but that the
program is stopped after the read of x in Thread 2. Since no release event has
been generated, the acquire in Thread 2 has no event depending on it, and thus
it can be permuted (without the read event on x it was supposed to protect)
before the last lock-block of Thread 1. Then, the final read of x itself can be
permuted past the final release of l in Thread 1, exhibiting a spurious causal
datarace.

Nevertheless, these models are sound for synchronization complete traces, that
is, traces in which each acquired lock is eventually released.

Proposition 8. Let τ1 be a synchronization complete τ-feasible trace. Any in-
terleaving τ2 of τ1 satisfying that <wr

τ2 =<wr
τ1 and <a

τ2=<a
τ1 is τ-feasible.

Lock Atomicity via Locksets. Wang and Stoller [21] propose a weak-happens-
before model based on write-read dependence, while using locksets to handle
locks as individual objects. In this model, a trace τ ′ is equivalent with a consistent
trace τ if τ ′ is an interleaving of τ having the same write-read dependence relation
and being consistent with the lock atomicity of τ .

Proposition 9. Let τ1 be a τ-feasible trace. Any interleaving τ2 of τ1, consistent
with the lock atomicity of τ1 and satisfying that <wr

τ2 =<wr
τ1 is τ-feasible.

6 Related Work and Discussion

Beginning with the introduction of the Happens-Before ordering by Lamport [9],
there has been a considerable amount of research on models and techniques to
abstract executions for the purpose of inferring causally equivalent executions
satisfying/violating particular but important properties, such as dataraces or
atomicity/serializability [2,5,7,12,14–16,19–21]. Section 5 shows that the sound
causal models upon which the above mentioned techniques were based [10, 12,
15, 16, 21] are subsumed by the maximal causal model; their soundness follows
as a corollaries of Theorem 1.

Ganai and Gupta [6] apply a similar technique for software model checking,
attempting to reduce the state space to be explored using sequential consistency
constraints. Similarly, building on a previous draft of this paper, Said et al. [13]
encode the axioms of our proposed model (extended with constructs for thread
creation and wait/notify) into an SMT solver and use that to effectively search
the model for potential dataraces in Java programs.

Another interesting and productive line of research attempts to use informa-
tion about the actual program code to either statically detect potential bad
behaviors [11], or to use information about the program and about the property
to be checked to further relax the models of executions [3, 20].

Adding or removing attributes from events. Our choice of which attributes to
be included in an event was based on the idea of observing the execution of any

Maximal Causal Models for Sequentially Consistent Systems 149

multithreaded program executed on any machine offering no guarantees other
than sequential consistency. Therefore, no semantical information is assumed
about the program other than the identity of the thread performing an oper-
ation. There are other possible choices, each with their benefits. For example,
Sinha et al. [18] choose not to record the value read/written in the memory.
Thus, their model must preserve the read-after-write dependence, and the set of
comprised traces is thus comparable with that of Wand and Stoller [21], and Sen
et al. [16]. We believe a similar maximality result could be proved for traces of
this kind, but that has not been attempted yet. In contrast, Wang et al. [20] en-
rich the events with symbolic information extracted from the program executing
them. This allows them to obtain more comprehensive models at the expense
of having to analyze the code. Since analyzing the code statically leads quickly
to undecidability issues, and thus static analyzers need to be conservative, we
believe there might indeed be no similar maximality result for these types of
models, their coverage increasing with the power of the analysis.

Causal properties of traces. Since our model associates for a trace all traces
which can be obtained by all programs which can obtain that trace, this allows
for program-independent definitions of causal properties. For example,Wang and
Stoller [21] propose serializability of a trace τ as the property that there exists
an alternative execution of the program producing an interleaving of τ in which
each transaction is a sequential block. Farzan and Madhusudan [4] relax this
constraint by requiring that for each transaction there exists an alternative exe-
cution of the program producing an interleaving of τ containing that transaction
as a sequential block. Sen et al. [16] say that a trace exhibits a datarace if there
exists an alternative execution of the program producing an (partial) interleaving
of τ in which the conflicting events are consecutive.

The program-independent properties associated to any of the above (program-
dependent) definitions can be obtained by simply replacing the (rather informal)
“alternative execution of the program producing an interleaving of τ” with “a
τ -feasible trace”, as defined by Definition 3. Formal definitions of these causal
properties can be found in the companion technical report [17].

7 Conclusion

We have shown that, by axiomatizing basic properties of (sequentially consis-
tent) concurrent systems, one can obtain maximally sound causal models for
concurrent executions, which can be naturally associated to each observed trace,
capturing all feasible traces which could be inferred from it. The maximality
result has two important theoretical implications. First, verifying the soundness
claims for any causal model is reduced to proving that it is a submodel of the
maximal one. Second, since the maximal model captures all causally equiva-
lent traces, it allows for universal, program-independent definitions for causal
properties. Although this paper focuses on proving the maximality claim of our
model, the companion technical report [17] additionally provides a constructive
characterization of the proposed model, as well as a model checking algorithm.

150 T.F. S, erbănut,ă, F. Chen, and G. Ros,u

References

1. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. TOCS 12,
91–122 (1994)

2. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A theory of data race detection. In:
PADTAD 2006, pp. 69–78. ACM, New York (2006)

3. Chen, F., Roşu, G.: Parametric and Sliced Causality. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 240–253. Springer, Heidelberg (2007)

4. Farzan, A., Madhusudan, P.: Causal Atomicity. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 315–328. Springer, Heidelberg (2006)

5. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: POPL 2004, pp. 256–267 (2004)

6. Ganai, M.K., Gupta, A.: Efficient Modeling of Concurrent Systems in BMC. In:
Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 114–133.
Springer, Heidelberg (2008)

7. Helmbold, D.P., McDowell, C.E., Wang, J.Z.: Determining possible event orders
by analyzing sequential traces. TPDS 4(7), 827–840 (1993)

8. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12, 463–492 (1990)

9. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess progranm. IEEE Trans. Comput. 28(9), 690–691 (1979)

10. Mazurkiewicz, A.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

11. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI
2006, pp. 308–319 (2006)

12. O’Callahan, R., Choi, J.-D.: Hybrid dynamic data race detection. SIGPLAN
Not. 38(10), 167–178 (2003)

13. Said, M., Wang, C., Yang, Z., Sakallah, K.: Generating Data Race Witnesses by
an SMT-Based Analysis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NFM 2011. LNCS, vol. 6617, pp. 313–327. Springer, Heidelberg (2011)

14. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dy-
namic data race detector for multithreaded programs. TOCS 15(4), 391–411 (1997)

15. Schonberg, E.: On-the-fly detection of access anomalies. Best of PLDI 1979-1999 39,
313–327 (2004)

16. Sen, K., Roşu, G., Agha, G.: Detecting Errors in Multithreaded Programs by Gen-
eralized Predictive Analysis of Executions. In: Steffen, M., Zavattaro, G. (eds.)
FMOODS 2005. LNCS, vol. 3535, pp. 211–226. Springer, Heidelberg (2005)

17. Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal causal models for sequentially con-
sistent systems. Technical Report, University of Illinois at Urbana-Champaign (Oc-
tober 2011), http://hdl.handle.net/2142/27708

18. Sinha, A., Malik, S., Wang, C., Gupta, A.: Predictive analysis for detecting serial-
izability violations through trace segmentation. In: MEMOCODE 2011 (2011)

19. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: POPL 2006, pp. 334–345 (2006)

20. Wang, C., Kundu, S., Ganai, M., Gupta, A.: Symbolic Predictive Analysis for Con-
current Programs. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 256–272. Springer, Heidelberg (2009)

21. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors
in concurrent programs. In: PPoPP 2006, pp. 137–146 (2006)

http://hdl.handle.net/2142/27708

Monitoring Compliance Policies

over Incomplete and Disagreeing Logs�

David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu

Institute of Information Security, ETH Zurich

Abstract. When monitoring system behavior to check compliance
against a given policy, one is sometimes confronted with incomplete
knowledge about system events. In IT systems, such incompleteness may
arise from logging infrastructure failures and corrupted log files, or when
the logs produced by different system components disagree on whether
actions took place. In this paper, we present a policy language with a
three-valued semantics that allows one to explicitly reason about incom-
plete knowledge and handle disagreements. Furthermore, we present a
monitoring algorithm for an expressive fragment of our policy language.
We illustrate through examples how our approach extends compliance
monitoring to systems with logging failures and disagreements.

1 Introduction

Laws, inter-business contracts, security policies, and similar normative regula-
tions define compliance requirements that IT systems need to enforce. For ex-
ample, IT systems in US hospitals must enforce HIPAA [1], which regulates the
dissemination of medical records and the subsequent obligations that medical
staff are expected to fulfill. For banks, separation-of-duty constraints should re-
duce the risk of fraud [2]. Data-usage contracts between different businesses
regulate how sensitive documents are exchanged and subsequently disposed.
Checking whether implemented IT systems comply with a body of regulations
or policies is a problem of growing importance, since non-compliant behavior
can lead to serious security breaches, monetary penalties, and the erosion of
stakeholder’s internal standards and commitments.

Runtime-verification techniques [4,5,19,22–24] offer a promising approach for
automated compliance checking of IT systems. These techniques require logging
mechanisms for recording policy-relevant system actions (represented as events),
a suitable language for expressing policies and unambiguously defining permissi-
ble and prohibited system behavior, and a monitoring algorithm for determining
and reporting policy violations.

In complex IT systems, which are usually composed of numerous interact-
ing subsystems, the problem of incomplete knowledge about performed actions
arises. In particular, logs may contain gaps due to corrupted files, logging-
mechanism crashes, network failures, and so forth. Furthermore, when multiple

� This work was partly supported by Google Inc.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 151–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

152 D. Basin et al.

logs are required to verify compliant behavior, they may disagree whether cer-
tain actions took place. For example, sharing a sensitive document between two
parties may require the recipient to fulfill certain obligations. Thus, when ana-
lyzing the recipient’s and the sender’s logs against this policy, we need to treat
all disagreements over the transfer of the document as incomplete knowledge,
since favoring one log over the other may result in missed violations or false
positives. Most runtime monitors, however, do not distinguish between a gap
and a non-occurrence of an event. Thus applying them to incomplete logs can
yield wrong results. For example, consider a policy like a subject can access a
document if the subject is not blacklisted. If it is unknown whether a subject is
blacklisted, then the subject is incorrectly reported as compliant.

In this paper, we present a policy language and an accompanying monitoring
algorithm that accounts for possibly incomplete and disagreeing logs. At the core
of our approach is a three-valued truth space [25]. In addition to the classical
Boolean values t (true) and f (false), which respectively represent the occurrence
and non-occurrence of an event, we represent a knowledge gap about an event’s
occurrence by the third truth value ⊥. Furthermore, when evaluating policies,
their interpretation is as follows: the Boolean values t and f correspond to policy
compliance and policy violation and ⊥ represents an inconclusive answer, which
can be due to knowledge gaps of event occurrences or disagreeing events.

Our policy language is a variant of a first-order temporal logic [7, 17]. First-
order temporal logics have been a good fit in various case studies for formally
expressing and monitoring compliance policies, see, e.g., [5,23]. Special care must
be taken when defining the semantics of a logic with additional truth values be-
sides the classical Boolean values. In particular, a vital requirement for monitor-
ing incomplete and disagreeing logs is to ensure that reported violations cannot
be retracted if or when the log is eventually completed, for example, by recover-
ing lost files. Otherwise, these results are of no value. More precisely, formalized
policies must be monotonic with respect to the underlying partial ordering on
knowledge, i.e., ⊥ is less than f and t, and f and t are incomparable [9, 10, 20].
Our policy language guarantees this monotonicity requirement. Furthermore,
the third truth value ⊥ is a first-class citizen at the object-level of our policy
language: the classical logical connectives are extended to the three-valued truth
space and there are specific connectives that guarantee expressive-completeness
with respect to the set of knowledge-monotonic operators. Such monotonic oper-
ators are needed in our application context to express at the logic’s object-level
how disagreements between logged events should be resolved.

The monitoring algorithm presented in this paper for this three-valued set-
ting is inspired by the one from [6, 7] for the standard Boolean setting. It iter-
atively scans the logged actions and soundly reports violations, i.e., whenever
a violation is reported, it indeed is a policy violation. It also soundly reports
potential violations, i.e., depending on how the knowledge gaps are filled, these
might turn out to be real policy violations. However, our monitoring algorithm
is not complete in the sense that some policy violations might not be reported.
This limitation stems from the expressivity of our policy language over infinite

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 153

domains. Importantly, however, for an expressive fragment, which retains all the
language’s connectives but limits the usage of free variables within a formula,
we show that our monitoring algorithm guarantees completeness.

In summary, our main contribution is a solution to the problem of checking
policy compliance in the presence of logging failures and disagreements between
logged events. Our solution comprises a policy language and a monitoring al-
gorithm. The policy language supports reasoning with incomplete knowledge.
The monitoring algorithm may be used either off-line (for audit) or on-line (at
runtime), and reports all policy violations and potential policy violations for
an expressive fragment of our language. Although several features of our solu-
tion are present in related work—see Section 6 for a comparison—combining
them to solve the stated problem is novel. In particular, our language is the
first compliance language to consider three truth values at the object level, and
our monitoring algorithm is the first algorithm to guarantee both soundness and
completeness in a three-valued first-order setting.

The remainder of the paper is structured as follows. In Section 2, we describe
our abstract logging setting. In Section 3, we introduce our policy language.
In Section 4, we analyze our policy language with respect to monotonicity and
expressiveness. In Section 5, we present our monitoring algorithm. Finally, in
Sections 6 and 7, we discuss related work and draw conclusions. Technical details
are omitted due to space limitations. These are given in the full version of the
paper, which can be found on the authors’ web pages.

2 Logging Knowledge Base

We abstract from a particular physical log file structure, and view a logging
infrastructure as producing a single logging knowledge base, which is evaluated
against a compliance policy. A logging knowledge base uses the three-valued
truth space 3 := {t, f,⊥} to explicitly distinguish between what is known and
unknown regarding event occurrences.

To formally define a logging knowledge base over 3, we introduce a logging
signature S, which is a tuple (C, R, ι), where C is a finite set of constant symbols,
R is a finite set of predicates disjoint from C, and the function ι : R → N assigns
each predicate r ∈ R an arity ι(r). Each predicate r denotes an action, and its
arguments ā denote the action’s parameters, r(ā) denoting an event. A logging
structure D over the signature S consists of a domain |D|
= ∅ and interpretations
cD ∈ |D|, and rDt ⊆ |D|ι(r) and rDf ⊆ |D|ι(r), for each c ∈ C and r ∈ R, such
that rDt and rDf are disjoint. We let rD⊥ := |D|ι(r) \(rDt ∪rDf). We define a logging
knowledge base over the signature S as a sequence D̄ = (D0,D1, . . .) of logging
structures over S, with the following properties:

1. D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0. We denote the
domain by |D̄|.

2. Each constant symbol c ∈ C has a rigid interpretation, that is, cDi = cDi+1 ,
for all i ≥ 0. We denote c’s interpretation by cD̄.

154 D. Basin et al.

We call the indices of the elements in the sequence D̄ time points and denote
them with the Greek letter τ . We interpret a logging knowledge base D̄ as follows:

– If ā ∈ rDτ
t , then the event r(ā) happened at the time point τ .

– If ā ∈ rDτ

f , then the event r(ā) did not happen at the time point τ .

– If ā ∈ rDτ

⊥ , then D̄ contains a knowledge gap at the time point τ with regard
to whether the event r(ā) happened at τ . In practice, a gap is determined
by additional information about logging failures.

Thus a logging knowledge base states explicitly whether logging information is
complete at a time point τ . In case of incomplete knowledge, we have rDτ

⊥
= ∅.
We extend the classical logging assumption, whereby there are only finitely

many events happening at each time point, to a three-valued setting.

Assumption 1. Let D̄ be a logging knowledge base over the signature (C, R, ι).
For each r ∈ R and τ ∈ N, either rDτ

t is finite and rDτ

⊥ = ∅, or rDτ

⊥ = |D̄|ι(r).

This assumption formalizes that as long as a particular logging process is run-
ning, it correctly records all events. If the process crashes, then nothing is
recorded until the process is restarted. In line with our model of a logging knowl-
edge base, this means that at each time point τ and for each relation r either
rDτ

⊥ = ∅ or rDτ

⊥ = |D̄|ι(r).
Note that a logging knowledge base does not differentiate between multiple

instances of the same event happening at the same time point. To do so, one
would have to ensure that either the time points’ granularity is sufficient to
render this scenario impossible, or to add unique artificial parameters (such as
counters) for each such event instance.

3 Compliance Policy Language

In this section, we define our policy languageL3 and illustrate with examples how
policies are formalized and evaluated in the presence of incomplete knowledge.
We also show how disagreements can be handled with L3’s operators.

Syntax and Semantics. In the following, let S = (C, R, ι) be a signature and
let V be a countably infinite set of variables, where V ∩ (C ∪ R) = ∅. Also, let
I be the set of nonempty intervals over N. We often write an interval in I as
[b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.

Definition 2. The L3 formulas over the signature S are given by the grammar

ϕ ::= f | r(t1, . . . , tι(r)) | ¬ϕ | ϕ ∧ ϕ | ϕ ⊗ ϕ | ∀x. ϕ | ϕ SI ϕ | ϕ UI ϕ ,

where r ranges over the elements in R, the tis over the elements in C ∪ V , x
over the elements in V , and I over the elements in I.

Before formally defining the evaluation semantics, Figure 1(a) shows L3’s in-
terpretation of the logical connectives over 3. We mildly abuse notation and

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 155

¬
t f
f t
⊥ ⊥

∧ t f ⊥
t t f ⊥
f f f f
⊥ ⊥ f ⊥

⊗ t f ⊥
t t ⊥ ⊥
f ⊥ f ⊥
⊥ ⊥ ⊥ ⊥

(a) primitive operators

∨ t f ⊥
t t t t
f t f ⊥
⊥ t ⊥ ⊥

→ t f ⊥
t t f ⊥
f t t t
⊥ t ⊥ ⊥

(b) derived operators

Fig. 1. Truth tables for three-valued operators (strong Kleene logic [25])

use same symbols to denote logical connectives and their corresponding three-
valued operators. The classical connectives ¬ and ∧ retain their interpretation
when restricted to the Boolean values t and f. The ⊗ connective does not have
a classical counterpart. Intuitively, it represents a consensus on how much truth
can be agreed upon and is useful for combining different sources of knowledge
when neither t nor f should be preferred over the other.

In the following, a valuation is a mapping θ : V → |D̄|. For a valuation θ,
the variable vector x̄ = (x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ |D̄|n, θ[x̄ "→ d̄]
is the valuation mapping xi to di, for i ∈ {1, . . . , n}, and the other variables’
valuation is unaltered. We abuse notation by applying a valuation θ also to
constant symbols c ∈ C, with θ(c) := cD̄.

Definition 3. Let D̄ = (D0,D1, . . .) be a temporal structure over the signa-
ture S, θ a valuation, and τ ∈ N a time stamp. We inductively define the map-
ping �·�D̄,θ,τ from formulas over S to values in 3 as follows:

�f�D̄,θ,τ := f

�r(t1, . . . , tι(r))�
D̄,θ,τ := v if

(
θ(t1), . . . , θ(tι(r))

)
∈ rDτ

v , where v ∈ 3

�¬ϕ�D̄,θ,τ := ¬�ϕ�D̄,θ,τ

�ϕ1 ∧ ϕ2�
D̄,θ,τ := �ϕ1�

D̄,θ,τ ∧ �ϕ2�
D̄,θ,τ

�ϕ1 ⊗ ϕ2�
D̄,θ,τ := �ϕ1�

D̄,θ,τ ⊗ �ϕ2�
D̄,θ,τ

�∀x. ϕ�D̄,θ,τ :=
∧

d∈|D̄|�ϕ�D̄,θ[x 	→d],τ

�ϕ1 SI ϕ2�
D̄,θ,τ :=

∨
τ−τ ′∈I

(
�ϕ2�

D̄,θ,τ ′ ∧
∧

τ ′′∈(τ ′,τ]�ϕ1�
D̄,θ,τ ′′)

�ϕ1 UI ϕ2�
D̄,θ,τ :=

∨
τ ′−τ∈I

(
�ϕ2�

D̄,θ,τ ′ ∧
∧

τ ′′∈[τ,τ ′)�ϕ1�
D̄,θ,τ ′′)

In this definition,
∧

and
∨

are respectively the (possibly infinitary) meet and
join over the ordering f ≤ ⊥ ≤ t. Note that they match the corresponding
operators in Figure 1. The temporal connectives are accompanied by intervals
and a formula of the form ϕ SI ψ or ϕ UI ψ is only satisfied in D̄ at the time
point τ if it is satisfied within the bounds given by the interval I of the respective
temporal operator. We may omit the interval I if it is [0,∞).

We introduce the following additional syntactic sugar. We write t for ¬f, ϕ∨ψ
for ¬(¬ϕ ∧ ¬ψ), ϕ → ψ for ¬ϕ ∨ ψ, and ∃x. ϕ for ¬∀x.¬ϕ. For a vector of vari-
ables x̄ = (x1, x2, . . . , xn), with n ≥ 0, we write ∀x̄. ϕ for ∀x1. ∀x2 . . . ∀xn. ϕ.
Moreover, we define the temporal connectives �I ψ and �I ψ as t SI ψ and
t UI ψ, respectively. Intuitively, �[b,b′) ψ is t at τ , if ψ is t at least at one past
time point in the time interval [max(0, τ − b′ − 1), τ − b]. If ψ is f at all these

156 D. Basin et al.

time points, then �[b,b′) ψ is f at τ . The presence of at least one ⊥ and no t
results in the truth value ⊥ for �[b,b′) ψ at τ , since depending on how the in-
completeness is resolved either outcome (t or f) is possible. The interpretation
of �[b,b′) ψ is similar for future time points. The dual temporal connectives are
�I ψ := ¬ �I ¬ψ and �I ψ := ¬ �I ¬ψ. We use standard conventions concerning
the binding strength of connectives to omit parentheses. For instance, tempo-
ral connectives bind weaker than the other connectives. Furthermore, → binds
weaker than ∨, which in turn binds weaker than ∧ and ⊗.

Finally, we introduce some additional notation. Given a formula ϕ, we denote
by fv(ϕ) and f̄v (ϕ) the set and respectively the vector of free variables of ϕ.
We call a formula ϕ closed if fv(ϕ) = ∅. For a formula ϕ with f̄v (ϕ) = x̄ =
(x1, . . . , xn), we define the set of elements of |D̄|n for which ϕ evaluates to v ∈ 3
at a time point τ ∈ N as

�ϕ�D̄,τ
v :=

{
d̄ ∈ |D̄|n

∣∣ �ϕ�D̄,θ[x̄	→d̄],τ = v, for some valuation θ
}

.

Compliance Policies. Regardless of the policy language, compliance policies
are usually given as a set of regulative normative statements (norms), which
expess what an agent is obliged to do given some actions it has performed, or
which conditions need to hold (or to have held) for an agent to be permitted
to execute some actions. Norms are meant to be applied at all times within
a system, and it has also been argued [11, 12] that deadlines are of essential
importance in regulating temporal norms. Following these notions, compliance
policies in L3 are formalized as follows:

Definition 4. A compliance policy represented in L3 is a closed formula of the
form � ∀x̄. ψ, where each future temporal connective in ψ is bounded.

The outermost unbounded � connective specifies that a policy must be fulfilled
at each time point. Bounded inner future temporal connectives guarantee that
each obligation has a deadline.

We map the truth values onto policy evaluations as follows: t/f denotes that
a policy is satisfied/violated, and ⊥ denotes that it is unknown whether a policy
is satisfied or violated. Furthermore, for a compliance policy �∀x̄. ψ, it is often
useful to report additional information regarding its violations, which is given

by the aforementioned sets �ψ�D̄,τ
f , �ψ�D̄,τ

⊥ , and �ψ�D̄,τ
t , for a time point τ . Their

interpretation is as follows:

– The elements in �ψ�D̄,τ
f witness a policy violation at time point τ .

– For elements in �ψ�D̄,τ
⊥ , it is unknown whether they violate the policy at

time point τ . They are potential violations.

– The elements in �ψ�D̄,τ
t satisfy the policy at time point τ .

In Section 4, we show that all reported violations and satisfactions at τ persist
regardless of how incompleteness is resolved.

Examples. We begin with the following security policy requiring that if a
request is serviced at a web-server then it must not have been denied by a firewall.

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 157

In practice, this policy would be a part of a larger specification. However, this
excerpt is enough to illustrate how L3’s semantics deal with logging failures. We
formalize this policy as �∀r. ψ1, where

ψ1 := service(r) → ¬ �[0,4) deny(r) .

When there are no failures, then any serviced request that has previously been

denied violates the policy, and is contained in �ψ1�
D̄,τ
f . If the web-server’s logger

crashes at a time point τ , i.e. serviceDτ

⊥ = |D̄|, then all requests that had been
denied at the previous four time points by the firewall potentially violate the

policy, i.e. �ψ1�
D̄,τ
⊥ =

⋃
τ ′ deny

Dτ′
t , where τ − 4 < τ ′ ≤ τ . If, however, there are

no denied requests in the designated interval, the set �ψ1�
D̄,τ
⊥ is empty and the

policy is therefore satisfied. This shows that not all logging failures must result
in potential violations. We note that if all unknown events are treated as not to
have happened, then the policy would be wrongly reported as satisfied.

For our second example, we focus on formalizing inter-business contracts.
These contracts often specify obligations that the signing parties must enforce
regarding the treatment of sensitive documents used during the collaborations.
To ensure that each party complies with its obligations, a policy must specify how
events are combined from different logs belonging to different stakeholders. For
example, when two companies exchange sensitive information, the contract might
say that all received documents must be paid for within 5 days. A straightforward,
but naive, formalization of this policy is �∀d. ψ2, where

ψ2 := receive(d) → �[0,6) pay(d) .

The receive event is taken from the receiving stakeholder’s log. This specification
assumes that the receiving stakeholder is honest, since if its IT system does
not log a received document, the stakeholder’s behavior is trivially compliant
according to the given specification. We can attempt to expand the formalization
to include the sender’s send event (from the sender’s log) as follows

ψ′
2 := send(d) ∨ receive(d) → �[0,6) pay(d) .

In this case, the receiver is obliged to pay if either it receives a document, or the
sender says that it has sent the document. However, this is also unsatisfactory, as
the sender can cheat and insert fictitious send events causing policy violations.
In L3 we can combine the logs with the ⊗ operator and obtain1

ψ′′
2 := send(d) ⊗ receive(d) → �[0,6) pay(d) .

1 We assume that the time granularity is coarse enough to allow receive and send
happen at the same time point. If a receive can happen with a delay of, e.g., at most
one time unit after a send , a more elaborate formalization is required:

� ∀d.
(
send(d) ∧ (send(d)⊗ �[0,2) receive(d)) → �[0,6) pay(d)

)
∧(

receive(d) ∧ (receive(d)⊗ �[0,2) send(d)) → �[0,5) pay(d)
)
.

158 D. Basin et al.

In this case, all disagreements at some τ about payments are in �ψ′′
2 �D̄,τ

⊥ , since
⊥ → f is ⊥. The specification no longer favors one stakeholder over the other.
This has the benefit of not requiring additional pre-processing of logs, which
would need its own language and semantics. We remark that the given spec-
ification cannot be directly expressed in existing compliance policy languages
because ⊥ does not exist at the object level in those languages.

For our third example, we consider a form of separation-of-duty constraint [2]:
a subject s may access an object o if it has not previously accessed some object
o′, where o′’s dataset conflicts with o’s. One possible formalization of this re-
quirement is

� ∀s. ∀o. ∀d. ∀o′. ∀d′. access(s, o, d) ∧ (� access(s, o′, d′)) → ¬conflict(d, d′) .

In this example, access(s, o, d) records that s accessed o in a dataset d. The pred-
icate conflict does not correspond to an event; it describes a property of a system
state. When having the events conflicts and conflictf at hand, which mark the
start point and the end point of two datasets being conflicting, the formula
¬conflictf (d, d′)Sconflict s(d, d′) can be used to describe this state property. For
the sake of brevity, we assume that an object belongs to at most one dataset. In
case s accessed an o, and it is unknown whether s had any other accesses, then
if there exists d′ in conflict with d, such an access is a potential violation.

Notice that the above formalization only considers whether the data items
are in conflict at the time point when o is accessed. This means that even if the
datasets are in conflict just before the access, the policy is not violated. With
respect to the separation-of-duty requirement, one may say that this behavior is
in a compliance gray area. In L3, we define the following temporal connective CI

that treats such gray areas as ⊥, signaling that it is unclear whether the policy
is satisfied or violated:

CIψ := (�I ψ)⊗ (�I ψ) .

Intuitively, CIψ insists that the truth value of ψ does not change in the given
past interval I. Any change results in ⊥, and otherwise the truth value is not
changed. We can define a similar temporal connective using � and � to mark a
future gray zone. We make use of CI by changing the original formalization to

�∀s. ∀o. ∀d. ∀o′. ∀d′. access(s, o, d) ∧ (� access(s, o′, d′))→ C[0,2)¬conflict(d, d′) ,

where [0, 2) is a two-day gray zone interval.

4 Monotonicity and Compositional Expressiveness

A logging knowledge base may grow in knowledge by resolving missing informa-
tion about the occurrences and non-occurrences of events, i.e., moving elements
from rDτ

⊥ to the relations rDτ
t or rDτ

f .

Definition 5. An extension of a logging knowledge base D̄ = (D0,D1, . . .) over
S = (C, R, ι) is a logging knowledge base D̄	 = (D	

0,D	
1, . . .) over S with |D̄	| =

|D̄|, cD̄ = cD̄
�

for all c ∈ C, and rDτ

b ⊆ r
D�

τ

b for all b ∈ {t, f}, τ ∈ N, and r ∈ R.

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 159

Under Assumption 1, an extension either does not alter a relation rDτ

⊥ or empties

rDτ

⊥ by moving finitely many elements to rDτ
t and the remaining elements to rDτ

f .
We say that a policy specification is monotonic if the t and f evaluations,

over a given logging knowledge base, can never be retracted for any of its ex-
tensions. In other words, regardless of how the logging base’s incompleteness is
resolved, the policy violations and satisfactions persist. Monotonicity is a vital
requirement for a compliance policy, because monotonic specifications prevent a
non-compliant behavior from being turned into a compliant behavior by holding
back information. In the following, we establish that for L3 all policy specifica-
tions are monotonic by construction. To formalize monotonicity, we first order
the truth values with a partial ordering ≤k as follows: ⊥ ≤k f, ⊥ ≤k t, and f
and t are incomparable. In short, f and t contain more knowledge than ⊥. The
following theorem states that the evaluations of L3’s formulas do not reduce the
amount of knowledge, when incompleteness is resolved in a logging knowledge
base’s extension.

Theorem 6. Given an L3 formula ψ, a valuation θ, and a logging knowledge
base D̄, then �ψ�D̄,θ,τ ≤k �ψ�D̄

�,θ,τ , for all extensions D̄	 of D̄ and all τ ∈ N.

Proof. From the definition of a logging knowledge base’s extension, and by struc-
tural induction using the fact that all of L3 connectives’ corresponding operators
are ≤k-monotonic, including the infinitary operators for temporal connectives.

As a corollary, given a compliance policy � ∀x̄. ψ, a logging knowledge base D̄,
a valuation θ, and a time point τ , if �ψ�D̄,θ,τ is t or f, then this evaluation

persists at τ , for all extensions D̄	. Moreover, we have �ψ�D̄
�,τ

f ⊇ �ψ�D̄,τ
f and

�ψ�D̄
�,τ

t ⊇ �ψ�D̄,τ
t , for all extensions D̄	 and τ ∈ N. Therefore, even with incom-

plete knowledge it is sound to report the elements in �ψ�D̄,τ
f as policy violations

when monitoring D̄.
Given that all L3 policies are monotonic, an important question is: Can all

monotonic compositional operators for combining events from different logs be
defined as syntactic sugar in L3? If the answer is positive, then L3 does not
need to be further extended. An n-ary three-valued operator O : 3n → 3 is
representable using a set C of operators if O can be written as the functional
composition of operators in C. We utilize the following theorem to show that any
monotonic operator can be expressed in L3.

Theorem 7 (Blamey [10]). For any n ∈ N, every ≤k-monotonic n-ary opera-
tor over the 3 truth space is representable using the set {f,¬,∧,⊗} of operators.

Blamey’s proof is constructive and yields a function that given a monotonic
operator produces an expression showing how to compose the operators f, ¬, ∧,
and ⊗. As L3 has all the corresponding connectives, such an expression can
be seen as a formula in L3. Hence L3 can express any n-ary three-valued ≤k-
monotonic operator, including those for combining different logs.

160 D. Basin et al.

5 Monitoring Algorithm

The input of our algorithm consists of a compliance policy � ∀x̄. ϕ and a logging
knowledge base D̄ over a signature S = (C, R, ι). The algorithm iteratively pro-
cesses the logging structures Dτ , for each τ ∈ N. To process a structure Dτ for
formulas with bounded future operators, the algorithm might need to process
structures Dτ ′ with τ ′ > τ as well. When run in the on-line mode, the algo-
rithm waits until such structures become available. For the rest of this section,
we fix the signature S, the logging knowledge base D̄, and the policy � ∀x̄.ϕ.
Furthermore, we assume that the domain |D̄| is infinite.

At each iteration τ , the algorithm outputs a triple (Sτ
t , Sτ

f , Sτ
⊥), where for

each v ∈ 3, the element Sτ
v is either Fin V , CoFin, or None, where Fin, CoFin,

and None are labels standing respectively for “finite set”, “cofinite set”, and
“inconclusive”, and V is a finite set.

Our algorithm is sound, i.e. if Sτ
v = Fin V then V = �ϕ�D̄,τ

v , for all v ∈ 3 and
τ ∈ N. However, our algorithm is not complete, where completeness means that
the algorithm always returns a value from which one can deduce all compliant

tuples (�ϕ�D̄,τ
t), all violations (�ϕ�D̄,τ

f), and all potential violations (�ϕ�D̄,τ
⊥).

Note that when ϕ has free variables, all these sets cannot be explicitly output, as
at least one is infinite. However, if two sets are finite, then the third one is cofinite,
and it is thus implicitly determined. Therefore our algorithm is complete when at
least two of the elements of the returned triples are of the form Fin V . When ϕ is
closed, completeness means that at each iteration a truth value is returned, as the
triples (Fin {()}, Fin ∅, Fin ∅), (Fin ∅, Fin {()}, Fin ∅), and (Fin ∅, Fin ∅, Fin {()})
correspond respectively with the truth values t, f, and ⊥.

Incompleteness of our algorithm is rooted in the standard issues that arise
when dealing with infinite domains [3], which L3 inherits from first-order queries
in the Boolean setting. Consider for instance the formula ψ = p(x)∨q(y) with x
=
y and assume that pDτ

t and qDτ
t are finite and non-empty, and pDτ

⊥ = qDτ

⊥ = ∅,
for some τ ∈ N. Then �ψ�D̄,τ

t and �ψ�D̄,τ
f are neither finite nor cofinite, hence

our algorithm cannot deal with it: at τ , it returns (None, None, Fin ∅). Formulas
such as ψ are problematic in the Boolean setting, since their evaluation results
are domain-dependent [3]. In the three-valued setting, there are similar issues,
even for formulas that are non-problematic in the Boolean setting. Consider the
formula ψ′ = p(x)∧q(y) with pDτ

t finite and non-empty and qDτ

⊥ = |D̄|, for some

τ ∈ N. Then both �ψ′�D̄,τ
t and �ψ′�D̄,τ

⊥ are infinite and domain-dependent.
Even though the algorithm is incomplete on L3, we obtain completeness for

a fragment of L3, presented at the end of this section.

Algorithmic Overview. We briefly describe the main ideas underlying the
algorithm. Due to space constraints, a detailed presentation is deferred to the
full paper.

The algorithm’s core is the procedure eval, whose arguments are a formula ψ,
a finite set Γ = {(r, Er) | r ∈ R} representing the relations of the logging struc-
ture Dτ , and a time point τ . The values Er, i.e., the second component of

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 161

proc init(ϕ)

for each ψ ∈ sf(ϕ) with ψ = ψ SI ψ′ do
Lψ ← 〈〉

proc eval(ϕ, Γ , τ)
case ϕ = f

return (Fin ∅, Fin {()}, Fin ∅)

case ϕ = r(t̄)
Er ← get value(r, Γ)
return eval predicate(ϕ, Er)

case ϕ = ¬ψ
return eval neg(eval(ψ, Γ , τ))

case ϕ = ψ ∧ ψ′

Eψ ← (ψ, eval(ψ, Γ , τ))

Eψ′ ← (ψ′, eval(ψ′, Γ , τ))

return eval and(Eψ, Eψ′)

case ϕ = ψ ⊗ ψ′

Eψ ← (ψ, eval(ψ, Γ , τ))

Eψ′ ← (ψ′, eval(ψ′, Γ , τ))

return eval times(Eψ, Eψ′)

case ϕ = ∀x̄.ψ
Eψ ← eval(ψ, Γ , τ)
return eval forall(x̄, ψ, Eψ)

case ϕ = ψ SI ψ′

Eψ ← eval(ψ, Γ , τ)

Eψ′ ← eval(ψ′, Γ , τ)

return eval since(ϕ, τ , Eψ, Eψ′)

Fig. 2. The init and eval procedures

elements in Γ , as well as the return value of the eval procedure, are triples of
the form (St, Sf , S⊥), where each Sv with v ∈ 3 is either Fin V , CoFin, or None.
Such values satisfy (either by Assumption 1 or by construction) the following
invariant with regard to some formula γ and time point τ : if Sv = Fin V , then
�γ�D̄,τ

v is a finite subset of |D̄||fv(γ)| and V = �γ�D̄,τ
v ; if Sv = CoFin, then �γ�D̄,τ

v

is a cofinite subset of |D̄||fv(γ)| and the other two elements of the triple are of
the form Sv′ = Fin V ′, for v′ ∈ 3\ {v}. This invariant is denoted as Inv(γ, τ, E),
where E = (St, Sf , S⊥). By Assumption 1, the values Er from the set Γ sat-
isfy the invariant Inv(r(x̄), τ, Er), where x̄ is a sequence of distinct variables of
length ι(r). We prove in Theorem 9 that the return value E of eval(ϕ, Γ , τ) satis-
fies the invariant Inv(ϕ, τ, E), thus establishing the correctness of our algorithm.

The eval procedure, given in Figure 2, is called recursively over ψ’s sub-
formulas. The procedure performs a case distinction on all possible top-level
connectives. Some of the sub-procedures used by eval are in Figure 3, while the
remaining the pseudo-code is given in the full paper.

Next, we sketch each case of the eval procedure. The simplest case is when ψ is
the truth value f. In this case we simply return the triple (Fin ∅, Fin {()}, Fin ∅).
When ψ is of the form r(t̄) for some predicate r, we first retrieve the value Er

associated with r from the set Γ of pairs. We then retrieve the sets �r(t̄)�D̄,τ
v

from rDτ
v , for each v ∈ 3, by filtering the relations rDτ

v according to the implicit
constraints present in the sequence t̄ of constants and variables.

To evaluate formulas ψ whose top-most connective is a non-temporal connec-
tive, we first evaluate the direct sub-formulas of ψ and then compute, whenever
possible, the sets �ψ�D̄,τ

v for v ∈ 3, using the equalities given in Lemma 8 be-
low. These equalities extend the standard equalities that express the relationship
between first-order logic and relational algebra, from the Boolean to the three-
valued setting. They use the relational algebra operators projection and join [3].
We refer to the full paper for their formal definitions, and here we proceed with
their intuitive description. As the temporal aspect is not relevant in this case of

162 D. Basin et al.

eval, we also fix the time point τ and drop the superscript in �ψ�D̄,τ
v , i.e., we just

write �ψ�v , for v ∈ 3 and a formula ψ.
Given a formula ψ and a truth value v ∈ 3, we can see the set �ψ�v as a

named relation, where columns in �ψ�v are named by the free variables in f̄v (ψ).
Given a free variable x of ψ, the projection of the tuples in the relation �ψ�v
on the columns corresponding to other free variables is denoted πx(�ψ�v). For
instance, if �p(x, y)�t = {(0, 2), (1, 2), (1, 3)}, then πx(�p(x, y)�t) = {(2), (3)}. For
v, v′ ∈ 3, the natural join of the sets �ψ�v and �ψ′�v′ , denoted �ψ�v �� �ψ′�v′ , is
the set of tuples for which the projections on the columns, corresponding to ψ’s
and ψ′’s free variables, are in �ψ�v and respectively in �ψ′�v′ , and the fields of
which match on the common free variables. For instance, if �q(y, z)�t = {(2, 4)},
then �p(x, y)�t �� �q(y, z)�t = {(0, 2, 4), (1, 2, 4)}. We adopt the convention that
�� binds stronger than ∪.

Lemma 8. Let D̄ be a logging knowledge base, τ be a time point, and ψ and ψ′

be L3 formulas. The following equalities hold:

�¬ψ�v = �ψ�¬v, if v ∈ 3
�ψ ∧ ψ′�t = �ψ�t �� �ψ′�t
�ψ ∧ ψ′�f = �ψ�f ∪ �ψ′�f , if fv(ψ) = fv(ψ′)

�ψ ∧ ψ′�⊥ = �ψ�t �� �ψ′�⊥ ∪ �ψ�⊥ �� �ψ′�t ∪ �ψ�⊥ �� �ψ′�⊥
�ψ ⊗ ψ′�b = �ψ�b �� �ψ′�b, if b ∈ {t, f}
�ψ ⊗ ψ′�⊥ = �ψ�⊥ �� �ψ′�⊥ ∪ �ψ�t �� �ψ′�f ∪ �ψ�f �� �ψ′�t

�∀x. ψ�t = ∅, if �ψ�t is finite and x ∈ fv (ψ)
�∀x. ψ�f = πx(�ψ�f), if x ∈ fv(ψ)

�∀x. ψ�⊥ = πx(�ψ�⊥) \ πx(�ψ�f), if x ∈ fv(ψ)

These equalities provide a method to compute, under the stated conditions, the
relations �ψ�v from the corresponding relations for ψ’s direct sub-formulas. For
instance, if ψ = ψ1 ∧ψ2 and �ψ1�t, �ψ2�t are finite relations, then �ψ�t is a finite
relation given by the join of the other two relations. Furthermore, when �ψ1�t is
finite, �ψ2�t is cofinite, and fv (ψ2) ⊆ fv (ψ1), then �ψ�t is a finite relation that
we can compute as �ψ1�t �� �ψ2�t = �ψ1�t ��

(
|D̄||fv(ψ2)| \ (�ψ2�f ∪ �ψ2�⊥)

)
. Note

that the condition fv (ψ2) ⊆ fv(ψ1) is essential, as otherwise �ψ1�t �� �ψ2�t may
be infinite. For example, if f̄v(ψ1) = (x) and f̄v(ψ2) = (x, y) with �ψ1�t = {(1)},
�ψ2�f = {(1, 2)}, and �ψ2�⊥ = {(3, 4)}, then �ψ�t = {1} × (|D̄| \ {2, 4}). The
same method is applied to each of the other sub-cases of the binary connectives.

The described approach is implemented through the procedures eval neg,
eval and, eval times, and eval forall, given in Figure 3. Each procedure returns
a triple (Rt, Rf , R⊥), where Rv is a value computed based on the identities in
Lemma 8 using the procedures join and union, which are given in the full pa-
per. The join procedure takes as arguments tuples (ψ, E) and (ψ′, E′), and truth
values v and v′. Provided that the invariants Inv(ψ, τ, E) and Inv(ψ′, τ, E′) are
satisfied, the return value is either Fin (�ψ�v �� �ψ′�v′) or None, depending on
whether a finite relation can be computed. The union procedure has similar ar-
guments and return values. The auxiliary procedures update cofin and update
from Figure 3 handle the following corner case: If two elements of the newly

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 163

proc eval and(Hψ , Hψ′)
Rt ← join(Hψ, Hψ′ , t, t)
Rf ← union(Hψ , Hψ′ , f, f)
R⊥ ← eval and⊥(Hψ, Hψ′)
return update cofin(ψ ∧ ψ′, Rt, Rf , R⊥)

proc eval and⊥(Hψ , Hψ′)
R1 ← join(Hψ , Hψ′ , t, ⊥)

R2 ← join(Hψ , Hψ′ , ⊥, t)

R3 ← join(Hψ , Hψ′ , ⊥, ⊥)

case R1, R2, R3 = Fin V1, Fin V2, Fin V3

return Fin (V1 ∪ V2 ∪ V3)
otherwise

return None

proc eval neg(St, Sf , S⊥)
return (Sf , St, S⊥)

proc eval forall(x̄, ψ, (St, Sf , S⊥))
(Rt, Rf , R⊥) ← (None, None, None)
case St = Fin T

Rt ← Fin ∅
case S⊥ = Fin U

R⊥ ← Fin ∅
case Sf = Fin F

s̄ ← get positions(x̄, ψ)
Rf ← Fin (πs̄(F))
case S⊥ = Fin U

R⊥ ← Fin (πs̄(U) \ πs̄(F))
return update cofin(∀x̄.ψ, Rt, Rf , R⊥)

proc eval times(Hψ , Hψ′)
Rt ← join(Hψ , Hψ′ , t, t)
Rf ← join(Hψ, Hψ′ , f, f)
R⊥ ← eval times⊥(Hψ, Hψ′)
return update cofin(ψ ⊗ ψ′, Rt, Rf , R⊥)

proc eval times⊥(Hψ , Hψ′)
R1 ← union(Hψ , Hψ′ , ⊥, ⊥)

R2 ← join(Hψ , Hψ′ , t, f)
R3 ← join(Hψ , Hψ′ , f, t)
case R1, R2, R3 = Fin V1, Fin V2, Fin V3

return Fin (V1 ∪ V2 ∪ V3)
otherwise

return None

proc update cofin(ψ, Rt, Rf , R⊥)
Rt ← update(ψ, Rt, Rf , R⊥)
Rf ← update(ψ, Rf , Rt, R⊥)
R⊥ ← update(ψ, R⊥, Rt, Rf)
return (Rt, Rf , R⊥)

proc update(ψ, R1, R2, R3)
case R2 = Fin and R3 = Fin

if fv(ψ) �= ∅ then return CoFin
else if R2 = Fin ∅ and R3 = Fin ∅ then

return Fin {()}
else

return Fin ∅
otherwise

return R1

Fig. 3. The eval neg, eval and, eval times, and eval forall procedures

formed triple (Rt, Rf , R⊥) are of the form Fin V and the remaining element is
None, then update cofin(ψ, Rt, Rf , R⊥) changes None to either CoFin if fv (ϕ)
= ∅,
or otherwise (when fv(ϕ) = ∅) to Fin {()} or Fin ∅ depending on the truth value
that should be returned. This ensures that the invariant Inv is preserved by the
return value of the eval and, eval times, and eval forall procedures.

Finally, we consider the temporal operators. Let ψ = α SI β. For efficiency,
eval maintains between iterations a sequence Lψ, which is initialized by the init
procedure with the empty sequence. The sequence Lψ contains values Eτ ′ that
satisfy the invariant Inv(α S[δ,δ] β, τ, Eτ ′), where δ = τ − τ ′ and τ ′ is such that
0 ≤ τ − τ ′ < b, with I = [a, b). In this way, the sub-formulas α and β are not
re-evaluated at previous time points τ ′. Instead, the result of their evaluation is
stored in Lψ. The return value is computed by iteratively calling eval or on the
elements Eτ ′ of Lψ for which (τ − τ ′) ∈ I. This last step reflects the equivalence
between αSI β and

∨
δ∈I αS[δ,δ] β. Given two formulas ψ1 and ψ2 and two values

E1 and E2 satisfying respectively the invariants Inv(ψ1, τ, E1) and Inv(ψ2, τ, E2),
the procedure eval or returns a value E that satisfies Inv(ψ1 ∨ ψ2, τ, E).

The case for Until is analogous to Since. The only significant difference is
that the procedure must delay its answer until all relevant events have occurred.
Various optimizations, which we mention in the full paper, can further improve
the efficiency of handling temporal operators.

164 D. Basin et al.

The following theorem establishes termination and soundness of our algo-
rithm. To state it formally, we first explicitly define the relationship between the
arguments Γτ of the eval procedure, and the logging structures Dτ of D̄. We let

triples(Dτ) :=
{(

r, (val (rDτ
t), val(rDτ

f), val(rDτ

⊥))
)
| r ∈ R

}
,

where val(V) is Fin V if V is finite, and is CoFin otherwise. Thus Γτ = triples(Dτ).

Theorem 9. Let D̄ be a logging knowledge base, ϕ a formula in L3, and τ ∈ N
a time point. The procedure eval(ϕ, Γτ , τ) returns a value E that satisfies the
invariant Inv(ϕ, τ, E), whenever init(ϕ), eval(ϕ, Γ0, 0), . . . , eval(ϕ, Γτ−1, τ − 1)
were called previously in this order, where Γτ ′ = triples(Dτ ′), for τ ′ ≤ τ .

A Complete Fragment. In general, our algorithm is incomplete. However,
by limiting the usage of free variables, we obtain the fragment Lc

3 for which we
guarantee completeness.

Definition 10. The set Lc
3 of formulas is inductively defined:

– f ∈ Lc
3 and r(t1, . . . , tι(r)) ∈ Lc

3,
– if ϕ ∈ Lc

3, then ¬ϕ ∈ Lc
3 and ∀x. ϕ ∈ Lc

3,
– if ϕ, ψ ∈ Lc

3 and either fv (ϕ) = fv(ψ), fv (ϕ) = ∅, or fv(ψ) = ∅, then
ϕ ∧ ψ ∈ Lc

3, ϕ ⊗ ψ ∈ Lc
3, ϕ SI ψ ∈ Lc

3, and ϕ UI ψ ∈ Lc
3.

Note that Lc
3 allows universal quantification and, by using ¬, also existential

quantification of free variables, and both quantifiers can be nested freely. But
if an Lc

3 formula contains a sub-formula with no quantifiers and two or more
predicates, they must have the same free variables. As all of L3’s connectives are
retained and their application is not restricted, Lc

3 can still express all monotonic
finitary operators. However, they cannot be used as liberally as in L3.

The first and second policy examples in Section 3 fall within Lc
3. However,

due to the free-variable restriction, the following formula is not in Lc
3:

�∀s. ∀r. ∀m. send(s, r, m) → �I authorize(m) .

It says that all messages m, sent by s to r must be subsequently authorized. This
is a typical compliance policy from the HIPAA Privacy Rule [1]. By pushing the
quantification of s and r inside the antecedent, we obtain a formula in Lc

3:

�∀m.
(
∃s. ∃r. send(s, r, m)

)
→ �I authorize(m) .

One can check that evaluating ∀x. ϕ → ψ and (∃x. ϕ) → ψ, as well as ∃x. ϕ ∧ ψ
and (∃x. ϕ) ∧ψ, where x
∈ fv (ψ), over an arbitrary logging knowledge base and
an arbitrary time point yields the same truth value.

It is not always possible to rewrite a formula such that the result falls into Lc
3.

Recall the third example (the separation-of-duty requirement) from Section 3.
Clearly, it does not fall within Lc

3. However, if there are finitely many datasets, we
can partially ground the formula, obtaining a family of formulas ϕd,d′, where d
and d′ range over the datasets. Each is in Lc

3 after similar rewriting as above:

ϕd,d′ :=�
(
∃s. (∃o. access(s, o, d)) ∧ ∃o′. � access(s, o′, d′)

)
→

C[0,2)¬conflict(d, d′) .

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 165

Syntactic rewriting and partial grounding cannot always be applied. Still, Lc
3 is

an expressive fragment that captures a wide-range of compliance policies.
Finally, we state our result on the algorithm’s completeness on Lc

3 formu-
las. To do so, we define the stronger invariant Invc(ϕ, τ, E) which, in addi-
tion to Inv(ϕ, τ, E), requires that there are v′, v′′ ∈ 3 with v′
= v′′ such that
Sv′ = Fin V ′ and Sv′′ = Fin V ′′ for some sets V ′, V ′′, where E = (St, Sf , S⊥).

Theorem 11. Let D̄ be a logging knowledge base, ϕ a formula in Lc
3, and τ ∈ N

a time point. The procedure eval(ϕ, Γτ , τ) returns a value E that satisfies the
invariant Inv c(ϕ, τ, E), whenever init(ϕ), eval(ϕ, Γ0, 0), . . . , eval(ϕ, Γτ−1, τ−1)
were called previously in this order, where Γτ ′ = triples(Dτ ′), for τ ′ ≤ τ .

6 Related Work

The only work we are aware of that addresses the problem of compliance check-
ing with incomplete knowledge is Garg et al. [21]. Their policy language is a
restricted first-order logic. It has a more liberal usage of free variables compared
to Lc

3, but it does not consider ⊥ at the object-level and cannot express the
⊗ operator. They adopt a weaker logging assumption, whereby a finite or an
infinite number of event occurrences can be unknown. However, their compli-
ance algorithm is not suitable for on-line monitoring and, more importantly, it
is incomplete, even with our logging assumption. Recall our first policy example
in Section 3. If the web-server’s logger crashes and there are no denials, their al-
gorithm does not report that there are no violations. Instead, it wrongly reports
that there may be potential violations, where in fact there are none. Similarly, it
may also fail to report violations. For example, given a specification of the form

� ∀x̄. c(x̄)→ ∃ȳ. c′(x̄, ȳ) ∧ ∀z̄. ϕ(x̄, ȳ, z̄) ,

then all x̄ that violate the policy by making c true and ϕ false, but for which
all c′ events are missing, are not reported. This is because their algorithm eval-
uates formulas in a top-down fashion: it first finds all x̄ that satisfy c, then it
partially grounds2 the consequent, then it finds all ȳ that satisfy c′, and then
partially grounds ϕ, and so forth. However, if there are no partial groundings,
the algorithm stops further evaluations. In contrast, since our algorithm works
in a bottom-up fashion, it does not have this problem.

The problem of incompleteness and disagreements is also present in other
fields, and some approaches there are also based on many-valued logics. Some
access-control policy languages [15, 18] use multiple truth values to represent
different access-control decisions. These languages are propositional and do not
support temporal reasoning. Several model-checking approaches [13, 14, 16] also
consider a many-valued truth space. However, their many-valued semantics do
not guarantee policy-compliance monotonicity. Furthermore, their specification
languages only have the classical Boolean and temporal connectives.

2 Their logging assumption and language restrictions guarantee that there are always
only finitely many satisfying ground instances.

166 D. Basin et al.

Bauer et al. [8] extend the classical LTL semantics by also assigning non-
Boolean truth values to finite and complete prefixes of infinite traces. Their
semantics differentiate whether all or some extensions of a finite trace satisfy a
property. However, the Boolean and temporal operators are not extended over
the additional truth values. Furthermore, they do not consider the ordering ≤k

of the truth values in knowledge.
Another approach to dealing with incompleteness is to make quantitative

statements, e.g., how certain it is whether a property is violated. Stoller et al. [26]
present such an approach for monitoring traces with gaps. Their solution first
assigns probabilities to whether events happened during gaps, and then com-
putes the overall probability that a temporal property is violated. This solution
is orthogonal to ours. It requires a reliable training set to derive appropriate
probability assignments for different event occurrences.

7 Conclusions

In complex IT systems, logging failures happen and knowledge about the occur-
rence of system actions is incomplete when monitoring the system. Furthermore,
system components can disagree on whether actions took place. Approaches for
checking system compliance based on the classical Boolean setting are insuffi-
cient since they may incorrectly report policy violations. A three-valued truth
space allows us to correctly distinguish between violations and potential viola-
tions. The solution presented in this paper carefully adopts a three-value truth
space so that policy evaluations are correct regardless of how knowledge gaps
are resolved. The presented monitoring algorithm shows that policy violations
and potential violations can be soundly and completely determined.

As future work we will investigate how to efficiently resolve potential violations
as prior knowledge gaps are incrementally resolved. We also plan case studies
to evaluate our monitoring algorithm in real-world settings. Finally, we would
like to explore different truth spaces to distinguish between different kinds of
knowledge gaps and disagreements.

Acknowledgments. We thank Germano Caronni and Matúš Harvan for fruit-
ful discussions on this topic.

References

1. The Health Insurance Portability and Accountability Act of 1996 (HIPAA), Public
Law 104-191 (1996)

2. Gramm-Leach-Bliley Act of 1999 (GLBA), Public Law 106-102 (1999)
3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley

Longman Publishing Co., Inc., Boston (1995)
4. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. J.

Aero. Comput. Inform. Comm. 7, 365–390 (2010)
5. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring usage-control poli-

cies in distributed systems. In: TIME 2011, pp. 88–95 (2011)

Monitoring Compliance Policies over Incomplete and Disagreeing Logs 167

6. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: Monitoring Usage-
Control Policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186,
pp. 360–364. Springer, Heidelberg (2012)

7. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: FSTTCS 2008. Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 2, pp. 49–60 (2008)

8. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Logic Comput. 20(3), 651–674 (2010)

9. Belnap Jr., N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.)
Modern Uses of Multiple-Valued Logic. Episteme, vol. 2, pp. 7–37. D. Reidel Pub-
lishing Company (1977)

10. Blamey, S.: Partial logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of
Philosophical Logic, vol. 5, pp. 261–353. Kluwer Academic Publishers (2002)

11. Boella, G., Broersen, J., van der Torre, L.: Reasoning about Constitutive Norms,
Counts-As Conditionals, Institutions, Deadlines and Violations. In: Bui, T.D., Ho,
T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 86–97. Springer,
Heidelberg (2008)

12. Broersen, J.: On the Logic of ’Being Motivated to Achieve �, Before δ′. In: Alferes,
J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 334–346. Springer,
Heidelberg (2004)

13. Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Tem-
poral Logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 274–287. Springer, Heidelberg (1999)

14. Bruns, G., Godefroid, P.: Model Checking with Multi-valued Logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 281–293. Springer, Heidelberg (2004)

15. Bruns, G., Huth, M.: Access control via Belnap logic: Intuitive, expressive, and
analyzable policy composition. ACM Trans. Inform. Syst. Secur. 14(1) (2011)

16. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Trans. Softw. Eng. Meth. 12(4), 371–408 (2003)

17. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995)

18. Crampton, J., Morisset, C.: PTaCL: A Language for Attribute-Based Access Con-
trol in Open Systems. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 390–409. Springer, Heidelberg (2012)

19. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Checking Traces for Regulatory Con-
formance. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 86–103. Springer,
Heidelberg (2008)

20. Fitting, M.: Kleene’s logic, generalized. J. Log. Comput. 1(6), 797–810 (1991)
21. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: Theory, imple-

mentation and applications. In: CCS 2011, pp. 151–162 (2011)
22. Groce, A., Havelund, K., Smith, M.: From scripts to specification: The evaluation

of a flight testing effort. In: ICSE 2010, vol. 2, pp. 129–138 (2010)
23. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts

with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)
24. Hvitved, T., Klaedtke, F., Zălinescu, E.: A trace-based model for multiparty con-

tracts. J. Log. Algebr. Program. 81(2), 72–98 (2012)
25. Kleene, S.C.: Introduction toMetamathematics. D. Van Nostrand, Princeton (1950)
26. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,

Zadok, E.: Runtime Verification with State Estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

Adaptive Runtime Verification

Ezio Bartocci2, Radu Grosu2, Atul Karmarkar1, Scott A. Smolka1, Scott D. Stoller1,
Erez Zadok1, and Justin Seyster1

1 Department of Computer Science, Stony Brook University, USA
2 Department of Computer Engineering, Vienna University of Technology

Abstract. We present Adaptive Runtime Verification (ARV), a new approach to
runtime verification in which overhead control, runtime verification with state es-
timation, and predictive analysis are synergistically combined. Overhead control
maintains the overhead of runtime verification at a specified target level, by en-
abling and disabling monitoring of events for each monitor instance as needed.
In ARV, predictive analysis based on a probabilistic model of the monitored sys-
tem is used to estimate how likely each monitor instance is to violate a given
temporal property in the near future, and these criticality levels are fed to the
overhead controllers, which allocate a larger fraction of the target overhead to
monitor instances with higher criticality, thereby increasing the probability of vi-
olation detection. Since overhead control causes the monitor to miss events, we
use Runtime Verification with State Estimation (RVSE) to estimate the probabil-
ity that a property is satisfied by an incompletely monitored run. A key aspect of
the ARV framework is a new algorithm for RVSE that performs the calculations
in advance, dramatically reducing the runtime overhead of RVSE, at the cost of
introducing some approximation error. We demonstrate the utility of ARV on a
significant case study involving runtime monitoring of concurrency errors in the
Linux kernel.

1 Introduction

In [11], we introduced the concept of runtime verification with state estimation (RVSE),
and showed how it can be used to estimate the probability that a temporal property is
satisfied by a partially or incompletely monitored program run. In such situations, there
may be gaps in observed program executions, making accurate estimation challenging.

Incomplete monitoring can arise from a variety of sources. For example, in real-
time embedded systems, the sensors might have intrinsically limited fidelity, or the
scheduler might skip monitoring of internal or external events due to an impending
deadline for a higher-priority task. Incomplete monitoring also arises from overhead
control frameworks, such as [5], which repeatedly disable and enable monitoring of
selected events, to maintain the overall overhead of runtime monitoring at a specified
target level. Regardless of the cause, simply ignoring the fact that unmonitored events
might have occurred gives poor results.

The main idea behind RVSE is to use a statistical model of the monitored system, in
the form of a Hidden Markov Model (HMM), to “fill in” gaps in event sequences. We
then use an extended version of the forward algorithm of [7] to calculate the probability

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 168–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adaptive Runtime Verification 169

that the property is satisfied. The HMM can be learned automatically from training runs,
using standard algorithms [7].

When the cause of incomplete monitoring is overhead control, a delicate interplay
exists between RVSE and overhead control, due to the runtime overhead of RVSE itself:
the matrix-vector calculations performed by the RVSE algorithm to process an obser-
vation symbol—which can be a program event or a gap symbol paired with a discrete
probability distribution describing the length of the gap—are expensive. Note that we
did not consider this interplay in [11], because the RVSE calculations were performed
post-mortem in the experiments described there.

The relationship between RVSE and overhead control can be viewed as an accuracy-
overhead tradeoff: the more overhead RVSE consumes processing an observation sym-
bol, with the goal of performing more accurate state estimation, the more events are
missed (because less overhead is available). Paradoxically, these extra missed events
result in more gap symbols, making accurate state estimation all the more challenging.

This tension between accurate state estimation and overhead control can be under-
stood in terms of Heisenberg’s uncertainty principle, which essentially states that the
more accurately one measures the position of an electron, the more its velocity is per-
turbed, and vice versa. In the case of RVSE, we are estimating the position (state)
and velocity (execution time) of a “computation particle” (program counter) flowing
through an instrumented program.

With these concerns in mind, this paper presents Adaptive Runtime Verification
(ARV), a new approach to runtime verification in which overhead control, runtime ver-
ification with state estimation, and predictive analysis are synergistically combined. In
ARV, as depicted in Figure 1, each monitor instance1 has an associated criticality level,
which is a measure of how “close” the instance is to violating the property under investi-
gation. As criticality levels of monitor instances rise, so will the fraction of monitoring
resources allocated to these instances, thereby increasing the probability of violation
detection and concomitant adaptive responses to property violations.

The main contributions of this paper are:

– In ARV, the overhead-control subsystem and the RVSE-enabled monitoring
subsystem are coupled together in a feedback control loop: overhead control in-
troduces gaps in event sequences, whose resolution requires HMM-based state
estimation (RVSE); state estimation informs overhead control, closing the loop.
Up-to-date state estimates enable the overhead-control subsystem to make intelli-
gent, criticality-based decisions about how to allocate the available overhead among
monitor instances.

– A key aspect of the ARV framework is a new algorithm for RVSE that performs
the calculations offline (in advance), dramatically reducing the runtime overhead
of RVSE, at the cost of introducing some approximation error. We analyze the
cumulative approximation error incurred by this algorithm.

– To compute the criticality levels of monitor instances, the ARV framework per-
forms reward-based reachability queries over the Discrete Time Markov Chain

1 A monitor instance is a runtime instance of a parameterized monitor. For example, our monitor
for concurrency errors in the Linux kernel is parameterized by the id (address) of the structure
being monitored.

170 E. Bartocci et al.

Primary
Controller

Secondary
Controllers

Monitoring
Framework

Bound
Overhead

α: () α: () α: ()

Error Probability

...

...

Criticality

RVSE
Monitor
Instances

Monitored System

Crit:
Safe

Crit:
Safe

Crit:
Critical

EP:
Low

EP:
Med

EP:
Low

Ovhd: Low Ovhd: Low Ovhd: High

InterAspect

Fig. 1. The Adaptive Runtime Verification Framework

(DTMC) derived from the composition of the HMM model of the monitored pro-
gram and the monitor, represented as a Deterministic Finite State Machine (DFSM).
These queries determine the expected distance to the monitor’s error state. These
queries are also computed in advance, and the results are stored in a data structure.

– We demonstrate the utility of the ARV approach on a significant case study involv-
ing runtime monitoring of concurrency errors in the Linux kernel.

2 Background

Hidden Markov Models (HMMs). An HMM [7] is a tuple H = 〈S, A, V, B, π〉 con-
taining a set S of states, a transition probability distribution A, a set V of observation
symbols (also called “outputs”), an observation probability distribution B, and an ini-
tial state distribution π. The states and observations are indexed (i.e., numbered), so S
and V can be written as S = {s1, s2, . . . , sNs} and V = {v1, . . . , vNo}, where Ns is
the number of states, and No is the number of observation symbols. Let Pr(c1 | c2)
denote the probability that c1 holds, given that c2 holds. The transition probability
distribution A is an Ns × Ns matrix indexed by states in both dimensions, such that
Ai,j = Pr(state is sj at time t + 1 | state is si at time t). The observation probabil-
ity distribution B is an Ns × No matrix indexed by states and observations, such that
Bi,j = Pr(vj is observed at time t | state is si at time t). Following tradition, we de-
fine bi(vk) = Bi,k. Prior distribution πi is the probability that the initial state is si.

An example of an HMM is depicted in Figure 3 a). Each state is labeled with ob-
servation probabilities in that state; for example, P(LOCK)=0.99 in state s1 means

Adaptive Runtime Verification 171

B1,LOCK = 0.99. Edges are labeled with transition probabilities; for example, 0.20 on
the edge from s2 to s3 means A2,3 = 0.20.

Learning HMMs. Given a set of traces of a system and a desired number of states of
the HMM, it is possible to learn an HMM model of the system using standard algo-
rithms [7]. The main idea behind these algorithms is to maximize the probability that
the HMM generates the given traces. In our experiments, we chose an HMM model
with three states, used the Baum-Welch learning algorithm [1], and provided the learn-
ing algorithm with 1,000 traces as input. Figure 3 a) depicts the transition and obser-
vation probability distributions of the resulting HMM model. The related case study
(Section 6) provides further details.

Deterministic Finite State Machines (DFSMs). We assume that the temporal property
φ to be monitored is expressed as a parametrized deterministic finite state machine.
A DFSM is a tuple M = 〈SM , minit , V, δ, F 〉, where SM is the set of states, minit

in SM is the initial state, V is the alphabet (also called the set of input symbols), δ :
SM × V → SM is the transition function, and F is the set of accepting states (also
called “final states”). Note that δ is a total function. A trace O satisfies the property iff
it leaves M in an accepting state.

RVSE Algorithm. In [11], we extended the forward algorithm to estimate the probability
of having encountered an error (equivalent to be in an accepting state) in the case where
the observation sequence O contains the symbol gap(L) denoting a possible gap with
an unknown length. The length distribution L is a probability distribution on the natural
numbers: L(�) is the probability that the gap has length �.

The Hidden Markov Model H = 〈S, A, V, B, π〉 models the monitored system,
where S = {s1, . . . , sNs} and V = {v1, . . . , vNo}. Observation symbols of H are
observable actions of the monitored system. H need not be an exact model of the
system.

The property φ is represented by a DFSM M = 〈SM , minit , V, δ, F 〉. For simplicity,
we take the alphabet of M to be the same as the set of observation symbols of H . It
is easy to allow the alphabet of M to be a subset of the observation symbols of H ,
by modifying the algorithm so that observations of symbols outside the alphabet of M
leave M in the same state.

The goal is to compute Pr(φ | O, H), i.e., the probability that the system’s behav-
ior satisfies φ, given observation sequence O and model H . Let Q = 〈q1, q2, . . . , qT 〉
denote the (unknown) state sequence that the system passed through, i.e., qt denotes
the state of the system when observation Ot is made. We extend the forward algo-
rithm [7] to compute αt(i, m) = Pr(O1, O2, . . . , Ot, qt = si, mt = m | H), i.e.,
the joint probability that the first t observations yield O1, O2, . . . , Ot and that qt is
si and that mt is m, given the model H . We refer to a pair (j, n) of an HMM state
and a DFSM state as a compound state, and we sometimes refer to αt as a proba-
bility distribution over compound states. The extended algorithm appears in Figure 2.
The desired probability Pr(φ | O, H) is the probability that the DFSM is in an ac-
cepting state after observation sequence O, which is psat(α|O|+1), where psat(α) =∑

j∈1..Ns,n∈F α(j, n) /
∑

j∈1..Ns,n∈SM
α(j, n). The probability of an error (i.e., a

violation of the property) is perr(α) = 1− psat(α).

172 E. Bartocci et al.

pi(m,n) =
∑

v∈V s.t. δ(m,v)=n

bi(v) (1)

g0(i,m, j, n) = (i = j ∧m = n) ? 1 : 0 (2)

g�+1(i,m, j, n) =
∑

i′∈[1..Ns],m′∈SM

g�(i,m, i′,m′)Ai′,jpj(m
′, n) (3)

α1(j, n) = (4){
(n = δ(minit , O1)) ?πjbj(O1) : 0 if O1 �= gap(L)
L(0)(n = minit ? πj : 0) +

∑
�>0,i∈[1..Ns]

L()πig�(i,minit , j, n) if O1 = gap(L)

for 1 ≤ j ≤ Ns and n ∈ SM

αt+1(j, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

∑
i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

⎞
⎟⎟⎟⎟⎟⎠

bj(Ot+1) if Ot+1 �= gap(L)

L(0)αt(j, n) +
∑
�>0

L()
∑

i∈[1..Ns]

m∈SM

αt(i,m)g�(i,m, j, n) if Ot+1 = gap(L)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(5)

Fig. 2. Forward algorithm for Runtime Verification with State Estimation. pred(n, v) is the set of
predecessors of n with respect to v in the DFSM, i.e., the set of states m such that M transitions
from m to n on input v.

3 The ARV Framework: Architecture and Principles

Figure 1 depicts the architecture of the ARV framework. ARV uses InterAspect [8],
an aspect-oriented program-instrumentation framework that we developed for the GCC
compiler collection, to insert code that intercepts monitored events and sends them
to the monitoring framework. The monitoring framework maintains a separate RVSE-
enabled monitor instance for each monitored object.

Each monitor instance uses the RVSE algorithm in Section 4 to compute its estimate
of the composite HMM-DFSM state; specifically, it keeps track of which pre-computed
probability distribution over compound states characterizes the current system state.

Each instance uses this probability distribution over compound states to compute the
its error probability (EP), i.e., the probability that a property violation has occurred, as
described in Section 4. Each instance also uses this probability distribution over com-
pound states to compute its criticality level, based on the expected number of transitions
before a violation occurs, using the predictive analysis of Section 5.

The overhead-control subsystem is structured, as in SMCO [5], as a cascade con-
troller comprising one primary controller and a number of secondary controllers, one
per monitor instance. The primary controller allocates monitoring resources (overhead),
and the secondary controllers enforce the overhead allocation by disabling monitoring

Adaptive Runtime Verification 173

pLOCK = 3.8 ⋅10−21

pUNLOCK = 2.4 ⋅10−−18

pPROT . = 0.99
pUNPROT .= 3.9 ⋅10−4

 s3

LOCK LLLL

LOCK
PROT.
UNPROT.

UNLOCK
PROT.
UNPROT.

LOCK

UNLOCK

LL

LOCK
UNLOCK
PROT.
UNPROT.

PROT.

UNLOCK
UNPROT.

 s1 s2

0.79

LOCK LL

PROT.
UNPROT. UNPROT.

PROT.
UNPROT.

LOCK

LOCK
UNLOCK
PROT.
UNPROT.

UNLOCK UNLOCK
PROT.

LOCK

UNLOCK

L

 3.56 ⋅⋅10−11

 0.20

 3.9 ⋅⋅10−12

pLOCK = 1.3 ⋅⋅10−40

pUNLOCK = 0.99
pPROT . = 9.4 ⋅10−7

pUNPROT .= 9.2 ⋅10−4

pLOCK = 0.99
pUNLOCK = 2.1⋅⋅10−41

pPROT . = 5.7 ⋅10−7

pUNPROT .= 1.2 ⋅10−3

 5.74 ⋅⋅10−7

 0.99

 7.9 ⋅⋅10−12

 0.99
 1.08 ⋅⋅10−11

 0.99

 4.2 ⋅⋅10−5

 9.46 ⋅⋅10−7

Fig. 3. Left (a): An example of an HMM. Right (b): Two examples of DFSM. States with a double
border are accepting states.

when necessary. A key feature of ARV’s design is the ability to redistribute overhead
so that more critical monitor instances are allowed more monitoring overhead.

4 Pre-computation of RVSE Distributions

Performing the matrix calculations in the RVSE algorithm during monitoring incurs
very high overhead. This section describes how to dramatically reduce the overhead by
pre-computing compound-state probability distributions α and storing them in a rooted
graph. Each edge of the graph is labeled with an observation symbol. At run-time, the
algorithm maintains (for each monitor instance) a pointer curNode, indicating the node
associated with the current state. The probability distribution in the current state is given
by the matrix associated with curNode . Initially, curNode points to the root node. Upon
observing an observation symbol O, the algorithm finds the node n′ reachable from
curNode by an edge labeled with O, and then assigns n′ to curNode. Note that this
takes constant time, independent of the sizes of the HMM and the monitor.

In general, an unbounded number of probability distributions may be reachable,
in which case the graph would be infinite. We introduce an approximation in order
to ensure termination. Specifically, we introduce a binary relation closeEnough on
compound-state probability distributions, and during the graph construction, we iden-
tify nodes that are close enough.

Pseudo-code for the graph construction appears in Figure 4. successor(α, O) is the
probability distribution obtained using the forward algorithm—specifically, equation

174 E. Bartocci et al.

α0 = the probability distribution with α0(j,minit) = π0(j), and α0(j, n) = 0 for n �= minit

workset = {α0}
nodes = {α0}
while workset �= ∅
α = workset .removeOne();
for each observation symbol O in V
α′ = normalize(successor(α,O))
if dead(α′)
continue

endif
if α′ ∈ nodes
add an exact edge labeled with O from α to α′

else if there exists α′′ in nodes such that closeEnough(α′, α′′)
add an approximate edge labeled with O from α to α′

else
add α′ to nodes and workset
add an exact edge labeled with O from α to α′

endif
endfor

endwhile

Fig. 4. Pseudo-code for graph construction

(5)—to update compound-state probability distribution α based on observation of ob-
servation symbol O. Note that each edge is marked as exact or approximate, indicating
whether it introduces any inaccuracy. normalize(α) is the probability distribution ob-
tained by computing

∑
j,n α(j, n) and then dividing every entry in α by this sum; the

resulting matrix α′ satisfies
∑

j,n α′(j, n) = 1. Normalization has two benefits. First,
it helps reduce the number of nodes, because normalized matrices are more likely to
be equal or close-enough than un-normalized matrices. Second, normalization helps
reduce the inaccuracy caused by the use of limited-precision numerical calculations
in the implementation (cf. [7, Section V.A]), which uses the term “scaling” instead of
“normalization”). Normalization is compatible with our original RVSE algorithm—in
particular, it does not affect the value calculated for Pr(φ | O, H)—and it provides the
second benefit described above in that algorithm, too, so we assume hereafter that the
original RVSE algorithm is extended to normalize each matrix αt.

A state s of a DFSM is dead if it is non-accepting and all of its outgoing transitions
lead to s. A probability distribution is dead if the probabilities of compound states
containing dead states of the DFSM sum to 1. The algorithm does not bother to compute
successors of dead probability distributions, which always have error probability 1.

We define the close-enough relation by: closeEnough(α, α′) iff ||α − α′||sum ≤ ε,
where ε is an implicit parameter of the construction, and ||α||sum =

∑
i,j |α(i, j)|. Note

that, if we regard α as a vector, as is traditional in HMM theory, then this norm is the
vector 1-norm.

Termination. We prove termination of the graph construction using the pigeonhole prin-
ciple. Consider the space of Ns × Nm matrices with entries in the range [0..1], where

Adaptive Runtime Verification 175

Nm = |Sm|. Partition this space into cells (hypercubes) with edge length ε/NsNm. If
two matrices α and α′ are in the same cell, then the absolute value of the largest element
in α−α′ is at most ε/NsNm, and ||α−α′||sum is at most the number of elements times
the largest element, so ||α − α′||sum ≤ NsNmε/NsNm, hence ||α − α′||sum ≤ ε. The
contrapositive of this conclusion is: if two matrices satisfy ||α− α′||sum > ε, then they
are in different cells. Therefore, the number of nodes in the graph is bounded by the
number of cells in this grid, which is (NsNm/ε)NsNm . Note that this termination proof
applies even if normalization is omitted from the algorithm.

Cumulative Inaccuracy. Use of the closeEnough relation during graph construction
introduces inaccuracy. We characterize the inaccuracy by bounding the difference be-
tween the probability distribution matrix associated with curNode and the probabil-
ity distribution matrix that would be computed by the original RVSE algorithm. Let
α′
1, α′

2, . . . , α′
t be the sequence of matrices labeling the nodes visited in the graph, for

a given observation sequence O. Let α1, α2, . . . , αt be sequence of matrices calculated
by the RVSE algorithm for the same observation sequence O. The cumulative inac-
curacy is expressed as a bound err t on ||αt − α′

t||sum. First, we consider inaccuracy
assuming that the original and new RVSE algorithms do not normalize the probability
distributions (recall that normalization is not needed to ensure soundness or termina-
tion), and we show that the cumulative inaccuracy does not increase along an exact
edge and increases by at most ε along an approximate edge.

We define err t inductively. The base case is err0 = 0. For the induction case, we
suppose ||α′

t−αt||sum ≤ err t and define err t+1 so that ||α′
t+1−αt+1||sum ≤ err t+1.

If the transition from α′
t to α′

t+1 traverses an exact edge, then the inaccuracy remains
unchanged: err t+1 = err t. To prove this, we show that the following inequality holds:
||successor(α′

t, Ot+1) − successor(αt, Ot+1)||sum ≤ err t. To prove this, we expand
the definition of successor and simplify. There are two cases, depending on whether
Ot+1 is a gap. If Ot+1 is not a gap,

∑
j∈[1..Ns],n∈SM

|successor(α′
t, Ot+1)− successor(αt, Ot+1)|

=
∑

j∈[1..Ns],n∈SM

∑
i∈[1..Ns],m∈pred(n,Ot+1)

|α′
t(i,m) − αt(i,m)|Ai,jbj(Ot+1)

// M is deterministic, so each m is predecessor of at most one n for given Ot+1,
// so for any f ,

∑
n∈SM ,m∈pred(n,Ot+1)

f(m) ≤ ∑
m∈SM

f(m).
≤ ∑

j∈[1..Ns],i∈[1..Ns],m∈SM
|α′

t(i,m) − αt(i,m)|Ai,jbj(Ot+1)

A is stochastic, i.e.,
∑

j∈SM
Ai,j = 1, and bj(Ot+1) ≤ 1

≤ ∑
i∈[1..Ns],m∈SM

|α′
t(i,m) − αt(i,m)|

≤ errt

If Ot+1 is a gap,
∑

j∈[1..Ns],n∈SM
|successor(α′

t, Ot+1)− successor(αt, Ot+1)|
=

∑
j∈[1..Ns],n∈SM

L(0)|α′
t(j, n)− αt(j, n)|

+
∑

�>0 L(�)
∑

i∈[1..Ns],m∈pred(n,Ot+1)
|α′

t(i,m)− αt(i,m)|g�(i,m, j, n)

// definition of errt
≤ L(0)err t

+
∑

�>0 L(�)
∑

i∈[1..Ns],m∈pred(n,Ot+1)
|α′

t(i,m)− αt(i,m)|∑j∈[1..Ns],n∈SM
g�(i,m, j, n)

// g�(i,m, ·, ·) is stochastic, i.e.,
∑

j∈[1..Ns],n∈SM
g�(i,m, j, n) = 1, and def. of errt

≤ L(0)err t +
∑

�>0 L(�)err t
//
∑

�≥0 L(�) = 1

≤ errt

176 E. Bartocci et al.

If the transition from α′
t to α′

t+1 traverses an approximate edge, then, by definition
of closeEnough, the traversal may add ε to the cumulative inaccuracy, so err t+1 =
err t + ε. Note that the same argument used in the case of an exact edge implies that the
inaccuracy in err t is not amplified by traversal of an approximate edge.

Now we consider the effect of normalization on cumulative inaccuracy. We show
that normalization does not increase the inaccuracy. Let α̂′

t and α̂t be the probability
distributions computed in step t before normalization; thus, α′

t = normalize(α̂′
t) and

αt = normalize(α̂t). Note that
∑

j,n α̂′
t(j, n) and

∑
j,n α̂t(j, n) are at most 1; this

is a property of the forward algorithm (cf. [7, Section V.A]). Also, every element of
α̂′
t, α̂t α′

t, and αt is between 0 and 1. Thus, normalization moves each element of α̂′
t

and α̂t to the right on the number line, closer to 1, or leaves it unchanged. For con-
creteness, suppose

∑
j,n α̂′

t(j, n) <
∑

j,n α̂t(j, n); a completely symmetric argument
applies when the inequality points the other way. This inequality implies that, on aver-
age, elements of α̂′

t are to the left of elements of α̂t. It also implies that, on average,
normalization moves elements of α̂′

t farther (to the right) than it moves elements of α̂t.
These observations together imply that, on average, corresponding elements of α̂′

t and
α̂t are closer to each other after normalization than before normalization, and hence
that ||α′

t − αt||sum ≤ ||α̂′
t − α̂t||sum. Note that elements of α̂′

t cannot move so much
farther to the right than elements of α̂t that they end up being farther, on average, from
the corresponding elements of α̂t, because both matrices end up with the same average
value for the elements (namely, 1/NsNm).

Stricter Close-Enough Relation. To improve the accuracy of the algorithm, a slightly
stricter close-enough relation is used in our experiments: closeEnough(α, α′) holds iff
||α − α′||sum ≤ ε ∧ (pdead(α) = 0 ⇔ pdead(α

′) = 0), where pdead(α) is the sum of
the elements of α corresponding to compound states containing a dead state of M . It is
easy to show that the algorithm still terminates, and that the above bound on cumulative
inaccuracy still holds.

5 Predictive Analysis of Criticality Levels

Criticality Level. We define the criticality level of a monitor instance to be the inverse
of the expected distance (number of steps) to a violation of the property of interest. To
compute this expected distance for each compound state, we compute a Discrete Time
Markov Chain (DTMC) by composing the HMM model H of the monitored program
with the DFSM M for the property. We then add a reward state structure to it, assigning
a cost of 1 to each compound state. We use PRISM [6] to compute, as a reward-based
reachability query, the expected number of steps for each compound state to reach com-
pound states containing dead states of M . Note that these queries are issued in advance
of the actual runtime monitoring, with the results stored in a table for efficient access.

Discrete-Time Markov Chain (DTMC). A Discrete-Time Markov Chain (DTMC) [6]
is a tuple D = (SD, s̃0,P), where SD is a finite set of states, s̃0 ∈ SD is the initial
state, and P : SD × SD → [0, 1] is the transition probability function. P(s̃1, s̃2) is the
probability of making a transition from s̃1 to s̃2.

Adaptive Runtime Verification 177

Reward Structures. DTMCs can be extended with a reward (or cost) structure [6]. A
state reward function ρ is a function from states of the DTMC to non-negative real
numbers, specifying the reward (or cost, depending on the interpretation of the value in
the application of interest) for each state; specifically, ρ(s̃) is the reward acquired if the
DTMC is in state s̃ for 1 time-step.

Composition of an HMM with a DFSM. Given an HMM H = 〈S, A, V, B, π〉 and a
DFSM M = 〈SM , minit , V, δ, F 〉, their composition is a DTMC D = (SD, s̃0,P),
where SD = (S × SM) ∪ {s̃0}, s̃0 is the initial state, and the transition probability
function P is defined by:

– P(s̃0, (si, minit)) = π, with 1 ≤ i ≤ |S|,
– P((si1 , mj1), (si2 , mj2)) = Ai1,i2

∑
∀vk∈V :δ(mi1 ,vk)=mi2

bi1(vk).

We extend D with the state reward function such that ρ(s̃) = 1 for all s̃ ∈ SD. With
this reward function, we can calculate the expected number of steps until a particular
state of the DTMC occurs.

Computing the Expected Distance. The expected distance ExpDist(s̃, T) of a state s̃
of the DTMC to reach a set of states T ⊆ SD is defined as the expected cumulative
reward and is computed as follows:

ExpDist(s̃, T) =

⎧⎨
⎩
∞ if PReach(s̃, T) < 1
0 if s̃ ∈ T
ρ(s̃) +

∑
s̃′∈SD

P(s̃, s̃′) · ExpDist(s̃′, T) otherwise

where PReach(s̃, T) is the probability to eventually reach a state in T starting from
s̃. For further details on quantitative reachability analysis for DTMCs, see [6]. The
expected distance for a monitor instance with compound-state probability distribution
α is then defined by ExpDist(α, T) =

∑
i,j α(i, j) · ExpDist((si, mj), T).

6 Case Study

We evaluate our system by designing a monitor for the lock discipline property and ap-
plying it to the Btrfs file system. This property is implicitly parameterized by a struct
type S that has a lock member, protected fields, and unprotected fields. Informally, the
property requires that all accesses to protected fields occur while the lock is held.

The DFSM MLD(t, o) for the lock discipline property is parameterized by a thread
t and an object o, where o is a particular struct with type S. There are four
kinds of events: LOCK(t, o) (thread t acquires the lock associated with object o),
UNLOCK(t, o) (thread t releases the lock associated with object o), PROT(t, o)
(thread t accesses a protected field of object o), and UNPROT(t, o) (thread t accesses
an unprotected field of object o). The DFSM MLD(t, o) is shown in the lower part of
Figure 3(b); the parameters t and o are elided to avoid clutter. It requires that thread t’s
accesses to protected fields occur while thread t holds the lock associated with object
o, except for accesses to protected fields before the first time t acquires that lock (such
accesses are assumed to be part of initialization of o).

178 E. Bartocci et al.

7 Implementation

Implementing the case study requires a gap-aware monitor and instrumentation that
can intercept monitored events. Both these subsystems must integrate with our over-
head control mechanism. The monitor must be able to recognize potential gaps caused
by overhead control decisions, and the instrumentation must provide a means for the
controller to disable monitoring by halting the interception of events. In addition, our
implementation adapts to RVSE’s criticality estimates by allocating hardware debug-
ging resources to exhaustively monitor a small number of risky objects. This section
discusses the implementation of these systems.

7.1 Gaps

On updating a monitor instance, the monitor processes a gap event before processing
the current intercepted event if monitoring was disabled since the last time the monitor
instance was updated. The gap event indicates that the monitor may have missed one or
more events for the given instance during the time that monitoring was disabled.

The monitor determines whether a gap event is necessary by comparing the time
of the last update to the monitor instance’s state, which is stored along with the state,
with the last time that monitoring was disabled for the current thread. For efficiency, we
measure time using a counter incremented each time monitoring is disabled—a logical
clock—rather than a real-time clock.

7.2 Instrumentation

For our case study, we monitor the lock discipline property for the btrfs space info

struct in the Linux Btrfs file system. Each btrfs space info object has a spinlock,
eight fields protected by the spinlock, and five fields not protected by the spinlock.

Using a custom GCC plug-in, we instrument every function that operates on a
btrfs space info object, either by accessing one of its fields or by acquiring or re-
leasing its spinlock. The instrumented function first has its function body duplicated so
that there is an active path and an inactive path. Only the active path is instrumented for
full monitoring. This allows monitoring to be efficiently enabled or disabled at the gran-
ularity of a function execution. Selecting the inactive path effectively disables monitor-
ing. When a duplicated function executes, it first calls a distributor function that calls
the overhead control system to decide which path to take. We enable and disable mon-
itoring at the granularity of function executions, because deciding to enable or disable
monitoring at the granularity of individual events would incur too much overhead.

Every btrfs space info operation in the active path is instrumented to call the
monitor, which updates the appropriate monitor instance, based on the thread and the
btrfs space info object involved. For fast lookup, all monitor instances associated
with a thread are stored in a hash table local to that thread and indexed by object address.

7.3 Hardware Supervision

Our system prioritizes monitoring of objects with high criticality by placing them under
hardware supervision. Specifically, we use debug registers to monitor every operation

Adaptive Runtime Verification 179

on these objects even when other monitoring is disabled (i.e., when the inactive path
is taken). The debug registers cause the CPU to raise a debug exception whenever an
object under hardware supervision is accessed, allowing the monitor to observe the
access. Note that this allows monitoring to be enabled and disabled on a per-object
basis, for a limited number of objects, in contrast to the per-function-execution basis
described above. The overhead remaining after monitoring the hardware supervised ob-
jects is distributed to the other objects in the system using the normal overhead control
policy.

Our current implementation keeps track of the most critical object in each thread.
Each thread can have its own debug register values, making it possible to exhaustively
track events for one monitor instance in each thread for any number of threads.

Because an x86 debug register can at most watch one 64-bit memory location, we
need a small amount of additional instrumentation to monitor all 13 fields in a super-
vised btrfs space info object. Our plug-in instruments every btrfs space info

field access in the inactive path with an additional read to a dummy field in the same ob-
ject. Setting the debug register to watch the dummy field of a supervised object causes
the program to raise a debug exception whenever any field of that object is accessed
from the inactive path. The debug exception handler calls the monitor to update the
monitor instance for the supervised object.

For btrfs space info spinlock acquire and release operations, we instrument the
inactive path with a simple check to determine if the spinlock belongs to one of the few
supervised objects that should be updated even though monitoring is disabled. We could
use debug registers to remove the need for this check, but we found that overhead from
checking directly was very low, because lock operations occur infrequently compared
to field accesses.

7.4 Training

We collected data from completely monitored runs to train the HMM and learn the
gap length distribution. During training runs for a given overhead level, the distribu-
tor makes monitoring decisions as if overhead control were in effect but does not en-
force those decisions; instead, it always takes the active path. As a result, the system
knows which events would have been missed by taking the inactive path. Based on this
information, for each event that would have triggered processing of a gap event, we
compute the actual number of events missed for the corresponding monitor instance.
The gap length distribution for the given overhead level is the distribution of those
numbers.

Our case study uses a simple overhead-control mechanism in which the target “over-
head level” is specified by the fraction f of function executions to be monitored. For
each function execution, the distributor flips a biased coin, which says “yes” with prob-
ability f , to decide whether to monitor the current function execution. We tested three
different sampling probabilities: 50%, 75%, 85%, and 95%. For each sampling prob-
ability, we precomputed the RVSE distributions with ε = 0.1, thereby obtaining four
RVSE graphs having 12,177, 33,234, 30,645 and 11,622 nodes, respectively.

180 E. Bartocci et al.

7.5 Evaluation

We used two different tests to measure how well our prioritization mechanism improved
ARV’s effectiveness. The first test runs with an unmodified version of Btrfs, which does
not contain any lock discipline violations, in order to test how well prioritization avoids
false alarms. The second test runs on a version of Btrfs with an erroneous access that
we inserted, to test if prioritization improves our chances of detecting it. For both of
these tests, we run Racer [12], a workload designed specifically to stress file system
concurrency, on top of a Btrfs-formatted file system, and we report results that are
averaged over multiple runs.

We tested three configurations: 1) hardware supervision disabled, 2) randomly as-
signed hardware supervision, and 3) adaptive hardware supervision that prioritizes crit-
ical objects, as described above. Most threads in the Racer workload had two associated
monitor instances. At any time, our prioritization chose one of those from each thread
to supervise.

The table below shows the results for these tests. Each row in the table is for one
of the three sampling probabilities. For our false alarm test, the columns labeled
FalseAlarm in the table show how many monitor instances had an error probability
higher than 0.8 at the end of the run. Because the run had no errors, lower numbers
are better in this test. For our error detection test, we checked the corresponding mon-
itor instance immediately after our synthetic error triggered; the columns labeled Er-
rDet in the table show the percentage of the times that we found that monitor instance
to have an error probability higher than 0.8, indicating it correctly inferred a likely
error. For this test, higher numbers are better. All results are averaged over multiple
runs.

Sampling No Supervision Random Supervision Adaptive Supervision
Probability FalseAlarm ErrDet FalseAlarm ErrDet FalseAlarm ErrDet
50% 30.3 23.0% 11.7 57.4% 12 50.1%
75% 47 31.2% 36 69.3% 17 79.4%
85% 5502 34.1% 5606 72.3% 5449 85.1%

In all cases, hardware supervision improved the false alarm rate and the error
detection rate. For the 75% and 85% sampling profiles, adaptive prioritization
provides greater improvement than simply choosing objects at random for supervi-
sion. With 50% sampling, adaptive sampling does worse than random, however. In
future work, we intend to improve our criticality metric so that it performs better at
lower overheads. The table also shows that ARV takes advantage of increased sampling
rates, successfully detecting more errors in the error detection test. We are currently
investigating why performance in the false alarm test declines with higher sampling
rates.

Adaptive Runtime Verification 181

8 Related Work

In [2], the authors propose a method for the automatic synthesis and adaptation of in-
variants from the observed behavior of an application. Their overall goal is adaptive
application monitoring, with a focus on interacting software components. In contrast
to our approach, where we learn HMMs, the invariants learned are captured as finite
automata (FA). These FA are necessarily much larger than their corresponding HMMs.
Moreover, error uncertainty, due to inherently limited training during learning, must be
dealt with at runtime, by modifying the FA as needed. They also do not address the
problem of using the synthesized FA for adaptive-control purposes.

A main aspect of our work is our approximation of the RVSE forward algorithm
for state estimation, which pre-computes compound-state probability distributions and
stores them in a graph. In the context of the runtime monitoring of HMMs, the authors
of [10] propose a complementary method for accelerating the estimation of the cur-
rent (hidden) state: Particle filters [4]. This sequential Monte-Carlo estimation method
is particularly useful when the number of states of the HMM is very large, in particu-
lar, much larger than the number of particles (i.e., samples) necessary for obtaining a
sufficiently accurate approximation. This, however, is typically not the case in our set-
ting, where the HMMs are relatively small. Consequently, the Particle filtering method
would have introduced at least as much overhead as the forward algorithm, and would
have therefore also required a priori (and therefore approximate) state estimation.

The runtime verification of HMMs is explored in [9,3], where highly accurate de-
terministic and randomized methods are presented. In contrast, we are considering the
runtime verification of actual programs, while using probabilistic models of program
behavior in the form of HMMs to fill in gaps in execution sequences.

9 Conclusions

We have presented Adaptive Runtime Verification, a new approach approach to runtime
verification that synergistically combines overhead control, runtime verification with
state estimation, and predictive analysis of monitor criticality levels. We have demon-
strated the utility of the ARV framework through a significant case study involving the
monitoring of concurrency errors in the Linux kernel.

Future work will involve extending the ARV framework with a recovery mechanism
that will come into play when a property violation is detected or imminent. We will also
consider additional case studies, including those that use SMCO [5] for their overhead
control. Fully integrating SMCO will require a new method to compute the probability
distribution on the length of gaps introduced by SMCO for any given target overhead.

Acknowledgements. We thank the anonymous reviewers for their valuable comments.
Research supported in part by AFOSR Grant FA9550-09-1-0481, NSF Grants CCF-
1018459, CCF-0926190, and CNS-0831298, and ONR Grant N00014-07-1-0928.

182 E. Bartocci et al.

References

1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical
Statistics 41(1), 164–171 (1970)

2. Denaro, G., Mariani, L., Pezze, M., Tosi, D.: Adaptive runtime verification for autonomic
communication infrastructures. In: Proc. of the International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), vol. 2, pp. 553–557. IEEE Com-
puter Society (2005)

3. Gondi, K., Patel, Y., Sistla, A.P.: Monitoring the Full Range of ω-Regular Properties of
Stochastic Systems. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,
pp. 105–119. Springer, Heidelberg (2009)

4. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. In: IEEE Proceedings on Radar and Signal Processing, vol. 140, pp. 107–
127. IEEE (1993)

5. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller, S.D., Zadok,
E.: Software monitoring with controllable overhead. International Journal on Software Tools
for Technology Transfer (STTT) 14(3), 327–347 (2012)

6. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)

7. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–286 (1989)

8. Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller, S.D., Zadok,
E.: InterAspect: Aspect-oriented instrumentation with GCC. Formal Methods in System De-
sign (2012), accepted on condition of minor revisions

9. Sistla, A.P., Srinivas, A.R.: Monitoring Temporal Properties of Stochastic Systems. In: Lo-
gozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 294–308.
Springer, Heidelberg (2008)

10. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of Stochastic Dynamical Systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736. Springer,
Heidelberg (2011)

11. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.:
Runtime Verification with State Estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

12. Modak, S.: Linux Test Project (LTP) (2009), http://ltp.sourceforge.net/

http://ltp.sourceforge.net/

Malware Riding Badware: Challenges

in Analyzing (Malicious/Benign) Web
Applications

Giovanni Vigna

University of California at Santa Barbara

Abstract. The Web has become a dangerous place, where simple rules
of behavior no longer keep a user out of trouble. Sophisticated drive-by
download attacks delivered through compromised web sites are reach-
ing users through seemingly innocuous search engine queries. Malicious
web pages are turning helpless victims into armies of bots that partic-
ipate in a historically unprecedented transfer of wealth in the form of
intellectual property, trade secrets, and classified information. This talk
describes how this problem can be tackled from two different points of
view: the identification of the web application vulnerabilities that allow
for site compromise and the detection of web-based malware that at-
tacks the users’ browsers. These two issues go hand-in-hand, and require
automated approaches in order to keep up with the pace at which cy-
bercriminals devise new ways to exploit and hijack web applications and
browsers.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, p. 183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MapReduce for Parallel Trace Validation
of LTL Properties

Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin,
Pierre-Antoine Ollivier, and Sylvain Hallé�

Département d’informatique et de mathématique
Université du Québec à Chicoutimi, Canada

shalle@acm.org

Abstract. We present an algorithm for the automated verification of Linear Tem-
poral Logic formulæ on event traces using an increasingly popular cloud comput-
ing framework called MapReduce. The algorithm can process multiple, arbitrary
fragments of the trace in parallel, and compute its final result through a cycle of
runs of MapReduce instances. Compared to classical, single-instance solutions,
a proof-of-concept implementation shows through experimental evaluation how
the algorithm reduces by as much as 90% the number of operations that must be
performed linearly, resulting in a commensurate speed gain.

1 Introduction

Over the recent years, the volume and complexity of interactions between information
systems has been steadily increasing. Large amounts of data are gathered about these
interactions, forming a trace of events, also called a log, that can be stored, mined, and
audited. Web servers, operating systems, database engines and business processes of
various kinds all produce event logs, crash reports, test traces or dumps in some format
or another.

One possible use of such a log is to perform trace validation: given a specification
of the expected or agreed-upon interaction (or inversely, of invalid behaviour), the trace
of actions recorded at runtime can then be searched automatically for patterns satisfy-
ing or violating that specification. The specification generally relates events to some
sequence of actions, method calls or events: the validity of each event cannot be as-
sessed individually, but must rather be evaluated according to the event’s position with
respect to surrounding events, both before and after. As we shall see in Section 2, there
exists a variety of scenarios where event traces are subject to sequencing constraints,
and the use of a language such as Linear Temporal Logic represents a reasonable mean
of expressing these constraints formally.

Various solutions have been proposed in the past to automate the task of trace vali-
dation [3–5, 7, 12, 22], either based on temporal logic or other kinds of formal speci-
fications. While these solutions allow the expression of intricate relationships between
events in a log, the scalability of many of them is jeopardized by the growing amount

� With financial support from the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Fonds de recherche du Québec – Nature et technologies (FRQNT).

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 184–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MapReduce for Parallel Trace Validation of LTL Properties 185

of data generated by today’s systems. Recently, the advent of cloud computing has been
put forward as a potential remedy to this problem, in particular for the tasks of process
discovery and conformance checking [20]. By allowing the distributed processing of
data spread across a network of commodity hardware, cloud computing opens the way
to dramatic improvements in the performance of many applications.

Given the growing amount of collected trace data and the observed move towards
distributed computing infrastructures, it is crucial that existing trace validation method-
ologies be ported to the cloud paradigm. However, the prospect of parallel processing
of temporal constraints in general, and LTL formulæ in particular, is held back precisely
because of the sequential nature of the properties to verify: since the validity of an event
may depend on past and future events, the handling of parts of the trace in parallel and
independent processes seems to be disqualified at the onset. A review of available solu-
tions in Section 3 observes, perhaps unsurprisingly, that most existing trace validation
tools are based on algorithms that do not take advantage of parallelism, while those that
do offer very limited specification languages where sequential relationships between
events are excluded.

The present paper addresses this issue by presenting a parallelizable algorithm for
the automated validation of LTL properties in event traces. The algorithm uses a recent
and popular execution framework, called MapReduce [9], which is described in Section
4. MapReduce provides an environment particularly suitable to the breaking up of a
task into small, independent processes that can be distributed across multiple nodes in
a network, and is currently being used in large-scale applications such as the Google
search engine for the computation of the PageRank index [17]. The algorithm, detailed
in Section 5, exploits this framework by splitting the original property into subformulæ
that can be evaluated separately through cycles of MapReduce jobs.

The algorithm has been implemented in a proof-of-concept application that was then
experimentally evaluated on traces of up to 100,000 events. Results from these exper-
iments, described in Section 6, show that for some classes of constraints, a very large
portion of the work can be dispatched to independent processes running in parallel, in-
dicating a high potential for speedup. To the best of our knowledge, the present work is
the first application of MapReduce for the verification of temporal logic properties on
event traces.

2 Trace Validation Use Cases

We shall first recall basic concepts related to the validation of event traces in various
contexts. For the needs of this paper, an event trace m0m1 . . . , noted m, represents a
sequence of events over a period of time. Each event is an individual entity, made of
one or more parameter-value pairs of arbitrary names and types. The schema (that is,
the number and names of each parameter in each event) is not assumed to be known in
advance, or even to be consistent across all events.

2.1 Constraints on Event Sequences: Linear Temporal Logic

Given an event trace, one is then interested in expressing properties or constraints that
must be fulfilled either by individual events or sequences thereof. A variety of formal

186 B. Barre et al.

languages are available to describe constraints of different kinds; one of them is a log-
ical formalism called Linear Temporal Logic (LTL). The basic building blocks of LTL
formulæ are propositional variables p, q, . . . , expressing Boolean conditions on par-
ticular messages of the trace. In the present context, each propositional variable is an
assertion of the form parameter = value, which evaluates to true if the equality holds for
the current message, and to false otherwise.

One can evaluate when a trace m satisfies a given formula ϕ , written as m |= ϕ , by
giving conditions to be evaluated recursively on the structure of the formula. On top of
propositional variables, LTL allows Boolean connectives ∨ (or), ∧ (and), ¬ (not), bear-
ing their usual meaning and temporal operators to express constraints on the sequence
of events. The temporal operator G means “globally”; the formula Gϕ means that for-
mula ϕ is true in every event of the trace, starting from the current event. The operator
F means “eventually”; the formula Fϕ is true if ϕ holds for some future event of the
trace. The operator X means “next”; it is true whenever ϕ holds in the next event of the
trace. Finally, the U operator means “until”; the formula ϕ Uψ is true if ϕ holds for all
events until some event satisfies ψ . 1 The formal semantics for LTL is left out due to
lack of space, but the reader is referred to [8] for a classical coverage of LTL and other
temporal logics.

Two concepts bear particular importance in this paper. Given some operator � and
a formula ϕ of the form �ϕ ′ or ϕ ′ � ψ , expressions ϕ ′ and ψ are called the direct
subformulæ of ϕ . Subformulæ form a partial ordering; we will denote as ϕ ′ ≺ ϕ the
fact that ϕ ′ is a direct subformula of ϕ . The depth of a formula ϕ , noted δ (ϕ), is then
defined as the maximum number of nested subformulæ it contains. For example, the
expression G (p∧F q) is of depth 3, and its set of subformulæ is {p∧F q, p,F q,q}. For
a set of subformulæ S, we will say that ϕ is a (direct) superformula of ψ if ϕ ,ψ ∈ S and
ψ ≺ ϕ .

There exists a variety of scenarios where constraints on event traces can be modelled
as LTL properties. As an example, we recall an earlier work where an Amazon bookstore
business process was modelled as a set of constraints [21, p. 34]. We also mention that
the same techniques used for LTL business process compliance can be reused for the
verification of web service interface contracts [13], the detection of network intrusions
in web server logs [16], and the analysis of system events produced by spacecraft hard-
ware during testing [3]. This issue has also gained considerable importance in the past
decade with the advent of anti-fraud regulation such as the Sarbanes-Oxley Act (SOX)
[1] or the Payment Card Industry Data Security Standard (PCI) [2], which require some
form of storage and analysis of log files, such as database transaction history.

3 Related Work

Existing solutions for the validation of event traces can be split into two categories. On
one side are formal trace validation tools, mostly experimental or academic, offering
a rich input language but for which no parallel processing algorithms are available; on
the other side lie distributed log analysis products whose input language and validation
capabilities are relatively limited.

1 We implicitly assume a finite-trace semantics where ε
|= X ϕ , ε
|= F ϕ , and ε |= G ϕ .

MapReduce for Parallel Trace Validation of LTL Properties 187

3.1 Formal Trace Analysis

A first category of tools is made of so-called “formal” trace analyzers. Complex sequen-
tial patterns of events are expressed using a rich, mathematically-based notation such
as finite-state machines, temporal logic or Petri nets. Algorithms are then developed to
process these specifications and automatically check that some trace satisfies the given
pattern.

In this realm, a wide variety of techniques have been developed for different pur-
poses. When the specifications are written as temporal logic formulæ, algorithms can
manipulate the expressions symbolically, and progressively rewrite the original spec-
ification as the trace is being read; the pattern is violated when this rewriting pro-
cess transforms the specification into a contradiction. This idea has been implemented
in two independent tools, respectively based on the Maude engine [19] and the Java
programming language [13].

An alternate approach consists of storing the events into a database, and to trans-
form the sequential patterns into an equivalent database query. This has been exper-
imented with traditional relational databases and SQL [7], and more recently using
XML databases and the XQuery language [12]. The database approach has also been
followed, to some degree, by the Monpoly tool [5], which associates to each event in
the trace a set of conditions on its values.

ProM [22] is an open-source environment aimed at the mining of patterns in large
sets of log data. Among the many plugins developed for ProM, one can find a tool for
the automated verification of LTL formulæ on process logs. Also worthy of mention
are Logscope [3] and RuleR [4], which use their own input language loosely based on
logic and finite-state machines. However, none of the aforementioned tools is reported
to offer parallel processing capabilities, and in particular the leveraging of cloud-based
infrastructures, such as MapReduce, to that end.

3.2 Distributed Trace Analysis

The second category of related work comprises so-called “log analysis” solutions. Most
products in that category are commercial software aimed at the filtering of event data
(such as database or server logs) to search for the presence of specific patterns. Notable
examples include Snare2, ManageEngine3 or Splunk4; even operating systems such as
Windows provide viewing and filtering capabilities for internal events. These tools can
be seen as refined variants of the well-known “Grep” function, which performs pattern
matching over an input file and returns lines corresponding to some regular expression.
Indeed, such mechanism has also been proposed as the basis of trace validation tools in
the past [11].

A problem arises, however, when one wants to query an event trace using a more
articulate query language than single-line regular expressions. Linear Temporal Logic
is a prime illustration of this problem: if p and q define single event patterns, a tem-
poral expression like G (p → X q) validates whether an event that satisfies p is always

2 http://www.intersectalliance.com/projects/index.html
3 http://www.manageengine.com
4 http://www.splunk.com

http://www.intersectalliance.com/projects/index.html
http://www.manageengine.com
http://www.splunk.com

188 B. Barre et al.

immediately followed by an event that satisfies q. Events (or lines) are no longer com-
pared individually, but rather with respect to their sequential relationship. The main
hypothesis of the aforementioned techniques, namely that event processing can be done
individually, no longer holds. If the two lines of some temporal pattern are stored on dif-
ferent chunks of the trace, and processed by independent parallel threads, the sequential
relationship will be missed.

Therefore, in all the aforementioned solutions, the filtering process is generally lim-
ited to single events taken in isolation. For example, it is possible to obtain the list of
all events satisfying some criterion on the event’s attributes or to compute aggregate
numerical statistics on events collected (such as total throughput, average delay, etc.),
but not to fetch events in relation with other events, or satisfying some sequence or
temporal pattern.

A close cousin to the approach presented in this paper has been exposed by Bauer
and Falcone [6]. In this setting, multiple components in a system each observe a subset
of some global event trace. Given an LTL property ϕ , their goal is to create sound
formulæ derived from ϕ that can be monitored on each local trace, while minimizing
inter-component communication. However, this work assumes that the projection of the
global trace upon each component is well-defined and known in advance. Moreover, all
components consume events from the trace synchronously, such that the distribution of
monitoring does not result in a speed-up of the whole process.

4 An Overview of MapReduce

Since the emergence of the concept of cloud computing a few years ago, a variety
of distributed computing environments have been released. One notable proponent is
MapReduce, a framework introduced by Google in 2004 for the processing of large
amounts of data [9]. It is one of the forerunners of the so-called “NoSQL” trend, which
has seen the development and rising popularity of alternative data processing schemes
steering away from mainstream relational databases.

4.1 Processing Steps

Figure 1 summarizes the schematics of MapReduce. Data processing starts by the read-
ing of some piece of data (typically an input file) by an Input Reader, whose task is
to convert the input stream into a set of tuples. Each tuple is a key-value pair, denoted
〈qi,v〉, where both keys and values can be of arbitrary types.

As Figure 1 shows, multiple instances of the Input Reader can run in parallel, and
typically process separate fragments of the input data simultaneously. The tuples pro-
duced by the Input Reader are then sent one by one to a Mapper, whose task is to convert
each input tuple 〈qi,v〉 into some output tuple 〈ki,v′〉. The processing is stateless —that
is, each tuple must be transformed independently of any previously-seen tuple, and re-
gardless of the order in which tuples are received. For an input tuple, the Mapper may
as well decide not to produce any output tuple.

The pool of tuples from all Mapper instances then goes through a shuffling step; all
tuples with the same key are grouped and dispatched to the same instance of Reducer.

MapReduce for Parallel Trace Validation of LTL Properties 189

Fig. 1. The different steps of MapReduce data processing

Therefore, a Reducer that receives a tuple 〈ki,v〉 is guaranteed to receive all other tuples
〈ki,v′〉 for that same key ki. For the sake of clarity, we can safely assume that each
Reducer instance receives the tuples for exactly one key; we can hence parameterize
each such instance with the key it has been assigned.

Contrarily to the Mapper, the Reducer receives its input tuples at once, and is hence
allowed to iterate through and retain information about previously seen tuples. Again,
the Reducer’s task is to read the input tuples, and produce as output one final set of
tuples of the form 〈ti,v〉. This set of tuples can then be read, and formatted back to
some output format by an Output Writer.

In some cases, the Input Reader and Mapper may be fusioned into a single processing
step, as is the case for the Reducer and Output Writer. Moreover, some definitions of
MapReduce also imply that tuples are sorted according to their value before being fed
to the Reducer, although we do not assume such sorting in the present paper.

Popular frameworks such as Google’s or Apache’s Hadoop5 provide an environment
and code libraries allowing one to write data processing tasks as MapReduce jobs. It

5 http://hadoop.apache.org

http://hadoop.apache.org

190 B. Barre et al.

generally suffices to write the (Java or Python) code for the Map and Reduce phases of
the processing, compile it and send it to the nodes of the cloud infrastructure.

One can see from this simple description that the keys and values produced by a
processing step need not be (and generally are not) the same for input and output. In
the same way, there is no fixed relationship between the number of tuples read and the
number of tuples sent out; a Mapper or Reducer processing some tuple may return zero,
one, or even more than one tuple as output.

Moreover, it is possible to chain multiple MapReduce phases. It suffices to take the
output of the Reducers as input for a subsequent cycle of Mappers. Google’s PageR-
ank algorithm is computed through three MapReduce phases, the second of which is
repeated until convergence of some numerical value is reached [17]. The algorithm for
Mappers and Reducers differs from phase to phase.

Although the MapReduce scheme is arguably less natural than a classical, linear pro-
gram to an inexperienced developer, its architecture presents one key advantage: once
a problem has been correctly split into Map and Reduce jobs, scaling up the processing
to multiple nodes in the cloud becomes straightforward. Indeed, multiple Input Readers
can simultaneously take care of a separate chunk of the input data. Then, since the Map
step processes each tuple regardless of any past or future tuple, an arbitrary number of
Mappers can process the tuples generated by the Input Readers in parallel. Similarly, the
processing done by each Reducer only requires access to tuples of the same key, which
entails that up to one Reducer per key can run in parallel. All in all, the whole process-
ing chain greatly decreases the number of steps that require to be done in sequence. A
good review of MapReduce’s pros and cons can be found in Lee et al. [15].

5 LTL Trace Validation with MapReduce

Despite the potential parallelism brought about by the use of the MapReduce paradigm,
the fundamental question of whether LTL trace validation is parallelizable remained
open until very recently. We have already shown that, if one is to leverage distributed
cloud frameworks for LTL querying of event traces, simple mechanisms such as Dis-
tributed Grep and their derivatives cannot be used directly.

Kuhtz and Finkbeiner showed in 2009 that LTL path checking belongs to the com-
plexity class AC1(logDCFL) [14]; this result entails that the process can be efficiently
split by evaluating entire blocks of events in parallel. Rather than sequentially travers-
ing the trace, their work considers the circuit that results from “unrolling” the formula
over the trace. However, while the evaluation of this unrolling can be done in parallel,
a specific type of Boolean circuit requires to be built in advance, which depends on
the length of the trace to evaluate. Moreover, the formal demonstration of the result
shows that, while a fixed number of gates of this circuit can be contracted in parallel at
each step of the process, the algorithm itself requires a shared and global access to the
trace from every parallel process. As such, it does not lend itself directly to distributed
computing frameworks.

We take an alternate approach, and describe in this section an algorithm that performs
LTL trace validation on event traces directly using the MapReduce computing paradigm.
The algorithm evaluates an LTL formula in an iterative fashion. At the first iteration, all

MapReduce for Parallel Trace Validation of LTL Properties 191

the states where ground terms are true are evaluated. In the next iteration, these results
are used to evaluate all subformulæ directly using one of those ground terms. More gen-
erally, at the end of iteration i of the process, the events where all subformulæ of depth
i hold are computed. It follows that, in order to evaluate an LTL formula of depth n,
the algorithm will require exactly n MapReduce cycles. Each map-reduce cycle effec-
tively acts as a form of temporal tester [18] processing a trace made of the evaluation
of lower-level testers.

This does not mean, however, that the event trace must be read as many times. In
fact, the input trace is entirely read only once, at the first iteration of the procedure. Af-
terwards, only sequential numbers referring to those events need to be passed between
mappers and reducers. The contents of the original trace never need to be consulted ever
again.

The system is described by providing details on each component of the MapReduce
algorithm described in Figure 1. We suppose that every instance of the process (Input
Reader, Mapper, Reducer, Output Writer) are parameterized by the formula to verify ϕ ,
and the length of the trace, �.

5.1 Trace Format and Input Reader

The Input Reader is responsible for the processing of an event trace chunk and the
generation of a first set of key-value tuples from that chunk. We assume that each event
is sequentially numbered, or that its position in the whole trace can be easily computed
otherwise. For some event e, we will refer by #(e) this event’s sequential number.

The Input Reader, whose algorithm is given in Figure 2(a), iterates through each
event of the trace chunk, and evaluates on each event the ground terms present in ϕ . For
each propositional variable a and each event e, it outputs a tuple 〈a,(i,0)〉 where i is the
event’s sequential number in the trace. The ground terms of a formula ϕ are computed
using the function atom(ϕ).

One should remark that this initial processing step does not require that the trace
be located on a single node, or even that each node’s fragment consist of blocks of
successive events. As long as each event can be placed in some total order (such as the

Procedure Input Readerϕ ,�(chunk)
A[] := atoms(ϕ)
For each e in chunk do

i := #(e)
For each a in A do

If e |= a then
output 〈a,(i,0)〉

End if
End

End

(a) Pseudo-code for the LTL Input Reader

Procedure Mapperϕ ,�(〈ψ,(n, i)〉)
If i ≤ δ (ψ)

S[] := superformulæ(ϕ,ψ)
For each ξ in S do

output 〈ξ ,(ψ,n, i+1)〉
End If

End
End If

(b) Pseudo-code for the LTL Mapper.

Fig. 2. InputReader and Mapper

192 B. Barre et al.

value of a global, shared clock), any number of nodes can host any subset of the trace.
This is particularly useful if event collection and storage is performed in a distributed
fashion.

5.2 Mapper

The Mapper takes as input tuples of the form 〈ψ ,(n, i)〉, either from the Input Reader or
from the output of a previous MapReduce cycle. Each such tuple reads as “the process
is at iteration i, and subformula ψ is true on event n”. One can see, in particular, how
the tuples returned by the Input Reader express this fact for ground terms of the formula
to verify.

The Mapper, shown in Figure 2(b), is responsible for lifting these results, computed
for some ψ , up into every formulæ ψ ′ of which ψ is a direct subformula (these are
obtained using the function superformulæ(ϕ ,ψ)). For example, if the states where p is
true have been computed, then these results can be used to determine the states where
F p is true. To this end, the Mapper takes every tuple 〈ψ ,(n, i)〉, and will output a tuple
〈ψ ′,(ψ ,n, i+ 1)〉, where ψ is a subformula of ψ ′. This tuple reads “the process is at
iteration i+1, subformula ψ is true on event n, and this must be used to evaluate ψ ′”. In
the definition of the reducer, ξ stands for whatever subformula the input tuple is build
from.

5.3 Reducer

The mappers are mostly used to prepare results from the last iteration to be used for the
current iteration. In contrast, each instance of the reducer performs the actual evaluation
of one more layer of the temporal formula to verify. After the shuffling step, each in-
dividual instance of the reducer receives all generated tuples of the form 〈ψ ′,(ψ ,n, i)〉
for some formula ψ ′, and where ψ is a direct subformula of ψ ′. Hence, the reducer is
given information on all the event numbers for which ψ ′ holds, and is asked to compute
the states where ψ holds based on this information. This task can then be decomposed
depending on the top-level connective in ψ ′. The algorithm for each reducer is shown
in Figure 3.

When the top-level formula to evaluate is X ψ , the events that satisfy the formula
are exactly those immediately preceding an event where ψ holds. Consequently, the
reducer iterates through its input tuples of 〈X ψ ,(ψ ,n, i)〉 and produces for each one an
output tuple 〈X ψ ,(n− 1, i)〉.

When the top-level formula to evaluate is F ψ , the events that satisfy the formula are
exactly those for which some event in the future is such that ψ holds. The corresponding
reducer iterates through the input tuples and computes the highest event number c for
which ψ holds. All events preceding c satisfy F ψ . Consequently, the reducer generates
as output all tuples of the form 〈F ψ ,(k, i)〉, for each k ∈ [0,c].

The reducer for ¬ψ iterates through all tuples and stores in a Boolean array whether
ei |= ψ for each event i in the trace. It then outputs a tuple 〈¬ψ ,(k, i)〉 for all event
numbers k that were not seen in the input. The reducer for G ψ proceeds in reverse.
It first iterates through all tuples in the same way. If we let c be the index of the last

MapReduce for Parallel Trace Validation of LTL Properties 193

Procedure Reducerϕ ,�(F ψ , tuples[])
m := -1
For each 〈F ψ,(ξ ,n, i)〉 in tuples do

If n > m then m := n
End
For k from 0 to m do

output 〈F ψ,(k, i)〉
End

Procedure Reducerϕ ,�(¬ψ , tuples[])
For each 〈¬ψ,(ξ ,n, i)〉 in tuples do

s[n] := �
End
For k from 0 to � do

If s[k]
=� then
output 〈¬ψ,(k, i)〉

End If
End

Procedure Reducerϕ ,�(G ψ , tuples[])
For each 〈G ψ,(ξ ,n, i)〉 in tuples do

s[n] := �
End
For k from � to 0 do

If s[k]
=� break
output 〈G ψ,(k, i)〉

End

Procedure Reducerϕ ,�(ψ ∨ψ ′, tuples[])
For each 〈ψ ∨ψ ′,(ξ ,n, i)〉 in tuples do

If δ (ψ ∨ψ ′)
= i then
output 〈ξ ,(n, i)〉

Else
output 〈ψ ∨ψ ′,(n, i)〉

End If
End

Procedure Reducerϕ ,�(X ψ , tuples[])
For each 〈X ψ,(ξ ,n, i)〉 in tuples do

output 〈X ψ,(n−1, i)〉
End

Procedure Reducerϕ ,�(ψ ∧ψ ′, tuples[])
For each 〈ψ ∧ψ ′,(ξ ,n, i)〉 in tuples do

If δ (ψ ∧ψ ′)
= i then
output 〈ξ ,(n, i)〉
sξ [n] := �

End If
If sψ [n] := � and sψ ′ [n] := � then

output 〈ψ ∧ψ ′,(n, i)〉
End If

End

Procedure Reducerϕ ,�(ψ U ψ ′, tuples[])
For each 〈ψ U ψ ′,(ξ ,n, i)〉 in tuples do

If δ (ψ U ψ ′)
= i then
output 〈ξ ,(n, i)〉

End If
sξ [n] := �

End
b := ⊥
For k from � to 0 do

If sψ ′ [n] = � then
output 〈ψ U ψ ′,(k, i)〉
b := �

Else If sψ [n] := � and b = � then
output 〈ψ U ψ ′,(k, i)〉

Else
b := ⊥

End If
End

Fig. 3. Pseudo-code for the LTL Reducers

event for which ψ does not hold, the reducer will then output all tuples 〈G ψ ,(k, i)〉 for
k ∈ [c+ 1, �]. This indeed corresponds to all events for which G ψ holds.

The case of binary connectives ∨ and ∧ is slightly more delicate. Special care must
be taken to persist tuples whose result will be used in a later iteration. Consider the case
of formula (F p)∧q. The states where ground terms p and q hold will be computed by
the Input Reader at iteration 0. However, although q is a direct subformula of (F p)∧q,
one has to wait until iteration 2 to combine it to F p, evaluated at iteration 1. More
precisely, a tuple 〈ψ � ψ ′,(ψ ,n, i)〉 can only be evaluated at iteration δ (ψ � ψ ′); in all
previous iterations, tuples 〈ψ ,(n, i)〉 must be put back in circulation. The first condition
in both reducers’ algorithm takes care of this situation.

Otherwise, when the top-level formula to evaluate is ψ ∨ψ ′, the reducer outputs a tu-
ple 〈ψ∨ψ ′,(n, i)〉whenever it reads input tuples 〈ψ∨ψ ′,(ψ ,n, i)〉 or 〈ψ∨ψ ′,(ψ ′,n, i)〉.

194 B. Barre et al.

When the top-level formula is ψ ∧ψ ′, the reducer must memorize event numbers n for
which it has read tuples 〈ψ ∧ψ ′,(ψ ,n, i)〉 and 〈ψ ∧ψ ′,(ψ ′,n, i)〉, and outputs 〈ψ ∧
ψ ′,(n, i)〉 as soon as it has seen both.

The last case to consider is that of a formula of the form ψ U ψ ′. The reducer first
iterates through all its input tuples and memorizes the event numbers for which ψ holds,
and those for which ψ ′ holds. It then proceeds backwards from the last event of the trace,
and outputs 〈ψ U ψ ′,(n, i)〉 for some state n if ψ ′ holds for n, or if ψ holds for n and
there exists an uninterrupted sequence of states leading to a state n′ for which ψ ′ holds.
This last information is handled through the Boolean variable b.

As one can see, the tuples produced by each reducer is of the form 〈ψ ,(n, i)〉, car-
rying the exact same meaning as those originally produced by the Input Reader, albeit
for formulæ of greater depth. Therefore, the result of one MapReduce cycle can be fed
back as input of a new cycle; as we have seen, it takes exactly δ (ϕ) such cycles to
completely evaluate some LTL formula ϕ .

5.4 Output Writer

At the end of the last MapReduce cycle, one is left with tuples 〈ϕ ,(n,δ (ϕ))〉. These
represent all event numbers n such that mn |= ϕ . The output writer, shown in Figure 4,
translates the last set of tuples into the truth value of the formula to evaluate. By the
semantics of LTL, an event trace satisfies the formula ϕ if m0 |= ϕ . Hence the output
writer simply writes “true” if 〈ϕ ,(0,δ (ϕ))〉 is found, and false otherwise.

Procedure Output Writerϕ ,�(tuples[])
For each 〈ϕ,(n, i)〉 in tuples do

If n = 0 then
output “Formula is true”
Break

End if
End
output “Formula is false”

Fig. 4. Pseudo-code for the LTL Output Writer.

6 Experimental Results

To illustrate the concept and evaluate its feasibility, a proof-of-concept implementation
of the algorithm was developed. The algorithm consists of the implementation of two
Java classes providing the Map and Reduce algorithms described earlier. For the needs
of the experiments, the actual coordination of Map and Reduce jobs is done locally on
a single machine using a single-thread implementation of MapReduce: the data source
is fed tuple by tuple to the mapper, the output tuples are collected, split according to
their keys, and each list is sent to the reducer, again in a sequential fashion. As such,
this sequential workflow reproduces exactly the processing done by MapReduce envi-
ronments, without the distribution of computation. This was done on purpose, so that

MapReduce for Parallel Trace Validation of LTL Properties 195

the running time of each mapper and reducer instance could be easily measured. The
potential speedup incurred by parallelizing will be computed from those measurements
in Section 6.2.

6.1 Experimental Setup

At the onset, a first observation that can be made is that the validator is very simple:
excluding the code for coordinating Mappers and Reducers, the total implementation
of the validator amounts to 1,000 lines of Java code. This should be put in contrast
with another simple trace validator from the same author, BeepBeep, which is also
implemented in Java and rather uses the classical, on-the-fly algorithm for the evaluation
of LTL formulæ on traces [13]; BeepBeep is is made up of twice as many lines of Java
code.

To assess the running time of the MapReduce validation algorithm, we built a dataset
consisting of traces of randomly-generated events, with each event being made of up
to ten random parameters, labelled p0, . . . p9, each carrying five possible values. Each
trace has a length between 1 and 100,000 events, and 500 such traces were produced. In
total, this dataset amounts to more than one gigabyte of randomly-generated event data.

Four properties, with increasing complexity, were verified on these traces. Property
#1 is G p0
= 0, and simply asserts that in every event, parameter p0, when present,
is never equal to 0. Property #2 is G (p0 = 0 → X p1 = 0): it expresses the fact that
whenever p0 = 0 in some event, the next event is such that p1 = 0. Property #3 is a
generalization of Property #2:

∀x ∈ [0,9] : G (p0 = x → X p1 = x)

This property asserts that whatever value taken by p0 will be taken by p1 in the next
event. The universal and existential quantifiers are meant as a shorthand notation; the
actual LTL formula to be validated is the logical conjunction of the previous template
for all possible values of x between 0 and 9, and reads

(G (p0 = 0 → X p1 = 0))∧ (G (p0 = 1→ X p1 = 1)) . . .

Finally, Property #4 checks that some parameter pm alternates between two possible
values; this is true when the value of pm in the current event is the same as the value
two events from the current one, and is written:

∃m ∈ [0,9] : ∀x ∈ [0,9] : G (pm = x → X X pm = x)

Again, the quantifiers are meant as a shorthand.

6.2 Results

Each formula was validated on each trace, and various statistics on the process were
computed and are shown in Table 1.

The first measurement is the number of tuples produced by the algorithm. This value
is taken as the sum of Ti, the total number of tuples processed at the Map phase of each

196 B. Barre et al.

Table 1. Verification statistics for each of the four properties. All values are averaged over the
500 traces used in the experiment.

Property #1 Property #2 Property #3 Property #4

Number of tuples 55,009 119,871 599,425 4,987,124
Time per event (μs) 19 23 75 985

Sequential ratio 100 % 92 % 19 % 3 %
Inferred time per event (μs) 19 21 14 30

map-reduce cycle number i, for all cycles i ∈ [1,δ (ϕ)]. One can see that the number of
tuples increases with the complexity of the formula: while Property #1 produces 55,000
tuples, the validation of Property #4 on a trace generates on average almost 5 million
such units.

Using MapReduce inherently implies a tradeoff between processing speed and band-
width consumed; the proposed algorithm is no different in that respect. While the num-
ber of tuples can seems large at first sight, we shall mention that generally, cloud
providers such as Amazon EC2 charge users for CPU time, not for bandwidth —hence
decreasing processing time is the key factor. Also note that in closed environments
(server farms, clusters) bandwidth consumption is not really an issue.

The second measurement is the running time per event. For each trace, the running
time per event is the total processing time divided by the number of events in the trace;
the value shown in Table 1 is the average of these values over all traces. One can see that
the MapReduce algorithm takes between 20 and approximately 1,000 microseconds per
event, and that this value grows with the complexity of the formula to verify.

We also computed the “sequential ratio” of the validation process. At each map-
reduce cycle, we keep the largest number of tuples processed by a single instance of
a reducer. This value, noted ti, represents the minimum number of tuples that must be
processed sequentially in that particular cycle. If all reducers for that cycle were allowed
to run in parallel, and assuming similar processing time for each tuple, the ratio ti/Ti

is an indicator of the time the “parallel” cycle requires with respect to the “sequential”
version. The global sequential ratio shown in Table 1 is taken as

s =
∑δ (ϕ)

i=1 ti

∑δ (ϕ)
i=1 Ti

This sequential ratio shows one of the limits of the validation algorithm in its present
incarnation: the potential for parallelism is bounded by the structure of the formula
to validate, as there can be at most one instance of reducer for every possible subfor-
mula of the property to verify. Therefore, for simple formulæ such as Property #1 and
#2, which have very few different subformulæ at each map-reduce cycle, almost all
the work must be done sequentially (100% in the case of Property #1, and 92% in
the case of Property #2). However, as soon as the property becomes more complex, as
is the case for Properties #3 and #4, the situation is reversed, and each reducer han-
dles a small fraction of the total number of tuples. Property #4 is most dramatic in that

MapReduce for Parallel Trace Validation of LTL Properties 197

respect, since 97% of all tuples involved can be processed in parallel. The presence of
quantifiers accounts for a large part of this phenomenon, as it rapidly blows up the size
of the actual LTL formula passed to the trace validator: 50 copies of the same template
are validated, with various combinations of values for m and x.

From the sequential ratio s and the average sequential running time per event r ob-
tained for each property, we can then infer the average validation time in the maximally-
parallel case by computing r× s; this inferred running time is shown in the last line of
Table 1. While these figures should be interpreted with caution at this point in the study,
it is relatively safe to assume that the distributed processing of a trace should not exceed
50 μs per event, regardless of which of the four properties is validated.

7 Conclusion

In this paper, we have presented an algorithm for the automated validation of Linear
Temporal Logic properties on large traces of events using the MapReduce development
framework. We have shown experimentally on a sample dataset how this algorithm
presents reasonable running times even when the MapReduce environment is restricted
to a single thread. In addition, the breaking up of the algorithm into several phases
of independent mappers and reducers presents the potential of reducing the number
of operations that must be performed linearly by executing these processes in parallel,
yielding a potential speedup of 90% in some cases. As far as we know, this work is the
first published algorithm that leverages the MapReduce framework for the validation
of temporal logic properties on large event traces. It opens the way to the use of cloud
computing services for the efficient compliance checking of program traces and event
logs of various kinds.

The promising results obtained on the proof-of-concept implementation discussed in
this paper lead to a number of extensions and improvements over the current method.
First, the algorithm presents an interest in that it can be reused as a basis for other tem-
poral languages that intersect with LTL. This is the case, for example, of specifications
written as finite-state machines, PSL [10] or DecSerFlow [21]. Second, the technique
itself could be expanded to take into account data parameters and quantification; the for-
mulæ described in Section 6.1 gave a foretaste of such quantification and initial results
indicate that quantification is a fertile ground for parallelism. The proposed implemen-
tation is currently being ported as a free software suite for Apache Hadoop.

Finally, we have seen that the potential for parallelism is bounded by the structure of
the formula to validate, as there can be at most one instance of reducer for every possible
subformula of the property to verify. This entails that one cannot freely distribute the
processing of the trace to an arbitrary number of parallel processes: for a simple formula,
or one that contains few nested expressions, few reducers can be started in parallel.
Therefore, a sought after refinement of the current method is currently being worked
on, which will allow multiple Reducer instances for the same key to be merged in a
later step.

198 B. Barre et al.

References

1. An act to protect investors by improving the accuracy and reliability of corporate disclosures
made pursuant to the securities laws, and for other purposes, U.S. Pub.L. 107-204, 116 Stat.
745 (July 30, 2002)

2. Payment card industry data security standard, version 2.0 (2010),
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

3. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. Journal of
Aerospace Computing, Information, and Communication 7(11), 365–390 (2010)

4. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: From
Eagle to RuleR. Journal of Logic and Computation 20(3), 675–706 (2010)

5. Basin, D., Klaedtke, F., Müller, S.: Policy Monitoring in First-Order Temporal Logic. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18. Springer,
Heidelberg (2010)

6. Bauer, A., Falcone, Y.: Decentralized LTL monitoring. Technical Report arXiv:1111.5133v3
(2011)

7. Böhlen, M.H., Chomicki, J., Snodgrass, R.T., Toman, D.: Querying TSQL2 Databases with
Temporal Logic. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS,
vol. 1057, pp. 325–341. Springer, Heidelberg (1996)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
9. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: OSDI,

pp. 137–150 (2004)
10. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
11. Garavel, H., Mateescu, R.: SEQ.OPEN: A Tool for Efficient Trace-Based Verification. In: Graf,

S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 151–157. Springer, Heidelberg (2004)
12. Hallé, S., Villemaire, R.: XML Methods for Validation of Temporal Properties on Message

Traces with Data. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp.
337–353. Springer, Heidelberg (2008)

13. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.
IEEE Transactions on Services Computing (2011), doi:10.1109/TSC.2011.10

14. Kuhtz, L., Finkbeiner, B.: LTL Path Checking Is Efficiently Parallelizable. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
II. LNCS, vol. 5556, pp. 235–246. Springer, Heidelberg (2009)

15. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with
MapReduce: a survey. SIGMOD Record 40(4), 11–20 (2011)

16. Naldurg, P., Sen, K., Thati, P.: A Temporal Logic Based Framework for Intrusion Detection.
In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 359–376.
Springer, Heidelberg (2004)

17. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford InfoLab (November 1999)

18. Pnueli, A., Zaks, A.: On the Merits of Temporal Testers. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008)

19. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw.
Eng. 12(2), 151–197 (2005)

20. van der Aalst, W.M.P.: Distributed Process Discovery and Conformance Checking. In: de Lara,
J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer, Heidelberg (2012)

21. van der Aalst, W.M.P., Pesic, M.: Specifying and monitoring service flows: Making web
services process-aware. In: Baresi, L., Nitto, E.D. (eds.) Test and Analysis of Web Services,
pp. 11–55. Springer (2007)

22. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame,
and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75.
Springer, Heidelberg (2011)

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

Path-Aware Time-Triggered Runtime

Verification

Samaneh Navabpour1, Borzoo Bonakdarpour2, and Sebastian Fischmeister1

1 Department of Electrical and Computer Engineering, University of Waterloo
{snavabpo,sfischme}@uwaterloo.ca

2 School of Computer Science, University of Waterloo
borzoo@cs.uwaterloo.ca

Abstract. A time-triggered monitor runs in parallel with the program
under inspection and periodically samples the program state to evaluate
a set of properties. However, a time-triggered monitor working with a
fixed sampling frequency often suffers from redundant sampling, which
results in excessive overhead. In this paper, we propose an effective ap-
proach to reduce redundant sampling. Our approach calculates the sam-
pling frequency with respect to the program behavior at run time. We
further advance this approach to dynamically adjust the sampling fre-
quency at run time by predicting the program behavior using symbolic
execution. Experiments show that our approach reduces the sampling
frequency, runtime overhead, and the number of redundant samples by
up to 3.5 times, 69%, and 86%, respectively.

1 Introduction

Achieving system correctness is a major problem for today’s large software sys-
tems. A recent NIST report estimates that 59.6 billion dollars are lost every
year because of software errors [11]. Verification and testing are arguably the
two most common approaches to ensure program correctness. However, verifica-
tion may suffer from the state explosion problem, and testing may not be able to
cover all possible execution scenarios of the system. These limitations argue for
runtime verification [3,9,12], where a monitor inspects a program to evaluate a
set of properties at run time.

Mostmonitoring approaches in runtime verification are event-triggered. In these
approaches, the occurrence of an event of interest triggers the monitor for property
evaluation. This technique leads to defects such as unpredictable monitoring over-
head and potentially bursts of monitoring invocations at run time. Such defects
can cause unpredictable behavior at run time; especially in real-time embedded
safety/mission-critical systems, where it can result in catastrophic consequences.
To tackle these drawbacks, in [6], we proposed time-triggered runtime verifica-
tion, where the monitor runs in parallel with the program and samples the pro-
gram state at fixed time intervals (i.e., the sampling period) to evaluate a set of
properties. A challenge in implementing such a monitor is to compute the longest
sampling period (LSP), such that all events of interest are observed. The approach

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 199–213, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

200 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

Events

Samples
Monitor

e1

s4 s5

e0 e2

s0 s1 s2 s3

Fig. 1. Redundant monitoring intervention with fixed sampling period

in [6] computes the fixed longest sampling period with respect to all events of in-
terest in a program by using the control-flow graph (CFG) of the program.

Although employing a time-triggered monitor results in observing bounded
monitoring overhead and predictable monitoring invocation at run time [6], ap-
plying the fixed longest sampling period may result in unnecessary monitoring
invocations. For example, consider the execution time line in Figure 1. Events
e0, e1, and e2 occur on the execution path and the monitor samples the program
execution with the fixed longest sampling period at points s0, s1, . . . , s5. It is
straightforward to observe that samples s3 and s4 are redundant, as no events
of interest occur from sample s2 until sample s4. A large number of redundant
samples cause the monitor to impose excessive overhead at run time. Thus, it is
highly desirable to design a time-triggered monitor that can adjust the sampling
period at run time based upon the characteristics of the program execution path.

With this motivation, in this paper, we propose the notion of path-aware time-
triggered monitoring for sequential programs. We present an approach which
leverages symbolic execution [16] to predict the execution path of the program
with respect to its input values. Hence, to compute the path-aware longest sam-
pling period, our approach only considers the events of interest executed within
the predicted execution path.

Moreover, we introduce a method that allows a time-triggered monitor to
adapt its sampling period at run time, based on the events of interest to be
executed in the near future. In particular, our method partitions the predicted
execution path of the program into LSP regions and computes the path-aware
longest sampling period of each region. Hence, when the program execution
enters a new region at run time, the monitor adapts the path-aware longest
sampling period of that region, thus avoiding redundant samples. Our method
also ensures that the overhead of adapting the sampling period at run time
imposes low overhead.

Finally, we present a fully automated tool chain that implements both path-
aware and adaptive path-aware monitoring approaches. We study the effect of
both approaches with the SNU benchmark suite [1]. The experiments show highly
promising results; i.e., our approach reduces the sampling frequency, runtime
overhead, and the number of redundant samples by up to 3.5 times, 69%, and
86%, respectively.

2 Background

In time-triggered runtime verification (TTRV) a monitor samples the state of a
program at regular time intervals to evaluate a set of properties. The state of the

Path-Aware Time-Triggered Runtime Verification 201

 1. fib(int n) {
 2. int i, Fnew, Fold, temp,ans;
 3. Fnew = 1; Fold = 0;
 4. i = 2;
 5. while(i <= n) {
 6. temp = Fnew;
 7.* Fnew = Fnew + Fold;
 8.* Fold = temp;
 9. i++; }
 10.* ans = Fnew;
 11. return ans;}

(a) Fibonacci Function

D
5

C
6..9

B
10-11

1 1
4

A
2..4

4

(b) CFG

C1
6

1 1

A
2..4

4

D
5

C2
7

1

C3
8

C4
9

1

1

B1
10

B2
11

1

Critical Vertex

Non-critical Vertex

1

(c) Critical CFG

Fig. 2. Fibonacci and its CFG and critical CFG

program is defined by a set of variables of interest that affect the evaluation of
the set of properties. A time-triggered monitor exhibits the following character-
istics which make it suitable for monitoring time-sensitive systems: (1) bounded
overhead (i.e., the monitor imposes approximately the same amount of overhead
at each sample), and (2) predictable invocation (i.e., the monitor samples the
program execution at constant intervals, called the sampling period).

Let P be a program and Π be a logical property, where P is expected to satisfy
Π . Let VΠ be the set of variables of interest. We leverage control-flow analysis
to estimate the time intervals between consecutive state changes with respect to
variables in VΠ .

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGP = 〈V, v0, A, w〉, where:
– V : is a set of vertices, each representing a basic block of P. Each basic block

consists of a sequence of instructions in P.
– v0: is the initial vertex with indegree 0, which represents the initial basic

block of P.
– A: is a set of arcs of the form (u, v), where u, v ∈ V . An arc (u, v) exists in

A, if and only if the execution of basic block u can immediately lead to the
execution of basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. ��

For example, consider the Fibonacci function in Figure 2(a) from the fibcall pro-
gram of the SNU benchmark [1]. Assuming that the BCET of each instruction is
one time unit in this example, the resulting CFGP is shown in Figure 2(b), where
each vertex is annotated with the corresponding line numbers of the program.
In order to calculate the longest sampling period (LSP), we modify CFGP in
two steps:

202 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

Step 1 (Extracting the Critical Vertices)
In this step, we modify CFGP, such that each critical instruction (i.e., an instruc-
tion that updates the value of a variable in VΠ) resides in a vertex by itself. We
refer to such a vertex as a critical vertex. For example, if VΠ = {Fnew, Fold, ans},
then instructions 7, 8 and, 10 are critical instructions in Fibonacci and Figure 2(c)
shows the evolved CFGP. We call this graph a critical control-flow graph (critical
CFG).

Step 2 (Calculating the Longest Sampling Period)
As mentioned earlier, the main challenge in using TTRV is accurate state recon-
struction. To preserve all state changes, the monitor must sample at a sampling
period such that it does not overlook any state changes that could occur in P at
run time. This sampling period is called the longest sampling period (LSP).

Definition 2. Let CFG = 〈V, v0, A, w〉 be a critical control-flow graph and Vc ⊆
V be the set of critical vertices of CFG. The longest sampling period (LSP) for
CFG is the minimum shortest path between two vertices in Vc. ��

For example, LSP of Fibonacci is 1 time unit. In this paper, we refer to such a
sampling period as fixed LSP . Since there needs to be an initial sample in the
beginning of execution, we assume that the initial vertex v0 is also a critical
vertex. We also assume that precompiled libraries are correct and, hence, need
not be monitored. Thus, these libraries do not take part in calculating LSP .

In [6], we observed that a time-triggered monitor with fixed LSP imposes
170% overhead on average. This is due to redundant sampling ; i.e., the monitor
may take samples even when the program has not executed a critical instruction
since the last sample. To reduce the number of redundant samples, one can em-
ploy auxiliary memory to build a history of state changes between consecutive
samples. In other words, let v be a critical vertex in a critical CFG, where the
critical instruction Inst updates the value of a variable x. The following graph
transformation [6] results in a new critical CFG with a greater fixed LSP : it (1)
removes v, (2) merges the incoming and outgoing arcs of v, and (3) adds an in-
struction Inst ′ : x′ ← x after instruction Inst in the program source code, where
x′ is an auxiliary memory location. For example, applying this transformation
to vertex C2 in Figure 2(c) results in a graph where C2 and all its incoming and
outgoing arcs are removed, and a new arc from C1 to C3 with weight 2 is added.
In the new graph, we have fixed LSP = 2.

3 Path-Aware Time-Triggered Monitoring

Although the experimental results from [6] show that by using auxiliary mem-
ory, the monitoring overhead can be reduced on average by 60%, the overhead
still remains larger than the overhead of event-triggered runtime verification
frameworks [8, 13, 15]. This is because the method in [6] uses the CFG of the
program to compute the fixed LSP and not the realized execution paths at run
time. Thus, the fixed LSP tends to be conservative; i.e., the monitor may take
redundant samples.

Path-Aware Time-Triggered Runtime Verification 203

To clarify, consider the critical CFG in Figure 2(c) with fixed LSP = 1. This
value is optimal when the program executes the instruction sequence 〈vA, vD, vC1 ,
vC2 , vC3 , vC4 , vD, vB1 , vB2〉 at run time (e.g., n = 2 as input). On the contrary,
when the program executes the instruction sequence 〈vA, vD, vB1 , vB2〉 (e.g., n
= 0 as input), the fixed LSP is too small. In the latter case, the monitor can
observe all values of variables of interest with LSP = 5. In this case, the monitor
takes 85% less redundant samples compared to using the fixed LSP = 1.

The above example motivates the idea to compute LSP with respect to the
program’s execution path. This is achieved before the program runs by the fol-
lowing two steps:

1. Predict the program’s execution path with respect to the program’s input
values.

2. Using the predicted path from Step 1, compute LSP by only considering the
sequence of critical instructions within the execution path.

Step 1 (Path Prediction)
Let P be a program, CFGP = 〈V, v0, A, w〉 be its control-flow graph, and IP be
the input domain of P . The input domain is the set of all values that can be
provided as input to P.

Definition 3. An execution path is a sequence of the form
γ = 〈(v0, ω0, v1), (v1, ω1, v2), ...〉, where:
– v0 = v0.
– For all i ≥ 0, vi ∈ V .
– For all (vi, ωi, vi+1), where i ≥ 0, there exists an arc (vi, vi+1) in A.
– For all i ≥ 0, ωi = w(vi).
– If P is a terminating program, then γ = 〈(v0, ω0, v1), . . . , (vn−1, ωn−1, vn)〉 is

finite and vn is a vertex in V with outdegree of zero. ��
For instance, in Fibonacci, the input value n=0 leads to the execution of path γ1 =
〈(vA, 4, vD), (vD, 1, vB1), (vB1 , 1, vB2)〉. In this paper, we only focus on possible
execution paths; i.e., an execution path for which there exists some input in IP
that enables P to take the path at run time. We denote the set of all (possible)
execution paths of program P as PP.

To predict the execution path(s) of P, we require a mechanism that takes the
value-set of the inputs of P and returns the set of execution paths of P. We refer
to this mechanism as the path prediction function.

Definition 4. Let P be a program. The path prediction function ψP : IP → 2PP,
maps an input from the input domain of P to a subset of execution paths of P.

��
Note that in a deterministic program, ψP maps an input to one and only one ex-
ecution path. In practice, ψP can be implemented using symbolic execution [16]
before the actual program run. In particular, symbolic execution creates a bi-
jection from each execution path γ of a program to a path constraint. A path
constraint projects the conditions (e.g., in if-then-else and loop structures) that
need to be satisfied in order for the program to execute γ at run time.

204 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

Notation: For each path γ, PC (γ) denotes the path constraint of γ. For in-
stance, for execution path γ1 = 〈(vA, 4, vD), (vD, 1, vB1), (vB1 , 1, vB2)〉 of Fi-

bonacci, PC (γ1) = (n < 2). Thus, ψP in fact, uses the input values (e.g., n

= 0) and PC (γ) to find the path constraint(s) satisfied by the input values, and
extracts the set of associated execution path(s).

Step 2 (Computing the Sampling Period)
Given a predicted execution path γ from Step 1, the LSP of γ is computed as
follows. We refer to the following sampling period as path-aware longest sampling
period (paLSP).

Definition 5. Let x ∈ IP be an input and ψP(x) = {γ}. The path-aware longest
sampling period paLSP for γ is the minimum subpath length between two critical
vertices of γ. ��

Now, consider a program that includes a loop structure. It is likely that an
execution path γ of the program has multiple occurrences of a subpath of the
form 〈(vi, ωi, vi+1), (vi+1, ωi+1, vi+2), ..., (vn, ωn, vi)〉. We refer to such a subpath
as a loop sequence. Observe that multiple occurrences of a loop sequence in γ does
not affect the value of paLSP . Hence, before computing paLSP , our approach
transforms γ, such that each of its loop sequences consecutively occur at most
twice. We refer to the resulting execution path as the unique version of γ.

Definition 6. Let γ be an execution path. The unique execution path of γ,
denoted γunq , is a path, where each consecutive occurrence of at least 2 for a
loop sequence L in γ is represented by 2 consecutive occurrences of L in γunq .

��

Thus, our approach computes paLSP of γ using γunq . For a program P , an
algorithm for computing paLSP of a unique path γunq takes the following steps:

1. Extract the subgraph CFG ′
P of CFGP that only includes path γunq .

2. Create the critical control-flow graph of CFG ′
P.

3. Compute paLSP according to Definition 5.

We refer to TTRV that uses paLSP as path-aware TTRV (pa-TTRV). In Sec-
tion 6, we will show that pa-TTRV is quite effective in practice to reduce the
runtime overhead.

4 Adaptive Path-Aware Time-Triggered Monitoring

Although pa-TTRV can effectively reduce the number of redundant samples, it
still imposes excessive redundant samples when only a small fraction of the ex-
ecution paths need to be sampled using the computed paLSP . For instance, if Fi-
bonacci (Figure 2(c)) takes the hypothetical execution path γ2 = 〈vA, vD, vB1 , vB2 ,
vA, vD, vC1 , vC2 , vC3 , vC4 , vD, vB1 , vB2〉, then paLSP = 1. However, if we apply
paLSP = 5 up until vertex vC2 (which can sample all critical instructions) and
adjust is to paLSP = 1 afterwards, then the number of samples drops by 62%.

Path-Aware Time-Triggered Runtime Verification 205

4.1 LSP Regions

Intuitively, our idea to reduce redundant samples in an execution path is to
dynamically change paLSP according to the LSP regions of the execution path.

Definition 7. Let γ be a unique execution path. An LSP region is a set of
subpaths of γ with the same paLSP, where each subpath is maximal. That is, for
each LSP region, if a subpath is extended, it no longer belongs to that region. ��

Since each subpath has a unique paLSP , each LSP region is an equivalence class.
To sample an execution path with an adaptive paLSP , our approach needs

to somehow regionalize the path based on Definition 7. In this case, when the
program starts executing a subpath of an LSP region, the monitor adapts to
paLSP of that LSP region at run time. Clearly, the regionalization can partition
an execution path in various ways. Our general objective is to regionalize an
execution path such that adapting paLSP at run time does not add excessive
overhead. We break down our objective as follows:

1. Reducing the number of LSP regions; i.e., since change of LSP region and,
hence, sampling period at run time incurs some overhead.

2. Reducing the number of samples taken on the execution path.
3. Maintaining the absolute jitter of paLSP (i.e., the difference between the

minimum and maximum paLSP of LSP regions) below a predefined thresh-
old ΔLSP provided by the designer. Note that this objective ensures pre-
dictable monitor invocation.

We refer to a TTRV framework that uses this method as adaptive pa-TTRV.

4.2 A Regionalization Algorithm

The algorithm Regionalize addresses the above objectives (see Algorithm 1). It
takes as input (1) the bound ΔLSP on the absolute jitter, (2) the overhead of
changing the sampling period OLSP , and (3) a unique execution path γ. Its
output is a regionalization. The intuitive idea is that the algorithm creates all
possible regionalizations and chooses the one with the least monitoring overhead.

The algorithm creates all possible regionalizations using three nested loops:
(1) the for-loop (Lines 4-38), (2) the while-loop (Lines 8-37), and (3) the for-
loop (Lines 15-35). Each iteration of each loop creates a new regionalization,
where each regionalization is different from the other (created in the same
loop) by one vertex. Notice that the first for-loop adds/removes vertices from
subpath 〈(v0, w0, v1), . . . , (vi, wi, vi+1)〉, the while-loop adds/removes vertices
from subpath 〈(vi+1, wi+1, vi+2), . . . , (vbase−1, wbase−1, vbase)〉, and the
second for-loop adds/removes vertices from subpath 〈(vbase , wbase , vbase+1), . . . ,
(vn−1, wn−1, vn)〉.

When a regionalization tempreg is created (Line 23), the algorithm computes
the monitoring overhead of tempreg . To this end, it computes paLSP (line 26),
and the BCET of each LSP region of the regionalization (line 27). Respectively,
it computes the monitoring overhead by considering the number of samples taken

206 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

Algorithm 1. Regionalize
Input: ΔLSP :bound on absolute jitter, OLSP : overhead

of changing LSP regions, γ: a unique execution path
Output: A regionalization
1: regionalization ← ∅
2: Overheadreg ← ∞
3: n ← Length(γ)

// iterate over the vertices of γ
4: for i = 0 to n − 1 do
5: tempreg ← ∅ /* new regionalization */

6: reg ← 〈(v0, γ0, v1), ..., (vi, γi, vi+1)〉
// regionalization of remainder of γ

7: base ← i + 1
8: while (base ≤ n − 1) do
9: tempreg ← tempreg ∪ reg

// put vertex in γ up to base in separate regions

10: for m = i + 1 to base − 1 do
11: reg′ ← 〈(vm, γm, vm+1)〉
12: tempreg ← tempreg ∪ reg′

13: end for
14: reg′′ ← 〈(vbase , γbase , vbase+1)〉
15: for m = base to n − 1 do
16: for j = base + 1 to m do
17: reg′′ ← append(reg′′, (vj , γj , vj+1)) /* iter-

ates only when m > base */
18: end for
19: tempreg ← tempreg ∪ reg′′

// put the remainder of γ in separate regions
20: for q = m + 1 to n − 1 do
21: reg′′′ ← 〈(vq, γq, vq+1)〉
22: tempreg ← tempreg ∪ reg′′′

23: end for
// calculate overhead for new regionalization

24: Overhead ← 0
25: for all reg ∈ tempreg do
26: Compute paLSPreg based on Definition 5
27: total ← The sum of weights of arcs in reg

28: Overhead ← Overhead +
paLSPreg

total + OLSP

29: end for
30: Δreg ← Absolute jitter of paLSPs of tempreg

// Update the best regionalization
31: if Overhead < Overheadreg and Δreg ≤ ΔLSP

then
32: regionalization ← tempreg
33: Overheadreg ← Overhead
34: end if
35: end for
36: base ← base + 1
37: end while
38: end for
39: return regionalization

of Interest

Symbolizer
(CFG Creator)

LLVM

Table

Table
Compressor

paLSP

Calculator

KLEE
(Symbolic Executer)Regionalization

C Program

Table

Table

Table

Variables

〈paLSP ,PC 〉

〈ψ,PC 〉

Code Regions〉〈ψ,PC ,

〈ψ,PC 〉

Fig. 3. The tool chain

in each LSP region and the cost of changing LSP regions (line 28). If tempreg has
a lower monitoring overhead compared to the previously chosen regionalization,
and the absolute jitter of paLSPs is bounded by ΔLSP , the algorithm chooses
tempreg as the solution (lines 31- 34).

Path-Aware Time-Triggered Runtime Verification 207

4.3 General Code Regionalization

Observe that Definition 7 and Algorithm 1 identify a regionalization for an execu-
tion path. Hence, if two execution paths in a program share a common subpath,
the subpath does not necessarily reside in the same LSP region. For instance,
consider the following execution paths: γ1 = 〈(v0, 5, v1), (v1, 10, v2), (v2, 15, v3)〉
and γ2 = 〈(v0, 5, v1), (v1, 1, v5), (v5, 2, v6)〉, where ΔLSP = OLSP = 5. Algo-
rithm 1 computes the following two LSP regions for γ1: (1) reg1 = {〈(v0, 5, v1)〉},
where paLSPreg1

= 5, and (2) reg2 = {〈(v1, 10, v2), (v2, 15, v3)〉}, where paLSPreg2
= 10. On the contrary, for γ2, the algorithm computes a single LSP region
regγ2

= {γ2}, where paLSPregγ2
= 1. Hence, subpath 〈(v0, 5, v1)〉 resides in dif-

ferent regions with different paLSPs for execution paths γ1 and γ2. Thus, in
environments where a unique regionalization among all execution paths of the
program is desirable, we generalize the regionalization process as follows.

Definition 8. Let CFG = 〈V, v0, A, w〉 be a control-flow graph. In general re-
gionalization, each arc (u, v) ∈ A appears in one and only one LSP region. ��

In this case, the monitor adapts the paLSP of an LSP region reg at run time
when (1) the program initiates the execution of a subpath in reg, and (2) reg
differs from the LSP region of the previously executed subpath. Obtaining a
general regionalization that optimally satisfies the three objectives mentioned in
Subsection 4.1 has exponential complexity. In Section 5, we present an efficient
approach to implement general regionalization.

5 Implementation

We have implemented a tool chain for computing paLSP and adaptive paLSP
(see Figure 3). The tool’s input is a C program and a set of variables of interest.
First, it extracts the CFG and subsequently the critical CFG of the program. In
order to implement the path prediction function ψP (Definition 4), the tool chain
first symbolizes the input variables of the program. Then, it feeds the symbolized
program to the symbolic execution tool Klee [7]. As a result, Klee creates a
mapping table from each unique execution path of the program to its path
constraint. We modified Klee using a patch, such that it converts an execution
path to its unique version (Definition 6). In case there exist duplicate unique
paths, our Klee patch only keeps the path with the weakest path constraint.

To compute the adaptive paLSP , the tool chain regionalizes the program using
general regionalization (see Definition 8). To this end, the tool chain considers
all the arcs in between two consecutive conditional statements in the CFG of the
program as one LSP region. Consequently, the tool chain maps each execution
path to the set of its LSP regions. The paLSP calculator uses the critical CFG
to compute paLSP and adaptive paLSP of each execution path in the mapping
table. For adaptive paLSP , the paLSP calculator computes paLSP of each region
in each execution path.

In general, the size of the (execution path to path constraint) mapping table
may grow exponentially with respect to the number of execution paths. This

208 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

implies that looking up the mapping table at run time imposes a large overhead.
Thus, it is desirable to construct a smaller version of the table to be used at run
time. To this end, the tool chain applies two techniques to eliminate entries:

1. Implication Reduction: This technique groups the execution paths whose
paLSP is defined by the same arc (u, v) in the critical CFG. For each group,
it extracts the path constraint whose satisfaction leads to the execution of
(u, v). Then, it represents the execution paths in the group with a table
entry, that maps the extracted path constraint to paLSP of the execution
paths in the group. This table entry also incorporates the union of the set
of LSP regions of the execution paths in the group.

2. paLSP Reduction: This technique removes all entries from the mapping ta-
ble, where paLSP of the execution path is similar to the fixed LSP .

The final mapping table maps a path constraint to a paLSP and a set of LSP re-
gions along with their paLSP . These techniques, on average, reduce the mapping
table of SNU programs by 78% without loss of precision. In other words, paLSP
and adaptive paLSP of an execution path do not change. When the input values
do not satisfy a path constraint, the satisfiable path constraint is removed by
paLSP reduction, hence, the monitor sets its sampling period to the fixed LSP .

In cases where Klee can not process all execution paths because of its lim-
itations, the tool chain takes two conservative approaches: (1) when there is
unanalyzed code, it assumes that this code is executed at all times and, hence,
appends it to all execution paths, and (2) when the analysis of an execution path
γ is incomplete, the tool finds all possible unique subpaths that can be executed
after γ and, hence, creates a new path by appending these subpaths to γ.

6 Experimental Results

We use a selected set of programs from the SNU benchmark [1] to evaluate our
approaches. Programs not discussed in this section exhibit similar behavior. The
experimental setting is as follows. In each program, the main function runs 100
times, where at each iteration the main function receives new input values from
the environment. The input values are such that each unique execution path of
the program executes at least once. The program and the time-triggered monitor
run on an MCB1700 board with RTX real-time operating system. The time-
triggered monitor runs in four modes: (1) fixed LSP , (2) path-aware LSP , (3)
adaptive paLSP , where ΔLSP and OLSP are 50ns, and (4) program augmented
with history (cf. Section 2) with the sampling periods of 50 × fixed LSP , 50 ×
paLSP , and 50× adaptive paLSP . We measure the following metrics to evaluate
our approaches:

1. The values of the fixed LSP , paLSP , and adaptive paLSP .

2. The number of redundant samples taken at run time by the monitor.

3. The execution time of the monitored program. This value projects the amount
of monitoring overhead.

Path-Aware Time-Triggered Runtime Verification 209

 0

 10

 20

 30

 40

fft1
fibcall

fir insersort

jfdctint

lm
s

qsort-exam

qurt
select

sqrt

Lo
ng

es
t S

am
pl

in
g

P
er

io
d

[1
0n

s]

LSP
paLSP

Adaptive paLSP

(a) Longest Sampling Period

 100

 1000

 10000

 100000

fft1
fibcall

fir insersort

jfdctint

lm
s

qsort
qurt

select

sqrt

N
um

be
r

of
 M

on
ito

r
In

vo
lv

em
en

ts
 (

lo
g

sc
al

e)
 Event

LSP
paLSP

Adaptive paLSP

(b) Redundant Samples of fixed LSP ,
paLSP , and adaptive paLSP

Fig. 4. Sampling period and redundant samples

6.1 Sampling Period of pa-TTRV and Adaptive pa-TTRV

Figure 4(a) shows the fixed LSP , paLSP , and adaptive paLSP of each program.
The paLSP of each program is the average paLSP over all unique execution
paths of the program. As for the adaptive paLSP for each unique
execution path, we consider the average paLSP over all the LSP regions of
the execution path. Respectively, the adaptive paLSP of each program is the
average adaptive paLSP over all unique execution paths of the program. The
results show that the paLSP and adaptive paLSP of all programs are on average
2.4 and 3.34 times greater than their fixed LSP .

Observe that in some programs, paLSP is considerably greater than the fixed
LSP (e.g., in insertsort this is 12.2 times). Our studies show that such programs
have at least one of the following characteristics:

– The majority of the execution paths do not incorporate critical instructions
and, hence, do not require monitoring. For instance, 66.66% of the execution
paths of insertsort do not require monitoring.

– In the majority of the execution paths, the critical instructions are sparsely
distributed and, hence, the required sampling period is greater than the fixed
LSP . For instance, for 50% of the execution paths of select, paLSP is 130ns
while the fixed LSP of select is 70ns.

On the contrary, in programs such as sqrt and lms, paLSP is moderately larger
than the fixed LSP . Our studies show that such programs have at least one of
the following characteristics:

– The majority of the execution paths execute the two consecutive critical in-
structions that define the fixed LSP of the program and, hence, their paLSP
is equal to the fixed LSP . For instance, for 75% of sqrt’s execution paths,
paLSP is 20ns which is the same as sqrt’s fixed LSP .

– In the majority of the execution paths, the critical instructions are densely
distributed. For instance, 54% of the execution paths of lms have paLSP of
40ns while lms’s fixed LSP is 20ns.

210 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

 1

 10

 100

 1000

 10000

fft1
fibcall

fir insersort

jfdctint

lm
s

qsort
qurt

select

sqrt

O
ve

rh
ea

d
[m

s]
 (

lo
g

sc
al

e)

Event
LSP

paLSP
Adaptive paLSP

(a) Overhead of fixed LSP , paLSP , and
Adaptive paLSP

 1

 100

 10000

fft1
fibcall

fir insersort

jfdctint

lm
s

qsort
qurt

select

sqrt

O
ve

rh
ea

d
[m

s]
 (

lo
g

sc
al

e)

Event
LSP

paLSP
Adaptive paLSP

(b) Overhead of 50 × LSP , 50× paLSP ,
and 50× adaptivepaLSP

Fig. 5. Monitoring overhead

In addition, in programs such as select, adaptive paLSP is considerably greater
than paLSP . In the execution path of such programs, the critical instructions
are densely concentrated in a small fraction of the execution path, while in the
remaining of the path the critical instructions are sparse. For instance, in select,
the critical instructions only reside in the function SWAP, where paLSP of an
execution path executing SWAP is as low as 70ns. Hence, the adaptive paLSP of
such execution paths is 48.75% larger than their paLSP .

6.2 Redundant Samples of pa-TTRV and Adaptive pa-TTRV

Figure 4(b) shows the number of redundant samples of a time-triggered moni-
tor when using fixed LSP , paLSP , and adaptive paLSP . Note that the y-axis is
in log scale. The Event bar shows the number of critical instructions executed
throughout the program run. Bars LSP , paLSP , and adaptive paLSP show the
number of redundant samples in these monitoring modes. The number of re-
dundant samples is the difference between the total number of taken samples
and the number of executed critical instructions. On average, by using paLSP ,
redundant samples decrease by 44.87%, and by using adaptive paLSP , redun-
dant samples decrease by 64.04%. Our analysis shows that in programs such as
qurt and select, if the execution of paths with paLSP greater than the fixed LSP
dominate the execution scenarios, then using paLSP results in larger reductions
in the number of redundant samples. On the contrary, for programs such as sqrt

and fir, we see small reduction in the number of redundant samples, since the
majority of the executed paths at run time have paLSP equal to the fixed LSP .
Note that a large percentage of paths with paLSP equal to the fixed LSP does
not imply that the program’s execution scenario is dominated by these paths.

6.3 Monitoring Overhead of pa-TTRV and Adaptive pa-TTRV

Figure 5(a) shows the monitoring overhead of a time-triggered monitor when
using fixed LSP , paLSP , and adaptive paLSP . Each Event bar shows the exe-
cution time of the monitored program when using an event-triggered monitor.

Path-Aware Time-Triggered Runtime Verification 211

Bars LSP , paLSP , and adaptive paLSP show the execution time of the mon-
itored program in these monitoring modes. On average, monitoring overhead
decreases by 39.34% when using paLSP , and by 51.28% when using adaptive
paLSP . In programs such as qurt and select, when using paLSP , the monitoring
overhead does not decrease in the same proportion as the redundant samples.
For instance, in select, the number of redundant samples deceases by 72.04%,
while the monitoring overhead decreases 51.83%. This is because, the overhead
caused by the monitor to find the satisfied path constraint (using the lookup
table discussed in Section 5) and adjust its sampling period, is large. Hence, we
see less reduction in the monitoring overhead.

The same side effect is seen when using adaptive paLSP in programs such
as select and fibcall. The overall overhead of looking up the mapping table in
the adaptive path-aware monitor is larger compared to the path-aware monitor,
since the monitor looks up the table more frequently (i.e., at each entry to a
new LSP region). In some cases, the overall look up overhead is such that the
monitoring overhead of the adaptive path-aware monitor exceeds the monitoring
overhead of the path-aware monitor, although the adaptive path-aware monitor
reduces more redundant samples. For instance, in qsort, the monitoring overhead
of the adaptive path-aware monitor is 84.388ms, and the monitoring overhead
of the path-aware monitor is 82.477ms, while the adaptive path-aware monitor
removes 18.22% more redundant samples.

Figure 5(a) shows that event-based monitoring imposes less overhead than
pa-TTRV and adaptive pa-TTRV when the history mechanism is not employed.
This is because a time-triggered monitor still introduces redundant samples with
paLSP and adaptive paLSP . Since event-based monitoring is impractical for
real-time systems, we need to further reduce the redundant samples to achieve
a cost-worthy time-triggered monitor. To this end, we augment each program
with history (see Section 2) to increase the fixed LSP , paLSP , and adaptive
paLSP by a factor of 50. Experimental results show that for the SNU programs,
the sampling periods of 50× fixed LSP , 50× paLSP , and 50× adaptive paLSP
cause zero redundant samples. Furthermore, Figure 5(b) shows that in 66% of
the programs, the overhead of the path-aware monitor is less than the overhead
of the event-triggered monitor, and in 75% of the programs, the overhead of
the adaptive path-aware monitor is less than the overhead of the event-triggered
monitor. Note that a sampling period of at least the maximum time interval
between two consecutive critical instructions, eliminates all redundant samples.
In addition, by using history, the maximum increase in the memory usage of
the programs is 646 bytes, which is an inconsiderable amount with respect to
available resources.

7 Related Work

Regardless of the type of monitor, runtime verification frameworks must impose
low monitoring overhead. [3] reduces the overhead by rewriting safety properties

212 S. Navabpour, B. Bonakdarpour, and S. Fischmeister

such that the evaluation of properties requires the least information regarding the
program execution. [5] reduces the number of instrumentations, by determining
locations in the program that do not affect property evaluation. [4] distributes
the instrumentation cost among multiple users. [14] controls the overhead by
temporarily disabling monitoring of selected data, by using supervisory con-
trol theory of discrete event systems and PID-control theory of discrete-time
systems. [10] extracts only a subset of the data required to evaluate program
properties, by removing/adding instrumentation relevant to the program state
at run time.

[2] is the closest work to our path-aware and adaptive path-aware approaches.
This approach discards instrumentation with respect to the execution path
of the program. Our methods surpass [2] in the following aspects. To our knowl-
edge, the approach in [2] manually extracts the path constraints for each path
and, hence, it can only handle very small programs. On the contrary, our tech-
niques are fully automated and can handle medium size programs. Moreover,
unlike our rigorous analysis of multiple case studies, [2] only presents the man-
ual analyses of two small case studies and lacks strong evidence on the effective-
ness of their method. In addition, [2] is only applicable when all input values
are known a priori. On the other hand, our approaches can handle inputs pro-
vided dynamically throughout the program run. Finally, [2] does not intelligently
discard instrumentation at run time. On the contrary, the adaptive path-aware
technique dynamically adjusts the sampling period at run time to further reduce
monitoring overhead.

8 Conclusion

In this paper, we presented an effective method for reducing the overhead of
time-triggered runtime verification (TTRV). The main drawback of TTRV is
its excessive runtime overhead due to redundant sampling, where the monitor
may take samples from the program even if no new event for monitoring has
occurred. Our proposed method in this paper leverages symbolic execution [16]
in order to predict the program’s execution path and intelligently choose the
sampling period. In particular, we proposed path-aware TTRV, where the mon-
itor adjusts its sampling period based on the given input values to the program
under inspection. We also introduced adaptive path-aware TTRV, where the
monitor adjusts its sampling period at run time based on the density of occur-
rence of events that need to be monitored in an LSP region. Our techniques are
implemented in a tool chain and the result of experiments show that adaptive
path-aware TTRV reduces the runtime overhead and the number of redundant
samples by up to 69% and 86%, respectively.

One open problem is merging rigorous execution time analysis with our method
to accurately measure and incorporate the cost of switching the sampling period
in the algorithm presented in Section 4.

Path-Aware Time-Triggered Runtime Verification 213

References

1. SNU Real-Time Benchmarks, http://www.cprover.org/goto-cc/examples/
snu.html

2. Artho, C., Drusinksy, D., Goldberg, A., Lowry, K.H.M., Pasareanu, C., Roşu, G.,
Visser, W.: Experiments with Test Case Generation and Runtime Analysis. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp.
87–108. Springer, Heidelberg (2003)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

4. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative Run-
time Verification with Tracematches. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007.
LNCS, vol. 4839, pp. 22–37. Springer, Heidelberg (2007)

5. Bodden, E., Hendren, L., Lhoták, O.: A Staged Static Program Analysis to Improve
the Performance of Runtime Monitoring. In: Bateni, M. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 525–549. Springer, Heidelberg (2007)

6. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Sampling-Based Runtime Ver-
ification. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 88–102.
Springer, Heidelberg (2011)

7. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224 (2008)

8. Chen, F., Roşu, G.: Java-MOP: A Monitoring Oriented Programming Environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

9. Colin, S., Mariani, L.: Run-Time Verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)

10. Dwyer, M.B., Kinneer, A., Elbaum, S.: Adaptive online program analysis. In: Pro-
ceedings of the 29th International Conference on Software Engineering, ICSE 2007,
pp. 220–229 (2007)

11. Gallaher, M., Kropp, B.: The economic impacts of inadequate infrastructure for
software testing. National Institute of Standards & Technology Planning Report
02–03 (2002)

12. Havelund, K., Goldberg, A.: Verify Your Runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008)

13. Havelund, K., Roşu, G.: An overview of the runtime verification tool java pathex-
plorer. Form. Methods Syst. Des. 24(2), 189–215 (2004)

14. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller,
S.D., Zadok, E.: Software monitoring with controllable overhead. Software Tools
for Technology Transfer (STTT) 14(3), 327–347 (2012)

15. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-mac: A run-time
assurance approach for java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004)

16. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

http://www.cprover.org/goto-cc/examples/snu.html
http://www.cprover.org/goto-cc/examples/snu.html

Fast-Forward Runtime Monitoring
— An Industrial Case Study

Christian Colombo and Gordon J. Pace

Department of Computer Science, University of Malta
{christian.colombo,gordon.pace}@um.edu.mt

Abstract. Amongst the challenges of statefully monitoring large-scale
industrial systems is the ability to efficiently advance the monitors to
the current state of the system. This problem presents itself under var-
ious guises such as when a monitoring system is being deployed for the
first time, when monitors are changed and redeployed, and when asyn-
chronous monitors fall too much behind the system.

We propose fast-forward monitoring — a means of reaching the mon-
itoring state at a particular point in time in an efficient manner, without
actually traversing all the transitions leading to that state, and which
we applied to a financial transaction system with millions of transactions
already affected. In this paper we discuss our experience and present a
generic theory of monitor fast-forwarding instantiating it for efficient
monitor deployment in real-life systems.

1 Introduction

Our experience with the financial transactions industry has shown us that run-
time verification is generally perceived as an intrusive addition which modifies
the system code even if not its functionality — slowing down the system at best
and introducing extra bugs at worst. The reason is mainly that, with possibly
few exceptions, the existing industrial systems have not been designed with run-
time verification in mind. To address the industry’s concern, we have advocated
asynchronous runtime verification which is completely non-intrusive given that
all system events were already being logged in a database. Our architecture,
embodied in the tool asyncLarva1 and depicted in Fig. 1, consists of a system
recording events (represented by a circle as in a tape recorder) in a database
and subsequently, the monitor plays back (represented by a triangle) the events
to check correctness. Note that, as in standard asynchronous monitoring, the
system head can move forward without waiting for the monitor head to keep up.
Any detected problems are communicated to an administrator since by the time
the problem is detected it would usually be too late to take corrective action.

Asynchronous runtime monitoring has been successfully applied to an indus-
trial case study [1] and proved effective in discovering issues which would have

1 http://www.cs.um.edu.mt/svrg/Tools/asynclarva

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 214–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.um.edu.mt/svrg/Tools/asynclarva

Fast-Forward Runtime Monitoring — An Industrial Case Study 215

Trace

System

Monitor

Fig. 1. Asynchronous monitoring

otherwise gone unnoticed. While this approach gives administrators a moni-
toring tool, it does not provide any possibility of triggering corrective action
automatically to mitigate discovered problems.

As a means of enabling asynchronous monitors to take corrective action, we
introduced a compensation mechanism [2] — although violations may be discov-
ered late, the system is stopped and its state may be reversed to the point of
violation. This could be relatively easily done in a financial transaction context
where compensations are inherently part of the system. Also, since frequently
financial systems have short bursts of peak load but a lower load on average, the
monitor does not fall behind the system indefinitely. Using a box to represent
stopping the system and a backward triangle to represent compensations, Fig. 2
depicts the modified architecture.

Trace

System

Monitor

Fig. 2. Asynchronous monitoring with the possibility of compensation

As more confidence was gained in the runtime monitoring system, the next
phase was to introduce the possibility of synchrony in which some monitors can
run synchronously while the rest of the less crucial monitors are asynchronous.
This setup [3] was particularly useful for monitoring untrusted system users
who should not be allowed to proceed unless each step is approved by their
monitor, i.e., synchronous monitoring. In this way trusted users can still be
monitored asynchronously without experiencing any service deterioration due to

216 C. Colombo and G.J. Pace

monitoring. To implement synchronous and asynchronous monitoring, the sys-
tem should now be capable of pausing and unpausing to wait for the monitor
verdict — shown in Fig. 3 as the rightmost button with a diagonal signifying the
two actions. Furthermore, it was noted that sometimes fine-grained compensa-
tions have to be discarded and replaced by coarser-grained ones. For example,
if a fraud has been detected when it is too late to reverse the related purchases,
it might be enough to block the offending user’s account. This is shown in the
diagram as a double backward triangle.

Trace

System

Monitor

Fig. 3. Synchronous and asynchronous monitoring with the possibility of coarse-
grained compensations

In the same way as coarse-grained compensations may be useful because of
out-dated compensations, there are cases when ‘coarse-grained’ monitoring is
required. For example, given a system which has already been running for a
number of years, this approach can be particularly useful to bring the monitor
up to scratch, taking into account the past transactions of the users. If a violation
occurred over a year ago, we might not be interested in discovering it, but we
still require the monitoring state to be as though the monitors have been running
along with the system throughout the years it has been in operation. Another
application for coarse-grained monitoring is to restart monitoring from a partic-
ular point in time if for some reason monitoring data is lost, or the monitor has
been significantly modified. Coarse-grained monitoring can be thought of as a
way of fast-forwarding monitoring through a trace by allowing it to skip parts
of it. The full architecture is depicted in Fig. 4 showing fast-forward monitoring
as two forward triangles at the monitor side.

While the full architecture without fast-forwarding has been presented in [3],
in this paper we focus solely on fast-forward monitoring which proved to be nec-
essary to monitor an industrial case study where properties are changed and aug-
mented regularly. This dynamicity requires the monitors to fast-forward through
years of data so that the property monitors can update their state with that of
the system as fast as possible. To this extent, we propose a methodology whereby
apart from the normal (slow) monitor processing the system trace of events, a
(fast) abstract monitor is available which can process an abstraction of the sys-
tem trace. By having translation functions which enable going back and forth

Fast-Forward Runtime Monitoring — An Industrial Case Study 217

Trace

System

Monitor

Fig. 4. The proposed architecture with coarse-grained monitoring

between the slow and the fast version, monitoring can be fast-forwarded to ignore
irrelevant intermediate monitoring states. To the best of our knowledge, monitor
fast-forwarding has not been treated in the literature and thus our contributions
are as follows:

– We formalise the notion of monitor fast-forwarding in general and explain
what it means for fast-forwarding to be correct. (Section 3.1)

– Next, we show how the theory is applicable to monitoring with a particular
monitoring tool, Larva. (Section 3.2)

– Through an industrial case study we show the usefulness of our approach,
particularly in the context of an industrial case study (Section 4).

2 Background

To instantiate fast-forward monitoring, we have used the monitoring tool, Larva
[4], which consists of dynamic automata with timers and events (DATEs). These
automata trigger on particular system events after checking that a correspond-
ing condition holds. Conditions can be specified both on the system state and
on the monitor state, the latter possibly including stopwatches and Java objects.
Following a transition trigger, an action can be executed to modify stopwatches,
the system or monitor state, or synchronise with other automata. Furthermore,
DATEs enable monitoring on a foreach object basis such that a monitor is repli-
cated for each object of a particular type. Thus, a Larva monitor is in fact a
vector of automata accompanied by a function which may dynamically launch
new automata and add them to the vector.

Example 1. As an example of a Larva monitor, below is a property which man-
ages inactive users of a financial system. To ensure inactive accounts are safe,
users who are inactive for more than six month are suspended, i.e., put in dor-
mancy mode, and an administration fee is charged. If a user asks for his account
to be reactivated, then the request is granted but the account is switched to
dormant once more if the user still remains inactive for another three months.
The corresponding Larva property checks a number of sub-properties:

218 C. Colombo and G.J. Pace

1. The account is switched to dormant after six/three months of inactivity
(otherwise expiredDorm bad state is reached).

2. The account is not put to dormant before six/three months of inactivity
(otherwise unexpectedDorm bad state is reached).

3. The applicable fee is paid correctly (otherwise failedPay bad state is reached).
4. No transaction is carried out if the account is dormant (otherwise unexpect-

edTx bad state is reached).

This property is monitored for each system user and thus a replica of each
monitor is instantiated for each user. Excerpts of the Larva script which spec-
ifies the dormancy property is given in Fig. 5 (top) while the depiction of the
DATE automaton is given in Fig. 5 (bottom). Note that each transition is an
event\condition\action triple and octagons represent bad states. For brevity we
use dorm for dormancy, Tx for transaction, and T for Timer.

System events in the context of DATEs can be system methods calls, timer events
(e.g., a monitor stopwatch triggers an event after 30 minutes since it was reset),
synchronisation events, or a disjunction of events. Since basic events contribute
to disjunctions, then at any time instant several events may fire simultaneously.

Definition 1. A system trace s ∈ S is a sequence of time instants such that
each instant, si, is composed of a set of events, E ∈ 2event and a timestamp
t ∈ R+

0 : si = (Ei, ti). The alphabet of possible instants will be written as Σ:
Σ

df
= 2event × R+

0 .

A DATE automaton has a set of states Q connected with transitions triggering
on system or timer events and guarded by conditions on the system and monitor
symbolic state (ranging over Θ) and stopwatches (ranging over CT). A monitor
consists of a set of initial automata and directives to instantiate new automata
dynamically upon receiving certain events. Full details of the the formal seman-
tics of DATEs can be found in [4]. For the needs of this paper, it suffices to
identify the configuration of a vector of DATE automata and explain how they
form a run depending on the system events observed.

Definition 2. A configuration c ∈ C of a vector of DATE automata, M ∈ M,
consists of the current system and monitor state, θ ∈ Θ, the current state of
the stopwatches, ct ∈ CT , a vector of locations representing the location each
automaton is in, q ∈ Q, and the vector of automata itself: c = (θ, ct, q, M).

We can now outline the semantics of a vector of DATEs.

Definition 3. The semantics of a vector of DATEs, M ∈ M, can be given
by transforming M into a labelled transition system over the configurations
〈C, c0,→c〉 — with states C (the configurations of M), initial state c0 ∈ C, and
transition function labelled by events and timestamps, →c∈ (C × Σ) → C. We
write c

a−→c c′ to refer to particular (c, a, c′) ∈→c and c
w
=⇒c c′ (with w ∈ Σ∗) for

the transitive closure of →c.

Fast-Forward Runtime Monitoring — An Industrial Case Study 219

Foreach (String user) {
Variables {

Clock T6, T3; }
Events {

expired6 = {T6 @ 183 days}
anyTx = {event(currency, amount, type) where type = "generic"}
... }

Property dormancy {
States {

Bad { expiredDorm, unexpectedDorm, failedPay, unexpectedTx }
Normal { dorm, thawed, feepaid }
Starting { nonDorm } }

Transitions {
nondorm -> nondorm [anyTx\\resetT6]
nondorm -> dorm [dorm\T6>180 days]
... } } }

T3@3mnths\\
expiredDorm

dorm feePaid

unexpectedTx failedPay

thawed

failed,
pay\!correct

unexpectedDrm
Foreach User

nonDorm

anyTx\\resetT6

thaw\\resetT3

\
anyTx\\

anyTx\\resetT6

pay\correct\dorm\T6>6mnths\

dorm\T3>3mnths\

dorm\\dorm\\

T6@6mnts\\

Fig. 5. The dormancy property expressed as a Larva script (top) and as a DATE
(bottom)

The set of bad configurations, CB ⊆ C, correspond to the configurations arising
from the states which are tagged as undesirable in the original DATEs. We will
assume that the transition system guarantees that recovery from a bad state is
not possible — if c ∈ CB and c

a−→c c′, then c′ ∈ CB.
The set of bad traces starting from a configuration c, written B(c), are the

strings leading to a bad configuration: B(c) = {w | ∃c′ ∈ CB · c
w
=⇒ c′}. A

configuration c2 is said to be as strict or stricter than c1 (written c1 &c c2) if c2
rejects all traces rejected by c1 (and possibly more): B(c1) ⊆ B(c2). We say that
they are equivalent if they reject the same traces: c1 =c c2

df
= c1 &c c2 ∧ c2 &c c1.

220 C. Colombo and G.J. Pace

3 Monitor Fast-Forwarding

Whenever new or modified stateful properties are to be monitored on a system,
monitoring has to start processing the system trace from its beginning (which
might be years worth of logs) since ignoring any part of the trace might yield
wrong monitoring results — the monitor state would not have correctly evolved
over the whole trace. Similar problems occur when monitor state is lost due to
a system crash or when asynchronous monitors fall too much behind the sys-
tem. Fast-forward monitoring provides a means of going through the trace (or
an abstraction of it) to infer the state (or a somewhat similar state) the monitor
would have reached if the trace was monitored normally. By ignoring the inter-
mediate monitoring states, fast-forward monitoring promises to be significantly
faster than normal monitoring.

In this section we define a generic theory of monitor fast-forwarding and then
we instantiate the approach on the monitoring tool Larva and explain how we
support users in specifying an application of monitor fast-forwarding.

3.1 A Theory of Monitor Fast-Forwarding

The idea behind monitor fast-forwarding is to allow the monitor to skip parts
of the trace but still reach the same configuration that would have been reached
had the monitor progressed normally. At its simplest level, this would just in-
volve a function to abstract traces into shorter ones. However, in practice, this
is usually not sufficient, and one would require abstracting also the transition
system induced by the DATE against which the trace is verified. Given a moni-
toring system, its fast-forward version is another monitoring system, with three
additional components: (i) a mapping from the original monitoring system to
the fast one; (ii) a trace abstraction which transforms an actual trace into a
shorter or a more efficiently processable one; and (iii) a mapping from the fast
monitoring system to the original one.

Definition 4. Given a monitoring transition system M = 〈C, c0,→c〉 with bad
states CB, the transition system 〈A, a0,→A〉 with total domain translation func-
tions �� ∈ C → A, �� ∈ A → C, and a trace abstraction function α ∈ Σ∗ →
Σ∗, is said to be a fast-forward version of M .

Typically, for actual fast-forwarding, the length of an abstracted trace is shorter
than the original trace:2 length(α(w)) ≤ length(w). The trace abstraction func-
tion is assumed to map the empty string to itself: α(ε) = ε (which follows directly
if the abstraction always shortens traces).

Definition 5. A transition system A is an exact fast-forward version of a mon-
itoring transition system M , with functions ��, �� and α if whenever c

w
=⇒c c′:

∀a′ · ��(c)
α(w)
===⇒A a′ =⇒ c′ =c ��(a′)

2 We do not enforce this in the definition to allow for abstractions to an extended
alphabet which although lengthens the trace, would still be processed faster.

Fast-Forward Runtime Monitoring — An Industrial Case Study 221

It is said to be an over-approximated fast-forward version if whenever c
w
=⇒c c′:

∀a′ · ��(c)
α(w)
===⇒A a′ =⇒ c′ &c ��(a′)

It is an under-approximation if c
w
=⇒c c′ implies:

∀a′ · ��(c)
α(w)
===⇒A a′ =⇒ ��(a′) &c c′

We will write c
w
=⇒�� c′ if there exist a and a′ such that (i) a = ��(c); (ii) c′ =

��(a′); and (iii) a
α(w)
===⇒A a′.

Proposition 1. Abstracting to an exact fast-forwarded system and transforming
back does not change the observable behaviour of the resulting monitor: ��◦�� ⊆
=c.

Proof. The proof follows directly from the definition of exact fast-forwarded sys-
tems and the fact that α(ε) = ε.

Example 2. Referring back to the dormancy example, we illustrate how the
above theory can be instantiated for initialising dormancy monitors for the ex-
isting users of a system. For the sake of this example we will focus on deciding
whether a user is in the nonDorm state, or the dorm state and set the clocks
accordingly. To facilitate this decision, we need two pieces of information: (i) a
list of system users, and for each user (ii) the timestamp of the latest transaction
or the latest switch to dormancy, whichever is most recent.

Thus, assuming a monitor 〈C, c0,→c〉 and a system trace s, the corresponding
translation function �� transforms c0 into a configuration of type C × Ψ (using
information from the system state) where Ψ includes a list of users currently
active in the system. The reverse translation function �� simply drops Ψ from
the resulting configuration. The trace abstraction function α drops all events
except for the most recent activity of each user (with respect to the point of
initialisation). As for the fast-forward transition system, for each user there are
conceptually two options: either his or her last activity was a normal transaction,
in which case the user is in the nonDorm state and the stopwatch should be set
to trigger six months from the latest transaction, or the last activity turned the
user into dormant and hence the user is in the dorm state.

Given a monitoring transition system M and an exact fast-forwarded version MA,
then monitoring a trace partially in M and partially in the fast-forwarded version
MA is equivalent to monitoring it completely with the original monitor M .

Theorem 1. Given a monitoring transition system M = 〈C, c0,→c〉 with bad
states CB, and an exact fast-forward transition system MA = 〈A, a0,→A〉 with
functions ��, �� and α, given w = w1w2 . . . wn, then w ∈ B(c0) if and only if
there exists cn ∈ CB and states ci ∈ C such that:

c0
w1=⇒C c1

w2=⇒�� c2
w3=⇒C c3

w4=⇒�� . . .
wn−1
===⇒�� cn−1

wn=⇒C cn
If the fast-forward system is an over-approximation, then the above is a for-

ward implication. Similarly, for an under-approximation, only the backward im-
plication is guaranteed to hold.

This result follows by induction on the number of parts string w is split into.

222 C. Colombo and G.J. Pace

Interestingly, while it is generally undesirable to use over- or under-
approximations, in certain scenarios one might be ready to compromise hav-
ing false negatives in the case of an over-approximation and false positives in
the case of an under-approximation. In the following list we suggest a number
of applications of fast-forwarding monitoring, highlighting where it is preferable
to use exact or approximate fast-forward monitoring:

Fast monitor bootstrapping: Whenever monitors have to be instantiated on
a system with a long recorded history, running the standard monitor on the
long traces may take prohibitively long. An alternative is to process the
traces using an exact fast-forwarded version of the monitor. Approximate
fast-forwarding can also be useful if, either we are assured that there are
no errors to be caught on the stored history (in which case we can use an
under-approximation) or if we prefer to process the history quickly ensuring
that any errors are caught (in which case, an over-approximation would be
applicable).

Burst monitoring: In systems where resources are committed only at particu-
lar points in time, it can be beneficial to accumulate and process the system
trace only at these moments in time. For instance, in a transaction process-
ing system where all database modifications are committed at the end of a
transaction one may, for example, collect the full trace of a transaction and
process it using a fast-forwarded monitor. If an exact fast-forward may still
be too expensive to check and performance is an issue, one may choose to
apply over-approximations for transactions by blacklisted users and under-
approximations for whitelisted ones.

Synchronous/asynchronous monitoring: In the case of asynchronous mon-
itoring, fast-forward monitoring can be used whenever the monitor is lagging
too much behind the system. Moreover, in monitoring systems such as [3]
where asynchronous monitoring can be synchronised at runtime, fast-forward
monitoring can be used for a quick synchronisation.

In the rest of the paper, we will focus on the first of the above applications
of fast-forwarded monitoring, showing the applicability of the approach and its
gains.

3.2 Instantiating Fast-Forwarding to Larva

In Larva we use monitor fast-forwarding to start monitors from a particular
point in a system’s history, i.e., fast monitor bootstrapping. This is crucial for
industrial systems so that when properties are modified, the monitor comes up to
scratch with the system as soon as possible — monitoring years’ worth of data
would waste monitoring time which could be used to start monitoring more
recent (and thus more relevant) data.

Instantiating the theory of fast-forwarding to monitor bootstrapping in Larva
would include deciding the two translation functions �� and ��, the trace ab-
straction function α, and the fast-forward transition relation →A. The following
list expands each of these aspects, generalising the approach taken in Example 2:

Fast-Forward Runtime Monitoring — An Industrial Case Study 223

– In the case of Larva it is assumed that the translation function �� obtains
the list of objects which should be monitored during fast-forwarding while
the reverse translation function �� drops the additional information.

– The trace which originally includes all the system events, is collapsed to the
trace elements which are required for deciding the state of each monitor.

– The fast-forward monitor which handles fast bootstrapping, first obtains M
by instantiating a monitor for each entity indicated by �� and subsequently
allows each entity to perform one step updating its monitor state based on
the abstracted trace. Such a configuration step should include three aspects
corresponding to the configuration components q, ct, and θ respectively:
1. The state of the respective monitor (an element of q) is updated (e.g.,

monitors of users whose account has been put into dormant state in the
past should be in the state dorm).

2. The clocks of each monitor are set (e.g., when the last financial transac-
tion took place so that it can be ensured that inactive users are actually
put into the dormant state).

3. The values of the variables of each monitor are set (e.g., counting the
number of transactions which the user has carried out so that monitors
can check that the allowed quota has not been exceeded).

To facilitate the specification of the abstracted monitor for Larva users, we have
introduced some minor additions to Larva scripts as explained in the following.

3.3 Adapting Larva Scripts

To enable users to easily program fast monitor bootstrapping, we have aug-
mented the Larva script structure. Recall that Larva provides the foreach con-
struct which enables monitors to be replicated for distinct objects of a particular
type. Furthermore, foreach components can be nested (e.g., for monitoring each
credit card of each user) and the outermost foreach components are enclosed
in a global component which can be used to monitor properties which are not
replicated, i.e., not related to particular objects. To initialise a global component
what is required is to give a value to variables, clocks and update the state of
any global property automata. For this reason we have added the initializeIf
component which triggers on a particular condition (indicating that the monitor
is in fast-forward mode) where the user can specify a Java method which returns
a hashmap with variable/clock/automata names as keys and the corresponding
intended values as the hashmap values. Note that no setting needs to be done if
the variables/clocks/states have not progressed from their default initialisation.
In Fig. 6 we show how using two SQL queries we deduce when the last successful
transaction occurred for a particular user and whether the user has been recently
(since the last successful transaction) put into dormant state. Using this infor-
mation we set the corresponding clocks to trigger when the user should be put
to dormant in the future. Moreover, if the user is currently dormant, then the
corresponding dormancy automaton (shown in Fig. 5) is to be in state dorm.

224 C. Colombo and G.J. Pace

Note that we assume that the current system state does not contain errors and
consequently our fast-forwarding is an under-approximation.

Yet it is not enough to be able to initialise a monitor for one particular user
— the Larva script should also allow the script writer to specify a means of
deducing the number of users in the system for whom a monitor should be repli-
cated and initialised. Note that this is useless for a global component for which
no replication takes place anyway. For this reason, each foreach may contain an
initially component (apart from an initializeIf component) which can specify a
method returning an array with all the objects for which a monitor should be
created3. In our example the initially method returns an array of user ids.

The approach described in this section has been successfully applied to the
live data of an industrial case study with promising results as elaborated in the
following section.

4 Case Study

We have applied our architecture on Entropay, an online prepaid payment service
offered by Ixaris Systems Ltd4. Entropay users deposit funds through funding
instruments (such as their own personal credit card or through a bank transfer
mechanism) and spend such funds through spending instruments (such as a
virtual VISA card or a Plastic Mastercard). The service is used worldwide and
thousands of transactions are processed on a daily basis.

In our case study 15 properties written as DATEs (each including several
sub-properties as explained in the dormancy example) have been monitored on
Entropay which can be loosely classified under:

Life cycle properties checking that operations occur at the right stage of a
user’s life cycle (e.g., a user cannot carry out financial transactions if his
account is dormant).

Real-time properties checking that actions which should be system-triggered
are carried out on time (e.g., the system should automatically put to dormant
accounts which have been inactive for more than six months).

Rights properties checking that the user has the appropriate rights before a
transaction is permitted (e.g., for a user to log into the system he or she
must have the login right).

Limits properties checking that the frequency and value of certain transac-
tions fall within the stipulated limits (e.g., no more than 100 purchases are
allowed each month).

The case study was successfully executed on a sanitized5 database of 300,000
users with around a million virtual cards and a number of issues have been
detected through the monitoring system6.
3 Larva supports foreach components for tuples of objects. Thus, the initially method

actually returns an array of arrays where each array supplies an element of the tuple.
4 http://www.ixaris.com
5 User information was obfuscated for the purpose of this study.
6 The issues have been extensively reported in [2,3].

Fast-Forward Runtime Monitoring — An Industrial Case Study 225

Foreach (String user) {
Initializeif (init) {

static HashMap<String, Object> initializeifUser(String user) {
HashMap<String, Object> list = new HashMap<String, Object>();

//obtain last successful user transaction
rs = st.executeQuery(

SELECT timestamp FROM transaction_table
WHERE id=@user AND timestamp < @initializationTime
ORDER BY timestamp DESC);

latestTrans = rs.getLong("timestamp");

//check if user is currently dormant
rs = st.executeQuery(

SELECT timestamp FROM log_table WHERE id=@user
AND event="USER_DORMANT" AND timestamp < @initializationTime
ORDER BY timestamp DESC);

latestDorm = rs.getLong("timestamp");

if (latestDorm > latestTrans) {
//i.e. user is currently dormant
//therefore put automaton into "dorm" state

} else {
//i.e. user is not dormant
//set clock to expire 6 months after last transaction occurred

}
...

return list; } }

//code given in the previous example starts here
Variables {...} Events {...} Property ...

//code given in the previous example ends here

Initially {
static ArrayList initiallyUsers() {
...
rs = s.executeQuery(SELECT id FROM users_table;);
while (rs.next())

list.add(rs.getString("id"));
return list;

} } }

Fig. 6. The dormancy example augmented with fast bootstrapping code

Since Entropay had been up and running for more than a year at the time
of applying monitoring and it was envisaged that monitors would have to be
modified or added regularly, fast monitor bootstrapping was crucial in making
monitoring feasible. More details are given in the following subsection.

226 C. Colombo and G.J. Pace

4.1 Results

The monitor was deployed on data representing activities starting from 23 Decem-
ber 2008.Data before this date was considered to be too old and would waste moni-
toring time which could more beneficially be used to monitor more recent data per-
taining to users which are more probably still active at the time of monitoring. To
quickly bootstrap the monitors up to 23 December 2008, we used the fast-forward
technique on 58 weeks of data starting from 8 November 2007.

Using a Dual Core AMD Opteron Processor at 1.81GHz running Windows
XP x64 with 2Gb RAM, the monitors successfully fast-forwarded through 58
weeks in 35 hours. Subsequently, the monitors were run on the available data
(at the time when this case study was carried out) dating till 8 September
2009 (including 37 weeks of data) consisting of millions of transactions. This
process took 552 hours (approximately 23 days) equating to less than 15 hours
of processing per one week’s data. Proportionately, monitoring the 58 weeks of
data would have roughly taken the monitor 36 days to come at par with the live
system as opposed to the day and a half with fast-forwarded initialisation. This
time saving is crucial when one would need to receive immediate feedback upon
deploying new monitors, particularly if remedy actions can be taken based on
monitoring results.

We have not tried out this case study using other runtime verification tools.
Thus, although past experiments [4] have shown our tool’s performance to be
comparable to that of other tools, it is difficult to discuss the performance in
itself. However, these experiments do clearly highlight the effectiveness of fast-
forward monitoring in significantly reducing the monitoring time.

4.2 Discussion

The downside of the current instantiation of monitor fast-forwarding is that the
user has to program the fast-forwarding abstractions manually. From our experi-
ence, coming up with fast-forwarding monitors is more challenging than devising
normal monitors. The reason is that normal monitoring is usually more similar
to the typical specifications accompanying industrial systems, while the logic
needed for fast-forward monitoring can only be obtained by having an intimate
knowledge of the system at hand. For example, referring back to the dormancy
example, the industrial specifications are written in the following imperative
style: (i) The cycle starts when a registered user is inactive for six months, at
that point the user account must be put to dormant. (ii) Whilst dormant, the
user may not perform any transactions but may ask to be reactivated. (iii) If
the user has been reactivated by does not carry out a financial transaction for
another three months, the user account is deactivated again. This logic can al-
most be directly translated into normal monitors with states and transitions.
On the other hand, programming under-approximating (i.e., assuming the sys-
tem worked correctly before monitoring started) fast-forward monitoring would
requires declarative knowledge such as: (i) If the user has performed financial
transactions since the last time he or she has been dormant, then the user must

Fast-Forward Runtime Monitoring — An Industrial Case Study 227

be active. (ii) On the other hand, if no transactions have been carried out since,
then the user is still dormant. (iii) Yet another possibility is that if the user has
carried out (only) non-financial transactions, then the user has been thawed but
not fully activated yet. Although statements such as the latter can usually be in-
ferred from the former, they are not typically written in technical specifications
and engineers are more accustomed to the imperative style of specifications.

One use of more generic fast-forwarding in our case study would be to enable
the monitor to keep up with the system in case asynchronous monitoring is
consistently slower than the system. However, as yet, we have never encountered
monitors which are not able to keep up with the system. In our case study
results it is noteworthy that once monitors come at par with the system, it is
not a problem for the monitors to keep up; with slightly more than two hours of
processing for a day’s events. Still, if one had to adapt the above given code for
fast-forwarding asynchronous monitoring, this can be done by simply adding a
condition in the SQL statements to ignore entries before a particular date (the
date where the slow asynchronous monitors have reached).

5 Conclusion

To the best of our knowledge the idea of fast-forward monitoring is novel. A
notion which relates to fast-forward monitoring is counterexample shrinking [6,7]
from the area of testing. For example QuickCheck [5], a model-based testing tool
for Erlang, attempts to find a shorter trace when a bug is found. This simplifies
the developers’ task of debugging since it is easier to understand what happened
in a simpler trace. Note that counterexample shrinking is a special case of our
fast-forwarding theory: (i) the translation functions are the identity functions,
(ii) the trace abstraction function returns a shorter or simpler trace, and (iii)
the same identical oracle that is used during testing is used during shrinking.
Exact fast-forwarding ensures that the same bug that was exhibited during the
original trace is also exhibited when monitoring the simpler one.

In a monitoring environment where the monitoring impact on system per-
formance should be strictly minimal, fast-forward monitoring can be useful to
enable the monitor to keep up with the system so that the monitoring effort is
spent on monitoring the most relevant events. This problem is not only encoun-
tered the first time monitoring is deployed on the live system but also whenever
a new version of monitoring code is used or a new property is added. In all
such cases, the monitor has to update its state so that it comes in line with
the system state. The theory of fast-forwarding has been instantiated for the
monitoring tool Larva by enhancing its script with two new components which
enable users to specify fast monitor bootstrapping. We have shown the useful-
ness of this approach for an industrial case study where monitors have to process
millions of records before starting to process relevant events. In the future this
technique can be incorporated with heuristics (in a similar fashion to [3]) so that
the monitor can be fast-forwarded at the start of a critical section where timely
monitoring is crucial. This approach might be more practical than the approach
proposed in [3] of simply pausing the system to wait for the monitor to keep up.

228 C. Colombo and G.J. Pace

References

1. Colombo, C., Pace, G.J., Abela, P.: Offline runtime verification with real-time prop-
erties: A case study. Tech. rep., Department of Computer Science, University of
Malta, internal report 01-WICT-2009 (2009)

2. Colombo, C., Pace, G.J., Abela, P.: Compensation-Aware Runtime Monitoring. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 214–228. Springer,
Heidelberg (2010)

3. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods in System Design 40, 1–26 (2012)

4. Colombo, C., Pace, G.J., Schneider, G.: Dynamic Event-Based Runtime Monitoring
of Real-Time and Contextual Properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

5. Hughes, J.: QuickCheck Testing for Fun and Profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2007)

6. Leitner, A., Oriol, M., Zeller, A., Ciupa, I., Meyer, B.: Efficient unit test case min-
imization. In: 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 417–420. ACM (2007)

7. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng. 28(2), 183–200 (2002)

Runtime Enforcement of Timed Properties

Srinivas Pinisetty1, Yliès Falcone2, Thierry Jéron1, Hervé Marchand1,
Antoine Rollet3 and Omer Landry Nguena Timo4

1 INRIA Rennes - Bretagne Atlantique, France
First.Last@inria.fr

2 LIG, Université Grenoble I, France
Ylies.Falcone@ujf-grenoble.fr

3 LaBRI, Université de Bordeaux - CNRS, France
Antoine.Rollet@labri.fr

4 IRIT, France
Omerlandry.Nguenatimo@enseeiht.fr

Abstract. Runtime enforcement is a powerful technique to ensure that a running
system respects some desired properties. Using an enforcement monitor, an (un-
trustworthy) input execution (in the form of a sequence of events) is modified into
an output sequence that complies to a property. Runtime enforcement has been
extensively studied over the last decade in the context of untimed properties.

This paper introduces runtime enforcement of timed properties. We revisit
the foundations of runtime enforcement when time between events matters. We
show how runtime enforcers can be synthesized for any safety or co-safety timed
property. Proposed runtime enforcers are time retardant: to produce an output
sequence, additional delays are introduced between the events of the input se-
quence to correct it. Runtime enforcers have been prototyped and our simulation
experiments validate their effectiveness.

1 Introduction

Runtime verification [1–6] (resp. enforcement [7–9]) refers to the theories, techniques,
and tools aiming at checking (resp. ensuring) the conformance of the executions of
systems under scrutiny w.r.t. some desired property. The first step of those monitoring
approaches consists in instrumenting the underlying system so as to partially observe
the events or the parts of its global state that may influence the property under scrutiny.
A central concept is the verification or enforcement monitor that is generally synthe-
sized from the property expressed in a high-level formalism. Then, the monitor can
operate either online by receiving events in a lock-step manner with the execution of
the system or offline by reading a log of system events. When the monitor is only dedi-
cated to verification, it is a decision procedure emitting verdicts stating the correctness
of the (partial) observed trace generated from the system execution.

Three categories of runtime verification frameworks can be distinguished accord-
ing to the formalism used to express the input property. In propositional approaches,
properties refer to events taken from a finite set of propositional names. For instance, a
propositional specification may rule the ordering of function calls in a program. Moni-
toring such kind of specifications has received a lot of attention. Parametric approaches

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 229–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 S. Pinisetty et al.

have received a growing interest in the last five years. Here, events are augmented with
formal parameters, instantiated at runtime. In timed approaches, the observed time be-
tween events may influence the truth-value of the property. It turns out that monitoring
of (continuous) time specifications is a much harder problem. Intuitively, when mon-
itoring a timed specification, the problem that arises is that the overhead induced by
the monitor (i.e., the time spent executing monitor’s code) influences the truth-value of
the monitored specification. Consequently, not much information can be gained from
the verdicts produced by the monitor. Few attempts have been made on monitoring sys-
tems w.r.t. timed properties (see Sec. 8 for related work). Two lines of work can be
distinguished: synthesis of automata-based decision procedures for timed formalisms
(e.g., [1, 3–5]), and, tools for runtime verification of timed properties [10, 11].

In runtime enforcement, an enforcement monitor (EM) is used to transform some
(possibly) incorrect execution sequence into a correct sequence w.r.t. the property of
interest. In the propositional case, the transformation performed by an EM should be
sound and transparent. Soundness means that the resulting sequence obeys the prop-
erty. Transparency means that, if the input sequence already conforms to the property,
the monitor has to modify it in a minimal way. According to how a monitor is allowed to
modify the input sequence (i.e., the primitives afforded to the monitor), several models
of enforcement monitors have been proposed [7–9]. In a nutshell, an EM can definitely
block the input sequence (as done by security automata), suppress an event from the
input sequence (as done by suppression automata), insert an event to the input sequence
(as done by insertion automata), or perform any of these primitives (as is the case with
edit-automata). Moreover, according to how transparency is effectively formalized, sev-
eral definitions of runtime enforcement have been proposed (see [9] for an overview).

In this paper we focus on online enforcement of timed properties. To the best of
our knowledge, no approach was proposed to enforce timed properties. Motivations for
extending runtime enforcement to timed properties abound. First, timed properties are a
more precise tool to specify desired behaviors of systems since they allow to explicitly
state how time should elapse between two events. Moreover, several applications of
runtime enforcement of timed properties can be considered. For instance, in the context
of security monitoring, enforcement monitors can be used as firewalls to prevent denial
of service attacks by ensuring a minimal delay between input events (carrying some
request for a protected server). On a network, enforcement monitors can be used to
synchronize streams of events together, or, ensuring that a stream of events conforms to
the pre-conditions of some service.

Contributions. We propose a context where, under some reasonable assumptions, run-
time enforcement of timed properties is possible. For this purpose, we adapt sound-
ness and transparency to a timed context. Runtime enforcement monitors are built from
safety and co-safety properties expressed by timed automata. In contrast with previ-
ous runtime enforcement approaches, we afford only the primitives of being able to
delay the input events to our enforcer. By possibly increasing delays between events
of the input sequence, the output timed sequence conforms to the property. Delays are
modified by monitors using an internal memory where (sequence of) events are stored
and released after appropriate delays. Experiments have been performed on prototype
monitors to show their effectiveness and the feasibility of our approach.

Runtime Enforcement of Timed Properties 231

Paper organization. Section 2 introduces preliminaries and notation. Section 3 intro-
duces the notion of enforcement for timed properties. Sections 4 and 5 describe how
one can enforce safety and co-safety properties, respectively. Our prototype implemen-
tations of monitors and experiments are in Sec. 6 and Sec. 7, respectively. Section 8
discusses related work. Finally, conclusions and open perspectives are drawn in Sec. 9.

2 Preliminaries and Notation

Untimed notions. An alphabet is a finite set of elements. A (finite) word over an alphabet
A is a finite sequence of elements of A. The length of a word w is noted |w|. The empty
word over A is denoted by εA or ε when clear from context.The set of all (resp. non-
empty) words over A is denoted by A∗ (resp. A+). A language over A is a subset
L ⊆ A∗. The concatenation of two words w and w′ is noted w ·w′. For an interval [j, k]
in N, by

⊙
i∈[j,k](ai) we denote the concatenation aj ·aj+1 · · ·ak. A word w′ is a prefix

of a word w, noted w′ � w, whenever there exists a word w′′ such that w = w′ · w′′.
For a word w and 1 ≤ i ≤ |w|, the i-th letter (resp. prefix of length i, suffix starting at

position i) of w is noted w(i) (resp. w[···i], w[i···]) – with the convention w[···0]
def
= ε.

pref(w) denotes the set of prefixes of w and by extension, pref(L) def
= {pref(w) | w ∈

L} the prefix of L. L is said to be prefix-closed whenever pref(L) = L and extension-
closed whenever L = L · A∗. Given a tuple of symbols e = (e1, . . . , en), Πi(e) is the

projection of e on its ith element (Πi(e)
def
= ei).

Timed languages. Let R≥0 denote the set of non negative real numbers, and Σ a finite
alphabet of actions. A pair (δ, a) ∈ (R≥0×Σ) is called an event. We note del(δ, a) = δ
and act(δ, a) = a the projections of events on delays and actions, respectively. A
timed word over Σ is a finite sequence of events ranging over (R≥0 × Σ)∗. For σ =
(δ1, a1)·(δ2, a2) · · · (δn, an), δi (2 ≤ i ≤ n) is the delay between ai−1 and ai and δ1 the
time elapsed before the first action. Note that the alphabet is infinite in this case. Never-
theless, previous notions and notations defined above (related to length, concatenation,
prefix, etc) naturally extend to timed words. The sum of delays of a timed word σ is
noted time(σ). Given t ∈ R≥0, and a timed word σ ∈ (R≥0×Σ)∗, we define the obser-

vation of σ at time t as the timed word obs(σ, t)
def
= max{σ′ | σ′ � σ ∧ time(σ′) ≤ t},

i.e., the longest prefix of σ with a sum of delays less than t. The untimed projection of

σ is ΠΣ(σ)
def
= a1 · a2 · · · an in Σ∗ (i.e., delays are ignored). A timed language is any

subset L ⊆ (R≥0 × Σ)∗. We define the following order on timed words: σ′ delays σ
(noted σ′ �d σ) if ΠΣ(σ

′) � ΠΣ(σ) and ∀i ≤ |σ′|, del(σ(i)) ≤ del(σ′(i)).

Timed Automata. Let X = {X1, . . . , Xk} be a finite set of clocks. A clock valuation
for X is a function ν from X to RX

≥0 where RX
≥0 denotes the valuations of X . For

ν ∈ RX
≥0 and δ ∈ R≥0, ν + δ is the valuation assigning ν(Xi) + δ to each clock Xi

of X . Given a set of clocks X ′ ⊆ X , ν[X ′ ← 0] is the clock valuation ν where all
clocks in X ′ are assigned to 0. G(X) denotes the set of clock constraints defined as
boolean combinations of simple constraints of the form Xi �� c with Xi ∈ X , c ∈ N
and ��∈ {<,≤,=,≥, >}. Given g ∈ G(X) and ν ∈ RX

≥0, we write ν |= g when
g(ν) ≡ true.

232 S. Pinisetty et al.

Definition 1 (Timed automaton). A timed automaton (TA) is a tuple A =
〈L, l0, X, Σ, Δ, G〉, s.t. L is a finite set of locations with l0 ∈ L the initial location,
X is a finite set of clocks, Σ is a finite set of events, Δ ⊆ L × G(X)× Σ × 2X × L is
the transition relation, and G ⊆ L is a set of accepting locations.

The semantics of a TA is a timed transition system [[A]] = 〈Q, q0, Γ,→, FG〉 where
Q = L × RX

≥0 is the (infinite) set of states, q0 = (l0, ν0) is the initial state where ν0
is the valuation that maps every clock to 0, FG = G × RX

≥0 is the set of of accepting
states, Γ = R≥0 × Σ is the set of transition labels, i.e., pairs composed of a delay and
an action. The transition relation →⊆ Q × Γ × Q is a set of transitions of the form

(l, ν)
(δ,a)−−−→(l′, ν′) with ν′ = (ν + δ)[Y ← 0] whenever there exists (l, g, a, Y, l′) ∈ Δ

s.t. ν + δ |= g for δ ≥ 0.

In the following, we consider a timed automaton A = 〈L, l0, X, Σ, Δ, G〉 with its
semantics [[A]]. A is deterministic whenever for any (l, g1, a, Y1, l′1) and (l, g2, a, Y2, l′2)
in Δ, g1 ∧ g2 is false. A is complete whenever for any location l ∈ L and every event
a ∈ Σ, the disjunction of the guards of the transitions leaving l and labeled by a is true.
In the remainder of this paper, we shall consider only deterministic timed automata.

A run ρ from q ∈ Q is a sequence of moves in [[A]] of the form: ρ = q0
(δ1,a1)−−−−→

q1 · · · qn−1
(δn,an)−−−−−→ qn. The set of runs from q0 ∈ Q is denoted Run(A) and

RunFG(A) denotes the subset of runs accepted by A, i.e., ending in FG. The trace
of a run ρ is the timed word (δ1, a1) · (δ2, a2) · · · (δn, an). We note L(A) the set of
traces of Run(A). We extend this notation to LFG(A) in a natural way.

Timed Properties. A timed property is defined by a timed language ϕ ⊆ (R≥0 × Σ)∗.
Given a timed word σ ∈ (R≥0 × Σ)∗, we say that σ satisfies ϕ (noted σ |= ϕ) if
σ ∈ ϕ. In the sequel, we shall be interested in safety and co-safety timed properties. In-
formally, safety (resp. co-safety) properties state that “nothing bad should ever happen”
(resp. “something good should happen within a finite amount of time”). Safety (resp.
co-safety) properties can be characterized by prefix-closed (resp. extension-closed) lan-
guages. We consider only the sets of safety and co-safety properties that can be repre-
sented by timed automata (Definition 1).

Definition 2 (Safety and Co-safety TA). A complete and deterministic TA
〈L, l0, X, Σ, Δ, G〉, where G ⊆ L is the set of accepting locations, is said to be:

– a safety TA if �〈l, g, a, Y, l′〉 ∈ Δ, l ∈ L \ G ∧ l′ ∈ G;
– a co-safety TA if �〈l, g, a, Y, l′〉 ∈ Δ, l ∈ G ∧ l′ ∈ L \ G.

It is easy to check that safety and co-safety TAs define safety and co-safety properties.

Example 1 (Safety and co-safety TA). Fig. 1a and 1b present two properties formal-
ized with safety and co-safety TA. Accepting locations are represented by squares. The
safety TA formalizes the property ϕ1 defined over Σ1 = {a, r}: “There should be a
delay of at least 5 time units between any two user requests (r)”. The co-safety TA for-
malizes the property ϕ2 defined over Σ2 = {r, g, a}: “The user can perform an action
a only after a successful authentication, i.e., after sending a request r and receiving a
grant g. After an r, g should occur between 10 and 15 time units”.

Runtime Enforcement of Timed Properties 233

l0 l1 l2

Σ1 \ {r}
r,

x := 0

Σ1 \ {r}

r, x ≥ 5,
x := 0

r, x<5

Σ1

(a) A safety TA for ϕ1

l0 l1

l2

l3
r, x := 0

Σ2 \ {r}

Σ2 \ {g},
x < 10 ∨ x > 15

g,
10≤x ≤15

Σ2

Σ2

(b) A co-safety TA for ϕ2

Fig. 1. Example of Timed Properties

3 Enforcement Monitoring in a Timed Context

Roughly speaking, both in the timed and untimed settings, the purpose of an enforce-
ment monitor (EM) is to read some (possibly incorrect) input sequence σ produced by a
running system (input to the enforcer), and to transform it into an output sequence o that
is correct w.r.t. a property ϕ, here modeled by a TA. From an abstract point of view, an
enforcement monitor realizes an enforcement function E that transforms timed words
into timed words according to global time.

Definition 3. For a given property ϕ, an enforcement function is a function E from
(R≥0 × Σ)∗ × R≥0 to (R≥0 × Σ)∗.

Enforcement
function

ϕ

σ, t E(σ, t) |= ϕ

Fig. 2. Enforcement function E

An enforcement function E transforms some timed word
σ given as input and possibly incorrect w.r.t. the desired
property (see Fig. 2). The resulting output E(σ, t) at
time t is a timed word with same actions, but possibly
increased delays between actions so that it satisfies the property. Similar to the untimed
setting, additional constraints on E(σ, t), namely soundness and transparency, are re-
quired on actions. However, in the timed setting, those constraints also depend on both
delays between events and the class of the enforced property, as we shall discuss later.

An enforcement function E is realized by an enforcement monitor EM . This monitor
is equipped with a memory and a set of enforcement operations used to store and dump
some timed events to and from the memory, respectively. The memory of an EM is
basically a queue containing a timed word, the received actions with increased delays
that have not been released yet. In addition, the EM also keeps track of the state of the
TA modeling the property, satisfaction of the property using a Boolean variable, and
some variables indicating the clock values used to count time between input and output
events.

The specific operations of the EM are the Store operation which stores in memory
the received action together with a possibly modified delay; the Dump operation which
releases the first action from the memory; and the optional Halt operation which stops
the enforcer, i.e., blocks the input sequence and stops producing outputs. Off operation
which turns off the enforcer. The Off and Halt operations can be added for optimization.
The Off can be used when we observe that the property will be satisfied for any future
input events. The Halt operation is useful if the property cannot be satisfied anymore.

In the following sections, we will present enforcement monitors for both safety and
co-safety properties and analyze constraints on the associated enforcement functions.

234 S. Pinisetty et al.

4 Enforcement of Safety Properties

In this section we focus on the enforcement of a safety property ϕ specified by a safety
automaton A = 〈L, l0, X, Σ, Δ, G〉 and its associated semantics [[A]] = 〈Q, q0, Γ,→,
FG〉. Without loss of generality, we assume that the set of locations L \ G is reduced
to a singleton {Bad}. Given ϕ, and a timed word σ, an enforcement function E for ϕ
should satisfy the following soundness, transparency and optimality conditions.

Definition 4 (Soundness, transparency and optimality). Let E : (R≥0 × Σ)∗ ×
R≥0 → (R≥0 × Σ)∗ be an enforcement function for a safety property ϕ. E is:
- sound if ∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0, E(σ, t) |= ϕ;
- transparent if ∀σ ∈ (R≥0×Σ)∗, ∀t ∈ R≥0, E(σ, t) �d obs(σ, t)∧time(E(σ, t)) ≤ t.
If E is both sound and transparent, we say that it is optimal if, for any input σ ∈
(R≥0 × Σ)∗, at any time t ∈ R≥0, the following constraints hold:
(Op1) �ω′, ω′ |= ϕ ∧ ω′ �d obs(σ, t) ∧ |ω′| > |E(σ, t)|

(Op2)
∀i ∈ [1, |E(σ, t)|], �δ′′ ∈ R≥0, del(obs(σ, t)(i)) ≤ δ′′ ≤ del(E(σ, t)(i))

∧E(σ, t)[···i−1] · (δ′′, act(E(σ, t)(i))) |= ϕ

Soundness means that, at any time t, the produced timed word should satisfy the prop-
erty ϕ. Transparency means that, at any time instant t, the output E(σ, t) delays the
input obs(σ, t): the enforcement function should not modify the order of events, should
not reduce the delays between consecutive events, and should not produce outputs faster
than inputs. Optimality means that the enforcement function should provide the output
as soon as possible. The optimality condition (Op1) extends the requirement on the
output sequences of the enforcement function in the untimed case (cf. [9]): at any time
instant t, the output sequence E(σ, t) should be the longest correct timed word delaying
the input sequence obs(σ, t). Here, taking physical time into account, (Op2) requires
that the input and output sequences are as close as possible w.r.t. physical observation,
i.e., every prefix of E(σ, t) has the shortest possible last delay.

We now design an enforcement monitor whose semantics effectively realizes the
enforcement function as described Definition 4.

Definition 5 (Enforcement Monitor for safety). An enforcement monitor for ϕ is a
transition system EM = 〈C, C0, ΓEM , ↪→〉 s.t.:

– C = (R≥0 × Σ)∗ × R≥0 × R≥0 × B× Q is the set of configurations;

– the initial configuration is C0 = 〈ε, 0, 0, tt, q0〉 ∈ C;

– ΓEM =
(
(R≥0×Σ)∪{ε}

)
×Op×

(
(R≥0×Σ)∪{ε}

)
is the input-operation-output

alphabet, where Op = {store(·), dump(·), del(·)};

– ↪→⊆ C × ΓEM × C is the transition relation defined as the smallest relation ob-
tained by the following rules applied in the following order:

Runtime Enforcement of Timed Properties 235

• store: 〈σs, δ, d, tt, q〉
(δ,a)/store(δ′,a)/ε

↪→ 〈σs · (δ′, a), 0, d, (δ′
=∞), q′〉 with:
∗ δ′ = updates(q, a, δ), where updates

1 is the function defined as:

Q× Σ × R≥0 → R≥0

(q, a, δ) "→

⎧⎨
⎩∞ if ∀δ′ ∈ R≥0, ∀q1 ∈ Q, (δ′ ≥ δ ∧ q

(δ′,a)→ q1)⇒ q1
∈ FG

min{δ′ ∈ R≥0 | ∃q1 ∈ FG, q
(δ′,a)→ q1 ∧ δ′ ≥ δ}

∗ q′ is defined as q
(δ′,a)→ q′ if δ′ < ∞ and q′ = q otherwise;

• dump:
〈
(δ, a) · σs, s, δ, b, q

〉 ε/dump(δ,a)/(δ,a)
↪→ 〈σs, s, 0, b, q〉 if δ
=∞;

• delay: 〈σs, s, d, b, q〉
ε/del(δ)/ε

↪→ 〈σs, s + δ, d + δ, b, q〉.

A configuration 〈σs, s, d, b, q〉 of the EM consists of the current stored sequence (i.e.,
the memory content) σs, two clock values s and d indicating respectively the time
elapsed since the last store and dump operations, a Boolean b indicating whether the
underlying enforced property is satisfied or not on the output sequence, and q the cur-
rent state of [[A]] reached after processing the sequence already released followed by
the timed word in memory. Regarding its alphabet, in the input (resp. output) sequence,
the EM either lets time elapse and no event is read or released, or reads and stores
(resp. dumps and releases) a symbol event after some delays. Semantics rules can be
understood as follows:

– The store rule is executed upon the reception of an event (δ, a). The timed event
(δ′, a) is appended to the memory content, where δ′ is the minimal delay that has to
be waited so that the property remains satisfied – if such a delay exists. The value
of s is then reinitialized to 0. If a delay can be found through the updates function,
q is updated to the state that will be reached by appending the timed event (δ′, a) to
the output sequence concatenated with the contents of the memory, and b remains
tt and becomes ff otherwise.

– The dump rule is executed when the value of d is equal to the delay of the first
timed event in the memory. The value of d is then reinitialized to 0. The first event
in memory is suppressed (and released from the enforcer). Other elements of the
configuration remain unchanged.

– The delay rule adds the time elapsed δ to the current values of s and d when no
store nor dump operation is possible.

Remark 1. The model of enforcement monitor presented in Definition 5 can be easily
extended by relaxing two hypothesis: in the store rule, we check whether there is a delay
greater than δ allowing the output sequence to stay in the accepting states of the property
(δ′ = ∞). Of course, this condition can be adapted to a given time bound in R≥0.
More complex conditions are also possible according to some desired quality of service.
Similarly, processing input and output actions is assumed to be done in zero time. Some
delay (either fixed or depending on additional parameters) can be considered for this
action by modifying the store rule.

1 The updates function computes the minimal delay δ′ ≥ δ, such that the safety-property
automaton still remains in an accepting state after processing the action a.

236 S. Pinisetty et al.

ε/(ε, 0, 0, tt, < l0, 0 >)/(1, a) · (3, r) · (1, r)

ε/(ε, 1, 1, tt, < l0, 1 >)/(1, a) · (3, r) · (1, r)

del(1)

ε/((1, a), 0, 1, tt, < l0, 1 >)/(3, r) · (1, r)

store

(1, a)/(ε, 0, 0, tt, < l0, 1 >)/(3, r) · (1, r)

dump

(1, a)/(ε, 3, 3, tt, < l0, 4 >)/(3, r) · (1, r)

del(3)

(1, a)/((3, r), 0, 3, tt, < l1, 0 >)/(1, r)

store

t = 0

t = 1

t = 1

t = 1

t = 4

t = 4

(1, a) · (3, r)/(ε, 0, 0, tt, < l1, 0 >)/(1, r)

(1, a) · (3, r)/(ε, 1, 1, tt, < l1, 1 >)/(1, r)

del(1)

(1, a) · (3, r)/((5, r), 0, 1, tt, < l1, 0 >)/ε

store

(1, a) · (3, r)/((5, r), 4, 5, tt, < l1, 4 >)/ε

del(4)

(1, a) · (3, r) · (5, r)/(ε, 4, 0, tt, < l1, 4 >)/ε

dump

dump

t = 4

t = 5

t = 5

t = 9

t = 9

Fig. 3. Enforcer configuration evolution

We define the language of runs of an enforcement monitor EM :

L(EM) ⊆ (ΓEM)∗ =
((

(R≥0 × Σ) ∪ {ε}
)
× Op ×

(
(R≥0 × Σ) ∪ {ε}

))∗

It is worth noticing that enforcement monitors are deterministic. Hence, given σ ∈
(R≥0 ×Σ)∗ and t ∈ R≥0, let w ∈ L(EM) be the unique maximal sequence such that

Πε

(⊙
i∈[1,|w|]

(Π1(w(i)))
)
= obs(σ, t),

where Πε is the projection that erases ε from words in ((R≥0 × Σ) ∪ {ε})∗.
Now, we define the enforcement function E associated to EM as

∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0, E(σ, t) = Πε

(⊙
i∈[1,|w|]

(Π3(w(i)))
)

(1)

Proposition 1. Given an enforcement monitor EM for a safety property ϕ and E de-
fined as in Eq. (1), E verifies the soundness, transparency and optimality conditions of
Definition 4.

Example 2. Let us illustrate how these rules are applied to enforce ϕ1 (represented
by the TA in Fig. 1a with Σ1= {a, r}). Let us consider the input timed word σ =
(1, a) · (3, r) · (1, r). Figure 3 shows how successive rules are applied and the evolution
of the configurations of the EM . The variable t describes global time. The input is
represented on the right-hand (resp. left-hand) side of the configuration.

5 Enforcement of Co-safety Properties

Let us now focus on the enforcement of co-safety properties. We assume a co-safety
property ϕ specified by a co-safety timed automaton A = 〈L, l0, X, Σ, Δ, G〉 and its
associated semantics [[A]] = 〈Q, q0, Γ,→, FG〉. An enforcer function E for a co-safety
property ϕ should satisfy new soundness, transparency and optimality conditions.

Runtime Enforcement of Timed Properties 237

Before defining those constraints, the notion of a sequence delaying another has to
be modified in the context of co-safety properties. Let σ, σ′ ∈ (R≥0×Σ)∗ be two timed
sequences, we note σ′ �c σ for ΠΣ(σ

′) = ΠΣ(σ)∧∀i ≤ |σ′|, del(σ′(i)) ≥ del(σ(i)).
This order between timed words shall be used in the transparency and optimality con-

ditions below to constrain the sequences produced by an enforcer. We define γ(σ)
def
=

{σ′ �c σ | σ′ |= ϕ}, the set of sequences delaying σ and satisfying the property ϕ and

γt(σ)
def
= {time(σ′) | σ′ ∈ γ(σ)} the set of sums of delays of these sequences.

Definition 6 (Soundness, transparency, optimality). An enforcement function E :
(R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗ for a co-safety property ϕ is
- sound if ∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0, E(σ, t)
= ε ⇒ (∃t′ ≥ t, E(σ, t′) |= ϕ).
- transparent if ∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0, E(σ, t)
= ε ⇒ (∃t′ ≥ t,
E(σ, t′) �c obs(σ, t)).

If E is sound and transparent, it is optimal if for any input σ ∈ (R≥0 × Σ)∗, at any
time t ∈ R≥0, the following constraints hold:

(Op1) γ
(
obs(σ, t)

)

= ∅ ∧ ∀t′ < t, γ(obs(σ, t′) = ∅)⇒(

∃t′ ≥ t, |E(σ, t′)| = |obs(σ, t)| ∧ t′ = t + time(E(σ, t′))
)
;

(Op2) E(σ, t)
= ε ⇒ (1) ∧ (2), where

let E(σ, t)[···n] be the smallest prefix of E(σ, t) s.t. E(σ, t)[···n] |= ϕ in

(1) �(δ′1, . . . , δ′n),
n∑

i=1

δi
′ ≤

n∑
i=1

del(E(σ, t)(i))

∧
⊙

i∈[1,n](δi
′, act((σ(i)))) |= ϕ ∧ ∀i ∈ [1, n], del(σ(i)) ≤ δi

′

(2) E(σ, t) |= ϕ ⇒
(
E(σ, t) = E(σ, t)[···n] · obs(σ, t)[n+1···|E(σ,t)|]

)
Soundness means that if a timed word is released by the enforcement function, in the
future, the output timed word of the enforcement function should satisfy the property
ϕ. 2 Transparency means that the enforcement function should not change the order of
events, and the delay between any two consecutive events cannot be reduced.

Optimality means that the output is produced as soon as possible: Op1 means that
if t is the first time instant at which there is a timed word that delays obs(σ, t) and
satisfies ϕ, then, in the future at time t′ = t + time(E(σ, t′)), the enforcement mon-
itor should have output exactly all the observed events until time t. Op2-1 means
that if E(σ, t)
= ε is released by the enforcement function, for the smallest prefix
E(σ, t)[···n] that satisfies ϕ, the total amount of time spent to trigger E(σ, t)[···n] should
be minimal.Op2-2 means that the delay between the remaining actions obs(σ, t)[n+1···]
(i.e., when the property is satisfied) should not be changed. Similarly to safety proper-
ties, we expect the enforcement function to minimally alter the initial sequence: after
correcting an incorrect prefix, the remainder of the sequence should be the same for
events and delays between them.

Before presenting the definition of enforcement monitor, we introduce updatec as a
function from (R≥0 × Σ)+ → R+

≥0 × B such that for σ ∈ (R≥0 × Σ)+

2 As usual in runtime enforcement, either it is assumed that the empty sequence ε does belong
to the property or the soundness constraint does not take ε into account.

238 S. Pinisetty et al.

updatec(σ)
def
=

⎧⎪⎨
⎪⎩
(
(δ1, . . . , δ|σ|), tt

)
s.t.

|σ|∑
i=1

δi = min{γt(σ)}, if γ(σ)
= ∅(
(del(σ(1)), . . . , del(σ(|σ|))), ff

)
, otherwise

Definition 7 (Enforcement Monitor for co-safety properties). An enforcement mon-
itor EM for ϕ is a transition system 〈C, C0, Γ, ↪→〉 s.t.:

– C = (R≥0 × Σ)∗ × R≥0 × R≥0 × B is the set of configurations
and the initial configuration is C0 = 〈ε, 0, 0, ff〉 ∈ C;

– ΓEM = (R≥0 ×Σ)×Op× (R≥0×Σ) is the “input-operation-output” alphabet,
where Op = {store-ϕ(·), store-ϕinit(·), store-ϕ(·), dump(·), delay(·)};

– ↪→⊆ C × ΓEM × C is the transition relation defined as the smallest relation ob-
tained by the following rules applied with the priority order below:

1. store-ϕ: 〈σs, δ, d, ff〉
(δ,a)/store−ϕ(δ,a)/ε

↪→ 〈σs · (δ, a), 0, d, ff〉
if Π2

(
updatec(σs · (δ, a))

)
= ff

2. store-ϕinit: 〈σs, δ, d, ff〉
(δ,a)/store−ϕinit(δ

′,a)/ε
↪→ 〈σ′

s, 0, 0, tt〉
if Π2

(
updatec(σs · (δ, a))

)
= tt with

• δ′ = Π1

(
updatec(σs · (δ, a))

)
• σ′

s =
⊙

i∈[1,|σs|](Πi(δ
′), act(σs(i))) · (δ′|σs|+1, a)

3. store-ϕ: 〈σs, δ, d, tt〉
(δ,a)/store−ϕ(δ,a)/ε

↪→ 〈σs · (δ, a), 0, d, tt〉
4. dump:

〈
(δ, a) · σs, s, δ, tt

〉 ε/dump(δ,a)/(δ,a)
↪→ 〈σs, s, 0, tt〉

5. delay: 〈σs, s, d, b〉
ε/delay(δ)/ε

↪→ 〈σs, s + δ, d + δ, b〉.

The EM either lets time elapse when no event is read or released as output, or reads
and stores (resp. dumps and outputs) an event after some delay. Semantic rules can be
understood as follows:
- Upon reception of an event (δ, a), one of the three store rules is executed. The rule
store-ϕ is executed if b ff and the property still remains unsatisfied after this new
event (i.e., when the updatec function returns ff). If the updatec function returns
tt (indicating that the ϕ can now be satisfied), then the rule store-ϕinit is executed.
When executing this rule, d is reset to 0, indicating that the enforcer can start out-
putting events. The rule store-ϕ is executed if the Boolean in the current configura-
tion is tt, which indicates that the property is already satisfied by the inputs received
earlier. So, in this case, it is not necessary to invoke the updatec function, and the
event (δ, a) is appended to the memory.

- The dump rule is similar to the one of the enforcement of safety properties except that
we wait that the Boolean indicating property satisfaction becomes tt.

- The delay rule adds the time elapsed to the current clock values s and d.
Note that, in this case, time measured in output starts elapsing upon property satisfaction
by the memory content (contrarily to the safety case, where it starts with the enforcer).

As was the case in the previous section, from EM , we can define an enforcement
function E as in Eq. (1), such that the following proposition holds:

Runtime Enforcement of Timed Properties 239

ε/(ε, 0, 0, ff)/(1, r) · (8, g) · (5, a)

ε/(ε, 1, 1, ff)/(1, r) · (8, g) · (5, a)

delay(1)

ε/((1, r), 0, 1, ff)/(8, g) · (5, a)

store-¬ϕ

ε/((1, r), 8, 9, ff)/(8, g) · (5, a)

delay(8)

ε/((1, r) · (10, g), 0, 0, tt)/(5, a)

store-ϕinit

ε/((1, r) · (10, g), 1, 1, tt)/(5, a)

delay(1)

(1, r)/((10, g), 1, 0, tt)/(5, a)

dump

t = 0

t = 1

t = 1

t = 9

t = 9

t = 10

t = 10

(1, r)/((10, g), 5, 4, tt)/(5, a)

(1, r)/((10, g) · (5, a), 0, 4, tt)/ε

store-ϕ

(1, r)/((10, g) · (5, a), 6, 10, tt)/ε

delay(6)

(1, r) · (10, g)/((5, a), 6, 0, tt)/ε

dump

(1, r) · (10, g)/((5, a), 11, 5, tt)/ε

delay(5)

(1, r) · (10, g) · (5, a)/(ε, 11, 0, tt)/ε

dump

delay(4)

t = 14

t = 14

t = 20

t = 20

t = 25

t = 25

Fig. 4. Enforcer configuration evolution

Proposition 2. Given an enforcement monitor EM for a co-safety property and E de-
fined as in Eq (1), E is sound, transparent and optimal as per Definition 6.

Example 3. Let us illustrate how these rules are applied to enforce ϕ2 (Fig. 1b), with
Σ2= {r, g, a}. Let us consider the input timed word σ = (1, r) · (8, g) · (5, a). Figure 4
shows how semantic rules are applied, and the evolution of the configurations of the
EM . The input is shown on the right of the configuration, and the output is presented
on the left. The variable t describes global time. The resulting output is E(σ) = (1, r) ·
(10, g) · (5, a), which satisfies the property ϕ presented in Fig. 1b.

6 Implementation

Enforcement Monitor

Store
Process

Dump
ProcessMemory

σ, t E(σ, t)

Fig. 5. Realizing an EM

Let us now provide the algorithms showing how
enforcement monitors can be implemented.
As shown in Fig. 5, the implementation of an
enforcement monitor (EM) consists of two pro-
cesses running concurrently (Store and Dump)

and a memory. The Store process models the store rules. The memory contains the
timed words σs. The Dump process reads events stored in the memory and releases
them as output after the required amount of time. To define the enforcement monitors,
the following algorithms assume a TA A = 〈L, l0, X, Σ, Δ, G〉.

We now describe these processes for safety properties.
- TheDumpProcesssafety algorithm (see Algorithm 1) is an infinite loop that scrutinizes

the memory and proceeds as follows: Initially, d is set to 0. If the memory is empty
(|σs| = 0), it waits until a new element (δ, a) is stored in memory, otherwise it
proceeds with the first element in memory. Meanwhile, d keeps track of the time
elapsed since the last dump operation. The DumpProcesssafety waits for (δ − d) time
units before releasing the action a and resets d.

240 S. Pinisetty et al.

Algorithm 1. DumpProcesssafety

d ← 0
while tt do

await (|σs| ≥ 1)
(δ, a) ← dequeue (σs)
wait (δ − d)
dump (a)
d ← 0

end while

Algorithm 2. StoreProcesssafety
(l,X) ← (l0, [X ← 0])
while tt do

(δ, a) ← await event
if (post(l,X, a, δ) /∈ G) then

δ′ ← update(l,X, a, δ)
if δ′ = ∞ then

terminate StoreProcess
end if

else
δ′ ← δ

end if
(l,X) ← post(l, a,X, δ′)
enqueue (δ′, a)

end while

Algorithm 3. DumpProcessco−safety

await startDump
d ← 0
while tt do

await (|σs| ≥ 1)
(δ, a) ← dequeue (σs)
wait (δ − d)
dump (a)
d ← 0

end while

Algorithm 4. StoreProcessco−safety

goalReached ← ff

while tt do
(δ, a) ← await (event)
enqueue(δ, a)
if goalReached = ff then

(newDelays , R) ← updatec(σs)
if R = tt then

modify delays
goalReached ← tt

notify (startDump)
end if

end if
end while

- The StoreProcesssafety algorithm (see Algorithm 2) is an infinite loop that scrutinizes
the system for input events. It proceeds as follows. Let (l, X) be the state of the
property automaton, where l represents the location and X is the current clock val-
ues initialized to (l0, 0). The function post takes a state of the property automaton
(l, X), an event (δ, a), and computes the state reached by the property automaton.
The update function computes a new delay δ′ such that the property automaton will
reach an accepting state in an optimal way by triggering (δ′, a).

We now describe these processes for co-safety properties.
- The DumpProcessco−safety algorithm for co-safety properties (see Algorithm 3) re-

sembles the one of the safety case. The only difference is that the infinite loop starts
only after receiving the startDump notification from the StoreProcessco−safety.

- In the StoreProcessco−safety algorithm (see Algorithm 4), goalReached is a Boolean,
used to indicate if the goal location is visited by the input events which were already
processed. It is initialized to ff. The updatec function takes all events stored in
the enforcer memory, and returns new delays and if the goal location is reachable.

Runtime Enforcement of Timed Properties 241

startDump is a notification message sent to the DumpProcessco−safety, to indicate
that it can start dumping the events stored in the memory. Note that the updatec can
be easily implemented using the optimal path routine of UPPAAL.

7 Evaluation

Enforcement monitors for safety and co-safety properties, based on the algorithms pre-
sented in the previous section, have been implemented in prototype tool of 500 LOC
using Python. The tool also uses UPPAAL [12] as a library to implement the update
function and the pyuppaal library to parse UPPAAL models written in XML.

We present some performance evaluation on a simulated system where the input
timed trace is generated. As described in Sec. 6, enforcement monitors for safety and
co-safety properties are implemented by two concurrent processes. The TA represent-
ing the property is a UPPAAL model, and is an input to the enforcement monitor. The
UPPAAL model also contains another automaton representing the sequence of events
received by the enforcement monitor. The update function of the StoreProcess uses
UPPAAL. Experiments were conducted on an Intel Core i7-2720QM at 2.20GHz CPU,
and 4 GB RAM running on Ubuntu 12.04 LTS. Note that the implementation is a
prototype, and there is still scope for improving the performance.

Results of the performance analysis of our running example properties are presented
in Tables 1a and 1b. The values are presented in seconds. Average values are computed
over multiple runs. The length of the input trace is denoted by |tr|. The entry t tr rep-
resents the time taken by the system simulator process to generate the trace. The entry
t update (resp. t Post) indicates the time taken for one call to the update (resp. post)
function when the last event of the input trace is received. The entry t EM presents the
total time from the start of the simulation until the last event is dumped by the enforcer.
The throughput shows how many events can be processed by the enforcer (|tr|/t EM).

We observe that the throughput decreases with the length of the input trace. This
unexpected behavior stems from the external invocation of UPPAAL to realize post and
update functions. Indeed, after each event, the length of the automaton representing the
trace grows, and, as indicated in Table 1a, the time taken by update and post functions
also increases, unnecessarily starting the computation from the initial location each
time an event is received. Future implementations will avoid this by realizing the post
and update functions online from the current state. Performance and throughput shall
be independent from the trace length. Further experiments have been carried out on
different examples similarly demonstrating feasibility and scalability.

For co-safety properties, regarding the total time t EM, note that the most expensive
operation update is called upon each event. Moreover, examining the column t update
in Table 1b, the time taken by the update function increases with the number of events.
This behavior is expected for co-safety properties, as we check for an optimal output
from the initial state after each event. Please note that in case of a co-safety property,
once the property is satisfied (a good location is reached), it is not necessary to invoke
the update function. From that point onwards, the increase in total time t EM per
event will be very less (since we just add the received event to the output queue), and
t update will be zero for the events received later on.

242 S. Pinisetty et al.

Table 1. Performance analysis of enforcement monitors

(a) For ϕ1

|tr| t update t post t tr t EM throughput

100 0.0433 0.0383 0.00483 2.648 37

200 0.08196 0.07158 0.0087 9.135 21.89

300 0.121 0.1065 0.0118 19.42 15.46

400 0.1696 0.1525 0.0133 34.314 11.65

500 0.2148 0.1891 0.0142 53.110 9.41

600 0.2668 0.2334 0.0166 77.428 7.75

700 0.3164 0.2789 0.0178 107.61 6.50

800 0.3669 0.3289 0.0198 143.53 5.57

900 0.4256 0.3810 0.0237 181.06 4.97

1000 0.4878 0.4352 0.0259 229.12 4.36

(b) For ϕ2

|tr| t update t tr t EM

100 0.063 0.0026 1.28

200 0.17 0.0065 8

300 0.33 0.0081 25

400 0.54 0.0115 58

500 0.79 0.0131 109

600 1.11 0.0157 186

700 1.50 0.0186 297

800 1.96 0.0209 462

900 2.40 0.0234 623

1000 2.84 0.0341 852

8 Related Work

This work is by no means the first to address monitoring of timed properties. Matteucci
inspires from partial-model checking techniques to synthesize controller operations to
enforce safety and information-flow properties using process-algebra [13]. Monitors
are close to Schneider’s security automata [7]. The approach targets discrete-time prop-
erties and systems are modelled as timed processes expressed in CCS. Compared to
our approach, the description of enforcement mechanisms remains abstract, directly re-
stricts the monitored system, and no description of monitor implementation is proposed.

Other research efforts aim to mainly runtime verify timed properties and we shall
categorize them into i) rather theoretical efforts aiming at synthesizing monitors, and ii)
tools for runtime monitoring of timed properties.

Synthesis of timed automata from timed logical formalisms. Bauer et al. propose an
approach to runtime verify timed-bounded properties expressed in a variant of Timed
Linear Temporal Logic [4]. Contrarily to TLTL, the considered logic, TLTL3, processes
finite timed words and the truth-values of this logic are suitable for monitoring. After
reading some timed word u, the monitor synthesized for a TLTL3 formula ϕ state the
verdict � (resp. ⊥) when there is no infinite timed continuation w such that u · w
satisfy (resp. does not satisfy) ϕ. Another variant of LTL in a timed context is the metric
temporal logic (MTL), a dense extension of LTL. Nickovic et al. [3, 14] proposed a
translation of MTL to timed automata. The translation is defined under the bounded
variability assumption stating that, in a finite interval, a bounded number of events can
arrive to the monitor. Still for MTL, Thati et al. propose an online monitoring algorithm
by rewriting of the monitored formula and study its complexity [1]. Later, Basin et al.
propose an improvement of this approach having a better complexity but considering
only the past fragment of MTL [5].

Runtime enforcement of timed properties as presented in this paper is compatible
with the previously described approaches. These approaches synthesize automata-based

Runtime Enforcement of Timed Properties 243

decision procedures for logical formalisms. Decision procedures synthesized for safety
and co-safety properties could be used as input to our framework.

Tools for runtime monitoring of timed properties. The Analog Monitoring Tool [10] is
a tool for monitoring specifications over continuous signals. The input logic of AMT is
STL/PSL where continuous signals are abstracted into propositions and operations are
defined over signals. Input signal traces can be monitored in an offline or incremental
fashion (i.e., online monitoring with periodic trace accumulation).

LARVA [11, 15] takes as input properties expressed in several notations, e.g., Lustre,
duration calculus. Properties are translated to DATE (Dynamic Automata with Timers
and Events) which basically resemble timed automata with stop watches but also fea-
ture resets, pauses, and can be composed into networks. Transitions are augmented with
code that modify the internal system state. DATE target only safety properties. In addi-
tion, LARVA is able to compute an upper-bound on the overhead induced on the target
system. The authors also identify a subset of duration calculus, called counter-examples
traces, where properties are insensitive to monitoring [16].

Our monitors not only differ by their objectives but also by how they are inter-
faced with the system. We propose a less restrictive framework where monitors asyn-
chronously read the outputs of the target system. We do not assume our monitors to be
able to modify the internal state of the target program. The objective of our monitors is
rather to correct the timed sequence of output events before this sequence is released to
the environment (i.e., outside the system augmented with a monitor).

9 Conclusion and Future Work

This paper introduces runtime enforcement for timed properties and provides a com-
plete framework. We consider safety and co-safety properties described by timed au-
tomata. We propose adapted notions of enforcement monitors with the possibility to
delay some input actions in order to satisfy the required property. For this purpose, the
enforcement monitor can store some actions during a certain time period. We propose
a set of enforcement rules ensuring that outputs not only satisfy the required property
(if possible), but also with the “best” delay according to the current situation. We de-
scribe how to realize the enforcement monitor using concurrent processes, how it has
been prototyped and experimented. This paper introduced the first steps to runtime en-
forcement of (continuous) timed properties. However, several research questions remain
open. As this approach targets explicitly safety and co-safety properties, it seems desir-
able to investigate whether more expressive properties can be enforced, and if so, pro-
pose enforcement mechanisms for them. We expect to extend our approach to Boolean
combinations of timed safety and co-safety properties, and more general properties.
The question requires further investigation since the update function would have to
be adapted. A precise characterization of enforceable timed properties would thus be
possible, as was the case in the untimed setting [4, 17]. Also related to expressiveness
is the question of how the set of timed enforceable properties is impacted when the
underlying memory is limited and/or the primitives operations endowed to the monitor
are modified. A more practical research perspective is to study the implementability of
the approach proposed in this paper, e.g., using robustness of timed automata.

244 S. Pinisetty et al.

References

1. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. Electr.
Notes Theor. Comput. Sci. 113, 145–162 (2005)

2. Chen, F., Roşu, G.: Parametric Trace Slicing and Monitoring. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Heidelberg (2009)

3. Ničković, D., Piterman, N.: From MTL to Deterministic Timed Automata. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidel-
berg (2010)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans-
actions on Software Engineering and Methodology 20, 14 (2011)

5. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for Monitoring Real-Time Properties. In:
Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275. Springer, Heidelberg
(2012)

6. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified Event Au-
tomata: Towards Expressive and Efficient Runtime Monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012)

7. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security 3 (2000)

8. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans-
action Information System Security 12 (2009)

9. Falcone, Y.: You Should Better Enforce Than Verify. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.)
RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010)

10. Nickovic, D., Maler, O.: AMT: A Property-Based Monitoring Tool for Analog Systems.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319.
Springer, Heidelberg (2007)

11. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time java pro-
grams (tool paper). In: SEFM, pp. 33–37 (2009)

12. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software
Tools for Technology Transfer (STTT) 1, 134–152 (1997)

13. Matteucci, I.: Automated synthesis of enforcing mechanisms for security properties in a
timed setting. Electron. Notes Theor. Comput. Sci. 186, 101–120 (2007)

14. Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)

15. Colombo, C., Pace, G.J., Schneider, G.: Dynamic Event-Based Runtime Monitoring of Real-
Time and Contextual Properties. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS,
vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

16. Colombo, C., Pace, G.J., Schneider, G.: Safe Runtime Verification of Real-Time Properties.
In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 103–117.
Springer, Heidelberg (2009)

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?
STTT 14, 349–382 (2012)

Monitoring Dense-Time, Continuous-Semantics,

Metric Temporal Logic

Kevin Baldor1,2 and Jianwei Niu1

1 University of Texas at San Antonio, USA
{kbaldor,niu}@cs.utsa.edu

2 Southwest Research Institute, San Antonio, USA

Abstract. The continuous semantics and dense time model most closely
model the intuitive meaning of properties specified in metric temporal
logic (mtl). To date, monitoring algorithms for mtl with dense time and
continuous semantics lacked the simplicity the standard algorithms for
discrete time and pointwise semantics. In this paper, we present a novel,
transition-based, representation of dense-time boolean signals that lends
itself to the construction of efficient monitors for safety properties defined
in metric temporal logic with continuous semantics. Using this represen-
tation, we present a simple lookup-table-based algorithm for monitor-
ing formulas consisting of arbitrarily nested mtl operators. We examine
computational and space complexity of this monitoring algorithm for the
past-only, restricted-future, and unrestricted-future temporal operators.

1 Introduction

Program monitoring has attracted interest as an alternative to model checking
or theorem proving as these become impractical due to the size of the state space
of a full program. A dynamic analysis, monitoring is limited to the detection of
property violations that are actually observed in a program’s execution, and
more fundamentally, to so called safety properties, those that can be falsified
given only a finite number of program events.

Temporal logics such as linear temporal logic (ltl) [7] and computation tree
logic (ctl) [3] provide an effective formal description for desired or undesired
program behavior and are commonly used in monitoring applications. Each of
these logics specify constraints on the order of occurrence of events. For example,
they can state that “after event p, event q must take place at some point in the
future”. This is not an enforceable safety property but would become one if
modified to state that q must occur within a certain period of time. To do so,
these logics must be augmented with an explicit notion of time.

One such augmentation is metric temporal logic (mtl) [5]. It introduces limits
on the periods of time over which a logical connective operates. For example, the
property described in the preceding paragraph may be specified as p →[0,5] q.
The subscript on the eventually operator (), is an interval – relative to the

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 245–259, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

246 K. Baldor and J. Niu

current time – in which q must hold in order for the statement to be true at the
current time. Some notations support a number of subscript forms, but without
loss of generality, we restrict our presentation to the use of intervals that may be
closed or open on either end. Additionally, we admit intervals of the form [a, a],
though their use incurs a potential space penalty.

The runtime-verification community employs two time models for mtl: dis-
crete and dense. Within the dense-time model, there are two semantics: point-
based and continuous [8] [2]. We concentrate on the latter, as in [2], Basin et
al. assert that “Real-time logics based on a dense, interval-based time model
are more natural and general than their counterparts based on a discrete or
point-based model”. But in it, they present a monitoring algorithm that they
describe as ”conceptually simpler” for the point-based semantics than for the
interval-based (continuous) semantics.

Our contribution with this paper is the introduction of a transition-based –
rather than interval-based [2] – representation for the dense-time boolean signals
that are a feature of the continuous semantics. With this representation, the
output of all mtl connectives can be expressed as a simple lookup-table indexed
by the input. Using this representation, we present a conceptually simple mtl

monitoring algorithm modeled on the transducer-approach of [6] that reduces
to something like the ltl-monitoring algorithm of [4] for past-only operators.
We then observe the increase in space complexity of its extension to future mtl

expressions.

2 Background

2.1 LTL and MTL

Logical expressions use the connectives for disjunction (∨), logical or ; conjunc-
tion (∧), logical and ; and negation (¬) to describe the relationship between
logical statements at the current time. Linear Temporal Logic (ltl) augments
them with a number of logical connectives that describe the relationship between
logical expressions over time.

The past-only operator historically (φ) indicates that the expression φ has
been true since time zero, once (φ) indicates that φ must have been true at
some point in time since time zero, and since (φ S ψ) indicates that at some
point in the past ψ must have been true and that φ must at least have been true
at every point after that until the current time;

The future-only operator globally (φ) indicates that the expression φ is true
now and will be true at all points in the future, eventually (φ) indicates that
φ must be true at the current time or at some point in the future, and until
(φ U ψ) indicates that at the current time or at some point in the future ψ must
be true and that that φ must at least have been true at every point between the
current time and that point.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 247

The semantics of ltl operate on a trace, a countably infinite sequence of
truth values of atomic elements. ltl expressions are only interpreted as having
a truth value at the instants of time corresponding to the elements of the trace.
Beyond the order of events, the actual time at which the events plays no role in
determining the truth of the ltl expressions.

The pointwise semantics of mtl are a natural extension of the semantics of
ltl in that, while they augment the order constraints of ltl with true time
constraints, the truth of an expression is only defined at discrete points in time.
When used for monitoring, an mtl expression might be evaluated only when
an input event arrives. This is more efficient than periodically re-evaluating
expressions, but can lead to counter-intuitive results. In [2], Basin et al. dis-
cuss a number of such results. Perhaps most striking is that under pointwise
semantics [0,1][0,1]φ is not logically equivalent to [0,2]φ. This is illustrated
in the case that φ is true at time τ = 0, and the next observation of the system
takes place at time τ = 2, [0,2]φ is true at time τ = 2, but [0,1][0,1]φ
is false since the observations lack the ‘bridge’ at time τ = 1 (for which
[0,1]φ would evaluate to true) needed to declare [0,1][0,1]φ to be true at
time τ = 2.

As observed by the authors of [2], adding additional sample points can restore
the equivalence of these expressions at the cost of additional computation by the
monitor. In a discrete-valued-time system, this can be taken to the extreme of
evaluating all expressions with each ‘clock tick’. Beyond the computational cost,
this cannot be extended to the dense-time representation that best models ex-
ternal events for which there is no shared clock.

2.2 Continuous Semantics and Boolean Signals

Under continuous semantics, we avoid the ambiguity introduced by the selection
of sample points. Loosely, the continuous semantics (mtl) assign a truth value to
any expression for any point of time greater than zero. A more formal definition
is presented in [2], but we will present enough here for the purpose of discussion.
Essentially, the notion of a trace used in ltl and the pointwise semantics of mtl
is replaced by a mapping from time τ ∈ R≥0 to {true, false} that the authors
term a boolean signal. In their formulation, the boolean signal for the expression
φ, denoted γφ, is the set of all points in time for which φ evaluates to true. In
Figure 1 – expanded from the definitions given in [2] to include UI , the set of
all signals in a model is written γ̂, τ ∈ R≥0 denotes the time for which the
statement applies, and the subscript I is an interval on R for which the operator
applies.

248 K. Baldor and J. Niu

γ̂, τ |= p iff τ ∈ γp

γ̂, τ |= ¬φ iff γ̂, τ �|= φ

γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ

γ̂, τ |= φ SI ψ iff ∃ τ
′ ∈ [0, τ] such that τ − τ

′ ∈ I, γ̂, τ
′ |= ψ, and γ̂, κ |= φ ∀κ ∈ (τ

′
, τ] or1

∃ τ
′′ ∈ [0, τ

′
) such that τ − τ

′′ ∈ I, γ̂, κ |= ψ ∀κ ∈ [τ
′′
, τ

′
) and γ̂, κ |= φ ∀κ ∈ [τ

′
, τ]

γ̂, τ |= φ UI
2 ψ iff ∃ τ

′ ≥ τ such that τ
′ − τ ∈ I, γ̂, τ

′ |= ψ, and γ̂, κ |= φ ∀κ ∈ [τ, τ
′
) or

∃ τ′′ > τ′ such that τ′′ − τ ∈ I, γ̂, κ |= ψ ∀κ ∈ (τ′, τ′′] and γ̂, κ |= φ ∀κ ∈ [τ, τ′]

Fig. 1. Continuous Semantics of mtl

3 Modeling Dense-Time Boolean Signals as Event
Sequences

The dense model of time precludes a representation consisting of every value for
which a boolean signal is true as theremay be uncountablymany such points. How-
ever, boolean signals are defined as satisfying the finite-variability condition that
on any bounded interval there exists a finite number of non-overlapping intervals
over which the signal is true. This lends itself to the representation used in [2] an
at-most-countably-infinite set of non-overlapping intervals. Our representation
differs in that we model boolean signals not as a series of intervals, but as a se-
quence of timed events denoting a transition from one truth value to another. For
example, a signal described with the intervals {[1, 2], [3, 3], (4, 5), (5, 6)}might be
illustrated as

1 2 3 4 5 6

where the higher line indicates true and the lower, false. The dots at the tran-
sition indicate whether the signal is considered true at the transition point. We
represent this signal as the series of transitions

{(, 1) , (, 2) (, 3) (, 4) , (, 5) (, 6)}

This example exhausts all of the transition types required to describe boolean
signals. In the following sections the additional events (, τ) and (, τ) are used
to indicate the lack of transition on one of the inputs of a binary operator. They
are not strictly required to unambiguously describe a boolean signal, but are
convenient for the implementation of the monitor.

1 This clause was added to capture another boundary condition introduced by the
dense time model.

2 We introduce the until operator using the presentation of [2] to relate the definition
of future operators in the standard definitions of the runtime-verification community.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 249

Definition 1. A boolean signal is described by an infinite sequence of timed
transitions (δi, τi) for which δ0 ∈ { , , , }, δi ∈ { , , , , , }∀ i > 0,
and τi ∈ R≥0, τ0 = 0, and τi+1 > τi∀i ≥ 0. The timed transitions are subject
to the further constraint types of adjacent transitions must agree in the sense
that the incoming value of each transition must match the outgoing value of the
previous transition. More formally,

δi ∈ { , , , } → δi+1 ∈ { , , } and

δi ∈ { , , , } → δi+1 ∈ { , , }.

Definition 2. The truth of a signal γ at time τ is given by

τ ∈ γ
.
=

{
δk ∈ { , , , } ∃k : τk = τ
δk ∈ { , , , } ∃k : τk < τ ∧ (τk+1 > τ ∨ k = |γ|)

4 Monitor Construction

4.1 Supported Temporal Operators

Although the timed until and since are sufficient to capture mtl semantics,
the treatment of their transitions is sufficiently complicated that we follow the
approach of [6] and introduce timed eventually to enable the treatment of only
the non-metric until and since. This is accomplished by exploiting the fact that
timed since and until are redundant given timed historically (I) , once (I),
henceforth (I), and future (I) since

φ S[a,b]ψ ↔ [0,a](φ S ψ) ∧ [a,b]ψ and

φ U[a,b]ψ ↔ [0,a](φ U ψ) ∧ [a,b]ψ

and that I and I are redundant since

Iφ ↔ ¬I¬φ

Iφ ↔ ¬I¬φ

Further, we observe that for the same input the output of[a,a+Δ] and[b,b+Δ]

are both simply a time-shifted version of the output of [0,Δ]. By generalizing
the intervals to support negative indices, we obtain

[a,b]φ ↔[−b,−a]φ

As a result, we can monitor both future and past mtl using only the transducers
for the operators ¬, ∧, S, U , and I , the formal definitions for which are given
in Figure 2.

250 K. Baldor and J. Niu

γ̂, τ |= ¬φ iff γ̂, τ �|= φ

γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ

γ̂, τ |=I φ iff ∃ τ ′such that τ ′ − τ ∈ I, γ̂, τ ′ |= φ

γ̂, τ |= φ S ψ iff ∃ τ ′ ∈ [0, τ] such that γ̂, τ ′ |= ψ and γ̂, κ |= φ ∀κ ∈ (τ ′, τ] or

∃ τ ′′ ∈ [0, τ ′) such that γ̂, κ |= ψ ∀κ ∈ [τ ′′, τ ′) and γ̂, κ |= φ ∀κ ∈ [τ ′, τ]

γ̂, τ |= φ U ψ iff ∃ τ ′ ≥ τ such that γ̂, τ ′ |= ψ andγ̂, κ |= φ ∀κ ∈ (τ ′, τ] or

∃ τ ′′ > τ ′ such that γ̂, κ |= ψ ∀κ ∈ (τ ′, τ ′′] and γ̂, κ |= φ ∀κ ∈ [τ, τ ′]

Fig. 2. Semantics of Monitored mtl Connectives

4.2 Monitoring Algorithm

To monitor a formula φ, we begin by converting it into a parse tree. From
this, we construct an array Φ consisting of one transducer for each node of
the parse tree in reverse-topological-sort order. That is, for any node in the
parse tree, its children appear before it in Φ. The transducers maintain some
operation-specific fields, but each contains at least 〈op, inputs, Q, Ivalid〉 where
op identifies the operation, inputs contains a pointer to the elements of Φ upon
which it depends, Q is a queue containing the output of the transducer, and
Ivalid indicates the time interval over which the output of the transducer is
valid.

The valid interval allows a transducer to ‘stop time’ while its state is undeter-
mined. For example, the transducer for eventually uses this to apply a constant
offset to all output transitions, whereas the until transducer may delay its output
for an indeterminate period. Even the simple transducers such as negation and
conjunction must be able to specify a valid interval since their input might do so.

Some transducers define additional state variables in addition to those men-
tioned above. The since transducer maintains a state indicating whether or not
the latest transition left its output in the up state; The eventually transducer
maintains a timer that is used by the monitoring algorithm to call Update again
at some point in the future.

In the following pseudocode, the Update procedures for each transducer em-
ploys transition tables such as futurea[δ] for the eventually transducer. Their
contents are given in the following sections.

The monitoring procedure consists of gathering an ensemble of simultaneous
transition events for the external inputs to the monitor and storing them in a
container, Δ, that maps input variable names to transition types. If a timer ex-
pires, Update may be called with no input transitions. The Update function
returns the next timer expiration time so that the monitor may call it when it
has expired. The following pseudocode describes the most general version of the

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 251

update operation and the Update procedures for the more interesting trans-
ducers3. Subsequent sections will describe the simplifications that are possible
when supporting subsets of mtl.

function Update(Φ, Δ, τ)
for ϕ ∈ Φ do

if ϕ.op ∈ input variables then
if ϕ.op.id ∈ Δ then

Enqueue(ϕQ,Δ[ϕ.op.id], τ)
ϕ.Ivalid ← [0, τ]

else
while (δ∗, τ) ← Sync(ϕ.inputs) do

Updateϕ.op(ϕ, δ∗, τ)

UpdateValidIntervalϕ.op(ϕ)

return min({ϕ.τtimer for ϕ ∈ Φ})

function UpdateI
(ϕ, δ, τ)

τ ′ ← τ − b � output time offset
if τ = 0 then

Enqueue(ϕ.Q, futureinit[δ], τ ′)
else if τ = ϕ.τtimer then

if δ = ∅ then
Enqueue(ϕ.Q, ϕ.δ↓, τ ′)

else if ϕ.δ↓ = then
Enqueue(ϕ.Q, futurec[δ], τ ′)

ϕ.δ↓ ← ∅
ϕ.τtimer ← ∅

else if δ ∈ futurea then
Enqueue(ϕ.Q, futurea[δ], τ ′)

if δ ∈ futureb then � down transition
ϕ.δ↓ ← futureb[δ]
ϕ.τtimer ← τ + b − a

function UpdateValidIntervalI
(ϕ)

φ ← ϕ.inputs
switch φ.Ivalid

case [0, i] ϕ.Ivalid ← [0, i − b]

case [0, i) ϕ.Ivalid ← [0, i − b)

function UpdateU (ϕ, δφ, δψ, τ)
if τ = 0 then

Enqueue(ϕ.Q, untilinita [δφ, δψ], τ)
ϕ.δ↑ ← untilinitb

[δφ, δψ]
ϕ.δ↓ ← untilinitc

[δφ, δψ]
ϕ.τpending ← τ

else
switch untila[δφ, δψ]

τ ′ ← ϕ.τpending
case

Enqueue(ϕ.Q, ϕ.δ↑, τ ′)
case

Enqueue(ϕ.Q, ϕ.δ↓, τ ′)
Enqueue(ϕ.Q, untilb[δφ, δψ], τ)
ϕ.δ↑ ← untilc[δφ, δψ]
ϕ.δ↓ ← untilinitd

[δφ, δψ]
ϕ.τpending ← τ

if ¬(ϕ.δ↑ = ϕ.δ↓ = ∅) then
ϕ.Ivalid ← [0, τ)

function UpdateValidIntervalU (ϕ)
φ, ψ ← ϕ.inputs
if ϕ.δ↑ = ϕ.δ↓ = ∅ then

ϕ.Ivalid ← φ.Ivalid ∩ ψ.Ivalid

3 For the complete pseudocode, see the full version of this paper [1]

252 K. Baldor and J. Niu

function Enqueue(Q, δ, τ)
if δ = ∅ then return

case τ < 0
Clear(Q)
if δ ∈ { , , } then

Append(Q,(,0))
else

Append(Q(,0))

case τ = 0
Clear(Q)
case δ =

Append(Q(,0))

case δ ∈ { , }
Append(Q(,0))

case δ ∈ { , }
Append(Q(,0))

case δ =
Append(Q(,0))

case τ > 0
if Empty(Q) ∧ Q.value = ∅ then

if δ ∈ { , } then
Q.append((δ, 0))
return

else if δ ∈ { , , } then
Q.append((, 0))

else
Q.append((, 0))

else
Q.append((δ, τ))

function Dequeue(Q)
(δ, τ) ← RemoveFirst(Q)
case δ ∈ { , , , }

Q.value ←
case δ ∈ { , , , }

Q.value ←
return (δ, τ)

function Sync(inputs)
ϕ, ψ ← inputs
if ψ = ∅ then � one input

if Empty(ϕ.Q) then
return ∅

return Dequeue(ϕ.Q)
else � two inputs

Ivalid ← ϕ.Ivalid ∩ ψ.Ivalid
eϕ ← Head(ϕ.Q) if Head(ϕ.Q).τ ∈ Ivalid
eψ ← Head(ψ.Q) if Head(ψ.Q).τ ∈ Ivalid
if eϕ
= ∅ ∧ eψ
= ∅ then

if eϕ.τ = eψ.τ then
Dequeue(ϕ.Q)
Dequeue(ψ.Q)
return ((eϕ.δ, eψ.δ), eϕ.τ)

if eϕ.τ < eψ.τ then
eψ ← ∅

else
eϕ ← ∅

if eϕ
= ∅ then
Dequeue(ϕ.Q)
return ((eϕ.δ, ψ.Q.value), eϕ.τ)

else
Dequeue(ψ.Q)
return ((ϕ.Q.value, eψ.δ), eϕ.τ)

Missing from this elided version of the pseudocode are the Update procedures
for negation, conjunction, and the since operator. They are simpler thanI and
U and the general sense of their operation is given in the sections describing their
transducer tables.

The functions on the second page support the Update procedures and sim-
plify their logic. For example, in addition to its obvious purpose, Enqueue

ensures that the outputs obey the transition rules described in definition 1. De-

queue ensures that the the value of a boolean signal can be obtained at times
for which there is no transition event per definition 2. Using this behavior of the
Dequeue procedure, the Sync procedure produces from two Boolean signals
an ordered stream of events for all time points at which either signal exhibits a
transition event. This is needed to drive the transducer tables for those operators
that have two inputs.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 253

5 Signal Transducer Tables

5.1 Negation and Conjunction

Figure 3 contains the transition tables for negation and conjunction. The init

versions are used for the first transition and the regular version for all subsequent
transitions. The non-transition states of the inputs are illustrated, but table
entries for which there is no transition are omitted in the interest of readability.
Note that for the init versions of the tables, the non-transition outputs (and
) are shown because they are actually produced for the initial entry of a boolean

signal.

not[δ]

φ ¬φ

notinit[δ]

φ ¬φ

andinit[δφ, δψ]

φψ

andinit[δφ, δψ]

φψ

Fig. 3. Transition Tables for the Negation and Conjunction Operators

5.2 Since

The transducer for φ S ψ is somewhat more complicated. The output transition
for a given set of input transitions is influenced by whether or not the since
operator is currently in the down or the up state. As in the previous section,
omitted entries indicate states for which there is no transition. Some of the
omitted entries indicate states that cannot be reached, but these are not specially
indicated – nor is any special handling required to deal with unreachable states.

The transducer begins by applying the table sinceinit[δφ, δψ] for the initial
transition, afterward the tables sinceup[δφ, δψ] and sincedown[δφ, δψ] are used.
Which of the tables is to be used is determined by the type of transition last
emitted. If it is in { , , , }, then the up table is used, otherwise, it is the
down table.

5.3 Eventually

The metric eventually operator uses the tables from Figure 5. Its transducer is
distinguished from those introduced thus far by the addition of a timer used

254 K. Baldor and J. Niu

sincedown[δφ, δψ]

φψ

sinceup[δφ, δψ]

φψ

Fig. 4. Transition Tables for the Since Operator, φ S ψ

futurea[φ]: Up Transition

φ [a,b]φ (a,b]φ [a,b)φ (a,b)φ

futureb[φ]: Potential Future Down Transition

φ [a,b]φ (a,b]φ [a,b)φ (a,b)φ

futurec[φ]: Up Transition and Potential

φ [a,b]φ (a,b]φ [a,b)φ (a,b)φ

futureinit[φ]

φ Iφ

Fig. 5. Transition Tables for the Eventually Operator

to generate a down event b − a time units after the input transitions to the
down state. All events emitted in response to an event at time τ are emitted
at time τ − b. Also, it can enter an indeterminate state in response to a down
transition. When a down transition occurs, the transducer stores the potential
down transition – the type of which is determined by the interval type – in the
state variable δ↓. The actual transition emitted can be affected if an up transition
occurs before or simultaneous with the timer expiration.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 255

untila[φ]: Past Event

φψ

untilb[φ]: Current Event

φψ

untilc[φ]: Non-Deterministic Up Event
()

φψ

untild[φ]: Non-Deterministic Down
Event ()

φψ

Fig. 6. Transition Tables for the Until Operator, φ U ψ

5.4 Until

The transducer for the until operator can enter a more complicated indetermi-
nate state than that of the non-metric eventually operator; It can maintain a
different potential transition depending on whether it is ultimately found to be
true or false at the point in time at which its output became uncertain. The
simplest example occurs when monitoring φ U ψ and φ becomes true with tran-
sition type at a time τ when ψ is false. If ψ becomes true before φ becomes
false, then the transducer should emit the transition event (, τ); If φ becomes
true before ψ becomes false, this potential transition is abandoned and the out-
put remains false up to and including the current time. It is possible that the

256 K. Baldor and J. Niu

transducer will maintain two such potential transitions, δ↓ or δ↑. We introduce
the notations non-deterministic up and non-deterministic down in untila

to denote which of the potential transitions is to be emitted upon the arrival of
input events.

6 Correctness

Theorem 1. 4 The Update procedure applied to the above transducer tables
correctly models the semantics of Figure 1.

sinceinit

φψ

untilinita

φψ

untilinitb

φψ

untilinitc

φψ

Fig. 7. Initialization Tables for the Since and Until Operators

7 Monitoring Algorithm Complexity

7.1 Instantaneous Transducers

The instantaneous transducers are defined as those for which all emitted tran-
sitions take place at the current time, that is, with the same τ as that of the
event that caused them. They comprise ¬, ∧, S, and [−a,0].

The Update procedure can be simplified in that there is no need to keep track
of the valid intervals. Without the potential for delayed output, the queues will
never grow larger than one element and can be replaced with single values.

Theorem 2. The runtime to monitor expression φ that consists of only instan-
taneous operators on input signals γ̂ from time zero until time τ is in O(|φ|n),
for n = the sum of the number of transitions on all inputs.

Proof. The proof is provided in the full version of this paper [1], but is reasonably
clear from the pseudocode if it is given that Enqueue, Dequeue, and Sync

run in constant time.

Theorem 3. The space required to monitor expression φ that consists of only
instantaneous operators on input signals γ̂ from time zero until time τ is in
O(|φ|), for n = the sum of the number of transitions on all inputs.

4 The proof of the theorems in the following sections are provided in the full version
of this paper [1].

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 257

Proof. The proof is provided in the full version of this paper [1] and centers on a
proof that the queues for the instantaneous transducers do not grow larger than
one element.

7.2 Strictly Past Transducer

The transducer for the operator [a,b] for a <= b < 0 operates identically to
that of [b−a,0] except that the timestamp of the output that results from an
event at time τ is τ − b. The corresponding statement is true for other intervals
with open bounds as well. This introduces the need to maintain valid ranges and
queues to store the output of the intermediate stages to support operators with
multiple inputs.

Theorem 4. The runtime to monitor expression φ that consists of only past-
time operators on input signals γ̂ from time zero until time τ is in O(|φ|n), for
n = the sum of the number of transitions on all inputs.

Theorem 5. The space required to monitor expression φ that consists of only
past-time operators with [a,b] where a < b < 0 on input signals γ̂ from time

zero until time τ is in O(|φ|
⌊

a
b−a

⌋
), for n = the sum of the number of transitions

on all inputs.

Theorem 6. The space required to monitor expression φ that consists of only
past-time operators with [a,a] where a < 0 on input signals γ̂ from time zero
until time τ is in O(|φ|n), for n = the sum of the number of transitions on all
inputs.

7.3 Restricted Future

The next increment in monitor complexity introduces the metric eventually op-
erator[a,b] with b > 0. From the Update procedure, we see that it introduces
a delay in its output events relative to the input events that produces them.
This adds no computational complexity, but reduces the guarantees that can be
made about space complexity even when a
= b.

Theorem 7. The runtime to monitor expression φ that consists of past-time
and restricted-future operators on input signals γ̂ from time zero until time τ is
in O(|φ|n), for n = the sum of the number of transitions on all inputs.

Theorem 8. The space required to monitor expression φ that consists of only
past-time operators with [a,b] where a <= b and b > 0 on input signals γ̂ from
time zero until time τ is in O(|φ|n), for n = the sum of the number of transitions
on all inputs.

258 K. Baldor and J. Niu

7.4 Unrestricted Future

The introduction of the until operator presents two challenges related to the fact
that it may remain in an indeterminate state for an arbitrary length of time.
The unchanged space complexity belies the fact that whereas a bound may be
placed on the growth of the size of the monitor for restricted-future operators
if a limit can be placed on the number of transitions within any time interval,
no such limit can be placed on the size of the monitor for unrestricted-future
operators. Also, it is possible to construct liveness properties that can not be
falsified by a monitoring procedure.

Theorem 9. The runtime to monitor expression φ that consists of past-time
and restricted-future operators on input signals γ̂ from time zero until time τ is
in O(|φ|n), for n = the sum of the number of transitions on all inputs.

Theorem 10. The space required to monitor expression φ that consists of only
past-time operators with [a,b] where a <= b and b > 0 on input signals γ̂ from
time zero until time τ is in O(|φ|n), for n = the sum of the number of transitions
on all inputs.

8 Conclusion

We have presented straightforward procedures for monitoring dense-time
continuous-semantics mtl formulae as well as the tradeoffs in runtime and space
complexity incurred as the expressiveness of the supported formulae increases.

We have included the unrestricted-future operators to demonstrate support
for full mtl but also because policy writers may find them to be the most natural
way of representing the policy that they wish to enforce. That said, they must be
used with care as they introduce the ability to describe pure liveness properties
for which no truth value will ever be determined, such as ¬¬φ.

Future work may include mechanisms for trimming the boolean signals of
subexpressions that cannot affect the truth of the full monitored expression
as well as the augmentation to the unrestricted-future monitoring algorithm
to support the extension of the valid-interval for binary operators in cases for
which its output value can be determined based on only the one of its inputs
for which the valid-interval extends further in time. For example, a conjunction
for which one of its input is unknown beyond τ), but the other is known to be
false over the entire interval [τ, current time).

More immediately, we intend to pursue a vhdl implementation of the subset
of mtl for which size restrictions can be guaranteed.

Acknowlegements. Jianwei Niu is supported in part by NSF award CNS-
0964710 and the UTSA research award TRAC-2008.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 259

References

1. Baldor, K., Niu, J.: Monitoring metric temporal logic with continuous semantics.
Technical Report CS-TR-2012-11, UTSA (2012)

2. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for Monitoring Real-Time Prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012)

3. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

4. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Hei-
delberg (2002)

5. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems 2, 255–299 (1990), doi:10.1007/BF01995674

6. Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006)

7. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
8. Prabhakar, P., D’Souza, D.: On the Expressiveness of MTL with Past Operators.

In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336.
Springer, Heidelberg (2006)

Rewrite-Based Statistical Model Checking
of WMTL�

Peter Bulychev1, Alexandre David1, Kim G. Larsen1, Axel Legay2,
Guangyuan Li3, and Danny Bøgsted Poulsen1

1 Aalborg University, Denmark
2 INRIA Rennes – Bretagne Atlantique, France

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, P.R. of China

Abstract. We present a new technique for verifying Weighted Metric
Temporal Logic (WMTL) properties of Weighted Timed Automata. Our
approach relies on Statistical Model Checking combined with a new mon-
itoring algorithm based on rewriting rules. Contrary to existing mon-
itoring approaches for WMTL ours is exact. The technique has been
implemented in the statistical model checking engine of Uppaal and
experiments indicate that the technique performs faster than existing
approaches and leads to more accurate results.

1 Introduction

Runtime verification (RV) [11,1] is an emerging paradigm used to design a series
of techniques whose main objective is to instrument the specification of a sys-
tem (code, ...) in order to prove/disprove potentially complex properties at the
execution level. Over the last years, RV has received a lot of interest and has
been implemented in several toolsets. Such tools have been successfully applied
on several real-life case studies.

The main problem with RV is that, contrary to classical verification tech-
niques, it does not permit to assess the overall correctness of the entire system.
Statistical model checking (SMC) [4,19,17] extends runtime verification capabili-
ties by exploiting statistical algorithms to get evidence that a given system satis-
fies some property. The core idea of the approach is to monitor several executions
of the system. The results are then used together with algorithms from statistics
to decide whether the system satisfies the property with a probability greater
than some threshold. Statistical model checking techniques can also be used to
estimate the probability that a system satisfies a given property [12]. In contrast
to classical exhaustive formal verification approaches, a simulation-based solu-
tion does of course not guarantee a result with 100% confidence. However, it is
possible to bound the probability of making an error. Simulation-based meth-
ods are known to be far less memory and time intensive than exhaustive ones,
� Work partially supported by the VKR Centre of Excellence MT-LAB and the Sino-

Danish Basic Research Center IDEA4CPS.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 260–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Rewrite-Based Statistical Model Checking of WMTL 261

and are sometimes the only option [20]. Statistical model checking, which clearly
complements RV, is widely accepted in various research areas such as software
engineering, in particular for industrial applications, or even for solving problems
originating from systems biology [13,10].

To get a more accurate intuition, Fig. 1 provides a schematic view of a sta-
tistical model checker and its interaction with RV procedures.

Generator

Validator

Core algorithm

M , τ

φ

θ,ε

Pr[≤ τ](φ) = a± ε with confidence θ

Run

Yes/No

Inconclusive

Fig. 1. A statistical model checker. The run generator first generates a run of M ,
which is propagated into the run validator. The run validator then validates if the
run satisfies the property ϕ and returns Y es or No to the core algorithm. Afterwards
the core algorithm decides if another run is needed or if it, based on the accumulated
knowledge, can draw a conclusion.

The run generator is responsible for generating runs of the model under ver-
ification and the run validator, which corresponds to the runtime verification
part of the effort, validates if a run satisfy the property or not. The core algo-
rithm collects the simulation results until sufficient samples has been obtained
to provide an overall result. The core algorithm is computationally lightweight
compared to the remaining two. An optimisation of SMC is therefore most easily
obtained by optimising either the run generation or the run validation. In this
paper, we focus on the run validation part.

In our work, we consider combining RV and SMC techniques in order to ver-
ify complex quantitative properties (performance evaluation, scheduling, ..) over
rich systems. More precisely, we are interested in computing the probability that
a random run of a Weighted Timed Automata(WTA)[3] satisfies a formula writ-
ten in Weighted Metric Temporal Logic (WMTL)[5]. WTA is a rich formalism
capable of capturing (quantitative) non-linear hybrid systems, while WMTL cor-
responds to the real-time extension of the linear temporal logic equipped with
cost operators. In this paper, due to the use of SMC, we assume that the scope of
the temporal operators is bounded, i.e., that one can decide whether a run satis-
fies a formula only by looking at a finite prefix. Unfortunately, it is known that,
due to the expressivity of the automata-based model, the problem of verifying

262 P. Bulychev et al.

WMTL with respect to WTA is undecidable [6] – hence it cannot be tackled with
existing formal techniques such as model checking. Another drawback is that it is
known that, even for the case where temporal operators are bounded, WMTL is
more expressive than the class of deterministic timed automata [15]. This latter
result implies that there is no automata-based runtime monitoring procedure for
WMTL, even for the case where the scope of the temporal operators is finitely
bounded. A first solution to the above problems could be to use a three-valued
logic [2]. However, the absence of decision results is often unsatisfactory from an
engineering point of view, especially when dealing with performance analysis.

In [8], we proposed the first SMC-based verification procedures for the even-
tually and always fragments of WMTL. Our work relies on a natural stochastic
semantic for WTA. The work was implemented in Uppaal-smc and applied
to a wide range of case studies. However, our original work does not consider
nested temporal operators for which a solution was first proposed by Clarke et
al. in [21]. While the approach in [21] is of clear interest, it only works for a
subset of MTL where the temporal operators can only be upwards bounded,
i.e., the lower bound is 0. In [7], we proposed another approach that relies on
monitoring automata representing over and under approximations of solutions
to the WMTL formula. This approach, which has been implemented in Casaal
and Uppaal-smc, exploits confidence levels obtained on both approximations
in order to estimate the probability to satisfy the formula. The first drawback
with the approach in [7] is that both the under and over approximation depend
on some precision that has an influence on the confidence level returned by the
SMC algorithms. The second drawback is that automata-based monitors may
be of large size, hence intractable.

In this paper, we propose a new monitoring approach for WMTL formulas.
Contrary to existing approaches that work by first constructing a monitor for
the property, ours exploit a graph-grammar procedure that rewrite the formula
on-the-fly until a decision can be taken. The approach extends that of [16] to a
timed logic. Contrary to existing off-line monitoring approaches [9], ours stops
as soon as the formula is proved/disproved, which allows to save computation
time and hence drastically improve both memory and time performances. Our
approach has been implemented in Uppaal-smc and evaluated on several case
studies, from random large-size formulas to concrete applications. As expected,
there are many situations where we clearly outperform [7] while being more
precise!

Outline. In section 2 we introduce our modelling formalism Networks of Weighted
Timed Automata. Later in section 3 we define the WMTL logic, and section 4
describes our rewrite-based algorithm for monitoring of WMTL properties. The
experiments are described in section 5.

2 Networks of Priced Timed Automata

In this paper, we briefly recap the formalism of networks of Weighted Timed
Automata[3].

Rewrite-Based Statistical Model Checking of WMTL 263

Let X be a set of variables called clocks. A clock valuation over X is a function
v : X → R that assigns a real-valued number to each clock. We let V (X) denote
all possible valuations over X and let 0 be the valuation that assign zero to
all clocks. An upper bound (resp. lower bound) over X is of the form x �� m
where x ∈ X , m ∈ N, and ��∈ {<,≤} (resp. ��∈ {>,≥}). We denote by B≤(X)
(resp. B≥(X)) the set of upper bounds (resp. lower bounds) over X . We let
B(X) = B≤(X) ∪ B≥(X). Let v be a valuation over X and let g ⊆ B(X) then
we write v � g if for all (x �� m) ∈ g, v(x) �� m. For a valuation v ∈ V (X), a
function r : X → Q and a τ ∈ R we let v + r · τ be the valuation over X such
that (v + r · τ)(x) = v(x) + r(x) · τ for every clock x ∈ X . Let X2 ⊆ X then
v[X2 = 0] is the valuation that assigns zero to every clock in X2 and agress with
v on all other clocks. For two valuations v1 and v2 we let v2−v1 be the valuation
v′ where v′(x) = v2(x)− v1(x) for every clock x ∈ X .

Definition 1. A Weighted Timed Automaton over the finite set of actions Σ
and the set of propositions P is a tuple (L, �0,X ,X i

O, E, I ,R,XR , P), where

– L is a finite set of locations,
– �0 ∈ L is the initial location,
– X is a finite set of clocks,
– XO ⊆ X is a finite set of observable clocks
– E ⊆ L× 2B

≥(X) × Σ ×X × L is a set of edges,
– I : L → 2B

≤(X) assigns invariants to the locations,
– R : L → Q assigns transition rates to locations,
– XR : L → X → Q assign rates to the clocks of the WTA and
– P : L → 2P assign propositions to the locations of the WTA.

The semantics of a WTA A = (L, �0,X ,X i
O, E, I ,R,XR , P) is given as a timed

transition system with state space L×V (X) (denoted (SP (A)) and initial state
(�0, 0) (denoted init(A)). For consistency, we require 0 � I(�0). Furthermore we
require that the rates of the observable clocks in any location is greater than 0.
The transition rules are given below

– delay: (�, v)
d−→ (�, v′) where d ∈ R≥0, if v′ = v + XR(�) · d and v′ � I(�)

– discrete transition: (�, v)
a−→ (�′, v′) if there exists (�, g, a,Y, �′) ∈ E such that

v � g, v′ = v[Y = 0] and v′ � I(�′).

To prepare for composition of WTAs we assume that the set of actions Σ is
partitioned into a set of input actions Σi and output actions Σo. Also we assume
the WTA is input-enabled for the input actions Σi, i.e. that for any a ∈ Σi and
any state (�, v) there exists a transition (�, v)

a−→ (�′, v′). A WTA is deterministic
for Σ′ ⊆ Σ if there exists at most one transition for each a ∈ Σ. In the paper,
we let Ai = (Li, �i0,X i,X i

O, Ei, Ii,Ri,XRi
, P i).

Network of WTAs. A network of WTAs (NWTA) is a set of WTAs executing in
parallel. The automata communicate via broadcast synchronisation.

264 P. Bulychev et al.

Let A1, A2, . . . , An be WTAs over the common set of actions Σ. Furthermore,
let Σ1, Σ2 . . . Σn be mutually disjoint subsets of Σ and for all i let Ai be deter-
ministic and input-enabled with respect to Σ \Σi and deterministic with respect
to Σi. Then we call N = A1|A2| . . . |An a network of WTAs over Σ where Σi is
the output actions of Ai and Σ \ Σi is its input actions.

The semantics of the network of WTAs is a timed transition system with
the state space SP (N) = SP (A1) × SP (A2) × · · · × SP (An) and the initial
state (init(A1), init(A2), . . . , init(An)). We refer to an element s = (s1, s2, . . . ,
sn) ∈ SP (N) as a state vector of the network and let si = si. The transition
rules of a network is given as

– (s)
d−→ (s′) if for all i, 1 ≤ i ≤ n, si

d−→ s′i, and d ∈ R≥0

– (s)
a−→ (s′) if for all i, 1 ≤ i ≤ n si

a−→ s′i, and a ∈ Σ.

Consider WTAs given in Fig. 2. WTAs (a) and (b) are competing to force (c)
to go either to location Left or to location Right. Initially both competitors are
waiting for between 3 and 5 time units whereafter one of them moves the (c)
to either Left or Right. Afterwards both competitors have a period where time
progresses and nothing occurs. Indeed, when one of the competitors returns it
must wait for between 3 and 5 time units again and choose to either move (c) or
let it be and enter a waiting period again. The primary difference between (a)
and (b) is that (b) rushes to return to a position from which it can change (c)
and (a) returns within 5 time units.

x:=0 x:=0

x:=0 x>=3
flip[0]!

back[0]!
flip[1]?

x<=5

x<=5

(a)

x:=0 x>=1

x:=0

x:=0 x>=3

1

flip[1]! back[1]!
flip[0]?

x<=5

(b)

Left Right
flip[0]?

flip[1]?

flip[1]?

flip[0]?

(c)

Fig. 2. Network of Timed Automata

Let s = ((�1, v1), (�2, v2), . . . , (�n, vn)) be a state vector for A1|A2| . . . |An.
Then we let P (s) =

⋃n
i=1 P i(�i). Let x ∈ Xi for som i then V (s, x) = vi(x).

Definition 2 (Run). Let A1|A2| . . . |An be a network of WTAs. A run of the
network is an infinite weighted word (P0, v0)(P1, v1) . . . where for all i, vi is a
valuation over Y =

⋃
i∈{1,2,...,n} X i

O and

Rewrite-Based Statistical Model Checking of WMTL 265

– v0 = 0 ,
– there exists an alternating sequence of delays and discrete transitions s0

d0−→
s′0

a0−→ s1
d1−→ . . . , where for all i, 0 < i, and for all x ∈ Y vi(x) = vi−1(x) +

(V (s′i−1, x)− V (si−1, x)).
– s0 = (init(A1), init(A2), . . . , init(An)) and
– for all j, j ≥ 0,Pj = P (sj).

For a run ω = (P0, v0)(P1, v1) . . . , we let ωi = (Pi, vi)(Pi+1, vi+1) A run ω is
called diverging for clock x if for any i there exists a j such that vj(x) > vi(x)+1.
A run is diverging if it is diverging for all clocks. In what follows, we assume
that there always exists a clock τ in a WTA, and this clock always have a rate
of 1 and is never reset, i.e. τ measures the time length of a run.

Stochastic Semantics. In [8] we introduced the stochastic semantics for NWTAs,
i.e. proposed a probability measure on the set of all runs of a network and
described an algorithm for generating a random run. Roughly speaking, the
stochastic semantics of WTA components associates probability distributions on
both the delays one can spend in a given state as well as on the transition between
states. In Uppaal-smc uniform distributions are applied for bounded delays
and exponential distributions for the case where a component has unbounded
delay. In a network of WTAs the components repeatedly race against each other,
i.e. they independently and stochastically decide on their own how much to
delay before outputting, with the “winner” being the component that chooses
the minimum delay.

Statistical Model Checking. As said in the introduction, we use SMC [4,19,17]
to compute the probability for a network of WTAs to satisfy a given property.
Given a program B and a trace-based property1 φ , SMC refers to a series
of simulation-based techniques that can be used to answer two questions: (1)
qualitative: is the probability for B to satisfy φ greater or equal to a certain
threshold θ (or greater or equal to the probability to satisfy another property
φ′) [19]? and (2) quantitative: what is the probability for B to satisfy φ [12]? In
both cases, the answer is correct up to some confidence level, i.e., probability
that the algorithm does not make mistake, whose value can be configured by the
user. For the quantitative approach, which we will intensively use in this paper,
the method computes a confidence interval that is an interval of probabilities
that contains the true probability to satisfy the property. The confidence level is
interpreted as the probability for the algorithm to compute a confidence interval
that indeeds contains the probability to satisfy the property.

Our Uppaal-smc toolset implements a wide range of SMC algorithms for
WTAs. In addition, the tool offers several features to visualize and reason on
the results. Until now, the monitoring procedure for WMTL relies on a tech-
nique that computes over and under approximation monitors for the formulas.
In this paper, we go one big step further and propose a more efficient and precise
monitoring procedure.
1 i.e. a property with semantics defined on traces.

266 P. Bulychev et al.

3 Weighted Metric Temporal Logic

In this section we review the syntax and semantics of Weighted Metric Temporal
Logic (WMTL) [5]. The syntax is defined as follows.

Definition 3. A WMTL formula over the propositions P and the clocks X is
generated by the grammar:

ϕ, ϕ1, ϕ2 ::= � | ⊥ | p | ¬p | O ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1Ux
[a,b]ϕ2 | ϕ1Rx

[a,b]ϕ2

where a, b ∈ Q, a ≤ b, p ∈ P and x ∈ X .

As one can see in the syntax, we restrict to a fragment of WMTL where temporal
operators are bounded. As stated in the introduction, this fragment is sufficient
to break any decidability results. Observe that WMTL is an extension of Metric
Temporal Logic (MTL) [14] in which U and R can also be bounded for arbitrary
clocks. As an example, bounding U and R over arbitrary clock allows one to ex-
press that a communication device should recover from a state without spending
more than x units of energy. This can be accomplished by adding an observable
clock, that measures the energy consumption, to the model and bound the U
and R modalities over this clock.

We interpret WMTL formulas over runs of WTAs. Informally, the WMTL
formula ϕ1Ux

[a,b]ϕ2 is satisfied by a run if ϕ1 is satisfied on the run until ϕ2 is
satisfied, and this should happen before the value of the clock x increases with
more than b units starting from the beginning of the run, and after it increases
for more than a units. Formula O ϕ means that ϕ should be satisfied starting
from the next observation of the run. The logical operators are defined as usual,
and the release opearator R is dual to U , and ϕ1Rx

[a,b]ϕ2 ≡ ¬(¬ϕ1Ux
[a,b]¬ϕ2).

Formally, let ω = (P0, v0)(P1, v1) . . . be a timed run. The satisfaction relation
is inductively defined as

– ω � �
– ω � p if p ∈ P0

– ω � ¬p if p /∈ P0

– ω � O ϕ if ω1 � ϕ

– ω � ϕ1 ∨ ϕ2 if ω � ϕ1 or ω � ϕ2

– ω � ϕ1 ∧ ϕ2 if ω � ϕ1 and ω � ϕ2

– ω � ϕ1Ux
[a,b]ϕ2 if there exists i such that a ≤ vi(x) − v0(x) ≤ b, ωi � ϕ2 and

for all j < i we have ωj � ϕ1

– ω � ϕ1Rx
[a,b]ϕ2 if there exists i such that a ≤ vi(x)− v0(x) ≤ b, ωi � ϕ1 and

for all j ≤ i, ωj � ϕ2, or for all i such that vi(x)− v0(x) ≤ b we have ωi � ϕ2

In the rest of the paper, we use the following equivalences: ♦x
[a,b]ϕ = �Ux

[a,b]ϕ
and �x

[a,b]ϕ = ⊥Rx
[a,b]ϕ. We also use �[a,b]ϕ instead of �τ

[a,b]ϕ for the case τ
grows with rate 1.

Rewrite-Based Statistical Model Checking of WMTL 267

Example 1. Consider again the WTAs in Fig. 2 and assume that the winner of
the competition is the one who managed to have (c) located in its designated
location for 8 consecutive time units. To express that (a) wins within 100 time
units we need to state that (c) stays in Left for 8 consecutive time units at some
point and that it has not stayed in Right for 8 consecutive time units before that
point. Using WMTL this can be expressed like

(¬Left ∨ ♦[0,8]Right)U[0,92](�[0,8]Right).

We now focus on deciding a WMTL formula ϕ on a finite prefix of an infinite di-
verging run ω = (P0, v0)(P1, v1) We first define the bound function N(w, ϕ)
inductively as follows:

N(ω,�) = N(ω,⊥) = N(ω, p) = 0

N(ω,¬p) = 0

N(ω, ϕ1 ∧ ϕ2) = max{N(ω, ϕ1), N(ω, ϕ2)}
N(ω, ϕ1 ∨ ϕ2) = max{N(ω, ϕ1), N(ω, ϕ2)}

N(ω, O(ϕ)) = 1 + N(ω, ϕ)

N(ω, ϕ1Ux
[a;b]ϕ2) = maxi.a≤vi(x)−v0(x)≤b

(
max{i + N(ωi, ϕ2),

maxj<i{j + N(ωj, ϕ1}}
)

N(ω, ϕ1Rx
[a;b]ϕ2) = maxi.a≤vi(x)−v0(x)≤b

(
max{i + 1, i + N(ωi, ϕ2),

maxj≤i{j + N(ωj, ϕ1}}
)

The bound function characterises the maximal prefix of ω that one needs to
observe to decide ϕ. Observe that, contrary to [21], the bound depends not only
on the formula but also on the run itself. The latter is due to the introduction
of the next operator that is absent in [21].

We say that two infinite runs ω1 = (P1
0 , v1

0)(P1
1 , v1

1) . . . and ω2 = (P2
0 , v2

0)
(P2

1 , v2
1) . . . are n-equivalent, denoted ω1 ≡n ω2, if for all i ≤ n P1

i = P2
i and

v1
i = v2

i . We say that ω n-boundly satisfies ϕ, denoted ω �n ϕ, iff for all ω′ where
ω ≡n ω′, ω′ � ϕ. We say that run n-boundly violate ϕ if for all ω′ where ω ≡n ω′,
ω′ � ϕ. It is easy to see that ω �n ϕ =⇒ ω � ϕ and ω �n ϕ =⇒ ω � ϕ. We can
now conclude with the following theorem that shows that any WMTL property
can be decided on a finite prefix of the run.

Theorem 1. Let ω be an infinite run and ϕ be a WMTL formula. Then ω � ϕ
if and only if ω �N(ω,ϕ) ϕ and ω � ϕ if and only if ω �N(ω,ϕ) ϕ.

4 Monitoring WMTL Properties

We present an efficient online monitoring algorithm for checking if a given infinite
run ω of a WTA satisfies a given WMTL property ϕ.

268 P. Bulychev et al.

Algorithm 1. WMTL formula satisfiability checking
// Input: MTL formula ϕ and weighted word ω
// Output: true iff ω |= ϕ, false otherwise
i:=0
while ϕ �= � ∧ ϕ �= ⊥ do

ϕ:=β(γ(ϕ,Pi, vi+1 − vi))
i:=i+1

end
if ϕ == � then

return true
end
if ϕ == ⊥ then

return false
end

The pseudo code of our algorithm is presented in Algorithm 1. Intuitively,
the algorithm reads the elements of the input run one-by-one and rewrites the
formula after reading each new element. The algorithm stops when the formula
becomes � or ⊥ meaning that any continuation of the finite prefix read so far
will be accepted (or rejected) by the original formula ϕ. The rewriting step is
performed by first applying the function γ, that updates the formula according
to a new observation, and then applying β function, that simplifies the formula
and tries to reduce it to � or ⊥.

The rewrite function γ is defined by the following recursive rules where v is
a function that gives the change of the clock variables since the last element of
the run:

– γ(p,P , v) =

{
�, if p ∈ P
⊥, if p
∈ P

– γ(¬p,P , v) =

{
⊥, if p ∈ P
�, if p
∈ P

– γ(ϕ1 ∧ ϕ2,P , v) = γ(ϕ1,P , v) ∧ γ(ϕ2,P , v)
– γ(ϕ1 ∨ ϕ2,P , v) = γ(ϕ1,P , v) ∨ γ(ϕ2,P , v)
– γ(O ϕ,P , v) = ϕ
– γ(ϕ1Ux

[a, b]ϕ2,P , v) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ(ϕ1,P , v) ∧ ϕ1Ux
[min(a−v(x), 0), b−v(x)]ϕ2 , if a > 0 ∧ v(x) ≤ b

γ(ϕ2,P , v) ∨ (γ(ϕ1,P , v) ∧ ϕ1Ux
[0, b−v(x)]ϕ2) , if a = 0 ∧ v(x) ≤ b

γ(ϕ2,P , v), if a = 0 ∧ v(x) > b

⊥, if a > 0 ∧ v(x) > b

– γ(ϕ1Rx
[a, b]ϕ2,P , v) =⎧⎪⎨

⎪⎩
γ(ϕ2,P , v) ∧ ϕ1Rx

[min(a−v(x), 0), b−v(x)]ϕ2 , if a > 0 ∧ v(x) ≤ b

γ(ϕ2) ∧ (γ(ϕ1,P , v) ∨ ϕ1Rx
[0, b−v(x)]ϕ2) , if a = 0 ∧ v(x) ≤ b

γ(ϕ2,P , v), if v(x) > b

Rewrite-Based Statistical Model Checking of WMTL 269

The omitted cases are all rewritten into themselves. The simplify function β is
defined by the following recursive rules:

– β(ϕ1 ∧ ϕ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⊥, if β(ϕ1) = ⊥ or β(ϕ2) = ⊥
β(ϕ1), if β(ϕ2) = �
β(ϕ2), if β(ϕ1) = �
β(ϕ1) ∧ β(ϕ2), otherwise.

– β(ϕ1 ∨ ϕ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�, if β(ϕ1) = � or β(ϕ2) = �
β(ϕ1), if β(ϕ2) = ⊥
β(ϕ2), if β(ϕ1) = ⊥
β(ϕ1) ∨ β(ϕ2), otherwise.

– β(ϕ) = ϕ in rest of the cases.

The simplify function β takes into account only the logical equivalences, namely
ϕ ∧� ≡ ϕ, ϕ ∧ ⊥ ≡ ⊥, ϕ ∨� ≡ �, ϕ ∨ ⊥ ≡ ϕ.

The correctness and termination of our algorithm is proved by the following
two theorems:

Theorem 2. Let ω = (P0, v0), (P1, v1), . . . be an infinite weighted word, and ϕ
be a WMTL formula. Then ωi � ϕ if and only if ωi+1 � γ(ϕ,Pi, vi+1 − vi) .

Theorem 3. Let ω = (P0, v0), (P1, v1), . . . be an infinite weighted word that
diverges for every clock used in a WMTL formula ϕ. Let ϕ0 = ϕ, ϕ1, . . . be a
sequence of WMTL formulas such that for all i > 0 ϕi+1 = β(γ(ϕi,Pi, vi+1−vi)).
Then there exists k ≥ 0 such that ϕk = � if and only if ω � ϕ0. Similarly, there
exists k ≥ 0 such that ϕk = ⊥ if and only of ω � ϕ0.

Example 2. Consider the run ({a}, {τ "→ 0})({a}, {τ "→ 2.5})({b}, {τ "→ 3})
({a}, {τ "→ 3.2})({b, c}, {τ "→ 5})({a}, {τ "→ 6}) . . . and the WMTL formula
(aU[0,4]b)U[0,10]c. Our algorithms will produce the following sequence of rewriting
rules. The sequence results in � thus the formula is satisfied by the run.

(aU[0,4]b)U[0,10]c
{a}, {τ 	→2.5}−−−−−−−−→(aU[0,1.5]b) ∧ (aU[0,4]b)U[0,7.5]c

{a}, {τ 	→0.5}−−−−−−−−→(aU[0,1.0]b) ∧ ((aU[0;3.5]b) ∧ (aU[0,4]b)U[0,7.0]c)

{b}, {τ 	→0.2}−−−−−−−−→(aU[0,4]b)U[0,6.8]c

{a}, {τ 	→1.8}−−−−−−−−→(aU[0,3.2]b) ∧ ((aU[0,4]b)U[0,5.0]c)

{b,c},{τ 	→1}−−−−−−−−→�.

5 Experiments

Our approach has been implemented in Uppaal-smc. We now illustrate the
technique and compare it with the one in [7] that relies on automata-based

270 P. Bulychev et al.

monitors. If there is no deterministic automaton for the corresponding formula,
[7] builds a deterministic under/over approximation that may strongly impact
the confidence interval computed by SMC.

5.1 Size of Intermediate Formulas and Precision

Our rewriting rules are recursive in the structure of the formula, which means
that the performance of the technique is highly dependent on the size of the
intermediate formulas. In the following example, we show how the size of the
intermediate formulas vary. We also show that our technique is often much more
accurate than the one of [7].

We first study the evolution of the size of the intermediate formula generated
by our technique during the monitoring of several randomly generated formulas.
We also study the precision of the confidence interval returned by the SMC
algorithm in case [7] uses an over or under approximation of the monitor. We
also exploit an encoding in Uppaal to show how the size of the formula varies
over time for a validation of a single run. In both cases runs are randomly
generated by automata. This is done by choosing a delay with respect to an
exponential distribution with rate parameter r and after the delay with a discrete
probabilistic choice set one of the propositions to true or false.

Random Formulas. We compute the average size of the largest intermediary
formula generated in the rewriting process of different formulas. We verified
each formula with a confidence level of 0.05. The results of the test are shown in
Table 2(a) and Table 2(b). We also give the verifiation time and the time used in
total for the monitor based approach, i.e. both the time to construct the monitor
and to verify. The results show that the intermediate formula size depends on
the transition rate of the model and as a result so does the validation. The
monitor based approach, on the other hand, does not depend on this and the
time used remain constant for all the models - due to the most significant part
of the monitor based approach is constructing the monitor. However, the rewrite
technique is significantly faster than the monitoring technique in all cases. For
the results in Table 2(a) the monitors are tight approximations thus we gain time
and not precision. However, results in Table 2(b) show that we can obtain much
more accurate confidence intervals with our new technique. This is due to the
monitors might be a large over approximations/a small under approximation.
The variance in Table 2(a) is rather high due to the runs being random.

Modeling Uppaal inside Uppaal. In order to obtain a more in-depth
view on how the size of formulas change over time, we have encoded the rules as
Uppaal timed automata. The objective being to use the visualisation features of
the tool to see how the number of automata evolve over time. Our construction is
recursive in the structure of the formula in the sense that a network of observing
automata for φ is obtained as one automata for φ and at least one automaton
for each of the sub-formulas of φ.

Rewrite-Based Statistical Model Checking of WMTL 271

Table 1. Result of the random formula test. The r column is the rate at which the run
was generated. The #U/R column contains the number of until or release modalities
that was in the formula. The EMax column is the average largest size of formula and
σ2
Max is the variance thereof. τM and τR is the verification time for the monitoring

technique and the rewrite technique, respectively. The verification time for the monitors
are the time to construct the monitors and use them - in all the cases the monitors
were not exact and both the under and over approximation was used. The RR and RM

columns contain the number of runs each method required to establish the verification
result. The %M and %R columns refer to the confidence interval obtained by the
monitoring and the rewrite process respectively.

Formula r #U/R Largest EMax σ2
Max τR τM RR RM

Random1 1 11 14 6.81 3.16 0.19s 5.70s 738 1748
Random1 4 11 18 7.03 4.92 0.22s 5.83s 738 1748
Random1 8 11 21 7.06 4.74 0.23s 5.78s 738 1748
Random2 1 8 17 8.52 5.33 0.19s 6.13s 738 1748
Random2 4 8 21 11.05 4.71 0.34s 6.17s 738 1748
Random2 8 8 27 12.79 7.16 0.58s 6.26s 738 1748
Random3 1 11 21 11.51 4.74 0.50 10.99s 738 1748
Random3 4 11 40 13.58 16.53 1.08 11.06s 738 1748
Random3 8 11 36 14.00 18.16 1.52 11.38s 738 1748

(a)

Formula #U/R r %R %M RR RM τR τM
random4 15 4 [0.57; 0.67] [0.57; 0.83] 738 1748 0.34s 7.77s
random5 15 4 [0.00; 0.05] [0.00; 0.97] 738 1748 0.94s 2.83s
random6 15 4 [0.00; 0.05] [0.00; 0.72] 738 1748 0.81s 3.18s
random7 15 4 [0.00, 0.07] [0.00; 0.43] 738 1748 2.36s 26.61s

(b)

The automaton for φ starts its sub-automata through a designated init -
channel and the sub-automata informs the φ-automaton that their sub-formula
has been rewritten to � or ⊥ through designated channels. The automata for un-
til and release rely on having multiple automata for their sub-formulas that they
can start one of after each observation. If there are insufficient sub-automata an
error state is reached - because of this the encoding is an under-approximation
of the WMTL formula in question.

Example 3. Consider the run (p, {τ "→ t0})(p, {τ "→ t1})(p, {τ "→ t2})(¬p, {τ "→
t3})(p, {τ "→ t4})(p, {τ "→ t5})(p, {τ "→ t6})(p, {τ "→ t7})(?, {τ "→ t8}) where we
do not know if the proposition p is true at time t8 and let t8− t0 > 10. In Fig. 3
we provide a snapshot of the set of active automata at time t7. At the top we
have an automaton that monitors the expression ♦[0;10]�[4;15]p which has been
active since t0 thus it has 10− (t7 − t0) time units left before its expression has
been violated.

Below this automaton are automata observing the subexpression �[4;15]p.
These automata have been started at times t4, t5 and t6 respectively and will

272 P. Bulychev et al.

♦[0;10]�[4;15]p
[10 − t7 + t0]

�[4;15]p
[0; 15+t4−t7]

�[4;15]p
[4 + t5 −

t7; 15+t5−t7]

�[4;15]p
[4 + t6 −

t7; 15+t5−t6]

�[4;15]p
[4; 15]

�/⊥
�/⊥

�/⊥ init

Fig. 3. Snapshot at time t7 with 3 active automata and one being started.

time

va
lu

e

0

2

4

6

8

10

12

14

0 0,6 1,2 1,8 2,4 3,0

(a) Simulation of model generating
runs with rate 2

time

va
lu

e

0

6

12

18

24

30

0 1,02 2,04 3,06

(b) Simulation of model generat-
ing runs with rate 20

Fig. 4. Plots of how the size of the formula varies over time. On the y-axis is plotted
the number of active automata and the x-axis contain the time.

report � to the parent automaton at the moment they have oberved p for 15
time units or ⊥ if they observe ¬p. Notice that all the automata started before
t4 are no longer active since ¬p was true at time t3. Also, there is one automa-
ton (the gray one with dashed borders) that is being started by ♦[0;10]�[4;15]p
through its init-channel. Since t8− t0 > 0 the top level automaton will not start
any sub-automata at time t8. Instead it will merely wait for the already started
automata to return either � or ⊥. If one of them return � then the top-level
automaton will return �. In case all of the sub-automata return ⊥ then the
top-level automata will return ⊥.

We encoded the formula ♦[0;1](p ∧ �[0;1](¬r) ∧ ♦[0;1](q)), and put the resulting
automata in parallel with an automata generating random runs and an automa-
ton incrementing a counter whenever an automaton was started or decremented
the counter, whenever an automaton stopped. We did this for transition rates 2
and 20 of the random run generating automaton and used the simulate query,
simulate 1 [<=3] size.

In Fig. 4 we show the plots we obtain for runs generated with varying tran-
sition rates. One can easily see that the number of automata does not increase
exponentially. We have observed the phenomena on various case studies.

Rewrite-Based Statistical Model Checking of WMTL 273

5.2 IEEE 802.15.4 CSMA/CA Protocol

IEEE 802.15.4 standard [18] specifies the physical and media access control lay-
ers for low-cost and low-rate wireless personal area networks. Devices operating
in such networks share the same wireless medium and can possibly corrupt the
transmission of each other by sending data at the same time. We applied our
technique to the analysis of Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) network contention protocol that is used in IEEE 802.15.4 to min-
imise the number of collisions.

Our objective is to estimate the probability that if a collision occurs, then
all nodes participating in it will recover from the collision within a given time
bound. This can be specified with ∧i=1..Nϕi, where N is a number of network
nodes and ϕi specifies the behavior of a single node:

ϕi ≡ �≤10000(collisioni → ♦≤4000sendi)

The monitor built by [7] is precise. We are thus not interested to reason on
precision of the confidence interval, but rather on the evolution of computation
time. In Fig. 5 we observe that both the size of intermediary formulas used to
rewrite ϕ and the computation time grow linearly as the number of components
N increases. On the other hands, both the size of monitor and the computation
time with the approach in [7] grow exponentially and cannot be applied to real-
life deployments of CSMA.

Number of nodes 2 3 4 5 6
Monitor-based approach (time) <1s 3s 57s 20m2s -
Size of the monitor 230 2049 16306 123800 -
Rewrite-based approach (time) 55s 2m85s 4m11s 6m32s 9m21.47s
Average formula size 8.98 13.76 19.24 24 30.34

Fig. 5. Results for the CSMA/CA protocol

Although the monitor-based approach is faster for smaller N , for larger N it
quickly becomes intractable, while the rewrite-based approach scales well.

6 Conclusion

We presented a new monitoring procedure for WMTL formulas. The technique
relies on a series of rewriting step for the formula and is guaranteed to terminate.
Contrary to automata-based approaches, ours is precise in the sense that it
does not depend on over and under approximation of the formula. We have
implemented our approach in Uppaal-smc. Our results outperform those of the
monitor-based approaches.

274 P. Bulychev et al.

References

1. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM TESMy 20(4), 14 (2011)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

4. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

5. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed au-
tomata. Logical Methods in Computer Science 4(2) (2008)

6. Bouyer, P., Markey, N.: Costs Are Expensive! In: Raskin, J.-F., Thiagarajan, P.S.
(eds.) FORMATS 2007. LNCS, vol. 4763, pp. 53–68. Springer, Heidelberg (2007)

7. Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B., Stainer,
A.: Monitor-Based Statistical Model Checking for Weighted Metric Temporal
Logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180,
pp. 168–182. Springer, Heidelberg (2012)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical Model Checking for Networks of Priced Timed Automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

9. Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000)

10. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Computational
Modeling and Verification of Signaling Pathways in Cancer. In: Horimoto, K.,
Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 117–135. Springer,
Heidelberg (2012)

11. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

12. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 73–84. Springer, Heidelberg (2004)

13. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

15. Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, Present,
Future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 2–16. Springer, Heidelberg (2005)

16. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Au-
tom. Softw. Eng. 12(2), 151–197 (2005)

Rewrite-Based Statistical Model Checking of WMTL 275

17. Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box
Probabilistic Systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

18. I. C. Society. Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs) (2003)

19. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

20. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statis-
tical probabilistic model checking. STTT 8(3), 216–228 (2006)

21. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: HSCC 2010, pp. 243–252. ACM,
New York (2010)

From Runtime Verification to Runtime

Intervention and Adaptation

Martin Rinard

Massachussetts Institute of Technology

Abstract. Runtime verification monitors the execution of a program to
determine if it satisfies (typically specified) correctness properties. But
what happens when the program violates the correctness properties?
The standard view is that continued execution may be unsafe, so the
execution must be terminated. We present a variety of intervention tech-
niques that enable software systems to exhibit remarkable flexibility and
resilience in the face of errors and faults. These techniques can deliver
safe continued execution that offers significant benefits over termination.
We also present techniques that build on this malleability to purpose-
fully modify the computation to adapt to changing needs, delivering
benefits such as improved performance and reduced power consumption.
These results place the advantages of runtime intervention and adapta-
tion clearly on display. They also point the way to a future in which
developers produce not the final version of the program which the sys-
tem blindly executes, but instead a starting point for further modification
and evolution as the system adapts to dynamically observed events and
conditions.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, p. 276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Certifying Solutions for Numerical Constraints

Eva Darulova and Viktor Kuncak	

EPFL
{eva.darulova,viktor.kuncak}@epfl.ch

Abstract. A large portion of software is used for numerical computation
in mathematics, physics and engineering. Among the aspects that make
verification in this domain difficult is the need to quantify numerical er-
rors, such as roundoff errors and errors due to the use of approximate
numerical methods. Much of numerical software uses self-stabilizing it-
erative algorithms, for example, to find solutions of nonlinear equations.

To support such algorithms, we present a runtime verification tech-
nique that checks, given a nonlinear equation and a tentative solution,
whether this value is indeed a solution to within a specified precision.

Our technique combines runtime verification approaches with infor-
mation about the analytical equation being solved. It is independent of
the algorithm used for finding the solution and is therefore applicable to
a wide range of problems. We have implemented our technique for the
Scala programming language using our affine arithmetic library and the
macro facility of Scala 2.10.

Keywords: solution verification, numerical computation, error estima-
tion, affine arithmetic.

1 Introduction

Software manipulating numerical quantities has numerous applications in deci-
sion making, science, and technology. Such software is difficult to validate by
any method—manual inspection, testing, or static analysis. One of the core
challenges in each case is the gap between the approximate nature of numerical
computations and the idealized mathematical models that form their foundation
and specification. Specialized programming languages inside commercial com-
puter algebra systems aim to simplify working with numerical computations.
However, their precision and soundness guarantees compared to the mathemat-
ical meaning are not well documented, and many of the implementations are
closed source. Much of the real-world computation is done in general-purpose
languages, supported by many numerical software libraries written for them.
The work on this paper builds on open-source general-purpose infrastructures,
providing a next step in validated numerical computation for Scala [14].

Existing validation of numerical computations supports estimation of roundoff
errors [7,1]; we have previously incorporated computation of roundoff errors in

� This research is supported by the Swiss NSF Grant #200021 132176.

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 277–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 E. Darulova and V. Kuncak

Scala using affine arithmetic [5]. Going a step further, we present automated
estimation of not only roundoff errors, but also method errors, which arise, for
example, when using numerical methods to iteratively solve equations. Such
methods are used to solve equations that have no symbolic closed-form solution,
which is often the case in practice. Even if symbolic solutions exist, iterative
approaches can be faster or better-behaved with respect to roundoff errors.

1.1 Contributions

To understand the notion of method errors we address, consider an iterative
method that performs a search for the solution of f(x) = 0 by computing a
sequence of approximations x0, x1, x2, . . . One common stopping criterion for an
iteration is finding xk for which |f(xk)| < ε, for a given error tolerance ε. From
a validation point of view, however, we are ultimately interested not in ε but
in τ such that |x − xk| < τ , where x is the actual solution in real numbers.
Fortunately, we can estimate τ from ε using a bound on the derivative of f in
an interval conservatively enclosing x and xk.

A tempting approach is to perform the entire computation of xk using inter-
val [12] or affine arithmetic. However, this approach would be inefficient, and
would give too pessimistic error bounds. Instead, our method uses a runtime
checking approach. We allow any standard non-validated floating point code to
compute the approximation xk. We perform only the final validation of an indi-
vidual candidate solution xk using a range-based computation. In this way we
achieve efficiency and reusability of existing numerical routines, while still pro-
viding rigorous bounds on the total error. The bounds certified by our system
are always sound for the given execution.

Our system thus realizes a new kind of assertion, appropriate for numerical
computation: an assertion that verifies “this was precise enough” in a way that
takes into account both the numerical algorithm and floating point semantics.

To perform such sound computation, our approach uses static information
about the function and computes derivatives at compile time. For this purpose
it uses the macro facility of Scala, our implementation of symbolic differentia-
tion, and a method to compute bounds of a function over an interval. A technical
challenge that arises in rigorously estimating the error is that mean value theo-
rems (the foundation for error estimation), refer to an arbitrary point between
the approximate and the unknown exact solution. It is therefore not clear over
which interval one needs to estimate the error. We solve this circularity through
a simple design, which expects a bound on the argument error as the input, and
verifies whether this bound indeed holds. This allows us to perform an estimation
using very narrow intervals, contributing to the precision of our approach.

We integrated our method into the Scala programming language (Section 4).
We demonstrate its applicability and usefulness on a number of examples (sec-
tions 2 and 5). Among the consequences of this development is a Scala framework
that can check runtime assertions in a way consistent with mathematical reals,
while executing on the standard virtual machine, soundly taking into account the
concrete semantics of floating point operations and iterative numerical methods.

Certifying Solutions for Numerical Constraints 279

2 Examples

We motivate our contribution with examples that model physical processes,
taken from [18,4,15]. These examples illustrate the applicability of our techniques
and introduce the main features of our library. For space reasons we abbreviate
the Scala Double type with D (the code snippets remain valid Scala code us-
ing the rename-on-import Scala feature). We include variable type declarations
for expository purposes, even though the Scala compiler can infer all but the
function parameter types. A function that maps x into e(x) is denoted in Scala
by x ⇒ e(x). Method names printed in bold (e.g., jacobian, assertBound) are
parts of the public interface of our library for certifying solutions of numerical
computations.

Stress on a Turbine Rotor. We illustrate the basic features of our library on
the following system of three non-linear equations with three unknowns (v, ω, r).
An engineer may need to solve such a system to compute the stress on a turbine
rotor [18].

3 + 2
r2 −

1
8
(3−2v)
1−v ω2r2 = 4.5 6v − 1

2
v

1−vω2r2 = 2.5

3− 2
r2 −

1
8
(1+2v)
1−v ω2r2 = 0.5

(1)

Given a numerical routine computeRoot and our library for certifying solutions,
the engineer can directly map the above equations into the following code:

val f1 = (v:D,w:D,r:D) ⇒ 3 + 2/(r∗r) − 0.125∗(3−2∗v)∗(w∗w∗r∗r)/(1−v)−4.5
val f2 = (v:D,w:D,r:D) ⇒ 6∗v − 0.5 ∗ v ∗ (w∗w∗r∗r) / (1−v)−2.5
val f3 = (v:D,w:D,r:D) ⇒ 3 − 2/(r∗r) − 0.125∗(1+2∗v)∗(w∗w∗r∗r) / (1−v)−0.5

The engineer can then solve the problem numerically using an off-the-shelf nu-
merical routine that accepts the function and its derivative as an argument:

val x0 = Array(0.75, 0.5, 0.5) // initial value for iteration
val roots: Array[D] = computeRoot(Array(f1,f2,f3), jacobian(f1,f2,f3), x0, 1e−8)

Finally, the engineer can certify the solution using our library:

val errors:Array[Interval] = assertBound(f1,f2,f3, roots(0), roots(1), roots(2), 1e−8)

The method assertBound takes as input the three functions of our system
of equations, the previously computed roots and a tolerance. It returns sound
bounds on the true errors on the roots. In the case where these errors are larger
than the tolerance specified, the method throws an exception and thus acts like
an assertion. Our library also includes the method jacobian, which computes
the Jacobian matrix of the functions f1, f2 and f3 symbolically at compile time
(Section 4.2). The true roots for v, w and r are 0.5, 1.0 and 1.0 respectively. The
roots and maximum absolute errors computed by the above code are

0.5, 1.0000000000018743, 0.9999999999970013

2.3684981521893e-15, 1.8806808806556e-12, 3.0005349681420e-12

Note that the error bounds computed are, in fact, orders of magnitude smaller
than the tolerance 1e−8 given to the numerical routine and to assertBound.

280 E. Darulova and V. Kuncak

Fig. 1. A double pendulum standing close to an obstacle

Double Pendulum. The following example demonstrates how our library fits
into a runtime assertion framework consistent with mathematical reals. A double
pendulum rotates with angular velocity ω around a vertical axis, like a centrifugal
regulator [4]. At equilibrium, the two pendulums make the angles x1 and x2 to
the vertical axis. It can be shown that the angles are determined by the equations

tanx1 − k(2 sinx1 + sinx2) = 0

tanx2 − 2k(sinx1 + sinx2) = 0
(2)

where k depends on ω, the lengths of the rods and gravity. Suppose the pendulum
is standing close to a wall (as in Figure 1) and we would like to verify that in
the equilibrium position it cannot hit the wall. Also suppose that the distance to
the center of the pendulum is given by a function distancePendulumWall. Then
the following code fragment verifies that a collision is impossible in the real
world, not just in a world with floating-points.

val distancePendulumWall : SmartFloat = ...
val length = ... //length of bars
val tolerance = 1e−13; val x0 = Array(0.18, 0.25)
val f1 = (x1: D, x2: D) ⇒ tan(x1) − k ∗ (2∗sin(x1) + sin(x2))
val f2 = (x1: D, x2: D) ⇒ tan(x2) − 2∗k ∗ (sin(x1) + sin(x2))
val r: Array[D] = computeRoot(Array(f1,f2), jacobian(f1,f2), x0, tolerance)
val roots: Array[SmartFloat] = certify(r, errorBound(f1, f2, r(0), r(1), tolerance))

val L: SmartFloat = sin(roots(0)) ∗ length + sin(roots(1)) ∗ length
if (certainly(L <= distancePendulumWall)) {

// continue computation
} else {

// reduce speed of the pendulum and repeat
}

To account for all sources of uncertainty, we use the SmartFloat data type de-
veloped previously [5]. SmartFloat performs a floating point computation while

Certifying Solutions for Numerical Constraints 281

additionally keeping track of different sources of errors, including floating point
round-off errors, as well as errors arising from other sources, for example, due to
the approximate nature of physical measurements.

In our example, distancePendulumWall and certify both return a SmartFloat;
the first one captures the uncertainty on a physical quantity, and the second one
the method error due to the approximate iterative method. If the comparison
in line 9 succeeds, we can be sure the pendulum does not touch the wall. This
guarantee takes into account roundoff errors committed during the calculation,
as well as the error committed by the computeRoot method and their propagation
throughout the computation.

State Equation of a Gas. Values of parameters may only be known within
certain bounds but not exactly, for instance if we take inputs from measure-
ments. Our library provides guarantees even in the presence of such uncertain-
ties. Equation 3 below relates the volume V of a gas to the temperature T and
the pressure p, given parameters a and b that depend on the specifics of the gas,
N the number of molecules in the volume V and k the Boltzman constant [15].

[p + a(N/V)2](V − Nb) = kNT (3)

If T and p are given, one can solve the nonlinear Equation 3 to determine the
volume occupied by the (very low-pressure) gas. Note however, that this is a cubic
equation, for which closed-form solutions are non-trivial, and their approximate
computation may incur substantial roundoff errors. Using an iterative method,
whose result is verified by our library, is thus preferable:

val T = 300; val a = 0.401; val b = 42.7e−6;
val p = 3.5e7; val k = 1.3806503e−23; val x0 = 0.1
val N: Interval = 1000 +/− 5
val f = (V: D) ⇒ (p + a ∗ (N.mid/V) ∗ (N.mid/V)) ∗ (V − N.mid∗b) − k∗N.mid∗T
val V: D = computeRoot(f, derivative(f), x0, 1e−9)
val Vcert: SmartFloat = certify(V, assertBound(f, V, 0.0005))

We make the assumption that we cannot determine the number of molecules
N exactly, but we are sure that our number is accurate at least to within ±5
molecules (line 3). We compute the root as if we knew N exactly, using the
middle value of the interval and the standard Newton’s method. We only check
a posteriori that the result is accurate up to ±0.0005m3, for all N in the interval
[995, 1005]. Our library will confirm this providing us also with the (certified)
bounds on V : [0.0424713, 0.0429287].

3 Computing the Error

Our verification technique is based on several theorems from the area of validated
numerics. It can verify roots of a system of nonlinear equations computed by an
arbitrary black-box solution or estimation method.

282 E. Darulova and V. Kuncak

In the following, we denote computed approximate solutions by x̃ and true
roots by x. IR denotes the domain of intervals over the real numbers R and vari-
ables written in bold type, e.g. X, denote interval quantities. For a function f ,
we define f(X) = {f(x) | x ∈ X}. All errors are given in absolute terms. Error
tolerance, that is, the maximum acceptable value for |x̃ − x|, will be denoted
by τ or tolerance. We will use the term range arithmetic to mean either interval
arithmetic [12] or affine arithmetic [6]. The material presented in this section is
valid for any such “arithmetic”, as long as it computes guaranteed enclosures
containing the result that would be computed in real numbers. We wish to com-
pute a guaranteed bound on the error of a computed solution, that is, determine
an upper bound on Δx = x̃ − x. Note that Δx is different from τ , because Δ
considers the sign of the difference.

Unary Case. For expository purposes, consider first the unary case f : R→ R,
f differentiable, and suppose that we wish to solve the equation f(x) = 0. Then,
by the Mean Value Theorem

f(x̃) = f(x + Δx) = f(x) + f ′(ξ)Δx (4)

where ξ ∈ X and X is a range around x̃ sufficiently large to include the true
root. Since f(x) = 0,

Δx ∈ f(x̃)

f ′(X)
(5)

The set membership instead of equality is because the right-hand side is now a
range-valued expression, which takes into account the fact that ξ in the Mean
Value Theorem is not known exactly. The following theorem (stated in the for-
mulation from [17]) formalizes this idea.

Theorem 1. Let a differentiable function f : R → R, X = [x1, x2] ∈ IR and
x̃ ∈ X be given, and suppose 0 /∈ f ′(X). Define

N(x̃,X) := x̃ − f(x̃)/f ′(X). (6)

If N(x̃,X) ⊆ X, then X contains a unique root of f . If N(x̃,X) ∩X = ∅, then
f(x)
= 0 for all x ∈ X.

Claim. If, following Equation 5, we compute an interval Δx = f(x̃)/f ′(X) en-
closing the upper bound on the error Δx, and if Δx ⊆ [−τ, τ], then the approx-
imately computed result x̃ is indeed within the specified precision τ .

Indeed, choose X = [x̃ − τ, x̃ + τ], i.e. the computed approximate solution plus

or minus the tolerance we want to check, and compute Δx = f(x̃)
f ′(X) . Then the

condition N(x̃,X) ⊆ X from Theorem 1 becomes

N(x̃,X) = x̃−Δx ⊆ X = [x̃ − τ, x̃ + τ] (7)

If Δx ⊆ [−τ, τ], this condition holds, and thus the computed result is within the
specified precision.

Certifying Solutions for Numerical Constraints 283

def assertBound (Function, Derivative, xn, τ)
X = [xn ± τ]
error = Function(xn) / Derivative(X)
if error ∩ [−τ , τ] = ∅ throw SolutionNotIncludedException
if ¬(error ⊂ [−τ , τ]) throw SolutionCannotBeVerifiedException
return error

Fig. 2. Procedure for computing errors in the unary case

Our assertion library uses the procedure in Figure 2 for unary problems. Note
that we not only check that errors are within a certain error tolerance, but we also
return the computed error bounds. As we show in Section 5, the computed error
bounds tend to be much tighter than the user-required tolerance. As Section 4.3
illustrates, this error bound can be used in subsequent computations to track
overall errors more precisely.

Multivariate Case. Our error estimates for the unary case follow from the
Mean Value Theorem, which extends to n dimensions. Theorem 2 follows the
interval formulation of [17] where Jf is the Jacobian matrix of f . If D =
(x1, . . . ,xn) ∈ IRn, let D̄ denote x1 × . . . × xn. For a, b ∈ D̄, define convex
union as a∪ b = {a+λb | λ ∈ [0, 1]}. For A ⊆ D̄, define hull(A) :=

⋂
{Z ∈ IRn |

A ⊆ Z}.
Theorem 2. Let there be given a continuously differentiable f : D̄ → Rn with
D ∈ IRn and x, x̃ ∈ D̄. Then for X := hull(x∪ x̃)

f(x) ∈ f(x̃) + Jf (X)(x − x̃) (8)

We extend our method for computing the error on each root in a similar manner:

δ ∈ J−1
f (X) · (−f(x̃)) (9)

where δ = x − x̃ is the vector of errors on our tentative solution. Since we now
must consider the Jacobian of f instead of a single derivative function, we can no
longer solve for the errors by a simple scalar division. We wish to find the maxi-
mum possible error, so we need a way to compute an upper bound on the right-
hand side of Equation 9. Computing the inverse of a Jacobian matrix in a range
arithmetic typically does not yield a useful result, due to over-approximation.
Instead, we use the following Theorem 3, which is originally due to [11], but we
use the formulation by [17].

Theorem 3 ([17]). Let A, R ∈ Rn×n, b ∈ Rn and E ∈ IRn be given, denote by
I the identity matrix. Assume

Rb + (I − RA)E ⊂ int(E). (10)

where int(E) denotes the interior of the set E. Then the matrices A and R are
non-singular and A−1b ∈ Rb + (I − RA)E.

284 E. Darulova and V. Kuncak

We instantiate Theorem 3 with all possible matrices A such that A ∈ Jf (X) and
all possible vectors b such that b ∈ −f(x̃), where Jf (X) and −f(x̃) are both
evaluated in range arithmetic. Combining with Condition 9, we obtain

δ ∈ J−1
f (X) ∗ −f(x̃) ⊆ Rb + (I − RA)E, (11)

provided that Condition 10 is satisfied in range arithmetic.
Matrix R in Theorem 3 can be chosen arbitrarily as long as Condition 10

holds. A common choice is to use an approximate inverse of A. In our case, A
is range-valued, so we first compute the matrix whose entries are the midpoints
of the intervals of A, and use its inverse as R. It now remains to determine X.
We choose it to be the vector where the ith entry is the interval around x̃i and
width τ . If we can then show that Condition 11 holds, we have proven that X
indeed contains a solution. Moreover, we have computed a tighter upper bound
on the error. We obtain the procedure in Figure 3 for computing error bounds
for systems of equations. The variables Xn, A, b, E, errors are all range valued.

def assertBound (functions, Jacobian, xn, τ)
Xn = [xn ± τ]
A = Jacobian(Xn)
b = − functions(xn) // goal is to certify that xn is a zero of ’functions’ up to τ
R = inverse(mid(A)) // calculated in ordinary floating points
E = [0 ± τ]
errors = R∗b + (I − RA)E // Theorem 3
if errors ∩ [−τ , τ]n = ∅n throw SolutionNotIncludedException
if ¬(errors ⊆ [−τ , τ]n) throw SolutionCannotBeVerifiedException
return errors

Fig. 3. Procedure for computing errors in the multivariate case

Our approach requires the derivatives to be non-zero, respectively the Ja-
cobian to be non-singular, in the neighborhood of the root. This means that,
at present, we can only verify single roots. Verifying multiple roots is an ill-
conditioned problem by itself, and thus requires further approximation tech-
niques, as well as dealing with complex values. We leave this for future work.
Our library does distinguish the cases when an error is provably too large from
the case when our method is unable to ensure the result: we use two different
exceptions for this purpose.

4 Implementation

Given the theoretical building blocks described above, the next question is how
to integrate them into a general-purpose programming language. Our goal is
to obtain an assertion framework for real numbers that is intuitive to use and

Certifying Solutions for Numerical Constraints 285

efficient. Figures 2 and 3 require the computation of derivatives and their eval-
uation in range arithmetic, but we do not want the user having to provide two
differently typed functions, one in Doubles for the solver and one in Intervals for
our verification method. Also, the solver may not actually require derivatives or
the Jacobian, so this computation should be performed automatically and sym-
bolically at compile time. Fortunately, Scala facilitates this within the existing
compiler framework using a notion of macros.

4.1 Scala Macros

Scala version 2.10 (release candidate) introduces a macro facility [3]. To a user,
macros look like regular methods, but in fact, their code is executed at compile
time and performs a transformation on the Scala compiler abstract syntax tree
(AST). Thus, by passing a regular function to a macro, we can access its AST
and perform transformations, such as computing a derivative of an expression.
The type checker runs after macro expansion, so the resulting code retains all
guarantees from Scala’s strong static typing. Our library provides the following
functions:

def errorBound(f: (Double ⇒ Double), x: Double, tol: Double): Interval
def assertBound(f: (Double ⇒ Double), x: Double, tol: Double): Interval
def certify(root: Double, error: Interval): SmartFloat

and similarly for functions of two, three, and more variables. The function
assertBound computes the guaranteed bounds on the errors using the algo-
rithms in figures 2 and 3. errorBound removes the assertion check and only
provides the computed error; the programmer is then free to define individual
assertions. certify wraps the computed root(s) including their associated errors
into a value of the SmartFloat datatype, thus providing a link to our assertion-
checking framework. We also expose the automatic symbolic derivative compu-
tation facility:

def derivative(f: Double ⇒ Double): (Double ⇒ Double)
def jacobian(f1: (Double, Double) ⇒ Double, f2: (Double, Double) ⇒ Double):

(Array[Array[(Double, Double) ⇒ Double]])

The functions passed to our macros have type (Double∗) => Double and may
be given as anonymous functions, or alternatively defined in the immediately
enclosing method or class. The functions may use parameters, with the same
restrictions on their original definitions. This is particularly attractive, as it
allows us to write concise code as presented in the code snippets from Section
2. Source code including all examples can be downloaded from
http://lara.epfl.ch/~darulova/cerres.zip.

4.2 Computing Derivatives

In this section we explain how we compute derivatives and discuss the effects of
our technique on efficiency and precision. Given the function ASTs, we compute

http://lara.epfl.ch/~darulova/cerres.zip

286 E. Darulova and V. Kuncak

the derivatives or Jacobian matrices already at compile time, and thus need to do
this symbolically. Our system computes derivatives with the standard derivation
rules, such as the chain rule. Moreover, it performs the following expression
simplifications:

– pull constants outside of multiplications (before differentiation);
– compact multiplications of the same terms into a power function (before

differentiation);
– simplify multiplication and addition of zeros or ones arising from the differ-

entiation (after differentiation);
– evaluate powers with integers by repeated multiplication (at runtime).

Overall, the effect is that the resulting expressions of derivatives do not grow
too large. The second and third column of Table 3 show the impact of our
optimizations on execution times: the cumulative improvement is 28%.

On the other hand, the syntactic algebraic form of the expressions affects the
precision of evaluating them in floating-point, interval or affine arithmetic. To
estimate this impact, we have compared the overall behavior of our system with
our symbolic differentiation routine against the results obtained with manually
provided derivatives. Manually means that the derivatives have the syntax one
would compute by hand on paper. We did the comparison on our unary bench-
mark problems (Table 1), and it turns out that except for two instances, the
errors computed are exactly the same. For the two other functions, our manually
computed derivatives actually compute an error that is worse, but the precision
is still sufficient to prove solutions are correct to within the given tolerance.

A possible alternative to our compile time differentiation is runtime automatic
differentiation [9]. Because it does not perform the optimizations listed above,
we would expect it to have performance similar to our unoptimized version.
Although we have opted for symbolic differentiation at compile time, in principle
one can use any type of function and differentiation method, as long as the
function is differentiable in a sufficiently large neighborhood of the root and the
differentiation method keeps track of the roundoff and method errors it commits.

4.3 Integration into a Roundoff Error Assertion Framework

We combine the current work with our existing library for tracking roundoff
errors [5] into an assertion language that can be assumed to work with real
numbers. That is, if no exceptions are thrown, the program would take the
same path if real numbers were used instead of floating-points and the values
computed are within the bounds computed by the SmartFloat datatype. This
assertion language thus tracks two sources of errors

– quantization errors due to the discrete floating-point number representation
(this has been implemented in [5]);

– method errors due to the approximate numerical method (this is a contri-
bution of the present paper).

Certifying Solutions for Numerical Constraints 287

The bounds on computed values are ensured by using SmartFloats throughout
the straight-line computations. Note that the numerical method still uses only
Doubles since we verify the result a posteriori. Path consistency is ensured by
the compare method of the SmartFloat datatype, which takes uncertainties into
account. That is, if a comparison x < y cannot be decided for sure due to
uncertainties on the arguments, an exception is thrown. This behavior can be
adjusted to a particular application by the methods

def certainly(b : ⇒ Boolean) : Boolean =
try b catch { case e: SmartFloatComparisonUndetermined ⇒ false }

def possibly(b : ⇒ Boolean) : Boolean =
try b catch { case e: SmartFloatComparisonUndetermined ⇒ true }

If we cannot be sure a boolean expression involving SmartFloats is true, we
assume it is false in the case of certainly, and that it is true in the case of
possibly. Hence, the following identity holds:

if (certainly(P)) T else E ⇔ if (possibly(!P)) E else T

4.4 Uncertain Parameters

Theorem 3 also holds for range-valued A and b. It is thus natural to extend
our macro functions to also accept range-valued parameters. The SmartFloat

datatype already has the facility to keep track of manually user-added errors
so that we can track external uncertainties as a third source of errors. Consider
again the gas state equation example from Section 2, especially the following
two lines:

val N = 1000 +/− 5
val f = (V:D) ⇒ (p + a∗(N.mid/V)∗(N.mid/V))∗(V − N.mid∗b) − k∗N.mid∗T

The +/− method returns an Interval, which in turn defines the mid method.
Thus, the function typechecks correctly and can be passed for example to a
solver, but inside the macro we can use the interval version of the parameter.

5 Evaluation

Precision Evaluation. The theorems from Section 3 provide us with sound
guarantees regarding upper bounds. In practice however, we also need our method
to be precise. Because our library computes error bounds and not only binary
answers for assertions, we are interested in obtaining as precise error estimates as
possible. We have evaluated the precision of our approach in the following way.
We compute a high-precision estimate of the root(s) using a quadruple precision
library [10], which allows us to compute the true error on the computed solutions
with high confidence. We compare this error to the one provided by our library.
The results on a number of benchmark problems chosen from numerical analysis
textbooks are presented in Tables 1 and 2. We are able to confirm the error
bounds specified by the user in all cases. In fact, of all the examples we tried,

288 E. Darulova and V. Kuncak

Table 1. Comparison of errors for unary functions. All numbers are rounded

Problem (tolerance specified) certified (affine) certified (interval) true errors

system of rods (1e-10) 7.315e-13 1.447e-13 1.435e-13

Verhulst model (1-e9) 4.891e-10 9.783e-11 9.782e-11

predator-prey model (1e-10) 7.150e-11 7.147e-11 7.146e-11

carbon gas state equation (1e-12) 1.422e-17 2.082e-17 1.625e-26

Butler-Volmer equation (1e-10) 4.608e-15 3.896e-15 3.768e-17

(x/2)2 − sin(x) (1e-10) 7.4e-16 5.879e-16 1.297e-16

ex(x− 1) − e−x(x+ 1) (1e-8) 5.000e-10 5.000e-10 5.000e-10

degree 3 polynomial (1e-7) 7.204e-9 1.441e-9 1.441e-9

degree 6 polynomial (1e-5) 2.741e-14 3.538e-14 2.258e-14

Table 2. Comparison of errors for multivariate functions. All numbers are rounded

Problem (tolerance specified) certified (affine) certified (interval) true errors

stress distribution (1e-10)
3.584e-11
4.147e-11

3.584e-11
4.147e-11

3.584e-11,
4.147e-11

sin-cosine system (1e-7)
6.689e-09
6.655e-09

6.689e-09
6.655e-09

6.689e-9
6.6545e-9

double pendulum (1e-13)
4.661e-15
6.409e-15

5.454e-15
7.449e-15

5.617e-17
9.927e-17

circle-parabola intersection (1e-13)
5.551e-17
1.110e-16

1.110e-16
1.110e-16

8.0145e-51
5.373e-17

quadratic 2d system (1e-6)
2.570e-12
3.025e-09

3.326e-12
3.025e-09

2.192e-12
3.024e-9

turbine rotor (1e-12)

1.517e-13
1.707e-13
1.908e-14

1.523e-13
1.724e-13
1.955e-14

1.514e-13
1.703e-13
1.887e-14

quadratic 3d system (1e-10)

4.314e-16
5.997e-16
4.349e-16

6.795e-16
1.632e-15
5.127e-16

1.2134e-16
7.914e-17
7.441e-17

our library failed only in the case of a multiple root for the reasons explained in
Section 3 and never for precision reasons. We split the evaluation between the
unary case and the multivariate case because of their different characteristics.
All numbers are the maximum absolute errors computed. The numbers in paren-
theses are the tolerances given to the solvers and have been chosen randomly to
simulate the different demands of the real world. We highlight the better error
estimates in bold.

Note that the precision of the error estimates we obtain is remarkably good.
Another perhaps surprising result of our experiments is that using interval arith-
metic is generally more precise (in the unary case) or not much worse (in the mul-
tivariate case) than affine arithmetic, although the latter is usually presented as

Certifying Solutions for Numerical Constraints 289

Table 3. Average runtimes for the benchmark problems from Tables 1 and 2. Averages
are taken over 1000 runs.

Problem set
solution time

only affine interval

interval w/o

optimizations
quadruple
precision

unary problems 0.032ms 2.170ms 0.459ms 0.733ms 17.196ms

2D problems 0.044ms 2.779ms 0.984ms 1.240ms 4.446ms

3D problems 0.183ms 3.563ms 1.063ms 1.515ms 16.605ms

Table 4. Runtimes for individual problems. Averages are taken over 1000 runs.

Problem affine interval

carbon gas state equation 0.272ms 0.084ms

double pendulum problem 0.784ms 0.228ms

turbine problem 2.643ms 0.644ms

degree 3 polynomial 0.116ms 0.044ms

quadratic 2d system 0.425ms 0.200ms

quadratic 3d system 0.943ms 0.460ms

the superior approach. Indeed, for the tracking of roundoff errors we have shown
affine arithmetic to provide (sometimes much) better results than interval arith-
metic [5]. The reason why intervals perform as well is that for transcendental
functions they are able to compute a tighter range, since affine arithmetic has to
compute a linear approximation of those functions. The exceptions in the unary
case are the degree 6 polynomial and the carbon gas state equation example,
which confirms our hypothesis, since in that case the dependency tracking of
affine arithmetic can recover some of the imprecision in the long run.

For the multivariate case, affine arithmetic performs generally better because
the computation consists to a large part of linear arithmetic. Due to the larger
computation cost (see Section 5), however, we leave it as a choice for the user
which arithmetic to use and select interval arithmetic as a default.

Performance Evaluation. Table 3 compares the performance of our imple-
mentation when using affine, interval arithmetic, or interval arithmetic without
the differentiation optimizations listed in Section 4.2. Switching off the opti-
mizations is similar to performing automatic differentiation. We can see that
our optimizations actually make a big difference in the runtimes, improving by
up to 37% for unary functions and 30% for our 3D problems over pure differenti-
ation. On the other hand, the table clearly shows that affine arithmetic is much
less efficient than interval arithmetic (factor 3-4.5 approx.), so it should only
be used if precision is of importance. The first column shows the runtimes for
computing the solutions with Newton’s method without any kind of verification.
We have also included the runtimes of re-computing the root(s) in quadruple
precision [10]. That is we have used approximately 64 decimal digits for all cal-
culations of the numerical method. The runtimes illustrate that this approach

290 E. Darulova and V. Kuncak

for computing trustworthy results is unsuitable from the performance point of
view, and would not actually provide any guarantees on errors.

Table 4 illustrates the dependence of runtimes on the complexity (operation
count and dimension) of the problems. The first three problems are those from
our example section 2 and the second set comprises relatively short polynomial
equations. Runtimes depend both on the type of equations, as e.g. transcenden-
tal functions are more expensive, and on the size of the system of equations.
We consider the increases appropriate given the increase of complexity of the
problems.

6 Related Work

We are not aware of any work for general-purpose programming languages that
could verify solutions of nonlinear constraints or that provides runtime asser-
tions that are consistent with mathematical reals. Closest to our work are self-
validated methods for solving systems of non-linear equations. [17] contains
a fairly complete overview and an implementation exists in the INTLAB li-
brary [16]. The main difference to our work is that these methods are solution
methods that use interval arithmetic throughout the computation. In contrast,
we use the theorems from Section 3 as a verification method that accepts solu-
tions computed by an arbitrary method. This allows us to leverage the generally
good results and efficiency of numerical methods with sound results. Moreover,
our implementation performs part of the computation already at compile time,
and is thus more efficient.

In the case of systems of linear equations, one can use the linearity for opti-
mizations [13]. The presented algorithm remains an iterative solver. [8] gives an
iterative refinement algorithm for linear systems that uses higher precision arith-
metic to compute the residual. The techniques cannot however be translated to
nonlinear systems. Since we do not compute residuals that suffer heavily from
cancellation errors in our approach, we believe that the additional cost of higher
precision arithmetic is not warranted in order to achieve a slightly better preci-
sion. Another related area is that of approximate computation [19,2], which uses
program transformations to trade accuracy for efficiency. The error bounds are
generally provided by the user in form of trusted specifications or are determined
by simulations. The results show a great potential for improving computation
efficiency while retaining precision sufficient for the application.

7 Conclusion

We have shown how to integrate the theory of error estimation from numer-
ical analysis into a general-purpose programming language. This allows us to
estimate how close computed numerical quantities are from the corresponding
values that would be computed using idealized operations on real numbers. As a
result, it is now possible to use the well-developed theory of reals to reason about
the programs manipulating floating points. The expectations of the programmer

Certifying Solutions for Numerical Constraints 291

can already be validated using runtime assertions that are easy and intuitive to
use for developers. Static analysis approaches can complement our solution and
can be built to use the same specification language.

References

1. Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In: Fifth
International Joint Conference on Automated Reasoning (2010)

2. Baek, W., Chilimbi, T.M.: Green: a framework for supporting energy-conscious
programming using controlled approximation. In: Proc. 2010 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (2010)

3. Burmako, E., Odersky, M., Vogt, C., Zeiger, S., Moors, A.: Sip 16: Self-cleaning
macros (2012), http://scalamacros.org/documentation/specification.html

4. Dahlquist, G., Björck, A.: Numerical Methods in Scientific Computing. Society for
Industrial and Applied Mathematics (2008)

5. Darulova, E., Kuncak, V.: Trustworthy numerical computation in Scala. In: Proc.
2011 ACM International Conference on Object Oriented Programming Systems
Languages and Applications (2011)

6. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications.
In: IMPA/CNPq, Brazil (1997)

7. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an
Industrial Use of FLUCTUAT on Safety-Critical Avionics Software. In: Alpuente,
M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer,
Heidelberg (2009)

8. Demmel, J.W., Hida, Y., Kahan, W., Li, X.S., Mukherjee, S., Riedy, E.J.: Error
Bounds from Extra Precise Iterative Refinement. Technical report, EECS Depart-
ment, University of California, Berkeley (2005)

9. Griewank, A.: A mathematical view of automatic differentiation. Acta Numer-
ica 12, 321–398 (2003)

10. Hida, Y., Xiaoye, S.L., Bailey, D.H., Kaiser, A.: Quad Double computation package
(2012), http://crd-legacy.lbl.gov/~dhbailey/mpdist/

11. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing 4, 187–201 (1969)

12. Moore, R.: Interval Analysis. Prentice-Hall (1966)
13. Nguyen, H.D., Revol, N.: Solving and Certifying the Solution of a Linear System.

Reliable Computing (2011)
14. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive

Step-by-step Guide. Artima Incorporation (2008)
15. Quarteroni, A., Saleri, F., Gervasio, P.: Scientific Computing with MATLAB and

Octave, 3rd edn. Springer (2010)
16. Rump, S.M.: INTLAB - INTerval LABoratory. In: Developments in Reliable Com-

puting. Kluwer Academic Publishers (1999)
17. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic.

In: Proc. 2010 International Symposium on Symbolic and Algebraic Computation,
pp. 3–4 (2010)

18. Woodford, C., Phillips, C.: Numerical Methods with Worked Examples, vol. 2.
Springer (2012)

19. Zhu, Z.A., Misailovic, S., Kelner, J.A., Rinard, M.: Randomized accuracy-aware
program transformations for efficient approximate computations. In: Proc. 39th
ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages (2012)

 http://scalamacros.org/documentation/specification.html
http://crd-legacy.lbl.gov/~dhbailey/mpdist/

Profiling Field Initialisation in Java

Stephen Nelson, David J. Pearce, and James Noble

Victoria University of Wellington
Wellington, New Zealand

{stephen,djp,kjx}@ecs.vuw.ac.nz

Abstract. Java encourages programmers to use constructor methods to
initialise objects, supports final modifiers for documenting fields which
are never modified and employs static checking to ensure such fields
are only ever initialised inside constructors. Unkel and Lam observed
that relatively few fields are actually declared final and showed using
static analysis that many more fields have final behaviour, and even more
fields are stationary (i.e. all writes occur before all reads). We present
results from a runtime analysis of 14 real-world Java programs which
not only replicates Unkel and Lam’s results, but suggests their analysis
may have under-approximated the true figure. Our results indicate a
remarkable 72-82% of fields are stationary, that final is poorly utilised by
Java programmers, and that initialisation of immutable fields frequently
occurs after constructor return. This suggests that the final modifier for
fields does a poor job of supporting common programming practices.

1 Introduction

The notion of immutability has been well-studied in the programming language
community (e.g. [1,2,3]). Modern statically typed languages, such as Java and
C#, typically support immutable fields (e.g. final in Java) though, curiously,
explicit support for immutable classes is often missing. Bloch advises Java pro-
grammers to “Favour Immutability” as “Immutable classes are easier to design,
implement, and use than mutable classes” [4]. This leads to a natural question of
how well immutability modifiers (such as Java’s final) match common program-
ming idioms.

To examine this question, Unkel and Lam developed the term stationary field
to describe fields which are never observed to change, that is, all writes precede
all reads [5]. Their intuition was that programmers are often forced to perform
late initialisation of objects (i.e initialisation after the constructor has returned),
meaning some fields cannot be declared final. A common idiom where this hap-
pens is with the initialisation of cyclic data structures [6].

Unkel and Lam performed a static analysis over a corpus of 26 Java applica-
tions, and found that 40-60% of Java fields were stationary. Their analysis was
necessarily conservative and, hence, under-reported the number of stationary
fields. In this paper, we report on an experiment to identify stationary fields
using runtime profiling. Our results from 14 Java applications indicates that

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 292–307, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Profiling Field Initialisation in Java 293

72-82% of fields are stationary — thereby supporting the conclusion of Unkel
and Lam, but suggesting that it is an underestimate.

2 Background

Java provides a special modifier for immutable fields: final. Java itself ensures
that fields annotated with final are only modified once and only within construc-
tors. Java encourages programmers to use constructors for initialising fields and
establishing invariants. Constructors are distinct from regular methods in one
significant way: they can initialise final fields. Unfortunately, programmers are
sometimes forced (or voluntarily choose) to initialise fields late (i.e. after the
constructor has completed). This prevents such fields from being marked final

even when they are designed to be immutable. The following illustrates a common
patten which exemplifies this scenario:

abstract class Parent {
private final Child child;
public Parent(Child c) { this.child = c; }

}

abstract class Child {
private Parent parent; // cannot be marked as final
public void setParent(Parent p) { this.parent = p; }

}

The programmer intends that every Parent has a Child and vice-versa and, fur-
thermore, that these do not change for the life of the program. He/she has marked
the field Parent.child as final in an effort to enforce this. However, he/she is unable
to mark the field Child.parent as final because one object must be constructed be-
fore the other. We have marked Parent and Child abstract to indicate the intention
that different subclasses will be used.

In the above example, the method Child.setParent(Parent) is used as a late ini-
tialiser. This is a method which runs after the constructor has completed and be-
fore which the object is not considered properly initialised. Once the Child.parent

field is late initialised by this method, the programmer does not intend that
it will change again. Such a field — where all reads occur after all writes —
is referred to as stationary [5]. Another common situation where this arises is
for classes with many configurable parameters. In such case, the programmer is
faced with providing a single large constructor and/or enumerating many con-
structors with different combinations of parameters. Typically, late initialisation
offers a simpler and more elegant solution.

3 Implementation

We have developed a profiler called rprof to track (amongst other things) all
reads and writes to object fields in an executing program. The key advantages of

294 S. Nelson, D.J. Pearce, and J. Noble

rprof are that it runs on a commodity JVM (e.g. Oracle’s HotSpot JVM), catches
reads/writes to almost all objects (including those in the standard library), pro-
files large real-world applications with manageable overhead and processes event
traces (containing potentially billions of events) using a parallel, distributed
map/reduce computation. There are four main components:

– Agent: a JVMTI [7] C++ agent loaded by the JVM running the target
application.

– Profiler: a Java application running in a separate JVM that performs byte-
code rewriting, and provides other utility functions for the agent.

– Workers: Java applications that aggregate the event stream and handle stor-
ing the results.

– mongodb: a commercial nosql database server that the profiler and worker
applications use to store persistent data.

The profiler and workers perform tasks in parallel using multiple threads on
multiple computers, minimising overheads on the profiled application. To enable
profiling, rprof performs bytecode rewriting on the target application. When the
JVM loads a class, it is intercepted by the agent which inserts instrumentation
using the ASM bytecode modification library [8]. To increase the range of objects
which can be profiled, bytecode rewriting is performed by the profiler in a sepa-
rate JVM from the target application. The agent passes classes to be rewritten
to the profiler (potentially across the network) running in another JVM which
rewrites them, and passes them back. Without this, classes needed by the ASM
library could not be profiled as they would have to be loaded before rewriting.

Due to lack of space, unfortunately we cannot discuss every aspect of the rprof
profiler. A more complete discussion of the operation of rprof can be found in [9].
We will now give a high-level overview of the main issues.

3.1 Object Tracking

The first challenge faced in rprof is the unique identification of objects in the
target application. Three options exist for uniquely identifying objects within
the JVM:

– Using Object References. This approach is commonly used with weak ref-
erences to ensure garbage collection proceeds as normal (see e.g. [10,11]).
Since we store profiling data in the mongodb database, we require a con-
crete ID rather than a reference. Unfortunately, Java itself provides no easy
mechanism for converting references into IDs1.

1 Some works (e.g. [12,13]) employ System.identityHashCode(Object) to generate object
IDs. The value returned from this method is derived from the object’s physical ad-
dress, and then stored for subsequent calls. Consequently, it is unsuitable for uniquely
identifying objects because, in standard VMs (using generational garbage collectors)
objects initially reside within the nursery. This is a relatively small region of memory
and we found many live objects which shared the same identityHashCode().

Profiling Field Initialisation in Java 295

– Using Physical Memory Addresses. Since object references correspond to
physical memory addresses in the JVM, a logical option is to use them as
unique IDs. Through the JVMTI it is possible to convert an object reference
into a physical address. Whilst this may seem straightforward, it is fraught
with difficulty since an object can change its physical location during garbage
collection. In other words, we would need to intercept garbage collection
events to determine which objects were moved and now have a new physical
address (hence, ID).

– Storing unique ID’s with every object. The JVMTI provides a mechanism
whereby agents can associate a 64bit (long) tag with any object. The JVM
maintains this tag and handles all issues related to garbage collection, etc.

In our context, the only viable solution is to associate unique IDs with objects
via the JVMTI — which is the approach taken in rprof.

Tracking System Objects. Before the JVM loads native agents, it performs
some basic bootstrapping including loading classes such as java.lang.Object and
java.lang.String. Agents have a chance to modify previously loaded classes, but
JVMTI facilities such as object tagging remain unavailable until the JVM reaches
the end of its bootstrapping phase. Once the JVM has completed bootstrapping,
the agent uses JVMTI to iterate over all the Java objects, and adds unique ID
tags to them.

3.2 Tracking Methods and Constructors

rprof is capable of generating events for all method and constructor calls and
returns (inc. exceptional returns), although this analysis only requires method
return tracking for constructors. Since the JVMTI does not provide any facility
for tracking method calls, rprof uses bytecode modification to instrument classes
as the JVM loads them. Consider the following Java method:

public boolean isHello(String message) { return message.equals(”Hello!”); }

This takes a string as input and returns true if the message is ”Hello!”. rprof
can generate three different events for this method: a ‘Method Enter’ event,
a ‘Method Return’ event, and/or an ‘Exceptional Return’ to catch any thrown
exceptions (e.g. because message is null). Figure 1 shows how rprof instruments
this method by inserting bytecodes to generate these three events. For example,
the inserted code at the beginning pushes class and method identifiers onto
the stack, constructs an array containing the arguments to the method, then
invokes a static rprof method for tracking method entry events. rprof handles
method returns similarly to method calls. rprof generates exceptional returns by
wrapping the method body in a try block, and inserting a finally handler at the
end of the method which signals to rprof an exceptional return. rprof inserts the
try block last so that any other catch or finally blocks run first. If a block consumes
the exception and returns normally then rprof’s exceptional return handler will
not run.

296 S. Nelson, D.J. Pearce, and J. Noble

public boolean isHello(java.lang.String);
flags: ACC PUBLIC
Code:

stack=6, locals=2, args size=2

0: sipush classid
3: sipush methodid
6: iconst 2
7: anewarray java.lang.Object

10: dup
11: iconst 0
12: aload 0
13: aastore
14: dup
15: iconst 1
16: aload 1
17: aastore
18: invokestatic enter(..)

Enter

21: aload 1
22: ldc ”Hello!”
24: invokevirtual String.equals(..)

27: sipush classid
29: sipush methodid
32: aload 0
33: invokestatic exit(..)

Return

36: ireturn

37: astore 1
38: sipush classid
40: sipush methodid
42: aload 1
43: invokestatic exception(..)
46: aload 1
47: athrow

Exception

Exception table:
from to target type
0 37 37 Class java/lang/Exception

Fig. 1. The byte code resulting from modifying an example method to track method
entry, exit, and exceptional return

Profiling Field Initialisation in Java 297

3.3 Tracking Fields

rprof supports tracking both field writes and field reads. This is simpler than for
methods, since the JVMTI provides a callback mechanism to notify agents of
these events. The callback provides a reference to the object that owns the field,
the value of the read or write, and the JVM-internal field ID. Unfortunately,
JVM field IDs are unique to a given class, but are not guaranteed unique across
all classes. rprof requires program-wide unique field IDs for persistence and,
hence, maintains a map between JVM-internal field IDs and rprof’s persistent
field IDs. Finally, rprof tracks all objects created within the JVM, but it is not
able to track all fields. rprof does not track fields of the following classes:

– java.nio.charset.CharsetDecoder, java.nio.charset.CharsetEncoder, java.util.zip.ZipFile.
These three classes use some form of JVM optimisation which causes seg-
faults if rprof tracks them.

– java.lang.Throwable. The JVM generates an additional field at runtime which
causes off-by-one errors in our tracking code.

– java.lang.String. Excluded because it is so common: Strings are actually im-
mutable but they use internal fields to track access behaviour and generated
properties, resulting in a disproportionate number of events which are not
interesting for this experiment.

3.4 Data Aggregation and Analysis

rprof event streams contain billions of events which would take days or even
weeks to store on disk. Reducing this event stream to a more compact form
suitable for analysis or visualisation is a computational challenge. To address
this, rprof processes the event stream as it is generated using a map-reduce style
computation. rprof parallelises this computation across a cluster of machines,
dramatically reducing the time and space taken to store the results.

The worker processes operate on the event stream as it is being generated,
reducing it to a form amenable for analysis or visualisation. This reduction is
specific to the experiment being performed, and discards information not di-
rectly relevant. For example, in the experiments discussed in this paper, it is not
necessary to count how many field accesses there were — we only need to note
when the first and last field reads and writes occurred.

As the profiled application runs the agent generates event records. These are
mapped and reduced to instance records which, in turn, are then mapped and
reduced to result records. Figure 2 presents the information contained in these
records (roughly speaking) for the experiment presented in this paper. On the
left of the figure, we see the event records emitted by the agent. One of these
is emitted for every event being monitored in the profiled application which
includes constructor method exit and field read/write. These events are then
mapped and reduced to a set of complete instance records (shown in the middle),
which capture information about a given object relevant to this experiment. The
complete instance records are then mapped and reduced again to form the final
result records (shown on the right).

298 S. Nelson, D.J. Pearce, and J. Noble

Event

EventId id
EventType event
ClassId class
MethodId method
FieldId field
InstanceId inst

Instance

InstanceId id
ClassId class
EventID conRet
[FieldInst] fields

FieldInst

FieldId id
EventId firstRead
EventId firstWrite
EventId lastWrite

Result

FieldId id
boolean isStationary
boolean isFinal

Fig. 2. Illustrating the event records emitted by the agent (left), which are mapped and
reduced to instance records (middle) and then again into the final result records (right)

// Map event into instance record
void map(Event e) {
InstanceId id = e.inst;

Instance inst = new Instance();
switch(e.type) {
case FIELD READ:
FieldInst fi = new FieldInst(e.field);
fi.firstRead = fi.lastRead = e.id;
inst.fields.add(fi);
break;

case FIELD WRITE:
FieldInst fi = new FieldInst(e.field);
fi.firstWrite = fi.lastWrite = e.id;
inst.fields.add(fi);
break;

case METHOD RETURN:
case METHOD EXCEPTION:
if(isConstructor(e.clazz,e.method)) {

inst.conRet = e.id;
break;

}
default:
return; // don’t emit anything

}
emit(id, inst);

}

// Reduce two instances with same ID

Instance reduce(Instance l, Instance r) {
// Update constructor return ID
l.conRet = max(l.conRet,r.conRet);

// Merge field instance records
for(int i=0;i<l.fields.size();++i) {
FieldInst fi = l.fields.get(i);
for(int j=i+1;j<l.fields.size();++j) {
FieldInst fj = l.fields.get(j);
if(fi.id == fj.id) {
fi.firstRead = min(fi.firstRead,fj.firstRead);
fi.firstWrite = min(fi.firstWrite,fj.firstWrite);
fi.lastWrite = max(fi.lastWrite,fj.lastWrite);
l.fields.remove(j);
j = j − 1;

}
}

}

return l;
}

Fig. 3. Illustrating how Event records are mapped to (incomplete) Instance records,
which are then reduced to form complete records. Not every Event maps to an Instance

record; for example, most method entry events are ignored, with only method re-
turn and exceptional return events on constructors emitting Instances. The methods
min(EventID,EventID) and max(EventID,EventID) operated as expected — by return the
earlier (resp. later) of the two parameters and handling null values correctly. Finally,
please note that, in practice, these methods are further optimised for performance.

Profiling Field Initialisation in Java 299

Consider the process of converting Event records into Instance records. Initially,
each Event record is either ignored (if not relevant) or mapped to an (incomplete)
Instance record. These Instance records are then reduced to form complete instance
records. Here, Instance.conRet gives the EventID for the object’s constructor return,
whilst Instance.fields contains records for its fields. For each field, firstWrite and
lastWrite give the EventIDs for the first and last write and, similarly, for firstRead.
Figure 3 illustrates the map and reduce procedures.

Consider now the process for converting complete Instance records into com-
plete Result records. This is similar to before. Given a complete instance record
we can determine which of its fields were stationary (i.e. all writes before all
reads) and/or final (i.e. one write which occurred before constructor return). We
then reduce all Result records for a given class to determine which fields were
stationary and final across all instances. The reduce procedure is thus:

// Reduce result records with same field ID
Result reduce(Result left, Result right) {
left.isStationary &= right.isStationary;
left.isFinal &= right.isFinal;
return left;

}

Here, we see how two Result records with the same FieldID are reduced. All Result
records for a given field are reduced to a single Result record capturing its sta-
tionary and final status across all instances.

4 Experimental Results

We now present our experimental results looking at final and stationary fields.
We begin with a more detailed definition of these terms.

Final (F). A Final field is an object instance field which is modified once, before
the object’s constructor method returns. A field is not final if, for any object
which reads the field, the field is written to after the object’s constructor returns
or the field is written to more than once. Final fields may be Declared Final (dF)
or Undeclared Final (uF). A declared final field is any field whose declaration
in Java code is annotated with the final modifier. A field which is not annotated
with this modifier but nevertheless conforms to this definition is undeclared final.

Stationary (S). A Stationary field is an object instance field which is not mod-
ified after it has been read. A field is not stationary if there exists an object
which modifies that field after it has been read. The set of stationary fields has
no relationship with that of declared or undeclared final fields. A field which
has been declared final may have its state read before it is initialised (while it
is in its default state). This is valid behaviour for declared final fields but not
stationary fields. Likewise, stationary fields may be initialised after constructor
return, which is not valid behaviour for final fields.

300 S. Nelson, D.J. Pearce, and J. Noble

Table 1. List of programs in the Dacapo benchmarks suite (dacapo−9.12−bach) in-
cluding a brief summary (from [14]). Also included are statistics on each benchmark
obtained using rprof giving the number of classes loaded during the experiment run
(including interfaces) and the number of methods they contained (including static).

Name Description Classes Methods

avrora Simulates a number of programs run on a grid of AVR
microcontrollers.

999 10685

batik Produces a number of Scalable Vector Graphics (SVG)
images based on the unit tests in Apache Batik.

1814 21710

eclipse Executes some of the (non-gui) jdt performance tests
for the Eclipse IDE.

2653 37949

fop Takes an XSL-FO file, parses it and formats it, gener-
ating a PDF file.

1703 20133

h2 Executes a JDBCbench-like in-memory benchmark, ex-
ecuting a number of transactions against a model of a
banking application.

934 14622

jython Inteprets the pybench Python benchmark. 2953 34167

luindex Uses lucene to indexes a set of documents; the works of
Shakespeare and the King James Bible.

788 10887

lusearch Uses lucene to do a text search of keywords over a corpus
of data comprising the works of Shakespeare and the
King James Bible.

701 9640

pmd Analyzes a set of Java classes for a range of source code
problems.

1328 18281

sunflow Renders a set of images using ray tracing. 907 12854

tomcat Runs a set of queries against a Tomcat server retrieving
and verifying the resulting webpages.

2373 32369

tradebeans Runs the daytrader benchmark via a Jave Beans to a
GERONIMO backend with an in memory h2 as the un-
derlying database.

8155 96250

tradesoap Runs the daytrader benchmark via a SOAP to a
GERONIMO backend with in memory h2 as the un-
derlying database.

8246 97026

xalan Transforms XML documents into HTML. 1125 14260

4.1 Benchmarks

Unkel and Lam analysed a selection of Java programs and also the SpecJVM98
benchmark suite. Unlike their static analysis, our dynamic analysis needs to
execute each program with a set of inputs that will exercise the program’s func-
tionality in a reproducible manner. We decided to analyse the dacapo bench-
mark suite, a compilation of non-trivial real world Java applications designed
for benchmarking that includes non-trivial inputs for each application [14]. The
dacapo suite consists of the 14 applications listed in Table 1. Each benchmark

Profiling Field Initialisation in Java 301

was executed using the default input size for a single iteration. We used the
following command to execute benchmarks:

java [rprof−opts] −Xint −Xmx1024m −jar dacapo−9.12−bach.jar −n 1 −t 1 [benchmark]

4.2 Experimental Setup

The benchmarks were profiled executing on an Opteron 254 (2.8GHz) dual-CPU
machine with 4GB of memory running Ubuntu 10.04.3 LTS (64 bit server) using
OpenJDK 1.8.0-ea-b372. We used the preview Java 8 build because our analysis
is not stable on previous JDK versions. OpenJDK 1.8.0-ea-b37 includes a bug
fix for a problem with JVMTI which we identified and reported3.

4.3 Results

The results in this section are directly comparable to the Unkel and Lam’s work
on stationary fields so we use a consistent format to present our results [5].
Figure 4 presents the results of our analysis for all fields. The first column shows
the name of the benchmark, the second shows the total number of unique fields
contributed by each benchmark (i.e. which were read or written at least once
during the run), all other columns show the percentage of the total number
of fields in that category (rounded to whole numbers). Results are separated
broadly into stationary and non-stationary fields, then into declared final (dF),
undeclared final (uF) and not final (¬F). The final three columns show summary
information: the total number of declared final (dF) fields, final fields (F = dF
∪ uF), and stationary fields (S).

Figure 4 shows that between 70% and 86% of the fields declared in dacapo
benchmarks are stationary (S) and between 50% and 68% are final (F). The
number of final fields which are declared final (dF) varies between benchmarks
but, in most cases, is less than half the number of fields whose behaviour was
observed to be final.

Finally, Figures 5 and 6 show the results across fields of reference type and
fields of primitive type. The format is largely the same as before, comparing final
field behaviour between stationary and non-stationary fields in each case.

4.4 Discussion

Comparing our results to Unkel and Lam’s [5], we can make the following main
observations:

1. Declared v Undeclared Final. Consistent with the findings of Unkel and
Lam, we find many undeclared final fields. This suggests that programmers

2 The batik benchmark which relies on a proprietary jpeg class which is not included in
the pre-release JDK 8 build. For this benchmark we used Oracle JDK 1.7.0 03-b04.

3 http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7162645

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7162645

302 S. Nelson, D.J. Pearce, and J. Noble

Program Total
S (%) ¬S (%) % % %

dF uF ¬F dF uF ¬F dF F S

avrora 1,702 36 31 16 0 0 17 36 67 82
batik 3,272 8 52 17 0 0 23 8 60 77
eclipse 6,779 10 37 25 0 0 28 10 46 72
fop 3,390 9 43 28 0 0 19 9 53 81
h2 2,014 17 39 22 0 0 22 17 56 78
jython 2,501 14 46 19 0 0 22 14 60 78
luindex 1,674 18 38 16 0 0 26 18 57 73
lusearch 1,303 14 43 21 0 0 21 14 58 78
pmd 1,962 14 41 24 0 0 20 14 55 79
sunflow 1,831 14 43 20 0 0 23 14 57 77
tradebeans 15,404 25 35 21 0 0 19 25 60 81
tradesoap 15,611 25 35 21 0 0 19 25 60 81
tomcat 6,279 9 40 25 0 0 26 9 50 74
xalan 2,063 11 41 27 0 0 21 11 52 78

Total 65,785 18 38 22 0 0 21 18 57 78

0%

20%

40%

60%

80%

100%

avrora batik
eclipse fop h2

jython
luindex

lusearch pmd
sunflow

tradebeans

tradesoap
tomcat

xalan

S ∩ dF S ∩ uF S ∩ ¬F

Fig. 4. Stationary vs Final for All Fields

are not making good use of the final modifier. The most obvious reason it that
some programmers may simply be “lazy” and choose not to use it even when
they could. However, other possibilities exist. For example, such undeclared fi-
nal fields may be protected, where the programmer anticipated subclasses that
would mutate them but which never eventuated in the given application.

2. Stationary v Final. Our results show a significantly higher proportion of
stationary fields than reported by Unkel and Lam. Furthermore, we detect
far fewer fields which are final but not stationary4 — indeed, fewer than
0.5% in Figure 4. These results suggests that the final modifier is doing a
poor job of supporting common programming practices.

4 Such behaviour is possible in Java if a field read occurs indirectly via dynamic
dispatch from a super-constructor [6].

Profiling Field Initialisation in Java 303

Program Total
S (%) ¬S (%) % % %

dF uF ¬F dF uF ¬F dF F S

avrora 880 47 31 12 0 0 9 47 78 90
batik 1,593 9 54 17 0 1 19 9 64 81
eclipse 3,324 15 43 20 0 0 22 15 58 78
fop 1,760 12 45 28 0 0 14 12 58 86
h2 990 21 41 20 0 0 18 21 62 82
jython 1,354 16 49 18 0 0 16 16 66 83
luindex 812 28 42 16 0 0 14 28 70 85
lusearch 598 20 48 18 0 1 14 20 69 86
pmd 1,048 18 45 22 0 1 15 18 63 85
sunflow 831 18 47 20 0 0 15 18 66 85
tradebeans 9,451 33 34 19 0 0 14 33 67 86
tradesoap 9,619 33 34 19 0 0 14 33 67 86
tomcat 3,393 12 43 26 0 0 18 12 55 82
xalan 1,095 14 46 24 0 1 16 14 60 83

Total 36,748 25 39 20 0 0 16 25 64 84

0%

20%

40%

60%

80%

100%

avrora batik
eclipse fop h2

jython
luindex

lusearch pmd
sunflow

tradebeans

tradesoap
tomcat

xalan

S ∩ dF S ∩ uF S ∩ ¬F

Fig. 5. Stationary versus Final for fields with reference type

3. Reference v Primitives. Our results show that reference fields are more
likely than primitive fields to be declared final, undeclared final, and/or
stationary. This is consistent with Unkel and Lam, though the differences
between groups is more modest in our results. This suggests a distinct dif-
ference in the way programmers treat reference and primitive fields.

4.5 Threats to Validity

Any experiment of this nature has limitations with respect to the scope of the
experiment itself. We now identify the main limitations:

– Benchmark Inputs. As discussed in Section 4.1, each of our benchmarks
was profiled using the workflow provided by Dacapo. This ensures that our
results are reproducible, but effectively constitutes running the benchmark

304 S. Nelson, D.J. Pearce, and J. Noble

Program Total
S (%) ¬S (%) % % %

dF uF ¬F dF uF ¬F dF F S

avrora 822 23 30 20 0 0 26 23 54 74
batik 1,679 6 50 17 0 0 26 6 56 74
eclipse 3,455 5 30 31 0 0 34 5 35 66
fop 1,630 6 42 28 0 0 25 6 47 75
h2 1,024 12 38 23 0 0 26 12 50 73
jython 1,147 11 41 19 0 0 28 11 53 72
luindex 862 10 35 17 0 0 38 10 45 62
lusearch 705 10 38 24 0 0 28 10 48 72
pmd 914 9 36 27 0 0 27 9 46 73
sunflow 1000 11 40 20 0 0 29 11 50 70
tradebeans 5,953 12 36 25 0 0 26 12 49 73
tradesoap 5,992 12 36 25 0 0 27 12 48 73
tomcat 2,886 6 37 22 0 0 34 6 43 65
xalan 968 8 36 30 0 0 27 8 43 73

Total 29,037 10 37 25 0 0 29 10 47 71

0%

20%

40%

60%

80%

100%

avrora batik
eclipse fop h2

jython
luindex

lusearch pmd
sunflow

tradebeans

tradesoap
tomcat

xalan

S ∩ dF S ∩ uF S ∩ ¬F

Fig. 6. Stationary versus Final for fields with primitive type

using a single set of inputs. Clearly, we cannot generalise program behaviour
from one set of inputs to all possible inputs, and it is possible that the Dacapo
inputs are not representative of the benchmark program’s general behaviour.
In particular, fields identified as undeclared final or stationary may receive
different classifications for different inputs. This contrasts with the work of
Unkel and Lam, whose static analysis was a conservative approximation of
all possible program behaviours.

– Benchmark Scope. The Dacapo benchmark suit is well-known and widely
used for experiments such as this. However, it remains unclear how represen-
tative Dacapo is of the general population consisting of all programs. Indeed,
there is work which suggests Dacapo programs do have observably different
behaviour from other benchmark suites [15].

Profiling Field Initialisation in Java 305

Despite these limitations, we believe our work compliments that of Unkel and
Lam. Being a conservative static analysis, their results necessarily under approx-
imate the true number of stationary fields. In contrast, being a runtime analysis
our results necessarily over approximate the true number of stationary fields.
This provides insight into how conservative the results of Unkel and Lam were.

5 Related Work

Various OO languages have support for immutability via, for example, final
or const fields. CLU [16] also supports immutable versions of primitive data
structures — although clusters (classes) are always mutable. A similar design
has been adopted in Scala, where the library provides mutable and immutable
versions of most collections [17].

As discussed already, Unkel and Lam also examined stationary fields [5]. Un-
like us, they employed a static analysis which is necessarily conservative. For a
corpus of 26 Java applications, they found that 40-60% of Java fields were station-
ary which is a similar, but consistently lower, figure than we have found. Given
that their result is an under-approximation and ours an over-approximation, it
seems reasonable to conclude that the true figure lies somewhere inbetween. Ear-
lier, Porat et al. [18] conducted a similar analysis looking for “deeply immutable”
fields (where neither the field itself nor any object reachable from that field is
modified after the object’s constructor completes) and found that around 60% of
static fields were immutable. These results compare with our (dynamic) profile
finding that a large fraction of Java objects are immutable after full construc-
tion. Previously, we examined object behaviours and found significant differences
depending on whether or not they entered a Java collection [19]. This is particu-
larly relevant for collections such as e.g. HashSet and HashMap which restrict how
contained objects may be modified.

Pechtchanski and Sarkar present an interesting study of field immutabil-
ity [20]. Their work includes a framework for specifying and verifying both shal-
low and deep field immutability, as well as a runtime study that found that
at least 61% of field accesses were immutable, a similar property to stationary
fields. Their analysis computed exhaustive lists of field and array read and write
operations using a modified Jikes JVM, but their analysis was limited to much
smaller programs than the Dacapo suite. Nevertheless, they find similar results
to ours and additionally use those results for performance optimisations, yielding
5-10% speedups for some benchmarks.

Several works have looked at permitting type-safe late initialisation of objects
in a programming language. Summers and Müller presented a lightweight sys-
tem for type checking delayed object initialiation which is sufficiently expressive
to handle cyclic initialisation [6]. Fähndrich and Xia’s Delayed Types [2] use
dynamically nested regions in an ownership-style type system to represent this
post-construction initialisation phase, and ensure that programs do not access
uninitialised fields. Haack and Poll [1] have shown how these techniques can
be applied specifically to immutability, and Leino et al. [3] show how owner-
ship transfer (rather than nesting) can achieve a similar result. Qi and Myers’

306 S. Nelson, D.J. Pearce, and J. Noble

Masked Types [21] use type-states to address this problem by incorporating a
list of uninitialised fields (“masked fields”) into object types. Gil and Shragai [22]
address the related problem of ensuring correct initialisation between subclass
and superclass constructors within individual objects. Based on our results, we
would expect such type systems to be of benefit to real programs.

6 Conclusion

We have reported the results from an experiment examining final and stationary
fields across 14 real-world benchmarks. Our work compliments the earlier work
of Unkel and Lam which employed static analysis, and supports their general
conclusions. However, our findings indicate a larger proportion of stationary
fields which, in part at least, stems from the differences between our approaches.

Like Unkel and Lam, we conclude that final fields annotations are used far
less often than they could be, while a stationary annotation could be used even
more. The extremely high number of stationary fields that we found (around
80%) suggests that language authors should make fields stationary by default,
while VM authors should optimise for immutability. These results also support
the use of type systems for immutability, e.g. Masked Types [21] could be used
to track fields requiring additional initialisation.

Finally, there are many additional studies that are motivated from these re-
sults. For example, it would be interesting to examine whether protection mod-
ifiers (e.g. public, protected, private) had any bearing on the likelihood of a field
being declared or undeclared final. It would also be interesting to extend our
analysis to detect deep stationary behaviour, similar to the smaller analysis of
Pechtchanski and Sarkar [20].

References

1. Haack, C., Poll, E.: Type-based object immutability with flexible initialization.
Technical Report ICIS-R09001, Radboud University Nijmegen (January 2009)

2. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In: OOP-
SLA, pp. 337–350 (2007)

3. Leino, K.R.M., Müller, P., Wallenburg, A.: Flexible Immutability with Frozen
Objects. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295,
pp. 192–208. Springer, Heidelberg (2008)

4. Bloch, J.: Effective Java. Prentice Hall PTR (2008)
5. Unkel, C., Lam, M.S.: Automatic inference of stationary fields: a generalization of

Java’s final fields. In: POPL, pp. 183–195 (2008)
6. Summers, A.J., Müller, P.: Freedom before commitment: a lightweight type system

for object initialisation. In: OOPSLA, pp. 1013–1032. ACM (2011)
7. Jdk 6 java virtual machine tool interface (JVMTI) (2008)
8. Bruneton, E.: Asm 3.0 a java bytecode engineering library (2007),

http://download.forge.objectweb.org/asm/asmguide.pdf

9. Nelson, S.: Measuring Equality and Immutability in Object-Oriented Programs.
PhD thesis, School of Engineering and Computer Science, Victoria University of
Wellington, NZ (submitted, 2012)

 http://download.forge.objectweb.org/asm/asmguide.pdf

Profiling Field Initialisation in Java 307

10. Agesen, O., Garthwaite, A.: Efficient object sampling via weak references. In: Proc.
ISMM, pp. 121–126 (2000)

11. Pearce, D.J., Webster, M., Berry, R., Kelly, P.H.J.: Profiling with AspectJ. Soft-
ware: Pracice and Experience 37(7), 747–777 (2007)

12. Goldberg, A., Havelund, K.: Instrumentation of java bytecode for runtime analysis.
In: FTfJP (2003)

13. Xu, G.H., Rountev, A.: Precise memory leak detection for java software using
container profiling. In: ICSE, pp. 151–160. ACM (2008)

14. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosk-
ing, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., Van-
Drunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks: java
benchmarking development and analysis, pp. 169–190 (2006)

15. Mitchell, N.: The Runtime Structure of Object Ownership. In: Hu, Q. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 74–98. Springer, Heidelberg (2006)

16. Liskov, B., Guttag, J.V.: Abstraction and Specification in Program Development.
MIT Press/McGraw-Hill (1986)

17. Odersky, M.: Programming in Scala. Artima, Inc. (2008)
18. Porat, S., Biberstein, M., Koved, L., Mendelson, B.: Automatic detection of im-

mutable fields in Java. In: Proc. CASCON (1990)
19. Nelson, S., Pearce, D.J., Noble, J.: Understanding the Impact of Collection Con-

tracts on Design. In: Vitek, J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 61–78.
Springer, Heidelberg (2010)

20. Pechtchanski, I., Sarkar, V.: Immutability specification and its applications. Con-
currency and Computation: Practice and Experience, 639–662 (2005)

21. Qi, X., Myers, A.C.: Masked types for sound object initialization. In: POPL,
pp. 53–65 (2009)

22. Gil, J(Y.), Shragai, T.: Are We Ready for a Safer Construction Environment?
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 495–519. Springer,
Heidelberg (2009)

Defense against Stack-Based Attacks Using

Speculative Stack Layout Transformation

Benjamin D. Rodes, Anh Nguyen-Tuong, Jason D. Hiser, John C. Knight,
Michele Co, and Jack W. Davidson

Department of Computer Science, University of Virginia,
85 Engineer’s Way, P.O. Box 400740, Charlottesville, VA 22904

{bdr7fv,nguyen,hiser,jck,mc2zk,jwd}@virginia.edu
http://www.cs.virginia.edu

Abstract. This paper describes a novel technique to defend binaries
against intra-frame stack-based attacks, including overflows into local
variables, when source code is unavailable. The technique infers a specifi-
cation of a function’s stack layout, i.e., variable locations and boundaries,
and then seeks to apply a combination of transformations, including vari-
able reordering, random-sized padding between variables, and placement
of canaries. To overcome the imprecision of static binary analysis, yet
be as aggressive as possible in the transformations applied to the stack
layout, the technique is speculative. A stack frame is aggressively trans-
formed based on static analysis, and the validity of inferred stack layout
is assessed through regression testing. If a transformation changes a pro-
gram’s semantics because of imprecision in the inference of the stack
layout, a less aggressive layout is inferred until the transformed program
passes the supplied regression tests. We present an overview of the tech-
nique and preliminary results of its feasibility and security effectiveness.

Keywords: artificial diversity, stack layout transformation, run-time
verification, buffer overflow, non-control-data attacks, security attacks.

1 Introduction

We present a technique, Stack Layout Transformation (SLX), for the runtime
transformation of function stack layouts to protect against stack-based attacks,
including intra-frame overflows and non-control data attacks. SLX is designed
to operate directly on binaries and transforms the stack layout using a combi-
nation of random-length padding between variables, reordering of variables, and
placement of canaries (Figure 1).

If source code were available, fine-grained transformations would be relatively
simple to effect since the location, type, and size of variables are directly speci-
fied [2,3,8]. For example, by default, the gcc compiler reorders buffers to be above
local variables and inserts a canary to protect the frame pointer and return ad-
dress. Unfortunately, precise stack structure information is not completely recov-
erable once a program is compiled into its binary form. Thus, existing methods

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 308–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.virginia.edu

Defense against Stack-Based Attacks 309

// sample function
func(char *pwd, int i)
{
 int auth = 0;
 char buf[16];

 auth = authenticate(pwd);

 buf[i] = pwd[i];

 if (auth)
 grant_access();
 …
}

buf[]

auth
ebp

buf[]

auth

ebp ebp

canary

ebp

Original
stack
layout

reordering padding
+reordering

canaries
+padding

+reordering

auth

buf[] buf[]

auth
canary

Fig. 1. Stack layout transformations

to protect the stack that operate directly on binaries typically do so at a coarse
level, unable to protect individual variables within a stack frame [1,5,7].

The novelties of SLX lie in the fact that it does not rely on source and in
its speculative approach to generating and validating hypothesized stack layouts
to enable fine-grained transformations such as those shown in Figure 1. The
end result of the SLX transformation process is a binary where each function is
transformed as aggressively as possible based on a validation process. In many
cases, SLX is able to infer variable information at a sufficient level of granularity
to protect against intra-frame stack-based attacks such as overflows into local
variables and non-control-data attacks [4].

The next section presents an overview of the technique and preliminary ex-
perimental assessments of its efficacy and overhead.

2 Stack Layout Transformation (SLX)

The current SLX prototype has three phases: (a) candidate function selection,
(b) hypothesis generation/refinement, and (c) hypothesis validation. SLX only
attempts to transform functions for which it can find common compiler-generated
code patterns such as stack allocation and deallocation patterns.

Stack layout hypotheses for a function are generated based on static analysis
of the code for the function and a set of stack layout inference heuristics. Cur-
rently, SLX uses four variable layout inference heuristics to produce stack layout
hypotheses. These heuristics are based on relatively näıve memory access pat-
tern observations in the disassembly: each offset into stack memory is assumed
to be a potential variable boundary. Future implementations will incorporate
more sophisticated heuristics.

The most aggressive inference heuristic, the All Offsets Inference (AOI), uses
each stack offset in the candidate function to derive a variable boundary. For
example, in Figure 2, lines 3, 5, and 6 are used to derive boundaries at ebp-
0xc and ebp-0x1c. The Direct Offset Inference (DOI), uses only direct memory
accesses, and derives a boundary at ebp-0xc. Likewise, the Scaled Offset Inference

310 B.D. Rodes et al.

(0) push %ebp
(1) mov %esp,%ebp
(2) sub $0x38,%esp # stack allocation
(3) movl $0x0,-0xc(%ebp) ; auth = 0 # direct offset
(4) …
(5) mov %dl,-0x1c(%ebp,%eax,1) ; buf[i] = pwd[i] # scaled offset
(6) cmpl $0x0,-0xc(%ebp) ; if (auth) # direct offset
(7) …
(8) leave # stack deallocation
(9) ret

Fig. 2. Disassembly code fragment for source code shown in Figure 1

(SOI), uses only scaled memory accesses and derives a boundary at ebp-0x1c.
As a final catch-all inference, ESI, the Entire Stack Inference, treats the entire
local variable region as one variable. ESI does not facilitate fine-grained stack
protections. Nevertheless, it does allow for transformations to protect against
common attacks to the frame pointer and return address.

Each of the four heuristics is applied to each function and hypotheses about
the stack layout are generated using the resulting inferences. The generated
hypotheses are ordered by the number of variables inferred (a hypothesis with
more variables will be attempted first, and then successively relaxed layouts will
be attempted).

Hypothesis validation is accomplished using regression testing. We do not
specify the origin of test inputs, but they may be provided, manually generated,
automatically generated through concolic or fuzz test case generation, etc. SLX
uses the hypothesis to create a stack layout transformation that is a combina-
tion of: (1) variable layout randomization, (2) insertion of random-sized padding
between variables, and (3) placement of canaries (random values placed on the
stack and checked at runtime to detect overflows). Of these three, only canaries
dynamically detect attacks. The other two obfuscate the attack surface. Dur-
ing validation, all transformations are combined to validate the layout inference.
The candidate transformation is applied to the subject function and is validated
using regression testing. If regression testing fails, SLX rejects that hypothesized
variable layout, and tries the next, more relaxed, hypothesis. Note that other
interpretations of regression testing failure are possible, e.g., erroneous disas-
sembly, but the current SLX prototype focuses on relaxing hypothesized stack
layouts. The process repeats until a candidate stack layout hypothesis success-
fully passes the regression tests, in which case a final transformation is chosen
and committed. The final transformation can be any combination of transfor-
mations to allow the user to balance security with performance, however the
current prototype selects all three transformations. If no candidate hypothesis
passes the regression tests, the function is left in its original form.

Transformations require instruction modification, and insertion of new in-
structions. SLX achieves both by using the Strata software dynamic transla-
tor [6]. Software dynamic translation permits program rewriting in a relatively
simple and comprehensive manner.

Defense against Stack-Based Attacks 311

3 Evaluation

To assess the feasibility of SLX, an experiment was conducted using binaries
compiled with gcc and -O3 optimization for eleven of the Unix core utilities on
Ubuntu 10.04 LTS. Only statically-linked functions were considered for trans-
formation. We omit dynamically linked libraries as they should be transformed
and evaluated separately. Libraries only need to be transformed once, after which
they can be reused by any number of binaries. The suite of eleven Unix core-
utility programs comes with a comprehensive set of test cases provided by the
developers, and these were used for the validation step in SLX. Such a set of tests
provides a more desirable situation than SLX is likely to encounter in practice.
Nevertheless, the test suite simplified the experiment as we assume the tests are
all valid and fully test the program.

On average, 195 functions per program were found in the eleven sample pro-
grams. SLX determined that 53% of the functions were candidate transformable
functions, meaning that SLX found patterns indicating that the function had
local variables as well as stack allocation and deallocation patterns. Of the can-
didate functions, only one function, term proc, could not be transformed by SLX
due to the static analyzer’s inability to identify the stack deallocation point in
the function.

AOI, the most aggressive layout inference, was used to transform 94% of
the candidate functions successfully, with an average of four variables per stack
frame. SOI was used on 4%, with an average of 1.8 variables found per stack
frame. ESI was used on the remaining 2%. These preliminary results are quite
encouraging as they demonstrate the feasibility of the SLX approach towards
inferring stack layouts to drive security transformations.

The execution-time overhead incurred by SLX was assessed using a set of six
programs from the SPEC 2006 benchmarking suite. Randomizing the order of
variables on the stack and introducing padding between variables incurred an
average increase in execution time of 9%. The addition of canaries, which require
run-time checks, increased the total overhead by an average 35%, for a total
average overhead of 44% when all three transformations are applied for every
function. These overheads include the dynamic translation time. In principle,
overhead for canaries can be reduced by more selective placement of canaries.

The security effectiveness of SLX was evaluated by applying SLX to the Wi-
lander buffer overflow test suite [9]. This suite contains twelve stack-based buffer
vulnerabilities in six functions and is used to evaluate buffer overflow protection
techniques. The overflows in the Wilander suite include: (a) classic overflows
that overwrite the return address and stack frame base pointer, and (b) over-
flows to various local variables. To assess the security potential of SLX alone,
we selected the best generated stack layout hypotheses possible based on man-
ual inspection of the six functions in the Wilander binary. Five functions were
transformed using AOI, and the remaining function was transformed with SOI.
Because SLX transformations are stochastic, SLX was applied to the Wilander
suite ten separate times. With the exception of one vulnerability, the transfor-
mations produced by SLX placed the target data out of the path of the overflow,

312 B.D. Rodes et al.

detected the attack at runtime, or transformed the attack surface to such a de-
gree that the attack caused the program to terminate. In most cases, 92%, the
attack was detected or the target data was not in the path of the overflow.

One attack succeeded for all ten transformations. The vulnerable function
was transformed using SOI, but SOI did not infer the boundary between the
vulnerable buffer and the target data. Thus, in this case, the transformation
provided by SLX was unable to thwart the attack.

4 Conclusions

SLX is a technique for transforming binary programs to provide run-time pro-
tection against stack-based attacks, including intra-frame overflows, when source
code is not available. SLX uses a speculative technique to overcome the impreci-
sion of static binary analysis, yet is as aggressive as possible in the randomization
transformations applied to the stack. Preliminary results obtained using an SLX
prototype show that the technique can transform the stack layout for a wide
variety of functions at a finer level of resolution than most existing binary-based
techniques.

Acknowledgments. This research is supported by National Science Founda-
tion (NSF) grant CNS-0811689, the Army Research Office (ARO) grant W911-
10-0131, the Air Force Research Laboratory (AFRL) contract FA8650-10-C-7025,
and DoDAFOSRMURI grant FA9550-07-1-0532.The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
the NSF, AFRL, ARO, DoD, or the U.S. Government.

References

1. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In: Proceedings of the 12th Con-
ference on USENIX Security Symposium, vol. 12, pp. 105–120. USENIX Association,
Berkeley (2003)

2. Bhatkar, S., Sekar, R.: Data Space Randomization. In: Zamboni, D. (ed.) DIMVA
2008. LNCS, vol. 5137, pp. 1–22. Springer, Heidelberg (2008)

3. Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient techniques for comprehensive pro-
tection from memory error exploits. In: Proceedings of the 14th Conference on
USENIX Security Symposium, vol. 14, pp. 255–270. USENIX Association, Berkeley
(2005)

4. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: USENIX Security Symposium, pp. 177–192 (2005)

5. Hiser, J.D., Coleman, C.L., Co, M., Davidson, J.W.: MEDS: The Memory Error
Detection System. In: Massacci, F., Redwine Jr., S.T., Zannone, N. (eds.) ESSoS
2009. LNCS, vol. 5429, pp. 164–179. Springer, Heidelberg (2009)

Defense against Stack-Based Attacks 313

6. Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J.W., Soffa, M.L.: Re-
targetable and reconfigurable software dynamic translation. In: Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO 2003, pp. 36–47. IEEE Computer Society, Wash-
ington, DC (2003)

7. The PAX Team, http://pax.grsecurity.net
8. Van Acker, S., Nikiforakis, N., Philippaerts, P., Younan, Y., Piessens, F.: Value-

Guard: Protection of Native Applications against Data-Only Buffer Overflows. In:
Jha, S., Mathuria, A. (eds.) ICISS 2010. LNCS, vol. 6503, pp. 156–170. Springer,
Heidelberg (2010)

9. Wilander, J., Kamkar, M.: A comparison of publicly available tools for dynamic
buffer overflow prevention. In: Proceedings of the Network and Distributed System
Security Symposium, NDSS. The Internet Society (2003)

 http://pax.grsecurity.net

Incremental Runtime Verification

of Probabilistic Systems

Vojtěch Forejt1, Marta Kwiatkowska1, David Parker2,
Hongyang Qu1, and Mateusz Ujma1

1 Department of Computer Science, University of Oxford, Oxford, UK
2 School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Probabilistic verification techniques have been proposed for
runtime analysis of adaptive software systems, with the verification re-
sults being used to steer the system so that it satisfies certain Quality-
of-Service requirements. Since systems evolve over time, and verification
results are required promptly, efficiency is an essential issue. To address
this, we present incremental verification techniques, which exploit the
results of previous analyses. We target systems modelled as Markov de-
cision processes, developing incremental methods for constructing mod-
els from high-level system descriptions and for numerical solution using
policy iteration based on strongly connected components. A prototype
implementation, based on the PRISM model checker, demonstrates per-
formance improvements on a range of case studies.

1 Introduction

Probabilistic systems are prevalent in our daily life: physical devices may fail,
communication media are lossy and protocols use randomisation. Formally ver-
ifying that such systems behave correctly and reliably requires quantitative ap-
proaches, such as probabilistic model checking, which can assure, e.g., “the web
service successfully delivers a response within 5ms with probability at least 0.99”.

It has recently been proposed to use these techniques for runtime verification
of adaptive systems [2], where quantitative verification is used to steer a system
such that it satisfies formally specified Quality-of-Service (QoS) requirements.
The framework of [2] comprises a computer system exhibiting probabilistic be-
haviour, a monitoring module that observes its behaviour and a reconfiguration
component, which issues it instructions. Requirements to be fulfilled are verified
against a high-level model of its behaviour, which is parameterised using data
from the monitoring module. The results of verification are then forwarded to
the reconfiguration module, which directs the system accordingly.

As a real world example of the applicability of these techniques (which we
will return to later), consider a network containing a dynamic set of devices in
which joining devices establish a local IP address using the Zeroconf protocol. A
suitable QoS requirement for the network would be to minimise the probability of
nodes choosing conflicting IP addresses. Parameters influencing this probability

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 314–319, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Incremental Runtime Verification of Probabilistic Systems 315

include the number of hosts in the network and the number of probes (query
messages) that are broadcast before claiming a given IP address.

In this paper, our aim is to optimise the performance of runtime verification
for probabilistic systems. Since the systems being verified change dynamically
and the results of verification are needed promptly to steer the system, efficiency
is essential. We consider incremental verification techniques, which exploit the
results of previous analyses following a small change to the system being verified.

We target systems modelled as Markov decision processes (MDPs), a widely
used model for systems exhibiting both probabilistic and nondeterministic be-
haviour. We present incremental techniques for the two main phases of proba-
bilistic verification: model construction, which exhaustively constructs an MDP
from a high-level model description, and quantitative verification, which applies
numerical techniques to determine the correctness of a system requirement, for-
mally specified in temporal logic. For the former, we propose a technique that
infers all states that have to be visited in the incremental step. For the lat-
ter, we use policy iteration, optimised using a decomposition of the system into
strongly connected components, and performed incrementally by re-using poli-
cies between verification runs. We have implemented our techniques in a pro-
totype extension of the PRISM model checker [6], and illustrate the benefits of
our approach on a set of benchmark models.

An extended version of this paper with additional details is available as [5].

Related Work. Various techniques have been developed that use model checking
at runtime; see [1] for a discussion and further references. There is also increasing
interest in incremental model checking techniques. Of particular relevance here
are those for probabilistic systems. Wongpiromsarn et al. [8] studied incremen-
tal model construction for increasing numbers of system components. In contrast,
we focus on changes within a fixed set of components. Filieri et al. [4] presented
efficient incremental verification for the simpler model of discrete-time Markov
chains using parametric techniques, but their method is subject to an exponen-
tial blow up when applied to MDPs and does not handle structuralmodel changes.
Kwiatkowska et al. [7] proposed incrementalmethods forMDPs based on a decom-
position into strongly connected components. We consider model changes at the
modelling language description level, which [7] does not, and also permit changes
in model structure, rather than just transition probabilities.

2 Incremental Model Construction

We first consider incremental techniques for model construction. In this paper,
we work with systems specified in the PRISM modelling language, a textual
formalism based on guarded commands. Our incremental techniques are designed
to operate after relatively small runtime changes to the structure of the MDP.
At the level of the modelling language description, we assume that these changes
are made by altering parameters : constants from the model description whose
value is not determined until runtime. We only consider changes in parameters
that occur in guards of commands, which is a common scenario in practice.

316 V. Forejt et al.

4: const int N; // number of abstract hosts
5: const int K; // number of probes to send

· · ·
20: module host0

· · ·
26: // send probe
27: [send] l=2 & x=2 & probes<K → (x ′=0) & (probes′=probes + 1);
28: // sent K probes and waited 2 seconds
29: [] l=2 & x=2 & probes=K → (l′=3) & (probes′=0) & (coll′=0) & (x ′=0);

· · ·
33: endmodule

Fig. 1. Fragments of a PRISM model of the Zeroconf protocol

For simplicity, we do not consider parameters that affect transition probabilities
values. Such changes could be handled using the techniques described in [7].

We work with an explicit-state implementation. Building an MDP from a
PRISM model requires a systematic state-space exploration, the most costly
parts of which are the evaluation of all commands in each state, and subsequent
creation of new states found. The basic idea of our incremental method is to infer
the subset of states needing to be rebuilt, reducing the number of commands to
be re-evaluated. Full details of the algorithm are in [5]; here we give an informal
description using an example.

Figure 1 shows a fragment of a PRISM model for the previously mentioned
Zeroconf protocol example. We assume that parameter N is fixed and K varies.
We consider a scenario where we have already built a model M1 for K=k1 and
need to construct a new model M2 for K=k2. We start by identifying guards
that contain K: we find them in lines 27 and 29; for convenience, call them g1, g2
(in the example, these commands have probability 1, but this is not a limitation
of our approach). In each guard, there is a variable compared to the parameter
K, in this case probes in both guards. The key observation is that, to build
model M2, we do not need to re-evaluate commands in all states: it is sufficient
to examine states from M1 that satisfied g1, g2 for K=k1 but no longer do for
K=k2, and states that now satisfy g1, g2 for K=k2. To find such states, we need
to compute bounds on the values of probes for K=k1 and K=k2.

For the majority of PRISM models (whose guards involve just linear arith-
metic), we can accomplish this using an SMT solver. In fact, for many common
classes of expressions (such as this example) we can extract the bounds directly.
In our example, for K=k1, we obtain probes ∈ [0, k1) for g1 and probes ∈ [k1, k1]
for g2. For K=k2, we get probes ∈ [0, k2) for g1 and probes ∈ [k2, k2] for g2. Tak-
ing the intersection identifies states in M1 that satisfy g1 for both K=k1 and
K=k2, giving probes ∈ [0, k1) ∩ [0, k2). The union, i.e. probes ∈ [0, k1) ∪ [0, k2),
gives all states ofM1 that may satisfy g1. The states that need to be re-evaluated
in the context of g1 are then found by performing a state space exploration from
states with variable probes ∈ ([0, k1)∪[0, k2))\([0, k1)∩[0, k2)). The same process
is subsequently repeated for guard g2. The efficiency of performing these steps
can be improved considerably by keeping the state space of M1 sorted, with
respect to variable probes , and using binary search when looking for the states

Incremental Runtime Verification of Probabilistic Systems 317

satisfying a given bound. Finally, we remove from modelM2 any states that are
no longer reachable from its initial state using standard reachability algorithms.

3 Incremental Quantitative Verification

Next, we consider incremental techniques for quantitative verification of MDPs,
the key part of which is the numerical computation of either theminimum ormax-
imum probability of reaching a set of target states, over all possible adversaries of
the MDP (an adversary represents one way of resolving all nondeterminism in the
model). Common methods for computing these probabilities are value iteration,
which is an approximate iterative numerical solutionmethod, and policy iteration,
which analyses a sequence of adversarieswith increasing/decreasingprobabilities.

Previous incremental verification techniques for MDPs [7] were based on the
use of value iteration, applied to a decomposition of the the model into its
strongly connected components (SCCs) [3]. These methods are not directly ap-
plicable to the scenarios we consider in this paper since, unlike [7], we permit
structural changes to be made to the MDP. Instead, we propose an SCC-based
version of policy iteration. Like [7], we first decompose the MDP into its SCCs
and determine their topological ordering; next, we solve each SCC separately,
working through them backwards according to the topological ordering. Here,
however, we use policy iteration to compute the probabilities for each SCC.

For incremental verification, the key benefit from using policy iteration comes
when we select the initial adversary used to start the computation. For this,
rather than taking the usual approach of selecting an arbitrary adversary, we
adapt the optimal adversary from the previous run of verification. Let M1 be
the previous MDP and M2 be the new one. An adversary for an MDP resolves
the nondeterminism in each of its states. To construct the initial adversary for
solving M2, we identify all the states that are present in both M1 and M2, and
which have the same nondeterministic choices in both models; we then re-use
the choices made by the old adversary for M1 in the one for M2.

4 Experiments

We implemented our techniques in an extension of PRISM [6], using its explicit-
state model checking engine, and evaluated them on 4 existing benchmarks:
zeroconf, mer, consensus and firewire. Details of these examples and additional
results are in [5]. We ran a series of verification instances, varying a particular
model parameter. Table 1 shows the parameter ranges, the sizes of the resulting
models, and the total time required to perform model construction and verifi-
cation for all models, in both a non-incremental and incremental fashion. The
overhead on memory usage is negligible for both algorithms, and thus omitted.

For incremental model construction, we obtained speed-ups in all cases, up to
a 10-fold improvement for the mer example. The key factor for performance is
the number of states added between each verification run. For incremental veri-
fication due to space restrictions we do not show results for original algorithms,

318 V. Forejt et al.

Table 1. Performance comparison for incremental techniques

Model Time (s)

Name
[parameters]

Parameter
values

States [103]
Original
model
constr.

Incremental
model
constr.

SCC-based
policy

iteration

Incremental
policy

iteration

zeroconf
[N,K]

10,1-5 32-496 15.9 12.3 10.6 8.5
10,10-20 3002-5812 859.7 320.2 1859.1 1329.2
60000,1-5 32-496 16.2 11.6 49.7 50.9

60000,10-20 3002-5812 853.9 313.7 9333.9 4218.4

mer
[N]

1-100 8-592 429.5 44.3 70.5 65.5
200-300 1183-1774 2352.4 192.5 400.6 369.7
400-500 2364-2955 4375.7 358.3 695.9 683.3

consensus
[N,K]

2,1-40 1-5 0.8 0.4 33.6 23.2
2,80-120 10-15 2.3 0.9 1235.8 900.1
4,1-20 12-20 15.5 4.8 1029.1 666.5

firewire
[deadline]

1000-1050 369-398 62.3 10.3 38.5 37.7
2000-2050 970-1000 160.5 25.7 99.7 97
3000-3050 1571-1601 265.7 42.4 174 181.6

which we outperform for each case study. Incremental policy iteration is quicker
than SCC-based policy iteration in some, but not all, cases. The best results are
those for the zeroconf example, with a 2-fold speedup. The performance of this
phase is mostly influenced by the structure of the state space.

5 Conclusions

We have described ongoing work to develop incremental verification techniques
for Markov decision processes, aimed at improving the efficiency of runtime meth-
ods for systems with probabilistic behaviour. Future directions include evaluat-
ing presented techniques on a deployed adaptive system and improving system
reconfiguration using policies obtained from model checking.

Acknowledgements. The authors are part supported by ERC Advanced Grant
VERIWARE, EU FP7 project CONNECT and EPSRC project EP/F001096/1.

References

1. Calinescu, R.: When the requirements for adaptation and high integrity meet. In:
Proc. 8th Workshop on Assurances for Self-Adaptive Systems, pp. 1–4 (2011)

2. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimisation in service-based systems. IEEE Transac-
tions on Software Engineering 37(3), 387–409 (2011)

3. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model check-
ing Markov decision processes. In: Proc. QEST 2008, pp. 45–54. IEEE (2008)

4. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model check-
ing. In: Proc. ICSE 2011, pp. 341–350. ACM, New York (2011)

Incremental Runtime Verification of Probabilistic Systems 319

5. Forejt, V., Kwiatkowska, M., Parker, D., Qu, H., Ujma, M.: Incremental runtime
verification of probabilistic systems. Tech. Rep. RR-12-05, Department of Computer
Science, University of Oxford (2012)

6. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

7. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
Markov decision processes. In: Proc. DSN-PDS 2011, pp. 359–370. IEEE (2011)

8. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental tem-
poral logic synthesis of control policies for robots interacting with dynamic agents.
In: Proc. IROS 2012 (to appear, 2012)

Author Index

Ahmed, Samatar 126

Baldor, Kevin 245
Barre, Benjamin 184
Bartocci, Ezio 168
Basin, David 151
Beaudet, Éric 126
Bonakdarpour, Borzoo 199
Brauer, Jörg 110
Bryant, Randy 19
Bucur, Doina 96
Bulychev, Peter 260

Cadar, Cristian 2
Chen, Feng 136
Co, Michele 308
Colombo, Christian 214
Cristal, Adrián 42
Currea, Sebastian 88

Darulova, Eva 277
David, Alexandre 260
Davidson, Jack W. 308

Erickson, John 1
Eyolfson, Jon 49

Falcone, Yliès 88, 229
Fiedor, Jan 35
Fischmeister, Sebastian 199
Forejt, Vojtěch 314
Freund, Stephen 1
Függer, Matthias 110

Ganai, Malay K. 3
Gibson, Garth 19
Grosu, Radu 168

Hallé, Sylvain 126, 184
Hickey, Jason 19
Hiser, Jason D. 308

Jaber, Mohamad 88
Jéron, Thierry 229

Kabitzsch, Klaus 131
Karmarkar, Atul 168
Kestor, Gokcen 42
Klaedtke, Felix 151
Klein, Mathieu 184
Knight, John C. 308
Kuncak, Viktor 277
Kuru, Ismail 42
Kwiatkowska, Marta 314

Lam, Patrick 49
Larsen, Kim G. 260
Larus, Jim R. 48
Legay, Axel 260
Leucker, Martin 82
Li, Guangyuan 260
Li, Wenchao 64

Marchand, Hervé 229
Marinovic, Srdjan 151
Matar, Hassan Salehe 42
Mrad, Aouatef 126
Musuvathi, Madanlal 1

Navabpour, Samaneh 199
Nelson, Stephen 292
Nguena Timo, Omer Landry 229
Nguyen-Tuong, Anh 308
Niu, Jianwei 245
Noble, James 292

Ollivier, Pierre-Antoine 184

Pace, Gordon J. 214
Parker, David 314
Pearce, David J. 292
Pinisetty, Srinivas 229
Poulsen, Danny Bøgsted 260

Qu, Hongyang 314

Reinbacher, Thomas 110
Richter, Andreas 131
Rinard, Martin 276
Rodes, Benjamin D. 308
Rollet, Antoine 229
Ros,u, Grigore 136

322 Author Index

Sen, Koushik 2
S, erbănut,ă, Traian Florin 136
Seshia, Sanjit A. 64
Seyster, Justin 168
Simsa, Jiri 19
Smolka, Scott A. 168
Soucy-Boivin, Maxime 184
Stoller, Scott D. 168

Ujma, Mateusz 314
Unsal, Osman 42

Vigna, Giovanni 183
Vojnar, Tomáš 35

Zadok, Erez 168
Zălinescu, Eugen 151

	Title
	Preface
	Table of Contents
	Dynamic Analyses for Data-Race Detection
	Symbolic Execution
	Dynamic Livelock Analysis of Multi-threaded Programs
	Introduction
	Preliminaries
	Lock Cycles
	Comparing LCC vs. DCC

	CBuster: Livelock Analysis Tool
	Implementation and Experimentation
	Conclusion and Future Work
	References

	Scalable Dynamic Partial Order Reduction
	Introduction
	Background
	Stateless Exploration
	Dynamic Partial Order Reduction
	Distributed Dynamic Partial Order Reduction

	Scalable Dynamic Partial Order Reduction
	Novel Exploration Algorithm
	Parallelization
	Fault Tolerance
	Load-Balancing
	Avoiding Redundant Exploration

	Evaluation
	Experimental Setup
	Faults
	Scalability
	Theoretical Limits

	Related Work
	Conclusions
	References

	ANaConDA: A Framework for Analysing Multi-threaded C/C++ Programs on the �Binary Level
	Introduction
	Monitoring Multithreaded C/C++ Programs on the Binary Level
	Implementation, Current Instantiations, and Usage
	Experiments
	Conclusion
	References

	PaRV: Parallelizing Runtime Detection and Prevention of Concurrency Errors
	Introduction
	Transactional Memory and Runtime Verification
	Tool Architecture and Implementation
	Runtime Instrumentation with DynamoRIO
	Detecting and Recovering from Races

	Related Work
	References

	It’s the End of the World as We Know It (And I Feel Fine)
	Detecting Unread Memory Using Dynamic Binary Translation
	Introduction
	Overview
	Dynamic Analysis
	Instrumentation Phase
	Monitoring Phase

	Formal Definitions
	Experimental Results
	Qualitative Results
	Performance

	Related Work
	Optimizing Memory Writes
	Dynamic Binary Translators

	Conclusion
	References

	Sparse Coding for Specification Mining and Error Localization
	Introduction
	Preliminaries
	Traces and Subtraces
	Boolean Matrices and Bipartite Graphs

	Specification Mining via Sparse Coding
	Formulation as Sparse Coding Problem
	Solving the Sparse Coding Problem

	Application to Error Localization
	Problem Definition
	Localization by Reconstruction
	Theoretical Guarantees

	Experimental Results
	Arbiter
	Chip Multiprocessor (CMP) Router

	Related Work
	Boolean Matrix Factorization
	Specification Mining
	Error Localization

	Conclusion and Future Work
	References

	Sliding between Model Checking and Runtime Verification
	Introduction
	Preliminaries
	A Predictive Semantics for LTL
	A Monitor Procedure for LTLP
	References

	Runtime Verification and Enforcement for Android Applications with RV-Droid
	Introduction
	An Overview of RV-Droid
	Experimentation and Evaluation
	Related Work
	Conclusion and Future Work and Developments
	References

	Temporal Monitors for TinyOS
	Introduction
	Background
	Theoretical Background
	Practical Background

	TinyOS System Events, State, and Monitor Synthesis
	Evaluation
	Related Work and Conclusions
	References

	Real-Time Runtime Verification on Chip
	Introduction
	Logics for Runtime Verification
	Past Time LTL
	Past-Time MTL

	Observer Design for Real-Time Properties
	Decomposing a Specification
	Observer for Since Operator Based on Rewriting
	The Invariant and Exists Previously Operators
	The Invariant and Exists within Interval Operators
	The Since within Interval Operator
	Garbage Collection
	Space and Time Complexity
	Hardware Realization

	Related Work
	Conclusion
	References

	BabelTrace: A Collection of Transducers for Trace Validation
	Introduction
	A Taxonomy of Trace Validation Problems
	The Many Ways to Compute
	Applications and Future Work
	References

	Quantitative Trace Analysis Using Extended Timing Diagrams
	Introduction
	Related Work
	Quantitative Timing Diagrams
	Application
	Conclusion and Future Work
	References

	Maximal Causal Models for Sequentially Consistent Systems
	Introduction
	Motivating Examples

	Execution Model
	Concurrent Objects, Serial Specification
	Events and Traces

	Feasibility Model
	Maximality
	Proving Soundness for Existing Causal Models
	Happens Before Relation on Mazurkiewicz Traces
	Weak Happens Before
	Happens-Before with Synchronization
	Weak-Happens-Before with Synchronization

	Related Work and Discussion
	Conclusion
	References

	Monitoring Compliance Policies over Incomplete and Disagreeing Logs
	Introduction
	Logging Knowledge Base
	Compliance Policy Language
	Monotonicity and Compositional Expressiveness
	Monitoring Algorithm
	Related Work
	Conclusions
	References

	Adaptive Runtime Verification
	Introduction
	Background
	The ARV Framework: Architecture and Principles
	Pre-computation of RVSE Distributions
	Predictive Analysis of Criticality Levels
	Case Study
	Implementation
	Gaps
	Instrumentation
	Hardware Supervision
	Training
	Evaluation

	Related Work
	Conclusions
	References

	Malware Riding Badware: Challenges in Analyzing (Malicious/Benign) Web Applications
	MapReduce for Parallel Trace Validation of LTL Properties
	Introduction
	Trace Validation Use Cases
	Constraints on Event Sequences: Linear Temporal Logic

	Related Work
	Formal Trace Analysis
	Distributed Trace Analysis

	An Overview of MapReduce
	Processing Steps

	LTL Trace Validation with MapReduce
	Trace Format and Input Reader
	Mapper
	Reducer
	Output Writer

	Experimental Results
	Experimental Setup
	Results

	Conclusion
	References

	Path-Aware Time-Triggered Runtime Verification
	Introduction
	Background
	Path-Aware Time-Triggered Monitoring
	Adaptive Path-Aware Time-Triggered Monitoring
	LSP Regions
	A Regionalization Algorithm
	General Code Regionalization

	Implementation
	Experimental Results
	Sampling Period of pa-TTRV and Adaptive pa-TTRV
	Redundant Samples of pa-TTRV and Adaptive pa-TTRV
	Monitoring Overhead of pa-TTRV and Adaptive pa-TTRV

	Related Work
	Conclusion
	References

	Fast-Forward Runtime Monitoring — An Industrial Case Study
	Introduction
	Background
	Monitor Fast-Forwarding
	A Theory of Monitor Fast-Forwarding
	Instantiating Fast-Forwarding to Larva
	Adapting Larva Scripts

	Case Study
	Results
	Discussion

	Conclusion
	References

	Runtime Enforcement of Timed Properties
	Introduction
	Preliminaries and Notation
	Enforcement Monitoring in a Timed Context
	Enforcement of Safety Properties
	Enforcement of Co-safety Properties
	Implementation
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic
	Introduction
	Background
	LTL and MTL
	Continuous Semantics and Boolean Signals

	Modeling Dense-Time Boolean Signals as Event Sequences
	Monitor Construction
	Supported Temporal Operators
	Monitoring Algorithm

	Signal Transducer Tables
	Negation and Conjunction
	Since
	Eventually
	Until

	Correctness
	Monitoring Algorithm Complexity
	Instantaneous Transducers
	Strictly Past Transducer
	Restricted Future
	Unrestricted Future

	Conclusion
	References

	Rewrite-Based Statistical Model Checking of WMTL
	Introduction
	Networks of Priced Timed Automata
	Weighted Metric Temporal Logic
	Monitoring WMTL Properties
	Experiments
	Size of Intermediate Formulas and Precision
	IEEE 802.15.4 CSMA/CA Protocol

	Conclusion
	References

	From Runtime Verification to Runtime Intervention and Adaptation
	Certifying Solutions for Numerical Constraints
	Introduction
	Contributions

	Examples
	Computing the Error
	Implementation
	Scala Macros
	Computing Derivatives
	Integration into a Roundoff Error Assertion Framework
	Uncertain Parameters

	Evaluation
	Related Work
	Conclusion
	References

	Profiling Field Initialisation in Java
	Introduction
	Background
	Implementation
	Object Tracking
	Tracking Methods and Constructors
	Tracking Fields
	Data Aggregation and Analysis

	Experimental Results
	Benchmarks
	Experimental Setup
	Results
	Discussion
	Threats to Validity

	Related Work
	Conclusion
	References

	Defense against Stack-Based Attacks Using Speculative Stack Layout Transformation
	Introduction
	Stack Layout Transformation (SLX)
	Evaluation
	Conclusions
	References

	Incremental Runtime Verification of Probabilistic Systems
	Introduction
	Incremental Model Construction
	Incremental Quantitative Verification
	Experiments
	Conclusions
	References

	Author Index

