EnglishMash: Usability Design
for a Natural Mashup Composition Environment

Saeed Aghaee and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
first.last@usi.ch

Abstract. The design of mashup tools combines elements from end-
user development and software composition in the context of the Web.
The challenge for mashup tool designers is to provide end-users with
suitable abstractions, programming models and tool support for easily
composing mashups out of existing Web services and Web data sources.
In this paper we describe the design of a natural mashup composition
environment based on the EnglishMash controlled natural language. The
environment proactively supports users as they are learning the syntax
of the EnglishMash language with features such as auto-completion, im-
mediate feedback, live preview of the mashup execution and component
discovery and selection based on natural language descriptions.

Keywords: Mashups, end-user development, natural language
programming.

1 Introduction

Designing effective tools to facilitate mashup programming has become a key
strategy to empower non-programmers to harness the potential of the pro-
grammable Web [1l2]. However, the main challenge that lies ahead in designing
such tools consists of addressing the trade-off between expressive power against
the assumed end-user skills [3/4]. In this paper, we present the usability and
user interface design intended for the development environment supporting the
EnglishMash mashup composition language, a tool that uses a restricted form of
natural language (English) for mashup composition. To do so, we follow a use-
case driven approach that starts by eliciting use cases from a case scenario and
then maps each use case to a detailed model of the system’s user interface [5].
One of the difficulties of applying natural language programming techniques
lies in the need for end-users to discover and learn the constraints of the lan-
guage syntax. Clearly, one cannot expect users to type arbitrary correct English
sentences in the tool and effortlessly obtain a running mashup. Thus, the nat-
ural mashup composition language needs to be supported by the corresponding
mashup composition environment, which is the primary focus of this paper. The
highly interactive environment gives immediate feedback to users both in terms
of correcting their mistakes but also showing them a live preview of the effect of
their writing on the mashup output. Since basic sentences of the EnglishMash

M. Grossniklaus and M. Wimmer (Eds.): ICWE 2012 Workshops, LNCS 7703, pp. 109-[20] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

110 S. Aghaee and C. Pautasso

language are built out of component descriptions also expressed using natural
language, we show how component discovery and selection can be seamlessly
embedded into the lifecycle of the natural mashup composition tool.

The rest of this paper is composed as follows. In the next section, we give
a brief introduction on the EnglishMash language. In section [3l we explain the
barriers of EnglishMash in detail. In section H, we extract and model the use
cases of EnglishMash and provide its corresponding use case diagram. Next, we
present the user interface modeling in Section Bl We discuss the related work in
Section [B] followed by conclusion in Section [

2 EnglishMash: A Natural Language-Based Mashup Tool

EnglishMash is a mashup tool based on a controlled natural language—
a subset of a natural language (e.g., English) restricted in terms of
vocabulary and grammar. In terms of expressiveness, it supports various pro-
gramming techniques such as conditional branches, event handling and it-
eration all expressed using very compact natural language grammar and
syntax. For instance, the following Natural Language Mashup Description
(NLMD) describes a mashup composing the Twitter search functionality
(https://dev.twitter.com/docs/api/1/get/search) with the Google Maps
widget (https://developers.google.com/maps/) as well as a HTML table
widget.

‘‘When the map is clicked, do as follows. Display a marker at
the location, and search for tweets at the location. Finally, show
the tweets on the table.’’

Mashup Components in EnglishMash are also described in natural language. The
Natural Language Component Descriptions (NLCDs) of abstract components al-
low to use the components in an NLMD by providing patterns of making clauses
and sentences that together form an NLMD. For instance, the NLCD ¢ ‘search
tweets at [coordinate: longitude, latitude]’’ associated with the Twit-
ter search component is used to construct the clause ¢ ‘search tweets for the
location’’. The Twitter NLCD contains a placeholder for the required input
parameters of the component (i.e., “longitude”, “latitude”) which, in the NLMD,
is replaced with an object referring to the output parameter of the Google Maps
widget ¢ ‘the map is clicked’’.

The given NLMD along with a component library and layout model capturing
the missing composition metadata including user interface design, and the list
of the abstract components used by the NLMD, are passed to the EnglishMash
compiler to generate its corresponding executable form. The runtime uses model
transformation techniques to transform the input models to an executable form
runnable by JOpera—a rapid visual service and mashup composition tool [6].
The detailed explanation of EnglishMash compiler and language, however, is out
of the scope of this paper. For this paper, we only focus on the user interface and
usability aspects of the EnglishMash natural mashup composition environment.

https://dev.twitter.com/docs/api/1/get/search
https://developers.google.com/maps/

EnglishMash: Usability Design 111

3 EnglishMash: Barriers and Required Skills

We divide EnglishMash users into two main groups: NLMD authors, who are
those users interested in creating mashups without getting involved in program-
ming tasks (e.g. non-programmers), and component developers, who are expert
users (e.g., programmers) willing to develop useful components to be composed
by NLMD authors. The focus of this paper is only on the NLMD authors, and
therefore, the usability design proposed in this paper emphasizes the needs of
users of this group.

Mashup programming is a challenging task that involves many advanced tech-
nical skills and knowledge, ranging from configuring the invocation mechanism
of distributed mashup components to knowing how to program with Web script-
ing languages. On the one hand, this technical knowledge is abstracted from
EnglishMash by hiding it inside its reusable component library. On the other
hand, every tool or system requires certain skills to be mastered by its users and
EnglishMash is no exception. Therefore, in order for NLMD authors to create
mashups with EnglishMash, they will be required to acquire the following basic
knowledge and skills:

Components capabilities. Before creating a mashup, the users must be aware
of which components are subject to be mixed by the mashup, as well as what
functionality is offered by each of these components. The required level of
knowledge is remarkably shallow to the extent of being able to articulate the
natural language-based description of the components. For instance, knowing
that “Google Maps can display markers in a given location” is enough
for a user to be able to compose the “Google Maps” component. This is made
feasible by our component meta-model [7], which abstracts the complexity
of the underlying invocation mechanisms of mashup components, including
(but not limited to) their access methods (e.g., REST, JavaScript, SOAP,
etc.), their input/output data types, and whether the components provide
data, services, or user interface widgets.

Components vs. Composition. We assume that mashup components have
been abstracted, described, and made available as a library to EnglishMash
users by the component providers and not necessarily by the users them-
selves. The EnglishMash can thus be considered as an abstract composition
language, which can be used to construct executable mashups once it is
used in conjunction with the corresponding library of reusable components,
which are described both at an abstract level with natural language and at
a concrete level with executable code.

Algorithmic thinking. EnglishMash requires its users to have basic problem
solving skills. These skills are needed for orchestrating the components of a
mashup by describing how the mashup is supposed to work. Whereas this
requires users to think algorithmically, as we are going to see, interesting
non-trivial mashups can be already obtained with a small number of mashup
components and simple descriptions.

Syntax. The biggest barrier imposed by EnglishMash is, indeed, the need to
learn its core syntax rules. Even if the English language is used as a basis for

112 S. Aghaee and C. Pautasso

the Mashup composition language, i.e., every EnglishMash sentence is a cor-
rect English sentence, users must learn how to restrict their English sentences
so that they can be executed by the EnglishMash tool. To do so, English-
Mash includes general composition syntax rules, which are used to define the
structure of a mashup. Within this structure, users make references to com-
ponent descriptions, which impose additional syntax rules contributing to
increase the quantity of syntax rules, and consequently raise barriers to the
learning process. However, the learning curve is a gentle slope, as the syntax
associated with the component descriptions needs to be fully understood
only if the components are selected to be included in the mashup.

As described by Nardi [8], end-users such as NLMD authors are not naive users,
and they certainly have the ability, willingness and courage to learn, provided
that the learning effort is worth the added value the mashup brings for them. Ac-
cordingly, the main requirement is to shorten the learning curve of EnglishMash
as much as possible through the design of a usable user interface.

4 Use Case Modeling

As shown in the use case diagram of Figure [Il when starting to build a mashup
using EnglishMash, a user should first have a goal in mind that reflects his/her
situational needs. Let it be: ‘‘I want a mashup to show tweets around a
given location’’. Having a goal in mind helps the user to elicit the needed
mashup components, being, in this example, “Twitter” and “Google Maps”.
Together with a powerful search engine provided by EnglishMash, the user
then searches for the solicited components matching or approximating the given
terms. For example, the user may search for the keyword “map” in the compo-
nent library, which returns a number of mapping components which have been
registered with the system. Afterward, the user chooses among the search re-
sults and adds the selected components to the stack, which indicates the list of
components which are used in the mashup. If the search returns no results, then
the user either creates the missing components, or ask other more expert users
to do so.

Once the required components are available and selected, the user proceeds
with the development of the target mashup. This use case is broken down into
the following smaller use cases that should be supported simultaneously: (1)
developing the logic of the mashup using NLMD, (2) designing the user interface
of the mashup, (4) previewing the results of the execution of the mashup as it
is being developed, (3) getting immediate feedback of syntax or runtime errors,
(4) receiving NLMD writing aids in terms of auto-completion with drop-down
menus containing suggestions.

The component discovery and composition use cases are clearly intertwined,
since while developing a mashup, the user should be able to search for and
add additional components to be composed within the target mashup, even if
the mashup has already been partially described. For example, after adding the

EnglishMash: Usability Design 113

”Google Maps” component to the stack, the user can start typing the mashup
description, which should refer to the natural language description of the com-
ponent. Typing the first few characters of show into the description will trigger
another component lookup, based on the entered string. The tool will automati-
cally proposed to complete the description with the show a map. text. Clicking
on the auto-completion suggestion will 1) enter the completed natural language
description of the component; 2) trigger a rebuild of the mashup, which will be
executed and the results (i.e., the map widget centered around a default location)
will be shown in the output live preview area.

The user may then proceed to define how to interact with the mashup widget.
Typing a new sentence beginning with When will provide a list of auto-completion
possibilities, including ”When the map is clicked”, ”When the map is zoomed”,
”When the map center is moved”. These correspond to events made available
by the map widget component previouls added to the stack. After selecting the
appropriate event, the user can continue typing to specify what should happen
in the mashup when the event occurs.

Finally, the user should be able to deploy the mashup in production and
share it with others. Even after a mashup has been published, it still remains
modifiable and can be adjusted, redeployed and republished at any time.

Search components
-=> Call for component development

Stack components

Component selection

/
/
||I

Get immediate feedback

\||

-

- _ Design mashup user interface
Develop mashup -
~ \\ ==
=~ ~
~

NLMD
author >~

Publish/deploy

Fig. 1. Use case diagram for semi-automatic mashup platforms

Receive writing aids

Develop mashup logic

I

5 User Interface Modeling

To model the user interface corresponding to the previous use cases, we used the
UMLi (http://trust.utep.edu/umli/) modeling language. UMLi is a UML
extension to support user interface modeling. To this end, it introduces user

http://trust.utep.edu/umli/

114 S. Aghaee and C. Pautasso

interface diagram used to model the graphical elements of an interface, and
extends the UML activity diagram to model the interaction between users and
the target user interface.

The use cases elicited in the previous step (Figure [Il) drive and inform the
user interface modeling by providing various context-of-use scenarios. These sce-
narios, in turn, help to extract the target user interface elements and produce
the user interface diagram as well as to model the user interaction with these
graphical elements using the extended activity diagram. According to the En-
glishMash uses cases, the following context-of-use scenarios can be identified:
(1) searching components, (2) selecting components, (3) NLMD authoring, (4)
mashup user interface design, (5) live mashup execution, and (6) publishing and
deploying mashups.

7oA
v

___________ EnglishMash e
. - o]
_______________________ H e
Search H Stack

i

1

i

| A

keywords results i

i

1

1

i

1

drag characteristics search ! drop remove

T T Py ST T 4
I et T h e h
i Text field | i Output i
A A L ’
I 1 1 i
] 1 ! 1
i 1 1 i
! writing aids feedback NLMD ! ! publish output !
| 1 1 |

Fig. 2. UMLj user interface diagram for EnglishMash

The high-level elements in a user interface diagram is a FreeContainer that cor-
responds to a window or a web page. Since there is no logical order between the
scenarios 1-5, we incorporate a single user interface in which all the use cases are
considered and integrated as a whole. Users should not have to navigate between
different “screens” or switch between different “operational modes” in order to use
the tool for searching components (by typing partial natural language sentences),
composing components (by editing and refining the natural language description),
and by observing the results which are immediately available. Likewise, we use a
What-you-see-is-what-you-get (WYSIWYG) approach to design the mashup user
interface and deal with widget placement and layout issues.

A FreeContainer is structured in Containers. As it is shown in the user in-
terface diagram (Figure 2)), the main FreeContainer (“EnglishMash”) consists of
four Containers associated to the context-of-use scenarios. These are “search”,
handling the component discovery scenario; “stack”, supporting the component

EnglishMash: Usability Design 115

ey)@

publish
search components
JaR
A
| design mashup Ul | | edit NLMD | stack components
i
i
i I Widget?
1

_____ Vv S~o Yes
output - EnglishMash generate mashup Ul

Fig. 3. UML{ main activity diagram of the EnglishMash tool user interface

selection scenario; “text field”, enabling the NLMD editing scenario; and “out-
put”, handling both the user interface design and the live execution preview
scenarios. In the latter case, two scenarios are merged into a single container
to simplify the design of the mashup user interface, which is tightly connected
with the result of the mashup execution as described in the ”input mashup text”
container.

Within each Container, UML{ allows to distinguish with specific graphical el-
ements the user interface controls responsible for (1) sending visual feedback to
users (e.g., “syntax checker”), (2) receiving information from users (e.g., “key-
words”), (3) simultaneously sending and receiving information (e.g., “NLMD”),
and (4) modeling user interface events (e.g., “drop”).

To fully model the EnglishMash user interface requires also describing its
interactions with users, we do so through UML: activity diagrams. Figure Bl
illustrates the main activity diagram modeling the interaction with the English-
Mash user interface. It contains six activities, out of which four are composite
(“design mashup UT”, “edit NLMD”, “stack components”, and “search compo-
nents”). The main activity diagram starts by a loop that executes one or none
of these composite activities at a time. Inside the loop, the activities “design
mashup UI” and “edit NLMD” are both followed by the immediate execution of
the ”generate mashup UT’, which involves the regeneration and synchronization
of the output mashup (live execution preview). Also, the live execution preview
activity is activated ever time the “stack components” state results in removing
or adding a widget (i.e., components with user interface) to the stack. The loop
stops when the user publishes the mashup by triggering the “publish” graphical
element (e.g., clicking a button).

116 S. Aghaee and C. Pautasso

develop mashup Lo
i i
<-4
] P
$ Text field : EnglishMash
[User types into the text field Jé ———————————————— <>
NLMD
[Search for NLCD J [Immediale feedback]<, B A

Corresponding
component
is in the stack?

o

Fig. 4. The UML: activity diagram for the “edit NLMD” activity

The composite activities are depicted in Figures [, B Bl and [l According
to the “search component” activity, user begin their search by entering some
keywords. If the keywords produce no result, then the user can call for the
development of his/her solicited components by describing their characteristics
using natural language. The component description will be added to the library
but until a matching component implementation is registered, the component
will not be executable. In the “stack components” composite activity, in turn,
users can either remove a component or add a new one by dropping a result
from the search results to the stack.

In the “edit NLMD” activity diagram, as the user types into the “NLMD”
graphical element, immediate feedback (syntax and runtime errors) as well as
writing aids (auto-completion) will be provided. In the latter case, the partial
text input by the user is used by EnglishMash to search the component library for
components having a matching NLCD. The results are displayed to the users in
a drop-down menu. After choosing among the results, if the selected NLCD does
not already belong to the components in the stack, its corresponding component
will be added to the stack. Finally, the “designing mashup UI” state involves
resizing or relocating widgets in the mashup user interface.

A snapshot of the concrete EnglishMash user interface based on the mentioned
models is illustrated in Figure[8 To implement the user interface, we used client
side-technologies such as HTML5, CSS3, and JavaScript augmented with the
JQuery user interface libraries (http://jqueryui.com/)

http://jqueryui.com/

EnglishMash: Usability Design 117

search components . ,‘/‘
i
i

<----1 ‘
i J
searchk:ilfnigﬁ‘s,hMash

[user enters some keywords]é ———————————————————

:keywords

1search
Results?
(oot) -]
:characteristics

stack components P
i '
3 e
1 ',
,,,,, v
stack : EnglishMasl|
y 7 y :remove
[User removes a components]Z [User drops a search result] ~-___

¥ 7 y
(G e (@) (Grramors)<t

Fig. 7. The UML: activity diagram that illustrates the “design mashup UI” activity

6 Related Work

Mashup tools can be generally classified into automatic and semi-automatic [9].
Automatic tools do not necessitate the involvement of users, whereas semi-
automatic tools aim at empowering users to quickly build their desired mashups

118 S. Aghaee and C. Pautasso

through providing utmost assistance and guidance. EnglishMash along with the
majority of mashup tools like Yahoo! Pipes (http://pipes.yahoo.com/)), Dash-
Mash [I0], and JackBe Presto (http://www.jackbe.com/), are all categorized
as semi-automatic. In fact, the users of semi-automatic tools are required to go
through a learning process that, depending on the design of the tool, can be
short or long. On the other hand, automatic tools do not require prior learning,
but run the risk of deviating from user needs by producing irrelevant mashups.
The process of validating and correcting the resulting mashups (if provided by
the tool) can, in turn, become a time-consuming task [8].

The distinction of EnglishMash from other semi-automatic tools lie in its
novel interaction technique, being an effective combination of natural language
and WYSIWYG techniques. This, therefore, distinguishes EnglishMash from
other mashup tools using either of the techniques. For instance, ServFace [I1]
is a tool relying on WYSIWYG technique. The shortcoming of the tool is in
modeling all the required composition techniques (e.g., branches and loops) on
the user ointerface level. Regarding natural language, Natural Mashup [12] is
a tool incorporating a natural language-based interface for composing mashups
which however does not support user interface integration and design which are
integral part of mashup development [I3]. Mashup auto-completion has been
proposed in [I4]. In our approach we rely on natural language descriptions of
mashup components.

Live execution of mashups +
Search area Mashup user interface editor Component stack

Fira Components google maps table

Please, enter some keywords: @ | Map | Satelite | ;:hey_ 5,‘?1‘_’]:’9'] a c":fl‘;" "“Eige: witha 7 m
arpie! These are bad people.)
}E{ "They stabbed a chicken nugget with a Sharpic! The!
= peopie.”
twitter
Couldn't help myself #KidAtHeart
#DirtyMind http://t.co HWxwUDsJ 2]
Queensiand ‘Couldn't help myself <a href=" switerce | i+

q=%23KidAtHeart" tile="#KidAtHeart" class=" p—

">#KidA tHeart <a href="http://search twitter.co
'q=%23DirtyMind" title="#DirtyMind" class="

">#DirtyMind <a Gaogle
-href="http:/t.co/ HWxwUDsJ">http://t.co/ HWxwUL

when the map is clicked,find tweets around location,and show page on
the table.

\ % J
3aeed Aghaee © 2011 T
NLMD input text field

Fig. 8. The Web-based composition environment for EnglishMash

http://pipes.yahoo.com/
http://www.jackbe.com/

EnglishMash: Usability Design 119
7 Conclusion

Designing a usable interface for a mashup tool plays an important role in ad-
dressing the trade-off between maximizing its expressive power and ensuring
that it presents users with a gently-sloped learning curve. In this paper, we used
a use-case driven approach to design a composition environment for English-
Mash, a mashup tool that relies on a novel approach that lies at the intersection
of model-driven development and natural language processing. The tool makes
use of the EnglishMash mashup composition language that conforms to a re-
stricted form of natural language (English). The high level of abstraction offered
by the language eliminates the need for expressing technical details, and con-
sequently makes the executable description of the mashup very similar to its
natural language description. The tool supports the users in learning the con-
strained syntax of the language by means of immediate feedback, both in terms
of informing users about syntax and semantic errors, but also by providing a
live preview of the mashup execution results. Users typying the description of
the mashup are supported by auto-completion features which are closely tied to
the component discovery and selection features of the tool.

The paper describes first a set of common use case scenarios for the tool and
then presents a detailed model of the user interface of the EnglishMash envi-
ronment. To do so, we used UML¢, which is an extension to UML to support
user interface modeling, and produced both a user interface diagram, specify-
ing the constituent abstract graphical elements of the user interface, and its
corresponding activity diagrams representing the interactions between the user
interface and users. Finally, we implemented the user interface using client-side
technologies (e.g., JavaScript, HTML5, and CSS3) after creating a mapping be-
tween the abstract graphical elements and the concrete elements corresponding
to HTML tags, attributes, and events.

We are currently undergoing an internal evaluation of the tool with a small
user community made of non-programmers (e.g., High School students). We
plan to publish the tool on the Web after its preliminary evaluation has been
concluded together with a library of example mashups and reusable component
descriptions.

Acknowledgements. The work presented in this paper has been supported
by the Swiss National Science Foundation with the SOSOA project (SINERGIA
grant nr. CRSI22 127386).

References

1. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
web applications. IEEE Internet Computing 12, 13-15 (2008)

2. Daniel, F.; Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Un-
derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing 11, 59-66 (2007)

120

3.

10.

11.

12.

13.

14.

S. Aghaee and C. Pautasso

Bozzon, A., Brambilla, M., Facca, F.M., Carughu, G.T.: A conceptual modeling
approach to business service mashup development. In: Proc. of ICWS 2009, pp.
751-758. IEEE Computer Society (2009)

Cao, J., Riche, Y., Wiedenbeck, S., Burnett, M., Grigoreanu, V.: End-user mashup
programming: through the design lens. In: Proc. of the CHI 2010, pp. 1009-1018
(2010)

Lif, M.: User-interface modelling: adding usability to use cases. Int. J. Hum.-
Comput. Stud. 50, 243-262 (1999)

Pautasso, C., Alonso, G.: The JOpera visual composition language. Journal of
Visual Languages and Computing 16, 119-152 (2005)

Aghaee, S., Pautasso, C.: The mashup component description language. In: Proc.
of iiWAS 2011 (2011)

Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT Press, Cambridge (1993)

Fischer, T., Bakalov, F., Nauerz, A.: An overview of current approaches to mashup
generation. In: Proc. of WM 2009, pp. 254-259 (2009)

Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Diaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152-166.
Springer, Heidelberg (2011)

Nestler, T., Feldmann, M., Hiibsch, G., Preufiner, A., Jugel, U.: The ServFace
Builder - A WYSIWYG Approach for Building Service-Based Applications. In: Be-
natallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189,
pp. 498-501. Springer, Heidelberg (2010)

Belaunde, M., Hassen, S.B.: Service mashups using natural language and context
awareness: A pragmatic architectural design. In: Proc. of EDOCW 2011 (2011)
Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: Proc. of WWW 2007
(2007)

Abiteboul, S.; Greenshpan, O., Milo, T., Polyzotis, N.: Matchup: Autocompletion
for mashups. In: Proc. of ICDE 2009 (2009)

	EnglishMash: Usability Design for a Natural Mashup Composition Environment

	Introduction
	EnglishMash: A Natural Language-Based Mashup Tool
	EnglishMash: Barriers and Required Skills
	Use Case Modeling
	User Interface Modeling
	Related Work
	Conclusion
	References

